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Preface

Everyone knows the fundamental role that the Fourier transform plays in optics,
representing a monochromatic light field as a linear superposition of plane waves
propagating in different directions. Perhaps, the coherent-mode representation of
the optical field broached for the first time by H. Gamo in his Matrix Treatment
of Partial Coherence (Progress in Optics III, E. Wolf, ed., North-Holland, Amster-
dam, 1964), which was later developed by E. Wolf in his “New theory of partial
coherence in the space-frequency domain” (J. Opt. Soc. Am. A, Vol. 72, No. 3,
1982, and Vol. 3, No. 1, 1986), plays a not less important role in contemporary
optics. From a physical point of view, the coherent-mode representation describes
an optical field of any state of coherence as a linear superposition of uncorrelated,
completely coherent modes, a fact that gives new insight into the physics of gen-
eration, propagation, and transformation of optical radiation. From a mathematical
standpoint, it expresses the cross-spectral density function of an optical field as a
sum of terms that are separable in space, a fact that allows significant simplifica-
tion of the analysis of statistical optical processes and systems. However, to my
mind, the coherent-mode representation of optical fields, despite its power and at-
tractiveness, has not yet found its due place in optical science and practice. This
is affirmed, in particular, by a relatively small number of publications where the
coherent-mode representation is treated. Even in a monumental treatise like Opti-
cal Coherence and Quantum Optics by L. Mandel and E. Wolf, less than two dozen
pages are dedicated to this subject.

The present book represents a modest attempt to make up, to a certain extent,
for a deficiency in possible applications of the coherent-mode representations in
several areas of optics. This book is mainly based on the original results obtained
by the author and his postgraduate students but, to ensure a thorough coverage of
the total scope of the subject, it also contains some results of other authors, which
are properly referenced. I tried to present this book in a brief recapitulative form,
handy for both professionals and postgraduate students in physical optics. I hope
that the book will be interesting for the reader and will stimulate the subsequent
development of the coherent-mode representations in optics and their practical ap-
plications.

There are many people to whom I owe a special word of thanks for their
help with the creation of this book. First of all, I consider it my pleasant duty
to mention here the scientists whose publications had a decisive influence on the
results presented in the book. Listed in alphabetical order, they are: G. S. Agar-
wal, W. Carter, J. Durnin, J. Duvernoy, J. T. Foley, A. T. Friberg, H. Gamo,
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J. W. Goodman, F. Gory, G. Guattari, L. Mandel, E. W. Marchand, N. Mucunda,
R. Martínez-Herrero, P. Mejías, M. Nieto-Vesperinas, C. Padovani, B. E. A. Saleh,
R. Simon, K. Sundar, J. Turunen, J. van der Gracht, V. Vasara, A. Walther, and
E. Wolf. I would also like to mention with gratitude my former postgraduate stu-
dents, M. V. Rodríguez Solís, O. Ramos Romero, and J. C. Ramírez San-Juan, who
are the coauthors of several of my papers used in this book. I am much indebted to
Yulia Ostrovskaya and Philip J. Stabler for the excellent language redaction of the
manuscript.

The main part of the writing was done at the Physics and Mathematics De-
partment of the Autonomous University of Puebla, Mexico. I am grateful to
M.Sc. E. Doger Guerrero, former rector of the university, M.Sc. E. Agüera Ibáñez,
current rector, Dr. P. H. Hernández Tejeda, vice-rector, and Dr. C. Ramírez Romero,
head of the department, for providing the excellent facilities for my work. Part
of the text was prepared during my sabbatical leave at the National Institute of
Astronomy, Optics, and Electronics, Mexico. I acknowledge my indebtedness to
Dr. J. S. Guichard Romero, Director of the Institute, Dr. J. F. Soto Eguibar, Deputy
Director, and G. Martínez Niconoff, former coordinator of the Optical Division,
for their hospitality and fruitful collaboration. The work on the book was partially
supported by the National Council for Science and Technology (CONACYT) of
Mexico under the projects 3644-E, 25841-E, and 36875-E; this is much appreci-
ated.

I acknowledge with thanks the excellent cooperation I received from the staff
of SPIE Press at all stages of the production of this book. In particular, I wish
to express my appreciation to Timothy Lamkins, Acquisitions Editor, and Sharon
Streams, Press Manager, for their exceptional attention to my work.

Finally, I thank my wife, Marina, without whose patience, encouragement, and
support this book would not have been possible.

Andrey S. Ostrovsky

Autonomous University of Puebla
Puebla, Mexico

May 2006
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1
Coherent-Mode Representation of Optical
Fields and Sources

1.1 Introduction

In the 1980s, E. Wolf proposed a new theory of partial coherence formulated in
the space-frequency domain.1,2 The fundamental result of this theory is the fact
that a stationary optical field of any state of coherence may be represented as a
superposition of coherent modes, i.e., elementary uncorrelated field oscillations
that are spatially completely coherent.† The importance of this result can hardly be
exaggerated since it opens a new perspective in understanding and interpreting the
physics of generation, propagation, and transformation of optical radiation. In this
chapter, using primarily the basic book by Mandel and Wolf,4 we give an outline of
the theory of optical coherence in the space-frequency domain and coherent-mode
representations of an optical field. We also consider the concept of the effective
number of modes needed for the coherent-mode representation of an optical field,5

and give a brief survey of the known coherent-mode representations of some model
sources, namely, the Gaussian Schell-model source ,6–9 Bessel correlated source,10

and the Lambertian source.11

1.2 Foundations of the Coherence Theory in the
Space-Frequency Domain

Let us consider a scalar quasi-monochromatic optical field occupying some finite
closed domain D. Let V (r, t) be the complex analytic signal associated with this
field at a point specified by the position vector r = (x, y, z) and at time t . For any
realistic optical field, V (r, t) is a fluctuating function of time, which may be re-
garded as a sample realization of some random process. Hence, in the general case,
an optical field can only be described in statistical terms. Within the framework of
the second-order moments theory of random processes, the statistical description
of a fluctuating field is given by the cross-correlation function �(r1, r2, t1, t2), de-
fined as

� (r1, r2, t1, t2) = 〈V ∗ (r1, t1)V (r2, t2)
〉
, (1.1)

†A similar result has been obtained in the past by H. Gamo in the framework of matrix treatment of
partial coherence.3

1
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2 Coherent-Mode Representations in Optics

where the asterisk denotes the complex conjugate and the angle brackets denote
the average taken over an ensemble of all possible process realizations. The ran-
dom field is said to be stationary in the wide sense if its cross-correlation function
depends on the two time arguments only through their difference τ = t2 − t1, i.e.,

� (r1, r2,τ) = 〈V ∗ (r1, t)V (r2, t + τ)
〉
. (1.2)

The cross-correlation function �(r1, r2,τ) is known as the mutual coherence func-
tion and represents the central quantity of the classical theory of optical coher-
ence. It may be noted that �(r1, r2,τ) describes an optical field in the space-time
domain.

An alternative statistical description of an optical field may be obtained by
assuming that �(r1, r2,τ) is absolutely integrable in the range −∞ < τ < ∞ and,
hence, may be represented by its Fourier transform

W (r1, r2,ν) =
∫ ∞

−∞
� (r1, r2,τ) exp (−i2πντ)dτ, (1.3)

where the Fourier variable ν has the meaning of frequency. The function
W(r1, r2,ν) is known as the cross-spectral density function of the field and repre-
sents the central quantity of the coherence theory in the space-frequency domain.

We will now note a few important properties of the cross-spectral density func-
tion. In the first place, assuming that W(r1, r2,ν) is a continuous function of r1
and r2 bounded throughout the domain D, one necessarily finds that it is square
integrable in D, i.e., ∫ ∫

D

|W (r1, r2,ν)|2 dr1dr2 < ∞. (1.4)

In the second place, W(r1, r2,ν) possesses Hermitian symmetry, i.e.,

W (r2, r1,ν) = W ∗ (r1, r2,ν) , (1.5)

which follows at once on taking the Fourier transform of both sides of the evident
equality �(r2, r1,−τ) = �∗(r1, r2,τ). In the third place, it may be shown (see
Ref. 1, Appendix A) that W(r1, r2,ν) is a nonnegative definite function, i.e.,∫ ∫

D

W (r1, r2,ν)f ∗ (r1) f (r2)dr1dr2 � 0, (1.6)

where f (r) is any square-integrable function.
In the particular case when r1 = r2 = r, the cross-spectral density function

becomes the spectral density

S (r,ν) = W (r, r,ν) . (1.7)
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Coherent-Mode Representation of Optical Fields and Sources 3

Inequality (1.6), together with definition (1.7), implies that

S (r,ν) � 0 (1.8)

and

|W (r1, r2,ν)| � [S (r1,ν)]1/2 [S (r2,ν)]1/2 . (1.9)

In view of inequality (1.9), the normalized cross-spectral density function may be
defined as

µ (r1, r2,ν) = W (r1, r2,ν)

[S (r1,ν)]1/2 [S (r2,ν)]1/2
, (1.10)

known as the spectral degree of coherence. The following relation for µ(r1, r2,ν)

is obvious:

0 � |µ (r1, r2,ν)| � 1. (1.11)

When |µ| = 0 for each pair of different points r1 and r2, the field is referred
to as completely incoherent; when |µ| = 1, as completely coherent; and when
0 < |µ| < 1, as partially coherent in space.

We will now consider the propagation of the cross-spectral density in free
space, i.e., in the space that does not contain any sources or absorbers. As is well
known,4 the mutual coherence function �(r1, r2,τ) satisfies, in free space, the two
wave equations

∇2
1� (r1, r2,τ) = 1

c2

∂2

∂τ2
� (r1, r2,τ) , (1.12a)

∇2
2� (r1, r2,τ) = 1

c2

∂2

∂τ2
� (r1, r2,τ) , (1.12b)

where ∇2
1(2) is the Laplacian operator taken with respect to the point r1(2), and c is

the speed of light in a vacuum. Then, taking the Fourier transform of Eqs. (1.12)
with respect to variable τ, we find that the cross-spectral density W(r1, r2,ν) prop-
agates in free space in accordance with the coupled Helmholtz equations

∇2
1W (r1, r2,ν) + k2W (r1, r2,ν) = 0, (1.13a)

∇2
2W (r1, r2,ν) + k2W (r1, r2,ν) = 0, (1.13b)

where k = 2πν/c is the wave number. Furthermore, it will be useful to find the
solution of these equations for the case when an optical field propagates into a
half-space z > 0 with the known boundary values of cross-spectral density at all
pairs of points x1 = (x1, y1) and x2 = (x2, y2) in the plane z = 0 (Fig. 1.1). The
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4 Coherent-Mode Representations in Optics

solution of Eq. (1.13b) for fixed r1 is given by Rayleigh’s first diffraction formula4

as

W (r1, r2,ν) = − 1

2π

∫
(z=0)

W (r1,x2,ν)
∂

∂z2

[
exp (ikR2)

R2

]
dx2, (1.14)

where R2 = |r2 −x2|. The solution of Eq. (1.13a) for r2 = x2 is consequently given
by

W (r1,x2,ν) = − 1

2π

∫
(z=0)

W (x1,x2,ν)
∂

∂z1

[
exp (−ikR1)

R1

]
dx1, (1.15)

where R1 = |r1 − x1|. On inserting Eq. (1.15) into Eq. (1.14), we obtain the fol-
lowing joint solution of Eqs. (1.13):

W (r1, r2,ν) = 1

(2π)2

∫ ∫
(z=0)

W (x1,x2,ν)

× ∂

∂z1

[
exp (−ikR1)

R1

]
∂

∂z2

[
exp (ikR2)

R2

]
dx1dx2. (1.16)

Calculating the derivatives in Eq. (1.16) and assuming that (1/r1(2)) � k, one may
readily find the following approximate expression for propagation of the cross-
spectral density into the half-space:

W (r1, r2,ν) =
(

k

2π

)2 ∫ ∫
(z=0)

W (x1,x2,ν)

× exp [ik(R2 − R1)]

R1R2
cosθ1 cosθ2dx1dx2. (1.17)

Figure 1.1 Notation relating to the propagation of the cross-spectral density function from
the plane z = 0 into the half-space z > 0.
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Coherent-Mode Representation of Optical Fields and Sources 5

1.3 Coherent-Mode Structure of the Field

As is well known from the theory of integral equations, any continuous func-
tion that satisfies conditions (1.4)–(1.6) and, hence, the cross-spectral density
W(r1, r2,ν), may be expressed in the form of Mercer’s expansion as

W (r1, r2,ν) =
∑
n

λn (ν)ϕ∗
n (r1,ν)ϕn (r2,ν) , (1.18)

where λn(ν) are the eigenvalues and ϕn(r,ν) are the eigenfunctions of the homo-
geneous Fredholm integral equation of the second kind,∫

D

W (r1, r2,ν)ϕn (r1,ν)dr1 = λn (ν)ϕn (r2,ν) . (1.19)

It is important to stress that all the eigenvalues λn(ν) are real and nonnegative, i.e.,

λ∗
n (ν) = λn (ν) � 0, (1.20)

and the eigenfunctions ϕn(r,ν) are mutually orthonormal in D (if it is not already
so, this may be achieved using the Gram-Schmidt procedure), i.e.,∫

D

ϕ∗
n (r,ν)ϕm (r,ν)dr = δnm, (1.21)

where δnm is the Kronecker symbol. It is appropriate to ascertain one more property
of the eigenfunctions ϕn(r,ν). On inserting Eq. (1.18) into Eq. (1.13b), we obtain∑

n

λn (ν)ϕ∗
n (r1,ν)∇2

2ϕn (r2,ν) + k2
∑
n

λn (ν)ϕ∗
n (r1,ν)ϕn (r2,ν) = 0.

(1.22)
Next, multiplying Eq. (1.22) by ϕm(r1,ν), integrating the result with respect to r1
over the domain D, and making use of the orthonormality relation (1.21), we find
that the eigenfunctions ϕn(r,ν) satisfy the Helmholtz equation,

∇2ϕn (r,ν) + k2ϕn (r,ν) = 0. (1.23)

To clear up the physical meaning of expansion (1.18), we rewrite it in the form

W (r1, r2,ν) =
∑
n

λn (ν)Wn (r1, r2,ν) , (1.24)

where

Wn (r1, r2,ν) = ϕ∗
n (r1,ν)ϕn (r2,ν) . (1.25)
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6 Coherent-Mode Representations in Optics

It follows directly from Eqs. (1.23) and (1.25) that the function Wn(r1, r2,ν) sat-
isfies the equations

∇2
1Wn (r1, r2,ν) + k2Wn (r1, r2,ν) = 0, (1.26a)

∇2
2Wn (r1, r2,ν) + k2Wn (r1, r2,ν) = 0, (1.26b)

which are just the same as those governing the free-space propagation of the cross-
spectral density W(r1, r2,ν). Hence, the function Wn(r1, r2,ν) may be regarded
as the cross-spectral density associated with a mode of the field. Next, making use
of Eqs. (1.10) and (1.25), we find that the spectral degree of coherence of each field
mode is given by

µn (r1, r2,ν) = ϕ∗
n (r1,ν)ϕn (r2,ν)

|ϕn (r1,ν)| |ϕn (r2,ν)| . (1.27)

It follows from Eq. (1.27) that

|µn (r1, r2,ν)| = 1, (1.28)

i.e., that each field mode represents the spatially completely coherent contribution.
Thus, expansion (1.24) may be interpreted as representing the cross-spectral den-
sity of the field as a superposition of contributions from modes that are completely
coherent in the space-frequency domain. For this reason, we will refer to expansion
(1.18) as the coherent-mode representation of the field. We will also refer to the set

� = {λn (ν) ,ϕn (r,ν)} (1.29)

as the coherent-mode structure of the field. In the special case when the integral
equation (1.19) admits only one solution ϕ(r,ν) associated with an eigenvalue
λ(ν), Eq. (1.18) takes the form

W (r1, r2,ν) = λ (ν)ϕ∗ (r1,ν)ϕ (r2,ν) , (1.30)

which implies that the field consists of the sole coherent mode, i.e., that it is spa-
tially completely coherent at frequency ν.

Equation (1.18) allows us to obtain some other useful coherent-mode repre-
sentations. Indeed, on making use of representation (1.18) in definition (1.7), we
obtain the relation

S (r,ν) =
∑
n

λn (ν) |ϕn (r,ν)|2 . (1.31)

On integrating Eq. (1.31) over D with due regard for Eq. (1.21), we come to the
relation ∫

D

S (r,ν)dr =
∑
n

λn (ν) . (1.32)
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Coherent-Mode Representation of Optical Fields and Sources 7

On making use of definition (1.25) and Eq. (1.21), we obtain the following ortho-
normality relation:∫ ∫

D

W ∗
n (r1, r2,ν)Wm (r1, r2,ν)dr1dr2 = δnm. (1.33)

Finally, applying the relation

|W (r1, r2,ν)|2 =
∑
n

∑
m

λn (ν)λm (ν)W ∗
n (r1, r2,ν)Wm (r1, r2,ν) , (1.34)

obtained directly from definition (1.25), and integrating its both sides twice over
the domain D with due regard for relation (1.33), we find that∫ ∫

D

|W (r1, r2,ν)|2 dr1dr2 =
∑
n

λ2
n (ν) . (1.35)

The deduced modal relations (1.31), (1.32), and (1.35), as well as the basic
coherent-mode representation (1.18), will be widely used in our subsequent con-
siderations.

1.4 Ensemble Representation of the Cross-Spectral Density
Function

On making use of the coherent-mode representation (1.18), one may deduce an-
other useful representation of the cross-spectral density function expressed in terms
of the ensemble of field realizations.

Let us construct a random function of the form

U (r,ν) =
∑
n

an (ν)ϕn (r,ν) , (1.36)

where ϕn(r,ν) are, as before, the eigenfunctions of Eq. (1.19) and an(ν) are some
random variables that will be specified later. Since, as follows from Eq. (1.23), each
term in expansion (1.36) satisfies the Helmholtz equation, the function U(r,ν)

does the same, i.e.,

∇2U (r,ν) + k2U (r,ν) = 0. (1.37)

Hence, the function U(r,ν) may be considered as an optical signal, i.e., the time-
independent part of a monochromatic wave function

V (r, t) = U (r,ν) exp (−i2πνt) . (1.38)
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8 Coherent-Mode Representations in Optics

The cross-correlation function of the optical signal (1.36) at two points r1 and r2

is given by

〈
U∗ (r1,ν)U (r2,ν)

〉=∑
n

∑
m

〈
a∗
n (ν) am (ν)

〉
ϕ∗ (r1,ν)ϕ (r2,ν) , (1.39)

where the angle brackets, unlike those used in Eq. (1.1), this time denote the sta-
tistical averaging over an ensemble of frequency-dependent (not time-dependent)
realizations.

Let us now assume that the random variables an(ν) are chosen to satisfy the
condition

〈
a∗
n (ν) am (ν)

〉= λn (ν)δnm, (1.40)

where λn(ν) are, as before, the eigenvalues of Eq. (1.19). The condition (1.40) can
be satisfied, for example, by taking

an (ν) = [λn (ν)]1/2 exp (iθn) , (1.41)

where θn are statistically independent random variables uniformly distributed in
the interval [0,2π]. Applying condition (1.40) to Eq. (1.39), we obtain

〈
U∗ (r1,ν)U (r2,ν)

〉=∑
n

λn (ν)ϕ∗
n (r1,ν)ϕn (r2,ν) . (1.42)

Finally, comparing Eqs. (1.42) and (1.18), we come to a new representation of the
cross-spectral density function in the form

W (r1, r2,ν) = 〈U∗ (r1,ν)U (r2,ν)
〉
. (1.43)

This ensemble representation may be considered as an alternative definition of the
cross-spectral density function W(r1, r2,ν) in the form of the cross-correlation
function of the optical signal given by Eq. (1.36) with condition (1.40). Applying
this definition, we may obtain a new representation of the spectral density S(r,ν),

S (r,ν) =
〈
|U (r,ν)|2

〉
. (1.44)

This representation clearly shows that spectral density represents the spatial distri-
bution of an average squared modulus of monochromatic oscillations and, hence,
S(r,ν) may be referred to as the power spectrum of an optical field.
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Coherent-Mode Representation of Optical Fields and Sources 9

1.5 Effective Number of Coherent Modes

We will inquire now about the number of coherent modes needed to represent
a random field in D. To do this, we use the concept of the effective number of
coherent modes introduced in Ref. 5.

As follows from Section 1.3, the eigenvalues λn(ν) may be arranged in a non-
increasing sequence as

λ0 (ν) � λ1 (ν) � λ2 (ν) � · · · � λn (ν) � · · · � 0. (1.45)

Hence, one may equate each of the lowest-order eigenvalues in Eq. (1.32) with
λ0(ν), and take the rest to be equal to zero. This allows the following definition of
the effective number N (ν) of coherent modes needed to represent the field:

N (ν) ≡ 1

λ0 (ν)

∞∑
n=0

λn (ν) . (1.46)

As can be seen, the number N (ν) is, in general, noninteger; but for convenience,
in practice it may be approximated by its integer part. It is obvious that the number
N (ν) depends on the statistical properties of the field. To estimate its upper bound,
we use the inequality

∞∑
n=0

(
λn (ν)

λ0 (ν)

)2

�
∞∑

n=0

λn (ν)

λ0 (ν)
, (1.47)

which is true in view of relation (1.45). From this inequality we obtain a lower
bound on the value λ0(ν) as

λ0 (ν) �

∞∑
n=0

λ2
n (ν)

∞∑
n=0

λn (ν)

. (1.48)

On making use of Eqs. (1.48) and (1.46), we find the upper bound on the number
N (ν) to be

N (ν) �

( ∞∑
n=0

λn (ν)

)2

∞∑
n=0

λ2
n (ν)

. (1.49)

Finally, to express the upper bound on the effective number of coherent modes
needed to represent the field in terms of the cross-spectral density, we apply the
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10 Coherent-Mode Representations in Optics

modal relations (1.32) and (1.35) into Eq. (1.49) to obtain

N (ν) �
(∫

D
S (r,ν)dr

)2∫∫
D

|W (r1, r2,ν)|2 dr1dr2
. (1.50)

To clarify the physical meaning of the obtained result, in Ref. 5 the following
definitions of the effective volume of the field and the effective coherence volume
are introduced, respectively:

Ve (ν) = 1

Smax (ν)

∫
D

S (r,ν)dr, (1.51)

Vce (ν) = 1

Ve(ν)S2
max (ν)

∫ ∫
D

|W (r1, r2,ν)|2 dr1dr2, (1.52)

where

Smax (ν) = max
r∈D

S (r,ν) . (1.53)

By applying definitions (1.51) and (1.52) into Eq. (1.50), we obtain

N (ν) � Ve (ν)

Vce (ν)
. (1.54)

Thus, the more incoherent is the field, the more coherent modes are needed for its
representation.

Concluding this section, we note that the effective number N (ν) of coherent
modes may be used in practice to establish an optimal point for truncating the
modal representation (1.18).

1.6 Coherent-Mode Representations of Some Model Sources

The mode representation of the field considered in Section 1.3 may be applied
without any changes for describing the optical source, which can be a primary
or a secondary one. Furthermore, this representation may be used for many infi-
nite sources. To find the coherent-mode structure of the source, it is necessary to
solve the integral equation (1.19) with the kernel given by the cross-spectral den-
sity W(r1, r2,ν) of the true source distribution (in the case of a primary source)
or the field distribution across the source (in the case of a secondary source). Un-
fortunately, the solutions of this equation in a closed form are obtained at present
only for a very limited number of source models. A brief review of the main known
solutions of the integral equation (1.19) is given below.
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Coherent-Mode Representation of Optical Fields and Sources 11

1.6.1 Gaussian Schell-model source

A partially coherent planar source is said to be of the Schell-model class if its
cross-spectral density function has the form

W (x1,x2,ν) = [S (x1,ν)]1/2 [S (x2,ν)]1/2 µ (x1 − x2,ν) , (1.55)

where, as can be seen, the spectral degree of coherence µ(ν) depends on the dif-
ference of coordinates x1 and x2. If the power spectrum and the spectral degree of
coherence have the form of Gaussian functions, i.e.,

S (x,ν) = S (0,ν) exp

[
− x2

2σ 2
S (ν)

]
, (1.56)

µ (x1 − x2,ν) = exp

[
−(x1 − x2)

2

2σ 2
µ (ν)

]
, (1.57)

where σS(ν) and σµ(ν) are positive constants, such a source is referred to as the
Gaussian Schell-model source. The parameters σS(ν) and σµ(ν) may be inter-
preted as the rms width of the power spectrum distribution across the source and
the rms width of the spectral degree of coherence, respectively. The ratio of rms
widths

γ (ν) = σµ (ν)

σS (ν)
(1.58)

may be regarded as a measure of the degree of global coherence of the Gaussian
Schell-model source.

The coherent-mode structure of 1D Gaussian Schell-model source has been
constructed in Refs. 6 and 7 and has the following form:

ϕn (x,ν) =
(

2c

π

)1/4 1√
2nn!Hn

(
x
√

2c
)

exp
(−cx2), (1.59)

λn (ν) = S (0,ν)

(
π

a + b + c

)1/2(
b

a + b + c

)n

, (1.60)

where

a = 1

4σ 2
S (ν)

, b = 1

2σ 2
µ (ν)

, c = (a2 + 2ab
)1/2

, (1.61)
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12 Coherent-Mode Representations in Optics

and Hn is the Hermite polynomial of order n. The upper bound on the effective
number of coherent modes (1.50) needed to represent the 1D Gaussian Schell-
model source has been calculated in Ref. 5 and is given by

N (ν) �
[
1 + 4

γ2 (ν)

]1/2

. (1.62)

In Ref. 8, the considered results are generalized for the case of a 2D Gaussian
Schell-model source. In Ref. 9, the reader can find the coherent-mode structure for
a special class of 2D Gaussian Schell-model sources with an additional new type
of phase, the so-called twist phase, in their cross-spectral density function.

1.6.2 Bessel-correlated source

In Ref. 10 was introduced a new class of partially coherent sources described by
the cross-spectral density function of the form

W (x1,x2,ν) = [S (r1,ν)]1/2 [S (r2,ν)]1/2

× J0

{
β (ν)

[
r2
1 + r2

2 − 2r1r2 cos (θ1 − θ2)
]1/2

}
, (1.63)

where r and θ are the polar coordinates in the source plane, J0 is the Bessel func-
tion of the first kind and of zero order, and β is a constant whose meaning will
be discussed later. The source with W(x1,x2,ν), given by Eq. (1.63), belongs to
the Schell-model class and may, for brevity, be referred to as the Bessel-correlated
source. The coherent-mode structure of this source has the following form:

ϕn (r,θ,ν) = 1√
λn

[S (r,ν)]1/2

× {anJn [β (ν) r] exp (−inθ) + bnJ−n [β (ν) r] exp (inθ)
}
,

(1.64)

λn (ν) = 2π

∫ ∞

0
S (r,ν) J 2

0 [β (ν) r] rdr, (1.65)

where the ratio an/bn is arbitrary. It is important to note that there is a twofold
degeneracy for the eigenfunctions ϕn(r,θ,ν), except for the case n = 0.

The preceding results hold, whatever the power spectrum S(r,ν) is. In the par-
ticular case when

S (r,ν) =
{

S (0,ν) for 0 � r � R

0 for r > R
, (1.66)
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Coherent-Mode Representation of Optical Fields and Sources 13

the eigenvalues λn(ν) defined by Eq. (1.63) take the form

λn (ν) = πR2S0 (ν)
{
J 2

n [β (ν)R] − Jn−1 [β (ν)R]Jn+1 [β (ν)R]
}

. (1.67)

In another particular case, when

S (r,ν) = S (0,ν) exp

[
− 2r2

σ 2
S (ν)

]
, (1.68)

the eigenvalues λn(ν) are

λn (ν) = πσ 2
S (ν)

2
S (0,ν) exp

[
−β2 (ν) σ 2

S (ν)

4

]
In

[
β2 (ν) σ 2

S (ν)

4

]
, (1.69)

where In is the modified Bessel function of order n. It may be noted that in both
cases the dimensionless parameters β(ν)R and β(ν)σS(ν) have the meaning of a
measure of the degree of global coherence of the Bessel-correlated source.

1.6.3 Lambertian source

As is well known, the Lambertian source is a planar source, which radiates the
optical energy with angular density that follows a cosθ law, where θ is the angle
between the direction of observation and the normal to the source. According to
Ref. 11, the cross-spectral density function of a 1D Lambertian source may be
approximated by

W (x1, x2,ν) = πC (ν)

L
J0 [k (x1 − x2)] , (1.70)

where C(ν) is a positive constant, L is the length of the source, and k is the wave
number associated with frequency ν. It has been shown that the coherent-mode
structure of such a source in the limit kL � 1 (the case of a large source) may be
approximated by the following expressions:

ϕn (x,ν) = 1√
L

exp

(
±in

2π

L
x

)
, (1.71)

λn (ν) =
{

[2πC (ν) /L] [k2 − n2 (2π/L)2]−1/2
for n � kL/2π,

0 for n > kL/2π.
(1.72)

As can be seen, there is a twofold degeneracy for the eigenfunctions ϕn (x,ν),
except for the case n = 0. The total number of coherent modes (not the effective
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14 Coherent-Mode Representations in Optics

number N , as previously discussed) needed to represent the 1D Lambertian source
is seen to be given by

M ≈ 2

(
kL

2π

)
+ 1. (1.73)

1.7 Concluding Remarks

The coherent-mode representation of cross-spectral density function gives a new
insight into the physical nature of the partially coherent optical field as a superposi-
tion of completely spatially coherent and mutually uncorrelated modes. This brings
a new understanding of the processes of generating, propagating, and transforming
optical radiation. From a mathematical standpoint, coherent-mode representation
expresses the cross-spectral density function of an optical field as a linear combina-
tion of terms that are separable in space, a fact that allows significant simplification
of the analysis of statistical optical processes and systems. Both these facts make
coherent-mode representation of optical fields and sources an essential tool in op-
tical science and practice.

For the sake of simplicity, we limited our considerations to those within the
framework of classical scalar electromagnetic theory because it is quite sufficient
for many important applications and because vectorial mode analysis is still being
developed. We have also restricted our considerations within the second-order co-
herence theory. Information on coherent-mode representations within higher-order
coherence theory may be found in Ref. 2.
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2
Coherent-Mode Representation of Optical
Systems

2.1 Introduction

Linear system theory has been successfully employed for describing optical
systems.12,13 Within the framework of the linear system approach, the output of
an optical system g(x′) and its input f (x) are related by a linear transformation of
the general form

g
(
x′)=

∫ ∞

−∞
f (x)h

(
x′,x

)
dx, (2.1)

where h(x,x′) is the so-called impulse response of the system, i.e., the output at x′
resulting from the impulse input at point x. Such a linear transformation describes
an optical system with both completely coherent and completely incoherent illu-
mination. In the first case, f (x) and g(x′) have the meaning of light intensities;
while in the second case, they should be considered as the complex amplitudes of
an optical field. At the same time, as it has been shown first by Gamo3 and then
by Thompson,14 when partially coherent illumination is used, an optical system
exhibits an essential nonlinear nature. In this case, to describe an optical system,
one must apply the basic ideas from nonlinear system theory.

The output g(x′) of any nonlinear system can be expressed as a functional of
the input signal f (x), which is represented by the Volterra series15,16

g
(
x′)= q0

(
x′)+ ∞∑

n=1

∫
· · ·
∫ ∞

−∞
f (x1) . . . f (xn) qn

(
x′,x1, . . . ,xn

)
dx1 . . .dxn,

(2.2)
where qn(x′;x1, . . . ,xn) denotes the nth-order Volterra kernel of the system.
Saleh17 showed that many optical systems and processes can be represented ei-
ther exactly or approximately by the third term of this series, i.e.,

g
(
x′)=

∫ ∫ ∞

−∞
f ∗ (x1) f (x2) q2

(
x′,x1,x2

)
dx1dx2. (2.3)

The transformation described by Eq. (2.3) is referred to as a bilinear transform
and the corresponding nonlinear system is called a bilinear system. The second-
order Volterra kernel q2(x′,x1,x2) represents the response of the system to two

15
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16 Coherent-Mode Representations in Optics

impulses located at points x1 and x2 and, hence, may be referred to as a double-
impulse response. A comprehensive analysis of the properties of a double-impulse
response for various optical systems is given in Ref. 17.

The bilinear transform (2.3) can be successfully used to describe any optical
system with partially coherent illumination,18 but the complexity of the second-
order Volterra kernel q2(x,x′

1,x′
2), which is a 6D complex function, makes such

a description too cumbersome. Several attempts have been made to reduce the de-
scription of an optical system with partially coherent illumination,19–25 but the
problem remained still far from its complete solution. Recently, employing the
coherent-mode representation of the illumination field, we have succeeded in sig-
nificantly reducing the description of a partially coherent optical system, and
have proposed an effective technique for calculating the power spectrum at its
output.26–32 These results are presented in the subsequent sections.

2.2 Bilinear Systems in Optics

Let us consider an elementary optical system with a single positive lens, shown in
Fig. 2.1. For an object, we will consider a thin plane transmitting screen, which af-
fects the amplitude of the incident optical field in accordance with a complex func-
tion to(x) referred to as an amplitude transmittance. We will assume that the object
is illuminated by a stochastic quasi-monochromatic scalar field characterized by
the cross-spectral density function W(x1,x2) (for the sake of simplicity, here and
further on, we suppress the explicit dependence of the considered quantities on
frequency ν). Taking the amplitude transmittance to(x) for the input of the system,
we will find the output of the system as the power spectrum S(x′) = W(x′,x′) of
the field in the x′ plane.

Figure 2.1 Single-lens optical system.

As the starting point of our calculations, we use an ensemble representation of
the cross-spectral density function of the illumination field (see Section 1.4), i.e.,

W (x1,x2) = 〈U∗ (x1)U (x2)
〉
, (2.4)
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Coherent-Mode Representation of Optical Systems 17

where U(x) is an optical signal associated with the illumination field, and the an-
gular brackets denote, as always, an ensemble average. Taking into account that
the optical signals on both sides of the object are related as

U ′ (x) = to (x)U (x) , (2.5)

one finds that the cross-spectral density function of the field just beyond the object
is given by

W ′ (x1,x2) = 〈t∗o (x1) to (x2)U∗ (x1)U (x2)
〉= t∗o (x1) to (x2)W (x1,x2) . (2.6)

The cross-spectral density function of the field W(x′′
1,x′′

2) just in front of the
lens may be found by the use of Eq. (1.17) to be

W
(
x′′

1,x′′
2

)=
(

k

2π

)2 ∫ ∫ ∞

−∞
W ′ (x1,x2)

× exp [ik(R2 − R1)]

r1r2
cosθ1 cosθ2dx1dx2, (2.7)

where

R1(2) =
[(

x′′
1(2) − x1(2)

)2 + z2
1

]1/2

. (2.8)

To simplify the following calculations, we will employ the so-called paraxial ap-
proximation, which is quite justifiable in our case (see, e.g., Ref. 24). Within a
paraxial approximation, one can use the following relations for the parameters in
Eq. (2.7):

cosθ1 ≈ cosθ2 ≈ 1, (2.9)

R1(2) ≈ z1 (2.10)

in the denominator of the fraction under the integral, and

R1(2) ≈ z1

1 +
(
x′′

1(2) − x1(2)

)2

2z2
1

 (2.11)

in the exponential function, in view of the fact that here R1(2) is multiplied by a
very large number k and that, besides, the small phase variations can change the
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18 Coherent-Mode Representations in Optics

value of the exponential significantly. The result of such an approximation is

W
(
x′′

1,x′′
2

)=
(

k

2πz1

)2 ∫ ∫ ∞

−∞
W ′ (x1,x2)

× exp

{
i

k

2z1

[(
x′′

2 − x2
)2 − (x′′

1 − x1
)2]}dx1dx2. (2.12)

Under certain conditions (see, e.g., Ref. 24), the positive lens in the x′′ plane
may be considered as a thin plane transmitting screen with an amplitude transmit-
tance

tl
(
x′′)= P

(
x′′) exp

[
−i

k

2f

(
x′′)2] , (2.13)

where f is the focal length of the lens and P(x′′) is the so-called pupil function
defined as

P
(
x′′)=

{
1 inside the lens aperture

0 otherwise.
(2.14)

Hence, the cross-spectral density function of the field just beyond the lens may be
found by analogy with Eq. (2.6), i.e.,

W ′ (x′′
1,x′′

2

)= t∗l
(
x′′

1

)
tl
(
x′′

2

)
W
(
x′′

1,x′′
2

)
= P

(
x′′

1

)
P
(
x′′

2

)
exp

{
−i

k

2f

[(
x′′

2

)2 − (x′′
1

)2]}
W
(
x′′

1,x′′
2

)
.

(2.15)

Now, to find the cross-spectral density function of the field in the output x′
plane, we again use the paraxial approximation of Eq. (1.17), which gives as a
result

W
(
x′

1,x′
2

)=
(

k

2πz2

)2 ∫ ∫ ∞

−∞
W ′ (x′′

1,x′′
2

)
× exp

{
i

k

2z2

[(
x′

2 − x′′
2

)2 − (x′
1 − x′′

1

)2]}dx′′
1dx′′

2. (2.16)

On substituting consecutively for W ′(x′′
1,x′′

2) from Eqs. (2.15), (2.12), and (2.6)
into Eq. (2.16) and taking x′

1 = x′
2 = x, we find after straightforward calculations

the following expression for the power spectrum of the field in the output plane:

S
(
x′)=

∫ ∫ ∞

−∞
t∗o (x1) to (x2)W (x1,x2)h∗ (x′,x1

)
h
(
x′,x2

)
dx1dx2, (2.17)
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where

h
(
x′,x

)=
(

k

2π

)2 1

z1z2
exp

[
i

k

2z2

(
x′)2] exp

[
i

k

2z1
x2
]

×
∫ ∞

−∞
P
(
x′′) exp

[
i
k

2

(
1

z1
+ 1

z2
− 1

f

)(
x′′)2]

× exp

[
−i

k

z2
x′′ ·

(
x′ + z2

z1
x
)]

dx′′. (2.18)

Finally, comparing Eqs. (2.18) and (2.3), we come to the conclusion that an ele-
mentary optical system as shown in Fig. 2.1 represents a bilinear system with the
double-impulse response

q2
(
x′,x1,x2

)= W (x1,x2)h∗ (x′,x1
)
h
(
x′,x2

)
. (2.19)

We will now consider two important particular cases, which are interesting
from the standpoint of practice.

If the geometry in Fig. 2.1 satisfies the lens law, 1/z1 +1/z2 = 1/f , the double-
impulse response of the system takes the same form as Eq. (2.19), but with

h
(
x′,x

)=
(

k

2π

)2 1

z1z2
exp

[
i

k

2z2

(
x′)2] exp

[
i

k

2z1
x2
]

×
∫ ∞

−∞
P
(
x′′) exp

[
−i

k

z2
x′′ ·

(
x′ + z2

z1
x
)]

dx′′, (2.20)

which is known as the amplitude spread function of the optical system. In this case,
Eq. (2.17) may be interpreted as representing an image of the object with the scale
defined by the factor z2/z1.

If the geometry in Fig. 2.1 satisfies the condition z1 = z2 = f , and the physical
extent of the input is much smaller than the lens aperture, it may be readily shown
(see, e.g., Ref. 13) that the double-impulse response of the system again takes the
same form as Eq. (2.19), but with

h
(
x′,x

)= k

i2πf
exp

(
−i

k

f
x′ ·x

)
. (2.21)

In this case, Eq. (2.17) may be interpreted as representing a 4D Fourier transform
of the object with spatial frequencies defined by the vector (k/2πf )x′.

2.3 Coherent-Mode Representations of a Bilinear System

It seems to be quite obvious that the coherent-mode representation of the illumi-
nating field can considerably simplify the description of an optical system with

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 21 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



20 Coherent-Mode Representations in Optics

partially coherent illumination. Indeed, representing the illuminating field as the
superposition of uncorrelated and completely coherent modes, we can expect that
the power spectrum of the field in the output plane of an optical system will repre-
sent the superposition of fractional power spectra of the coherent system responces
produced by these modes. In this way, the cumbersome problem of describing the
optical system with partially coherent illumination can be traced back to the coher-
ent case. The corresponding mathematical treatment is as follows.

Let us recall the coherent-mode representation of the cross-spectral density
function (1.18) and rewrite it for the illuminating field at the input of the optical
system shown in Fig. 2.1 as follows:

W (x1,x2) =
∑
n

λnϕ
∗
n (x1)ϕn (x2) , (2.22)

where λn are the eigenvalues and ϕn(x) are the eigenfunctions of the Fredholm
integral equation ∫

D

W (x1,x2)ϕn (x1)dx1 = λnϕn (x2) . (2.23)

As we remember, each term under the summation sign on the right-hand side of
Eq. (2.22) may be regarded as being associated with a completely coherent mode
of the illuminating field. Substituting for W(x1,x2) from Eq. (2.22) into Eq. (2.17)
and separating the integral operations, we obtain

S
(
x′)=

∑
n

λn

∣∣∣∣∫ ∞

−∞
to (x)ϕn (x)h

(
x′,x

)
dx

∣∣∣∣2 . (2.24)

Obviously, each term under the summation sign in Eq. (2.24) may be interpreted as
a portion of the system output corresponding to the nth coherent mode of the illu-
mination field or, for brevity, as a modal output of the system. Hence, the expansion
given by Eq. (2.24) may be referred to as the coherent-mode representation of an
optical system with partially coherent illumination.

To show the advantages of the coherent-mode representation of an optical sys-
tem with partially coherent illumination, we will rewrite Eq. (2.24) in two different,
but equivalent, forms. At first we write it as

S
(
x′)=

∑
n

∣∣∣∣∫ ∞

−∞
to (x) q

(n)
1

(
x′,x

)
dx

∣∣∣∣2 , (2.25)

where

q
(n)
1

(
x′,x

)=√λnϕn (x)h
(
x′,x

)
. (2.26)
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With due regard for the Volterra series (2.2), the function q
(n)
1 (x′,x) given by

Eq. (2.26) represents the first-order Volterra kernel and hence the integral∫ ∞

−∞
to (x) q

(n)
1

(
x′,x

)
dx (2.27)

may be regarded as the output of the corresponding linear (coherent) optical sys-
tem or, for brevity, the modal system. Thus, one can give the following physical
interpretation of the expansion (2.25): an optical system with partially coherent
illumination may be represented as the parallel connection of modal coherent sys-
tems with the impulse responses q

(n)
1 (x′,x), each followed by a squarer, as shown

in Fig. 2.2.

Figure 2.2 Modal representation (I) of partially coherent optical system.

Let us now rewrite Eq. (2.24) as

S
(
x′)=

∑
n

∣∣∣∣∫ ∞

−∞
t (n)
o (x) q1

(
x′,x

)
dx

∣∣∣∣2 , (2.28)

where q1(x′,x) = h(x′,x) and

t (n)
o (x) =√λnϕn (x) to (x) . (2.29)

The function t
(n)
o (x) describes the result of the modulation of the field mode by

the object and may be defined as a modal object. One can see that the integral in
Eq. (2.28) represents the response of the completely coherent, linear in complex
amplitude, system to the modal object t

(n)
o (x). Thus, we can give the following

physical interpretation of expansion (2.28): an optical system with partially co-
herent illumination may be represented as the parallel connection of the coherent
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systems with the same impulse response q1(x′,x) and with the modal objects t
(n)
o (x)

at their inputs, each followed by a squarer, as shown in Fig. 2.3.

Figure 2.3 Modal representation (II) of partially coherent optical system.

The coherent-mode representations of an optical system, given by Eqs. (2.25)
and (2.28), are equivalent from the point of view of the final result, but express the
effect of partial coherence of illumination in two different ways. Indeed, when us-
ing representation (2.25), one attributes the effect of partial coherence to the trans-
fer characteristic of the optical system, while in representation (2.28) this effect
is attributed to the transfer characteristic of the object. Therefore, when we need
to describe an optical system with a definite type of illumination, the preference
should be given to representation (2.25), whereas when needed for an optical sys-
tem with variable illumination, it is more convenient to use representation (2.28).

2.4 Fast Algorithm for Bilinear Transforms in Optics

In this section, we compare the computational complexity of calculating the power
spectrum S(x′) with the use of the bilinear transform representation (2.17) and the
coherent-mode representation (2.24).

Using K ×K sampling points in each plane, x and x′, Eq. (2.17) can be written
in the discrete form

S (i, j) =
K∑

k=1

K∑
l=1

K∑
m=1

K∑
n=1

t∗o (k, l) to (m,n)W (k, l,m,n)

× h∗ (i, j, k, l) h (i, j,m,n) , (2.30)

where the distances between samples �x and �y are assumed, without loss of gen-
erality, to have the value of one. The dominant portion of the calculations of power
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spectrum S(i, j) in accordance with Eq. (2.30) is the multiplication of the complex
values t∗o , to, W , h∗, and h, taken for all possible combinations of sampling points
(k, l), (m,n), and (i, j). The number of the needed complex multiplications in this
case is

C =
(
K2
)3 = K6. (2.31)

The magnitude of this number can easily result in an unacceptably long computa-
tion time. Thus, for example, when K = 100 and the computational speed is 106

operations per second, the computer run time needed to calculate S(i, j) makes up
about 300 hours.

Now, let us evaluate the computational complexity of the calculation of power
spectrum S(x′) using the coherent-mode representation (2.24). Assuming that the
summation in the coherent mode representation (2.22) is truncated by the effective
number of coherent modes N (see Section 1.5), we can write the discrete version
of Eq. (2.24) as

S (i, j) =
N−1∑
n=0

[
K∑

k=1

K∑
l=1

to (k, l)
√

λnϕn (k, l) h∗ (i, j, k, l)

]

×
[

K∑
k=1

K∑
l=1

to (k, l)
√

λnϕn (k, l) h∗ (i, j, k, l)

]∗
. (2.32)

It may be readily seen that this time the number of complex multiplications needed
to calculate S(i, j) is

C = N
[(

K2
)2 + K2

]
= NK2

(
K2 + 1

)
, (2.33)

or, for sufficiently large K ,

C ≈ NK4. (2.34)

To compare this result to the one given by Eq. (2.31), we first discuss the range
of possible values of N . As shown in Section 1.5, the value of N increases with de-
creasing the degree of coherence of the illumination field. For completely coherent
illumination, N = 1, and the computational effort C decreases to K4. For partially
coherent illumination, C increases linearly with N , i.e., the computational effort is
lager the more incoherent the illumination. For sufficiently large values of N , say
N � K , the illumination may be generally considered to be completely incoherent.
In this case, the cross-spectral density function W(x1,x2) may be approximated by
the Dirac function,18 i.e.,

W (x1,x2) = S0δ (x1 − x2) , (2.35)
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and the bilinear transform (2.17) is reduced to

S
(
x′)= S0

∫ ∞

−∞
|to (x)|2 ∣∣h (x′;x

)∣∣2 dx, (2.36)

where S0 is a constant. Hence, the number of operations needed to compute S(i, j)

again reduces to K4.
The comparison of the computational efficiency of the direct calculation of bi-

linear transform (2.30) and its coherent-mode representation (2.32), for different
values of N , is illustrated by a schematic picture in Fig 2.4. It is evident from this
figure that the coherent-mode representation (2.32) can be efficiently employed to
calculate the power spectrum S(x′) when N � K . For the same values of K and
computational speed used in the previous example, the computer run time needed
to calculate S(i, j) from Eq. (2.32) takes from two minutes to three hours, de-
pending on the degree of illumination coherence. By analogy with the well known
algorithm of fast Fourier transform (FFT), we will refer to the algorithm for the
calculation of bilinear transform (2.17) on the basis of Eq. (2.32) as a fast bilinear
transform (FBLT) algorithm.

Figure 2.4 Estimation of the computational effort C as a function of the effective number N
of coherent modes of ilumination: 1 computation in accordance with Eq. (2.30); 2 computa-
tion in accordance with Eq. (2.32); 3 computation in accordance with Eq. (2.35).

2.5 Numerical Simulation

To illustrate the application of the FBLT algorithm, let us consider two examples
of calculating the power spectrum (2.17) in the output plane of the optical system
shown in Fig 2.1.
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For an object, we choose the 1D Dirac comb function, i.e.,

t (x) =
∑
m

δ (x − mx0) . (2.37)

This object was studied for the following two reasons. First, both the ideal image
and the exact Fourier spectrum of such an object have the same form of the Dirac
comb function. Secondly, the choice of this object allows the result of integration
in Eq. (2.17) to be obtained in an explicit analytic form, a fact that gives us a
chance to evaluate the accuracy of the FBLT algorithm. Taking into account the
1D character of our object, and for the sake of simplicity, for the illumination field
we consider the secondary 1D Gaussian Schell-model source (see Section 1.6.1)
with the cross-spectral density function defined by Eqs. (1.55)–(1.57) and the co-
herent mode structure given by Eqs. (1.58)–(1.61). Finally, assuming that the pupil
function of the lens has a circular form of radius R, we accept the amplitude spread
function of the optical system, calculated in accordance with Eq. (2.20) as

h(ρ) = exp

(
i

k

2z2
ρ2
)

J1 (kRρ/2f )

kRρ/2f
, (2.38)

where ρ = (u2 + v2)1/2 and J1 denotes the Bessel function of the first kind and of
the first order.

At first, we suppose that the optical system forms the image of an object without
magnification (z1 = z2 = 2f ). Then, substituting for t (x), W(x1, x2), and h(u;x)

from Eqs. (2.37), (1.55), and (2.38), respectively, into the 1D version of Eq. (2.17)
and making use of the sifting property of the Dirac function, it is a straightforward
matter to obtain the following expression for power spectrum S(x′):

S
(
x′)= S (0)

∑
m,l

Aml

J1
[
kR (u + mx0) /2f

]
kR (u + mx0) /2f

J1
[
kR (u + lx0) /2f

]
kR (u + lx0) /2f

, (2.39)

where

Aml = exp

[
− x2

0

4σ2
S

(
m2 + l2

)]
exp

[
− x2

0

2σ2
µ

(m − l)2

]
. (2.40)

By analogy, but this time using the 1D version of Eq. (2.24) with due regard for
the truncation of summation by N terms, we obtain the following approximation
of power spectrum S(x′):

Ŝ
(
x′)= S (0)

N−1∑
n=0

Bn

[∑
m

Cnk

J1
[
kR (u + mx0) /2f

]
kR (u + mx0) /2f

]2

, (2.41)
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where

Bn = 1

2nn!
(

b

a + b + c

)n

, (2.42)

and

Cnm = Hn

(
mx0

√
2c
)

exp
(
−cm2x2

0

)
(2.43)

with Hn, as before, denoting the Hermite polynomial of order n.
Now, we suppose that the optical system performs the Fourier transform of an

object (z1 = z2 = f ). In this case, making use of Eqs. (2.21), (1.55), and (2.37), by
analogy with the foregoing, one can find that power spectrum S(x′) takes the form

S
(
x′)= S0

A0 +
∑
m�=l

Aml cos

[
k

2f
x′x0 (m − l)

] , (2.44)

where

A0 =
∑
m

exp

(
− x2

0

2σ2
I

m2

)
(2.45)

and Aml are the same as in Eq. (2.39).
Using the FBLT algorithm, we obtain the following approximation of the power

spectrum (2.44):

Ŝ
(
x′)= S0

N−1∑
n=0

Bn

Cn0 + 2
∑
m�=l

Cnml cos

[
k

2f
x′x0 (m − l)

] , (2.46)

where

Cn0 =
∑
m

H 2
n

(
mx0

√
2c
)

exp
(
−2cm2x2

0

)
, (2.47)

Cnml = Hn

(
mx0

√
2c
)

Hn

(
lx0

√
2c
)

exp
[
−cx2

0

(
m2 + l2

)]
, (2.48)

and Bn are the same as in Eq. (2.41).
To evaluate the quality of our approximation, we realized numerical calcula-

tions of power spectrum S(x′) in accordance with Eqs. (2.39), (2.41), (2.44), and
(2.46). When calculating, we put x0 = 2.44 (2πf/kR), which is twice greater than
the Rayleigh limit of resolution for our optical system, and σI = 2σµ = 10x0,
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Figure 2.5 Results of calculating S(x′) in accordance with Eq. (2.41) for: (a) N = 1;
(b) N = 4. Theoretical values of S(x′), obtained according to Eq. (2.39), are shown by solid
curves.

which corresponds to the case of true partial coherence (γ = 0.5). We truncated
the summation over indexes k,m, l to nine central Dirac impulses in the object,
and varied the number N of the terms in the modal expansion.

The results of calculations are shown in Figs. 2.5 and 2.6. As can be seen from
these figures, with the increase of the number N , the approximate power spectra
distributions come closer to the theoretical curves. When the number N is equal to
the effective number N of coherent modes of illumination (in our example N = 4),
the relative error of the FBLT algorithm constitutes approximately 1%, and when
N = 2N , it becomes negligible.
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28 Coherent-Mode Representations in Optics

Figure 2.6 Results of calculating S(x′) in accordance with Eq. (2.46) for: (a) N = 1;
(b) N = 4. Theoretical values of S(x′), obtained according to Eq. (2.44), are shown by solid
curves.

2.6 Concluding Remarks

The coherent-mode representation of a partially coherent optical system may be
interpreted as a replacement of the original system by an appropriate parallel com-
bination of completely coherent modal systems; this gives a new insight into the
physics of image formation under conditions of partially coherent illumination.
From a practical standpoint, such a representation results in an effective algorithm
for computing the power spectrum distribution at the output of an optical system
with the illumination of any state of coherence. The proposed FBLT algorithm al-
lows a significant reduction (by a factor of several orders) of the computational
effort needed for calculating the power spectrum at the system output. However,
it should be noted that the application of this algorithm requires knowledge of the
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coherent-mode structure of the illumination field (eigenvalues λn and eigenfunc-
tions ϕn). Unfortunately, such a coherent-mode structure can be deduced in closed
form for a small number of known model sources (see Section 1.6). In the general
case, evaluation of the coherent-mode structure entails the necessity of a numeri-
cal solution of the integral equation (2.23); this is not an easier computational task
than the proper calculation of the output power spectrum. Nevertheless, it should
be taken into account that once ϕn(x) and λn have been calculated for a given il-
lumination, they can be stored and applied to the calculation of the output power
spectrum for any object and any optical system. Thus, the FBLT algorithm can be
considered as an indispensable tool for the analysis and computer simulation of
optical systems with partially coherent illumination.
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3
Coherent-Mode Representation of
Propagation-Invariant Fields

3.1 Introduction

As is well known, a bounded optical field propagating in free space undergoes dif-
fractive spreading that changes its transverse intensity distribution. Nevertheless,
it is not always the case if the field has an infinite extent. Almost two decades
ago, Durnin33 found an exact solution for the wave propagation equation that de-
scribes a whole class of so-called nondiffracting fields. It has been shown that any
nondiffracting field represents the superposition of plane waves with wave vec-
tors lying on a cone. In this case, all the wave vectors possess the same projection
along, say, the z-axis and the constituent plane waves suffer one and the same
phase change on propagation. Accordingly, they interfere in the same way at any
constant z plane. The simplest member of the class of nondiffracting fields is the
fundamental Bessel beam. The sharply peaked intensity profile of this beam, to-
gether with its propagation-invariant property, has generated wide interest to non-
diffracting beams. The new models of nondiffracting beams have been studied
and compared,34–49 the possibility of their physical generation has been demon-
strated in experiments,50–56 and their potential practical applications have been
discussed.57–59 It is not out of place to mention here that nondiffracting beams
have also received attention in acoustic science (see, e.g., Ref. 60).

The nondiffracting beams defined by Durnin’s solution represent completely
coherent optical fields. At the same time, as has been shown by Ohtsuka et al.61,62

and Gori et al.,9 some partially coherent fields can also exhibit propagation-
invariant properties. Turunen et al.63 have generalized the concept of diffraction-
free propagation into a domain of partially coherent fields, and have deduced the
general expression for the cross-spectral density function, which defines a wide
class of partially coherent propagation-invariant fields.

In spite of a great number of published results, the theory of propagation-
invariant fields is still far from completion. Recently, Ostrovsky et al.,64–70 while
trying to describe all the possible classes of propagation-invariant fields, have de-
duced the coherent-mode structure of propagation-invariant fields that allowed, in
particular, predicting the existence of new peculiar propagation-invariant optical
beams. Below, we consider this representation and the results obtained on its basis.

31
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3.2 Propagation-Invariant Fields

Let us consider the propagation of a scalar quasi-monochromatic optical field
in free space from the plane z = 0 toward the plane z = z0 (Fig. 1.1), and let
W(x1,x2;0) be the cross-spectral density function of this field in the plane z = 0
(from now on, we omit the explicit dependence of the considered quantities on the
frequency ν). The cross-spectral density of the field in the plane z = z0 may be
found as a particular case of Eq. (1.17), i.e.,

W
(
x′

1,x′
2

)=
(

k

2π

)2 ∫ ∫
(z=0)

W (x1,x2;0)

×exp [ik(R2 − R1)]

r1r2
cosθ1 cosθ2dx1dx2, (3.1)

where

R1(2) =
[(

x′
1(2) − x1(2)

)2 + z2
0

]1/2
. (3.2)

As can be seen from Eq. (3.1), in the general case, the cross-spectral density func-
tion suffers changes of its form when propagating in free space. An optical field
is said to be a propagation-invariant field if its cross-spectral density function re-
mains the same in every plane normal to the z-axis, i.e.,

W (x1,x2; z0) = W (x1,x2;0) . (3.3)

It is obvious that the power spectrum of the propagation-invariant field possesses
the same property as follows:

S (x; z0) = S (x;0) . (3.4)

To find the form of cross-spectral density function of a propagation-invariant
field, we will employ the paraxial approximation (see Section 2.2), which is justi-
fiable when the field propagates within a narrow solid angle around the z-axis, and
thus, taking into account Eq. (3.4), in our case. In the paraxial approximation, one
can use the following relations for the parameters in Eq. (3.1):

cosθ1 ≈ cosθ2 ≈ 1, (3.5)

R1(2) ≈ z0 (3.6)

in the denominator of the fraction under the integral, and

R1(2) ≈ z0

1 +
(
x′

1(2) − x1(2)

)2
2z2

0

 (3.7)
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in the exponential function. The resulting expression for the cross-spectral density
function in the plane z = z0 becomes

W
(
x′

1,x′
2

)=
(

k

2πz0

)2 ∫ ∫
(z=0)

W (x1,x2;0)

× exp

{
i

k

2z0

[(
x′

2 − x2
)2 − (x′

1 − x1
)2]}dx1dx2. (3.8)

Now, we express W(x1,x2;0) through its 4D Fourier transform W̃ (u1,u2;0)

as

W (x1,x2;0) =
∫ ∫ ∞

−∞
W̃ (u1,u2;0) exp [i2π (u2 · x2 − u1 · x1)] du1du2. (3.9)

Substituting from Eq. (3.9) into Eq. (3.8), interchanging the order of integration,
and making use of the relation71

∫ ∞

−∞
exp
(
iπa2x2) exp

(
i2πu · x

)
dx = 1

a2
exp

(
−iπ

u2

a2

)
, (3.10)

we obtain

W
(
x′

1,x′
2

)=
∫ ∫ ∞

−∞
W̃ (u1,u2;0) exp

[
−i

2π2

k
z0

(
u2

1 − u2
2

)]
× exp

[
i2π

(
u2 · x′

2 − u1 · x′
1

)]
du1du2. (3.11)

Furthermore, it will be appropriate to express Eq. (3.11) through the polar coordi-
nates (r,φ) in the u plane as

W
(
x′

1,x′
2

)=
∫ ∫ 2π

0

∫ ∫ ∞

0
W̃ (r1, r2,φ1,φ2;0) exp

[
−i

2π2

k
z0

(
r2
1 − r2

2

)]
× exp

[
i2π(x′

2r2 cosφ2 + y′
2r2 sinφ2

− x′
1r1 cosφ1 − y′

1r1 sinφ1)
]
r1r2dr1dr2dφ1dφ2. (3.12)

Finally, we recall the condition of the invariant propagation (3.3) and apply to
it Eq. (3.12):∫ ∫ 2π

0

∫ ∫ ∞

0
W̃ (r1, r2,φ1,φ2;0) exp

[
−i

2π2

k
z0

(
r2
1 − r2

2

)]
× exp

[
i2π(x2r2 cosφ2 + y2r2 sinφ2 − x1r1 cosφ1 − y1r1 sinφ1)

]
× r1r2dr1dr2dφ1dφ2
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=
∫ ∫ 2π

0

∫ ∫ ∞

0
W̃ (r1, r2,φ1,φ2;0) exp

[
i2π(x2r2 cosφ2 + y2r2 sinφ2

− x1r1 cosφ1 − y1r1 sinφ1)]r1r2dr1dr2dφ1dφ2. (3.13)

Equality (3.13) shows that W̃ (r,φ;0) must be the vanishing function for all r1 and
r2 except when r1 = r2, i.e.,

W̃ (r1, r2,φ1,φ2;0) = Q(r1,φ1,φ2)δ (r1 − r2) , (3.14)

where δ is the Dirac function. Thus, finally, on substituting for W̃ (r1, r2,φ1,φ2;0)

from Eq. (3.14) into Eq. (3.12) and making use of the sifting property of the Dirac
function, we obtain the following expression for the transverse cross-spectral den-
sity function, which describes the whole class of propagation-invariant fields:

W (x1,x2; z0) =
∫ ∫ 2π

0

∫ ∞

0
Q(r,φ1,φ2;0) exp

[
i2πr(x2 cosφ2 + y2 sinφ2

− x1 cosφ1 − y1 sinφ1)
]
r2drdφ1dφ2. (3.15)

To clarify the physical meaning of the obtained result, we note that the ex-
ponential function exp[i2πr(x cosφ + y sinφ)] appearing in Eq. (3.15) may be
regarded as a plane wave propagating with direction cosines α = (2π/k)r cosφ,
β = (2π/k)r sinφ and γ = (1 − α2 − β2)1/2. Hence, Eq. (3.15), together with
requirement (3.14), shows that the propagation-invariant field represents the su-
perposition of plane waves, which are uncorrelated in the radial direction and
have an arbitrary correlation in the azimuthal direction.

3.3 Coherent-Mode Structure of the Propagation-Invariant Field

We will now find the coherent-mode structure � [see Eq. (1.29)] of the propagation-
invariant field. Instead of trying to solve the Fredholm integral equation (1.19) with
the kernel given by Eq. (3.15), we will recall that the cross-spectral density func-
tion Wn(x1,x2; z0) of each mode satisfies the same propagation equations as does
the cross-spectral density function W(x1,x2; z0) of the field, and will repeat the
treatment realized in the previous section [Eqs. (3.8)–(3.12)] for

Wn (x1,x2; z0) = ϕ∗
n (x1; z0)ϕn (x2; z0) (3.16)

and, hence, for

W̃ (u1,u2;0) = ϕ̃∗
n (u1;0) ϕ̃n (u2;0) , (3.17)

where

ϕ̃n (u;0) =
∫ ∞

−∞
ϕn (x;0) exp (−i2πu · x)dx. (3.18)
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The result will obviously be

Wn (x1,x2; z0) =
∫ ∫ 2π

0

∫ ∫ ∞

0
ϕ̃∗

n (r1,φ1;0) ϕ̃n (r2,φ2;0)

× exp

[
−i

2π2

k
z0

(
r2
1 − r2

2

)]
× exp

[−i2π(x1r1 cosφ1 + y1r1 sinφ1)
]

× exp
[
i2π(x2r2 cosφ2 + y2r2 sinφ2)

]
r1r2dr1dr2dφ1dφ2.

(3.19)

The simplest way to satisfy the requirement of the invariant propagation (3.14) this
time is to choose

ϕ̃n (r,φ;0) = Qn (r,φ)δ (r − r0n) , (3.20)

where r0n is a positive constant. With this choice, Eq. (3.19) assumes the form

Wn (x1,x2; z0) = r2
0n

∫ ∫ 2π

0
Q∗

n (r0n,φ1)Qn (r0n,φ2)

× exp
[−i2πr0n(x1 cosφ1 + y1 sinφ1)

]
× exp

[
i2πr0n(x2 cosφ2 + y2 sinφ2)

]
dφ1dφ2, (3.21)

whence it follows immediately that

ϕn (x; z0) = r0n

∫ 2π

0
Qn (r0n,φ) exp

[
i2πr0n(x cosφ + y sinφ)

]
dφ. (3.22)

Using the polar coordinates (ρ,θ) in the x plane, we can rewrite (3.22) as

ϕn (ρ,θ;z0) = r0n

∫ 2π

0
Qn (r0n,φ) exp

[
i2πr0nρ cos(φ − θ)

]
dφ. (3.23)

Now, we note that function Qn(r0n,φ) may be expanded into a Fourier series as

Qn (r0n,φ) =
∞∑

p=−∞
qnp exp (ipφ) , (3.24)

where

qnp = 1

2π

∫ 2π

0
Qn (r0n,φ) exp (−ipφ)dφ. (3.25)
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On substituting from Eq. (3.24) into Eq. (3.23) and changing the order of summa-
tion and integration, we obtain

ϕn (ρ,θ;z0) = r0n

∞∑
p=−∞

qnp

∫ 2π

0
exp (ipφ) exp

[
i2πr0nρ cos(φ − θ)

]
dφ. (3.26)

Finally, recalling the integral representation of the Bessel function,72 we can
rewrite Eq. (3.26) as follows:

ϕn (ρ,θ;z0) = 2πr0n

∞∑
p=−∞

ipqnp exp (ipθ) Jp (2πr0nρ) , (3.27)

where Jp denotes the Bessel function of the first kind and of the order p.
It is necessary to stress here that the functions ϕn(x; z0) given by Eq. (3.27)

still do not define the coherent-mode structure of the propagation-invariant field
because of the uncertainty of coefficients qnp , caused by the arbitrariness of the
choice of the function Qn(r0n,φ), as well as the arbitrariness of the choice of the
parameter r0n. To remove this uncertainty, we will recall that the modal functions
ϕn(x; z0) must be mutually orthonormal, i.e.,

∫ 2π

0

∫ R

0
ϕ∗

n (ρ,θ;z0)ϕm (ρ,θ;z0)ρdρdθ = δnm, (3.28)

where δnm is the Kronecker symbol, and the radial integration is performed within
the finite domain D of radius R. On substituting for ϕn(x; z0) from Eq. (3.27) into
Eq. (3.28) and making use of the obvious relation

∫ 2π

0
exp

[
i (s − p)θ

]
dθ = 2πδps, (3.29)

we obtain

(2π)3 r0nr0m

∞∑
p=−∞

q∗
npqmp

∫ R

0
Jp (2πr0nρ) Jp (2πr0mρ)ρdρ = δnm. (3.30)

Thus, we have shown that the functions ϕn(x; z0) given by Eq. (3.27) with the pa-
rameters qnp and r0n determined by the orthonormality condition (3.30), describe
the coherent-mode structure of any propagation-invariant field. Furthermore, we
will show that there are three different possibilities to choose the parameters qnp

and r0n as they satisfy condition (3.30). We will refer to the corresponding classes
of the fields as the propagation-invariant fields of the first, second, and third kind.
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3.4 Special Classes of Propagation-Invariant Fields

3.4.1 Propagation-invariant fields of the first kind

We start with the simplest case, which is when the propagation-invariant field is
completely coherent. As it has been shown in Section 1.2, in this case, the field
consists of a single mode. This can be taken into account by choosing the parame-
ters qnp and r0n in Eq. (3.27) as follows:

qnp =
{

q0p for n = 0,

0 for n �= 0,
(3.31a)

r0n = r0. (3.31b)

Since condition (3.30) in this case makes no sense, the values q0p and r0 can be
taken arbitrarily. Hence, with due regard for Eq. (3.27), the coherent-mode struc-
ture of the propagation-invariant field of the first kind is described by only one
modal function,

ϕ0 (ρ,θ) = 2πr0

∞∑
p=−∞

ipq0p exp (ipθ) Jp (2πr0ρ) , (3.32)

which is the well-known general solution for so-called nondiffracting beams.36 In
the particular case when

q0p =
{

q0 for p = 0,

0 for p �= 0,
(3.33)

this solution takes the form

ϕ0 (ρ,θ) = 2πr0q0J0 (2πr0ρ) , (3.34)

known as the fundamental Bessel beam.33

Now, we will clear up the physical nature of the propagation-invariant fields of
the first kind using the example of the fundamental Bessel beam. With this purpose,
we calculate the Fourier spectrum (3.18) for function (3.34) using the Fourier-
Bessel transform,13

ϕ̃0 (r,φ) = (2π)2r0q0

∫ R

0
ρJ0 (2πr0ρ) J0 (2πrρ)dρ. (3.35)
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Taking into account the property of the Bessel function,72

a

∫ R

0
ρJµ (aρ) Jµ

(
a′ρ
)
dρ = δ

(
a − a′) , (3.36)

we obtain

ϕ̃0 (r,φ) = q0δ (r − r0) . (3.37)

Then, in accordance with the physical meaning of the Fourier spectrum (3.37)
as a superposition of the plane waves propagating with the direction cosines
α = (2π/k)r0 cosθ and β = (2π/k)r0 sinθ (see Section 3.1), one may con-
clude that the fundamental Bessel beam represents the superposition of plane
waves whose wave vectors lie on the conical surface with the vertex angle
γ = tan−1[(k/2πr0)

2 − 1]−1/2.

3.4.2 Propagation-invariant fields of the second kind

Now, we choose

qnp =


qnn f orp = n,

q∗
nn for p = −n,

0 for p �= ±n,

(3.38)

allowing the parameter r0n to take arbitrary values. It is a straightforward matter to
make sure that this choice, with the value qnn taken so that

|qnn|2 =
[
16π3r2

0n

∫ R

0
J 2

n (2πr0nρ)ρdρ

]−1

, (3.39)

satisfies the orthonormality condition (3.30). Then, substituting for qnp from
Eq. (3.38) into Eq. (3.27), we find that the coherent-mode structure of the
propagation-invariant field of the second kind is described by a set of modal func-
tions,

ϕn (ρ,θ) = 2πr0n

[
inqnn exp (inθ) Jn (2πr0nρ)

+ i−nq∗
nn exp (−inθ) J−n (2πr0nρ)

]
. (3.40)

It is obvious that a field with such a structure is partially coherent.
We will now find the cross-spectral density of the propagation-invariant field

of the second kind. First of all, we note that there is a twofold degeneracy for the
modal functions given by Eq. (3.40) (except for the case n = 0), considered as the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 21 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Coherent-Mode Representation of Propagation-Invariant Fields 39

solutions (eigenfunctions) of the Fredholm integral equation (1.19). Indeed, if the
function (3.40) satisfies Eq. (1.19) with an eigenvalue λn, the functions

ϕ′
n (ρ,θ) = in2πr0nqnn exp (inθ) Jn (2πr0nρ) , (3.41)

and

ϕ′′
n (ρ,θ) = i−n2πr0nq

∗
nn exp (−inθ) J−n (2πr0nρ) (3.42)

do the same. Then, substituting for ϕn from Eqs. (3.41) and (3.42) into Eq. (1.18)
and taking into account relation (3.39), we find that the cross-spectral density func-
tion of any propagation field of the second kind is

WII (ρ1,θ1,ρ2,θ2) = λ04π2r2
00 |q00|2 J0 (2πr00ρ1) J0 (2πr00ρ2)

+ 2
∞∑

n=1

λn4π2r2
0n |qnn|2 cos [n (θ1 − θ2)]

× Jn (2πr0nρ1) Jn (2πr0nρ2) . (3.43)

An interesting particular case of Eq. (3.43) may be obtained if we put r0n = r0
and choose λn = 1/4π2r2

0n|qnn|2. In this case, in accordance with the summation
theorem of Bessel functions,71

J0

[
a(ρ2

1 + ρ2
2 − 2ρ1ρ2 cosα)1/2

]
=

∞∑
µ=−∞

Jµ (aρ1x)Jµ (aρ2) exp (iµα) , (3.44)

we obtain

WII (ρ1,θ1,ρ2,θ2) = J0

{
2πr0

[
ρ2

1 + ρ2
2 − 2ρ1ρ2 cos (θ1 − θ2)

]1/2
}

. (3.45)

As we have already seen (see Section 1.6.3), the field with the cross-spectral den-
sity function given by Eq. (3.45) is the well-known Bessel-correlated secondary
source or, what is more appropriate in our case, the Bessel-correlated beam.9

To clarify the physical nature of the propagation-invariant fields of the second
kind, we calculate the 4D Fourier transform of Eq. (3.45). It may be readily shown
that

W̃II (r1,φ1, r2,φ2) = δ (r1 − r0)δ (r2 − r0)δ (φ1 − φ2) . (3.46)

Hence, we come to the following conclusion: the Bessel-correlated beam repre-
sents the superposition of the plane waves, whose wave vectors lie on the conical
surface with the vertex angle γ = tan−1[(k/2πr0)

2 − 1]−1/2; these waves are com-
pletely uncorrelated in the azimuthal direction.
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3.4.3 Propagation-invariant fields of the third kind

Our third choice for the parameters qnp and r0n is

qnp =


qnµ for p = µ,

q∗
nµ for p = −µ,

0 for p �= ±µ,

(3.47a)

r0n = αµ,n+1

2πR
, (3.47b)

where µ is any positive integer, which will be further referred to as the order of the
propagation-invariant field of the third kind, and αµ,n+1 is the (n+1)th zero of the
Bessel function Jµ. Using the orthonormality relation for the Bessel function,72

∫ R

0
Jµ

(
αµ,n+1

ρ

R

)
Jµ

(
αµ,m+1

ρ

R

)
ρdρ = δnm

R2

2
J 2

µ+1

(
αµ,n+1

)
, (3.48)

and taking qnp so that

∣∣qnµ

∣∣2 =
[
πα2

µ,n+1J
2
µ+1

(
αµ,n+1

)]−1
, (3.49)

one may readily verify that the choice (3.47) also satisfies the orthonormality con-
dition (3.30). Then, substituting for qnp and r0n from Eq. (3.47) into Eq. (3.27), we
find that the coherent-mode structure of a propagation-invariant field of the third
kind and of the order µ is described by the set of modal functions

ϕ(µ)
n (ρ,θ) = αµ,n+1

R

[
iµqnµ exp (iµθ) Jµ

(
αµ,n+1

ρ

R

)
+ i−µq∗

nµ exp (−iµθ) J−µ

(
αµ,n+1

ρ

R

)]
. (3.50)

As may be seen, the propagation-invariant fields of the third kind are also par-
tially coherent. Reasoning in respect of functions (3.50) as done in the previous
case (with the only difference that, in this case, there is a twofold degeneracy
for all n), it may be readily shown that the cross-spectral density function of any
propagation-invariant field of the third kind and of the order µ is

W
(µ)
III (ρ1,θ1,ρ2,θ2) = cos [µ(θ1 − θ2)]

∞∑
n=0

λ(µ)
n

(αµ,n+1

R

)2 ∣∣qnµ

∣∣2
× Jµ

(
αµ,n+1

ρ1

R

)
Jµ

(
αµ,n+1

ρ2

R

)
. (3.51)
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Interesting examples of propagation-invariant fields of the third kind may be
given by choosing λ

(µ)
n = R2/α2

µ,n+1|qnµ|2. In this case, Eq. (3.51) takes the
form

W
(µ)
III (ρ1,θ1,ρ2,θ2) = cos [µ(θ1 − θ2)]

∞∑
n=0

Jµ

(
αµ,n+1

ρ1

R

)
Jµ

(
αµ,n+1

ρ2

R

)
,

(3.52)
and the corresponding power spectrum is

S
(µ)
III (ρ,θ) =

∞∑
n=0

J 2
µ

(
αµ,n+1

ρ1

R

)
. (3.53)

In order to have a clear view of the optical fields represented by Eq. (3.52), we
performed the numerical calculation of the power spectrum distribution given by
Eq. (3.53) for the first two orders µ, truncating the summation with respect to
the index n by different values of the number N of zeros of the Bessel function
taken from Ref. 73. The results of this calculation are shown in Fig. 3.1. As one
may conclude from this figure, when N tends to infinity, the propagation-invariant
field with the power spectrum S

(0)
III represents an infinitely thin light beam, and the

propagation-invariant field with the power spectrum S
(1)
III represents an infinitely

thin light tube. In this sense, we term these fields as the light string beam and the
light capillary beam, respectively.

To clarify the physical nature of the light string and light capillary beams, we
consider the 4D Fourier transform of Eq. (3.52). It can be readily shown that

W̃
(0)
III (r1,φ1, r2,φ2) =

∞∑
n=0

(
R

α0,n+1

)2

δ

(
r1 − α0,n+1

2πR

)
δ

(
r2 − α0,n+1

2πR

)
(3.54)

and

W̃
(1)
III (r1,φ1, r2,φ2) = cos (φ1 − φ2)

∞∑
n=0

(
R

α1,n+1

)2

δ

(
r1 − α1,n+1

2πR

)

× δ

(
r2 − α1,n+1

2πR

)
. (3.55)

Hence, we come to the following conclusions: (i) the light string beam repre-
sents the superposition of the plane waves whose wave vectors lie on the con-
ical surfaces with the vertex angles γn = tan−1[(kR/α0,n+1)

2 − 1]−1/2, and
these waves are completely uncorrelated in the radial direction, i.e., for differ-
ent cones, but are completely correlated in the azimuthal direction within each
cone; (ii) the light capillary beam represents the superposition of the plane
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Figure 3.1 Power spectrums and their cross sections calculated in accordance with
Eq. (3.53) for different orders µ and different values of truncating parameter N .

waves whose wave vectors lie on the conical surfaces with the vertex angles
γn = tan−1[(kR/α1,n+1)

2 − 1]−1/2 and these waves are completely uncorrelated
in the radial direction, i.e., for different cones, but are partially correlated in the
azimuthal direction within each cone in accordance with the cosφ law.

3.5 Generation of Propagation-Invariant Fields

Let us consider an optical system with a single positive lens, shown in Fig. 3.2, and
let W(x1,x2) be the cross-spectral density function of the field in the input plane
of the system. Repeating the analysis made in Section 2.2 for z1 and z2 equal to
the focal length f of the lens, one may readily find that the cross-spectral density
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function in the output plane of this system is described by the expression

W
(
x′

1,x′
2

)=
∫ ∫ ∞

−∞
W (x1,x2) exp

[
−i

k

f

(
x′

1 ·x1−x′
2 ·x2

)]
dx1dx2, (3.56)

which is the 4D Fourier transform of the cross-spectral density function W(x1,x2).
On the other hand, as can be seen from Section 3.1, the propagation-invariant field
is characterized by the specific form of the function W̃ , which is a 4D Fourier
transform of the corresponding cross-spectral density function. Both of these facts
can be used to generate a propagation-invariant field by producing a secondary pla-
nar source with a cross-spectral density function WS = W̃ in the front focal plane
of the Fourier-transforming lens. Below we show how it may be done in order to
generate the special propagation-invariant fields considered in the previous section,
and discuss the possibility of physical realization of the desired secondary sources
as well as the physical limitations of the techniques of generating the propagation-
invariant fields.

Figure 3.2 Fourier-transforming optical system.

In order to produce a secondary source with a cross-spectral density function
WS = W̃

(0)
III , one may use a spatial light modulator with a complex amplitude trans-

mittance that can be approximated as follows:

T (r,φ) = T0

N−1∑
n=0

1

α0,n+1
δ
(
r − α0,n+1r0

)
exp (i�n) , (3.57)

where (r,φ), this time, are the polar coordinates in the front focal plane of a
Fourier-transforming lens, T0 and r0 are positive constants, and �n are statisti-
cally independent random variables that are uniformly distributed in the interval
[0,2π]. When illuminating this modulator by a homogeneous plane wave with an
amplitude U0, the cross-spectral density function at the output of the modulator is
given by (see Section 2.2)

WS (r1,φ1, r2,φ2) = U2
0

〈
T ∗ (r1,φ1) T (r2,φ2)

〉
, (3.58)
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where the angle brackets denote the statistical average. Substituting for T (r,φ)

from Eq. (3.57) into Eq. (3.58) and taking into account that, in accordance with the
accepted statistical properties of random variables �n,

〈exp (−i�n) exp (i�m)〉 = δnm, (3.59)

we obtain

WS (r1,φ1, r2,φ2) = U2
0 T 2

0

N−1∑
n=0

1

α2
0,n+1

δ
(
r1 − α0,n+1r0

)
δ
(
r2 − α0,n+1r0

)
.

(3.60)
Hence, the cross-spectral density function in the back focal plane of the Fourier-
transforming lens will be of the form

W (ρ1,θ1,ρ2,θ2) = U2
0 T 2

0

( r0

2π

)2 N−1∑
n=0

J0

(
α0,n+1

kr0

f
ρ1

)
J0

(
α0,n+1

kr0

f
ρ2

)
.

(3.61)
As can be readily seen, Eq. (3.61) represents the finite sum approximation of
Eq. (3.52) with µ = 0, i.e., of the cross-spectral density function of the light string
beam. It is obvious that the described technique can be used equally well for gener-
ating the fundamental Bessel beam. For this purpose, one must retain only one term
of a sum in Eq. (3.57), say one with n = 0, and suppress the exponential factor.

In order to produce a secondary source with a cross-spectral density function
WS = W̃II, one may use a spatial light modulator with a complex amplitude trans-
mittance that can be approximated as

T (r,φ) = T0δ (r − r0) exp [i� (φ)] , (3.62)

where, this time, the function �(φ) for each value φ represents a random vari-
able that is uniformly distributed in the interval [0,2π]; the variables �(φp) and
�(φs) are statistically independent for p �= s. In this case, the cross-spectral den-
sity function of a secondary source will be exactly the same as given by Eq. (3.46)
and, hence, the field with the cross-spectral density given by Eq. (3.45), i.e., the
Bessel-correlated beam, will be generated in the back focal plane of the Fourier-
transforming lens.

Finally, to produce the secondary source with a cross-spectral density WS =
W̃

(1)
III , one may use a spatial light modulator with a complex amplitude transmit-

tance that can be approximated as follows:

T (r,φ) = T0

N−1∑
n=0

1

α1,n+1
δ
(
r − α1,n+1r0

) {exp [i�n (φ)] + exp [−i�n (φ)]} ,

(3.63)
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where

�n (φ) =
{

2π + φ − �n for 0 � φ � �n,

φ − �n for �n � φ � 2π,
(3.64)

and �n has the same meaning as in Eq. (3.57). Substituting for T (r,φ) from
Eq. (3.63) into Eq. (3.58) and taking into account that〈

cos (φ1 + �n) cos (φ2 + �m)
〉= δnm cos (φ1 − φ2) , (3.65)

we come to the result

WS (r1,φ1, r2,φ2) = U2
0 T 2

0 cos (φ1 − φ2)

N−1∑
n=0

1

α2
1,n+1

δ
(
r1 − α1,n+1r0

)
× δ

(
r2 − α1,n+1r0

)
. (3.66)

Hence, the cross-spectral density function in the back focal plane of the Fourier-
transforming lens will be of the form

W (ρ1,θ1,ρ2,θ2) = U2
0 T 2

0

( r0

2π

)2
cos (θ1 − θ2)

N−1∑
n=0

J1

(
α0,n+1

kr0

f
ρ1

)

× J1

(
α1,n+1

kr0

f
ρ2

)
. (3.67)

As can be readily seen, Eq. (3.67) represents the finite sum approximation of
Eq. (3.52) with µ = 1, i.e., of the cross-spectral density function of the light capil-
lary beam.

Now, we will briefly discuss the possibility of physical realization of space
light modulators with the complex amplitude transmittance given by Eq. (3.57) or
Eq. (3.63) (for more details see the next section). It is obvious that each of these
modulators may be realized as a combination of a static amplitude-only modulator
and a dynamic phase-only modulator with appropriate transmittance functions. The
static amplitude-only modulator may be realized in a good approximation as a bi-
nary mask in the form of the transparent rings with the required radii and the widths
proportional to the weight coefficients attached to the delta functions in Eqs. (3.57)
and (3.63) (Fig. 3.3). Such a mask may be easily manufactured by means of a stan-
dard photolithographic technique. The dynamic phase-only modulator must repre-
sent a transparent plane screen that introduces the required azimuthal phase delays
in the annular zones corresponding to the transparent rings of the binary mask that
are changed randomly and independently in discrete moments of time (Fig. 3.4).
As such a random phase screen, a liquid crystal display controlled by a computer
may be used successfully.74
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Figure 3.3 Binary masks for generating the (a) light string and (b) light capillary beams.

Figure 3.4 Different states of a ramdom phase screen for generating the (a) light string and
(b) light capillay beams. The phase delay is presented by the gray level.

It is necessary to be aware that, in consequence of the finite aperture of
a Fourier-transforming lens, the described techniques provide the propagation-
invariant property of generated fields only in a finite range of distances z. This
may be easily shown by the example of generating the fundamental Bessel beam
sketched schematically in Fig. 3.5. As can be seen from this figure, the plane waves
generated by each pair of points of the ring source overlap only within the dark
shaded region. The depth of this region and, hence, the maximum range of the in-
variant propagation of the generated beam may be found by simple geometrical
calculations as

zmax = f
R0

r0
. (3.68)

There are also other physical factors that affect the expected results. Thus, the fi-
nite thickness of transparent rings, used to produce the needed secondary source,
violates the propagation-invariant condition, and a finite number of these rings re-
sults in an enlargement of the cross section of the light string and light capillary
beams. Surely, the instrumental errors also affect the quality of fields to be gener-
ated.
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Figure 3.5 Invariant propagation region (dark shaded area) of generated propaga-
tion-invariant field.

3.6 Physical Simulation

In order to verify the practical feasibility of the techniques described in the previ-
ous section, we carried out two optical experiments on generating the light string
and the light capillary beams. In these experiments, we used as a primary source
an argon laser with linearly polarized radiation characterized by the wave length
of 532 nm. To produce the needed secondary sources, we used binary masks with
a finite number of transparent rings of variable width, which were specially manu-
factured by means of photolithographic technique. Taking into account a very fast
decrease of the values 1/α2

0,n+1 and 1/α2
1,n+1 with n, to simplify our experiments,

we limited the number of transparent rings to N = 5. As a dynamic phase modula-
tor, we had available the commercial computer-controlled spatial light modulator
HoloEye LC2002 constructed on the basis of a twisted nematic liquid crystal. This
device has an active area of 26.2 × 20.0 mm, a spatial resolution of 832 × 624
pixels, and a frame frequency of 60 Hz in the SVGA mode. The configuration and
control of the modulator were carried out with the aid of the included software.
To provide the phase-only mode of modulation, we placed the liquid-crystal mod-
ulator between two polarizers with the orientation of the main axes recommended
by the manufacturer as 44 deg and −54 deg, respectively. When doing this, we
achieved approximately phase-only modulation of the optical field with a good lin-
earity over the dynamic range of 1.8π. As can be seen from the analysis given in
the previous section, the slight deviation of this range from the 2π value needed for
the full-scaled phase modulation does not affect the expected results. At the same
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time, the intensity distortions coupled with the phase modulation may violate the
purity of the experiments. To reduce the factor of this undesirable intensity mod-
ulation up to the least possible value of 5%, we optimized the control parameters
(“brightness” and “contrast”) of the modulator.

In the first experiment, sketched schematically in Fig. 3.6, we tried to generate
the light string beam. In this experiment, together with the liquid-crystal light mod-
ulator, we used a binary mask [Fig. 3.3(a)] with the geometric parameters given in
Table 3.1. To control the liquid-crystal light modulator, we formed periodically
changing with frequency of 60 Hz random video patterns of the form shown in
Fig. 3.4(a). For a Fourier-transforming lens, we used a high-quality single lens
with a 50-mm diameter and a focal length of 300 mm. We registered the transverse
intensity distribution of the generated beam at different distances z behind the back
focal plane of the Fourier-transforming lens. To provide a solid statistical average
of the registered data, we used an exposure time of several seconds. The results of
the experiment are shown in Fig. 3.7. As one can see from this figure, the generated
beam may be approximately identified as the light string beam. The expansion of
this beam, observed from a certain distance z, and its rather large diameter can be
explained through reasons discussed at the end of the previous section.

Figure 3.6 Experimental setup used for generating the light string beam: L laser;
BE beam expander; P polarizer; BM binary mask; LCM liquid crystal modulator;
FL Fourier-transforming lens; DC digital camera; PC personal computer.

Table 3.1 Parameters of binary mask I.

Ring number J0 zero Ring radius Ring width
n α0,n r0,n (mm) �r0,n (mm)

1 2.404 0.805 1.000
2 5.520 1.848 0.436
3 8.653 2.898 0.278
4 11.791 3.949 0.204
5 14.930 5.000 0.161
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Figure 3.7 Results of the experiment on generating the light string beam.

In the second experiment, sketched schematically in Fig. 3.8, we tried to gener-
ate the light capillary beam. This time, we used a binary mask [Fig. 3.3(b)] with the
geometric parameters given in Table 3.2, and controlled the liquid-crystal modula-
tor by applying random video patterns of the form shown in Fig. 3.4(b). To provide
a phase conjugation of the modulator transmittance in accordance with Eq. (3.63),
we used a Mach-Zehnder interferometer with a Dove prism in one of its arms and
a phase compensator in the other. In other respects, the experiment did not differ
from the previous one. The results of the experiment are shown in Fig. 3.9. Notice
that these results are somewhat worse than the previous ones; this can be explained
by substantial difficulties of aligning the interferometric setup. Nevertheless, the
beam generated in this experiment may be confidently identified as a certain ap-
proximation of the light capillary beam.

Figure 3.8 Experimental setup used for generating the light capillary beam: L laser; BE
beam expander; P polarizer; BM binary mask; LCM liquid crystal modulator; BS beam split-
ter; M mirror; PhC phase compensator; DP Dove prism; FL Fourier-transforming lens; DC
digital camera; PC personal computer.
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Table 3.2 Parameters of binary mask II.

Ring number J1 zero Ring radius Ring width
n α1,n r1,n (mm) �r1,n (mm)

1 3.831 1.163 1.000
2 7.015 2.129 0.546
3 10.173 3.088 0.377
4 13.323 4.044 0.287
5 16.470 5.000 0.232

Figure 3.9 Results of the experiment on generating the light capillary beam.

3.7 Concluding Remarks

We have found the coherent-mode structure of the propagation-invariant field as
a solution of the differential equation for propagation of the coherent modes of
the field. Analyzing this solution, we have shown that three different kinds of
propagation-invariant fields exist. Propagation-invariant fields of the first kind rep-
resent completely coherent fields, namely, nondiffracting Bessel beams or their
linear combinations. Propagation-invariant fields of the second and the third kind
are partially coherent fields with different coherent-mode structures. As a particu-
lar representative of the propagation-invariant fields of the second kind, the well-
known Bessel-correlated beam with uniform power spectrum may be mentioned.
Propagation-invariant fields of the third kind represent a new class of optical fields
unknown before in the literature. We have deduced two interesting examples of
such fields, termed by us light string and light capillary beams in view of a pe-
culiar extremely sharply localized distribution of light energy in their transverse
sections. It has been shown in theory and experimentally that light string and light
capillary beams are physically realizable, at least in a good practical approxima-
tion. The extremely sharp transverse distribution of energy, coupled with a great
depth of invariant propagation, allows us to expect that these beams could find
many useful practical applications, for example, in optical communication, optical
measurements, laser microtechnology, and microsurgery.
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4
Coherent-Mode Representations in Radiometry

4.1 Introduction

During the last three decades, several attempts have been made to establish a re-
lation between radiometry and physical optics.75–123 These attempts have marked
the beginning of a new theory that can be denominated as modern radiometry. The
present state of this theory may be summarized as follows.

The fundamental primary quantity in classical radiometry is the spectral ra-
diant flux F(ν) defined as the total power of radiation per unit frequency interval
at frequency ν transported through some reference surface. The other radiomet-
ric quantities are defined as the corresponding spatial densities of the radiant flux
on the basis of the fundamental law of radiometry, which, in the case of a planar
source, may be written in the following form:124

F(ν) =
∫

(2π)

d	 cosθ

∫
(σ)

B (x, s,ν)dx (4.1a)

=
∫

(2π)

J (s,ν)d	 (4.1b)

=
∫

(σ)

E (x,ν)dx, (4.1c)

where

B (x, s,ν) = d2F(ν)

cosθdxd	
(4.2)

is the surface-angular density of the radiant flux or the radiance,

J (s,ν) = dF(ν)

d	
= cosθ

∫
(σ)

B (x, s,ν)dx (4.3)

is the angular density of the radiant flux or the radiant intensity, and

E (x,ν) = dF(ν)

dx
=
∫

(2π)

B (x, s,ν) cosθd	 (4.4)

is the surface density of the radiant flux or the radiant emittance. In Eqs. (4.1)–
(4.4), dx is a source element at a point specified by the position vector x, d	 is

51
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an element of the solid angle around a direction specified by unit vector s, θ is
the angle that the s direction makes with the unit normal n to the source plane,
and the integrations extend over all source area σ and over the 2π solid angle
formed by all the s directions that point into the hemisphere into which the radiation
is propagating (Fig. 4.1). As one may see from these equations, radiance is the
central quantity of the classical radiometry: all the other radiometric quantities are
obtained by appropriate integration of the radiance. At the same time, as we already
know, in physical optics the basic quantity of radiation is the cross-spectral density
function defined alternatively (see Section 1.4) as

W (x1x2,ν) = 〈U∗ (x1,ν)U (x2,ν)
〉
, (4.5)

where U is an optical signal associated with the field in the source plane, the as-
terisk denotes the complex conjugate, and the angle brackets denote an ensemble
average.

Figure 4.1 Notation relating to the definition of radiometric quantities.

It is evident that in order to connect classical radiometry with physical optics,
it is necessary to establish the relation between the radiance B(x, s,ν), on one
hand, and the cross-spectral density function W(x1x2,ν), on the other. The ra-
diance B̂(x, s,ν) represented in terms of physical optics, i.e., expressed through
W(x1x2,ν), received the denomination of generalized radiance. Surely, it may
also be considered the generalized radiant intensity Ĵ (s,ν), generalized emittance
Ê(x,ν), and generalized flux F̂ (ν). The expression for the generalized radiance of
a planar source has been obtained for the first time by Walther75,80 in the following
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form:

B̂ (x, s,ν) =
(

k

2π

)2

cosθ

∫
(z=0)

W

(
x + x′

2
,x − x′

2
,ν

)
exp

(−iks⊥ · x′)dx′,

(4.6)

where k is the wave number associated with the frequency ν, and s⊥ is the 2D vec-
tor obtained by projecting the 3D unit vector s onto the source plane. Somewhat
later, Marchand and Wolf, making use of an analogous representation, derived the
corresponding formulas for the generalized radiant emittance and generalized ra-
diance intensity,82

Ê (x,ν) = k2

2
√

2π

∫
(z=0)

W

(
x + x′

2
,x − x′

2
,ν

)
J3/2

(
k
∣∣x′∣∣)

(k |x′|)3/2
dx′ (4.7)

and

Ĵ (s,ν) =
(

k

2π

)2

cos2 θ

∫ ∫
(z=0)

W (x1x2,ν) exp[−ik(s⊥ · x′
1 − s⊥ · x′

1)]dx′
1dx′

2,

(4.8)

where J3/2 denotes the Bessel function of the first kind and of the order 3/2. Un-
fortunately, as it can readily be shown, the generalized radiance and generalized
emittance given by Eqs. (4.6) and (4.7), in the general case, may take on nega-
tive values, a result that is in contradiction to the physical meaning attributed to
these quantities as the corresponding densities of the total power of radiation.82

On these grounds, Wolf comes to the conclusion that both the generalized radi-
ance (4.6) and the generalized radiant emittance (4.7) do not represent physically
measurable quantities.91 It is quite natural that such a conclusion leaves a certain
doubt about the practical value of these results in the context of experimental ra-
diometry (see, e.g., Ref. 110). To complete the statement Friberg96 has proved a
theorem that states, in particular, that there is no generalized radiance B̂(x, s,ν)

that depends linearly on W(x1x2,ν) and simultaneously satisfies the condition of
nonnegativeness for all x and s.

The situation has been improved by Martínez-Herrero and Mejías,102,106 and
partially by the author,122 who proposed a new generalized radiance that is ex-
pressed in terms of the coherent-mode representation of the cross-spectral density
function and satisfies the nonnegativeness condition. The author has also shown123

that such a radiance, under certain conditions, obeys the fundamental radiative
transfer law. These results are given below.

4.2 Generalized Radiant Flux

Let us consider a stationary quasi-monochromatic planar source occupying a fi-
nite domain D in the plane z = 0 and radiating into the free half-space z > 0.
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Let W(x1,x2) be the transverse cross-spectral density function of this source in
the plane z = 0 (from now on, we omit the explicit dependence of the considered
quantities on the frequency ν). Then the cross-spectral density function of the radi-
ated field is given by Eq. (1.17), which, for the sake of convenience, we reproduce
here again as

W (r1, r2) =
(

k

2π

)2 ∫ ∫
D

W (x1,x2)
exp[ik(R2 − R1)]

R1R2
cosθ1 cosθ2dx1dx2,

(4.9)

where the meaning of parameters R1, R2, θ1, and θ2 becomes clear from the geom-
etry shown in Fig. 1.1. Hence, the power spectrum of the radiated field is

S (r) = W (r, r)

=
(

k

2π

)2 ∫ ∫
D

W (x1,x2)
exp[ik(R′

2 − R′
1)]

R′
1R

′
2

cosθ′
1 cosθ′

2dx1dx2,

(4.10)

where R′
1, R′

2, and θ differ from the parameters in Eq. (4.9) in accordance with the
new geometry shown in Fig. 4.2.

Figure 4.2 Notation relating to Eq. (4.10).

We suppose now that the point r is moved away from the source plane at a
sufficiently large distance. Then the following approximations may be accepted:

R′
1 ≈ r − x1 · s⊥, R′

2 ≈ r − x2 · s⊥ (4.11)

in the exponential function of Eq. (4.10);

R′
1 ≈ R′

2 ≈ r (4.12)
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in the denominator under the integral of Eq. (4.10) (for the difference of these
approximations, see the details of paraxial approximation in Section 2.2). In
Eqs. (4.11) and (4.12), r = |r| and s⊥ is the 2D projection of the unit vector s
onto the source plane. The so-called far-zone approximation S(∞)(r) of the power
spectrum (4.10) is given by

S(∞) (rs) =
(

k

2π

)2 cos2 θ

r2

∫ ∫
D

W (x1,x2) exp[−iks⊥ · (x2 − x1)]dx1dx2,

(4.13)

where the vector r in the argument of function S(∞), for clarity, is changed for rs.
In accordance with the physical meaning of the radiant flux on one hand and

the physical meaning of the power spectrum on the other, it is natural to accept as
the definition of generalized radiant flux the far-zone spectrum S(∞)(rs) integrated
over a spherical surface in the solid angle of 2π, i.e.,

F̂ =
∫

(2π)

r2S(∞) (rs)d	. (4.14)

On substituting for S(∞)(rs) from Eq. (4.13) into definition (4.14), we obtain the
following formula for the generalized radiant flux:

F̂ =
(

k

2π

)2 ∫
(2π)

d	 cos2 θ

∫ ∫
(z=0)

W (x1,x2) exp[−iks⊥ · (x2 − x1)]dx1dx2,

(4.15)

where the integration over the coordinates x1 and x2 is formally extended to the
whole plane z = 0, since function W(x1,x2) has zero values for points located
outside the source region. This formula will be used in the next section when con-
structing the coherent-mode representation of the generalized radiance.

4.3 Coherent-Mode Representation of Radiometric Quantities

In order to construct the coherent-mode representation of radiometric quantities,
we recall at first the coherent-mode representation of the cross-spectral density
function (1.18) and rewrite it for a planar secondary source as

W (x1,x2) =
∑
n

λnϕ
∗
n (x1)ϕn (x2) , (4.16)

where λn are the eigenvalues and ϕn(x) are the eigenfunctions of the Fredholm
integral equation ∫

D

W (x1,x2)ϕn (x1)dx1 = λnϕn (x2) , (4.17)
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furthermore,

λ∗
n = λn � 0 (4.18)

and ∫
D

ϕ∗
n(x)ϕm(x)dx = δnm. (4.19)

It is obvious that Eq. (4.16) may be formally written in the form

W (x1,x2) =
∫

(z=0)

χ(x)
∑
n

λnϕ
∗
n (x1)ϕn (x2) |ψn(x)|2 dx, (4.20)

where χ(x) is a characteristic function of the source, defined as

χ(x) =
{

1 for x ∈ D,

0 for x /∈ D,
(4.21)

and ψn(x) are some arbitrary functions that form an orthonormal set in the domain
D, i.e., ∫

D

ψ∗
n(x)ψm (x)dx = δnm. (4.22)

Then, substituting for W(x1,x2) from Eq. (4.20) into Eq. (4.15), we obtain

F̂ =
(

k

2π

)2 ∫
(2π)

d	 cos2 θ

∫ ∫ ∫
(z=0)

χ(x)
∑
n

λnϕ
∗
n (x1)ϕn (x2) |ψn(x)|2

× exp[−iks⊥ · (x2 − x1)]dxdx1dx2. (4.23)

Finally, changing the order of summation and integration and calculating the inte-
grals with respect to x1and x2, we find

F̂ =
(

k

2π

)2 ∫
(2π)

d	 cos2 θ

∫
(z=0)

χ (x)
∑
n

λn |ψn(x)|2
∣∣∣∣ϕ̃n

(
k

2π
s⊥
)∣∣∣∣2 dx,

(4.24)
where

ϕ̃n (u) =
∫ ∞

−∞
ϕn(x) exp (−i2πu · x)dx (4.25)

is the 2D Fourier transform of function ϕn(x). As can be easily seen, Eq. (4.24)
represents the general flux as the sum of the elementary contributions

F̂n =
(

k

2π

)2 ∫
(2π)

d	 cos2 θ

∫
(z=0)

χ (x)λn |ψn(x)|2
∣∣∣∣ϕ̃n

(
k

2π
s⊥
)∣∣∣∣2 dx. (4.26)
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In order to attribute certain physical sense to these contributions, one may choose

ψn(x) ≡ ϕn (x) . (4.27)

In this case, Eq. (4.26) takes the form

F̂ =
(

k

2π

)2 ∫
(2π)

d	 cos2 θ

∫
(z=0)

χ (x)
∑
n

λn |ϕn(x)|2
∣∣∣∣ϕ̃n

(
k

2π
s⊥
)∣∣∣∣2 dx,

(4.28)

which may be interpreted as representing the general radiance flux as a superpo-
sition of elementary radiant fluxes produced by the coherent modes of the source.
In this sense, we will refer to Eq. (4.28) as the coherent-mode representation of
radiance flux.

Now, we note that the generalized radiometric quantities must satisfy the same
fundamental law of radiometry as do the radiometric quantities of the classical the-
ory. Then, comparing consecutively Eq. (4.28) with Eqs. (4.1a)–(4.1c), we obtain
the following coherent-mode representations of radiance, radiant intensity, and
radiant emittance, respectively:

̂̂B (x, s) =
(

k

2π

)2

cosθχ(x)
∑
n

λn |ϕn(x)|2
∣∣∣∣ϕ̃n

(
k

2π
s⊥
)∣∣∣∣2 ; (4.29)

̂̂J (s) =
(

k

2π

)2

cos2 θ
∑
n

λn

∣∣∣∣ϕ̃n

(
k

2π
s⊥
)∣∣∣∣2 ; (4.30)

̂̂E(x) =
(

k

2π

)2

χ(x)
∑
n

λnQn |ϕn(x)|2 , (4.31)

where

Qn =
∫

(2π)

cos2 θ

∣∣∣∣ϕ̃n

(
k

2π
s⊥
)∣∣∣∣2 d	 (4.32)

and the double caret is used here to distinguish these representations from the
corresponding generalized radiometric quantities given by Eqs. (4.6)–(4.8). For
brevity, further on we will refer to the coherent-mode representations (4.29)–(4.31)
as modal radiometric characteristics of the source. In conclusion, it is necessary
to note that the modal radiometric characteristics defined by Eqs. (4.28)–(4.31) are
always real and nonnegative and, hence, are true physically measurable quantities.
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4.4 Free-Space Propagation of Modal Radiance

As is well known,125 in a uniform medium that does not contain radiative sources
or absorbers, the traditional radiance B(x, s; z) of classical radiometry remains
constant along straight lines, i.e., it obeys the fundamental radiative transfer law
given by

d

ds
B (x, s; z) = 0, (4.33)

where d/ds denotes the directional derivative. The question is: does the modal
radiance (4.29) obey the propagation law (4.33) for the traditional radiance of
classical radiometry? Here, we try to answer this question by deriving the equation
for free-space propagation of the generalized radiance defined by Eq. (4.29).

As the starting point of our derivation, we use the following free-space prop-
agation equation for the cross-spectral density W(x1,x2; z) of a stationary field,
obtained in Ref. 4 within the accuracy of the paraxial approximation:(

∇2
1⊥ − ∇2

2⊥ + i2k
∂

∂z

)
W (x1,x2; z) = 0, (4.34)

where ∇2
1⊥ and ∇2

2⊥ are the transverse Laplacian operators acting on coordinates x1
and x2, respectively. We recall that the cross-spectral density function Wn(x1,x2; z)
of each mode satisfies the same propagation equations, as does the cross-spectral
density function W(x1,x2; z) and, hence, we may write(

∇2
1⊥ − ∇2

2⊥ + i2k
∂

∂z

)
ϕ∗

n (x1; z)ϕn (x2; z) = 0. (4.35)

On formally inverting the Fourier relationship (4.25) with respect to x = x2 and
u = ks⊥/2π, and interchanging the orders of differentiation and integration, we
may rewrite Eq. (4.35) as∫ (

∇2
1⊥ − ∇2

2⊥ + i2k
∂

∂z

)
ϕ∗

n (x1; z) ϕ̃n

(
k

2π
s⊥; z

)
exp(iks⊥ · x2)ds⊥ = 0,

(4.36)

where the integration is taken effectively over the s⊥ domain in which |s⊥| � 1.
After straightforward application of the operator ∇2

2⊥ to Eq. (4.36), we obtain∫ (
∇2

1⊥ + k2s2⊥ + i2k
∂

∂z

)
ϕ∗

n (x1; z) ϕ̃n

(
k

2π
s⊥; z

)
exp(iks⊥ · x2)ds⊥ = 0.

(4.37)
Since Eq. (4.37) must hold for all x2, it follows that(

∇2⊥ + k2s2⊥ + i2k
∂

∂z

)
ϕ∗

n (x; z) ϕ̃n

(
k

2π
s⊥; z

)
= 0 (4.38)
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or, passing on to the conjugate expression,(
∇2⊥ + k2s2⊥ − i2k

∂

∂z

)
ϕn (x; z) ϕ̃∗

n

(
k

2π
s⊥; z

)
= 0. (4.39)

Multiplying Eq. (4.38) by ϕn(x; z)ϕ̃∗
n(

k
2π

s⊥; z) and Eq. (4.39) by ϕ∗
n(x; z)ϕ̃n

( k
2π

s⊥; z) and taking the difference of the results with due regard for

f ∗ (u)
d

du
f (u) + f (u)

d

du
f ∗ (u) = d

du
|f (u)|2 (4.40)

and

f (u)∇2⊥f ∗ (u) − f ∗ (u)∇2⊥f (u) = i2Im
[
f (u)∇2⊥f ∗ (u)

]
, (4.41)

we come to the following equation:

∂

∂z
|ϕn (x; z)|2 |ϕ̃n (s⊥; z)|2+ 1

k

∣∣∣∣ϕ̃n

(
k

2π
s⊥; z

)∣∣∣∣2 Im
[
ϕn (x; z)∇2⊥ϕ∗

n (x; z)
]

= 0.

(4.42)

Equation (4.42) holds for each coherent mode and, hence, multiplying it by
λn(k/2π)2 and then summing up the results with respect to the index n, we ob-
tain, with due regard for definition (4.16),

∂

∂z

̂̂B (x, s; z) + 1

k
Q(x, s; z) = 0, (4.43)

where

Q(x, s; z) =
(

k

2π

)2∑
n

λn

∣∣∣∣ϕ̃n

(
k

2π
s⊥; z

)∣∣∣∣2 Im
[
ϕn (x; z)∇2⊥ϕ∗

n (x; z)
]
.

(4.44)

Within the accuracy of the paraxial approximation, we may set sz ≈ 1 and write
the following operator relation:

d

ds
≈ s⊥·∇⊥ + ∂

∂z
. (4.45)

In addition, it seems to be quite justifiable for any z > 0 within the used approxima-
tion to regard ̂̂B(x, s; z) as being a sufficiently smooth function of x. Then, taking
into account that |s⊥| � 1, Eq. (4.43) may be rewritten in a good approximation as

d

ds
̂̂B (x, s; z) + 1

k
Q(x, s; z) = 0, (4.46)
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which is the free-space propagation equation for the generalized radiance (4.29).
As can be seen, Eq. (4.46) differs by its form from the analogous Eq. (4.33) for

the traditional radiance of classical radiometry. But it is necessary to keep in mind
that classical radiometry deals with highly incoherent thermal sources that generate
radiation, whose effective wavelengths λ are very small, compared to their linear
dimensions.125 Therefore, let us now examine the behavior of expression (4.46) in
a short-wavelength limit, i.e., when k → ∞.

Functions ̂̂B(x, s; z) and Q(x, s; z) depend on k explicitly via factor (k/2π)2

and implicitly via frequency-dependent quantities λn,ϕn(x1; z), ϕ̃∗
n(

k
2π

s⊥; z). Let
us assume that they admit the expansion into powers of 1/k, viz.,

̂̂B (x, s; z) = ̂̂B (x, s; z)
∣∣∣
1/k=0

+
∞∑

m=1

[
dm

d (1/k)m
̂̂B (x, s; z)

]∣∣∣∣∣
1/k=0

(
1

k

)m

, (4.47)

Q(x, s; z) = Q(x, s; z)|1/k=0 +
∞∑

m=1

[
dm

d (1/k)m
Q(x, s; z)

]∣∣∣∣∣
1/k=0

(
1

k

)m

. (4.48)

Then, inserting (4.47) and (4.48) into Eq. (4.46) and equating terms of the same
power in 1/k, we obtain, in the limit of large k,

d

ds
̂̂B0 (x, s; z) = 0, (4.49)

where

̂̂B0 (x, s; z) ≡ ̂̂B (x, s; z)
∣∣∣
1/k=0

= lim
k→∞

̂̂B (x, s; z) . (4.50)

Equation (4.50) is the equation of radiative transfer in free space for the asymp-
totic radiance ̂̂B0(x, s; z) corresponding to large k. Thus, in reply to the question
posed in the beginning of the present section, we can conclude that in the short-
wavelength limit, the generalized radiance ̂̂B(x, s; z) defined by Eq. (4.29) remains
invariant on propagation along the line through point x in the direction s, i.e., it
obeys the fundamental radiative transfer law of classical radiometry.

Reverting to Eq. (4.46), one may hypothesize that for any finite k, the second
term in its left-hand side corresponds to the fine spatial structure of the generalized
radiance and, therefore, if the radiance is measured in such a way as to average
out this detail, the result will satisfy Eq. (4.49). Then, the traditional radiance of
classical radiometry, within the framework of the paraxial approximation, may be
regarded as being an asymptotic short-wavelength limit of our generalized radiance
(4.29).
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4.5 Modal Radiometry of Gaussian Schell-Model Source

As an example of the application of the considered theory, we will calculate here
the modal radiometric characteristics of the 1D Gaussian Schell-model source,
whose coherent-mode representation was the subject of Section 1.6.1.

The coherent-mode structure of the 1D Gaussian Schell-model source is de-
fined by Eqs. (1.54)–(1.61). For convenience, we recall it here, omitting the explicit
dependence of the considered quantities on frequency ν as follows:

ϕn (x) =
(

2c

π

)1/4 1√
2nn!Hn

(
x
√

2c
)

exp
(
−cx2

)
, (4.51)

λn = S (0)

(
π

a + b + c

)1/2(
b

a + b + c

)n

, (4.52)

where

a = 1

4σ2
S

, b = 1

2σ2
µ

, c =
(
a2 + 2ab

)1/2
, (4.53)

and Hn is the Hermite polynomial of order n. On making use of the relation72

∫ ∞

−∞
Hn (x) exp

(
−x2

2

)
exp (iux)dx = in

√
2πHn (u) exp

(
−u2

2

)
, (4.54)

one may readily find the 1D Fourier transform (4.25) with u = ks/2π as

ϕ̃n

(
k

2π
s

)
= (−i)n

( π

2c

)1/4
(

2

2nn!
)1/2

Hn

(
k√
2c

s

)
exp

(
−k2

4c
s2
)

. (4.55)

Substituting for ϕn and ϕ̃n from Eqs. (4.51) and (4.55), respectively, into 1D ver-
sions of Eqs. (4.29)–(4.31) with due regard for s = sinθ, we obtain the following
expressions for modal radiometric characteristics of the 1D Gaussian Schell-model
source:

̂̂B (x,θ) = k

π
exp

(
−2cx2

)
exp

(
−k2

2c
sin2 θ

)
cosθ

×
∑
n

λn

(2nn!)2
H 2

n

(
x
√

2c
)

H 2
n

(
k√
2c

sinθ

)
, (4.56)

̂̂J (θ) = k

π

( π

2c

)1/2
exp

(
−k2

2c
sin2 θ

)
cos2 θ

∑
n

λn

2nn!H
2
n

(
k√
2c

sinθ

)
, (4.57)
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̂̂E (x) = k

π
exp

(
−2cx2

)∑
n

λn

2nn!H
2
n

(
x
√

2c
)

×
∫ 1

0

(
1 − s2

)1/2
H 2

n

(
k√
2c

s

)
exp

(
−k2

2c
s2
)

ds, (4.58)

where λn are given by Eq. (4.52).
We performed a numerical calculation of the modal radiant intensity ̂̂J (θ) and

modal radiant emittance ̂̂E(x), given by Eqs. (4.57) and (4.58), for different val-
ues of the degree of global coherence γ of the source (see Section 1.6.1). In our
calculations, we truncated the summation in the corresponding expressions by the
effective number of coherent modes N given by Eq. (1.62). The results of this
calculation are presented in Fig. 4.3. For comparison, the curves corresponding to
a Lambertian source with Gaussian power spectrum are shown by dashed lines.

Figure 4.3 Normalized modal radiometric characteristics of Gaussian Schell-model source
calculated for different values of the degree of global coherence γ: (a) modal radiant inten-
sity; (b) modal radiant emittance.
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As can be seen from Fig. 4.3(a), the more coherent is the source (the larger is γ),
the more directional is its radiant intensity. At the same time, as can be seen from
Fig. 4.3(b), the radiant emittance of the 1D Gaussian Schell-model source changes
very slightly with variations of γ, taking on approximately a Gaussian form. These
results are in complete agreement with the predictions of the theory.

4.6 Concluding Remarks

The coherent-mode representations considered in the present chapter express the
radiometric quantities as superpositions of the corresponding elementary contribu-
tions produced by the coherent modes of the source, which makes them attractive
from the standpoint of better understanding the physics of generating and prop-
agating a partially coherent optical radiation. All of the modal radiometric char-
acteristics are real positive quantities, which makes them attractive also from a
standpoint of possible interpretation of the results of measurements in practical ra-
diometry. Despite this, for inexplicable reasons, modal radiometric characteristics
have not yet found their application. Nevertheless, we are sure they will gain their
due place in optical science and practice. In confirmation of this, in particular, the
modal radiance given by Eq. (4.29) will be efficiently used in the next chapter for
constructing an alternative coherent-mode representation of a planar source with
an unknown cross-spectral density function.
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5
Alternative Coherent-Mode Representation of a
Planar Source

5.1 Introduction

We recall the coherent-mode representation of the cross-spectral density function
(1.18) and rewrite it for a planar secondary source, omitting an explicit dependence
of the considered quantities on frequency ν, as follows:

W (x1,x2) =
∑
n

λnϕ
∗
n (x1)ϕn (x2) , (5.1)

where λn are the eigenvalues and ϕn(x) are the eigenfunctions of the Fredholm
integral equation ∫

D

W (x1,x2)ϕn (x1)dx1 = λnϕn (x2) . (5.2)

The coherent-mode representation of the source is an essential tool in describing
the processes and systems in optics. However, the practical value of this repre-
sentation is essentially restricted. Really, in practice, the analytic expression for
the cross-spectral density function W(x1,x2), as a rule, is unknown and, hence,
values λn and functions ϕn(x) cannot be found as the solution of the Fredholm
equation (5.2). Moreover, even when the cross-spectral density function is approx-
imated by a certain analytic function, the solution of this equation in closed form
may be obtained only for a very limited number of field models (see Section 1.6).
Clearly, an alternative approach to the problem of the coherent-mode representa-
tion of the source, which does not involve the solution of the Fredholm equation
(5.2), is desired. Here, we propose such an approach based on the replacement of an
original source with an unknown cross-spectral density function by an alternative
source with a cross-spectral density function that may be approximated according
to the results of physical measurements.126

5.2 Alternative Source and its Coherent-Mode Structure

Owing to the nonlinear dependence of B(x, s) on eigenfunctions ϕn(x), there may
be found some alternative radiatively equivalent source that occupies the same

65
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domain D in the plane z = 0, has another cross-spectral density function, but radi-
ates into the half-space z > 0 with the same radiance function as does the original
source. In order to describe such a source, we will introduce the function

� (x1,x2) =
M−1∑
m=0

µmψ∗
m (x1)ψm (x2) , (5.3)

where µm are some arbitrary real positive values bounded from above, and ψm(x)

are some prescribed continuous functions that obey the orthonormality condition∫
D

ψ∗
n (x)ψm (x)dx = δnm. (5.4)

It may be readily shown that, in accordance with its construction, the function
�(x1,x2) obeys the following conditions:∫ ∫

D

|� (x1,x2)|2 dx1dx2 < ∞, (5.5)

� (x2,x1) = �∗ (x1,x2) , (5.6)

∫ ∫
D

� (x1,x2) f ∗ (x1) f (x2)dx1dx2 � 0, (5.7)

where f (x) is any square-integrable function. Conditions (5.5)–(5.7) imply that
the function �(x1,x2) is square integrable, Hermitian, and nonnegative definite,
respectively. These are just the same conditions that the cross-spectral density func-
tion of any steady state field obeys. Hence, the function �(x1,x2) may be consid-
ered as the cross-spectral density function WA(x1,x2) of some alternative source,
i.e.,

WA (x1,x2) =
M−1∑
m=0

µmψ∗
m (x1)ψm (x2) . (5.8)

Formally changing λn and ϕn(x) in Eq. (4.29) for µm and ψm(x), respectively, one
may obtain the following expression for the radiance function of such an alternative
source:

BA (x, s) =
(

k

2π

)2

χ (x) cosθ

M−1∑
m=0

µm |ψm (x)|2
∣∣∣∣ψ̃m

(
k

2π
s⊥
)∣∣∣∣2 , (5.9)
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where

ψ̃m

(
k

2π
s⊥
)

=
∫

(z=0)

ψm (x) exp (−iks⊥·x)dx. (5.10)

Once the radiance function B(x, s) of the original source has been measured in a
physical experiment, a good approximation of the alternative radiatively equivalent
source may be obtained by solving the following problem of conditional optimiza-
tion: ∫

(2π)

∫
(z=0)

[B (x, s) − BA (x, s)]2 dxd	 −→ min
µm

, µm > 0, (5.11)

where d	 is the element of a solid angle around a direction specified by s, and
the first integral extends over the 2π solid angle subtended by a hemisphere in the
half-space, into which the source radiates. Substituting from Eq. (5.9) and making
use of the relations d	 =ds⊥/ cosθ and cosθ = (1 − s2⊥)1/2, one may rewrite the
optimization problem (5.11) in the following explicit form:{

1

2

M−1∑
m=0

M−1∑
l=0

µmµlPml+
M−1∑
m=0

µmQm

}
−→ min

µm

, µm > 0, (5.12)

where

Pml =
∫

D

|ψm (x)|2 |ψl (x)|2 dx

×
∫

(s2⊥�1)

(
1 − s2⊥

)1/2
∣∣∣∣ψ̃m

(
k

2π
s⊥
)∣∣∣∣2 ∣∣∣∣ψ̃l

(
k

2π
s⊥
)∣∣∣∣2 ds⊥, (5.13)

Qm = −
(

2π

k

)2 ∫
(s2⊥�1)

∫
D

B (x, s) |ψm (x)|2
∣∣∣∣ψ̃m

(
k

2π
s⊥
)∣∣∣∣2 dxds⊥. (5.14)

Problem (5.12) represents a classical quadratic programming problem, which may
be solved by well-known methods.

As is well known, the only true physical quantity that can be observed (or
measured) in the output plane of an optical system is the irradiance E(x′) defined
as follows:

E
(
x′)=

∫
(2π)

B
(
x′, s

)
cosθd	, (5.15)

where

B
(
x′, s

)= L [B (x, s)] , (5.16)
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and L is an operator describing the propagation of the primary source radiance
function B(x, s) through an optical system. It is obvious that two primary sources
with different cross-spectral density functions, e.g., W(x1,x2) and W ′ (x1,x2), but
with the same radiance function, produce the same irradiance in the output plane of
an optical system. Hence, when examining the processes going on in some optical
system, an original source with cross-spectral density function W(x1,x2) may be
replaced in a good approximation by an alternative source with an appropriately
chosen cross-spectral density function WA (x1,x2). In this sense,

WA (x1,x2) =
M−1∑
m=0

(µm)opt ψ
∗
m (x1)ψm (x2) , (5.17)

with (µm)opt calculated as the solution of problem (5.12), may be accepted as the
alternative coherent-mode representationof an original source.

5.3 Choice of the Alternative Modal Basis

As follows from the previous section, the only theoretical requirements that the
alternative coherent-mode functions ψm(x) must satisfy is that they have to be
continuous and orthonormal in the plane z = 0. From the point of view of practice,
we will also require that these functions permit calculation in the closed form of the
Fourier transform (5.10). Below, we show how such functions may be constructed
in two orthogonal bases, viz., Hermitian basis and Bessel basis.

5.3.1 Hermitian basis

If the original source has rectangular form, it is appropriate to choose the basis
formed by the Hermitian polynomials Hn(u) of the integral order n, which obey
the orthogonality relation72

∫ ∞

−∞
exp

(
−u2

)
Hn (u)Hm (u)du = 2nn!√πδnm. (5.18)

Comparing Eqs. (5.18) and (5.4), one finds that, in this case, the alternative
coherent-mode functions must be chosen in the form

ψm (x, y) = 1

2mm!
(

ab

π

)1/2

Hm (ax)Hm (by)

× exp

(
−a2x2

2

)
exp

(
−b2y2

2

)
, (5.19)
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with scale factors a and b being discussed later. On making use of the well-known
equality71

∫ ∞

−∞
Hn (u) exp

(
−u2

2

)
exp (ius)du = in

√
2πHn (s) exp

(
−s2

2

)
, (5.20)

one may readily find the Fourier transform

ψ̃m

(
k

2π
sx,

k

2π
sy

)
= (−i)2m 2

2mm!
( π

ab

)1/2
Hm

(
ksx

a

)
Hm

(
ksy

b

)

× exp

(
−k2s2

x

2a2

)
exp

(
−k2s2

y

2b2

)
. (5.21)

In order to provide the best approximation in accordance with Eq. (5.11), it is
necessary to match the effective area of the function [ψ0(x, y)]2 with the area of
the characteristic source function χ(x, y), i.e.,∫ ∞

−∞
exp

(
−a2x2

)
dx

∫ ∞

−∞
exp

(
−b2y2

)
dy = XY, (5.22)

where X and Y are linear dimensions of the source. Calculating the integrals in
Eq. (5.22), one may find the following values of the scale factors a and b:

a =
√

π

X
, b =

√
π

Y
. (5.23)

5.3.2 Bessel basis

If the original source possesses circular symmetry, it is appropriate to construct the
mode functions in the basis formed by the Bessel functions of the first kind and
integral order n, Jn(r), which clearly obey the orthogonality relation∫ R

0

∫ 2π

0
exp [i (n − m)]Jn (r) Jm (r) rdrdφ = 2π

∫ R

0
J 2

n (r) rdrδnm, (5.24)

where (r, φ) are the polar coordinates in the (x, y) plane. In this case, the alterna-
tive coherent-mode functions must be chosen in the form

ψm (r,φ) =
[
2π

∫ R

0
J 2

n (r) rdr

]−1/2

exp (−inφ)Jn (r) . (5.25)

It may be readily shown that

ψ̃m (ρ,θ) = i−m
√

2π

[∫ R

0
J 2

n (r) rdr

]−1/2 ∫ R

0
Jm (r) Jm (2πρr) rdr. (5.26)
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It should be noted that the integrals in Eqs. (2.25) and (2.26) can be easily
calculated in closed form using the Lommel integrals72

∫ P

0
Jm (ax)Jm (bx)xdx = P

a2 − b2

[
bJm (aP )J ′

m (bP ) − aJ ′
m (aP )Jm (bP )

]
(5.27)

and ∫ P

0
J 2

m (ax) xdx = P 2

2

[
J ′2

m (aP ) +
(

1 − m2

a2P 2

)
J 2

m (aP )

]
, (5.28)

where

J ′
m (aP ) = d

d (ax)
Jβ (ax)

∣∣∣∣
x=P

. (5.29)

Indeed, on making use of Eq. (5.28) with due regard for recurrence relations,72

Jm−1 (x) + Jm+1 (x) = 2m

x
Jm (x) (5.30)

and

Jm−1 (x) − Jm+1 (x) = 2J ′
m (x) , (5.31)

one readily finds

∫ R

0
J 2

n (r) rdr = R2

2

[
J 2

m (R) − Jm−1 (R)Jm+1 (R)
]
. (5.32)

On making use of Eq. (5.27) with due regard for relation,72

d

dx

[
x−mJm (x)

]= −x−mJm+1 (x) , (5.33)

one readily finds

∫ R

0
Jm (r) Jm (2πρr) rdr =

[
1

R
Jm (R) − 1

2
Jm−1 (R) + 1

2
Jm+1 (R)

]
× Jm (2πRρ)

1 − (2πρ)2
− 2πJm (R)

ρJm+1 (2πRρ)

1 − (2πρ)2
.

(5.34)
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5.4 Numerical Simulation

To illustrate the proposed technique, we considered an example of constructing the
alternative coherent-mode representation of the original source with a known ra-
diance function. In this example, we considered the homogeneous 1D Lambertian
source with the radiance function

B (x, s) =
{

Ck/2π, when |x| � X/2, |s| � 1,

0, when |x| > X/2, |s| > 1,
(5.35)

where C is a constant (further, for the sake of simplicity, we will equate it to unity).
To construct the alternative coherent-mode representation of such a source, we used

ψm (x) = 1

(X2mm!)1/2
Hm

(√
π

X
x

)
exp

(
− πx2

2X2

)
(5.36)

and

ψ̃m

(
k

2π
s

)
= im

(
2X

2mm!
)1/2

Hm

(
kX√

π
s

)
exp

(
−k2X2s2

2π

)
. (5.37)

For this example, the coefficients of problem (5.12) given by Eqs. (5.13) and
(5.14) take the following values:

Pml = 16

k (2mm!)2 (2l l!)2
∫ √

π/2

0
H 2

m (u)H 2
l (u) exp

(
−2u2

)
du

×
∫ kX/

√
π

0

[
1 − πv2

(kX)2

]1/2

H 2
m (v)H 2

l (v) exp
(
−2v2

)
dv, (5.38)

Qm = − 8

k (2mm!)2

∫ √
π/2

0
H 2

m (u) exp
(
−u2

)
du

∫ kX/
√

π

0
H 2

m (v) exp
(
−v2

)
dv.

(5.39)

We performed the numerical calculation of coefficients (5.38) and (5.39) and
solved problem (5.12) using the modified gradient method. To simplify the cal-
culations, we chose kX = 10 (typically, this value may be of the order of 103 and
larger). The obtained solutions for different values of M and the corresponding
values of the relative error of approximation ε are given in Table 5.1. As can be
seen from this table, the error of approximation decreases rapidly with the increase
of M and, when M = 30, it becomes less than 10%, which is quite admissible in
the majority of practical applications. It is not out of place to add here that the con-
sidered example represents the most difficult case in the sense of approximation
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accuracy. Indeed, as is known (see Section 1.6.3), the Lambertian source is very
close to a completely incoherent source that contains an infinite number of coher-
ent contributions in its modal representation. Hence, it is well grounded to expect
that the alternative coherent-mode representation will be much more efficient for
any other, non-Lambertian, partially coherent planar source.

Table 5.1 Results of calculations.

M 5 10 20 30

µ0 0.2723 0.1335 0.0000 0.0000
µ1 0.5899 0.2938 0.0000 0.0000
µ2 1.0718 0.4544 0.0000 0.0000
µ3 2.1906 0.6467 0.0000 0.0000
µ4 3.0898 0.9426 0.0106 0.0000
µ5 – 1.1818 0.0008 0.0000
µ6 – 1.8589 0.0117 0.0000
µ7 – 2.0979 0.0318 0.0000
µ8 – 4.4068 0.0374 0.0000
µ9 – 5.4077 0.1575 0.0000
µ10 – – 0.2035 0.0000
µ11 – – 0.5844 0.0000
µ12 – – 1.0153 0.2039
µ13 – – 2.1614 1.2738
µ14 – – 3.8866 2.7781
µ15 – – 6.2033 5.0672
µ16 – – 9.4392 7.667
µ17 – – 10.5465 8.9493
µ18 – – 11.0982 8.8142
µ19 – – 6.9331 5.1981
µ20 – – – 1.1903
µ21 – – – 0.0008
µ22 – – – 1.6739
µ23 – – – 5.2415
µ24 – – – 5.2495
µ25 – – – 1.5986
µ26 – – – 0.0000
µ27 – – – 1.9317
µ28 – – – 4.8002
µ29 – – – 3.1132

ε 0.6595 0.4586 0.1087 0.0993

5.5 Concluding Remarks

The coherent-mode representations considered in the previous chapters may be
characterized as an approach based on the explicit use of a priori data about the
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source, such as the knowledge of its cross-spectral density function. The approach
considered in the present chapter is based on the use of a posteriori data about
the source, namely, its radiance measured in a physical experiment. We have de-
fined an alternative coherent-mode representation of the original plane source with
unknown cross-spectral density function in terms of the coherent modes of some
alternative source that generates radiation with nearly the same radiance function
as does the original source. Such a representation may be obtained by approximat-
ing the measured radiance function of the original source by the modal radiance
of an alternative source calculated in the prescribed orthonormal basis. We wish to
stress that an alternative coherent-mode representation does not reproduce in any
way the true coherent-mode structure of the original source, but may substitute it
in practice when examining the processes going on in some optical system. We
propose that this approach reveals a new and promising perspective for practical
application of the coherent-mode representation of processes and systems in optics.
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