
Raman scattering, a form of inelastic scattering, origi-
nates from a shift in the energy of laser photons after 
light–molecule interactions1. Raman spectroscopy is use-
ful for fingerprinting the structural information of mole-
cules. Low sensitivity due to very weak Raman scattering 
is, however, a major issue associated with this spectro-
scopic technique2. A significant enhancement in Raman 
signal intensity can be achieved via surface-​enhanced  
Raman scattering (Fig. 1a). Popular nanostructured mate-
rials such as nanoparticles (NPs), roughened films or 
nano-​patterned substrates, enhance the Raman signals 
of analytes through surface plasmon enhancement or by 
chemical contributions3. Surface-​enhanced Raman spec-
troscopy (SERS) allows for rapid, non-​invasive in situ 
detection of target molecules4–6. Combined with the 
molecular resonance Raman effect, surface-​enhanced 
resonance Raman scattering (SERRS) has gained 
increasing interest owing to its ultra-​high sensitivity 
and selectivity. Meanwhile, developments in SERS the-
ories, SERS-​active materials (also referred to as SERS 
substrates) and related instrumentation have advanced 
a variety of applications in surface and interface chemis-
try, catalysis, nanotechnology, biology, biomedicine, food 
science, environmental analysis and other areas.

The underlying mechanisms of Raman scattering 
enhancement based on electromagnetic and chemical 
theories were proposed after the first observation of SERS 
on a roughened silver electrode7–9. Although there were 

several decades of debate about how the enhancement 
mechanisms work, two primary theories have thus far 
been well-​accepted. Surface plasmons have been confirmed 
to play a crucial role in SERS10–12. When incident light  
strikes particles much smaller than the incident wave-
length, localized surface plasmons are excited13. The 
frequency of the induced oscillation against the restor-
ing force between the electrons and nuclei is determined 
by the inherent properties of the particle, such as its 
size, shape and morphology14. A localized surface plas-
mon resonance (LSPR) occurs when the light frequency 
matches the oscillation frequency of the electrons, induc-
ing an enhanced electrical field near the particle surface15 
(Fig. 1b). This results in enhanced Raman scattering of 
adsorbates within that electromagnetic field. A metallic 
nanotip with an LSPR in the visible or near-​infrared range 
is capable of exciting Raman scattering from a sample with 
a nanoscopic volume placed under the tip16, a technique 
known as tip-​enhanced Raman spectroscopy (TERS).

Chemical contributions to SERS are particularly 
important for those materials with a surface plasmon 
resonant absorption far away from commonly used 
laser excitation wavelengths17. Charge transfer (CT) is 
believed to contribute to SERS according to the chemical 
enhancement theory18,19. By contrast with enhancement 
of overall Raman bands based on the electromagnetic 
mechanism, selective enhancements of Raman bands are 
detectable owing to the CT contribution. The direction 
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of the CT transition (µCT) is highly dependent on the 
material, molecule and laser energy and can occur via a 
molecule-​to-​metal or metal-​to-​molecule pathway. When 
a molecule is adsorbed onto a metal surface, photo-​ 
induced electrons can be either excited from the highest  
occupied molecular orbital (HOMO) of the mole-
cule and transferred to the Fermi level of the metal, or 
excited from the Fermi level of the metal and transferred 
to the lowest unoccupied molecular orbital (LUMO) of  
the molecule20. Semiconducting materials have an 
energy gap between their full valence band and empty 
conduction band, the energy levels of which may func-
tion like the Fermi level of plasmonic NPs in CT pro-
cesses21,22 (Fig. 1c). The two mechanisms are generally 
not mutually exclusive but contribute together to overall 
SERS signals. In a metal–semiconductor heterostructure, 
synergistic contribution of plasmons and CT can induce  
unprecedented SERS signals23.

This Primer describes how Raman spectrometers are 
used for SERS measurements and discusses the fabrica-
tion of SERS-​active materials. Methods for qualitative 
and quantitative analysis of SERS results are highlighted, 
providing readers with useful information about data 
analysis and theoretical evidence. Advances in SERS 
applications are then reviewed with the latest examples 
specifically in chemistry, materials science and biosci-
ence. Additionally, spectral reproducibility and key opti-
mization factors are discussed to promote the acquisition 
of strong and reproducible SERS signals, followed by a 
summary of technical limitations, current challenges and 
perspectives for future research.

Experimentation
In this section, we discuss the overall equipment, 
instrumentation and set-​up needed to perform SERS 
experiments. Additionally, SERS requires the use of 
SERS-​active materials, and so the most common of these 
are discussed, along with some of their advantages and 
disadvantages. Furthermore, as the use of SERS evolves, 
the requirements for different applications may advance 
to achieve better sensitivity. For this reason, we have also 
highlighted specialized SERS experiments that require 
specific set-​ups or equipment.

Equipment
Depending on the range of frequencies that are desired 
for a specific SERS application, there are a wide variety 
of laser sources that can be employed in a SERS set-​up, 
ranging from the UV to the near-​infrared. The contin-
uous wave laser source excites the LSPR, and a notch 
or long-​pass filter is used to reflect or absorb Rayleigh 
scattering so that the small number of Raman-​scattered 
photons are detectable24. Other common optical compo-
nents include interference filters to clean up the excita-
tion beam and dispersive etched gratings to increase 
spectral resolution or photon collection efficiency25. For 
SERRS, it is important to have a laser excitation wave-
length that is relevant for the molecular resonance of 
interest. Traditionally, this has been accomplished with 
a tunable laser, such as a dye laser. As lasers become less 
expensive, researchers instead purchase multiple diode 
lasers chosen to excite specific resonances of interest. 
A basic Raman spectroscopy set-​up and three types of 
optical configuration are shown in Fig. 2a,b.

Most modern SERS instruments use charge-​coupled 
device (CCD) detectors in which the spectral range varies 
based on the characteristics of the CCD chip used26. In 
cases where near-​infrared excitation is used, InGaAs pho-
todiode array detectors are used in place of silicon-​based 
CCDs. There have also been strides to have SERS appli-
cable in the deep UV (DUV-​SERS) for a higher signal 
to noise ratio (SNR) in the detection of select aromatic 
compounds. This requires the use of a CT mechanism 
between semiconducting materials27. Details about these 
SERS techniques are summarized in Table 1.

SERS set-​ups are easily amenable to the addition 
of cameras or microscope attachments to the original 
set-​up to facilitate additional characterization, usually 
in the case of biological samples28. Most imaging with 
these microscopes falls into one of two categories: direct 
imaging29 or hyperspectral imaging30. Direct imaging 
involves scanning the entire sample to obtain spectral 
information for a sample area over a small range of fre-
quencies. Hyperspectral imaging — the more common 
approach of the two — acquires thousands of spec-
tra from the sample in view and can be used to create 
images or maps indicating SERS intensity at specific 
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Fig. 1 | SERS and its mechanisms. a | Enhanced Raman scattering of a 
molecule adsorbed onto nanostructured particles resulting in emitted 
radiation with a lower (red) or higher (blue) frequency than the incident light, 
known as Stokes and anti-​Stokes scattering, respectively. b | Localized surface 
plasmon resonance contribution to surface-​enhanced Raman spectroscopy 
(SERS), electrical field (E); an enhanced electrical field on the metal surface 

allows Raman signal amplification. c | Charge transfer (CT) contribution to SERS 
at a metal–molecule or semiconductor–molecule interface; the CT transition 
(µCT) and arrows (green: metal–molecule; purple: semiconductor–molecule) 
show the CT directions. Red and white circles represent molecular orbitals. CB, 
conduction band; EF, Fermi level; HOMO, highest occupied molecular orbital; 
LUMO, lowest unoccupied molecular orbital; VB, valence band.
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Raman-​scattered energies in each scanned pixel. Like 
all traditional optical microscopes, these measurements 
are diffraction limited; the wavelength of light and the 
aperture characteristics determine the spatial resolution. 
SERS microscopy is often used for biological sampling 
of live cells because there is no need to label or fix the 
cells before imaging and, with high enhancement factor 
substrates, these spectral analyses can be acquired much 
more quickly than with other methods28.

As SERS techniques advance or are combined with 
other techniques, the instrumental set-​up becomes 
more complicated. TERS, for example, relies on both 
SERS and a near-​field scanning microscope with a metal 
tip31,32. When the tip approaches the surface of the sub-
strate or sample, it resonates with the LSPR, increas-
ing the Raman-​scattering intensity from the sample 
and exciting SERS from a small, localized portion of 
the sample33,34. Thus, the TERS tip has a crucial role 
in the application of the technique. Scanning tunnel-
ling microscopy metal tips and metallized atomic force 
microscopy tips are often used for TERS. The sharpness, 
chemical composition (gold or silver) and overall mor-
phology of the tip directly affects the TERS enhance-
ment because of the concentrated electromagnetic fields 
generated between the tip and the metal surface. Lasers 
are generally introduced from the bottom of the sample 
or from the top of the sample near the tip (Fig. 2c). The 
distance between the tip and substrate or sample must 
be precisely controlled so that the analyte of interest 
is within the intense electromagnetic fields generated 
upon excitation of the plasmonic tip35. Spectroscopic 
surface science studies have been made possible by the 
recent construction of ultra-​high vacuum (UHV) TERS 
instruments36,37.

Preparation of SERS-​active materials
SERS relies on the use of nanomaterials or materials 
with nanoscale features that exhibit a LSPR. These can 
be nanoscale materials derived from noble metals, such 
as silver, gold, aluminium and copper, transition met-
als38, or dielectric and semiconducting materials such as 
conductive and doped oxides39,40. We discuss the syn-
thesis and preparation of these materials briefly, as there 
are many reviews that go into greater detail regarding 
optimization of these SERS-​active materials for specific 
applications10,41,42.

Metal nanoparticles. As the field of nanotechnology 
expands significantly, there has been a large increase 
in the development of metal NPs of different sizes, 
shapes, features and uniformity for SERS applications 
(Fig. 3a). NPs can be synthesized via chemical reduction, 
chemical replacement and various types of chemical or 
thermal decomposition. The simplest way to synthesize 
uniform metal NPs is through chemical reduction43. 
A metal precursor, such as chloroauric acid44 or silver 
nitrate45, is chemically reduced by a reductant such 
as sodium borohydride or sodium citrate to generate 
metal NPs. Both time and temperature have a role in 
size and structure of the particles, and a surfactant is 
often added to prevent aggregation of the particles or 
to drive growth to a non-​spherical morphology. Other 
factors that control size and shape depend on the start-
ing materials and their respective concentrations, the pH  
of the reaction and the type of surfactant present during 
the synthetic reaction46. Non-​conventional stabilizers, 
such as biomolecular ligands and biopolymers on the 
surface of metal NPs added during synthesis can also 
stabilize and/or reduce aggregation in the NP solution 
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while providing a point of attachment for sensing appli-
cations47. Colloidal metal NPs come in many geometric 
shapes beyond spheres, such as spiky silver NPs48, sil-
ver nanostars49, gold nanowires50, silver nanoflowers51, 
gold nanorods52 and gold nanosnowflakes53, whereby 
their morphologies contribute to SERS performance. 
For example, spiky or pointed nanostructures may pro-
vide a large, focused enhancement or hot spot at the 
tip of these nanostructures, but tend to be less uniform 
overall, whereas nanorods or nanospheres may be more 
uniform, but comparatively less enhancing. Other noble 
metals, such as copper and aluminium, may be used to 
synthesize plasmonic metal NPs, but gold and silver are 
the most commonly used owing to their enhancement 
factors and stability54. Semiconducting nanomaterials 
have also been used as SERS-​active substrates, relying on 
CT mechanisms55. Although colloidal plasmonic metal 
NPs are prevalent SERS materials, as they are syntheti-
cally tunable with large enhancement factors based on 
their refractive index properties, they often do not have a 
long shelf-​life, which may be impractical for some SERS 
applications56.

Film-​over nanospheres. Metal film-​over nanospheres are 
common, robust SERS-​active substrates that are easily 
fabricated57. Briefly, they are defined as SERS substrates 
that have a nanoscale-​thickness metal film covering 
self-​assembled nanospheres (usually hundreds of nano-
metres in diameter) on a smooth substrate. These are  
one of the many possible solid film substrates and  
are made by drop-​casting size-​monodispersed nano-
spheres onto a flat substrate to achieve self-​assembly on 
the surface, creating a monolayer or multilayer of closely 
packed nanospheres58. The flat substrates (for example, 
glass, mica or silicon) must be treated and cleaned with 
a piranha or aqua regia solution ahead of nanosphere 
assembly to ensure removal of organic or metal con-
tamination that could disrupt the self-​assembly. A plas-
monic material, most often silver or gold, is then vapour 
deposited onto the surface of the substrate where the 
thickness and roughness of the metal has a direct corre-
lation with the LSPR and the overall SERS enhancement. 
Although these substrates often vary in enhancement 
factor from batch to batch, they have a relatively long 

shelf-​life and thus are practical choices for long-​term 
SERS applications59.

Lithographically defined nanostructures. There are 
various types of SERS-​active substrate that are synthe-
sized via lithography. These syntheses often use three 
different lithographic methods: nanosphere lithogra-
phy, photolithography and electrochemical deposition 
lithography.

In nanosphere lithography, film-​over nanospheres 
are synthesized as described above, and then the entire 
substrate is sonicated in an organic solvent to remove 
the self-​assembled nanospheres after the metal is vapour 
deposited. This leaves behind ordered, nanoscale trian-
gles in the voids between the previously closely packed 
nanospheres (Fig. 3b). Although this technique is rela-
tively fast and inexpensive, the void pattern is limited 
by the self-​assembly of the nanospheres, which may not 
always be perfect structures46.

Photolithography has been used to synthesize 
SERS-​active substrates; however, the spatial resolution of 
typical photolithography is insufficient for practical SERS 
applications for which one wants nanometre-​scale con-
trol of the final structure60. Other lithographic techniques 
such as electron beam lithography61 and focused ion beam 
lithography62 use a focused beam to create seemingly per-
fectly patterned, highly ordered, metal nanostructures 
of various shapes, sizes and patterns. These island struc-
tures vary greatly from colloidal metal NPs because they 
do not need to be suspended in any medium or have 
surface-​adsorbed reducing agents and/or surfactants, but 
also run the risk of degradation or oxidation without any 
protective coating on the surface. Additionally, electron 
beam lithography and focused ion beam lithography can be 
time-​consuming and inefficient as both require each nano-
structure to be made individually, generating only a limited 
SERS-​active area on the substrate63 (Fig. 3c). Evaluation of 
these structures can be accomplished with microscopy 
techniques and enhancement factor calculations.

Sample pretreatment and assembly
The largest enhancement of Raman signal is observed 
when the LSPR extinction maximum (λmax), the 
laser excitation wavelength and the SERS scattering 

Table 1 | Equipment, applications and experimental considerations of SERS techniques

Technique Equipment Application Experimental considerations

SERS Laser source, filters, detector, 
plasmonic substrate

Biological/chemical sensing, 
observation of chemical reactions and 
mechanisms, catalysis, electrochemistry

Plasmonic substrate, 
acceptable enhancement 
factor

SERRS Tunable laser source, filters, 
detector, plasmonic substrate

Biomolecules, biological systems Analyte absorption band needs 
to match laser wavelength

TERS Near-​field scanning 
microscope with a metal tip

Structure/morphology of 2D materials, 
single molecules, semiconducting 
nanostructures

Sharpness and morphology 
of metal tip highly affect the 
sensitivity

UV-​SERS UV excitation source, filters, 
detector, plasmonic substrate

Select biological and aromatic 
molecules

Plasmonic substrate must have 
enhancement in the UV range

DUV-​SERS DUV excitation source, filters, 
detector, plasmonic substrate

Biological molecules, select aromatic 
molecules, semiconducting materials

Molecules must have electronic 
resonances in the UV range

DUV, deep UV; SERRS, surface-​enhanced resonance Raman spectroscopy; SERS, surface-​enhanced Raman spectroscopy; TERS, 
tip-​enhanced Raman spectroscopy.
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wavelength are well aligned64; NPs can be tuned to achieve 
this enhancement13. Although the size of NPs, metal 
thickness, nanostructure shape and spacing and refrac-
tive index of the substrate and surrounding medium 
all have a role in the LSPR extinction maximum of  
plasmonic substrates, organic surface contamination 
of the solid substrates may contribute to this as well59. 
Plasma cleaning with argon or other gases for short peri-
ods of time can be used to eliminate any contamination 
on the plasmonic surface65. In general, plasma cleaning 
shifts the LSPR to higher energies as the refractive index 
at the nanostructure surface decreases; this shift should 
be accounted for experimentally. Lengthy plasma treat-
ment has the potential to damage the nanostructure, 
making the substrate unusable.

Although some target analytes can directly adhere to 
plasmonic NPs or plasmonic solid substrates, most SERS 
sensing requires the use of some type of attachment 
chemistry, an affinity agent or a SERS tag to sense the 
target. Intrinsic SERS is the direct sensing of the desired 
target, while extrinsic SERS relies on the use of some sort 
of SERS tag to indicate sensing of the target. Briefly, the 
target can be modified to exploit direct attachment to  
the SERS-​active material through covalent bond chem-
istry, anionic and cationic interactions or weak van der 
Waals interactions. If that is not possible, the use of an 
affinity agent such as an aptamer, antibody, small mole-
cule or polymer can be used to facilitate sensing through 
direct capture of the target66,67. Lastly, extrinsic SERS tags 
are plasmonic nanostructures functionalized with a ligand 
and Raman reporter that can readily bind specifically to 
the desired target. The tag is designed to yield a large SERS 
signal; however, any spectral changes observed yield only 
information about the tag rather than the vibrational 
modes inherent to the target itself. Both intrinsic and 
extrinsic SERS measurements have greatly advanced SERS 
sensing applications with trade-​offs regarding the benefits 
to direct and indirect sensing68,69. Details and comparison 
of the SERS-​based strategies are listed in Table 2.

When SERS spectra are collected, both the acquisi-
tion time and laser power play a part in the resulting 
data. It is important to note that too high a power — 
particularly in a small focal laser spot — or too long an 

acquisition time at a higher power can damage biological 
samples. SERS fingerprints of samples will suffer from 
significant alteration when the samples are damaged 
by the laser applied during the measurement. Laser 
power-​dependent and acquisition time-​dependent 
spectral collection is thus useful for experimental opti-
mization. The choice of laser wavelengths depends 
on the purpose of a study. To obtain SERRS, a certain 
laser wavelength close to the electronic absorption of a 
chromophore of the target molecule is generally selected.

Dynamic measurements
Traditionally, performing fast dynamic measure-
ments with SERS has been somewhat limited owing 
to two major factors: the inefficient nature of the ine-
lastic scattering leading to long integration times and 
the variable enhancement across a substrate leading 
to substrate-​induced spectral variation that obscures 
dynamic molecular information. Despite these limi-
tations, there has been some progress towards using 
SERS for dynamic measurements. High-​profile progress 
towards dynamic SERS measurements was first made 
in 1997 with the publication of two papers that demon-
strated single-​molecule SERS spectra for the first time70,71. 
Single-​molecule SERS spectra are generally achieved by 
working with very low concentration dye molecules inter-
acting with electromagnetic hot spots formed in agglom-
erating plasmonic colloids. One major component that 
proves single-​molecule proof detection lies in the spectral 
dynamics, specifically in a Poisson distribution of SERS 
intensities as individual molecules move in and out of an 
electromagnetic hot spot. More recently, a process named 
dynamic SERS demonstrated the possibility of statistically 
accounting for spectral noise caused by Brownian motion 
of colloidal plasmonic NPs72,73. By subtracting this noise, 
it was possible to eliminate the overwhelming solvent 
background and reveal the relatively small signal of the 
SERS-​active colloid-​adsorbed molecules. The dynamic 
SERS technique was extended to demonstrate detection 
of analytes that were not strongly adsorbed, revealing 
rare events that are usually obscured in time-​averaged 
spectra74. Finally, it has been shown that even when a 
substrate and adsorbed species appear relatively stable, 
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there are significant dynamic SERS intensity fluctua-
tions75; the source of these fluctuations is assumed to be 
time-​dependent molecular rearrangements near SERS 
hot spots, but this is still under investigation.

In some cases, dynamic SERS has been achieved by 
designing SERS substrates that are physically dynamic, 
meaning that the particular solution conditions induce 
or disrupt plasmonic formations that facilitate the 
capture of SERS spectra. For example, assembly of a 
hydrogel structure with embedded plasmonic nano
structures yielded differing SERS enhancement factors 
at different water temperatures76. Responsive plasmonic 
structures hold significant potential for sensing appli-
cations; as such, various analyte-​triggered responsive 
structures have been implemented including those that 
sense microRNA77, small-​molecule chemical messengers 
(such as H2O2)78 and resonance Raman-​active single 
molecules79, among others.

As single NP or nanostructure SERS has become 
increasingly common, there has been increased inter-
est in dynamic high-​throughput measurements from 
many individual nanostructures or from a gradient of 
analyte concentrations. As such, various microfluidic 
platforms have been developed to dynamically perform 
SERS measurements as components move through 
the fluidic device80. SERS has been performed on both 
droplet81 and continuous flow82 microfluidic devices 
made from glass83, polydimethylsiloxane (PDMS)84 and 
paper85 where the SERS nanostructure is the bottom of 
an assembled device51, embedded in device walls83 or 
introduced as a reagent85.

In some cases, the type of dynamic information 
desired describes variation in spatial spectral signa-
tures, and there has been significant progress to develop 
techniques whereby one can probe these variations. 
The most ubiquitous technique for spatially dynamic 

measurements is TERS, whereby plasmonic character is 
imbued to a tip that is scanned over the sample of inter-
est86. The tips used include atomic force microscopy tips, 
scanning tunnelling microscopy tips, near-​field scan-
ning optical microscopy probes and nanopipettes16,87. 
Structural and plasmonic design of the probe tips remains 
a challenge for reproducible, high-​spatial-​resolution 
TERS; however, the method has already been employed 
to study a wide variety of systems including inorganic88,89 
and organic surfaces90,91, surfaces undergoing chemical 
reactions92,93 and live biological cells94.

SERS imaging collection
Whereas TERS is a recent and exciting advance in 
SERS-​based imaging, in part because it does not require 
the molecule or system of interest to adhere to or dwell 
very close to a plasmonic substrate, more traditional 
SERS imaging studies are performed regularly to inves-
tigate various chemical systems. SERS imaging can be 
accomplished either by probing molecules or very thin 
films adsorbed to a plasmonic Raman-​enhancing sub-
strate or by imaging a sample in which sites of interest are 
indicated by the presence of an extrinsic SERS label; the 
latter approach is much more common95,96. This appli-
cation area has advanced significantly in the past two 
decades and includes various examples in which in vivo 
SERS imaging has been accomplished97. One particularly 
exciting development in SERS imaging is the application 
of super-​resolution microscopy to achieve Raman vibra-
tional information with sub-​diffraction-​limited spatial 
resolution26,98,99.

Results
This section provides readers with an understanding of 
data processing and analysis, including data process-
ing, band assignment, qualitative analysis, quantitative 
analysis, multivariate analysis and quantum chemical 
calculations.

Data processing
In data processing, it is important to consider the quality 
of SERS spectra; SNR and reproducibility of SERS spec-
tra are particularly important. After collection, SERS 
data including the Raman wavenumbers and intensities 
are often transformed into ASCII format before being 
exported, to facilitate further data processing by soft-
ware such as Origin. Details about the measurements, 
including the excitation wavelength, laser power at the 
sample, acquisition time and accumulation time, should 
also be stored. A control spectrum of the SERS sub-
strate must also be stored for background subtraction. 
A high-​intensity background originating from internal 
fluorescence in the raw data can be removed by baseline 
correction, which is particularly important for intensity 
comparison when managing multiple datasets. Spike 
removal and smoothing are usually useful to improve 
the spectral quality. For qualitative analysis, frequency 
shifts and selectively enhanced Raman bands should be 
of particular concern. Additionally, normalization of one 
band intensity is useful for comparing relative intensities 
in quantitative analysis. For calibration curves, multi-
ple datasets should be stored and analysed to evaluate 

Table 2 | Details and comparison of the three SERS-​based strategies

Strategy Advantages Disadvantages

Intrinsic SERS High reliability and 
accuracy

Low sensitivity for molecules with 
low Raman cross-​sections

Electrostatic binding Good universality Random orientation of molecules, 
possible disassociation and poor 
spectral reproducibility

Covalent binding High stability Specific groups such as thiols are 
necessary

π–π Stacking Compatible with 
hydrophobic molecules

Low sensitivity

Combined SERS Making inactive 
molecules active

Limited molecule types

Electrostatic–
covalent binding

Making inactive 
molecules active

Limited molecule types

Extrinsic SERS High sensitivity Possible false positive results due to 
nonspecific binding

Electrostatic binding Easily conducted Relatively low accuracy

Covalent binding 
and exposed

Easily fabricated and 
stable binding

Susceptible to the environment, 
poor spectral reproducibility

Covalent binding 
and embedded

High stability and 
spectral reproducibility

Complicated synthetic procedures

SERS, surface-​enhanced Raman spectroscopy.
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batch-​to-​batch variation. The key points in the steps 
involved in SERS data analysis are shown in Fig. 4a.

Band assignment
Band assignment is always a key component of any kind 
of vibrational spectroscopy. The purpose of the band 
assignment is to understand with which kind of vibra-
tional mode each band is concerned. The band assign-
ment is essential for qualitative and quantitative analysis 
and molecular structural studies1,2. In a SERS experiment 
a molecule is always adsorbed onto a metal surface, and 
thus a SERS spectrum is somewhat different from the 
corresponding Raman spectrum. The band assignments 
in SERS spectra are almost the same as those in normal 
Raman spectra; however, some special precaution must 
be taken for the former as described later. Therefore, 
in this section the band assignments of normal Raman 
spectra are outlined first and, then, specific points for the 
SERS band assignments are explained.

Normal Raman spectra. Although there is no abso-
lute procedure for assignments of Raman bands, 
several approaches have been effective. First, look 
for group frequencies such as the C=O, OH and C–S 
stretching modes and the CH2 bending mode by com-
paring the frequency of an observed band with those 

frequencies assigned in the literature100. During the 
comparison, both intensities and frequencies must be 
noted. Obtained Raman spectra can also be compared  
with the spectra of entirely or partially similar molecules.  
The observed spectrum can also be compared with a 
Raman spectrum of a corresponding isotope-​substituted 
molecule that contains deuterium, 15N and/or 13C. 
Spectra can be measured while varying the conditions 
(temperature, pH and solvent) of a molecule and, then, 
the obtained spectra are compared with each other to 
find out the spectral changes induced by the perturba-
tion. Quantum chemical calculations can also be used, 
such as density functional theory (DFT) calculations.

Other methods of band assignment include meas-
uring depolarized Raman spectra or using excitation 
wavelength-​dependent Raman measurements. Band 
assignment can be done using reported bands in the lit-
erature, but care must be taken because previously pub-
lished band assignments may not always be correct, or 
they may not be supported by solid evidence.

SERS spectra. A band shift may occur in a SERS spec-
trum101–103. For example, in the case of chemisorption 
a significant band shift due to CT may be observed17. 
There can also be large variation in Raman band inten-
sity3,104, whereby the intensity change depends on the 
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orientation of an adsorbed molecule and the distance 
from the metal surface. A part of a molecule that is in 
the close proximity to the SERS surface shows a stronger 
intensity enhancement in the spectra than other more 
distal parts of the molecule.

There are also selection rules for SERS. In electro-
magnetic enhancement, the intensity of a SERS band 
depends on the electrical field, the molecular orienta-
tion and the distance from the molecule to the mate-
rial surface. In CT enhancement, CT resonance is crucial 
for selective Raman signal enhancement. For example, 
molecules that have nitrogen and sulfur atoms — which 
have lone pair electrons — produce SERS spectra with 
high intensity. A typical example for band assignment 
is shown in Fig. 4b, where the SERS bands of a tyrosine 
residue can be confirmed based on its normal Raman 
and DFT-​calculated spectra105.

Qualitative analysis
SERS is used extensively for various kinds of qualitative 
analysis because it demonstrates high selectivity as well 
as high sensitivity101–104. For qualitative analysis by SERS, 
high-​quality SERS data with high reproducibility must 
be used. Proper pretreatments of experimental SERS 
data (Fig. 4a) are usually important. Trajectories of mul-
tiple SERS spectra are helpful for qualitative analysis of 
CT effect at ZnO–PATP interfaces106 (Fig. 4c).

SERS is useful for the detection of spin states in 
a haem of myoglobin derivatives107. Owing to the 
enhancement order from the surface selection rule, 
SERRS spectra may give different conclusions in qualita-
tive analysis compared with the resonance Raman spec-
tra107,108. SERS is able to monitor cell cycle progression:  
a living human malignant cell line has been analysed 
using nuclear-​targeted silver NPs modified with poly-
mers, showing that SERS spectra were correlated with 
cell cycle phase progression recorded using dark-​field 
imaging and flow cytometry109. Another interesting work 
used chemically synthesized highly symmetrical nanop-
orous silver microparticles to develop a 3D SERS imag-
ing study of polymer blends110. The 3D patterns of the  
particles are very regular and predictable, resembling 
the particle shape and exhibiting symmetry. 3D SERS 
imaging has demonstrated a significant improvement in 
spatial resolution along the z-​axis, which is a key point 
for Raman measurement in layered polymeric materials.

Quantitative analysis
For quantitative analysis by SERS, sensitivity and repro-
ducibility of SERS measurements are two major impor-
tant factors3,101,104. The stability of a SERS substrate is also 
a significant factor for SERS measurements. Therefore, to 
consider quantitative analysis by SERS, deep considera-
tion about SERS substrates for high sensitivity, selectivity 
and stability are essentially important. Many quantita-
tive analysis studies using SERS have been reported, 
some of which have been used for SERS sensors3,101,104. 
Chemometrics analysis such as partial least squares (PLS) 
regression is often used for quantitative analysis by SERS, 
but occasionally it is sufficient to use one single band.

In some cases the use of an internal or external 
intensity standard is effective in estimating relative 

intensity for quantitative analysis. The intensity of an 
internal standard may change on the basis of experi-
mental conditions, such as the excitation wavelength 
used. Intensity may also vary upon the formation of an 
interaction between a part of the molecule that gives the 
internal standard and another molecule. Alternatively, 
the intensity of an external intensity may also vary by the  
interaction between the external molecule that gives  
the external standard and the analyte. Care must be 
taken in choosing the intensity standard. Before per-
forming quantitative analysis, spectra pretreatments 
such as smoothing, baseline correction and a calculation 
of average spectra are usually necessary.

Multivariate analysis
Multivariate analysis is currently a popular approach 
for SERS spectral analysis (Fig. 5a); principal compo-
nent analysis (PCA) allows relatively easy extraction 
of valuable information from complicated SERS spec-
tra. PCA is often used for qualitative analysis (such as 
for classification, discrimination, cluster analysis) and 
imaging analysis, whereas PLS is used for quantitative 
analysis101,102,104. Multivariate curve resolution (MCR) is 
popular in imaging analysis and spectral analysis.

For SERS chemometrics analysis, spectra with poor 
SNR should be avoided. Proper data preprocessing such 
as noise deduction, baseline correction and averaging 
the spectra are required to obtain meaningful results.

Qualitative analysis and classification. PCA is a gen-
eral method to separate and group samples on the basis 
of variance within SERS samples. PCA is powerful, but 
it is not always sufficient to distinguish closely related 
sample classes using their complex spectral profiles 
and, thus, supervised analysis is often applied as pre-
dictive models. Discriminant function analysis, which 
maximizes the within-​group to between-​group ratio 
to differentiate between classes, is popular among the 
supervised analysis methods. A dendrogram was devel-
oped on the basis of discriminant function analysis 
output using hierarchical cluster analysis (HCA) for a  
set of seven clinical isolates of Escherichia coli from  
a urinary tract infection111. The dendrogram based on a 
combination of PCA and HCA produced correct group-
ings including discrimination to strain level for a sample 
group of E. coli. PCA combined with linear discriminant 
analysis (LDA) has been used to separate label-​free SERS 
spectra of blood samples from 49 patients with diabetes 
and those from 40 healthy volunteers112. There is also 
evidence of the potential of an orthogonal PLS discri-
minant analysis method in the label-​free screening of 
cancers113 (Fig. 5b).

Quantitative analysis by PLS regression. PLS regression 
has been used on the SERS spectra of serum and urine 
for the detection of chronic kidney disease in patients114. 
PCA combined with PLS regression has been useful for 
SERS-​based biosensors115; SERS spectra were shown to 
be distinguishable by PCA even when manganese super-
oxide dismutase was at 10 pmol, and PLS regression was 
able to predict protein concentrations within one order 
of magnitude (Fig. 5c).

CT resonance
The charge transfer (CT) 
contribution to 
surface-​enhanced Raman 
spectroscopy reaches the 
maximum when the incident 
laser energy matches the CT 
excitation energy.
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Spectral analysis and SERS imaging. MCR combined 
with alternative least squares (MCR–ALS) is commonly 
used for analysis of Raman spectra and has recently been 
applied to SERS. MCR–ALS has been used with sample 
insertion constraint to deconvolute overlapping peaks in 
SERS spectra116. PCA has also been used on multiplexed 
molecular imaging of fresh tissues labelled with SERS-​
coded NPs117, and MCR–ALS was used in the study of 
polymeric microfilms loaded with paracetamol118.

SERS DFT theoretical calculation
DFT calculations are very useful to interpret SERS spec-
tra119,120. For reproducing Raman spectra, harmonic 
approximation for prediction of vibrational frequen-
cies using a scaling factor is sufficient; anharmonic  
approximation is not needed for general purposes121–123.

Wu and colleagues121,122,124 used DFT to study chem-
ical enhancement of SERS spectroscopy in electronic 
interfaces. To investigate the structure of water adsorbed 
on silver, gold and platinum electrodes, DFT calculations 
were carried out for metal–water cluster models. The 
simulated Raman spectra of water–gold complexes124 
found that the relative intensity of the water–gold com-
plex is very similar to that of water in the gas phase or 
a pure liquid. Adding a negative charge to the complex 
leads to significant enhancement of the Raman intensity.

Applications
SERS is an interdisciplinary technique that links physics, 
chemistry, nanotechnology, biology, biomedicine, food 
science, environmental science and forensic science. 
SERS-​based methods are generally classified as intrin-
sic, combined or extrinsic SERS according to the origin 
of the obtained SERS fingerprints (Table 2).

The intrinsic SERS of adsorbates is useful for prob-
ing molecular structures, reactions or CT processes. 
Alternatively, ultrasensitive measurements are usu-
ally achieved by the extrinsic SERS of Raman report-
ers assembled with ligands of the target analytes. 
Another strategy that combines intrinsic and extrinsic 
SERS is useful for molecules with low affinity towards 
SERS-​active materials. In this case, a reporter molecule 

is initially used to capture the target molecule via chem-
ical reactions. In this way, the intrinsic SERS of both the 
capturing and target molecules are collected in one SERS 
spectrum. In this section, we review the latest applica-
tions of SERS specifically in chemistry, materials science 
and bioscience and highlight studies that exemplify key 
applications of SERS for surface reactions, interfacial CT 
for photovoltaic devices, biomolecular identification and 
intermolecular interactions, and chemical and biological 
sensing.

Surface reactions
Surface plasmons can redistribute excited electrons, 
inducing the CT enhancement of SERS mentioned 
above. The excited electrons can also transfer directly 
to the molecule and induce chemical reactions125. SERS 
has been applied in studies on plasmon-​mediated chem-
ical reactions (PMCRs), whereby molecules are directly 
attached to plasmonic metals. Plasmon-​enhanced 
photocatalytic reactions can also be traced by SERS at 
a metal–semiconductor interface126. SERS is powerful 
for investigating electrocatalytic reactions in which the 
metal has a major role in Raman signal enhancement, 
and PMCRs are usually isolated by coating with oxides.

PMCRs represent a rapidly growing field of 
research14, and photocatalytic reactions that occur in the 
absence of chemical reducing agents provide new oppor-
tunities for driving efficient light-​to-​energy conver-
sion processes. Owing to the high correlation between 
plasmons and Raman scattering enhancement, SERS 
is useful for the in situ probing of PMCRs. As a typi-
cal example, a chemical transformation from PATP to 
4,4′-​dimercaptoazobenzene (DMAB) was unveiled via 
SERS on metals under an aerobic environment, where 
plasmon-​induced enhanced electromagnetic fields, heat 
energy and hot electron–hole pairs all contributed to the 
molecular conversion127. Additionally, when PMCRs 
are isolated by coating the metal with oxides such as 
silicon dioxide, titanium dioxide or aluminium oxide, 
metal-​oxide-​catalysed or transition-​metal-​catalysed 
reactions can be revealed by SERS on plasmonic 
metals128–130.
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Potential-​dependent SERS spectroscopy via elec-
trochemical SERS (EC-​SERS) is useful for revealing 
adsorption configurations and CT mechanisms131. In 
recent years, a growing number of electrocatalytic reac-
tions, including oxygen reduction132 and hydrogen oxi-
dation133, have been characterized by in situ EC-​SERS134. 
EC-​SERS allows for the sensitive identification of both 
the substrate and product, facilitating the in situ prob-
ing of vibrational information for catalytic processes. 
Plasmonic metals are generally used as SERS-​active 
supports for catalytic transition metals and can also 
promote the electrocatalytic activity of semiconducting 
materials135.

Interfacial charge transfer
Photovoltaics for the conversion of solar energy into 
electricity using semiconducting materials is a hot topic 
in materials science. Raman spectroscopy has been 
successfully applied for the direct dynamic investiga-
tion of charge separation in dye-​sensitized solar cells 
(DSSCs)136. Hybridization of semiconductors with 
plasmonic metal nanomaterials is highly effective in 
improving CT efficiency, which allows for the rapid 
development of metal–semiconductor hybrid nanos-
tructures in photovoltaic research137. Unprecedented 
SERS signals from metal–semiconductor heterostruc-
tures have been attributed to the synergistic contribution 
of plasmons and CT, allowing for the highly sensitive 
SERS-​based probing of interfacial CT in photovoltaic 
devices23. Therefore, SERS-​based studies on interfacial 
CT in metal–semiconductor heterostructures are ben-
eficial for evaluating the CT efficiency of photovoltaic 
devices.

In metal–dye–semiconductor systems, similar to those 
in DSSCs (Fig. 6a), the SERS activity of the dye is depend-
ent on the material type, size and morphology. Certain 

SERS marker bands of dyes (for example, N3: 1270 cm−1; 
N719: 1266 cm−1)138,139 are sensitive to CT at interfaces 
(Fig. 6c). With these band intensities, the contribution of 
CT to Raman signal enhancement can be estimated by the 
quantity ρCT

 (the degree of CT)20. CT efficiency at metal–
semiconductor interfaces can thus be indirectly probed 
using ρCT

, which is calculated from the SERS intensities 
of the dye molecules. Improved CT processes can be 
realized by modifying plasmonic metals or semiconduc-
tors to reduce the energy thresholds of dyes to materials 
(Fig. 6b). CT pathways at metal–semiconductor interfaces 
strongly depend on the nature of the metal or semicon-
ductor, the probe molecule and their assembly method. 
At a metal–semiconductor interface, a CT transition from 
the metal to the semiconductor can occur through the 
mechanisms of plasmon-​induced hot electron transfer 
(PHET) or plasmon-​induced metal-​to-​semiconductor 
interfacial CT transition (PICTT). In these two cases, the 
hot electrons are either directly — through PICTT — or 
indirectly — with PHET — transferred to the adjacent 
semiconductor23,140.

SERS is useful for probing the CT pathways in 
model structures for DSSCs. For such analyses, 
wavelength-​dependent SERS is usually used to explore 
energy matching between the laser and the dyes. Hot 
electrons can be generated in dyes by excitation with the 
appropriate laser wavelength, followed by electron trans-
fer to the conduction band of the semiconductor and 
further transfer to the metal141. This CT pathway is inde-
pendent of surface plasmons, but plasmon-​mediated 
pathways likely exist in such complicated systems. In 
recent years, increasing evidence for CT transitions  
in DSSC systems has been provided by SERS. SERS is 
helpful for optimizing the CT efficiency by modifying 
the metal, dye or semiconductor, which paves the way 
for the rational design of photovoltaic devices.
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Intermolecular interactions
Numerous biomolecules, including proteins, DNA, 
RNA, lipids and carbohydrates, can be detected by 
intrinsic SERS. Proteins with cofactors, such as haem 
and flavin, are easily detected owing to the resonance 
effect with appropriate laser excitation. For biomolecules 
with low Raman cross-​sections, such as peptides, nucleic 
acid bases and phospholipids, significant efforts have 
been made to improve their SERS activity by develop-
ing more sensitive SERS-​active materials. The struc-
tural investigation of biomolecule–ligand interactions 
is crucial for the functional exploration of biological 
systems. However, direct contact between biomacro-
molecules and bare metals usually causes denaturation 
and poor SERS reproducibility; thus, biocompatible 
coatings and functionalization for metals are important 
for the SERS-​based analysis of biological intermolecular 
interactions.

One useful approach to improving the SERS intensity 
of label-​free DNAs is to aggregate the target molecules 
with silver NPs in an aqueous solution. The high affinity 
of iodide ions towards silver endows the former with a 
sort of cleaning function for silver surface NPs, which 
allows for highly reproducible SERS signals of DNA 
induced by aggregated reagents (such as magnesium 
and aluminium ions)142. The SERS band of the phos-
phate backbone is also helpful as an internal standard 
for quantifying nucleic acids with single-​base sensitivity. 
This strategy offers a new way to detect single-​stranded 
and double-​stranded DNA for investigating DNA sec-
ondary structures such as i-​motif, G-​quadruplex and 
hairpin143–145 (Fig. 7a) and identifying single-​base muta-
tions. Notably, the high spatial resolution of solid-​state 
nanopores has enabled single-​molecule DNA analysis 
based on SERS146.

EC-​SERS is powerful for the in situ probing of redox 
protein structures and reaction dynamics147. SERRS is 
sensitive to structural changes in redox centres such 
as haem, with Soret or Q-​band excitation providing 
vibrational details regarding redox states, iron lig-
ands and spin states. To improve the biocompatibility 
of silver surfaces, silver electrodes are usually coated 
with self-​assembled monolayers of alkanethiolates to 
increase biocompatibility. Alternatively, nanostruc-
tured semiconductor electrodes can be used for direct 
protein immobilization148. Metal electrodes coated with 
self-​assembled monolayers are most commonly used 
in this field owing to their unparalleled superiority in 
terms of SERS enhancement and conductivity. Based 
on EC-​SERS, the role of cytochrome b5 (Cyt-​b5) as an 
electron transfer shuttle and stabilizing electron source 
in enzymatic catalysis has been revealed149, and slow and 
fast forms of cytochrome c (Cyt-​c) oxidase have recently 
been characterized150.

For proteins without cofactors, the major SERS 
bands of peptides originate from aromatic amino acid 
residues (phenylalanine, tyrosine and tryptophan) 
and histidine with an imidazole group. The intrinsic 
SERS of such proteins is rather weak on the typically 
employed metal NPs. Highly aggregated silver NPs in 
an acidic solution were found to be able to improve the 
SERS intensity and spectral reproducibility151. Note that 
the iodine-​modified silver NPs mentioned above were 
also recently applied for the intrinsic SERS of native 
proteins152. On solid and bare SERS-​active metals, a 
crosslinker of an appropriate length is effective at cap-
turing label-​free proteins while preserving the protein 
activity. This method is highly ultrasensitive to discrimi-
nate a single-​site phosphorylated serine-396 in an intact 
Tau410 protein153 (Fig. 7b).
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Although it is still changing, SERS is feasible for ana-
lysing biomolecule intermolecular interactions. Nickel 
is more biocompatible than noble metals and has been 
developed as a SERS-​active support for redox proteins. 
Interestingly, nickel is capable of transferring elec-
trons to Cyt-​b5 and Cyt-​c, enabling investigation of the 
electron transfer process from Cyt-​b5 to myoglobin154. 
Furthermore, nanostructured nickel supports have been 
applied to probe the interactions between the reduced 
form of Cyt-​c and cardiolipin liposomes and even to 
trace the release process of Cyt-​c from apoptotic mito-
chondria155 (Fig. 7c). A first attempt to study cofactor-​less 
protein–drug interactions by controlled protein immo-
bilization was also recently reported105. Further experi-
mental optimization for proteins with high molecular 
weights should be conducted, but this method offers a 
new possibility for SERS-​based and label-​free analyses 
of protein–ligand interactions at metal–liquid interfaces.

Chemical and biological sensing
The strategy of combined SERS facilitates the indirect 
detection of certain types of molecule according to the 
SERS of the product of a chemical reaction between a 
reporter molecule and the target molecule156. The con-
cept allows for the detection of molecules with relatively 
low Raman cross-​sections (such as oestrogens and phe-
nols) by changing them to high Raman cross-​section 
molecules before the SERS measurement. An efficient 
approach in this case has been demonstrated by func-
tionalizing SERS-​active NPs with a reporter mole-
cule (such as PATP) that can capture anilines, phenols 
and their derivatives by an azo-​coupling reaction126. 
Although the obtained spectra did not reflect the 
intrinsic SERS of the target molecules, the SERS finger-
prints were still strongly dependent on the target mol-
ecule, indicating the multiplexing capability of such an 
approach. The highly sensitive SERRS signals of the azo 
products were attributed to the resonance effect, SERS 
effect and enrichment effect from the manganic cores. 
This method has potential applications in food safety and 
in controlling environmental pollutants. Alternatively, 
toxic chemicals on food surfaces can be easily detected 
by intrinsic SERS with flexible SERS substrates157.

The SERS-​based chemical sensing of inorganic 
ions (for example, mercury, lead, nitrogen dioxide and 
chromate) has been extensively studied owing to its 
important implications for the environment and bio-
medicine103. These ions are usually indirectly detected 
with Raman reporters by alteration of their SERS signal 
upon ion binding. The interaction of an inorganic ion 
with a reporter molecule may cause a significant change 
in the orientation of the reporter on the SERS-​active 
surface or transform its chemical structure, resulting 
in frequency shifts or changes in relative intensities. 
Combining an aptamer with a Raman reporter has been 
demonstrated to be an efficient method for the highly 
sensitive detection of inorganic ions158, in which the tar-
get ions recognize certain domains of the aptamer and 
thereby alter the original SERS intensity of the reporter.

SERS has widespread applications in biological sens-
ing, including in vitro and in vivo biomarker detection, 
single-​cell analysis and subcellular organelle targeting. 

As bio-​samples usually involve complicated constituents, 
the label-​free analysis of clinical samples such as serum 
and cells remains challenging owing to SERS spectral 
overlap. Thus, most SERS-​based biological sensors are 
dependent on Raman reporters. The SERS intensity and 
frequency shifts of Raman reporters are both useful for 
biomarker detection. These reporters are commonly 
assembled with specific biomarker ligands, such as anti-
bodies and aptamers, together with SERS-​active NPs to 
yield what are known as SERS nanotags159.

As a typical example, single-​chain variable fragment 
(ScFv) antibodies — which are tumour-​targeting ligands 
— that were conjugated with gold NPs were found to 
be capable of targeting epidermal growth factor recep-
tors, an important tumour biomarker160. On the basis 
of biomarker–ligand recognition, biomarkers can be 
selectively quantified based on SERS of the reporters161. 
Notably, an antibody-​free method for discriminat-
ing protein biomarkers in human serum was recently 
achieved according to the SERS relative intensity 
changes and frequency shifts of the reporter molecule, 
perylenetetracarboxylic acid162.

When fabricated with various Raman reporters, SERS 
nanotags have multiplexing capabilities and have been 
applied in screening cancer cells, where they recognize 
membrane acceptors outside the cells163. SERS nanotags 
have also been introduced into cells for pH sensing at 
various cellular locations through a pH-​sensitive mol-
ecule (such as 4-​mercaptopyridine), or for label-​free 
probing of drug metabolites164,165. With a biocompatible 
coating (such as polyethylene glycol and silica), SERS 
nanotags have been injected into a mouse model for 
tumour targeting159. SERS imaging is a straightforward 
method in which the typical signals of a Raman reporter 
in vivo can be quickly collected and subsequently inte-
grated into an image. SERS nanotags enable highly sen-
sitive tumour targeting and are helpful for in situ surgery 
guidance159.

Reproducibility and data deposition
Reproducibility in SERS spectra relates to overall band 
intensities, relative intensities, frequency shifts and 
overall band frequencies. Here, we discuss the aspects 
of the SERS workflow that can affect each of these 
reproducibility factors.

SERS-​active materials
The reproducibility of overall intensity of a SERS spec-
trum is highly dependent on the homogeneity and uni-
formity of the SERS-​active materials. With the rapid 
development of SERS-​active materials in recent years, 
nano-​patterned and highly uniform substrates have 
become commercially available for practical applica-
tions, which has significantly improved the reproduc-
ibility of overall SERS intensity. Besides the overall 
intensity, SERS profiles may also suffer from fluctu-
ations in relative intensity and frequency shifts owing 
to the interaction of the analytes with the SERS-​active 
materials and the intermolecular interactions between 
the analytes. Random immobilization of a molecule via 
multiple binding groups will cause poor spectral repro-
ducibility, and the analytes at different concentrations 
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might lead to different molecular orientations on the 
material surfaces166.

Laser exposure time
The laser exposure time also affects SERS reproducibility 
by affecting spectral intensity and identification of the 
sample. Measurements with longer laser exposure times 
yield improved SNRs, but they may also cause the changes 
in spectral intensity and fingerprint owing to photobleach-
ing. The photobleaching profiles of SERS nanotags origi-
nate from local photo-​heating effects and photochemical 
reactions such as photo-​oxidation and photoreduction. 
For intrinsic SERS, rotating the sample during measure-
ment can help eliminate the photoreduction of redox 
proteins167.

In the case of extrinsic SERS, methods for improv-
ing the photostability of SERS nanotags are crucial for 
measurements that require long exposure times, such 
as SERS imaging. An efficient approach for improving 
both the SERS intensity and photostability is to fabricate 
Raman reporters between particle gaps168. With a silica 
coating, these gap-​enhanced Raman tags exhibited ultra-
photostability, which significantly minimized spectral 
fluctuations during SERS image collection168.

Frequency shifts
Quantifying analytes by frequency shifts has shown 
relatively higher degrees of reproducibility than that 
based on band intensities, which suffer from unavoid-
able intensity variation due to the inhomogeneity of 
SERS substrates. In a SERS-​based immunoassay, key 
factors such as the solvent, antigens and antibodies have 
been shown to affect the frequency shifts of the Raman 
reporter169. Moreover, the random immobilization of 
biomacromolecules on a solid SERS substrate usually 
causes poor spectral reproducibility owing to the dif-
ferent orientations of multiple domains of the adsorbed 
molecules. This limitation can be overcome by func-
tionalizing the material surface with a small crosslinker 
that can capture one site of the target molecule and thus 
control its homogeneous orientation105.

Data storage
SERS data can be stored in different formats depending 
on spectrometer vendors’ proprietary software. Data 
stored in ASCII or Microsoft Excel.csv format can be 
imported into Origin for graphing. Although there 
are Raman spectra databases that are free of charge or 
commercially available, there is currently no SERS data 
library accessible for SERS data sharing or reuse.

Limitations and optimizations
SERS has remarkable advantages over other spectro-
scopic methods, especially in terms of sensitivity and 
multiplexing ability. The major limitations related to 
mechanistic complexity, quantification accuracy and 
cytotoxicity are discussed below.

Mechanistic complexity
SERS enhancement mechanisms have been a controver-
sial topic for decades170. In recent years, researchers have 
gained a deeper understanding of the importance of 

plasmons and the contribution of CT — as well as their 
synergistic effects — to SERS3. A clear understanding of 
these different mechanisms remains challenging owing 
to complexity from multiple contributions. The effects of 
other factors such as electromagnetic fields and heating 
energy on SERS have yet to be revealed125.

Quantification accuracy
Numerous efforts have been made to improve SERS 
spectral intensities, but it remains a significant chal-
lenge to obtain a reproducible calibration curve or 
track batch-​to-​batch deviation across different labs 
based on the same quantitative method171. This is the 
reason why SERS has not been applied as a stand-
ard method for practical quantification analyses. 
Improving the accuracy will be a key issue that should 
be considered before designing and establishing a 
SERS-​based analytical method4. Matrix effect is a major 
challenge for SERS-​based detection and quantification 
in applications related to food science, environmental 
science and biomedicine172. Combining SERS with 
some separation methods such as Western blotting173, 
high-​performance liquid chromatography (HPLC)174 
and thin layer chromatography (TLC)175 is helpful to 
separate target molecules and eliminate matrix effect. 
The combination of SERS with microfluidics enables 
rapid and repeatable analysis of multicomponent 
samples based on a continuous flow condition176. 
Alternatively, functionalizing substrates with specific 
antibodies and/or aptamers can selectively capture tar-
gets in matrices, with other species being removed with 
washing177.

Cytotoxicity
Coating SERS-​active materials with biocompatible mate-
rials is beneficial for SERS nanotags in cells to avoid any 
negative reactions of metals with cellular components 
such as cytoplasm and organelles178. NP-​induced cyto-
toxicity is complicated and strongly dependent on NP 
properties such as surface coating, size, morphology and 
concentration, all of which affect SERS activity as well. 
Mitigating the cytotoxicity of one of these NP properties 
may negatively affect SERS activity159. Therefore, balanc-
ing the SERS activity and cytotoxicity is crucial for the 
SERS-​based exploration of cells.

Understanding SERS mechanisms is of vital impor-
tance for guiding SERS applications. Theoretical meth-
ods such as DFT and time-​dependent DFT calculations 
are helpful for revealing SERS mechanisms179, although 
they have not been extensively applied in this area. 
Further efforts could be devoted to the rational design 
of SERS substrates with highly controlled size and mor-
phology, combined with theoretical simulations, and 
such efforts will stimulate the further development of 
SERS mechanisms. In the past 10 years, the accuracy 
of SERS-​based methods has gained increasing atten-
tion, and SERS spectral reproducibility has significantly 
improved, especially with the use of highly uniform 
SERS substrates180. Further efforts to optimize uniform 
SERS-​active materials for accurate quantification should 
focus on their chemical stability and universality for the 
adsorption of various analytes.

Matrix effect
Complex matrices usually 
interfere with the surface-​ 
enhanced Raman spectroscopy 
signals of target molecules, 
reducing sensitivity and 
accuracy.
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Prolonged exposure to SERS-​active materials inevita-
bly causes cytotoxicity168. Comprehensive investigation 
of factors that affect cytotoxicity, including SERS-​active 
material type, concentration, morphology-​dependent 
effects, toxic mechanisms, side effects and substrate 
removal mechanisms could be useful for SERS at  
the cellular or tissue level. Strategies for shortening the 
exposure time of the substrates could also be explored to 
minimize cytotoxicity, for example, by developing rapid 
scanning equipment for Raman imaging or fabricating 
magnetic SERS NPs to allow for rapid removal of NPs by 
an external magnetic field at a target location.

Outlook
Over the nearly five decades of its development, SERS 
has experienced significant growth in both fundamental 
and applied studies. Novel methods that can improve 
the current limitations are desirable, and the further 
development of SERS will be promising.

SERS-​active organic semiconductors
The observation of SERS from nanostructured organic  
semiconducting films such as α,ω-diperfluorohexyl-
quarterthiophene (DFH-4T)181 extended the category of 
SERS-​active nanostructures from inorganic materials to 
pure organic molecules. Such π-​conjugated organic films 
exhibit excellent structural versatility, highly controlla-
ble morphology and tunable optoelectronic activities182. 
Attempts to study the SERS activity of other organic 
molecules, such as biological materials, are promising 
for solving the issue of biocompatibility with SERS  
substrates at the cellular or tissue level.

SERS and computational chemistry
Computational chemistry methods such as DFT, 
machine learning and molecular dynamics have impor-
tant roles in SERS theoretical and applied science.  
Machine learning is an effective tool for predicting 
SERS signals183, and integrating machine learning  
with SERS is a promising way to achieve high predic-
tive accuracy even in complex matrices184 and acceler-
ate SERS applications in practical sensing devices. Data 
fusion strategies have great potential for improving the 
accuracy for species identification via integrating SERS 
and other spectroscopic data types185. Molecular dyna
mics simulations can provide information about the pos-
sibility of target molecule adsorption on nanomaterial 
surfaces, their orientation and their binding energies. 
Combining SERS with molecular dynamics186 is effec-
tive for the rational design of biosensors and can reveal 
related enhancement mechanisms. Further exploration 
of SERS combined with computational chemistry will 

significantly improve the reliability and multiplexing 
ability of SERS-​based methods.

High-​spatial-​resolution SERS imaging
The spatial resolution of Raman imaging can be signi
ficantly improved by combining Raman spectroscopy 
with atomic force microscopy, scanning near-​field 
optical microscopy or scanning electron microscopy 
on solid materials187. By optimizing the experimental 
set-​up, high-​speed SERS imaging of individual NPs 
was achieved with a spatial resolution of ~7 nm (ref.188). 
However, SERS imaging with a high spatial resolution 
is still challenging in living cells. Near-​infrared SERS 
imaging is helpful for tracking a single vesicle in a living 
cell, providing a way to monitor intracellular dynam-
ics189. Currently, most organelles — with the exception 
of nuclei — cannot be recognized by typical SERS 
imaging of living cells. Label-​free, non-​invasive 
SERS cell imaging with a higher spatial resolution for  
analyses on the level of small organelles could be  
used to reveal signalling transduction in organelle 
cross-​talk.

Combining SERS with SEIRAS
Raman and infrared spectroscopy are two complemen-
tary vibrational spectroscopies2. The combination of 
SERS and surface-​enhanced infrared absorption spec-
troscopy (SEIRAS) allows for more detailed structural 
investigations of analytes with a high sensitivity190. SERS 
and SEIRAS have similar plasmon enhancement mech-
anisms, and 3D supercrystals of gold NPs were recently 
found to exhibit remarkable SERS and SEIRAS activi-
ties191. These supercrystals support multiple polaritonic 
resonances from the mid-​infrared to near-​infrared 
spectral range. Combining SERS with SEIRAS will be 
especially beneficial for the investigation of molecules 
with complicated structures, such as multi-​enzyme com-
plexes, to provide a structural basis and elucidate their 
reaction dynamics.

In summary, we have comprehensively reviewed 
SERS from its basic theories to its experimentation, 
results and applications. SERS reproducibility and lim-
itations have been highlighted, and possible optimiza-
tions for more efficient design of the SERS systems are  
provided. Finally, promising directions for the field 
are proposed with the latest advances and challenges. 
Although difficulties remain, we believe SERS will be 
an increasingly powerful technique with the combined 
merits of ultra-​sensitivity, high accuracy and excellent 
biocompatibility for practical applications.
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