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Introduction to the Series

Welcome to the SPIE Field Guides — a series of publica-
tions written directly for the practicing engineer or scientist.
Many textbooks and professional reference books cover opti-
cal principles and techniques in depth. The aim of the SPIE
Field Guides is to distill this information, providing readers
with a handy desk or briefcase reference that provides basic,
essential information about optical principles, techniques,
or phenomena, including definitions and descriptions, key
equations, illustrations, application examples, design con-
siderations, and additional resources. A significant effort
will be made to provide a consistent notation and style be-
tween volumes in the series.

Each SPIE Field Guide addresses a major field of optical
science and technology. The concept of these Field Guides is
a format-intensive presentation based on figures and equa-
tions supplemented by concise explanations. In most cases,
this modular approach places a single topic on a page, and
provides full coverage of that topic on that page. Highlights,
insights, and rules of thumb are displayed in sidebars to the
main text. The appendices at the end of each Field Guide
provide additional information such as related material out-
side the main scope of the volume, key mathematical rela-
tionships, and alternative methods. While complete in their
coverage, the concise presentation may not be appropriate
for those new to the field.

The SPIE Field Guides are intended to be living documents.
The modular page-based presentation format allows them
to be easily updated and expanded. We are interested in
your suggestions for new Field Guide topics as well as what
material should be added to an individual volume to make
these Field Guides more useful to you. Please contact us at
fieldguides@SPIE.org.

John E. Greivenkamp, Series Editor
Optical Sciences Center
The University of Arizona
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Field Guide to Linear Systems in Optics

The College of Optical Sciences (OSC) at the University of
Arizona has long offered a course called “OPTI512R: Fourier
Transforms, Linear Systems, and Optics” in its graduate
program. The course was initiated and designed by Prof.
Jack Gaskill, and was taught largely out of a textbook by
the same name that was published in 1978. When Prof. Tyo
joined OSC in 2006, he was asked to take over the course,
as Prof. Gaskill had retired some years earlier.

Tyo came to the class with an electrical engineer’s classic
understanding of linear systems in time and frequency. Tyo
quickly came to realize that, at that time, Prof. Gaskill’s
textbook was the only one written from the perspective of an
optical engineer who needs to take 2D spatial Fourier trans-
forms instead of 1D temporal ones. This difference gives
rise to several subtle but important stylistic requirements
that Prof. Gaskill captured well in his text. As with most
instructors, Tyo began to add his own take on the material
over the years.

Andrey Alenin joined his group in 2010, and he showed a
strong interest in both the pedagogy and the presentation
of the course material; the two authors have since worked
together to refine the presentation. As of the writing of this
Field Guide, Prof. Gaskill’s text is still the primary reference
in the class. However, when John Greivenkamp discussed
with us the possibility of writing a Field Guide on this topic,
he gave the authors the opportunity to go through the notes
and reorganize them into a sequence more suited for this
handbook format.

The process is, of course, circular. During the current se-
mester of teaching OPTI512R, while completing this Field
Guide, the authors have realized that the entire structure
of the course will need to be revised going forward. The
efforts undertaken to write this book have provided a new
perspective on the classic course content.
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Field Guide to Linear Systems in Optics

We would like to extend our gratitude to the following indi-
viduals who aided in the preparation of parts of this book.
Series editor John Greivenkamp was invaluable for his guid-
ance on style and his tips about what to include and what to
omit. Brian Anderson from the University of Arizona read
and commented on several of the pages that discuss topics
from quantum mechanics. Scott McNeill from SPIE was of
help in setting up the formatting of the book.

We are grateful to the owners and staff of the Cartel Coffee
Lab and the Dragoon Brewery, who allowed us to occupy
power outlets, seats, and their Wi-Fi connections for hours
on end as we tried to escape the campus and hide in order
finish the book.

Prof. Tyo would like to express his gratitude to his wife,
Elizabeth Ritchie, for her patience while he worked on the
book during their sabbatical.

Andrey Alenin would like to thank Geraldine Longo for her
continuous encouragement, as well as comments and advice
on aesthetics of presentation.

J. Scott Tyo
College of Optical Sciences
The University of Arizona

Andrey S. Alenin
College of Optical Sciences
The University of Arizona
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Glossary

Functions in this Field Guide are functions of spatial vari-
ables x and y unless noted otherwise. Lowercase letters are
used to denote functions of the spatial variables (f (x), g (x)),
whereas capital letters represent their Fourier transforms

(F (), GE).

Sequences of discrete samples of a function are denoted with
the subscript % (f, g2), and samples of the corresponding
DFTs are denoted with subscript n (F,,, G,,).

Primed variables (x’, y’, €', v/, etc.) denote variables of

integration.

BPF Bandpass filter

CTF Coherent transfer function

D Pupil diameter

d,, d; Object and image distances
DA{fr} Discrete Fourier transform of sequence fj,
E Complex vector electric field
E[f(x)] Expected value of f (x)

f Focal length

f# F-number

fl#, Working F-number

fs (%) Ideally sampled function f (x)
F{f(x)} Fourier transform of f (x)

h(x) Impulse response

H() Transfer function

H(E) Optical transfer function

HPF High-pass filter

Jo (x) Zeroth-order Bessel function of first kind
k Wave vector

L Spatial extent of a function

% Linear shift invariant operator
L @)} Laplace transform of f (¢)

LPF Low-pass filter

m, (f(x))  n'® moment of f (x)

MTF Modulation transfer function
OTF Optical transfer function

PSD Power spectra density

PSF Point spread function
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Xi

Glossary

r

r

K
SNR
T
t(x,y)
u

w

W (x,y)
X

X,y

Xs
2{fr}

O (x —Xq)
Ax

Ag

Vg ()
Yoes Vys> Yz

e O DT >3

Polar coordinate radius

2D vector xX + yy
Mathematical operator

Signal to noise ratio
Temporal period
Transmission function
Complex scalar optical field amplitude
Spatial frequency bandwidth
Wavefront aberration function
Spatial period

Cartesian coordinates

Spatial sampling interval
Z-transform of sequence f},

Impulse function at x = x

Sampling resolution in the space domain
Sampling resolution in the frequency domain
Correlation between functions f (x) and g (x)
Direction cosines

Spatial frequency in y

Wavelength

Temporal frequency

Polar coordinate angle

Radial distance in frequency plane

EE+n7

Normalized frequency &/,

Spatial frequency in x

Field Guide to Linear Systems in Optics

Downloaded From: https://www.spiedigitallibrary.org/ebooks on 20 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Downloaded From: https://www.spiedigitallibrary.org/ebooks on 20 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Mathematical Background and Notation 1

Complex Numbers and Complex Plane

Complex analysis is an extension of mathematics on the real
number line that is valuable in many areas. To introduce
complex numbers, first define the imaginary number

i=vV-1

A complex number u is the superposition of a completely
real number and a completely imaginary number:

u=R[ul+iJu]l =x+1iy

When the complex number is 5
written in terms of the real

and imaginary parts, it is called y
Cartesian notation.

Because the real and imaginary
parts of a complex number cannot
cancel each other, they can be treated as orthogonal and
be used as basis vectors in a 2D plane called the complex
plane. After a complex number is plotted in this 2D plane,
it is often useful to define a polar coordinate system:

X

x =rcos0 y =rsin0

0 = arctan (y/x) r=yx2 +y2

Euler’s identity follows from the Taylor series expansion of
the exponential using the arithmetic rules on the following
page. The identity allows us to relate polar and Cartesian
notation in terms of a complex exponential:

u=retd =rcos0 +irsind =x +iy

The complex exponential can be used in all computations,
and it obeys all of the rules of exponentials. This Field Guide
relies heavily on this representation.
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2 Mathematical Background and Notation

Complex Arithmetic

When performing complex arithmetic, it is necessary to
determine whether to operate in Cartesian or polar coordi-
nates. One system is generally easier to work in than the
other for any particular computation.

Addition and Subtraction

J The orthogonal nature of the
\lm s X real and imaginary parts of
(y1-Y2)? the complex number point to

a graphical method of per-

forming addition. It is neces-
sary to convert to Cartesian

coordinates to perform these
operations as

rq R

Uip+ug = (x1+x9) +i(y1 +y92)
up—ug = (x1 —x2) +i(y1 —y2)

Multiplication and Division

Multiplication and division are usually easier to compute
when working in polar coordinates, but there are rules
for working in Cartesian coordinates, as well:

Uiy = (X1x9 —¥1Y2) +i(x1y2 +x2Y1)

i(61+62)

rirqge

U _ (1% +y1yp) —i(¥1ye —X9¥1) _ 71 i(68,-05)
Ug x92 + yg2 ro

Integer Powers of Complex Numbers
In Cartesian notation, binomial
expansion rules are used for pow-
ers. In polar notation, rules for
R raising exponents to a power are
employed:

um = (x +iy)" = rreind
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Mathematical Background and Notation 3

Specialized Complex Operations

The complex conjugate of u is denoted u*. The conjugate
is defined as

u = rei u* = re=i0

u=x+iy u* =x—1iy
The complex conjugate satisfies

lu] = |u®| Zu=—-Zu*

It has special use when added to, subtracted from, or multi-
plied by the original complex number:

u+u* =2 u—u*=i2y uu

The magnitude of a complex number is the length r of the
corresponding vector in the complex plane. It is denoted by
the absolute value symbol:

lul = Vuu* =r = x2 +y2

The argument of a complex number is the angle made with
the real axis in the complex plane. Because the functions
sine and cosine are periodic, the phase angle is only deter-
mined to within 27 radians:

su = £ret(0+2nm) _ g 4 op o

where n is an arbitrary integer.

The fact that the argument of 5
the complex number is not unique u
leads to multiple values for the o

root. Consider

kg = ul/k 0 ax 1
3 3
_ Wei(e/k+(2wn/k))

This results in £ unique roots of u

withn =0,...,k — 1. It is impor-

tant to select the proper root when multiple solutions exist,
as dictated by the physics of a particular problem.
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4 Mathematical Background and Notation

Complex Sinusoidal Functions and Phasors

One of the most important uses of complex numbers in this
Field Guide is the use of complex exponentials to represent
time harmonic functions. These functions vary periodi-
cally in time with period 7' = 1/v, where v is the temporal
frequency of oscillation in [Hz].

Consider a function that varies harmonically in both time
and space as

f (x;t) = F(x) cos [2mvt — $(x) |

where the phase constant ¢ (x) is expressed in radians, and
27 radians is equivalent to 360°. It is common in optics to
express this function as

fx;t) = Re[F(x)ei2mt_¢(x)] - Re[f* (x)eizmt]
The complex phasor is defined as
f(x) = F(x)e'®®

Phasors bring a significant computational advantage when
working with trigonometric functions such as sine and cosine.
When adding two sinusoids that have the same frequency v
but different phases,

ul(t) + uq (t) = Al COS(2'TTVt — (1)1) +A2 COS(2’7TVt - (1)2)
The variables u; and u5 can be represented by the phasors
fl,l = Aleid’l a2 = A2ei¢2

It is not necessary to resort to sum- and difference-angle
trigonometric identities. By using phasors and capitalizing
on the linearity of complex addition, it is possible to write

ul(t) + uqg (t) = Re[(al + ﬂ’Z) ei2'Trvt]

The phasors can be manipulated directly before considering
the harmonic nature of the functions.
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Mathematical Background and Notation 5

Idealized Models and the Unit Step Function

In the study of optics, it is often useful to model a physical
process with an idealized mathematical function. A good ex-
ample of this is an opaque edge that blocks all light for x < 0
and passes all light for x > 0. In reality, no true physical
edge could satisfy this ideal, as there would be irregularities
in the edge and some sort of a transition region between
light and shadow. Those detailed features may be impor-
tant for certain optical systems, such as near-field optical
imaging. However, for many optical processes, the difference
between the true transmission and the idealized model is
insignificant. In such cases the ideal edge is modeled as the
unit step function:

1 x>0 1 4

step(x)={1/2 x=0 X
0 x<0O

x20 L

X
ramp(x):{ 0 x<0 X

x>0 1 4
x=0
x<0

—_ O

sgn(x) = {

1 <l 4l
rect(x) =41 14 Ixl= 14 A
0 > 1s

The latter three can be defined in terms of the step function:

ramp(x) = fio step (x”) dx’
sgn(x) = step(x) — step(—x)
rect(x) = step(x + 14) — step(x — 14)

In general, the step, ramp, and sgn functions are used to
modify other functions, such as sine and cosine. They can
represent edges, apertures, and other physical processes
that are important in optics, imaging, and diffraction.
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6 Mathematical Background and Notation

Pulse-Like Functions

Pulse-like functions are localized in one or more indepen-
dent dimensions. There are many processes in optics that
are well modeled by these functions, including a burst of op-
tical energy from a pulsed laser (temporal localization), the
aperture of a lens (spatial localization), or a band-pass spec-
tral filter (wavenumber localization). Furthermore, many
periodic structures like diffraction gratings or lens arrays
can be built up using a pulse-like function as the unit cell.

This Field Guide relies heavily on five pulse-like functions:

1 k< s a4l
rect(x) =1 Lo Il= 14 o | e «
0 ki>1s
oo [1-x k<1 1
tri(x) = { 0 ki>1 X
. _ sin(mx) !
sinc(x) = p— .
. 2 1
) sin“ (mx)
Sinc (x) = W X
1
Gaus (x) = e~ %7 | 1 2

The functions defined here are used throughout the litera-
ture with slightly different notation conventions. This Field
Guide uses the selected definitions so that all functions are
symmetric about x = 0 and integrate to unity:

fiop(x) dx=1

where p (x) is any of the pulse functions defined above.
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Mathematical Background and Notation 7

Impulse Function

The pulse-like functions introduced previously need to be
scaled and shifted in order to represent a broad range of
physical processes. This scaling/shifting is generally de-
noted as

X — X0

px) — m ( 2 )

The effect of a positive shift x, shifts the center of the
function to the right, and the
effect of a positive scaling fac- °<1 [
tor b > 1 widens the pulse. If
the original pulse-like function b=1 "
is normalized as ffooop(x) =1, b>1i
then the scaled function also in-
tegrates to unity as

|b|f (x xO)dx:l

Examining the above scaling and shifting properties, it is
possible to look at the limit as b — 0. The impulse func-
tion is defined as

d(x — Xg) = hm IbI (x—bxo)

As the magnitude of b goes to zero, the pulse becomes nar-
rower with an increasing peak value, while still integrating
to unity. In the limit, the impulse function can be thought
of as having zero-width and infinite height, but remaining

integrable. It is conventional 25— )
to denote the impulse function S(X—xg) | b

ad(x — xg) graphically as an ar- £ T X
row located at x = x, with height X‘a X‘b

proportional to a.

When the variables are discrete, as in sampled systems, the
Kronecker d-function is used:

) |1 n=m
nm=—1 0 n#tm
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8 Mathematical Background and Notation

Impulse Function Properties

The impulse function is especially important when it ap-
pears in the integrand, either alone or multiplied by an
arbitrary function f (x). Two important properties:

1 b
Unit Area ff O (x —xg) dxx = { 0 le<ex0 )

Sifting = F(@)d(x —xg)dx = f (x0)

There are several other properties that derive either from
simple changes of variables or from the definition of the
impulse function on the previous page. For all of these prop-
erties, the equals sign should really be interpreted as “is
equivalent to” because these properties are really applicable
in the sense of using 8 (x — x) as an operator.

S (552) = 1618 (x — x9)

E\)(ax—xo) = ﬁ% (x— %0)

Scaling
Even Symmetry d(—x +x9) = d(x —xg)

The properties of the impulse function can be used to sim-
plify expressions that include a product of the impulse func-
tion with another function:

Sifting
Simplification S(x)d(x —x9) =0 x9 # 0

0 (x —x0)d (x — xg) undefined

The impulse function can also be defined in terms of the
integral of a complex exponential. This property is a con-
sequence of the Fourier transform, which will be treated
later in this Field Guide:

d(x —xg) = J'jooo e!2mE@—x0) gt
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Mathematical Background and Notation 9

Integrals and Derivatives of the Delta Function

The function O (x — xg) can be used to define several other
special functions.

Unit Step Function
Consider the partial integral of the d-function:

. 1 X > X
f_oo 0’ —xg)dx’ =1 g x=x7 =step(x—xq)
0 x<xg

In order to get the value of 14 at x = x,, resort to the
definition of the impulse function and evaluate the integral
before taking the limit. This result also implies that

O (x —Xxg) = %step(x —xq)
The Doublet Function

The derivative of the d-function
is also important and denoted ad® (x— x)
as 0’ (x — xo). Higher-order de- I 0
rivatives can be denoted either X"l

+a {-

X

with multiple primes or a super-
scripted number in parentheses. —a |-

For example,
0" (x —xg) = 0B (x —x¢)

denotes the third derivative of the d-function. It is con-
ventional to depict the doublet function graphically as two
impulses—one positive and one negative—at approximately
the same location. By using integration by parts, it is
straightforward to show that

oo NS () gt , L dr
‘[—wf(x )0 (& —xg)dx” = (=1) —d’;(f)

X=X(

Whereas the d-function sifts out a value at a particular loca-
tion, the doublet function and its higher-order versions sift
out the derivative of the function on which they operate.
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10 Mathematical Background and Notation

Comb Function

In many applications, an array of delta functions that are
evenly spaced is useful. Such a function is often referred to
as the comb function:

o0

comb(x) = Z S(x—n).

n=—oo

If an application calls for

I I T 1T I T i something other than inte-

| | | | ger spacing, the scaling prop-

-2 -1 ‘ 12 erties of the d-function can
be used to write

comb( ) b i S(x —nb)

n=—oo

These d-functions are separated by b, and each one has an
integrated area of |b|.

The following expression follows directly from the properties
of the d-function. It is important in developing the theory of
ideal sampling:

f(x)[|b|comb( )] Z f(nb)d(x — nb)

The following integral is defined as a convolution integral
between an arbitrary function p (x) and the comb function.
The result is a periodic function with period X:

oo

x ,
fp () =f_ p(x)| |comb(T) dx =nZ p (x —nb)

=—00

The following property is a consequence of the Fourier
series that will be considered later in this Field Guide:

comb (x) = Z el2mnx
n=—oo
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Mathematical Background and Notation 11

Orthonormal Basis Functions

Basis functions are used to represent more complicated
functions of interest. A set of basis functions {\r (x)n}],;"=1
usually has some canonical properties that are important for
describing a certain process. The set can be finite, countably
infinite (N = o0), or the parameter n can even be continuous.
The following table shows the two kinds of superposition
of basis functions; the bottom row represents the ortho-
normality condition.

Discrete Sum Continuous Integral
@ =YY ob,@ @ =T e, @ dy
V@, Ym@) =8 m  (Vy @, V@) =30 —p)

The notation (\r, (x), \{,, (x)) represents an inner prod-
uct, which is a generalization of the dot product to complex
and continuous functions.

Discrete Inner Product Continuous Inner Product

N [P (08 (x) dx

The values of @ and b define the valid range of the functions,
which can be infinite when appropriate. The weights c,, and
¢ (v) are computed using the orthonormality condition:

Cn = (\lfn (x)af(x)>

The following table lists three important basis sets.

Continuous set of d-functions shifted by x
Vg (®) = 8(x — x0) —o0 < xp < ©
Continuous set of complex sinusoids of frequency §
\lfz(x) = ¢i2mEx —o<E< o
Discrete set of harmonics n of fundamental frequency &,

Py, () = ei2mnEox n e (—x,...,0,...,00)
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12 Fourier Analysis

Harmonic Analysis and Fourier Series

Periodic functions are important in a number of optical,
diffraction, and imaging problems. An X-periodic function
of the spatial variable x has period X and fundamental
frequency £, where
1
EO = )_(
A periodic function fx (x) obeys

fx(x+X) =fx(x) Vx

The harmonics of a periodic functions are the integer
multiples of the fundamental frequency. The convention
is that the first harmonic is the fundamental frequency,
the second harmonic is 2§, and so on. Note that while
the higher harmonics have periods given by X /n, each of
the harmonics is also X-periodic.

If several X-periodic functions are added together, then the
resulting sum is also X-periodic. The summation known as
the Fourier series,

is X-periodic. The harmonic exponentials act as the ortho-
normal basis {,, (x) = ¢'2™nE0% hecause

(ei2wn20x’ei2wm20x> _ fx0+X pi2m (m—n)Eox’ 7.

[
.7CI=.7C0 - B771,,7’1,

1
X
The coefficients of the Fourier series can then be computed
using the orthogonality relationship

Ch = (\lfn (x)an (x))
_ l xo+X —i2mntox’ g,/
=5 fx'=x0 fx()e dx
The choice of the starting point x for the integral is arbi-

trary, and the integral covers exactly one period X of the
original function fx (x).
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Fourier Analysis 13

Square Wave and Truncated Fourier Series

An important function is the square wave, which is a good
model for diffraction gratings, crystal structures, and other
physical processes important in optics:

fow (X)) = i rect (%)

n=—oo

2X
2aX

The Fourier series coefficients are

nx

. ’
"X dx’ = asinc (na)

_ 1 aX
n = 5% |_ax®

The Fourier series for the square wave with a = % contains

only odd harmonics, and the zero-frequency termcy = a,
corresponding to the average value of the square wave.

The definition of the Fourier series includes all harmonics
from —oo to co. In practical systems, some finite number
N of positive and negative harmonics will result in a trun-
cated Fourier series. Such a truncation in the Fourier
series leads to the Gibbs phenomenon, which manifests
itself as ringing in the partially reconstructed signal.

N=3—N=7

This plot shows the effect of truncating the Fourier series
for the square wave with a = % at N =3 and N = 7. The
overshoot and undershoot apparent in the plot is always
present for any finite N.
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14 Fourier Analysis

Fourier Transform

As the period X of a periodic signal increases, the corre-
sponding fundamental frequency £, = 1/X decreases. The
spacing between harmonic frequencies also decreases. In
the limit X — oo, the signal becomes aperiodic, and the
discrete set of harmonic frequencies becomes a continuum
of frequencies £ € (—oo0, 00).

The Fourier transform of a function f (x) is defined as
FH @}y =F©) = [ _f@e ™ dx
The inverse Fourier transform of ' (£) is defined as
FUF©)Y =f@) = [ F®)et? g

Another way of thinking of the Fourier transform is that
the function f(x) is a weighted superposition of complex

exponentials e27EY where
f@ E(E) the weight F(§) is deter-
d(x — xq) e~i2mxo8 mined by taking the inner

22T Eox B(E — &) product <ei2W§x,f(x)>-

rect (%) |blsinc (bE)

The Fourier transform can
be abbreviated using one of

tri (%) Iblsinc? (bE) several notations:
F
e *step(x) ﬁ flx) — F(¢)
fx) < F&)
el =1/ IEI=1/2 G}y = F()
e | penee? O FE® = f®

The table shows important
Fourier transform pairs on
which this Field Guide re-
4 [0(E—£p) lies heavily. Many more
2 0

cos (2mEgx) +O(E + EO)] pairs are included in the
. transform tables at the end
= [8(E - )

sin (27 Eox) 57 [0(E = Eg)  of the book

-8 +E0)]

eii’n’(xz—l/S) e?iw(§2—1/8)
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Fourier Analysis 15

Fourier Transform Properties

Fourier transform tables are collections of known trans-
forms. (One is included at the end of this Field Guide.)
The following properties of the Fourier transform, in con-
junction with a Fourier transform table, allow for a greater
range of pairs to be determined. For all of the cases that
follow, assume that the transform pairs f (x) < F (E) and
g(x) < G(£) are known.

fx) F(§)
Coordinate Reversal f(%x) F(££)
Complex Conjugates [*(*x) F*(F%)
Repeated Transform F (+x) f(F8)
Shifting fx + xg) eXi2™00EF ()
Modulation e*12TEOTL (1) F(£¥%)
Scaling f(%) bIF (bE)
f® (x) @2wE)*F ()
Derivative
(—i2mx)kf (x) F® (%)
Integral J* faydy 2(—72 +3(E)F(0)
Linearity af (x) +bg(x)  aF(£) +bG(§)

The Heisenberg Uncertainty Principle is an impor-
tant consequence of the scaling property of Fourier trans-
forms. If the arguments of two distributions f'(x;) and
F (&) correspond to Fourier conjugate variables—such
as position and momentum in quantum mechanics—then
it is not possible to observe the value of both arguments
simultaneously with infinite precision. As the scaling fac-
tor b —» 0, and as f(x/b) gets narrower corresponding
to greater precision in the predictability of one quantity,
then the distribution F (bE) gets wider at the same rate
corresponding to less precision in the predictability of the
dual variable. This is true for all conjugate variables, re-
gardless of their connection to a physical process.
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16 Fourier Analysis

Symmetry of Functions and Fourier Transforms

Functional symmetry can be very important when deal-
ing with Fourier transforms. The following symmetries are
commonly noted:

An arbitrary function with no symmetry can be written as
a superposition of two symmetric functions:

fx) =fx) +f,(x)
fx) =fr(x) +f4x)

The following relationships can be demonstrated from these
symmetries and the Fourier transform properties:

Real Hermitian
Imaginary Anti-Hermitian
Hermitian Real

Anti-Hermitian Imaginary
Real and Even Real and Even
Real and Odd Imaginary and Odd
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Fourier Analysis 17

Parseval’s Theorem and Moment Theorem

Parseval’s theorem is a restatement of conservation of
energy. Mathematically, it is written as

I F@Pde= [~ 1F®)2dE

It is also known as the Rayleigh energy theorem. Its
most general case is referred to as Plancherel’s theorem.

Parseval’s theorem states that the total energy is the same
no matter whether it is computed position by position or
frequency by frequency, and it is straightforward to prove
from the properties of the Fourier transform.

Many of the physical quantities that are used with the
Fourier transform have units that are equivalent to the
square root of power or energy. For example, in optics
the quantity of interest is often the electric field E, which
has units of volts per meter. The power density |E|2/n
has units of volts-squared per ohm per meter-squared,
equivalent to watts per square meter. The integral of the
square of a quantity over infinite limits is therefore often
equivalent to the total energy in the field quantity.

In probability and statistics, the Fourier transform of a prob-
ability distribution function (PDF) f (x) is known as a char-
acteristic function F (£). The statistical moments of a PDF
are computed as

my[f(x)] = fio x"f (x)dx

The moment theorem follows directly from the derivative
property of the Fourier transform:

1 d"F(})

m,[f(x)] = (—i2m)" d%n

£=0
It is straightforward to show the corollary:
[ f@dc=F©

When f (x) is a PDF, F(0) = 1.
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18 Fourier Analysis

Laplace Transform

This Field Guide uses the Fourier transform and other trans-
formations based on it to describe signals and systems. In
some disciplines of linear systems, the Laplace transform
is preferred because of its improved mathematical stability
and natural ability to describe damped resonances.

The Laplace transform generalizes to complex frequencies.
Because the Laplace transform is typically used with causal
signals that are functions of time, the complex frequency
is defined as

s=0+i2mv

The Laplace transform is
F(s) = j_°°°o f(t)e stdt

A Laplace transform has a region of convergence, which
is the portion of the s-plane for which the transform can be
evaluated. Several important pairs are shown below.

f@ F(s) R.O.C.
O (t —tg) e tos alls
step (%) % Re[s] >0
e~ ot COS(Z'TTVOt)Step(t) (s-',-a);-:-w Re[s] > —a

One of the most important aspects of the Laplace transform
is the ability to use it to solve differential equations. The
Laplace transform of a derivative is

L' ®} =sF(s) —f(07)

where f(07) is the initial condition of the function. Higher-
order derivatives produce

L™ @)} =s"F(s) —s"71f(07) —... - =D (07)

This property of the Laplace transform allows differential
equations to be converted to algebraic equations.
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Fourier Analysis 19

2D Functions

Functions of the two independent variables x and y are es-
pecially important in optics and imaging because optical
systems generally map planes to planes. A 2D function is
generally denoted as f (x,y).

Separable functions are a special class of 2D functions that
can be written as a product of two 1D functions:

fx,y) =f1@)fe(y)

Separability will be leveraged in many aspects of linear sys-
tems later in this Field Guide. All of the special functions
defined earlier can be used to create 2D special functions.

tri(x,y) Gaus(x, 1.5y)

Functions can be separable in either Cartesian coordinates,
as above, or in cylindrical coordinates, as

g(r,0) =g1 (Mgs(0)

The class of azimuthally symmetric functions is often use-
ful in optics, which can be written as

h(r,0) =h(r)

The Gaussian function has the special property of being
separable in both Cartesian and cylindrical coordinates, as
well as being azimuthally symmetric:

2 2 - 2442 2
Gaus (x,y) =e ™ "™ =¢ ™(**45%) Z o=1r? — Gaus )
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20 Fourier Analysis

Impulse Functions in Two Dimensions

The impulse function’s characteristics change when going
to two or more dimensions. In Cartesian coordinates, it is
simplest to think of the impulse located at ro = (xg,yo) as
a separable function:

d(r—1g) = d(x —x0)d(y —y0)

The 2D impulse function integrates to unit area:
[I5 b -rpdA= [~ dx—xp)dx [~ 3(y—yo)dy=1

Because the differential area element dA = dxdy has units
of m2, each of the 1D impulse functions must carry units of
inverse meters.

The two 1D impulse func-
tions can also be plotted in
two dimensions: o (x — x()
produces a 1D impulse for
all locations along the line
x = X, and d(y —y,) does
the same for all locations
along the perpendicular line y = yo. Only at the point of
intersection is the product of the two 1D impulses non-zero,
creating the 2D impulse function.

8 (X —X%o,Y = ¥o)

3 (r=ro, 6 — 0o) In cylindrical coordinates,

<\ the area element becomes

dA = rdrd0 and the point
ry is (r,0p). The 1D im-
pulse functions are

8(7‘—7‘0) %8(6—60)

This Field Guide only considers 1D and 2D impulses. How-
ever, other areas of optics use higher-dimensional impulse
functions for a variety of reasons. Examples include loca-
tions in a crystal lattice and point sources in 3D space or
4D space-time.
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Fourier Analysis 21

Fourier Transforms of 2D Functions

The 2D Fourier transform and its inverse are defined in
much the same way as the 1D case:

F{f,y)}=F(E,m) = ff_iof(x,y)e_iz“(Ex+”y)dxdy
FTHFE M} =fxy) = ffioF(E,T])e+i2“(§x+ny)dzdn

The spatial frequency variable § refers to cycles per unit
length in the x-direction, and the variable ) refers to cycles
per unit length in the y-direction. These equations do not
simplify in general. However, in the special case of separable
functions, the 2D Fourier transform factors into a product
of two 1D Fourier transforms:

F{fLr@fe@)} =F1(§)Fa ()

All of the properties of 1D Fourier transforms have their
analogues in 2D whether or not the functions are separable.
Some of the important properties are listed here with the
assumption that f (x,y) < F(£,7) is known.

f(x,y) F(&m)
Shifting fx +x0,5y +£y0) eizw(ixogiyomF(Z, m)

Modulation eizw(igox‘—““(’y)f(x,y) F(£F&,nTFm0)

Sealing £ (x/b,y/d) IbdIF (bE,dn)
f (ax,cy) ﬁF (&/a,m/c)
d(n+m) g
(i2w)n+ml:1fn{1)ym E"n™F (€,m)
Derivative T
Ky f (x,) ST dz;? P
x oo 0D ;5 F(0,0)0(§, F(£,0)0
S5 f @y ydxdy EOD0ED | (EZ;E“‘)
oo oy r s gorgor FO,008E | FOMIE)
Integral |l f @y ey 2 t 3
J2 Fy)dy F(£,0)d(n)
I f & yydx F(0,m)d()
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22 Fourier Analysis

Hankel Transform

There is a special case of the 2D Fourier transform when the
function is azimuthally symmetric, i.e., f(x,y) = f(r). In
this case, the variables of integration need to be converted
from Cartesian to cylindrical variables:

T} = J‘::O ‘[‘ezjof(r)e—ﬂwr(% cos 0+nsinf) .o 10

The spatial frequency variables £ and v also form a pair of
orthogonal axes, and a cylindrical coordinate system can be
defined as

E=pcosl n=psinf
p=VE+2 b =tang

The variable p denotes cycles per unit length in the radial
direction, and the variable ¢ represents cycles per 2 radi-
ans. After these variables are inserted into the 2D Fourier
transform, the Fourier transform becomes

F(p) = f:of(r)JO (2mp)rdr

This special case of the 2D Fourier transform is known as
the Hankel transform. It is very important to remember
that the Hankel transform is a special case of the 2D Fourier
transform when the functions are azimuthally symmetric.
It is not a different transformation with its own properties.

The function oJ,, (x) is the ntP-order Bessel function of
the first kind, and it can be loosely considered as serving
the role of a sinusoidal function in the radial direction.

1 2T
o Jo=0

Jn(P) _ e—i(ne—p sine)de
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Fourier Analysis 23

Hankel Transform Pairs and Properties

Two functions simplify analysis of azimuthally symmetric
optical systems: somb(p) and vy (p /d,a). The “sombrero”
function was coined by Gaskill and is also referred to in
literature as jinc(p) and besinc(p). It plays the role of the
sinc function in cylindrical coordinates:

2J1 ('7T p)
mp
The second new function is vy (p/d,a). This function is the

cross-correlation between cyl(p/d) and cyl(p/a). Several
important pairs are shown in the following table.

somb(p) =

cyl(p) somb(p)

Yey (P) sombz(p)

fr) F(p)
S(r —rp) 21rod o (2Trop)
exp [ii;\—zz] 4i\zeTirep?
cyl(r) Zsomb(p)
eyl (ﬁ,a) %Wsomb(ap)somb(adp)
e’ 2m (4mp2 + 1)2/3
cos(mr?) sin(mp2)
r-1 p~1
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24 Fourier Analysis

Skew Functions

In many optical applications it is useful to define a 2D func-
tion in terms of a skew transformation of a Cartesian
coordinate system. Consider the following mapping:

fx,y) = flajx+b1y +cq,a9x +bay +c2)

As a relatively simple example, consider the function

kl<d
h—yl<3
rect(x,x —y) = rect(x)rect(x —y) = 1
|x|>§
T ok—yl>3
. i y The function is equal to %
X=-3. 1

on the edges and % at the
corners. The principal axes

A of this function are the non-

st orthogonal lines x = 0 and

o - X y = x. It is much more conve-
/,+_,~" nient to represent the func-

tion as a separable function
of these two mixed variables.

The Fourier transform of the
skew function is related to
the Fourier transform of the original function as follows:

f(x,y) flax+byy +cq,a9x +bay +cg)
e_izw(xOEerO“)F (bzi—azﬂ aﬂl—blE)
|D| D 2 D
F(&,m)

a2C1—A31C2
D

_ bicog—bsc _

D = albz—azbl Xg = % Yo =

While this might seem specialized, the skew transformation
is important in numerous applications in optics, including

¢ Non-rectangular sampling, such as in the Bayer filter

* Periodic media such as as natural crystals and artificial
metamaterials

* Non-rectangular arrays that are common in recent gen-
erations of very large telescopes
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Linear Shift-Invariant Systems 25

Operators and LSI Systems

An operator is a mathematical description of how a system
operates on or transforms an input (such as an optical field
distribution in an aperture plane) to an output (such as the
diffracted irradiance pattern). Mathematically, a general
system operator is denoted as

P )} =gx)

Both f (x) and g (x) are functions of the same independent
variable, which differentiates operators from transfor-
mations such as the Fourier transform.

A subset of operators is of special note—those that are lin-
ear, shift-invariant, or both.

Given that #{f1(x)} = g1(x) and F{fy(x)} = g2(x), a lin-
ear operator obeys the principle of superposition:

Flaifr1(x) +aofo(x)} = a181 (%) + aggs (x)

Linearity allows a function to be written as a superposition
of a known basis set, and an operator can act on the indi-
vidual basis functions as

P {Zanxlrn (x)} = Zanf{\lfn(x)}

Given that #{f (x)} = g(x), a shift-invariant operator has
the property

FAf(x—x9)} =8 (x —xq)

The tools of convolution and the transfer function intro-
duced in the coming pages rely on these properties.

An operator that is both linear and shift-invariant, also
called LSI, is denoted in this Field Guide by the symbol
EA{f (x)}. All LSI operators have the complex exponentials
as eigenfunctions

[ A {eiZTrEx} _ H(E)eiZTrEx

Field Guide to Linear Systems in Optics
Downloaded From: https://www.spiedigitallibrary.org/ebooks on 20 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



26 Linear Shift-Invariant Systems

Convolution and Impulse Response

The impulse response of an LSI system is the output that
is produced when the input to the system is an impulse:

B{d(x)} = h(x)

When the system operates on a specific input f (x),
B () =F {f_z(x’)S(x - x')dx'} = fz(x')h(x —x')dx’

This mathematical operation is known as a convolution
integral, and it is denoted as

f(x)#h(x) = Jf:of(x')h(x —x")dx’

The significance of convolution is that any LSI system is
completely described by its impulse response. Once A (x) is
known, the output for an arbitrary input can be computed.

The following tables present the properties of the convolution
given f (x) * h(x) = g(x).

Commutative f(x) =h(x) =h(x) *f(x)

(f(®) *hq(x)) % hg(x) =
fx) = (hy(x) %hg(x))

f(x) % (hy(x) +hg(x)) =

Associative

Distributive 20 oy @) A G) D)
Shift Invariance fx—xq) xh(x) =g —xq)
d-function fx) % d(x —x0) =F(x—2x0)
dnd
Lo F @ #3® @ —xg) = ™ (x —x0)
f(x) #h(x) g(x)
step(x) = step(x) ramp (x)
rect(x) * rect(x) tri(x)
step(x) % e *step(x) (1 —e7%) step(x)
e *step(x) = e *step(x) xe *step (x)
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Linear Shift-Invariant Systems 27

Causality

Causality is a property that is most widely applicable to
time-domain systems. A causal system has no output until
the input is active. Mathematically, this places the following
limitation on the impulse response:

h(t) =0 Vt<O

Causality is important for physically realizable transient
systems. However, for functions of position, there is gen-
erally no practial importance to restricting the output for
x < 0. For example, imaging systems with negative magni-
fication produce outputs for x < 0, even if the input is zero
for x < 0.

Kramers-Kronig Relationships

The requirement that A (¢) = 0 for ¢ < 0 for causal systems
places restrictions on the relationship between the real and
imaginary parts of the Fourier transform. An analytic func-
tion A (¢) is causal, and its Fourier transform is

F{fD}=F@) =F,(v) +iF;(v)
The real and imaginary parts of F'(v) satisfy

Fr(]))= %g)‘[‘_oo Fi(v)

v’

oV —v

1 o F.(v) ,,
F,(v) = —;5’73 f_w a— dv
The symbol & denotes the Cauchy principal value of the
integral, which dictates how to deform the contour of inte-
gration due to the pole at v" = v.

The Kramers—Kronig relationships place important re-
strictions on physical parameters of optical problems, such
as the complex index of refraction of a medium. When
dealing with an optical problem in the frequency domain,
care must be taken to ensure that the Kramers—Kronig
relationships are satisfied in order to obtain physically
meaningful results.
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Graphical Convolution

The following recipe allows the mathematical process of con-
volution to be visualized graphically. The convolution inte-
gral is

fx)xh(x) =gx) = f_iof(x')h(x —«")dx’

Consider the convolution between the two functions:

f(x) = cos(2mx)step (x) h(x) = e “step(x)

1. Choose a value of x and plot f(x’) and i (x —x’). Note
that A (x — x’) is flipped with respect to the variable of
integration x” and shifted by x.

Compute the multiplication f (x")A (x — x’).

3. Compute the integrated area of the product.

4. Choose a new value of x and repeat steps 2—4.

N

x < 0 x > 0

— N\ x

+ f(x)h(x —x")

cos(2mx)+2m sin(2mx)—e ™™
1+472

0

The two cases can be combined by introducing step (x)

0.25% /\ /\ /\ r

—0.25

g(x) — cos(2wx)+flr:;r;(2wx)—e_xStep(x)
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Convolution Theorem

The convolution theorem relates the Fourier transform
of the output of an LSI system to the Fourier transforms of
the input and the impulse response:

gx) =f(x) *h(x) G(§) =F&H(®)

These two expressions suggest that a LSI system can be
equivalently evaluated

in either the space do- f) > hx) »gx) =1(x) =h(x)
main or the spatial fre-

quency domain, depend- F F F-1
ing on which is most con-

venient for any particu- F(§) > H(E) FG(E) =F(EHH®E)
lar analysis.

Amplitude-Modulated Signals

An important class of signals are those that are modulated
by a carrier frequency. Examples in optics include analysis
of interference fringe patterns

and modulation in optical Fau () F(®)
telecommunications systems.
An amplitude-modulated sig- ‘
nal and its corresponding -% ‘ o
Fourier transform are

fapr () = f(x) cos(2wEpx)

F(E—to) +F(E+
Faap(E) = (€ 20)2 (€ + o)

Periodic Signals
An arbitrary periodic signal

and its Fourier transform can P(TE) ---- ~
be written in terms of a pulse- B T T b £
like function p (x) as +’3 — T ;

X X X X

1 x

fx(x) =p(x) = mcomb ()—(

The result is a discrete spectrum. The amplitude of the

delta functions is determined by P(E) and is equal to the

Fourier series coefficients of the corresponding harmonics,
¢, =P(nky).

) Fx (§) = P(£)comb(X¥)
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Correlation

Correlation is a measure of similarity between two func-
tions. Define the cross-correlation between two complex
functions f (x) and g (x) as

Yg@) =f ) xg@) = [~ f@)g" @ —x)dy’

This operation closely resembles the convolution integral
and can be written as

Vrg (X)) =f(x) 8% (—x)

The argument of the cross-correlation can be thought of as
a shift between the two functions that are being assessed
for similarity. For real functions, the cross-correlation can
be positive or negative. Negatively correlated functions are
termed anticorrelated.

As a special case, the autocorrelation function is

U@ = [T FEOFE —0de =f @) # ()

\ J, \\ // 7
/y\“{ )
LN

- 1/EM ‘ \/1 / }Eo

Given f (x) = Gaus(x/b) cos(2m§gx),

Y (x) = %Gaus (é) cos (2T gx)

It is straightforward to use the Cauchy—Schwarz inequality
to demonstrate that

Yr (x) < yp(0)

A function is most similar with itself when it is unshifted,
and the equality holds only for periodic functions.
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Convolution and Correlation in Two Dimensions

Convolution of functions of two dimensions is denoted as

gx,y) =f(x,y) *h(x,y)

Note that some publications distinguish 1D convolution
from 2D convolution through the use of a double aster-
isks (f (x,y) ## h(x,y)), but this notation is not always
used, and readers should be prepared to determine the
dimensionality of the convolution from the context and
the arguments.

As in the 1D case, the 2D convolution integral is written as
gy = [[_ f& ¥R -2y —y)dx'dy’

All of the properties derived for 1D convolution apply to 2D
convolution, including the commutative, associative, and
distributive properties, as well as the convolution theorem:

F{f () % h(x,y)y =F (& MHE, ")

For the special case where the two functions that are to
be convolved are separable (f (x,y) = f1 (x)fo(¥), h(x,y) =
h1(x)hg(y)), the resulting function is also separable:

gx,y) =f(x,y) *h(x,y)
81x)g2(y) = (f1(x) *hq1(x)) (fo(y) *ha(y))

Correlation is encountered in the computation of the optical
transfer function. For example, v (r;2) is a result of cor-
relating a cylinder that has radius 1 with a second cylinder
that has radius 2.

/ i \\
lllIII\\\\

//Illlllll\\\\\\

""'ll \\\\\\ =

='.. //

®
(e
1%
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Band-Limited and Space-Limited Functions

The concepts of band-limited and space-limited functions
are important in sampling theory. The implications of the
two are apparent in this section.

f(x) A space-limited function has
finite support of length L in

A the spatial domain. For con-
X venience, the interval of sup-

\/ |_ port is defined as x € [0,L),
but this choice is arbitrary:

0 x<Oorx>L
f(x):{f(x) 0<x<L

Fo)l A band-limited function has
finite support in the fre-
quency domain. The full
bandwidth W is contained
within |§| < %

0 I > %
F(E):{ : vzv
2

NS |
N|E

FE) [E<

The properties of the Fourier transform make it so that a
function cannot be simultaneously band limited and space
limited (Heisenberg uncertainty principle). The only way
that a function can be described by a finite spatial range
of length L and a finite frequency range of width W is if
the function is simultaneously periodic in both domains.
This concept is leveraged in the definition of the discrete
Fourier transform later in this section.

An alternate sampling strat-
We F®)l egy can be developed with
£, < W; when the signal

/\ € technically occupies band-
W, | W, width Wy, yet can be con-
2 fined to Ws.
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Ideal Sampling

Signals in nature are generally continuous, while state-of-
the-art detectors are composed of a discrete number of sen-
sors. Ideal sampling refers to the approximation of the
detector with a finite series of perfect d-functions:

fs(x) = f(x)—comb( ) Zf(kx)%(x—kx)

k=—o0
Fy(£) =F(§) #comb(tx,) =& Y F(E—EEy)
k=—co

In order to prevent aliasing, the signal needs to be sampled
at a sufficiently high frequency. This threshold is often re-
ferred to as the Nyquist sampling frequency and is twice
the signal’s bandwidth, &5 = 2£,,. The following figures
show an ideally sampled signal exactly at that threshold.

f(x) fs (X)

Fs(§) F(§)

The rect function of width W represents an idealized low-
pass filter (LPF), which can be written as

H(E) = rect (%) F(E) = Fy(HH®)
h(x) = Wsinc(Wx) fx) =fs(x) *h(x)

The entire chain can be seen in the following figure.

f(x)

fs (X)
X H(E)
SR

%-comb (%)
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34 Sampling, Discrete Systems, and the DFT

Sampling in Two Dimensions

Imaging applications, amongst others, require sampling in
two spatial dimensions. The simplest 2D sampling strategy
is a rectangular sample array with sampling intervals x,
and y,:

fo@y) = Y flhag,myg)d (x — kg, y — my,)

k,m=—co
o0

Fs(z’n) = Esns Z F(E—kis,ﬂ—mﬂs)

k,m=—co

>

9 Tn me The Fourier transform of
the sampled 2D signal is

1 periodic with (£, 1,), and
! the rectangle bounded by

EVEs the lines £ = +£,/2 and

-2 -1 1 2 N = £m,/2 defines the first
1 }{ Nyquist zone.

More-complicated sampling

-2 l patterns are often useful.

For example, the green

channel in a Bayer color filter array omits every other sample
in the grid. An equivalent sampling function is

1( m(i+l)) 1 (x y)
=f(x,y)s|1+e ‘¥ s comb | —, —
fs=1@»3 XsYs Xs' Vs

F, = [F(g,n) +F(E—%,n—%)] # comb (é%)

This result has its first Nyquist zone bounded by

E+n=i% E—n=i%
R G B Total
1 1 f
00D mlisls
— — - — -
ODOD 00O
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Non-Ideal Sampling

The concept of ideal
point sampling is a ¥ =
useful mathematical i.n
tool, but real systems =
cannot sample at an r=
infinitesimal point in
space or time. Real sampling systems, such as focal plane
arrays in cameras or digital sampling oscilloscopes, have
some finite integration profile p (x) associated with their
physical response, and the output of the 2t* sample located
at position x, is

fr = fjooof(x)p(x — xp)dx

It is understood that x; might be a position, time, wave-
length, or other independent variable, and that the sampling
could be in more than one dimension.

f(x) fs (%)

X -

=comb ()

The definition of f;, indicates that non-ideal sampling can
be dealt with by inserting a LPF with impulse response p (x)
in the flow diagram. The closer p(x) is to 0 (x), the closer
the system is to ideal sampling. A common form is

X
p(x) =rect (x_o)

which represents a square pixel, a finite integration time,
or other forms of non-ideal signal sampling. A rectangular
sampling function introduces a LPF with transfer function

P (%) = xgsinc(xpf)

The implications of this transfer function are discussed later
in the context of applications of linear systems.
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Aliasing

Aliasing is an artifact that occurs when the sampling rate
is lower than the rate specified by the Nyquist condition.
Consider the signal

fx) = 1 + %cos(wa&w
F(f) = —8<Z) +3[BE-E) +3E+E]

and sample it at £, > 2f, and at &, < 2§,

Fs(8)

—3-2-1 | 4142 +3 1 2

In the undersampled case (§; < 2£,,), the contents of F'(§)
are replicated too closely to each other, leading to high fre-
quencies from the neighboring side lobes contributing to the
central lobe that is used for reconstruction. This behavior
yields a signal of a lower frequency than before.

Given that nothing is known about the signal a priori, the
damage from aliasing is unrecoverable. The only way to
“fix” the signal 1s to discard frequencies from the overlap-
ping lobes. This can either be
done before or after the sam-
pling takes place. In either case,
a loss in resolution is incurred,
but it is better to discard to-be-
aliased frequencies preemptively
to avoid additional loss. In imag-
ing, the effect is often referred to
as moiré pattern.

Field Guide to Linear Systems in Optics
Downloaded From: https://www.spiedigitallibrary.org/ebooks on 20 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Sampling, Discrete Systems, and the DFT 37

Band-Limited Reconstruction

Sampling is the process of converting a continuous signal
f(x) into a discrete sequence f;, = f(kx,). This process
is practically implemented in an analog-to-digital con-
verter. The resulting sequence can be manipulated in its
digital form in a microprocessor, but if the end product is to
be an audio signal, an image, etc., then the sequence must
be converted back to a continuous observable.

There are essentially an infinite number of choices in terms
of how the data will be interpolated between the sample
points. Piecewise constant output (CD players), linear inter-
polation (most plotting routines), and spline interpolation
are all common in different applications. Band-limited re-
construction uses a rectangular LPF with cutoff frequency
£./2 to interpolate between the samples. In the space do-
main, the reconstructed signal f,.(x) is

fr(x) = fy(x) * E.sinc(E.x) = Z frsine (&, (x — kx,))

k=—0c0

When the signal is oversampled, then any choice of £, that
isolates F (£) from F, () is acceptable, as shown in the bot-
tom plot. The ultimate £(x)
choice of bandwidth will de- | /\

X

pend on the signal-to-noise /\ ﬁ\

ratio (SNR) and the desired /A\[ O Va1 s N
convergence. As seen in | v
the figure, a choice of £, =

g, converges most rapidly. f(x)
Narrower-bandwidth filters T /~\

converge more slowly over- N/ \ ‘ X
all (more terms in the sum- SV \
mation are required) be- '
cause the sinc interpola-
tor has larger spatial ex- T|F(E)|

tent. Wider-bandwidth fil-

ters converge more slowly

because of the more-rapid

oscillations of the corre- A L, E
sponding sinc function. —&s £
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Discrete-Space Fourier Transform (DSFT)

Consider the direct computation of the Fourier transform of
the ideally sampled signal:

FS(Z) =F{f;(x)} = J‘jooo Z f(kxs)g(x_kxs)e—mqrgxdx
k=—occ

31z] Using the properties of the
d-function, this becomes

) ;;" F, (E) _ Z fke—i2'77§kxs
v R[z] k=—c0
! g where f;, = f(kx,) repre-
{ sents the discrete sequence

v =12 v =1 of samples. A normalized
£ =E/2 £=E frequency v = £x, can be de-
fined that ranges from 0 to
1 as £ varies from 0 to £;. The series resulting from this
change can be termed the discrete-space Fourier trans-
form (DSFT).

F (eizm) — Z fke—izmk =F, (Uzs)
k=—co
The DSFT is periodic in v by definition with period 1, which
agrees with the periodicity required of F (£). The notation
F (e¥2™) highlights the link between the DSFT and the
z-transform discussed on the following page.

Izl =1

It is often desired to design a discrete filter h;, that can
be used to operate on the sequence f;,. The corresponding
transfer function is

[ee]
H(eiZTrU) — Z hke—i27rvk
k:—oo

Defining the filter using the DSFT makes it inherently peri-
odic, as well. Discrete convolution is defined as:

gr=Fxh), = Z forhp_p

k/=—oc0

A discrete convolution theorem also holds:
G (ei27rv) =F (ei27rv) H (ei27rv)
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z-Transform

The z-transform is the discrete analog to the Laplace trans-
form. Whereas the DSFT only considers real normalized
frequencies v € [0,1), the z-transform considers complex
frequencies and is defined from the DSFT as

F) =2{fi}= ) fiz™
n=—oo
The variable z can assume all values in the complex plane,
and the z-transform reduces to the DSFT when z = /27",
The z-transform has a region of convergence like the
Laplace transform, which includes the portions of the com-
plex z-plane for which the transform is defined.

J[z]

(o)
p1,P4*

R[z]

NE

-0.5 0.5

The z-transform is essential in digital signal processing,
which is beyond the scope of this Field Guide. One of its
key properties is the ability to design digital filters that
have particular band-pass properties by placing poles and
zeroes in the z-plane and defining the resulting transfer
function in terms of the rational polynomial

Y. a-guzb
H],Ll (1 _pnz_l)

The N poles of the function in the z-plane are denoted as p,,
and the M zeroes as q,,,.

H(z) =

The z-transform has similar properties to its other Fourier
cousins, including linearity, scaling, shifting, convolution,
differentiation, conjugate, and reversal properties.
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Discrete Fourier Transform (DFT)

The original function f (x) was assumed to be band limited

to satisfy

F& =0, g%

Now add the restriction that
fx)=0,x<0,x>L

The sequence f;, therefore has N = L/x, samples. The
Fourier transform of the ideally sampled function F (§) is
periodic with period §,.

Define the interval in the frequency domain as

_E_1

A=NTI

The following N -periodic sequence of samples provides a dis-
crete representation of the Fourier transform of the ideally

sampled functions:

N-1
F, =F, (nAZ) — Z fke—iZTrn(AE)kxs
k=0
The product of the sampling intervals gives (Af)x, = 1/N,

which leads to the discrete Fourier transform (DFT) and
its inverse:

N-1

D{fe}=F, = Z fre 2R

1211'

D1 {Fn} =fk =

||M| I
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DFT Properties

The inverse DFT operation expresses the sequence f3, as a
superposition of complex exponential sequences:

N-1
1 F i27'rkﬁ”
w2 Fne

n=0

The inner product between the £t and I*h sequences is

N-1 27 (k—1)

. 1—ele™
( B l)= ez2’7‘r(k—l)n — ' -
Yoy r;) 1—el2w(%)

This ratio is the periodic analog to the sinc function, and eval-
uating it on the integers produces the Kronecker delta.

1 k=
8k":{o k1

g ¥ ¥

N/2 N

QS

D {afy, + bgy} = aF, + bG,,

fean =1 Fo.n=F,

S
2
S

L
2

fogr = Yo Fn'Gnon FnGy — ) 0 o fu8rr

5]
E

-1
S kg — exp[ l2'7Tk0n] Bpng — €XP [127r Z‘\’/.k

(=]
Eol
9
iy

Tr—kq 2, exp [—i2w’%] F, exp [iZWnT] fo = Fnn,
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42 Sampling, Discrete Systems, and the DFT

DFT Evaluation

In many instances in optics, the DFT is used for convenience
to approximate the true Fourier transform of the underlying
continuous function using a computer. When this is the
case, care must be taken in choosing the parameters of the
approximation.

The spatial sampling interval x,, frequency resolution Ag,
and sequence length N are all closely related:

_1_L _1 &1
"t N AE‘L‘N‘Nxs

Xs

A technique known as zero padding is commonly used to
affect the frequency resolution of a DFT. By choosing a larger
value of L, the windowed function g (x) can be made to more
closely resemble the true function f (x). Adding more zeroes
at the end of a sequence f,, does not alter the computation
of the DSF'T; it only increases the frequency resolution by
making Af smaller.

The analysis above implies that
F, =F(nA%)

when the window of length L does not alter the function
f (x). However, the original assumption that went into ideal
sampling was that the function f (x) had to be band lim-
ited. The presence of the window means that g (x) is space
limited. The properties of the Fourier transform dictate
that a function cannot be both simultaneously. The implied
periodicity of the DFT resolves this matter because

Foin=F, and fr.n =fp

This makes it clear that the function is neither band limited
nor space limited but is instead periodic in both domains.
The periodicity property of the DFT leads to frequency
leakage and other effects that can be mitigated by zero
padding and the use of window functions.
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Continuous and Discrete Fourier Domains

g\x Continuous Discrete
Fourier Transform DSFT
f (x) — aperiodic fr — aperiodic
F(£) — aperiodic F (e'2™) — periodic
f@) = [ F(f)et 2™ v=E/E,
F(E) _ ffooof(x)e_izwzxdx F (eiZTrv) — kaei2"rrv
3
1
=
15 { ‘ ‘ {
© : ‘ ‘ X } : T F"“: ; K
_X X —4 4
2 2
N
[\ [\ \
A ﬂ
‘ ‘ \ ‘ ‘ E // ‘ \ ‘ / \ ‘ ‘ ‘ \\ v
s . a1 1
X X 2 2
Fourier Series DFT
f(x) — periodic fr — periodic
F(£) =Y c,0(E—nkp F, - periodic )
j 2 B
f@) =Y ¢, e12mnEox A
Z —i2mnéox N Z 1 —i2wﬂ
Cp = }—(fo (x)e 0 dx F Zk:o fke N
g
2
ks
A
‘ . X k
— .
2 2
o o 0 i n
-4 4
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Gibbs Phenomenon and Frequency Leakage

The implied periodicity of the DFT has consequences when
sampling actual, continuous signals. Consider an arbitrary
sinusoidal signal

f(x) = cos (2mEpx)
If this signal is sampled at rate £, the sampled sequence is
fr, = cos (2mkEg/E), k=0,...,N—1

The implied periodicity of the DFT requires that f; = f, but
the underlying signal f (x) has this same periodicity only if

cos (2mN§y/Es) =1

This condition is only satisfied if £q = m (£,/N), where m is
an arbitrary integer.

f(x) =cos (6mx), N =18

ML A

fo ok

WA RV ARV ERVERVVERY

g(x) =cos (4.8mx), N =18
~ ON

The artificial discontinuities introduced at the end of the
sampling interval result in the Gibbs phenomenon in the
frequency domain that broadens the DFT and is sometimes
termed frequency leakage because the energy that should
be at a single DFT point “leaks” into neighboring samples.
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Windowing of Sequences

The fact that a finite interval 0 < x < L is used in computing
the DFT creates a windowed version of the function f (x):

_L
g@) =f<x)rect(x 2)
L

G(£) = F(E) xLe 2% sinc (LE)

The DSFT and the DFT produce discrete estimates of the
Fourier transform of g (x). The highest fidelity is generally
achieved with a wider window (L — oo, Lsinc(L) — 8(£)).

Because of this property, specialized window functions
w (x) have been developed for discrete signal processing that
have particular properties in either the space or frequency
domain. In the following examples, ¥ = 2wx/L. The effect of
each window in the space and frequency domains is

g() =w@)f (x) GE)=WE) «F©)
Space Frequency
w(x) = Gaus(x/b)
g Maximally smooth in both domains
0
g Tw(.x.) ......... [ Ry ME” E
< ‘ X ‘ ‘
E ! L/2‘—b L)2 L/2‘+b ‘ —é/L ! 2)L
w(x) = 0.5 (1 —cosx)
%0 Most basic member of raised cosine family
o—
S + W(X) L [W(E)|
£ ‘ X ‘ ‘ €
L/2 L -2/L " 2/L
&0 w(x) =0.54 —0.46cosx
k= Similar to Hanning with first side lobe nulled
E + W(X) I W (E)|
(4] /\X ) ) E
T L/2 L —2/L " 2/L
w(x) =1—1.93cosx + 1.29cosx — 0.388 cosx + 0.028 cos x
§‘ Designed to prevent frequency leakage
) W (X) L2 -oocoe |
g | x el
= : : ‘ ‘

| L/2 L —é/L | 2)L

Field Guide to Linear Systems in Optics
Downloaded From: https://www.spiedigitallibrary.org/ebooks on 20 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



46 Sampling, Discrete Systems, and the DFT

Fast Fourier Transform (FFT)

The number of operations in the traditional calculation of
the DFT scales with O (N2). The fast Fourier transform
(FFT) provides a speedup by leveraging a more-efficient al-
gorithm that scales with O (N logN).

The most-basic implementation is the Radix-2 decimation-
in-time (DIT) method, depicted below for N = 16. The illus-
tration demonstrates how grouping the inputs together can
combine N contributions in fewer steps than when they are
added one-by-one.

The « indicates multiplication by twiddle factors that are
often precalculated for a given problem size N:

nk _ e—i2'rr%
The optimization arises from the recursive splitting of the
DFT into two parts, allowing for a N/log, N speedup. This
optimization requires that log, N is an integer. This limita-
tion is easily overcome with zero padding or other philosoph-
ically equivalent optimizations written for more-abstractly
factored input sizes.
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Discrete Convolution

Define discrete convolution of two sequences f * A to be

8r = (f*h)k = Z fmhk—m

m=—oo

For finite sequences, summation limits can be narrowed to
only accommodate the effective support of both sequences:

M
gr==CFxhp="Y fulrom
m=—M

An alternative way of calculating convolution is
G,=F,H, - 8k = D1 {Fan}

which is faster to compute given the optimizations available
for DFT. The caveat is that the DFT method introduces an
implied periodicity, and as a result, the beginning of one
period may interact with the end of the other. This calcula-
tion is denoted as circular convolution, as opposed to the
previously introduced linear convolution.

- N
>
>
—
—>
>
—
=~
- N »
>
=
>
N +——
—
L
—>
o —>
—
=

H\ Hiis k”mMﬂLm

Two sequences of size N1 and Ny need to be padded with
AN; = Ngy — 1 and ANy = N7 — 1 zeroes, respectively, in
order for circular and linear convolutions to produce the
same results.
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Interpolation and Decimation

Interpolation and decimation alter the number of sam-
ples in a discrete sequence. They are different from up-
sampling and downsampling in that they include band-
limited filtering to prevent aliasing.

Denote interpolation and decimation factors with L and
M, respectively. The original signal f (x) is sampled at the
rate £, to produce the sequence f1,- The following table
depicts the processing steps involved in resampling that sig-
nal: interpolating it first ({ = 1 — £ = 3) and decimating it
second ({ = 3 — ¢ =5).

¢ for Foe

>

leo:_oof(x)g(x - kxs) Es ZZ;_OO FI(E - kzs)

—

2 Z:=_wf1,m3(k —mL) Z;::_oon,ke_izwgkxs
’ Zz:“”&’ksmc (k_fm) Fy s (8)Hing (£)
4 Lo wfaasinc(g) F3 s (§)Hgec (8)
5 Y fixd(m —kM) Z;::_oofS,ke_izWEkxs

These steps are graphically illustrated in the figures that
follow using

f (x) = Gaus (x) sin(27§x)
F(£) = 5 [Gaus (&~ &) — Gaus (£ +£,)]

with £, = 2 and an original sample rate £, = 12. The func-
tion is then interpolated and decimated with L = 2 and
M = 3. With higher decimation factors, the resulting se-
quence will have a lower band limit than the original signal,
making resampling an inherently lossy process.

The post-filter H,; (£) and the pre-filter Hy,, (£) are often
assumed to be perfect LPFs. The choice of filter will enable
further control over the information’s frequency retention,
which might be preferable for some tasks.
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Interpolation and Decimation (cont.)

]

E Adds L—1 zero samples after each sample.

=2
—]

El

E Filters the sequence to discard Fourier side lobes.

i 1
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Signal and Image Processing

Filters

A filter is an operator that is used to shape or alter a func-
tion in a controlled manner. When the filter is LSI, it is
defined in terms of its impulse response A (x) or i (¢) and its
transfer function H (§) or H (v).

All physical processes act as filters, and important examples
encountered in optical applications include the following:

Optical filters that are used to select a specific range of
wavelengths of the optical spectrum. Such filters can be
interference filters based on the Fabry-Pérot effect or
traditional colored-glass filters that preferentially absorb
particular wavelength ranges.

An optical imaging system can be described with an op-
tical transfer function (OTF) that generally acts as a
LPF, ultimately limiting system resolution.

Optical detectors used in telecommunications have a non-
ideal response to an impulse in time, and this acts as a
filter on the transient signal that is being measured.

The traditional tool of optical signal processing uses
the Fourier transforming properties of lens-based optical
systems to instantaneously perform filtering operations
in a 4f-system. This is the basis of optical character
recognition, which has largely been replaced by using
DFTs in digital computers.

The finite-size pixels in a focal plane array act as a LPF
that limits the resolution of the imaging system. The
pixel response and the OTF of the optics must be consid-
ered together for optimum performance.

Turbulence in the atmosphere alters the phase of optical
radiation and impacts the performance of astronomical
instruments. Modern adaptive optics systems compen-
sate for this by monitoring the phase filtering effects of
the atmosphere and canceling them.
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Amplitude-Only Filters

A general filter can be mathematically decomposed as a cas-
cade of an amplitude-only filter and a phase-only filter:

H(E) =Hp(B)Ho (%)

The amplitude-only filter attenuates the relative amounts
of the various frequencies, but does not alter the respective
phase relationships among them. Three important classes
of such filters are LPF's, which preferentially attenuate high
frequencies, high-pass filters (HPFs), which preferentially
attenuate low frequencies, and bandpass filters (BPFs),
which preferentially allow a range of frequencies to pass.
Note that a BPF can be obtained as a cascade of a LPF and
an HPF'; however, in the example shown below, the BPF is
not related to the LPF and HPF.

~__LPF— BPF - HPF ‘ Ha(€)

LPFs tend to smooth out the sharp transitions in a sequence,
whereas HPF's tend to only allow a signal to pass near edges.
Because BPF's prefer a range of frequencies, those tend to
dominate the output. The following plot shows the effect of
each of the above filters on an ideal square wave. Note that
because the HPF and BPF attenuate the £ = 0 component,
the resulting outputs have both positive and negative values,
unlike the square-wave input.

Field Guide to Linear Systems in Optics
Downloaded From: https://www.spiedigitallibrary.org/ebooks on 20 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



52 Signal and Image Processing

Phase-Only Filters

Phase-only filters have the special property that they do
not alter the energy contained at any given frequency, but
instead alter the relative phase relationship among the fre-
quencies that make up a given signal. This alteration is
often referred to as distortion. Although the power spec-
tral density (PSD) may be unchanged, the actual waveform
could be unrecognizable.

As an example, consider the truncated Fourier series:

1, 1
f&) =35+ EI;smc (%) cos (2mnox — do)

When ¢ = 0, this is an approximation to a square wave,
but other values lead to distortion.

This behavior is produced by a filter that possesses a con-
stant phase offset (in degrees) that is equal and opposite
for positive and negative frequencies so that the symmetry
properties of a real function are obeyed.

H®(Z) — e—i2w¢0sgn(§)

H®)I ZH()

N

o

_¢0,
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Special Classes of Phase Filters

An important subclass of phase-only filters is the linear-
phase-only filter, which has a transfer function with phase
that increases linearly with frequency:

H() = e12mxot h(x) = d(x —xg)

The properties of Fourier transforms and the impulse func-
tion mean that for linear-phase-only filters

fx) =h(x) =f(x—x9)

A linear-phase-only filter can be combined with an arbitrary
filter to produce a shifted offset.

Consider the phase-only filter with transfer function
H() = ®®

where the phase angle is small, i.e., @ (§) « 1. In this case,
the transfer function can be approximated using the Taylor
series for an exponential as

HE) =~14+i® ()
The corresponding impulse response for this filter is
h(x) =8(x) +id(x)

Such weak phase-only filters have special importance in
optics since small changes in the optical quality of materi-
als and surfaces can lead to phase perturbations that alter
the performance of an optical system. Examples of weak
phase-only filters in optics include the following:

¢ Aberrations in optical systems perturb the phase across
the aperture.

* Roughness in optical surfaces leads to a random alter-
ation of optical phase.

¢ Small variations in the index of refraction in a medium

act as weak phase filters and can limit system perfor-
mance.
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Equalization

A physical measurement process such as a camera taking a
picture, a microphone recording an audio signal, or an oscil-
loscope measuring an electronic transient corrupts the true
signal due to the effects of the measurement system. When
that measurement can be modeled as LSI, the measurement
of the signal s(x) by a system with impulse response A (x) is

fx) =s(x) *h(x)

The process of equalization, or deconvolution, attempts
to remove the effects of the system from the measurement
to produce an estimate §(x) = A~1(x) % f (x) that is as close
to the true signal as possible. The operator 2~1(x) is an
inversion operator. Mathematically, it is trivial to write

1
=)
(x) HE

In practice, there are a number of items that come into con-
sideration for this operation to work. Even in the absence of
noise, a real system will have certain frequencies for which
the transfer function amplitude is so low that the attempted
inversion is ill-posed.

—— original
[ filtered

‘ o H®)
o) A
M [ / \ / M ",
i \v“ 1 | \ \\J A

Consider the example of a rectangular moving average:

f(x) =s(x) = rect(x)

In the provided illustration the transfer function nulls out
the higher-frequency components of the signal, which can
never be recovered by equalization. In real applications, the
transfer function does not have to completely vanish to cause
problems. Once the SNR at any frequency drops below some
threshold, the data are unrecoverable.
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Matched Filtering

A classic filter for detecting known targets is the matched
filter. This filter was originally developed to detect radar
returns from targets, but it has been extended to many other
fields of target detection.

Consider the problem of detecting a known signal s(x) in
the presence of noise n (x). Both signals have unit energy so
that -

ls@17 = [ Is@0)Pde = ln@)|* = 1

Parseval’s theorem can be used to write the signal-to-noise
ratio (SNR) from a filter with impulse response A (x) as

po 5@ sh@P? _ [SOHOI
@+ k@I N EOHE

An important relationship known as the Cauchy—Schwarz
inequality states that

IA@)B @)|% < JA@)| 1B @)

The equality is only obtained for A(x) = B*(x). The nu-
merator is thus maximized by choosing the matched filter

H (%) =S*(%) h(x) = s*(—x)
The output of the filter for input f (x) is
g(x) =s%(—=x) #f(x) =f(x) *s(x) = g (x)

For this reason, the matched filter

is also referred to as a correlation- * C A
based filter. There are extensions to
the matched filter for use when there
are interferers or other sources of

non-white noise, and it can be shown C

that the matched filter is optimum
when the noise is Gaussian. Matched
filtering can be used in optical charac-
ter recognition (OCR), where a char-
acter is correlated with a generic A
character template.
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Projection-Slice Theorem

Consider a 2D function f (x,y) and some physical operation
that takes a projection through the function

pr@ = [~ fxydy

The projection operation can be written in terms of the 2D
convolution
prx) =f(x,y) #0(x)

The 2D Fourier transform of pr(x) and the 2D Fourier trans-
form of f (x,y) are related as

F{pr)} (E,m) = F(£0)8(n)

The Fourier transform of the projection of f (x,y) has pro-
duced a slice of the 2D Fourier transform F (¢, 7).

L FEm

This example could equally well have been in terms of a pro-
jection in the x-direction or in an arbitrary direction, for that
matter. The projection-slice theorem is one of the founda-
tions of computed tomography (CT). In CT systems, a set
of projections is taken through the object at different angles,
each of which produces a slice of the 2D Fourier transform of
the object. These slices can then be compiled into a sampled
version of the 2D Fourier transform, allowing f (x,y) to be
computed even though it may not be possible to measure it
directly.
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Random Functions and Sequences

In most practical applications, the signals are not known
exactly; instead, they are random signals. A continuous
function f (x) may be random, and this section also consid-
ers random sequences, i.e., sampled versions of random
signals. A very simple example of a random sequence is one
due to the addition of a deterministic signal s(x) with
random noise n(x):

f(x) =s(x) +n(x)

The probability that a particular sample f;, will lie between
20— Az/2 and zg + Az/2 is given by the probability distri-
bution function (PDF):

PDF = p¢ (2¢lk) dz

* An ensemble is a collection of instantiations or obser-
vations of a random process that capture its full statisti-
cal behavior.

* The PDF is defined to have unit area

fjooopf (2)dz=1

* The expected value of a function of the sequence is
often referred to as the mean, ensemble average, or first
moment:

Elg(f)] =["_g@pylk)dz

¢ The variance is the second central moment:
Var[fi] = B[ (f — E[/:))?] = B[] - E /)

* A stationary sequence has statistics that are indepen-
dent of k. The sequence is wide-sense stationary if at
least its mean and covariance are independent of &.

* A sequence is ergodic over some parameter if the expec-
tation operation can be replaced by an average over the
parameter

1 X/
E = lim =
[f )] = lim < [
A signal can simultaneously be ergodic in one parameter
(e.g., space) and not in another (e.g., time).

2
X/2 f(x)dx
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Power Spectral Density (PSD) Function

Consider an amplitude-modulated waveform with profile
p(t) corrupted by Gaussian random noise:

f @) =fosin (2mvgt) p(¢) +n(t)

Each observation produces a single instantiation of the
process. The Fourier transform of the m!? instantiation is

F,() = ];—(; (P(v—vg) —P(w+1g)) +N,,(v)

i Loepscbipis Rl aA % PSD
) SNSRI G | SR WL
‘ ‘ ‘ ‘ ‘ vV

fum W IFyl? AA ‘

The power spectral density (PSD) is equivalent to the
energy spectral density (ESD) per unit time. It can be
defined in terms of the statistics of the amplitude of the
Fourier transform as

PSD(v) = E [|[F (v)?]

This quantity is always real, non-negative, and it has units
proportional to the power or energy per unit frequency, de-
pending on the nature of the field quantity. The phase infor-
mation has been lost, which is common in random processes.

The properties of the Fourier transform relate the PSD to
the autocorrelation function

FHFWF* )} =f @) #f*(=8) = ()

When £ (¢) is a random process that is ergodic and wide-
sense stationary, its statistical autocorrelation is related
to the PSD by the Wiener-Khinchin Theorem:

(D =EFOF* ¢ -1 = [ fOF (- 7)dt= (1)

A common use of the PSD in optics is the measurement of the
spectrum of light. This is illustrated later in the context of
Fourier transform spectroscopy.
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Filtering Random Signals

A random process f (x) can be passed through a determin-
istic filter with impulse response £ (x). The specific output
will depend on the exact details of the m!? instantiation of
the input

Even though little can be said a priori about the specific
output, the effect of the filter on the PSD of the signal can
be easily predicted. In the frequency domain, the output
spectrum can be written as

PSDG(£) = E [F(OH (HF*(HH*(E)] = |H(©)[* PSDx (§)

Note that when working with random processes, the square
magnitude of the transfer function is indicative of average
performance, and the phase information drops out.

The SNR compares the relative amounts of power or energy
in the desired signal and the undesired noise. It is often
specified in terms of the PSDs:

_PSD(F®))

SNR = PSD(n(x))

In many applications, SNR is expressed in decibels, which
is a logarithmic power ratio:

SNRdB =10 loglo SNR

Equalization can, in principle, be performed at any fre-
quency where H (£) # 0. However, in real measurements,
noise is present, and equalization should only be attempted
for frequencies where
SNR > 7 (7 is a thresh-
old related to the fi-
delity of the measuring
process). This example
shows the inverse filter
for all frequencies with 3

SNR > 10dB. ——|H(E)| ——PSD, —— |Hids (®)]
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Wiener-Helstrom Filter

The Wiener-Helstrom filter is a filter that minimizes the
square error between a signal and the estimate of the signal,
provided that PSDs of the signal and the noise and system’s
transfer function are known.

Express the measurement f () as the underlying signal s (¢)
measured by a system characterized by its impulse response
h (t) and perturbed by additive noise n (¢):

f@) =s@) «=h®) +n@) F@w)=SWH(Q@) +N ()

The Wiener filter derivation is the same except for A (¢) =
0 (¢). Apply a linear filter p (¢) to estimate s (¢):

§(t) =p(t) () S@w) =P)F(v)

Leveraging Parseval’s theorem, the error between the signal
and its estimate can be written as

e=(["_lsw -5l ar) = ([~ S0 -3 av)

The functional form of the filter follows:

s(t) &f(t) h(t)
t
t
\
Wiener Wiener—Helstrom
PSD, (v) H*()
PSD, (v) + PSD,, (v) [H )| + PSD. ()

4
<]
g
4
<]
g

In many cases, & (t) ~ d(t) is a good enough approximation,
as can be seen with the scenario depicted in the example.
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Propagation of Optical Fields 61

Modes

The concept of basis functions was introduced earlier to
break up an arbitrary function into a superposition of basis
functions that had particular properties of interest:

N
F@ =Y aplp@
k=1
The number of basis functions N can be finite, countably in-
finite, or uncountably infinite, in which case the summation
becomes an integral.

An important application of linear systems in optics is to
treat propagation of optical fields through a system using
basis functions that satisfy the wave equation
1 J%u
V2 (r) - =5 =0

V) c2 ot2
where V2 is the Laplacian, and ¢ is a constant. Solutions
to this equation that satisfy particular boundary conditions
are termed modes. Several important examples follow:

Mode Type Uses
Optical Rays Optical design

Propagation in stratified

Uniform Plane Waves .
structures and media

Modes of an optical cavity

Hermite-Gauss Beams and coherent optical design

Analysis of systems with

Laguerre—Gauss Beams O ——

Diffraction as superposition
of spherical wavefronts

Modes of an
optical waveguide

Huygens Wavelets

TE/TM Plane Waves

The scalar optical field is denoted as u (x,y,z). The notation
E is used to explicitly indicate the vector electric field where
necessary.
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Plane Wave Spectrum

The direction of propagation of a plane wave is

k= VX + '\[yf’ + V.2
where v, 7,, and 1y, are the direc-
tion cosines given by the cosine of
the angle between k and the coor-
dinate axes, and they satisfy

A uﬁ&’i%/ 2 2 2
Vo TNy + 97 = 1

A plane wave with wavenumber k = 2m/\ propagating
along k can be expressed as

u(x,y,2) = uge' LI

Consider the fields in the z = 0 plane written in terms of
their Fourier transform:

u(ey,z=0) = [[" UEnz=00e?"E+Wagdy

The direction cosines can be expressed in terms of the spatial
frequencies as

Ye=A gy =Am =122 (E2 4 92)

The inverse Fourier transform is just a superposition of
plane waves propagating in different directions, which gives
rise to the term plane wave spectrum or angular spec-
trum. For spatial frequencies

N2 (E2+92) <1

the direction cosine v, is purely real, and the plane wave is
propagating. For spatial frequencies

A2 (B2 +92) > 1

the direction cosine v, is imaginary, and the plane wave
is evanescent. Evanescent waves decay exponentially and
can only be observed in the near field.
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Transfer Function/Impulse Response of Free Space

After the field’s plane wave spectrum is determined, it can
be propagated from z = zg to z = z; using the transfer
function of free space:

U(€,m,z=21) = U(E,m,2 =20)Ho1 (§,m)
where H(; is defined as
HOl(z’n) — eik(\{z(zl_ZO)

and adds the proper amount of phase and decay to the prop-
agating and the evanescent waves, respectively.

Defining v, = " V%2 + 7,2 reveals the following structure:

z=A\

‘ z=A\/10 z= N[5 z=\/2

[Ho4!

Yr

r

5 1‘
Alternatively, starting with Weyl’s integral
eikR
ikR ~
it is possible to show that

d [eikR ] _ ﬂ_"; k0127 i 27 (Ex+my) dzp _ :;;yl {eikfyzz}

)»2dzp

V=

;—; H_oooo RO+ NLY T2 g () where dQ =

9z | 2R
The transfer function and impulse response are, in fact,

Fourier pairs, even though they were derived from different
physical arguments:

ho1(x,y) = F 1 {Hp1 (E,m)}

This lays the groundwork for the general concept of diffrac-
tion as a convolution of the field with the impulse response.
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Propagation of Optical Beams

An optical beam is an example of a field distribution that is
well suited for analysis by its plane wave spectrum. Consider
a 1D Gaussian beam with fields at the z = 0 plane, given as

ug(x,y) = Gaus (;C—O)
The plane wave spectrum corresponding to these fields is
Uy (§,m) = boGaus(by£)d(n)
The fields at an arbitrary plane z can be written as

U, (x,y) = 3:_1 {UO(Z’ n)HOZ(E’ Tl)}

At the plane z = 0 (the
beam waist), all of the
plane wave components are
in phase, and the result
is a Gaussian beam with

AN U width bg. As the observa-
f_ZH — U0 tion plane moves away from
2mz{ £ the waist, the phase rela-

] }1 1 1 tionship among the Fourier
T2 Thy By 2 components is altered by the

transfer function of free space H (§;z). The beam widens
spatially, and the phase front becomes curved.

Amplitude Profile Wavefront Shape
-2
—1
0
+1
+2
z/zg
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Spatial and Temporal Coherence

Coherence in an optical system refers to the ability of two
different beams of light to constructively and destructively
interfere. When coherent beams are coincident at a point,
then their complex field amplitudes must be added:

2 2 2 2
lsot]” = |1 + ugl” = [ug]” + Jugl” + 2R [uiuy*|

However, when incoherent beams are coincident, their irra-
diances are the quantity that adds linearly:

2 2 2 2
lugot]” = g +ugl™ = luq|” + |ug|

Temporal coherence is e

the ability of a beam to inter- L us (O
fere with a copy of itself that o AR
is shifted in time. Temporal

coherence is measured in an
amplitude division interfer- u(t) Uy (1)
ometer, such as a Michelson.
This interferometer uses a
beamsplitter to create two
copies of the incident beam. One of these copies is delayed
in time by an amount ¢/c before both are brought together
to interfere at the detector.

Utot = Uq + Uz

Spatial coherence is the
ability of the light from two
different locations on the
wavefront to interfere. Spa-
tial coherence is measured
in a wavefront division inter-
ferometer, such as a Young’s P,
double-pinhole interferome-

ter. The difference in path lengths £; and ¢y produces a
variable time delay at the observation point.

This Field Guide considers light that is either completely
coherent or completely incoherent, but most physical sources
of light are best modeled as partially coherent in space
and/or time.
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Diffraction

The scalar Rayleigh—-Sommerfeld diffraction calculation
is derived from Dirichlet boundary conditions and is correct
for all z more than a few wavelengths beyond the aperture.

Yo Y1
o
R = yzg12 +Irq — rgl2
Xo X4
z
r
201

This calculation employs the Huygens wavelet, which is
directly related to free space propagation and arises as a
z-derivative of the spherical wave:

Huy o _py - =10 [¢*F _—_1(~ _l)ZO_leikR
he =y rO)‘zwaz[R “m \*"®) R R

The use of A for the wavelet is not coincidental — it repre-
sents the impulse response. The propagated field is then the
convolution of the field at z = z(, with the wavelet propagated
toz=2q:

u(ry) = ﬂ':o u(rg) hEW (rq — ry) d2r

Although the Huygens formulation is mathematically exact,
scalar diffraction itself is not physically accurate near the
aperture, and a more-useful result follows by requiring that
z > M. Aside for a phase shift, this restriction allows a Huy-
gens wavelet to be approximated with a spherical wave pro-
ducing the Rayleigh-Sommerfeld diffraction integral:

olkR
R2

Further approximations are often applied that lead to even
simpler calculations.

u(ry) =~ % ﬂio u(rg) d2r0
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Paraxial Approximation and Scalar Diffraction

The first sensible approximation within the scalar diffrac-
tion context is usually the paraxial approximation. It
eases the calculation by setting trigonometric functions of
small angles to only include the first order of their respective
Taylor expansions:

sin (0) =~ 0 tan (0) ~ 0 cos (0) ~ 1

More specifically, it is used to ignore v, and v, in amplitude
calculations by setting vy, = 1, which leads to R ~ z¢:

1 ﬂ‘_"ooo u(ry)e* B d2r,

i)\/ZOI
These angle approximations are only applied to the ampli-
tude term of the calculation because the consequence of ap-
plying them to the phase will provide trivial and extremely
inaccurate results. As can be seen on the next page, an extra
Taylor term is kept for the phase in the Fresnel diffraction
approximation.

u(ry) =

The above figure illustrates why the paraxial approximation
is appropriate—as the propagation distance increases, the
radius of the spherical wave increases, and its contribution
looks increasingly like a plane wave.

f(0) — f.(0 cos (0) ~ 1
67 |10~ T(0)] (9)
tan (0) ~ 0
1 o7 sin (0)~0
......... ‘cos(‘e)m‘_%ez 0

5°  10° 15° 20° 25° 30° 35 40°

The addition of the 02 term to the cosine approximation
provides a much-broader range of accuracy.
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Fresnel Diffraction

Fresnel diffraction refers to a set of approximations that
simplify the calculation, while maintaining accuracy over a
broad range. The distance R from a point in the aperture to
the observation point is expanded in a Taylor series:

ey = ey —rgl*
2291 8201°

R =1zg12 +Ir; —rol2 =201 +

Depending on where R appears, a different approximation
is required to achieve sufficient accuracy.

Amplitude R =z zp1 > Ir; —rgl

Ir;—rgl?
2201

wlry—rolt
4z

Phase R = 201+ 2’013 >

The resultant impulse response in the Fresnel region is

etkzo1 exp iTlry — 1rol?
i)\ZO]_ >\201

|I'1 —1'0|2 = 7'12 —2(1‘0 ‘1'1) +r02

hire(ry — 1) =

which contributes quadratic phase curvature to the initial
and the propagated fields. The dot product term

—2'n'i(r0 . rl) ]
exp I:—KZ()l

can be readily recognized as a Fourier transform kernel
where ry and r{/(Azg1) are the conjugate variables. This

results in
kz ; 2
_ et?o1 oo mrlrl - I'0| 9
u(rl) = i)\ZOl J.JI_OOLL(I'()) exp I:TOI d ro

ikz : 2 . 2
e'7o1 imr iTr
=0 exp[x L ]?{u(ro)exp[k o ]}‘
I1AZo1 201 201 p=—1
XZOI

Even though the Fourier transform shifts the result into
the frequency domain, the evaluation properly scales the
frequencies into their propagated spatial equivalents.
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Fraunhofer Diffraction

Fraunhofer diffraction is commonly referred to as far-
field radiation. The calculation adds another approximation
on top of the set of approximations used for Fresnel diffrac-
tion:

; 2 2 2
LTrg Tro Tro
~1 1 —_—
exp [ "o ] - o1 LK1l = 2z > N
allowing the quadratic curvature to be ignored and further
simplifying the impulse response:

ikz ; 2 ;
RFra (e —po) = e'f7o1 ox imry < —27i(rg-ry)
z 1=70 2 A A

IAZo1 201 201

The radiated field can then be written as

etkzo1 imry2
= ? r
ey = S exp | T | Thwcro

All of the diffraction integral calculations can be thought of
as a progressively simplified contribution from each of the
secondary source’s wavelets. Due to the nature of free space
propagation, each wavelet expands, and as the propagation
distance increases, the importance of keeping extra terms
to achieve accurate results decreases.

Yo
Huygens
Sommerfeld
Fresnel
+ i—:\\/\\/ S\\\/\\l ?XV PW Fraunhofer
k
3 alry—rol* Wf%
z>0 z>» M\ z > —0 >

In all of the aforementioned cases, the assumed linear shift
invariance enables relatively straightforward evaluation.
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70 Propagation of Optical Fields

Fraunhofer/Fresnel Basis Functions

Fresnel and Fraunhofer diffraction integrals implicitly sep-
arate functions into basis functions. To help visualization,
the complex exponentials in the Fresnel integral can be split
into four combinations of purely real basis functions:

exp (—2mix§) exp (imx?/ z) — 5 (2mxE) 05 (mx?/\2)

Below are (xE)—(?\zE2) planes of the four basis functions.

x cos (mx?/\z) sin (mx2/\z)

cos (2mxf)

[—TVETE W -

/

/.

l!
1

A\ V)

.QQ ||
lii \

a!ll
i

-1

i

!

sin (2mx€)

WS —

0 +1

As A\z§2 — oo, sin (mx?/Az) — 0 and cos (Tx%/\z) — 1.
This parallels the Fraunhofer limit and has the effect of sim-
plifying the field contribution to that of a plane wave and
reducing the basis functions to cos (27x{) and sin (27x§).
The point at which this approximation is appropriate de-
pends on the frequency content of the problem.
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Fourier Transforming Properties of Lenses

A lens applies a transformation onto the propagating field:

]
Hens () = Aexp [—%] tap (1)

A is a complex constant. Setting A = 1 and using Fresnel
diffraction to propagate the object field through the lens
from z = —f to z = +f yields

ik2f ik2f
Uy (rg) = ein"J’“{u1(I‘1)}|p_'_f = ei}\f U (rlzc)
=5

which reveals that a lens takes a Fourier transform of the
field. This property allows the construction of a 4f-system,
which enables optical frequency content manipulation.

- o
Eanl Ly -
L 1

The object field’s Fourier domain can be altered by placing
a filter at the intermediate plane z = z4:

zk2f
Us (1‘2) 7\f ( >\f ) Lfilter (I‘2)

resulting in the following field at the image plane z = z3:

otk2f ([ pik2f

ug(rg) = YA { inF Uy ( f) tﬁlter(r2)}
= _eik4fu1 (r3) = Tﬁlter ()\_?')

The result can be seen as a convolution of the object field
with a blur impulse response. The additional phase can be
associated with the total propagation distance, 4f.
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72 Propagation of Optical Fields

Fourier Description of Optical Cavity Modes

Consider a confocal cavity formed by two spherical mir-
rors separated by their common radius of curvature R. The
paraxial focus of both mirrors is at the center of the cavity,
one focal length f = R/2 from each of the two mirrors.

Stable cavity modes have two resonance conditions:

ut(r,z=0) =+u (r,z=0), where ut
Transverse and u~ are the forward and backward
propagating waves in the cavity

n2m accumulated phase in one round-
Longitudinal trip including phase due to propagation,
reflections, and Gouy phase shift

The transverse resonance condition must satisfy
oi2kf
iMf
The Gaussian distribution with by = yAf obeys this rela-

tionship and has phase fronts that match the curvature of
the spherical mirrors. For any z, the beam has the form

_ b5 [—WZ] [ im ]
u(r,z)—b02+i>\ze exp ABE exp RG)

e\ bo2\)
b(z) = by 1+(¥) R(z)=z[1+(%) l

The Rayleigh range, z, = b02 /A, denotes the location
where the wavefront has the minimum radius of curvature.

F{ut(r,z = O)}|p=ka =+ut(r,z=0)

Mirror A Mirror B

Beam Wavefronts
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Higher-Order Cavity Modes

Hermite-Gaussian beams are eigenfunctions of the 1D
Fourier transform operator and give separable solutions that
satisfy the transverse resonance condition in terms of the
Hermite polynomials H,, (x):

2 2 —mr2
Ump (x,5,2 = 0) =AmnHm(‘/§x)Hn(‘/gy)exp[ b?T; ]

0
2 d _ o
Hn (.’)C) = (—1)”ex W@ x
Laguerre-Gaussian beams are eigenfunctions of the Han-
kel transform operator and give azimuthally symmetric so-
lutions that satisfy the transverse resonance condition in

terms of the Laguerre polynomials L,, (r):

2 2
u,(r,z=0)=A,L, (?—g)exp[ LA ]

2
0 bo
n m
n\x
— _1\ym i
Ly(r) =) (-1 (m)m,
m=0
Laguerre Hermite
m=0 m=1 m=2 m=3
<}
. g . B i siiN
- 'ﬁ' - - . LR R 'Ry
S - - e . 28 . 121 .
N - - . ' R ‘T8
. 1l - - - - - - -
N - - . R LA RR
& - - e "y S m
. I - —— -+ - -
S - -e T8 "8 L

Both solutions reduce to the Gaussian beam for n = m = 0.
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Propagation of Optical Fields

Slab Waveguides

A slab waveguide is an optical device with 1D confinement
of the propagating wave. Only certain angles («) or modes
(m) can propagate. The range of propagating frequencies is
limited by kng < 3 < kny, where 3 = kcos(a), the effective
z-wavenumber. Modes arise where the transverse propa-
gation coefficient k, the attenuation coefficient v, and the
boundary conditions match. Define

K2=(n1k)2_82

,\12=82_(n2k)2

Ny

N4
2a

Ny

1YY /
o (—kppa)eTIm Ty < g

U, = V1 m ( Kpp)
frn (FKpa)e Tm @@ x5 4q

2 .

T™ TE

Even (m = 0,2,4,...)

tan(ka) = +

tan(ka) = +

a
K

B

(i)
K \ g

} v2a? + k202 = (n,2 — ny?)k%? = V2

where V is the normalized fre-
quency number, yn;2 —ny2
is the numerical aperture,
and 2a is the thickness of the
slab. The modes have the fol-
lowing structure:

x| < a

where f,,, is cosine for even m
and sine for odd m. The para-
meters k,, and v,, are inter-
sections of V2 = y2a? + k2a?
and the lines denoted in the
table below.

The plot only shows TE modes
because for typical ny and no,
TM modes are very similar.

Odd (m = 1,3,5,...)

tan(ka) = L
2
tan(ka) = _k (n_z)
Y \ni

Field Guide to Linear Systems in Optics
Downloaded From: https://www.spiedigitallibrary.org/ebooks on 20 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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Optical Fiber Waveguides

Optical fiber is now a ubiquitous optical element. It builds
on the concepts of slab waveguides by adding azimuthal
symmetry. The geometry bodes better for long-range trans-
mission, but changes the modes of propagation. Define
g = J! (ka) _ K| (va)

Vo kd, (ka) VK, (ya)
where J, and K, are Bessel functions, while «, v, and a hold

the same meaning as before. Solving boundary conditions
results in the following characteristic equation:

22 1 1 2 2
Ba2 (F + @) = (8, +%,) (k1°3, + k"X,
The modes’ optical fields can be written as
Jv(lcr)eiv¢ei(‘°t_82) r<a
e Kv(«{r)eivd’ei(‘”t_sz) r>a

) Mode Cutoff Condition
0 TEOm’ TMOm Jo(Ka) = 0
1 HE1,,, EHy,, Ji(ka) = 0
EH,,, J,(ka) = 0
> 2 5
HE,,, (% + 1) Jy—1(ka) = 5%, (ka)

For simplicity, Bessel functions are often approximated with
simpler functions. The special case of /; is Gaussian-like

—or2 _3 _6
) |’ c=0.65+1.619V 2 4+ 2879V
ca

J1(kr) = exp [

More generally:
2 T om e 1"
J,(kr) = mcos (Kr_vE_Z) K,(yr) =
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Diffraction-Limited Focal Imaging Systems

Principal planes

A diffraction-limited focal imaging system converts a per-
fect spherical wave at the entrance pupil into a perfect
spherical wave at the exit pupil. The optical power of
the system relates the radii of curvature of the spherical
waves at the pupils in terms of distances from the princi-
pal planes to the object and the image planes:
1_1_1
di do f
Diffraction of this spherical wave from the exit pupil to the
plane of focus produces the impulse response
7" (xi’yi) = ?{P(Kdlk” Xdly)}
The pupil transmission function is P (x,y), and the normal-
ized pupil coordinates are
= 5= 2
YT\, Y=,

Note that the normalized pupil coordinates carry units of
spatial frequency, indicating that the pupil function is ex-
pected to be related to the transfer function of the system.

Using this impulse response allows the physical optics im-
age fields to be written as a convolution with the geometrical
optics prediction

w; (5, 7;) = R, 9;) % ug (%;,;)
The geometrical optics field prediction for a system with
magnification M =d;/d,, is

1 X Y
Uug (%;,yi) = 37lo (Zl_l’]l_l)

Note that for systems forming a real image, M < 0.
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Image-Forming Systems 77

Airy Disk

The class of optical systems with circular pupils is very im-
portant. These systems have the impulse response

7 r wD?
h(x;,y;) = ?{cyl (5)} = Tsomb(Dp)
For a point source, the observed intensity is the square of

the impulse response, which is known as the Airy disk

w2D4

2
16 somb” (Dp)

|77’(xi’yi)|2 =

This function has a first null

that corresponds with the somb? (p)
null of the Bessel function at
+1.22\f /#. The first ring out-
side the main lobe has an am-
plitude that is 1.75% of the
peak of the Airy disk. Lord
Rayleigh used this to define a resolution criterion, now
known as the Rayleigh criterion, for the ability of a
diffraction-limited system to resolve two point sources. He
postulated that two incoherent point sources are barely re-
solvable when the center of one falls exactly on the first null
of the second. With modern detectors, it is feasible to re-
solve two sources much closer than the Rayleigh limit, but
the principle remains the same, and Rayleigh’s limit need
only be adjusted by a scaling factor related to system SNR.
The following example shows two sources at the Rayleigh
limit with no noise and with an SNR of 10 dB.

—0.61\f/# 0.61Af/#
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78 Image-Forming Systems

Coherent Transfer Function (CTF)

Because the system model is LSI, the image fields can also
be determined in the spatial frequency domain:

U; (E.m) =H (&) Ug (§,1)

The impulse response % is already defined as the Fourier
transform of the pupil function, leaving

H (§m) = T{T{P (\d;x,\dyy) }} = P (—Ad,E, —Ad;m)

The function H (§,m) is known as the coherent transfer
function (CTF), and it is directly related to the properties
of the exit pupil. Each point (x,y) in the pupil corresponds
to a single spatial frequency:

- -2
E‘mi 1=\,

The pupil of the optical system can then be thought of as
a filtering plane where the transfer function of the system
can be modified by controlling the amplitude and/or phase
of the transmission function within the pupil.

Because of physical limitations on pupil size, all optical sys-
tems are inherently LPFs. The highest spatial frequency
that can pass a system is dictated by the optical power and
the aperture size, and is

- __1
Pmax = Xd; = MH,

The working F-number of the system is denoted as f/#,,,
whereas D is twice the maximum radial extent of the pupil.
The properties of the impulse response, such as the amount
of ringing, can be con-
trolled by shaping or
apodizing the pupil.
r This is akin to both
UL the windowing that was
applied to sampled se-
quences to control ring-
ing and to the Gibbs
r phenomenon seen with
the DFT.

A th

h(r)
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Image-Forming Systems 79

Optical Transfer Function (OTF)

When the illumination is coherent, the complex fields ema-
nating from each point in the object interfere:

I = |7z * ug|2

When the illumination is incoherent, the fields from two
different locations on the object do not interfere, and instead
the irradiances add linearly. In this case,

~ 12
I =h| =1,
with I (x,y) = lug (x,y)|2. The quantity 1 (x,y)|2 is known
as the point spread function (PSF).

Because the system is now LSI for the irradiance, a spatial
frequency analysis is allowed. The normalized Fourier trans-
form of the PSF is the optical transfer function (OTF):

HE ) «H* (=E, - yuEn)

H(Ew) #«H* (=§,-)]ey 11 (0,0)
n=0

HE ) =

* H(0,0)=1. The change in the average value of the scene
irradiance is handled separately through the étendue
of the system.

* For real systems with finite apertures, 3 (£,n) < 1 for
€,m # 0 from the Cauchy—Schwarz inequality.

* The modulation transfer function gives the change
in sinusoidal modulation MTF (§,7) = |3 (&, 7)|.

* For a diffraction-limited system with a circular pupil
HP) = Yey1 (PMF/#,1).

OTF

U\ i\

\17

Input 1 1 Filtered

P

T NF# NF/#
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80 Image-Forming Systems

Aberrated Systems

A diffraction-limited system converts spherical waves inci-
dent on the entrance pupil into spherical waves leaving the
Defocus Coma-Tilt exit pupil converging on (or
diverging from) the plane of
focus. Real optical systems
have aberrations, which
are deviations from these
perfect spherical wavefronts.
The deviation W (x,y) is
measured in wavelengths as
W(x,y) a function of position in the
exit pupil plane.

The aberrations can be treated as phase perturbations in
the pupil plane, and the CTF becomes

H (E,m) = P (~\d;E, —\d;n) 2™V (Fhdif=hdim)

With this modification both the CTF and OTF become com-
plex, leading to both amplitude and phase changes in the
various spatial frequencies. The MTF of an aberrated sys-
tem is always lower than the MTF of a diffraction-limited
system as a consequence of the Cauchy—Schwarz inequality:

MTFy (§,m) < MTFpy, (§,m)

The phase perturbations can lead to contrast nulls, where
the MTF goes to zero and contrast reversals, where the
OTF passes through a null and experiences a 180° phase
change. An example of such location is highlighted in the
following figure.

OTF

Z N

N 7.

Diff. Limited

1 1
—xi7 E 1 A Defocus
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Image-Forming Systems 81

Comparisons of Coherent and Incoherent Output

An optical system has different responses under coherent
and incoherent illumination, but these responses are related
through the properties of the autocorrelation function. Con-
sider the following two objects:

ui(x,y) = cos(2mpx) ug (x,y) = |cos(2mox)|

Although the fields are different, the objects have identical
ideal irradiance distributions:

|ug|2 = cos? (2mEgx) = % [1+ cos(4mEgx) |

7 {lugl”} = 5 {30 + 5 [BE - 260) +3(E +260)]}
A simple 1D CTF is assumed:
H(£) =rect (M /#£) H(E) = tri (Mf/#E)

Coherent Incoherent
~ 12 ~12 2
* jug + 7| 2] |
(UgH) » (UH) (Ug » Ug) (H » H)
A
Uy (%)
e wo T 7 (uif)
| ¢ P N
__1 1 __1 ‘ 1
N/# Nf/# N/ # Nf/#

When the spatial frequency of the object is chosen, as shown
in the figure, the images under coherent illumination are
different. Object #1 is passed by the system unaltered. Ob-
ject #2 has only the zero-frequency term that is passed by
the optical filter. In contrast, both objects produce identi-
cal images under incoherent illumination, with some loss of
modulation contrast, as indicated by the lower MTF for the
oscillating terms in the Fourier series.
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82 Image-Forming Systems

Two-Point Resolution with Coherent Light

When the light coming from two point sources is incoherent,
the Rayleigh diffraction criterion can be used to establish
a minimum separation at which the points are resolvable.
However, when the light coming from the two points is co-
herent, greater care must be taken.

Assume that the geometric optics field image is
ug(x,y) = 0 (x - %) +etbod (x + %)

The two points have equal amplitude but a relative phase
difference of ¢. The resulting irradiance distribution pre-
dicted by physical optics is

u;(x,y) = |h (x— %0) + oidop, (x+ %)|2

/SN /N o = 180°
/ - \ $o = 90°
/ \ $o =0

When the two sources are 90° out-of-phase, the resulting
irradiance distribution is identical to the incoherent case.
When ¢ = 0°, the constructive interference between the two
images makes resolution more difficult. When ¢ = 180°,
the destructive interference between the two images at the
center point actually makes it easier to resolve them.

Two sources that are 90° out-of-phase are often termed un-
correlated or orthogonal. The net effect is that the result
is the same as if the sources were incoherent. An identi-
cal result would also be obtained for two sources that are
orthogonally polarized and thus cannot interfere.
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Roughness and Scattered Light

Optical components are polished to a desired shape within
a certain degree of tolerance. Deviations from the ideal fig-
ure due to surface roughness can be treated in much the
same way as aberrations. Unlike aberrations, which gener-
ally have an analytic form, the phase variations across the
wavefront due to surface roughness are best treated using
the tools of random processes discussed earlier. The result
of surface roughness is scat- —
tered light, which is a broad-
ening of the system PSF.

The additional phase in the
pupil of the system can be cap-
tured in a hypothetical rough-
ness plate with transmission

J

The function p(x,y) gives the additional optical path due to
roughness with a resulting impulse response

T, (x,y) = P

B (x,y) = h(x,y) = t(x,y)

The function ¢(x,y) = F1{T, (=Ad;§,—\d;n)} plays the
role of a random signal being filtered by the deterministic
impulse response. When the roughness is small compared
to a wavelength, the scatter plate can be modeled as a weak
phase filter:

t(x,y) = 51 {1 + iom P (

- 2T (X Y
_B(x’y)-'_ld-P(?\di’?\di)

1

—KdiE,—Kdm)
A

The second term on the right side gives the scattering blur.
Because p(x,y) is a random function, the blurring effect is
best described in terms of the PSD of the roughness:

2
2
Bl o] = (5) Ps, (5552 )
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Fourier Transform Spectroscopy (FTS)

PN Fourier transform spec-
ur (O troscopy (FTS) exploits the
B Wiener-Khinchin theorem to
measure the spectrum of op-

tical radiation in an interfer-
u(t) Uy (1) ometer. The path length in
arm 2 of the interferometer is

¢ longer than that in arm 1.

Utot = U1 + U2 The fields at the detector are

L
2

gy = % W) +u (¢ +0/c))

Because the underlying field is u(z — ct) it can be equally
well be written in terms of space. If £ is scanned through a
range of values, and the irradiance is measured by averaging
the signal in time, the resulting interferogram is

2 Ed
I(Q)=<|u(t)|2>+ Ju (t+2)] +ml(u(t)u (t+%))t]
t
t

16 16 8

The time averages can be replaced by expectation values

I(r) = 5 (I + u (™)

where T = £/c. Note that because u(t) is purely real, v, (T)
isreal and even. According to the Wiener—Khinchin theorem,

the PSD is 1
FU(T)}, = 5 [3() +1()]
Interferogram Spectrum or PSD
‘ ‘ ‘ ¢ ‘ v
—4X 4 kio
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Multiplexing

Multiplexing gives the ability to carry multiple signals
over the same physical communication medium. There are
several common multiplexing protocols in wide use:

* Time division multiplexing (TDM)
Users get access to the medium at different times.

* Frequency division multiplexing (FDM)
The EM spectrum is divided into bands of channels
that are orthogonal to each other in a Fourier sense.

* Code division multiplexing (CDM)
Multiple pieces of information are sent over the same
communications medium, but they are made orthogo-
nal by modulating non-Fourier codes, which are often
pseudo-random sequences.

* Wavelength division multiplexing (WDM)
Used in fiber optics. Users are assigned to different wave-
lengths, all of which are sent through the same fiber. The
wavelengths are separated optically at the receiver in or-
der to demultiplex the signals.

TDM FDM
7S1(D) s3(t) 87654321|12345678
t
Consider a set of N signals sq (x), ..., sy (x), each assigned

to a carrier frequency §,,. Amplitude-modulated signals
are all present simultaneously, but the information can be
recovered so long as the channels do not overlap:

N
fx) = Z fn®), fn(x) =s,(x)cos (27§, x)

n=1

1 N
FE) =5 ) [Si(E=E) +8,(E+En)]
n=1
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Sampled Color Imaging Systems

The goal of imaging systems is to record information pertain-
ing to the scene in order to reproduce or display a recogniz-
able version of it. The scene can be denoted as an intensity
distribution I (x,y, 0,t).

Present state-of-the-art detectors cannot detect such infor-
mation with infinite resolution. Instead of performing an
ideal sampling operation with 8 (x,y, ¢,t), a non-ideal sam-
pling operation is performed. It can be described with a

pulse function
x y o t
p(_y_’_,_)
Xp Yp Op Ip

where x,, y,, 0,, and ¢, represent the integration widths
in each domain and set a lower limit on the corresponding
sampling intervals in each domain. A sparse sampling rate
will cause a variety of artifacts in the recorded representa-
tion. A long ¢, will lead to motion blur, while larger x,, and
¥p will lead to pixelation.

Temporal resolution is generally of less interest because
t, is independent and can potentially be reduced without
infringing on other domains. Measuring (x,y) and ¢ concur-
rently, however, invariably introduces a trade-off. A typical
2D imaging configuration measures color information by
placing a grid of alternating color filters on the detector.
Thus, the dataset is inherently partial and requires careful
treatment to achieve the goal of accurate representation.

Finally, in order to maximize the overall performance of the
system, it is important to match the OTF of the optics with
the pixel-pitch/color-sampling of the detector. The displayed
image can be written as

Ip(Em) = [OEMNHEMPEM) # comb(x,E,y,m) | D(E,m)

where O is the object’s Fourier transform, 3 is the optical
transfer function, P is the pixel transfer function, and D is
the display transfer function. Focusing on improving only
one of the components of the overall chain is unlikely to
significantly increase system performance. Every aspect of
the system needs balanced improvement in order to obtain
optimal results.
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RGB Detector and Display Arrays

Sensor Arrangements

The Bayer pattern is 2 x 2 super-
pixel of color-selecting filters that
contains two green pixels, one red
pixel, and one blue pixel. There | G || B || G || B
are more green-selecting pixels be-
cause that part of the spectrum has R @ R ©
the dominant effect in human vi-
sion. To store a set of RGB values | g B G B
for each pixel, various demosaicing
schemes were developed. Alternatively, this pattern can be
described as a channeled system by leveraging the implied
Fourier structure of the information splitting.

Display Arrangements

RGB stripe is a 1x3 arrangement
of sub-pixels used in LCD displays
to map the stored RGB informa- R IG| [B||R| |G| |B
tion directly to each sub-pixel. This
mapping is the main advantage of — — — — —
the arrangement because it places
fewer requirements on the software |R| |G| [B| [R| |G| [B
developer to achieve proper display
of information. N S D B B By

Pentile RGBG is a 1 x 4 arrange- ] ]
ment of sub-pixels that is used pri-
marily in some AMOLED displays. R G B G
It uses the same objective of lever-
aging human color sensitivity pref- — —
erence as the Bayer pattern in sen-
sors. There are many sub-pixel B G| R G
arrangements with an unequal dis-
tribution of color sensitivity. L L

Depending on the pixel arrangement, pixel count might
not convey the system performance fully. Instead, a more-
elaborate analysis may be required.
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Channeled Spectropolarimetry

Polarimetry involves the measurement of the vector na-
ture of the optical polarization signature. Because opti-
cal detectors do not generally respond to polarization, po-
larimeters operate by modulating the intensity of the light
in a polarization-dependent fashion. An important class
of polarimeters are the channeled polarimeters that ac-
complish this by creating FDM channels in space, time,
wavenumber, angle, or some other modulation dimension.

Consider a beam of light E = u,X + u,y. The Stokes para-
meters describing its polarization state are

e OF) + (Juy &)

So(?) 9
sy =| 210 | o] (@F) = (jey @]

So (2 *

Si(t) 2R (uy (uy* (1))

=27 (u, )uy* (2))

This beam is analyzed by a linear polarizer rotating at a
constant angular velocity 0 = 2mwvt. This analyzer produces
a time-varying irradiance

I = % [ 1 cos20 sin20 0 ]T -S()
= % [s0(2) + 571 (2) cos(4dmvgt) + s9(¢) sin(4mvgt) |
The resulting irradiance is a multiplexed signal with the
sg information carried in a channel centered at v = 0, the

s1 information in the real part of a channel centered at
v = 21, and the sy information in the imaginary part of a

FUM)} channel centered at v =
Sy (v + vg) 2v9. More-complicated
So(») strategies have been de-

veloped that modulate in

/\ time, space, wavenumber,
% . .

: angle of incidence, and

—2vg 2vg combinations of multiple
1 =iS2(v + g) independent variables.
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Optical Signal Processing

Before the emergence of digital computing, analog comput-
ers were an essential part of science and engineering. One
important example of an analog computer is the optical
signal processor. This technique relies on the Fourier
transforming properties of lenses that makes it possible to
place a filter at the intermediate plane of a 4f-system.

Optical signal processing has the advantage of nearly instan-
taneous performance because the information travels at the
speed of light. It was used in pattern matching/matched
filtering applications, such as optical character recog-
nition and satellite photographic analysis. Optical signal
processing also found wide use for processing radiographs
and other types of medical images. Filters could be changed
in the focal plane to test multiple templates. The maturation
of liquid crystal technology makes it possible to dynamically
change the properties of the filter in the intermediate plane.

| —

T .
] 1

z =2z, zZ=12 Z=123

PA

Optical signal processing has fallen out of favor for general-
purpose applications because of the accessibility and ex-
tremely low cost of computational power. Furthermore, op-
tical processing is limited in the types of filters and num-
ber of cases that can be implemented, at least relative to
computer-based methods. However, for high-performance
tasks, such as on-board processing for military applications,
a specialized optical signal processor can outperform a digi-
tal solution for specific needs.
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Green’s Functions

A Green’s function is an impulse response of a system
described by a linear partial differential equation. Exam-
ples in electromagnetics are the free-space scalar Green’s
functions for the time-harmonic Helmholtz equation for the
z-component of the magnetic vector potential:

VzAz + k2Az = —ued,
The 1D problem can be rewritten in a simpler form:

dGg
T2 +k2G = —pB(x Xg)
The solution is plane waves propa-
gating away from the location of the
source current at x:

A etk x>«
G(x) = o 0
2 { AjemRr x < xq

The 2D problem is best treated in cylindrical coordinates:

18G(8G) 1 922G

i Pl 2G = — -
el L =02 + k°G wd (r—rp)

The solution is zeroth-order Hankel
functions of the first kind propagating
away from the source at roy = {xg,v¢}:

G(r) =AH" (r —ry)

The 3D problem is best treated in spherical coordinates:
Jd ( JdG 2G 1 7 9
r2 [&r ( 87") sin? 4)&62 sin ¢ dd (Sm ¢ 8¢)]+k G=—pd
The solution is spherical waves out-

wardly propagating away from the
source at ro = {xq,¥0,20}:

eiklr—rol

G(r) =

[r —rg|
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Moment Method

One of the tools of linear systems is the ability to decompose
a complicated function into a weighted sum of fundamental
basis functions. When linearity holds, a problem can be
solved for each of the basis functions, and then the total
answer is obtained by summing the individual solutions:

AY ata = Y onr ()

n=1 n=1
The moment method uses this principle to solve integral
equations. A common example involves electromagnetic scat-
tering problems. The scattered electric field can be written
in terms of the unknown currents oJ:

E,(r) = fsﬁ (r;r”) J(x")dr’

The domain of integration S includes the surface of the scat-
terer, and the Green’s function Gisa dyadic function of the
source location r’ and the observation location r. The esti-
mate of the total field is the sum of the known incident and
the unknown scattered fields replacing J with a superposi-
tion of basis functions:

N
Eiot = Einc+E; = Ejp o (r) + Z an fS G (I';I") I\I’n (r")dr’
n=1 i

Boundary conditions are used to convert the integral equa-
tion into a system of linear equations for the coefficients
{a,}. As an example, when the scatterer is a perfect conduc-
tor, the total tangential field i x E;,; = 0, and the equation
can be evaluated as a set of M observation points:

a, nxE;,.(r)
[ an ] ) ]

The computational burden lies in developing the Green’s
function G (r;r’) and computing the matrix

Zpp =R X -[S’n ((_;’) (rm;r,) ‘I’n (r")dr’

Zy1 - Zain

Zyi v Zun n x E;.(ryr)

The basis functions can be pulse functions, polynomials,
Fourier functions, or any other appropriate function set.
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Array Apertures

Arrays are important in applications involving radio fre-
quencies and microwaves, and are becoming increasingly
important in optical applications. An array can have a real
aperture that is sampled by a number of array elements, or
it can have a synthetic aperture. In such an array, the
sampling is carried out by a single element that is scanned
across the aperture.

Consider the fields in the
Fraunhofer zone of a 1D ar-
ray of identical point-source
elements. The elements are
assumed to be periodically
spaced every d units over the
aperture. Non-periodic sam-
pling is also acceptable, but
is more complicated. The am-
plitude and phase of the nth
element are given by the com-
plex weight w,,. The fields observed at angle 0 are given by
the DSFT of the weights with £ = (cos0) /\:

N
- 0
u(0) = E w, e 2R
n
n=1

The choice of the weighting profile can produce beams of
different shapes, and the ability to dynamically control the
weights allows the array to be steered in different directions.
Reciprocity dictates that the array operates in the same
manner on transmission and reception, so this is equally
applicable to a receiver.

Synthetic arrays do not fill the entire array with elements.
Instead, they use a smaller set of elements — perhaps just
one in some applications — and scan those elements across
the aperture in time. Synthetic aperture arrays have become
important in astronomy with the emergence of instruments
such as the Large Binocular Telescope in optics and the Very
Large Array (VLA) in radio.

Field Guide to Linear Systems in Optics
Downloaded From: https://www.spiedigitallibrary.org/ebooks on 20 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Applications of Linear Systems and Fourier Analysis 93

Array Apertures (cont.)

In a synthetic aperture system, the entire array aperture is
not filled simultaneously. Such synthetic aperture systems
are generally used in the receive mode, and a good example
is an interferometric astronomical telescope.

Consider two elements with identical apertures whose cen-
ters are separated by 2rg = 2 (xoX + yo¥):

_ r — x| r + ro|
P(x,y)—cyl(T + cyl D

The resulting OTF for these two elements is

}CI'O(Z 71) =Yeyl (Af/#w |P| 1) +35 [f\/cyl (hf/#w |P pO| 1)
+Yeyl (Xf/#w |P + POl ’ 1)]
The offset vector in the (E n)—plane is

Po = )xf/# E+>»f/#

M

7 N\
N/

A single pair of elements samples the Fourier transform
of the object at the spatial frequencies given by +£p, with
sampling function vy (Af/#, |p|;1). If the spacing and
orientation between the two apertures is scanned through a
set of values in the spatial frequency plane, then the Fourier
transform of the object can be built point-by-point, and the
resulting image can be estimated by the inverse Fourier
transform. In an array like the VLA, the distances between
the antennas can be altered, and the Earth’s motion in its
orbit helps scan the spatial frequency plane.

Field Guide to Linear Systems in Optics
Downloaded From: https://www.spiedigitallibrary.org/ebooks on 20 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



94 Applications of Linear Systems and Fourier Analysis

Crystal Lattices and Reciprocal Lattices

A crystalline structure is described by a unit cell and a Bra-
vais lattice, which is a collection of vectors that gives the
periodicity of the crystal

R =na + mb + pec

The vectors a, b, and c are the primitive vectors that span
the lattice, and n, m, and p are integers. The Bravais lattice
describes the spatial properties of the periodic structure.

. : . ] The position r in space

’ . . . and the wavevector o of

° b\/ ’ . '5,\/ ’ .| plane waves propagating

. a o oeas in that space are Fourier-

’ ‘| dual variables. The plane

. wave spectrum gives an ex-

ample of how the Fourier transform of a spatial field distri-

bution produces a spectrum of plane waves propagating in
different directions.

Consider a 2D example for consistency with earlier notation.
However, the concept easily generalizes to 3D. A lattice of
point scatterers is modeled as

f (x,y) = comb (a,x + a,y) comb (bx + b,y)
The corresponding primitive vectors of the lattice are
a=a,X+a,y b=0,x+0b,y

The Fourier transform of f (x,y) describes the reciprocal
lattice, which is the collection of all points that satisfy

ei2moR — 1
for all values of n, m, and p. In the 2D example above:
b b a a
— e _Zxp Ve Ox
F&m)—wfmm(pi L DE+Dn)
The primitive vectors of the reciprocal lattice are

b,E b4 - —a,Etai
- _ Yy x — y x
a=—">p N D

WithD:axby—bxay,a~i):é'b:O, anda-a=b-b=1
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Fourier Transform Tables

eii27r§§ox —> B(E F Eg)

B(xixo) — eiizwxog

cos(2mE,x) — 2 [B(E—E,) +0(E+Ey)]
18 —x,) +3(x +x,)] <> cos(2mx, )
sin(2mEyx) «— 3 [3(E—E,) = (E+Ey)]
4 [3(x —x,) = d(x +x,) ] < sin(2mx, §)
rect(x) «— sinc(§)
sinc(x) «— rect(§)
tri(x) «— sincz(ié)
sinc? (x) «— tri(§)
1

sgn(x) «— e
A —sgn(f)

step (x) «— %B(E) + ﬁ

30(0) — e < step(£)

ramp (x) «— # [in(l)(E) - E%]
# [36—12 +imo @ (x)] — ramp(§)
1+(2mE)2
2

2 —I&l
1+(27x)2 —e

—X 1
e *step(x) — T+i2nE

1
1-i27x

ot (52) 80 (k)
()"0 () s g

i2m

— e_Estep(E)

comb (x) «— comb(§)
Gaus(x) < Gaus(§)

sech(mx) «— sech(m§)
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Fourier Transform Tables (cont.)

|-1/2 1/2

ke — g~

cos (w(x2 - %)) <«  cos (W(§2 — %))
sin (72— 1)) <> —sin (12 - 1))
cos(mx?) «— cos (m(E2- 1))
sin(mx2) < —sin (T (£2 - 1))

+iT (x2— Fim(E2-1/8)

P 1/8) 5 ¢

. 2 . . 2
eximx? | Eeiwr/4e-o-wTE

2
—mx a=0
exp [ a+ic ] ’a2+c2<o0

— VJa+icexp[—m(a+ic)E2]
f(&x) «> F(£f)
f*(xx) «— F*(F§)
F(+x) < f(F§)
F*(x) «— f* ()
f(£) < bIF (b¥)
dif (dx) — F(5)
f(xixo) (_)eiiZWExOF(Z)
eii27TEOxf(x) PEEN F(E F %o)
F® (x) e @2wE)EF (E)

. F(k) 0)
(—i27x)"f (x) F (E) mp, (—i2m)k

[of@hde — ZLeF ) + EO35)

T o + L8 ) — [F FEHaE
Ayf (6) +Agh () > ALF (B) + ApH ()
f@) k@) — FOH®)
F@RG) — F(E) « H(E)

SO @) Pde = [ IF (8)2dE

Field Guide to Linear Systems in Optics
Downloaded From: https://www.spiedigitallibrary.org/ebooks on 20 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use




97

Fourier Transform Tables (cont.)

Fx£x0,y £y0) < 2T EOEROME (L )
o2 EEXENON £ (x ) s F (£ F £0,m F o)

f (%%) —> |bd|F (b§,dn)

£
f(ax,cy) «— m (a c)
d(n+m)

ddy = (%, y) = (2Wi)™ (2min)™F (§,7)

d(n+
an m

e F(0,0)% F(E0
j_mf""’f(x,’y,)dXIdy/H[ e -;E’E)]B(m

S S s g F(0,0)8(n) F(on)

|7 fa.ydy — F(E0)3 )
|7 F@ . yyda’ — F0,m)d()

2mix)? 27iy) " f (x,y) «— (=1)**tm F&,m)

2 _—
exp [ii%] —> ii?\ze"’mzp2
cyl(r) «— %somb(p)
2 72
Yeyl (%,a) —> wa4d somb (ap)somb (adp)

e« 2w (4mp? + 1)2/3

cos(mr?) « sin(mp2)

r—1 p—l
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Equation Summary

Cartesian-Polar Notation for Complex Numbers:

u=x+iy=red =r(cosf+isinb)

r=yx2 +y2 0 = arctan (y/x)

Complex Conjugate:

= reit u* = re=i0
u=x+1iy u* =x—1iy
Special Functions:
1 x>0
step (x) = { 0 x<0
e , , x x>0
ramp(x) = f_oo step(x’) dx" = { 0 x<0
1 x>0
sgn(x) = step(x) — step(—x) = 0 x=0
-1 x<0

rect(x) = step (x + %) — step (x — %)

tri(x) = { s
sin(mx)
X
Gaus(x) = e~ Tx”
cyl(r) = rect(r)
2J1(7r)

somb(r) = —

sinc(x) =

Impulse Function Properties:

) (x —bxo) = bId (x — x0)

b _J 1 a<xy<d
fa S(x—xo)dx—{o else

f_eooof(x’)g(x’ —x0) dx" = f(xg)

Field Guide to Linear Systems in Optics
Downloaded From: https://www.spiedigitallibrary.org/ebooks on 20 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



99

Equation Summary

Impulse Function Properties (cont.):
|7 F&)3 @ —xg)dx’ =F(xo)
[7ra @ —xg)de’ = D" Lop)

X=X

fio d(x" —xp)dx’ = step(x — xg)

d
B(x —Xg) = astep(x —Xq)

o0 o0

comb (x) = Z d(x—n) = Z pi2mna

n=—oo n=—oo

Fourier Series:

fX(x) — Z CneiZ’lTEOx

n=—oo
1
EO - )_(
_ l xo+X 1y ,—i2mEgx’ 7,7
n =X Jecr, fx(x")e dx

Fourier Transform:
Ty =F® =" fe ™ dx
FTUFR®} =f@) = [~ _FEet?meds
Laplace Transform:
F(s) = f:of(x)e_sxdx

s=0+4+iw

Hankel Transform:
[ 2 . .
F{f(r)} = J‘r_o J‘ejof(r)e—ﬂwr(g cos 0+ sin e)rdrde

Discrete-Space Fourier Transform (DSFT):

F(ei2wv) — Z fnei2wvn
fn =f(nxs)

U=xsE=Z/Es
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Equation Summary

z-Transform:

F(z) = Z{fn} = Z fnz_n

n=—oo

2 = pei27ru

Discrete Fourier Transform (DFT):

D{fi} = F, = Z e

I{F} fk_ﬁz 121T—

Parseval Theorem:
I= rePde= " [Fe)[dt

Moment Theorem:

1 an(E)

m, [f )] = [ x"f (x)dx =

Convolution:
f@) xh@) = [~ f&)h—x")da’
fx) #80 (x —xg) =) (x —x)
Correlation:
Vg@) =f ) xg@) = [ f@)g* @ —x)da’

Wiener Filter:

PSD, (v)
PSD, (v) + PSD,, (v)

Wiener-Helstrom Filter:
H*(v)

PSD,, (v)
2 n
H )| + PSD. ()
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Equation Summary

Rayleigh-Sommerfeld Diffraction Integral:

u(ry) ~ .— ﬂ

Fresnel Diffraction Integral:

olkR
Rz

etkzo1 iTlry — I‘o|2
2
u(ry) = oot ” u(ryp) exp[ \og1 ] d“rg
etkzo1 iwrlz] { [iwroz ] }|
= - ex Fiu(ry) ex
iNzg1 p[ Azo1 (xo) exp Azg1 =l

201
Fraunhofer Diffraction Integral:

eikzol

wten) = S exp | S | T tueo

KZOI

Gaussian Beams:
b02 ikz —'7Tr2 i
ulr,z) = b2 +ihe P [5(2)2] exp [?»R(z)]

b(z) _bo,’1+(>‘z)
bo?
b2\

R(2) =z[1+(i) l
Az

CTF and Impulse Response:
h(x) =3 1 {H(E )}
OTF and PSF:

B h (x,y) |2
PSF(Y) = T e,y Py

H(E,m) = F{PSF(x,y)}
JI HE W) )H*(E —§,n' —n)dE'dy’

H(E,m) =
S HE ) dgrdy
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Index

4f-system, 50, 71, 89

aberrations, 80

adaptive optics, 50

Airy disk, 77

aliasing, 33, 36

amplitude modulation, 29,
85

analog-to-digital converter,
37

angular spectrum, 62

anti-Hermitian, 16

aperiodic, 14

apodization, 78

array apertures, 24

azimuthal symmetry, 19, 22,
23,73, 75

band-limited
reconstruction, 37
function, 32, 40, 42

basis functions, 11, 25, 61
orthonormal, 12

Bayer color filter, 24, 34, 87

beam waist, 64

Bessel function, 22, 75, 77

Bravais lattice, 94

carrier frequency, 29

Cartesian coordinates, 1, 2,
19, 20, 22, 24, 31, 98

Cauchy principal value, 27

Cauchy—Schwarz inequality,
30, 79, 80

causality, 18, 27

characteristic function, 17

coherence, 65

coherent transfer function
(CTF), 78, 101

comb function, 10

complex
addition, 2
argument, 3
arithmetic, 2
conjugate, 3, 98
division, 2
exponential, 1, 4, 14, 25,
41,70
frequency, 18, 39
integer powers, 2
magnitude, 3
multiplication, 2
number, 1
phasor, 4
plane, 1
root, 3
subtraction, 2
computed tomography, 56
confocal cavity, 72
convolution, 25, 28, 31
circular, 47
discrete, 38, 47
integral, 10, 26, 31
linear, 47
properties, 26, 31
theorem, 29, 31, 38
correlation, 30, 31, 100
autocorrelation, 30, 58
cross-correlation, 23, 30
cylindrical coordinates, 19,
20, 22, 23, 90

decimation, 48—49
deconvolution, 54
diffraction, 66, 67
Fraunhofer, 69, 70, 101
Fresnel, 68, 70, 71, 101
Rayleigh—Sommerfeld, 66,
101
-limited system, 76, 77, 79
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Index
direction cosine, 62 Fourier series, 12, 13, 43, 99
discrete Fourier transform coefficients, 29
(DFT), 32, 40, 43, 100 truncated, 13
discrete-space Fourier Fourier transform, 8, 14, 16,
transform (DSFT), 38, 21, 22, 24, 43, 99
39, 43, 99 derivative, 17
display arrangement, 87 identities, 15
distortion, 52 pairs, 14
dot product, 11 properties, 21
doublet function, 9 skew transformation, 24
d-function, 7, 9, 10, 33 spectroscopy, 84
symmetries, 16
eigenfunctions, 25 Fraunhofer diffraction, 69,
energy spectral density 70, 101
(ESD), 58 frequency leakage, 42, 44
ensemble, 57 Fresnel diffraction, 68, 70,
entrance pupil, 76 71,101
equalization, 54 fundamental frequency, 12
random signals, 59
ergodic, 57, 58 Gaussian
étendue, 79 beam, 64, 72, 101
Euler’s identity, 1 Hermite, 73
exit pupil, 76 Laguerre, 73
expected value, 57 function, 6, 19, 45, 75
noise, 55, 58
Fabry—Pérot, 50 Gibbs phenomenon, 13, 44,
fast Fourier transform 78
(FFT), 46 Green’s function, 90
fiber, 75 Yeyl function, 23, 31
filters, 50
amplitude-only, 51 Hankel transform, 22, 73, 99
bandpass, 51 pairs, 23
discrete, 38 harmonic frequencies, 12,
high-pass, 51 13, 29
linear-phase-only, 53 Heisenberg uncertainty
low-pass, 33, 35, 37, 51, 78 principle, 15, 32
matched, 55 Helmholtz equation, 90
phase-only, 52 Hermite polynomials, 73

weak phase-only, 53, 83 Hermitian, 16
Wiener—Helstrom, 60, 100 Huygens wavelet, 66
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Index

imaginary number, 1

impulse function, 7, 20
properties, 8, 98, 99

impulse response, 26, 29, 63,

101

inner product, 11, 14, 41

interferogram, 84

interpolation, 37, 48—49

Kramers—Kronig
relationships, 27
Kronecker d-function, 7, 41

Laguerre polynomials, 73

Laplace transform, 18, 39,
929

pairs, 18

Laplacian, 61

lens, 71, 89

linear shift-invariant (LSI)
system, 26, 29, 78-79

Michelson interferometer,
65
modes, 61
cavity, 72, 73
fiber, 75
Gaussian, 73
longitudinal, 72
slab, 74
transverse, 72
modulation transfer
function (MTF), 79
moiré pattern, 36
moment method, 91
moment theorem, 17, 100
multiplexing, 85, 88

Nyquist, 33, 34, 36
zone, 34

operator, 25
inversion, 54
linear, 25
LSI, 25
shift-invariant, 25
optical
character recognition
(OCR), 55, 89
signal processing, 50, 89
transfer function (OTF),
50,79, 101
orthonormality condition, 11

paraxial approximation, 67
Parseval theorem, 17, 60,
100
period, 12, 42
periodic functions, 3, 10, 12,
14, 29, 42
Plancherel theorem, 17
plane wave, 62
evanescent, 62, 63
propagating, 62, 63
spectrum, 62
point spread function (PSF),
79, 101
polar coordinates, 2
polarimeter, 88
poles, 39
power spectral density
(PSD), 58
primitive vectors, 94
principal planes, 76
probability distribution
function (PDF), 17, 57
projection-slice theorem, 56

ramp function, 5
random signals, 57
filtering, 59
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Rayleigh
criterion, 77
diffraction, 82
energy theorem, 17
range, 72
—Sommerfeld diffraction,
66, 101
real number, 1
reciprocal lattice, 94
reciprocity, 92
rect function, 5, 6
region of convergence, 18, 39
roughness, 83

sampling, 10, 32-49
downsampling, 48
ideal, 10, 33, 35
non-deal, 35
oversampling, 37
resampling, 48
resolution, 42
undersampling, 36
upsampling, 48

scattered light, 83

separability, 19, 20, 24, 31,

73
sgn function, 5
signal-to-noise ratio, 37, 55,
59, 77

sinc function, 6, 23

skew transformation, 24

slab waveguide, 74

sombrero function, 23

space limited, 32, 42

special functions, 5, 6, 19, 98
Bessel function, 22, 75, 77
doublet function, 9
d-function, 7, 9, 10, 33
Yey1 function, 23
ramp function, 5

rect function, 5, 6
sgn function, 5
sinc function, 6, 23
sombrero function, 23
tri function, 6
unit step function, 5, 9
spherical wave, 66-71, 76,
90
square wave, 13
stationary, 57-58
superposition, 11, 25, 41, 61,
91
synthetic aperture, 92

transfer function, 25, 63
of free space, 63
transverse resonance
condition, 72, 73
tri function, 6

unit step function, 5, 9

variance, 57
Very Large Array, 92, 93

wave equation, 61

wavenumber, 62

Weyl’s integral, 63

Wiener-Khinchin theorem,
58, 84

Wiener—Helstrom filter, 60,
100

windowing, 42, 45, 78

Young’s double-pinhole
interferometer, 65

z-transform, 38, 39, 100
zero padding, 42, 47
zeroes, 39
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