张 韵

张韵,男,博士,研究员,博士生导师。 

  国家高层次人才计划入选者。现任中国科学院半导体研究所副所长、纪委副书记,十二五科技部第三代半导体材料总体专家组成员。清华大学电子工程系电子科学与技术专业学士,佐治亚理工学院电子与计算机工程系博士。曾就职于美国高平(Kopin)半导体公司III-V部门从事研发工作。2012年初进入中国科学院半导体研究所工作。目前科研重点是AlGaN/GaN基大功率高频/电力电子器件、AlGaN基深紫外波段光电子材料与器件等。 

  取得的重要科研成果: 

  在III族氮化物(GaN基材料)等第三代半导体材料及器件物理领域开展了多年研究,获得了首个GaN基射频异质结双极晶体管(HBT)、高灵敏度深紫外雪崩光电二极管(APD)、高亮度深紫外发光二极管(LED)、电注入蓝绿光半导体激光器(LD)、光泵浦深紫外半导体激光器等世界先进的研究成果,已在国际学术期刊发表论文30余篇。 

  (1)提出紫外光加强湿法刻蚀方法以及双台面耗尽层设计,降低GaN基紫外雪崩光电二极管的表面漏电流,在GaN体衬底上达到雪崩光电增益超过104并实现具备单光子探测能力的盖革模式工作。 

  (2)在GaN体衬底上实现了420 nm蓝紫光和460 nm蓝光InGaN基半导体激光器的室温连续激射,证实渐变AlGaN电子阻挡层能够大幅度提升InGaN基激光器的性能。 

  (3)在蓝宝石衬底上实现了最高响应频率大于5.3 GHzGaN基射频异质结双极晶体管。并在GaN体衬底上达到了141 KA/cm2的电流密度以及 3.05 MW/cm2的功率密度。 

  (4)在我国首次实现AlGaN基激光器短于280纳米深紫外UV-C波段光泵谱激射,并在280纳米波段深紫外LED中实现100mA大电流注入下光功率输出超过10mW,寿命(L80)超过3000小时。 

  主要研究领域或方向: 

  (1)半导体紫外光源领域:高Al组分AlGaN半导体材料MOCVD生长研究;UVB波段(280-320nmAlGaN基紫外激光二极管器件制备研究;UVC波段(200-280nmAlGaN基高效紫外发光二极管器件制备及在污染物分解、杀菌消毒等领域的应用研究等。 

  (2)微电子器件领域:AlGaN/GaN基射频/微波高电子迁移率场效应管(HEMT)材料生长及器件制备研究;AlGaN/GaN基增强型(E-modeHEMT材料生长及器件制备研究;InGaN/GaN基射频异质结双极晶体管(HBT)材料生长及器件制备研究;AlN基体声波滤波器制备研究等。 

  (3)第三代半导体单晶材料领域:高纯半绝缘SiC单晶材料制备研究;AlN单晶材料制备研究等。 

  联系方式: 

  邮箱:yzhang34@semi.ac.cn;电话:010-82304283;办公室:1号楼707 

  在研/完成项目: 

  (1)科技部863课题高铝组分氮化物制备技术研究,负责人,执行期2014-2016年,总经费665 

  (2)国家自然基金面上项目“GaNHBT射频性能提升研究,负责人,执行期2014-2017年,总经费85 

  (3)北京市科委重大项目课题深紫外LED材料与芯片自主研制,负责人,执行期2016-2017年,总经费500 

  代表性论文或著作: 

  1.  Yingdong Tian, Yun Zhang,* Jianchang Yan, Xiang Chen, Junxi Wang and Jinmin Li*, “Stimulated emission at 272 nm from an AlxGa1-xN-based multiple-quantum-well laser with two-stepetched facets”, RSC Advances, 2016, 6, 50245-50249. 

  2. Yingdong Tian, Jianchang Yan, Yun Zhang,* Yonghui Zhang, Xiang Chen, Yanan Guo, Junxi Wang and Jinmin Li*, “Formation and characteristics of AlGaN-based three-dimensional hexagonal nanopyramid semi-polar multiple quantum wells”, Nanoscale, 2016, 8, 11012-11018. 

  3. Yongbing Zhao, Yun Zhang*, Zhe Cheng, Yuliang Huang, Lian Zhang, Zhiqiang Liu, Xiaoyan Yi, Guohong Wang, Jinmin Li, “Al2O3/AlGaN/GaN MOS-HEMT with high on/off drain current ratio”, Chinese Journal of Luminescence, vol. 37, 5, 58 (2016). 

  4. Lian Zhang, Yun Zhang*, Hongxi Lu, Junxi Wang, and Jinmin Li, “High-resistance GaN-based buffer layers grown by a polarization doping method”, Phys. Status Solidi C 13, No. 5-6, 307-310 (2016). 

  5. Y. Tian, J. Yan, Y. Zhang, X. Chen, Y. Guo, P. Cong, L. Sun, Q. Wang, E. Guo, X. Wei, J. Wang, and J. Li, “Stimulated emission at 288 nm from silicon-doped AlGaN-based multiple-quantum-well laser,” Optics Express, vol. 23, pp. 11334-11340 (2015). 

  6. P. Dong, J. Yan, Y. Zhang*, J. Wang, J. Zeng, C. Geng, P. Cong, L. Sun, T. Wei, L. Zhao, Q. Yan, C. He, Z. Qin, and J. Li, "AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates with significant improvement in internal quantum efficiency," Journal of Crystal Growth, vol. 395, pp. 9-13, (2014). 

  7. P. Dong, J. Yan, Y. Zhang, J. Wang, C. Geng, H. Zheng, X. Wei, Q. Yan, and J. Li, "Optical properties of nanopillar AlGaN/GaN MQWs for ultraviolet light-emitting diodes," Optics Express, vol. 22, pp. A320-A327 (2014). 

  8. P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, "282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates," Applied Physics Letters, vol. 102, p. 241113, (2013). 

  9. Y.-C. Lee, Y. Zhang, Z. M. Lochner, H.-J. Kim, J.-H. Ryou, R. D. Dupuis, and S.-C. Shen, "GaN/InGaN heterojunction bipolar transistors with ultra-high d.c. power density (>3MW/cm2)," Phys. Status Solidi A209 (3), 497-500 (2012). 

  10. S.-C. Shen, R. D. Dupuis, Y.-C. Lee, H. J. Kim, Y. Zhang, Z. Lochner, P. D. Yoder, and J.-H. Ryou, “GaN/InGaN heterojunction bipolar transistors with fT > 5 GHz,” IEEE Electron Device Lett. 32 (8), 1065–1067 (2011). 

  11. Y. Zhang, Y.-C. Lee, Z. Lochner, H. J. Kim, S. Choi, J.-H. Ryou, R. D. Dupuis, and S.-C. Shen, “High-performance GaN/InGaN double heterojunction bipolar transistors with power density >240 kW/cm2,” Phys. Stat. Sol. (c) 8 (7–8), 2451–2453 (2011). 

  12. Y. Zhang, T.-T. Kao, J. P. Liu, Z. Lochner, Y.-C. Lee, S.-S. Kim, J.-H. Ryou, R. D. Dupuis, and S.-C. Shen, “Effects of a step-graded AlxGa1-xN electron blocking layer in InGaN-based laser diodes,” J. Appl. Phys. 109 (8), 083115-1–5 (2011). 

  13. Y.-C. Lee, Y. Zhang, H.-J. Kim, S. Choi, Z. Lochner, R. D. Dupuis, J.-H. Ryou, and S.-C. Shen, “High-current-gain GaN/InGaN double heterojunction bipolar transistors,” IEEE Trans. Electron Devices 57 (11), 2964–2969 (2010). 

  14. Y. Zhang, S.-C. Shen, H. J. Kim, S. Choi, J.-H. Ryou, R. D. Dupuis, and B. Narayan, “Low-noise GaN ultraviolet p-i-n photodiodes on GaN substrates,” Appl. Phys. Lett. 94 (22), 221109-1–3 (2009). 

  15. S. Choi, H. J. Kim, Y. Zhang, X. Bai, D. Yoo, J. Limb, J.-H. Ryou*, S.-C. Shen, P. D. Yoder, and R. D. Dupuis, “Geiger-mode operation of GaN avalanche photodiodes grown on GaN substrates,” IEEE Photon. Technol. Lett. 21 (20), 1526–1528 (2009). 

  16. Y. Zhang, D. Yoo, J. Limb, J. H. Ryou, R. D. Dupuis, and S.-C. Shen, “GaN ultraviolet avalanche photodiode fabricated on free-standing bulk GaN substrates,” Phys. Stat. Sol. (c) 5 (6), 2290–2292 (2008). 

  17. S.-C. Shen, Y. Zhang, D. Yoo, J.-B. Limb, J.-H. Ryou, P. D. Yoder, and R. D. Dupuis, “Performance of deep ultraviolet GaN avalanche photodiodes grown by MOCVD,” IEEE Photon. Technol. Lett. 19 (21), 1744–1746 (2007). 

  18.《中国新材料热点领域产业发展战略》,任红轩 刘华强 张韵 于灏 主编,科学技术文献出版社, 20155月出版