马文全

马文全,男,博士,研究员,博士生导师。

兰州大学物理系毕业,中科院半导体所理学硕士,德国洪堡大学理学博士,博士论文工作是在柏林Paul-Drude固体电子研究所从事的,2001-2004年在美国阿肯色大学物理系从事博士后研究工作。200410月加入中科院半导体所。长期从事低维半导体结构的材料生长、物理特性及器件研究工作。

目前的研究兴趣主要是:半导体光电子材料及器件物理研究,锑化物红外探测器及激光器,新型低维半导体低维结构材料及器件

取得的重要科研成果:

近几年主要取得的科研成果有:研制成功短波、中波、长波、甚长波及/中波、中/长波、/甚长波双色InAs/GaSb二类超晶格红外探测器,短波、中波、长波及甚长波器件结构超晶格材料X射线衍射卫星峰半宽最好结果分别为252015 21 弧秒,为世界最好水平;与兄弟单位合作研制成功高性能二类超晶格中波、长波及/长波双色红外焦平面阵列器件器件具有极低的噪声等效温度差;研制成功带间级联激光器;首次报道了二类超晶格材料中的多光子吸收现象,观察到双光子、5光子及11光子吸收等等。

联系方式:

E-mailwqma@semi.ac.cn,电话:010-82304089

在研/完成项目:

1自然科学基金3-5微米InAs基带间级联激光器材料生长和研制”, 2019.1-2022.12直接经费63万,主持。

2国家重点研发计划,半导体低维极性界面及其量子调控课题四2017/07-2022/06800万,参加

3自然科学基金,量子点红外探测器材料及器件物理研究”, 2015.1-2018.1290万,主持。

4自然科学基金,高性能长波长InAs/GaSb二类超晶格材料基础研究”, 2012.1-2015.1270万,主持。

5国家973项目半导体异质兼容集成中的新型材料系探索与特殊超晶格结构2010.1-2014.12469万,主持。

6自然科学基金重大项目“InAs /GaSb二类超晶格长波红外探测材料与器件研究2013.1-2017.12416万,参加。

7其他项目,850万,2016.01-2018.12,主持。  

近几年代表性论著(*为通信作者):

1. C.C. Zhao, J.L. Huang…, W.Q. Ma*, Multiphoton absorption in type-II InAs/GaSb superlattice structure”, Optics Lett., 45, 165(2020).

2. B.Y. Nie, J.L. Huang…, W.Q. Ma*, Long wavelength type II InAs/GaSb superlattice photodetector using resonant tunneling diode structure”, IEEE Electron Device Lett., 41, 73 (2020).

3. C.C. Zhao, J.L. Huang…, W.Q. Ma*, Monte Carlo simulation of avalanche noise characteristics of type II InAs/ GaSb superlattice avalanche photodiodes”, Solid State Communications, 301, 113699(2019).

4. B.Y. Nie, J.L. Huang…, W.Q. Ma*, InAs/GaSb superlattice resonant tunneling diode photodetector with InAs/AlSb double barrier structure”, Appl. Phys. Lett., 114, 053509(2019).

5. W.J. Huang, J.L. Huang…, W.Q. Ma*, Short/Mid-Wave Two-Band Type-II Superlattice Infrared Heterojunction Phototransistor”, IEEE Photo. Technol. Lett., 31, 137(2019).

6. J.L. Huang, W.Q. Ma*, Y.H. Zhang, et al., Two-Color niBin Type II Superlattice Infrared Photodetector With External Quantum Efficiency Larger Than 100%”, IEEE Electron Device Lett. 38, 1266 (2017).

7. W.J. Huang, W.Q. Ma*, J.L.Huang, et al., Electron mobility of inverted InAs/GaSb quantum well structure”, Solid State Communications, 267, 29(2017).

8. Y.H. Zhang, W.Q. Ma*, J.L. Huang, et al., Pushing Detection Wavelength Toward 1 μm by Type II InAs/GaAsSb Superlattices With AlSb Insertion Layers”, IEEE Electron Device Lett. 37, 1166 (2016).

9. J.L. Huang, W.Q. Ma*, Y.H. Zhang, et al., “Experimental determination of band overlap in type II InAs/GaSb superlattice based on temperature dependent photoluminescence signal”, Solid State Communications, 224, 34(2015).

10. J.L. Huang, W.Q. Ma*, Y.H. Zhang, et al., “Impact of band structure of Ohmic contact layers on the response feature of p-i-n very long wavelength type II InAs/GaSb superlattice photodetector”, Appl. Phys. Lett., 106, 263502(2015).

11. J.L. Huang, W.Q. Ma*, Y.H. Zhang, et al., “Narrow-band Type II Superlattice Photodetector with Detection Wavelength Shorter than 2 um”, IEEE Photo. Technol. Lett., 27, 2276(2015).

12. K. Liu, W.Q. Ma*, J.L. Huang, Y.H. Zhang, et al.,“Longer than 1.9 μm photoluminescence emission from InAs quantum structure on GaAs (001) substrate”, Appl. Phys. Lett. 107 , 041103(2015).

13. J.L. Huang, W.Q. Ma*, Y. Wei, Y.H. Zhang , K. Cui, and J. Shao, “Interface effect on structural and optical properties of type II InAs/GaSb superlattices”, J. Crystal Gowth. 407, 37 (2014).

14. Q. Li, W.Q. Ma*, Y.H. Zhang , K. Cui, J.L. Huang , Y. Wei, et al., “Dark current mechanism of unpassivated mid wavelength type II InAs/GaSb superlattice infrared photodetector”, Chin. Sci. Bull. 59, 3696 (2014).

15. K. Cui, W.Q. Ma*, Y.H. Zhang, et al., “540-meV Hole Activation Energy for GaSb/GaAs Quantum Dot Memory Structure Using AlGaAs Barrier”, IEEE Electron Device Lett. 34, 759 (2013).

16. X.L. Guo, W.Q. Ma*, J.L. Huang, Y.H. Zhang , Y. Wei, K. Cui, Y.L. Cao, and Q. Li, “Electrical properties of the absorber layer for mid, long and very long wavelength detection using type-II InAs/GaSb superlattice structures grown by molecular beam epitaxy”, Semicond. Sci. Technol. 28, 045004(2013).

17. J.L. Huang, W.Q. Ma*, Y. Wei, Y.H. Zhang , K. Cui, Y.L. Cao, X.L. Guo and J. Shao, “How to use type II InAs/GaSb superlattice structure to reach detection wavelength of 2–3 μm”, IEEE J. Quantum Electro. 48, 1322 (2012).

18. J.L. Huang, W.Q. Ma*, Y.L. Cao, Y. Wei, Y.H. Zhang , K. Cui, G.R. Deng and Y.L. Shi, “Mid wavelength type II InAs/GaSb superlattice photodetector using SiOxNy passivation”, Jpn. J. Appl. Phys. 51, 074002 (2012).

19. K. Cui, W.Q. Ma*, J.L. Huang, Y. Wei, Y.H. Zhang, Y.L. Cao, Y.X. Gu and T. Yang, “Multilayered type-II GaSb/GaAs self-assembled quantum dot structure with 1.35μm light emission at room temperature”, Physica E. 45, 173 (2012).

20. Y.H. Zhang, W.Q. Ma*, Y.L. Cao, J.L. Huang, Y. Wei, K. Cui, and J. Shao, “Narrow-band long-/very-long wavelength two-color type-II InAs/GaSb superlattice photodetector by changing the bias polarity”, Appl. Phys. Lett. 100, 173511 (2012).

21. Y. Wei, W.Q. Ma*, Y.H. Zhang , J.L. Huang, Y.L. Cao, and K. Cui, “High structural quality of type II InAs/GaSb superlattices for very long wavelength infrared detection by interface control”, IEEE J. Quantum Electron. 48, 512 (2012).

22. Y.H. Zhang, W.Q. Ma*, Y.L. Cao, J.L. Huang,, Y. Wei, K. Cui, and J. Shao, “Long wavelength infrared InAs/GaSb superlattice photodetectors with InSb-like and mixed interfaces”, IEEE J. Quantum Electron. 47, 1475 (2011).

23. K. Cui, W.Q. Ma*, Y.H. Zhang, J.L. Huang,, Y. Wei, Y.L. Cao, Z. Jin, and L.F. Bian, “Forward bias voltage controlled infrared photodetection and electroluminescence from a p-i-n quantum dot structure”, Appl. Phys. Lett. 99, 023502 (2011).

24. Y. Wei, W.Q. Ma*, J.L. Huang, Y.H. Zhang, Y.H. Huo, K. Cui, L.H. Chen, and Y. L. Shi, “Very long wavelength quantum dot infrared photodetector using a modified dots-in-a-well structure with AlGaAs insertion layers”, Appl. Phys. Lett. 98, 103507 (2011).

25. J.L. Huang, W.Q. Ma*, Y. Wei, Y.H. Zhang, Y.H. Huo, K. Cui, and L.H. Chen, “Two-color In0.4Ga0.6As/Al0.1Ga0.9As quantum dot infrared photodetector with double tunnelling barriers”, Appl. Phys. Lett. 98, 103501 (2011).