李 伟

李伟,男,博士,研究员,国科大岗位教授,博士生导师。

198210月生,中国科学院卓越青年科学家,德国洪堡学者,北京市科技新星,中国科学院青年创新促进会会员,获中国科学院卢嘉锡青年人才奖,中国科学院半导体研究所青年科技奖2020年度中国科学院“优秀导师奖”

2005年于吉林大学获学士学位,2010年于中国科学院半导体研究所获博士学位。毕业后留所工作,任助理研究员。20112012年受德国洪堡基金会资助在柏林工业大学工作,任洪堡学者20131月回国后任中国科学院半导体研究所副研究员,20151月破格晋升研究员,20152月任博士生导师。 所培养的研究生获中科院院长特别奖、中科院院长优秀奖、国家奖学金、中科院必和必拓奖学金、SPIE Optics and Photonics Education ScholarshipIEEEPhotonics Society Graduate Student Fellowship、朱李月华优秀博士奖、所长奖等荣誉和奖励。

近年来以微波光子技术为主线,围绕高精度宽带射频信号产生和处理、微波光子雷达、光通信以及下一代光载无线通信系统展开研究。共发表SCI论文130篇,申请发明专利50项,承担国家自然科学基金、国家重点研发计划、国家“863”、中国科学院人才专项以及北京市科委人才项目多项。IEEESPIE会员,中国电子学会和中国光学学会高级会员。IEEEOSAAPS等本领域主要期刊审稿人。

主要研究方向:

1. 微波光子学

2. 光通信和光载无线通信系统

3. 微波光子雷达关键技术

4. 射频信号产生和处理

5. 射频信号光纤稳相传输技术

联系方式:

E-mail: liwei05@semi.ac.cn 电话:010-82304320

招收硕士、博士、硕博连读和直博生。

在研/完成项目:

1.科技部国家重点研发计划,首席科学家,2648万元,20202024

2.科技部国家重点研发计划:20202022,子课题负责人;

3.国家自然科学基金面上项目,2021-012024-12,主持;

4.国家自然科学基金委员会,重点项目:集成化高速窄线宽激光器关键技术研究,2019-012023-12,参与;

5.中国科学院,科研装备研制项目(青年人才类):高分辨率光矢量分析仪,2017-012018-12,主持;

6.中国科学院,中国科学院人才专项,中国科学院青年创新促进会会员,2015-012018-12,主持;

7.北京市科委,北京市科技新星项目:基于误差自消除的射频信号光纤稳相传输技术,2015-012017-12,主持;

8.科技部,国家“863”项目:波长选择开关及宽带可调滤波器阵列芯片的模块化封装与系统验证,2015-012017-12,子课题负责人;

9.国家自然科学基金委员会,面上项目:高线性、大动态范围的微波光子滤波系统研究,2014-012017-12,主持;

10.中国科学院,中国科学院人才专项:中国科学院卓越青年科学家2014-2016,主持;

11.国家自然科学基金委员会,青年基金:基于受激布里渊散射的偏振正交单边带调制技术,2012-2014,主持。

近五年发表论文:

1. T. F. Hao, Y. Z. Liu, J. Tang, Q. Z. Cen, W. Li, N. H. Zhu, Y. T. Dai, J. Capmany, J. P. Yao and M. Li, “Recent advances in optoelectronic oscillators,” Advanced Photonics, vol. 2, no. 4, 2020.

2. Z. T. Ge, T. F. Hao, J. Capmany, W. Li, N. H. Zhu and M. Li, “Broadband random optoelectronic oscillator,” Nature Communications, vol. 11, no. 1, pp. 5724, 2020.

3. S. J. Zhang, W. Li, W. Chen, Y. L. Zhang and N. H. Zhu, “Accurate Calibration and Measurement of Optoelectronic Devices,” Journal of Lightwave Technology, 2020. (Invited)

4. L. Wang, G. Y. Li, T. F. Hao, S. Zhu, M. Li, N. H. Zhu and W. Li, “Photonic generation of multiband and multi-format microwave signals based on a single modulator,” Optics Letters, vol. 45, no. 22, pp. 6190-6193, 2020.

5. S. Zhu, X. J. Fan, M. Li, N. H. Zhu and W. Li, “Dual-chirp microwave waveform transmitter with elimination of power fading for one-to-multibase station fiber transmission,” Optics Letters, vol. 45, no. 5, pp. 1285-1288, 2020.

6. S. Zhu, X. J. Fan, B. R. Xu, W. H. Sun, M. Li, N. H. Zhu and W. Li, “Polarization Manipulated Fourier Domain Mode-Locked Optoelectronic Oscillator,” Journal of Lightwave Technology, vol. 38, no. 19, pp. 5270-5277, 2020.

7. G. Y. Li, L. Wang, S. Zhu, M. Li, N. H. Zhu and W. Li, “Photonic Generation of Dual-Chirp Microwave Waveforms Based on a Tunable Optoelectronic Oscillator,” IEEE Photonics Technology Letters, vol. 32, no. 10, pp. 599-602, 2020.

8. S. Zhu, X. J. Fan, M. Li, N. H. Zhu and W. Li, “Optically controlled multi-carrier phase-shift-keying microwave signal generation by using cross-polarization modulation in highly nonlinear fiber,” Optics Communications, vol. 469, 125805, 2020.

9. J. Wen, D. F. Shi, Z. Y. Jia, M. Li, N. H. Zhu and W. Li, “Simultaneous microwave frequency conversion and idler filtering based on polarization manipulating of an amplified spontaneous emission source,” Optics and Laser Technology, vol. 131, 106388, 2020.

10. T. F. Hao, Q. Z. Cen, S. H. Guan, W. Li, Y. T. Dai, N. H. Zhu and M. Li, “Optoelectronic parametric oscillator,” Light-Science & Applications, vol. 9, no. 1, 102, 2020.

11. Y. Yang, X. Xiang, F. Y. Hou, R. N. Quan, B. H. Li, W. Li, N. H. Zhu, T. Liu, S. G. Zhang, R. F. Dong and M. Li, “Inherent resolution limit on nonlocal wavelength-to-time mapping with entangled photon pairs,” Optics Express, vol. 28, no. 5, pp. 7488-7497, 2020.

12. D. F. Shi, J. Wen, S. Zhu, Z. Y. Jia, Z. Shi, M. Li, N. H. Zhu and W. Li, “Instantaneous microwave frequency measurement based on non-sliced broadband optical source,” Optics Communications, vol. 458, 124758, 2020.

13. J. Wen, D. Shi, Z. Jia, Z. Shi, M. Li, N. H. Zhu, and W. Li, “Accuracy-enhanced wideband optical vector network analyzer based on double-sideband modulation,” Journal of Lightwave Technology, Vol.37, Issue.13, pp. 2920 – 2926, Jul.2019.

14. Z. Shi, J. Wen, Z. Jia, D. Shi, M. Li, N. Zhu, and W. Li, “Tunable single notch microwave photonic filter based on delay lines,” Optics Communications, vol.448, pp.15-18, Oct. 2019.

15. J. Wen, D. Shi, Z. Jia, M. Li, N. H. Zhu, and W. Li, “Tunable single-notch microwave photonic filter based on nonsliced ASE source,” IEEE Photonics Technology Letters, Vol.31, Issue 10, pp.731-734, May 2019.

16. S. Zhu, M. Gao, M. Li, N. Zhu, and W. Li, “Photonic-based microwave hybrid combiner with arbitrarily tunable phase shift and power combining ratio,” Optics letters, vol. 44, no. 8, pp. 2012-2015, 2019.

17. S. Zhu, M. Li, X. Wang, N. Zhu, Z. Cao, W. Li, "Photonic generation of background-free binary phase-coded microwave pulses." Optics letters, Vol.44, No.1, pp. 94-97, Jan.2019.

18. T. Su, J. Wen, Z. Shi, M. Li, W. Chen, N. Zhu, W. Li, "Wideband optical vector network analyzer based on polarization modulation." Optics Communications 437, pp.67-70, Apr.2019.

19. S. Zhu, M. Li, N. Zhu, W. Li, "Chromatic-dispersion-induced power fading suppression technique for bandwidth-quadrupling dual-chirp microwave signals over fiber transmission." Optics letters, Vol. 44, No. 4, pp.923-926, Feb.2019.

20. S. Zhu, M. Li, N. Zhu, W. Li, “Photonic Radio Frequency Self-Interference Cancellation and Harmonic Down-Conversion for In-Band Full-Duplex Radio-Over-Fiber System.” IEEE Photonics Journal, Vol. 11, Issue 5, 5503110, oct. 2019.

21. S. Zhu, X. Fan, M. Li, N. Zhu, W. Li, “FCC-compliant millimeter-wave ultra-wideband pulse generator based on optoelectronic oscillationn.” Optics letters, Vol. 44, Issue 14, pp. 2012-2015, Jul. 2019.

22. S Zhu, M Gao, M Li, NH Zhu, W Li, “A background-free phase-coded microwave pulse generator by optoelectronic oscillation”, Optics Communications, Vol. 431(15), pp. 10-13, Jan. 2019.

23. Z Jia, Z Shi, J Wen, D Shi, M Li, N Zhu, W Li, “Photonic generation of frequency-doubled triangular waveforms based on a dual parallel Mach–Zehnder modulator.” Optical Engineering, 58(9), 096113, Nov.2019.

24. D Shi, J Wen, S Zhu, Z Jia, Z Shi, M Li, N Zhu, W Li, “Instantaneous microwave frequency measurement based on non-sliced broadband optical source.” Optics Communications 458(1), 124758. Mar.2020.

25. J Wen, D Shi, Z Jia, M Li, N Zhu, W Li, “Tunable notch microwave photonic filter based on interferometry of a single low-incoherence source.” Applied optics, vol.58, No.29, pp.8039-8045, Oct.2019.

26. S. Zhu, M. Li, X. Wang, N. H. Zhu, and W. Li, “1× N hybrid radio frequency photonic splitter based on a dual-polarization dual-parallel Mach Zehnder modulator,” Optics Communications, Jan. 2019.

27. M Gao, S Zhu, X Fan, M Li, NH Zhu, W Li, “Photonic triangular waveforms generation based on nonlinear polarization rotation using a highly nonlinear fiber.” Optical Engineering, 58(11),110501, Nov.2019.

28. N Shi, W Li, N Zhu, M Li, “Optically controlled phase array antenna,” Chinese Optics Letters, vol. 17 no. 5, 052301, May. 2019.

29. Q Song, J Tang, N Shi, W Li, N Zhu, M Li,” Monolithic integrated 4× 25 Gb/s transmitter optical subassembly at 1.55 μm,” Optics Communications 441, pp.160-164, Apr. 2019.

30. N Shi, Q Song, J Tang, W Li, N Zhu, M Li, “A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array,” Optics Communications 447, pp.55-60, Sep. 2019.

31. D Liu, S Sun, X Yin, B Sun, J Sun, Y Liu, W Li, N Zhu, M Li ,Large-capacity and low-loss integrated optical buffer,” Optics express vol.27, issue 8, pp.11585-11593, Mar.2019.

32. T Hao, J Tang, N Shi, W Li, N Zhu, M Li,” Dual-chirp Fourier domain mode-locked optoelectronic oscillator,” Optics letters, vol. 44, no 8, pp.1912-1915, 2019.

33. T Hao, J Tang, W Li, N Zhu, M Li, “Harmonically Fourier domain mode locked optoelectronic oscillator,” IEEE Photonics Technology Letters, Vol. 31, Issue 6, pp.427-430, Mar. 2019.

34. Z Lin, S Sun, W Li, N Zhu, M Li, “Temporal Cloak without Synchronization,” IEEE Photonics Technology Letters, Vol.31, Issue 5, pp.373-376, Mar. 2019.

35. G. Wang, T. Hao, W. Li, N. Zhu, M. Li, "Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator." Optics Communications 439, pp.133-136, May. 2019.

36. N. Shi, X. Zhu, S. Sun, W. Li, N. Zhu, M. Li, "Fast-Switching Microwave Photonic Filter Using an Integrated Spectrum Shaper." IEEE Photonics Technology Letters vol.31, issue 3, pp.269-272, Feb. 2019.

37. T Hao, J Tang, N Shi, W Li, N Zhu, M Li,” Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold”, Optics Letters, Vol. 44, no. 12, pp. 3062-3065, Jun. 2019.

38. Y Yang, Y Liu, S Sun, W Li, N Zhu, M Li, “Optical phase matching of high-order azimuthal WGM in a water droplet resonator.” Optics Express, Vol. 27, Issue 23, pp. 33436-33444, Oct.2019.

39. S. Zhu, Z. Shi, M. Li, N. H. Zhu, and W. Li, “Simultaneous frequency upconversion and phase coding of a radio-frequency signal for photonic radars,” Optics letters, vol. 43, no. 3, pp. 583-586, 2018.

40. S. Zhu, X. Wang, M. Li, N. H. Zhu, and W. Li, “A simple photonic method to generate square and triangular microwave waveforms,” Optics Communications, vol. 426, pp. 654-657, 2018.

41. S. Zhu, M. Li, N. H. Zhu, and W. Li, “Transmission of dual-chirp microwave waveform over fiber with compensation of dispersion-induced power fading,” Optics letters, vol. 43, no. 11, pp. 2466-2469, 2018.

42. L. Wang, C. Yang, M. Li, N. Zhu, and W. Li, “Switchable microwave photonic filter based on a dual-parallel Mach–Zehnder modulator,” Applied optics, vol. 57, no. 16, pp. 4537-4541, 2018.

43. Z. Shi, S. Zhu, M. Li, N. H. Zhu, and W. Li, “Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach–Zehnder modulator,” Optics Communications, vol. 428, pp. 131-135, 2018.

44. S. Zhu, M. Li, X. Wang, N. H. Zhu, and W. Li, “Photonic Generation of Ultra-Wideband Signal by Truncating a Continuous Wave into a Pulse,” IEEE Photonics Technology Letters, 2018.

45. L. Wang, M. Li, N. H. Zhu, and W. Li, “Switchable Microwave Photonic Filter between Dual-notch and Dual-passband Responses,” IEEE Photonics Technology Letters, 2018.

46. M. Y. Li, L. Wang, C. W. Yang, M. Li, N. H. Zhu, and W. Li, “Reconfigurable microwave photonic filter based on polarization modulation and an optical filter,” Optical Engineering, vol. 57, no. 2, pp. 026105, 2018.

47. N. Shi, T. Hao, W. Li, N. H. Zhu, and M. Li, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Optics Communications, vol. 407, pp. 27-32, 2018.

48. N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, and M. Li, “Directly Modulated Semiconductor Lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 1, pp. 1-19, 2018

49. J. Tang, T. Hao, W. Li, D. Domenech, R. Baños, P. Muñoz, N. Zhu, J. Capmany, and M. Li, “Integrated optoelectronic oscillator,” Optics express, vol. 26, no. 9, pp. 12257-12265, 2018.

50. Y. Liu, T. Hao, W. Li, J. Capmany, N. Zhu, and M. Li, “Observation of parity-time symmetry in microwave photonics,” Light: Science & Applications, vol. 7, no. 1, pp. 38, 2018.

51. T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Tunable Fourier domain mode locked optoelectronic oscillator using stimulated Brillouin scattering,” IEEE Photonics Technology Letters, 2018.

52. T. Hao, J. Tang, D. Domenech, W. Li, N. H. Zhu, J. Capmany, and M. Li, “Towards monolithic integration of OEOs: From systems to chips,” Journal of Lightwave Technology, 2018.

53. T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu, and M. Li, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nature communications, vol. 9, 2018.

54. M. Li, S. Sun, B. Li, H. Asghari, Y. Deng, W. Li, and N. Zhu, “Time-bandwidth compression of microwave signals,” Optics express, vol. 26, no. 2, pp. 990-999, 2018.

55. X. Zhu, H. Sun, W. Li, N. Zhu, and M. Li, “Arbitrary Waveform Generation Based on Dispersion-Free Wavelength-to-Time Mapping Technique,” IEEE Photonics Journal, vol. 10, no. 1, pp. 1-9, 2018.

56. H. Sun, X. Zhu, W. Li, N. Zhu, and M. Li, “Real-Time Optical Spectrum Fourier Transform With Time–Bandwidth Product Compression,” IEEE Photonics Journal, vol. 10, no. 1, pp. 1-14, 2018.

57. J. Li, Y. Dai, F. Yin, W. Li, M. Li, H. Chen, and K. Xu, “Megahertz-resolution programmable microwave shaper,” Optics letters, vol. 43, no. 8, pp. 1878-1881, 2018.

58. H. Sun, X. Zhu, W. Li, N. Zhu, and M. Li, “Reconfigurable microwave signal processor with a phase shift of π,” Optics express, vol. 26, no. 8, pp. 10358-10370, 2018.

59. S. Sun, Z. Lin, W. Li, N. Zhu, and M. Li, “Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser,” Optics express, vol. 26, no. 16, pp. 20888-20901, 2018.

60. H. S. Wen, M. Li, W. Li, and N. H. Zhu, “Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator,” Optics letters, vol. 43, no. 19, pp. 4659-4662, 2018.

61. T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator,” Optics express, vol. 26, no. 26, pp. 33582-33591, 2018.

62. W. Li, M. Li, and N. H. Zhu, “Photonic generation of background-free millimeter-wave ultra-wideband signals,” Chinese Optics Letters, vol. 15, no. 1, pp. 010007, 2017.

63. Z. Shi, L. Wang, C. Yang, M. Li, N. H. Zhu, and W. Li, “Multifunctional microwave photonic signal processor based on dual-parallel Mach–Zehnder modulator and stimulated Brillouin scattering,” Optical Engineering, vol. 56, no. 9, pp. 096102, 2017.

64. W. Jun, L. Wang, C. Yang, M. Li, N. H. Zhu, J. Guo, L. Xiong, and W. Li, “Optical vector network analyzer based on double-sideband modulation,” Optics letters, vol. 42, no. 21, pp. 4426-4429, 2017.

65. J. Capmany, J. Yao, W. Li, and S. Pan, “Editorial for focus issue on microwave photonics,” Chinese Optics Letters, vol. 15, no. 1, pp. 010001, 2017

66. J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 2, pp. 1-13, 2017

67. T. Qing, S. Li, M. Xue, W. Li, N. Zhu, and S. Pan, “Optical vector analysis based on asymmetrical optical double-sideband modulation using a dual-drive dual-parallel Mach-Zehnder modulator,” Optics Express, vol. 25, no. 5, pp. 4665-4671, 2017.

68. L. Zhang, M. Li, N. Shi, X. Zhu, S. Sun, J. Tang, W. Li, and N. Zhu, “Photonic true time delay beamforming technique with ultra-fast beam scanning,” Optics express, vol. 25, no. 13, pp. 14524-14532, 2017.

69. W. Li, C. W. Yang, L. Wang, J. G. Liu, and N. H. Zhu, “Single-Notch Microwave Photonic Filter Using a Nonsliced ASE Source and a Laser Diode,” IEEE Photonics Journal, vol. 8, no. 1, pp. 1-7, Feb. 2016.

70. Y. Deng, M. Li, N. Shi, J. Tang, S. Sun, L. Zhang, W. Li, and N. H. Zhu, “Fully characterization of an active optical filter based on an equivalent-phase-shifted DFB-SOA,” Optics Communications, vol. 376, pp. 1-5, Oct. 2016.

71. N. Shi, M. Li, Y. Deng, L. Zhang, S. Sun, J. Tang, W. Li, and N. H. Zhu, “Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar,” Optics express, vol. 24, no. 13, pp. 14438-14450, Jun. 2016.

72. J. Tang, M. Li, S. Sun, Z. Li, W. Li, and N. H. Zhu, “Broadband microwave photonic phase shifter based on a feedback-coupled microring resonator with small radio frequency power variations,” Optics letters, vol. 41, no. 20, pp. 4609-4612, Oct. 2016.

73. X. Wang, W. Li, M. Li, and N. H. Zhu, “Photonics generation of frequency-shift keying radio-frequency signal using nonlinear polarization rotation in a highly nonlinear fiber,” Optical Engineering, vol. 55, no. 10, pp. 106118-106118, Oct. 2016.

74. W. Li, J. G. Liu, and N. H. Zhu, “A widely and continuously tunable frequency doubling optoelectronic oscillator,” IEEE Photonics Technology Letters, vol. 27, no. 13, pp. 1461-1464, July. 2015.

75. W. Li, C. Yang, L. Wang, Z. Yuan, J. Liu, M. Li, and N. H. Zhu, “Microwave photonic bandstop filter with wide tunability and adjustable bandwidth,” Opt. Express, vol. 23, no. 26, pp. 33579-33586, Dec. 2015.

76. W. Li, J. G. Liu, and N. H. Zhu, “Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling,” Optics Letters, vol. 40, no. 8, pp. 1679-1680, Apr. 2015.

77. W. Y. Wang, W. Li, W. H. Sun, W. T. Wang, J. G. Liu, and N. H. Zhu, “Triangular Microwave Waveforms Generation based on an Optoelectronic Oscillator,” IEEE Photonics Technology Letters, vol. 27, no. 5, pp. 522-525, Mar. 2015.