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Abstract
Recently, accelerometers have been employed for bridge weigh-in-motion (BWIM) systems to provide more durable field 
measurements comparing with conventional strain-based sensors. As the basis of BWIM system, accurate vehicle identifica-
tion provides fundamental support for vehicle loads monitoring and overweight traffic detection. However, research efforts 
on axle recognition in real time are still inadequate, especially for accelerometer-based BWIM system. In this paper, we 
propose a two-step solution for real-time vehicle identification designed for acceleration measurements. In this method, a 
sequence-to-label long–short-term memory (LSTM) network is constructed to identify axle-induced responses in a multi-
lane system directly. The input sequence is wavelet coefficients after performing wavelet transform on the raw data. Based 
on the trustworthy axle identification results, an auto-grouping step is then proposed and applied for vehicle-type identifica-
tion. Model training and method evaluation are conducted using filed measurements from a highway bridge in Tokyo. Two 
data sets are utilized, i.e., 191 vehicles with 456 axles and 596 vehicles with 1380 axles. Results show that 98% axles can be 
identified correctly using proposed LSTM method from both data sets, while accuracy of vehicle-type identification is 96% 
for both data sets, which can demonstrate the robustness of proposed methods. Moreover, the driving lane detection of all 
detected vehicles is 100% without any failed cases. Comparing with all-in-one deep network using acceleration measure-
ments as input sources directly, the proposed two-step LSTM method requires less training data, hence it is a computationally 
efficient solution, which would enable its generalization capability for applying on other bridges.

Keywords  Bridge weigh-in-motion · Long–short-term memory (LSTM) · Accelerometer · Axle detection · Vehicle 
identification · Wavelet transform

1  Introduction

Bridge weigh-in-motion (BWIM) system plays an essential 
role in vehicle load monitoring, which can infer axle weights 
according to field measurements, to provide supports for 
overweight vehicle identification and bridge condition 
assessment [1–4]. Therefore, the accurate vehicle detection 
is the foundation for BWIM system, which means those 
axle-induced responses should be captured by transducers 
properly and determined by reliable techniques precisely.

Since the first introduce of BWIM system by Moses in 
1970’s [1], the vehicle-detecting transducers have been 
upgrading from the early on-road sensors, i.e., tape switches 
and pneumatic tubes, to strain-based sensors [2, 3]. This is 
because strain gauges are normally installed underneath the 
bridge to avoid direct exposure to the traffic, hence they are 
more durable compare to on-road sensors. Moreover, the 
installation or maintenance of strain gauges do not require 
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traffic interruption. In recent years, acceleration-based sen-
sors have been proposed to replace strain-based detectors for 
BWIM system [5], because accelerometers are more dura-
ble and convenient in terms of installation and maintenance 
when comparing with strain gauges.

Efforts have been devoted to developing methods of force 
estimation and displacement calculation for acceleration-
based BWIM system [6–8]. However, rarely efforts have 
been made on automatic and real-time axle identification, 
which is an essential task for weighting traffic load and over-
weight traffic recognition. Recently, we have proposed a 
shallow convolutional neural network-based method for this 
acceleration-based BWIM system to realize real-time traffic 
monitoring [9]. In that paper, we adopted the convolutional 
neural network (CNN) with continuous wavelet transform 
(CWT), and decomposed the vehicle identification task into 
three sub-tasks to avoid the high computational cost of using 
an all-in-one deep network [10]. We first proposed a stable 
CNN classifier to locate the periods, called valid sequence, 
containing a single vehicle on one driving lane or multi-
vehicles on different lanes individually. After that, an adap-
tive CWT is developed for valid axle localization, which is 
based on the amplitude features of both raw measurements 
and the wavelet coefficients. Finally, the driving lane can 
be identified through a cross-comparing process among all 
driving lanes. In that paper, the valid axle localization is 
the most time-consuming task due to the thresholds hav-
ing to be manually determined, i.e., we have to investigate 
the axle-induced vibration features both in the time domain 
and the wavelet coefficients to set two proper thresholds to 
find the valid axle. Therefore, for automatic vehicle iden-
tification, we, furthermore, present a more simplified and 
straightforward deep learning method in this paper. The 
proposed method conducts axles identification by adopting 
a sequence-to-label long–short-term memory (LSTM) net-
work, and thereafter assorts independent axles into detached 
vehicles automatically.

As demonstrated in previous paper [9], wavelet analysis 
is an effective tool for time–frequency analysis specially to 
capture abrupt changes in non-stationary signals, i.e., the 
axle-induced vibrations. Therefore, the wavelet analysis 
method is employed to prepare the input sources for LSTM 
network instead of using raw accelerations data to cap-
ture axle-induced features. LSTM networks, proposed by 
Hochreiter and Schmidhuber [11], have proved its ability 
in many sequence learning tasks [12], i.e., speech recogni-
tion, writing recognition, and sequence anomaly detection. 
The ability of LSTM in maintaining long-term memory 
enables it to learn long-term dependencies between time-
steps of sequential data. The application of LSTM network 
can be classified into sequence-to-sequence or sequence-
to-label for either prediction or classification. For instance, 
Malhotra et al. [13] established an sequence-to-sequence 

encoder–decoder using LSTM only to detect anomalies 
in time-series. They trained this prediction model using 
only normal samples and the model is expected to recon-
struct ‘normal’ sequences well with a small error. Hence 
when an unknown instance being reconstructed with higher 
reconstruction error, which represents this input sample is 
not belongs to ‘normal’ data set. Ma et al. [14] employed 
LSTM directly for traffic speed prediction based on the data 
recorded by microwave traffic detector. More complicated 
model can be found by combing CNN and LSTM together. 
For example, to identify automotive suspension state, Luo 
et al. [15] employed CNN for feature extraction and LSTM 
for further damage values prediction. In terms of sequence-
to-label learning task, a combination of CNN and LSTM 
method have also been conducted by Zhou et al.[16] for text 
classification and by Zhao et al. [17] for speech emotion 
recognition.

The method we introduced for automatic axle detection is 
employing LSTM network for sequence-to-label classifica-
tion. The input sequence is generated by applying wavelet 
transform on raw acceleration data. Based on axle detection 
results, an auto-grouping method is further applied to clas-
sify those identified axles into detached vehicles. Again, this 
proposed method is aiming to fulfill the automatic vehicle 
detection function for real-time traffic monitoring. Compar-
ing with an all-in-one deep network proposed by Kawakatsu 
et al. [10], the method we proposed is computation efficient 
due to the task division. Moreover, comparing with our pre-
vious proposed method [9], this method is more simplified 
and streamlined.

The rest of this paper starts with a brief description of the 
acceleration-based axle identification system, as described 
in Sect. 2. Then theoretical background and implementa-
tion procedures of proposed method is presented in Sect. 3, 
followed by a case study in Sect. 4. The developed method 
is assessed using field test data collected from a highway 
bridge in Tokyo. Details of data preparation, model training 
with fine-tuning process, and performance evaluation will 
be described and outlined in Sect. 4. Then Sect. 5 offers a 
conclusion on this paper.

2 � Acceleration‑based BWIM system

The configuration of an acceleration-based BWIM system 
can be found in [5]. In terms of axle identification, two 
groups of detectors are placed in both entry and exit sides 
in the longitudinal direction, seeing Fig. 1 as an example 
of three-lane system. In the transversal direction of entry 
or exit side, detectors are allocated for each driving lane. 
When a vehicle is moving across those monitoring lines, the 
axle-induced vibrations can be captured by those detectors. 
Figure 1 also provides an example when a four-axle truck 
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driving through the leftmost driving lane. As can been seen, 
the axle-induced vibration is nonstationary, in which four 
peaks are apparent from the raw measurements.

3 � Method and implementation

3.1 � Wavelet analysis of vehicle‑induced responses

To detect the nonstationary signals induced by vehicles, 
it is necessary to keep the time information while consid-
ering the frequency spikes. Therefore, wavelet analysis is 
adopted for data preprocessing before deep learning model. 
Wavelet transform is a well-known and sufficient tool for 
frequency analysis, especially to analyze abrupt changes, in 
time domain [18]. Wavelet transform (WT) on time series, 
f (t) , can be expressed in the following equation:

where � is called mother wave. Two key wavelet concepts 
that contribute the power of WT are scaling parameter, � , 
and shifting parameter, � . A compressed wavelet, with small 
scaling value, helps in capturing the abrupt changes, while 
a stretched wavelet helps in capturing the slowly varying 
changes. We employ continuous wavelet transform (CWT), 
which means scale parameter are varying continuously, in 
this paper to provide an overcomplete representation of raw 
measurements.

In this paper, the morse wavelet [19], seeing Eq. (2), is 
selected:

(1)WT(�, �) =
1
√

� ∫
∞

−∞

f (t) × �

�

t − �

�

�

dt

where U(�) is Heaviside step function, � controls the sym-
metry of Morse wavelet, and P2 = �� is time–bandwidth 
product. More explanations of Morse wavelet can be found 
in [20]. We use the default values of symmetry parameter 
( � = 3 ) and time–bandwidth product (as P2 = 3.1 ) in MAT-
LAB for axle detection.

Figure 2a illustrates wavelet transformed results by apply-
ing WT on acceleration measurements, which is recorded by 
the Lane 1 entry detector, as previously shown in Fig. 1. The 
zoom in view of one axle is also provided in Fig. 2b.

3.2 � Proposed LSTM classifier for axle identification

In this paper, we employ LSTM network to build a sequence-
to-label classifier, seeing Fig. 3, for axle detection and 
traveling lane identification. The core layers of this clas-
sifier include a sequence input layer, hidden layers, and a 
label output layer. In hidden layer, LSTM layer and fully 
connected layer are stacked. Descriptions of core layers and 
core components, i.e., loss function, optimizer, assessment 
criteria, are explained in the rest part of this subsection.

3.2.1 � Sequence input layer and label output layer

A sequence input layer holds the sequences prepared for the 
network. We proposed to input wavelet coefficient sequences 
instead of the raw vibration data into the network. Hence, 
the input sequence is a group of wavelet coefficients after 
performing wavelet transform on acceleration measurements 

(2)��,� (�) = 2

(

e�

�

)�∕�

��e−�
�

× U(�)

Fig. 1   Schematic diagram of acceleration-based system for traffic identification
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of all lanes, i.e., m-dimensional vector of readings from m 
detectors. Considering the complicated traffic conditions in a 
multi-lane system, we use a short time-period measurement, 
which can be obtained by shifting a window, size of n , over 

a long time-series. The window size is designed to contain 
only one axle-induced vibrations.

Taking the entry signal previously described in Fig. 1 
as an example to depict the detailed process, this four-axle 
vehicle is passing a three-lane system using driving lane 
no.1. A small window, with 0.06 s length, containing its 
third axle are displayed in Fig. 4. The first row of Fig. 4 
shows the wavelet transformed results from three lanes. By 
doing that, the time-dependent wavelet coefficients at a cer-
tain frequency level can be selected to formulate the input 
sequence. This certain frequency level is determined based 
on the maximum wavelet coefficients, for instance, the outer 
edge line showing in the second row of Fig. 4. Hence, the 
final sequence input, X , is the normalized outer edge lines 
from all three lanes, where m = 3 , and tn = 0.06s.

The final label output layer is designed to predict the driv-
ing lane label. If the input sequence records the vibration due 
to a valid axle, the target output of the model is to identify 
the location of this axle, i.e., in lane 1, 2 or m , here m = 3 . If 
the output label is ‘0’, it represents the input sequence dose 
record any valid axle.

3.2.2 � Hidden layers

The first major component inside hidden layers is LSTM 
layer, which is the main module to learn the long-term 
dependency features of the input sequence. As indicated in 
Fig. 3, the LSTM cell, with k units, is operated on input 
data x(ti), i = 1, 2,… , n . Hence the m-dimension input 
x(ti) can be interpreted into a k-dimension vector, h(ti) . 

Fig. 2   Example of wavelet analysis on vehicle-induced vibration: a Wavelet analysis on lane 1 entry signal shown in Fig. 1; b the 3rd axle of (a)

Fig. 3   Configuration of LSTM-based sequence-to-label classifier for 
axle identification
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Figure 5 illustrates the structure of a LSTM cell at time step 
ti ∈

{

t1,… , tn
}

. The output at time step ti includes cell state 
c(ti) and hidden state h(ti) , which are the accumulation of cur-
rent input value x(ti) , preceding cell state c(ti−1) , and preced-
ing hidden state h(ti−1) . Hence, information can be transferred 
from previously processed states and affects the final output.

The transfer mechanism is controlled by four gates, 
named forget gate ( F ), candidate gate ( G ), input gate ( I ), 

and output gate ( O ). The computation steps are represented 
in Eqs. (3–7) [21], where gate F controls information expur-
gation from x(ti) and h(ti−1) , while gate I and G control infor-
mation adding and updating from x(ti) and h(ti−1) . The hidden 
representation h(ti) is then calculated using Eq. (8), which 
is computed according to current cell state c(ti) and gate O:

(3)F(ti) = �g

(

WFx
(ti) + RFh

(ti−1) + bF

)

,

(4)G(ti) = �c

(

WGx
(ti) + RGh

(ti−1) + bG

)

,

(5)I(ti) = �g

(

WIx
(ti) + RIh

(ti−1) + bI

)

,

(6)O(ti) = �g

(

WOx
(ti) + ROh

(ti−1) + bO

)

,

(7)c(ti) = F(ti) ⊙ c(ti−1) + I(ti) ⊙ G(ti),

Fig. 4   Demonstration of sequence input for LSTM classifier

Fig. 5   Structure of LSTM cell
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where �g is gate activation function and �c is the state acti-
vation function, ⊙ represents Hadamard product. Appar-
ently, the learnable weights of an LSTM layer contains 
input weights W = {WF,WG,WI ,WO} , recurrent weights 
R = {RF,RG,RI ,RO} , and bias b = {bF, bG, bI , bO} . The 
memory flow of LSTM network is thus formed based on 
the transferred information among units, which enables its 
ability to process sequences with feature of long-term spatial 
and temporal dependencies. LSTM layers can be stacked, 
units inside each LSTM layer can be fine-tuning for differ-
ent tasks.

The second part of hidden layer is the fully connected 
layer, which can also be stacked. The function of using 
fully connected layer is to utilize features learned from 
LSTM layers for classification. The hyperparameters lie 
in are the number of stacked layers and the number of 
neurons in each layer.

3.2.3 � Loss function and optimizer for model training

During model training, the categorical crossentropy loss 
function is adopted to compute the crossentropy loss 
between ground-truth labels and predicted labels. The 
target of model training process is to minimize this cost 
function, seeing Eq. (9):

where yi is the ith segment of a multi-categories data set. p 
and q refer to the probability distribution of the ground-truth 
value and its corresponding predicted value, respectively. N 
is the total number of training segments.

In terms of optimizer, Adam [22] is selected as the opti-
mization algorithm because of its robustness in hyperparam-
eters selection during training process. Adam is designed 
to compute adaptive learning rates for different parameters 
based on the estimation of gradients of the objective function 
for each parameter. For the sake of simplicity, the parameter 
and time is represented by � and t , respectively. The objec-
tive function for parameter �i at time step tj can be expressed 
as J

(

�i, tj−1
)

 . Hence, the gradient of this objective function 
can be expressed as in Eq. (10):

At each time step ti , Adam is updating the exponential 
moving averages of the gradients, termed as m(ti) , and the 
squared gradients, termed as v(ti) , seeing Eqs. (11–12):

(8)ht = O(ti) ⊙ 𝜎c

(

c(ti)
)

,

(9)Min Loss = −

N
∑

i=1

p
(

yi
)

⋅ log
(

q
(

yi
))

(10)g
(tj)
�i

= ∇�i
J
(

�i, tj−1
)

where �1 and �2 are the exponential decay rate for the first 
and second moment estimates, respectively. The parameter 
is further updated using the following equation:

where � is the learning rate and � is a small constant number 
to prevent division by zero. The hyperparameter within opti-
mizer which are explored in this paper including learning 
rate � and constant value of � for numerical stability.

3.2.4 � Assessment criteria

For model assessment, we consider the normal percentage 
criteria, including accuracy, precision, recall, R1-score. We 
also evaluate the model using accuracy, precision, recall, 
F1-score, and Cohen’s kappa [23]. As indicated by Cohen, 
kappa values over 0.81 represents almost perfect agreement.

3.3 � Auto‑grouping step for vehicle identification

The auto-grouping method is operating on each lane indi-
vidually to identify vehicles from all detected axles. Accord-
ing to the real driving condition, two vehicles in the same 
lane must keep a certain distance. Hence, axles in the same 
lane within a certain period, tlimitation , should be classified as 
one vehicle. The value of tlimitation are determined based on 
an investigation of the data set.

4 � Field experiment for method evaluation

To evaluate the proposed vehicle detection method, the 
acceleration-based BWIM system has been installed to a 
highway bridge located in Tokyo. It is a 38 m single-span 
steel bridge with three driving lanes. Figure 6 provides 
cross-sectional view and sensors configuration for vehicle 
detection. MEMS accelerometers for vehicle identification 
are placed at longitudinal edges underneath the bridge deck.

4.1 � Data preparation

To prepare the input sequence, the certain frequency level 
should be decided first. As suggested, the frequency level 
corresponding to the maximum wavelet coefficients can 
be selected first. We conducted an examination on 456 
axles. The distribution of maximum wavelet coefficients 

(11)m(tj) = �1 ⋅ m
(tj−1) +

(

1 − �1
)

g(tj)

(12)v(tj) = �2 ⋅ m
(tj−1) +

(

1 − �2
)

(

g(tj)
)2

(13)�
tj

i
= �

tj−1

i
− � ⋅ m(tj)∕

(√

v(tj) + �

)



Journal of Civil Structural Health Monitoring	

123

corresponding frequency is displayed in Fig. 7a, which 
shows this certain frequency level 85 Hz.

As aforementioned, small window-sized data are sug-
gested for a multi-lane system to ensure only one valid axle 
is expected within a window. Hence the window size can be 
determined according to the vehicle’s limited speed, in this 
case tn = 0.06s is considered, and n = 30 data points corre-
sponding to 500 Hz sampling rate. By shifting the window 
along time series, segments for either model training and test 
can be obtained. The number of segments for model training 
and test are indicated in Fig. 7b. As can be seen, training set 
consist 2472 invalid segments with 2484, 3057, 276 samples 
belonging to ‘Lane 1’, ‘Lane 2’, and ‘Lane 3’, respectively. 
The test data set contains 456 valid axles belongs to 191 
vehicles that travelling in lane 1, 2 or 3, and 275 invalid 
segments.

Less training samples for category ‘Lane 3’ can be 
observed according to Fig. 7b due to the training samples 

preparation method. For an unknown monitoring system, 
the easiest way to obtain the training data set is to capture 
peaks over a certain level, 2.0m∕s2 in this case, from the 
whole measurement data bank. Because the amplitude 
over 2.0m∕s2 is definitely the axle-induced variations, not 
the noise-induced vibration. For the application in other 
bridge, the pre-investigation about the noise-induced 
vibration should be first taken to determine this threshold. 
However, the drawback is also obvious. The axle which 
can induce over 2.0m∕s2 is normally the heavy vehicles. 
Lane 3 is the rightmost lane, which means the passing lane 
in Japan; therefore, fewer heavy vehicles are chosen to 
drive in this lane. To solve this problem, we will consider 
the weighted factor for unequal distributions in the follow-
ing training process. The factor is calculated according to 
Eq. (14), where Ni is the number of samples of the ith cat-
egory. For instance, the weighted factor for category ‘0’, 

Fig. 6   Sensor configuration on a 
highway bridge in Tokyo

Fig. 7   Data preparation: a distribution of frequency level corresponding to the maximum wavelet coefficients; b number of segments in training 
and test data sets
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‘Lane 1’, ‘Lane 2’ and ‘Lane 3’ are 1.2, 1.2. 1, and 11.1, 
respectively, according to Fig. 7b:

4.2 � Axle identification

4.2.1 � Model training

The investigation on hyperparameters is conducted in terms 
of hidden layers depth and optimizer settings. The model 
is trained for 50 epochs and batch size sets to 20, which 
means 50 full passes on the training data set using a batch 
size of 20.

(14)Weighted factor =
1

Ni

We first evaluated the hyperparameter related to the hid-
den layer depth, including five configurations of various 
LSTM layer and three configurations of various fully con-
nected layer. Figure 8a displays the five configurations we 
investigated, while Fig. 8b compares their performance from 
five aspects, i.e., precision, recall, F1-score, kappa, and time 
cost. For all model configuration shown in Fig. 8a, the learn-
ing rate decays from 10−4 using the adaptive decay schedule. 
The exponential decay rate �1 and �2 are set as 0.9 and 0.999. 
The constant value of � is set to 10−7.

As can be seen from Fig. 8b, model with one-LSTM-
layer, i.e., configuration no.1 and 2, shows unstable per-
formance reflecting by the fluctuation in precision, recall, 
F1-score and kappa score. When deepening the model to two 
stacked LSTM layers, i.e., configuration no. 3 and 4, posi-
tive effect can be observed with higher precision. Moreover, 

(a)

(b)

Fig. 8   Hyperparameter examination of LSM layers: a five different configurations of LSTM layers; b assessment of those five different configu-
rations in (a)
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increasing the number of LSTM units can also improve the 
model performance by 0.001 for precision and F1-score, by 
0.002 for recall and kappa score. However, there is no evi-
dence of improvement when stacking three LSTM layers, 
instead of the training time, which is increasing. Therefore, 
the suggestion for LSTM layer depth is configuration no. 4.

The investigation on fully connected layers are further 
conducted on three configurations, showing in Fig. 9a, while 
the LSTM layers are same. Unlike the trend observed from 
various configurations of LSTM layers, minimal change can 
be observed among three configurations of fully connected 
layers, as demonstrated in Fig. 9b. More specifically, the pre-
cision didn’t show any evident improvement when the fully 
connected layer is getting deeper, i.e., 0.974 for one-layer 
model, 0.973 for two-layer model, and 0.975 for three-layer 
model. In the meantime, the training time, while increas-
ing the stacked fully connected layers is also stable with a 
slight variation from 2059 to 2090s, which can also reflect 
the configuration of fully connected layer has a slight effect 
on the final results. Therefore, the suggested configuration 
for fully connected layer is no. 7. Exact criteria values of 
aforementioned seven configurations shown in Figs. 8b and 
9b can be found in Table 1.

The hyperparameters within Adam optimizer that are 
explored in this paper include learning rate and constant 

value of � as previously mentioned in Eq. (13). The expo-
nential decay rate �1 and �2 are suggested as 0.9 and 0.999 
for adaptive decay. When evaluating, the structure of hidden 
layer includes two stacked LSTM layer (100 and 50 units, 
respectively) and one fully connected layer with 100 neu-
rons. Figure 10 presents the comparison of seven conditions 
with various configuration among Adam optimizer, details 
are listed in Table 2. According to Fig. 10 and Table 2 the 
best performance can be observed when adopting the initial 
learning rate as 10−4 with adaptive decay schedule, and the 
constant value of � = 10−8.

Fig. 9   Hyperparameter examination of fully connected layers: a three different configurations fully connected layers; b assessment of those three 
different configurations in (a)

Table 1   Investigation of model depth in hidden layer

Configu-
ration no.

Precision Recall F1-score Kappa Time cost [s]

1 0.970 0.970 0.970 0.957 1012
2 0.968 0.966 0.966 0.952 1079
3 0.973 0.971 0.972 0.959 2051
4 0.974 0.973 0.973 0.961 2065
5 0.974 0.973 0.973 0.961 3169
6 0.973 0.971 0.972 0.959 2090
7 0.975 0.974 0.974 0.963 2059
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4.2.2 � Model assessment

According to above hyperparameter investigation, the final 
model is configurated as two stacked LSTM layer with 50 
and 100 LSTM units, respectively, followed by three fully 
connected layer with 150, 100 and 50 neurons individually. 
The Adam optimizer is selected with 10−4 initial learning 
rate and decay adaptively. The constant value is setting 
as 10−8 . Figure 11 shows the axle detection and localiza-
tion results on 191 vehicles of 456 axles. Apparently, the 
identification results are 98%, 99% and 97% for classifying 
segments belongs to ‘Lane 1’, ‘Lane 2’, and ‘Lane 3’. The 
overall precision is 0.976, recall and F1-score is 0.974, 
while Kappa equals 0.963. The accuracy is 98%, while the 
mis-detected rate is 2%, seeing Table 3.

We further evaluate the proposed LSTM classifier on 
the second data set contains 596 vehicles with 1380 axles, 
the accuracy can also reach 98%, which can demonstrate 
the convinced performance of proposed LSTM classifier 
for axle identification.

4.3 � Vehicle identification

Figure  12 provides the visualization of axle detection 
and localization results using proposed LSTM classifier. 
Detected axles are independent. The following task is to 
group axles on the basis of vehicles. The process of the 

Poly decay Adap�ve decay
Poly decay Adap�ve decay

(a) Precision, recall, and F1-score (b) Kappa score

Fig. 10   Assessment results of hyperparameter examination of Adam optimizer

Table 2   Investigation of 
hyperparameters in Adam 
optimizer

Initial � Learning rate decay � Precision Recall F1-score Kappa

1 10
−3 Polynomial 10

−7 0.973 0.970 0.971 0.957
2 10

−4 Polynomial 10
−7 0.970 0.967 0.968 0.953

3 10
−5 Polynomial 10

−7 0.967 0.964 0.965 0.950
4 10

−3 Adaptive 10
−7 0.964 0.963 0.963 0.947

5 10
−4 Adaptive 10

−7 0.973 0.971 0.972 0.959
6 10

−5 Adaptive 10
−7 0.966 0.964 0.965 0.950

7 10
−4 Adaptive 10

−8 0.975 0.973 0.973 0.961

0.96 0.00 0.00 0.04

0.02 0.98 0.00 0.00

0.00 0.00 0.99 0.00

0.03 0.00 0.00 0.97

Predicted label

Tr
ue

 la
be

l

Fig. 11   Confusion matrix for axle identification
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auto-grouping step has been described in previous section. 
According to the investigation on 191 vehicles, this certain 
period, tlimitation , can be set to 0.752 s, which related with the 
vehicle length and vehicle speed. Hence, continuous axles 
within 0.752 s will be automatically grouped as a single 
vehicle.

Due to the implementation of weighed factor for lane 
3 segments during training process, the LSTM model is 
too sensitive to data from lane 3. Consequently, there 
have chances to detect fake axles, as shown in Fig. 13. 
After auto-grouping axles into independent vehicles, those 
detected fake axles can be classified into two groups. The 
first type is reflected by a vehicle with only one axle, i.e., 
the first fake axle shown in Fig. 13. The solution is that 
if the axle-induced vibration is less than 0.3m∕s2 , this 
detected axle will be ignored and removed. This threshold 
can be determined through the pre-investigation about the 
noise-induced vibration level when applying this method 
on the other bridges. This rule is also applied for the 
other two lanes. The second type of fake axles exists in 
a vehicle with multi-weight axles. For instance, the sec-
ond and third fake axles shown in Fig. 13 are treated as 

two axles of the detected vehicle. That vehicle should be 
2-axle vehicle, instead of a 4-axle vehicle. The vibration 
induced by those detected four axles are 2.4m∕s2 , 0.5m∕s2 , 
5.2m∕s2 , and 0.6m∕s2 , respectively. Apparently, the con-
siderable disparity among those four axles is inconsistent 
with facts. Hence, an extra restriction will be applied as 
the post-processing step for the second type of fake axles. 
For a single vehicle, the deviation among all axle-induced 
vibrations should within 70%, where this 70% threshold is 
come from the evaluation results of 191 vehicles. There-
fore, 0.5m∕s2 and 0.6m∕s2 can be identified as fake axle-
induced variations.

Vehicle detection results using the first data set with 
191 vehicles are presented in Fig. 14, in respect of vehicle-
type identification and driving lane detection. Table 4 also 
summarizes the detailed results. According to Fig. 14a 
and Table 4, vehicle identification can achieve 96% preci-
sion, with 0.2% vehicles cannot be identified. The mis-
judgement rate is 3.8% due to failure detection of eight 
axles which belong to eight two-axle vehicles. There also 
have two two-axle vehicles being mis-judged as three-axle 
vehicles and one is totally missed. As can been seen from 
Fig. 14b, the accuracy of driving lane detection, the accu-
racy is 100% for all detected vehicles.

The examination results on the second data set with 596 
vehicles are presented in Fig. 15 and Table 5. The accu-
racy for vehicle-type identification is robust keeping at 
95.9%, while failure detection rate is 0.3% due to four two-
axle vehicles cannot be identified. The mis-judgements 
can also be observed, especially for two-axle vehicles with 
lightweight axles. The average mis-judgement rate is 3.9%. 
Reasons will be analyzed in the subsequent subsection. For 
all identified vehicles, the lane detection accuracy is 100%.

Table 3   Axle identification results on two data sets

Axle identification 
results on data set 1

Axle identification 
results on data set 2

Expected number 456 1380
Detected number 447 1353
Fail to detect 9 27
Accuracy 98.0% 98.0%
Failure detection rate 2.0% 2.0%

Fig. 12   Automatic axle identi-
fication
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Fig. 13   Error detection due to model too sensitive to data from lane 3

(a) (b)

Fig. 14   Detection results on 191 vehicles: a vehicle-type identification; b driving lane detection
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Table 4   Vehicle detection 
results on 191 vehicles

Vehicle-type identification Driving lane detection

2-axle 3-axle 4-axle 5-axle Lane 1 Lane 2 Lane 3

Expected number 137 32 21 1 51 101 39
Detected number 128 32 19 1 50 101 39
Fail to detect 1 0 0 0 1 0 0
Mis-judge 8 0 2 0 0 0 0
Accuracy 96.0% 99.3%
Failure detection rate 0.2% 0.7%
Mis-judgement rate 3.8% 0.0%

(a) (b)

Fig. 15   Detection results on 596 vehicles: a vehicle-type identification; b driving lane detection

Table 5   Vehicle detection 
results on 596 vehicles

Vehicle-type identification Driving lane detection

2-axle 3-axle 4-axle Lane 1 Lane 2 Lane 3

Expected number 449 93 54 165 307 124
Detected number 416 90 53 163 307 122
Fail to detect 4 0 0 2 0 2
Mis-judge 29 3 1 0 0 0
Accuracy 95.9% 99.1%
Failure detection rate 0.3% 0.9%
Mis-judgement rate 3.9% 0.0%
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4.4 � Method limitation discussion

The proposed method is able to identify 98% axles; how-
ever, there are still 2% axles cannot be detected. Those fail-
ure cases will result in the mis-judgement of vehicle-type 
identification.

Two failure conditions can be summarized for these 2% 
undetected axles. The first typical failure occurs when axles 
induce bridge vibrations within 0.03 s. The proposed method 
is unable to identify the lighter axle. Figure 16a gives an 
example when two axles on adjacent lanes (lane 1 and 2). 
The third axle of the vehicle in lane 1 and the first axle 
of vehicles in lane 2 are inducing bridge vibration within 
0.004 s, the proposed method can identify the heavy axle, 
i.e., the axle in lane 1, but will fail to identify the axle in lane 
2. Same reason for missing the first axle of vehicle in lane 

3 due to the time difference is 0.014 s. The second failure 
condition exist when the vehicles of interest is too light. The 
method is not sensitive enough to identify those small-scaled 
axles. An example is presented in Fig. 16b, where the second 
axle of vehicle in lane 3 is unable to be uncovered.

5 � Conclusions

This paper presents a real-time and efficient two-step solu-
tion of axle identification especially designed for accelera-
tion-based bridge weigh-in-motion (BWIM) system. We first 
introduced a sequence-to-label long–short-term memory 
(LSTM) classifier for axle detection and driving lane recog-
nition. Depending on detected axles, an auto-grouping step 
is further applied for vehicle-type classification. Based on 

0.014s
0.004s

p Zoom in view

(a) Fail to detect overlap axles (b) Fail to detect light axles

Fig. 16   Method limitation
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the obtained results, highlights of this paper can be drawn 
as follows:

•	 Proposed LSTM classifier is robust to identify axle with 
98% accuracy.

•	 The accuracy of vehicle-type identification can achieve 
96% with high robustness.

•	 For all identified vehicles, the driving lane detection is 
100% without any mis-judgements.

•	 The proposed method requires less training data and is a 
computationally efficient solution if comparing with an 
all-in-one deep network. Moreover, there is no restriction 
on bridge types, which enables its generalization capabil-
ity.

However, limitations of proposed method still remain, 
i.e., 2% axles cannot be detected in our experiment. We have 
discussed those cases and classified them into two condi-
tions. First is due to more than one axle are inducing vibra-
tions within 0.03 s. In this case, the relative lightweight axle 
will be masked. The other failure occurs when the axle is 
too light to induce evident vibrations, i.e., the axle-induced 
vibration is only two times of the noise-induced vibrations.

In the future, more sensitive method should be consid-
ered for those lightweight axles. We will also make efforts 
on over-weight axle identified in real-time based on those 
detected axles.
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