李明,男,博士,研究员,博士生导师。
获得国家自然科学基金委优秀青年基金资助。
(一)科研经历与研究方向简介:
2009年毕业于日本国立静冈大学,获得工学博士学位。2009年4月-2011年5月在加拿大渥太华大学微波光子学实验室从事博士后研究。师从著名微波光子学专家姚建平教授,主攻方向高速微波信号产生和处理。由于合作项目的关系,2011年6月前往加拿大国家科学研究所从事超快全光模拟信号处理方面的研究工作。合作导师为加拿大光子信号处理领域的研究主席Jose Azana教授。
超高速光子信号处理技术是一种突破传统电子技术在信号处理速率和带宽方面瓶颈的有效手段,满足日益增长的通信和计算容量的需求。近年来一直从事光子信号处理技术研究,将基于传统电子技术的信号处理速率提高3-4个数量级。目前,光子信号处理器件总体处于“单个晶体管”时代,必须发展与微电子集成芯片类似的光子信号处理集成芯片技术,实现大规模多功能片上光子集成。2016年3月与加拿大渥太华大学姚建平教授合作,在Nature Photonics期刊(影响因子:32.386)上发表了可编程全光信号处理芯片。该项成果利用光电子集成芯片技术实现了全光计算技术从“单元器件、单一功能”向“集成芯片、可编程”的跨越。此外, 2017年在Nature Communications上发表了基于宇称时间对称的单模环形激光器,实现了电泵浦环形激光器的单模激射。
在光信号放大技术方面,利用光学泰伯效应,与加拿大国立科学研究院Jose Azana教授合作报道了被动式的光子信号放大的新概念,实现了20倍以上的信号放大,该放大技术具有极低的噪声系数,可以将信号从噪声中完整地提取出来,2014年成果发表在Nature Communications上。
在微波光子技术方面,研制出集成化的光电振荡器,提出并实现了傅里叶锁模光电振荡器,实现了超大时间带宽积的线性调频微波信号的产生,2018年成果发表在Nature Communications上。同时,发现了微波光子混合振荡系统中的宇称时间对称现象,实现了无滤波器的光电振荡器单模微波信号输出,成果发表在Light:Sciences&Applications上。
主持承担了国家自然科学基金委面上、重点与优青等项目,发表了SCI论文117篇,包括1篇Nature Photonics、4篇Nature Communications、1篇Light:Sciences&Applications;在IEEE JSTQE/JQE/PSNL等知名刊物发表特邀综述12篇(第一/通讯),在国际微波光子学年会上发表Postdeadline 论文3篇;申请发明专利39件,8件已授权(其中美国授权专利1件)。
荣获2016年度中国电子学会“优秀科技工作者”称号,2016年度中国光学工程学会科技创新奖一等奖(个人排名第5),2016年度中国通信学会科学技术一等奖(个人排名第7)。担任中国科学杂志社Science Bulletin副主编并获得杰出贡献奖,组建中国电子学会青年科学家俱乐部半导体科技专委会并担任第一届主任委员,担任中国信息与电子工程科技发展战略研究中心专家委员会特聘专家。
担任2017年度国际微波光子学年会workshop主席,另外作为SPIE Photonics Asia、ICOCN、POEM、OSA ACP等国际学术会议的分会主席或技术委员会成员十余次。
(二)主要研究领域或方向:
l. 超高速全光信号处理技术
2. 集成微波光电子器件和系统
3. 基于微波光子学的传感技术
4. 微波光子雷达中的关键技术
(四)在研科研项目
1.国家人才计划项目,280万,2013-2018
2.国家自然科学基金面上项目,84万,2014-2018
3.科技部863项目:100Gb/s光互连光收发模块及系统验证,290万,2014-2017
4.自然科学基金委与英国皇家学会合作与交流项目:集成微波光子处理技术在信号感知中的应用,10万元,2014-2016
5.院地共建光电技术联合实验室:横向经费共500万元
6.国家自然科学基金重点项目,255万,2015-2020
7.国家自然科学基金优秀青年基金项目,150万,2016-2018
8.中科院重点项目,360万,2015-2018
(五)联系方式:
地址:北京市海淀区清华东路甲35号 100083
E-mail:ml@semi.ac.cn;
(六) 自然子刊与特邀综述论文
[1]. T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu and M. Li*, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nature Communications, Nature Communications, vol. 9, paper number 1839, May 2018.
[2]. Y. Liu, T. Hao, Wei Li, J. Capmany, N. Zhu* and M. Li*, “Observation of Parity–Time Symmetry in Microwave Photonics”, Light: Science & Applications, in press, 2018.
[3]. W. Liu#, M. Li#, R. S. Guzzon#, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nature Communications, vol. 8, pp. 15389, 2017. (共同一作)
[4]. W. Liu#, M. Li#, R. S. Guzzon#, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. P. Yao, "A fully reconfigurable photonic integrated signal processor," Nature Photonics, vol. 10, no. 3, pp. 190-195, 2016 (#Equal Contribution)
[5]. M. Burla, X. Wang, M. Li , L. Chrostowski, J. Azana, "Wideband dynamic microwave frequency identification system using a low-power, ultra-compact silicon photonic chip," Nature Communications, vol. 7, pp. 13004, 2016
[6]. R. Maram, J. Howe, M. Li, and J. Azaña, "Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect," Nature Communications, vol. 5, no. 5163, 2014.
[7]. T. Hao, J. Tang, D. Domenech, W. Li, N. Zhu, J. Capmany and M. Li*, “Towards monolithic integration of OEOs: From systems to chips,” IEEE Journal of Lightwave Technology, in press, 2018. (Invited Review Article)
[8]. N. Zhu*; Z. Shi; Z. Zhang; Y. Zhang; C. Zou; Z. Zhao; Y. Liu; W. Li and M. Li, "Directly Modulated Semiconductor Lasers," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, No. 1, pp. 1-19, 2018. (Invited Review Article)
[9]. J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li*, and J. Capmany, “Microwave photonics for optical sensors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 2, pp. 5602013, 2017. (Invited Review Article)
[10]. W. Li, M. Li, N. Zhu “Photonic generation of background-free millimeter-wave ultra-wideband signals,” Chinese Optics Letters, 2016. (Invited Review Article)
[11]. N. Zhu, M. Li, Y. Hao, “Optoelectronic devices and integration technologies,” Scientia Sinica Informationis, vol. 46, no. 8, pp. 1156-1174, 2016. (Invited Review Article)
[12]. M. Li, N. Zhu, “Recent advances in microwave photonics,” Frontiers of Optoelectronics, vol. 9, no. 2, pp. 160-185, June 2016. (Invited Review Article)
[13]. M. Li and N. H. Zhu, "Microwave photonics in China," IEEE Photonics Society Newsletter, Feb. 2016. (Invited Review Article)
[14]. M. Li, X. Chen, Y. Su, X. Wang, M. Chen, D. Dai, J. Liu, and N. H. Zhu, "Photonic Integration Circuits in China," IEEE Journal of Quantum Electronics, 2015, Accepted for Publication, DOI: 10.1109/JQE.2015.2504087. (Invited Review Article)
[15]. M. Li*, W. Liu, N. Huang, R. S. Guzzon, N. Zhu, J. Azaña, L. A. Coldren and J. Yao, "Advances in all-optical circuits," Optics & Photonics News, Mar. 2015. (Invited Article)
[16]. M. Li*, J. Azana, N. H. Zhu, and J. P. Yao, "Recent progresses on optical arbitrary waveform generation," Frontiers of Optoelectronics, vol. 7, no. 3, pp. 359-375, 2014. (Invited Review Article)
[17]. M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, "Integrated waveguide Bragg gratings for microwave photonics signal processing," Opt. Express, vol. 21, pp. 25120-25147, 2013. (Invited Review Article, Top Download in October 2013)
[18]. H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high channel-count fiber Bragg gratings,” IEEE J. Lightw. Technol., Vol. 25, No. 9, pp. 2739-2749,2007. (Invited Tutorials)
(七)所有SCI期刊论文:
[124]. T. Hao, Q. Cen, Y. Dai, J. Tang, W. Li, J. Yao, N. Zhu and M. Li*, “Breaking the limitation of mode building time in an optoelectronic oscillator,” Nature Communications, Nature Communications, vol. 9, paper number 1839, May 2018.
[123]. Y. Liu, T. Hao, Wei Li, J. Capmany, N. Zhu* and M. Li*, “Observation of Parity–Time Symmetry in Microwave Photonics”, Light: Science & Applications, in press, 2018.
[122]. T. Hao, J. Tang, D. Domenech, W. Li, N. Zhu, J. Capmany and M. Li*, “Towards monolithic integration of OEOs: From systems to chips,” Journal of Lightwave Technology, in press, 2018. (特邀综述)
[121]. N. Zhu*; Z. Shi; Z. Zhang; Y. Zhang; C. Zou; Z. Zhao; Y. Liu; W. Li and M. Li, "Directly Modulated Semiconductor Lasers," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, No. 1, pp. 1-19, 2018. (特邀综述)
[120]. S. Sun, Z. Lin, W. Li, N. Zhu and M. Li*. "Time-Stretch Probing of Ultrafast Soliton Molecule Dynamics," arXiv preprint arXiv:1801.03743, 2018.
[119]. N. Shi, T. Hao, W. Li, N. Zhu, M. Li*, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Optics Communications, Vol. 407, pp. 27-32, 2018.
[118]. M. Li*, S. Sun, B. Li, H. Asghari, Y. Deng, W. Li, and N. Zhu, "Time-bandwidth compression of microwave signals," Opt. Express, Vol. 26, No. 2, pp. 990-999, 2018.
[117]. H. Sun, X. Zhu, W. Li, N. Zhu, and M. Li*, “Real-Time Optical Spectrum Fourier Transform with Time–Bandwidth Product Compression,” IEEE Photonics Journal, Vol. 10, No. 1, pp. 1-14, 2018.
[116]. X. Zhu, H. Sun, W. Li, N. Zhu and M. Li*, "Arbitrary Waveform Generation Based on Dispersion-Free Wavelength-to-Time Mapping Technique," IEEE Photonics Journal, Vol. 10, No. 1, pp. 1-9, 2018.
[115]. H. Sun, X. Zhu, W. Li, N. Zhu, and M. Li*, "Reconfigurable microwave signal processor with a phase shift of π," Opt. Express, Vol. 26, No. 8, pp. 10358-10370, 2018.
[114]. J. Tang, T. Hao, W. Li, D. Domenech, R. Baños, P. Muñoz, N. Zhu, J. Capmany*, and M. Li*, "Integrated optoelectronic oscillator," Opt. Express, Vol. 26, No. 9, 12257-12265, 2018.
2017
[113]. W. Liu#, M. Li#, R. S. Guzzon#, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “An integrated parity-time symmetric wavelength-tunable single-mode microring laser,” Nature Communications, vol. 8, pp. 15389, 2017. (共同一作)
[112]. J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li*, and J. Capmany, “Microwave photonics for optical sensors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 2, pp. 5602013, 2017. (特邀综述)
[111]. M. Li, S. Sun, A. Malacarne, S. LaRochelle, J. Yao, N. Zhu, and J. Azana, “Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression,” Science Bulletin, vol. 62, no. 4, pp. 242-248, 2017. (封面文章)
[110] N. Shi, T. Hao, W. Li, N. Zhu, and M. Li*, “A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating,” Optics Communications, vol. 407, pp. 27-32, 2018.
[109]. Z. Shi, L. Wang, C. Yang, M. Li, N. H. Zhu, and W. Li, “Multifunctional microwave photonic signal processor based on dual-parallel Mach–Zehnder modulator and stimulated Brillouin scattering,” Optical Engineering, vol. 56, no. 9, pp. 096102, 2017.
[108]. H. Yan, D. Han, M. Li, and B. Lin, “Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating,” Journal of Nanophotonics, vol. 11, no. 1, pp. 016008-016008, 2017.
[107]. L. Zhang, M. Li, N. Shi, X. Zhu, S. Sun, J. Tang, W. Li, and N. Zhu, “Photonic true time delay beamforming technique with ultra-fast beam scanning,” Optics Express, vol. 25, no. 13, pp. 14524-14532, 2017.
[106]. W. Jun, L. Wang, C. Yang, M. Li, N. H. Zhu, J. Guo, L. Xiong, and W. Li, “Optical vector network analyzer based on double-sideband modulation,” Optics Letters, vol. 42, no. 21, pp. 4426-4429, 2017.
[105]. X. Zou, M. Li, W. Pan, L. Yan, and L. Shao, “Multichannel Narrow, Flat-Top Optical Filters Based on Multiple-Phase-Shifted and Phase Sampled FBG,” IEEE Journal of Quantum Electronics, vol. 53, no. 1, pp. 6800205, 2017.
2016
[104]. W. Li, M. Li, N. Zhu “Photonic generation of background-free millimeter-wave ultra-wideband signals,” Chinese Optics Letters, 2016. Under Review (Invited Article)
[J103]. N. Zhu, M. Li, Y. Hao, “Optoelectronic devices and integration technologies,” Scientia Sinica Informationis, vol. 46, no. 8, pp. 1156-1174, 2016. (Invited Article)
[J102]. M. Li, N. Zhu, “Recent advances in microwave photonics,” Frontiers of Optoelectronics, vol. 9, no. 2, pp. 160-185, June 2016. (Invited Review Article)
[J101]. X. Wang, W. Li, M. Li, N. Zhu, “Photonics generation of frequency-shift keying radio-frequency signal using nonlinear polarization rotation in a highly nonlinear fiber,” Optical Engineering, 2016.
[J100]. J. Tang, M. Li*, S. Sun, Z. Li, W. Li, and N. Zhu, "Broadband microwave photonic phase shifter based on a feedback-coupled microring resonator with small radio frequency power variations," Opt. Lett. vol. 41, no. 20, pp. 4609-4612, 2016
[J99]. Y. Deng, M. Li, N. Shi, J. Tang, S. Sun, L. Zhang, W. Li, N. Zhu, “Fully Characterization of an Active Optical Filter Based on an Equivalent-Phase-Shifted DFB-SOA,” Optics Communications, vol. 376, pp. 1-5, 2016.
[J98]. N. Shi, M. Li*, Y. Deng, L. Zhang, S. Sun, J. Tang, W. Li & N. Zhu, “Experimental Demonstration of a Multi-Target Detection Technique Using an X-band Optically Steered Phased Array Radar,” Opt. Express, vol. 24, no. 13, pp. 14438-14450, 2016.
[J97]. W. Liu, B. Romeira, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, J. P. Yao, "A wavelength tunable optical buffer based on self-pulsation in an active microring resonator," IEEE/OSA J. Lightw. Technol., under revisions.
[J96]. S. Sun, M. Li , J. Tang, N. Zhu, T. J. Ahn, J. Azana, “Femtosecond pulse shaping using wavelength-selective directional couplers: proposal and simulation,” Opt. Express, vol. 24, no. 8, pp. 7943-7950, 2016.
[J95]. W. Liu#, M. Li#, R. S. Guzzon#, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. P. Yao, "A fully reconfigurable photonic integrated signal processor," Nature Photonics, vol. 10, no. 3, pp. 190-195, 2016 (#Equal Contribution)
[J94]. M. Li , Y. Deng , J. Tang , S. Sun , J. Yao , J. Azaña, N. H. Zhu, "Reconfigurable optical signal processing based on a distributed feedback semiconductor optical amplifier," Scientific Reports, vol. 6, 2016.
[J93]. M. Burla, X. Wang, M. Li , L. Chrostowski, J. Azana, "Wideband dynamic microwave frequency identification system using a low-power, ultra-compact silicon photonic chip," Nature Communications, vol. 7, pp. 13004, 2016
[J92]. W. Wang, M. Li*, S. Sun, C. Wang, Y. Deng, N. H. Zhu, "Background-free microwave signal generation based on temporal pulse shaping system," Photonics Technology Letters, vol. 28, no. 8, pp. 903-906, 2016.
[J91]. N. Jia, H. T. Yan, M. Li*, "Dual-pulse pumped for Enhancing Supercontinuum Generation," IEEE Photonics Journal, vol. 8, no. 1, pp. 1943-0655, 2016.
[J90]. M. Li and N. H. Zhu, "Microwave photonics in China," IEEE Photonics Society Newsletter, Feb. 2016. (Invited Review Article)
[J89]. M. Li, X. Chen, Y. Su, X. Wang, M. Chen, D. Dai, J. Liu, and N. H. Zhu, "Photonic Integration Circuits in China," IEEE Journal of Quantum Electronics, 2015, Accepted for Publication, DOI: 10.1109/JQE.2015.2504087. (Invited Review Article)
[J88]. S. Sun, Y. Deng, N. Huang, J. Tang, N. Zhu and M. Li*, “A tunable photonic temporal integrator with ultra-long integration time windows based on raman-gain assisted phase-shifted silicon Bragg gratings” Optics Communications, vol. 373, pp. 91-94, 2016.
[J87]. M. Li, "Taming electric discharges using optical beams," Science Bulletin, vol. 2, pp. 114, 2016. (Research Highlight)
2015
[J86]. W. Li, C.W. Yang, L. Wang, Z.L. Yuan, J.G. Liu, M. Li, and N.H. Zhu,"Microwave photonic bandstop filter with wide tunability and adjustable bandwidth," Opt. Express, vol. 23, no. 26, pp. 33579-33586, 2015.
[J85]. A. Malacarne, Y. Park, M. Li, S. LaRochelle and J. Azaña, "Real-time Fourier transformation of lightwave spectra and application in optical reflectometry," Opt. Express, vol. 23, no. 25, pp. 32516-32527, 2015.
[J84]. Y. Deng, M. Li*, T. Jian, S. Sun, N. Huang, and N. H. Zhu, “Widely tunable single passband microwave photonic filter based on DFB-SOA-assisted optical carrier recovery,” IEEE Photonic Journal, vol. 7, no. 5, 2015.
[J83]. S. Sun, Y. Deng, N. Zhu and M. Li*, “Tunable fractional-order photonic differentiator using a DFB-SOA” Optical Engineering, vol. 55, no. 3, 2015.
[J82]. M. Li*, W. Liu, N. Huang, R. S. Guzzon, N. Zhu, J. Azaña, L. A. Coldren and J. Yao, "Advances in all-optical circuits," Optics & Photonics News, Mar. 2015. (Invited Article)
[J81]. R. Maram, J. Howe, M. Li, and J. Azaña, "Lossless fractional repetition-rate multiplication of optical pulse trains," Opt. Letters, vol. 40, pp. 375-378, 2015.
2014 (14)
[J80]. R. Maram, J. Howe, M. Li, and J. Azaña, "Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect," Nature Communications, vol. 5, no. 5163, 2014.
[J79]. M. Li*, J. Azana, N. H. Zhu, and J. P. Yao, "Recent progresses on optical arbitrary waveform generation," Frontiers of Optoelectronics, vol. 7, no. 3, pp. 359-375, 2014. (Invited Review Article)
[J78]. M. Li*, J. Azana, and J. P. Yao, "Preface on special topic: all-optical signal processing," Chinese Science Bulletin, vol. 59, no. 22, pp. 2647-2648, 2014.
[J77]. M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azana, "On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit," Opt. Letters, vol. 39, no. 21, pp. 6181-6184, 2014.
[J76]. M. Burla, M. Li*, L. R. Cortés, X. Wang, M. R. Fernández-Ruiz, L. Chrostowski, and J. Azana, "Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon," Opt. Letters, vol. 39, no. 21, pp. 6241-6244, 2014.
[J75]. Y. Deng, M. Li*, N.B. Huang, and N. H. Zhu, "Ka-Band tunable flat-top microwave photonic filter using a multi-phase-shifted fiber Bragg grating," IEEE Photonics Journal, vol. 6, no. 4, pp. 1-8, 2014.
[J74]. X. H. Zou, M. Li, W. Pan, B. Luo, L.S. Yan, and L.-Y. Shao, "Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator," Opt. Express, vol. 22, no. 9, pp. 11129-11139, 2014.
[J73]. Y. Deng, M. Li*, N.B. Huang, Jose Azana and N. H. Zhu, "Optical length change measurement based on an incoherent single bandpass microwave photonic filter with high resolution," OSA Photonics Research, vol. 2, no. 4, pp. B35-B39, 2014.
[J72]. Y. Deng, M. Li*, N.B. Huang, Jose Azana and N. H. Zhu, "Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser," Chinese Science Bulletin, vol. 59, no. 22, pp. 2693-2701, 2014.(Cover Paper)
[J71]. W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. P. Yao, "Photonic temporal integrator with an ultra-long integration time window based on an InP-InGaAsP integrated ring resonator," IEEE/OSA Journal of Lightwave Technology, vol. 32, no. 20, pp. 3654-3659, 2014.
[J70]. J. J. Guo, M. Li*, Y. Deng, N. B. Huang, J. G. Liu, and N. H. Zhu, "Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings," Opt. Express, vol. 22, no. 4, pp. 3105-3116, 2014.
[J69]. N. B. Huang, M. Li*, Y. Deng, and N. H. Zhu, "Optical pulse generation based on an optoelectronic oscillator with cascaded nonlinear semiconductor optical amplifiers," IEEE Photonics Journal, vol. 6, no. 1, pp. 5500208 (1-8), 2014.
[J68]. N. B. Huang, M. Li*, R. Ashrafi, L. Wang, X. Wang, J. Azaña and N. H. Zhu, "Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window," Opt. Express, vol. 22, no. 3, pp. 3105-3116, 2014.
[J67]. X. H. Zou, M. Li, W. W. Ge, W. Pan, B. Luo, L. S. Yan, and J. Azaña, "Synthesis of fiber Bragg gratings with arbitrary stationary power/field distribution," IEEE Journal of Quantum Electronics, vol. 50, no. 3, pp. 186-197, 2014.
2013 (19)
[J66]. W. Li, L.X. Wang, J.Y. Zheng, M. Li, N.H. Zhu, "Photonic generation of ultrawideband signals with large carrier frequency tunability based on an optical carrier phase-shifting method," IEEE Photonics Journal, vol. 5, no. 5, pp. 5502007, 2013.
[J65]. H Wang, JY Zheng, W Li, LX Wang, M Li, L Xie, NH Zhu, "Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source," Opt. Letters, vol. 38, no. 22, pp. 4857-4860, 2013.
[J64]. J. Y. Zheng, N.H. Zhu, L.X. Wang, M. Li, H. Wang, W. Li, X. Q. Qi, and J. G. Liu, "Spectral sculpting of chaotic-UWB signals using a dual-loops optoelectronic oscillator," Photonics Technology Letters, vol. 25, pp. 2397-2400, 2013.
[J63]. M. Burla, L. R. Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, "Integrated waveguide Bragg gratings for microwave photonics signal processing," Opt. Express, vol. 21, pp. 25120-25147, 2013. (Invited Review Article, Top Download in October 2013)
[J62]. M. Li, "My Research Life in Canada: A Tale of Two Labs," Optics and Photonics News, April, 2013. (Invited Article)
[J61]. X. Zou, M Li, W Pan, L Yan, J Azana, J Yao,"All-fiber optical filter with an ultranarrow and rectangular spectral response," Opt. Letters, vol. 38, no. 16, 3096-3098, 2013. (Top Download in August and September 2013)
[J60]. B Li, M Li, S Lou, J Azaña,"Linear optical pulse compression based on temporal zone plates," Opt.express, vol. 21, no. 14, 16814-16830 (2013).
[J59]. R. Ashrafi, M. Li, and J. Azana, "Multi-TBaud optical coding based on superluminal space-to-time mapping in long period gratings," Scientific Research, vol. 3, no. 2, pp. 126, 2013.
[J58]. W. Li, L. X. Wang, M. Li, and N. H. Zhu, "Photonic generation of widely tunable and background-free binary phase-coded RF pulses," Opt. Letters, vol. 38, no. 17, pp. 3441-3444, 2013.
[J57]. W. Li, L. X. Wang, M. Li, and N. H. Zhu, “Single phase modulator for binary phase-coded microwave signals generation with large carrier frequency tunability”IEEE Photon. Technol. Lett., vol. 25, no. 19, pp. 1867-1870, 2013.
[J56]. W. Li, L. X. Wang, J. Y. Zheng, M. Li, and N. H. Zhu, "Photonic MMW-UWB signal generation via DPMZM-based frequency up-conversion,”IEEE Photon. Technol. Lett., vol. 25, no. 19, pp. 1875-1878, 2013.
[J55].W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, "Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photon. J., vol. 5, no. 4, pp.5501507, Aug. 2013.
[J54].M. R. Fernandez, M. Li, and J. Azaña, " Time-domain holograms for generation and processing of temporal complex information by intensity-only modulation processes " Opt.express, vol. 21, no. 8, pp. 10314-10323, 2013.
[J53]. M. R. Fernandez, M. Li, et al, "Picosecond optical signal processing based on transmissive fiber Bragg gratings," Opt. Letters, vol. 38, no. 8, pp. 1247-1249, 2013.
[J52]. R. Ashrafi, M. Li et al, "Experimental demonstration of superluminal space-to-time mapping in long period gratings," Opt. Letters, vol. 38, no. 9, pp. 1419-1421, 2013.
[J51]. R. Ashrafi, M. Li, and J. Azaña, "Tsymbol/s optical coding based on long period gratings," IEEE Photonics Technology Letters, vol. 25, no. 10, pp. 910-913, 2013.
[J50]. R. Ashrafi, M. Li, and J. Azaña, “Coupling-strength-independent long-period grating designs for THz-bandwidth optical differentiators,” IEEE Photonics Journal, vol. 5, no. 2, pp. 7100311, 2013.
[J49]. R. Ashrafi, M. Li, S. LaRochelle, and J. Azaña, "Superluminal space-to-time mapping in grating-assisted co-directional couplers," Opt. Express, vol. 21, pp. 6249-6256, 2013.
[J48]. Y. Hu, M. Li, D. Bongiovanni, M. Clerici, J. Yao, Z. Chen, J. Azaña, and R. Morandotti, "Spectrum to distance mapping via nonlinear Airy pulses," Opt. Letters, vol. 38, pp. 380-382, 2013.
2012 (7)
[J47]. M. Li, H.-S. Jeong,J. Azaña, and T.-J. Ahn, "25-terahertz-bandwidth all-optical temporal differentiator," Optics Express, vol. 20, no. 27, pp. 28273–28280, Dec. 2012.
[J46]. M. Li, Z. Li, and J. P. Yao, "Photonic generation of a precisely pi phase shifted binary phase-coded microwave signal," IEEE Photon. Technol. Lett., vol. 24, no. 22, pp. 2001-2004, Nov. 2012.
[J45]. M. Li, W. Li, and J. P. Yao, "A tunable optoelectronic oscillator based on a high-Q spectrum-sliced photonic microwave transversal filter," IEEE Photon. Technol. Lett., vol. 24, no. 14, pp. 1251-1253, July. 2012.
[J44]. M. Li, P. Dumais, R. Ashrafi, H. P. Bazargani, J.-B. Quélène, C. Callender, and J. Azaña, "Ultrashort flat-top pulse generation using on-chip CMOS-compatible Mach-Zehnder interferometers," IEEE Photon. Technol. Lett., vol. 24, no. 16, pp. 1387-1389, Aug. 2012.
[J43]. M. Li and J. P. Yao, "Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a two-dimensional array of cascaded linearly chirped fiber Bragg gratings," IEEE Photon. Technol. Lett., vol. 24, no. 15, pp. 1319-1321, Aug. 2012.
[J42]. A. Malacarne, R. Ashrafi, M. Li, S. LaRochelle, J. P. Yao, and J. Azaña, "Single-shot photonic time-intensity integration based on a time-spectrum convolution system," Opt. Lett., vol. 37, no. 8, pp. 1355-1357, Apr. 2012.
[J41]. W. Li, M. Li, and J. P. Yao, "A narrow-passband and frequency-tunable micro-wave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating," IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1287-1296, May 2012.
2011 (11)
[J40]. Z. Li, M. Li, H. Chi, X. Zhang, and J. P. Yao, "Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber Bragg grating," IEEE Microwav. Wireless Compon. Lett., vol. 21, no. 12, pp. 694-696, Dec. 2011.
[J39]. M. Li and J. P. Yao, "Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber Bragg grating," IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 3531-3537, Dec. 2011.
[J38]. M. Li and J. P. Yao, "All-optical short-time Fourier transform based on a temporal pulse shaping system incorporating an array of cascaded linearly chirped fiber Bragg gratings," IEEE Photon. Technol. Lett., vol. 23, no. 20, pp. 1439-1441, Oct. 2011.
[J37]. M. Li and J. P. Yao, "Multichannel arbitrary-order photonic temporal differentiator for wavelength-division-multiplexed signal processing using a single fiber Bragg grating," IEEE/OSA J. Lightw. Technol., vol. 29, no. 17, pp. 2506-2511, Sep. 2011.
[J36]. W. Liu, M. Li, C. Wang, and J. P. Yao, "Real-time interrogation of a linearly chirped fiber Bragg grating sensor with improved resolution and signal-to-noise ratio," IEEE/OSA J. Lightw. Technol., vol. 29, no. 9, pp. 1239-1247, May 2011.
[J35]. Y. Han, Z. Li, S. Pan, M. Li, and J. P. Yao, "Photonic-assisted tunable microwave pulse fractional Hilbert transformer based on a temporal pulse shaping system," IEEE Photon. Technol. Lett., vol. 23, no. 9, pp. 570-572, May 2011.
[J34]. H. Shahoei, M. Li , and J. P. Yao, "Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating," IEEE/OSA J. Lightw. Technol., vol. 29, no. 10, pp. 1465-1472, May 2011.
[J33]. M. Li, Y. Han, S. Pan, and J. P. Yao, "Experimental demonstration of symmetrical waveform generation based on amplitude-only modulation in a temporal pulse shaping system," IEEE Photon. Technol. Lett., vol. 23, no. 11, pp. 715-717, Jun. 2011.
[J32]. M. Li, L.Y. Shao, J. Albert and J. P. Yao, "Tilted fiber Bragg grating for chirped microwave waveform generation," IEEE Photon. Technol. Lett., vol. 23, no. 5, pp. 314-316, Mar. 2011.
[J31]. M. Li, L.Y. Shao, J. Albert and J. P. Yao, "Continuously tunable photonic fractional temporal differentiator based on a tilted fiber Bragg grating," IEEE Photon. Technol. Lett., vol. 23, no. 4, pp. 251-253, Feb. 2011.
[J30]. Z. Li, C. Wang, M. Li, H. Chi, X. M. Zhang and J. P. Yao, "Instantaneous microwave frequency measurement using a special fiber bragg grating," IEEE Microwave Theory and Wireless Component Letters., vol. 21, no. 1, Jan. 2011.
2010 (5)
[J29]. M. Li, C. Wang, W. Li, J. Yao, "An unbalanced temporal pulse shaping system for chirped microwave waveform generation," IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2968-2975, Nov. 2010.
[J28]. M. Li, J. Yao, “Experimental demonstration of a wideband photonic temporal Hilbert transformer based on a single fiber Bragg grating,” IEEE Photon. Technol. Lett., Vol. 22, No. 21, pp. 1559-1561, Dec. 2010.
[J27]. C. Wang, M. Li, J. Yao, "Continuously tunable photonic microwave frequency multiplication by use of an unbalanced temporal pulse shaping system," IEEE Photon. Technol. Lett., vol. 22, no. 17, pp. 1285-1287, Aug. 2010.
[J26]. X. Chen, T. Kameyama, M. Li, H. Li, “Multiple dual-wavelengths fiber ring laser utilizing a phase-only sampled fiber Bragg grating with multiple phase-shifts inserted,” Appl. Phys. B - Lasers and Optics, Vol. 101, No. 1-2, pp. 115-118, Apr. 2010.
[J25]. M. Li, J. Yao, "All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating," Opt. Lett., Vol. 35, No.2 , pp. 223-225, 2010.
2009 (8)
[J24]. M. Li, D. Janner, J. Yao, and V. Pruneri, “Arbitrary-order all-fiber temporal differentiators based on fiber Bragg gratings: design and experimental demonstration,” Opt. Express, Vol. 17, No. 22, pp. 19798–19807, 2009.
[J23]. M. Li, X. Chen, T, Fuji, Y. Kudo, H. Li, and Y. Painchaud, “Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating,” Opt. Lett., Vol. 34, No. 11, pp. 1717-1719, 2009.
[J22]. H. Li, M. Li, and J. Hayashi, “Ultrahigh channel-count phase-only sampled fiber Bragg grating covering the S-, C- and L- band,” Opt. Lett., Vol. 34, No. 7, pp. 938-940 , 2009.
[J21]. M. Li, T. Fujii, and H. Li, “Multiplication of a multi-channel notch filter based on a phase shifted phase-only sampled fiber Bragg grating,” IEEE Photon. Technol. Lett., Vol. 21, No. 13, pp. 926-928, 2009.
[J20]. M. Li, X. Chen, J. Hayashi, and H. Li, “Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method,” Opt. Express, Vol. 17, No.10, pp. 8382-8394, 2009.
[J19]. M. Li, H. Li, and Y. Painchaud, “Proposal and realization for a broadband all-fiber non-uniformly spaced multi-channel optical filter,” Optics Communications, Vol. 282, pp. 879-882, 2009.
[J18]. M. Li, J. Hayashi, and H. Li, “Advanced design of complex fiber Bragg grating for multi-channel triangular filter,” J. Opt. Soc. Am. B, Vol. 26, No. 2, pp. 228-234, 2009.
[J17]. M. Li and H. Li, “Influences of writing-beam size on the performances of dispersion-free multi-channel fiber Bragg grating,” Opt. Fiber Technol., Vol. 15, No. 1, pp. 33-38, 2009.
2008 (4)
[J16]. M. Li, H. Li, and Y. Painchaud, "Multi-channel notch filter based on a phase-shift phase-only sampled fiber Bragg grating," Opt. Express, Vol. 16, No. 23, pp. 19388-19394 , 2008.
[J15]. M. Li, H. Li, “Correction to ``Chromatic dispersion measurement for multichannel FBG based on a novel asymmetrical Sagnac loop interferometer”,'' IEEE Photon. Technol. Lett., Vol. 20, No. 3, pp. 226-226, 2008.
[J14]. M. Li, T. Takahagi, K. Ogusu, H. Li, and Y. Painchaud, “A comprehensive study of the chromatic dispersion measurement of the multi-channel fiber Bragg grating based on an asymmetrical Sagnac loop interferometer,” Optics Communications, Vol. 281, pp. 5165-5172, 2008.
[J13]. M. Li, H. Li, “Reflection equalization of the simultaneous dispersion and dispersion-slope compensation based on a phase-only sampled fiber Bragg grating,” Opt. Express, Vol. 16, No. 13, pp. 9821-9828, 2008.
2007 (3)
[J12]. M. Li and H. Li, “Chromatic dispersion measurement for multi-channel FBG based on a novel asymmetrical Sagnac loop interferometer,” IEEE Photon. Technol. Lett., Vol. 19, No. 20, pp.1601-1603, 2007.
[J11]. H. Li, M. Li, Y. Sheng, and J. E. Rothenberg, “Advances in the design and fabrication of high channel-count fiber Bragg gratings,” J. Lightw. Technol., Vol. 25, No. 9, pp. 2739-2749,2007. (Invited Tutorials)
[J10]. Y. Ge, M. Wang, M. Li, and T. Wang, “Study of silicon-based optical fiber temperature sensor,” Chinese Journal of Sensors and Actuators, Vol. 20, No. 5, pp. 1017-1020, 2007. (In Chinese)
2006 (4)
[J9]. M. Li, M. Wang, and H. Li, “Optical MEMS pressure sensor based on Fabry-Perot interferometry,” Opt. Express, Vol. 14, No. 4, pp. 1497-1504, 2006.
[J8]. H. Li, M. Li, K. Ogusu, Y. Sheng, and J. E. Rothenberg, “Optimization of a continuous phase-only sampling for high channel-count fiber Bragg gratings,” Opt. Express, Vol. 14, No. 8, pp. 3152 – 3160, 2006.