倪海桥,男,博士,研究员,博士生导师。
在新加坡国立大学获得博士学位。主要从事半导体低维结构材料的生长研究和物理分析工作。先后承担和参加多项国家重大项目和重点项目课题。用激光溅射方法成功地获得了室温荧光谱线明显蓝移的GaN纳米点。用激光溅射方法研究了ZnO薄膜的生长及其物理特性。成功地用等离子体溅射方法获得了具有铁电性能的掺Li ZnO薄膜。用多体物理中的GW近似、局域浓度近似(LDA)及微扰等方法计算了GaN和ZnO材料的能带结构及直接跃迁吸收边的性能,并定量地研究了成份偏离对其的影响。在其后的工作期间,主要从事稀释磁性半导体材料(ZnO,GaN,TiO2)的原子层MOCVD生长。获得了居里温度在室温的掺Co ZnO材料。研制成功室温1.0-1.6微米GaInNAsSb/GaAs量子阱材料,首次在国际上报道了1.55微米GaInNAs/GaAs多量子阱谐振腔增强探测器RCE-PD、1.59 微米GaInNAsSb量子阱激光器。创新设计GaAsSb/InGaAs复合量子阱结构,波长覆盖1.2-2.0微米波段。首次在国内报道了1.33 微米InAs量子点激光器;目前最新的进展包括以下几个方面:完成了InAs量子点单光子源的生长;完成了用于THz波产生和探测的低温GaAs材料;完成了单芯片集成的超短脉冲半导体量子点激光器。
研究领域及方向:
近红外波段半导体激光器和探测器;量子点单光子源;半导体超短脉冲激光器;THz波产生和探测器件;硅衬底外延生长IIIV族光电子器件;超低功耗发光器件。
联系方式:
电话:010-82304157; E-mail:nihq@semi.ac.cn
承担的主要科研项目:
l. 北京市自然科学基金:室温半导体基纠缠对单光子源(2011-2013),主持,11万
2. 国家自然科学基金:基于半导体单量子点谐振腔耦合结构的超低功耗发光器件 (2013-2016),主持;85万
3. 973重大计划课题:锑化物纳米结构中红外激光与探测器(2013-2017),主持,730万
代表性论文:
1. H. Q. Ni, Z. C. Niu, X. H. Xu, Y.Q. Xu, W. Zhang, X. Wei, L. F. Bian, Z. H. He, Q. Han, and R. H. Wu, “High Indium content InxGa1-xAs/GaAs quantum wells with emission wavelengths above 1.25μm at room temperature”, Appl. Phys. Lett., 84, 5100 (2004).
2. H. Q. Ni, X.H. Xu, W. Zhang, Y.Q. Xu, Z. C. Niu, and R. H. Wu, “The effects of Sb, N, and period on the electronic properties of GaAs/GaInNAsSb superlattices ”, Acta Physica sinica (in Chinese), 53, 1474 (2004). [倪海桥, 徐晓华, 张纬, 徐应强, 牛智川, 吴荣汉, 物理学报]。
3. Z. C. Niu, H. Q. Ni, X.H. Xu, W. Zhang, Y.Q. Xu, and R. H. Wu, “Electronic properties of GaAs/GaInNAsSb superlattices”, Phys. Rev. B 68, 235326 (2003).
4. 倪海桥,牛智川,张石勇,徐应强,韩勤,吴荣汉,“1300 nm P型GaAs/AlGaAs分布式布拉格反射镜的优化”,第十三届全国化合物半导体材料、微波器件和光电器件学术会议暨第九届全国固体薄膜学术会议,2004,8 大连,P140。
5. H. Q. Ni, Y. F. Lu, and Z. M. Ren, “Investigation of Li-doped ferroelectric and piezoelectric ZnO thin films by electric force microscopy and Raman spectroscopy”, APPL PHYS LETT 79: (6) 812-814 AUG 6 2001.
6. H. Q. Ni, Y. F. Lu and Z. M. Ren, “Quasiparticle band structures of wurtzite and rock-salt ZnO”, J. Appl. Phys. 91, 1339 (2002).
7. H. Q. Ni, Y. F. Lu, and Z. M. Ren, “Ab initio pseudopotential calculations of electronic structure of off-stoichiometrical ZnO of wurtzite and rock-salt ZnO”, JPN J APPL PHYS 1 40: (6A) 4103-4108 JUN 2001.
8. H. Q. Ni, Y. F. Lu, J. H. Teng, Y. X. Jie, Z. H. Mai and Z. M. Ren, “Surface and optical properties of nanocrystalline GaN thin films on sapphire (0001) by pulsed laser deposition”, SPIE Conference 3898: Photonic Systems and Applications in Defense and Manufacturing, 1-3 Dec 1999, Singapore (Proceedings of SPIE Vol. 3898).
9. He Ji-Fang, Niu Zhi-Chuan, Chang Xiu-Ying, Ni Hai-Qiao, Zhu Yan, Li Mi-Feng, and Shang Xiang-Jun, "Molecular beam epitaxy growth of GaAs on offcut Ge substrate", Chin. Phys. B, 20(1), 018102 (2011)
10. X. H. Yang, X. L. Xu, X. P. Wang, H. Q. Ni, Q. Han, Z. C. Niu, D. A. Williams, “Optically controlled quantum dot gated transistors with high on/off ratio”, Appl. Phys. Lett. 96(8), 083503(2010)
11. X. Huang, X. H. Zhang, Y. G. Zhu, T. Li, L. F. Han, X. J. Shang, H. Q. Ni and Z. C. Niu,The effect of an electric field on the nonlinear response of InAs/GaAs quantum dots,J. Opt. 12, 055203(2010).
12. Ming Gong, Geng Chen, Lixin He, Chuan-Feng Li, Jian-Shun Tang, Fang-Wen Sun, Zhi-Chuan Niu, She-Song Huang, Yong-Hua Xiong, Hai-Qiao Ni and Guang-Can Guo, "Direct observation of excitonic polaron in InAs/GaAs quantum dots", Europhys. Lett. 90, 37004 (2010).
13. Electron spin dynamics study of bulk p-GaAs: The screening effect,Appl. Phys. Lett. 102, 012406(2013).
14. Single InAs Quantum Dot Grown at the Junction of Branched Gold-Free GaAs Nanowire, Nano Letters, 13(4),1399(2013)
15. Field-Field and Photon-Photon Correlations of Light Scattered by Two Remote Two-Level InAs Quantum Dots on the Same Substrate Physical Review Letters, 109, 267402(2012)
16. High-performance metamorphic InGaAs resonant cavity enhanced photodetector grown on GaAs substrate Appl. Phys. Lett.98(20), 201104(2011)
17. Optically controlled quantum dot gated transistors with high on/off ratio Appl. Phys. Lett. 96(8), 083503 (2010)