陈思铭

陈思铭,男,博士,研究员,博士生导师。

英国皇家工程院研究员基金获得者(2017)、国家高层次人才引进计划青年项目获得者(2022)。2014年于英国谢菲尔德大学电子与电气工程系获博士学位,2013年至2022年在英国伦敦大学学院电子与电气工程系从事硅基III-V族异质集成和量子点光源方面的研究工作,20233月入职中国科学院半导体研究所。

在国际上首次实现了极低阈值、超长使用寿命的硅基III-V族量子点激光器[Nat. Photon. 2016],为硅基III-V族异质集成的实用化奠定了坚实基础;实现了全球首例硅基外延电泵浦室温连续波工作分布反馈式(DFB)量子点激光器阵列[Optica 2018],将硅基外延激光器的性能推进到接近高速光通信实用器件的水平;并将该思路拓展至硅基宽光谱源,研制出首例硅基量子点超辐射发光二[ACS Photon. 2014];实现了在无斜切角Si(001)衬底上无反相畴的III-V族单晶薄膜的直接外延,攻克了III-V族材料与硅基CMOS工艺难以兼容的难题,构筑了CMOS兼容的各类新型微纳激光器,包含首例硅基量子点光子晶体纳米激光器[Nat. Comm. 2020]、低功耗微盘激光器[Optica 2019]、拓扑纳米激光器[ACS Photon. 2022];实现了低噪音、超宽锁模温度区间量子点锁模光频梳[Photon. Res. 2021; OSA评选为Spotlight on Optics] ;进而研制了调制速率高达128 Gbit/s/l的重频率高达100 GHz的低噪音量子点锁模光频梳[ACP 2021 Post Deadline Paper]

发表SCI论文93篇,以第一/通讯作者在Nature Photonics Nature Communications等重要学术期刊发表论文31篇,发布美国专利4项,授权1项,获得中国授权发明专利4项,IEEE高级会员,担任Journal of Physics D: Applied Physics副主编。

主要研究方向:

硅基III-V族光源与集成;III-V量子点材料、光子器件与集成。

在研项目:

中国科学院,国家级人才引进项目,2023-05 2025-12,在研,主持

联系方式:

E-mailsmchen@semi.ac.cn电话:010-82304243

代表性论文:

1S. Chen*, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N Elliott, A. Sobiesierski, A. J Seeds, I. Ross, P. M Smowton, H Liu*, Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nature Photon. 10, 307–311 (2016)

2T. Zhou, M. Tang*, G. Xiang, B. Xiang, S. Hark, M. Martin, T. Baron, S. Pan, J-S Park, Z Liu, S. Chen*, Z. Zhang*, H. Liu*, Continuous-wave quantum dot photonic crystal lasers grown on on-axis Si (001). Nature Commun. 11, 977 (2020)

3J. Yang, M. Tang, S. Chen, H. Liu*, From past to future: on-chip laser sources for photonic integrated circuits. Light. Sci. Appl. 12, 16 (2023)

4Y. Wang, S. Chen*, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z.  Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, "Monolithic quantum-dot distributed feedback laser array on silicon," Optica 5, 528-533 (2018)

5S. Chen*, M. Tang, Q. Jiang, J. Wu, V. G Dorogan, Mo. Benamara, Y. I Mazur, G. J Salamo, P. Smowton, A. Seeds, H. Liu, InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si Substrate, ACS Photonics 1, 638–642 (2014)

6T. Zhou, J. Ma, M. Tang, H. Li, M. Martin, T. Baron, H. Liu*, S. Chen*, X. Sun*, Z. Zhang*, Monolithically Integrated Ultralow Threshold Topological Corner State Nanolasers on Silicon, ACS Photonics 9, 3824–3830 (2022)

7S. Pan, J. Huang, Z. Zhou, Z. Liu, L. Ponnampalam, Z. Liu, M. Tang, M-C Lo, Z. Cao, K. Nishi, K. Takemasa, M. Sugawara, R. Penty, I. White, A. Seeds, H. Liu, and S. Chen*, Quantum dot mode-locked frequency comb with ultra-stable 25.5  GHz spacing between 20°C and 120°C, Photon. Res8, 1937-1942 (2020)

8M. Liao, S. Chen*, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, Low-noise 1.3 μm InAs/GaAs quantum dot laser monolithically grown on silicon, Photon. Res6, 1062-1066 (2018)

9S. Chen*, M. Liao, M. Tang, J. Wu, M. Martin, T. Baron, A. Seeds, and H. Liu, Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates, Opt. Express 25, 4632-4639 (2017)

(10)10M. Tang, S. Chen*, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers, Opt. Express 22, 11528-11535 (2014)