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Diagnostic imaging methods widely employed in the clinic 
can determine whether cancer is present in the body, as well 
as its location and any metastatic dissemination. Results 

can be acquired within hours. However, the information provided 
by each scan is usually limited to the detection of a single molecu-
lar target or physiological characteristic. But cancers are typically 
heterogeneous and their molecular fingerprint changes over time, 
between loci and in response to therapy. The ability to perform 
molecular imaging of multiple biomarkers in a single session could 
transform patient care because it would extend the sensitivity of the 
test to diverse cell populations.

The term multiplexing, which first arose in the areas of telecom-
munications and computer networking, is defined as ‘the simulta-
neous transmission of several messages along a single channel of 
communication’. In biomedicine, multiplexing is used to indicate 
the ability to detect and follow multiple processes or biomarkers. 
The accuracy and value of diagnostic information obtained by 
medical imaging can be augmented by performing, for example, 
liquid biopsies for the molecular and cellular analysis of circulating 
biomarkers. Medical imaging is also used for surgical guidance to 
obtain tumour tissue biopsies for more extensive molecular analy-
ses, such as genetic testing, sequencing and protein-marker deter-
mination (for instance, via immunohistochemistry (IHC), flow 
cytometry or fluorescence in situ hybridization (FISH)). Advances 
in multimodal clinical imaging have enabled the integration of posi-
tron emission tomography (PET) with X-ray computed tomography 
(PET-CT) and with magnetic resonance imaging (PET-MRI). Such 
multimodal systems are powerful tools for the detection of multiple 
molecular targets and physiological biomarkers1. The combination 
of molecular information with information from whole-body imag-
ing has enabled the tracking of the onset and progression of disease, 
the monitoring of treatment efficacy and the anticipation of disease 
recurrence. These types of multiplexed data need to be sequentially 
acquired and generate large amounts of data that require advanced 
techniques for processing.

In this Review, we discuss the state-of-the-art in single imaging 
modalities that provide multiplexed information, including clinical, 

preclinical and ex vivo methods. We focus on the display of ‘mul-
tichannel’ information acquired during a single imaging session, 
either from images obtained in close succession or derived com-
putationally from complex multivariate images, where each pixel 
contains measurements of different parameters (such as spectral 
intensity). Multiplexing can span the anatomic, physiological and 
molecular levels, and as more channels are imaged simultaneously, 
the information provided can increase considerably (Fig. 1). This 
information can then be displayed spatially over time, visualized 
individually in channels, or merged as combinations of multiple 
channels or in a quantitative graphical format.

Multiplexed imaging could enhance medical imaging in sev-
eral ways. For example, it could facilitate the mapping of the het-
erogeneity of primary and metastatic tumours, where the different 
expression of key biomarkers is informative for patient stratification 
into different treatment arms2. Current practice in clinical imaging 
does not account for this kind of heterogeneity; rather, tissue biop-
sies (obtained from fine needle aspirates (FNAs), core biopsies or 
intraoperative biopsies) represent the gold standard that directs the 
treatment regimen for most patients with cancer. However, biopsies 
only provide data on a small portion of a tumour; the remaining 
cancerous tissue remains unexamined. As a result, major treatment 
decisions are often made on the basis of incomplete or potentially 
misleading information. Equally challenging is the fact that the 
molecular profile of cancers can change over time, which cannot 
be easily followed by repeated biopsies3. This diagnostic challenge 
applies to both the primary tumour and to metastases, which are 
heterogeneous with respect to the primary tumour. Multiplexing 
can also improve the probing of spatial correlations between bio-
markers to determine drug distribution and receptor occupancy, or 
to quantitate the activation of signalling pathways frequently over-
expressed in cancer (Fig. 1). This Review focuses on cancer as one 
of the most pressing areas where multiplexed imaging could have a 
major impact on diagnosis, treatment and the monitoring of recur-
rence, yet similar needs are present in many other types of disease.

The value of multiplexing depends on the spatial resolution of the 
underlying imaging technology and on the clinical question at hand, 
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and it is up to the physician or researcher to select the most suitable 
tool for their specific setting. The major modalities that lend them-
selves to molecular imaging of one or more targets are displayed 
schematically in Fig. 2, according to their multiplexing capabilities 
and spatial resolution. It is evident that fast modalities that currently 
form the mainstay of medical imaging are limited both in resolution 
and in degree of multiplexed detection. Optical methods fare bet-
ter both in terms of resolution and multiplexing, but are primarily 
suited to the intraoperative setting, as optical imaging is limited by 
the penetration of light in tissue. High-resolution methods typically 
require excision and processing of the sample before imaging, and 
include the methods with the highest degree of multiplexing capac-
ity, such as serial staining with fluorescent labels or imaging based 
on mass spectrometry. However, they are not suitable for quick diag-
nosis or for use in low-resource settings. Fast, cost-effective methods 
are primarily based on the analysis of cells, and can provide highly 
multiplexed molecular information4,5. However, as these methods 
depend on collected cells ex situ, they do not provide spatial or ana-
tomical information related to tumour spread.

Multiplexed imaging techniques that can detect multiple bio-
markers simultaneously, mostly through the use of extrinsically 
applied contrast agents, can be classified into two categories: ex 
vivo modalities for the imaging of sampled tissues (fresh or fixed), 
and in vivo modalities for the imaging of patients (non-invasive or 
intraoperative). The different modalities are summarized in Table 
1, along with synoptic information on resolution, multiplexing 
capabilities and primary (potential) clinical use. First, we describe 
single-cell ex vivo imaging technologies that lend themselves to 
multiplexing. Then we discuss the development of existing medical 
imaging modalities that have the potential for multiplexed imag-
ing by leveraging new contrast agents and technical modifications. 
Lastly, we describe emerging experimental technologies that are 
being evaluated for their clinical potential.

ex vivo imaging of sampled tissues
Image-guided collection of tumour tissue (biopsies, such as FNAs) 
and image-guided surgical resections are increasingly common, 
prompted by the frequent need for molecular profiling before a 
patient’s enrolment into a trial6, for tissue biobanking7 or for con-
firming the clearance of surgical resection margins8. Although all of 
these applications rely on rapid imaging technologies to be able to 
make real-time decisions, obtaining specific multiplexed molecu-
lar information from the acquired samples can take hours to days 
and is often limited to less than 5–10 markers because of the scarce 
amount of tissue resulting from biopsies. ‘Virtual histology’ tech-
nologies are emerging to address the need for a more robust and 
deeper molecular profiling of excised samples. Methods that profile 
multiple molecular and cellular biomarkers in collected cells and 
tissues are also being developed. When interrogating collected cells 
or tumour tissues (Table 1), collectively these methods are expected 
to enable broader analyses through an extremely high multiplexing 
potential and high resolution from little sample material, as well as 
fast point-of-care (POC) deployment capabilities.

Cell-based barcoding. An alternative to image-guided core biop-
sies has recently emerged in the form of FNAs, which yield cells 
rather than tissue samples. As a less-invasive method, FNAs are 
much better tolerated and are associated with lower patient com-
plication rates9; however, the limited amount of sample that FNAs 
provide makes it more challenging to process them with traditional 
methods (such as staining and flow cytometry). Indeed, efficient 
pathway analysis of such cells in the clinic has proved difficult, 
time-consuming and costly (however, new promising methods have 
been reported10).

Recently, an antibody-DNA barcoding approach has allowed 
for the collected cells to be rapidly re-stained through the use 
of custom-designed oligonucleotide–fluorophore conjugates11. 
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Fig. 1 | Combinations of biomarkers for optimal multiplexed imaging. The simultaneous imaging of multiple and complementary target biomarkers can 
increase the information content in imaging data, provide a more comprehensive picture of a patient’s condition and improve the analysis of a single 
medical scan. Each additional contrast agent detected (represented arbitrarily with a different colour) can enhance the understanding of the molecular 
underpinnings of physiology and disease.

NAtuRe BioMediCAl eNgiNeeRiNg | VOL 6 | MAY 2022 | 527–540 | www.nature.com/natbiomedeng528

http://www.nature.com/natbiomedeng


Review ARticleNaTuRe BIoMedIcal eNgINeeRINg

DNA-antibody barcoding is a powerful method: each probe is 
labelled with a customized readable sequence that can be matched 
uniquely to a database to identify the presence of the probe. In one 
exemplary application, antibodies for 90 specific protein targets 
were encoded with unique cleavable DNA sequences11. The DNA 
tags were then sequentially hybridized with complementary DNA 
strands labelled with a fluorophore, or cleaved and sequenced 
downstream. A related method, single-cell analysis for tumour phe-
notyping (SCANT), showed that up to 12 DNA-conjugated antibod-
ies could be multiplexed and used to sequentially image different 
sets of targets to interrogate drug-relevant pathways in scant clinical 
samples from FNAs4 (Fig. 3a). By probing the signalling pathway of 
phosphoinositide 3-kinase (PI3K), phosphatase and tensin homo-
logue (PTEN) and cyclin-dependent kinases 4 and 6 (CDK4/6) in 
breast cancer, analyses could be performed in tandem with trial 
enrolment to evaluate downstream signalling following therapeu-
tic inhibition. Approaches such as SCANT may allow for a more 
widespread use of limited single-cell material in clinical samples. 
Furthermore, the rich information obtained from a small sample 
and the ability to integrate it into portable or benchtop devices with 
integrated microfluidic, imaging and computational components 
for fast analysis could provide a meaningful snapshot of the state 
of a patient, for example by monitoring immune-cell populations.

Similar barcoding approaches based on FISH have been reported 
for highly multiplexed imaging of RNAs, and permit the spatially 
resolved gene-expression profiling of individual cells. Recently, 

such methods have been leveraged to map more than one hundred 
RNAs, by using binary-encoded fluorescent oligonucleotides12–14. 
These methods can in theory be extended to image thousands of 
RNA targets, which would provide spatially resolved information at 
the level of the transcriptome. Additionally, examples of functional 
imaging using CRISPR (for clustered regularly interspaced short 
palindromic repeats) have been reported in cells15, and although still 
preliminary, these can provide another paradigm for genome-level 
multiplexed functional imaging.

Cell-based microholography. Microholography is another POC 
methodology for the rapid analysis of collected tissue and cells16. 
Digital microholography is a lensless technology that enables micro-
scopic bright-field imaging with a relatively large field-of-view 
(>1 mm2); instead of imaging a specific focal plane, it detects 
diffraction-based (holographic) patterns coming from out-of-focus 
microscopic objects. Molecular specificity is obtained by labelling 
cells with micrometre-sized beads that change the cells’ holographic 
patterns. The presence and type of the beads can be established 
using available image-processing or computer-vision techniques. 
Because it does not necessitate sophisticated imaging equipment, 
digital microholography has been adopted in resource-limited set-
tings as an advanced standalone diagnostic tool. In one example, 
antibody-conjugated microbeads of different sizes were used to 
impart a holographic signature on lymphoid cells, enabling the 
analysis of percutaneously sampled lymphoma17. More recently, 
digital microholography has been adapted for chromogenic staining 
using different colours (known as contrast-enhanced microholog-
raphy)18, enabling the rapid multiplexing (four targets were detected 
in this study, yet more could be possible) of collected cells (Fig. 3b). 
The method has also been used for the rapid analysis of receptor 
status in breast cancer using deep learning19 and in cervical-cancer 
screening16.

Virtual histology. Although histology remains the gold standard 
for clinical and preclinical applications requiring the visualization 
of cells, it offers limited multiplexing potential. Emerging imaging 
technologies aim to replace or enhance traditional (haematoxylin 
and eosin, H&E) histological staining and provide ‘slide-free his-
tology’ by inferring cellular and tissue structure computationally 
with minimal processing. Microscopy with UV surface excitation 
(MUSE) uses UV light to excite molecular contrast agents on a 
stained fresh sample, and can provide high-resolution images in 
minutes20. Stimulated Raman histology (SRH) uses the vibrational 
(Raman) scattering energies characteristic of lipids, DNA and pro-
teins to quickly provide a virtual H&E image of unprocessed sur-
gical samples without the use of extrinsic contrast agents21. And a 
method based on light-sheet microscopy (LSM) seeks to preserve 
tissues intact while providing three-dimensional (3D) molecular 
images of large excised specimens22. Although these methods all 
supplement traditional histology, each has individual strengths and 
challenges, which affect their respective potential for clinical trans-
lation, regulatory approval and clinical use.

Cyclic tissue-staining methods. Serial tissue sampling, usually 
obtained via core biopsy, has become essential to modern targeted 
and personalized cancer treatments. Traditionally, biopsy samples 
are obtained under image guidance (yielding tissue fragments of 
about 1 × 20 mm) or during a surgical procedure (where tumour or 
lymph nodes are resected as a whole), and are formalin-fixed and 
sliced, with each section stained to detect the presence of specific 
molecular targets. Recently, several multiplexed staining methods 
have been developed using cyclic immunofluorescence (CycIF) in 
formalin-fixed tissues, which can image a high number of targets 
on a single section or sample by sequentially applying a targeted 
fluorophore, imaging the sample, and then inactivating it before 
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applying the next fluorophore23. In this way, small biopsy samples 
can provide information on the expression of a wide set of molecu-
lar biomarkers in the tumour. A similar strategy can be employed 
by using imaging methods other than fluorescence, for example 
by imaging and assigning pseudocolours to serially stained IHC 
images of the same tissue section. In this way, the distinct stains 
can be combined into a single multivariate image. In general, cyclic 
tissue-staining methods have proven to be most useful for fixed or 
embedded processed samples, rather than for bedside use24. Similar 
methodologies combining cyclic staining and barcoding methods 

with in situ hybridization have been reported for the imaging of 
nucleic acids12–14, and may pave the way for the functional imaging 
of gene expression based on RNA imaging.

Volumetric microscopy with tissue clearing. The typical patho-
logical workflow for surgical specimens is often a selective process 
because it is impractical to section, string and analyse hundreds of 
slides for each patient. There has thus been an intense interest in 
mesoscopic and macroscopic imaging that would allow surveying 
the entire resected tissue specimen, with the ability to zoom in onto 
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individual groups of cells. Light-based imaging methods at cellular 
resolution are often limited to a working depth of ~100 μm before 
resolution is degraded by light scattering. Tissue clearing facilitates 
the 3D optical imaging of large samples by rendering biological 
tissue transparent to light so that contrast agents can be detected 
without attenuation25 (Fig. 3c). Thus far, the introduction of faster 
image-acquisition protocols and a variety of tissue-clearing methods 
have drastically improved deep-tissue imaging, primarily in neuro-
biological applications25. Importantly, these methods are compatible 
with the imaging of multiple targets at different wavelengths at cel-
lular resolution, and can be used for both preclinical and clinical 
investigations26. However, some limitations remain for labelling and 
imaging tumours, such as slow antibody penetration (in the order 
of weeks for whole organs), uneven labelling and cost27,28. A recently 
developed method for rapid tissue clearing and labelling29 allowed 
for the imaging of cellular detail at desired locations throughout 
lung lobes. Whole-organ tumour burden, host-cell analysis and 
drug-delivery assessment could be obtained by imaging using a 
combination of fluorescent proteins, molecular probes adminis-
tered in vivo, or topical stains. This type of volumetric multiplexed 
microscopy (4–8 channels) will likely have applications in cancer 
biology, but the long timelines required for the clearing process are 
not conducive to clinical applications.

Mass spectrometry imaging. Mass spectrometry imaging (MSI) 
uses different mass spectrometry approaches to obtain the spatial 
distribution of metabolites, drugs, peptides and proteins in tis-
sue samples according to their molecular mass30,31. It can also use 
antibodies with single metal-atom isotopes to provide molecu-
larly specific contrast32,33 (Fig. 3d,e). The detected moieties, either 
fragments or whole molecules, are identified via comparison to 
specialized databases. The three most common MSI methods are 
secondary ion mass spectrometry imaging (SIMS, with resolutions 
<10 μm), matrix-assisted laser desorption ionization (MALDI) 
imaging (20 μm resolution) and desorption electrospray ionization 
(DESI) imaging (100 μm resolution). MSI is unique in its ability to 
profile biomolecules in tissues without a priori knowledge of them 
and to map the distribution of drugs and their metabolites in tissue. 
As such, the major applications of MSI are in research and drug 
development. The multiplexing ability of MSI is high (hundreds to 
thousands of peptides and proteins). The main disadvantages are 
the relatively high costs of the equipment, the destruction of the 
sample, and the complexity, time-consuming and semi-quantitative 
nature of the analyses.

in vivo whole-body imaging
CT, PET, MRI and, increasingly, fluorescence imaging, are used to 
inform key clinical decisions in patient care. Multiplexed informa-
tion from these established modalities would substantially improve 
diagnostic accuracy, aid the process of differential diagnosis and 
facilitate decision making.

X-ray computed tomography. CT relies on endogenous contrast 
agents to map anatomical features. It is based on the differential 
absorption of X-ray photons in tissues of different chemical com-
position (for example, calcium-rich bones vs carbon-rich soft tis-
sues). Therefore, CT provides exquisite anatomical images on the 
basis of the intrinsic contrast of body structures, and can be used for 
radiomic analysis to enable the identification and characterization 
of tumours according to their shape, texture and other features34,35. 
Additionally, exogenous contrast agents can be used to enhance 
images of the vasculature (by using iodine) or the gastric system (by 
using barium). Dual-energy CT uses two X-ray emitters of different 
energies to provide differential element maps36,37 for, for example, 
calcium in bone and iodine in structures containing the contrast 
agent (Fig. 4a).

For a given element, the absorption of X-ray photons sharply 
increases when the photon energy is higher than the binding energy 
of the innermost electron shell. This leads to absorption spectra as 
seen in Fig. 4b (such a sharp increase is called the ‘K edge’). Other 
less pronounced ‘edges’ are observed for the outer electronic orbitals. 
It may be possible to develop orthogonal contrast agents, directed to 
different targets, that can be distinguished by dual-energy CT via 
their differential absorption to provide a multiplexed 3D image by 
acquiring images just above the K edge of each agent (Fig. 4b)37,38. 
For example, given two hypothetical contrast agents with differ-
ent attenuation coefficients, an unknown mixture of the two can 
be determined by measuring at two energies just above the two K 
edges and calculating a linear fit. With additional contrast agents 
and measurements at additional appropriate energies, more com-
plex mixtures can be determined via a simple linear fit.

However, CT suffers from limited sensitivity, requiring contrast 
agents at molar concentrations. This limitation still prevents CT 
from becoming a targeted molecular-imaging modality, and con-
strains its use to the imaging of anatomical features, such as vas-
culature or the gastrointestinal tract. Another disadvantage is that 
the inclusion of additional higher energies for imaging increases the 
risks of radiation exposure for the patient39–42.

New CT technologies are currently being developed to markedly 
improve the capabilities of this imaging modality. One promising 
example is phase-contrast CT (PC-CT). The main advantage of 
PC-CT is that it results in far superior soft-tissue contrast compared 
with conventional absorption-based images. It has been shown that 
PC-CT can resolve ductal structures, the 3D visualization of ductal 
carcinoma and collagen architecture without requiring the admin-
istration of an exogenous contrast agent43,44.

Another emerging CT technology is ‘photon-counting detector’ 
(PCD) CT45,46. PCDs have the potential to increase the multiplexing 
power of dual-energy CT by resolving the incident X-ray spectrum 
into multiple energy bins45,47 and enabling the simultaneous dif-
ferentiation of multiple contrast agents. The contrast agents gado-
linium, iodine and bismuth have been simultaneously imaged and 
discriminated in vivo using PCD45. Most studies reporting improve-
ments in CT imaging have been performed in preclinical settings, 
yet they could be translated for use in the clinic relatively rapidly.

Radioisotope-based imaging. PET, which is used widely in medi-
cal imaging, has many applications in cancer care. Today, most PET 
examinations are combined with CT to improve image reconstruc-
tion and interpretation. The two imaging techniques are thus highly 
complementary. On the one hand, although PET does not provide 
anatomical information and depends on injected radiotracers for 
the generation of imaging contrast from labelled cells and tissues, 
its sensitivity is in the picomolar range, well beyond that of other 
whole-body medical-imaging modalities. On the other hand, con-
ventional CT uses the attenuation in X-ray projections to create a 
3D image of a patient, revealing their internal anatomy.

PET relies on the annihilation of positrons emitted by radioiso-
topes, producing photons that are then detected and reconstructed 
to provide a 3D image. Different positron-emitting radionuclides, 
including 18F, 68Ga, 64Cu and 89Zr, are used for diagnostic imaging in 
patients. These nuclides are either covalently attached or chelated 
into small-molecule compounds or antibodies to yield tracers such 
as 18F-fluorodeoxyglucose (FDG) for mapping glucose metabolism, 
or 89Zr-MAb for antibody-based immuno-PET imaging48. Many 
more tracers are currently in the translational pipeline49,50. In PET, 
different tracers cannot be readily distinguished, as annihilated 
positrons all yield photons of the same energy (511 keV), regardless 
of their nuclide of origin. However, a series of technical approaches 
have been developed to identify multiple tracers. These approaches 
are based on kinetic modelling, where multiple images acquired in 
series are fitted mathematically to reveal the presence of the different 
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radiotracers. This can be done, for example, by administering iso-
topes with different half-lives sequentially and then demultiplexing 
them by considering the different rates of decay of each radiotracer 
to reveal their respective distribution51. Alternatively, the same 
radionuclide (isotope) can be used for different tracers that are 
administered via staggered injections and imaged during the same 
scan. For example, injecting 18F-fluorothymidine (FLT) followed by 
18F-FDG 30 min later (Fig. 4c), and using dynamic acquisition over 
approximately 90 min allows for sufficient data to fit a kinetic model 

to time–activity curves (Fig. 4d) to determine the uptake of the two 
tracers52 (Fig. 4e). This method relies on estimated exchange rates 
of the radiotracer between the blood pool and tissue (kn

tracer), and 
also takes into consideration the decrease in signal owing to nuclear 
decay (λ). By using a combination of different isotopes and the stag-
gered injection of distinct PET tracers, PET imaging could be used 
to detect even more targets53.

Single-photon emission computed tomography (SPECT) imag-
ing relies on the detection of single photons (γ-rays) stemming from 
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Fig. 4 | Multiplexed clinical imaging modalities. a, Dual-energy CT provides contrast to different parts of the human anatomy on the basis of differences 
in X-ray attenuation by different tissues. After administration of a contrast agent, such as iodine, structures containing the contrast agent show high 
attenuation for 80 kilovolt peak (kVp) X-rays but lower attenuation at 140 kVp, which is further than the K edge of iodine (33.2 keV). b, It is possible to 
develop contrast agents with orthogonal scattering cross-sections derived from the K edge of different materials to enable multiplexed imaging with dual 
(or higher-order) energy CT. By imaging at the appropriate energies, indicated by the dotted lines, mixtures of the probes could be detected, revealing 
the presence and co-localization of the biological targets (for example, mixture 1 contains none of the agents whereas mixture 4 contains both). c–e, 
Dual-tracer serial PET imaging obtained after staggered administration of FLT (t = 0 min) and FDG (t = 30 min) reveals tumour margins and metabolic 
activity in the brain. The staggered injection in c allows for the monitoring of the total signal from the two tracers (d), which is then decoupled by fitting the 
kinetic model in e, which accounts for the signal lost to radioactive decay (λ) and the exchange rate (kn) of the radiotracers between blood and tissues. K1 
is the primary uptake rate and kn are the secondary transport events. An additional model with four parameters was used to account for dephosphorylation 
of FLT, indicated by the dotted arrow. f, MRF records the response of tissues to changes in the applied magnetic field, tracking multiple parameters 
simultaneously, and matches them to a library of known responses. TAC, time–activity curve; Δf, off-resonance frequency; M0, proton density; TR, time 
repetition. Panels adapted with permission from: a,b, ref. 36, RSNA; c–e, ref. 52, under a Creative Commons licence CC BY 4.0; f, ref. 63, Springer Nature Ltd.
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nuclear decay (for example, via electron capture) rather than on the 
detection of positron annihilation (which is the basis of PET). As 
such, different radionuclides can be distinguished, as they emit 
γ-rays of different energies (35 keV for 125I, 140 keV for 99mTc, and 
200 keV for 111In). By imaging in appropriate energy windows, it is 
possible to map multiple tracers at once. This has applications in 
oncology48,54 and cardiac imaging55 in particular.

The combination of different isotopes or radiotracers during the 
same exam requires the careful weighing of risks. Concerns may 
arise about the increasing dose of radiation introduced with each 
additional administration of a radiotracer. However, these concerns 
can be addressed by recent progress in whole-body PET scanners 
that use detectors with improved sensitivity, which allow for up to 
40 times faster acquisition times56–58. As whole-body systems have 
many more detectors compared with the conventional ring-shaped 
scanner, they capture more of the annihilation photon pairs, result-
ing in reduction of the required radiation dose while improving 
image contrast. The virtually simultaneous detection of tracer 
uptake or distribution at all sites in the body59 could perhaps also 
be leveraged towards true multiplexed capabilities for PET imaging.

Magnetic resonance imaging. MRI can provide rich anatomic 
and physiological information. It is based on the relaxivity of 
nuclear spins of protons (or other nuclei) in tissue. Typically, 
the spin relaxation times (T1 and T2) are used to generate images 
that are weighted to produce different types of contrast between 
tissues. Molecular-grade information can also be detected via 
exogenous contrast agents; for example, paramagnetic com-
pounds or superparamagnetic particles can be synthesized with 
ligands that display high affinity for a specific target or receptor. 
Multiparametric MRI, often used for the imaging of prostate can-
cer60–62, complements anatomical T1-weighted and T2-weighted 
information with functional information obtained by dynamic 
contrast-enhanced (DCE) imaging or diffusion-weighted imaging 
(DWI). In some instances, data obtained by magnetic resonance 
spectroscopy (MRS) can provide further chemical information, 
typically of metabolites in tissue. Magnetic resonance fingerprint-
ing (MRF)63,64 is a newer technique that can assign each voxel in 
the scan to a library of known references on the basis of a ‘fin-
gerprint’ response. As shown in Fig. 4f, a single acquisition pro-
vides an image on the basis of the timing of the excitation pulses 
and reveals an image from a single parameter (for instance, T1). 
For MRF, the excitation radiofrequency pulses vary pseudoran-
domly, thus generating a unique sequence of signal evolutions that 
is recorded across multiple repetitions, as shown in Fig. 4f. This 
sequence of evolutions can subsequently be matched to a library of 
known evolutions from different tissue types, and in this way each 
voxel of the reconstructed image is identified, or used to extract 
the traditional clinical magnetic-resonance images (T1 and T2).

Exogenous contrast agents for MRI can be engineered with sub-
stances (such as Gd, Mn or Fe) that alter the local magnetic proper-
ties. Such agents have been used for a variety of biomarker-imaging 
applications65–67. Although examples of multiplexed MRI using a 
contrast agent date back 30 years68, these concepts have recently 
been re-explored using the differences in T1 and T2 relaxation times 
for Mn and Gd to quantitatively decouple and identify them in 
phantoms69. It should thus be possible to engineer other orthogonal 
contrast agents by taking advantage of the multiparametric capabili-
ties of MRI to map multiple targets at once. However, as is the case 
with CT, the limited sensitivity of MRI makes it difficult to detect 
biomarkers of low abundance in vivo.

Conventional magnetic resonance spectroscopy imaging (MRSI) 
can in principle provide information on multiple different parame-
ters or metabolites. However, this information is not often collected 
in practice, mostly because of technical challenges in acquiring the 
spectra in scenarios where there is patient motion. However, with 

the advent of hyperpolarized MRI (HP-MRI), multiplexed imaging 
based on MRS may become a reality. HP-MRI is a fundamentally 
different technique for imaging the metabolization of systemically 
injected hyperpolarized substrates. Metabolites—such as pyruvate, 
bicarbonate or glutamine—can be chemically synthesized from 
a precursor using the stable isotope carbon-13. The hyperpolar-
ized state is induced by aligning the nuclear and electron spins, 
usually via dynamic nuclear polarization, and results in a 10,000–
100,000-fold increase in the signal-to-noise ratio, thus allowing 
for real-time measurements of metabolite transport, exchange, 
metabolism and perfusion via MRSI (ref. 70). Following a period of 
extensive preclinical studies, HP-MRI is being tested in early clini-
cal trials. Although the technique is currently available only in a 
few centres worldwide, it has shown promise for the imaging of 
prostate cancer71 and brain tumours in patients72, and is currently 
being studied for the imaging of other cancer types. HP-MRI offers 
the potential to examine metabolism in vivo in real time through-
out the entire human body. Importantly, it is possible to administer 
multiple carbon-13-enriched metabolites using a single intrave-
nous bolus, and to record their respective kinetics simultaneously 
to enable multiplexed metabolic imaging73,74. Once matured, this 
technology is expected to aid clinical decision-making, for example 
by allowing for patient stratification with regards to the optimal 
anticancer-drug regimen before any anatomical signs of efficacy 
(for example, tumour-size reduction) are discernible.

Intraoperative imaging. As surgical intervention is one of the pri-
mary modes of treatment in oncology, it is of paramount impor-
tance to aid surgeons in the visualization of tumour margins and 
residuals to improve the postoperative outlook. Fluorescence imag-
ing, used in cellular and tissue-based ex vivo imaging methods, 
has been adapted for epifluorescence in situ imaging during sur-
gery and microendoscopy (Fig. 5). There are several recent review 
articles on these topics75,76, so here we limit our discussion to the 
use of molecular probes to enhance fluorescence-guided surgery. 
The underpinning principle and need is to augment native colour 
contrast (that is, what surgeons see) with molecular information 
to better define tumour margins and visualize difficult-to-see vital 
structures (nerves and ureters, for instance), or to probe for func-
tional information (such as leaks, or the patency of vessels following 
anastomosis).

Approaches based on quantum dots for sentinel-lymph-node 
mapping have shown promise in preclinical studies. Quantum dots 
are attractive because their fluorescence emission wavelength can 
be tuned to different colours by varying their size (Fig. 5a). Newer 
compositions have yielded biocompatible quantum dots that could 
one day be used in the clinic77,78.

For the intraoperative imaging of tumours, many examples 
using small-molecule near-infrared fluorophores in mice show that 
tumour margins can be detected in different cancer types and loci79–

82. By performing fluorescence imaging serially with different exci-
tation and emission filters, it becomes possible to intraoperatively 
map multiple fluorophores. This approach has been used clinically 
to map sentinel lymph nodes with indocyanine green (ICG) and 
lymphatic ducts with fluorescein during laparoscopy83 (Fig. 5d), and 
for the ratiometric detection of an enzymatically activatable dye that 
changes colour in the vicinity of tumours84 (Fig. 5c).

Several molecularly targeted fluorescence-imaging probes have 
entered clinical testing. These include fluorochrome-tagged antibod-
ies85, nanoparticles50, peptides8, small molecules (poly(ADP-ribose)
polymerase inhibitors86 and folate87), as well as simple fluoro-
chromes (ICG and others). Examples of molecular contrast agents, 
such as 5-aminolevulinic acid used successfully for the excision of 
brain tumours88–90, have propelled intraoperative imaging and have 
had direct impact on patients with cancer. The results from clini-
cal trials have been most encouraging for some of the agents and 
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devices tested; in particular, they have significantly decreased the 
re-operating rates of patients with breast cancer91. Although most 
clinical trials currently evaluate the diagnostic accuracy of a single 
imaging agent, several agents could eventually be combined.

Microscopy-based methods enhance the resolution of intra-
operative fluorescence imaging in the mapping of the tumour 
microenvironment. One example is shown in Fig. 5e, where differ-
ent components of the tumour microenvironment are visualized 
using a combination of a vascular probe, an antibody-conjugated 
fluorophore and an enzymatically activated fluorophore. A similar 
approach has been used to study the progression of autoimmune 
disease in mice92.

emerging technologies
Optical and hybrid ultrasound–optical techniques can also be 
employed for multiplexed imaging in the clinic. Multiplexed optical 

imaging techniques use non-ionizing radiation, are relatively 
cost-effective, offer exquisite spatial resolution, and can be com-
bined with fluorescent nanoparticles for tumour imaging as well as 
with Raman spectroscopy, as discussed elsewhere93. Here we discuss 
optoacoustic and contrast-enhanced Raman imaging.

Optoacoustic imaging. Optoacoustic (or photoacoustic) imaging 
uses a combination of ultrasound and light to generate contrast 
in vivo. When molecules are excited by a pulse of light, vary-
ing amounts of the absorbed energy are transformed into heat. A 
pulsed laser therefore generates repeated thermoelastic expansion, 
each time emitting a sound wave that can be visualized via ultra-
sound imaging. By using a range of laser-excitation wavelengths and 
following a tomographic approach to illumination and detection, 
multispectral optoacoustic tomography (MSOT) exploits the opto-
acoustic effect to provide 3D images of light-absorbing molecules 
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in tissues94. MSOT achieves markedly greater penetration depth 
(up to 5 cm) than purely optical imaging techniques (such as fluo-
rescence), mainly because the generated ultrasound waves are not 
attenuated or scattered by tissue to the degree that photons are95.

MSOT is ideally suited for imaging pigment-containing tissues 
such as melanoma because melanin is a strong light absorber and 
generates an endogenous optoacoustic signal. The outcomes of the 
first clinical trial of the use of MSOT to non-invasively discriminate 
metastasized lymph nodes from healthy lymph nodes were prom-
ising96. In a melanoma mouse model, MSOT was used to detect 
lymphatic metastases at an early stage (‘in-transit metastases’) 
when melanoma cells were still migrating from the primary tumour 
within lymphatic vessels towards the draining-lymph-node basin 
and before having reached the sentinel lymph node97. In addition 
to melanin, haemoglobin and other biological molecules in blood 
can provide endogenous contrast for MSOT. The spectral profile 
of haemoglobin absorption changes depending on whether the 
protein is bound to oxygen98; therefore, measuring blood absorp-
tion with two or more wavelengths permits the mapping of blood 
oxygenation, allowing for the identification of hypoxic areas asso-
ciated with tumours (Fig. 6) and the monitoring of the efficacy of 
vasculature-targeting therapies99,100.

Exogenous contrast agents for MSOT need to be strong light 
absorbers and have an absorption spectral profile that does not 
overlap with that of haemoglobin so that multi-wavelength excita-
tion can be used to discriminate the signals from the exogenous con-
trast agent and from blood. Exogenous contrast agents for MSOT 
have been developed mostly for the imaging of tumours, pH sens-
ing and targeting cell-death markers101–103. Most often, infrared fluo-
rescent dyes are used as optoacoustic contrast reporters; however, 
non-fluorescent light-absorbing agents generate a stronger photo-
acoustic signal because more incident laser energy is converted into 
thermoelastic expansion and therefore into sound waves104,105.

By using the same principles of optoacoustic imaging and detect-
ing a wide range of ultrasound frequencies, raster-scan optoacoustic 
mesoscopy allows for the detailed imaging of dermal and subdermal 

microvasculature, from which pathophysiological parameters can 
be derived on the basis of vessel diameters (Fig. 6c). Because micro-
vasculature density is indicative of inflammation, the quantitative 
information obtained from broadband optoacoustic mesoscopy 
can be used to objectively extrapolate optoacoustic biomarkers for 
scoring systems that have been proposed for evaluating psoriasis 
plaques and diabetes106.

Raman imaging. Raman imaging is an optical method where light 
scattered from a sample is collected and analysed. Raman scatter-
ing relies on energy exchange between the incident photons and the 
sample, and is therefore sensitive to the sample’s molecular structure, 
so that different scattering spectra allow for the detection of specific 
chemical species107. One limitation is that very few photons undergo 
Raman scattering (most photons experience elastic Rayleigh scatter-
ing); as a result, intrinsic Raman signals are much weaker than, for 
example, those emitted by fluorescence. To form an image, multiple 
spectra are needed for each pixel; however, because the signals of 
intrinsic Raman scattering are weak, the technique requires prohibi-
tively long acquisition times for most in vivo applications. Related 
methods, such as stimulated Raman scattering (SRS)21,108–111 and 
coherent anti-Stokes Raman scattering (CARS)112, can be used to 
increase the signal intensity. They allow for the fast imaging of intrin-
sic signals, but they can only image a single energy band at a time and 
do not provide the whole spectrum. SRS uses two lasers of different 
frequencies to excite bond vibrations of Raman energy shift corre-
sponding to the laser-energy difference, whereas CARS makes use of 
coherent laser sources to excite vibrational energy levels correspond-
ing to the energy of their laser interference patterns. Traditional 
Raman imaging, SRS and CARS can also be used in microscopy for 
the label-free high-resolution analysis of tissue sections and of other 
biological samples on the basis of intrinsic contrast107.

Contrast-enhanced Raman imaging. Surface-enhanced Raman 
spectroscopy (SERS) holds great promise for ultrasensitive bio-
marker detection and cancer imaging113. Although it requires 
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nanoscale contrast agents, it is based on a principle that is funda-
mentally different from those of many other nanoparticle imaging 
approaches114–118. In SERS, surface plasmons excited on the surfaces 
of noble metals massively amplify the Raman effect of nearby mole-
cules without compromising signal specificity119. Nanoparticles can 
be synthesized with bright and distinct spectra (Fig. 7a), allowing 
for rapid SERS imaging. Such nanoparticles can be engineered as 
molecular probes and have been combined with a variety of imag-
ing strategies120–123 in preclinical cancer imaging. Nanoparticles 
that do not contain toxic materials (such as quantum dots124) have 
been used for intraoperative SERS imaging in animals to visualize 
tumour margins and residual tumours125,126.

One main strength of SERS-based nanoparticles is their poten-
tial for multiplexed detection. Unlike fluorescence emission spec-
tra, whose single and wide peaks make them hard to decouple, 
Raman spectra have multiple and fairly narrow peaks and serve as 
distinct spectral ‘fingerprints’. In theory, by engineering molecu-
larly targeted nanoprobes with bright and distinct SERS spectra, it 
should be possible to create fingerprints that would allow for high 
numbers of targets to be detected simultaneously. The feasibility of 
nanoparticle-based multiplexing in SERS has been shown in healthy 
mice with subcutaneously injected nanoparticles127 (Fig. 7a,b).

Two notable applications of multiplexed imaging with SERS 
nanoparticles with potential for clinical translation have emerged. 
In particular, two high-performance SERS nanoprobes were used 
for the specific ratiometric imaging of ovarian cancer, after topical 
application in living mice (Fig. 7c). One probe was targeted to the 
folate receptor, which is overexpressed in some ovarian cancers, and 
a second non-targeted probe was used to account for non-specific 
background nanoparticle uptake. The spectral signals of the two 
nanoprobes were decoupled, and the ratio of the two probes was 
used to identify microscopic metastases128. A similar ratiometric 
strategy employed up to four distinct targeted nanoparticles and 
one non-targeted control to identify breast cancer in excised sam-
ples from patients (Fig. 7d)129,130. Ongoing research aims to increase 
the depth of detection via ‘surface-enhanced spatially offset Raman 
spectroscopy’131, and to engineer faster Raman scanners132,133 and 
endoscopes134 for use in humans.

Emerging optoacoustic and optical techniques should see fur-
ther clinical development as their use in patients is approved. For 
optoacoustic imaging, the hurdles are lower as certain studies can 
be conducted without the need for an exogenous contrast agent. For 
SERS imaging, the requirement of the administration of a nanopar-
ticle contrast agent demands separate regulatory approval. However, 
unlike many other nanoparticle agents, these can be designed using 
inert materials such as gold and silica, and several gold or gold–sil-
ica nanoparticles for therapeutic uses are being tested in advanced 
clinical trials. Studies examining SERS nanoparticles have shown 
favourable toxicity profiles135; however, clinical trials will have to 
be designed to show non-inferiority, or even superior efficacy, over 
existing probes. Also, nanomaterial probes for multiplexed imag-
ing can often be synthesized as theranostic agents; many are being 
developed and tested preclinically136–142.
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outlook
The simultaneous imaging of more than one molecular target in a 
single scan would provide valuable clinical information (Fig. 1a), 
and may also reduce the time and costs associated with separate 
measurements. Multiplexed imaging could be further developed for 
the detection of whole signalling pathways or for multi-omics appli-
cations. Work in preclinical models suggests that, in principle, mul-
tiplexed imaging of signalling pathways is feasible. Nevertheless, the 
process of obtaining regulatory approval for use in humans presents 
substantial hurdles. Firstly, multiplexed imaging techniques may 
require the administration of multiple contrast agents, each requir-
ing its own trials and approval. Also, serial imaging approaches may 
increase scan times beyond what a patient is expected to withstand. 
Additionally, the interpretation of multiple channels of data will 
require complex data processing, which although useful may not 
be immediately apparent from a clinical perspective. Therefore, to 
effect multiplexed clinical imaging, the patient benefits will need 
to be strong and not only limited to reducing the number of tests. 
The design of well-controlled prospective observational clinical tri-
als that test the efficacy of diagnostic techniques for multiplexed 
imaging (such as computational methods to interpret the multi-
channel imaging data and to provide a meaningful diagnosis), will 
be of upmost importance, and should be coupled to interventional 
clinical trials where multiplexed imaging is used to guide a treat-
ment or a surgical procedure. The roadmap for the development 
and implementation of multiplexed imaging follows the successful 
roadmap for the testing of combinatorial therapeutics and should 
drive innovation in radiology.
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