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Preface

This book is devoted to the problems connected with detailed analysis of coher-
ent fields and images and their application in remote sensing. Our consideration is
based on several coherent phenomena, such as the Doppler effect, which is related
to the phase variation of radiation reflected by a moving object, and the effect of
speckle pattern formation on the radiation scattered by rough objects. Since the
beginning of the twentieth century, coherent phenomena, including interference,
have been actively used in radio and acoustic communication and in location tech-
niques. At first, applications were concerned with rather simple effects such as
interference of two mutually coherent plane waves leading to a sinusoidal pattern.
However, in the second half of the century, rapid development of laser technology
brought more complicated problems related to interference effects. Those who ob-
served images of rough objects by means of laser radiation noticed their strongly
inhomogeneous structure. This structure is called the speckle pattern. The speckle
pattern also appears in laser radiation scattered by a rough object or by a large
number of randomly distributed particles. A multicolor speckle pattern can be ob-
served for white light scattered by rough objects, randomly distributed particles,
and diffraction gratings with a random period. For instance, if one looks at the sun
with blinking eyes, light is scattered by one’s eyelashes, which is a similar effect
as a diffraction grating with a random period, and a speckle pattern consisting of
colored spots can be seen.

Although effects of this kind are well known to everyone, it was M. Von Laue1

who first described this phenomenon and studied it for the case of scattering by
multiple particles. A bibliography of his fundamental papers on the theory of co-
herence , including speckle optics, can be found in the books by Mandel and Wolf 2

and Goodman.10 In the beginning of the twentieth century, he pointed out for the
first time that a speckle pattern is built by many interfering waves diffracted by
the elements of the scattering medium. However, up until the mid-1960s, effects
related to speckle pattern formation did not attract much attention. This is evi-
dent, for instance, from the fact that such phenomena were not considered in the
monumental book of Born and Wolf.3 One of the first works that used speckle pat-
tern formation analysis for light scattered by rough surfaces was by Rigden and
Gordon.4 One of the first works to analyze the dynamic speckle pattern was by
Anisimov et al.5

In the 1970s and beginning of the 1980s, many authors suggested using speckle
pattern formation to determine the shape, velocity parameters, and dynamic para-

ix
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x Preface

meters of deformations for various objects. These proposals are summarized in
Refs. 6–9. In the 1980s, a consistent statistical description of coherent phenom-
ena was developed,10 and the statistical characteristics of coherent fields scat-
tered by rough objects as well as coherent images of those objects were studied
in detail.11,12 Due to further development of this subject, the terms “coherent field”
and “coherent image” (meaning, respectively, a field scattered by a rough object
and by its image11,12) became widely used. In this book, a scattered field is coher-
ent if its value at each point is given by a sum of amplitudes (interference) of all
waves scattered by the object surface and reaching this point. A coherent image of
a rough object is defined as an image that satisfies the following condition: at each
point, there is interference of all waves coming from the smallest area of the object
surface that is resolvable by the imaging system. In particular, coherent fields and
images are formed when an object is illuminated by monochromatic light. Con-
ditions under which coherent fields and images are formed will be considered in
detail in Appendix 4 and in Sec. 2.5.

Finally, beginning in the 1990s there appeared a number of works analyzing
phenomena connected with coherent light scattering by moving rough objects. In
such phenomena, both the Doppler effect and the speckle effects are manifested,
and they can be used for determining the parameters of an object’s motion. Among
these works, one of the most important is that by Asakura and Okomato.13

At present, the use of coherent fields and images in remote sensing is increas-
ingly drawing more attention from the scientific community. This is due to a grow-
ing understanding of the fact that coherent fields and images can provide signif-
icant information about remote objects in a variety of practical situations.12 For
example, coherent remote sensing can be very helpful when either the scattered
radiation is seriously distorted because of propagation through an inhomogeneous
(turbulent) medium or remote objects with low reflection, or when the resolution of
the imaging system is too low. Development of fast computers, sensitive detectors,
and high-power sources of coherent radiation increased the feasibility of coherent
remote sensing.

A bright example of the progress in coherent remote sensing is Fourier
telescopy.14–18 This technique, which enables exact imaging of remote objects in a
turbulent atmosphere, is proposed for the ambitious project GLINT,15 which aims
to image objects that are 40,000 km away from Earth. Most alternative methods
for achieving this goal use adaptive elements to compensate for the phase dis-
tortions accumulated while the scattered radiation propagates to the observer. This
approach requires a large number of highly sensitive detectors and a lot of computa-
tions. Fourier telescopy uses a matrix of coherent sources controlled in such a way
that sinusoidal interference patterns formed by radiation from particular source
pairs on the object’s surface have different periods and directions. Selecting por-
tions of the scattered radiation corresponding to a given interference pattern, one
can compensate for the phase distortions using a special (phase-closure) algorithm
and build the Fourier components of the object’s true image. The image itself is
formed by applying the inverse Fourier transform to these components. This imag-
ing technique does not require powerful computers or sensitive detectors.
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Preface xi

Another example of a successful application of coherent fields and images is
a radically new kind of holography that was developed by the author, i.e., time
background holography of moving objects. This technique enables remote sens-
ing of transparent or weakly reflecting objects that are moving against a rela-
tively bright, inhomogeneous background. Although there had been several ear-
lier attempts to solve this problem,19,20 only time background holography provides
a practical solution.21–23 The approach involves obtaining information about the
moving object from the time spectrum of the coherent fields scattered by an object
and its background. Two papers report the results of experiments performed in the
microwave and ultrasonic ranges.21,23

A special part of time background holography is the time averaging method.
The method implies that the time-averaged amplitude of the scattered field, i.e.,
the point of the spectrum corresponding to the frequency of the illuminating radia-
tion, contains information about the object. The time averaging method enables one
to detect moving objects and to determine their shapes even when they are either
transparent, weakly reflecting, or indistinguishable from the background. One of
the most important advantages of the method is that it allows a completely absorb-
ing object to be detected with the same probability as an object whose reflection
does not differ from that of the background. Akapov and Mandrosov proposed
a conceptual schematic of a device that uses the time averaging method in envi-
ronmental monitoring, specifically for detecting clusters of pollution particles—
including completely absorbing particles—and determining their concentration,
average size, and average velocity.22

Naturally, applications of coherent remote sensing are not limited to the above
two examples. However, since they are both illustrative and promising, they will
be given detailed consideration in this book.

The above considerations were taken into account when the framework for this
book was formulated. Therefore, in the first and second chapters, statistical char-
acteristics of speckle patterns in coherent fields scattered by rough objects and in
the coherent images of such objects are studied. These chapters will help the reader
to understand the relationship between speckle patterns and a surface’s geometric
and roughness parameters. The third chapter describes methods that use coherent
images to determine the dynamic parameters of an object, such as linear velocity,
rotation rate, and the angle of rotation. A distinguishing feature of these coherent
remote sensing methods is that they require no reference beam and therefore do
not need highly coherent sources. In particular, one can use laser sources with a
coherence length not exceeding 1 m.

The fourth and the fifth chapters are devoted to issues closely connected
with the above two examples. The fourth chapter presents the basics of Fourier-
telescopic imaging. Theoretical consideration shows that the images obtained by
means of Fourier telescopy are similar to conventional coherent images; in partic-
ular, they are speckle patterns. For this reason, the images can be successfully used
in the methods to determine the geometric and dynamic parameters of various ob-
jects, which are considered in the third chapter. In the fourth chapter, we analyze
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xii Preface

how the dimensions of the receiving and transmitting apertures affect the resolving
power of Fourier telescopy systems, and how noise factors and surface roughness
influence image quality. In the same chapter, it is shown that Fourier telescopy can
be used to construct a panoramic laser microscope, an instrument that provides
broad-angle, high-resolution imaging in medicine and biology.18 Such a micro-
scope can be applied for imaging extended (∼10 cm) objects with a resolution of
about 1 µm.

In the fifth chapter, it is shown how one can use time background holography
for the detection and determination of parameters of moving objects that are in-
distinguishable against the background, transparent, or weakly reflecting. A fast
algorithm is proposed for the detection of objects with reflectance considerably
lower than that of the surrounding background.

This book is addressed to a broad community of researchers interested in co-
herent phenomena and their applications. For one’s first reading, I recommend that
the reader pay attention to the numbered equations and ignore the algebra. The
reader should concentrate on the physical essence of coherent phenomena, the de-
scription of the arrangements based on those phenomena, the figures—which play
an important role in this book—and on the enumerated conclusions to each chap-
ter. The introductions to each chapter and several other sections will expose the
reader to the history of the problems posed in a variety of applicable fields. In sub-
sequent readings, one may give special attention to the study of particular devices
or to the derivation of particular formulas. The relatively large number of formulas
is not surprising: while deriving rather simple engineering equations for the de-
vices based on coherent fields and images in remote sensing, one cannot bypass
the mathematical analysis of the statistical structure of fields scattered by objects
and their images.

At the same time, the mathematics used here is within the framework of courses
taught in technical institutes. Therefore, this book can be helpful not only for re-
searchers and engineers working in the field where coherent fields and images in
remote sensing can be used, but also for senior university and graduate students
specializing in this field. The most complicated consideration of the statistical
structure of coherent fields and images, which is presented in Appendixes 1–3,
would be interesting for the reader who wishes to understand the particular details
of the mathematical analysis of this structure.

In Appendix 4, problems connected with the coherence of fields scattered by
rough objects and with contrast of the scattered field intensity distribution are con-
sidered. In particular, a detailed answer is given to the question, what is a coherent
field? Appendix 5 contains a semi-qualitative explanation of the physics of speckle
pattern formation in the images of rough objects.

The basic results included in this text were published previously in proceedings
and journals. However, some of the results were obtained during the preparation of
this manuscript. For this reason, not all ideas presented in the book can be consid-
ered as equally conventional; some of them need further discussion and develop-
ment. The author is grateful to anyone who wishes to discuss them or suggests any
comments.
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Notation

r� radius vector of the random surface of the object
under study

r radius vector of the mean surface of the object under
study

u, v surface coordinates on the mean surface of the object
under study

ξ(r) distribution of surface roughness height

n,N external normal to the surface at point (u, v)

N external normal to the mean surface at point (u, v)

x, y, z Cartesian coordinates of point (u, v)

X,Y,Z Cartesian coordinate axes

wn n-dimensional probability density

B12(r1, r2) correlation function of the surface roughness height
distribution

σ standard deviation of the surface roughness height
distribution

� correlation radius of the surface roughness height
distribution

k(r) field reflection coefficient distribution on the surface
of the object under study

ρ radius vector of the scattered field observation plane
(of the imaging system aperture)

Sρ imaging system aperture area

dρ imaging system aperture size

ρs radius vector of the illuminating source

Ss aperture area of the illuminating source

xv
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xvi Notation

Es complex amplitude of the illuminating source

λ wavelength of the illuminating source

ω circular frequency of the wave

ω0 mean circular frequency of the wave

Sr(ω) spectrum of the illuminating source

f =ω/2π frequency of the wave

νi = (r� − ρs)/|r� − ρs| unit propagation vector of the incident field
≈ (r − ρs)/|r − ρs|

νo = −(r� − ρ)/|r� − ρ| unit vector directed from the point r� to the
observation point ρ≈ −(r − ρ)/|r − ρ|

q = νo − νi scattering vector
≈ (ρ − rc)/|ρ − rc|

+(ρs − rc)/|ρs − rc|
qt = (q2 − q2

N)0.5 projection of vector q on the mean surface tangent
plane

qN = q ·N projection of vector q on vector N

t time of the field processing

t0 the start time of the field processing

T the duration of the field processing

E(ρ, t) distribution of the complex amplitude of the field
scattered by the object under study in the observation
plane (the imaging system aperture)

B(ρ1, t1,ρ2, t2) correlation function of the complex amplitude of
the field scattered by the object under study in the
observation plane

Ei(r�,ω) the spectral amplitude of the incident field on the
object surface

E0(ρ,ω) the spectral amplitude of the field scattered by the
object

I(ρ, t) intensity distribution of the field scattered by the
object under study on the imaging system aperture

So area of the illuminated surface of the object under
study

do diameter of the illuminated surface of the object
under study
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Notation xvii

Se effective area of the backscattering surface of the
rough object. For a flat object, Se = So

rc vector of the object’s center of mass

rc = |rc| the distance to the object under study

v, v velocity vector and its length for a point (u, v) on the
object surface

a,a acceleration vector and its length for a point (u, v) on
the object surface

vc, vc velocity vector and its length for the center of mass
(center of gravity) of the object

ac,ac acceleration vector and its length, respectively, for
the center of mass (center of gravity) of the object

�,� angular velocity vector of the object rotation and its
length, respectively

ρcx,ρcy correlation radii along the X and Y axes of the field
scattered by the object under study

tc correlation time of the complex amplitude of the field
scattered by the object

ki(r) a function proportional to the averaged distribution
in the object image

C contrast of the speckle pattern in a coherent scattered
field and a coherent image

νd the Doppler frequency in the plane where the
scattered field is observed

fD the Doppler frequency in the image plane

fc correlation frequency

fs the relative Doppler shift in the image plane

zi distance from the imaging system aperture plane to
the image plane

µ= rc/zi scaling factor

h(r,δ) pulse response (the point spread function) of the
imaging system

Sρ the area of the imaging system aperture

dρ the diameter of the imaging system aperture

δ radius vector in the image plane
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xviii Notation

δc radius vector of a point in the image plane optically
conjugated to the object’s center of mass

E(δ) complex amplitude of the field in the coherent image

Bf (δ1,δ2) field correlation function in the object image

I(δ) = |E(δ)|2 intensity distribution in the object image

Bi(δ1,δ2) intensity correlation function in the object image

ρix,ρiy correlation radii of the intensity distribution in a
coherent image along the X and Y axes, for equal
correlation radii, ρix = ρiy = ρi

Prx,Pry sizes of the object surface domain resolved
according to Rayleigh’s criterion along the X and Y
axes, for equal domain sizes Prx = Pry = Pr

M the number of speckles in the scattered coherent field
and coherent image of the object under study

δmn =
1 for m = n

0 for m �= n
the Kronecker function

Lc coherence length of the illuminating source

(ω,β) the frequency and deviation in the Fourier–Fresnel
time transform

Mb the number of speckles in the coherent image of the
background surface

δx,δy Cartesian coordinates in the image plane

kb(x, y) field reflection coefficient distribution on the
background surface of the object under study
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Explanation of Terms

Random surface is the rough surface of an object under study.

Roughness of an object’s surfaces, ξ(u, v, t) = ξ(r), is the distribution of the devi-
ations of the random surface from the mean surface at time t at each point (u, v) of
the mean surface along its normal N. Here, r(u, v, t) is the radius vector of a point
(u, v) on the surface.

The mean surface is an imaginary smooth surface that lies between the maximums
and minimums of ξ(u, v), so that the mean value of the surface roughness ξ is
equal to zero. This means that 〈ξ〉 = 0, where the brackets 〈〉 denote averaging
over various realizations of ξ [Sec. 1.2, relation (1.2)].

The correlation function of surface roughness ξ(r) is a function given by the
relation B12(r1, r2) = 〈ξ(r1)ξ(r2)〉. The standard deviation of surface roughness σ
is given by the relation σ(r) =√〈ξ2(r)〉 [see Eq. (1.6)].

Correlation radii of surface roughness in given directions u and v, �u and �v, are
defined as �u(r) ≈ ∫ [B12(r,u,0)/σ2]du and �v(r) ≈ ∫ [B12(r,0, v)/σ2]dv, where
B12(r,u, v) = B12(r, r − s), r = r1, and s = r1 − r2 is a vector close to the object
surface, with the components u = u1 −u2 and v = v1 − v2. For the case of isotropic
roughness, �u = �v = �. In this case, the correlation radius � of surface roughness
is the mean size of the area where ξ(r) is practically constant.

A separate element of the rough surface is a part of the rough surface with the
area ∼ �2.

The coherence length Lc of the radiation source probing the object under study
is determined by its spectrum Sr(ω). It can be estimated from the relation Lc ≈
c/	ω ≈ λ2/	λ, where c is the velocity of light, λ is the mean wavelength of
the probing radiation, 	ω is the radiation spectrum width at half maximum, and
	λ is the width of the wavelength spectrum at half maximum. As a rule, in this
book we will deal with narrow-band probing radiation, for which Lc > 10λ (	ω<

0.1ω0, where ω0 = c/λ is the mean frequency of the source spectrum). For the
probing radiation source, one can define the achromaticity, which determines Lc

and possible geometric parameters of the object under study; one distinguishes
three grades of achromaticity (see Appendix 4).

xix
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xx Explanation of Terms

The probing radiation is called monochromatic if its coherence length Lc > 100Ls,
where Ls is the depth of the object’s backscattering surface. As a rule, we will
assume here this kind of probing radiation.

The probing radiation is called quasi-monochromatic if its coherence length sat-
isfies the condition 10Ls ≥ Lc ≥ 10λ.

The probing radiation is called polychromatic if its coherence length Lc ≤ 10λ.

A scattered field is called coherent if at each point of its observation, it is formed
by amplitude superposition (interference) of all waves scattered by the object’s
surface and coming to that point.

An image of a rough object will be called coherent if at each point, it is formed by
interference of all waves coming from the area of the object’s surface resolvable
by the imaging system. The conditions under which coherent fields and images
are formed depend mostly on the coherence length of the probing radiation. These
are considered at the end of Sec. 1.2 and analyzed in detail in Appendix 4 and
Sec. 2.5. In particular, coherent fields and images are formed if the probing radia-
tion is monochromatic.

The scattered field intensity is I = |E|2, where E is the scattered field complex
amplitude [Sec. 1.2, relation (1.28)].

The field intensity in the image is I = |E|2, where E is the field complex ampli-
tude in the image of the object under study.

The mean value of a value V , which is related to the roughness height distribution
ξ, is 〈V〉, where brackets denote averaging over various realizations of ξ. In this
book, we consider mean values for determined object parameters and for the am-
plitude and intensity distributions of the coherent field scattered by the object as
well as the field and intensity distributions in coherent images of this object.

The correlation function of a distribution (random process) D(ρ, t) is defined as

〈D(ρ1, t1)D
∗(ρ2, t2)〉 − 〈D(ρ1, t1)〉〈D∗(ρ2, t2)〉,

where ρ is the radius vector of a point in the plane where the distribution is ob-
served, and t is the moment of observation. In this book, we consider correlation
functions for the distributions of a coherent field scattered by an object and for the
field in the coherent image of an object. We also consider correlation functions for
the intensity distributions in the coherent field scattered by an object and in the
coherent image of an object. Similarly to the case of surface roughness, one can
introduce the correlation time τc of a distribution and the correlation radii ρc in
various directions as the ranges in time and space where the distribution D(ρ, t)
does not change (Secs. 1.3 and 1.4). In the case of isotropic distributions, one can
introduce a single correlation radius ρc, which is equal to the mean size of the
domain where the distribution D(ρ, t) is practically constant.
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Explanation of Terms xxi

A functional of some function is a value depending, via an integral relation, on this
function.29 Below, there are some examples of functionals for which the function
under study is the observed field scattered by a rough object E(ρ, t,α), where ρ is
the radius vector of the observation domain, t is the observation time, and α is the
vector of the measured parameters of the object.

The Gaussian probability density functional (PDF) of E is

P[E(ρ, t,α)] ∼ expL[E(ρ, t,α)],
where

L[E(ρ, t,α)] = −1

2

∫ ∫ ∫ ∫
W(ρ1, t1,ρ2, t2)[E(ρ2, t2,α) − 〈E(ρ2, t2,α)〉]

× [Et(ρ2, t2,α) − 〈Et(ρ2, t2,α)〉]∗dρ1dt1dρ2dt2

is also a functional [see relation (1.30)], α = (α1, . . . ,αn) is the set of the deter-
mined object parameters, and W(ρ1, t1,ρ2, t2) is the inverse correlation function
of the scattered field E.

A speckle pattern is a spotty, strongly inhomogeneous intensity distribution in the
scattered coherent field and in the coherent image of a rough object or a strongly
inhomogeneous distribution in the frequency-time coherent image, which is the
time spectrum of a coherent field scattered by a moving rough object (Sec. 2.7).

The contrast of a random distribution D is the measure of its fluctuations deter-
mined by the relative dispersion, C = (〈D2〉 − 〈D〉2)/〈D〉2. For example, the con-
trast of an intensity distribution I in a coherent image is C = (〈I2〉 − 〈I〉2)/〈I〉2. In
this text, we consider the contrast of intensity distribution in the scattered coherent
field (also called the blinking index, Sec. 1.3) and in the coherent image of an ob-
ject (Sec. 2.2), as well as the contrast in the power (energy density) distribution in
the coherent image of an object obtained by means of partially coherent radiation
(Sec. 2.5).

The quasi-static principle is a means of calculating the instantaneous coherent
field scattered by a moving object by assuming the object to be stationary. This
assumption is valid at (v2T)/(λc) � 1, where T is the observation time for the
radiation scattered by the object, c is the velocity of light, and v is the object’s
velocity (Sec. 1.4).

The Doppler effect is the frequency variation (Doppler shift) that occurs when
coherent radiation is scattered by a moving surface.

Resolution of an imaging system is the maximum size Pr of the minimally re-
solved domain of the object’s surface according to the Rayleigh criterion. This size
is approximately equal to (λrc)/dρ, where λ is the wavelength of the radiation illu-
minating the object, rc is the distance between the imaging system’s aperture center
and the object’s center of mass, and dρ is the aperture size.
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xxii Explanation of Terms

The speckle number M is the average number of speckles in the field scattered by
a rough object on the imaging system’s aperture, in the coherent image of a rough
object, and in its frequency-time coherent image (Sec. 2.7). It is approximately
equal to the number of domains of the rough object’s surface that are resolvable by
the imaging system (Sec. 2.2.3).

The estimate V̂ for the measured parameter V of an object is determined by
the measurement algorithm, which, in its turn, depends on both the measurement
geometry and the statistical properties of V (see Chapter 3). The estimate is called
unbiased if 〈V̂〉 = V . Here, the brackets 〈〉 also denote averaging over various re-
alizations of ξ.

The estimation accuracy for the parameter V is given by the estimate disper-
sion. This dispersion is caused by either the randomness of V , which is related
to the randomness of the object surface, or by the peculiarities of the measure-
ment scheme. In the first case, the accuracy is given by the standard deviation

σv =
√

〈


V2〉 − 〈


V〉2. The second case is considered in Sec. 3.3. In this text, the
standard deviations for the estimates of the following parameters are given: linear
velocity (Sec. 3.2), the angular velocity of rotation (Sec. 3.3), the local angular
deformations of the object surface (Sec. 3.4), and the size of the surface details
(Sec. 4.4).

Fourier telescopy is a method of building a coherent image of an object. In this
method, a set of sinusoidal interference patterns (fringes) with various orientations
and various periods is formed on the object’s surface, the energy of the coherent
field scattered by the object is registered, and finally, the image is reconstructed by
performing the Fourier transform of the registered set of energies. The interference
patterns are formed by illuminating the surface of the object under study by two
mutually coherent sources, which change their positions so that the distance be-
tween them is varied and the orientation of the line connecting them with respect
to the object’s surface is changed.
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Chapter 1

Basic Concepts of the Statistical Theory of
Light Scattering

1.1 Introduction

In practice, one deals mostly with objects having a continuous and, as a rule, rough
surface. The surface of an object is formed under the influence of numerous random
factors, such as nonideal mechanical processing, effects of temperature, and so
on. As a result, the surface of an object is almost always of random shape and
can generally be described by a random function of space coordinates and time.
Recall that a random function of one parameter—say, time—is called a single-
parameter random process.24 Further consideration shows that random functions
depend on four (three coordinates plus time) or more parameters. Such functions
are called multiparameter random processes or random fields. This term should
be used particularly for functions describing wave fields scattered by objects with
random surfaces. Evidently, such fields have random structure.

It is clear that the study of wave scattering by objects with rough surfaces
should be considered a statistical problem that involves finding probability char-
acteristics of the scattered field, including distribution functions, field moments,
and correlation properties, from given probability characteristics of the surface. In
this chapter, we consider the basic concepts relating to the probability characteris-
tics of random surfaces and the random fields scattered by them. The main results
of the theory of diffraction by random surfaces in the Kirchhoff approximation are
reviewed. Field correlation characteristics and moments scattered by moving or
standing objects are considered.

1.2 Random surfaces and fields scattered by them; the Kirchhoff
method

Consider the surface of an arbitrarily rough object in motion. During the course of
its motion, the surface can be deformed by various forces. It is usually difficult to
describe the space–time characteristics of such a surface. However, for a random
surface in practice, its deviation from the mean smooth surface is small compared
with the curvature radius of this surface. Such random deviations appear due to un-
controllable effects of the formation and processing of surfaces. As an example of

1
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2 Chapter 1

random deviations, one can consider the wavy surface of the sea that is formed by
the influence of wind and other factors. A surface that changes its shape or position
in time can be described by a radius vector that depends on the two parameters u
and v, and time: r = r(u, v, t). Random surfaces can be represented in the following
form (see Fig. 1.1):

rΣ(u, v, t) = r(u, v, t) + N(u, v, t)ξ(u, v, t), (1.1)

where r(u, v, t) is the radius vector of the mean surface, N(u, v, t) is the external
normal to this surface at point (u, v), and ξ(u, v, t) is the deviation of the random
surface from the unperturbed mean surface at point (u, v) along the normal; it satis-
fies the condition 〈ξ(u, v, t)〉 = 0. Furthermore, ξ(u, v, t) will be called the surface
roughness height distribution, and the mean surface is the shape of the object sur-
face.

It is convenient to consider the parameters u and v as surface coordinates on the
mean surface. We assume the corresponding coordinate frame to be orthogonal,
which implies that the mean surface has certain necessary properties. In the case
when the mean surface is parallel to the plane z = 0, we have u = x, v = y, and

rΣ(x, y, t) = ix + jy + k[z(t) + ξ(x, y, t)],
where z(t) describes the motion of the mean surface and i, j, and k are unit vectors
in the direction of the coordinate axes.

The wave field (acoustic, electromagnetic field, etc.) scattered by a random sur-
face is functionally related to the shape of the object, its motion, and the random
function ξ(u, v, t).12 This relation can be used for studying the characteristics of

Figure 1.1 Geometry of a small part of a rough object surface. Dashed lines show
the coordinates u, v on the mean surface.
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Basic Concepts of the Statistical Theory of Light Scattering 3

the object surface and for identifying and distinguishing different objects and de-
termining their parameters.

The advantage of such wave influence is that it does not damage the object
under study and hence is a nondestructive method of control. There is a prob-
lem of determining the results of influence as a functional of the random function
ξ(u, v, t).25 The result of a wave field influence is a complex process, and it is
a complicated problem to describe this process for each specific realization of the
surface ξ(u, v, t). Usually, relatively simple analytic dependencies can be found for
a field diffracted by simple structures such as a plane, smooth cylinder, smooth ball,
etc., and also by periodic structures containing these simple ones. However, even
diffraction of a field by gratings formed by regular flat stripes leads to a compli-
cated field structure that has a large number of maxima and minima with different
amplitudes.

In the microwave antenna technique, the field distribution in the vicinity of
the main maximum is called the main lobe. Other maxima are called side lobes.
Random deviations of the antenna shape from the ideal one are caused by various
reasons, such as deviations of the antenna mirror surface from the ideal one (for
the case of antennas with continuous opening) or irregular positions of the trans-
mitters (for antenna arrays). Even the smallest deviation of the scattering object’s
position from the ideal leads to a considerable change of both amplitude and posi-
tion of maxima and minima. Naturally, a field scattered by a surface with random
roughness ξ(u, v, t) has a complicated distribution. A complete description of field
realizations is, in this case, useless in practice.

This fact has been taken into account in the antenna technique26 and in
radiolocation,27 and a probability description of the scattered field has been devel-
oped. For instance, the values of side lobes appearing due to the deviation ξ(u, v, t)
of the mirror surface from the ideal one is characterized by the probability of not
exceeding a given value. This statistical approach to estimating the scattered field
has turned out to be quite fruitful. For instance, it allows estimation of the mean
square deviation of the mirror surface from the ideal one at which the side lobes do
not exceed a given value.

In the antenna technique, it is often necessary to distribute radiated energy in
such a way that it is uniformly spread in space. For this purpose, the ideal mir-
ror surface should be randomly perturbed by significant values of ξ(r). Naturally,
this problem also requires a statistical approach. Further development of this ap-
proach leads to finding such a random distribution ξ(r) that forms a given mean
distribution of the scattered field.

Hence, whenever it is necessary to study a field scattered by a random surface,
of major practical interest are the statistical characteristics (mainly, mean values)
of the scattered field for a group of scattering surfaces that have the same mean sur-
face and random deviations ξ(r) determined by identical surface processing condi-
tions, such as grinding the surface with a fixed-size abrasive. Another example of
a statistical group is a water surface. In this case, given statistical characteristics of
random deviations from the mean surface are determined by the depth of the water

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 20 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4 Chapter 1

basin, direction and duration of the wind, and other parameters that are the same
for all groups. Thus, each surface from a given group is one of the realizations de-
scribed by random deviations, with fixed statistical characteristics and fixed mean
surface.

The value of ξ(u, v, t) at each fixed point in space–time is a random func-
tion, which can be conveniently described by the probability density w1(ξ,u, v, t).
Although the function w1(ξ,u, v, t) gives the probability density distribution
ξ(u, v, t) at each point (u, v, t), it does not provide information about the val-
ues of the random process at neighboring points. A more detailed descrip-
tion of the process ξ(u, v, t) is contained in the two-dimensional probabil-
ity density w2(ξ1,u1, v1, t1,ξ2,u2, v2, t2) of random variables ξ1(u1, v1, t1) and
ξ2(u2, v2, t2). Here, w2 describes the ensemble of all functions ξ1 and ξ2.
The most complete description of random deviations ξ(u, v, t) from the mean
surface is given by n-dimensional probability densities of random variables
ξ(u1, v1, t1),ξ(u2, v2, t2), . . . ,ξ(un, vn, tn):

wn = wn(ξ1,u1, v1, t1,ξ2,u2, v2, t2, . . . ,ξn,un, vn, tn),

which are connected by means of recurrent relations (matching conditions)

wn−1(ξ2, . . . ,ξn) =
∞∫

−∞
wn(ξ1,ξ2, . . . ,ξn)dξ1

and satisfy the normalization conditions
∫

. . .
∫

wndξ1dξ2 . . .dξn = 1.
Knowing the probability density wn, one can calculate the probability densities

for an arbitrary function f (ξ1,ξ2, . . . ,ξn) by means of the relation

P(x) =
∫

. . .

∫
δ[x − f (ξ1,ξ2, . . . ,ξn)]w(ξ1,ξ2, . . . ,ξn)dξ1dξ2 . . .dξn,

where δ(x − f ) is a delta function. In particular, this leads to the equation for the
mean value of a function,

〈f (ξ1, . . . ,ξn)〉 =
∫

. . .

∫
f (ξ1, . . . ,ξn)

× wn(ξ1,u1, v1, t1, . . . ,ξn,un, vn, tn)dξ1 . . .dξn. (1.2)

Here, angle brackets 〈〉 denote averaging of the function f over the ensemble of all
functions ξ.

A convenient way to describe random processes is by means of the functional
of the process ξ(u, v, t) probability density. This functional is defined as the limit

P[ξ(u, v, t)] = lim
n→∞ wn(ξ1,u1, v1, t1, . . . ,ξn,un, vn, tn),
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Basic Concepts of the Statistical Theory of Light Scattering 5

and, in fact, it fully determines the probability of any realization of the process
ξ(u, v, t). In most cases, it is not necessary to give a complete probability descrip-
tion of a random process. Therefore, one usually needs only simplified character-
istics of the process ξ(u, v, t):

the mean value of the process ξ(u, v, t) (the first-order moment),

〈ξ(u, v, t)〉 =
∞∫

−∞
ξw1(ξ,u, v, t)dξ, (1.3)

ψ12(u1, v1, t1,u2, v2, t2) = 〈ξ(u1, v1, t1)ξ(u2, v2, t2)〉,
∞∫

−∞

∞∫
−∞

ξ1ξ2w2(ξ1,u1, v1, t1,ξ2,u2, v2, t2)dξ1dξ2;
(1.4)

the correlation function

B12(u1, v1, t1,u2, v2, t2) =ψ12(u1, v1, t1,u2, v2, t2)

− 〈ξ(u1, v1, t1)〉〈ξ(u2, v2, t2)〉; (1.5)

and variance of the random process

σ2(r) = σ2(u, v, t) = B12(u, v, t,u, v, t), (1.6)

where σ is the standard deviation of the random process.
In practice, for any surface,

B12(u1, v1, t1,u2, v2, t2) → 0 at |u1 − u2|, |v1 − v2|, t2 − t1 → ∞.

If a random process is not statistically isotropic, it is reasonable to introduce a
correlation radius in each direction, for instance, along the coordinate lines u and
v on the object surface:

�u(r) = 1

σ2(r)

∞∫
−∞

B12(r, t, r + s, t)rudu

and

�v(r) = 1

σ2(r)

∞∫
−∞

B12(r, t, r + s, t)rvdv, (1.7)

where r = r1 and the vector s = r2 − r1 has the components su ≈ ru(u2 − u1) and
sv ≈ rv(v2 − v1), and where ru = (∂x/∂u,∂y/∂u,∂z/∂u) and rv = (∂x/∂v,∂y/∂v,
∂z/∂v) are two orthogonal vectors tangent to the object’s mean surface at point
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6 Chapter 1

u1, v1. It is useful also to introduce the correlation time of the process ξ(u, v, t):

τc = 1

σ2(r, t)

∞∫
−∞

B12(r, t, r, t + τ)dτ. (1.8)

For statistically isotropic processes, where �u(r) = �v(r), one can define the corre-
lation radius as

�(r) = �u(r) = �v(r).

In the simplest cases, the correlation radius is an explicit parameter of the func-
tion B12. For instance, in the case of an anisotropic Gaussian correlation function12

and for such a mean surface that 〈ξ(r, t)〉 = 0,

B12(u1, v1, t1,u2, v2, t2) = σ2 exp

[
−r2

u(u1 − u2)
2

�2
u

− r2
v(v1 − v2)

2

�2
v

− (t1 − t2)2

τ2
c

]
.

(1.9)
Here, partial derivatives are taken at point u1, v1.

Furthermore, we assume, as a rule, that surface roughness is isotropic and the
surface roughness height distribution is practically constant in time during the de-
termination of the object parameters. In this case, �(r) = �u(r) = �v(r); τc = ∞;
ξ(u, v, t) = ξ(u, v, t0) = ξ(r), where r = r(u, v), and

B12(u1, v1, t1,u2, v2, t2) = B12(u1, v1, t0,u2, v2, t0) = B12(r1, r2, t0)

= 〈ξ(r1)ξ(r2)〉

= σ2 exp

[
−r2

u(u1 − u2)
2 + r2

v(v1 − v2)
2

�2

]
, (1.10)

where t0 is the initial moment of determining parameters of the object. Also, we
will often use the notion of a separate element of the rough surface. This means that
a part of the surface of the object under study has the area of ∼�2. One can show
that, on average, such a part contains not more than two maxima of the function
ξ(u, v). For instance, Fig. 1.1 shows a part of a surface that contains six separate
elements of the rough surface. To avoid the account of multiple scattering, we
will also assume that the surface is smooth (� > 3σ); and to distinguish between
small changes of the object surface and the surface roughness, we will assume that
� < 103λ and σ< 102λ, where λ is the mean wavelength of radiation scattered by
the object.

In addition to the first- and second-order moments, one can introduce higher-
order moments of a random process. The mth moment is given by the relation

ψ12...m(u1, v1, t1, . . . ,um, vm, tm)

=
∫

. . .

∫
ξ1 . . . ,ξmwm(ξ1,u1, v1, t1, . . . ,ξm,um, vm, tm)dξ1 . . .dξm. (1.11)
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Basic Concepts of the Statistical Theory of Light Scattering 7

The first- and the second-order moments give a rather approximate description of
a random process ξ(r, t). However, there exists an important class of random func-
tions (processes) for a complete description of which it is sufficient to know these
two characteristics. These are Gaussian processes. Most often, random processes
describe phenomena caused by numerous independent factors. For instance, for
the surface of a metal detail, deviations from the mean surface appear due to many
types of mechanical processing (turning, milling, grinding, etc.). Accumulation
of a large number of factors lead—according to the central limit theorem of the
probability theory—to a Gaussian distribution of a random process ξ(r, t). For a
Gaussian distribution,

w1(ξ) = 1√
2πσ

exp

(
− ξ2

2σ2

)
,

w2(ξ1,ξ2) = 1

2π
√
σ4 − B2

12

× exp

[
−σ

2(ξ1 − 〈ξ1〉)2 − 2B12(ξ1 − 〈ξ1〉)(ξ2 − 〈ξ2〉) + σ2(ξ2 − 〈ξ2〉)2

2(σ4 − B2
12)

]
,

and

wn(ξ1, . . . ,ξn) = 1

(2π)n/2
√

det[Bjk]
exp

[
−1

2

n∑
j,k=1

Wjk(ξj − 〈ξj〉)(ξk − 〈ξk〉)
]
,

(1.12)

where [Wjk] = [Bjk]−1 is the matrix inverse to the correlation matrix:

n∑
k=1

WjkBkm = δjm, Bjk = 〈ξjξk〉 − 〈ξj〉〈ξk〉. (1.13)

Evidently, the following relation holds for the second joint moment of a random
process and its derivative:〈

[ξ(u2, v2, t2)]
[
∂ξ(u1, v1, t1)

∂u1

]〉
= ∂B12(u1, v1, t1,u2, v2, t2)

∂u1
.

This relation follows from the linearity of averaging and differentiating.
Similarly, the following relation holds:

〈[
∂ξ(u1, v1, t1)

∂u1

][
∂ξ(u2, v2, t2)

∂u2

]〉
= ∂2B12(u1, v1, t1,u2, v2, t2)

∂u1∂u2
.
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8 Chapter 1

For statistically uniform processes, 〈
∂ξ(u, v, t)

∂u

〉
= 0,〈

∂ξ(u, v, t)

∂uξ(u + 	u, v, t)

〉
= 0.

It follows from these relations that the variance of a random process derivative
is B′′

xx12(0). In the case of a Gaussian correlation function, the following useful
relation holds:〈[

∂ξ(u, v, t)

∂u

]2〉
=
(
σ

�u

)2

,

〈[
∂ξ(u, v, t)

∂v

]2〉
=
(
σ

�v

)2

. (1.14)

From the equality 〈
∂ξ(u, v, t)

∂uξ(u, v, t)

〉
= ∂B12(0)

∂u
= 0, (1.15)

it follows that in the case of a Gaussian correlation function, the value of the ran-
dom process at some point and its derivative at the same point are statistically
independent. This leads to an important relation,〈

f1

(
∂ξ

∂u

)
f2(ξ)

〉
=
〈
f1

(
∂ξ

∂u

)〉
〈f2(ξ)〉.

Let us return to the n-dimensional probability density of a Gaussian process
and take the limit at n tending toward infinity. Evidently, summation in rela-
tions (1.12) and (1.13) will turn into integration according to Riemann’s defini-
tion of an integral. As a result, we obtain the Gaussian probability density func-
tion (PDF), which corresponds each realization of a random process ξ(u, v, t) to
a certain number P[ξ(u, v, t)]. Equation (1.13) for the inverse correlation matrix
is transformed in this case into the equation for the inverse correlation function
W(u1, v1, t1,u2, v2, t2):

P[ξ] = lim
n→∞ wn(ξ1,ξ2, . . . ,ξn)

= Cf exp

{
−1

2

∫∫
W(u1, v1, t1,u2, v2, t2)

× [ξ(u1, v1, t1) − 〈ξ(u1, v1, t1)〉][ξ(u2, v2, t2) − 〈ξ(u2, v2, t2)〉]
× du1dv1dt1du2dv2dt2

}
, (1.16)
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Basic Concepts of the Statistical Theory of Light Scattering 9

where Cf is a constant and the function W satisfies the integral equation∫
W(u1, v1, t1,u2, v2, t2)B(u2, v2, t2,u3, v3, t3)du2dv2dt2

= δ(u1 − u3)δ(v1 − v3)δ(t1 − t3), (1.17)

where δ(s) is a δ-function.

1.2.1 Random field scattered by an object with a random surface

Let us now consider a random field scattered by an object with a random surface.
This field is formed by the summation of fields scattered by different parts of the
surface. The rougher a surface and the faster its fluctuations, the larger the num-
ber of independent terms contributing to the field and, hence, the closer the field
distribution function is to the Gaussian one. If the scattering surface deviates from
the mean surface according to the Gaussian distribution, then its roughness and its
time fluctuations are determined by four parameters: σ, �u, �v, and τ0. In addition
to the random factors mentioned above, there are certain deterministic factors that
influence the scattered field, such as the shape of the mean surface, polarization of
the incident wave, reflecting characteristics of the scattering surface, and the time
spectrum of the radiation. A mathematical description of the scattered field that ac-
counts for all of these factors is an extremely complicated problem. Its approximate
solution can be obtained with the help of the Kirchhoff approach. Let us review its
basic ideas.3,12

A wave source (Fig. 1.2) illuminates the surface of the object under study. The
electric vector of the field E(ρ, t) scattered by the object satisfies the relation

E(ρ, t) =
∞∫

−∞
E0(ρ,ω) exp(iωt)dt, (1.18)

Figure 1.2 Geometry of radiation scattering by a rough object. Here, n is a unit
vector normal to the object surface.
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10 Chapter 1

where

E0(ρ,ω) = 1

4π

∫
E0(rΣ,ω)

∂

∂n

exp
(
−i
ω

c
|ρ − rΣ|

)
|ρ − rΣ| drΣ

+ 1

4π

∫
∂

∂n
[E0(rΣ,ω)]

exp
(
−i
ω

c
|ρ − rΣ|

)
|ρ − rΣ| drΣ; (1.19)

ρ is the radius vector of the point of observation; E0(ρ,ω) is the vector of the scat-
tered field spectral amplitude at the point of observation; E0(rΣ,ω) is the vector
of the spectral amplitude on the object surface, which is given by the radius vector
rΣ; ∂/∂n is the normal derivative on the object surface;ω is the angular frequency
of spectral amplitudes; and c is the velocity of light. The integration in Eq. (1.19)
runs over the object surface. Derivation of Eq. (1.19) can be found, for instance, in
Ref. 3. It what follows, we will denote the field spectral amplitudes E0(ρ,ω) and
E0(rΣ,ω) as field amplitudes.

From Eqs. (1.18) and (1.19) we see that for an accurate calculation of the elec-
tric vector of the field E(ρ, t), it is sufficient to know the field amplitude and its
normal derivative on the object’s surface. Yet, accurate calculation of the surface
field and its normal derivative is very complicated. However, assuming that the
curvature radii of the incident field phase front and of a separate element of the
rough scattering surface are much larger than the wavelength λ = 2πc/ω of the
incident radiation, one can find a rather simple relationship between the incident
and scattered fields near the surface. For this purpose, let us fix a point rΣ on the
surface (Fig. 1.3). Using the above assumptions, one can consider the local part of

Figure 1.3 Illustration of the derivation of Eq. (1.27), which gives the observed spec-
tral amplitude E0(ρ,ω) of the field scattered by a rough object illuminated by a
pointlike wave source as the integral over the object’s mean surface.
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Basic Concepts of the Statistical Theory of Light Scattering 11

the incident field as a plane wave Epw = Ei(rΣ,ω) exp[−i(ω/c)νi · rs], where νi
is the unit vector giving the propagation direction of the incident field: Ei(rΣ,ω)

is the incident field spectral amplitude, which varies in this direction much more
slowly than does the exponent exp[−i(ω/c)νi · rs]; and rs is the radius vector of
the tangential plane point. The reflected wave in the vicinity of the surface area
under consideration can also be assumed to be on a local plane and in the form
E0(rΣ,ω) ≈ Er(rΣ,ω) exp[−i(ω/c)νr ·rs], where νr is the unit propagation vec-
tor of the reflected wave, and Er(rΣ,ω) is the reflected field amplitude. It follows
directly that

∂

∂n
E0

∼= −i
ωνr ·n

c
E0, (1.20)

where n is the unit vector normal to the object surface at the fixed point rΣ. The re-
lationship between νi and νr can be found from the equality between the incidence
and reflection angles:

νr ·n = −νi ·n. (1.21)

Substituting relation (1.20) into Eq. (1.19) and taking into account that, as a rule,
|ρ − rΣ| � c/ω and that the surface is smooth (� > 3σ), we obtain

∂

∂n

exp
(
−i
ω

c
|ρ − rΣ|

)
|ρ − rΣ|

∼= iνo ·n
ω exp

(
−i
ω

c
|ρ − rΣ|

)
|ρ − rΣ|c ,

where νo = (ρ − rΣ)/|ρ − rΣ| is the unit vector along the direction from the point
rΣ to the observation point ρ. As rs tends toward zero and hence, E0(rΣ,ω) →
Er(rΣ,ω), we obtain, taking into account Eq. (1.20) and the foregoing relation,
that

E0(ρ,ω) = iω

2c

∫
(νo + νr) ·nEr(rΣ,ω)

exp
(
−i
ω

c
|ρ − rΣ|

)
|ρ − rΣ| drΣ. (1.22)

For further consideration, it is important to find the relation between the incident
field amplitude Ei(rΣ,ω) and the reflected (“locally scattered”) field amplitude
Er(rΣ,ω). This can be done by using the well-known relations3

Bp = tg(θi − θr)

tg(θi + θr)
Ap, Bt = sin(θi − θr)

sin(θi + θr)
At,

sinθi

sinθr
=
√
ε2µ2

ε1µ1
, θi = arccos(νi ·n), (1.23)

where At is the component of the vector Ei lying in the local plane of incidence and
orthogonal to the vector νi; Bt is the corresponding component of the reflected field
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12 Chapter 1

vector Er orthogonal to the vector νr; Ap and Bp are components of the vectors Ei
and Er orthogonal to the local plane of incidence; ε1 and µ1 are dielectric and
magnetic functions of the propagation medium; and ε2 and µ2 are the correspond-
ing values for the object under study. It is worth noting that in the optical range,
ε1,ε2,µ1, and µ2 essentially depend on the frequency of the incident radiation.3

Now assume that the incident field is linearly polarized: Ei(rΣ,ω)= iEi(rΣ,ω),
where i is a unit vector. Suppose that in the reflected and scattered fields, the
same polarization is observed, i.e., in Eq. (1.22), Er(rΣ,ω) = iEr(rΣ,ω) and
E0(ρ,ω) = iE0(ρ,ω), where E0 is the spectral amplitude of the scattered field.
In this case, it follows from Eq. (1.23) that Er(rΣ,ω) is proportional to the inci-
dent field amplitude, with the proportionality coefficient depending on νi, n, ε1,
µ1, ε2, and µ2, which in turn depend on rΣ, so that

Er(rΣ,ω) = k(ω,νi,n,ε1,µ1,ε2,µ2)Ei(rΣ,ω) = k(rΣ,ω)Ei(rΣ,ω). (1.23a)

Here, k(rΣ,ω) is the reflection coefficient at frequencyω and at point rΣ.
One can suppose that due to the linearity of scattering, similar relations hold

in other practically important cases, for instance, for an object being a non-
homogeneous absorbing dielectric. So the radius vector rΣ of the real object sur-
face is definitely related to the radius vector r of the mean object surface [see rela-
tion (1.1) and Fig. 1.1], and we can replace k(rΣ,ω) in Eq. (1.23a) with k(r,ω).
Furthermore, the set of local coefficients k(r,ω) will be called the reflection coef-
ficient distribution for the surface of the object under study.

Substituting Eqs. (1.21) and (1.23) into Eq. (1.22), we obtain

E0(ρ,ω)= iω

2c

∫
(νo −νi) ·nk(rΣ,ω)Ei(rΣ,ω)

exp
(
−i
ω

c
|ρ − rΣ|

)
|ρ − rΣ| drΣ. (1.24)

This equation, which is usually referred to as the Kirchhoff-Fresnel formula, gives
the relation between the observed spectral amplitude E0(ρ,ω) of the field scattered
by the rough surface and the incident field Ei(rΣ,ω) on the object’s surface.30

Next, we have to express the incident field Ei(rΣ,ω) in terms of the parame-
ters of the illuminating source. The incident field will be calculated according to
Eq. (1.24) as the spectral amplitude Ei(rΣ,ω) of the source field taken on the ob-
ject surface,30 the integration domain being given by the output aperture of the
illuminating source (see Fig. 1.3). Let the source be pointlike. In practice, such a
source can be represented by a very small, flat mirror reflecting the plane wave
Epi(ra,ω) = EsSr(ω) incident in the direction νs, close to the normal ns to the
mirror surface, νs · ns ≈ −1, where Es and Sr(ω) are the wave amplitude and
spectrum, respectively. Then,

Ei(rΣ,ω) = iω

2c

∫
(ν − νs) ·nk(ra,ω)Epi(ra,ω)

exp
(
−i
ω

c
|ra − rΣ|

)
|ra − rΣ| dra,

(1.24a)
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Basic Concepts of the Statistical Theory of Light Scattering 13

where ra is the radius vector of the output aperture point, rΣ is the radius vector of
the random rough surface of the object under study [see relation (1.1)], which is
substituted in Eq. (1.24) for ρ,ν= (rΣ − ra)/|rΣ − ra|.

The very small, flat mirror plays the role of the source output aperture, with
k(ra,ω) = 1 inside the aperture and k(ra,ω) = 0 outside the aperture. Usually,
the object under study is close to the line orthogonal to this aperture and passing
through its center (an asterisk in Fig. 1.3); here, ν ·ns ≈ 1. Taking into account the
relations νs · ns ≈ −1, ν · ns ≈ 1, and the fact that the function k(ra,ω) is much
narrower in ra than other functions in the integral (1.24a), we obtain

Ei(rΣ,ω) ≈ iSsω

c
EsSr(ω)

exp
(
−i
ω

c
|ρs − rΣ|

)
|ρs − rΣ| , (1.25)

where Ss is the area of the source output aperture, and ρs is the radius vector of the
source aperture center (see Fig. 1.3). Here, Es is the amplitude of the source field
and Sr(ω) is the source radiation spectrum.

In the case where the object is illuminated by a pointlike source, from rela-
tions (1.24) and (1.25) we find for the spectral amplitude of the scattered field

E0(ρ,ω) = −ω
2EsSr(ω)Ss

2c2

∫
n ·qk(rΣ,ω)

×
exp
(
−i
ω

c
|ρs − rΣ|

)
|ρs − rΣ|

exp
(
−i
ω

c
|ρ − rΣ|

)
|ρ − rΣ| drΣ, (1.26)

where q = νo − νi is the scattering vector.12

Now we make the following assumptions, which usually hold in practice with
high accuracy. Assume that the illuminating source and the observation point of
the scattered field E0 are far from the object and the center of coordinate C is close
to the observation point (see Fig. 1.3). Then,

|ρs − rΣ| ≈ |ρs − rc|, q ≈ ρs − rc

|ρs − rc| + ρ − rc

|ρ − rc| ,

where rc is the radius vector of some average point of the object, for instance, the
object’s center of mass. Then, after passing in Eq. (1.26) from integration over the
rough object surface to integration over the mean object surface, by substituting r
for rΣ we obtain for the spectral amplitude of the scattered field

E0(ρ,ω) = −ω
2EsSr(ω)Ss

2c2rc|rc − ρs|

×
∫

n ·q
n ·N

k(r,ω) exp

[
−i
ω

c
(|rΣ − ρs| + |rΣ − ρ|)

]
dr, (1.27)
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14 Chapter 1

where N is the normal to the mean surface and 1/(n · N) is the Jacobian of the
coordinate transform of rΣ into r. The final expression for the instantaneous vector
of the scattered field E(ρ, t) is obtained by substituting Eω = iE0(ρ,ω), where
i is a unit vector, into Eq. (1.18). If the object is illuminated by a pointlike cw
monochromatic source with a very narrow spectrum, for which 	ω≪ω0, 	ω

and ω0 being the width and the mean frequency of the spectrum Sr(ω), and if the
source radiation spectrum is normalized,

∫
Sr(ω)dω= 1, then

E(ρ, t) = −EsSs exp(iω0t)

2λ2rc|rc − ρs|

×
∫

n ·q
n ·N

k(r) exp

[
−i

2π

λ
(|rΣ − ρs| + |rΣ − ρ|)

]
dr, (1.28)

where k(r) = k(r,ω0). Furthermore, E(ρ, t) will be called the complex amplitude
of the field scattered by the object under study (or simply the field amplitude).
Usually, if a source has a narrow spectrum, 	ω�ω0, it is called a monochromatic
source.3 This notion is discussed in more detail in Appendix 4.

Thus, one can see from Eqs. (1.24) and (1.26)–(1.28) that the field scattered by
an object with random surface roughness is related to the roughness height distrib-
ution—namely, to deviations ξ(r,t) from the mean surface—via integral relations.
This fact confirms the necessity of using a statistical approach for studying wave
diffraction by such surfaces.28–30

Consider now an important class of problems that is becoming increasingly
popular at present, i.e., determining the properties of objects and identifying these
objects by means of the scattered field. Such problems require a statistical ap-
proach since, as a rule, the field in the observation plane, which we have to process
(see Figs. 1.2 and 1.3), is a sum of the field scattered by the object under study
and a random additive noise field. The noise field, for instance, can originate from
scattering by atmospheric aerosols. The main problems are to find the probability
density function (PDF) of the observed random field, including the scattered field
and the noise field, which fully determine the field statistical properties, and to use
this function to obtain the most complete information about the scattering object.
In particular, such a function is used in the statistical theory of decisions.27 Fur-
thermore, we consider the general case of this theory, where decisions about the
object parameters are taken in the presence of a noise field.12 In this case, the total
observed field is

Et(ρ, t) = E(ρ, t,α) + En(ρ, t). (1.29)

Here, α = (α1, . . . ,αn) is the set of the key object parameters that can be deter-
mined; for example, the object’s dimensions and velocities, the distance from the
object, the statistical parameters σ, �u, �v, and τ0 of the object surface roughness
ξ(r, t) [see relations (1.6–1.8)], and so on. E(ρ, t,α) is the complex amplitude of
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Basic Concepts of the Statistical Theory of Light Scattering 15

the field scattered by the object; En(ρ, t) is the complex amplitude of the noise
field.

If such a function were constructed using a deterministic description of the
field scattered by a deterministically described surface, this field would depend, in
addition to the measurable parameters α1, . . . ,αn, on a large number of parame-
ters θ1, . . . ,θm used for a detailed analytical description of the rough surface of
the object under study. For instance, a rough surface is often described by means
of quadratic spline approximation: in the vicinity of extreme points, the surface is
approximated by second-order surfaces. In this case, the parameters θk give the
positions of extreme points and the values of the function describing the surface,
as well as its second derivatives, at each of these points. According to the gen-
eral principles of the theory of decisions, in order to obtain information about
the scattering object, one should form the PDF of the realization of the random
noise field En(ρ, t) = Et(ρ, t) − E(ρ, t,α,θ), where θ(θ1, . . . ,θm) is the set of
additional unnecessary parameters of object surface roughness that also need to
be estimated in this case. Then, for instance, the maximum PDF values determine
the most probable estimates of the object parameters. In the case of a determin-
istically described surface, according to Eq. (1.16) and under the condition that
the noise field has a Gaussian distribution and the PDF of the scattered field E is
P[E(ρ, t,α,θ)] ∼ exp(−L), then

L = −1

2

∫∫∫∫
Wn(ρ1, t1,ρ2, t2)[Et(ρ, t) − E(ρ, t,α,θ)]

× [E∗
t (ρ, t) − E∗(ρ, t,α,θ)]dρ1dt1dρ2dt2,

where Wn(ρ1, t1,ρ2, t2) is the inverse correlation function satisfying the integral
equation

∫∫
Wn(ρ1, t1,ρ2, t2)Bn(ρ2, t2,ρ3, t3)dρ2dt2 = δ(ρ1 − ρ3)δ(t1 − t3), and

Bn(ρ1, t1,ρ2, t2) = 〈En(ρ1, t1)E∗
n(ρ2, t2)〉 − 〈En(ρ1, t1)〉〈E∗

n(ρ2, t2)〉 is the noise
correlation function.

The estimates for the parameters αj and θk satisfy the system of differential
equations determining the maximum PDF,

∂L

∂αj
= 0,

∂L

∂θk
= 0, j = 1,2, . . . ,n; k = 1,2, . . . ,m.

We see that due to the detailed description of the rough surface of the object under
study in the considered case, the number of these equations exceeds by far the
number of key parametersαj. This makes it impossible to determine the parameters
of the object in practice.

The solution to the problem is to assume that the field scattered by a rough
surface of the object under study is random, since this field is formed by random
roughness of the scattering surface. Therefore, the field Et analyzed by the observer
[see relation (1.29)] is the sum of the random field and the noise field. The proba-
bility density function for such a field can be found under the assumption that the
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16 Chapter 1

scattered field E has a Gaussian distribution. In this case, it follows from Eq. (1.16)
that the PDF can be written in the form

P[E(ρ, t,α)] ∼ expL,

where

L = −1

2

∫∫∫∫
W(ρ1, t1,ρ2, t2)[Et(ρ2, t2) − 〈Et(ρ2, t2,α)〉]

× [Et(ρ2, t2) − 〈Et(ρ2, t2,α)〉]∗dρ1,dt1,dρ2dt2, (1.30)

and W(ρ1, t1,ρ2, t2) is the inverse correlation function, which is found from the
integral equation∫∫

W(ρ1, t1,ρ2, t2)Bt(ρ2, t2,ρ3, t3)dρ2dt2 = δ(ρ1 − ρ3)δ(t1 − t3). (1.31)

Bn(ρ1, t1,ρ2, t2) = 〈En(ρ1, t1)E∗
n(ρ2, t2)〉 − 〈En(ρ1, t1)〉〈E∗

n(ρ2, t2)〉 is the noise
correlation function, Bt(ρ1, t1,ρ2, t2) = 〈Et(ρ1, t1)E∗

t (ρ2, t2)〉 − 〈Et(ρ1, t1)〉×
〈E∗

t (ρ2, t2)〉 = Bn + B is the correlation function for the total observed field equal
to the sum of the scattered field and the noise field, and

B(ρ1, t1,ρ2, t2) = 〈E(ρ1, t1)E
∗(ρ2, t2)〉 − 〈E(ρ1, t1)〉〈E∗(ρ2, t2)〉.

The mean values used here, according to Eqs. (1.9) and (1.12), are uniquely de-
termined by the correlation function B12 of the roughness height distribution of an
object’s surface. Taking into account that B12 depends on the roughness height de-
viation σ2, correlation radii �u and �v, and correlation time τ0, one can note that the
PDF of the sum field Et also depends on these four parameters, σ, �u, �v, and τ0,
as well as on the key parameters αj of the object and noise field parameters. Since
P[Et(ρ, t,α)] depends on only four statistical parameters of the random surface of
the object under study, it becomes possible to estimate all key parameters αj of the
object by means of the statistical theory of decisions.12,27 We see that for obtaining
the information about the object under study, we must know the statistical charac-
teristics of the scattered and noise fields, including the correlation function B of the
scattered field and the correlation function Bn of the noise field.

Taking into account that the statistics of the scattered field are mainly deter-
mined by the parameters σ, �u, �v, and τ0 of the roughness height distribution
ξ(r), it is reasonable to represent the spectral amplitude E0 of the scattered field as
an explicit function of ξ. It has been shown12 that after assuming that the observa-
tion point is close to the optical axis, ρ� rc, and the degree of surface roughness
is much smaller than the observation distance, ξ(r) � |ρ − rc|, much smaller than
the source–object distance, ξ(r) � |rc − ρs|, and much smaller than Ru and Rv,
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Basic Concepts of the Statistical Theory of Light Scattering 17

i.e., the curvature radii for normal sections that cross the coordinate lines u = 0
and v = 0 at point (u, v), ξ(r) � Ru,Rv, then the field E0 scattered by the object is

E0(ρ,ω) ≈ −ω
2EsSsSr(ω)

2c2rc|rc − ρs|
∫∫ (

q ·N − nu ·q
ru

∂ξ

∂u
− nv ·q

rv

∂ξ

∂v

)
k(r)

× exp

[
−i
ω

c
(|r − ρs| + |r − ρ|)

]
exp

[
i
ωq ·Nξ(r)

c

]
rurvdudv,

(1.32)

where nu = ru/ru, nv = rv/rv, ru = (∂x/∂u,∂y/∂u,∂z/∂u), and rv = (∂x/∂v,
∂y/∂v,∂z/∂v). Here, we do not take into account that the reflection coefficient
k depends on ω since the width of the function Sr(ω), 	ω, is, as a rule, much
less than the mean frequencyω0. Substituting this relation into Eq. (1.18), one can
obtain the scattered field amplitude E(ρ, t).

In what follows, the analysis of the scattered fields will be carried out under
the assumption that the object under study is illuminated by a cw radiation source
with coherence length Lc = c/	ω> 10Ls, where Ls is the depth of the scattering
surface. Here, the depth of the scattering surface is the distance between the two
points that are the furthest and the closest, respectively, to the observation point.
In this case, the amplitude of the scattered field at each point of the observation
area is given by a sum of amplitudes (interference) of all waves scattered by the
object surface and reaching this point. Such a scattered field will be called coherent
(see Appendix 4). In practice, a lot of elements of a rough surface scatter fields to
the same observation point. As a result, the scattered field has a Gaussian distrib-
ution, and its intensity distribution forms a speckle pattern with unity contrast (see
Sec. 1.3). If the coherence length of the source Lc = c/	ω is less than twice the
depth of the scattering surface, 2Ls, then the interference pattern at each point of
the observation area is formed by waves scattered by a single part of the scattering
rough surface with the depth ∼Lc. In this case, the resulting field scattered by the
surface is a sum of statistically independent fields scattered by all of its parts. As
a result, the intensity distribution in the scattered field is a speckle pattern with
contrast less than unity. It is reasonable to define this field as a partially coherent
field. If Lc < 10λ, where λ = (2πc)/ω0, then the scattered field is noncoherent
(see Appendix 4).

As an example of a coherent field, one can consider the field E(ρ, t) scattered
by a large surface area of an object illuminated by a pointlike source that is “almost
monochromatic” (see Appendix 4), in the sense that its coherence length exceeds
by far any typical depth of the object’s scattering surface. In this case, the func-
tion Sr(ω) is concentrated within a narrow frequency interval around the mean
frequency ω0 and can be approximated by a δ-function. Then, it follows from
Eq. (1.18) that

E(ρ, t) = E0(ρ) exp iω0t, (1.33)
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18 Chapter 1

where

E0(ρ) ≈ − EsSs

2λ2rc|rc − ρs|
∫∫ (

q · N − nu ·q
ru

∂ξ

∂u
− nv ·q

rv

∂ξ

∂v

)
k(r)

× exp

[
−i

2π

λ
(|r − ρs| + |r − ρ|)

]
exp

[
i
2πq ·Nξ(r)

λ

]
rurvdudv. (1.34)

In some problems, such as those of Fourier telescopy (see Chapter 4), information
about the object under study can be considerably altered because of a small coher-
ence length of the testing radiation. Still, in this book, the analysis and discussion
of applications will mostly concern coherent scattered fields that are formed when
rough objects are illuminated by cw pointlike monochromatic sources.

1.3 Statistical characteristics of a field scattered by a stationary
object of finite size

In this section, we consider for the Kirchhoff approximation the statistical charac-
teristics of fields scattered by a finite-sized object with a random surface illumi-
nated by a pointlike monochromatic source with wavelength λ = (2πc)/ω0. We
assume here that the object is stable; namely, that object displacement during the
observation time is much less than the wavelength λ.

Let us return to Eq. (1.33), which is convenient for the analysis since it con-
tains explicit dependencies of the scattered field on the directions toward the source
ρs and the observation point ρ. Note that it is also valid for cases where the ob-
servation point or the illuminating source is far from the object under study (see
Fig. 1.3). The term [−i(2π/λ)(|r − ρs| + |r − ρ|)] in Eq. (1.33) describes total
phase shifts appearing due to wave propagation from the source to the points of
the mean surface and then to the observation point. The term [−i(2π/λ)q ·Nξ(r)]
describes additional phase shifts due to the propagation from the mean surface to
the real random surface of the object.

Let us find the mean value of the field scattered by the object. Due to the statis-
tical independence of the parameters ∂ξ/∂u, ∂ξ/∂v, and ξ [see expression (1.15)],
according to Eq. (1.32), we find that

〈E0(ρ)〉 = − EsSs

2λ2rc|rc − ρs|
∫∫ (

q ·N − nu ·q
ru

〈
∂ξ

∂v

〉
− nv ·q

rv

〈
∂ξ

∂v

〉)
k(r)

× exp

[
−i

2π

λ
(|r − ρs| + |r − ρ|)

]〈
exp

[
i
2πq ·Nξ(r)

λ

]〉
rurvdudv.

From the definition of the mean surface, 〈ξ(r)〉 = 0. Then, assuming that ξ has
a Gaussian distribution and using relations (1.2) and (1.12), the variance σ2 =
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〈ξ2(r)〉, and

〈exp(−iϕ)〉 =
∞∫

−∞
exp(−iαϕ)w1(ϕ)dϕ= exp

(
−σ

2
ϕ

2

)
,

where ϕ= 2πξ(q ·N)/λ and w1(ϕ) = (1/
√

2πσϕ) exp(−ϕ2/2σ2
ϕ), we obtain

E0(ρ) = − EsSs

2λ2rc|rc − ρs|
∫∫

q ·Nk(r)

× exp

[
−i

2π

λ
(|r − ρs| + |r − ρ|)

]
× exp−

[
2πσ(q ·N)

λ

]2

rurvdudv. (1.35)

One can see from Eq. (1.35) that in the case where the roughness height standard
deviation σ� λ, 〈E0(ρ)〉 = Em(ρ){1 − [(2q ·Nπσ)/λ]2}, where

Em(ρ) = − EsSs

2λ2rc|rc − ρs|
∫∫

q ·Nk(r)

× exp

[
−i

2π

λ
(|r − ρs| + |r − ρ|)

]
rurvdudv

is the field that would be scattered by an object with the surface coinciding with
the mean surface of the object under study. In the literature, this field is referred to
as the specular component of the scattered field.12 We can also use this relation for
calculating the field formed by a smooth surface.

Under a weaker condition, q · Nσ� λ, the approximate equality 〈E0(ρ)〉 ≈
Em(ρ) holds. This describes the well-known fact that beams incident at grazing
angles are almost totally reflected; the condition q · Nσ� λ corresponds to the
grazing incidence of the beams at steep parts of the surface. The last statement
should be formulated with caution, since the surface of a real object is a compli-
cated superposition of microscopic roughness elements of different scales. This
means that in addition to large-scale roughness, with the standard deviation of the
object surface roughness height σ� λ, there is also small-scale roughness, with
σ� λ. Because of this, even steep parts of the surface do not totally reflect the
incident radiation, and only at points of very steep slope is the reflection specular.

Returning to Eq. (1.35), we see that at σ� λ, most of the surface (with the
exception of small areas where q ·Nσ� λ) satisfies the inequality exp{−[(2πσq ·
N)/λ2]} � 1, from which it follows that if σ� λ, then |〈E0(ρ)〉| � |Em(ρ)|. The
last relation shows that for objects having a rough surface with a roughness height
standard deviation of σ� λ, there is no specular component in the scattered field,
and the mean value of the scattered field very rapidly tends toward zero with an
increase of the ratio σ/λ. This means that the scattered field contains no distinct
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20 Chapter 1

peak. The fact that at σ� λ the mean value of the field scattered by an object with
random surface is very small can be explained as follows. In this case, the field E0
is the sum of a large number of fields with uniform phases distributions within a
range that exceeds 2π. As a result, approximately half of these fields have a phase
shift of π relative to the other fields. Hence, the resulting field at the observation
point is the sum of the fields with opposite signs, which is close to zero.

In practice, there are problems that require the mean intensity of the randomly
scattered field to be known; an example is calculation of the area of a backscat-
tering surface. In some applications, it is necessary to know moments of random
fields or random intensities of higher orders (i.e., second, third, and fourth). This is
necessary, for instance, for determining the relative variance of the intensity of the
scattered field in the observation area. In the literature, this parameter is also called
contrast of the intensity distribution12 or the blinking index.29

Finally, there are problems that require information on the joint field moments
of the second, third, and fourth orders. For instance, under the assumption that a
scattered field has Gaussian distribution, the second joint moment or, more pre-
cisely, the correlation function of the scattered field together with the first moment
(the mean value of the scattered field) completely describe the statistical distribu-
tion of the field, which is given by the PDF [see expression (1.30)]. In turn, the PDF
determines the optimal procedures for field processing.12 The fourth joint moments
of the field allow us to find the intensity correlation functions.

Let us now analyze the correlation function of the scattered coherent field
E(ρ, t) given by relation (1.33):

B(ρ1, t1,ρ2, t2) = 〈E(ρ1, t1)E
∗(ρ2, t2)〉 = exp[iω0(t1 − t2)]〈E0(ρ1)E

∗
0(ρ2)〉.

Taking into account that 〈ξ(∂ξ/∂u)〉 = 0 [see Eq. (1.15)] and hence, the averaging
over the surface roughness and over its derivatives can be performed separately,
we first consider the case σ� λ. Suppose that the following conditions also hold:
σ/�u, σ/�v � dρ/rc, do/rc,

√
λ/rc, where do is the size of the illuminating surface

of an object under study and dρ is the size of the observation area. In the case of
gaining an image of the object, then dρ is the imaging system aperture. Then, ap-
proximating the correlation function of the surface roughness by a Gaussian func-
tion [see relation (1.10)], we obtain for the correlation function of the scattered field

B(ρ1, t1,ρ2, t2) = exp[iω0(t1 − t2)]
×
∫∫

V(r)
[
−i

2π

λ
(|r − ρ1| − |r − ρ2|)

]
dudv, (1.36)

where

V(r) = E2
s S2

s |k(r)|2�u�vrurv

4πλ4r2
c |rc − ρs|2(q ·N)2σ2

exp

[
−(q ·nu)

2�2
u + (q ·nv)

2�2
v

(q ·N)2σ2

]
×
[
(q ·N)2 + (q ·nu)

2
(
σ

�u

)2

+ (q ·nv)
2
(
σ

�v

)2]
,
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and

nu = ru

ru
, nv = rv

rv
.

Equation (1.36) is considerably simplified in the case of isotropic random surfaces,
i.e., for �u = �v = �, where � is the correlation radius of isotropic roughness. In
this case,

V(r) = E2
s S2

s �
2rurv

4πλ4r2
c |rc − ρs|2σ2

ki(r),

where

ki(r) =
[

1 +
(

qtσ

qN�

)2]
exp

[
−
(

qt�

qNσ

)2]
|k(r)|2, (1.37)

qN = q ·N is the projection of the vector q on the normal N to the mean surface of
the object under study, and qt = [(q ·nu)

2 + (q ·nv)
2]1/2 is the length of the pro-

jection of q on the plane tangent to the mean surface. In the next chapter, we will
show that the function ki(r) is proportional to the averaged intensity distribution
in the coherent image of the object. Furthermore, without loss of generality and to
simplify the final results, we will deal only with the objects having surfaces with
isotropic roughness.

Let the field be observed in the Fresnel (near-field) zone, for which (2πρ3)/

(λr2
c) � 1. In this case,

B(ρ1, t1,ρ2, t2) = exp[iω0(t1 − t2)]C0

∫∫
ki(r)

× exp

{
−i

2π

λrc

[
r(ρ1 − ρ2) − ρ2

1 − ρ2
2

rc

]}
rurvdudv, (1.38)

where

C0 = E2
s S2

s �
2

4πλ4r2
c |rc − ρs|2σ2

.

For instance, for a flat object placed on the axis that is orthogonal to the obser-
vation plane, and for a illuminating source placed close to the observer,

B(ρ1, t1,ρ2, t2) = 〈E(ρ1, t1)E
∗(ρ2, t2)〉

= E2
s S2

s �
2

4πλ4r4
cσ

2 exp[iω0(t1 − t2)]
∫∫

|k(r)|2 exp

{
−i

2π

λrc
[r(ρ1 −ρ2)]

}
rurvdudv

∼ sin c

[
2πdo(ρ1x − ρ2x)

λrc

]
. (1.39)
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Of considerable practical interest is the problem of determining the averaged in-
tensity of a field scattered by a nonflat object with random surface. Clearly,

〈I(ρ)〉 ∼ E2
s S2

s �
2

4πλ4r4
cσ

2

∫∫
ki(r)rurvdudv, (1.40)

where I(ρ) = |E0(ρ)|2 is an intensity realization. One can see from this relation
that an increase in the surface roughness steepness σ/� leads to a decrease in the
scattered field intensity. The reason is that a surface with steep roughness scatters
radiation into a broad angular cone.

Consider, for instance, the intensity of the field scattered by a flat object ori-
ented at an angle θ to the observation plane normal for the case where the positions
of the source and the observer coincide:

〈I(θ)〉 = E2
s S2

s �
2So

4πλ4r4
cσ

2

[
1 +

(
σ tanθ

�

)2]
exp

[
−
(

� tanθ

qNσ

)2]
|k(rp)|2,

where So is the area of the illuminating surface of the object. One can see that at
θ1 ≈ σ/�, I(θ) decreases 2.7 times. A simple geometric consideration of scattering
shows that at θ≈ 3σ/�, radiation I(θ) scattered by the object almost does not reach
the observer.

It is well known that the field scattered by a rough object has a speckle pattern
consisting of approximately identical bright speckles (see Fig. 1.4). Usually in the
literature these speckles are referred to as correlation domains of the scattered field
in the observation plane.10–12 The area of the correlation domain is

Sc(ρ) = 1

〈I(ρ)〉
∫

〈E(ρ, t)E∗(ρ1, t)〉dρ1.

For example, for a round flat object placed in the Fresnel zone on the axis orthog-
onal to the observation plane, and for an illuminating source placed close to the
observer, it is not difficult to obtain, using Eq. (1.39), that the correlation domain
is a circle with diameter dc ≈ (λrc)/do and the area Sc(ρ) ≈ πd2

c .
It is convenient to determine the correlation radii of the scattered field in each

direction of the observation plane (Fig. 1.4); for instance, along the coordinates X
and Y on this plane:

ρcx = 1

〈I(ρ)〉
∫

〈E(ρ, t)E∗(ρx,ρy, t)〉dρy,

and

ρcy = 1

〈I(ρ)〉
∫

〈E(ρ, t)E∗(ρx,ρy, t)〉dρx.
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The correlation radii ρcx and ρcy are approximately equal to the width KL and the
height MN of the correlation domain, respectively. For an elliptical (see Fig. 1.4)
or flat rectangular rough object placed in the Fresnel zone on the axis orthogonal
to the observation plane, from Eq. (1.39) we obtain

ρcx ≈ λrc

dxρcy
≈ λrc

dy
, (1.41)

where dx and dy are the sizes of the ellipse (or the rectangle) axes AB and CD,
respectively (Fig. 1.4). For a square flat object, dx = dy = do, and

ρcx = ρcy = ρc ≈ λrc

do
. (1.41a)

Knowing relation (1.40), one can find the effective area of the backscattering sur-
face of the object under study, determined as

Se = 〈I(ρ)〉
KCo

=
∫∫

ki(r)rurvdudv

K
,

where

K = 1

So

∫∫
|k(r)|2rurvdudv.

For a mostly smooth surface, when σ/� < 0.3, and for a constant reflection coeffi-
cient k(r),

Se ≈
∫∫

exp

[
−
(

qt�

qNσ

)2]
rurvdudv.

Figure 1.4 The speckle pattern of a coherent field scattered by a rough object.
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In this case, the effective scattering surface of a flat object placed at angle θ, qN =
2 cosθ, qt = 2 sinθ, and

Se ≈ So exp

[
−
(

� tanθ

σ

)2]
.

From this expression, one can see that the effective scattering surface decreases
dramatically with an increase of θ. In practice, this decrease is not large, since for
tanθ� σ/�, the main contribution to Se(θ) is given by small-scale roughness.12

For the same case σ/� < 0.3, the effective scattering surface of a spherical object
is

Se ≈
∫∫

exp

{
−
[
(x2 + y2)�2

d2
oσ

2

]}
dxdy = πd2

oσ
2

�2
.

Let us now pass from the analysis of first- and second-order moments of the scat-
tered field to the consideration of the fourth-order correlation function of the scat-
tered field, for instance, the fourth-order moments of the scattered field real part Er.
Such a correlation function can be represented by the form

Γ(ρ1,ρ2,ρ3,ρ4)

= 〈Er(ρ1)Er(ρ2)Er(ρ3)Er(ρ4)〉 − 〈Er(ρ1)Er(ρ2)〉〈Er(ρ3)Er(ρ4)〉
− 〈Er(ρ1)Er(ρ3)〉〈Er(ρ2)Er(ρ4)〉 − 〈Er(ρ1)Er(ρ4)〉〈Er(ρ2)Er(ρ3)〉,

where Er(ρ) = Re E(ρ, t).
Generally speaking, it is difficult to analyze this relation. However, it can be

estimated for certain applications-oriented cases. Yet, if the object under study is
a flat object placed in the Fresnel zone and illuminated by a plane wave directed
normally to its surface and �2 � Se = So, then Γ(ρ1,ρ2,ρ3,ρ4) = A1 + A2 + A3,
where

A1 = CΓ

∫∫
|k(r)|4 exp

[
i
2πr(ρ1 − ρ2 + ρ3 − ρ4)

λrc

]
rurvdudv,

A2 = CΓ

∫∫
|k(r)|4 exp

[
i
2πr(−ρ1 − ρ2 + ρ3 + ρ4)

λrc

]
rurvdudv,

A3 = CΓ

∫∫
|k(r)|4 exp

[
i
2πr(−ρ1 + ρ2 − ρ3 + ρ4)

λrc

]
rurvdudv,

and

CΓ = 3�4E4
i

σ2r2
cλ

2
.
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If the correlation radius � → 0, then Γ(ρ1,ρ2,ρ3,ρ4) → 0. This is quite a natural
result: the decrease of � increases the number of independent contributions to the
scattered field, and hence, the scattered field distribution becomes Gaussian. Here,
as it is known, Γ(ρ1,ρ2,ρ3,ρ4) = 0.12,29

It is interesting to estimate the normalized fourth-order correlation function,
which gives quantitative information about the deviation of the real scattered field
distribution from the Gaussian one:

χd = Γ(ρ1,ρ2,ρ3,ρ4)

〈|Er(ρ1)|2〉〈|Er(ρ2)|2〉
.

If �2 � Sp, then χd = 1/Nc � 1, where Nc = So/�
2 is the number of independent

contributions to the scattered field, which is approximately equal to the number of
separate elements of the rough surface. This means that the scattered field E(ρ, t) is
the sum of a large number Nc of statistically independent fields scattered by these
elements. In this case, the condition Nc � 1 of the central limit theorem is satisfied,
and E(ρ, t) has essentially Gaussian distribution.

Let us write another useful relation, which is valid for �2 � So and σ� λ,
when the scattered field distribution is also approximately Gaussian:12

〈I(ρ1)I(ρ2)〉 − 〈I(ρ1)〉〈I(ρ2)〉 = |〈E(ρ2)E
∗(ρ2)〉|2

(
1 + �2

So

)
≈ |〈E(ρ2)E

∗(ρ2)|2. (1.42)

For ρ1 = ρ2 = ρ,

〈
I2(ρ)

〉− 〈I(ρ)
〉2 = 〈I(ρ)

〉2(
1 + �2

So

)
. (1.42a)

These last results are often used in optics. They indicate that for �2/So � 1, the
scattered field has a Gaussian distribution and there is a relationship between the
intensity correlation function and the field correlation function. The value �2/So
describes deviation of the scattered field distribution from a Gaussian one. Hence,
the intensity distribution I(ρ) = |E(ρ)|2 with �2/So � 1 is a speckle pattern, with
an average speckle size approximately equal to the average size ρc = (λrc)/do
of speckles in the scattered field E(ρ) (see Fig. 1.4). The intensity distribu-
tion I(ρ) is called in the literature the intensity hologram.11 One can show11

that the intensity distribution in the image reconstructed with this hologram is
H(δ) ∼ ∫ I(ρ) exp[(i2πρ ·δ)/(λrzi)]dρ, where zi is the distance between the holo-
gram and the image plane, λr is the wavelength of the reconstruction radiation, and
that the mean intensity distribution in the reconstructed image is the autocorrelation
function of ki(r), 〈H(δ)〉 ∼ ∫ ki(r)ki(r +µδ)dr. Here, δ is the radius vector in the
reconstructed image plane, and µ = rc/zi is a scaling factor.11 The reconstructed
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26 Chapter 1

image is a speckle pattern with speckle size ∼(λrzi)/dh, where dh is the hologram
size. Figure 1.5 presents the reconstructed images of rough, flat, triangular-shaped
objects for several hologram sizes.

We see that decreasing the hologram size leads to an increase in speckle size
in the reconstructed image. The size of a reconstructed image is equal to twice the
object size. In our case it is ∼20 mm. Intensity holography can be used as a simple
method for obtaining data about remote objects in a turbulent atmosphere.11 The
image reconstructed with the help of intensity holography is the autocorrelation of
the object image, which enables one to measure object size. It has a speckle pattern,
with speckle size depending on the hologram size.

The parameter C = [〈I2〉 − 〈I〉2]/〈I〉2 describes relative intensity fluctuations
for the scattered field (the blinking index or the contrast). In Ref. 29, the relation
for the blinking index is given. References 31 and 32 contain expressions for the
normalized intensity correlation function and the intensity contrast in the case of
plane wave scattering by an infinite, flat, chaotic phase screen. This case is identical
to the case of plane wave scattering by a flat rough object under the condition of
normal incidence of the illuminating wave. In this case, phase modulation of the
incident wave by the chaotic screen is equivalent to the modulation of the radiation
due to its penetration into the hollows of the object’s surface and the resulting phase
shift variation, ϕ(r) ≈ (4π/λ)ξ(r).

In Ref. 29, relations for the blinking index (contrast) of the intensity distribu-
tion in the scattered field in the Fresnel zone are given for the case of plane wave
scattering by a flat rough object. In our notation,

C = 1

λ2r2
c

∫∫∫∫ 〈
exp

{
i
2π

λ

[
ξ(r1) − ξ(r2) + ξ(r3) − ξ(r4)

]}〉
× exp

[
i
π

λrc

(
r2

1 − r2
2 + r2

3 − r2
4

)]
dr1dr2dr3dr4.

As shown in Ref. 29, the blinking index is maximal at rc ≈ �2/σ, and its maxi-
mum value is approximately 2 log2(σ/λ). It is considerably different from unity if
σ/λ� 1. Such a high blinking index causes an interesting effect of amplifying the

Figure 1.5 Reconstructed images of a rough, flat object of triangular shape. The
distance from the object is rc = 2 m, the distance from the image plane is zi = 2 m,
λ= 0.63µ, the object size is do ≈ 10 mm, and the hologram size from left to right is
dh = 2 mm, 1 mm, 510−2 mm, and 210−2 mm.
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backscattered field.40 This effect occurs when, for example, a narrow laser beam
illuminates a sea wave. It can be explained by the focusing properties of this wave,
which can be represented as a separate element of the wavy sea surface forming a
lens with the focal distance f ∼ �2/σ.

The increase of the blinking index above unity is caused by the focusing effect
of the scattering surface roughness. In fact, a single element of the rough surface
can be approximately represented as a fragment of a collecting mirror with the
diameter df ∼ � and bending approximately equal to σ; hence, its focus is of the
order of �2/σ (see Appendix 5). At rc � �2/σ, intensity fluctuations, according to
Ref. 29, correspond to C = 1. However, one can show that at rc � �2/σ, condi-
tion (1.42) is satisfied. It follows that if the correlation radius of surface roughness
is smaller than the size of the scattering surface by more than one order of magni-
tude, then the blinking index (contrast) is close to unity; it is equal to

C ≈ 1 + �2

Sρ
. (1.43)

1.4 Statistical characteristics of fields scattered by a moving object

The structure of a scattered field is rather complicated and cannot be fully de-
scribed by means of a statistical approach, even in the case of radiation scattering
by a fixed object with rough surface. In the general case, the scattering object can
be moved and deformed simultaneously, so that both its mean surface and the de-
viations from this surface would vary in time. Here, even for a monochromatic
source, the scattered field would have a complicated time dependence in addition
to the time multiplier exp(iωt).

Let us first show that for velocities and deformation rates much smaller than
the speed of light and for sufficiently small observation times, this field can be cal-
culated by fixing certain positions of the object and calculating the fields scattered
at each fixed position. This method is called the quasi-static principle.12 Here, we
restrict consideration to the statistical properties of fields scattered by a moving
object illuminated by a pointlike monochromatic source with frequency ω0. In
Ref. 12, it was shown that under the condition when the relativistic phase shift is
small,

ϕr = 2ω0v2
cT

c2 � 1, (1.44)

where vc is the velocity of the moving object’s center of mass, and the field E
scattered by this object at time t can be expressed as

E(ρ, t) = exp(iω0t)

2λrc(t)

∫
n(t) ·q(t)

n(t) ·N(t)
k(u, v, t)Ei(u, v, t)

× exp

[
−i

w0

c
(|rΣ − ρs| + |rΣ − ρ|)

]
ru(t)rv(t)dudv, (1.45)
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where

q(t) ≈ − r(t) − ρ

|r(t) − ρ| − r(t) − ρs

|r(t) − ρs|
,

and

rΣ(u, v, t) = r(u, v, t) + N(u, v, t)ξ(u, v, t),

ρs is the radius vector of the source, r(u, v, t) is the radius vector of the mean sur-
face, N(u, v, t) is the normal to the mean surface, ξ(u, v, t) is the surface roughness
height distribution, namely, random deviations from the mean surface along the
normal [see Eq. (1.1)], and Ei(u, v, t) is the illuminating source field amplitude on
the object’s surface.

The condition (1.44) is of relativistic origin but can manifest itself at rather low
velocities. This can be demonstrated with a simple example. Let the object under
study move from (or to) the source and an observer situated near the source, with
the constant velocity vc. One can show12 that the phase variation of the field scat-
tered by this object is ϕ(t) = (2vctωo)/c + (2v2

ctωo)/c. The first term determines
the Doppler frequency shift νd = 2vc/λ. We shall discuss this term later. The sec-
ond term has a relativistic origin. If, for instance, vc = 1 m/s for the observation
time T � (λc)/v2

c ≈ 1.5 s, then the relativistic term ϕr � π. It has practically
no influence on the phase time variation. Yet, this example also shows that for a
sufficiently long observation time, relativistic effects can make a considerable con-
tribution to the time variation of the observed field even for velocities much slower
than the speed of light. In this example, the observation time should be of the or-
der of 1 s. At rather high velocities, relativistic effects can be easily observed, as
one can see from Eq. (1.44), even at very short observation times. In the example
considered here, at vc ∼ 104 m/s and T ∼ 10−6 s, the relativistic term is ϕr ≈ π.

In what follows, we consider the condition (1.44) to be satisfied. Then, expres-
sion (1.45) gives a quasi-static approximation of the field E scattered by the moving
object.12 Let us discuss its physical essence (Fig. 1.6). Comparing relations (1.44)
and (1.27), we can make the following conclusion: at sufficiently short observation
time, when displacement of each point of the moving object is so small that the in-
equality (1.44) holds, then the scattered field at time t can be calculated just as the
field scattered by an object fixed in the position it occupies at t. Figure 1.6 shows
two fixed positions of the object (a moving solid) at moments t1 and t2.

For ξ(u, v, t) � ρ� rc, we get

E(ρ, t) = exp(iω0t)

2λrc(t)

∫
n(t) ·q(t)

n(t) ·N(t)
k(u, v, t)Ei(u, v, t)

× exp

[
−i

2π

λ
(|r − ρs| + |r − ρ|)

]
× exp

[
i
2π

λ
q(t) ·N(t)ξ(u, v, t)

]
ru(t)rv(t)dudv, (1.46)

where rc(t) is the radius vector of the object’s center of mass (see Fig. 1.6).
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Figure 1.6 The physical essence of the quasi-static approximation for the field E
scattered by a moving solid body rotating around its center of mass with the stable
axis perpendicular to the figure plane (ϕ0(t) = 0). The solid line shows the position
of the object at moment t1 of observing the scattered field. Dashed line is the object
position at time moment t2. θ0(t1) and θ0(t2) are the rotation angles at moments t1
and t2. Here, ϕ0(t) and θ0(t) describe rotations of the solid body around its center of
mass. rc(t1) and rc(t2) are positions of the center of mass at moments t1 and t2.

Consider expression (1.46) in the case of a short observation time T of the
scattered field, when T � √

λ/a(u, v, t0), with a(u, v, t0) being the acceleration of
a small object surface part at point (u, v) and t0 being the initial time of observing
the scattered field. Taking into account the relation

d[|r(t) − ρ| + |r(t) − ρs|]
dt

∣∣∣∣
t=t0

= v(t0) ·q(t0),

which can be easily verified, we obtain

E(ρ, t) = exp(iω0t)

2λrc(t0)

∫
n(t0) ·q(t0)

n(t0) ·N(t0)
k(u, v, t0)Ei(u, v, t0) exp[−iνd(t − t0)]

× exp

[
i
2π

λ
(|r(t0) − ρ| + |r(t0) − ρs|)

]
× exp

[
i
2π

λ
q(t0) ·N(t0)ξ(u, v, t0)

]
ru(t0)rv(t0)dudv. (1.47)

Here,

νd(u, v, t0) = [v(u, v, t0) ·q(u, v, t0)]
λ

is the distribution of Doppler frequencies over the object surface at the initial time
of observing the scattered field t0. This distribution is determined by small time
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30 Chapter 1

variations of the phases of coherent radiation scattered by small parts of the object
surface as the radiation propagates from the source to surface parts and from the
surface parts to the observer. In the foregoing, we considered the simple case of
a field scattered by an object moving toward the observer with velocity vc. In this
case, νd = 2vc/λ.

Let us analyze the statistical characteristics of fields scattered by moving ob-
jects. We start from the scattered field averaged value. In this case, using the rela-
tion

〈exp(−iϕ)〉 =
∞∫

−∞
exp(−iαϕ)w1(ϕ)dϕ= exp

(
−σ

2
ϕ

2

)
,

we obtain

〈E(ρ, t)〉 ≈ exp(iω0t)

2λrc(t)

∫
n(t) ·q(t)

n(t) ·N(t)
k(u, v, t)Ei(u, v, t)

× exp

[
−i

2π

λ
(|r − ρs| + |r − ρ|)

]

× exp

[
−
(

2πσqN

λ

)2]
ru(t)rv(t)dudv. (1.47a)

We see from this relation that the mean value of the field scattered by a moving
rough object with qNσ� λ very rapidly tends toward zero with an increase of the
ratio σ/λ. The same result can be obtained for the field scattered by a fixed rough
object with qNσ� λ [see relation (1.33)].

Let us consider this expression for a flat, square, rough object moving parallel
and at a small angle α to the observation plane with constant velocity vc, under the
condition that the illuminating source and the observation point are placed at the
center of the laboratory frame of reference and in the Fresnel zone with respect to
the object (Fig. 1.7). In this case, ρs = ρ = 0, and

〈E(ρ, t)〉 ≈ exp(iω0t)

2λrc(t)
exp

[
−
(

4πσ

λ

)2]

×
do/2∫

−do/2

do/2∫
−do/2

k(x, y)Ei(x − vct, y) exp

(
−i

4πxα

λ

)
dxdy,

where α is the angle between the plane and the axis, do is the size of the illuminated
surface of the object, and Ei(x, y) is the distribution of the illuminating radiation
amplitude on an illuminated surface. If this distribution is constant over the object’s
surface, then the scattered field has no time dependence except exp(iω0t). This
means that such motion does not lead to the Doppler shift.
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Figure 1.7 Backscattering of the coherent field by a moving rough object with a flat
mean surface. The thick dashed curve is the object’s surface position at moment t.
The two dashed parallel lines show the changing beam path in the course of the
object’s motion.

The situation is different if this amplitude is limited. Suppose, for example, that
the object is illuminated by a very narrow Gaussian beam with width b < λ/α, and
with

Ei(x) = Ei(0) exp

(
−x2

b2

)
,

where Es is the amplitude of the illuminating source. Then,

〈E(t)〉 ≈ dob exp(iω0t)Ei

2λrc(t)
exp

(
−4π2b2α2

λ2

)

× exp

[
−
(

4πσ

λ

)2]
k(vct) exp

(
−i

4πvctα

λ

)
.

This result shows that for a moving object illuminated by a narrow beam, the scat-
tered field has a frequency shift equal to (2vctα)/λ even if the object moves or-
thogonally to the illuminating beam. It follows that due to the motion of the object,
the illuminating beam hits different parts at different distances from the observer,
which leads to a variation of the phase shifts in the radiation scattered by the object.

Let us proceed to the analysis of the scattered field correlation function,

B(ρ1, t1,ρ2, t2) = 〈E(ρ1, t1)E(ρ2, t2)〉 − 〈E(ρ1, t1)〉〈E(ρ2, t2)〉.
We will consider it for the case of rather large-scale surface roughness, where
qNσ = q · Nσ� λ [see relation (1.47a)]. Then, the mean value 〈E(ρ, t)〉 of the
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field E scattered by the moving rough object is close to zero, and

B(ρ1, t1,ρ2, t2) ≈ 〈E(ρ1, t1)E
∗(ρ2, t2)〉.

Assume that the surface roughness is isotropic (�u = �v = �), and also suppose that
the following conditions are satisfied:

σ

�
� dρ

rc
,

do

rc
,

√
λ

rc
,

and

	t = t1 − t2 � σ2

�2

[
∂(ruq)

∂t

]−1

,
σ2

�2

[
∂(rvq)

∂t

]−1

,
λ

σ

[
∂(qN)

∂t

]−1

,
λrc

vcdρ
,
λrc

vcdo
,

where 	t is the time interval of the correlation function formation. Then, in the
quasi-static approximation, allowing us to calculate E(ρ1, t1) and E∗(ρ2, t2) from
relation (1.46), for an arbitrarily deformed and moving object, under the condition
that the mean surface of the object has nearly constant orientation during the time
interval 	t, we obtain the correlation function in the form

B(ρ1, t1,ρ2, t2) = 〈E(ρ1, t1)E
∗(ρ2, t2)〉

= �2

σ2r2
c

exp[iω0(t1 − t2)]
∫∫

ki(u, v, t1)|Ei(u, v, t1)|2

× exp iψ(u, v, t1) exp[i2πνd(t2 − t1)]r2
u(t1)r

2
v(t1)dudv, (1.48)

where ψ(u, v, t) = 2π/λ(|r(u, v, t) − ρ1| − |r(u, v, t) − ρ2|), r(u, v, t) is the radius
vector of the instant mean object surface at time t, νd = (v ·q)/λ, and v(u, v, t) is
the vector of instantaneous velocity of a point (u, v) on the mean surface.

For the case of a moving solid nondeformable body (see Fig. 1.6), it is con-
venient to rewrite the correlation function of the field scattered by this object in
spherical coordinates, with the origin at the center of mass of the solid body:

B(ρ1, t1,ρ2, t2)=〈E(ρ1, t1)E
∗(ρ2, t2)〉

= �2

σ2r2
c

exp[iω0(t1 − t2)]
∫∫

ki(θ,ϕ, t1)|Ei(θ,ϕ, t1)|2

×exp iψ(θ,ϕ, t1) exp[i2πνd(t1)(t2 − t1)]R2(θ,ϕ) cos2 θdθdϕ,

(1.48a)

where

νd(t) = [v(θ,ϕ, t) ·q(θ,ϕ, t)]
λ

, v(θ,ϕ, t) = vc(t) + {� × [r(t) − rc(t)]}
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is the instantaneous velocity of the point on the solid-body surface; �(t) is the
vector of instantaneous angular velocity of the solid body; vc(t) is the instantaneous
velocity of the solid body’s center of mass; R,θ, and ϕ are spherical coordinates
of the solid body’s surface; ϕ0(t) and θ0(t) describe the rotations of the solid body
around its center of mass (Fig. 1.6);

ψ(u, v, t) =
(

2π

λ

)
(|r(θ,ϕ, t) − ρ1| − |r(θ,ϕ, t) − ρ2|),

r(t) = r(θ,ϕ, t) = (X,Y,Z),

X = R(θ,ϕ) sin[θ+ θ0(t)] cos[ϕ+ϕ0(t)] + xc(t),

Y = R(θ,ϕ) sin[θ+ θ0(t)] sin[ϕ+ϕ0(t)] + yc(t),

and

Z = R(θ,ϕ) sin[θ+ θ0(t)] + zc(t)

are components of the radius vector of the instant mean object surface at time t;
and xc(t), yc(t), zc(t) are components of the radius vector rc(t).

Expression (1.48a) transforms into expression (1.36) for the correlation func-
tion of the field scattered by a fixed object. If v(θ,ϕ, t) �= 0, with the increase of
the time interval 	t = t1 − t2, the correlation function B(ρ1, t1,ρ2, t2) of the field
scattered by the moving solid body rapidly decreases; and after a rather large time
interval, full decorrelation results. The correlation time is given by

tc = 1

I(ρ, t)

t0+T∫
t0

〈E(ρ, t)E∗(ρ, t1)〉dt1,

where I(ρ, t) = |E(ρ, t)|2.
Let us consider two examples. In the first example, a flat, rough, square object

placed in the Fresnel zone moves along the X axis orthogonally to the beam illu-
minating the object as a whole, and the observer is close to the source. In this case,
where Ei and k are constant, it follows from Eq. (1.48a) that

B(ρ1, t1,ρ2, t2) = 〈E(ρ, t1)E
∗(ρ, t2)〉

= |Ei|2�2

σ2

do/2∫
−do/2

do/2∫
−do/2

|k(x, y)|2 exp

[
i
4πxvc(t2 − t1)

λrc

]
dxdy

= |Es|2�2d2
o

σ2r2
c

sin c

[
2πdovc(t2 − t1)

λrc

]
, (1.49)

where vc is the object velocity, and rc is the distance from the object.
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From the last expression, one can easily see that the correlation time is tc ≈
(λrc)/(dovc). One can see from this relation that a complete decorrelation occurs
as the object is displaced by 	xc = vc(t1 − t2) = ρc ≈ (λrc)/do, where ρc is the
correlation radius of the field scattered by a fixed square object [see Eq. (1.40a)].
Such a decorrelation can be explained by comparing Eq. (1.47) with Eq. (1.37)
for the correlation function of the field scattered by a fixed object but observed at
different points in space ρ1 and ρ2 [see Fig. 1.8(a)]. One can show that at small
displacements 	x of the solid body and for small distances |ρ1 − ρ2| between
the observation points, these relations have a similar structure. This means that
a field scattered by a moving object and registered by a fixed observer at space
points ρ1 and ρ2 varies the same way as the field scattered by a fixed object but
registered by an observer moving with velocity vo. If vo = vc and |ρ1 − ρ2| = 	x,
relations (1.37) and (1.47) become identical. As a result, displacement of the object
causes a simultaneous displacement of the scattered field and of its speckle pattern.
Hence, the correlation time tc is the time of this displacement by a distance equal
to the size of the correlation radius ρc of the field scattered by fixed object. This
displacement is equal to the speckle size dr ≈ (λrc)/do [see (1.40a)]. Therefore,

tc = dr

vc
≈ λrc

dovc
.

Figure 1.8 Two explanations of the correlation time tc ≈ (λrc)/(dovc) of the field
scattered by a moving object: (a) the correlation time is the time of the scattered
field displacement at the distance equal to the speckle size ρc ≈ (λrc)/do (the dashed
line is the speckle pattern formed by the fixed object); (b) the correlation time is
determined by the spread 	νd = (a + b)/λ of the Doppler frequencies: tc ≈ 1/	νd.
Here, a and b are projections of the vector vc on lines connecting the edge points of
the object, with the observer placed at point ρ1.
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Another explanation of the correlation time tc ≈ (λrc)/(dovc) of the field scat-
tered by a moving object is based on the spread of the Doppler frequencies caused
by the object’s motion. This spread is 	νd = (a + b)/λ, where a and b are pro-
jections of the vector vc on lines connecting the edge points of the object with the
observer placed at point ρ1. From Fig. 1.8(b) it is easy to see that a+b ≈ (vcdo)/rc.
Hence, 	νd ≈ (dovc)/(λrc), and the correlation time of the scattered field is
tc = 1/	νd ≈ (λrc)/(dovc).

In the second example, a flat, square, rough object placed in the Fresnel zone
rotates around a fixed axis parallel to the observation plane (Fig. 1.9). In this case,
if the observer is placed adjacent to the illuminating source and Ei(x, y) and k(x, y)
are constant, it follows from Eq. (1.48a) that

〈E(ρ, t1)E
∗(ρ, t2)〉 = �2

σ2

do/2∫
−do/2

do/2∫
−do/2

|Ei(x, y)k(x, y)|2 exp

[
i
4πx�(t2 − t1)

λ

]
dxdy

= |Ei(0,0)k(0,0)|2�2d2
o

σ2r2
c

sin c

[
2πdo�(t1 − t2)

λ

]
. (1.50)

Figure 1.9 Two explanations of the correlation time tc ≈ λ/(do�) of the field scat-
tered by a rotating object. In (a) the correlation time is the time of the scattered field
rotation by angle λ/do, which is equal to the speckle angular size βc ≈ ρc/rc; in (b) the
correlation time is the time determined by the spread 	ν= (c + d)/λ of the Doppler
frequencies: tc ≈ 1/	ν�. Here, c and d are projections of the vectors v1 and v2 of the
edge points of the rotating object on lines connecting these points, with the observer
placed at point ρ1.
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From this expression, we see that a complete decorrelation occurs as the object
rotates by the angle 	αc = �(t1 − t2) equal to ρc/rc = λ/do, where ρc = (λrc)/do
is the correlation radius ρc of the field scattered by a stable square object placed at
distance rc. Hence, 	αc is equal to the angular size β of the speckle in this field
[see Eq. (1.40a)]. Such a decorrelation can be explained by comparing Eq. (1.48)
with relation (1.37) for the correlation function of fields scattered by a fixed object
but observed in different directions [see Fig. 1.9(a)], which can be rewritten as

〈E(ρ1, t)E∗(ρ2, t)〉 ∼ sinc

[
2πdo	ψ

λ

]
, (1.51)

where 	ψ is the angle between the directions. If the observer moves relative to the
fixed object with the angular velocity �,	ψ= �(t1 − t2), the correlation function
of the field scattered by the fixed object and observed at different points ρ1 and ρ2
coincides, after replacing |ρ1 −ρ2|/rc = 	ψ, with correlation function (1.50). One
can also see that rotation of the object leads to a decorrelation of the scattered fields,
and displacement of the observer synchronously to this rotation leads to the same
decorrelation of the fields scattered by a fixed object. Hence, decorrelation can be
interpreted as a complete change of fields caused by the rotation of the scattered
field as a whole by the angle βc, and the correlation time of the scattered field is
tc ≈ βc/� = λ/(do�).

Another explanation of the correlation time tc of the field scattered by the ro-
tating object consists of the spread of the Doppler frequencies caused by the object
rotation [see Fig. 1.9(b)]. This spread is 	νd = (c + d)/λ, where c and d are pro-
jections of the vector velocities v1 and v2 of the edge points of the object on the
lines connecting these points, with the observer placed at point ρ1. From Fig. 1.9(b)
it is easy to see that c + d ≈ �do. Hence, 	νd ≈ (do�)/λ, and the correlation time
of the scattered field is tc = 1/	νd ≈ λ/(do�).

Consider now how illuminating a moving object by a narrow beam affects the
correlation function of the field scattered by the object. In order to find out the
physical origin of this effect, it is reasonable to consider it in the case of a flat
square object moving parallel to the observation plane with velocity vc. Let the
object be illuminated by a beam directed normal to the object surface. In this case,
from the relation

〈(E(ρ, t1)E
∗(ρ, t2)〉 =

(
�2

σ2

)∫∫
|Ei(x, y)k(x, y)|2 exp

[
i
2πxvc(t2 − t1)

λrc

]
dxdy,

where ρ is the radius vector of the observer, we obtain, for the case of a Gaussian
illuminating beam, Ei(x, y) = Ei(0,0) exp(−x2/b2), where b is the beam width
under conditions (λ�)/σ� b � do,

〈|E(ρ, t1)E
∗(ρ, t2)|〉 = |Ei(0,0)k(0,0)|2�2dob

σ2r2
c

exp

{
−
[
πvc(t1 − t2)b

λrc

]2}
.

(1.52)
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We see from this equation that in this case, the correlation time tc ≈ (λrc)/(2bvc).
Comparing Eq. (1.52) with relation (1.49), one can see that in the considered case,
the correlation time increases with a decrease of the illuminating beam width.

1.5 Conclusions

1. For the description of a rough object surface, it is convenient to consider a
smooth, deterministic average (mean) surface and a random, nonsmooth sur-
face differing from the mean surface by a small value. Deviations from the
mean surface are called the object surface roughness height. The roughness
height distribution is a space–time random process, which can be represented
by a Gaussian probability density function. Each realization of roughness
height is determined by four parameters: the standard deviation, σ; correlation
radii in orthogonal directions, �u and �v; and the correlation time, τ0.

2. The field scattered by a rough surface can be described by the Kirchhoff ap-
proximation and in terms of local plane waves incident at each surface point
and reflected from the tangential plane at the same point. As a rule, the field
in the observation plane is the sum of two random processes, the noise field
and the field scattered by rough surfaces.

3. A sufficiently complete description of this field can be given by the Gaussian
probability density function. Each realization of the field scattered by rough
surfaces is determined by the shape of the mean surface as well as by the four
parameters characterizing the random surface: the standard deviation, σ; cor-
relation radii of the object surface roughness height in orthogonal directions,
�u and �v; and the correlation time, τ0, of the object surface roughness height.

4. The average intensity of the field scattered by a rough surface is determined
by the shape of the mean surface, the standard deviation σ, and the correla-
tion radii of roughness height in orthogonal directions, �u and �v. The correla-
tion radii of the scattered field in the orthogonal directions on the observation
plane, ρcx and ρcy (the average dimensions of a single speckle in the scattered
field), are inversely proportional to the dimensions of the object scattering
area in the same directions. Relative fluctuations (also called the contrast or
blinking index) of the intensity of the field scattered by a rough surface in
the vicinity of the object surface can exceed unity. Far from the surface, the
contrast is close to unity.

5. Intensity of the field scattered by a rough surface is the object intensity holo-
gram. Intensity holography can be used as a simple method for obtaining data
about remote rough objects in a turbulent atmosphere.11 The object pattern
reconstructed with the help of an intensity hologram is described by the au-
tocorrelation function of the intensity distribution in the object’s undistorted
image, which, in particular, allows one to measure object size. The recon-
structed pattern has a speckle structure, where the speckle size depends on
the hologram size.

6. When an object moves at sufficiently low velocity compared to the speed
of light, which is usually the case in practice, the quasi-static principle is
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realized: the field scattered by a moving object at each moment is the same as
if the object were stationary.

7. The space–time correlation function and the correlation time tc for a field
scattered by a moving rough object have a rather complicated dependence
on the object’s motion, the shape of its surface, and the intensity distribution
for the illuminating radiation. In particular, for the case of a rotating object
and constant intensity distribution of the illuminating radiation on the object
surface, the field correlation time is determined by the ratio of the scattered
field correlation radius to the angular rotation rate.
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Chapter 2

Statistical Description of Coherent Images

2.1 Introduction

In this chapter, we use the models of coherent fields scattered by extended objects,
which were studied in Chapter 1, for the statistical description of coherent images.
According to our definition, an image will be called coherent if each point of it is
formed by interfering contributions of all waves coming from the smallest part of
the object’s surface that is resolvable by the imaging system. In this case, a speckle
pattern is formed in the image plane. The conditions for the formation of coherent
images will be considered in detail in Sec. 2.5. We consider the general theory of
remote object coherent imaging, which takes into account the correlation proper-
ties of roughness height distribution on the object’s surface as well as the spectrum
Sr(ω) of the illuminating radiation. The interest in coherent images lies in their
wide use in remote sensing,12 and because the formation of coherent images pro-
vides the most complete information about an object in the presence of additional
noise. This was first shown in Ref. 11 from the viewpoint of the theory of statis-
tical decisions, by means of processing the fields scattered by rough objects and
calculating the probability density function for these fields (see Sec. 1.2).

In most works on coherent images, one considers flat rough objects placed on
the axis of the optical system (the lens), which forms coherent images in mono-
chromatic light. At each point of the image, the field is assumed to have Gaussian
distribution. However, in practice, the objects are usually not flat and their posi-
tions with respect to the optical system are arbitrary. In addition, sometimes it is
necessary to use images formed in quasi-monochromatic light. For these reasons,
one should take into account that the correlation properties of the object surface
and the spectral properties of the illuminating source influence the properties of
coherent images. In this chapter, this influence is studied in detail, which provides
a more accurate and complete description of coherent images of objects with ar-
bitrary shapes. In particular, the contrast and the correlation radius of the speckle
patterns are defined more accurately. If the imaging system resolves the object sur-
face roughness, then, as we will show, the field distribution in the coherent image
is essentially non-Gaussian. We dealt with such deviations in the previous chapter
when we analyzed fluctuation characteristics of the scattered radiation in the case
of illumination with a narrow monochromatic beam. Deviations from Gaussian
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statistics are related to certain peculiarities in the fluctuation and correlation prop-
erties of images, which also will be considered in detail below. This chapter is
closely connected with Appendix 5, where detailed semi-qualitative explanations
of speckle pattern formation in the images of rough objects are given and calcula-
tions for the contrast are presented.

2.2 Statistical properties of fields in coherent images

In this section, we analyze the statistical properties of coherent images of nonflat
objects formed by their illumination by pointlike monochromatic sources. The fol-
lowing characteristics will be studied: the first, second, third, and fourth moments
of real and imaginary parts of the fields in the image, and the first and second
moments of the intensity distribution in the image. Much of the analysis will be
devoted to coherent images of flat rough objects since they provide an explicit ex-
ample of using coherent images for remote sensing. To start, we will analyze the
field in a coherent image and the mean value of this field. Using relations (1.24)–
(1.28) and the Kirchhoff approximation, we can write the field in a coherent image
in the form12 (see Fig. 2.1)

E(δ) = Ai

∫
n · q
n · N

k(r) exp

[
i
2π

λ
q · Nξ(r)

]
exp

[
i
2π(|r − ρs| + r)

λ

]
hω(r,δ)dr,

(2.1)
where q = −νi +νo, with νi = (r −ρs)/|r − ρs|, νo = −(r − ρ)/|r −ρ|, δ is the
radius vector in the image plane, r = r(u, v) is the radius vector of the mean surface
of the object, ξ(r) is the distribution of surface roughness height, ρs is the radius
vector of the illuminating monochromatic pointlike source, Ai = [(SρEi)/(λ

2rczi)],
Ei = (EsSs)/(λrc) is the amplitude of the illuminating radiation on the object under
study, Es is the source amplitude, Ss is the source area, rc = |rc|, rc is the radius
vector of the object’s center of mass, zi is the distance from the imaging system
aperture plane to the image plane, which satisfies the lens formula 1/rc + 1/zi =

Figure 2.1 Geometry of image formation. The dashed line is the mean surface of
the rough object. Pr = (rcλ)/dρ is the size of the minimally resolved domain on the
object surface.
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1/f , λ= (2πc)/ω, f is the imaging system focal length, and

hω(r,δ) = 1

Sρ

∫
�(ρ)exp

[
i
ω

c
ρ ·
(

r
rc

+ δ

zi

)]
dρ (2.2)

is the pulse response of the imaging system describing the field distribution in the
image of a single point of the object at the frequency of the illuminating source.
In Eq. (2.2), �(ρ) is the pupil function. Integration in Eq. (2.1) runs over the il-
luminated surface of the object, and integration in Eq. (2.2) runs over the imaging
system aperture with the area Sρ.

Let us demonstrate explicitly how the statistical properties of an object, includ-
ing correlations between different surface points, influence the statistical charac-
teristics of coherent images. We begin the analysis by considering the image of
a simple rough object that has a flat mean surface orthogonal to the axis of the
imaging system.34 The pointlike illuminating source is placed almost exactly at
the center of the imaging system aperture (ρs = 0). At first we assume that the
imaging system does not resolve separate elements of the rough surface of the ob-
ject and the object is illuminated by a plane wave propagating along the imaging
system axis. Then, the following relation holds:

E(δ) = Ai

∫
k(r) exp[iϕ(r)] exp

[
i

(
4πr

λ

)]
hω(r,δ)dr,

where ϕ(r) = (4πξ(r)/λ). Assuming some particular random distribution W(ϕ)

for the function ϕ(r) for the mean value of the field, we obtain

〈E(δ)〉 = Ai

∫
k(r)〈exp[iϕ(r)]〉 exp

[
i

(
4πr

λ

)]
hω(r,δ)dr,

where 〈exp[iϕ(r)]〉 = ∫ exp[iϕ(r)]W(ϕ)dϕ. Assuming that the roughness height
for the objects under study have Gaussian distribution,

W(ϕ) = 1√
π〈ϕ2〉 exp− ϕ2

〈ϕ2〉 ,

and taking into account that 〈ϕ〉2 = 16π2〈ξ2(r)〉/λ2, we obtain

〈E(δ)〉 = Ai exp

[−(16π2σ2)

λ2

]∫
k(r) exp

[
i

(
4πr

λ

)]
hω(r,δ)dr,

where σ2 = 〈ξ2(r)〉 is the variance of the surface roughness height.
In the case of sufficiently high resolution of the imaging system, which cor-

responds to the condition �d � Pr ≈ (rcλ)/dρ, where �d is the size of minimal
detail of the function k(r) and Pr is the size of the minimally resolved domain
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of the object’s surface (see Fig. 2.1), the function hω(r,δ) can be considered a
δ-function in comparison with k(r),12 and

〈E(δ)〉 = µ exp

[−(16π2σ2)

λ2

]
k(r = −µδ), (2.3)

where µ= rc/zi is a scaling factor.
From Eq. (2.3) it follows that for large-scale roughness of an object’s surface,

when σ� λ, Ir(δ) = |〈E(δ)〉|2 � Is(δ) = µ|Eik(r = −µδ)|2, where Ir(δ) is the
intensity of the average field, and Is(δ) is the intensity of the object’s image for
the case where σ= 0 (the image specular component for σ� λ; see Sec. 2.5). The
reason is that in the case of roughness much larger than the wavelength (σ� λ)

but resolvable by the optical system, the field E at each point of the image is a sum
of a large number of random fields with phases uniformly distributed within the
interval 6π� 1. In this case, the contribution of each separate element of the rough
surface in the nonresolvable domain of the object surface can be both positive and
negative; and if the resolution domain (see Fig. 2.1) includes a large number of
such elements, then the total field is close to zero.

2.2.1 Mean value and contrast of the intensity distribution in a
coherent image

Let us now analyze the mean value (the first moment) of the intensity I(δ) =
|E(δ)|2 in the coherent image of a flat rough object. Assuming σ� λ, we obtain12

〈I(δ)〉 = A2
i

∫∫
k(r1)k

∗(r2)

× exp

{
−16π2

λ2

[
σ2 − B12(r1, r2)

]}
hω(r1,δ)h∗

ω(r2,δ)dr1dr2,

where B12(r1, r2) = 〈ξ(r1)ξ(r2)〉 is the correlation function of surface roughness
height distribution. In what follows, we will have to assume that surface roughness
is isotropic and approximate this function by a Gaussian function

B12(r1, r2) = σ2 exp

[
−(r1 − r2)

2

�2

]
.

One can show that if σ� λ, then (λ�)/σ� do, where do is the object size and �

is the correlation radius of the surface roughness of the object under study. Then,
from the two previous equations, one can gain

〈I(δ)〉 = |Ai|2
∫∫

k(r1)k
∗(r2)

× exp

[
−16π2σ2(r1 − r2)

2

λ2�2

]
hω(r1,δ)h∗

ω(r2,δ)dr1dr2. (2.4)
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Now consider two limiting cases:12

(1) σ2/�2 � Sρ/r2
c , where Sρ is the imaging system aperture area; i.e., the

Gaussian peak in Eq. (2.4) is narrower in r than other functions under the
integral. In this case,

〈I(δ)〉 = A2
i ρ

2
p

∫
|k(r)hω(r,δ)|2dr, (2.5)

where ρp = (λ�)/σ is the correlation radius in the phase distribution of the
scattered field on the object surface. In the case of high resolution, �d �
Pr ≈ (λrc)/dρ,

〈I(δ)〉 =
[

Sρ�2

(σzi)
2

]
|Eik(r = −µδ)|2. (2.5a)

This is a natural result that demonstrates that at high resolution, the coherent
image of a flat object is its exact copy. However, in what follows we show that
for nonflat objects, coherent images are not identical to the original. It should
also be mentioned that at high resolution, the average intensity distribution in
the image does not depend on the wavelength of the illuminating radiation.
This conclusion is also natural since, in the case of high resolution, the image
is formed according to geometric optics.

(2) σ2/�2 � Sρ/r2
c ; i.e., the Gaussian peak in Eq. (2.4) is broader in r than other

functions under the integral. Physically, this means that the radiation scat-
tered by each part of the rough surface occupies a small solid angle. Then,
〈I(δ)〉 ∼ |k(r = −µδ)�(µδ)|2, where �(µδ) is the pupil function of the
imaging system.12

It is undoubtedly interesting to analyze the third field moment and the
second intensity moment (mean square intensity), 〈I2〉, in the coherent im-
age. Such an analysis allows the study of deviations of the image field dis-
tribution from a Gaussian distribution. The analysis of higher-order moments
is rather complicated. At σ� λ, the third field moments as well as the first
field moments (mean values) in the image are approximately equal to zero.12

One can show (see Appendix 1) that if �2 � (λrc)
2/Sρ (in this case, separate

elements of the rough surface are not resolvable by the imaging system), the
mean square intensity is

〈
I(δ)2〉= 2〈I(δ)〉2

(
1 + ε

Ni

)
,

where ε∼ 1; and in the case of a high-resolution imaging system, Ni = Si/�
2,

Si ≈ P2
r ≈ (λrc)

2/Sρ.
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In the case of a low-resolution imaging system, Ni = Se/�
2, where Se =

(
∫ |k(r)|2dr)2/(

∫ |k(r)|4dr) is the effective area of the rough object backscattering.
The physical meaning of this parameter will be explained below. Then, Ni = Se/�

2

is the number of correlation pixels within a single resolution domain.34 In the case
of a low-resolution imaging system, Ni is the number of roughness correlation pix-
els on the backscattering surface of the object under study. If |k(r)| is constant,
then Se = So, which is the area of the flat object.

The contrast of the intensity distribution in the object image is

C = 〈I2〉 − 〈I〉2

〈I〉2
= 1 + ε

Ni
. (2.6)

If Ni � 1, then C ≈ 1. The unity contrast demonstrates in this case that the field dis-
tribution in the coherent image is Gaussian. In the case of a low-resolution imaging
system, relation (2.6) coincides with relation (1.43) for the contrast of the intensity
distribution in the coherent radiation scattered by a rough object.30,35,36 It should
be mentioned that the estimates of Ni by different authors are considerably differ-
ent. Indeed, in Ref. 30, the estimate of Ni for the second case was in fact heuristic,
which made unclear the physical essence of this number. In Ref. 33, rather clumsy
expressions for Ni have been obtained. This is first of all connected with additional
artificial postulates imposed on the distributions of the field’s real and imaginary
parts; according to the assumptions made in Ref. 33, they have joint Gaussian dis-
tribution.

2.2.2 Non-Gaussian statistics of the field in a coherent image formed
by the imaging system with very high resolution and the
contrast of the intensity distribution in this image12

From Eq. (2.6), it follows that at Ni < 10, C differs noticeably from unity, which
indicates that the field distribution in the coherent image is non-Gaussian. There-
fore, let us analyze intensity fluctuations in the coherent image for the case where
�2 � Si ≈ P2

r ≈ (λ2r2
c)/Sρ; i.e., each separate element of the rough surface is well

resolved by the imaging system. As we show below, in this case the contrast in
the image can differ considerably from unity, which indicates that the statistics
of the field in the coherent image is non-Gaussian. Therefore, relatively simple
asymptotic approximations for the contrast C can be obtained for the Gaussian
pupil function of the imaging system,

�(ρ) = exp

(
−4ρ2

d2
ρ

)
,

using the Taylor expansion for the function ξ(r) in the vicinity of the point r =
−µδ. In this expansion, let us keep only derivatives of the second order and lower;
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up to inessential factors, we obtain E(δ) ∼ Ex,Ey, where

Ex =
∫

exp

(
i
2πx2

rcλ

)
exp

[
i
4π(ξ′

xx + ξ′′
xxx2)

λ

]
exp

(
− x2

4Si

)
dx,

Ey =
∫

exp

(
i
2πy2

rcλ

)
exp

[
i
4π(ξ′

yy2 + ξ′′
yyy2)

λ

]
exp

(
− y2

4Si

)
dy.

Here all derivatives are taken at point r = −µδ.
Assuming that the random function ξ(r) has Gaussian distribution, after calcu-

lating the integrals in the last expression and averaging the obtained result over the
derivatives of the function ξ(r), we get the following relations:

〈I(δ)〉 ∼ |k(r = −µδ)|2
(1 + 2α)2

, 〈I2(δ)〉 ∼
|k(r = −µδ)|4v2

(
1

2
,1,

1

β

)
(1 + 4α)β

, (2.7)

where α= (8r2
cσ

2)/(Sρ�2), β= (λσr2
c )/d2

ρ�
2), and v(1/2,1,1/β) is the degener-

ate hypergeometric function. Using Eq. (2.7) and taking into account relation (2.6),
for the contrast of the coherent image we obtain dρ/rc ≈ 0.4:

C = 〈I2〉 − 〈I〉2

〈I〉2
≈


1 + ε/Ni for dρ/rc � λ/do,

(σ/βλ) ln2 2β2 for dρ/rc ∼ √
λσ/�,

α2 for dρ/rc � σ/�.

(2.8)

The contrast C has a maximum Cm ≈ 1.2σ/λ at dρ/rc ≈ 0.4
√
λσ/�. Under the

condition that σ� λ, Cm can considerably exceed unity. This is caused by the fact
that each separate element of the rough surface can be considered as a focusing
element with focal length ∼�2/σ. As a result, at dρ/rc ≈ 0.4

√
λσ/�, only beams

coming from the domain of small size ∼�
√
λ/σ� � of each element of the rough

surface reach the input aperture of the imaging system. Hence, the image consists
of separate isolated speckles with the size �/µ

√
λ/σ� �/µ, and it is for this reason

that the intensity distribution in the coherent image has such a high contrast.

2.2.3 Correlation properties of fields and intensities in the coherent
image of a flat rough object for fields with Gaussian statistics

Now, let us analyze the correlation properties of fields in the coherent image of a
flat rough object placed orthogonally to the imaging system axis. Under the condi-
tion σ� λ, the field correlation function in the coherent image has the form

Bf (δ1,δ2) = 〈E(δ1)E
∗(δ2)〉 = |Ai|2

∫∫
k(r1)k

∗(r2)

× exp

{
−[4πσ(r1 − r2)]2

(λ�)2

}
hω(r1,δ1)hω(r2,δ2)dr1dr2.
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Here, two limiting cases are possible:12

(1) σ2/�2 � Sρ/r2
c . Then,

Bf (δ1,δ2) = |Ai|2ρ2
p|k(δ1)|2

∫
�(ρ) exp

{
i[2π(δ1 − δ2) ·ρ]

λzi

}
dρ, (2.9)

where ρp = (λ�)/σ.

(2) σ2/�2 � Sρ/r2
c . Then,

Bf (δ1,δ2) =
(

Sρ�2

z2
i

)
|Eik(r = −µδ)|2 exp

{
−[4πσµ(δ1 − δ2)]2

(λ�)2

}
.

One can study the correlation function Bf (δ1,δ2) behavior in the image plane.
A simple calculation based on the approximation �(ρ) = exp(−4ρ2/d2

ρ) shows
that with a high-resolution imaging system, where Mr = So/P2

r ≈ So/Si =
(SoSρ)/(λ2r2

c) � 1, and Pr = (λrc)/dρ is the size of the Rayleigh resolution do-
main, the correlation radius of the field distribution is

ρf ≈
{
λzi/dρ for dρ/rc �σ/�,
λ�/σµ for dρ/rc � σ/�.

(2.10)

This can be verified experimentally by means of the scheme shown in Fig. 2.2(a).
A flat rough object is illuminated by a monochromatic source. The image of the
object is formed by lens 1 in the plane orthogonal to the reference wave, with a flat
wavefront coming from the beam splitter and lens 2. Interference of the reference

Figure 2.2 Experimental setups for analyzing the correlation characteristics of the
rough surface coherent image: (a) with the reference wave, and (b) without the refer-
ence wave. The coherent image is displayed as a speckle pattern.
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wave and the coherent image results in a hologram of the focused image37 placed
in the image plane. The intensity distribution in the hologram is registered, and the
result can be used for estimating the correlation function and hence, the correlation
radius ρf .

However, if the image of a Rayleigh resolution domain on the object surface
contains a large number Ni of correlation pixels, i.e., separate elements of the rough
surface (Ni � 1), then the correlation properties of the field E(δ) forming the co-
herent image can be rather easily estimated directly from the intensity distribution
in the image. Indeed, one can show that under the condition Ni � 1, the field E(δ)

in the image has Gaussian distribution, for which the following known equation is
valid for the intensity correlation function:12,38

Bi(δ1,δ2) = 〈I(δ1)I(δ2)〉 − 〈I(δ1)〉〈I(δ2)〉
= |〈E(δ1)E

∗(δ2)〉|2 = |Bf (δ1,δ2)|2. (2.11)

In this case, if Ni � 1, then for σ� λ and dρ/rc � σ/�, it follows from Eqs. (2.10)
and (2.11) that the intensity correlation radius

ρi ≈ λzi

dρ
. (2.11a)

For the object under study, an image fragment of a size comparable to the intensity
correlation radius is optically conjugated to the Rayleigh resolution domains of the
object surface with size Pr = µρi ≈ (λrc)/dρ. It is interesting to note that the least
resolvable domain of the object surface is of the same size; its area is Si ≈ P2

r , and
the number of such areas is Mr = So/Si = (SoSρ)/(λrc)

2. Approximately the same
is the number of correlation pixels Mr in the object image. If Mr � 1, then one
says that the imaging system has high resolution. If Mr ≤ 1, then one says that the
imaging system has low resolution. This is according to the Rayleigh criterion.

If the image is formed with high resolution, then at Mr � 1 and Ni � 1, the
image’s intensity fluctuates considerably, so that the relative fluctuations (the con-
trast) in the image are C ≈ 1 [see Eq. (2.6)]. In this case, the intensity distribution
in each correlation pixel of the image drops fast with the increase in the distance
from the pixel center. Hence, for an object that is highly resolved according to the
Rayleigh criterion, the coherent image is a set of random bright domains (speck-
les). Their number can be estimated from the relation11

M = [∫ I(δ)dδ]2∫
Bi(δ1,δ2)dδ1dδ2

. (2.12)

Taking into account Eqs. (2.9) and (2.11), one can show that

M = SeSρ
(λrc)

2
; (2.13)
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hence, the coherent image has a speckle structure. For a uniformly illuminated
object with a constant reflection coefficient,38

M ≈ Mr. (2.14)

These conclusions are confirmed by the experiment shown in Fig. 2.2(b). The ob-
ject under study was a flat square sheet of fine-grained sandpaper with the area
Se = So = 9 m2. The average grain size (the correlation radius of the sheet’s rough
surface) was � ≈ 20 µm. The size was chosen so that a single resolution domain
included a large number of grains. The object was placed on the axis of the image-
forming objective lens (lens 1) at a distance rc = 5470 mm. The objective lens
focal length was chosen to be f = 300 mm. The object was illuminated by green
coherent radiation with wavelength λ = 0.488 µm, and the objective lens had
a square aperture with side dimension dρ = 5 mm. Under these conditions, the
number of correlation pixels in a single resolution domain, given by the equation
Ni = (λrc)

2/(dρ�)2, was approximately 200. This ensured that the field distribu-
tion in the image was Gaussian. A coherent image of the object consisted of a
small (M ∼ 10) number of speckles, which led to a considerable decrease in image
quality and object contour distortion [Fig. 2.3(a)]. Magnification of the number of
Rayleigh resolution domains Mr = (Sod2

ρ)/(λ
2r2

c) improved the image quality. We
see this phenomenon from Fig. 2.3(b), which presents the image of the same object
with dρ = 15 mm.

Figure 2.3(c) presents the image of a wooden 3-mm-diameter screwhead made
at different aperture sizes dρ. Figure 2.3(d) presents an image of the same object
obtained under the same conditions but in white light. We see that the quality of
this image is much better than the coherent image quality. For instance, the image
of the slot is more distinct than the one in Fig. 2.3(c).

Suppose that the number of speckles in the image is large (i.e., more than 100)
and that there is no need to determine the dynamic parameters of the object using
the speckle pattern, which is very sensitive to such parameters (see Chapter 3).

Figure 2.3 Coherent images of flat objects: (a) and (b) a square with rough surface;
(c) a wooden screwhead imaged in coherent light; (d) a wooden screwhead imaged
in white light.
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Under these circumstances, it is preferable to form the image in white light, i.e., a
noncoherent image. The contrast of the speckle pattern in such an image is practi-
cally equal to zero. This means that the speckle pattern disappears due to the sum-
mation of coherent images of the object formed at different wavelengths. Although
in this case the quality of the image is good, the image is much less sensitive to the
dynamic parameters of the object than a coherent image. If the number of speckles
in the image is small (less than 100), then the quality of the image in white light
is low. However, in Sec. 2.4 we show that even in this case one can obtain a high-
quality image by summing statistically independent coherent images of the object
formed at a single wavelength.

Figure 2.4(a) shows the theoretical and experimental dependencies of the num-
ber of speckles M on the number of Rayleigh resolution domains Mr in the images
of a rough 5 × 5 mm square surface obtained with various aperture sizes dρ. The
experimental data are rather close to the theoretical curve. It demonstrates that rela-
tion (2.14), which follows from the Gaussian field distribution in the image, holds
true to a good accuracy.

2.2.4 The probability density function of coherent image intensity
confirming the chosen model of coherent fields scattered by
surfaces with large-scale roughness

Consider now the probability density function of the intensity at each point of
a coherent image for objects with large-scale surface roughness (σ� λ). If the
field distribution in the image is Gaussian, then the intensity at each image point
is described by a negative-exponential probability density functional; i.e., Wi =
(1/〈I〉) exp(−I/〈I〉). Figure 2.4(b) shows the histogram of the optical density D
obtained experimentally from a photographically registered image. The photograph

Figure 2.4 (a) Theoretical (solid line) and experimental (circles) dependences of the
number of speckles M on the number of resolution domains Mr in the images of
a rough 5 × 5 mm square surface obtained with various aperture sizes dρ. (b) The
histogram of the optical density D obtained experimentally from a photographically
registered image.
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was obtained at dρ = 12 mm; the corresponding number N was rather high. The
optical density was measured experimentally at the center of each speckle. The
large number of speckles ensures high image quality and good accuracy of the
optical density measurement.

Taking into account that D = γ ln(I/I0), where γ = 1.6 is the contrast coeffi-
cient of the film and I0 is a parameter giving the fogging level, we obtain for the
optical density

Wd = I0

γ〈I〉 exp

[
D

γ
− I0

〈I〉 exp

(
−D

γ

)]
.

From the results of measurement, the area-normalized histogram Wd(D) of
the number of speckles with approximately equal central density was plotted
[Fig. 2.4(b)]. The solid line in the same figure shows the theoretical probability
density function of the intensity. A small deviation of this curve from the experi-
mental histogram indicates that the real optical density distribution Wd(D), which
follows from the Gaussian distribution of the field in the image of the object under
study, is rather precise at Ni � 1. This experimental fact confirms our model of
coherent fields scattered by surfaces with large-scale roughness (σ� λ) and their
coherent images, valid under the condition that a single resolution domain contains
a large number of separate elements of the rough surface.

2.2.5 Correlation properties of the intensity in the case of
non-Gaussian statistics of the field in the coherent image
formed by a very high resolution imaging system

Consider now the correlation properties of the intensity distribution in a coherent
image in the case where the field in the coherent image has non-Gaussian distrib-
ution. This is the case of very high resolution, where � � Pr ≈ (λrc)/dρ; i.e., each
separate element of the rough surface is well resolved by the imaging system and,
hence, a single resolution domain contains only a small degree of roughness. Here,
at each point of the coherent image, the field is not an additive combination of a
large number of fields coming from a separate element of the rough surface, and
therefore, it cannot be considered as having Gaussian distribution. In particular,
the intensity correlation function does not satisfy relation (2.11). For simplicity,
we restrict consideration to the analysis of the correlation properties of the in-
tensity distribution in the coherent image of a flat rough object for the Gaussian
pupil function of the imaging system �(ρ) = exp(−4ρ2/d2

ρ). In Ref. 12, it was
shown that with �2 � Si and µ = 1, the normalized intensity correlation func-
tion is

Bi(δ1,δ2)

〈I(δ)〉2
≈ C

(
1 − δ1 − δ2

ρ2
i

)
,
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where C is the intensity contrast in the image [see Eq. (2.8)], and

ρi ≈



√
2rcλ

πd

(
1 − 1

lnβ

)
for β> 1,

d�2

2
√

2σrc

(
1 + β2

2

)
for β< 1,

� for α< 1,

(2.15)

is the correlation radius of the intensity speckle pattern in the coherent im-
age.

One can see from relation (2.15) that for small values of the angular aperture
dρ/rc, the intensity correlation radius is determined by the size of the resolution
domain Pr ≈ (λrc)/dρ of the imaging system on the object’s surface. It decreases
to ρi ∼ �

√
λ/σ with an increase in angular aperture, and then increases again as

(dρ�2)/(σrc). This parameter can be interpreted geometrically as follows:39 each
separate element of the rough surface focuses the incident light into the domain
placed at the distance �2/σ from the mean surface.

One can find from the perspective of geometric optics that in the plane of
the mean surface image, the image of the focusing part is blurred. For instance,
for unity magnification of the imaging system, the size of the blurring is 	 =
(�2/4σ)(dρ/rc). If 	 � �, the image consists of separate bright domains—speckles
of size ρi ∼ 	. These are exactly those speckles that were mentioned in the analy-
sis of the contrast C [see Eq. (2.8)] of coherent images. For a smaller blurring size
(speckle size), 	 is also smaller and hence, the contrast of the image speckle pat-
tern, dρ/rc, is higher. As one can see from Eq. (2.15), 	 is equal to the correlation
radius in the coherent image.

With a further decrease of dρ/rc, the contrast and correlation radius are de-
termined by diffraction effects caused by the finite size dρ of the imaging system
aperture. For dρ < (λrc)/�, the correlation radius (speckle size) is given by the size
of the Airy spot of the imaging system, and is ρi ∼ (λrc)/�; and the contrast, as
one can see from relation (2.15), is approximately equal to unity. Thus, the inten-
sity correlation radius ρi in a coherent image depends on the angular aperture dρ/rc
of the imaging system and on the roughness parameters of the surface under study.
In the vicinity of the contrast maximum, dρ/rc ∼ √

λσ/�; i.e., this value is much
smaller than the correlation radius � of the object surface roughness. In the case
where dρ/rc � σ/�, then ρi ∼ �. This result follows from the fact that under the
condition dρ/rc, images of separate elements of the rough surface can overlap each
other. This leads, on the one hand, to lower contrast [see relation (2.8)], and on the
other hand, to an increase of the correlation radius in the image, up to the size of
roughness. In other words, under this condition the imaging system “traces” every
separate element of the rough surface.

Thus, at fixed statistical surface roughness parameters σ and �, the growth of
the imaging system angular aperture dρ/rc leads to an increase of the coherent
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image contrast from unity to ∼σ/λ. Further, it drops down to almost zero value
when dρ/rc > σ/�; i.e., the surface behaves as if it were smooth, while the corre-
lation radius decreases to its minimum value, ρi ∼ �

√
λ/σ, at which the contrast is

maximum (C ≈ 1.2σ/λ), and then increases up to ρi ∼ �.
In Fig. 2.5 the contrast and correlation radius obtained above are plotted versus

the angular aperture for the coherent image of a rough metal surface with the pa-
rameters σ = 1.6 µm and � = 16.1 µ, and under the condition that λ = 0.63 µ,
dρ = 1 . . .75 mm, and rc = zi = 500 mm (µ = 1). In the same plot, experi-
mental values of these dependencies are given. Small deviations of the experi-
mental points from the theoretical dependencies are explained by the fact that
the dependencies are calculated for an imaging system with the pupil function
�(ρ) = exp(−4ρ2/d2

ρ), while the experimental values are obtained for coherent
images formed by an imaging system with the rectangular pupil function. Accord-
ing to the data of Ref. 40, the dashed line in Fig. 2.5(a) shows the dependence of
the coherent image contrast on the size of the angular aperture of the imaging sys-
tem with the pupil function �(ρ) = exp(−4ρ2/d2

ρ) calculated numerically under
the condition that the surface roughness height of the object has Gaussian distri-
bution. Since the curve calculated from the asymptotic formulas (2.8) coincides,
for a broad range of angular apertures, with the curve calculated numerically, the
conclusion follows that relations (2.8) are correct.

It is interesting to note that non-Gaussian statistics of the field distribution E(δ)

in speckle patterns of coherent images can be used effectively to determine mean
height and length of ocean waves by measuring the contrast and correlation ra-
dius of ocean surface coherent images. Here, we use the effect of double passing
a laser beam through the ocean surface waves and the top layers by means of a
laser air probing process, which leads to an image contrast that essentially exceeds
unity.33

Figure 2.5 (a) The contrast and (b) the correlation radius plotted versus the angular
aperture for the coherent image of a rough metal surface. Solid lines are theoretical
curves. The dashed line is the contrast calculated numerically. The crosses (+) are
experimental data.
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2.3 Statistical characteristics of coherent image intensity in nonflat
rough objects

We now consider the statistical characteristics of intensity spatial distribution in
the coherent images of nonflat rough objects placed arbitrarily with respect to the
imaging system.41 One can show that when the field statistics in an image are
non-Gaussian, then the statistical characteristics of the intensity distribution are
practically the same as for the corresponding characteristics of a flat rough object’s
coherent image. Therefore, we restrict ourselves to the case where the field distrib-
ution in the coherent image of a nonflat rough object is near-Gaussian. In this case,
according to relation (2.1) and under the assumptions that the observer is placed
close to the illuminating source, the factor (n · q)/(n · N) is sufficiently smooth,
and do/rc, then the field distribution in the coherent image of the object can be
represented as

E(δ) = Ai

∫
k(r) exp[iϕn(r)] exp

[
i

(
4πr

λ

)]
hω(r,δ)dr,

where ϕn(r) = [2πq · Nξ(r)]/λ. Similar to the case of the coherent image of a
flat object, at σ � λ, for the mean field value in the coherent image of a non-
flat object we obtain that the averaged field in the coherent image 〈E(δ)〉 ∼
exp[−(4πσ/λ)2] ≈ 0.

The average intensity in this image12,41 is exp[−(q2⊥�2)/(σ2q2
N)]

〈I(δ)〉 = |Ai|2ρ2
p

∫
ki(r)hω(r,δ)dr, qN = q ·N, (2.16)

where Ai = (EiSρ)/(λ2rczi), ki(r)=|k(r)2| exp[−(q2⊥�2)/(σ2q2
N)], q⊥ =

√
q2 − q2

N ,
and ρp = (λ�)/σ. At high angular resolution, when the function hω(r,δ) is nar-
rower than the function ki(r),

〈I(δ)〉 = ki(r = −µδ)
�2Sρ|Ei|2
(σzi)

2
. (2.16a)

Relations (2.16) and (2.16a) differ from Eqs. (2.5) and (2.5a)—which were ob-
tained for a flat object placed orthogonally to the imaging system’s axis and il-
luminated normally to the surface—by the factor exp[−(qt�/σqN)2], the physical
meaning of which will be explained at the end of this section. With the assumption
that the roughness correlation radius � is small compared to the size of the reso-
lution domain image � � ρi = (λzi)/dρ, where dρ is the imaging system aperture
size, and that dρ/rc � σ/�, then the mean square intensity in the coherent image
of a nonflat rough object is

〈I2〉 = 2〈I〉 − 2|A2
i |ρ4

p

∫
k2

i (r)hω(r,δ)dr,
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where ρp = (λ�/σ). Substituting the expression for 〈I〉 into Eq. (2.16), we obtain

C = 1 − 1

N∗
i
, (2.17)

where N∗
i = Ni exp[−(qt�/σqN)2].

Physically, this result means that in the case of oblique incidence and scattering
of radiation, the number of points with mirrorlike reflection on the object surface11

decreases. Equation (2.17) can be interpreted as the relation for calculating the
number of mirror-reflecting points in the case of an object placed arbitrarily with
respect to the lens’ optical axis. One can see from Eq. (2.16a) that the brightest
spots of the image are determined from conditions qt(rj) = 0.41 These are what
we will refer to here as the “shine domains” of the illuminated surface, with j
numerating the points. Taking into account Eq. (2.12), one can show that under
the condition (�/σ)2 � r2

c/Sρ, which is usually satisfied in practice, the speckle
number M in the image of a nonflat object is

M = SeSρ
λ2r2

c
, (2.18)

where Se = (
∫

ki(r)dr)2/
∫
(k2

i (r)dr) is the effective area of the backscattering sur-
face.

Using the example of a spherical, uniformly illuminated object, let us estimate
the effective backscattering area Se. This will give us an opportunity to estimate the
effect of the nonflatness of the object on the speckle number in its image. In this
case, Se ≈ (Soσ

2)/�2, where So is the area of the principal section of the object. For
a flat rough object, Se = So. We see that the deviation from flatness of the object
surface leads to a decrease in Se. In this case, the speckle number in the image
also decreases, according to relation (2.18). The correlation radius of the intensity
distribution in the coherent image of a nonflat object can be determined by the
same relation (2.11a) as for a flat object: ρi = (λzi)/dρ.

The influence of the surface shape of a nonflat object on the intensity distri-
bution and on the speckle number M in the speckle pattern of a coherent image
manifests itself most clearly in the case of imaging the side of a rough disk placed
on the axis of an imaging lens (see Fig. 2.6). In this case,12 Se ≈ (wdρdσ)/�, and
M = (σdρdSρ)/(�λ2r2

c), where wd is the disk width, and ρd is the disk radius;
qN = q ·N = 2 cosϕ, q⊥ = (q2 − q2

N)−1/2 = 2 sinϕ, where ϕ is the polar coordi-
nate of a point on the disk side; and

〈I(δx,δy)〉 = �2Sρ|Ei|2
σ2z2

i

|k(x = −µδx, y = −µδy)|2 exp

(
−�2tg2ϕ

σ2

)
. (2.19)

The shine domain on top of the cylinder surface has the coordinate x = 0. For steep
roughness, σ/� ≈ 1, as one can see from Eq. (2.19), and the shape of the surface
has almost no influence on the image.
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Figure 2.7 presents photographs of a 5-mm screw nut, which were obtained for
various imaging system aperture diameters dρ: (a) dρ = 4 mm, (b) dρ = 8 mm,
(c) and (d) dρ = 16 mm. The outer surface of the nut consists of flat rough sur-
faces (faces). In Fig. 2.7, the image is brightest for the faces oriented so that the
angles between the normal N and the scattering vector q are small, α < 15 deg.
The brightest face is the front one. One of the side faces (α > 30 deg) is imaged
poorly. The same photographs demonstrate that coherent image speckle size has
a strong influence on image quality. One can see that a decrease of diaphragm
size dρ leads to increased speckle size and, hence, to decreased image quality. At
dρ = 4 mm [Fig. 2.7(a)], the nut’s hole hardly can be recognized. The best image is
obtained when illuminating with white light [Fig. 2.7(d)]; this is due to the overlap
of coherent images of the same object at different wavelengths, which results in an
image with improved quality. The method of overlapping coherent images will be
discussed in detail below.

Figures 2.8 and 2.9 illustrate how, with different speckle quantities M, the sur-
face shape influences coherent images of a signal lamp. In the photographs, by

Figure 2.6 Coherent imaging of the side of a rough disk. The thin dashed line is the
mean disk surface. The dashed line is the mean intensity distribution 〈I(δx,δy)〉. The
thick dashed line restricts the “shine domain” (the backscattering surface) with the
size ds ∼ (ρdσ)/�, where ρd is the disk radius.

Figure 2.7 Coherent images of a screw nut obtained for various diameters of
imaging system aperture dρ: (a) dρ = 4 mm, M ≈ 30; (b) dρ = 8 mm, M ≈ 120;
(c) dρ = 16 mm, M ≈ 480; (d) dρ = 16 mm.
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Figure 2.8 Coherent images of the signal lamp: (a) M = 6; (b) M ∼ 100; (c) M ∼ 400;
(d) photograph in white light.

Figure 2.9 Coherent images of a cylindrical object: (a) M ∼ 240; (b) photograph in
white light. The speckle pattern hides the side stripes on the surface.

using the scheme shown in Fig. 2.7, one can see shine domains satisfying the con-
dition (q2⊥�2)/(q2

Nσ
2) ≤ 0.3. The edges of smooth parts are not distinct because, in

this case, the sizes of shine domains ds = (σdo)/� are rather small. Here, do is the
signal lamp.

2.4 Methods of estimating and improving the quality of coherent
images

We see that coherent images of rough objects have a strongly fluctuating structure,
i.e., the speckle pattern. There are at least two ways of improving the quality of
such images. The first way is to increase the size dρ of the imaging system aperture.
This leads to a decrease in speckle size in the coherent image and, hence, each
detail of the object is represented by a larger number of speckles. The parameter
dρ is chosen based on the size �d of the smallest detail of the object’s surface.
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The sizes of the smallest details along the X and Y axes are calculated from the
formulas12

�dx =
∣∣∣∣ki

(
r = −δrc

zi

)∣∣∣∣[Re(k′′
ixx + k∗′′

ixx)ki + 2|k′
ix|2
]−1/2

,

and (2.20)

�dy =
∣∣∣∣ki

(
r = −δrc

zi

)∣∣∣∣[Re(k′′
iyy + k∗′′

iyy)ki + 2|k′
iy|2
]−1/2

.

Here, all derivatives are taken at point r = −µδ. The conditions for a high-quality
image are dρ � (λrc)/�x and dρ � (λrc)/�y. For instance, in the case of a flat
rough object having a periodic reflection coefficient, the mean intensity distribution
is

〈I(δx,δy)〉 ∼ 1 + cos

(
2πµδx

�ox

)
cos

(
2πµδy

�oy

)
,

and the smallest detail sizes are �x = �ox, �y = �oy. Under conditions where
dρ � (λrc)/�ox and dρ � (λrc)/�oy, details having sizes �ox × �oy are repro-
duced very well, since in this case the image of the detail contains a large number
of speckles; i.e., the imaging system resolves these details.

The second way to improve coherent image quality is to accumulate statisti-
cally independent realizations of images, which leads to a decrease in the intensity
fluctuations in the accumulated image. As an integral criterion of the image quality,
which characterizes the similarity between the accumulated image and the mean
nonfluctuating image, we will consider the correlation criterion. It can be estimated
as

K =
∫

Ia(δ)〈I(δ)〉dδ∫ 〈I(δ)〉2dδ
,

where

Ia(δ) = 1

Na

n=Na∑
n=1

In(δ)

is the intensity distribution in the accumulated image normalized as
∫

I2
adδ =∫ 〈I〉2dδ, and Na is the number of accumulated images.34,42 Assume that the im-

age Ia is close to 〈I〉 when the value K takes its maximum value. The efficiency
of this criterion, i.e., the accuracy ηc to which the accumulated image Ia coincides
with 〈I〉, can be estimated from relative fluctuations of K,

ηc = 〈K2〉 − 〈K〉2

〈K〉2
. (2.21)
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If statistically independent realizations of images are accumulated, when
Bmn(δ1,δ2) = 〈Im(δ1)In(δ2)〉 − 〈Im(δ1)〉〈In(δ2)〉 = Bi(δ1,δ2)δmn, where
Bi(δ1,δ2) = 〈Im(δ1)Im(δ2)〉 − 〈Im(δ1)〉〈Im(δ2)〉 is the correlation function of the
intensity distribution in the m-th coherent image, δmn = 1, for m = n, δmn = 0, for
m �= n, then we obtain

ηc =
∫∫ 〈I(δ1)〉〈I(δ2)〉Bi(δ1,δ2)dδ

Na(
∫ 〈I(δ)〉4)

.

On an order of magnitude, ηc ≈ 1/(MNa), where M is the number of speckles in
the image realization. An increase of M and Na reduces the relative fluctuations
of K, since at large M and Na the criterion is more stable. Hence, the accuracy ηc
to which the accumulated image Ia coincides with 〈I〉 is very high.

Let us consider the possibility of accumulating coherent images for various
directions of object illumination. We can perform this by changing the position of
the illuminating monochromatic source (Fig. 2.10). Let, for simplicity, all sources
be placed in the imaging system’s aperture plane at different distances dj from the
aperture center, where j is the source number, and let the object under study be a
flat rough object. In this case,12 at M � 1,

Bmn(δ1,δ2) = Bi(δ1,δ2)Jmn,

where

Jmn ≈
{

1 − (dm − dn)
2/Sρ, for dm − dn ≤ dρ,

0, for dm − dn > dρ.

Hence, under the condition dm −dn > dρ and Jmn ≈ δmn, accumulated coherent
images become statistically independent (Fig. 2.11). This independence is con-
nected with the fact that any change of the illumination direction leads to the si-
multaneous rotation of the scattered field in the opposite direction, since in the first

Figure 2.10 Schematic of experiments for accumulating statistically independent
coherent images by changing the position of the illuminating coherent source.
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approximation, a rough surface can be considered as a strongly distorted mirror.
Hence, changing the illumination direction leads to the simultaneous rotation of
the rays reflected by this mirror’s rays. Rotating the scattered field leads to the
formation of new independent realizations of the object’s coherent images.

Rotation of the field is accompanied by displacement of the scattered field
speckle pattern on the aperture of the imaging system. As a result, if the source is
displaced by the aperture size dρ (Fig. 2.11), then the illumination direction varies
by the angle ∼dρ/rc, the speckle pattern is displaced on the aperture plane by the
same distance dρ, and a new speckle pattern appears on the aperture. Hence, the
initial speckle pattern is completely changed and there occurs a complete change
in the scattered field realizations. As a result, the initial realization of the object’s
coherent image is replaced by a new, statistically independent realization; and in
the image plane, new speckles appear between the old speckles. As the direction of
the object illumination varies further, new speckles fill the contour of its ideal im-
age and, hence, the quality of the accumulated image tends toward the ideal image
quality.

The improvement in the resulting image quality with the accumulation of statis-
tically independent images is accompanied by a decrease of contrast in the image.
Taking into account that 〈ImIn〉 = δmn, we obtain that C = 1/Na. As shown in the
schematic in Fig. 2.10, 10 statistically independent coherent images of a flat tri-
angular rough object made of sandpaper were obtained by changing the position
of the illumination source so that the condition dm − dn > dρ was satisfied. In
Fig. 2.12(a), a single realization of the coherent image consisting of M = 7 speck-
les is shown. The image quality is very low. After accumulating the coherent im-

Figure 2.11 Improving image quality using the accumulation of statistically inde-
pendent coherent images by changing the position of the illuminating monochro-
matic source. The two dashed lines are rays from the first source position. The square-
point line is the first speckle pattern position in the aperture and image planes. The
two dash-dot lines are rays from the second source position. The solid line is the
second speckle pattern position in the aperture and image planes.
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Figure 2.12 Experimental results of accumulating coherent images for a triangular
rough object obtained by changing the position of the illumination source: (a) a single
realization of the coherent image; (b) the accumulated image.

ages, the speckled structure disappeared almost completely, and the image quality
increased dramatically [see Fig. 2.12(b)]. According to the criterion K introduced
above, in this case the accuracy is ηc ≈ 1.5% and the contrast of the intensity dis-
tribution in the accumulated image is small (C ≈ 0.1 � 1).

The coherent image quality also can be improved by accumulating statistically
independent images of a rough object at various wavelengths. This will be dis-
cussed in detail in the next section.

2.5 Statistical characteristics of images of an object illuminated by
quasi-monochromatic and polychromatic light

In the previous section we analyzed the statistical characteristics of rough-surface
object images. It was shown that in monochromatic light the image has a rather
contrasted structure. For instance, if the imaging system does not resolve separate
elements of the object’s rough surface, the contrast of the image speckle pattern
is equal to unity. It is interesting to analyze the image where the object is illu-
minated by quasi-monochromatic and polychromatic radiation.43 In this case, one
should expect a decrease in image contrast. Below, we analyze the statistical char-
acteristics of the intensity distributions in images obtained in quasi-monochromatic
and polychromatic radiation. From these characteristics, we estimate the contrast,
i.e., relative intensity fluctuations in the images. Let the object be illuminated by
quasi-monochromatic radiation with mean frequency ω0. Then, taking into ac-
count Eqs. (1.18) and (1.27), and assuming that the object is in the Fresnel zone,
we represent the field in the image plane as

E(δ, t) ∼
∫

Eω(δ) exp(−iωt)dω, (2.22)
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where

Eω(δ) = AiSr(ω)

∫
n · q
n · N

k(r) exp

[
i
ω

c
q · Nξ(r)

]
× exp

[
i
ω(|r − ρs| + r)

c

]
hω(r,δ)dr

is the field scattered by the object at one of the frequencies [see expression (2.1)],
Sr(ω) is the illuminating radiation spectrum, Ai = (EiSρω2)/(c2rczi), N is the
normal to the mean object surface, q = νo − νi, νi ≈ (rc − ρs)/|rc − ρs|, and
νo ≈ rc/rc.

Furthermore, when finding the statistical characteristics of the image we will
take into account that detectors are inertial and therefore, register time-averaged
intensity distribution:

Ī(δ) = 1

T

t0+T∫
t0

|E(δ, t)|2dt,

where t0 is the initial time and T is the registration time. Approximating the inten-
sity spectrum by a Gaussian function, Sr(ω) = (1/	ω) exp[−(ω−ω0)

2/(	ω)2],
where 	ω and ω0 are the width and mean frequency of the illuminating source
spectrum, respectively, let us find the intensity distribution in the image averaged
over various realizations of roughness height ξ(r). Assuming T	ω� 1, in the
case of a high-resolution imaging system we obtain for the mean intensity distrib-
ution in the image

〈Ī(δ)〉 = �2Sρ|Ei|2
σ2z2

i

ki(r = −µδ), (2.23)

which coincides with expression (2.16a) for the mean intensity in the coherent
image. Here, angle brackets 〈〉 denote averaging over various realizations of the
roughness height distribution ξ(r).

Consider now the correlation function of the time-averaged intensity distribu-
tion in the image. Assuming that the field distribution in the image is Gaussian, we
obtain for this correlation function12

Bt(δ1,δ2) = 〈Ī(δ1)Ī(δ2)〉 − 〈Ī(δ1)〉〈Ī(δ2)〉

= 1

T2

t0+T∫
t0

t0+T∫
t0

|〈E(δ1, t1)E
∗(δ2, t2)〉|2dt1dt2.

Under the condition Lp � Lc, where Lc is the source coherence length (see
Fig. 2.13), Lp = (crcqt)/(qNω0dρ), the size of projection of the least-resolvable
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Figure 2.13 Optical images in the case of illuminating the object by quasi-
monochromatic light with Lp � Lc � σ. The dotted line restricts the resolvable area
of the object surface, which we display at the boundary line of the shine domain
(backscattering surface), where its projection Lp is maximal and the image contrast
C = Lc/Lp is minimal.

area of the object surface on the direction q, equal to the depth of this area,
qN = q · N, qt = (q2 − q2

N)0.5, for the contrast of the speckle pattern in the im-
age of a rough object we obtain12

C = Bt(δ,δ)

〈Ī(δ)〉2
≈ 1. (2.24)

This situation is similar to the case of illumination with a monochromatic source
having infinite coherence length, where the contrast speckle pattern in the image
of a rough object is unity. The relation Lp � Lc is the condition for the formation
of coherent images of the rough objects. Under this condition, each point of the
image is formed by interfering contributions of all waves coming from the minimal
domain of the object surface resolvable by the imaging system and according to the
definition formulated in the Preface, such an image will be called coherent.

Assuming that the imaging system has high resolution, under the opposite
condition of quasi-monochromatic illumination, Lp � Lc, and Lc � qNσ (see
Fig. 2.13), then

C = 1

Ns
, (2.25)

where Ns = Lp/Lc is the number of statistically independent contributions of the
scattered radiation to the image of the minimally resolved domain of the object
surface. In this case, interference takes place only for waves scattered by a small
part of the resolvable area of the object surface. Therefore, at each point of the
image of a minimally resolved domain, there is an overlap of several statistically
independent interference patterns. As a result, the contrast of the image is signifi-
cantly lower than the contrast of the speckle pattern for a coherent image, which is
equal to unity.
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In the case qNσ � Lc, which is realized for polychromatic object illumina-
tion, for instance, for the case of illumination by sunlight or by a heat source43

(Fig. 2.14),

C = 1

N′
s
, (2.26)

where N′
s = (qNσ)/Lc is the number of statistically independent contributions of

the scattered radiation to the image within a single separate element of the rough
surface. If we take into account that the shine domain of the object surface provides
the most important contribution to the object image, then as a rule, 1 < qN < 2; and,
hence, when σ� Lc, then C � 1 within the whole shine domain image.

According to relations (2.24)–(2.26), one can imagine the following scenario.
Let an object be placed on the imaging system axis, Lp being the projection of the
least-resolvable area of the object’s surface on this axis (see Fig. 2.13). For a large
source coherence length, Lc � Lp, the contrast in each part of the image is unity
[see Eq. (2.24)]. In this case, the whole image is coherent. For the intermediate
case, Lp � Lc � σ (see Fig. 2.13), the image of the top of the shine domain is
coherent in the sense that it has unity contrast. Outside of this area, the contrast is
equal to C = Lc/Lp [see Eq. (2.25)], i.e., the ratio of the coherence length to the
projection of the least-resolvable area of the object surface in the direction q (for
an object placed on the imaging system axis, this is the projection onto this axis);
and this contrast is small.

For a source with small coherence length, Lc � σ (see Fig. 2.14), the contrast
of the speckle pattern in the image is equal to C ≈ Lc/σ. This contrast is very
small, which corresponds to the case of imaging with polychromatic white light
[see Figs. 2.7(d) and 2.8(d)] or thermal source light. Let us restrict the range of
the roughness height for the object under study by the condition σ< 100λ, where
λ is the mean wavelength of the radiation scattered by the object. Then, the last
inequality Lc � σ can be replaced by the inequality Lc < 10λ.

Figure 2.14 The optical image in the case of illuminating the object by polychro-
matic light. Here, αd is the angle width of the shine domain. At the shine domain
boundary line, qN = q cosαd = 2 cosαd is minimal.
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2.6 Coherent images of small-scale surface roughness

2.6.1 Introduction

In previous sections we analyzed coherent images of rough objects with relatively
large-scale surface roughness. Here, we will analyze coherent images of rough
objects with rather small-scale surface roughness. Let the roughness height be less
than the wavelength λ of the radiation used for obtaining the images, i.e., the rough-
ness standard deviation σ� λ. For example, in the optical range this is the case
for mirror surfaces and other polished surfaces; in the radio range, for sea and
ocean surfaces, and so on. Here we consider statistical characteristics of the co-
herent images of surfaces with small-scale roughness and devices for determining
the roughness standard deviation and correlation radius of mirror surfaces by using
their coherent images.

For simplicity, we will restrict calculations to the field correlation function in
the coherent images of objects with small-scale roughness and flat mean surfaces,
with the correlation radius of the surface roughness height distribution � � λ. This
is sufficient for analyzing the properties of coherent images for objects with arbi-
trary shape. A good example of an object surface with small-scale roughness is the
surface of a mirror.

2.6.2 Field correlation function of coherent images of surfaces with
small-scale roughness

Consider the field correlation function of a coherent image of a surface with small-
scale roughness. Let this surface—for instance, the surface of a mirror—have a flat
mean surface (Fig. 2.l5), and let it be illuminated by a monochromatic plane wave

Figure 2.15 Coherent image of a mirror surface. Thin lines denote rays forming the
image in the diffuse component; thick lines denote rays forming the image in the
specular component.
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directed orthogonally to the surface. Let us introduce a coordinate system with the
origin at the center of the imaging system. In this case, the field in the surface
image is

E(δ) =
(

1

λR

)∫∫
Ei(r)k(r)h(r,δ) exp

[
i4πξ(r)
λ

]
dxdy, (2.27)

where Ei(r) is the amplitude distribution for the plane wave illuminating the mir-
ror surface; δ is the radius vector of the image plane with the components δx,
δy, Z (here, Z is the distance between the mirror surface and the image plane,
and δx and δy are the image plane coordinates); R is the distance between the
mirror surface and the imaging system; x and y are mirror surface coordinates;
ξ(r) = ξ(x, y) is a random function describing the surface roughness height distri-
bution; k(r) = k(x, y) is the reflection factor distribution; and h(r,δ) = h(x, y,δ) is
the pulse response function of the imaging system. If the imaging system has high
resolution, then the field correlation function is

Bf (δ1,δ2) = 〈E(δ1)E
∗(δ2)〉 − 〈E(δ1)〉〈E∗(δ2)〉, (2.28)

where the brackets 〈〉 denote averaging over all realizations of the random func-
tion ξ(r).

Let, for simplicity, the random function ξ have a Gaussian distribution with the
Gaussian correlation function

〈ξ(x1, y1)ξ(x2, y2)〉 = σ2(x1, y1) exp

[
−(x1 − x2) + (y1 − y2)

2

�2

]
. (2.29)

Then, for σ� λ, it follows from Eqs. (2.27) and (2.28) that in the case of a high-
resolution imaging system, where Pr ∼ (λR)/dρ � do (dρ is the imaging system
aperture size and do is the size of the illuminated area of the mirror surface), we
obtain Bf (δ1,δ2) ≈ [|Ei(δ)k(δ)|2/(λR)2]Bd(δ1,δ2), where

Bd(δ1,δ2) =
[

4πσ(δ)

λ

]2 ∫∫ ∫∫
exp

[
−(x1 − x2) + (y1 − y2)

2

�2

]
× h(x1, y1,δ)h∗(x2, y2,δ)dx1dy1dx2dy2.

The correlation radius of the field distribution E in the image of the mirror surface
is determined from the relation ρf (δ) = [∫ Bd(δ,δ1)dδ1]/Bd(δ,δ). Mean inten-
sity in the mirror surface image is equal to

〈I(δ)〉 = 〈|E(δ)|〉2 = Is(δ) + Id(δ),

where Is(δ) = [|REi(δ)k(δ)|2/Z2], Id(δ) ≈ [|Ei(δ)k(δ)|2/(λR)2]Bd(δ,δ); δ =
−Zr/R is the radius vector of the point in the image plane optically conjugated
to the radius vector r of the point on the mirror surface.
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We notice that the image intensity is a sum of two terms: the first term Is is
the specular component; the second term Id is the diffuse component formed by
diffraction of the illuminating light by the mirror surface roughness. We select the
second term Id with the help of a very small light trap placed in the imaging system
focus (Fig. 2.15) that absorbs specular reflected rays and, hence, suppresses the
specular component of the field. The imaging system, together with the light trap,
conserves in the image plane only the diffuse component Ed(δ) of the field E(δ).
It is easy to show that when σ� λ, the mean intensity and correlation function of
this component are Id and Bf (δ1,δ2).

It is useful to present the statistical characteristics of the field distribution Ed(δ)

in a mirror surface image formed by diffuse light in the two limiting cases:

(1) The case where � � Pr. Under this condition, the imaging system aperture is
large enough to collect all diffuse light diffracted by each particular element
of the mirror surface. This light propagates within the cone with an angle α≈
λ/� (see Fig. 2.15). In this case Bf (δ1,δ2) ≈ Id(δ1) exp[−(δ1 − δ2)

2/�2],
where

Id(δ) = 16π2|Ei|2|k(δ)|2σ2(δ)P4
r

λ4R2 . (2.30)

We see that in this case, the correlation radius of the field distribution Ed(δ)

is approximately equal to the correlation radius of the mirror surface rough-
ness: ρf (δ) ≈ �(δ). Hence, in this case the imaging system resolves separate
elements of the mirror surface.

(2) � � Pr. In this case the imaging system collects only some of the diffuse
components of the scattered radiation. Then,

Bf (δ1,δ2) ≈ Id(δ1)Sc(δ1,δ2), (2.31)

where Sc(δ1,δ2) = ∫ h(r,δ1)h∗(r,δ2)dr, and

Id(δ) = 16π2Is(δ)σ2(δ)

λ2
= 16π2|Ei|2k(δ)σ2(δ)�2(δ)P2

r

λ4R2
.

In this case, the correlation radius of the field distribution Ed in the mir-
ror surface image is approximately equal to the imaging system resolution,
ρf (δ) = Pr ≈ (λR)/dρ. This result coincides with the expression for the cor-
relation radius of the field distribution in the coherent image of a surface with
large-scale roughness, when the standard deviation of roughness height is
much greater than the wavelength of light illuminating the surface, σ� λ,
and the imaging system does not resolve separate elements of the rough sur-
face. Hence, in this case, coherent images of surfaces with small-scale rough-
ness, as well as coherent images of surfaces with rather large-scale roughness,
manifest a speckle pattern with speckle size ∼(λR)/dρ.
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For the case of an imaging system with a circular aperture and constant
pupil function, we can derive an analytical expression for the intensity of the
diffuse component of the coherent image of a surface with small-scale rough-
ness. Then, the imaging system pulse response is h(x, y,δx,δy) = J1(�)/�, where
� = (2πdρw)/λ,

w =
√(

x

R
+ δx

Z

)2

+
(

y

R
+ δy

Z

)2

,

J1(�) is the Bessel function of the first order, dρ is the system’s aperture diame-
ter, and the intensity in the coherent image in diffuse light for arbitrary relations
between � and Pr is

Id(δ) ≈ 16π2Is(δ)σ2(δ)

λ2

[
1 − exp−d2

ρ�
2(δ)

R2λ2

]
. (2.32)

Relation (2.32) can be explained by using the energy approach. Let us turn to
Fig. 2.16, which describes the formation of a mirror surface image in diffuse light
with the help of a very small light trap; and let, for simplicity, µ = 1 and k = 1.

Figure 2.16 Formation of a mirror surface image in diffuse light with the help of
a very small light trap. The dashed lines show the rays restricting most of the light
diffracted by a small part of the mirror surface, which occupies the cone with an
angle α ≈ λ/�. The thin and thick dashed lines demonstrate the cases � > Pr and
� < Pr, respectively, where Pr ≈ (λR)/dρ is the imaging system resolution.
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Then, relation (2.32) has the following form:

Id(δ) ≈ 16π2|Ei|2σ2

λ2

[
1 − exp−d2

ρ�
2(δ)

R2λ2

]
. (2.33)

If Pr ≈ (λR)/dρ � �, then

Id ≈ 16π2|Ei|2σ2

λ2
. (2.34)

Let us explain this relation. If (λR)/dρ � �, all energy Qd of the diffuse component
of light diffracted by a small area of the mirror surface gets into the imaging system.
For ξ� λ it is not difficult to obtain

Qd = 〈|E′
d|2〉Sb = 16π2|Ei|2σ2Sb

λ2
, (2.35)

where E′
d = 2 × (Ei2πξ)/λ is the scattered field component formed by the surface

roughness close to the mirror surface, and Sb is the small illuminated area on the
mirror surface. The factor 2 appears since each ray passes the rough surface twice.
Taking into account the energy conservation law, we can represent the scattered
energy of the diffuse component in the image plane as Qd = IdSb. From Eq. (2.35)
we obtain the required relation (2.33):

Id ≈ Qd

Sb
= 16π2|Ei|2σ2

λ2
.

For the intermediate case (λR)/dρ ∼ � and for the case (λR)/dρ � �, taking into
account that most of the light diffracted by the small part of the mirror surface
occupies a cone with angle α ≈ λ/�, we can approximate the mean intensity of
the diffuse component in the imaging system aperture by the exponential function
Ia = I0 exp{−[�2(ρ2

x + ρ2
y)/λ

2]}, where ρx and ρy are coordinates in the aperture
plane of the imaging system, and I0 is the mean intensity at the aperture center.
This result can be obtained by taking into account that when σ� λ, then Ia =
〈|Ea(ρx,ρy)|2〉, where

Ea =
(

4πiE0

λR

)∫∫
ξ(x, y) exp

[
2πi(ρxx + ρyy)

λR

]
dxdy. (2.36)

The energy of the diffuse component passing through the imaging system aper-
ture is then calculated by integrating over the aperture plane: Qp = ∫∫

Iadudv =∫∫ 〈|Ea(ρx,ρy)|2〉dudv. For a circular imaging system aperture, Qp = Qd, and using
Eqs. (2.29) and (2.36), we obtain Eq. (2.33):

Id(δ) = Qp

Sb
≈
(

16π2|E0|2σ2

λ2

){
1 − exp

[
−
(

dρ�

λR

)2]}
.
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2.6.3 Determining the roughness standard deviation and correlation
radius of mirror surfaces by means of their coherent images

The roughness standard deviation σ and correlation radius � of (polished) mirror
surfaces, for which σ is smaller than the wavelength λ, are usually determined by
measuring the diffuse and reflected specular components of monochromatic radi-
ation scattered by this surface. As a rule, these measurements are carried out by
using low-energy lasers with continuous radiation. One can apply such lasers for
unmoving and stable surfaces, since the radiation energy needed for measurements
can be accumulated over a long time period. Yet, there are real-life situations that
require a rapid determination of σ and �. For solving such problems, it is nec-
essary to use high-energy pulsed lasers. This is the case, for instance, when the
surface under study is moving or unstable, in particular during the process of mir-
ror production by metal surface sharpening with a diamond-tipped cutting tool. In
this case, the necessary radiation energy scattered by a fixed surface area is accu-
mulated during the short time when the surface parts under study are practically
immobile.

Now we will consider a device that can be applied for measuring the rough-
ness standard deviation σ and correlation radius � of mirror surfaces (Fig. 2.17).
A thin laser beam illuminates a small part of the mirror surface. The imaging sys-
tem forms two images of the mirror surface in diffuse light. Detector 1 detects all
diffuse scattered radiation Id1(δ) passing through the imaging system whose aper-
ture diameter is dρ1; and detector 2 detects radiation that passes through an aperture
Id2(δ) with an equivalent diameter equal to dρ2. Here, δ = −r/µ (µ= R/Z is the
scale factor) is the radius vector of the area in the image plane optically conju-
gated to the radius vector r of the small illuminated area of the mirror surface. For

Figure 2.17 A device for measuring the roughness standard deviation σ and corre-
lation radius � of a mirror surface. CU is the calculating unit.
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instance, in Fig. 2.17, r has components 0,0,R, and δ has components 0,0,Z. De-
tector 3 detects the specular component of the radiation with intensity Is by means
of two mirrors, a highly reflecting one and a semitransparent one (the thick rays
in Fig. 2.17). Finally, the calculating unit (CU) computes the roughness standard
deviation σ and the correlation radius � of the mirror surface roughness.

We used the device depicted in Fig. 2.17 to determine roughness parameters
with the help of Eq. (2.36). The mirror surface was illuminated by a pulsed ruby
laser, and three values were measured: the energy diffuse components Qp1 and
Qp2 passing through imaging system’s apertures with diameters dp1 and dp2 ≈
0.7dp1, respectively, and the energy Qs of the specularly reflected component. The
roughness parameters are determined from the formulas

σ= λ

4π

√
Qρ1

Qs(1 −α2)

and

� = λR

dρ2

√−2 lnα,

where α = 1 − Qρ1/Qρ2. The device ensured mirror roughness measurements to
approximately 10 nm with ∼10% accuracy. The proposed device can be used to
measure these parameters during mirror production by metal surface sharpening
with a diamond-tipped cutting tool.

2.7 Speckle structure of the time spectrum of a coherent field
scattered by a moving rough object

In the previous section we analyzed time dependencies for the correlation function
of a coherent field scattered by a moving object.12,44 Let us analyze the time–
frequency spectrum S(ω) of such fields. This can be achieved by heterodyning the
scattered field with a reference signal exp(−iω0t), where ω0 is the frequency of
the illuminating radiation, and analyzing the resulting signal by means of a spec-
trum analyzer:

S(ω) = 1

T

t0+T∫
t0

E(ρ, t) exp(−iω0t + iωt)dt, (2.37)

where t0 and T are the initial time and the processing time, respectively, and ρ is
the radius vector of the receiving aperture. With a spectrum analyzer one obtains
the field intensity spectrum, I(ω) = |S(ω)|2, and analyzes its mean value over
all realizations of surface roughness height, 〈I(ω)〉. Consider, for simplicity, the
intensity spectrum of a field scattered by a rotating rough narrow stripe at the point
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ρ = 0 and the coherent image of the stable stripe, I(δx). In this case, within a
small stripe domain, the reflection coefficient and the surface roughness height are
functions of the coordinate x on the stripe domain, k(r) ≈ k(x) and ξ(r) ≈ ξ(x).
Taking into account relation (2.37) for the spectrum of the field scattered by this
object, we obtain12

S(ω) ∼
ds/2∫

−ds/2

k(x) exp

[
i4πξ(x)

λ

]
sinc

[
T

(
2π�x

λ−ω
)]

dx, (2.38)

where ds is the stripe size.
If σ/(��) � T � λ/(��), where � is the size of the smallest detail of the

object, then σ and � are the standard deviation and the correlation radius of the
object’s surface roughness, respectively, and the function sinc{T[(2π�x)/λ−ω]}
is narrower in x than �, but broader than the correlation radius of the scattered field
phase distribution close to the object surface, ρϕ = (λ�)/σ. We then obtain

〈I(ω)〉 ∼
∣∣∣∣k(x = − λω

2π�

)∣∣∣∣2. (2.39)

On the other hand, it is not difficult to show that in the case of a high-resolution
imaging system, the averaged intensity in the coherent image of a stable stripe is
〈I(δx)〉 ∼ |k(x = −µδx)|2, where µ is a scaling factor. Comparing the expressions
for 〈I(ω)〉 and 〈I(δx)〉, we see that they are identical. This is not surprising since in
the linear approximation in t, the field E(0, t) coincides, after a certain scaling, with
the field E(u,0) scattered by a stable stripe, where u is a coordinate of the imaging
system’s aperture. Indeed, from a physics viewpoint, rotation of the stripe leads to
a simultaneous rotation of the scattered field (see Sec. 1.4). Let us take into account
that spectrum formation and image formation are mathematically quite similar, in
the sense that the first operation consists of a Fourier time transform and the second
a Fourier space transform. Then we arrive at the result that the spectral intensity
pattern coincides with the intensity distribution in the image of a stable stripe.

Consider the relative variance of I(ω) and its correlation function. After calcu-
lations similar to the ones used when deriving relation (A1.4) of Appendix 1, one
can show that under the condition T � λ/(��), the relative variance of I(ω) and
its correlation function can be represented as

〈I2(ω)〉 − 〈I(ω)〉2

〈I(ω)〉2
≈ 1

and

〈I(ω1)I(ω2)〉 − 〈I(ω1)〉〈I(ω2)〉 ∼ sinc2[T(ω1 −ω2)].
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These expressions show that the intensity spectrum I(ω) has unity contrast and
correlation angular frequency ωf = 2π/T . Taking into account that, according to
Eq. (2.36), the spectrum’s width is (2πds�)/λ, we obtain that each realization of
the intensity spectrum consists of M� = (�Tds)/λ lobes. We see a close analogy
between the intensity spectrum and the coherent image. For this reason, we can
consider the intensity spectrum as a one-dimensional frequency–time-coherent im-
age formed by means of the Fourier time transform. The processing time T in the
case of a frequency–time image can be considered as the time aperture of the spec-
trum analyzer, and the spectrum lobes can be considered as frequency speckles
with mean size fc = 1/T . Hence, the intensity spectrum I(ω) is a speckle pattern.
In Chapter 5, we consider a more general Fourier–Fresnel transform of the field
scattered by a moving rough object. Such a transformation allows one to form
two-dimensional images of objects. The intensity distribution in this image is the
two-dimensional speckle pattern.

Analysis of scattered field spectra is also useful for explaining the effects re-
lating to the scattering of small-width beams by various objects. For instance, in
the case of a rough object moving in a single plane and illuminated by a Gaussian
beam with width b, such as do � b � (λ�)/σ, where do is the object size, the
average intensity spectrum of the scattered light is12

〈I(ω)〉 ∼
(

�

σ

)
exp

(
−�2 tan2 θ

σ2

)
exp

[
−
(
ωb

v

)2]
,

where θ is the angle of incidence of the illuminating beam. One can see that there
is a spectral broadening by ωb = v/b, which can be explained as follows: In the
course of the object’s motion, the illuminating beam hits new elements of the rough
surface. As the illuminated part of the rough surface is completely replaced by a
new part, the scattered field is also replaced by its new realization. The correlation
time of this process is equal to the roughness shift time ti = b/v, which corresponds
to the frequency rangeωb = 1/ti = v/b.

2.8 Conclusions

1. A coherent image of a rough object has the form of a speckle pattern with M =
(SeSρ)/(λrc)

2 number of speckles, where Se is the effective shine (backscat-
tering) domain of the object surface giving the main contribution to the image,
Sρ is the area of the imaging system aperture, λ is the illuminating radiation
wavelength, and rc is the distance from the object to the imaging system. For
a spherical rough object, Se = (πρ2

oσ
2)/�2, where σ and � are the standard de-

viation and the correlation radius of the object surface roughness, respectively,
and ρo is the sphere radius.

2. The average field intensity in the coherent image of an object with surface
roughness height much greater than wavelength λ of the illuminating radia-
tion consists of several distinct bright spots, which are the images of the object
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surface’s shine (backscattering) domain, whose tops have tangential planes or-
thogonal to the imaging system’s optical axis and whose sizes are determined
by the average roughness slope σ/�.

3. For a coherent image of an object with surface roughness height much larger
than λ, the contrast in the intensity distribution I is close to unity. In the case
of very high resolution imaging, the contrast can exceed unity considerably.
In this case, the intensity distribution correlation radius is much smaller than
µ�, µ being the scaling factor. For a very large imaging system aperture, the
contrast is close to zero and the correlation radius is close to �.

4. The quality of a coherent image can be estimated by means of two criteria, one
that is local and one that is integral. The local criterion determines the imaging
quality for a small detail of the object’s surface, which will be high quality if
the speckle number in the image of the detail Md = (SdSρ)/(λrc)

2 � 1, where
Sd is the area of the surface detail. The integral criterion relates to the quality
of the whole image. The quality of a coherent image is high if the relative
fluctuations ηc of the parameter

K =
∫

Ia(δ)〈I(δ)〉dδ∫ 〈I(δ)〉2dδ

are small. Here, I and 〈I〉 denote the real and average intensity distributions
in the image, respectively. One of the ways to increase image quality is to
accumulate statistically independent realizations of a coherent image. In this
case,

Ia(δ) = 1

Na

n=Na∑
n=1

In(δ),

and ηc ≈ 1/(MNa), where Na is the number of accumulated images, M is
the speckle number in the realization of the coherent image, and In is the in-
tensity distribution in the nth realization of the coherent image. For Na � 1
and M � 1, ηc is very small. The contrast in the accumulated image is
C = 1/(MNa). For Na � 1, the contrast is very low.

5. A rough object’s image is partially coherent if it is formed by means of illu-
minating the object with quasi-monochromatic radiation having a coherence
length 10Lp > Lc > 10λ, where Lp is the projection of the resolvable domain
of the object’s surface on the optical axis. In this case, the contrast C of the
intensity distribution depends on the orientation of the resolvable domain of
the object’s surface with respect to the imaging system’s optical axis. If the
projection of this domain Lc � Lp, then C ∼ Lc/Lp � 1. An image is incoher-
ent if it is formed by means of polychromatic radiation, such as natural light,
that has a coherence length Lc � 10λ. In this case, the contrast in any part of
the image is small: C ∼ Lc/σ� 1.
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6. A coherent image of a surface with small-scale roughness (σ � λ), e.g., a
mirror surface, contains a high-intensity specular and low-intensity diffuse
components (speckle pattern). If the imaging system does not resolve sepa-
rate elements of the rough surface, then the correlation radius (the average
speckle size) of the speckle pattern is (λrc)/dρ. In the opposite case, the aver-
age speckle size is ∼�. The standard deviation σ and the correlation radius � of
mirror surface roughness are determined by measuring separately the specular
and diffuse components of the mirror’s coherent image.

7. The time spectrum of a coherent field scattered by a moving rough object has
the form of a speckle pattern in frequency coordinates with the speckle size
fc ≈ 1/T , where T is the time of the scattered field Fourier transform.

2.9 General conclusions to Chapters 1 and 2

1. For a coherent field scattered by a rough object, the fields at points close to
the object and far from it are related via the Fourier–Fresnel space transform,
and the intensity distribution of the scattered field far from the object has the
form of a space speckle pattern.

2. For coherent fields scattered by rough objects, fields on the imaging system’s
aperture and in the coherent image are related via the inverse Fourier–Fresnel
space transform, and the intensity distribution in the coherent image also
forms a space speckle pattern.

3. For a coherent field scattered by a moving rough object, the fields at points
far from the object and close to it are related via the Fourier time transforma-
tion, and the scattered field intensity distribution at a fixed point far from the
scattering object forms a time speckle pattern.

4. The object image reconstructed with an intensity hologram (obtained with
the help of the Fourier space transformation of the intensity distribution of
the field scattered by the rough object) has a speckle structure, with speckle
size depending on the size of the hologram. The reconstructed image of the
object is given by the space autocorrelation function of its coherent image.

5. A Fourier time transform (the spectrum) of a coherent scattered field at a
fixed point far from the scattering moving object also forms a time speckle
pattern that is analogous to a typical coherent image. The average speckle
size is ∼1/T , T being the time of the spectrum formation. Similarly, it is
shown in Chapter 5 that the Fourier–Fresnel time transform of the coherent
scattered field at a fixed point far from the scattering moving object forms a
two-dimensional object pattern with a speckle structure.

The results obtained in Chapters 1 and 2 reveal the universal nature of speckle
patterns of fields scattered by rough objects, which manifest themselves both in
space and time.
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Chapter 3

Use of Coherent Fields and Images
to Determine the Dynamic Parameters

of Remote Objects

3.1 Introduction

This chapter describes particular methods of obtaining information about the mo-
tion and deformation of objects that use coherent fields scattered by these objects
and their coherent images. The object under investigation should have a statistically
rough surface. The result is that the field at particular points of the reception plane
and the image plane is produced by waves coming from different surface points.
If the object is illuminated by monochromatic radiation, then interference of these
waves forms scattered coherent fields and coherent images with random speckle
structure—the speckle pattern. This structure can give us information about the pa-
rameters that describe the object’s motion. Indeed, the motion of the object changes
the phase difference between the waves coming from adjacent surface areas. This,
in turn, brings to motion some fragments of the speckle pattern in the reception
plane of the scattered field and the image plane. As a result, the speckle pattern
brightness is varied. We will use this to estimate the parameters of the object’s
motion: the vector of linear velocity and the angular velocity of rotation. We will
also use these variations to estimate the parameters of surface deformations, such
as changes of components of unit vectors normal to particular areas of the object’s
surface.

The concept of using coherent fields and images to determine the dynamic pa-
rameters of remote objects has drawn considerable interest.13,44–48 However, in-
vestigators dealing with the subject usually give neither explicit algorithms for
estimating these parameters nor relationships for determining the accuracy of the
estimation. In this chapter we will fill that information gap. The approach we sug-
gest here is applicable to most of the known coherent-image methods for estimat-
ing the parameters of remote objects, and it allows us to estimate the parameters
with high accuracy by relatively simple and reliable technical means. The methods
considered in this chapter use no reference beam and therefore can be used with
short-coherence-length sources, e.g., less than 1 m.

75
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3.2 Methods of determining the linear velocity of a remote rough
object

The well-known method of determining the radial component vR of the linear ve-
locity vector of an object that is used to locate remote objects is based on the inter-
ference of a reference beam with a coherent field scattered by the moving object.
A detector registers the interference fringes, and the Doppler beat frequency fR is
determined. It is known that vR = fRλ, where λ is the wavelength of the illuminat-
ing beam. The drawback of this method is the necessity to form a stable reference
beam and to satisfy the condition that the path difference between the reference and
signal beams is less than the coherence length of the light source. In the case of a
moving remote object, this condition requires that special light sources with large
coherence length be used. Another strict limitation is that the arrangement used for
velocity measurement must be vibration-proof. Moreover, such a scheme does not
allow one to determine the tangential component of the linear velocity vector of a
remote object.

Figure 3.1 is a schematic that shows how to determine the tangential component
vtA of the linear velocity vA for a selected area A of an object’s surface. The method
does not have the above-mentioned drawbacks of the previous methods. A mono-
chromatic light source illuminates the moving object. A two-aperture screen covers
the imaging system, whose optical axis is directed toward the object under investi-
gation. The two apertures are placed symmetrically with respect to the optical axis
of the lens.

The distance between the apertures, sH , is assumed to be much larger than the
aperture size dH . Light scattered by area A, after passing through the two apertures,

Figure 3.1 The arrangement for determining the tangential components of velocities
for a selected area of an object’s surface.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 20 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Use of Coherent Fields and Images to Determine the Dynamic Parameters 77

is focused in the image plane and selected by the pinhole. Mirrors direct the two
beams with different frequencies to the field diaphragm and to the detector. The
electrical signal from the detector is fed to the spectrum analyzer, and the output
spectral curve is analyzed by the computer to determine the frequency difference
fD and to obtain the estimate for the tangential component vtA of the linear velocity
for a particular area of the object’s surface.

To simplify the calculations, we assume that the remote object has a flat surface
orthogonal to the imaging system axis and moves with a constant velocity. With
sufficient accuracy, the distribution of the light field in the image plane can be
written as

E(xH, yH, t) ∼
∫

k(x − VtAt, y) exp

[
2πi

λ
(rc + |r − ρS|)

]
exp

4iπξ(x − VtAt, y)

λ

× h(xH, yH, r)dr, (3.1)

where xH and yH are coordinates of the pinhole optically conjugated to the co-
ordinates xA = −(rcxH)/zi and yA = −(rcyH)/zi of the area A; rc is the distance
between the two-aperture screen and the object’s center of gravity; zi is the dis-
tance between the two-aperture screen and the image plane; the Z axis is directed
along the optical axis of the imaging system; t is time; r(x, y, z) is the radius vector
of the object surface; k(r) is the distribution of field reflection coefficients on the
object surface; ρs is the radius vector of the illuminated source;

h(xH, yH, r) = sinc

[
2πdH

λ

(
x

rc
+ xH

zi

)]
sinc

[
2πdH

λ

(
y

rc
+ yH

zi

)]
× cos

[
2πsN

λ

(
x

rc
+ xH

zi

)]
cos

[
2πsN

λ

(
y

rc
+ yH

zi

)]
is the pulse response (point spread function) of the imaging optics consisting of a
screen with two apertures of square shape dH × dH and the lens; and ξ(x, y) is the
roughness height distribution on the object surface. In Fig. 3.1, xH = yH = 0. The
spectrum analyzer gives the spectral curve

SH( f ) = 1

T

∣∣∣∣∣
t0+T∫
t0

|E(xH, yH, t)|2 exp(2πift)dt

∣∣∣∣∣
2

,

where t0 is the initial time and T is the spectrum formation time. Using Eq. (3.1),
we obtain SH( f ) = SL(−fD) + S0 + SL( fD). One can see from this expression that
the spectrum has three lobes (a central one and two side ones) with maximums at
f−1 ≈ fi − fD, f0 = fi, f1 ≈ fi + fD, where fi is the intermediate frequency, and fD =
(sHvtA)/(λrc). Under the assumption that E(xH, yH, t) has a Gaussian distribution,
one can show that the spectrum S( f ) is a random function with the correlation
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frequency fc = 1/T , and the spectral curve is presented by time speckle pattern
with the speckle width about fc = 1/T and the average spectrum (see Sec. 2.7)

〈S(xH, yH, f )〉 =
t0+T∫
t0

t0+T∫
t0

∣∣〈E(xH, yH, t1)E ∗ (xH, yH, t2)〉
∣∣2

× exp[i2πf (t1 − t2)]dt1dt2, (3.2)

where f is the spectral frequency and 〈〉 denotes averaging over different realiza-
tions of the roughness height distribution ξ(x, y).

Approximating the point spread function of the imaging system by a Gaussian
function and assuming that the roughness height spatial distribution ξ(x, y) has a
Gaussian correlation function, with the help of expression (3.2) it can be shown
that the averaged spectrum in the side lobes is

〈SL( f ± fD)〉 ∼ �4

σ4 sinc2
[

2π

	fD
( f ± fD)

][∫
|k(r)h(r, xH, yH)|2dr

]2

. (3.3)

Here, 	fD = MVfc is the width of the spectrum side lobes,

MV =



vTdo

rcλ
, if dH � rcλ

do

vT

dH
, if

rcλ

do
� dH � √

λrc

vTdH

rcλ
, if dH � √

λrc

is the number of correlation cells (time speckles with the speckle width fc = 1/T ;
see Sec. 2.7) in the spectrum side lobe; σ and � are the standard deviation and the
correlation radius of the roughness height spatial distribution; and do is the size of
an illuminated surface of the object under study.

Let us now evaluate the accuracy of the method. The estimate of the object
linear velocity can be expressed analytically as

v̂ = λrc
∫

( f − fi)SL( f ± fD)df

sH
∫

SL( f ± fD)df
.

From the last expression, we obtain

〈v̂〉 = v = fD
λrc

sH
. (3.4)

Formula (3.4) has a simple geometric interpretation (Fig. 3.1). The tangential com-
ponent of the object velocity has two projections, v1 = −(sHv)/2rc and v2 =
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(sHv)/2rc, on the rays connecting the two apertures in the two-aperture screen with
the object surface point A. These projections cause the difference between the fre-
quencies of the beams selected by the two apertures, fD ≈ (v2 − v1)/λ= sH/(λrc).
The standard deviation σV of the estimate (the error in the object velocity measure-
ment) is determined by the number of time speckles:

σV =
√

〈v̂2〉 − 〈v̂〉2 = v√
MV

. (3.5)

Hence, the accuracy of the velocity estimate σv is determined by the characteristics
of the time speckle pattern of the spectral curve S( f ) and the width of the spectrum
side lobes 	fD. Therefore, it is important to give a physical explanation for the
frequency spread around the spectrum maxima.

For the case
√

rcλ� dH , the spectrum width 	fD = (vdH)/(λrc) can be ex-
plained by the spread of the Doppler beats between the frequencies of rays go-
ing from a certain small area of the object surface to different points of the
two apertures. The spread is equal to 	fD = (v1 − v2)/λ = (vdH)/(λrc), where
v1 = (vdH)/2r and v2 = −(vdH)/2rc are projections of the object’s velocity on the
peripheral rays [Fig. 3.2(a)].

For the case
√

rcλ� dH � (λrc)/do, only rays coming from the smallest area
of the object surface resolved by the imaging system with the aperture size dH hit
the pinhole (see Fig. 3.1). As a result, the width of the spectrum side lobes 	fD is
determined by the Doppler beats between the frequencies of peripheral rays from
this area, 	fD = (v1 − v2)/λ= v/dH , where v1 = (vλ)/2dH , and v2 = −(vλ)/2dH

are projections of the object’s velocity on the peripheral rays [Fig. 3.2(b)]. Another
explanation is based on the synchronous motion of the scattered field speckles due
to the object motion; a full change in the speckle pattern within the two apertures of

Figure 3.2 Explanation of the spectrum spreading around the side lobe maximums
of the spectral curve.
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the screen (see Fig. 3.1) occurs in time τ = dH/v. Hence, the width of the spectrum
side lobes is 	fD = 1/τ = v/dH .

In the case dH � (λrc)/do [Fig. 3.2(c)], the width of the spectrum side lobe
	fD = (vdo/(λrc) can be explained by the spread of the Doppler frequency beats
of all rays going from the object surface to the two apertures in the screen (see
Fig. 3.1), including peripheral rays. The spread is equal to 	fD = (v1 − v2)/λ =
(dov)/(λrc), where v1 = (dov)/2rc, v2 = −(dov)/2rc are projections of the object’s
velocity on the peripheral rays [Fig. 3.2(c)]. We can present another explanation:
the width of the side lobe spectrum 	fD = (dov)/rc is inversely proportional to
the time during which a single speckle of size ∼(λrc)/do moves along one of the
two apertures during object motion. The plots in Fig. 3.3 show dependence of the
frequency difference fD on the velocity v for different sH for the case

√
rcλ �

dH and for rc = 1 m, λ = 0.63 µm. The measurements are performed using the
arrangement presented in Fig. 3.1.

In the case dH � (λrc)/do, the object’s velocity can be measured directly with
the help of a very simple arrangement (Fig. 3.4) using the scattered coherent field

Figure 3.3 The relative Doppler shift fD as a function of the tangential component v
of the object’s linear velocity measured for different sH . Straight lines correspond to
the relation fD = (sHv)/(λrc).

Figure 3.4 The arrangement for determining the tangential component of an ob-
ject‘s velocity using a coherent scattered field.
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passing through the two-aperture screen. Mirrors on the field diaphragm and the in-
put of the detector bring together the beams transmitted through the two apertures.
The object’s velocity is measured using the side lobe spectrum SL [see Eq. (3.3)].
The main drawback of this method is a very low signal-to-noise ratio, which is due
to the small size of the apertures. Another drawback is the impossibility of mea-
suring the linear velocity of each area of the object surface when the points of the
surface move at different rates.

For estimating the Cartesian components vx, vy, and vz of the linear velocity
vector vA of a selected area A on the object surface, one can use three receiving
arrangements (see Fig. 3.5) equivalent to the arrangement in Fig. 3.1. The two-
aperture screen is placed in the reception aperture plane of each arrangement.

The double apertures of the first and second receiving arrangements are placed
side by side in one plane. The center of the double aperture of the third receiv-

Figure 3.5 Conceptual schematic of the method of determining Cartesian compo-
nents of the linear velocity vector for selected areas of the object surface.
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ing arrangement is placed on the line BC connecting the two apertures of the
first arrangement at the distance a from the center of the double aperture of the
second and third arrangements. The Jth arrangement (J = 1,2,3) determines the
projection vJ of the vector vA on the line connecting the two apertures of the Jth
arrangement by using expression (3.4). The estimates of the three Cartesian com-
ponents vx, vy, and vz are determined in the calculating unit (Fig. 3.5) from three
equations vA · nJ = vJ , where J = 1,2,3; nJ is the unit vector in the direction of
the lines connecting the apertures of the Jth arrangement. If the double apertures
of the arrangements 1 and 2 are oriented so that the vectors nJ have the compo-
nents n1 = (1,0,0), n2 = (0,1,0), n3 = (1,0,−a/rc), then from three equations
vA ·nJ = vJ , we obtain the three Cartesian components of the linear velocity vector
of the object’s surface area:

vx = v1,

vy = v2,

and

vz = (v1 − v3)rc

a
. (3.6)

For a solid moving object, the linear velocity vector of a selected area A (see
Fig. 3.5) on the object’s surface is vA = vc + Ω × (rc − rA), where vc is the vector
of the object’s center of gravity, Ω is the angular velocity vector of the object ro-
tation, rc is the radius vector of the object’s center of gravity, and rA is the radius
vector of the area A with the components xA = (rcxH)/zi, yA = (rcyH)/zi, zA = rc.
If the angular velocity of rotation is small enough, Ω � vx/do, vy/do, vz/do,do is
then vc = vA and relations (3.6) can be used for determining the Cartesian compo-
nents of the linear velocity vector vc, which are calculated as

vxc = v1,

vyc = v2,

and

vzc = (v1 − v3)rc

a
.

The arrangement represented in Fig. 3.5 can be used for an arbitrarily moving, de-
formed three-dimensional remote object. If the points of the object surface move
at different rates, we can measure the three components of linear velocities of each
area A on the object’s surface by placing diaphragms with several pinholes in the
planes of the coherent images built by the three arrangements, and detecting light
passing through each pinhole. A method for determining the components of angu-
lar velocity vector Ω will be considered in the next section.
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3.3 Method of determining the angular velocity of a rotating object

There are different optical methods of determining the rotation parameters of a
solid object. In particular, the stroboscopic method49 uses pulsed illumination of a
mark put on the surface of a rotating object. Illuminated this way, a stationary mark
means that the angular rotation velocity of the object is equal to the pulse repetition
rate. However, this method cannot be used for measuring small angular velocities
or variations of angular velocity. As a rule, for optical measurements of the ro-
tation velocity, one applies methods based on measuring the Doppler frequency
shift of monochromatic light scattered by the moving object. A typical arrange-
ment for implementing this approach is described in Ref. 50. In this arrangement,
coherent light is split into two beams: the reference beam and the signal beam.
The signal beam is focused on a small area of the rotating object surface. Then it
is scattered by the object and arrives at the detector, where it interferes with the
reference beam. An electronic unit, which consists of a spectrum analyzer and a
frequency meter, determines the Doppler beat frequency ωD. One can show that
the number n of rotations the object completes in a second is related to ωD as
n = (λωD)/(4πdo sinϕυ), where do is the object diameter, λ is the wavelength of
coherent light, and ϕυ is the angle between the direction of incidence of the signal
beam on the object surface and the local linear velocity at the signal beam’s focus.
The angular rotation velocity is

Ω= 2πn = λωD

2do sinϕυ
.

The basic drawback of such a method is the necessity to form a stable reference
beam and to satisfy the condition that the path-length difference between the ref-
erence beam and the signal beam is less than the coherence length of the light
source. In the case of a remote rotating object, these conditions require the use of
special light sources with large coherence length. Another strict limitation is that
the arrangement must be vibration-proof. Besides, this technique does not deter-
mine the direction of the axis of rotation.

Figure 3.6 shows a setup for determining angular velocity that is free from
the above-mentioned drawbacks.51 A rotating object is illuminated by a mono-
chromatic light source. The scattered light passes through the imaging system and
apertures A* and B* in a two-aperture diaphragm placed in the image plane and op-
tically conjugated to the small areas A and B of the object surface. The diaphragm
can rotate around the optical axis of the imaging system. The frequency of the
beam formed by aperture A* is equal to the frequency of the radiation scattered by
the center point of area A in the direction of the imaging system; i.e., f1 = 2v1/λ,
where v1 = vA · k is the projection of the linear velocity vector vA of the center
of area A on the imaging system’s optical axis (Fig. 3.6), and k is the unit vector
directed along the optical axis. Analogously, the beam formed by aperture B* has
the central frequency f2 = 2v2/λ= −2v1/λ, where v2 = vB ·k is the projection of
the linear velocity vector of the center of area B on the imaging lens’ optical axis.
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Figure 3.6 Setup for determining the angular velocity of a rotating object. In the
plane of the field diaphragm, moving sinusoidal interference fringes are formed,
which cause a periodic electrical detector signal, J(t), at the frequency of the rel-
ative Doppler shift fS = f1 − f2 = 4v1/λ.

Their difference is the relative Doppler shift, fS = f1 − f2 = 4v1/λ. Having differ-
ent frequencies, the beams produce interference fringes that move along the field
diaphragm. Motion of the interference fringes causes a periodic electrical signal
J(t) in the detector. This signal is fed to the spectrum analyzer. From the resulting
spectrum, the computer calculates the angular velocity of the object’s rotation.

Using the well-known relations for a moving solid object, vA = vc + Ω ×
(rc − rA) and vB = vc + Ω × (rc − rB), where vc is the linear velocity vector
of the object gravity center, Ω is the angular velocity vector of the object’s rota-
tion, rc is the radius vector of the object’s gravity center, and rA and rB are radius
vectors of the centers of areas A and B on the object surface, which are conjugated
to the centers of apertures A* and B*, for the relative Doppler shift fS we obtain

fS = 2

λ
[Ω × (rA − rB)]k = 2rc

λzi
[Ωy(x1 − x2) +Ωx(y1 − y2)], (3.7)

where rc is the distance between the lens and the object’s gravity center; zi is
the distance between the lens and the image plane; and x1, y1 and x2, y2 are co-
ordinates of the centers of the first and second apertures in the two-aperture di-
aphragm. As we will show later, the spectral curve at the output of the spec-
trum analyzer (Fig. 3.6) has three lobes with principal maxima12 at frequencies
f−1 = fi − fS, f0 = fi, and f1 = fi + fS, where fi is the intermediate frequency. The
measurements are controlled by means of a stroboscope, which can determine the
rotation velocity of the drive shaft that rotates the object. The use of a reduction
gear makes the object rotate 182 times slower than the shaft.

It is interesting that expressions (3.7) for the relative Doppler shift fS do not de-
pend on the geometric parameters of the rotating solid. In particular, if the apertures
A* and B* (Fig. 3.6) are placed symmetrical to the optical system axis (x2 = −x1
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and y2 = −y1), from Eq. (3.7) we have

fS =
(

2rc

λzi

)
(−Ωyx1 +Ωyy1) = rcsD

λzi
(−Ωy cosψr +Ωy sinψr), (3.8)

where ψr is the angle between the object’s axis of rotation and the line connecting
the centers of the apertures, and sD is the distance between the apertures.

In the experiment, cylindrical and spherical objects 10 to 30 mm in diameter,
placed 1000 mm from a lens with a 3-mm focal length, began rotating at the rates
of 0.01 to 0.25 rotations per second. The axis of rotation was orthogonal to the line
connecting the centers of the apertures (in this case,ψr = π/2,Ωx = 0, x1 = sD/2,
and y1 = 0). From relation (3.8) it follows that the true angular velocity of the ob-
ject’s rotation isΩ=Ωy = ( fSλzi)/(sDrc). The experimental spectrum S( f ) of the
electrical signal J(t) obtained at the detector output (Fig. 3.6) has principal maxima
at frequencies f−1 = fi − fS, f0 = fi, f1 = fi + fS. This spectrum was used for measur-
ing the relative Doppler shift fS and estimating the angular velocity of the object’s
rotation by computer (Fig. 3.6) by using the relation Ω= ( fSλzi)/(sDrc). The re-
sulting estimate of the angular velocity agreed with the data obtained by measuring
Ω by means of the stroboscopic method to within 1%. Figure 3.7 shows a calibra-
tion plot that helps to determine, for this particular experimental arrangement, the
angular velocity of rotation within 1% accuracy.

After this, the angle ψr is changed from π/2 to 0 by rotating the two-aperture
diaphragm around the optical axis of the lens (Fig. 3.6). The experimental depen-
dence (Fig. 3.8) of the relative Doppler shift on the angle ψr between the axis of
rotation and the line connecting the centers of the two apertures (see Fig 3.6) agrees
with relation (3.8). The relative Doppler shift is maximal in the case ψr = π/2.
This fact allows one to determine the direction of the rotation axis: the rotation
axis is directed orthogonal to the position of the line connecting the centers of the
apertures in which the maximal Doppler shift is achieved.

The experimental data show that the spectrum S( f ) has a time speckle structure
(many narrow lobes), a wide central lobe, and two wide side lobes. The width of a
single narrow lobe (of time speckles in the spectrum time speckle pattern) is about
1/T , where T is the spectrum formation time. As we will show later, the side lobe

Figure 3.7 Calibration plot. The small circles are calibration data.
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Figure 3.8 Dependence of the relative Doppler shift on the angular position ψr of
the two-aperture diaphragm.

width depends on the angular velocity of the object rotation Ω, and the estimation
error of Ω depends on the number of narrow lobes in the side lobes. To analyze
these dependencies, we consider the relatively simple case ψr = π/2, where the
axis of a cylindrical object is perpendicular to the axis of the optical system and
to the line connecting the apertures in the two-aperture diaphragm. One can show
that up to a constant factor, the electrical signal at the detector output is

J(t) = |A1 + A2|2, (3.9)

where

Aj(ϕj,χ) ∼
γ∫

−γ

γ∫
−γ

∫∫
k(ϕ, y)

× exp i�j(ϕj,ϕ)h(ϕ, y,δx,δy,ϕj)dϕdydδxdδy

γ= dD

2
,�(ϕj,ϕ) = i

2π

λ

[
ξj(ϕ−Ωt, y) + do

2
cos(ϕ+ϕj) + y

]
,

h(ϕ, y,δx,δy,ϕj) = h

[
πdρd0

λrc
sin(ϕ+ϕj) + πdρδx

λzi
,

y

rc
+ δy

zi

]
is the pulse response (the point spread function) of the imaging system (Fig. 3.6),
j = 1,2; k(ϕ, y) is the reflection coefficient spatial distribution in cylindrical co-
ordinates x = ρ cosϕ, y = ρ sinϕ, with the origin O placed on the rotation axis
(see Fig. 3.6); do is the diameter of the cylindrical object; dρ is the diameter of the
imaging system aperture;

ϕ1 = ϕ0

2
,

ϕ2 = −ϕ0

2
,

and

ϕ0 = arcsin

[
rc(dD + sD)

2dozi

]
;
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dD is the aperture diameter; ξ1(ϕ) and ξ2(ϕ) are roughness height distributions on
object surface areas A and B, optically conjugated with the apertures A* and B*;
and δx, δy are image plane coordinates. The spectral curve is

S( f ) ∼
∣∣∣∣∣ 1

T

to+T∫
to

J(t)exp(2πift)dt

∣∣∣∣∣
2

, (3.10)

where t0 is the initial time. Taking into account the last expression, we will show
that if the lens has a sufficiently sharp pulse response, h(ϕ,ϕj), and ξ1(ϕ) and
ξ2(ϕ) have a Gaussian distribution with a Gaussian correlation function, the ex-
pression for the spectrum can be calculated analytically.52 The analysis using ex-
pressions (3.9) and (3.10) shows that the expression for the averaged spectral curve
is given by the sum of three symmetrical components:

〈S( f )〉 = 〈S1( f )〉 + 〈S0( f )〉 + 〈S−1( f )〉,
and that the spectrum S( f ) has the correlation frequency fc = 1/T . This correlation
frequency is equal to the average width of a narrow lobe (time speckle; see Sec. 2.7)
of the spectrum time speckle pattern. The term 〈S0( f )〉 gives the central lobe of the
spectral curve, and terms 〈S1( f )〉 and 〈S−1( f )〉 give the side lobes of the spectral
curve. This is a full analog of the speckle patterns in the two first orders and the
one zero order known in holography in connection with image reconstruction.

The principal maxima of the three components are placed at frequencies f1 =
fi − fS, f0 = fi, and f1 = fi + fS.12 Here, fS = (8πnsDrc)/(λzi) = (2ΩsDrc)/(λzi),
and Ω= 2πn is the magnitude of the angular velocity of the object rotation. Ap-
proximating transmission of the apertures A* and B* by Gaussian functions, we
obtain the averaged spectra of the spectral curve side lobes in the form12

〈S1( f )〉 ∼ exp−
(

f − fi − fD
	fS

)2

,

and

〈S−1( f )〉 ∼ exp−
(

f − fi + fD
	fS

)
,

where the width of the spectrum side lobes is

	fS = Ωrc

dρ
, if dD � λzi

dρ
,

and

	fS = ΩdDrc

λzi
= fSdD

sD
, if dD � λzi

dρ
. (3.11)
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The last relation was checked experimentally for sD = 0.5 mm and dD = 0.08 mm
to be accurate to within 10%.

Let us now consider the minimal coherence length of light sources required for
the realization of this method. It is not difficult to show that the coherence length
should not exceed the size of the object. Moreover, if the apertures in the two-
aperture diaphragm are placed symmetrically with respect to the object’s axis of
rotation (Fig. 3.6), the coherence length can be of the order of 10 standard devia-
tions of surface roughness height. For sufficiently smooth surfaces, this length can
be several tens of microns. We see that it is possible to determine the rotational
velocity of a symmetric solid object using light sources with a small coherence
length.

For applications of this method, it is very important to evaluate the method’s
accuracy. It is clear from general physical reasoning that error in the rotation ve-
locity estimate, σΩ, is determined by the number of time speckles in the side lobes
S±1( f ) of the spectral curve S( f ). Under the assumption that sD � (λzi)/dρ, the
estimate for the angular velocity of the object rotation can be expressed analytically
as

Ω̂= 2λzi

rcsD
f̂S,

where f̂S = ∫ ( f − fi)S1( f )df /
∫

S1( f )df is the estimate of the principal maximum
fS of the spectrum side lobe. From the last expression, we obtain 〈Ω̂〉 = Ω =
( fSλzi)/(sDrc)(2ΩsDrc)/(λzi); and so

σΩ =
√

〈Ω̂2〉 − 〈Ω̂〉2 = Ω

MΩ

, (3.12)

where Ω is the true angular velocity of rotation, MΩ = 	fS/fc, with fc = 1/T ,
is the number of correlation cells (time speckles; see Sec. 2.7) in the side lobes
S±1( f ) of the spectral curve; sD � (λzi)/dρ; MΩ = (Ωrc)/(dρ fc) =ΩrcT/dρ, if
dD � (λzi)/dρ; and MΩ = (ΩrcdD)/(λzi fc) = (ΩrcTdD)/(λzi), if dD � λzi/dρ.

Let us try to give a physical interpretation of expressions (3.11) for the width
of the side lobes of the spectrum. At the beginning, consider the case where
dD � λzi/dρ. In this case, 	fS = (2Ωrc)/dρ. Let us take the minimally resolved
area A of the object surface, optically conjugated with aperture A* in the image
plane (Fig. 3.9). For each point of this area, projection of the velocity on the di-
rection of the imaging system’s optical axis is given by the relation v = [vc + Ω ×
(rc −r)] ·k. We see that velocities of the points of area A have different projections
on the direction of the optical axis. Therefore, they scatter rays in this direction
with different Doppler frequency beats. As a result, the Doppler beats between the
rays scattered by different points of area A and passing through aperture A* vary
within the range 	fS = 2|v1 − v2|/λ= (2Ωrc)/dρ, where |v1 − v2| = (2Ωrc)/dρ.
Here, v1 and v2 are projections of linear velocities vL2 and vL1, the peripheral
points of area A on the imaging lens’ optical axis (Fig. 3.9). Taking into account
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Use of Coherent Fields and Images to Determine the Dynamic Parameters 89

expression (3.12) and the fact that the correlation frequency of the spectrum is
fc = 1/T , we obtain that the relative Doppler shift fS and the angular velocityΩ of
the object rotation can be estimated with high accuracy if the number of correlation
cells (narrow lobes or time speckles) in the side lobes S±1( f ) of the spectral curve
MΩ = 	fS/fc = (ΩTdDrc)/(λzi) � 1.

If dD � (λzi)/dρ, then 	fS = (ΩrcdD)/(λzi). This is the case in the experiment
presented here. Let us take the area A of the object surface optically conjugated
to the aperture A* (Fig. 3.10). For the points of this area, maximal variation of
the velocity projections on the optical axis of the imaging system is |v1 − v2| =
(2ΩdDrc)/zi, where v1 and v2 are projections of linear velocities vL2 and vL1 of
area A’s peripheral points. From expression (3.12) it follows that the estimation

Figure 3.9 The case dD � λzi/dρ. For a rotating object, finite angular resolution
α= λ/dρ of the imaging system causes frequency variations of light scattered by the
minimally resolved area A and passing the aperture A* placed in the image plane
equal to |v1 − v2|/λ= (Ωλrc)/dρ, where v1 and v2 are projections of velocities of the
peripheral points of area A on the imaging lens’ optical axis. Point O is the object’s
center of mass.

Figure 3.10 The case dD � (λzi)/dρ. Values v1 and v2 are projections of velocities
for the peripheral points of the object surface area A, which is optically conjugated
to the aperture A* on the imaging lens’ optical axis.
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error of the angular velocity of rotation can be reduced either by decreasing the
diameter of the imaging system aperture or by increasing the size dD of the two
apertures A* and B* in the image plane. In the latter case, increasing the size dD
is limited by the asymmetry of the averaged intensity distribution in the object
image plane within the two apertures (Fig. 3.11), which, as one can show, causes
the asymmetry of the spectrum side lobe and additional error σDΩ in the estimate
for the angular rotation velocity. If dD/sD � 1, then

σDΩ ≈ Ωd2
D[∂ki(sD,0)∂δx]
ki(sD,0)sD

, (3.13)

where ki(δx,δy) = (�2/σ2)|k(δx,δy)|2 exp[−(�δ)/(σzi)
2] is a function propor-

tional to the averaged intensity distribution in the object image plane (for the two-
aperture diaphragm plane in Fig. 3.6, σ and � are the standard deviation and the
correlation radius of the surface roughness height distribution, respectively). Tak-
ing into account that within the small areas A and B of the object surface, the mod-
ule of the reflection coefficient distribution k(r) is approximately constant, then
from Eq. (3.13) we obtain σDΩ =Ω[(dD�)/(σzisD)]2.

However, it should be noted that in the case of rotating objects with sufficiently
smooth surfaces, the peripheral areas of the object image are considerably dimmer
and the greatly increased distance between the two apertures can lead to a con-
siderable decrease in the intensity in the plane of one aperture proportionally to
the factor exp[−(�sDrc/2ziσdo)

2] [see expression (3.13)]. Therefore, the rotation
velocity estimation error drops considerably even in the presence of low additional
noise.

For determining the three componentsΩx, Ωy,Ωz of the angular velocity vec-
tor of the object’s rotation, we can use a system consisting of three arrangements
(Fig. 3.12) equivalent to the setup in Fig. 3.6. The relative positions of the key sys-
tem elements are presented in Fig. 3.12 in the reference frame XYZ with the origin

Figure 3.11 The asymmetry 	 of the averaged intensity distribution (solid line) of
the object image within the two apertures A* and B* displaces the energy center of
the spectral curve side lobes and causes additional error σDΩ in the estimate for the
angular rotation velocity.
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at center O of the imaging system’s input aperture of the first arrangement and the
Z axis directed along the imaging system’s optical axis. The input apertures of the
imaging systems of the first and the second arrangements are placed side by side in
the X0Y plane, with the X axis directed along the line OC connecting the aperture
centers.

The center C of the imaging system’s input aperture in the third arrangement is
placed on the X axis at a distance a from origin 0 (a is much larger than the input
aperture). The optical axis in the third arrangement is placed in the X0Z plane at
the angle ϑ ∼= a/rc to the Z axis. The Jth arrangement detects radiation scattered
by the corresponding Jth pair of adjacent areas AJ and BJ of the solid surface.

All apertures in the three two-aperture diaphragms are placed in the image
planes symmetrically with respect to the optical axes of the imaging systems. The
Jth pair of apertures is optically conjugated to the Jth pair of adjacent areas AJ
and BJ of the solid surface. The distance between the apertures in the two-aperture
diaphragms is equal to sD. The two apertures in the diaphragm of the first arrange-
ment are placed on the lines parallel to the X axis (the unit vector of the aperture’s

Figure 3.12 Conceptual schematic of the method of determining components of
the angular velocity vector of the object rotation. Unit vectors sJ determine orienta-
tions of apertures in two-aperture diaphragms installed in the image plane of each
arrangement (small dark spots in each image plane). The angle ϑ∼= a/rc, where rc is
the distance to the object, and a is the distance between the centers O and C of the
input apertures of the first and third arrangements.
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orientation s1 has the components 1,0,0). The two apertures in the diaphragm of
the second arrangement and the two apertures in the diaphragm of the third arrange-
ment are placed on the lines parallel to the Y axis (the unit vectors of the apertures’
orientations s2 and s3 have the components 0,1,0). The Jth arrangement mea-
sures the relative Doppler shift fSJ (J = 1,2,3). The calculating unit determines
the three componentsΩx, Ωy, Ωz according to the following relations:

Ωx = fS2λzi

rcsD
,

Ωy = fS1λzi

rcsD
,

and

Ωz = ( fS3 − fS2)λzi

asD
. (3.14)

3.4 Determining object surface deformation parameters

In the previous section, we considered methods of determining the linear velocity
vector of a remote object and the vector of the object’s rotation velocity that are
based on changes in the speckle pattern brightness in the reception plane of the
scattered field and the image plane. Here we will use these changes to estimate
the parameters of an object’s surface deformations, namely, variations of the unit
vectors normal to the fixed small areas of the object’s surface.44,52,53

Before discussing the coherent methods of determining the variations of vec-
tors normal to a particular area of an object’s surface, let us consider the joint
correlation function of their coherent images. Approximating the chosen area of an
object’s mean surface by a small section of its tangential plane, we can describe
the field in the image plane as

E(δ,n) ∼
∫

k(r) exp

[
2πi

λ
(r + |r − ρs|)

]
exp

{
i
4π[ξ(x, y) +αx +βy]

λ

}
h(r,δ)dr,

(3.15)
where integration runs over the chosen area, and α and β are the parameters of the
unit vector normal to the small area,

n(α,β) =
( −α√

1 +α2 +β2
,

−β√
1 +α2 +β2

,
1√

1 +α2 +β2

)
,

and

h(δ, r) = 1

Sρ

∫
�(ρ) exp

[
i2πρ

λ

(
δ

zi
+ r

rc

)]
dρ

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 20 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Use of Coherent Fields and Images to Determine the Dynamic Parameters 93

is the pulse response of the imaging system, ρ is the radius vector of the imaging
system aperture, Sρ is the area of the imaging system aperture, �(ρ) is the pupil
function of the imaging system, δ is the radius vector of a point in the image of the
chosen area, r is the radius vector of the object’s mean (envelope) surface, rc is the
distance between the imaging system aperture and the object, and zi is the distance
between the imaging system aperture and the image plane.

To describe the surface deformation, let us introduce the initial, n1 = n(α1,β1),
and the final, n2 = n(α2,β2), unit vectors normal to the selected area before and
after its deformation, and the joint correlation function,

BT(n1,n2) = 〈E(δ,n1)E
∗(δ,n2)〉,

where the symbol 〈〉 denotes averaging over different realizations of surface rough-
ness height distribution ξ(x, y). Furthermore, we will assume that α,β < 0.3.
Then,

n(α1,β1) ≈ (−α1,−β1,1),

and

n(α2,β2) ≈ (−α2,−β2,1).

Our aim now is to determine the variations 	α = α1 − α2 and 	β = β1 − β2
of the parameters α,β of the unit vector normal to the small area of the object
surface optically conjugated with the point δ in the image plane, by means of
the joint correlation function BT(n1,n2). These variations describe deformation
of the selected area. The general expression for this correlation function is rather
cumbersome, so we present here a normalized joint correlation function for a very
narrow object extended along the X axis (a narrow stripe), which is not resolved by
the imaging system along the Y axis and whose coherent image has a large number
of speckles M � 1. The narrow stripe is rotating around the axis parallel to the
Y axis. Here, n1(α1,β1) ≈ (−α1,0,1) and n2(α2,β2) ≈ (−α2,0,1), where α1
and α2 are the initial and the final angles of light incidence on the narrow stripe
surface. Using relation (3.15), under the assumption that the spatial distribution of
the reflection coefficient k(r) is constant within the selected area, we obtain the
normalized joint correlation function

K(α) = BT(α1,α2)

BT(α1,α1)
≈


1 − γ for γ< 1 − 1

M
,

cos[2(1 − γ)]
M

for γ≥ 1 − 1

M
.

(3.16)

Here, M = (dodρ)/(λrc), γ = (rc	α)/dρ is the stripe rotation angle, do is the
object size, and dρ is the size of the imaging system aperture. We see from
Eq. (3.16) that full decorrelation occurs when the rotation angle of the narrow
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stripe 	α> dρ/rc. The value dρ/rc of the decorrelation angle can be explained as
follows: the speckle pattern of the scattered field is shifted in the aperture size dρ
when the stripe turns by an angle of 	α = dρ/rc. As a result, new speckles fully
replace the old speckles in the imaging system’s aperture plane.

Let us dwell on the experimental testing of relation (3.16). The experiment
is carried out with the setup shown in Fig. 3.13. The object is a narrow stripe
0.5 mm × 5 mm metal sheet cutout fixed onto a neutral filter. It is illuminated by
a monochromatic light source. An imaging system with a varying aperture builds
the image of the stripe, and a matrix detector connected to a computer, which de-
termines the rotation angle 	α of the narrow stripe, registers the intensity in the
image plane. The image is recorded for different angular positions α of the neutral
filter and the object, which is equivalent to changing the angle of incidence of the
illuminating light. Magnification of the imaging system is chosen to provide about
five readings of intensity for each speckle of the object image. The coherent im-
age is read out line by line, and the quantized output electrical signal is fed into
the computer. Instead of the normalized joint correlation function, the computer
calculates the following expression:

KE(α1,α2) =
∫ |E(δ,α1)E∗(δ,α2)|2dδ∫ |E(δ,α1)|4dδ

. (3.17)

One can show that for M � 1,

KE(α1,α2) ∼= 1 + |K(	α)|2
2

=


1 + (1 − γ)2

2
for γ< 1 − 1

M
,

cos2[2(1 − γ)]
M2

for γ≥ 1 − 1

M
.

(3.18)

For M � 1, the last relation agrees with the result obtained in Ref. 53. From this
it follows that for M � 1, KE(α1,α2) depends on the normalized joint correlation
function K and does not depend on surface roughness parameters.12 Figure 3.14

Figure 3.13 Experimental setup for determining the rotation angle of an object using
its coherent speckle image. The dotted lines show the variation of the angular position
of the neutral optical filter and the object fixed to the neutral filter.
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gives the plot of the function KE versus the angle difference. One can see that the
dashed line goes a little above the solid one and the theoretical and experimental
curves agree quite well, especially for 	α < dρ/rc. The difference between the
two curves is caused by the fact that formula (3.18) may not be exact for M < 10.
Knowledge of the function KE (	α = α1 − α2) allows use of the schematic pre-
sented in Fig. 3.13 to determine the rotation angle 	α of the object with sufficiently
high accuracy. To calculate the accuracy of the method, we must determine the re-
lation for estimating the rotation angle 	α. From expression (3.18), we obtain this
estimate:

	̄α= dρ
rc

√
2KE − 1

. (3.19)

For the case of 	α < dρ/rc, simple though somewhat cumbersome calculations
give us the following expression for the estimation variance:

σ2
α = 〈	̄α2〉− 〈	̄α〉2 = d2

ρ

Mr2
c
. (3.20)

From relation (3.20) we see that if the coherent image of the object consists of a
large number of speckles M, i.e., if the resolution of the imaging system is high,
then the accuracy σα of the rotation angle estimation is very good.

In the case of a low-resolution imaging system where M ≤ 1, we have
KE(	α) ∼ sinc(	αdo/λ). In this case, only a single speckle is contained in the
imaging system aperture (see Fig. 3.13) and in the image plane, and as we see
from expression (3.20), the estimation error σα = dρ/rc is larger than the true rota-
tion angle 	α, which is less than dρ/rc. Hence, when M ≤ 1, the previous method

Figure 3.14 The function KE (	α = α1 − α2) plotted versus the rotation angle
	α= α1 −α2 of the narrow stripe. The crosses correspond to the case of diaphragm
diameter dρ = 1.3 mm, stripe length do = 9.5 mm, and M ≈ 5; the circles correspond
to dρ = 3 mm, do = 9.5 mm, and M ≈ 8. The dashed and solid lines are theoretical
curves for M ≈ 5 and M ≈ 8, respectively.
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of measuring the rotation angle based on the correlation properties of coherent im-
ages is not correct. From the relation KE(	α) ∼ sinc(	αdo/λ), we see that a full
decorrelation occurs when the object rotation angle 	α is larger than the correla-
tion angle αc = 2λ/do. The last value can be explained by the speckle motion in
the aperture plane during object rotation: the initial single speckle is replaced in
the aperture plane by its neighboring speckle (speckles are shifted synchronously
along this plane by the speckle size ∼rcλ/do when the object turns by an angle of
αc = 2λ/do). This shift may be applied to determine the rotation angle estimate
using the intensity spectrum SL( f ) of a coherent field scattered by the rotating ob-
ject.

In Fig. 3.15 a simple setup is presented that determines the rotation angle in
this case. A rotating object is illuminated by a monochromatic light source, and
a detector reads the intensity of the scattered field. The electrical signal is fed to
a spectrum analyzer connected to a computer. The rotation angle estimate 	̄α is
performed according to the formula

	̄α=
[
λT
∫

( f − fi)2SL( f )df

do
∫

SL( f )df

]1/2

,

where T is the spectrum formation time. The estimation variance is

σ2
α = 〈	̄α2〉− 〈	̄α〉2 = α2

Mα

, (3.20a)

where Mα = (αdo)/2λ= α/αc is the number of correlation cells in the spectrum
SL( f ) and αc = 2λ/do is the correlation angle. For Mα � 1, the ratio σα/α is
small. Thus, in the case of a low-resolution imaging system, we can determine the
object rotation angle 	α with sufficiently high precision using the time variation
of the speckle pattern in the scattered coherent radiation. It is important to note that
the method of measuring the rotation angle of particular areas of the object surface
proposed in Fig. 3.15 cannot be used.

Figure 3.15 Schematic of a setup that determines the object rotation angle in a
low-resolution imaging system using the time variation of the speckle pattern in the
coherent scattered field. The detector in the image plane reads the image intensity.
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To determine the two parameters 	α= α1 −α2 and 	β= β1 −β2 describing
deformations of small areas of an arbitrarily shaped object, we will use the corre-
lation properties of coherent images formed by a system consisting of two closely
placed arrangements (Fig. 3.16). Each arrangement contains two imaging systems
with different aperture shapes; the first imaging system aperture has a square shape
dρ×dρ, and the second imaging system aperture has a rectangular shape dρ×dρ/2
(the short side of the rectangle is oriented along the Y axis). The intensity in the
image planes is read by matrix detectors connected to a computer that calculates
the deformation parameters. They can be determined with the help of two joint
correlation functions,

BmT(n1,n2) = 〈Em(δ,n1)E
∗
m(δ,n2)〉,

where m = 1,2; Em are complex amplitudes of the fields in the image planes (see
Fig. 3.16); and δ is the radius vector of a small area of the object image optically
conjugated to the chosen area of the object surface. Under conditions 	α< dρ/2rc

and 	β< dρ/2rc, the normalized joint correlation functions are

Km = BmT(n1,n2)

BmT(n1,n1)
∼
(

1 − rc	α

dρ

)(
1 − rc	β

dρ

)
, where m = 1,2.

Figure 3.16 Device for determining the deformation parameters of particular areas
of an arbitrarily shaped object.
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From these two relations we can calculate two deformation parameters 	α

and 	β:

	α= dρ(2K′
1 − K′

2)

rc
,

and

	β= dρ(K′
1 − K′

2)

rc(2K′
1 − K′

2)
, (3.21)

where K′
m = √

2KmE − 1 (m = 1,2) are the estimates for two normalized joint
correlation functions,

KmE(n1,n2) =
∫ |Em(δ,n1)E∗

m(δ,n2)|2dδ∫ |Em(δ,n1)|4dδ
, (3.22)

calculated by the computer (see Fig. 3.16). For the case where 	β = β1 =
β2 = 0, from Eqs. (3.21) and (3.22) we obtain 	α = √

2KE − 1 and 	β = 0.
For the standard deviations of these parameters, we have σα ≈ (dρ/rc)/

√
MT and

σβ ≈ (dρ/rc)/
√

MT , where MT = SA[dρ/(λrc)
2] and SA is the area of a deformed

small piece of the object surface.

3.5 Combined method of determining the motion and deformation
parameters of an object

Now we consider a combined method of determining all dynamic parameters
(deformation and motion parameters) of a remote object. First, we must note
that the vector Ω of the angular velocity of the object’s rotation and the vec-
tor vc of the linear velocity of the object’s center of mass satisfy the equation
vA = vc + Ω × (rc − rA), where vA is the linear velocity vector of the center of a
selected area A on the object surface. As a rule, the angular velocity of rotation is
small enough: Ω � vcx/do, vcy/do, vcz/do. Therefore, we restrict ourselves to the
determination of the components vcx, vcy, vcz of the vector vc instead of determin-
ing the components of linear velocity vectors for each area.

The combined method provides simultaneous determination of eight estimates,
namely, two parameters 	α and 	β describing the deformations of small areas of
the object surface, three components Ωx, Ωy, Ωz of the vector Ω and three com-
ponents vcx, vcy, vcz. To determine the six components of the vectors Ω and vc
and the parameters 	α and 	β, we can use a system consisting of four devices
(Fig. 3.17). The first three devices are the arrangements used for determining the
six components of the vectors Ω and vc: the Jth arrangement (J = 1,2,3) mea-
sures tangential components vJ of the vector vc and the relative Doppler shift fSJ
(J = 1,2,3).
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Figure 3.17 Conceptual schematic of a combined system for determining the defor-
mation and motion parameters of remote objects.

The first and the second arrangements are placed side by side. The third
arrangement is placed at the angle ϑ∼= a/rc � 1 to the first and the second arrange-
ments; here, a is the distance between the second and the third arrangements, and
rc is the distance to the object. The calculating unit determines the three compo-
nents Ωx, Ωy, Ωz of the vector Ω and the three components vcx, vcy, vcz of the
vector vc by using the values vJ and fSJ . Two parameters 	α and 	β describing
deformations of small selected areas of the object surface are determined with the
help of the estimates [Eq. (3.21)] for the normalized joint correlation functions K′

1
and K′

2 in the device presented in detail in Fig. 3.16. The data about the object’s
dynamic parameters Ω, vc, and 	α and 	β are also displayed.

Each one of the three arrangements used for determining the components of
the vectors Ω and vc contains two coaxial imaging systems, the internal one and
the external one. For instance, Fig. 3.18 shows the second arrangement (J = 2)

containing two coaxial imaging systems, placed behind the three-aperture screen:
the central large aperture is the aperture of the internal imaging lens, and the two
small side apertures are the apertures of the external imaging lens.

The internal and the external imaging lenses form the object image in parallel
image planes, namely, the plane of the two-aperture diaphragm and the plane of
the field diaphragm. The first unit calculates the relative Doppler shift fS2, and the
second unit calculates the tangential component v2 of the vector vc equal to the
projection of the vector vc on the line connecting the apertures in the two-aperture
diaphragm.

The combined system presented in Fig. 3.17 allows simultaneous determina-
tion of the three components Ωx, Ωy, Ωz of the angular velocity of the object
rotation, three components vcx, vcy, vcz of the linear velocity of the object’s center
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Figure 3.18 The second arrangement, which calculates the relative Doppler shift fS2
equal to the difference of frequencies of the radiation scattered by adjoining small
areas of the object surface and the tangential components v2 of the vector vc of the
object’s center of mass.

of mass, and two parameters 	α and 	β describing the deformations of differ-
ent areas of the object surface. These parameters are calculated with the help of
expressions (3.6), (3.14), and (3.21):

Ωx = fS2λzi

rcsD
, Ωy = fS1λzi

rcsD
, Ωz = ( fS3 − fS2)λzi

asD
;

vcx = v1, vcy = v2, vcz = (v1 − v2)rc

a
;

and

	α= dρ(2K′
1 − K′

2)

rc
, 	β= dρ(K′

1 − K′
2)

rc(2K′
1 − K′

2)
.

3.6 Conclusions

1. Dynamic parameters of remote objects with rough surfaces can be determined
with sufficiently high accuracy by illuminating the object’s surfaces by mono-
chromatic radiation and determining time variations of the speckle pattern of a
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Use of Coherent Fields and Images to Determine the Dynamic Parameters 101

scattered coherent field in the plane of the scattered field and the object image
plane without using a reference beam.

2. An object’s linear velocity can be found by putting a two-aperture screen in
the aperture plane of the imaging system and determining in the image plane
the frequency difference between the two interfering scattered beams passing
through the two apertures.

3. The method of using a two-aperture diaphragm placed in the image plane is
most efficient for determining the magnitude and direction of the rotation ve-
locity of a remote object. The method can be realized without using a refer-
ence beam and with the help of small-coherence-length sources, and it relies
on finding the spectrum of the scattered coherent field.

4. The parameters of selected small areas of a deformed object surface can be
obtained by determining the correlation characteristics between the speckle
patterns of coherent images of these areas formed before and after deformation,
and by determining the time variations of the speckle patterns in the scattered
coherent field during deformation.
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Chapter 4

Fourier Telescopy

4.1 Introduction

The problem of distortion-free imaging of distant objects in a turbulent medium
has a long history. However, most of the schemes used for this purpose are based
on adaptive methods of compensating for phase distortions that appear as radiation
propagates from an object to a registration device. Recently, considerable interest
has been drawn to the systems that remove phase distortions with the help of active
aperture synthesis. They are based on illuminating the object by means of a trans-
mitting aperture, which consists of transmitters with controlled positions that emit
monochromatic or quasi-monochromatic radiation (Fig. 4.1).54–70 The transmit-
ters are controlled in such a way that interference of radiation from various pairs of
transmitters forms sinusoidal interference fringes with different periods and differ-
ent orientations on the object surface. Furthermore, the receiving system registers
contributions to the scattered radiation from the sinusoidal pattern formed by dif-
ferent fixed pairs of transmitters. In Ref. 56, these are assumed to be proportional
to different spatial Fourier components of the object’s optical image and different
multipliers exp{iψ}, where ψ is the difference between the phase distortions due
to the radiation propagation from both transmitters of each pair. After removing
the factor exp{iψ} by means of an inverse Fourier transform, the object image is
reconstructed. This method is called Fourier telescopy. In Ref. 56, an interesting
algorithm is suggested for compensating for phase distortions. It is proposed to
place the transmitters so that they form a square equidistant matrix in the trans-
mitting aperture; different pairs of transmitters should be sorted successively in
time. In addition, one takes the product of energies registered from neighboring
transmitters. In Ref. 57, it is proposed that the number of transmitters is reduced
considerably, placing them so that they form orthogonal arrays, their size being
comparable with that of the square matrix suggested in Ref. 56. The number of
different spatial Fourier components formed this way is the same as in the case of
transmitters forming a square matrix.

References 60–62 suggest using transmitters radiating at different frequencies
and to illuminating an object simultaneously by all the transmitters. In this case,
the received signal contains information about instantaneous Fourier components
of the optical image and about instantaneous phase distortions. References 60–62

103
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Figure 4.1 Geometry of Fourier telescopy. Thick arrows denote the rays illuminating
the object.

propose to select a fixed Fourier component by filtering the signal at the difference
frequency appearing due to the radiation interference from two transmitters. Refer-
ence 60 suggests that before filtering the signal, the receiving system measures all
the radiation of the energy scattered by the object. Evidently, in this case, the linear
size dr of the receiving aperture that registers the scattered energy should exceed
rcγ, where rc is the distance from the object, and γ is the angle of the cone into
which the energy is scattered. It can be found from the relation γ= σ/�, where σ
is the standard deviation of the surface roughness and � is its correlation radius.12

This means that for an object placed at a distance of 10 km, for the usual case
γ = σ/� ≈ 0.1, rc should exceed 1 km. However, such a size of scattered energy
detector is impossible in practice.

Hence, the following important problems should be analyzed for the practical
realization of Fourier telescopy. First, what is the minimum size of the transmitting
aperture and what is the minimum number of transmitters that is necessary for the
realization of Fourier-telescopic imaging with sufficiently high quality of the image
reproduced from the spatial Fourier components? Second, what is the minimum
size of the receiving aperture registering the scattered energy that will maintain
this quality? Third, how do the shape and roughness parameters of the surface of
the object under study influence the quality of its image? Fourth, what is the effect
of the laser radiation time instability on the quality of the Fourier-telescopic image?

These problems will be considered in detail in this chapter. First, we will intro-
duce the statistical model of the received signal for the case where laser transmitters
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Fourier Telescopy 105

illuminate the object with arbitrary coordinates and with different frequencies. The
dependence of the received signal on the direction diagram of transmitters will be
taken into account. Also, Fourier-telescopic imaging will be described for the case
where atmospheric phase fluctuations in the path of the laser radiation are absent or
completely compensated. The dependence of the Fourier-telescopic image on the
object’s shape and the parameters of its surface roughness, and the dependence of
the resolving power on the sizes of the transmitting and receiving apertures, will be
analyzed in detail. We will take into account that the quality of a Fourier-telescopic
image depends on the frequency difference between the transmitters, as well as on
the coherence length and the linear time shift of the illuminating radiation’s ba-
sic frequency, caused by the source’s instability. Next, as an example of Fourier
telescopy in the absence of phase fluctuations, we will describe a panoramic mi-
croscope for Fourier-telescopic imaging of an extended object having a size of
up to 10 cm with resolution approximating the illuminating radiation wavelength
(∼1 µm in the visible range).

At the end of the chapter, we introduce the integral and local measures of the
relationship between the Fourier-telescopic image of an object and the averaged
undistorted image. Fourier-telescopic imaging in an inhomogeneous atmosphere
will be discussed in Appendix 3, where we will consider the problem of compen-
sating for atmospheric phase fluctuations by means of the phase closure algorithm,
the basic principles of which are described in Ref. 56.

4.2 Statistical model of the received signal in Fourier telescopy and
the Fourier-telescopic image

First, let us analyze the received signal when pulsed, monochromatic, mutually
coherent transmitters of different frequencies simultaneously illuminate the object.
The transmitters are placed arbitrarily in the plane of the transmitting aperture.
Without the loss of generality, assume that the transmitters are numbered in the
order of frequency increase (Fig. 4.1).

Assuming that the object is distant from the Earth’s surface, we approximate
the influence of atmosphere on laser radiation propagation using the model of an
infinitely thin phase screen placed on the transmitting and receiving apertures. In
this case, using Eqs. (1.18), (1.28), (1.32), and (1.34), one can write the complex
amplitude of the field scattered by the object to the receiving aperture in the Fresnel
approximation, which is valid for remote objects,

E(ρ, t) = exp[iψr(ρ)] EtSt

λ2r2
c

∫
q ·n
q ·N

k(r) exp

[
2πiξ(r)q ·N

λ

]
u(r, t)dr, (4.1)

where

u(r, t) =
n=N∑
n=1

un

(
t − 2rc

c

)
Dn(r) exp i

[
ωnt − 2

ωnr

c
+ ωnr(ρn + ρ)

2rcc

]
,
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N is the number of transmitters, Et and St are the complex amplitude of the trans-
mitter and the area of its aperture, respectively, ωn =ω0 + 	ωn is the nth trans-
mitter frequency, c is the velocity of light, 	ωn = C(n)	ω, 	ω = ω2 − ω1,
where C(n) is an integer-valued function depending on the transmitter number n,
C(1) = 1, ψr(ρ) are random phase shifts on the path from the object to the receiv-
ing aperture, N(r) is the normal to the object’s mean surface, n(r) is the normal
to the object surface, k(r) is the reflection coefficient distribution over the object’s
surface, ρ is the radius vector in the plane of the receiving aperture, ξ(r) is the
roughness height distribution over the object’s surface, r is the radius vector of
the mean surface of the object, rc is the radius vector of the object’s center of
mass, rc is the distance from the object, q = 2rc/rc, Dn(r) is the direction diagram
for the nth transmitter, and un(t) is the pulse profile of the radiation from the nth
transmitter. Integration is performed over the illuminated area So of the object’s
surface. We further assume the roughness height on the object surface to have a
Gaussian distribution and Gaussian correlation function.12 If the atmospheric in-
homogeneities are smooth, the transmitters are similar; and (λrc)/dt � do, where
dt is the transmitter size, do is the object’s size, then Dn(r) ≈ D(rc) exp(iψn),
where ψn are phase errors on the path from the nth transmitter to the object, and
D(rc) is the value of the transmitter direction diagram on the object’s surface in
the absence of atmospheric influence on radiation propagation (see Appendix 3).
By filtering the scattered field intensity averaged over the area Sρ of the receiving
aperture,

Q(t) = 1

Sρ

∫
|E(ρ, t)|2dρ,

performed as

Gmn = 1

T

t0+T∫
t0

Q(t) exp[i(ωm −ωn)t]dt,

where T is the signal processing time satisfying the inequalities (ωm −ωn)T ≥ 1
and t0 is the processing start time, we extract from all received radiation the part
that is determined by the sinusoidal interference fringes produced by the inter-
ference of radiation propagating from the mth and nth transmitters. Under the
conditions c	ωN � λ and q⊥/qN � σ/� � λ/do, where do is the object size,
qN = q ·N, q⊥ = (q2 − q2

N)1/2, and under the assumptions that all pulse shapes are
equal [un(t) = u1(t)], the pulse lengths for all transmitters considerably exceed the
depth of the illuminated surface, but the pulse duration is much less than the signal
processing time T ,

Gmn = exp[i(ψm −ψn)]Fmn, (4.2)
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where

Fmn = S2
t |E2

t |
λ2r2

c
|D(rc)|2u2

1

(
t0q − 2rc

c

)
×
∫∫

|k(r1)|2 exp i
4π

λ

{
r1 − r2 + 2rc ·N(r1)[ξ(r1) − ξ(r2)]

rc

}
× w(r1, r2) exp

[
i(ωmr1ρm −ωnr2ρn)

2rcc

]
dr1dr2

is an estimate for the m, nth Fourier component of the undistorted image of the
object,

w(r1, r2) = 1

Sρ

∫
exp

{
i[ρ(ωmr1 −ωnr2)]

2rcc

}
dρ.

Further in our investigations of Fourier telescopy we will focus on the choice of
a transmitting aperture in the shape of two orthogonal linear arrays of transmit-
ters placed at equal distances along the X and Y axes in the plane of the receiv-
ing aperture (Fig. 4.2). In the X-array, there are N1x transmitters on the left of

Figure 4.2 Geometry of Fourier telescopy in the case of two orthogonal linear arrays
of transmitters in the plane of the transmitting aperture.
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the array cross-section and N2x on the right; in the Y-array, N1y transmitters are
below the cross-section and N2y are above. The total number of transmitters is
N = Nx +Ny, where Nx = N1x +N2x and Ny = N1y +N2y. The integer-valued func-
tion C(n) is chosen in such a way that two conditions are satisfied. First, transmit-
ter frequencies should increase from ω0 (the left-hand transmitter of the X-array)
to ω0 + C(Nx)	ω (the right-hand transmitter of the X-array), and then from
ω0 +C(Nx +1)	ω (the bottom transmitter of the Y-array) toω0 +C(Nx +Ny)	ω

(the top transmitter of the Y-array). Second, the frequency differences between any
pair of transmitters from either the same array or from different arrays should not
coincide. According to the chosen space and frequency configurations of the trans-
mitters from Eq. (4.2), we obtain

Gmn = 1

T

t0+T∫
t0

Q(t) exp[i(ωm −ωn)t]dt = exp[i(ψm −ψn)]Fmn, (4.2a)

where

Fmn = S2
r |E2

t |
λ2r2

c
|D(rc)|2u2

1

(
t0 − 2rc

c

)

×
∫∫

|k(r1)|2 exp i
4π

λ

{
r1 − r2 + 2rc ·N(r1)[ξ(r1) − ξ(r2)]

rc

}
w(r1, r2)

× exp

[
i(dxx1ωmm/Nx − dyy2ωnn/Nx)

2rcc

]
dr1dr2, (4.2b)

dx is the length of the X-array, dy is the length of the Y-array, Et is the trans-
mitter complex amplitude, ψxm is the random phase shift (phase errors) on the
path from the mth transmitter of the X-array to the object, ψyn is the random
phase shift on the path from the nth transmitter of the Y-array to the object, and
ωxm =ω0 +	ωC(N1x +m),ωyn =ω0 +	ωC(N1y +n). Here, Gmn is the part of
the received radiation connected with the sinusoidal interference fringes produced
by interference of radiation propagating from the selected couple of transmitters,
the mth and nth transmitters (Fig. 4.2). To simplify the calculation, assume the
following conditions are satisfied:

	ωC(N1x + m)dodx

crc
� 1,

	ωC(N1y + n)dody

crc
� 1,

	ωC(N1x + m)dρdx

crc
� 1,
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and

	ωC(N1y + n)dρdy

crc
� 1. (4.3)

A very large receiving aperture with area Sρ � (rcσ)
2/�2 collects all of the scat-

tered radiation energy, and the correlation radius of phase inhomogeneities for
the scattered field in the vicinity of the surface,12 �ϕ ≈ (λ�)/σ, exceeds in this
case the width (rcλ)/dρ of the function w(r). Then, taking into account condi-
tions (4.3), one can write w(r1, r2) as a function proportional to the δ-function:
w(r1, r2) ≈ (λ2r2

c/Sρ)δ(r1 − r2). In this case, the first integration in Eq. (4.2b)
over the object surface yields, under the same conditions,

Fmn =
[ |D(rc)|2

Se

]∫
k(r) exp

[
i(dxxωmm/Nx − dyyωnn/Nx)

2rcc

]
dr,

where Se is the backscattering surface area of the object under study. One can see
that when the orthogonal arrays are placed at equal distances between the transmit-
ters, Gmn is proportional, under conditions indicated in Eq. (4.3), to the (m,n)-th
Fourier component of the intensity reflection coefficient |k(r)|2 distribution on the
object’s surface, which determines its contour. This means that regardless of the
object’s surface shape, even the rays scattered by the edges get into the receiving
aperture if the aperture size dρ � (rcσ)/�. Hence, if the receiving aperture col-
lects all the scattered energy, Fourier components Fmn and coefficients Gmn do not
depend on the shape of the object surface. This can also be seen from the above
relation.

4.2.1 Influence of an object’s surface shape on Fourier telescopy

In practice, the receiving aperture size is usually not large, i.e., dρ < (rcσ)/�.
The registered signals and Gmn depend on the shape and roughness parameters
of the object’s surface. In the case of a smoother surface, the receiving aperture
collects a larger part of the energy. Considering these problems in more detail,
let us define the mean values of the Fourier components Fmn, which are calcu-
lated the same way as in the derivation of the scattered field correlation function
[Eq. (1.36)]. Taking into account the last condition, after averaging Eq. (4.2b) over
realizations ξ(r) of the object surface roughness height, we obtain that under con-
ditions of Eq. (4.3) and for NxNy � M, where M is the number of domains on
the object surface resolvable according to Rayleigh’s criterion, i.e., the number
of speckles in the Fourier-telescopic image (see Appendix 2), for Sρ ≥ dxdy we
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obtain

〈Fmn〉 =
[ |D(rc)|2

Se

]∫
ki(r) exp

[
i(dxxωmm/Nx − dyyωnn/Nx)

2rc

]
dr, (4.4)

where ki(r) = (�/σ)2|k(r)|2 exp{−[(�q⊥)/(qNσ)]2}.
Here, 〈Fmn〉 is the (m,n)-th Fourier component of the function ki(r) (Fig. 4.3).

This function is proportional to the averaged value (the envelope) of the inten-
sity distribution in the image obtained by a high-resolution system in the absence
of turbulent distortions.12 It follows that under the condition

√
Sr � rcγ, where

γ = σ/�, both 〈Fmn〉 and 〈Gmn〉 are on the average proportional to the discrete
Fourier transform of the function ki(r), which, in turn, was shown in Sec. 2.3 to be
proportional to the mean intensity of the speckled image in coherent light. Hence,
these parameters are estimates of the Fourier components of this function. In prac-
tice, the transmitting aperture should be placed so that the object is close to its
normal nt. In this case, the object’s direction is parallel to the normal to the trans-
mitting aperture. Then, for a flat object

k(r) =
(

�

σ

)2

|k(r)|2 exp

{
−
[
� tanθ(r)

σ

]2}
,

where θ(r) is the angle between the normal to the mean object surface and the
normal to the transmitting aperture nt. If the object is flat and placed orthogonally

Figure 4.3 The function ki(x,0) is proportional to the averaged value of the intensity
distribution in the object image of rough objects of simple (left object, a single shine
area or, in other words, a single surface of backscattering) and complicated (right
object, three shine areas) shapes in the section by the plane X0Z (the plane where
y = 0). The dashed lines are mean surfaces of the objects; the thick straight lines show
the backscattering surface.
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to this normal, then θ = 0. The factor (�/σ)2 is proportional to the amount of
energy collected by a finite receiving aperture and depends on the average slope
σ/� of the object’s surface roughness. If the surface is relatively smooth, i.e., the
average slope is small, then a larger amount of radiation is scattered towards the
receiving aperture and, hence, Fourier components Fmn and coefficients Gmn are
larger. If the object is flat and its normal forms an angle θ> 2σ/� to the object’s
direction, then ki(r) ∼= 0, since in this case, the axes of the backscattering diagrams
for all parts of the object do not hit the receiving aperture, and Fmn and Gmn are
small.

Consider a nonflat object and assume that σ/� < 0.3, which is usually satisfied.
First, let the rough object have a simple (ellipsoidal) shape. One can show that
under this condition,

ki(r) =
(

�

σ

)2

|k(r)|2 exp− �2

σ2

(
x2

ρ2
x

+ y2

ρ2
y

)
,

where ρx and ρy are basic curvature radii of the surface.
If x ≥ (2ρxσ)/� and y ≥ (2ρyσ)/�, then ki(r), the Fourier components Fmn,

and the coefficients Gmn become small. This means that for each part of the object
surface, the angle between the scattering diagram axis and the normal to the re-
ceiving aperture is larger than σ/�, and hence, the scattered radiation does not get
into the receiving aperture. In other words, for each part of this kind, a mirrorlike
reflection shows the peak of the scattering diagram far from the receiving aperture.
If x ≤ (2ρxσ)/� and y ≤ (2ρyσ)/�, then ki(r), Fmn, and Gmn are large; they are
maximum at x = y = 0, since for this part, almost all scattered radiation enters the
receiving aperture. The area selected by this inequality, with its center at x = y = 0,
is the shine domain (or backscattering surface). If the object’s size is greater than
the size of this area, then its edges do not contribute to ki(r), Fmn, or Gmn. For a
nonflat rough object with a complicated shape (Fig. 4.3),

ki(r) ∼=
j=Ns∑
j=1

(
�j

σj

)2

|kj(r)|2 exp− �2
j

σ2
j

( |x − xj|2
ρ2

jx

+ |y − yj|2
ρ2

jy

)
,

where ρjx, ρjy, �j, σj, and kj(r) are curvature and correlation radii, the roughness
standard deviation, and the reflection coefficient distribution for the jth shine do-
main, respectively; xj, yj, and Nj are the center coordinates of the jth shine domain
and the total number of shine areas, respectively.

4.2.2 Fourier-telescopic image and the resolution of a Fourier-
telescopic system

Let us return to Eq. (4.2a) and recall that Gmn is proportional to the (m,n)-th
Fourier component Fmn of the function ki(r). Taking this into account, one can
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propose that the inverse Fourier transform,

I(δ) = 1

NxNy

m=N2x,n=N2y∑
m=−N1x,n=−N1y

Fmn exp i
π(δxdxm/Nx + δydyn/Ny)

ziλ
, (4.5)

where zi is the distance from the receiving aperture plane to the plane of the re-
constructed image plane, δ is the radius vector of a point in this plane, and δx

and δy are coordinates of this point, gives the intensity distribution for the image
of an object without the distortions caused by propagation. However, before do-
ing the inverse Fourier transform over Gmn, one should first remove the factors
exp[i(ψxm −ψyn)], which complicate this transform. This problem will be consid-
ered in detail in Appendix 3. Increasing the size of the arrays and the number N of
transmitters in each array [which is equal to the number of the Fourier components
of the function ki(r)], one can make the expression (4.4) tend toward the object’s
optical image. This can be seen most easily by assuming that the laser transmit-
ters are placed along the X- and Y-arrays continuously. Such an assumption can
be made if NxNy � M; and hence, in relations (4.4) and (4.5) we can replace dis-
crete variables by continuous variables: (mdx)/Nx ∼= u, (ndy)/Ny ∼= v. Furthermore,
assume that the atmospheric phase fluctuations are compensated, i.e., the factors
exp[i(ψxm − ψyn)] in Gmn are removed. Then, replacing into Eqs. (4.4) and (4.5)
(mdx)/Nx = u and (ndy)/Ny = v, we obtain

〈I(δ)〉 ∼ |D(rc)|2
∫∫

ki(x, y)h(x, y,δx,δy)dxdy, (4.6)

where h(x, y,δx,δy) = sinc2 �x sinc2 �y—given that �x = (2πd/λ)(x/rc + δx/zi)

and �y = (2πd/λ)(y/rc + δy/zi)—is the pulse response of the Fourier-telescopic
imaging system.

If this system has high resolving power, then

〈I(δ)〉 ∼ |D(rc)|2ki(x = −µδx, y = −µδy), (4.6a)

where µ = rc/zi is the scaling factor. This means that if the resolution is high,
the proposed method allows formation of the object image, the average inten-
sity distribution being the same as for a standard coherent image (see Secs. 2.2
and 2.3). The direction diagram of the laser transmitter, given by the bounding
factor |D(rc)|2, determines the illuminated area of the object. It follows from the
condition Nx,Ny � M that if transmitter arrays have an equal number of trans-
mitter Nx = Ny = Nt, then the minimum number of transmitters in each array is
Nt = 3M1/2. Then, if dx = dy, it follows that dt = d/(3M1/2). If the object is on the
edge of the directional diagram D(rc), then 〈I(δ)〉 is close to zero.
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As shown in Appendix 2, the correlation area of the intensity distribution (the
speckle area in the Fourier-telescopic image),

Sc =
∫

B(δ1,δ2)dδ2

〈I2(δ2)〉 ,

determines the resolution of the Fourier telescopy. Here,

Bi(δ1,δ2) = 〈I(δ1)I(δ2)〉 − 〈I(δ1)〉〈I(δ2)〉

is the correlation function of the intensity distribution. The number of speckles
in the Fourier-telescopic image is M = [∫ 〈I(δ)〉dδ]2/[∫∫ Bi(δ1,δ2)dδ1dδ2], as in
a normal coherent image (see Chapter 2). Hence, a Fourier-telescopic image has
a speckle structure. In Chapter 2, it was shown that M is equal to the number of
object surface domains resolved by the imaging system. The contrast in this image,
as in a normal coherent image, is defined by the relation C = (〈I2〉 − 〈I〉2)/〈I〉2.

In Appendix 2, we consider Fourier telescopy both for arbitrary positions of
transmitters in the transmitting aperture and for an object with an arbitrary surface
shape. In addition, relatively simple but explicit examples with orthogonally placed
arrays of transmitters and a flat or spherical object are considered. Let us discuss
these examples. One can select three cases, based on varying relations between the
dimensions of the transmitting arrays and the receiving aperture.

Case 1: Both dimensions of the receiving aperture are larger than the dimen-
sions of the transmitting arrays; i.e., drx > dx, dry > dy. Then,

Bi(δ1,δ2) ∼ k2
i (r = −µδ1) sinc2 �′

x sinc2 �′
y,

where �′
x = [(2πdx)/(λzi)](δ1x − δ2x), and �′

y = [(2πdy)/(λzi)](δ1y − δ2y).
The correlation area in this case is Si = ρixρiy, where ρix = (ziλ)/dx and

ρiy = (ziλ)/d are correlation radii along the X and Y axes, respectively, and the con-
trast C ≈ (dxdy)/(drxdry) < 1. For a flat rectangular object, the number of speckles
in the restored image is M = (dxdydoxdoy)/(rcλ)

2, where dox and doy are the ob-
ject’s dimensions, and for a spherical object, M = (σ2dxdyρ

2
o)

2/(�rcλ)
2, where ρo

is the object radius. In the case where drx � dx, dry � dy, C � 1; and the Fourier
telescopic image is analogous to an image obtained by summing a large number of
independent coherent images or an image in polychromatic radiation, for instance,
in white light (see Sec. 2.5).

Case 2: Both dimensions of the receiving aperture are smaller than the dimen-
sions of the transmitting arrays; i.e., drx < dx and dry < dy. Then,

B(δ1,δ2) ∼ k2
i (r = −µδ1)w(δ1 − δ2) = sinc�rx sinc�ry,
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where w(δ1 − δ2) = sinc�rx sinc�ry, and

�rx =
(

2πdrx

λzi

)
(δ1x − δ2x),�ry =

(
2πdry

λzi

)
(δ1y − δ2y).

The correlation area is Sc = ρixρiy, with ρix = (ziλ)/drx and ρiy = (ziλ)/dry being
the correlation radii along the X and Y axes, and the contrast C ≈ 1. For a flat rec-
tangular object, the number of speckles in the image is M = (drxdrydoxdoy)/(rcλ)

2;
for a spherical object, M = (σ2drxdryρ

2
o)/(�rcλ)

2. In this case, the Fourier tele-
scopic image is the same as a normal coherent image.

Case 3: One of the receiving aperture dimensions, say, the Y-array dimension,
is smaller than the dimension of the transmitting array; and the other dimension of
the receiving aperture is larger than the dimension of the transmitting array, i.e.,
drx > dx, dry < dy. Then,

B(δ1,δ2) ∼ k2
i (r = −µδ1) sinc�x sinc�ry,

where �x = [(2πdx)/(λzi)](δ1x − δ2x) and �ry = [(2πdry)/(λzi)](δ1y − δ2y). The
correlation area is Si = ρixρiy, where ρix = (ziλ)/dx and ρiy = (ziλ)/dry are cor-
relation radii along the X and Y axes, and the contrast C ≈ d/drx. For a flat
rectangular object, the number of speckles in the reproduced image is M =
(dxdrydoxdoy)/(rcλ)

2; for a spherical object, M = (σ2dxdryρ
2
o)/(�rcλ)

2.
Dimensions Px and Py of the domain resolvable by Fourier-telescopic imaging

on the object surface are, according to the Rayleigh criterion, related to the corre-
lation radii in the plane of the reproduced image as follows (see Appendix 2). For
the first case,

Px = µρix = rcλ

dx
; Py = µρiy = rcλ

dy
. (4.7a)

Here the resolution of the Fourier telescopy is determined by size d of the X- and
Y-arrays.

For the second case,

Px = µρix = rcλ

drx
; Py = µρiy = rcλ

dry
. (4.7b)

In this case, the resolution of the Fourier telescopy is limited by sizes drx and dry of
the receiving aperture. This is due to the fact that under the conditions drx < dx and
dry < dy, the numbers of speckles in the scattered field on the receiving aperture and
in the image are the same. Therefore, the decrease in drx and dry leads to a decrease
in the number of speckles in the image. Their sizes ρix and ρiy become larger, which
leads to an increase of the sizes Px and Py of the minimally resolved domains on the
object surface. Hence, the resolution of the Fourier-telescopic method decreases.
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For the third case,

Px = µρix = rcλ

dx
; Py = µρiy = rcλ

dry
. (4.7c)

Here, resolution of the Fourier telescopy along the X-axis is determined by the
transmitter array size dx, and the resolution along the Y-axis by the size dry of the
receiving aperture.

It is interesting to note the important fact that follows from the above expres-
sions: the number of speckles in the Fourier telescopic image, as in the case of
usual coherent images (see Chapter 2 and Appendix 1) is equal to the number of
resolvable domains on the surface of the object under study.

4.2.3 Effect of the laser transmitter’s time instability, including low
coherence, on the quality of the Fourier-telescopic image

Let us study how time instability of the laser transmitter influences the quality of
the Fourier-telescopic image, namely, the intensity distribution in the image, I(δ).
This can be estimated with considerable accuracy by assuming that the laser trans-
mitters are placed along the X- and Y-arrays nearly continuously, that the arrays
are of equal size (dx = dy = d) and form a cross, and finally, that atmospheric
fluctuations are compensated for. Then, under the assumption that time fluctua-
tions of the laser radiation are stationary and Gaussian, with the spectral width
	ω≤ωxm −ωyn, we obtain

〈I(δ)〉 ∼ |D(rc)|2
∞∫

−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

Sr(ω−ω0)ki(r)

× exp i
ω

c

[
u

(
x

rc
+ δx

zi

)
+ v

(
y

rc
+ δy

zi

)]
dωdudvdxdy,

where ω = (2πc)/λ and ω0 = (2πc)/λ0; ω0 and λ0 are the central frequency
and wavelength of the laser radiation, respectively; and Sr(ω−ω0) is the spectral
amplitude of the laser radiation. For simplicity, we further assume that the spec-
tral amplitude has Gaussian shape, Sr(ω−ω0) ∼ exp[−(ω−ω0)

2/(	ω)2], and
	ωT � 1. Then, for M � 1,

〈I(δ)〉 ∼ |D(rc)|2ki(r = −δ)

[
1 +

(
c1δ

2	ωd

cz2
i

)]
, (4.8)

where c1 is a constant on the order of unity. One can see from Eq. (4.8) that for an
object placed on the axis of a receiving system, the Fourier-telescopic image has
the largest distortions on its boundary, where δx = δxb ∼ δy = δyb ∼ di. Here, di
is the image size; for instance, for a flat square object, di = do/µ, where do is the
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object size. For a sphere, di = (ρoσ)/�, where ρo is its radius (see Sec. 2.1). Taking
into account the foregoing equations and the relations for the number of speckles
M in the Fourier-telescopic image, it is easy to obtain that the instability of laser
radiation has almost no effect on the quality of the restored image, provided that
	ω/ω� 1/M1/2.

The frequency of the illuminating radiation usually has linear variations in time,
ωb =ω0 + βdt, where ω0 is the initial frequency, and βd is constant. Assuming
for simplicity that the received signal is processed using a narrow Gaussian time
window, i.e.,

Gmn ≈ 1

T

∞∫
−∞

Q(t) exp−
(

t − t0
T

)2

exp it(ωyn −ωxm)dt,

where t0 is the received signal processing start time, we obtain

〈I(δ)〉 ∼ |D(rc)|2ki(r = −µδ)
[

1 + δ2	ωtd

(czi)2

]
, (4.8a)

where

	ωt =
√
β2

d +α2
e

α2
e

, αe = (	ω)2 + 1

τ2
e
, τe = Tτ√

T2 + τ2
,

and τ is the duration of the laser pulse also having, for simplicity, Gaussian form.
One can see from Eq. (4.8a) that laser radiation instability and its frequency devi-
ations have almost no effect on the quality of the Fourier-telescopic image under
the condition

χ= 	ωtM1/2

ωb
� 1. (4.9)

Let us consider two cases:

(1) β� α. If 	ωτe � 1, then 	ωt = β/	ω; if 	ωτe � 1, then 	ωt = 	ω.
(2) β� α. If 	ωt � 1, then 	ωt = 1/τe. If 	ωτe � 1, then 	ωt = βτe.

Let, for example, the backscattering surface of an object under study contain M =
104 resolvable domains, and let both dimensions of the receiving aperture be larger
than the dimensions of the transmitting arrays, i.e., drx > dx, dry > dy. Here, the
backscattering surface area Se ≈ M(λrc)

2/(dxdy). Then, for instance, choosing the
signal processing time T ∼ 10−3, which is less than the time of the atmosphere
stability ∼10−2, and during which the radiation frequency drift is about 10 GHz,
for illuminating an object with cw monochromatic infrared radiation (λ≈ 10−6 m),
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we have the case 1(a): 	ωt ≈ 107 s−1, ωb ≈ 3 × 1013 s−1, χ ≈ 3 × 10−2 � 1.
Hence, the frequency drift of 10 GHz has practically no influence on the quality of
the Fourier-telescopic image.

Relation (4.8a) has a simple physical interpretation (Fig. 4.4). It is easy to
show that (δ2	ωtd)/(czi) ≤ (dde)/rc, where de is the size of the object shine
domain (the backscattering surface area). If the object is placed on the receiving–
transmitting system axis, then from Eq. (4.9) we obtain the following restriction for
the laser radiation coherence length: Lc = c/	ωt � Ld = AC − CB ≈ (dde)/rc
[Fig. 4.4(a)].

Here, Ld is the path length difference for the beams coming from the most
distant transmitters to the edges of the object’s scattering area. This means that the
laser radiation instability is small enough so that the coherence length is essentially
smaller than Ld. If the object is not on the receiving system axis, then by removing
transmitters we can make the path length difference Ld = A∗C − CB less than the
source coherence length [Fig. 4.4(b)].

Fourier telescopy was proposed mainly for imaging very distant objects. Yet,
it can be also applied to obtaining, in the absence of phase fluctuations, the im-
ages of relatively extended objects with very small surface details. As an example
of the Fourier telescopy of such objects, consider the scheme of a panoramic mi-
croscope for imaging extended objects having sizes ∼10 cm and a resolution of
approximately the wavelength λ of the illuminating radiation.

Figure 4.4 Geometry of the effect of the laser transmitter time instability, including
low coherence, on the quality of the Fourier-telescopic image. A and B are the most
distant transmitters, the dash-dot line is the receiving–transmitting system axis, the
dashed square is the initial displacement of the laser transmitter, and the dashed
lines connect this displacement (point A∗) with the edge of the scattering area of the
object (point C).
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4.3 Fourier-telescopic panoramic microscope

4.3.1 Introduction

When imaging distant extended objects with a resolution of approximately λ, the
mean wavelength of the illuminating light assumes new significance. Particularly,
in internal surgery it is often necessary to have a high-resolution image of a large
(∼10 cm) area of tissue situated at a distance of more than 10 cm from the imaging
system. Yet, most microscopes with ∼λ resolution require that the object is placed
near the front focal plane of the imaging system aperture at a distance of less than
10 mm (Ref. 3). This limits the field-of-view of traditional microscopes: the area of
tissue that can be imaged this way does not exceed 1 mm2. This fact makes it dif-
ficult to use traditional microscopes in such applications. This section describes a
panoramic microscope design that allows simultaneous imaging of different parts
of a distant large-area object with ∼λ resolution, by employing the principle of
Fourier telescopy.18,71 The object is illuminated by light from a transmitting aper-
ture with transmitters of monochromatic radiation. The transmitters are controlled
in such a way that light coming from various source pairs produces sinusoidal inter-
ference patterns with different periods and directions on the object’s surface. The
part of the scattered energy that corresponds to a fixed pattern formed by each cou-
ple of transmitters is detected. This part is proportional to a certain spatial Fourier
component of the object’s image. Then, the object image is reconstructed using an
inverse Fourier transform.

4.3.2 Analysis of image formation in a panoramic microscope

The proposed schematic of the panoramic microscope is as follows (Fig. 4.5). Laser
transmitters of different frequencies illuminate an object simultaneously. The trans-
mitters form orthogonal linear arrays, which intersect at the center of the receiv-
ing aperture. These arrays, together with the receiving aperture, compose the joint
transmitting–receiving aperture. Both dimensions drx and dry of the receiving aper-
ture exceed dimensions of transmitting arrays dx and dy; i.e., drx > dx and dry > dy.

The object is illuminated by continuous radiation from different-frequency
laser transmitters that are located equidistantly on the X and Y linear arrays. If
each linear array contains Nt symmetrically placed transmitters of the same size,
then dimensions of the transmitting aperture are dx = dy = Ntdt = d. The scat-
tered light is focused on the detector. A comb filter selects signals at the difference
frequency and sends them to the image-forming unit. The reconstructed image is
viewed on a display.

Let us now analyze image formation in a panoramic microscope. The analysis
is the same as image formation analysis in the case of Fourier-telescopic imaging
through the atmosphere, excluding the influence of phase distortions. The complex
amplitude of the scattered light [see relation (4.1)] at the receiving aperture can be
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Figure 4.5 Conceptual schematic of a Fourier-telescopic panoramic microscope.
Thick arrows denote rays scattered by the object.

rewritten without the phase distortions as

E(ρ, t) =
[

EtSt

(λrc)
2

]∫
k(r)u(r, t) exp

[
4πiξ(r)r ·N

λrc

]
dr, (4.10)

where

u(r, t) =
n=N∑
n=1

un

(
t − 2r

c

)
Dn(r) exp i

[
ωnt − 2

ωnr

c
+ ωnr · (ρn + ρ)

2rcc

]
,

and ξ(r) is the roughness height distribution on the surface of the object under
study. This formula repeats Eq. (4.1) of Sec. 4.2, including all notations. The power
Q(t) of the scattered light is averaged over the area of the receiving aperture Sρ,

Q(t) =
(

1

Sρ

)∫
|E(ρ, t)|2dρ, (4.11)

and filtered using the following algorithm: one selects the portion of the detected
power that is defined by the sinusoidal distribution produced by the mth transmitter
of the X-array and the nth transmitter of the Y-array,

Gmn = 1

T

t0+T∫
t0

Q(t) exp[i(ωyn −ωxm)t]dt.
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Assuming that the surface roughness height distribution is Gaussian, and using
Eqs. (4.10) and (4.11), as a result of the averaging over realizations of ξ(r), we
obtain 〈Gmn〉 = �|Dm(rc)D∗

n(rc)|〈Fmn〉, where � = (St|Et|)2/(λrc)
2, and

〈Fmn〉 = |D(rc)|2
Se

∫
ki(r) exp

{
i[(dxxωmm − dyyωnn)/N]

2rcc

}
dr,

where

ki(r) =
(

�

σ

)2

|k(r)|2 exp

[
−
(

�q⊥
qNσ

)2]
is the (m,n)-th Fourier component of the function ki(r), which is proportional to
the averaged intensity distribution of the usual coherent image of the object (see
Sec. 2.3). By making the inverse Fourier transformation,

I(δ) = 1

N2

m=N,n=N∑
m=−N,n=1

Gmn exp i
2π(dxδxm + dyδyn)

ziNλ
,

where zi is the distance from the receiving aperture to the image plane, δ is the
radius vector of a point on this plane, and δx and δy are the coordinates of this
point, we obtain the intensity distribution in the object image,

I(δ) = �

N2

∫∫
ss

k(r1)k
∗(r2)

× exp i

{
4π

λ

[
r1 − r2 + r1 ·N(r1)(ξ(r1) − ξ(r2))

rc

]}
× h(r1, r2,δ)dr1dr2,

where

h(r1, r2,δ) = sin 2πdx[(x1/rc) + (δx/zi)]/λ
sin 2πdx[(x1/rc) + (δx/zi)]/Nλ

· sin 2πdy[(y2/rc) + (δy/zi)]/λ
sin 2πdy[(y2/rc) + (δy/zi)]/Nλ

is the pulse response of the Fourier-telescopic imaging system.
In the case of a high-resolution imaging system, where the number of mini-

mally resolved domains on the object surface M = (dxdySe)/(λrc)
2 � 1, with Se

being the area of the object’s backscattering surface, then I(δ)〉 ∼ ki(r = −µδ)

[see also relation (4.6a)]. Hence, the function〈I〉,as shown in Chapter 2, gives the
brightness distribution in the optical image of the object built by high-resolution
optics in natural light.
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Let us estimate the resolution of the proposed microscope. For the case consid-
ered here, where both dimensions of the receiving aperture exceed the dimensions
of the transmitting aperture (drx > dx, dry > dy), from relation (4.7a) we determine
that the sizes of the minimally resolved domain are Px = λ/γx and Py = λ/γy,
where γx = dx/rc and γy = dy/rc. The maximum value of γx and γy is σ/�, since
at larger γx and γy, rays coming from the edge transmitters and scattered by the
object do not overlap on the receiving aperture. Hence, resolution of the Fourier-
telescopic panoramic microscope is limited by P = (λ�)/σ and Px,Py ≥ (λ�)/σ.

It should be noted that traditional microscopy (Fig. 4.6) has ∼λ/γ resolu-
tion, where γ is the input angular aperture of the microscope’s imaging system.3

However, in traditional microscopy, γ≥ 0.2, and therefore, the resolution limit is
Pt = 5λ.

The resolution limit of the Fourier-telescopic panoramic microscope is PF =
(λ�)/σ. For instance, at σ/� ≈ 0.3, PF ≈ 3λ> Pt. The size of the imaged area in
traditional microscopy is not more than several millimeters. In the case of Fourier-
telescopic panoramic microscopy, it is equal to the size of the object’s backscatter-
ing surface, (ρoσ)/�, where ρo is the curvature radius of this surface. For instance,
if ρo ∼ 30 cm, then at σ/� ≈ 0.3 the size of the domain under study is ∼10 cm,
and the resolution is PF ≈ 3λ.

Figure 4.7 shows one of the possible designs of a panoramic microscope. This
system uses a thin Fresnel lens as the illuminating source and an aperture to de-
tect the scattered light. Two illuminating laser beams of close frequencies ω1 and
ω2 from a single cw laser are directed at two deflectors, a continuous one and a
discrete one, and then at two diverging lenses. The beams are driven by the deflec-
tors, one of them continuously and the other discretely, in an orthogonal direction
along the diameters of the Fresnel lens. The number of beam positions in each di-
rection is equal to 3

√
M, where M is the number of object surface domains to be

resolved. The lens directs both beams onto the object under study and the scattered
light on the detector. For smoothing the speckle pattern in the image, the receiv-
ing aperture size must exceed the size of the transmitter aperture (see Fig. 4.7 and

Figure 4.6 A simplified schematic of microscopy for a nontransparent object. The
thick arrows denote illuminating rays; the thin arrows denote scattered rays.
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Figure 4.7 Design of the Fourier-telescopic panoramic microscope with a Fresnel
lens used as the illuminator of the object under study and a receiving aperture for
the radiation scattered by this object. The transmitter aperture (domains scanned by
the illuminating laser beams) is shown by dashed lines. For smoothing the speckle
pattern in the image, its dimensions are smaller than the Fresnel lens diameter.

Sec. 4.4). The comb filter at the difference frequency filters the electric signal from
the detector. The object’s image is assembled in the imaging unit using the inverse
Fourier transform.

In the next section, we will analyze in detail the integral and local measures
of the relationship between an object’s Fourier-telescopic image and its averaged
undistorted image.

4.4 Integral and local measures of the relationship between the
Fourier-telescopic image of an object and its averaged
undistorted image

Let us estimate the degree of closeness of a real Fourier-telescopic image of an ob-
ject in the presence of added noise to its averaged undistorted image as a whole. For
this purpose, let us represent the noise component in the real image as the image of
an imaginary noise object with the intensity distribution equal to In(δ);12 and let
us introduce the integral correlation measurement of the relationship between the
real Fourier-telescopic image and the averaged undistorted image of the object as

K =
∫

Ii(δ)I�(δ)dδ∫
I2
i (δ)dδ

, (4.12)
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where I�(δ) = I(δ) + In(δ) is the intensity distribution in the real image, and I(δ)

and Ii(δ) = 〈I(δ)〉 are intensity distributions in the undistorted Fourier-telescopic
image and its averaged image, respectively.

The imaginary noise object can be represented by a flat rough surface placed
in the Fresnel zone and having the area Sn, far larger than the backscattering area
of the object under study, Se. This surface can be of various physical origins. In
particular, for a noise aerosol cluster, the surface has the same backscattering prop-
erties as the cluster itself. The closer the quantity K is to unity, the better the real
reconstructed image I�(δ) reproduces the undistorted image Ii(δ).12 The accu-
racy of this relationship can be estimated by relative fluctuations of K defined as
η = (〈K2〉 − 〈K〉2)/〈K〉2, where brackets 〈〉 stand for the averaging over various
realizations ξ(r) of the surface roughness height.

Let, for simplicity, the size of the transmitter arrays be equal and the area Sρ of
the receiving aperture be big (Sρ > d2, where d is the size of the transmitter array).
Then [see Appendix 2, relation (A2.13)] the correlation function of the intensity
distribution I(δ) in the Fourier-telescopic image in the absence of noise is

B(δ1,δ2) ∼ k2
i (δ1) sinc

2π(δ2x − δ1x)d

λzi
sinc

2π(δ2y − δ1y)d

λzi
,

the correlation radii along the X and Y axes are ρi = (λzi)/d, and the number of
speckles in the object image is M ≈ Se/(µρi)

2. For example, for a square, flat,
rough object, Se = d2

o , where do is its size, and M ≈ d2
o/(µρi)

2 = (dod)2/(λrc)
2.

When Sρ > d2, the intensity distribution contrast in the Fourier-telescopic im-
age is C = d2/Sρ < 1. With an account for the last relations, if M � 1, then
η ≈ C/M < 1/M � 1. Hence, η� 1 and K ≈ 1. This means that under the con-
ditions Sρ > d2 the Fourier-telescopic image is very close to the true image of the
object [I(δ) differs weakly from Ii(δ)] and has small contrast C. We see that un-
like coherent imaging, in which the contrast of a speckled pattern is usually near
unity,12 the Fourier-telescopic imaging method can give much smaller values of
the image contrast. For Sρ ≥ 10d2, the method already provides an image qual-
ity as good as that formed by high-resolution optics in natural light [see Sec. 2.4,
relation (2.26)]. Thus, for smoothing the image speckle pattern , the receiving aper-
ture sizes should considerably exceed the size of the transmitter linear arrays. In
this case, the image quality is the same as in traditional optical imaging where
polychromatic illuminating radiation is used. Consequently, the value K can be
considered as the integral correlation measurement of the relationship between a
real Fourier-telescopic image and a true, undistorted image.

The integral correlation measurement K can be also used to identify an object in
the presence of noise. For this purpose, we must know the distribution densities for
the random value K in the presence of the object, wp(K) (see Fig. 4.8), and in the
absence of the object, wa(K). In the latter case, only the noise component is present
in the Fourier-telescopic image, which may be represented as an imaginary noise
object image.12 Let us approximate these distributions by a gamma distribution;
then, the distribution density of the integral measurement K is given by the formula
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Figure 4.8 Probability densities of distributions for the integral measurement K in
the absence and in the presence of the object.

w(K) = [(βα)/�(α)]Kα−1 exp(−βK), where �(α) is the gamma function, and
whose center m and variance D are determined from the relations m = 〈K〉 = α/β,
D = 〈K2〉 − 〈K〉2 = α/β2. Then, in the presence of the object, if M � 1 and the
signal-to-noise ratio χ= 〈I(δ)〉/〈In(δ)〉 � 1, using Eq. (4.12) we obtain

〈K〉 = m1 ≈ 1, σ1 = D1/2
1 =

(
M

C

)−1/2

.

Therefore,

wp(K) =
(

M

2Cπ

)1/2

K(M/C)−1 exp

[
−
(

M

C

)
(1 − K)

]
,

where C = d2/Sρ is the contrast of the speckle pattern in a Fourier-telescopic im-
age. If the object is absent [I(δ) = 0] and the number of speckles in the imaginary
noise object image Mn � χ2, then also using Eq. (4.12) we obtain

〈K〉 = m2 = 1

χ
, σ2 = D1/2

2 =
(

Mn

C

)−1/2

.

Then,

wa(K) =
(

Mn

2Cπ

)1/2

(χK)αn−1 exp

[
−
(

Mn

C

)(
1

χ2
− K

χ

)]
,

where αn = Mn/(Cχ2).
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Here, we assume that χ and Mn are known a priori.12 Since Sn � Se, then
Mn � M. We assume that the object is recognized if K exceeds a given thresh-
old Kt. For M > 10 and a relatively high signal-to-noise ratio χ> 6, the following
relations hold: m1 � m2 and σ1 � σ2. Under these conditions, one can choose a
rather low-recognition threshold, Kt = 2/χ≈ 0.3. Then in the case where M > 10,
χ > 6, a false alarm, i.e., when an imaginary noise object is taken for the object
under study, has very low probability:

Pf =
∞∫

Kt

wa(K)dK � 1,

and the object recognition probability is Po = 1 − Pm, where

Pm =
Kt∫

0

wp(K)dK ≈
√

C

2πM

[2M/C exp(M/C)]
χM/C

� 1

is the probability that the object is missing. For M ≥ 10, C ≈ d2/Sρ = 1/2 and
χ ≥ 6, Pm � 1, and Po is close to unity. Consequently, object recognition is reli-
able even for the case when the useful signal level does not essentially exceed the
additional noise level (χ≥ 6) and the number of speckles in the Fourier-telescopic
image is not large (M ≥ 10).

Integral correlation measurements are useful for estimating to what extent a
real Fourier-telescopic image is close to the average undistorted image as a whole.
To estimate the degree of similarity between the Fourier-telescopic images of par-
ticular details of the object and their undistorted images, we introduce local mea-
sures. As local measures, it is convenient to take two numbers: Mx = �x/Px and
My = �y/Py, where Px and Py are the sizes of the smallest resolved domain on the
surface of an object along the X and Y axes, and �x and �y are the smallest detail
sizes along the X and Y axes calculated by the formulas (2.20) of Chapter 2:

�x = |ki(r = −µδ)|
[∣∣∣∣ki

∂2ki

∂x2
+ 2

(
∂ki

∂y

)2∣∣∣∣
]−1/2

,

and

�y = |ki(r = −µδ)|
[∣∣∣∣ki

∂2ki

∂y2
+2

(
∂ki

∂y

)2∣∣∣∣
]−1/2

. (4.13)

Here, all derivatives are taken at the point r = −µδ, and Md = MxMy is equal to
the number of speckles in the image of the smallest detail. The larger the num-
bers Mx and My, the higher the degree of similarity between the smallest details
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and their true, undistorted image. For instance, in the case of a flat object surface
having a periodic reflection coefficient ki(x, y) ∼ cos(2πx/�0x) cos(2πy/�0y), the
smallest sizes of the details are �x ≈ �0x and �y ≈ �0y. If Mx = �x/Px � 1 and
My = �y/Py � 1, then details with sizes�x and �y are reproduced very well and
Md � 1. Hence, under these conditions, Fourier telescopy resolves these details
and the similarity between the smallest details and their true undistorted images
is high. One can show12 that the standard deviations of estimating the sizes of the
object’s details are σx = �x/

√
Mx and σy = �y/

√
My. We see that the accuracy

of the object’s size estimation depends on the local measurements of similarity.
Hence, the larger Mx and My are, the more the image of a detail resembles its true
undistorted image, and the higher the accuracy of the detail estimation parameters.

4.5 Conclusions

1. The transmitting aperture used in Fourier telescopy for illuminating an object
can consist of two orthogonal arrays with difference-frequency transmitters,
placed equidistantly. The minimum size d of each array is determined by the
desired resolution of the method; it is related to the required number of the
resolvable domains M on the object’s surface and the object’s surface shape.
For a spherical rough object placed at a distance rc, then d = (

√
Mrc�λ)/(σρo),

where ρo is the object’s radius, and σ and � are the standard deviation and the
correlation radius of the object surface roughness, respectively. The minimum
number Nt of transmitters on each array should be approximately 3

√
M.

2. A Fourier-telescopic image is similar to a coherent image formed by a typical
optical system; it depends essentially on the object’s surface shape and the
parameters σ and � of the object’s surface roughness. For instance, for a nonflat
rough object, the intensity in the Fourier-telescopic image is proportional to
(�/σ)2 in each part of the image. In addition, the image consists of the images
of separate shine domains of the object surface with size dj = (ρjσzi)/(rc�),
where ρj is the curvature radius for the jth shine domain and zi is the distance
from the receiving aperture plane to the image plane.

3. Periodic instability of illuminating laser radiation, including the central fre-
quency drift and the initial radiation spectral width, has no influence on the
quality of the Fourier-telescopic image if (	ωt

√
M)/ωb � 1, where 	ωt

is the total spectral broadening of the radiation frequency during the signal
processing, andωb is the initial radiation frequency.

4. After eliminating the effect of turbulent atmosphere, the obtained undistorted
image of the object is the same as the usual coherent image gained in the
absence of phase distortion.

5. A proposed laser panoramic microscope based on the principles of Fourier tele-
scopy enables imaging of objects as large as 10 cm and located as far as 10 cm
away from an imaging system with resolution approximating that of the illumi-
nating radiation wavelength. With a receiving aperture that is much larger than
the transmitting arrays, a panoramic microscope can produce an image with
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speckle contrast noticeably less than the contrast of a usual coherent image
(unity). For this reason, despite the fact that the object is illuminated by mono-
chromatic radiation, the image quality is the same as with a high-resolution
white-light microscope.

6. The value

K =
∫

Ii(δ)I�(δ)dδ∫
I2
i (δ)dδ

,

where I�(δ) = I(δ) + In(δ) is the real intensity distribution in a Fourier-
telescopic image, In(δ) is the intensity distribution of the noise component of a
Fourier-telescopic image, and I(δ) and Ii(δ) are the intensity distributions in an
undistorted Fourier-telescopic image and in the averaged undistorted Fourier-
telescopic image, respectively—can be considered as the integral correlation
measurement of the relationship between a real Fourier-telescopic image and
the true undistorted image as a whole. If K ≈ 1, the quality of the Fourier-
telescopic image is satisfactory when the size of the receiving aperture ex-
ceeds the size of the transmitting aperture, and the speckle pattern in the image
is smoothed.

7. The integral correlation measurement K can also be used to recognize an object
in the presence of a noise component In(δ). Here, object recognition is reliable
even in the case when the useful signal level does not essentially exceed the
additional noise level (χ= 6), the number of speckles in the Fourier-telescopic
image of the object is not large (M ≈ 10), and Sρ/d2 = 2, where Sρ is the area
of the receiving aperture and d is the size of the transmitter array.

8. To estimate the degree of similarity between a Fourier-telescopic image of a
surface detail of an object and its undistorted image, one can introduce the local
measurement technique. It is convenient to take as the local measurement of
similarity Mx = �x/Px and My = �y/Py, where �x and �y are the smallest
detail sizes along mutually orthogonal directions, and Px and Py are sizes of
the smallest resolved domain along these directions. If Mx and My are large
(�1), then the Fourier-telescopic image has the highest quality. Under those
conditions, the number of speckles in the image of the smallest detail, Md =
MxMy, is large.
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Chapter 5

Time Background Holography of
Moving Objects

5.1 Introduction

Considerable attention is being given to methods of obtaining information about
moving objects from statistical analysis of the space and time structures of coher-
ent fields scattered by these objects as well as their coherent images. These meth-
ods enable one to solve certain problems that cannot be solved by other methods,
especially with the presence of monochromatic background radiation: measuring
velocity and acceleration distributions on an object’s surface, which yield a de-
formation map of the object; determining the roughness parameters for moving
surfaces; finding the geometric and dynamic parameters of weakly reflecting and
transparent moving objects; detecting, in addition to size and velocity measure-
ment, small, spatially unresolvable objects; and finally, imaging objects that are
indistinguishable from the surrounding background.

The known methods for obtaining information about moving objects in the
presence of monochromatic background radiation, including the situation where
the object has the same scattering characteristics as the background, are based on
compensating for the object’s motion and increasing the contrast of its image with
respect to the background image.20,74,75 All of these methods involve complex
techniques and complicated algorithms for background suppression that can be re-
alized only with fast and powerful computers. Although several researchers have
mentioned the effect of increased contrast between the holographic images of mov-
ing and stable parts of the same surface, which manifests itself as dark and bright
fringes, they did not pay much attention to this effect and used it only for deter-
mining the amplitude of surface vibrations.76,77

It is likely that E. Feleppa was the first to notice that this effect could be used
for gaining information about separately moving objects surrounded by a stable
background.19 While studying the motion of erythrocytes and leukocytes in blood
by means of holographic methods, he recorded with a He-Ne laser beam a long-
exposure hologram of a thin blood sample placed between two glass plates. While
analyzing the reconstructed image, he noticed that against a bright background
there were noticeable intensity minima, both at places occupied by moving ery-
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throcytes, which have high reflection for laser radiation, and at places occupied by
moving leukocytes, which have weak contrast and are usually invisible. The inten-
sity minima became more pronounced with the increase in the hologram exposure
time and, hence, with the increase of particle displacement. As a result, separate
shadow images of the moving particles appeared. In this way, Feleppa managed to
increase considerably the contrast for particles that had been initially invisible. In
Ref. 78, the effect is explained by the fact that during hologram exposure, coherent
fields scattered by the moving object and by the surrounding background are aver-
aged in time. If object displacement during the exposure considerably exceeds the
illuminating radiation wavelength, then the intensity of the averaged field scattered
by the object drops almost to zero due to a phase shift by more than 2π, while the
intensity of the averaged radiation scattered by the background does not change.
Hence, using monochromatic radiation scattered by a stable background and an
arbitrarily reflecting moving object, one can form the image of the object as dark
spots against a bright background.

In the beginning of the 1990s, it was discovered that the time-averaged in-
tensity of a field scattered by a complex object consisting of a stable, randomly
inhomogeneous background and a moving object decreases if the scattered field is
registered by a low-resolution system. This effect was observed for even an almost
completely absorbing moving object,79 and therefore, it could be related only to
the time dynamics of the field scattered by the background. It follows that even in
this case, monochromatic radiation of the surrounding background provides use-
ful information about moving objects. In Sec. 5.5, we give a detailed analysis and
explanation of this effect.

The discovered effect forms a basis for a new field in holography: time back-
ground holography.21 Within its framework, one can analyze such effects and sug-
gest prominent coherent methods of gaining information about a moving object
based on utilizing coherent radiation from the surrounding background and on the
statistical analysis of the temporal and spatial structure of coherent fields scattered
by the background and by the moving object.21 This chapter deals with the study of
time background holography, which is realized by the Fourier–Fresnel time trans-
form of the sum of coherent fields scattered by a moving object and the stable,
randomly inhomogeneous background that surrounds the object. The transform is
performed, as a rule, in the image plane of the object.

In this chapter, we will explain the general theory of time background hologra-
phy, and will present experimental results that confirm its applicability to the de-
tection of moving objects in the presence of noise. We will also consider a method
for the reliable detection of the parameters of arbitrarily reflecting moving objects,
including those that are reflecting, transparent, or absorbing. Finally, we will con-
sider time background-intensity holography, which allows detection of a moving
object that is illuminated by a quasi-monochromatic source with small coherence
length.

For the purposes of these discussions, we will simplify the analysis by rep-
resenting the background surrounding a moving object as a randomly inhomoge-
neous stable background surface. We will also assume the object to be flat.
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5.2 General theory of time background holography

Consider a stable background surface and an object moving along it, where both
are illuminated by a monochromatic pointlike source placed close to the center of
the domain of the scattered field observation (Fig. 5.1). The field scattered by this
complex object can be represented as

E(ρ, t) = exp iω0t

ztλ

∫
Et(rt, t) exp

(
2πi|rt − ρ|

λ

)
dρ. (5.1)

Here, Et(x, y, t) = Eo(x, y) + Eb(x, y)[1 − R(x − vxtt, y − vytt)] is the scattered
field complex amplitude in the intermediate plane, which is parallel to the obser-
vation plane and placed very close to the moving object; Eo and Eb are the parts of
this distribution that are scattered by the object and by the background, account-
ing for the contribution of the illuminating radiation; R(x, y) is the function that
describes shading of the background surface by the moving object; λ is the wave-
length of the illuminating radiation; ω0 = (2πc)/λ, with c being the velocity of
light, is the angular frequency of the illuminating radiation; r with components x,
y, zt, is the radius vector of a point in the intermediate plane; zt ≈ rc is the distance
between the observation and intermediate planes; and vxt and vyt are the velocity
tangential components for the object’s center of mass.

To calculate the scattered field complex amplitude distribution in the interme-
diate plane in the framework of geometric optics, one can consider reflected beams
parallel to the MN axis (see Fig. 5.1), which is orthogonal to the observation plane.

Figure 5.1 Description of the field scattered by a complex object consisting of a
stable background surface and an object moving along it, with the help of an inter-
mediate plane. The dash-dot line shows the axis orthogonal to the observation plane.
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The modulo of this distribution is given by the reflection coefficient of the back-
ground surface of the moving object, and its phase is determined by the phase shifts
of the beams reflected from these objects. Seven beams of this kind are shown in
Fig. 5.1, two of them being reflected from the background surface and tangential to
the moving object boundary. For example, the field at point D on the intermediate
plane is Et(r, t) = Eikc exp(iϕCD), where Ei = (SsEs)/(λrc) is the amplitude of the
incident field, Ss and Es are the aperture area and the complex amplitude of the
illuminating source, respectively, kc is the reflection coefficient of the background
surface at point C, ϕCD = (2πlCD)/λ is the phase shift along the reflected beam
CD, and lCD is the distance from the point D to the intermediate plane (length of
the segment CD). At point B on the intermediate plane, Et(rt, t) = EikA exp(iϕAB),
where kA is the reflection coefficient of the moving object surface at point A,
ϕAB = (2πlAB)/λ is the phase shift along the reflected beam AB, and lAB is the
distance from point A to the intermediate plane (i.e., length of segment AB). This
simplified picture, on the one hand, gives an overview of time background hologra-
phy and, on the other hand, provides a rather precise example of time background
holography in the case where the moving object is close to the background surface.
The case where the moving object is far from the background surface and hence,
the role of diffraction is considerably increased, will be considered in detail below.

Suppose that the additive random noise field En(ρ, t), which, as a rule, exists to-
gether with the scattered field, has a correlation time and radius essentially smaller
than the corresponding parameters of the scattered field. Then, the resulting (sum)
field E�(ρ, t) = E(ρ, t) + En(ρ, t) can be calculated with the help of the statistical
theory of solutions,12 which defines the probability density function for this field,
P[E�(ρ, t)] ∼ exp[−(Ld + L)], where

Ld = 1

Nn

t0+T∫
t0

∫
|E�(ρ, t)|2dρdt

is proportional to the energy of the processed field, Nn is the noise field spectral
density,

L =
t0+T∫
t0

∫
W(r, t)|Eg(r, t)|2drdt

is the statistics of the scattered field, W(r, t) is a function depending on the ex-
pected properties of the complex object and on Nn,

Eg(r, t) =
(

1

λrcT

)∫
E�(ρ, t) exp

(
2πi|r − ρ|

λ

)
dρ

is the generalized image of the object,12 r is the expected radius vector of the in-
termediate plane, and t0 and T are the starting time and duration of the sum field
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processing, respectively. The second integral is performed one over the observa-
tion domain. The functional P[E�(ρ, t)] contains complete information about the
complex object under study and thus can be used for the detection, recognition,
and measurement of its parameters. In particular, detection of the object can be
performed by comparing the function

Ld = 1

Nn

t0+T∫
t0

∫
|E�(ρ, t)|2dρdt

with a given threshold. In what follows, we consider a modification of this func-
tion, which allows one to detect an object moving along the background surface
even in the case of very weak reflectivity of the object surface. In this method,
detection is based on the analysis of monochromatic radiation scattered by the
background surface. In Ref. 12 it is shown in detail how the field scattered by
the object under study can be processed using the statistics of the scattered field,
L = ∫ t0+T

t0

∫
W(r, t)|Eg(r, t)|2drdt. This method of processing requires a large

number of operations. However, for a small noise field, determination of the object
parameters can be simplified.

Let the intermediate plane be close to the object under study and far from the
observation plane. Under these conditions, the intermediate plane is often called the
picture plane,11 and r is the radius vector of the intermediate plane (see Fig. 5.1)
with components x, y, zt, where zt ≈ rc. Then, after the change of variables r/r =
δ/δ, 1/r = 1/δ − 1/f , one can show that if the terms ∼t3 are neglected, for a
relatively small size dρ of the observation domain,80

Eg[r(δ)] = 1

T

t0+T∫
t0

Em(δ, t) exp
(
iωt + iβt2

)
dt, (5.2)

where

Em[r(δ), t] = 1

λzi

∫
E�(ρ, t) exp

(
i
2πδρ

λδ

)
exp

[
i
πρ2

λ

(
1

f
+ 1

δ

)]
dρ

=
∫

Et(x, y, t)h(x, y,δ)dxdy + �[En(ρ, t)]

is the instantaneous field distribution in the coherent image of the complex object
formed by the imaging system, which is placed in the observation plane; h(x, y,δ)

is the pulse response of the imaging system, f is its focal length; δ is the radius
vector of the point in the image plane that is optically conjugate to the point with
radius vector r on the intermediate plane; ω is the spectrum frequency, β is the
spectrum deviation, and �[En(ρ, t)] is a functional, determined only by the noise
field. The radius vector δ has components δx, δy, zi, where zi is the distance be-
tween the object image and the imaging system aperture. The generalized image of
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the object is related to the instant coherent image by means of the Fourier–Fresnel
time transform with the kernel exp(iωt + iβt2).

Furthermore, under the condition that the influence of the noise field En can be
neglected, consider the two cases of the scattered field processing. These are the
cases of high and low imaging system resolution.

5.2.1 Time background holography in the case of a high-resolution
imaging system

Consider the case of a high-resolution imaging system, dρ � (λrc)/do, where do
is the size of the moving object and dρ is the imaging system aperture size. Then,
the following operations can be used to process the scattered field (Fig. 5.2). The
object is illuminated by a monochromatic source with a coherence length more
than twice the distance between the background surface and the observation plane.
The detector detects radiation scattered by the object and the background surface.
After this, the image is formed. Then, with the help of the reference wave created
by the illuminating source, a dynamic hologram of the focused object image hav-
ing the field distribution Em is formed in the image plane. According to Eq. (5.2),
a Fourier–Fresnel time transform is performed in each small domain of the im-
age (Fig. 5.2), and the resulting field distribution Em is analyzed. Furthermore, for
each domain, using a filter matrix one finds the maximum absolute value of the

Figure 5.2 The device for processing the scattered field in the case of a high-
resolution imaging system. Here, v1, a1 and v2, a2 are velocities and accelerations
of the object with respect to its center of mass. The circular line on the hologram
surface is the coherent image of the moving object.
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transform, equal to the intensity distribution in the image

Io(δ, t0) ∼ |Ei|2ki(r = −µδ, t0),

where ki(r = −µδ, t0) = (�/σ)2|k(r = −µδ, t0)|2 exp{−[(�/σ)2(q2 − q2
N)/q2

N]},
µ= rc/zi, qN = q · N, q = rc/rc + (rc − ρs)/|rc − ρs| is the vector of scattering,
σ and � are the standard deviation and the correlation radius of the object surface
roughness, N is the normal to the average surface of the object, ρs is the radius vec-
tor of the illuminating source, rc is the center of mass of the object, and k(r, t0) is
the reflection coefficient distribution of the object surface at time t0. Next, one finds
the values ωm(δ) and βm(δ), which yield the maximum of the Fourier–Fresnel
transform modulo.

In addition, one can determine the intensity reflection coefficients for the mov-
ing object surface and the background surface, respectively, according to the for-
mulas

Ko(δ, t0) = ciIo(δ, t0)

|Ei|2 and Kb(δ, t0) = ciIb(δ, t0)

|Ei|2 ,

where ci is a constant depending on the object’s position and the imaging system
parameters, and Io and Ib are intensity distributions in the image of the moving
object (the circular line on the hologram surface; see Fig. 5.2) and in the image
of the background, respectively. The values ωm(δj) and βm(δj), in the jth domain
of the object image, where δj = −rj/µ is the radius vector of the jth domain of
the object image and rj is the radius vector of the jth domain of the object surface
that is optically conjugate to the jth domain of the image plane, are related to the
dynamic parameters of the object on the jth domain of its surface as follows:

ωm(δj) = 2π(vrc + vrj)

λ
, βm(δj) = 2π(arc + arj)

λ
,

where vrc = q · vc, arc = q · ac are the radial components of the velocity and ac-
celeration vectors vc and ac of the object’s center of mass; vrj = q · vj(δj) and
arj = q · aj(δj) are the radial components of the velocity and acceleration vectors
v(δj) and a(δj) of the jth domain of the object’s surface, which is optically conju-
gate to the jth domain of the image (Fig. 5.2), with respect to its center of mass.
The number of equations is 2N, where N is the number of domains. At the same
time, the number of unknown variables vrj, arj, vrc, and arc is 2N + 2. In this case,
the set of equations is sufficient for determining these values; then, the solution of
the system has the form

ωc =ωm(δ1) −ωm(δ2),

βc = βm(δ1) −βmax(δ2),

vrj = λ̄[ωm(δj) −ωc],
arj = λ̄[βm(δj) −βc],
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and

vrc =ωc,arc = λ̄βc,

where λ̄= (λ/2π), and ωc and βc are the Doppler frequency and Doppler devia-
tion of the object’s center of mass, which are the same for each point of the image
since they are determined by the velocity and acceleration of the object’s center
of mass, and δ1 and δ2 are the radius vectors of the first and second domains,
respectively.

If the moving object is a nondeformable solid body, then the number of equa-
tions can become excessive. This can be seen most explicitly if a nondeformable
body rotates around a fixed axis passing through point P orthogonally to the line
MN (see Figs. 5.1 and 5.2). In this case, the following three equations are sufficient
for determining the angular velocity of rotation � and the projections vrc and arc
of the velocity and acceleration of the object’s center of mass:

ωm(δ1) = vrc − (	�/µ)

λ̄
,

ωm(δ2) = vrc

λ̄
,

and

βm(δ2) = arc

λ̄
,

where 	 is the distance between the images of the K and P domains of the object’s
surface (see Fig. 5.2). From these equations, we obtain

� = λ̄ωm(δ1) −ωm(δ2)

µ	
,

vrc = λ̄ωm(δ2),

and

arc = λ̄βm(δ2).

The tangential components of the center of mass’ velocity and acceleration vectors
can be easily found from the displacement of the object image’s center of mass, ac-
cording to the relations vtc = µvic and atc = µaic, where vic and aic are the velocity
and acceleration of the image’s center of mass.

It is interesting to note that in the case of a stable background surface, with the
radial components of the velocity and acceleration of its separate domains equal to
zero, in its image, ωm(δ) = βm(δ) = 0. (This image is outside the circular line on
the hologram surface in Fig. 5.2.) At the same time, in the presence of the object
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radial displacements, ωm(δ) �= 0 and βm(δ) �= 0 in its image (inside the circular
line). Then, separating the domain where the last two conditions are satisfied, one
can form an image of the moving object even in the case where it does not dif-
fer from the background surface; i.e., if the intensity reflection coefficients of the
moving object and the background surface are approximately equal, then Ko ≈ Kb.
However, this method of selecting a moving object that is indistinguishable from
the background surface cannot be used if the object has tangential displacements.
In Sec. 5.4, we consider a method that allows this (see Sec. 5.4).

If the processing time of the scattered field is so small that for the normal
components of the object velocities and accelerations, conditions (VpcT)/λ� 1,
(apcT)/λ� 1, (VpT)/λ� 1, (anT)/λ� 1 are satisfied, then one loses first the
information about the dynamic parameters of the moving object and, second, the
possibility of separating the moving object’s image from the background surface’s
image if the moving object is indistinguishable from the background surface. Con-
sider now the case where dρ � (λrc)/do, in which the imaging system does not
resolve the background surface and the moving object. We also suppose that the
influence of the noise field can be neglected. It is worth recalling that in time back-
ground holography, the object under study is a “sandwich” consisting of the mov-
ing object and the background surface.

5.2.2 Time background holography with a low-resolution imaging
system

In the case of an imaging system with low resolution, the instantaneous image of
the moving object and the background surface consists of a single speckle (the
Airy disk),12 and the generalized image of the object is related to its instantaneous
image via the Fourier–Fresnel time transform,80

Eg(δc,ω,β) = 1

T

t0+T∫
t0

EA(δc, t) exp
[
iωt + iβt2

]
dt,

where δc is the radius vector of the Airy disk’s center, and EA(δc, t) is the instan-
taneous field in the Airy disk’s center on the hologram surface. We see that in this
case, the generalized image is a two-dimensional image of the object at coordinates
ω, β. In the case of a stable background surface, only a two-dimensional pattern of
the moving object is formed. For instance, the two-dimensional image of a rotating
ball is an ellipse, with the ratio between the axes being proportional to the angular
rotation frequency and the center at point ω=ωc, β= βc.

One can see from the above relations that in the case of a low-resolution imag-
ing system and under the condition that the noise field influence can be neglected,
the scattered field is processed as follows (Fig. 5.3). The object is illuminated by
a monochromatic source with a coherence length that exceeds twice the distance
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Figure 5.3 A device for time background holography in the case of a low-resolution
imaging system. The dash-dot line shows the optical axis of the imaging system. The
dotted line shows a single speckle in the coherent image.

between the background surface and the observation plane; the imaging system fo-
cuses the field scattered by the object, whose image is formed as a single speckle
(the Airy disk). Then, with the help of a semitransparent mirror and a four-section
detector, one determines the energy center of this speckle. Further, the imaging
system is oriented in such a way that the energy center of the speckle coincides
with the optical axis of the imaging system. This allows one to determine the unit
vector nc directed towards the object, i.e., the angular position of the object.

Simultaneously, using a reference wave created by the illuminating source,
one records the dynamic hologram of the focused object image and performs a
Fourier–Fresnel time transform of the field Em in this image within a small domain
of the hologram placed at the intersection with the optical axis of the imaging
system. As a result of the transformation, a two-dimensional pattern of the ob-
ject is formed in coordinates ω, β with the center at point ω =ωc = (2πvr)/λ,
β = βc = (2πarc)/λ. This image is displayed on the monitor. Processing of the
field scattered by the object allows one to determine the object’s shape and its dy-
namic parameters, including the radial components of its velocity and acceleration,
vrc and arc.

Hence, the proposed method of scattered field processing leads, in the case
of a low-resolution imaging system, to the building of a two-dimensional image
of the moving object even in the presence of a bright background surface with
a rather high reflection coefficient Kb. However, for even an almost completely
absorbing object moving parallel to the background surface, this procedure yields
a two-dimensional image of the moving object formed from the radiation scattered
by the background surface.
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Thus, for a high-resolution imaging system, time background holography pro-
vides imaging of an object moving along the background surface even in the case
when the object does not differ from the background surface, i.e., when the inten-
sity reflection coefficients of the object surface and background surface are almost
the same, Ko ≈ Kb. In addition, it allows one to determine the angular rate of the
object’s rotation, the velocity and acceleration of the object’s center of mass, and
the distribution of dynamic parameters on the object surface. For a low-resolution
imaging system, time background holography provides a two-dimensional pattern
of an object moving along a background surface formed from coherent radiation
scattered by the object and the background.

We have considered methods of determining the parameters of moving objects
by means of time background holography based on a reference beam. However,
these methods cannot be used when the illuminating source has a small coherence
length. Nevertheless, certain dynamic parameters of moving objects, including the
angular rate of rotation, can be determined by means of time background inten-
sity holography without using any reference beam. This type of time background
holography, as well as some restrictions and difficulties relating to it, will be con-
sidered in Sec. 5.6.

5.3 Using time background holography to detect a moving object

In the foregoing, we discussed detection of a moving object by comparing the
functional

Ld = 1

Nn

t0+T∫
t0

|Em�(ρ, t)|2dtdρ,

with a given threshold. Here, E� = E + En, where E is the field scattered by the
background surface and the object moving parallel to it, and En is the noise field,
Nn = InSnτn, where In = |En|2 is the noise field spectral density, Sn and τn are the
correlation area and correlation time of the noise field, respectively. The functional
Ld is formed as follows. The studied domain, consisting of the background sur-
face and the moving object, is probed, and the scattered energy is measured. This
energy is divided by the spectral density of the noise field. The object is detected
if Ld exceeds a given threshold. This method, known historically as the direct de-
tection method,27 can be used if reflection of the background surface is so weak
that the field scattered by it has negligible influence on the detection procedure. In
practice, the radiation scattered by the object and the background surface is usually
focused on a “pointlike” detector, and the threshold is compared with the value L′

d
proportional to Ld,

L′
d = 1

TIn

t0+T∫
t0

|Em�(ρ, t)|2dt, (5.3)
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where Em� = Emo + Emb + Emn is the instantaneous field at the detector input,
Emo and Emb are instantaneous fields scattered by the object and the background
surface, respectively, and Emn is the instant noise field. However, in the case of
a strongly reflecting background surface and a small, weakly reflecting moving
object, only the background surface will be detected in practice.

In order to eliminate the influence of a bright background surface on the de-
tection of an object moving along it, one should use detection methods based on
pulsed probing of the background surface and the moving object and on time gat-
ing the backscattering pulse reflected by the background surface. An important
drawback of such methods is the necessity to know a priori the distance to the
background surface and to the moving object, and the low detection probability for
weakly reflecting objects. More practical are methods of moving object detection
based on frequency-modulated illumination of the domain under study. Using the
frequency analysis based on the fast Fourier transform, one determines the dis-
tance to the background surface and to the moving object and estimates variations
of these distances, which allows one to detect the presence of the moving object.
This method also has low reliability of detection for weakly reflecting objects. In
addition, its realization requires complicated processing of the backscattered radia-
tion. All methods mentioned above are based on selecting backscattering from the
moving object and suppressing backscattering from the background surface.

There is a well-known simple method of detecting a moving object by observ-
ing intensity variations in radiation scattered by the background surface (Fig. 5.4).
In this method, the background surface and the moving object are illuminated by
a source that can be monochromatic or nonmonochromatic. Then, the intensity of
the backscattered radiation is measured by a “pointlike” detector at two different
times, which gives Id(t1) and Id(t2), and the value 	 = [Id(t1) − Id(t2)]/In is com-
pared with a given threshold. If, for t1 − t2 � do/−t, where do is the object size and
vt the tangential component of its velocity, and 	 exceeds the threshold, then the
object is considered as detected. This method is realized, for instance, in the Ko-
rean company Alpex’s infrared sensing switch,81 which switches on an electrical

Figure 5.4 Detection of a moving object via variation of the intensity of light scat-
tered by the background surface. A and B are domains of the background surface that
are shaded at moments t1 and t2 such that t2 − t1 � do/vt, where do is the object size,
and vt is the tangential component of its velocity. The dotted curve shows the object
position at time t2.
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illumination with different time delays in intervals between 5 seconds to 2 minutes
when the moving object falls within view of the device’s sensor.

Taking into account relation (5.1), one can show that

�d ≈ CbSg(K1b − K2b)

In
+ 1, (5.4)

where K1b and K2b are intensity reflection coefficients for those domains of the
background surface that are shaded at times t1 and t2, Sg is the area of the mov-
ing object’s geometric shadow on the background surface, and the factor Cb is
determined by the background surface roughness height parameters and the dis-
tance to the background surface. High detection probability is achieved under low-
noise conditions, when 〈�d〉 � 1. However, for a remote background surface and
moving object, as a rule, K1b

∼= K2b
∼= Kb and 〈�d〉 ∼= 1; hence, the object de-

tection probability is very low. We will now consider a more reliable algorithm
for detecting a moving object that is not resolvable by the imaging system.22

The algorithm is based on forming the image of the background surface, reg-
istering, with the help of a reference wave, the field in the image plane at dif-
ferent time moments t and τ, and processing the differences between the fields,
Emd(δj, t,τ) = Em�(δj, t) − Em�(δj,τ), in different domains of the image. Here,
Em�(δj, t) = Emo(δj, t) + Emb(δj, t) + Emn(δj, t) is the instant random field in the
image plane, which has Gaussian distribution, Emn(δj, t) is the random noise field,
which also has Gaussian distribution, and δj is the radius vector of the jth domain
of the image. At t �= τ and in the absence of noise (En = 0) and object motion, these
differences are equal to zero. If the noise field correlation time is much smaller than
the field Em(δj, t) correlation time, then, as shown in Ref. 22, in order to detect only
the moving object, instead of the functional

Ld = 1

Nn

t0+T∫
t0

∫
|E�(ρ, t)|2dρdt

one should use an analogous non-negative functional

Ldj = 1

InT2

t0+T∫
t0

t0+T∫
t0

|Emd(δj, t,τ)|2dt = 1

TIn

t0+T∫
t0

|Em�(δj, t)|2dt− 1

In
It(δj), (5.5)

which should be compared with the fixed threshold. Here,

It(δj) =
∣∣∣∣∣ 1T

t0+T∫
t0

Em�(δj, t)dt

∣∣∣∣∣
2
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and a new operation is introduced: determination of the time-averaged intensity of
the complex field amplitude Em� in the jth domain of the image plane. Actually,
this is determination of the square modulo of the Fourier–Fresnel spectrum of the
field distribution in the image at frequency ω = 0 and deviation β = 0. The fact
that the functional Ld contains this operation justifies using this operation for the
study of effects of an object moving along the background surface, including the
effect of the average intensity decrease of the complex field amplitude Ems, which
we mentioned in Sec. 5.1.

As we will show below, this operation, although it uses a single pointω= β=
0, provides much information about the geometric and dynamic properties of mov-
ing objects. Taking into account the importance of this operation, we will define
it as the principle of coherent field time averaging. Section 5.5 will be devoted to
the discussion of this principle. Taking into account relation (5.1) and doing the
calculations described in detail in Sec. 5.5, one can show that, for instance, in the
case of an almost completely absorbing object, low noise field, and the averaging
time T � do/vt, where vt is the velocity of the object motion along the background
surface (the velocity tangential component),

〈It(δj)〉 =

Cb|kb(rj)|2
(
λ2r2

c

Sρ
− 2Sg

)
for Mb � 1,

Cb|kb(rj)|2(Sb − 2Sg) for Mb � 1,

where Cb is constant, kb(rj) is the reflection coefficient of the jth domain of the
background surface, rj is its radius vector, and Mb = (SbSg)/(λ

2r2
c); Sb, Sρ, Sg are

the areas of the background surface, the imaging system aperture, and the object
geometric shadow on the background surface, respectively. If T � do/vt and the
object is almost completely absorbing, then

〈It(δj)〉 =

Cb|kb(rj)|2
(
λ2r2

c

Sρ
− Sg

)
for Mb � 1,

Cb|kb(rj)|2(Sb − Sg) for Mb � 1.

From the obtained relations, one can see that at T � do/vt, the intensity of the
time-averaged complex field amplitude decreases by the value Cb|kb(rj)|2. Taking
into account the above relations, we obtain that at T � do/vt and very low noise,

〈Ldj(δj)〉 ≈ Ldj(δj) ≈ CbSgKb

In
. (5.6)

Figure 5.5 presents a conceptual schematic of detection of an object moving
along the background surface in the case of a high-resolution imaging system. The
background surface and the object are illuminated by a monochromatic source,
and the imaging system forms their images. In the image plane, a matrix detector
records the sum fields Em�(δj, t) = Emo(δj, t) + Emb(δj, t) + Emn(δj, t), where δj
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is the radius vector of the jth element of the matrix detector, by recording with the
help of a reference wave the hologram of an focused image of the object under
study.

Furthermore, the signal from each detector element is fed to a corresponding
cell of the matrix functional unit. The cells form the functionals Ldj(δj) and com-
pare them with the given threshold. In Fig. 5.5, δj is the radius vector of the jth
element of the matrix detector and of the jth cell of the matrix functional unit,
in which the value of Ldj(δj) exceeds the threshold. This means that the mov-
ing object’s position is in the direction of the jth domain of the background sur-
face, which is optically conjugated to the jth element and given by the radius vec-
tor rj.

If the imaging system does not resolve the background surface along which the
object moves, then detection of the field Em� is performed according to the scheme
shown in Fig. 5.6. Here, the image of the background surface and the moving object
is a single speckle at the detector input. After field detection, the functional unit
forms the value

Lc = 1

In

(
1

T

t0+T∫
t0

|Em�(δc, t)|2dt − 1

T2

∣∣∣∣∣
t0+T∫
t0

Em�(δc, t)dt

∣∣∣∣∣
2)

, (5.7)

where δc is the radius vector of the detector input center, and compares it with the
given threshold. If Lc exceeds the threshold, the object is considered as detected.

Figure 5.5 Conceptual schematic of moving object detection in the case where
the object moves along the background surface and the imaging system has high
resolution. Here, δj is the radius vector of the jth element of the matrix detector and
the jth cell of the matrix functional unit, and rj is the radius vector of the jth domain
of the background surface, which is optically conjugate to the jth element.
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Figure 5.6 Conceptual schematic of moving object detection in the case where
the object moves along the background surface and the imaging system has low
resolution. Here, δc is the radius vector of the detector input center; rc is the radius
vector of the background surface’s center of mass, which is optically conjugate to the
detector input center. The dotted line shows a single speckle in the coherent image
of the complex object—a background surface plus the moving object under study.

Let us return to Eq. (5.3). One can show that at T � do/vt and under low noise
conditions,

Lc ≈ 〈Lc〉 = CbSgKb

In
∼ L′

d. (5.8)

This demonstrates that moving object detection is carried out as if we were per-
forming direct detection of the domain on the background surface placed into
the geometric shadow of the object. Hence, the probability of detecting the object
equals the probability of detecting this part of the background surface. In practice,
this probability is very high, which is also confirmed by the experiments described
below. Since we consider detection of a moving object that is not resolvable by
the imaging system, one can say that Lc performs the spatial filtering of the mov-
ing object geometric shadow from the whole background surface. Therefore, by
measuring this functional with the help of the device shown in Fig. 5.6, one can
draw conclusions about the geometric parameters of the object. In particular, in the
case of low additional noise, 〈|Emn|2〉 � 〈|Emo|2〉; and under the condition that the
parameters Cb, In, and Kb are known, and if the object is flat and moves along and
close to the background surface, then one can determine the surface area of the
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object So = Sg = (LcIn)/(CbKb). It follows that time background holography is a
high-resolution method of gaining information about moving objects.22

Let us return to relation (5.4) for the case of low noise, where �d ≈ CbSg(K1b −
K2b)/In. Using Eqs. (5.5) through (5.8), we obtain that for K1b ≈ K2b,

Lc ≈ CbSgK1b

In
� �d ≈ CbSg(K1b − K2b)

In
. (5.9)

It follows from Eqs. (5.8) and (5.9) that �d � Lc, and hence, for a fixed threshold
the probability of detecting an object via the intensity variation of the radiation
scattered by the background surface is considerably smaller than the probability
of its detection by means of time background holography using the functionals of
Eqs. (5.5) and (5.7).

Let us consider an experiment that confirms the possibility of using time back-
ground holography to detect a moving object. The corresponding laboratory setup
for operating in the microwave range is shown in Fig. 5.7. A solid-state microwave
generator based on an avalanche diode generates monochromatic electromagnetic
radiation in the 3-cm range.21 Half of the radiation is sent into a horn-shaped trans-
mitter, which illuminates the background surface and the object moving along it.
The second half of the radiation is fed to the phase detector. The same detector
registers, through a horn-shaped receiver, the electromagnetic field scattered by
the moving object and the background surface.

The signal going to the detection unit from the phase detector is proportional
to the intensity of the time-averaged complex amplitude of this field. In the de-
tection unit, the functional Lc [see relation (5.7)] is formed from this signal and
is compared with the fixed threshold. If the functional Lc exceeds the threshold,
the moving object is considered detected, which is indicated by a mark displayed
on the monitor. In the experiment, the moving object’s surface had high absorp-
tion in the microwave range. The background surface had high reflection in the

Figure 5.7 The laboratory setup using time background holography for the detection
of an object moving along a background surface.
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microwave range. The setup demonstrated reliable detection of the object moving
along the background surface, even in the case where the object displacement was
of the order of its size, 	 ≈ Tv, where v is the object’s velocity.

Now consider a laboratory setup that uses time background holography in the
ultrasonic range23 to detect objects moving in water (Fig. 5.8). An acoustic gener-
ator sends an electrical signal to an ultrasonic transmitter placed into the water and
to a phase detector. The ultrasonic transmitter sends monochromatic ultrasonic ra-
diation to both the background surface and the object moving along it. The coherent
ultrasonic field scattered by the object and the background surface is registered by
an ultrasonic receiver, which is also placed in water. From the receiver, the signal is
fed to the phase detector. The signal from the phase detector, which is proportional
to the complex amplitude of the scattered field, is sent to the detection unit. Then,
quite similarly to the case of microwave time background holography, the detec-
tion unit forms the functional Lc from the signal and compares it with the given
threshold. If the functional Lc exceeds the given threshold, then the moving object
is assumed to be detected, and the corresponding mark is displayed on the monitor.

The objects chosen for this experiment had reflection coefficients only slightly
different from the background surface reflection coefficient. The setup demon-
strated that objects moving in water can be detected using monochromatic ultra-
sonic radiation scattered by a randomly inhomogeneous background surface and is

Figure 5.8 The laboratory setup using time background holography for the detec-
tion of objects moving in water. The object used in the experiment has reflection
properties close to the ones of the background surface.
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spatially modulated by these objects on its way to the receiving device. Reliable
detection was possible at displacements comparable with the objects’ sizes.

In Ref. 22 it is considered whether time background holography can be used for
the reliable detection of weakly reflecting atmospheric particle clusters that are not
resolvable by the imaging system. In this case, detection is based on probing by co-
herent laser radiation. In Ref. 22 it is suggested that a device based on the schematic
shown in Fig. 5.5 be used in the case of a background surface that is resolvable by
the imaging system, and a device based on the schematic in Fig. 5.6 be used in
the case of an unresolvable background surface. The same devices can be used for
determining the concentration, average size, and average velocity of the polluting
particles. Similar devices can be used for detecting moving leukocytes, which are
low-contrast particles that are not easily distinguished from the surrounding back-
ground, and for finding their concentrations, average size, and average velocity.
For probing blood samples, it is also reasonable to use laser radiation.

Thus, time background holography can be efficient for the reliable detection
of remote objects moving along a randomly inhomogeneous bright background
surface. An object is detected due to coherent fields scattered by the randomly
inhomogeneous background surface and spatially modulated by the object on the
way to the receiving point. The objects to be detected can be highly reflecting, have
the same reflection as the background surface, or be transparent. If they are moving
through air, then they should be detected using monochromatic electromagnetic
radiation in the optical or radio range. For the detection of objects moving in water,
monochromatic acoustic radiation should be used.

Detection of a moving object is performed with time background holography
in the same manner as the well-known method of direct detection27 would be ap-
plied to the part of the background surface placed in the geometric shadow of the
object. Hence, the probability of detecting the object is equal to the probability of
detecting that part of the background surface. In practice, this probability is very
high, which is confirmed by the experiments presented here. One can say that the
algorithm of moving object detection in the framework of time background holog-
raphy is based on spatial filtering of the object’s geometric shadow from the whole
background surface. This algorithm is most efficient in the case of moving objects
that are not resolvable by the imaging system. If the imaging system resolves the
background surface, then, using a matrix detector, one can not only detect the pres-
ence of a moving object but also determine with diffraction accuracy the angular
coordinates of the object. If the imaging system does not resolve the background
surface, one can only detect the presence of the object. The reliability of detection,
as experiments have shown, is high even in the case of object displacements that
are comparable with its size.

Thus, time background holography allows us to gain information about mov-
ing objects by utilizing coherent fields scattered by the surrounding background
and the statistical analysis of the temporal and spatial structure of coherent fields
scattered by the background and by moving objects.
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5.4 Application of time background holography to the fast detection
of moving objects and determination of their parameters

In this section we consider a fast algorithm for detecting arbitrarily reflecting mov-
ing objects and a conceptual schematic of a device for detecting and determining
coordinates and dynamic and geometric parameters of these objects. First, let us
describe the algorithm, which can be carried out by using the detection schematic
presented in Fig. 5.5. The functional Ldj is calculated in the jth cell of a matrix de-
tection unit [see relation (5.5)]. The object under study and the background surface
is probed by radiation that consists of a sequence of pulses with the same width
τi and time separation τd . The pulses scattered back into the matrix detector are
registered, and the functional is formed as

Ldj = 1

N0

n=N0∑
n=1

|E′
ms(δj, tn)|2 −

∣∣∣∣∣ 1

N0

n=N0∑
n=1

E′
ms(δj, tn)

∣∣∣∣∣
2

, (5.10)

where δj is the radius vector of the jth detector cell, N0 = T(τi +τd) is the number
in the sequence of probing pulses within the time T of Ldj formation, tn is the arrival
time of the nth returning pulse, E′

ms(δj, tn) = Emb(δj, tn)+Emn are the pulse fields,
which are gated by the jth element of the matrix detector from the radiation scat-
tered by the background surface, including the instant additive noise field Emn. It is
supposed that the distance from the background surface is known with a high accu-
racy a priori. As a result of this gating, the fields in the object image, Emo(δj, tn),
collapse. This functional is non-negative for any intensity In = |Emn|2 of the addi-
tive noise, and turns to zero only if the object is not moving and if the intensity of
the additive noise is zero (In = 0). Therefore, it can be used to detect the moving
object and to determine its parameters.22

Since Lj are random functionals, one should know their mean values and stan-
dard deviations in order to use them for detecting a moving object and determining
its coordinates as well as dynamic and geometric parameters. Assuming that the
complex amplitude Ems has Gaussian distribution, one can show that the mean
value (distribution center) mj = 〈L〉j and the variation σ2

j = 〈L2〉j − m2
j of the func-

tionals Lj can be calculated for Tvt � do, where vt is the tangential component of
the object velocity, do is the object size, as

m1j ≈
(

Ij(1 − do/vtT) + In

In

)
, σ2

1j ≈
(

Ij(1 − do/vtT) + In

In

)4( do

vtT

)
, (5.11)

and for Tvt � do as

m2j ≈ 1, σ2
2j ≈

τn

T
, (5.11a)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 20 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Time Background Holography of Moving Objects 149

where brackets 〈〉 denote averaging over various realizations of roughness height
distribution ξ(r) of the background surface, τn � do/vt is the noise field correla-
tion time,

Ij = 〈|Emb(δj)|2〉 ∼ Sbjkb(rj = −µδj)|2
(
σb

�b

)2

exp

[
−
(
σbq⊥j

�bqNj

)2]
(5.12)

is the mean intensity of the instantaneous image of the jth domain of the back-
ground surface shaded by the moving object, Sbj and rj are the area and the ra-
dius vector of the jth shaded domain of the background surface, respectively, σb
and �b are the standard deviation and correlation radius of roughness height ξb(r)
within the shaded domain, r is the radius vector of the background surface, kb(rj)

is the reflection coefficient for the jth shaded domain, and qNj ≈ (2rj ·Nj)/rj, q⊥j ≈
(4−q2

Nj)
0.5, where Nj is the normal to the mean surface of the jth shaded domain of

the background surface. From Eqs. (5.11)–(5.12) we see that the proposed method
enables selection of the radiation scattered only by the background surface and spa-
tial filtering of the domain on the background surface shaded by the moving object.

Let us use the mean values and standard deviations calculated from Eqs. (5.11)
and (5.11a) to determine the detection threshold and detection probability for ob-
jects moving along the background surface (see Fig. 5.9). Recall that the detection
threshold is chosen according to the condition that the probabilities of a false alarm
of missing the object are small.27 The probability distribution of the random value
Lj is approximated by the gamma distribution

W(Lj) = β
αj
j

�(αj)
L
αj−1
j exp−βjLj,

Figure 5.9 The probability density distributions W1j and W2j for the random func-
tional Lj calculated in the jth cell of the matrix detection unit (see Fig. 5.5) in the
case of fast object motion (Tvt � do) and slow object motion (Tvt � do), respectively.
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where �(αj) is the gamma function. The distribution Wj is concentrated around the
center mj =

∫∞
0 LjWj(Lj)dLj = αj/βj, with the variation

σ2
j =

∞∫
0

L2
j Wj(Lj)dLj − m2

j = αj

β2
j

.

From Eqs. (5.11) and (5.11a) we see that if the noise is low (In � Ibj) and the object
moves sufficiently fast in the horizontal direction (Tvt � do), the distribution (W1j
in Fig. 5.9) is concentrated around the center

α1j

β1j
= m1j ≈ Ibj

In
, (5.13)

with the variation

αj

β2
1j

= σ2
j ≈

(
Ibj

In

)4( do

Tvt

)
. (5.13a)

From the two preceding equations, one can find the parameters α1j and β1j under
the condition Tvt � do:

α1j = Tvt

do
,

and

β1j = TvtI2
n

doI2
bj

. (5.14)

The probability of missing the object (the area hatched by vertical lines in Fig. 5.9)
for the detection threshold Lt < 0.5m1j is

Pmj =
Lj=Lt∫

Lj=0

W1j(Lj)dLj
∼= (βjLt)

αj

�(αj)(αj − 1)
.

If the horizontal motion of the object is slow, i.e., Tvt � do, then this distribu-
tion is determined only by the noise (W2j in Fig. 5.9). In this case, the distribution is
concentrated in a narrow range around the center αj/β2j = m2j ≈ 1 � m1j ≈ Ibj/In

with the variation αj/β
2
2j = σ2

2j = τn/T , where τn � do/vt and α2j ≈ β2j ≈ T/τn.
If the signal-to-noise ratio Ibj/In is sufficiently high, then the center of the probabil-
ity density distribution W1j of the random value Lj is considerably displaced to the
right of center of the probability density distribution W2j (Fig. 5.9). This allows one
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to choose a relatively low detection threshold according to the relation Lt ≈ 2m2j ≈
2 � m1j and still keep almost a zero probability of missing the object. For αj � 1,
Pmj ≈ {5In

√
αj/[(αj − 1)Ibj]}αj , and the probability of detecting an object moving

along the background surface is Pdj = 1 − Pmj ≈ 1 − {5In
√
αj/[Ibj(αj − 1)]}αj . If

Ibj/In � 1 and Pmj � 1, then Pdj ≈ 1.
From relations (5.11)–(5.14), we see that the reflection coefficient kj(r) and the

average roughness slope γb = σb/�b of the shaded region of the background sur-
face determine the mean intensity Ibj of the instantaneous image of the jth domain
of the background surface shaded by the moving object and hence, the probabil-
ity Pdj of the object detection. For the case of a smooth surface, γb � 1, this can
lead to an essential decrease in the detection probability if the background sur-
face and the detection–transmission device are placed according to the condition
qtj/qnj > γb.

For accelerating the detection algorithm, the functionals Ldj are calculated in
the so-called shifting regime. First, the matrix functional unit forms the initial
values [Eq. (5.10)] of the function from the received pulses and compares these
values with the detection threshold Lt. If these values exceed the threshold, then
the object is considered detected, and the functions Ldj are fed to the units that
determine the coordinates and parameters of the object (Fig. 5.9). The next val-
ues of these functions are formed in the same unit during the time interval be-
tween the arrivals of a new (N0 + 1) pulse and the Nth pulse—i.e., the pulse sep-
aration τd . These values are calculated as follows: the fields E′

ms(δj, t1) of the
first pulse are subtracted from the sums

∑n=N0
n=1 E′

ms(δj, tn), and then the fields
of the (N0 + 1) pulse E′

ms(δj, tN0+1) are added; at the same time, the intensities
|E′

ms(δj, t1)|2 are subtracted from the sums
∑n=N0

n=1 |Ems(δj, tn)|2 and the intensi-
ties |E′

ms(δj, tN0+1)|2 of the (N0 + 1) pulse are added. As a result, the following
functional is formed:

L′
dj =

1

No

n=N0+1∑
n=2

|E′
ms(δj, tn)|2 −

(∣∣∣∣∣ 1

N0

n=N0+1∑
n=2

E′
ms(δj, tn)

∣∣∣∣∣
2)

.

The formed functionals are compared with the same threshold; if L′
j exceeds

this threshold, then the moving object is considered as detected at the moment of
registering the (N0 + 1) pulse, and L′

dj is fed to the units to determine the object’s
coordinates and parameters. Further values of L′

dj are formed, compared with the
calculated threshold Lt, and similarly processed to determine the object’s coordi-
nates and parameters, during the intervals between the arrivals of the (N0 + 2) and
(N0 + 3) pulses, and so on.

Thus, using the functional Lj to detect the object and, as we will show, to de-
termine its coordinates and parameters, as well as forming the next value of Ldj,
requires a small number of elementary operations, including multiplication, addi-
tion, and comparison with the threshold. A detailed analysis shows that the total
number of operations does not exceed 100. This means that for the computing
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rate of 108 operations per second, the entire procedure takes 1 µsec. Thus, shift-
ing allows one to obtain the information about a moving object in a very short
time interval equal to the pulse separation τd. The proposed fast algorithm en-
sures reliable detection of objects moving within view of the imaging system
for arbitrarily reflecting objects, including weakly reflecting and transparent ob-
jects.

In Fig. 5.10 we present a conceptual schematic of a device that uses the pro-
posed fast algorithm to detect such objects and determine their coordinates and
dynamic and geometric parameters. The device can be used to detect and deter-
mine the coordinates, velocity, and dimensions of a moving object with arbitrary
reflection, including an almost completely absorbing object. The device is a mod-
ification of a scheme using the sum-difference method of direction-finding, based
on the equal-signal zone principle often used in location techniques,27 in which
two detection–transmission devices probe the moving object. Each device contains
sum and difference channels. The sum channels contain imaging systems IS1 and

Figure 5.10 Conceptual schematic of a device using the fast algorithm to detect
moving objects and determine their coordinates and dynamic and geometric para-
meters. The four-section square containing two zeros and two π shows the phase dis-
tributions of the pupil function �d(ρ) of the imaging systems IS2 and IS3 of the two
difference channels. These distributions are formed by using two half-wave plates.
The four-section square containing four zeros is the phase distribution of the pupil
function �s(ρ) of the imaging systems IS1 and IS4 of the two sum channels. Aj and Bj

are shadow domains formed by the moving object on the background surface. S1 and
S2 are monochromatic sources (transmitters) of the first and second sum-difference
channels.
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IS4 with the direction diagram

Ds(r) = 1

Sρ

∫
Sρ

�s(ρ) exp i

(
2πr ·ρ

rcλ

)
dρ,

where ρ(u, v) is the radius vector of a point in the aperture plane, and u, v are its
Cartesian components. The aperture of the imaging system is a square with the
pupil function

�s(ρ) =
{

1 for |u| ≤ dρ/2, |v| ≤ dρ/2,

0 for |u| > dρ/2, |v| > dρ/2,

where dρ =√Sρ and Sρ are the size and the area of the aperture, respectively. The
difference channel contains an imaging system with the direction diagram

Dd(r) = 1

Sρ

∫
Sρ

�d(ρ) exp i

(
2πr ·ρ

rcλ

)
dρ,

where

�d(ρ) =



0 for |u| > dρ/2 and |v| > dρ/2,

1 for dρ/2 ≥ u ≥ 0 and dρ/2 ≥ v ≥ 0,

and for −dρ/2 ≤ u ≤ 0 and −dρ/2 ≤ v ≤ 0;

exp iπ for dρ/2 > u > 0 and −dρ/2 < v < 0,

and for −dρ/2 < u < 0 and dρ/2 > v > 0.

This diagram is formed by means of transparent half-wave plates placed in the
aperture planes of the imaging systems of the difference channels (Fig. 5.10). In the
equal-signal directions given by the unit vectors n1j parallel to the optical axis of
the imaging systems IS1 and IS2, and n2j parallel to the optical axis of the imaging
systems IS3 and IS4, Dd(r) = 0, while Ds(r) is maximum in this direction.

Furthermore, the matrix functional units form the functionals L1Sj and L2Sj, re-
spectively. Here, j is the cell number of the matrix detection unit. If the moving
object appears in the jth domain of the background surface, optically conjugated to
the jth cells of the matrix detection units, and placed in the focal planes of the imag-
ing systems IS1 and IS2; and appears in the Bjth domain of the background surface,
optically conjugated to the jth cells of the matrix detection units, and placed in the
focal planes of the imaging systems IS3 and IS4, then for T � do/vt,

〈L1Sj〉 = I1Sj(1 − do/vtT) + In

In
, 〈L2Sj〉 = I2Sj(1 − do/vtT) + In

In
, (5.15)
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where

I1Sj ∼
(

�b

σb

)2

S1j|kb(n1j)Ds(n1j)Dd(n1j)|2 exp

[
−
(

�bq⊥j1

σbqj1

)2]
and

I2Sj ∼
(

�b

σb

)2

S2j|kb(n2j)Ds(n2j)Dd(n2j)|2 exp

[
−
(

�bq⊥j2

σbqj2

)2]
are the mean intensities of the instantaneous image of the jth domain of the back-
ground surface shaded by the moving object in the first and second sum channels,
respectively; Spj, where p = 1,2, are their areas; dj is the domain maximal length;
and rpj are radius vectors connecting the first and the second sum channels with the
centers of two domains Aj and Bj on the background surface shaded by the moving
object (Fig. 5.10),

njp = rjp

rjp
,

qjp ≈ 2njp ·Nj,

q⊥jp =
√

4 − q2
jp, (p = 1,2).

Similarly, in two other matrix detector units in the two difference channels, the
functionals L1dj and L2dj are formed:

〈L1dj〉 = I1dj(1 − do/vtT) + In

In
, 〈L2dj〉 = I2dj(1 − do/vtT) + In

In
, (5.16)

where

I1dj ∼
(

�b

σb

)2

S1j|k(n1j)Ds(n1j)Dd(n1j)|2 exp

[
−
(

�bq⊥j1

σbqj1

)2]
and

I2dj ∼
(

�b

σb

)2

S2j|k(n2j)Ds(n2j)Dd(n2j)|2 exp

[
−
(

�bq⊥j2

σbqj2

)2]
are the mean intensities of the instantaneous image of the jth domain of the back-
ground surface shaded by the moving object in the first and second difference chan-
nels, respectively.

Furthermore, the functionals L1dj, L1Sj, L2dj, and L2Sj are fed to the matrix de-
tection units and then to the bearing unit (Fig. 5.10) where two bearing parame-
ters are calculated, η1j = L1dj/L1Sj and η2j = L2dj/L2Sj. If the angles ϕj between
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the direction towards the object and the axes of the direction diagrams Ds(r) and
Dd(r), for the sum and difference channels, and the noise field intensity are small

(In � I1dj, I2dj), then ϕj ∼=
√
θ2

j + ϑ2
j ,

η1j(θ1j,ϑ1j) = υ(θ1j + ϑ1j) + 2In

IS1j
,

and

η2j(θj,ϑj) = υ(θ2j + ϑ2j) + 2In

IS2j
,

where θ1j and ϑ1j are the angles between the vectors n1j and the optical axis of the
imaging system IS1, and θ2j and ϑ2j are the angles between the vectors n2j and the
optical axis of the imaging system IS4, and υ ≈ (8πdρ)/λ is the steepness of the
direction-finding curve. When θ1j → 0, ϑ1j → 0, θ2j → 0, ϑ2j → 0, then the axes
of the imaging system’s direction diagrams are simultaneously fixed towards the
object at minimum values of the bearing parameters to within an accuracy of σϕ ≈
(υIn)/Ibj, where Ibj = min(I1Sj; I2Sj). At σϕ � 0.1, these axes are directed towards
the moving object (Fig. 5.10). Hence, at σϕ � 0.1, the bearing units determine
with high accuracy the unit vectors n1j and n2j directed from the sum and difference
channels, respectively, to the object under study. The vector n1j determines the
object’s angular coordinates. The object’s trajectory vector is

rj(t) = n2j × ρsd

|n2j(t) × n1j(t)| ,

where ρsd is the radius vector connecting the centers of the imaging systems with
the sum and difference direction diagrams (Fig. 5.10); the object’s distance is rj =
|rj|, the radial velocity is vrj = v ·n1j, and the tangential velocity is vtj = |v − vrj ·
n1j|.

Finally, using relations (5.15) and (5.16), the value vt, and the times T1 and T2
of forming the functional L1Sj in the size unit (Fig. 5.10), one can calculate the
overall size do of the object:

do ∼ vtT1T2(χj − 1)

T1T2
,

where χj = L1Sj(T1)/L1Sj(T2). The proposed device presented in Fig. 5.10 can si-
multaneously detect several moving objects with arbitrary reflection coefficients,
including transparent ones, and measure their coordinates and dynamic and geo-
metric parameters.
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5.4.1 Device for monitoring environmental pollution using time
background holography

Consider a modification of the device presented in Fig. 5.10 that allows one to
monitor environmental pollution. Here, time averaging of coherent fields scattered
by pollution particles is performed and random functionals L1Sj, L2Sj, L1dj, and L2dj

are formed. In order to detect clusters of moving, weakly reflecting, or transparent
pollution particles and determine their coordinates, as well as determine the con-
centration, average size, and average velocity of the particles in each cluster, one
can use the scheme shown in Fig. 5.11. For a reliable detection of these clusters,
one should use as a background a metal surface with γ� 1 roughness as sug-
gested in Ref. 22. Such a surface should have a high reflection coefficient and high
directivity of scattering.

In this device, angular coordinates for the clusters of pollution particles and
their distances are determined in exactly the same manner as these parameters are
determined for moving objects by means of the device shown in Fig. 5.10. For
determining the concentration, average size, and average velocity of pollution par-
ticles in the cluster, an additional unit is introduced: the pollution particles para-
meters unit.

If we approximate the surface of the kth particle by a sphere with diameter dk

and large-scale roughness (γk ∼ 1), one can show that if the cluster shades the jth
domain of the background surface, then the jth cell of the matrix detection unit of
the first sum channel (the channel including the imaging system IS1 in Fig. 5.11),

Figure 5.11 Device for monitoring environmental pollution based on time back-
ground holography. The small spots in a moving cluster are pollution particles.
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which is optically conjugate to the jth domain, forms the functional

L1Sj ∼
k=Kj∑
k=1

d4
k

(
1 − dk

vkT

)
∼= Kj〈d4〉dj − Kj

T
〈d5〉dj

〈
1

v

〉
vj
,

where Kj is the number of particles in the cluster, i.e., their concentration in the
direction towards the background surface; 〈〉dj and 〈〉vj denote averaging over the
particle sizes and velocities, respectively, in the cluster shading the jth background
surface domain. If this functional exceeds the threshold Lt, then the moving cluster
is detected. After the cluster detection, its direction is found and its coordinates and
linear velocities are determined, as shown in Fig. 3.10.

For determining concentration, average size, and velocity of the particles in the
cluster for three different times Tp (p = 1,2,3), the pollution particles parameters
unit forms the dimensionless values

	jp = L1Sjp

[
(1/Np)

n=Np∑
n=1

|E′
ms(δj, tn)|2

]−1

,

where Np = Tp/(τi + τd) (p = 1,2); the index 1S denotes the first sum channel,
including the lowest imaging system in Fig. 5.11, and the index j is the number
of the jth background surface domain, optically conjugated to the jth cell of the
matrix detection unit of the first sum channel. If L1Sj1 exceeds the threshold Lt, the
conclusion is made that there is a cluster of moving pollution particles in the direc-
tion of the jth background surface domain. If contribution of screening pollution
particles to the backward scattering of the background surface can be neglected,
and if size and velocity dispersion are small, then

	jp = KjSρd̄4
j

λ2r2
c

(
1 − d̄j

v̄jTp

)
,

where d̄j and v̄j are the average size and velocity of the particles. In this case,
different times T1 < T2 < T3 provide three equations for determining three values
d̄j, v̄j, and Kj that characterize environmental pollution in the cluster, located in the
direction of the jth background surface domain.

5.5 Time background holography of moving objects placed close to
the background surface; the principle of time averaging of
coherent wavefields

5.5.1 Introduction

Using time background holography, one can determine the dynamic and geometric
parameters of moving objects by performing a rather complicated Fourier–Fresnel
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Figure 5.12 Time background holography in the case of time averaging of coherent
wavefields by a high-resolution imaging system. The dashed lines denote the illumi-
nating wave; the thick lines denote the waves scattered by the moving object; the
thin lines denote the waves scattered by the background surface.

time transform over the fields scattered by the background and by the objects and
over the coherent images of the background and the objects (Sec. 5.2). If moving
objects are placed close to a randomly inhomogeneous background, this process
is significantly simplified by applying the principle of time averaging of scattered
coherent fields and fields in coherent images.79 This principle can be considered
as a particular case of time background holography with ω= β = 0. In this sec-
tion, this method is analyzed for the case of arbitrary resolution of the objects
by the imaging system and illustrated with experimental data. For simplicity, the
principle of time averaging of coherent fields will be demonstrated for the case
of a square object moving with a constant velocity against a background that is
represented by a fixed, flat, rough surface (Fig. 5.12). Applications of this prin-
ciple with a system resolution ranging from very high to very low ensure the
determination of the geometric and dynamic parameters of any moving object,
whether reflecting, transparent, or absorbing. This principle is shown to be very
useful in the case of a low-resolution system that observes coherent radiation scat-
tered by a stationary background surface and modulated by a moving absorbing
object.

5.5.2 Theory

It can be shown that the setup for realizing the principle of time averaging of co-
herent fields is based on the idea of focused image holography.37 According to this
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concept, the background surface and the moving object are illuminated by mono-
chromatic, e.g., spherical wave, radiation (Fig. 5.12). The object casts a shadow on
the background surface, which moves with the velocity vs = (vR)/rc, where v is
the object’s velocity component parallel to the fixed background surface, R is the
distance from the object’s shadow on the background surface to the receiver, and
rc is the distance from the object to the receiver.

Then, the field scattered by the background surface and modulated by the mov-
ing object is focused by an imaging system in the image plane, where, with the help
of a reference beam, the dynamic hologram of the moving object and the back-
ground surface is recorded. Simultaneously, the instantaneous field in the image,
Ei, undergoes a Fourier–Fresnel time transform during a defined time T (Sec. 5.2).

For a defined averaging time T , the reconstructed image contains the moving
object image as a black spot on the image of the background surface (see Fig. 5.12)
under the condition

Et(δx,δy,ω,β) = 1

T

t0+T∫
t0

Ei(δx,δy, t) exp
(
iωt + iβt2

)
dt,

where t0 is the initial moment of observing the coherent field, δx and δy are coordi-
nates in the image plane, and Ei is the instantaneous field in the image. After this,
the joint image of the moving object and the background surface is reconstructed.
The time-averaged field in the reconstructed image is

E(δx,δy) = Et(δx,δy,ω= 0,β= 0) = 1

T

t0+T∫
t0

Ei(δx,δy, t)dt. (5.17)

The measured intensity in the reconstructed image is I(δx,δy) = |E(δx,δy)|2. If the
moving object is placed close to the background surface, edge diffraction effects
are inessential, and Ei is represented in the form12

Ei(δx,δy, t) = Eib(δx,δy, t) + Eio(δx,δy, t),

where

Eib(δx,δy, t) = An

∫ ∫
kb(x, y) exp[iϕb(x, y)]
× [1 − �(x − vst, y)]h(x, y,δx,δy)dxdy,

Eio(δx,δy, t) = An exp

(
i4πvnt

λ

)∫ ∫
ko(x, y) exp[iϕo(x − vt, y)]

× �(x − vst, y)h(x, y,δx,δy)dxdy, (5.17a)
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where An ≈ (iEsSs)/(λR)2; Es and Ss are the field amplitude on the illuminating
source and the source aperture area, respectively; λ is the source wavelength; x
and y are coordinates on mean surfaces of the background and the moving ob-
ject; kb(x, y) is the distribution of the background surface reflection coefficient;
ϕb(x, y) = {4π[ξb(x, y)+R− zt]}/λ, where ξb(x, y) is the distribution of the back-
ground surface roughness height, R is the distance between the observation plane
and the mean background surface, and zt is the distance between the observation
and intermediate planes; ko(x, y) is the regular component of the light modulation
by the object (in the case of an opaque object, it is the distribution of the object
surface reflection coefficient);

�(x, y) =
{

1, |x| < ds/2, |y| < ds/2
0, |x| ≥ ds/2, |y| ≥ ds/2

is a function describing the moving shadow of the object, where ds is the object
shadow size; h(x, y,δx,δy) is the imaging system’s pulse response, and ϕo(x, y)
is the random phase modulation introduced by the object into the scattered field.
Here, the X axis is directed along the object’s velocity component v = vxt (see
Fig. 5.1), vs = (Rv)/rc is the object shadow’s velocity, and vn is the object’s veloc-
ity component orthogonal to the fixed background surface.

The mean measured intensity in the reconstructed image of the object’s surface
is

〈I(δx,δy)〉 ≈ 1

T2

t0+T∫
t0

t0+T∫
t0

[Bb(t1, t2) + Bo(t1, t2)]dt1dt2, (5.18)

where the brackets 〈〉 denote averaging I over the random phase functions
ϕo(x, y) and ϕb(x, y),Bb(t1, t2) = 〈Eib(δx,δy, t1)E∗

ib(δx,δy, t2)〉, Bio(t1, t2) =
〈Eio(δx,δy, t1)E∗

io(δx,δy, t2)〉, and σb and �b are the standard deviation and the
correlation radius of the background roughness height, respectively. The resulting
relations enable one to determine the mean intensity 〈I〉 for transparent and opaque
moving objects and backgrounds with an arbitrary resolution of the imaging sys-
tem.

For simplicity, consider now the case of a rough, flat, opaque moving object
whereϕo(x, y) = {4π[ξ(x, y)+ rc − zt]}/λ; ξ(x, y) is the distribution of the surface
roughness height. We will consider the case of a high-resolution imaging system,
where (λrc)/dρ � do(do is the object size). Two opposite situations will be dis-
cussed: v �= 0, vn = 0, and v = 0, vn �= 0. When v �= 0, vn = 0, or, more precisely,
when λ/vn > T > (10�λ)/(σv), under the assumption that the object displacement
s = vT satisfies the condition (10λ�)/σ < s < do, then, if the distributions of the
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functions ϕo(x, y) and ϕb(x, y) are Gaussian,

〈I(δx,δy)〉 ∼



|kb|2, δxµ> vT + do

λ

vT

(
1 + do − δxµ

vT

)
Ko + ε

(
δxµ− ds

vsT

)2

|kb|2, δxµ< vT + do

λ

vT
Ko, vT < δxµ< do

λ

vT

δxµ

vT
Ko + ε

(
1 − δxµ

vsT

)2

|kb|2, 0 < δxµ< vT

|kb|2, δx < 0
(5.19)

where µ = R/zi ≈ rc/zi is the scaling factor (the imaging system magnification),
Ko = |k(x = −µδx, y = −µδy)|2,

ζ= �

σ
, ε= 1, with

σ

�
and

σb

�b
<

dρ
R

, (5.20)

if the background surface, object, and random phase functions ϕo(x, y) and
ϕb(x, y) are resolved; or

ζ= R

dρ
, ε= �b

σb
with

σ

�
and

σb

�b
>

dρ
R

, (5.21)

if the object and background surface are resolved while the random phase functions
ϕo(x, y) and ϕb(x, y) are not.

From formulas (5.19), it follows that for moving rough objects with any kind
of response to the incident radiation, including the cases of transparent objects,
objects that are indistinguishable against the background, and highly reflecting
opaque objects, we can define averaging times T that ensure formation of their im-
ages: if the imaging system resolves random phase functionsϕo(x, y) andϕb(x, y),
then the averaging time T > (10λ�)/(σv); if the imaging system does not resolve
the random phase functions ϕo(x, y) and ϕb(x, y), then T > (10λrc)/(dρv).

The result obtained under condition (5.20) demonstrates that the radiation scat-
tered by every part of a moving object reaches the imaging system aperture, and
the Doppler frequency spread is (σv)/(λ�). As a result, for T � (λ�)/(σv), the
phase of the field at each point in the image is changed by more than π during time
averaging of this field. Therefore, if one applies the scheme proposed in Fig. 5.12,
the measured intensity in the object image is significantly smaller than that in the
background image. Hence, in the case of a high-resolution imaging system, the
proposed scheme provides the means to distinguish opaque and transparent mov-
ing objects from the background. The first to use this approach was Feleppa.19

He obtained long-exposure holograms of a thin blood sample for determining the
mobility of transparent white cells.

Under the condition (5.21), the result implies physically that the radiation from
every part of a moving object partly reaches the imaging system aperture, and the
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Doppler frequency spread from that part is (dρv)/(λrc). For T � (λrc)/(dρv), also
due to the time averaging of the field scattered by the moving object, the mea-
sured intensity in the object’s image is significantly smaller than the intensity in
the background image. For vT � do, the background is also screened. The radia-
tion intensity value also may be interpreted in two different ways.

The first explanation is similar to the explanation presented in the previous case,
where conditions (5.20) are fulfilled. In the course of recording the hologram, fields
scattered by the moving object at different small time intervals interfere with the
reference beam, and their interference causes different interference fringes within
the holographic medium. As a result, if the object displacement s > (λrc)/dρ, then
the reconstructing rays diffracted by these fringes have opposite phases and form in
the reconstructed image of the moving object a field with an intensity that is close
to zero. The second explanation is as follows. The reconstructed image (the coher-
ent image of the object12) is a speckle pattern with speckle angular width λ/dρ;
if the object displacement S is larger than (λrc)/dρ, which defines the imaging
system’s resolution, then the reconstructed image moves by more than the speckle
size, and the field distribution in the image changes completely. As a result, differ-
ent field realizations have opposite phases and form in the reconstructed image of
the moving object a field with an intensity close to zero.

When vn �= 0, v = 0, or, more precisely, when λ/vn < T < (10�λ)/(σv), then
for an opaque moving object,

〈I(δx,δy)〉 ∼
 |kb|2 for |δx| ≥ do/2µ, |δy| ≥ do/2µ

Kosinc
2πvnT

λ
for |δx| < do/2µ, |δy| < do/2µ .

(5.22)

If the object displacement s = vnT � λ, then the measured intensity I(δx,δy) in
the reconstructed image within the region δx < dρ/2µ, δy < dρ/2µ is close to zero.
It is significantly smaller than the measured intensity in the background surface
image.

Thus, from the obtained expressions (5.19) and (5.22), we make the following
conclusion: If the moving object is opaque, then the intensity within the region
δx < do/2µ, δy < do/2µ of the reconstructed image is significantly smaller than
the intensity of the background surface image, for a certain small displacement s
of the object parallel or perpendicular to the background surface. If the moving
object is transparent, then the measured intensity I(δx,δy) within this region is
nonzero for any displacement s perpendicular to the background surface.

In the foregoing, we have considered time background holography of opaque
moving objects placed close to the background surface. Now consider a transparent
moving object for which

ϕo(x, y) = 4π

λ

[
R − bn(x, y) +

bf (x,y)∫
bn(x,y)

n(x, y, z)dz + zt − bf (x, y)

]
,
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where bn(x, y) and bf (x, y) are the equations of object boundary surfaces that are
close to the background surface, and far from it, respectively; n(x, y, z) is the re-
fractive index inside the object. Furthermore, consider the most interesting case
of a transparent moving object whose refractive index varies smoothly along the
direction orthogonal to the background surface: (λ∂ ln n/∂z) � |kb|. In this case,
backscattering from the background surface is considerably higher than from the
moving object, and hence, the object is almost impossible to detect. However, we
can rewrite Eqs. (5.19) for the averaged intensity 〈I〉 by substituting the value |kb|2
instead of Ko, and the value γbo = λ√〈(∂ϕo/∂x)2〉 + (σ/�)2 instead of σ/�. From
the resulting new Eqs. (5.19), it follows that the motion of a transparent moving
object leads to a considerable decrease in intensity in the domain of the background
surface image occupied by the object.

5.5.3 Experiments

One can see from relations (5.19) and (5.22) for I(δx,δy) that when measuring
the intensity, one can find the average slope of an object’s surface roughness
χ(δx,δy) = [σ(δx,δy)]/[�(δx,δy)] at each point of the object image. To do this
we must measure the ratio α(δx,δy) of the image intensities outside and inside
the area of the object displacement s = vT , for the case s � (10�λ)/σ, and also
the ratio β(δx,δy) of the intensities inside and outside of the object image and
the object displacement s for the case (10�λ)/σ < s � do. Then, if the condition
(5.20) is satisfied, we have the average slope at the point (x, y) of the object surface
χ(x = −µδx, y = −µδy) = (αβλ)/s, where µ= rc/zi.

One of the ways to implement this method of determining the average rough-
ness slope is to record three-dimensional holograms of the moving object and the
background surface with two exposure times: one short, T � (10λ�)/(σv), and
one long, do/v � T > (10λ�)/(σv), and to reconstruct two images of the object
from these holograms. In this technique, the object and the background are usually
placed close to the hologram, so the condition (5.20) is satisfied; in this case, dρ is
the hologram size and the scaling factor µ = −1. This technique is implemented
by reconstructing images of the object against a stationary diffuse background sur-
face for the cases of short and long exposure times. A rough plate moves by a
distance significantly shorter than its size do. The hologram is recorded by means
of the Denisyuk setup82 [Fig. 5.13(a)]. In the reconstructed image of the plate, for
the case do/v � T > (10λ�)/(σv), the area of the moving rough plate was shaded
[Fig. 5.13(b)]. The degree of shading depends on the object’s displacement s = vT
(Fig. 5.14). This fact allows one to use the reconstructed images for determining
the average slopes of roughness in various parts of the plate with the help of the
formula χ = (αβλ)/s, by means of measuring parameters α and β in the images
reconstructed with holograms recorded with short and long exposure time, respec-
tively.

If S > (λ�)/σ, the observer sees the reconstructed image as the background im-
age with black regions for the moving rough object for any kind of response of the
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Figure 5.13 The three-dimensional holographic technique for time averaging of
coherent wavefields in the case where the moving object and the background are
placed close to the hologram. (a) The hologram recording: 1 is a transparent object,
2 is a highly reflecting object, 3 is an object indistinguishable from the background.
The dashed lines denote the illuminating wave, the long solid lines are interference
fringes relating to the background surface, and the short solid and dashed lines are
different interference fringes relating to the moving object. (b) The hologram recon-
struction.

Figure 5.14 Reconstructed images of an opaque moving object indistinguishable
from the background surface for various object displacements s.

object to the incident radiation, including the cases of objects that are transparent,
indistinguishable against the background, or highly reflecting and opaque. This is
due to the fact that at different times of the hologram recording, fields scattered by
the moving object interfere with the reference beam and cause different interfer-
ence fringes within the holographic medium. As a result, if the object displacement
s > (10λ�)/σ, the reconstructing rays reflected from these fringes have opposite
phases and form in the reconstructed image of the moving object a field with an
intensity close to zero. As a result, in the regions of the reconstructed object image,
the observer sees black shadows [Fig. 5.13(b)]. In Fig. 5.14, reconstructed images
of moving objects indistinguishable against the background are demonstrated for
various object displacements s.
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Figure 5.15 The Leith–Upatnieks holographic technique for the case where the ob-
ject under study is placed far from the background surface and the hologram. (a) The
hologram recording; the dashed lines denote the illuminating wave. (b) The hologram
reconstruction; the observer watching the three-dimensional reconstructed image of
a transparent or opaque moving object from different points will see this image as
different black shadows on the reconstructed image of the background surface.

Under the condition (5.21), the moving object is placed far from the back-
ground surface and the imaging system. In this case, the Leith–Upatnieks holo-
graphic technique83 of time-averaging of coherent wavefields can be applied
(Fig. 5.15). If the recording time T satisfies the condition do/v � T � (λrc)/(dρv),
then different reconstructing rays diffracted by the hologram have opposite phases
that cause their cancellation. As a result, an observer looking at the three-
dimensional reconstructed image of a transparent or opaque moving object from
different vantage points will see this image as different black shadows on the re-
constructed image of the background surface.

It is obvious that knowing the size of these black shadows allows one to deter-
mine the parameters of opaque and transparent three-dimensional moving objects
that are indistinguishable from the background surface. For instance, it is possible
to measure the distance between the objects and the background surface, as well
as the sizes of the objects, by means of the schematic presented in Fig. 5.16. From
the similarity of the triangles in Fig. 5.16 we obtain the following equations for
the object size do and the distance Rob between the background surface and the
moving object:

a

R2
= do

µ(R1 − Rob)
,

b

R2
= do

µ(R2 − Rob)
,
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Figure 5.16 Schematic showing the measurement of the object size and the distance
between the object and the background surface.

where a and R1 are the size of the shadow observed from the first point and the
distance from the first observation position to the background surface image, re-
spectively; and b and R2 are the size of the shadow observed from the second point
and the distance from the second observation position to the background surface
image, respectively (see Fig. 5.15).

If values a, R1, b, and R2 are measured by means of the last equations, then we
can obtain the object size do and the distance Rob for objects with arbitrary elec-
tromagnetic properties, including objects indistinguishable from the background
surface:

Rob = R1R2(b − a)

bR1 − aR2
,

do = µab(R2 − R1)

bR1 − aR2
.

We see that the Leith–Upatnieks holographic technique of time averaging
of coherent wavefields allows us to distinguish opaque and transparent three-
dimensional moving objects and to determine their parameters if the recording
time satisfies the condition

do

v
� T � λrc

dρv
.

In the case of low spatial resolution, (λrc)/dρ < do, L, then the function
h(x, y,δx,δy) in relations (5.17a) is almost constant, and the image of the complex
object consisting of the background surface and the moving object in Fig. 5.17
contains a single speckle. In this case, the time-averaging principle can be fulfilled
by receiving the intensity of the time-averaged field scattered by the background
surface and by the moving object into a speckle (Fig. 5.17). For the case v �= 0,
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Figure 5.17 Time background holography of a nonresolvable moving object placed
close to a nonresolvable background surface. The thick lines denote waves scattered
by the moving object. The thin lines denote waves scattered by the background sur-
face. The dotted line denotes a single speckle in the image of the complex object
consisting of the background surface and the moving object.

vn = 0, or more precisely, λ/vn > T > (10λ�)/(σv),

Bb(t1, t2) ∼ |kb|2
[

L2 − 2

(
doR

rc

)2

+
(

doR

rc

)
fb(t1 − t2)

]
, (5.23)

where

fb(t1 − t2) =


doR

rc
− vs(t1 − t2) for t1 − t2 ≤ do

v
,

0 for t1 − t2 >
do

v
;

and

Bo(t1, t2) ∼
(
λ�

σ

)
Kofo(t1 − t2), (5.23a)

where

fo(t1 − t2) = d2
osinc

[
2πdov(t1 − t2)

λrc

] (
with

λrc

do
< s � do

)
,

do is the object size, rc and s = vT are the distance from the object and its dis-
placement, respectively, and Ko is the intensity coefficient of the object surface
reflection.
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These results show that in the case of low spatial resolution, the field scattered
by the background surface has correlation time tb ≈ do/v and the field scattered
by the moving object has correlation time to ≈ (λrc)/(dov), which decreases as the
object velocity v increases. Using (5.23) and (5.23a), we can obtain, up to a con-
stant factor, the mean intensity 〈I〉 of the time-averaged field intensity (measured
intensity). Assuming, for simplicity, that the moving object has a flat square form
with size do, we obtain

〈I〉 ∼



|kb|2 �b

σb
(L2 − d2

s ) + Ko�d2
o

σ
for s = vT � λrc

do
,

|kb|2(L2 − d2
s ) for

λrc

do
� s = vT � do,

|kb|2 �b

σb

(
L2 − 4d2

s

3

)
for s = vT ≈ do,

|kb|2 �b

σb
(L2 − 2d2

s ) for s = vT � do.

(5.24)

Here, ds = (doR)/rc is the size of the object’s shadow on the background surface,
and R and rc are distances to the background surface and the moving object, re-
spectively.

Physically, these results imply that the scattered rays from the entire moving ob-
ject reaching the imaging system aperture (Fig. 5.12) have the Doppler frequency
spread ∼ (dov)/(λrc). Then, for T � (λrc)/(dov), the phase of the field scattered
by the moving object varies within a range that is significantly larger than 2π. As
a result, after time averaging this field, its intensity I is significantly smaller than
the signal from the background surface. According to another interpretation of this
intensity reduction, the coherent field scattered by the object is speckled (Sec. 1.6),
with speckle size being (λrc)/(dov). When the object moves by a distance s, which
is larger than the speckle size, the speckle leaves the receiving system aperture
and the signal from the object becomes significantly weaker. In the course of the
object’s motion, it screens different parts of the field scattered by the background
surface—so as the object is displaced by its size, the field distribution changes
completely.

For this reason, the correlation time of the signal from the background is tb ≈
do/v, which is in complete agreement with the form of the correlation function
Bb(t1, t2) from Eq. (5.23). Hence, as the object moves by s � do, the intensity I
of the time-averaged field is noticeably reduced compared to its value in the case
of a stationary object. This is obvious from the comparison of the relations for I
in Eq. (5.24) in the cases of do � s � (λrc)/do and s � do. This reduction takes
place even in the presence of a nonresolvable, moving, weakly scattering object.
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5.6 Time background intensity holography

5.6.1 Introduction

In Sec. 5.2 we considered time background holography, in which the field in
the object image undergoes a Fourier–Fresnel time transform with the kernel
exp(iωt + iβt2), where the frequency ω and the deviation β are the transform
parameters and t is time. In practice, however, it is not easy to record the field
scattered by a remote object and the surrounding background. It is much easier to
determine the intensity distribution in the object’s image. It is well known that in-
stantaneous distribution provides determination of the object’s shape12 but not its
dynamic parameters. In this section, we show that the Fourier–Fresnel time trans-
form of the intensity distribution in a coherent image can be used to determine the
parameters of the object motion and the distributions of velocities and accelera-
tions of parts of the object surface if the imaging system resolution is high. In the
case of a low-resolution imaging system, this technique can be used to detect the
moving object and to generate its two-dimensional speckle pattern, which is the
autocorrelation function of its high-quality image.

5.6.2 Theory

The squared modulo of the Fourier–Fresnel transform (the Fourier–Fresnel time
filtration) averaged over the object’s surface roughness (Fig. 5.18) can be written
in the form

F(ω,β) =
〈∣∣∣∣∣ 1

T

t0+T∫
t0

|E�(δ, t)|2 exp(iωt + iβ2)t

∣∣∣∣∣
2〉

,

where E�(δ, t) = E(δ, t)+Eb(δ, t); E(δ, t) is the field in the coherent image of the
moving object, Eb(δ, t) is the field in the coherent image of the fixed background
surface, δ is the radius vector in the image plane, 〈〉 is the averaging operation, and
t0 and T are the initial time and the observation period, respectively. Assuming that
the statistics of this field are Gaussian, which is true when the surface roughness is
not resolved by the imaging system, we obtain

F = F0 + F1, where F0 =
∣∣∣∣∣ 1

T

t0+T∫
t0

〈|E�(δ, t)|2〉 exp(iωt + iβt)dt

∣∣∣∣∣
2

,

and

F1 = 1

T2

t0+T∫
t0

to+T∫
t0

|〈E�(δ, t1)E
∗
�(δ, t2)〉|2dt1dt2.
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Figure 5.18 Time background intensity holography in the case of a high-resolution
imaging system. The detecting and filtering matrix is used for determining, by means
of the Fourier–Fresnel transform, the frequency ω and the deviation β, which is nec-
essary for the calculation of the velocity and acceleration of various surface parts.
For example, part K of the surface has velocity v1 and acceleration a1, and part P has
velocity v2 and acceleration a2. Here, ν is the unit vector in the direction of a chosen
part of the moving object surface or the background surface.

One can show84 that

〈E�(δ, t1)E
∗
�(δ, t2)〉 =

∫
[ki(ν) + kb(ν)]|h(ν,δ)|2

× exp
{
i
[
ω̂(t1 − t2) + iβ̂(t1 − t2)

2]}dν, (5.25)

where ν = rb/R on the background surface and ν = r/rc on the surface of the
moving object, rb is the radius vector of the background surface, R is the distance
from the background surface, r is the radius vector of the moving object surface,
rc = |rc|, rc is the radius vector of the moving object center of mass, ki(ν) is the
function that depends on the moving object surface shape and the distribution of the
reflection coefficient on the object surface, kb(ν) is the distribution of the reflection
coefficients on the background surface, h(ν,δ) is the pulse response of the imaging
system, ω̂(r) = (2π/λ)qc · [vc + vn(r)] and β̂(r) = (2π/λ)qc · [ac + an(r)], where
qc = 2rc/rc, vc and ac(r) are velocity and acceleration of the center of gravity,
and vn(r) and an(r) are distributions of velocities and accelerations over the object
surface. From relation (5.25) we see that the summand F0 provides no information
on the object’s motion parameters, so it is independent of time. Therefore, let us
concentrate on the summand F1. For simplicity, let the moving object be opaque.
Then, taking into account that the background surface is fixed (ω̂ = β̂ = 0), we
have F1 = Fi + Fb, where

Fi(ω,β,δ) =
∫ ∫

[ki(r1)ki(r2)|h(r1,δ)h∗(r2,δ)|�i(r1, r2,ω,β)|2dr1dr2,
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�i(ω,β) = 1

T

t0+T∫
t0

exp{i[ω̂(r1) − ω̂(r2) +ω]t + i[β̂(r1) − β̂(r2) +β]t2},

Fb(ω,β,δ) = |�b(ω,β)|2
∫ ∫

k2
i (r1)|h(r1,δ)|4dr1dr2,

and

�b(ω,β) = 1

T

t0+T∫
t0

exp(iωt + iβt2)dt.

For a sufficiently large T , the function �b(ω,β) has a sharp maximum atω= β=
0, with unity height. Hence, in this case, the filtered frequency ω and deviation β
at each point of the background surface image are equal to zero, and

Fb(0,0,δ) =
[∫

ki(r)|h(r,δ)|2dr
]2

;

�i(ω,β, r1, r2) is maximal if r1 and r2 satisfy the relations

ω̂(r1) − ω̂(r2) +ω= 0, β̂(r1) − β̂(r2) +β= 0. (5.26)

For ω̂T � 1 and β̂T2 � 1, the function �i(ω,β, r1, r2) becomes acute over r1
and r2 as compared with the functions ki(r1), h(r1,δ), ki(r1), and h(r1,δ). In this
case,

Fi(ω,β,δ) ∼
∫

ki(r1)ki(r2(r1))|h(r1,δ)h∗(r2(r1),δ)dr1,

where r2 satisfies Eqs. (5.26), which may be linearized by performing a series
expansion of ω̂(r2) and β̂(r2) in the neighborhood of r1 = r2. As a result, we have
a set of linear equations for x2 and y2:

ϑx(x2 − x1) + ϑy(y2 − y1) +ω= 0,

and

θx(x2 − x1) + θy(y2 − y1) +β= 0, (5.26a)

where ϑx = ∂ω̂/∂x, ϑy = ∂ω̂/∂y, θx = ∂β̂/∂x, and θy = ∂β̂/∂y are partial deriv-
atives at the point x1 = x2, y1 = y2. Solving the system (5.26a), we have x1 =
x2 + ε, y1 = y2 + γ, where
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ε= βϑy −ωθy

D
,

γ= ωθx −βϑx

D
, (5.27)

and

D = θyϑx − θxϑy.

Taking into account relation (5.27), we obtain

Fi(ω,β,δ) ∼
∫ ∫

|h(x, y,δ)h∗(x + ε, y + γ,δ)|2ki(x, y)ki(x + ε, y + γ)dxdy.

In the case of high resolution (Fig. 5.18), where the number of speckles in
the image of the moving object and the number of speckles in the image of the
background surface are large, then

Fi(ω,β,δ) ∼ k2
i (r = −rcδ/zi)

∫ ∫
|h(x, y,δ)h∗(x + ε, y + γ,δ)|2dxdy,

and

Fb(ω,β,δ) ∼ |�b(ω,β)|2k2
b(r = −Rδ/zi)

∫ ∫
|h(x, y,δ)|4dxdy|�b(ω,β)|2,

where zi is the distance from the imaging system aperture to the image plane, and
�b(0,0) = 1. For ω > 10/T and β > 10/T2, |�b(ω,β)|2 � 1. Yet, Fb is pro-
portional to the squared mean intensity distribution I(δ) in the coherent image
of the background surface. Therefore, for frequency ω> 10/T and the deviation
β> 10/T2, the intensity I(δ) is equal to zero at each point of the background im-
age outside of the image of the moving object. At the same time, Fi is proportional
to the squared mean intensity distribution in the coherent image of the moving ob-
ject �i for ω > 10/T , β > 10/T2, which is not equal to zero. Hence, within the
image of the moving object, the intensity I(δ) is not equal to zero. For a Gaussian
pupil function of the imaging system,84

Fi(ω,β,δ) ∼ k2
i

(
r = −rc

zi

)
exp

[
−4π2(ε2 +β2)d2

ρ

(λrc)
2

]
. (5.28)

Let us see how this result can help determine the parameters of an object. As-
sume that the object is a solid body rotating with a constant angular velocity � and
vc = ac = 0. In the frame of coordinates (x, y, z) such that the z axis goes along the
vector � and the x axis is normal to the vectors � and qc,
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ω̂= 2π� sinα

λ
,

β̂= π�2 sinα

λ
, (5.29)

ε= λω

2π� sinα
,

and

γ= λβ

π�2 sinα
,

where α is the angle between the vectors � and qc. By virtue of relations (5.28)
and (5.29),

Fi(ω,β,δ) ∼ k2
i

(
r = −rc

zi

)
exp

[
−(ω2 +β2/�2)d2

ρ

r2
c�

2 sinα

]
.

At each point of the moving object image, let us find the half-width ωh of the
function Fi over ω for β= 0, and the half-width βh of the function Fi over β for
ω = 0. Then, we have � = βh/ωh and α = arcsin[(ωhdρ)2/(rcβh)

2]. Relations
(5.28) are also useful for determining the distributions of velocities and accelera-
tions vn(r) and an(r) over the deformed object surface with the help of time back-
ground intensity holography (Fig. 5.18). Yet, a drawback of this method is that the
value ε2 + β2 in relation (5.27) is nonlinear in vn(r) and an(r); it depends on the
filtered frequencyω and deviation β. Application of time background holography
to determine their distributions is preferable in this case. In the case of a low-
resolution imaging system, for an arbitrary point of the image plane (Fig. 5.19) we

Figure 5.19 Time background intensity holography in the case of a low-resolution
imaging system. The dotted line denotes the intensity distribution in the image plane.
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have

Fi(ω,β,δ) ∼ |h(r = rc,δ)|4
∫ ∫

ki(x, y)ki(x + ε, y + γ)dxdy, (5.30)

and

Fb(ω,β,δ) ∼ |h(r = rc,δ)|4
∫ ∫

k2
b(x, y)dxdy|�b(ωβ)|2. (5.31)

At the point δc optically conjugated to the center of mass of the moving object rc,
h(rc,δc) = 1 (Fig. 5.19) and

Fi(ω,β,δ) ∼
∫ ∫

ki(x, y)ki(x + ε, y + γ)dxdy, (5.32)

and

Fb(ω,β,δ) ∼
∫ ∫

k2
b(x, y)dxdy�b(ωβ). (5.33)

Finally, as a result of the Fourier–Fresnel time transform of the intensity
|E(δc, t)|2 formed by the detector (Fig. 5.19), we see the distribution on the display
having average values F(ω,β) = Fi(ω,β,δc) + Fb(ω,β,δc). Here, the function
Fb(ω,β,δc) is localized within the area ω ≈ 1/T,β ≈ 1/T2 around the point
ω= β = 0 and the function Fi(ω,β,δc) is the averaged two-dimensional image
of the moving object, which, for a sufficiently large T , occupies a larger area than
the function Fb(ω,β,δc). One can show that the realization of this pattern has a
speckle structure with speckle area ∼ 1/T3 and number of speckles M ≈ωbβbT2,
where ωb and βb are the “effective sizes” of the two-dimensional image in the
coordinate plane (ω,β).

It is interesting to note that relation (5.32) gives a two-dimensional image of
the moving object, and in the coordinates ε and γ it can be represented as the au-
tocorrelation function of the image, Fi(ω,β,δ) ∼ ∫∫ ki(x, y)ki(x + ε, y + γ)dxdy.
In particular, if the rotating object is a rough sphere with the reflection coefficient
constant over the surface, its two-dimensional pattern is

Fi(ω,β,δ) ∼ exp

[−(ε2 + γ2)

d2
e

]
, (5.34)

where de = ρoσ/� is the effective size of the backscattering area, ρo is the sphere
radius, and

ε= λω

2π� sinα
, γ= λβ

π�2 sinα
. (5.35)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 20 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Time Background Holography of Moving Objects 175

From relation (5.34), we obtain ds = (λωh)/(π�2), where, as above, ωh is the
half-width of the function Fi over ω for β = 0, which is equal to the “ef-
fective size” ωb of the two-dimensional image of the rotating object. Hence,
ωb ≈ (2π� sinα)/(λds). From relations (5.34) and (5.35), we obtain another “ef-
fective size,” βb = 2ωb�. Combining the previous expressions, we can calcu-
late the number of speckles in the two-dimensional image, M ≈ωbβbT3, where
ωb ≈ (2π� sinα)/(λds) and βb = 2ωb�.

Relations (5.32) and (5.33) can be used for detecting a weakly reflecting mov-
ing object in the presence of a bright background surface (kb � ki). One can
show that for ω ≥ 10/T and β ≥ 10/T2, as a rule, Fb(ω,β,δc) � 1; and if
Fi(ω,β,δc) ≈ ∫∫

k2
i (x, y)dxdy exceeds the threshold predetermined by the mean

noise level, then the moving object is detected.
Thus, in the case where the object is not resolved in the presence of the back-

ground surface, time background intensity holography ensures detection of weakly
reflecting and transparent moving objects from the radiation scattered by the bright
background surface and forming a two-dimensional speckle pattern given by the
autocorrelation function of a high-quality image of the object. It is interesting that
the image autocorrelation function also can be obtained via a two-dimensional
Fourier space transform of the instantaneous distribution of intensities of the field
scattered by the object or, in other terminology, via the Fourier space transform of
the object intensity hologram (Sec. 1.3).

In the case of a high-resolution imaging system, time background intensity
holography makes it possible to form a high-quality image of a moving deformed
object and the background surface along which this object moves, and to determine
the velocity and the acceleration of the center of mass and distributions of velocities
and accelerations over the object’s surface. In addition, this form of holography
can be used to select the image of a moving object that is indistinguishable from
its background surface.

5.7 Conclusions

1. Time background holography is a prospective new field in remote sensing that
provides information about moving objects based on statistical analysis of the
temporal and spatial structure of coherent fields scattered by the surrounding
background and the objects.

2. In the case of high resolution, time background holography separates the image
of an object from the background surface along which it moves, even when
the object’s surface is similar to the background surface. It also allows one
to determine the velocity and acceleration for the object’s center of mass and
to measure velocity and acceleration distribution on the object’s surface. In
the case of a low-resolution imaging system , time background holography
provides a two-dimensional image of the object.

3. Time background holography ensures reliable detection of moving objects
with low reflection or the same reflection as the background surface by using
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coherent fields scattered by this surface. This fact is confirmed by experiments
with microwaves propagating in air and with ultrasonic waves propagating in
water.

4. The method of fast detection of moving objects based on time background
holography and on the equal-signal zone principle provides fast measurement
of both linear velocities and sizes of objects moving along the background sur-
face and having arbitrary reflection, including the case of weakly reflecting
objects. It can be used for reliable detection of clusters of moving, weakly re-
flecting and transparent pollution particles, for high-accuracy determination of
their coordinates, and for measuring concentration, average size, and average
velocity of such particles.

5. The method of time averaging of scattered coherent fields as a part of time
background holography can be applied effectively for obtaining information
about moving objects surrounded by a strongly reflecting background surface;
in particular, it can detect moving objects that are indistinguishable from the
background surface and determine the standard deviation σ of the moving sur-
face roughness height and its correlation radius �. The method is based on an
intensity decrease in the holographic image of a complex object consisting of
a moving surface and a stable, randomly inhomogeneous background at places
occupied by the moving object. This decrease depends on the time T of record-
ing the hologram and on the ratio σ/�.

6. Time background intensity holography is based on the Fourier–Fresnel time
transform of the intensity distribution in the coherent image of the mov-
ing object and the surrounding background medium, illuminated by a quasi-
monochromatic source with a small coherence length. In the case of a high-
resolution imaging system, time background intensity holography enables one
to form a high-quality image of a moving deformed object and the background
surface along which this object moves, and to determine the velocity and the
acceleration of the center of mass and distributions of velocities and accelera-
tions over the object’s surface. In addition, this holography method can be used
to separate the image of the moving object from the background surface. In the
case of a low-resolution imaging system, time background intensity hologra-
phy provides detection of weakly reflecting and transparent moving objects
from the radiation scattered by the bright background surface and the genera-
tion of a two-dimensional speckle pattern of the moving object, which is the
autocorrelation function of the high-quality image of the object.
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Appendix 1

Statistical Characteristics of the Intensity
Distribution in a Coherent Image

Consider the statistical characteristics of the intensity distribution in a coherent
image I(δ) = |E(δ)|2, where E(δ) = Ai

∫
k(r) exp{i[ϕ(r) + 4πr/λ]}h(r,δ)dr is

the complex amplitude of the field in the image plane, Ai = (EsSρ)/(λrczi), Es is
the source field amplitude, Sρ is the area of the imaging system aperture, rc is
the distance between the object and the imaging system aperture, zi is the distance
between the object’s image and the imaging system aperture, k(r) is the distribution
of the reflection coefficient on the object’s surface, ϕ(r) = (2π/λ)qNξ(r) is the
phase distribution for the scattered field close to the surface of the object, qN =
q · N, ξ(r) is the random distribution of roughness height on the surface of the
object, q = 2r/r, N is the unit vector normal to the mean surface of the object,
h(r,δ) is the pulse response function of the imaging system, r is the radius vector
on the mean surface of the object, and δ is the radius vector in the image plane. Let
us first analyze the first and second moments of the intensity distribution, 〈I(δ)〉
and 〈I2(δ)〉. They can be expressed in terms of the second and the fourth moments
of the field E(δ) in the coherent image:

〈I(δ)〉 = 〈|E(δ)|2〉= ∫ ∫ |E(δ)|2w2(ξ1,ξ2)dξ1dξ2,

and 〈
I(δ)2〉= 〈|E(δ)|4〉= ∫ ∫ ∫ ∫ |E(δ)|4w4(ξ1,ξ2,ξ3,ξ4)dξ1dξ2dξ3dξ4,

where w2(ξ1,ξ2) and w4(ξ1,ξ2,ξ3,ξ4) are, respectively, the two-dimensional and
the four-dimensional probability densities of roughness height ξ(r) for the surface
(see Sec. 1.2). The brackets 〈. . .〉 and the integrals denote averaging I(δ) and I(δ)2

over various realizations of ξ(r).
For simplicity, let the rough object under study be flat and orthogonal to the

optical axis of the imaging system. In this case,ϕ(r) = [4πξ(r)]/λ. First, note that
the function f2(r1, r2) = exp{i[ϕ(r1) −ϕ(r2)]} achieves its maximal value, equal
to unity, on the plane r1 = r2; and the function f4(r1, r2, r3, r4) = exp{i[ϕ(r1) −

177
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ϕ(r2) +ϕ(r3) −ϕ(r4)]} achieves its maximal value, also equal to unity, on two
hyperplanes, (r1 = r2, r3 = r4) and (r1 = r4, r2 = r3). Under the condition that the
standard deviation of roughness height is much larger than the wavelength, σ� λ,
the functions f2 and f4 have sharp peaks in the vicinities of these planes. As a result,
they can be approximated as follows:

f2 ≈ exp
{
i
[
ϕ′

x1
(x1 − x2) +ϕ′

y1
(y1 − y2)

]}
,

and

f4 ≈ exp
{
i
[
ϕ′

x1
(x1 − x2) +ϕ′

y1
(y1 − y2) +ϕ′

x3
(x3 − x4) +ϕ′

y3
(y3 − y4)

]}
+ exp

{
i
[
ϕ′

x1
(x1 − x4) +ϕ′

y1
(y1 − y4) +ϕ′

x3
(x2 − x3) +ϕ′

y3
(y2 − y3)

]}
.

Let ξ(r) have Gaussian distribution with zero mean value, ξ(r)〉 = 0. In this case,
it follows from Eqs. (1.12) and (1.13) that

wn(ξ1, . . . ,ξn) = 1

(2π)n/2
√

det(Bjk)
exp

(
−1

2

n∑
j,k=1

Wjkξjξk

)
,

where (Wjk) = (Bjk)
−1 is the matrix inverse to the correlation matrix:

n∑
k=1

WjkBkm = δjm, Bjk = 〈ξjξk〉.

Then, taking into account the Gaussian distribution of ξ(r), it is not difficult to find
that

〈f2(r1, r2)〉 ≈ exp

[
−16π2

λ2 〈(ξ′
x1

)2〉(x1 − x2)
2
]

exp

[
−16π2

λ2 〈(ξ′
y1

)2〉(y1 − y2)
2
]
,

(A1.1)

and

〈f4(r1, r2, r3, r4)〉 ≈ exp

{
−16π2

λ2
〈(ξ′

x1
)2〉[(x1 − x2)

2 + (x3 − x4)
2]
}

× exp

{
32π2

λ2
〈(ξ′

x1
ξ′

x3
)〉[(x1 − x2)(x3 − x4)]

}
× exp

{
−16π2

λ2
〈(ξ′

y1
)2〉[(y1 − y2)

2 + (y3 − y4)
2]
}

× exp

{
32π2

λ2
〈(ξ′

y1
ξ′

y3
)〉[(y1 − y2)(y3 − y4)]

}
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+ exp

{
−16π2

λ2
〈(ξ′

x1
)2〉[(x1 − x4)

2 + (x2 − x3)
2]
}

× exp

{
32π2

λ2
〈(ξ′

x1
ξ′

x3
)〉[(x1 − x4)(x2 − x3)]

}
× exp

{
−16π2

λ2
〈(ξ′

y1
)2〉[(y1 − y4)

2 + (y2 − y3)
2]
}

× exp

{
32π2

λ2 〈(ξ′
y1
ξ′

y3
)〉[(y1 − y4)(y2 − y3)]

}
. (A1.2)

Furthermore, taking into account Eq. (A1.2), under the assumption that the
roughness standard deviation of the object under study σ� λ, the surface rough-
ness is isotropic, and hence, the correlation radii of the surface roughness in or-
thogonal directions satisfy the equation �x = �y = �, we obtain that

〈
I2(δ)

〉= 〈|E(δ)|4〉= 2A2
∫ ∫ ∫ ∫

exp

[
−16π2σ2(u2 + v2)

λ2�2

]
× exp

[
−32π2Bγ(s)

λ2
uv
]

hω(r)hω(r − u)

× hω(r − s)hω(r − s − v)

× k(r)k(r − u)k(r − s)k(r − s − v)dudvdsdr,

(A1.3)

where s = (x1 − x3, y1 − y3), u = (x1 − x2, y1 − y2), v = (x1 − x4, y2 − y3),
Bγ(r1, r3) = 〈ξ′

x1
(r1)ξ

′
x3

(r3)〉 = 〈ξ′
y1

(r1)ξ
′
y3

(r3)〉 is the correlation function of the
surface roughness inclination, ξ′

x = ∂ξ/∂x, and ξ′
y = ∂ξ/∂y. Integration in (A1.3)

is done within infinite limits since the function exp{−[16π2σ2(u2 +v2)]/(λ2�2)} is
sharp at σ� λ. Moreover, assuming that the correlation areas of surface roughness
and their inclinations are small, expanding the function exp[−32π2Bγ(s)uv/λ2] in
the exponent under the conditions that σ� λ and λ2/�2 � Sρ/rc, and taking into
account Eqs. (A1.1) and (A1.2), we obtain

〈
I2〉= 2〈I〉2 + 4A2

∫
|k(r)hω(r,δ)|4dr

m=∞∑
m=1

1√
m + 1

∫
B

2m
γ (s)ds, (A1.4)

where 〈I〉 = Aρ2
ϕ

∫ |k(r)hω(r,δ)|2dr, Bγ(s) = Bγ(s)/Bγ(0), and ρϕ = (�λ)/σ is
the correlation radius of the function ϕ(r). Substituting the expression for 〈I〉 into
Eq. (A1.4) and taking into account that

m=∞∑
m=1

1√
m + 1

∫
B

2m
γ (s)ds ≈ CB�2,
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where the factor CB ∼ 1 depends on the form of the correlation function Bγ(s), we
find that 〈

I2〉= 2〈I〉2
(

1 + 1

N1

)
, (A1.5)

where N1 = [CB
∫ |k(r)hω(r,δ)|4dr]/[∫ |k(r)hω(r,δ)|2dr]2 ≈ (Sr/�)

2 is the
number of correlation cells within the domain of the object surface resolvable
according to the Rayleigh criterion, having the area Sr = (λ2r2

c)/Sρ.
The factor CB depends on the form of the function Bγ(s). For instance, if it is

represented as a pulse function, which is often used in various simplifying compu-
tations, CB grows infinitely. Therefore, a certain restriction should be imposed on
the form of the function. This restriction can be shown to be

∞∫
−∞

B
2m
γ (s)ds ∼ m−(1/2+α),

where α is any positive value.12 These conditions are satisfied in the cases of
Gaussian and Lorentzian correlation functions of roughness inclinations ξ′

x and
ξ′

y. For the first case, Bγ(s) = exp(−|s|/�), and for the second one, Bγ(s) =
exp(−s2/�2). From Eq. (A1.5), one can obtain the relation for the intensity dis-
tribution contrast in a coherent image,

C =
〈
I2
〉− 〈I〉2

〈I〉2
= 1 + κ, (A1.6)

where κ≈ C − 1 = 1/N1. If the random field E(δ) has Gaussian distribution, then
the intensity I satisfies the well-known relation 〈I2〉 = 2〈I〉2.10 The value κ de-
scribes deviations of the random field distribution E(δ) from Gaussian distribution.

From Eq. (A1.6) we see that for a flat rough object, when N1 � 1, 〈I2〉 =
2〈I〉2 and C = 1. It is interesting to note that similar results can be obtained for
an object with arbitrary shape, including a nonflat object, by using the following
approximations:

〈exp{i[ϕ(r1) −ϕ(r2)]}〉 ≈ ρ2
ϕδ(r1 − r2),

〈exp{i[ϕ(r1) −ϕ(r2) +ϕ(r3) −ϕ(r4)]}〉 ≈ ρ4
ϕ[δ(r1 − r2)δ(r3 − r4)

+ δ(r1 − r4)δ(r2 − r3)], (A1.7)

where δ(r) is the delta-function, and ρϕ = (�λ)/σ is the correlation radius of
ϕ(r1). Taking into account relation (A1.7), let us rewrite the field complex am-
plitude as E(δ) = ∫ ψ(r)h(r,δ)dr, where ψ(r) is a certain random function satis-
fying the relation

〈ψ(r1)ψ ∗ (r2)〉 = AIi(r1)δ(r1 − r2),
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〈ψ(r1)ψ ∗ (r2)ψ(r3)ψ ∗ (r4)〉 = A2I(r1)I(r3)[δ(r1 − r2)δ(r3 − r4)

+ δ(r1 − r4)δ(r2 − r3)],

where A is a constant value, δ(r) is a delta-function, and Ii(r) is a function propor-
tional to the average intensity in the high-resolution image I(δ) = 〈I(r = −µδ)〉,
where µ = rc/zi is the scaling factor. In Sec. 2.3 it is shown that Ii(r) ∼ ki(r) =
(�2/σ2)|k(r)|2 exp−[�2(q2 − q2

N)]/(σ2q2
N). With the help of the preceding rela-

tions, it is easy to obtain the relations 〈I2〉 = 2〈I〉2 and C = 1. This is a simple
phenomenological model. In this model, for instance, we cannot find the depen-
dence of I(δ) on the surface roughness parameter.
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Appendix 2

Statistical Characteristics of the Intensity
Distribution in a Fourier-Telescopic Image and

the Resolution of Fourier Telescopy

Let us refer to relation (4.1), which describes the field scattered by an object, and
rewrite it as

E(ρ, t) = exp[iψr(ρ)] EtSt

λ2r2
c

∫
�(r)u(r, t)dr, (A2.1)

where

u(r, t) ≈
n=N∑
n=1

un

(
t − 2r

c

)
Dn(r) exp i

[
ωnt − 2

ωnr

c
+ ωnr · (ρn + ρ)

2rcc

]
,

accounting for the influence of the atmosphere on the direction diagrams of trans-
mitters, Dn(r) = (1/St)

∫
An(ρt) exp[iψna(ρt)] exp[i(2πr ·ρt)/(λrc)]dρt is the nth

transmitter directional diagram, ρt is the radius vector of the transmitting apertures,
An(ρt) is the pupil function for the nth transmitter, un the pulse shape for the nth
transmitter, r is the radius vector of the mean surface of the object under study, N
is the number of transmitters, and �(r) is a function determined by the roughness
parameters, reflection characteristics, and the shape of the object surface. The ran-
dom phase shift distribution on the aperture of the nth transmitter, ψna(ρt), appears
due to the radiation propagating from the transmitter to the object, and the random
phase shift on the receiving aperture, ψr(ρ), appears due to the radiation propa-
gating from the object to the receiving aperture. Furthermore, we assume that all
pulses have the same shape, un = u1, and the phase closure algorithm of the phase
errors eliminating ψna(ρt) is performed preliminarily.

Assuming that the pulse width of the illuminating radiation from all transmit-
ters is much longer than the depth of the illuminated surface of the object, under
phase compensation conditions, and with an account for relation (A2.1), the corre-
lation function of the intensity distribution in the image is
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184 Appendix 2

B(δ1,δ2) = 〈I(δ1)I(δ2)〉 − 〈I(δ1)〉〈I(δ2)〉 = A4u4
(

t − 2rc

c

)
× 1

N2
p

∫ ∫ ∫ ∫
〈�(r1)�

∗(r2)�(r3)�
∗(r4)〉

− 〈�(r1)�
∗(r2)〉〈�(r3)�

∗(r4)〉
× w(r1 − r2)w(r3 − r4)D(r1)D

∗(r2)D(r3)D
∗(r4)

×
∑

m1,n1,m2,n2

exp
iπ

rcλ

(
r1 ·ρm1

− r2 ·ρn1

)
× exp i

π

rcλ

(
r3 ·ρm2

− r4 ·ρn2

)
× exp i

π(δ1 ·p1 − δ2 ·p2)

rcλ
dr1dr2dr3dr4, (A2.2)

where

pi = ρmi − ρni,w(r1 − r2) = 1

Sρ

∫
exp i

πρ · (r1 − r2)

rcλ
dρ,ρm

is the radius vector of the mth laser transmitter, Np is the number of pairs of trans-
mitters,

〈I(δ)〉 =
∫ ∫

I(δ)w2(ξ1,ξ2)dξ1dξ2,

and

〈I(δ1)I(δ2)〉 =
∫ ∫ ∫ ∫

I(δ1)I(δ2)w4(ξ1,ξ2,ξ3,ξ4)dξ1dξ2dξ3dξ4,

where w2(ξ1,ξ2) and w4(ξ1,ξ2,ξ3,ξ4) are, respectively, the two-dimensional and
the four-dimensional probability densities of roughness height ξ(r) for the surface
(see Sec. 1.2).

If the roughness height standard deviation σ� λ, then the following relations
obtained in Appendix 1 hold for the function �(r):

〈�(r1)�
∗(r2)〉 ≈ AIi(r1)δ(r1 − r2),

〈�(r1)�
∗(r2)�

∗(r3)�(r4)〉 ≈ A2Ii(r1)Ii(r3)[δ(r1 − r2)δ(r3 − r4)

+ δ(r1 − r4)δ(r3 − r2)], (A2.3)

where A is a constant value, Ii(r) is a function proportional to the average intensity
in the high-resolution image 〈I(r = −µδ)〉, µ = rc/zi is the scaling factor (Chap-
ter 2), rc is the distance from the object’s center of mass, and zi is the distance be-
tween the imaging system aperture and the image plane. The case considered here
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Statistical Characteristics of the Intensity Distribution in a Fourier-Telescopic Image 185

is a simple phenomenological model; for instance, we cannot find the dependence
of I(δ) on the parameters of the surface roughness. In Sec. 2.3 it is shown that
Ii(r) ∼ ki(r) ≈ (�/σ)2|k(r)|2 exp[−(�q⊥/σqN)2], where σ and � are the roughness
height standard deviation and the correlation radius for the object surface, respec-
tively, and

qN = q ·N, q⊥ =
√

q2 − q2
N, q = 2rc

rc
.

The intensity distribution in the Fourier-telescopic image is

I(δ) = A2u2
(

t − 2rc

c

)
|D(rc)|2

∫ ∫
ψ(r1)ψ

∗(r2)|w(r1 − r2)|2

×
∑
m,n

exp

[
i

(
π

λrc

)
(r1 ·ρm − r2 ·ρn)

]

× exp

(
iπδ ·p
λrc

)
dr1dr2, (A2.4)

where p = ρm − ρn.
After summing over all m and n, taking into account relations (A2.1–A2.4)

and the condition (λrc)/dt > do, where do is the object size and dt the transmitter
aperture size, and assuming that the radiation scattered by the object occupies a
much larger domain than does the receiving aperture, up to inessential factors we
obtain

B(δ1,δ2) ∼ |D(rc)|4
∫ ∫

I2
i (r1)|w(r1 − r2)|2h(r1,δ1)h(r2,δ2)dr1dr2,

where

h(r,δ) = h1(r,δ)h2(r,δ),

h1(r,δ) =
∑

m

exp

{
i[πρm · (r/rc) + (δ/zi)]

λ

}
,

and

h2(r,δ) =
∑

n

exp

{
i[πρn · (r/rc) + (δ/zi)]

λ

}
.

If the directional diagram of the transmitter is much larger than the object’s angular
sizes and the function h = h1h∗

2 is much narrower than the function I(r), then using
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Eqs. (A2.3) and (A2.4) we obtain

〈I(δ)〉 ∼ ki(r = −µδ),

where µ= rc/zi is the scaling factor.
From the mean value and the correlation function of the intensity distribution

in the Fourier-telescopic image, one can find the correlation area in the image,

Sc =

∫
B(δ1,δ2)dδ1

〈I2(δ2)
,

the number of speckles,

M =

[∫
〈I(δ)〉dδ

]2

∫ ∫
B(δ1,δ2)dδ1dδ2

,

and the contrast of the intensity distribution, C = B(δ,δ)/〈I(δ)〉.
Moreover, assuming, for simplicity, that the receiving aperture has rectangular

shape, consider three important cases:

Case 1: Both sizes of the receiving aperture exceed both sizes of the transmit-
ting aperture. Then,

B ∼ k2
i (r = −µδ1)|D(rc)|4h(µδ1 − µδ2), (A2.5)

where

h(µδ1 − µδ2) ∼
∫

h[(r,δ1)h
∗(r,δ2)dr].

Case 2: Both sizes of the receiving aperture are smaller than the sizes of the trans-
mitting aperture. Then,

B ∼ I2(r = −µδ1)|D(r = −µδ1)|4|w(δ1 − δ2)|2. (A2.6)

Case 3: One of the sizes (say, x) of the receiving aperture is smaller than the cor-
responding size of the transmitting aperture, while the other size of the receiving
aperture is larger than the corresponding size of the transmitting aperture. Then,

B ∼ I2(r = −µδ1)|D(r = −µδ1)|4w(δ1x − δ2x)hy(δ1y − δ2y), (A2.7)
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where

hy(δ1y − δ2y) ∼
∫

h1(x, y1,0,δ1y)h1(x, y2,0,δ2y)h
∗
2(x, y1,0,δ1y)

× h∗
2(x, y2,0,δ2y)dxdy1dy2.

Let us now consider the statistical characteristics of the intensity distribution
in a Fourier-telescopic image for the case where the transmitting system consists
of two orthogonal arrays with equidistant identical laser transmitters. This two-
section transmitting aperture forms on the object surface a complete set of sinu-
soidal gratings with various periods and directions, so that one can select the radi-
ation scattered by the object under its illumination by a pair of transmitters from
different sections. The index m numbers transmitters from one section, and the in-
dex n numbers transmitters from the other section. Consider a particular case of a
two-section structure that can be easily analyzed and that allows the phase closure
algorithm. This is a structure consisting of two orthogonal arrays of equidistant
identical transmitters. The arrays can intersect (the crossed position) or be tangen-
tial (the T-position). The transmitters coordinates in this case are

xm = a(m − 1), ym = 0, xn = 0, yn = dt(n − 1), dt = dx

Nx
= dy

Ny
,

where dx and dy are the sizes of the X- and Y-arrays, and Nx and Ny are the numbers
of transmitters in the arrays. In this case, up to inessential factors, the average
intensity distribution in the restored image can be represented, after summing over
m, n, as

〈I(δ)〉 ∼ |D(rc)|2
∫

ki(r)hx(x,δx)h
∗
y(y,δy)dxdy. (A2.8)

Here,

hy(y,δy) = exp iϕx(2d2x, x,δx) − exp iϕx(2d1x, x,δx)

Nx sin[ϕx(dx, x,δx)/Nx] ,

and

hy(y,δy) = exp iϕy(2d2y, y,δy) − exp iϕy(2d1y, y,δy)

Ny sin[ϕy(dy, y,δy)/Ny] ,

whereϕx(d, x,δx) = (dπ/λ)(x/rc +δx/zi) andϕy(d, y,δy) = (dπ/λ)(y/rc +δy/zi)

are the grating factors, d2x and d1x are the coordinates of the X-array edge points,
d2y and d1y are the coordinates of the Y-array end points, d2x = d1x + dx, and
d2y = d1y + dy. In particular, for the crossed symmetric position of the arrays for
which d2x = −d1x, dx = 2d1x and d2y = −d1y, dy = 2d1y,

I(δ) ∼ |D(rc)|2
∫

ki(r)h(r,δ)dr, (A2.9)
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where h(r,δ) = [(2πdx/λ)(x/rc + δx/zi)]/{N sin[(2Nπdx/λ)(x/rc + δx/zi)]} ×
sin[(2πdy/λ)(x/rc + δy/zi)]/{N sin[(2Nπdy/λ)(y/rc + δy/zi)]}.

One can see that because of the periodicity of the grating factors in (A2.9),
the average intensity distribution in the reconstructed image is periodically re-
peated. In the general case, this can lead to overlapping of the reconstructed im-
ages. Overlapping can be avoided if the number of transmitters is chosen so that
Ny > My = (dydiy)/(rcλ) � 1, where diy is the width of the function ki(r) along
the Y axis, and Nx > Mx = dxdix/(rcλ) � 1, where dix is the width of the object’s
image [the function ki(r = −µδ)] along the X axis.

Then, the sine function in the denominators of the grating factors in (A2.8)
and (A2.9) can be replaced by its argument; as a result, the denominators can be
approximated by a product of two functions of the form α exp(ivt)sinc(αt). Under
the same conditions, taking into account the relation

∞∫
−∞

α exp(ivt)sinc(αt)dt =
{

1 for v ≤ α
0 for v > α

,

we obtain that 〈I(δ)〉 ∼ |D(rc)|2ki(r = µδi), where µ= rc/zi.
The intensity correlation function of the Fourier-telescopic image for the case

of orthogonal arrays of equidistant transmitters can be found from the relation

B(δ1,δ2) = 〈I(δ1)I(δ2)〉 − 〈I(δ1)〉〈I(δ2)〉
∼
∫

ki(r1)ki(r2)|w(r1 − r2)|2hx(x1,δ1x)hy(y2 + δ1y)

× hx(x2,δ2x)hy(y1,δ2y)dr1dr2. (A2.10)

Let us consider the three cases given above in combination with this position of
linear arrays. We will suppose that the receiving and transmitting apertures resolve
the details of the object’s surface.

Case 1: Both sizes of the receiving aperture are larger than both sizes of the
transmitting aperture, drx > dx, dry > dy. Then,

B(δ1,δ2) ∼ |D(rc)|4
∫

k2
i (r)hx(x,δ1x)hy(y + δ1y)hx(x,δ2x)hy(y,δ2y)dr

∼ |D(rc)|4k2
i (r = −µδ1)hx(δ1x − δ2x)hy(δ1y − δ2y). (A2.11)

Here, hx(δ1x − δ2x) = sinc[πµdx(δ1x − δ2x)/λ], and hy(δ1y − δ2y) = sinc[πµdy ×
(δ1y − δ2y)/λ]. For the same case, the number of speckles in the image and the
correlation area are Sc = (ziλ)

2/(dxdy) = ρxρy, and M = MxMy, where Mx =
(drxdix)/(ziλ), and My = (drydiy)/(ziλ). Here, ρx = (ziλ)/dx and ρy = (ziλ)/dy are
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correlation radiuses along the X and Y axes, respectively, and the contrast

C = C1 ≈ dxdy

drxdry
. (A2.12)

It is convenient to rewrite the number of speckles in the Fourier-telescopic image as
M = (dxdydoxdoy)/(λrc)

2, where dox and doy are the sizes of the object’s scattering
area. In particular, for a flat rectangular object, dix = dox/µ and diy = doy/µ; for a
spherical object, dix = diy = (ρoσ)/(�µ), where ρo is the object’s radius.

Case 2: Both sizes of the receiving aperture are smaller than both sizes of the
transmitting aperture: drx ≤ dx, dry ≤ dy. Then,

B(δ1,δ2) ∼ |D(rc)|4k2
i (r = −µδ1)|w(δ1 − δ2)|2, (A2.13)

C = C2 ≈ 1, ρx = (ziλ)/drx, ρy = (ziλ)/dry, Sc = ρrxρry = (ziλ)
2/(drxdry), and drx

and dry are the sizes of the receiving aperture along the X and Y axes. In par-
ticular, for a flat rectangular object, dix = dox/µ and diy = doy/µ; and the num-
ber of speckles in the image is M = (drxdrydoxdoy)/(r2

cλ
2). For a spherical object,

dix = diy = ρo/µ and M = (σ2drxdryρ
2
o)/(�

2r2
cλ

2).

Case 3: One of the sizes, say, along the Y axis, of the receiving aperture is
smaller than the corresponding size of the transmitting aperture, while the other
size of the receiving aperture is larger than the corresponding size of the transmit-
ting aperture, drx > dx, dry < dy. Then,

B(δ1,δ2) ∼ |D(rc)|4k2
i (r = −µδ1)hx(δ1x − δ2x)sinc

[
πµdr(δ1y − δ2y)

λ

]
,

(A2.14)

ρx = (ziλ)/dx, ρy = (ziλ)/dry, Sc = ρxρy = (ziλ)
2/(dxdry), and C = C3 ≈ dx/drx.

For a flat rectangular object, the number of speckles in the image is M =
(dxdrydoxdoy)/(r2

cλ
2); for a spherical object, M = (σ2dxdryρ

2
o)/(�

2r2
cλ

2). More ac-
curate analysis, which is carried out in Appendix 1, with an account for (A1.1)
and (A1.2), gives C = Cj + εj/N1. Here, N1 = (λ2r2

c)/(drxdry�
2) is the number of

correlation pixels in the domain of the object surface resolved, according to the
Rayleigh criterion, by means of Fourier-telescopic imaging, and εj are constants of
the first order. In particular, in the second case, C = 1 + ε2/N1. The last relation is
similar to relation (A1.5).

The X and Y sizes of the resolvable domain on the object’s surface in the
Fourier telescopy are related to the correlation radiuses in the plane of the restored
image as
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Prx = µρx = rcλ

dx
, Pry = µρx = rcλ

dy
for the first case;

Prx = µρx = rcλ

drx
, Pry = µρx = rcλ

dry
for the second case;

and

Prx = µρx = rcλ

dx
, Pry = µρx = rcλ

dry
for the third case.

It is interesting to note that in all cases, the number of resolvable domains on
the object’s surface is equal to the number of speckles in the Fourier-telescopic
image.
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Appendix 3

Phase Closure Algorithm in Fourier Telescopy

In this book, the analysis of Fourier telescopy and its applications is limited to the
case where the influence of an inhomogeneous atmosphere is either neglected or
eliminated. Here, we will briefly consider a method of eliminating the influence
of inhomogeneous atmosphere based on the phase closure method. In its mod-
ern form, this procedure was suggested in Ref. 56 and was further developed in
Refs. 66, 69, 70, 72, and 73. Our consideration will be based on Ref. 56.

As a transmitting system, consider a set of T-shaped linear arrays consist-
ing of similar laser transmitters (Nx transmitters in the X-array, and Ny transmit-
ters in the Y-array in Fig. 4.2; for example, in Fig. A3.1, Nx = 6 and Ny = 9).
The nth transmitter of the X-array illuminates the object at different frequencies
ωn. The mth transmitter of the Y-array illuminates the object at different fre-
quencies ωm. All transmitters simultaneously illuminate the object so that values
ωm −ωn are also different. For simplicity, we also assume that the atmosphere
is smoothly inhomogeneous. This allows us to assume that the additional phase
accumulated by the radiation, due to atmospheric influence, on the way from the
transmitter to the object’s surface is the same for any point of the transmitting
aperture. In this case, after a corresponding filtering of the scattered field inten-
sity at frequencies ωm −ωn [see relation (4.4)], the receiving devices form the
values

Gmn = exp[i(ψmx −ψny)]Fmn,

Gxm,m−1 = exp[i(ψmx −ψm−1x)]Fxm,m−1,

Gyn,n−1 = exp[i(ψny −ψn−1y)]Fyn,n−1, (A3.1)

where

Fmn ≈ 〈Fmn〉 ∼ |D(rc)|2
Se

∫
ki(r) exp i

2πdt(xm + yn)

Nrcλ
dr

and
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Figure A3.1 An example of reconstructing the Fourier component F44 using the
phase closure method suggested in Ref. 57. This component is formed by the pair of
transmitters shown by a long arc: the fourth transmitter of the first array and the fourth
transmitter of the second array. Arcs denote all eight pairs of transmitters participating
in the procedure. ψmx and ψny are phase errors accumulated due to radiation prop-
agation in the atmosphere from the transmitters of the X- and Y-arrays to the object.
Here, ψ1x = ψ0y, Gx12 = |Gx12| exp iα, Gy01 = |Ga01| exp iβ, and α, β are phases that
do not influence the quality of the Fourier-telescopic image.

Fxm,m−1 ∼ |D(rc)|2
Se

∫
ki(r) exp i

2πx

rcλ
dr,

Fyn,n−1 ∼ |D(rc)|2
Se

∫
ki(r) exp i

2πy

rcλ
dr

are the Fourier components of the object image, dt is the array size, Se is the area
of the backscattering surface, rc is the radius vector of the object’s center of mass,
D(rc) is the value of the transmitter’s directional diagram on the object’s surface
in the absence of the atmospheric influence on the radiation propagation, and

ki(r) = l2

σ2
|k(r)|2 exp

[
−
(

�q⊥
σqN

)2]
(see Appendix 2).

Here, the indices m and n label transmitters of different linear arrays, and ψmx and
ψny are the corresponding phase shifts.

In order to realize the phase closure algorithm, we first filter the value Gxm,m−1
formed by the beams coming from the mth and the m − 1st transmitters, then the
value Gxm−1,m−2 formed by the beams coming from the m − 1st and m − 2nd
transmitters, and so on, to the first and second transmitters of the X-array, then the
value formed by the beams coming from the first and the second transmitters of the
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Y-array, and so on, up to the value Gyn,n−1 formed by the beams coming from the
nth and the n − 1st transmitters of the Y-array. Furthermore, we form the value

F′
mn = GmnA∗

mn

|Amn| = Fmn exp[−i(αm +βn)],

where

Amn =
k=1∏
k=m

Gxk,k−1

j=n∏
j=1

Gyj+1j = Fm
xm,m−1Fn

yn,n−1 exp[i(ψmx −ψny)],

α and β are phases of the complex functions Fxm,m−1 and Fyn,n−1, and the indices
k and j relate to transmitters placed on the X- and Y-arrays, respectively.

One can see from the previous relation that reconstruction of the Fourier com-
ponent Fmn of the object image according to the procedure described in Ref. 57
requires m + n pairs of transmitters. For instance (Fig. A3.1), reconstruction of
the Fourier component F44, which in the absence of phase shifts (ψmx =ψny = 0)

would be formed by illuminating the object by the fourth transmitter of the first
array and the fourth transmitter of the second array, requires eight pairs of trans-
mitters.

It is interesting to note that the relative fluctuations of a Fourier component
are inversely proportional to the number of speckles in the scattered field on the
receiving aperture, Mρ = (Sρ)/(λ2r2

c), where Sρ is the area of the receiving aper-
ture, rc is the distance from the object, and Se is the area of the backscattering
surface.16,73,74 By choosing a sufficiently large number Mρ, one can make fluctu-
ations of the filtered values Gmn, Gxm,m+1, and Gyn,n+1 and their products Amn as
small as necessary.

Furthermore, by performing an inverse Fourier transform over F′
mn, one forms

the object’s image [see Eq. (4.5)]. One can show that the phases α and β have no
noticeable influence on this image. The literature suggests another version of the
procedure that allows one to considerably reduce the number of transmitter pairs
used to form each Fourier component of the object’s image.

Now let us consider in more detail the condition under which the atmosphere
can be considered smoothly inhomogeneous. Consider the relative fluctuations ηj
of the modulo of the transmitter directional diagram,

ηn = 〈|Dn(rc)|2〉ψ − 〈|Dn(rc)|2〉2
ψ

〈|Dn(rc)|2〉2
ψ

,

where Dn(rc)| = (1/St)
∫

An(ρn) exp[iψna(ρn)] exp[(i2πrc · ρn)/(λrc)]dρn is the
nth transmitter directional diagram, ρn is the radius vector of the nth transmit-
ter aperture, An(ρn) is the pupil function for the nth transmitter, ψna(ρn) is the
random phase shift distribution on the transmitting aperture of the nth transmitter
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accumulated due to radiation propagation in the atmosphere, St is the area of the
transmitter aperture, and rc is the radius vector of the object’s center of mass. The
brackets 〈. . .〉ψ denote averaging over various realizations of the random phase
shift ψna(ρn) caused by radiation propagating through the atmosphere.

Let γ= (d2
t σ

2
ψ
)/(N2�2

ψ
) � 1, where σψ and �ψ are the standard deviation and

the correlation radius of the random phase shift ψna(ρn), and hence, the function
ψna(ρn) is smooth. Also, let (λrc)/dt � do, where do is the object’s size. Then,

Dn(rc,ν) ≈
(

1

St

)
exp iψn

∫
An(ρn) exp

[
i(ν ·ρn) + i(2πrc ·ρn)

λrc

]
dρn, (A3.2)

where St is the transmitter area, and ψn = ψna(ρn = 0) is the total phase shift on
the nth transmitter, ν = ∂ψn(ρn)/∂ρn|ρn=0.

Assuming that ν has Gaussian distribution with 〈ν〉ψ = 0, and taking into ac-
count Eq. (1.14), we have 〈ν2〉ψ = σ2

ψ
/�2
ψ

and

〈|Dn(rc,ν)|4〉ψ =
∫

|Dn(rc,ν)|4Pψ(ν)dν,

〈|Dn(rc,ν)|2〉ψ =
∫

|Dn(rc,ν)|2Pψ(ν)dν,

where

P(ν) = �ψ√
2πσψ

exp

(
−ν2�2

ψ

σ2
ψ

)
is the probability density function of the random value ν. Using Eq. (A3.2) to-
gether with the previous relations, approximating the pupil function by a Gaussian
dependence, Aj(ρ) = exp(−ρ2/d2

t ), and assuming for simplicity that xc = yc = 0,
it is not difficult to obtain that

ηn = 1 + 2γ√
4γ+ 1

− 1.

Under the condition γ2 � 1 of a smooth, inhomogeneous atmosphere, ηn ≈ γ2.
Hence, under the condition γ2 � 1, the relative fluctuations ηj of the random
variables |Dn(rc)|2 are very small. Thus, if σψ and �ψ satisfy the condition
γ2 = (d4

t σ
4
ψ
)/�4

ψ
� 1—i.e., the atmosphere is smoothly inhomogeneous—then

|Dn(rc)|2 ≈ 〈|Dn(rc)|2〉ψ. In this case, if all transmitters are similar, Dn(rc) ≈
D(rc) exp iψn, where D(rc) is the value of the transmitter’s directional diagram on
the object’s surface in the absence of the atmosphere’s influence on the radiation
propagation. Then, relations (A3.1) hold.
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Appendix 4

The Coherence of Fields Scattered by
Sufficiently Large Rough Objects, and the
Contrast of the Scattered Field Intensity

Distribution

Let us suppose that an object is illuminated by a pointlike radiation source with
a narrow spectrum: 	ω � ω0, where 	ω and ω0 are, respectively, the width
and the mean frequency of its spectrum Sr(ω). In the literature, such sources are
usually called quasi-monochromatic.3 We will consider this notion in more detail.
We also assume that the longitudinal size (depth) of the object, Ls, does not exceed
1.5 m, and the testing radiation is practically continuous; more precisely, its pulse
width exceeds Ls by at least two orders of magnitude. First, consider a simple
example, namely, interference of two spherical waves that appears when radiation
is scattered by an object B1B2 consisting of two pointlike scatterers.9 (Fig. A4.1)

Figure A4.1 Interference of two spherical waves.
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196 Appendix 4

The instantaneous intensity distribution for the field E(ρ, t) scattered by the
object B1B2 can be represented by the form I(ρ, t) = |E(ρ, t)|2, where

E(ρ, t) =
j=N∑
j=1

Ej(ρ, t), N = 2,

Ej(ρ, t) =
∫

E0j(ρ,ω) exp(−iωt)dω,

E0j(ρ,ω) ∼ AjSr(ω)Hω(rj,ρ), Hω(rj,ρ) = exp{i[ω(|rj − ρs| + |rj − ρ|)]/c},
Aj is the amplitude of the spherical wave, rj is the radius vector of the point
Bj, ρ is the radius vector of the observation plane, ρs is the source radius vec-
tor, and rc is the radius vector of the object’s center. If the source coherence
length Lc = c/	ω≫ Ls and A1 = A2, then I(ρ, t) consists of interference fringes
with sinusoidal distribution, the minimum intensity being Imin = 0. An impor-
tant parameter of an interference pattern is the measure of its contrast or, more
precisely, the degree to which the intensity distribution differs from constant.
This parameter is the visibility of interference fringes9 in the observation plane,
V = (Imax − Imin)/(Imax + Imin), where Imax is the maximum distribution intensity.
Since at Lc ≫ Ls, Imin = 0, then in the case where A1 = A2, V = 1. Let us de-
fine the visibility of interference fringes under the condition Lc < 100Ls, which in
reality is most often the case. In practice, one mostly registers the time-averaged
intensity distribution

Ī(ρ) = 1

T

t0+T∫
t0

I(ρ, t)dt,

where t0 and T are the initial time and total processing time of the registered signal,
respectively.

If ρ3/(λ2rc) � 1, then, choosing ρs = 0 and T ≥ 100Ls/c > 	ω−1, for Ls =
1.5 m, T ≥ 10−6 sec and for the case where the squared module of the spectrum
can be approximated by a Gaussian function,

|Sr(ω)|2 = 1

	ω
exp

[
−(ω−ω0)

2

(	ω)2

]
,

we obtain

Ī(ρ) ∼ 1 + cos

(
ϕ+ 2πdx

λrc

)
exp

[
−
(

L2

L2
c

)]
, (A4.1)

where L ≈ 2Ls + dx/rc is the path difference for the rays, L = AB1 + B1C − AB +
BC, ϕ is a phase constant, and x is the coordinate in the observation plane in
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The Coherence of Fields Scattered by Sufficiently Large Rough Objects 197

the direction orthogonal to the interference fringes (Fig. A4.1). The period of the
interference pattern is ∼ λrc/d, where d is the transverse size of the object, and
λ is the mean wavelength of the source. One can see from Eq. (A4.1) that V =
exp[−(L2/L2

c)]. Close to the source, where dx/rc � 2Ls, V = exp[−(4L2
s /L2

c)]. If
the coherence length of the source is much larger than twice the depth of the object
BB1, Lc > 10Ls, then V = 1 with high accuracy, like in the case of a very large
coherence length source (Lc = c/	ω≫ Ls). In this case, we will call the field
scattered by the object BB1 a coherent field. In the opposite case, where Lc � 2Ls,
V = 0.

If the object consists of three or more pointlike scatterers (N ≥ 3), then the
interference pattern in the scattered field is much more complicated. In such a pat-
tern, maxima can differ considerably from each other. Therefore, instead of visibil-
ity, it is reasonable to introduce integral characteristics describing deviation of the
time-averaged intensity distribution Ī(ρ) in the interference pattern from a constant
value. One of the simplest characteristics of this kind is the contrast of the intensity
distribution Ī(ρ), which is equal to the difference between the mean square of this
distribution and the square of the mean intensity in the distribution normalized to
the square of the mean intensity:

Cs =
1

Sρ

∫
Ī2(ρ)dρ −

[
1

Sρ

∫
Ī(ρ)dρ

]2

[
1

Sρ

∫
Ī(ρ)dρ

]2
. (A4.2)

For a constant intensity distribution, Cs = 0. In the case of the object B1B2 con-
sidered above, Cs = exp[−2(L2/L2

c)]/2 = V2/2. The same relation can be used for
calculating the contrast of instantaneous intensity distributions.

For the field E(ρ, t) scattered by a rough object, the intensity distribution I(ρ, t)
is even more complicated. This pattern is very difficult to analyze without a statis-
tical description (see Sec. 1.2). The same relates to the instantaneous and time-
averaged intensity distributions,

I(ρ, t) and Ī(ρ) = 1

T

t0+T∫
t0

I(ρ, t)dt.

For this reason, these distributions are treated as realizations of random processes
generated by a fixed distribution ξ(r) of the surface roughness height of the ob-
ject under study. This representation enables one to obtain analytical relations for
the contrast Cs, which can characterize deviation of the intensity distribution from
constant in the case of complicated distributions. As before, we assume that the
object is illuminated by a pointlike narrow-band source (Fig. A4.2). Then, in the
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198 Appendix 4

Figure A4.2 Formation of the scattered field in the case where the rough object is
illuminated by a narrow-band source. The thick arc on the object surface denotes the
boundary of the backscattering surface domain.

case of a rough object,

Ī(ρ) = 1

T

t0+T∫
t0

|E(ρ, t)|2dt,

where E(ρ, t) = ∫
E0(ρ,ω) exp(−iωt)dω is the field scattered by the object at

one of the frequencies [see relation (1.32)], K is a constant, N is the normal to
the object’s mean surface, q = −νi + νo, νi = (rc − ρs)/|rc − ρs|, νo = −rc/rc,
Hω(r,ρ) = exp{i[ω(|r − ρs| + |r − ρ|)]/c}, and r is the radius-vector of the ob-
ject’s mean surface. Here, rc is the radius vector of the point B, which is the top
of the maximum backscattering domain, and for which the vectors N and q are
parallel.

Let us first define the correlation function of a field scattered by a rough object,
using the same analysis as we used in the case of monochromatic illumination of
the source [see relation (1.36)]. Assuming that the standard deviation of the rough
surface σ� λ= (2πc)/ω0 and that σ/� � d/rc, where � is the correlation radius
of the rough surface, and d is the size of the backscattering domain, which will be
defined below, we obtain the correlation function of the scattered field in the form

〈E(ρ1, t1)E
∗(ρ2, t2)〉 = |K|2

∫ ∫ ∫
ki(r)Hω1(r,ρ1)H

∗
ω2(r,ρ2)

× exp

[−q2
Nσ

2(ω1 −ω2)
2

c2

]
Sr(ω1)S

∗
r (ω2)

× exp[i(ω1t1 −ω2t2)]drdω1dω2, (A4.3)
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where

ki(r) ≈ |k(r)|2 exp−
[

tanϑ(r)�
σ

]2

, ϑ(r) = arctan


√

q2 − q2
N

qN

 ,

qN(r) = q · N(r), and the symbol 〈〉 denotes averaging over various realizations
ξ(r) of the surface roughness height.

The main contribution to the integral (A4.3) is given by the domain of the
scattering surface bounded by the factor exp{−[tanϑ(r)�/σ]}2. This domain, cor-
responding to the range 0 ≤ ro ≤ rom, where ro = r − rc and rom satisfies the equa-
tion ϑ(rom) = 2σ/�, is the domain of backscattering, for which all scattered waves
come to the observation point ρ; in Fig. A4.2 it is shown by a thick arc on the sur-
face of the object. One can see from the figure that the maximum path difference
for rays coming from the source ρs to the point r on the mean surface of the object
and from point r to the observation point ρ is Lm = AB1 + B1C − AB + BC =
|rc + rom −ρs| + |rc + rom −ρ| − rc − |rc −ρ|. At ro, ρ� rc and for the observa-
tion plane orthogonal to the radius vector rc, Lm ≈ 2Ls, where Ls = q ·rom. One can
show that Ls ∼ (σ/�)2ρo, where ρo is the curvature radius of the mean surface. The
parameter Ls is equal to the depth of the backscattering domain or, equivalently, to
the distance between the two points of the surface that are, respectively, closest to
the observation plane and furthest from it. Within the selected domain, the path
difference for rays coming from the source point ρs to the point r and from the
point r to the observation plane ρ does not exceed 2Ls. One can also see from the
figure that at 2Ls � Lc, all rays coming from the backscattering domain interfere
with each other. Below we will show that in this case, the interference pattern is a
speckle pattern with contrast close to unity; whereas under the opposite condition,
2Ls � Lc, a speckle pattern is also formed, but the contrast in this case is much
smaller than unity.

If the number of elements of the object’s surface scattering radiation to the
observation point is very large, which is satisfied under the condition �2 � Se,
where � is the correlation radius of the rough surface and Se is the area of the
backscattering domain, then the scattered field has a Gaussian distribution. In this
case, the relation

〈I(ρ1, t1)I(ρ2, t2)〉 − 〈I(ρ1, t1)〉〈I(ρ2, t2)〉 = |〈E(ρ1, t1)E
∗(ρ2, t2)〉|2

is valid, which is analogous to relation (1.36). Taking this into account, one can
represent the correlation function of the time-averaged intensity distribution in the
scattered field in the form

Ba(ρ1,ρ2) = 〈Ī(ρ1)Ī(ρ2)〉 − 〈Ī(ρ1)〉〈Ī(ρ2)〉

= 1

T2

t0+T∫
t0

t0+T∫
t0

|〈E(ρ1, t1)E
∗(ρ2, t2)〉|2dt1dt2.
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The results obtained above can be used for determining the contrast of the time-
averaged intensity distribution (A1.2). One can show that under the condition �2 �
Se, Cs is approximately equal to the relative fluctuations of Ī:

Cs ≈ C =
〈
Ī2
〉− 〈Ī〉2〈
Ī
〉2 = Ba(ρ,ρ)

〈
Ī(ρ)

〉−2
. (A4.4)

In the literature, the parameter C is referred to as the contrast10 or blinking index.29

In this book, we usually call it the contrast. Suppose that ρ3/λ2rc � 1 and the data-
processing time satisfies the condition T > 100Ls/c > 1/	ω. If Ls � (ρd)/rc and
100Ls > Lc > qNσ, which is usually the case in practice, we obtain, taking into
account relation (A4.3), that

〈Ī(ρ)〉 ≈ K
∫

ki(r1)dr,Ba(ρ,ρ) ≈ K2
∫ ∫

ki(r1)|R(r1, r2)|2ki(r2)dr1dr2,

where R(r1, r2) = ∫ |Sr(ω)|2 exp{−iω[(|r1 − ρs| + r1 − |r2 − ρs| − r2)/c]}dω.
For the Gaussian spectrum

|Sr(ω)|2 = 1

	ω
exp

[
−(ω−ω0)

2

(	ω)2

]
,

omitting inessential factors, we find the correlation function in the form R(r1, r2) =
exp{−[(|r1 − ρs| + r1 − |r2 − ρs| − r2)

2/L2
c]}.

At Lc > 10Ls, R(r1, r2) ≈ 1. In this case, C ≈ 1. The same result is obtained
[see Eq. (1.43)] for �2/Se � 1 in the case of illuminating the object by mono-
chromatic light. One can show that at Lc > 10Ls, the correlation radii for speckle
patterns in the time-averaged intensity distribution Ī(ρ) and in the instantaneous
intensity distribution I(ρ, t) in the case of monochromatic illumination coincide
and are equal to ρc ∼ λrc/d. Hence, at Lc > 10Ls the scattered field forms a speckle
pattern with almost unity contrast, as in the case of monochromatic illumination. In
this case, the scattered field at each observation point is formed as a superposition
of the amplitudes of all waves scattered by the object’s surface and reaching the
observation point ρ. Such a field is defined as a coherent field. Thus, if Lc > 10Ls,
which means that the coherence length of the source is much larger than twice the
depth of the backscattering surface domain for the rough object (the distance be-
tween the object’s most distant point and its closest point to the observation plane),
then the field scattered by the object is a coherent field. For the same parame-
ters rc, Ls, and d, both the visibility of interference fringes for a two-point object
(Fig. A4.2) and the contrast of the speckle pattern for a rough object (Fig. A4.2)
are close to unity; and the correlation radius of the speckle pattern in the case of
a rough object is equal to the period of interference fringes in the case of a two-
point object. Therefore, in practice, it is reasonable to consider the scattered field
as coherent when its speckle pattern has a contrast close to unity.
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The Coherence of Fields Scattered by Sufficiently Large Rough Objects 201

If the coherence length of the source satisfies the condition Lc � 2Ls, then the
contrast can be calculated analytically for relatively simple shapes of the backscat-
tering surface domains, such as a frustum of a cone. Approximating the backscat-
tering surface by a frustum of a cone, with its large base coinciding with the bound-
ary of the backscattering surface (the thick line in Fig. A4.2) and with its small base
placed at the distance Lc from the top of the surface (point B in Fig. A4.2), one can
show that C ≈ Lc/2Ls � 1. Under the condition Lc � 2Ls we will define the field
scattered by the rough object as a partially coherent field. In practice, it is reason-
able to consider the field as partially coherent if the contrast of the speckle pattern
in Fig. A4.2 becomes less than unity. This occurs for Lc ≤ 10Ls. If the coherence
length of the source is much smaller than twice the depth of the backscattering
surface of the rough object, Lc � 2Ls, then the contrast of the speckle pattern in
the scattered field is considerably less than unity. Taking all of this into account,
it is possible to distinguish between a coherent and a partially coherent field: for
Lc > 10Ls, the scattered field is coherent; for 10λ ≤ Lc ≤ 10Ls, it is partially co-
herent; and for Lc ≤ 10λ (	ω≥ 0.1ω0), it is incoherent.

These results have a simple physical interpretation. Let the object be illumi-
nated by continuous radiation with coherence length Lc. If Lc � 2Ls, then the
backscattering surface (shown in Fig. A4.3 by a thick arc) consists of Nc = 2Ls/Lc

ring-shaped domains. Inside of each domain, various parts of the surface scatter
waves that can interfere with each other. As a result, these waves form in the ob-
servation plane speckle patterns with unity contrast. At the same time, if parts of
the surface are placed in different, even neighboring ring domains, waves scattered
by them do not interfere. Therefore, in the observation domain, Nc statistically
independent speckle patterns are summed. Each of these patterns has a unique dis-
tribution of speckles. When these speckle patterns are summed, fluctuations in the
resulting scattered field interference pattern are reduced Nc times. Hence, the in-
tensity distribution contrast in the resulting speckle pattern is Cs ≈ 1/Nc.

Figure A4.3 Intensity distribution of the scattered field consisting of equidistant
pedestals with square bases δ × δ and the distances 	 between the centers. Here,
ρx and ρy are components of the radius vector ρ in the plane where the scattered
field E(ρ, t) is observed.
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Inequalities Lc > 10Ls, 10λ ≤ Lc ≤ 10Ls, and Lc ≤ 10λ can also be used for
defining the achromaticity of the source illuminating an object with known para-
meters of shape and roughness, since Ls ∼ (σ/�)2ρo, where ρo is the curvature
radius of the mean surface. If Lc > 10Ls, i.e., the spectral bandwidth of the illu-
minating source 	ω< c/10Ls, then the source is practically monochromatic. The
scattered field in this case is a coherent field. If Lc ≤ 10Ls, i.e., if the spectral band-
width of the illuminating source satisfies the condition 	ω ≥ c/10Ls, we call the
source quasi-monochromatic. In the case of such illumination, the scattered field is
partially coherent. If Lc ≤ 10λ, i.e., 	ω≥ 0.1ω0, then the source is polychromatic
and the scattered field is incoherent. It is interesting to note that if a rough object
is illuminated by a quasi-monochromatic source with coherence length Lc � 2Ls,
then the contrast of the speckle pattern in the scattered field is much smaller than
unity. In this case, the intensity distribution in the scattered field is practically the
same as for the case of white-light illumination.

Finally, let us use relation (A4.2) for the contrast Cs and give a qualitative
explanation for various values of the contrast in the speckle patterns of scattered
fields and images that were considered in Chapters 1 and 2 and this appendix. To do
this, suppose that in relation (A4.2), the instantaneous intensity distribution I(ρ, t)
or the time-averaged intensity distribution Ī(ρ) consists of equidistant pedestals
with square bases of size δ× δ, the distance between the centers of neighboring
pedestals being 	 (Fig. A4.3). It is easy to show that in this case, Cs = (	/δ)2 − 1.
In particular, if 	 → δ, Cs → 0 and I(ρ, t) (or Ī(ρ)) is constant. This case il-
lustrates the situation that occurs for a very small coherence length illuminating
source: for an incoherent scattered field and for an incoherent image, the intensity
distribution has practically zero contrast (see Sec. 2.5). At 	 = √

2δ, when the dis-
tance between the neighboring pedestals is approximately equal to the base size,
Cs = 1. This is a model for the speckle pattern in the Fresnel zone of the scattered
coherent field (see Sec. 1.3) and in a coherent image formed under the condition
that separate elements of the rough surface are not resolved by the imaging system
(see Sec. 2.2.1). Then, the contrast of the speckle pattern is close to unity and the
distance between neighboring speckles is approximately equal to the speckle size.
At 	 � δ, when the distance between the neighboring pedestals by far exceeds the
base size, Cs ≈ (	/δ)2 � 1. This is a model of speckle pattern formation in the
scattered coherent field at a small distance from the scattering surface (rc < �2/λ;
Sec. 1.3) and in a coherent image formed under the condition that separate ele-
ments of the rough surface are resolved by the imaging system (see Sec. 2.2.2).
Then, the contrast of the speckle pattern can be much larger than unity, and the
distances between the neighboring speckles can considerably exceed their sizes.

Conclusions

1. Coherence of fields scattered by rough objects depends strongly on the coher-
ence length Lc of the illuminating radiation and on the geometric parameters
of the scattering object. A scattered field is called coherent if at each point of
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the observation domain it is formed by means of amplitude summation (inter-
ference) of all scattered waves coming to that point. Such a field is formed if
Lc ≥ 10Ls, where Ls is the depth of the backscattering surface of the object.
A scattered field is called partially coherent if at each point of its observation
it is formed by means of amplitude summation (interference) of waves scat-
tered by separate parts of the object’s surface. Such a field is formed under the
condition 10Ls ≥ Lc ≥ 10λ. If Lc ≤ 10λ, i.e., 	ω≥ 0.1ω0, then the source is
polychromatic and the scattered field is incoherent.

2. If the number of scattering surface elements is large, then the intensity dis-
tribution in the scattered field forms a speckle pattern, which in the case of a
coherent scattered field has almost unity contrast, and in the case of a partially
coherent and an incoherent field, has a contrast much less than unity.

3. From conclusion 1 it follows that radiation sources used in remote sensing
to illuminate objects can be categorized according to their achromaticity. If
Lc ≥ 10Ls, then the source is practically monochromatic and the scattered field
is coherent. In the literature, such a source is often called a coherent source.
If 10Ls ≥ Lc ≥ 10λ, then the source is quasi-monochromatic and the scattered
field is partially coherent. In the literature, such a source is usually called low-
coherent. If Lc ≤ 10λ, i.e., 	ω≥ 0.1ω0, where 	ω andω0 are, respectively,
the width and the mean frequency of the source spectrum, then the source is
polychromatic.
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Appendix 5

Physics of Speckle Pattern Formation in the
Images of Rough Objects

Let us describe the formation of the coherent image of a rough surface illuminated
by a plane monochromatic wave with the wavelength λ.39 Consider a somewhat
idealized case where the rough surface is flat and the roughness height standard
deviation is large compared to the wavelength, σ� λ. The surface will be con-
sidered as a strongly deformed mirror (see Figs. A5.1–A5.3). In this case, it can
be viewed as a set of separate elements, which can be approximated by convex or
concave parabolic mirrors smoothly joined together. Their diameters are random
and, on average, equal to the correlation radius of the surface roughness height �.
Their focal lengths are also random and, on the average, are equal to �2/2σ. In this
representation, the rough surface is a source of secondary spherical waves coming
from separate elements and focusing at points placed on different sides of the flat
mean surface. In Figs. A5.1–A5.3, these are random points A, B, C, D, F, K, which
we will call points of random focusing. Their optical conjugates are points placed
on different sides of the image plane. The image plane itself is optically conjugate
to the flat mean surface. Each point of the coherent image of the rough surface is
formed due to the superposition of waves focused by the imaging system to this
point of the image plane.

Further, let us analyze how the coherent image of the rough surface is formed
for different sizes dρ of the imaging system aperture. Here, one can distinguish
between three typical cases.

Case 1: 0 < dρ < (λrc)/�. Here, rc is the distance from the imaging system
aperture to the flat mean surface (Fig. A5.1). From these inequalities, it follows that
the size (λrc)/dρ of the minimum resolvable domain of the rough surface, accord-
ing to the Rayleigh criterion, exceeds the roughness height correlation radius �.
In the figure, this is the domain between points A and K. Under this condition,
the field at each point of the image plane is a superposition of a large number of
waves scattered by that domain. All the waves are focused into the area shown in
Fig. A5.1 by an oval. According to the central limit theorem, the resulting field
distribution is close to Gaussian, and its intensity contrast C or, in other words, the
contrast of the speckle pattern in the coherent image, is close to unity (C ≈ 1).

205
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206 Appendix 5

Figure A5.1 Formation of the coherent image of a rough surface (thick curve) for the
case of a small-aperture imaging system, dρ < (λrc)/�. Here, � is the correlation ra-
dius of the object surface roughness height. The thick arrows denote rays propagating
from the monochromatic source. The thin arrows denote secondary spherical waves
propagating from the rough surface. The contrast of the speckle pattern is C ≈ 1. The
correlation radius of the speckle pattern is ρc ≈ (λzi)/dρ.

The contrast can be used to estimate the ratio between the sizes of bright spots
in the speckle pattern and the dark intervals between them. For this purpose, let us
approximate the speckle pattern by equidistant rectangular pedestals with square
bases ρc × ρc and equal sizes (see Fig. A4.2 in Appendix 4). In this case, the
pedestals imitate bright spots in the speckle pattern and their size ρc imitates the
correlation radius. Then, C ≈ (	/ρc)

2 − 1, where 	 is the distance between the
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centers of neighboring bright spots (speckles). If the contrast C ≈ 1, then the size
of the dark spaces is of the same order as the spot size ρc. If 0 < dρ < (λrc)/�,
then the bright spot size can be estimated from the condition that in this case, the
speckle pattern is formed mainly by diffraction by the imaging system aperture. As
a result, random points A, B, C, D, F, and K are transformed in the image plane
into an Airy disk (a speckle). The average size of the domain where the brightness
of this spot is almost constant, i.e., the correlation radius of the speckle pattern, is

ρc ≈ λzi

dρ
, (A5.1)

where zi is the distance between the image plane and the imaging system’s aperture.
As one can see from Fig. A5.1, the longitudinal size of the oval area is equal to the
correlation radius of the speckle pattern, ρc.

Hence, under the condition 0 < dρ < (λrc)/�, a coherent image is a speckle
pattern consisting of bright Airy disks (speckles) separated by dark spaces, which
are approximately the same size as an average speckle. Experiments confirm that
a speckle pattern consists of speckles, which are the Airy disks. In particular, for
a circular imaging system aperture, the pattern consists of a set of Airy disks de-
formed by each other so that each disk is a concentric ring with a bright spot at
the center. The contrast of the speckle pattern is C ≈ 1 and its correlation radius is
ρc ≈ (λzi)/dρ. Let us further increase the size dρ of the imaging system aperture.
Then, the correlation radius ρc will be reduced to a certain minimum, which can
be estimated for the second interval of dρ variation.

Case 2: (λrc)/� < dρ < (σrc)/� (Fig. A5.2). In this case, the speckle pattern
of a coherent image is formed mainly geometrically. Every second spherical wave
coming from a single element of a rough surface is focused at some distance from
the image plane. In Fig. A5.2, we show for simplicity a wave that comes from
the edge element and is focused at the point K′ optically conjugate to the point of
random focusing, K. Then, in the image plane, there appears a bright defocused
spot, i.e., a speckle. Its size is determined by the correlation radius of the speckle
pattern, ρc. A simple geometric analysis shows that at rc � �2/2σ,

ρc = dρzi�
2

σr2
c

, (A5.2)

and that under the condition (λrc)/� < dρ < σ/�, the distance between the neigh-
boring speckles is

	 ≈ zi�

rc
� ρc. (A5.3)

One can see from this relation that under the condition (λrc)/� < dρ < σ/�, the
field in the image plane is formed by spatially separated contributions of secondary
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Figure A5.2 Formation of the coherent image of a rough object for an intermediate-
aperture imaging system, (λrc)/� < dρ < (rcσ)/�. Here, σ is the standard deviation
of the object surface roughness height. The maximum contrast of the speckle pat-
tern is C ≈ σ/λ. The minimum correlation radius of the speckle pattern is ρcm =
(zi

√
λσ)/(�rc), with the imaging system aperture dρ ≈ (rc

√
λσ)/�.

spherical waves coming from separate elements. Therefore, the field statistics in
the coherent image is essentially non-Gaussian and the contrast of the speckle pat-
tern is

C ≈
(

	

ρc

)2

� 1. (A5.4)

From relation (A5.2), it is clear that when starting from a certain size dρ of
the imaging system aperture, the speckle pattern correlation radius ρc increases
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Figure A5.3 Formation of the coherent image of a rough object for a large-aperture
imaging system, dρ > (rcσ)/�. Here, the case of a smooth surface is presented. The
contrast of the speckle pattern is C � 1; the correlation radius of the speckle pattern
is ρc ≈ �/µ, where µ= rc/zi is the scaling factor.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 20 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



210 Appendix 5

with dρ. This critical size can be estimated by setting an equality between relations
(A5.1) and (A5.2):

λzi

dρ
= dρzi�

2

σr2
c

. (A5.5)

From Eq. (A5.5) we obtain dρ = (rc
√
λσ)/�. Substituting this relation in (A5.2),

we obtain the following estimate for the maximal correlation radius of the speckle
pattern:

ρcm ≈ zi
√
λ/σ

�rc
. (A5.6)

At dρ = (rc
√
λσ)/�, the contrast of the speckle pattern achieves its maximum

value, which can be estimated, with an account for (A5.3), (A5.4), and (A5.6), as
Cm ≈ σ/λ. Since σ� λ, Cm � 1.

Thus, at a certain size of imaging system aperture dρ ≈ (rc
√
λσ)/�, the con-

trast of the speckle pattern in a coherent image considerably exceeds unity, which
indicates that the field statistics in the image are essentially non-Gaussian. In this
case, the speckle pattern consists of single, isolated speckles with large distances
between the neighboring speckles.

Case 3: dρ > (σrc)/�. Now, all secondary spherical waves coming from sep-
arate elements of the rough surface and passing through the points of random fo-
cusing (Fig. A5.3) enter the imaging system aperture. For instance, the secondary
wave passing through point K enters the imaging system aperture and is then fo-
cused into the optically conjugate point K′. In Fig. A5.3, an example is given of a
surface with more smooth inhomogeneities than are shown in Figs. A5.1 and A5.2.
The mean size of the defocusing spots (speckles) in the image plane is in this case
ρc ≈ �/µ, where µ = zi/rc is the scaling factor. This means that at dρ > σ/�, the
correlation radius of the speckle pattern tends to �/µ with an increase of dρ, and
the speckles overlap. Therefore, the contrast of the speckle pattern in a coherent
image is much less than unity, C � 1. At very large dρ and a constant reflection
coefficient at different points of the object surface, the imaging system forms an
almost exact copy of the field distribution Ei(r) in the plane monochromatic wave
illuminating the surface. Here, Ei is the amplitude of the illuminating wave. In this
case the intensity at each point of the coherent image I(δ) ∼ |Ei(r)|2, and if, for
example, |Ei(r)|2 is constant, then the intensity I(δ) is constant as well. Such an
image has zero contrast, C = 0. The same situation takes place in an aberration-
free image of a flat mirrorlike surface, which can be formed by an imaging system
with an aperture of arbitrary size.
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A
active aperture synthesis, see Fourier

telescopy
angular velocity

estimation error reduction, 90
experimental results, 85
method of determining, 83–88, 99
minimal coherence length, 88
setup for determining components, 91
setup with no drawbacks, 83

antenna technique, 3

B
backscattering surface, see shine domain
blinking index, 20, 26, 37, 200

C
coherent field defined, 17, 200
coherent image

defined, 39
quality of, see image quality

combined method of determining all
dynamic parameters, 98

contrast defined, 26, 37, 200
contrast of the intensity distribution, 20, 26,

37, 42, 44
correlation radius

flat object in a coherent image, 42–43,
46–48

mirror surface, 69–70
moving object, 34, 36, 71
nonflat object in a coherent image, 51–54
random surface, 5–6
small-scale surface roughness, 64–66
stationary object, 21–26

correlation time, 6, 16, 33–36, 38

D
deformation parameters, 97–98

E
environmental pollution, 156

F
Fourier–Fresnel space transform, 74
Fourier–Fresnel time transform, 158, 169,

176
Fourier space transform, 71
Fourier time transform, 71
Fourier telescopy

active aperture synthesis, 103
arbitrary positions of transmitters, 113
arbitrary surface shape, 113
atmospheric influence, 106
averaged undistorted image, 122
backscattering surface, 109–111, 116, 121
defined, 103
dimensions of transmitting arrays and

receiving aperture, 113
geometry, 107
integral correlation measurement,

122–123, 125, 127
intensity distribution, 183, 188
laser radiation instability, 104, 116–117,

126
laser transmitter instability, 115–117
local measures, 122, 125, 127
noise, 122–125, 127
panoramic microscope, 118, 121–122,

126
phase closure method, 191–192
polychromatic light source, 113
practical realization, 104
problems, 104
received signal, 105
resolution, 111–112, 114, 126, 183
roughness parameters, 104, 109
shine domain, 111
smooth inhomogeneous atmosphere, 193
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smoothing the speckle pattern, 122–123,
127

speckle structure, 113
square matrix, 103
statistical characteristics of the intensity

distribution, 187
statistical model of the received signal,

105
surface shape, 104, 109–110, 126
time instability of the laser transmitter,

115
transmitter choice, 107–108
transmitting aperture, 103–104, 126

G
Gaussian processes, 7
Gaussian statistics, 45

I
illumination direction, 58
image quality, 48, 50, 55, 57, 59, 73
instantaneous intensity distribution,

196–197, 200, 202
intensity distribution in a coherent image,

177
intensity hologram, 25, 37, 74
interference fringes, visibility of, 196

K
Kirchhoff approach, 9
Kirchhoff approximation, 1, 18, 37, 40
Kirchhoff–Fresnel formula, 12

L
large-scale roughness, 42, 49
Leith–Upatnieks holographic technique,

165–166
linear velocity

accuracy of method, 78–79
direct measurement, 81
estimating Cartesian components, 81
method of determining, 76–82, 101

M
mean value of the intensity, 42
microwave antenna technique, 3
mirror surfaces, 64, 69–70
monochromatic background, see time

background holography
monochromatic light source

“almost,” 17
defined, 14

moving objects, obtaining information
about, see time background
holography

N
near-Gaussian, 53
noise field, 14
non-Gaussian statistics, 44, 50
noncoherent field defined, 17
nonflat rough objects, statistical

characteristics of, 53–56

O
object properties determined by scattered

field, 14

P
partially coherent field defined, 17, 201,

203
PDF, see probability density function
phase closure method, see Fourier

telescopy
polychromatic light source, 60–63, 202

and Fourier telescopy, 113
probability density function, 14–16, 20, 49

Q
quality of an image, see image quality
quasi-monochromatic light source, 39,

60–62, 195
and time background holography, 130

quasi-static approximation, 28–29, 32
quasi-static principle, 27, 37

R
random field, 1, 9–14
random process, 1, 4–8
random surface, 1–2, 9

parameters, 37
relative fluctuations, 37
rotation angle, experimental setup of,

94–96
rotation velocity, see angular velocity
roughness height distribution, 2, 6, 14, 16,

28, 40, 42, 64–65
see also surface roughness height

roughness height parameters, 37

S
scattered field, 14
shine domain, 54–56, 62–63, 72
small-scale roughness, 64, 74
space–time characteristics, 1, 4
speckle number, 54, 73
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speckle pattern, 199–203, 205
specular component of the scattered field,

19
statistical theory of decisions, 14, 16
stroboscopic method, 83, 85
surface deformations

and joint correlation function, 92–93
description, 93
experimental setup, 94
variations, 93
see also deformation parameters

surface roughness height, 6, 19, 28, 37,
40–42, 64–65, 70, 72

T
temporal and spatial structure of coherent

fields, see time background
holography

theory of decisions, see statistical theory of
decisions

time background holography, 129
advantages, 129
applicability, 130
detection of a moving object, 139
direct detection, 147
dynamic and geometric parameters, 148,

152, 157
environmental pollution, 156
equal-signal zone principle, 153, 175
experiment, 144, 146–147, 163
fast algorithm, 148, 152
fast detection of moving objects, 148
focused image holography, 158

Fourier–Fresnel time transform, 158, 169,
176

high-resolution imaging system, 134,
139, 175

Leith–Upatnieks holographic technique,
165–166

low-resolution imaging system, 137, 139,
175

microwave range, 145–146
moving object detection, 140, 143–144,

147
objects moving in water, 146
pollution particles, 156–157, 176
quasi-monochromatic light source, 130
temporal and spatial structure of coherent

fields, 130, 147
theory, 130–131
time averaging of coherent wavefields,

157–158, 164
time averaging of scattered coherent

fields, 176
time background intensity holography,

169, 170, 176
time spectrum of a coherent field, 70, 74
time-averaged intensity distribution,

196–197, 200, 202
transmitting aperture, see Fourier telescopy

V
visibility of interference fringes, 196

W
water surface, 3
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