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Preface to the first edition

This book is directed at two audiences: those interested in problems of elec-
tromagnetic wave propagation in turbulence and those interested in evaluating
integrals. For the first group, the text provides a systematic way to obtain an-
alytic answers to problems in which the scintillation is small and there are no
nonlinear effects due to high optical powers. For those interested in evaluat-
ing integrals, the integration method is explained in separate chapters. In the
chapters containing examples of wave propagation in turbulence, the problem is
quickly reduced to one of evaluating an integral, and can be viewed as examples
of the integration technique.

To address these two audiences, this book develops a systematic way of ex-
pressing solutions to problems of electromagnetic wave propagation in turbulence
in integral form. It also develops Mellin transform techniques that are used to
evaluate these integrals. This technique has three major advantages over oth-
ers: 1) it is applicable to a wide range of problems; 2) the application of the
technique is straightforward; and 3) the answers are expressed in analytic form.
Mellin transform and hypergeometric functions have been a scientific backwater
and are used regularly by only a few people. That is a shame for several rea-
sons. Mellin transforms allow a deeper understanding of infinite series. Knowing
the Mellin transform of a function is tantamount to knowing its infinite series.
Mellin transform techniques, which require an understanding of hypergeomet-
ric functions, enable one to deepen his or her understanding of elementary and
transcendental functions. In addition to this pedantic usefulness, it is a natural
way to solve several types of problems that have wide applicability. For instance,
Mellin transforms permit one to perform integrations that are very difficult to
perform by other means. They enable one to solve boundary value problems in
spherical and cylindrical coordinates with the same ease that Fourier transform
techniques afford in solving differential equations with constant coefficients. The
self-similar characteristic of Mellin transforms leads to applications in image,
radar and acoustic processing, and chaos and fractal theory.

The major part of this book develops and applies a method for evaluating
integrals analytically and expressing the result either as infinite series or as
a sum of generalized hypergeometric functions. At first look, the method to
evaluate integrals is formidable, and the final results look very complicated. It
has been suggested that results from a numerical integration can be obtained
more quickly. One has to overcome these prejudices. It is true that the formalism
is difficult to learn because it uses mathematical techniques that are generally
unfamiliar to most scientists, but that was not a valid excuse for not learning
other difficult techniques, which are part of a standard scientific education. If

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



XII Preface to the first edition

the formalism produces results that are useful, one should be willing to overcome
the initial difficulty.

This technique has indeed proved to be very useful! The expressions for the
power series, although lengthy to write down, are easily and quickly evaluated
using the recursion relation for gamma functions. Recently several computer al-
gebra programs have acquired the ability to evaluate generalized hypergeometric
functions, to which the power series are equivalent. In this context the results
are no more difficult to evaluate and plot for specific cases than results expressed
in terms of more familiar functions such as sinusoids and exponentials. The ana-
lytic form of the answer uncovers the natural parameters of a problem and gives
one insight into how important a parameter is — an insight that is difficult to
develop with numerical techniques. Integrands that contain the difference of two
almost equal quantities, a condition that leads to difficulties in numerical inte-
gration, are handled in the complex plane by simply deforming an integration
path past a pole. Because the technique is algorithmically based, one can de-
velop a computer algebra program that automatically evaluates these integrals,
in which case the user would not need to learn the details of the technique to
get an analytic answer and to generate curves for specific ranges of parameter
values. The development of such a program is being investigated. Just as scien-
tific calculators made tables of trigonometric functions and logarithms obsolete,
such a computer program would do the same to most material in integral tables.
It would also allow one to evaluate many integrals that are not in the integral
tables.

This technique was originally developed to evaluate integrals one encounters
when solving problems of electromagnetic wave propagation in turbulence. The
technique enables one to solve problems in terms of integrals that are generated
with filter functions that multiply the turbulence spectrum. Problems that take
days to solve when one starts from first principles can often be solved in less
than an hour with appropriate filter functions and Mellin transform techniques.

The techniques given in this book were developed over several years in the
high-energy beam-control and propagation group at MIT Lincoln Laboratory.
I would like to thank MIT Lincoln Laboratory for providing the opportunity
to work on challenging problems for which this technique was developed, for
the freedom to pursue research in this area, and for the chance to interact with
people interested in helping to develop this technique. This work was sponsored
by the Strategic Defense Initiative through the Department of the Air Force
under Contract No. F19628-90-C-0002.

I chose to solve many of the problems to illustrate the method developed in
this book. I did not do a comprehensive literature search to see if these problems
were previously solved. I apologize if I have left out relevant references.

Several people provided ideas that enabled me to develop the technique. Lee
Bradley first suggested the possible usefulness of Mellin transform techniques
and the existence of the Marichev text. He also suggested the use of Gegenbauer
polynomials in addressing the anisoplanatism problem. The technique of eval-
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Preface to the first edition XIII

uating integrals in several complex planes was developed in collaboration with
John Shelton.

Many people had a hand in suggesting what material to include, and how it
should be organized. I would like to especially thank Jonathan Shonfeld for care-
fully reading the first draft and suggesting many organizational changes. I have
had many suggestions from Robert Kramer, Hernan Praddaude, Ronald Parenti,
and Charles Primmerman. Fred Knight was very helpful in converting the text
into LATEX. Jim Eggert was particularly helpful since he was willing to read the
text during several stages of the evolution of this book and made many useful
suggestions. The series editor Professor Hermann Haus and the Springer-Verlag
editor Helmut Lotsch made helpful suggestions on how the material should be
presented. I want to thank Bill Breen, Ed Sullivan, Dave Tuells, Kevin Walsh,
and their staff for producing the figures, converting them into Postscript, and
printing the final copy. Sue Richardson and Katharine Krozel provided useful
editorial help.

A book like this that contains so much new material and has so many com-
plicated equations is very difficult to make error free. I would appreciate hearing
any comments you have on the material or errors you have found in the text.
My E-mail address is Sasiela@ll.mit.edu.

Writing a book takes a tremendous investment in time and energy that is no
longer available for home life. I thank my wife Joan for being so understanding
during this period.

October, 1993 Richard Sasiela
Lexington, Massachusetts

Comments about the second edition:

The first edition was published by Springer-Verlag. This edition corrects ty-
pographical errors in that edition. The treatment of tilt of uncollimated beams
was incorrect in Sections 4.5, and 4.6 because a γ that should have multiplied the
diameter was missing. It was pointed out by Jan Herrmann that it was necessary
to use the local tilt in these sections.

As pointed out by Byron Zollars, there were some internal inconsistencies
with 2π factors in the development of the general formula for variance due to
turbulence. This affected some intermediate formulas in Chapters 2 and 3.

Since the propagation of focused beams has become more important, this
case has been treated more carefully and extensively.

The derivation of the basic equations for variance and the removal of Zernike
terms is developed more carefully.

Many problems can be solved by using the filter functions for variance. For
more complicated problems one needs to start with the filter functions for phase
or log-amplitude and develop the variance filter functions from these. Several
examples on how to do this are illustrated.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



XIV Preface to the first edition

Computer algebra programs have become more powerful and many of the
integrals can now be solved with these programs. Solving these problems by
hand is time consuming and error prone. Having these programs to do this part
of the analysis is very helpful.

Typically, one is interested in the Strehl ratio. Analytic solutions are obtained
for the variances. The approximations for the Strehl ratio using the phase vari-
ance do not give accurate results for many cases of interest. The use of filter
functions in the structure function is elaborated in this edition. The problem
of finding the Strehl ratio when the structure function is a function of aperture
position is addressed. Examples of solving for the Strehl ratio numerically are
given.

Chapter 6 of the original book discussed other uses for Mellin transforms.
This chapter was not needed for the development of the subsequent chapters.
Since I have nothing new to add on this subject, the chapter was eliminated
because of the additional topics that were addressed.

I want to thank Ronald Parenti who I have worked with on turbulence prob-
lems for over 30 years. Our recent collaboration with Professors Larry Andrews
and Ronald Philips has been very productive.

Recent computer code results indicate that the calculation of the scintillation
for finite beams based on Rytov theory is in error. The beam wave theory predicts
a dip in the scintillation index for Fresnel number around unity. Code results
predict a smaller dip. Apparently, the perturbation theory that starts with a
diffraction-limited beam on axis is incorrect. In the region of error the tilt can
be comparable to the beam diameter. In addition, the focus term caused by
turbulence causes a change in beam size, which violates the diffraction-limited
assumption. Various authors have corrected the Rytov scintillation by separately
including the effects of jitter and beam spreading.

I want to thank Seth Trotz for solving the many problems encountered in
converting this document into LATEX2ε. Also, I want to thank Eric P. Magee
and his students for pointing out errors in the draft copy of this edition.

Beth Huetter of SPIE helped to correct errors and produce a uniform format.
This work was sponsored by the Department of the Air Force under Air Force

Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recom-
mendations are those of the author and are not necessarily endorsed by the
United States Government.

February, 2007 Richard Sasiela
Lexington, Massachusetts
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Glossary

(a)k Pochhammer symbol
A (κ, z) Amplitude of second wave
Bφ (d) Phase correlation function
c normalized wavenumber, speed of light
C2

n Turbulence strength
Cλ

p (x) Gegenbauer polynomial
D Aperture diameter
Di Inner diameter of annulus
Ds Diameter of a finite source
D (d,ρ) Structure function of total turbulence
Dc Characteristic source diameter for scintillation averaging
Dv (r) Structure function of velocity
Dn (r) Structure function of atmospheric density
Dφ (d,ρ) Structure function of phase
Dχ (d,ρ) Structure function of log-amplitude
En (κ, z) Normalized axial correlation function of turbulence
f (κ) Normalized turbulence spectrum

F (Ω1, . . . , Ωk) (n1!)
Ω1 · · · (nk!)

Ωk

F (γκ) Aperture filter function
FN Fresnel number

pFq[(a); (b); z] Generalized hypergeometric function
g (k) Hill Spectra
g (ρ) Aperture weighting function
G (γ κ) Complex aperture filter function

Gm,n
p,q

[
z
∣∣∣∣ a1, . . . , ap

b1, . . . , bq

]
Meijer’s G-function

H End altitude of propagation path

Hm,n
p,q

[
z
∣∣∣∣ (a1, α1) , . . . , (ap, αp)
(b1, β1) , . . . , (bq, βq)

]
Fox’s H-function

Jν(x) Bessel function
k Three-dimensional propagation vector (κ, kz)
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XVI Glossary

k0 2π/λ, wavenumber
kz Propagation vector along propagation direction
K(α) Modulation transfer function of a circular aperture
Kν (x) Modified Bessel function of the third kind
L End point of propagation path
Li Inner scale with definition Li = 2π/κi

Lin Inner scale with definition Lin = 5.92/κi

Lo Outer scale
n (r) Variation of air density with position
P (γ, κ, z) Diffraction parameter
ro Coherence diameter of a plane wave
ros Coherence diameter of a spherical wave
Ro Radius of curvature of beam wave at the source
s, sn, t Complex variables

S (p1, . . . , pk)
∞∑

n1=p1

· · ·
∞∑

nk=pk

(−1)n1+···+nk

n1!···nk!

Sφ(ω) Power spectral density of phase
Sχ(ω) Power spectral density of log-amplitude
SR Strehl ratio
t Time or second complex variable
uz Unit vector in propagation direction
U (x) Heaviside unit step function
vn nth velocity moment of turbulence
vg Wind ground speed
v(h) Wind speed as a function of height
Wo 1/e2 radius of beam wave
Z(m,n) Zernike polynomial
α (h) Normalized atmospheric density versus altitude
γ Propagation parameter
Γ [x] Gamma function
δ(x − a) Dirac delta function
Δn0 Difference of refractive index between two colors
θo Isoplanatic angle
θχ Characteristic source angle for scintillation reduction
θs Angle subtended by a finite source
κ Transverse wavenumber
κi Wavenumber of inner scale
κo Wavenumber of outer scale

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Glossary XVII

λ Wavelength
μm mth turbulence moment
μ+

m mth upper turbulence moment
μ−

m mth lower turbulence moment
ν (κ, z) Fourier transform of refractive index variations
ρ Two-dimensional transverse spatial vector
τ Time delay between measurement and correction
ϕ (ρ, z) Phase variation due to turbulence
ϕR (ρ, z) Phase related quantity
Φ1 (ρ, z) Total variation of the turbulence fluctuations
ψ Psi or digamma function
χ (ρ, z) Log amplitude due to turbulence
χR (ρ, z) Log-amplitude related quantity
ω Radian frequency of turbulence variation
ζ (s) Riemann zeta function
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Chapter 1

Introduction

Solving problems of wave propagation in turbulence is a field that occupies the
services of a small group of researchers. The methods used in this community
and the results obtained are not generally known by researchers in other commu-
nities. The main reason is that the field is considered difficult, and if there is not
an obvious need to investigate the effects of turbulence, they are neglected. The
difficulty arises from the need to solve stochastic differential equations. Advances
made by Tatarski and Rytov reduce problems to multiple integrals. These inte-
grals are often difficult to evaluate since fractional exponents of functions appear
in integrands. The final step in most cases is to evaluate these integrals numer-
ically and to present the results as parametric curves. Many cases are run to
develop some insight into how a quantity of interest varies with parameters. Be-
coming an expert in this field requires a great deal of time to become familiar
with these graphical results so that one has some insight into various effects.

As pointed out above, there is a formalism for reducing a problem to quadra-
tures. This process is lengthy, and there are several ways of doing it. Different
workers use different methods to get at the same result. This makes it difficult
for the novice to understand the literature and to realize that there is some
underlying order. This discourages a person with only a casual interest from
developing a facility in this field. It was to make the solution of these problems
more algorithmic that the methods expounded in this book were developed.

In this book I use the Rytov approximation to reduce a very general problem
to a triple integral. I develop techniques that allow one to evaluate these integrals
analytically.

The integrals that one encounters contain products of functions of which one
or more is a Bessel function. Workers in the field look for these integrals in inte-
gral tables, and if unsuccessful, resort to numerical analysis. Even numerically,
some of these integrals are difficult to evaluate. The integrand is often either the
product of a function that goes to infinity multiplied by one that goes to zero at
one of the integration limits, or the difference of two functions that each lead to
a divergent integral. Great care must be exercised in evaluating these integrals.

The techniques developed in this book provide a recipe for obtaining analyt-
ical solutions. There is a saying, “You don’t get something for nothing.” Indeed,
there is a price to be paid for being able to solve these problems more easily: The
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2 1 Introduction

method uses mathematical techniques that are not generally taught to physicists
and engineers, and one has to be willing to learn these techniques. One has to
become familiar with Mellin transforms, gamma functions, generalized hyperge-
ometric functions, asymptotic techniques, and pole-residue integration in one or
more complex planes. Once these techniques are mastered, one can quickly solve
complicated problems of wave propagation in turbulence. In addition, learning
these techniques has some important ancillary benefits that are also discussed in
this book. The techniques can be applied to most integrals in tables. In addition,
one can easily evaluate integrals that are not in the tables. Since complicated
integrals appear in many fields, the technique has wide applicability. Also Mellin
transform techniques can be applied to solve differential and integral equations
and have found many other applications as well.

An objection voiced against this method is that expressing an integral in
terms of generalized hypergeometric functions is not very useful. The argument
against the use of these functions is rapidly fading with the increasing accessibil-
ity of personal computers. These functions can be evaluated easily with recursion
relations; in addition, they have become even easier to use since the introduc-
tion of computer algebra programs on personal computers that manipulate these
functions just as easily as trigonometric functions. It is easy to evaluate expres-
sions in which these functions appear, and there is no reason to eschew them
any more than Bessel functions.

1.1 Book Plan

In this book I systematize the solution of many practical problems in wave
propagation through turbulence. In Sec. 2 of this chapter the Mellin transform
and the Mellin convolution integrals are introduced. A short table of Mellin
transforms that are used to solve propagation problems in turbulence is also
given.

In Chap. 2 the Rytov approximation for wave propagation is introduced as is
the concept of the turbulent spatial spectrum. I describe a fairly general problem
of wave propagation in turbulence that is solved with the Rytov approximation.
This problem involves the difference between the log-intensity or phase of two
waves that can be propagating in different directions or be displaced from each
other and have different focal distances. I show that solutions to problems of
this kind can be reduced to triple integrals; one integral along the propagation
direction and two along the spatial transform wavenumbers of the wave. Most
problems encountered in practice are special cases of this general problem.

For the Rytov approximation to be valid, the log-amplitude variance σ2
χ must

be less than approximately 0.35. Above that value the scintillation is referred
to as saturated, and it does not increase much with increasing propagation dis-
tances. The formulas using the Rytov approximation incorrectly result in scin-
tillation values that continue to grow without bound. Even when the Rytov
derived formulas give a log-amplitude variance result above the saturated value,
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1.1 Book Plan 3

the values obtained for the phase variance are generally valid, and the methods
given in this book give correct answers.

For some problems, such as those that rely on the amplitude returns for track-
ing or in which one must determine the bit-error rate in an optical communica-
tions system, one needs the probability distribution function of the amplitude.
For aperture diameters small compared to the coherence diameter, the main ef-
fect is amplitude fluctuations in the receive aperture since phase fluctuations are
small. In this case it is found that the log-amplitude fluctuations are Gaussian
and thus the intensity has a log-normal distribution that is specified by the sin-
gle parameter of the scintillation index. For very large diameters the amplitude
is the sum of a large number of terms that have a random phase. This leads to
a negative exponential distribution of the intensity.

In the intermediate range of diameter the situation is more complicated.
The tilt of the beam can produce displacements that are comparable or larger
than the beam diameter. The scintillation and the intensity distribution function
depend on the degree of tracking. The distribution function is characterized by
several parameters. It has not been derived analytically and is typically specified
by fits to data generated by computer simulations. This has led to semi-heuristic
formulas for these parameters that are given in Parenti et al. (2006).

In addition, the first-order Rytov solution cannot be used in the saturated
region. For these problems, one approach is to use a wave-optics code in which
the wave is propagated forward in a computer simulation. Another approach is to
use amplitude statistics that have been obtained experimentally or by computer
simulations. Nakagami (1960) found that the amplitude distribution is gamma-
gamma. The scintillation in the saturated region is surprisingly dependent on
the outer scale size and is strongly affected by the inner scale size. The use of
a semi-heuristic approach to determining this distribution is given in Andrews
(2001) and Tyson (2002).

The second order statistics that are examined in this book are sufficient for
finding the variances and power spectral densities of quantities of interest. One
needs to find the fourth-order moments to determine the distribution functions.
Methods of doing that and analyzing saturated scintillation are not discussed in
this book.

Variations in the amplitude for coherent illumination are produced not only
by scintillation, but also from speckle. This coherent interference effect can be
important. It has been treated elsewhere and is not considered in this book.

In the unsaturated region, the expression for the variance of the phase or
log-amplitude of a wave propagating from z = 0 to z = L is of the form

σ2 = 0.2073 k2
0

L∫
0

dz C2
n(z)

∫
dκ f(κ) g (κ, z) , (1.1)

where k0 = 2π/λ with λ the propagation wavelength, C2
n(z) is the turbulence

strength, f(κ) is the normalized turbulence spectrum in transverse spatial trans-
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4 1 Introduction

form space, and g (κ, z) is a filter function that depends on the particular prob-
lem. The κ integration is over the entire two-dimensional space.

Different problems simply necessitate the use of different filter functions.
There is the simple interpretation that for a particular problem the original
turbulence spectrum is filtered. One must then integrate over the residual spec-
trum and along the path to find the variance.

By making a change of the spatial spectrum variables in these integrals to
two new variables, one of which is frequency, one can find the power spectral
density for the particular problem.

There are characteristic categories of problems. The characteristic filter func-
tions are derived in Chap. 3. For example, the filter functions for Zernike modes,
such as piston and tilt on filled and annular apertures, are derived. I show that
relative displacement of two waves (anisoplanatism) can be represented as a fil-
ter function. Filter functions corresponding to a finite size source or a finite size
receiver are also derived. The difference between the phase of a focused and a
collimated wave affects the performance of many interesting systems, and filter
functions for this problem are also evaluated.

Many applications discussed in this book are for adaptive-optics systems. An
adaptive-optics system tries to correct for the effects of turbulence in an object’s
image or in the projection of a laser beam, and its effect on the turbulence also
can be represented by filter functions. A generic system is shown in Fig. 1.1.

As I have said, this formalism reduces problems to a triple integral. The eval-
uation of the double integral in wavenumber space is discussed in detail in this
book and the method presented has applications in many fields. The evaluation
of the one remaining integral over the propagation path can be done analytically
for some turbulence distribution models and is performed numerically for others.
There are no numerical difficulties with this last integral.

The evaluation of these integrals is considered in Chap. 4 for the simplest
problems in which the solution is obtained by table lookup of Mellin transforms.
These integrals are of the form

∞∫
0

dx h(x) xa, (1.2)

where h(x) is typically a trigonometric or Bessel function or the square of one, or
it is an algebraic function. In general the integral can be performed analytically
when the function is any Meijer G-function. These integrals lead to important
results for the effect of turbulence on wave propagation; for example, tilt jitter or
other Zernike modes, residual phase variance due to a finite-bandwidth adaptive-
optics system, and scintillation.

In order to solve more difficult problems, integrals whose integrand contains
the product of two functions must be evaluated. These integrals contain one free
parameter and are evaluated by using the Mellin convolution theorem to convert
the integral in real space into one in the complex plane. These integrals are of
the form
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Figure 1.1. An adaptive-optics system. A beacon sends a beam through the
atmosphere, and the turbulence impresses a phase aberration on it. This phase
front is sampled by a wavefront sensor, which typically responds to local wave-
front tilts in sections of the aperture referred to as subapertures. Phase is recon-
structed from tilts in a wavefront reconstructor, and its conjugate is impressed
on a deformable mirror. This mirror is in the path of the imaging or beam
projection system, with the net result that turbulence phase aberrations are
corrected.

∞∫
0

dx h(x) g (x/y)xa, (1.3)

where y is the free parameter, and the functions are of the same type as in (1.2).
The method for evaluating this integral, which uses pole-residue integration,

is developed in Chap. 5 for a positive-real parameter. The case of non-positive
and complex parameters is developed in Chap. 9. Asymptotic solutions are de-
veloped. Some programs such as Mathematica from Wolfram Research, Inc. eval-
uate these integrals. The asymptotic results are not provided, and there may be
difficulty evaluating some of the functions for large values of the parameter; these
values are often required for the z integration. The evaluation of these integrals
analytically is time consuming and error prone. When Mathematica can be used
it is a a great aid, which enables solutions and power series representations to
be found quickly.

In Chap. 6 I address a host of important problems in wave propagation
through turbulence in which the integral is of the form in (1.3). The follow-
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6 1 Introduction

ing results are obtained: It is shown that the finite outer scale of turbulence
can have a significant effect on tilt jitter. The effect of inner scale is shown to
limit the maximum tilt that can be measured on a small aperture. It is also
shown that the inner-scale size can significantly reduce the scintillation. Tilt on
an annulus is considered, and it is shown that tilt jitter does not change much
from that of a filled aperture until the central obscuration becomes very large.
The scintillation measured from a finite size source or by a finite size receiver is
shown to be considerably reduced from that of a point source or point receiver.
Expressions for characteristic sizes of the source or receiver that significantly re-
duce scintillation are developed. The power spectral density of turbulence caused
by wind transport or receiver motion is calculated. I calculate how scintillation
is affected by an adaptive-optics system. The correlation function of focus is
evaluated. The residual phase is calculated when one corrects the turbulence on
a collimated beam by using a focused source as a reference. The general solution
for Zernike anisoplanatism is given. The residual piston and tilt for distributed
and offset sources are calculated.

In addition to calculating wave variances, one can use these techniques to find
the Strehl ratio as discussed in Chap. 7. Analytical expressions for the Strehl
ratio cannot be calculated for every case of interest. For that reason, an approx-
imation is derived for the Strehl ratio with anisoplanatism that is much better
than the Maréchal approximation. This formula is applied to anisoplanatism
caused by parallel displacement, angular displacement, time displacement, chro-
matic displacement, and the combination of several such effects. Beam shapes
for these cases are calculated in Chap. 11.

For many problems the various approximations for the Strehl ratio are not
valid. In addition, when tilt is removed the structure function is a function of
position, and the simpler formula to calculate the Strehl ratio is not applicable.
These problems must be solved by numerical techniques. Examples of doing that
are given in Sec. 7.5.

Propagation of a Gaussian wave results in integrals that have complex or
negative parameters. The theory to evaluate these integrals is developed in Chap.
8 and applied in Chap. 9 to the scintillation of a Gaussian beam.

For more complicated problems there can be two or more parameters in the
integral. These integrals are of the form

∞∫
0

dx h(x) g1 (x/y1) . . . gN (x/yN) xa, (1.4)

where the functions h and g are of the same type as in (1.3). These integrals can
be converted into integrals in several complex planes with the Mellin convolu-
tion theorem. Pole-residue techniques apply to this class of problems. There are
complications in trying to decide which poles in the multidimensional space one
should include when evaluating residues. A procedure is given in Chap. 10 that
makes the process straightforward. I also develop a technique to evaluate both
the series and steepest-descent contributions to an asymptotic solution.
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1.2 Introduction to Mellin Transforms 7

For these more complicated problems, the series solutions sometimes do not
converge for all parameter ranges. The source of this difficulty is illustrated in
Chap. 10 by an integral whose integrand is a product of exponentials. A series of
examples is then considered in Chap. 11. Several sample integrals in two or more
complex planes are evaluated, and the results are shown to agree with integral
tables. I then turn to four problems in wave propagation through turbulence that
cover all parameter regions: Tilt anisoplanatism with outer scale is evaluated,
and the effect of outer scale is shown to be not as large as its effect on pure tilt.
The method of solution shows clearly where this difference arises. Tilt with both
inner and outer scale present is calculated. The solution is shown to agree with
earlier work when either effect is eliminated. Next, the low-frequency regime of
the tilt power spectrum is shown to be the most greatly affected by outer scale.
Finally, the phase structure and correlation functions with non-zero inner and
outer scales are calculated.

In Chap. 12 I consider the beam shape for several problems. Appendix A gives
the Mellin transforms for familiar functions that were not encountered in tur-
bulence problems. Some commonly used functions are expressed as generalized
hypergeometric functions in Appendix B.

1.2 Introduction to Mellin Transforms

In this section I introduce the Mellin transform, and discuss a few of its proper-
ties. The Mellin transform H(s) of the function h(x) is defined as

h(x) → H(s) ≡ M [h (x)] ≡
∞∫
0

dx

x
h(x) xs. (1.5)

The inverse transform is

h(x) =
1

2πi

∫
C

dsH(s) x−s. (1.6)

The integration path is a straight line extending from η − i∞ to η + i∞ and
crossing the real axis at a value of s for which the integral in (1.5) converges.
The allowed values of η typically lie in a finite range and are specified in the
Mellin transform tables. The Mellin transform tables may be augmented with the
following three properties that are derivable from the Mellin transform definition:

h(a x) → a−sH(s), a > 0, (1.7)

xbh(x) → H(s + b), and (1.8)

h (xp) → H(s/p)/ |p| , p �= 0. (1.9)

For the general case one finds
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8 1 Introduction

xbh (axp) → 1

|p| a(s+b)/p
H[(s + b)/p], p �= 0.

These relations are repeatedly used throughout the book to extend Mellin
transforms from the tables to new functions. For instance, the Mellin transform
of a Gaussian function is found from that of the exponential given in eq. 1.47
by the use of eq. 1.9 with p = 2 to obtain

M
[
exp

(
−x2

)]
= 0.5Γ [s/2],

and eq. 1.7 with a = 1/b to obtain

M
{
exp

[
− (x/b)2

]}
= 0.5 bsΓ [s/2]. (1.10)

The Mellin transform is the Laplace transform in the logarithm of the variable
x. This is why the Mellin transform is sometimes referred to as the log-polar
transform. The transform of an object that is scaled in size by a factor b is
related to the unscaled transform by

H(s) =

∞∫
0

dx

x
h(bx) xs = b−s

∞∫
0

dy

y
h(y) ys. (1.11)

This scaling factor has magnitude unity if s is confined to the imaginary
axis. This is analogous to the way a time shift results in the multiplication of
a Fourier transform by a complex scaling factor. This scaling property makes
Mellin transforms convenient for the analysis of chaos and of acoustical, radar,
and visual signals.

Gamma functions appear repeatedly in this work, and I highlight a few of
their properties. The gamma function is defined as

Γ [s] =

∞∫
0

dx exp(−x) xs−1 =
∞∑

n=0

(−1)n

n!

1

s + n
+

∞∫
1

dx exp(−x) xs−1. (1.12)

The argument s can be complex. The last integral is entire and the only
singularities of the gamma function are simple poles at the negative integers
−n with residue (−1)n /n!. The reciprocal of the gamma function can be shown
to be an entire function; therefore, the only singularities of the ratio of gamma
functions come from the numerator. This property is central to allowing one
to easily evaluate integrals in the complex plane whose integrand is the ratio of
gamma functions.

As one recalls from the Cauchy residue theorem in complex variable theory,
the value of an integral in the complex plane that contains only simple poles
within the closed integration region is equal to 2πi times the sum of the residues
at the enclosed poles. If f(z) does not have any singularities, then

∮
dz

f(z)

z − z0

= 2πif(z0), (1.13)
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1.2 Introduction to Mellin Transforms 9

when the integration path, which encircles the pole in a clockwise fashion, en-
closes the pole at z = z0. The value of the integral is equal to zero when the
pole is not enclosed in the integration path.

Plots of the gamma function and its reciprocal are shown in Fig. 1.2. The
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Figure 1.2. Gamma function and its reciprocal versus its argument.

recursion relation for gamma functions is

Γ [a + 1] = aΓ [a]. (1.14)

With the relation Γ [1] = 1, for integer a this gives Γ [a + 1] = a !. With
this relation the gamma function at noninteger values can be evaluated on some
hand calculators.

If the argument of s in all the gamma functions is unity, then the integral
can be expressed as a sum of generalized hypergeometric functions. This form is
desirable because these functions can be plotted by standard computer programs.
To change a gamma function argument with an integer multiplier to a gamma
function with a unity factor, one uses the Gauss-Legendre multiplication formula

Γ [my] = mmy−1/2(2π)(1−m)/2
m−1∏
k=0

Γ [y + k/m]. (1.15)

The particular case of m = 2 is

Γ [2 y] = 22y−1Γ [y]Γ [y + 1/2] /
√

π. (1.16)

To convert an argument with negative s to one with positive s, one uses the
duplication formula

Γ [1 − s] Γ [s] = π/sin(πs). (1.17)
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10 1 Introduction

For s > 1, the gamma function can be approximated by Stirling’s formula

Γ [s] ∼
√

2π ss−1/2 exp(−s)
[
1 + 1/(12 s) + 1/(288 s2) + · · ·

]
, | arg{s}| < π.

(1.18)
Table 1.1 is a list of Mellin transforms that are used to evaluate integrals

encountered in wave propagation through turbulence. Additional Mellin trans-
forms are given in Appendix A. These are only a small fraction of the 1200
transforms available in closed form. The notation of Marichev (1983) and Slater
(1966) for the ratio of gamma functions used throughout the book is

Γ
[
α1, . . . , αm

β1, . . . , βn

]
≡ Γ [α1] Γ [α2] . . . Γ [αm]

Γ [β1] Γ [β2] . . . Γ [βn]
. (1.19)

A new notation is introduced in eq. 1.50 in the Mellin transform table: An
asterisk after a term in the gamma function signifies that the integration path
passes between the first and second poles of that gamma function. The notation(
∗N

)
indicates that the integration path passes between the N th and N + 1st

poles of the gamma function. No asterisk indicates that all poles are on one side
of the integration path.

The table contains the Mellin transform of the Heaviside unit step function,
defined by

U(x) = 1 for x > 0, and

U(x) = 0 for x ≤ 0. (1.20)

This function can be used to convert integrals with finite limits into ones with
infinite limits that can be evaluated with the techniques developed in this book.

Mellin transforms are used in three ways to solve turbulence problems:

1. To evaluate integrals by table lookup.
2. To find a series representation for a function.
3. To evaluate complicated integrals.

The first application of Mellin transforms is simple yet important. Some in-
tegrals are easy to evaluate directly from the Mellin transforms. For instance,
from eq. 1.48 one finds that

∞∫
0

dx xa sin (x) = 2a
√

π Γ
[

a/2 + 1
1/2 − a/2

]
, Re {a} < 0. (1.21)

This technique is used to evaluate all the integrals in Chap. 4.
For some problems, i.e. those concerning anisoplanatic effects, one has to

obtain the Mellin transform of the difference between a function and the first
term of its power series. It is easy to show such a Mellin transform is that of the
original function, except the integration path has moved over one pole. This is
the analytic continuation of the integral. To illustrate, consider the transforms
given in eq. 1.51 and eq. 1.57
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1.2 Introduction to Mellin Transforms 11

M [J0(x) − 1] = lim
ε→0

{
2s−1Γ

[
s/2

−s/2 + 1

]
− 1

s + ε
+

1

s − ε

}
, 0 < Re {s} < ε.

The integration path and pole location are shown in Fig. 1.3.
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Figure 1.3. Pole locations and integration path for the Bessel function inte-
gration. For clarity, pole locations are displaced from the real axis in this and
subsequent figures.

The poles continue periodically as Re {s} goes to minus infinity. For clarity
in this figure and all subsequent ones the pole locations are slightly displaced
from their true positions on the real axis.

In the limit, the poles at s = 0 and s = −ε additively cancel. The net result is
that the integration path can now cross the real axis anywhere between the poles
at s = 0 and at s = −2 without changing the value of the integral. Therefore,
the Mellin transform is equal to

M [J0(x) − 1] = 2s−1Γ
[

s/2∗
−s/2 + 1

]
, −2 < Re {s} < 0. (1.22)

In this case with the asterisk notation, the strip in complex space in which
the transform is valid is completely defined, and the explicit statement of the
restrictions on Re {s} is redundant. This expression can be viewed as the analytic
continuation of the integral of the Bessel function.

It is obvious how to extend this result to that in which the first m terms of
the power series are subtracted from the function. In that case, the integration
path moves past m poles of the original function, and this is indicated by (∗)m .

As a more difficult example, consider the integral of a power of the radial
coordinate times a function that is related to the optical transfer function for a
circular aperture obtained by Fried (1967). This integral occurs in the evaluation
of many turbulence problems, and by using the unit step function one can put
it in the form of a Mellin transform as
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12 1 Introduction

I(q) =

1∫
0

dααq+1K(α)

=

∞∫
0

dααq+1 16

π

[
arccos(α)U(1 − α) − α

(
1 − α2

)1/2
U(1 − α)

]
.

The Mellin transform for the first function is found from eq. 1.58 if one
replaces s by q + 2. This changes the condition for convergence to Re {q} > −2.
The Mellin transform of the second integral is found from eq. 1.55 if one replaces
s by q + 3 and also uses eq. 1.9. The condition for convergence of this term
is Re {q} > −3. For convergence of the entire integral, the more restrictive
condition on the first function applies. Since Γ [1/2] =

√
π, the integral is equal

to

I(q) =
4√
π

{
Γ
[
q/2 + 3

2
, −q/2 − 1

q/2 + 2, −q/2

]
− Γ

[
q/2 + 3

2

q/2 + 3

] }
, Re {q} > −2.

Using the gamma function recursion relation given in eq. 1.14, one obtains

I(q) =
8√
π

1

q + 2
Γ
[
q/2 + 3

2

q/2 + 3

]
, Re {q} > −2. (1.23)

The second application of Mellin transforms is to find an infinite series for a
function from its inverse Mellin transform. Consider the exponential function,
whose Mellin transform is given by eq. 1.47 as the gamma function. In Chap. 5
it is shown that the integration path for the inverse transform of the exponential
function can be closed in the left-half plane without changing the value of the
integral. Residues at the poles at s = −n for n = 0, 1, 2, . . . contribute to the
integral to obtain

exp(−x) =
1

2πi

∫
C

ds Γ [s] x−s =
∞∑

n=0

(−1)n

n!
xn. (1.24)

This is the standard power series for the exponential function.
As a second more difficult example of obtaining a power series, consider

Kν(x), which is the modified Bessel function of the third kind with imaginary
argument that is sometimes referred to as a Macdonald function. When ν is not
an integer, the poles are simple, and the integration path can be closed in the
left-half plane where there are two sets of poles at s = −ν − 2n and s = ν − 2n
for n = 0, 1, 2, . . . . The residues at these poles give
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1.2 Introduction to Mellin Transforms 13

Kν (x) =
1

4

1

2πi

∫
C

ds Γ [s/2 + ν/2, s/2 − ν/2] (x/2)−s

=
1

2

∞∑
n=0

(−1)n

n!

{(
x

2

)2n+ν

Γ [−n − ν] +
(

x

2

)2n−ν

Γ [−n + ν]

}

=
1

2

{
z1/2Γ [−1

3
]

31/3 0F1

[
4

3
,
z3

9

]
+

31/3Γ [1
3
]

z1/2 0F1

[
2

3
,
z3

9

]}
. (1.25)

This result is used in Chap. 2. The Mellin transform of Kν (x) has double
poles when ν is an integer. The residues at these poles can be calculated with
the technique presented in Sec. 5.3 to give

Kν (x) =
1

4

1

2πi

∫
C

ds Γ [s/2 + ν/2, s/2 − ν/2] (x/2)−s

=
∞∑

n=0

(−1)ν+1

n! (n + ν)!

(
x

2

)2n+ν

[ln (x/2) − ψ (n + 1) /2 − ψ (ν + n + 1) /2]

+
1

2

ν−1∑
n=0

(−1)n

n!

(
x

2

)2n−ν

Γ [−n + ν] , (1.26)

where ψ (x) is the logarithmic derivative of the gamma function.
The third and most important application of Mellin transforms in this book is

the evaluation of more complicated integrals via the Mellin convolution theorem.
Consider the Mellin transform of

h(x) =

∞∫
0

dy

y
h0(y)h1(x/y) . (1.27)

Use the Mellin transform definition, and interchange the integration order to
obtain

M [h(x)] =

∞∫
0

dy

y
h0(y)

∞∫
0

dx

x
h1(x/y) xs.

Letting w = x/y, one obtains

M [h(x)] =

∞∫
0

dy

y
h0(y) ys

∞∫
0

dw

w
h1(w)ws = H0 (s)H1 (s) .

Note that in eq. 1.27 the integration variable in the second function appears
in the denominator. Thus for a typical problem in which the function has the
variable in the numerator, in the Mellin transform table value of the second
function one needs to make the substitution s → −s by using eq. 1.9 with
p = −1.

Therefore, the value of the original integral obtained from the inverse Mellin
transform relation is
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14 1 Introduction

h(x) =
1

2πi

∫
C

dsH0 (s)H1 (s) x−s. (1.28)

The Mellin convolution theorem can be applied if the Mellin transform of
each function in the integrand exists. Actually, the theorem applies even if this
condition is not true for one function if the second function decays fast enough.
This is discussed in Chap. 9.

The convolution theorem can be generalized to integrals that contain the
product of N + 1 functions with N parameters. Consider such an integral

h (x1, x2, . . . , xN) =

∞∫
0

dy

y
h0(y)h1(x1/y) · · ·hN(xN/y) . (1.29)

Take the Mellin transform in each of the N parameters, and interchange the
integration order to obtain

M [h (x1, x2, . . . , xN)]

=

∞∫
0

dy

y
h0(y)

∞∫
0

dx1

x1

h1(x1/y) xs1
1 . . .

∞∫
0

dxN

xN

hN (xN/y) xsN
N .

Make the substitutions w1 = x1/y, . . . , wN = xN/y to obtain

M [h (x1, x2, . . . , xN)] ≡ H (s1, s2, . . . , sN)

=

∞∫
0

dy

y
h0(y) ys1+s2+···+sN

∞∫
0

dw1

w1

h1(w1) ws1
1 . . .

∞∫
0

dwN

wN

hN (wN) wsN
N .

This last expression is equivalent to

H (s1, s2, . . . , sN) = H0 (s1 + s2 + · · · + sN)H1 (s1) · · ·HN (sN) . (1.30)

The value of the original integral is equal to the inverse Mellin transform in
the N complex variables given by

h (x1, . . . , xN) =
1

(2πi)N

∫
C1

. . .
∫

CN

ds1 . . . dsN H (s1, . . . , sN) x−s1
1 . . . x−sN

N .

(1.31)
Methods of evaluating this integral are considered in Chap. 11.

A considerable part of this book is devoted to obtaining convergent and as-
ymptotic series for the integrals in eq. 1.28 and eq. 1.31 and applying these
techniques to a host of problems in Chaps. 6, 7, 8, 10, 12, and 13.
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1.3 Higher Transcendental Functions 15

1.3 Higher Transcendental Functions

Many answers to problems considered in this book are expressed as sums of
generalized hypergeometric functions. Some are expressed as a Meijer G function
and as a Fox H-function. The answers are abstracted from infinite sums; rules
to convert these sums into generalized hypergeometric functions are given here.
The definition of the generalized hypergeometric function is

pFq [(a ); (b); z] ≡ pFq

[
(a); z
(b)

]
≡

∞∑
k=0

(a1)k (a2)k . . . (ap)k

(b1)k (b2)k . . . (bq)k

zk

k!
, (1.32)

where (a) = a1, a2 , . . . , ap, (b) = b1, b2, . . . , bq, and the Pochhammer symbol is
defined as

(a)k =
Γ [a + k]

Γ [a]
, (a)0 = 1. (1.33)

This generalized hypergeometric function is equal to unity when z = 0. For
p = q + 1, this series always converges if | z | < 1, and it also converges for z = 1

if Re
{ p∑

i=1
ai −

q∑
i=1

bi

}
< 0. If p < q +1, it converges for all z. If p > q +1, it does

not converge, yet it is useful as an asymptotic series.
The generalized hypergeometric function is a generalization of the Gauss

hypergeometric function 2F1 [α, β; γ; z], which is defined as

2F1 [α, β; γ; z] ≡ F [α, β; γ; z] ≡
∞∑

k=0

(α)k (β)k

(γ)k

zk

k!
. (1.34)

Specific convergence criteria on the unit circle can be given for this function:

1. If 0 < Re {α + β − γ} < 1, the series converges on the unit circle except at
z = 1.

2. If Re {α + β − γ} < 0, the series converges absolutely for z ≤ 1.
3. If Re {α + β − γ} ≥ 1, the series diverges on the entire unit circle.

Most functions encountered in physics are special cases of Gauss’s hypergeo-
metric function. Examples are given in Table 1.2. Additional functions that are
represented as hypergeometric functions are given in Appendix B.

For most functions we deal with such as sines, cosines, exponentials, Bessel
functions, etc., there is one power series that applies for any value of the func-
tion’s argument. For many of the solutions of turbulence problems p = q + 1,
and there is a different power series expansion for small and large values of the
argument.

The underlying function may be continuous and have continuous derivatives
at the point that the power series representation must be switched. The function
1/(1 + x) is an example of such a function.
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16 1 Introduction

1

1 + x
=

∞∑
k=0

(−x)k =
∞∑

k=0

Γ [k + 1]

k!
(−x)k =

∞∑
k=0

(1)k

k!
(−x)k = 1F0[1,−x], x < 1

=
1

x

∞∑
k=0

(−x)−k =
1

x

∞∑
k=0

(1)k

k!
(−x)−k =

1

x
1F0[1,−1/x], x > 1. (1.35)

The function 1/(1 + x) does not do anything unusual at x = 1; however, a
different series is needed for values less than 1 and for values greater than 1.
The complication arises because there is a pole at x = −1, which results in the
function in the complex plane having a branch cut starting at z = −1 and going
to infinity.

In performing an integration by using Mellin transforms, one can develop
formulas that are valid for z < 1 and for z > 1. As an alternative, one can
convert Gauss’s hypergeometric function that is valid for z < 1 to one valid for
z > 1 by using the transformation formula

2F1 [α, β; γ; z] =
Γ [γ]Γ [β − α]

Γ [β]Γ [γ − α]
(−1)αz−α

2F1 [α, α + 1 − γ;α + 1 − β; 1/z]

+
Γ [γ]Γ [α − β]

Γ [α]Γ [γ − β]
(−1)βz−β

2F1 [β, β + 1 − γ; β + 1 − α; 1/z] . (1.36)

The generalized hypergeometric function can be evaluated with a recursion
relation. The function is expressed as

pFq [(a ); (b); z] =
∞∑

k=0

ck,

with

c0 = 1, and ck+1 =
(a1 + k) · · · (ap + k)

(b1 + k) · · · (bq + k)

z

(k + 1)
ck. (1.37)

The generalized hypergeometric function can be expressed as a Mellin-Barnes
integral in the form

pFq [(a); (b); z]

= Γ
[
b1, b2, . . . , bq

a1, a2, . . . , ap

]
1

2πi

η+i∞∫
η−i∞

ds (−z)s Γ

[
a1 + s, . . . , ap + s, −s

b1 + s, . . . , bq + s

]
, (1.38)

where the integration path lies to the left of the poles of Γ [−s] and to the right
of all poles of the remaining numerator gamma functions. From this relation, it
is evident that the Mellin transform of any function that can be represented as a
generalized hypergeometric function is expressible as a ratio of gamma functions.
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1.3 Higher Transcendental Functions 17

The Mellin transform of the generalized hypergeometric function is equal to

M{pFq [(a); (b); z]}

= (−1)sΓ
[
b1, b2, . . . , bq

a1, a2, . . . , ap

]
Γ

[
a1 − s, . . . , ap − s, s

b1 − s, . . . , bq − s

]
.

A further generalization of the generalized hypergeometric function is the Fox
H-function defined as

Hm,n
p,q

[
z
∣∣∣∣ (a1, α1) , . . . , (ap, αp)
(b1, β1) , . . . , (bq, βq)

]

=
1

2πi

∫
C

ds zs

n∏
i=1

Γ [1 − ai + αi s]
m∏

j=1
Γ [bj − βj s]

q∏
k=m+1

Γ [1 − bk + βk s]
p∏

r=n+1
Γ [ar − αr s]

, (1.39)

where all the poles of an individual gamma function are on one side of the
integration path. If the coefficients of s are rational, the solution can be expressed
as a Meijer G-function defined as

Gm,n
p,q

[
z

∣∣∣∣ a1, . . . , ap

b1, . . . , bq

]
=

1

2πi

∫
C

ds zs

n∏
i=1

Γ [1 − ai + s]
m∏

j=1
Γ [bj − s]

q∏
k=m+1

Γ [1 − bk + s]
p∏

r=n+1
Γ [ar − s]

, (1.40)

where all poles of an individual gamma function are again on one side of the
integration path.

The computer programs Maple and Mathematica can deal with generalized
Hypergeometric functions and Meijer’s G-functions. Therefore, once the results
are expressed in terms of these functions, they can be further manipulated and
plotted for specific cases.

These programs can find the value of the integrals that lead to these functions.
When there is one solution that applies to all parameter ranges, p �= q +1, there
are often numerical difficulties in evaluating the function for large values of
the argument. In this case, an asymptotic solution is required. These computer
programs do not find the asymptotic solution, and they must be found using
methods such as those described in this book. They also do not find solutions
when there are more than one parameter.

For some problems the answer is expressed as a generalized hypergeometric
function minus unity. This can be expressed simply as a different generalized
hypergeometric function. Consider

pFq [(a); (b); z] − 1 =
∞∑

k=1

(a1)k (a2)k . . . (ap)k

(b1)k (b2)k . . . (bq)k

zk

k!
. (1.41)

Let k → k + 1 and note that from the definitions

(a)k+1 =
Γ [a + 1 + k]

Γ [a]
= (a + 1)k

Γ [a + 1]

Γ [a]
= a (a + 1)k , and
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18 1 Introduction

(k + 1)! = k!
(2)k

(1)k

.

Therefore,

pFq [(a); (b); z] − 1 = z

p∏
n=1

an

q∏
n=1

bn

p+1Fq+1 [(a + 1), 1; (b + 1), 2; z] . (1.42)

This relation is used in Chaps. 6 and 7.
The result of evaluating the Mellin convolution integral with pole-residue inte-

gration for problems in propagation through turbulence is generally one or more
summations that contains ratios of gamma functions. As an example, consider
a typical summation

∞∑
n=0

(−1)n

n!
Γ
[
n + w, −n + r
n + h, n + p

]
P 2n. (1.43)

This infinite series can be converted into a generalized hypergeometric func-
tion by using the function definition, and the duplication formula for gamma
functions given in eq. 1.17. I will express such a summation as K pFq [(a) ; (b) ; z].
The rules for obtaining this representation are:

1. The coefficient K is equal to the value of the n = 0 term. In this case

K = Γ
[
w, r
h, p

]
. (1.44)

2. The arguments in the gamma function for which the sign of the index n is
positive, i.e., n + w, n + h, and n + p, lend their n-independent constants to
arguments of the hypergeometric function. Those in the numerator appear
before the first semicolon (they are the ai terms), and those in the denomi-
nator appear after it (those are the bj terms).

3. The arguments in the gamma function for which the sign of the summation
index n is negative lend minus their n-independent constants, plus one, to
arguments of the hypergeometric function. (The argument of this type in
the example is −n + r. The argument to insert in the hypergeometric series
is −r + 1.) If the argument was in the numerator, it appears after the first
semicolon. Those in the denominator appear before the first semicolon.

4. The magnitude of the parameter z is the quantity in the summation raised
to the index power n. (In eq. 1.43 the parameter is P 2.) The sign of the para-
meter is positive if the number of gamma function arguments with negative
n is odd. It is negative if the number is even. The sign is positive in the
example since there is one argument with negative index.

5. The subscripts before and after the function symbol are referred to as the
order of the generalized hypergeometric function. The quantity before the F
symbol is the number of terms before the first semicolon. The quantity after
the F symbol is the number of terms between the first and second semicolons.
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1.3 Higher Transcendental Functions 19

Using these rules the summation in eq. 1.43 is equal to

∞∑
n=0

(−1)n

n!
Γ
[
n + w, −n + r
n + h, n + p

]
P 2n = Γ

[
w, r
h, p

]
1F3

[
w;−r + 1, h, p;P 2

]
.

(1.45)

The third volume of the three-volume reference work by Prudnikov, Brych-
kov, and Marichev (1990) contains an extensive list of equivalences between
generalized hypergeometric functions and more familiar functions.
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20 1 Introduction

Table 1.1. Mellin Transforms that are useful for turbulence problems.

h(x) → M [h(x)] ≡ H(s) =

∞∫
0

dx

x
h(x) xs (1.46)

exp(−x) → Γ [s] , Re {s} > 0 (1.47)

sin(x) → 2s−1
√

π Γ
[
1/2 + s/2

1 − s/2

]
, |Re {s} | < 1 (1.48)

cos(x) → 2s−1
√

π Γ
[

s/2
1/2 − s/2

]
, 0 < Re {s} < 1 (1.49)

sin2
(
x2
)

→ −
√

π

8
Γ
[

s/4∗
1/2 − s/4

]
, −4 < Re {s} < 0 (1.50)

Jν(x) → 2s−1Γ
[

s/2 + ν/2
ν/2 + 1 − s/2

]
, −Re {ν} < Re {s} < 3/2 (1.51)

J2
ν (x) → 1

2
√

π
Γ
[

s/2 + ν, 1/2 − s/2
ν + 1 − s/2, 1 − s/2

]
, −2Re {ν} < Re {s} < 1 (1.52)

Jν(x) Jν+1(x) → 1

2
√

π
Γ
[

s/2 + ν + 1/2, 1 − s/2
ν + 3/2 − s/2, 3/2 − s/2

]
,

−1 − 2Re {ν} < Re {s} < 2 (1.53)

(1 + x)−p → Γ [s, p − s]

Γ [p]
, 0 < Re {s} < Re {p} (1.54)
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1.3 Higher Transcendental Functions 21

(1 − x)a−1U(1 − x) → Γ [a]Γ
[

s
s + a

]
, Re {a} > 0, Re {s} > 0 (1.55)

(x − 1)a−1 U(x − 1) → Γ [a]Γ
[
1 − a − s

1 − s

]
,

Re {a} > 0, Re {a + s} < 1 (1.56)

1 → lim
ε→0

(
1

s + ε
− 1

s − ε

)
, −ε < Re {s} < ε (1.57)

arccos(x)U(1 − x) → −
√

π

4
Γ
[
s/2 + 1/2, −s/2
s/2 + 1, 1 − s/2

]
, Re {s} > 0 (1.58)

U(1 − x) → Γ
[

s
s + 1

]
, Re {s} > 0 (1.59)

U(x − 1) → Γ
[ −s
1 − s

]
, Re {s} < 0 (1.60)

Kν(x) → 2s−2 Γ [s/2 + ν/2, s/2 − ν/2] , Re {s} > |Re {ν} | (1.61)

Jμ(x) Jλ(x) → 1

2
√

π
Γ

[
s/2 + μ+λ

2
, 1

2
− s/2, 1 − s/2

1 − s/2 + μ+λ
2

, 1 − s/2 + μ−λ
2

, 1 − s/2 + λ−μ
2

]
,

−Re {μ + λ} < Re {s} < 1 (1.62)

δ(x − a) → as−1 (1.63)

K (x) → 8√
π

1

s
Γ
[
s/2 + 1

2

s/2 + 2

]
, Re {s} > 0 (1.64)

U (x) is the Heaviside unit step function; Kν (x) is the Bessel function of third kind; δ (x) is the

Dirac delta function; and K(x), defined in eq. 1.23, is a constant times the optical transfer function

on a circular aperture. An asterisk next to a gamma function entry indicates that the integration path

passes between the first and second poles of that gamma function.
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22 1 Introduction

Table 1.2. Examples of the Gauss hypergeometric function.

ln (1 + z) = z 2F1[1, 1; 2;−z] , |z| < 1 (1.65)

(
1 +

√
1 − z

)1−2a
= 21−2a

2F1[a, a − 1/2; 2a; z] , |z| < 1 (1.66)

(1 − z)−a = 1F0[a; z ] , |z| < 1 (1.67)

exp (z) = 0F0[z] (1.68)

sin (z) = z 0F1

[
3
2
;−z2/4

]
(1.69)

cos (z) = 0F1

[
1
2
;−z2/4

]
(1.70)

arcsin (z) = z 2F1

[
1/2, 1/2; 3/2; z2

]
(1.71)

arctan (z) = z 2F1

[
1/2, 1; 3/2;−z2

]
(1.72)

cos (v arcsin z) = 2F1

[
v/2,−v/2; 1/2; z2

]
(1.73)

sinh (z) = z 0F1

[
3
2
; z2/4

]
(1.74)

cosh (z) = 0F1

[
1
2
; z2/4

]
(1.75)

Jν (z) =
(

z

2

)ν 1

Γ [ν + 1]
0F1

[
ν + 1;−z2/4

]
(1.76)
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Chapter 2

Basic Equations for Wave Propagation in

Turbulence

Turbulence has a large effect on electromagnetic wave propagation that can be
described by stochastic differential equations. In this chapter these equations are
solved with the Rytov approximation, and the main result is given in eq. 2.110,
which is the starting point for all turbulence problems considered in this book.
This equation is used to find phase and log-amplitude variances. These expres-
sions are modified to obtain expressions for the power spectral density, given in
eq. 2.134, beam profile given in eq. 2.161, and Strehl ratio, which is the ratio of
on-axis intensity to that of a diffraction-limited wave, in eq. 2.163.

Turbulence effects arise from atmospheric refractive index variations that
cause both large and small scale variations of electromagnetic-wave propaga-
tion. There are both a steady decrease of air density with altitude that causes
refraction of the waves and local inhomogeneities that have a more complicated
effect. The steady part of the refractive index variation n (r ) can be estimated
from

n (r ) − 1 = 77.6 × 10−6
(
1 + 7.52 × 10−3/λ2

)
P (r ) /T (r ) , (2.1)

where λ is the propagation wavelength in μm, P is pressure in millibars, T is
temperature in degrees Kelvin, and r is three-dimensional spatial position. At
sea level n (r ) − 1 is approximately equal to 3 × 10−4.

In addition to this steady density variation, there are stochastic changes. Sto-
chastic temperature variations in the air are the source of quivering images that
we sometimes see. Since the atmosphere has constant pressure locally, these tem-
perature variations cause density variations that in turn lead to refractive index
variations, causing the bending and scattering of light rays. Most often these
temperature variations are generated by a temperature differential between the
earth and the adjoining atmosphere. In daytime, the earth is hotter than the air;
this causes air closer to the ground to be hotter than that above. This negative
temperature gradient bends light rays that are parallel to the earth upwards
and, if strong enough, results in inverted images of the sky. This mirage is a
common occurrence in deserts or along heated asphalt on sunny days. Stronger
temperature gradients can result in the appearance of additional images.

During nighttime, temperature gradients can be positive, resulting in down-
ward bending of light rays enabling one to see objects below the horizon and
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26 2 Basic Equations for Wave Propagation in Turbulence

elevating images of objects that are on the horizon. (This phenomenon is called
looming.)

The effects of turbulence are very significant at optical frequencies since the
changes in refractive index cause path changes on the order of a micrometer. At
radar frequencies one can usually neglect the effect of turbulence; however, there
can be situations in which it is important. At low elevation angles the effect of
turbulence is more pronounced; however, even this larger effect is not signifi-
cant at centimeter wavelengths. However, moisture in the air and clouds and
rain showers can have significant variations in refractive index that can produce
measurable effects such as signal fading and angular jitter. The theory presented
here can be used in this case once a spatial spectrum of these disturbances is
developed.

2.1 Turbulence Spectra

Mirages and looming are due to large scale temperature gradients that can
persist for some time. Much more commonly, temperature inversions lead to
smaller scale effects that fluctuate more rapidly. For typical sizes of turbulence
blobs (turbules), the Reynolds number is much greater than 1, and laminar
air flow is unstable, which results in the breakup of stratified air layers into
smaller blobs. Often on a hot day one can see the swirling of heated air as
eddies cascade down in size. This process produces smaller and smaller eddy
sizes until dissipation effects become important at a scale called the inner scale,
at which point rotational energy is rapidly dissipated and flow becomes laminar.
This causes a rapid decrease in spectral energy at small scales.

Different methods must be used to analyze the effects on wave propagation of
large- and small-scale atmospheric temperature variations. A gradual decrease in
air density with height and the dispersive characteristics of air can separate white
light into spectra so that starlight at low elevation angles sometimes appears to
have distinct colors. (This dispersive effect also causes the green part of the sun’s
spectrum to set after the red part, producing the “green flash”.) These density
variations last for extended periods of time, and their effect on wave propagation
can be analyzed with ray optics in which density along the propagation path
can be assumed to remain constant with time.

Mirages are caused by variations in air density close to the earth. Air in this
region has some turbulence characteristics that cause variations in the mirage
shapes; however, major features of mirages can also be determined with ray-
optics propagation in a deterministic atmosphere.

Small scale fluctuations also affect wave propagation in the atmosphere and
produce detectable effects. With the unaided eye, one can see scintillations in
starlight as well as in street lights at some distance. Turbulence has a profound
effect on the ability of astronomers to separate images of two objects that are
close together. In a vacuum, resolving power of a mirror increases linearly with
diameter. In the atmosphere, resolution increases until a certain diameter and
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2.1 Turbulence Spectra 27

then remains almost the same with increasing diameter. Thus we are led to the
important concept of atmospheric coherence diameter. At sea level this diameter
is about 2–15 cm at visible wavelengths. At higher elevations, at certain sites, this
diameter can be tens of centimeters and is the main reason that large astronom-
ical telescopes are located on mountain tops. Making telescope diameters larger
than the coherence diameter increases the amount of light collected but hardly
increases resolution for objects whose recording takes more than a fraction of
a second. For smaller times images are speckled, and they contain information
up to the diffraction limit of the full diameter. In some circumstances, by using
elaborate processing of short term images, it is possible to resolve objects that
are separated by the telescope’s vacuum resolution (Goodman 1985).

Turbulence effects are stochastic in nature, and to characterize them in detail,
one must solve the wave equation with a stochastic refractive index. This is
treated in this book.

I now turn to the standard phenomenology of atmospheric turbulence. Eddy
distributions at the largest sizes, where energy enters the cascade process, is
highly dependent on local topography and absorption characteristics of the
earth’s surface, and on distribution of winds and temperature aloft. Once eddies
are formed and break up into smaller eddies, the eddy size distribution follows
universal laws. Kolmogorov (1941) and Obukhov (1941) were first to derive the
distribution law for the relative amount of turbulence at various scale sizes in
the region that is referred to as the inertial subrange. This range encompasses
scale sizes from, typically, 1 millimeter to 10 meters. One can obtain this law
from dimensional analysis.

Turbulence theory makes heavy use of the mean square value of the difference
of a quantity at two points, i.e., the structure function. For the turbulent air
speed v this is defined to be

Dv(r ) =
〈
[v (a ) − v (a + r )]2

〉
, (2.2)

where angle brackets indicate an ensemble average.
Evolution of turbulence can be analyzed with the Navier-Stokes hydrody-

namic differential equations. In the inertial subrange, where dissipation is not
important, Kolmogorov and Obukhov made the key assumption that the struc-
ture function of air speed is isotropic and a function solely of separation r and
rate of energy deposition per unit mass ε, i.e.,

Dv(r ) = Dv (r) = f (r, ε) . (2.3)

The units of ε are m2/ sec3, and by Buckingham’s Pi theorem Langhaar (1980)
the only form the solution can assume is the combination of ε and r that have
units of velocity squared. Therefore, the isotropic structure function must be

Dv(r) = e2(εr)2/3, r � Lin, (2.4)

where e2 is a constant, and Lin is the “inner scale.” This is the “two-thirds power
law”.
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28 2 Basic Equations for Wave Propagation in Turbulence

For very small separations the Reynolds number is small and friction dom-
inates, causing rotational velocity to be dissipated, thus resulting in laminar
flow. For laminar flow, the average velocity can be expanded into a Taylor series
about any point. The constant terms cancel, and because velocity is assumed to
be isotropic, the linear terms also cancel; therefore, the leading term is

Dv(r) = b2r2, r � Li. (2.5)

Close to the ground the turbulence may not have evolved to isotropic Kol-
mogorov turbulence. In that case the following analysis would not apply.

In the region of greatest interest, the inertial subrange, the two-thirds power
law contains all information on turbulence of practical importance. Even though
this relation is simple, it is not easy to exploit for several reasons. First, it is
not straightforward to incorporate this relation into Maxwell’s equations. The
Rytov approximation given below overcomes this difficulty.

Second, the steps necessary to obtain quantities of interest such as second
moments or Strehl ratios are lengthy and not intuitive. I show in the next section
that many specific problems are special cases of a general problem that is set up
and reduced to integrals, thereby making this step straightforward.

Third, many integrals that typically arise diverge because this form of the
structure function is unphysical both at small and large turbulence scales. The
structure function is modified below to overcome these difficulties.

Fourth and last, these integrals are difficult to evaluate analytically, and nu-
merical methods are often used. This reduces one’s physical insight into the
behavior of the solution as a function of the size of the parameters. Modifica-
tions of the structure function to remove infinities results in integrals that are
even more difficult to evaluate. Mellin transform techniques that are developed
in this book allow one to analytically evaluate these integrals, thus enabling one
to see how solutions depend on parameters.

To solve stochastic propagation problems it is convenient to analyze problems
in Fourier space. For example, the expression for the phase and log-amplitude
variance in Sec. 2.3 requires the correlation function of the transverse Fourier
transform of density fluctuations. Now derive statistics of density fluctuations
in Fourier space. In position space the structure function of density is given by

Dn (r ) =
〈
[n (a ) − n (a + r )]2

〉
. (2.6)

It can be shown that with the concept of conservative passive additives
Tatarski (1971) that this structure function has the same variation with dis-
tance as the structure function for velocity, and is expressed as

Dn (r) = C2
n r2/3, r � Li, and (2.7)

Dn (r) = C2
n

b2

e2
r2, r � Li, (2.8)

where C2
n measures turbulence strength.
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2.1 Turbulence Spectra 29

A relation between the turbulence spatial spectrum and the structure function
of density is found below. First, I develop some general Fourier relations in
spherical coordinates. The spatial spectrum of a quantity is found from the
3-dimensional Fourier transform

Ψ(k) =
1

(2π)3

∫∫∫
dr cos(k · r ) ψ(r) , (2.9)

where integration is over all space, and k is the total propagation vector, which
consists of a two-dimensional transverse component κ and a component, kz,
along the propagation vector. Thus,

k = κ + uz kz, (2.10)

where uz is a unit vector in the axial direction. The three-dimensional spatial
vector is also expressed as a transverse component ρ and an axial component z
as

r = ρ + uz z. (2.11)

The exponential exp(ik · r) is replaced by cos(k · r) in eq. 2.9 because Ψ(k) is
an even function of k.

The inverse Fourier relation is

ψ (r) =
∫∫∫

dk cos(k · r)Ψ(k) . (2.12)

If this function is assumed to be isotropic, then this relation can be reduced
to a simpler form. The integral can be expressed in spherical coordinates as

Ψ (k) =
1

(2π)3

π∫
0

2π∫
0

∞∫
0

r2 sin (θ) dr dθ dφ cos(k · r)ψ (r) .

The k vector is considered to be along the z-axis; therefore, k · r = kr cos (θ) ,
as is shown in Fig. 2.1.

Using the relation

d

dθ
sin [kr cos (θ)] = − cos [kr cos (θ)] kr sin (θ) ,

one can perform the two angle integrations to give

Ψ (k) =
1

2π2k

∞∫
0

r dr sin (kr)ψ (r) . (2.13)

Similarly, the angle integrations can be performed in the inverse transform to
give

ψ (r) =
4π

r

∞∫
0

k dk sin (kr)Ψ (k) . (2.14)
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z
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φ

Figure 2.1. Spherical coordinate system.

Obtain a relation between the structure function and the density distribution
n1 (r), by setting ψ (r) to the density correlation function

ψ (r) = 〈n1 (a)n1 (a + r)〉 . (2.15)

It has been assumed that the structure function is only a function of the sep-
aration. In general Dn (r) is also a function of a. For a stochastic process with
stationary increments (that is one in which the difference in values of the process
at two positions is stationary) the dependence on a is through a slowly varying
multiplicative factor. As long as the scale length of this variation is much longer
than the correlation distance of turbulence, the error in this derivation is small.

Since a displacement in real space corresponds to a phase shift in Fourier
space, one can express the density structure function as

Dn (r ) =
∫∫∫

dk |1 − exp(ik · r)|2Ψ(k)= 2
∫∫∫

dk [1 − cos(k · r)]Ψ(k) . (2.16)

Assuming isotropic turbulence, one can express this as

Dn (r) = 8π

∞∫
0

k2 dk

[
1 − sin (kr)

kr

]
Ψ(k) . (2.17)

To obtain the inverse Fourier relation, note that

∂

∂r
r2∂Dn (r)

∂r
= 8πr

∞∫
0

dk k3 sin (kr)Ψ(k) .

The inverse sine transform gives the desired relation between the turbulence
spectrum and structure function as
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2.1 Turbulence Spectra 31

Ψ (k) =
1

(2πk)2

∞∫
0

dr
sin (kr)

kr

∂

∂r
r2∂Dn (r)

∂r
. (2.18)

If the structure function with two-thirds power law given in eq. 2.7 is in-
serted into this integral and evaluated with eq. 1.21, then one obtains the three-
dimensional Kolmogorov turbulence spectrum

Ψ (k) =
5Γ [5/6]

24/3 π3/2 9Γ [2/3]
C2

n k−11/3 = 0.0330054 C2
n k−11/3. (2.19)

As discussed above, the derivation is strictly valid only if C2
n does not depend

on position. Later I will relax this restriction by allowing C2
n to vary slowly along

the propagation path.
There are no convergence difficulties when one performs calculations with

the structure function and its spatial spectrum; however, it will be seen that
the phase variance of a propagating wave turns out to be infinite. The infinity
comes at very small spatial wavenumbers. In a physical situation, phases and
intensities are uncorrelated at large separations; therefore, the structure function
must approach a constant at large separations. There are many ways of achieving
this, and a convenient one is to write the turbulence spectrum as

Ψ (k) = 0.033C2
n

(
k2 + κ2

o

)−11/6
, (2.20)

where
κo = 2π/Lo. (2.21)

Lo is the outer-scale size. (Some authors, e.g., Fante (1975), omit the 2π.) This
spectrum with outer scale included is called the von Kármán spectrum. If the
outer scale is allowed to grow without bound the spectrum reduces to eq. 2.19).

The structure function is found by inserting this spectrum into eq. 2.17. To
evaluate the integral, the integrand is broken into two parts. The first part is
evaluated with the Mellin transform in eq. 1.54 and the relation in eq. 1.9 to
give

I1 = 0.264 π C2
n κ−11/3

o

∞∫
0

dk

k
k3

⎡
⎣( k

κo

)2

+ 1

⎤
⎦
−11/6

= 1.0468C2
n κ−2/3

o .

The second integral is evaluated with the Mellin convolution theorem given in
eq. 1.28 and the Mellin transforms given in eq. 1.48 and eq. 1.54 as

I2 = −0.264 π C2
n κ−11/3

o

∞∫
0

dk

k
k2 sin (kr)

⎡
⎣( k

κo

)2

+ 1

⎤
⎦
−11/6

= −0.264 π C2
n κ−11/3

o

√
π

r2 Γ [11/6]

1

2πi

∫
C

ds
(

κor

2

)−s

Γ
[
s/2 + 3

2
, s/2 + 11

6

]
.
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32 2 Basic Equations for Wave Propagation in Turbulence

Make the replacement s → s − 10/3 and recognize the integral as the inverse
Mellin transform of K1/3 (κor) given in eq. 1.61, where K1/3 (x) is the modi-
fied Bessel function of the third kind with imaginary argument. The structure
function of density is

Dn (r) = C2
nr

2/3
{
(κor)

−2/3
[
1.0468 − 0.62029 (κor)

1/3 K1/3 (κor)
]}

. (2.22)

The effect of outer scale is contained in the term in braces that multiplies the
structure function with infinite outer scale. This factor is plotted in Fig. 2.2.
The structure function has been reduced by 5% when the separation is 1/25 of
the outer scale.

Figure 2.2. Effect of outer scale on the structure function versus the ratio of
separation to outer scale.

This form of the structure function reduces to the two-thirds power law given
in eq. 2.7 for small separations. This is shown with the small argument approxi-
mation of the power series given in eq. 1.25. The first two terms of the expansion
are

K1/3 (x) ≈ x−1/3

22/3
Γ
[

1
3

]
+

x1/3

24/3
Γ
[
−1

3

]
, x � 1.

The value of Γ [1/3] is 2.6789, and the value of Γ [−1/3] is −4.0624. With these
values one obtains eq. 2.7.

For very large separations the modified Bessel function is vanishingly small,
and the structure function reduces to the constant

Dn (r) = 1.0468κ−2/3
o C2

n, κo r � 1. (2.23)
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2.1 Turbulence Spectra 33

The shape of the spectral region of the von Kármán spectrum in which outer
scale has a significant effect has no universal theoretical justification. Measure-
ments made over a wheat field by Kamai et al. (1972) support this spectral form.
Greenwood and Tarazano (1974) made some measurements of turbulence spectra
in areas not as topographically smooth, and their data more closely supports a
model in which the turbulence spectrum is

Ψ(k) = 0.033C2
n

(
k2 + kκo

)−11/6
. (2.24)

A spectrum that has been used recently because it results in more tractable
integrals and has similar properties to the von Kármán spectrum is

Ψ(k) = 0.033 k−11/3C2
n

{
1 − exp

[
− (k/2κo)

2
]}

. (2.25)

In this book the von Kármán spectrum is used except when tilt with outer
scale is found for both the von Kármán and Greenwood spectra. Qualitative
behavior is the same in the two cases.

There are also difficulties at large wavenumbers. From the hydrodynamic
equations it can be shown that the above spectra require infinite energy dissipa-
tion due to the rapid increase in dissipation with decreasing scale size. Physically,
below a certain scale size dissipative effects force the velocity to be laminar. This
leads to a rapid decrease in the spectrum with decreasing scale size. Several ad
hoc models are used for the spectrum in this inner scale region; the Gaussian
form used in this book for some problems is referred to as the Tatarski spectrum.

A spectrum with both inner scale and von Kármán outer scale — the modified
von Kármán spectrum — is

Ψ(k) = 0.033C2
n

(
k2 + κ2

o

)−11/6
exp

(
−k2/κ2

i

)
, (2.26)

where
κi = 2π/Li = 5.91/Lin. (2.27)

Lin is the commonly used inner scale. I occasionally use Li to simplify equations.
The two are related by Lin = 0.94Li. The spectrum is shown in Fig. 2.3.

Greenwood and Tarazano (1974) and Gurvich et al. (1974) noted that the tur-
bulence does not decay as rapidly as that predicted by the Kolmogorov spectrum
in the region just before it starts its rapid decay due to inner scale effects. Hill
(1978) did a hydrodynamic analysis to derive a spectrum in the region where
inner scale is significant, and found a slight peak before an exponential decay.
Frehlich (1992) has modeled the spectrum as

Ψ(k) = 0.033C2
n

(
k2 + κ2

o

)−11/6
g (k) , (2.28)

where a 4-term approximation for g (k) is

g (k) = exp (−δ |k| Lin)
4∑

n=0

an (|k|Lin)n. (2.29)
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Figure 2.3. Von Kármán spectrum with inner and outer scale present normal-
ized by 0.033 C2

n. The value of κi is equal to 2π/0.1, and the value of κo is equal
to 2π/10. The presence of the outer scale causes the spectrum to approach a con-
stant at low wavenumbers. The inner scale causes the spectrum to decay faster
than Kolmogorov turbulence at high wavenumbers. The spectrum has an −11/3
power law behavior in the inertial subrange at intermediate wavenumbers.

The constants are given by δ = 1.1090, a0 = 1, a1 = 0.70937, a2 = 2.8235,
a3 = −0.28086, and a4 = −0.08277. This function is plotted versus the Tatarski
function exp [−(kLin/5.92)2] in Fig. 2.4.

The spectrum given in eq. 2.26 is used in this book for tilt calculations be-
cause it is not physically unreasonable and is mathematically convenient. The
spectrum given in eq. 2.28 can produce a significantly different scintillation at
short ranges than the modified von Kármán spectrum, and it should be used
in those calculations. The difference between the scintillation with these two
spectra is considered in Sec. 7.9.

If the Tatarski spectrum is inserted into the integral for the structure function
in eq. 2.17, then the expression can be evaluated with the Taylor series of the
sinusoid and a term by term integration. Because each series term produces
an integral that is absolutely convergent, this method is valid. For very small
separations the first term of the expansion gives the most significant contribution
as 1−sin (kr)/kr ≈ (kr)2/6, for r � Li. This is the only factor in the integrand
on the separation; therefore, for very small separations the structure function
has the required quadratic dependence on separation as given in eq. 2.5. The
exponential decay is not unique in this regard; any function with rapid decay
produces the correct form of structure function for small separations.
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Figure 2.4. Factor that multiplies the Kolmogorov turbulence spectrum in the
Tatarski and Hill models of inner scale.

In the analysis performed in this book the two-dimensional Fourier transform
is used heavily. It is convenient to use the space coordinate for the direction of
wave propagation and to use the Fourier transform of the transverse coordinates.
The relationship between the three- and two-dimensional spectra is found by
taking the Fourier transform in the propagation coordinate space, and by using
the evenness of the spectrum to obtain

Ψ(k) =
C2

n (z)

2π

∞∫
0

dz′ En (κ, z′) cos (kzz
′) , (2.30)

where En (κ, z′) is the Fourier transform in the transverse coordinates of the
normalized fluctuations of the covariance of the refractive index. Notice that
the turbulence strength is now allowed to vary along the propagation path. The
inverse Fourier relation obtained with the use of eq. 2.15 is

C2
n (z)E (κ, z) =

1

(2π)2

∫
dρ′′ exp (−iκ · ρ′′) 〈n1(0, 0)n1(ρ

′′, z)〉 . (2.31)

A normalized turbulence spectrum f̃(κ, kz) is defined by

Ψ(k) ≡ 0.033C2
n(z) f̃(κ, kz). (2.32)

The two-dimensional spectrum is found by setting kz = 0 to obtain
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36 2 Basic Equations for Wave Propagation in Turbulence

Ψ (k)|kz=0 ≡ 0.033C2
n (z) f(κ) =

C2
n (z)

2π

∞∫
0

dz′ En (κ, z′) . (2.33)

The normalized spectrum f(κ) is used in the book. For the modified von Kármán
spectrum it is

f(κ) =
(
κ2 + κ2

o

)−11/6
exp

(
−κ2/κ2

i

)
. (2.34)

When inner and outer scale are negligible the spectrum is

f(κ) = κ−11/3. (2.35)

While En (κ, z) is never explicitly needed in this book, it is assumed that it
decays rapidly with z. Therefore, it is instructive to derive it for the modified
von Kármán spectrum to see its spatial variation.1

In Sec. 2.3 the correlation function of the transverse Fourier transform of
refractive index fluctuations dν (κ, z) is required. This is evaluated with the
results given above. The Fourier-Stieltjes relation between the refractive index
and its transform is given by

n1(ρ, z) =
∫

dν (κ, z) exp (iκ · ρ). (2.39)

The inverse transform is

dν (κ, z) =
dκ

(2π)2

∫
dρn1(ρ, z) exp (−iκ · ρ).

The correlation function of the transverse Fourier transform of refractive index
fluctuations is
1 En (κ, z) can be found from eq. 2.30 by multiplying both sides of the equation by cos (kzz) and

integrating over kz from 0 to infinity. The kz integration yields a delta function δ(z − z′), which

enables the z integration to be performed with the result

En

(
κ, z′) = 0.2073

∞∫
0

dkz

(
κ2 + κ2

0 + k2
z

)−11/6
cos

(
kzz′) exp

(
−κ2/κ2

i

)
. (2.36)

For zero inner scale, this integral can be evaluated to obtain

En (κ, z) =
0.2073

√
π K 4

3

(√
κ2 + κ2

0 z
)

2
4
3 (κ2 + κ2

0)
3 z

7
3 Γ

(
11
6

) . (2.37)

For large arguments of the modified Bessel function, one can use its asymptotic value, Kν(x) ∼√
π/2x exp(−x), to obtain

En (κ, z) ∼
0.2073π exp

(
−
√

κ2 + κ2
0 z
)

2
11
6 (κ2 + κ2

0)
13/2 z

17
6 Γ

(
11
6

) . (2.38)

Therefore, En (κ, z) has exponential decay for large values of z, and its value is reduced signifi-

cantly in a distance of a turbulence wavelength.
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2.2 Rytov Approximation 37

〈dν (κ, z′) dν∗ (κ′, z′′)〉

=
dκ dκ′

(2π)4

∫
dρ

∫
dρ′ exp [−i (κ · ρ − κ′ · ρ′)] 〈n1 (ρ, z′)n1 (ρ′, z′′)〉 .

Make the change in variables ρ − ρ′ = ρ′′ and ρ′ = ρ′ to give

〈dν (κ, z′) dν∗ (κ ′, z′′)〉

=
dκ dκ′

(2π)4

∫
dρ′′

∫
dρ ′exp{−i [κ · ρ′′− (κ − κ′) · ρ′]} 〈n1(ρ

′ + ρ′′, z′)n1(ρ
′, z′′)〉 .

(2.40)

Assume the correlation function is a function of the coordinate difference
times a slowly varying function of position along the propagation path as

〈n1(ρ
′ + ρ′′, z′)n1 (ρ′, z′′)〉 = C2

n [(z′ + z′′) /2] 〈nn (0, 0)nn (ρ′′, z′ − z′′)〉 ,

where nn (ρ, z) is a normalized density fluctuation and C2
n(z) is the turbu-

lence strength. Insert this relation into eq. 2.40. The integration over ρ′ gives
(2π)2 δ (κ − κ′). Use the relation in eq. 2.31 to find the expected value as

〈dν (κ, z′) dν∗ (κ ′, z′′)〉
= En (κ, |z′ − z′′|)C2

n [(z′ + z′′) /2] δ (κ − κ′) dκ dκ′. (2.41)

This relation is used to find the expected value of second moments.

2.2 Rytov Approximation

Determining the turbulence effect on wave propagation requires one to solve
Maxwell’s equations with a refractive index that is stochastic. This cannot be
done exactly. An approach that uses geometric optics was first introduced by
Chernov (1960) to solve this problem. It was soon realized that this approxi-
mation requires L < L2

i /λ where L is the propagation distance and λ is the
propagation wavelength. This has a very limited range of applicability. It was
Rytov who proposed an approximation that included diffraction effects; this
resulted in a wider range of validity. This approximation could be used to ob-
tain second moments of quantities. Tatarski in two seminal books (1961, 1971)
codified this method and obtained solutions to a large variety of problems. His
results agreed well with experiments.

Since Tatarski’s books were written, many problems have been solved as
interest in wave propagation in turbulence expanded because of new technologies
and areas of application. These areas include sending information on optical
beams close to the ground, remote sensing of the atmosphere on earth and
planets, correcting atmospheric distortion to allow better resolution in optical
images, and sending laser beams efficiently through the atmosphere. The last
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38 2 Basic Equations for Wave Propagation in Turbulence

two applications require correction of atmospheric distortion by adaptive-optics
systems. To correct distortion one must measure phase along a path that is close
in angle to the actual path along which the laser beam propagates. How small
this angle must be to obtain a good correction leads to the important concept
of the isoplanatic angle. In this book anisoplanatism refers to any effect that
causes a difference in the propagation paths of two waves.

When propagating laser beams parallel to the ground, one found that scintil-
lation increased with increasing turbulence as the Rytov theory predicted until
a certain level was reached, at which point the measured scintillation saturated.
To solve problems in the saturation region a more complicated propagation the-
ory was developed that allowed multiple scattering of the wave as discussed by
Strohbehn (1978). Fortunately, even when the scintillation is saturated, Rytov
theory typically gives the correct answer for phase disturbances, thus allowing
one to treat many problems of practical interest. Intensity fluctuations in the
saturation region are not considered in this book.

As the power in the laser beam increases, the air column along the prop-
agation path heats up from energy absorption by the air. The lateral wind
or beam slewing moves this heated air out of the beam in a time referred to
as the wind clearing time. The resulting nonuniform temperature distribution
across the beam diameter can be shown to be equivalent to a negative lens
that causes the beam to expand. This “thermal blooming” is predicted by the
nonlinear wave equation and has been extensively studied. Computer simula-
tions are typically used to model the nonlinear interaction. Instabilities can set
in when the laser power is high. The theory of this instability is described by
Schonfeld (1992), and laboratory confirmation of the instability is described by
Johnson and Primmerman (1989). Thermal blooming is not considered in this
book. Additional information on saturated turbulence and thermal blooming is
in Strohbehn (1978).

The average results obtained here are long-term averages. In the short term,
the second moments can vary, an effect referred to as intermittency. Its effect
on wave propagation is discussed in Tatarski and Zavorotnyi (1985).

To solve for effects of turbulence in the low-power regime, one starts with
Maxwell’s equations

∇× E (r, t) = −∂B (r, t)

∂ t
, (2.42)

∇ · E (r, t) = q (r, t) /ε (r, t) , (2.43)

∇× B (r, t) = μo J (r, t) + μo ε (r, t)
∂E (r, t)

∂ t
, and (2.44)

∇ · B (r, t) = 0, (2.45)

where E (r, t) is the electric field, B (r, t) is the magnetic field, ε (r, t) is the
permittivity, μo is the magnetic permeability, J (r, t) is the current density, and
q (r, t) is the charge density. Assume there is a time-harmonic variation of the
fields

E (r, t) = exp (−iωt) E (r) . (2.46)
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2.2 Rytov Approximation 39

E (r) can also vary with time but the time scale of variation is much longer than
the harmonic variation. The air density affects the refractive index as

ε (r) = ε0 n2 (r) , (2.47)

where the refractive index n (r) for air is given in eq. 2.1. The wave equation
describing the electric field derived from the above relations is

∇2E (r) + k2
0n

2 (r)E (r) − 2i
k0

c

∂ [n2 (r) E (r)]

∂ t
+ 2∇{E (r) · ∇ ln [n (r)]} = 0,

where the free space wavenumber is given by k0 = ω/c = 2π/λ, and c is the
speed of light in vacuum. The nonsinusoidal variation of the field with time
is suppressed. If the rate of change of E (r) with time is much less than the
sinusoidal variation exp (−iωt), then the third term is negligible compared to the
first two. For optical and radar frequencies this condition is satisfied. In addition,
if the propagation wavelength λ is much less than the inner scale, then the last
term that produces coupling between the different polarization components of
the electric field can be neglected. For visible wavelengths, typical inner-scale
sizes of a millimeter satisfy this condition, in which case one obtains a scalar
equation for each of the electric field components separately. The equation for
one component is

∇2u (r) + k2
0 n2 (r) u (r) = 0. (2.48)

In the Rytov method the solution is expressed as

u (r) = exp [Φ (r)] . (2.49)

This leads to the nonlinear Riccati equation

∇2Φ (r) + [∇Φ (r)]2 = −k2
0 n2 (r) . (2.50)

If it is assumed that the magnitude of the air-density inhomogeneity is small,
the refractive index is

n (r) = 1 + δn1 (r) , (2.51)

where δn1 (r) � 1, and δ was inserted into the expression to show smallness.
This Riccati equation can be solved by a perturbation method in which it is
assumed that the solution can be written as a power series in δ,

Φ (r, δ) = Φ0 (r) + δ Φ1 (r) + δ2 Φ2 (r) + · · · . (2.52)

This expansion is the basis of the Rytov approximation. If instead, the field
u (r) were expanded into a series, then that would be the Born approximation.
The Rytov approximation leads to the log-amplitude having Gaussian statistics
while the Born approximation leads to Rician statistics. The Rytov approxima-
tion agrees better with experimental results and is the reason it is used.
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40 2 Basic Equations for Wave Propagation in Turbulence

By inserting this into eq. 2.50 and by separating the equations based on
the power of δ, one obtains a system of equations that has been explored by
Schmeltzer (1967).

∇2Φ0 (r) + ∇Φ0 (r) · ∇Φ0 (r) = −k2
0, (2.53)

∇2Φ1 (r) + 2∇Φ0 (r) · ∇Φ1 (r) = −2 k2
0 n 1 (r) , (2.54)

∇2Φ2 (r) + 2∇Φ0 (r) · ∇Φ2 (r) = −k2
0 n2

1 (r) −∇Φ1 (r) · ∇Φ1 (r) , and (2.55)

∇2Φm (r) + 2∇Φ0 (r) · ∇Φm (r) = −
m−1∑
p=1

∇Φp (r) · ∇Φm−p (r) . (2.56)

For these equations to be valid one requires

|∇Φn+1 (r)| � |∇Φn (r)| . (2.57)

This condition gives this method the alternate name of “the method of smooth
perturbations.” I retain only the first two terms. Express the lowest-order term
in the form

u0(r) = exp [Φ0 (r)] . (2.58)

Eq. 2.53 is equivalent to one for a wave undisturbed by turbulence,

∇2u0(r) + k2
0 u0(r) = 0. (2.59)

If I set
Φ1(r) = W1 (r) /u0(r) = W1 (r) exp(−Φ0), (2.60)

the solution to second order is

u1 (r) = u0 (r) exp [Φ1(r)] . (2.61)

To obtain Φ1(r) one must determine W1 (r). Substituting the second part of eq.
2.60 into eq. 2.54 and using eq. 2.53 to simplify the expression gives

∇2W1 (r) + k2
0 W1 (r) = −2 k2

0 n1(r) u0 (r) . (2.62)

The solution to this linear differential equation with constant coefficients is ob-
tained with the Green’s function for free space propagation as

Φ1(r) =
2k2

0

u0 (r)

∫
dV ′ u0 (r ′)n1(r

′) G (|r − r′|) , (2.63)

where the integration is over the source volume denoted by primed coordinates.
The Green’s function in spherical coordinates is

G (|r − r′|) =
1

4π |r − r′| exp (ik0 |r − r′|) . (2.64)

The perturbed field is
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2.3 Phase and Log-Amplitude Variances 41

Φ1 (r) =
k2

0

2πu0 (r)

∫
dV ′ u0 (r′) n1(r

′)
exp (ik0 |r − r′|)

|r − r′| . (2.65)

The requirement that the second term of the expansion must be much greater
than the sum of the remaining terms leads to the requirement that

k
7/6
0

L∫
0

dz C2
n (z) z5/6 < 1. (2.66)

As shown in Sec. 4.7 this is the same as requiring log-amplitude fluctuations to
be small. It has generally been found that the Rytov approximation gives a good
approximation to the log-amplitude variance σ2

χ in the regime

σ2
χ < 0.35. (2.67)

At full saturation the maximum value of σ2
χ is 0.6. Even though the Rytov value

for log-amplitude is not valid when this inequality is not satisfied, the solution
for the phase for collimated beams has been shown to be valid.

2.3 Phase and Log-Amplitude Variances

In this section I will develop general relations for phase and log-amplitude vari-
ances that are used throughout the book to solve turbulence problems. To cover
the cases of collimated and spherical waves, variances of the log-amplitude and
phase are derived for a Gaussian wave with the approach of Ishimaru (1969).
Once these quantities are found in the general case, the remainder of the deriva-
tion will be performed for infinite waves to reduce the complexity of the analysis
and to obtain formulas specific for the infinite wave case, which is typically of
most interest. The general case is considered in Chap. 10. The free-space prop-
agation of the lowest-order Gaussian mode has been considered in many places,
and the appropriate expression for the field of a wave propagating in the z
direction whose focus is at z = 0 is

u0 (ρ, z) =
A

1 + iα z
exp

[
ik0z − k0α ρ2

2(1 + iα z)

]
, (2.68)

where r = ρ + uz z, and

α = αr + i αi = λ/πw2
o + i/Ro. (2.69)

The parameter Ro is the radius of beam curvature at the source. It is equal
to infinity for a collimated beam. At a radius equal to wo at the source, the
intensity has dropped to 1/e2 of its value on axis. If the wave were propagating
from a focus at z = L to z = 0, then one can obtain the expression for the field
by substituting L − z for z in the above expression.
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42 2 Basic Equations for Wave Propagation in Turbulence

The above Gaussian mode is the lowest mode of an infinite set. The general
form of a mode in cartesian coordinates is given in Milonni (1988) as

Emn(x, y, z) =
Aw0

w(z)
Hm

(√
2

x

w(z)

)
Hn

(√
2

y

w(z)

)

× exp
{
i
[
kz − (m + n + 1) tan−1(z/z0)

]}
× exp[ik(x2 + y2)/2R(z)] exp[−(x2 + y2)/w2(z)], (2.70)

where Hm

(√
2x/w(z)

)
are Hermite polynomials and w(z) = |1 + iαz|.

If one had a top-hat distribution (uniform distribution within a given diame-
ter), then to find the field in space one would have to expand the distribution into
the appropriate Gaussian modes and consider the propagation of each mode. The
higher-order modes will diffract away sooner, so that at very large distances the
only mode that is important is the fundamental mode. No higher order modes
are addressed in this book.

I use the paraxial assumption: which for the source located at z = 0 and the
observation point located at z = L, the term in the exponential of the Green’s
function is expanded to obtain

exp(ik0 |r − r′|)
|r − r′| ≈ 1

(L − z′)
exp

{
ik0(L − z′)

[
1+

|ρ − ρ ′ |2

2 (L − z′)2 −
|ρ − ρ′|4

8 (L − z′)4

]}
.

(2.71)
If the source were located at z = L and the observation point were located at
z = 0, then one can obtain the expression for the field by substituting L− z for
z in the above expression.

If one assumes that the distance to the source is much larger than the trans-
verse coordinate, which requires |ρ − ρ′|4 � (L − z′ )3λ, then the last term
in braces can be neglected. This approximation can also be used to find an
additional restriction on the applicability of the turbulence solution. The small-
est turbulence sizes are the order of the inner scale; therefore, the maximum
scattering angle is λ/Li, and the maximum deviation of the beam from bore-
sight is λL/Li. Therefore, the paraxial assumption gives the requirement that
L � L4

i /λ
3. For inner scale sizes of a millimeter or more, the range over which

the assumption is valid is very large, and the condition is satisfied for most
problems.

After substituting eq. 2.71 and eq. 2.68 into eq. 2.65, and performing some
algebraic manipulation, one finds that the turbulence-induced disturbance is

Φ1 (ρ, L) =

L∫
0

dz′
∫

dρ′ h (ρ′ − γ ρ, L, z′) n1 (ρ′, z′) , where (2.72)

h (ρ′ − γ ρ, L, z′) =
k2

0

2π

exp
{
ik0

[
(ρ′ − γ ρ)2/2γ (L − z′)

]}
γ (L − z′)

, and (2.73)
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2.3 Phase and Log-Amplitude Variances 43

γ =
1 + iα z′

1 + iα L
. (2.74)

Note that γ = 1 at z = L. For other values of z for infinite waves the value
of γ can be less than or greater than unity depending on whether the beam is
smaller or larger than the beam at z = L.

It will be shown that the value of γ using the above definition can be negative
for some choices of R0. Just as for propagation in free space where one needs
to choose the correct sign of (k2)1/2 = ±k, one needs to choose the sign of γ
so that the wave moves in the correct direction. In these problems one does
not encounter the complication of having the wave and group velocities being in
opposite directions. We have chosen the signs so that exp(ikz) represents a wave
traveling in the positive z direction and exp(−ikz) represents a wave traveling
in the negative z direction. With the use of γ we will see that the equivalent
expression is exp(iγκρ). Just as we can choose either the plus or the minus sign
of k, one has the same situation with γ. To keep the wave direction consistent,
one needs to choose the root of γ2 whose real part is positive. Therefore, when
the Fresnel number is infinite and the value of γ calculated using eq. 2.77 is real
and negative, then one should change its sign to be positive, which is why the
absolute value sign is applied to the real part in the following equation.

Using eq. 2.74 the real and imaginary parts of γ can be expressed as

γr =

∣∣∣∣∣1 − αi(L + z) + |α|2z L

1 + |α|2L2 − 2αi L

∣∣∣∣∣
=

∣∣∣∣∣FN(1 − z/R0)(1 − L/R0) + F−1
N z/L

FN(1 − L/R0)2 + F−1
N

∣∣∣∣∣ , and (2.75)

γi = − αr(L − z)

(1 − αiL)2 + (αr L)2 = − 1 − z/L

FN(1 − L/R0)2 + F−1
N

. (2.76)

Note that the imaginary part of γ goes to zero for both large (infinite plane
wave) and small (point source) Fresnel numbers. The Fresnel number, FN =
Re (1/αL) = πW 2

o /λL, is equal to infinity for plane waves and zero for point
sources.

Therefore, for propagation from z = 0 to z = L the value of γ is equal to
unity for infinite plane waves (Wo → ∞, α = 0), and equal to z/L for spherical
waves (Wo → 0, α = ∞) (corresponding to a point source at z = 0). In these
cases the imaginary part of γ is zero.

If the source were located at z = L and the wave propagated towards z = 0,
one obtains the appropriate relations by using the substitution z′ → (L − z′) in
the above equations, to obtain

γ =
1 + iα (L − z′)

1 + iα L
. (2.77)

Note that γ = 1 at z′ = 0.
The value of propagation parameter γ is equal to unity for plane waves, and

equal to (L−z)/L for spherical waves (corresponding to a point source at z = L).
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44 2 Basic Equations for Wave Propagation in Turbulence

One can easily show that when the imaginary part is non-zero, then its value is
negative for both propagation directions.

When the wave is being focused and we need to change the sign of the real
part of γ, then in this case we need to make the sign of the imaginary part of γ
negative. This results in the intensity increasing in the direction of propagation
as it should for a focused beam.

To find variances, the method of spectral expansion is used, in which quan-
tities are expressed as Fourier-Stieltjes integrals of the transverse coordinates.
Refractive-index fluctuations are represented in eq. 2.39 as

n1 (ρ, z) =
∫

dν (κ, z) exp (iκ · ρ), (2.78)

where the integral is over the two-dimensional transverse wavenumber space.
The requirement that the refractive index is real leads to

dν (κ, z) = dν∗ (−κ, z) . (2.79)

If eq. 2.78 is substituted into the expression for turbulence-induced fluctu-
ations given in eq. 2.72, and the substitution ρ′ − γ ρ → −ρ′ is made, one
obtains

Φ1 (ρ, L) =

L∫
0

dz′
∫

dν (κ, z′)
∫

dρ′ h (ρ′ − γ ρ, L, z′) exp (iκ · ρ′)

=

L∫
0

dz′
∫

dν (κ, z′)H (κ, L, z′) exp (iγ κ · ρ ) , (2.80)

where H (κ, L, z) is the Fourier transform of h (ρ, L, z), and with the use of eq.
2.73 it is given by

H(κ, L, z) =
∫

dρ′ h (ρ′, L, z) exp (−iκ · ρ′) = ik0 exp [−iP (γ, κ, z)] . (2.81)

The evaluation in eq. 2.81 relied on the Fourier transform relation

∫ +∞

−∞
dx exp

(
iax2 + ibx

)
=

√
− π

ia
exp

(
−ib2/4a

)
. (2.82)

The integral was written as the product of two integrals in the x and y directions,
and the Fourier transform relation was applied to each integral.

For a wave infinite in extent that propagates from z = 0 to z = L, the
diffraction parameter is equal to

P (γ, κ, z) =
γκ2(L − z)

2 k0

. (2.83)

One sees that a contribution from z = 0, which is furthest from the observation
point at z = L has a greater diffraction contribution than points closer to the
observation point as expected.
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2.3 Phase and Log-Amplitude Variances 45

For propagation from z = L to z = 0

P (γ, κ, z) =
γκ2z

2 k0

. (2.84)

These are three cases to be considered. Let the diameter of the aperture at
z = 0 be D1 and that at z = L be D2. The first case is a converging beam from
z = 0 to z = L for which D1 > D2. The second case is a diverging beam from
z = 0 to z = L for which D1 < D2. The last case is a converging beam that goes
to a focus between z = 0 and z = L.

For the first case using similar triangles one finds that the focal distance is

R0 = − LD1

D2 − D1

, and (2.85)

γ =
D1 + (D2 − D1) z/L

D2

. (2.86)

For the second case using similar triangles one finds that

R0 =
LD1

D1 − D2

, and (2.87)

γ =
D1 − (D1 − D2) z/L

D2

. (2.88)

For the last case
α = i/R0, and (2.89)

γ = |R0 − z|/(R0 − L), R0 < L. (2.90)

As R0 approaches L the beam becomes smaller and diffraction effects must
be considered, that is, the imaginary part of γ becomes important when the
difference between L and R0 is less than 4W 2

0 /L.
The values of γ and P (γ, κ, z) for the various propagation conditions for the

infinite wave case are summarized in Table 2.1. For small Fresnel numbers the
solutions approach the point source case; for large values they approach the
infinite plane-wave case.

For instance, for very large Fresnel numbers and the wave focused 1/N th of
the distance from z = 0 to z = L, the curvature is R0 = L/N , and

γ =

∣∣∣∣∣(1 − Nz/L)

(1 − N)

∣∣∣∣∣ , N > 1. (2.91)

The value of γ is equal to |1/(1 − N)| at z = 0. The fact that the absolute value
of γ is less than unity close to the source affects the value of the scintillation.

One needs to be careful when calculating the scintillation at the focus. Ishi-
maru (1978) p. 383 pointed out that Rytov theory at the focus is only valid for
scintillation values that are lower than those for a collimated beam. This occurs
because the phase disturbances on the wave affect the size of the focused spot.
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46 2 Basic Equations for Wave Propagation in Turbulence

Table 2.1. Propagation Functions for the General Case and for Plane and
Spherical Waves.
For intermediate values of the Fresnel number γ is complex and beam wave
analysis must be used. One needs to choose the root of γ2 whose real part is
positive.

Propagation Wave γ Diffraction Parameter

Direction Type P (γ, κ, z)

0 → L General Case (1 + iαz)/(1 + iαL) γκ2(L − z)/2ko

0 → L Plane wave 1 κ2(L − z)/2ko

0 → L Spherical Focus at R0 |R0 − z|/|R0 − L|, R0 �= L κ2|R0 − z|(L − z)/2ko|R0 − L|
L → 0 General Case [1 + iα(L − z)]/(1 + iαL) γκ2z/2ko

L → 0 Plane wave 1 κ2z/2ko

L → 0 Spherical Focus at L − R0 |L − R0 − z|/|L − R0| κ2z|L − R0 − z|/2ko|L − R0|

Away from the focus one does not encounter these difficulties. The condition he
gives is

0.762 C2
n k2

0 L W
5/3
0 � 1. (2.92)

In this formulation using γ, as pointed out by Ishimaru, the effective wavenum-
ber is γκ rather than κ as can readily be seen in the last part of eq. 2.80. In
general, the effective wavenumber is complex. In comparing results obtained
with this method to others that do not use this approach, one must make the
substitution of κ for γκ in this solution to get the same form.

Notice that H(κ, L, z) is an even function of kappa. Also, the real part of the
exponent on the far right in eq. 2.81 is not greater than zero for long ranges,
which causes the integrand in eq. 2.80 to go to zero at infinity for any angular
orientation even though exp (iγ κ · ρ ) diverges for some angles.

Log-amplitude χ (ρ, z) and phase ϕ (ρ, z) fluctuations are real quantities de-
fined by the relation

Φ1 (ρ, z) ≡ χ (ρ, z) + iφ (ρ, z) . (2.93)

Therefore,

χ (ρ, z) =
1

2
[Φ1 (ρ, z) + Φ∗

1 (ρ, z)] , and (2.94)

φ (ρ, z) =
1

2i
[Φ1 (ρ, z) − Φ∗

1 (ρ, z)] . (2.95)

Now specialize to the point source and the infinite beam case for which γ is real;
this leads to simpler expressions. Derivations for complex waves, given in Chap.
10, differ at this point because γ is complex. By substituting eq. 2.80 into eq.
2.94 and eq. 2.95 and by using the evenness with respect to kappa, one finds

χ (ρ, L) = k0

L∫
0

dz′
∫

dν (κ, z′) sin [P (γ, κ, z′)] exp (iγκ · ρ), and (2.96)
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2.3 Phase and Log-Amplitude Variances 47

φ (ρ, L) = k0

L∫
0

dz′
∫

dν (κ, z′) cos [P (γ, κ, z′)] exp (iγκ · ρ). (2.97)

For the phase difference between two waves one has

φ (ρ, L) = k0

L∫
0

dz′
∫

dν (κ, z′)

×{cos [P (γ1, κ, z′)] exp (iγ1κ · ρ) − cos [P (γ2, κ, z′)] exp (iγ2κ · ρ)} .(2.98)

The last three expressions apply to a single point in space. To generalize
this, there are three types of problems that are of interest. The first is the one
considered above, in which case the above equation applies.

The second type of problem requires one to solve for the amplitude of a
particular mode. In that case, the phase on an aperture is multiplied by the
mode weighting function, g(ρ), and then the resulting phase is integrated over
the aperture.

Define a weighting function G(γκ) that is a constant factor times the Fourier
transform of g(ρ)

G(γκ) =
∫

dρ g(ρ) exp(iγκ · ρ), (2.99)

where the integration is performed over the aperture for a receiver or over all
space for a Gaussian wave.

The phase in this case is

φR (ρ, L) = k0

L∫
0

dz′
∫

dν (κ, z′) cos [P (γ, κ, z′)]G(γκ). (2.100)

The expression no longer depends on ρ; however, the same notation is retained
for the convenience of enabling the same expression to be used for the three
cases. To obtain the radial dependence of this mode, the phase expression must
be multiplied by g(ρ) to obtain

φR (ρ, L) = k0

L∫
0

dz′
∫

dν (κ, z′) cos [P (γ, κ, z′)]G(γκ)g(ρ). (2.101)

The three cases can be written as

φR (ρ, L) = k0

L∫
0

dz′
∫

dν (κ, z′) cos [P (γ, κ, z′)] Ĝ(γκ), (2.102)

where the value of the filter function is:
Case 1 Ĝ(γκ) = exp (iγκ · ρ)—Phase at a point
Case 2 Ĝ(γκ) = G(γκ)—Mode amplitude on an aperture
Case 3 Ĝ(γκ) = G(γκ)g(ρ)—Radial dependence of a mode on an aperture
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48 2 Basic Equations for Wave Propagation in Turbulence

In the next chapter filter functions are found for various types of problems
in which a single transverse filter function in the receiver plane is present. If
one has the product of several filter functions in real space that each depend on
the radial coordinate in the receiver plane, then care must be exercised in some
cases. The presence of anisoplanatism that depends only on z in the presence
of another filter function is not such a case, since anisoplanatism introduces
a multiplication by a phase-shift term in κ space and does not introduce a
radial function other than in the exponent. Even if an aperture average of the
anisoplanatism is needed, that is not considered a second filter function in the
following discussion since all the displacements are phase shifts in the integral
in eq. 2.99, which is the Fourier transform of the phase multiplied by a filter
function. A finite size source, which introduces a filter function in the transmitter
plane also can be considered as an independent filter function.

A problem requiring two filter functions would be to determine the slope of
the amplitude on an aperture that has an apodization function. In this case, the
two filter functions are the one for tilt and the one for the apodization function.
A discussion of how to derive a composite filter function for the product of filter
functions is considered in the footnote.

No problems requiring the product of filter functions are addressed in this
book. We consider problems in which the only non-anisoplanatic filter function
is that of a Zernike mode. The complex problems addressed in this book owe
their complexity due to anisoplanatic effects and the addition of inner and outer
scale. 2

Another situation that can arise occurs when the anisoplanatic offset is a
function of the receive aperture position. In that case, for an offset aρ, eq. 2.99
gives ∫

dρ g(ρ) exp(iγκ · ρ) exp(iγκ · aρ) = G(γ(1 + a)κ). (2.104)

The phase- and log-amplitude related quantities resulting from applying the
filter function are

[
φR(ρ, L)
χR(ρ, L)

]
= k0

L∫
0

dz′
∫

dν (κ, z′) Ĝ (γ κ)
[
cos [P (γ, κ, z′)]
sin [P (γ, κ, z′)]

]
. (2.105)

I shall only give the derivation of the variance of a phase-related quantity
explicitly. Since the only difference between the phase- and log-amplitude related

2 If there are two transverse filters, g1(ρ) and g2(ρ), that are multiplied in real space, then the

convolution theorem can be used to find the filter function in κ space. If G1(κ) and G2(κ) are the

Fourier transforms of the individual filter functions, then the composite filter function is

G(κ) =

∫
dκ1 G1(κ1 − κ)G2(κ1). (2.103)

It is obvious how to generalize this result to obtain the filter function for the product of any

number of filter functions as

G(κ) =

∫
. . .

∫
dκ1 . . . dκN−1 G1(κ1 − κ)G2(κ2 − κ1) . . . GN−1(κN−1 − κN−2)GN (κN−1).
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2.3 Phase and Log-Amplitude Variances 49

expressions is in the trigonometric factor, the expression for the log-amplitude
variance will be written at the end by inspection.

Up to now only a single wave has been considered. Generalize this to the case
of finding the difference between the phase of two waves that can have different
values of γ. The analysis of two beams applies, for example, to adaptive-optics
systems. This will allow one to consider the difference between displaced waves,
counterpropagating waves, and also the difference between spherical and plane
waves. Let the second wave be multiplied by a quantity A (κ, z) that can be a
function of the axial coordinate and transverse wavenumber. If this multiplier is
zero, one is back to the single wave case, and if it is an exponential with imag-
inary exponent linear in separation distance, this corresponds, by definition, to
anisoplanatism. The two-wave case can also express the output of a measurement
system being applied to an outgoing beam. Finally, let the aperture weighting
factor be different for each wave. A typical geometry for this situation is shown
in Fig. 2.5. The result for the three cases is

φR(ρ, L) = k0

L∫
0

dz′
∫

dν (κ, z′)

×
{
Ĝ1 (γ1κ) cos [P1 (γ1, κ, z′)]−A (κ, z′) Ĝ2 (γ2κ) cos [P2 (γ2, κ, z′)]

}
. (2.106)

P1(γ1,κ,z)

G1(γ1κ)

γ2

A(κ,z)

P2(γ2,κ,z)

G2(γ2κ)

γ1

Figure 2.5. Geometry of focused and collimated beams of different diameters
propagating in different directions with a separation that depends on the axial
coordinate.

The second moment of φR(ρ, L) is found by multiplying the phase or log-
amplitude by its complex conjugate and calculating the expected value. The
only stochastic quantity on the right is the refractive index; therefore, the second
moment of the phase-related quantity is
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50 2 Basic Equations for Wave Propagation in Turbulence

σ2
φR = 〈φR(L)φR∗(L)〉 = k2

0

L∫
0

dz′
L∫

0

dz′′
∫ ∫

〈dν (κ, z′) dν∗ (κ ′, z′′)〉

×
{
Ĝ1 (γ1 κ) cos [P1 (γ1, κ, z′)] − A (κ, z′) Ĝ2 (γ2 κ) cos [P2 (γ2, κ, z′)]

}

×
{
Ĝ∗

1 (γ1κ
′) cos [P ∗

1 (γ1, κ
′, z′′)]−A∗ (κ′, z′′) Ĝ∗

2 (γ2 κ ′)cos [P ∗
2 (γ2, κ

′, z′′)]
}
.

(2.107)

The ensemble average can be simplified with the relation given in eq. 2.41 as

〈dν (κ, z′) dν∗ (κ′, z′′)〉 = En (κ , |z′ − z′′|) C2
n [(z′ + z′′) /2] δ (κ − κ′) dκ dκ′,

(2.108)
where C2

n(z) is a normalizing function that is proportional to the strength of
turbulence, and En (κ, |z′ − z′′|) is the two-dimensional spectra of the covariance
of the density fluctuations.

The presence of the delta function in eq. 2.108 allows the integration over
one transverse spectral coordinate to be performed directly. To eliminate an
axial integral, change the axial coordinates into sum and difference coordinates
as z− = z′ − z′′, and z = (z′ + z′′) /2. This changes the integration region
from that of Fig. 2.6a to the diamond shaped region of Fig. 2.6b. Perform the
integration over κ′ in eq. 2.107 to give

σ2
φR = k2

0

∫ ∫
Diamond

dz− dz C2
n(z)

∫
dκEn (κ, |z−|)

×
[
Ĝ1 (γ1 κ) cos (1, 1,+) − A

(
κ, z +

z−
2

)
Ĝ2 (γ2 κ) cos (2, 2,+)

]

×
[
Ĝ∗

1 (γ1 κ) cos (1, 1,−) − A∗
(
κ, z − z−

2

)
Ĝ∗

2 (γ2 κ) cos (2, 2,−)
]
, (2.109)

where the first argument of the cosine indicates the subscript of P , the sec-
ond argument the subscript of γ, and the sign refers to the sign of z−/2 in
cos [Pa (γb, κ, z ± z−/2)]. Tatarski (1971) discusses in detail how to eliminate

 L

z'

z"
 –L  L

z_

z

 L

 2a  2b

 L

Figure 2.6. The regions of integration: (2a) original, and (2b) transformed.

one axial integration for the single wave case. His arguments extend to the two
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2.3 Phase and Log-Amplitude Variances 51

wave case. The integration over z− is similar to that given in eq. 2.31 except for
two apparent differences; the integration in eq. 2.33 extends to infinity, while the
integration above has finite limits, and there are other functions in the integrand
that depend on z−. These differences can be circumvented. The correlation func-
tion of real turbulence only has significant values over a range of tens of meters,
a distance that is typically very small compared to the entire integration path.

Tatarski (1971) shows that as long as the inner scale is much larger than
the wavelength, then the variation of the trigonometric term with z− is not
significant. To eliminate the dependence on z− in the other integrand terms, one
can expand the functions in Taylor series about the point where the difference
coordinate is zero. The relative magnitude of the first two terms of a Taylor
series is on the order of z−/S, where S is the distance over which the function
being expanded significantly changes its magnitude. For the functions in the
integrand, the distance S is either the length of the propagation path or the
Fresnel distance. As long as this distance is much larger than the correlation
length, the first order term of the expansion is small compared to the zeroth
order term. With that approximation, which is good for most practical problems,
one can neglect the difference coordinate when it is added or subtracted from
the sum coordinate. This assumption makes the correlation function the only
one that depends on z−. I have checked this assumption for several problems,
and the error is typically on the order of one part in a million. For any specific
problem one should determine if the above assumptions are violated.

The difficulty with the finite integration limits are now resolved with standard
arguments: Since the correlation function is even in z−, the integral is twice the
value obtained with only the right-hand side of the diamond. The only part
of the diamond-shaped area that contributes significantly to the integral is a
thin strip close to the vertical axis, since the correlation function falls off very
rapidly with distance along the horizontal axis. Previously in this chapter, it was
shown that for the von Kármán spectrum that En (κ , z) decays significantly in
a distance of a wavelength of the turbulence. For typical outer scale values, the
largest correlation is 100 meters or less. Therefore, the diamond-shaped area can
be extended horizontally to infinity without significantly affecting the value of
the integral. This allows the limit of the z− integration to be changed to infinity,
and the integral can be evaluated with eq. 2.33.

The same derivation can be performed for log-amplitude related quantities.
The result is

[
σ2

φR

σ2
χR

]
= 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

×
{
Ĝ1 (γ1 κ )

[
cos (1, 1)
sin (1, 1)

]
− A (κ, z) Ĝ2 (γ2 κ )

[
cos (2, 2)
sin (2, 2)

] }

×
{
Ĝ∗

1 (γ1 κ )
[
cos (1, 1)
sin (1, 1)

]
− A∗ (κ, z) Ĝ∗

2 (γ2κ )
[
cos (2, 2)
sin (2, 2)

] }
, (2.110)
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52 2 Basic Equations for Wave Propagation in Turbulence

where the first argument of the cosine (sine) indicates the subscript of P and the
second argument the subscript of γ in cos [Pa (γb, κ, z)] (sin [Pa (γb, κ, z)]) and
0.2073 = 2π 0.033. The last expression is the central relation of this chapter.

Notice that γ appears both in the filter function and the sine and cosine terms.
In the next chapter it will be shown that in filter functions γ is usually associated
with the aperture diameter D in the form γD. For the filter function one can
usually include the effect of focused beams with the alternative approach of using
the actual beam diameter along the propagation path in the filter function and
not including γ. However, one must remember if that approach is used, then one
also needs to consider how changing γ affects the trigonometric terms.

This expression is the starting point for solving many turbulence problems.
One can consider the variance of the difference of either the phase or log-
amplitude of two waves, each of which can be propagating up or down, have dif-
ferent diameters, be displaced from each other with a displacement that changes
along the propagation direction, have different amplitudes, and have different
values of γ.

The entire quantity multiplying the turbulence spectrum can be looked upon
as a filter function of that spectrum. This concept is central to the formulation
of solutions to different problems. If one is correcting turbulence, then the filter
function must have a magnitude of less than unity for the correction to be
effective. Sometimes there are regions of κ where this is not true. In those regions
it is best to suppress the correction, if possible.

Note that often one is interested in calculating phase-related quantities in
which the turbulence effects are all in the very near field, for which case, one
can set the cosine terms equal to unity, thereby simplifying the evaluation of the
integral. For large apertures this approximation is generally valid.

The phase and log-amplitude distributions are Gaussian in the region where
the Rytov approximation is valid. The distribution of the amplitude is, therefore,
log-normal. Since the intensity is the square of the amplitude, the variance of
the logarithm of intensity is four times that of log amplitude, χ

σ2
ln I = 4σ2

χ. (2.111)

Specific cases of the general formula for variances given above that are of
interest in different problems are found by setting various terms equal to zero.
These specific formulas are given in eq. 2.112–eq. 2.124. For instance, if there
is only one beam, then the weighting function A (κ, z) is zero, and the general
formula reduces to[

σ2
φR

σ2
χR

]
= 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

[
cos2 [P (γ, κ, z)]

sin2 [P (γ, κ, z)]

]
F̂ (γκ) , (2.112)

where
F̂ (γκ ) = Ĝ (γκ ) Ĝ∗ (γκ ) . (2.113)

Let us look at this for the three cases. For Case 1 F̂ (κ) = 1. For Case 2
F̂ (κ) = Ĝ (γκ ) Ĝ∗ (γκ ). For Case 3 F̂ (κ) = Ĝ (γκ ) Ĝ∗ (γκ ) g2(ρ).
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For Case 3 the variance varies over the aperture. The aperture-averaged vari-
ance is

∫
dρ F̂ (κ) = Ĝ (γκ ) Ĝ∗ (γκ )

∫
dρ g2(ρ) = Ĝ (γκ ) Ĝ∗ (γκ ), which is

the same expression as Case 2.
The expression above for a specific problem looks different than the equivalent

expression obtained when the problem is solved by other methods: however,
the expressions are equivalent. One can obtain the other form by making the
substitution γκ → κ. So, for instance, performing that substitution in the last
equation, one obtains

[
σ2

φR

σ2
χR

]
= 0.2073 k2

0

L∫
0

dz C2
n(z)γ5/3

×
∫

dκ
[
f(κ/γ)/γ11/3

] [ cos2 [P (γ, κ/γ, z)]

sin2 [P (γ, κ/γ, z)]

]
F̂ (κ) . (2.114)

Expressions for various specific cases are now given. If there are two beams
with weighting on the phase or log-amplitude differing by a real multiplier, i.e.,
A (κ, z) is real, and whose values of γ are equal, then

[
σ2

φR

σ2
χR

]
= 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f (κ)

×
[ {cos [P1 (γ, κ, z)] − A (κ, z) cos [P2 (γ, κ, z)]}2

{sin [P1 (γ, κ, z)] − A (κ, z) sin [P2 (γ, κ, z)]}2

]
F̂ (γκ) . (2.115)

If there are two beams whose centers coincide along the path with equal beam
weighting, whose values of γ are equal, but where different aperture modes are
wanted, then

[
σ2

φR

σ2
χR

]
= 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

×
[
cos2 [P (γ, κ, z)]
sin2 [P (γ, κ, z)]

] ∣∣∣Ĝ1 (γκ) − Ĝ2 (γκ)
∣∣∣2 . (2.116)

If there are two beams whose centers coincide along the path with equal
weighting of phase and log-amplitude, whose values of γ differ, but where dif-
ferent aperture modes are wanted and diffraction can be neglected, then

σ2
φR = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

∣∣∣Ĝ1 (γ1 κ ) − Ĝ2 (γ2 κ )
∣∣∣2 . (2.117)

This is an important case. When the tilt difference between two waves is
required, one can use the tilt filter function given in the next chapter to obtain

σ2
φR = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

∣∣∣∣∣4J2 (γ1κD/2)

γ1κD/2
− 4J2 (γ2κD/2)

γ2κD/2

∣∣∣∣∣
2

.

(2.118)
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54 2 Basic Equations for Wave Propagation in Turbulence

When the phase difference between two waves is wanted, eq. 2.117 reduces to

σ2
φR = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ) |exp (iγ1 κ · ρ ) − exp (iγ2 κ · ρ )|2 .

(2.119)
Two situations of this case are considered in the next chapter. In one, a

wave that emanates from a focus at L is received and a collimated beam is
transmitted. In the second, a beam emanating from a focus at L is received and
a beam focused at the same place is transmitted. The situation is elaborated by
considering an offset of the beams and a finite size source. For a finite source,
the phase from each point in the source must be integrated to obtain the full
contribution.

For the case of one beam being collimated for which γ = 1 and the second
being focused at L for which γ = 1 − z/L, the above equation reduces to

σ2
φR = 0.4146 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ) [1 − cos(κ · ρz/L)] . (2.120)

Note that the variance varies over the receive aperture through the cosine
term. The variance is zero in the center of the aperture. Because of this aper-
ture dependence, the standard assumption of the variance being independent of
aperture position in the calculation of the Strehl ratio is not valid. The general
consequences of this issue are addressed in Sec. 2.5. For this case it will be found
that the structure function is independent of position.

The phase variance can be integrated over the receive aperture of diameter
D to obtain the aperture-averaged filter function given in eq. 3.64, which is the
limit of allowing the source size and offset to go to zero.

F (κ) = 2

[
1 − 2

J1 (κDz/2L)

κDz/2L

]
. (2.121)

Consider the difference between two beams of equal amplitude that are dis-
placed from each other. A displacement in real space d, which can be a function
of z, is equivalent to a phase shift in transform space; therefore

A (κ, z) = exp (iκ · d) , (2.122)

where d is the distance between the beam centers of the two waves, which can
be a function of z. The anisoplanatic filter function A (κ, z) is the same for
collimated and focused beams with the same displacement of beam centers.

If there are two beams displaced from each other by a distance d that have
the same propagation constant, and of which the same aperture-averaged mode
is wanted, one obtains
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⎡
⎢⎣

σ2
φR

σ2
χR

σ2
R

⎤
⎥⎦ =

⎡
⎢⎣Dφ (d)
Dχ (d)
D (d)

⎤
⎥⎦ = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

×

⎡
⎢⎣ cos2 [P (γ, κ, z)]

sin2 [P (γ, κ, z)]
1

⎤
⎥⎦F (γκ) 2 [1 − cos (κ · d )] , (2.123)

where σ2
R is the sum of the phase and log-amplitude variances, and Dφ (d),

Dχ (d), and D (d) are the structure functions for phase, log-amplitude, and their
sum, respectively.

The same approach used to find anisoplanatic effects can be used to find the
covariance functions for phase and log-amplitude related quantities as

[
BφR (d)
BχR (d)

]
=
〈

φR (ρ + d) φR (ρ)
χR (ρ + d) χR (ρ)

〉
= 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

× [G1 (γ1 κ) α − A (κ, z) G2 (γ2 κ) β]

× [G∗
1 (γ1 κ)α − A∗ (κ, z) G∗

2 (γ2 κ) β] cos (κ · d ) , (2.124)

where

α =
[
cos [P1 (γ1, κ, z)]
sin [P1 (γ1, κ, z)]

]
, and β =

[
cos [P2 (γ2, κ, z)]
sin [P2 (γ2, κ, z)]

]
. (2.125)

In a similar fashion, the equivalent of eq. 2.110—eq. 2.123 can be found for
the correlation function.

The same method of analysis as used above can be applied to find the
aperture-averaged second moment of the product of phase and log-amplitude
related quantities. For a single wave the relation is

σ2
φχR = 0.1037 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ) sin [2P (γ, κ, z)]F (γκ ) . (2.126)

With a unity filter function this can be evaluated to give

σ2
φχ = 2.10 k

7/6
0

L∫
0

dz C2
n(z) (γz)5/6 . (2.127)

In Chap. 4 the scintillation variance is found to be

σ2
χ = 0.5631 k

7/6
0

L∫
0

dz C2
n(z) (γz)5/6 . (2.128)

The value of the cross variance between amplitude and phase is 3.73 times the
variance of amplitude. For some problems it is stated that the cross correlation
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56 2 Basic Equations for Wave Propagation in Turbulence

term is negligible compared to the sum of the phase and amplitude variances.
That normally is true. For zero outer scale size, the phase variance is infinite
because there is infinite energy in the long wavelength turbulence. If a finite
outer scale is inserted, then the phase variance is finite. For reasonable values of
outer scale, the phase variance is still considerably larger than the cross variance.

2.4 Power Spectral Density

Deleterious effects of turbulence (such as beam jitter) are ameliorated by design-
ing suitable beam-control systems. For example, in order to design a tracking
system with a certain level of performance requires one to know the frequency
spectrum of jitter. Taylor’s frozen-turbulence assumption is used in such calcu-
lations. It assumes that atmospheric-turbulence disturbances do not change in
typical time scales of interest, but are transported frozen across the aperture by
wind or telescope slewing. With this assumption, one can transform the spatial-
spectrum variables given in eq. 2.110 into temporal-frequency variables ω and
c. In particular, let

ω = κ · v(z). (2.129)

Set up the local coordinate system so that the wind velocity across the prop-
agation path, whose magnitude is given by v(z), is in the x direction so that
ω = κxv(z). Therefore,

dκx =
dω

v(z)
. (2.130)

Make the additional change of variables

c2 =
κ2

y v2(z)

ω2
+ 1, (2.131)

from which follows

κ =
ωc

v(z)
, and dκy =

ω

v(z)

cdc√
c2 − 1

. (2.132)

The last change of variables was selected to produce a unity Jacobian and an
integrand for which a Mellin transform exists. Express the relation for variance
given in eq. 2.110 as functions of these two new variables ω and c. Interchange the
order of integration so that the omega integration is performed last, and express
the integrals over omega and c, whose limits go from −∞ to +∞, as each double
the value of an integral from 0 to +∞. After these steps, the general formula for
variance can be expressed as an integral over ω. Power spectral density S (ω) is
related to variance σ2 as

[
σ2

φR

σ2
χR

]
=

1

π

∞∫
0

dω
[
Sφ(ω)
Sχ(ω)

]
. (2.133)
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2.5 Beam Shape and Strehl Ratio 57

As an example, consider the power spectral density for a single wave that
is given in eq. 2.112 for a wave propagating from z = 0 to z = L. If the filter
function depends on the magnitude of κ and filtering Ff (ω) due to a servo system
is also included, then the residual power spectral density is

[
Sφ(ω)
Sχ(ω)

]
= 2.606 k2

0 ωFf (ω)

L∫
0

dz
C2

n(z)

v2(z)

∞∫
0

dc
c U(c − 1 )√

c2 − 1

×f

[
ωc

v (z)

] [
cos2 [γω2c2(L − z)/2v2(z) k0]

sin2 [γω2c2(L − z)/2v2(z) k0]

]
F

[
γωc

v (z)

]
. (2.134)

The servo filter function Ff (ω) is the modulus squared of the frequency filter
function of a servo system

Ff (ω) = Gf (ω)G∗
f (ω). (2.135)

For instance, in a tracking system Ff (ω) is found from the frequency response
of the tracking-mirror servo system. The Heaviside step function is defined in
eq. 1.20. The c integration is easily evaluated with Mellin transform techniques
for common problems. Examples are considered in Secs. 4.8, 7.7, and 12.6.

Just as an offset in the spatial domain of d is represented by a filter function
exp [iκ · d], a time delay td has a filter function exp[iωtd]. The filter function for
the coherent addition of two signals each with half the power of one signal is
(1 + cos[wtd])/2.

More complicated problems can be analyzed. For instance, consider the situ-
ation in Fig. 2.7. The signal tilt is tracked using a receive aperture of diameter
Dr with a servo response Gf (ω). The tilt is applied to an aperture of diameter
Dt offset by a distance d and angle θ. The frequency content and phase variance
of the difference of the two tilts is found by using the filter function for tilt given
in eq. 3.22 and the filter function for anisoplanatism to give

σ2 = 849
∫ ∞

0

dω

ω

L∫
0

dz C2
n(z)

∞∫
0

dc

c

U(c − 1 )√
c2 − 1

f

[
ωc

v (z)

] ∣∣∣∣∣∣Gf (ω)
J2

(
ωcDr

2v(z)

)
D2

r

−
J2

(
ωcDt

2v(z)

)
D2

t

exp

[
iω

v(z)

(
θxz + dx + (θyz + dy)

√
c2 − 1

)]∣∣∣∣∣∣
2

cos2

[
ω2c2(L − z)

2v2(z)k0

]
.

(2.136)

2.5 Beam Shape and Strehl Ratio

Second moments are sufficient for many problems. For others the analysis must
be carried further. In this section, expressions for beam shape and Strehl ratio
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58 2 Basic Equations for Wave Propagation in Turbulence

Figure 2.7. Illustration of a system that is tracking an object with a servo
system and applies that tilt to a displaced aperture of a different diameter.

are found in terms of phase and amplitude structure functions for an unobscured
circular aperture with a uniform and a Gaussian amplitude distribution.

The extended Huygens-Fresnel approximation to beam propagation described
by Fante (1985) that applies to collimated beams is used; it results in the fol-
lowing formula for a component of electric field at a distance z from a source

E (ρ) =
1

iλz

∫
dρ′E (ρ′) exp

[
iπ

λz
(ρ − ρ′)

2
+ χ (ρ,ρ′, z) + iφ (ρ,ρ′, z)

]
,

(2.137)
where the dependence of both the log-amplitude χ (ρ,ρ′, z) and phase fluctu-
ations φ (ρ,ρ′, z) on the source plane at ρ′ and measurement plane at ρ (see
Fig. 3.1) are explicitly shown. The axial dependence of electric field is not explic-
itly shown. Intensity is found by multiplying the field by its complex conjugate.

In the paraxial approximation that applies to waves that are confined to
a small distance about the propagation direction—a condition that holds for
laser-beam propagation—second-order terms in ρ′ are negligible.

The intensity is given by

E (ρ)E∗ (ρ) =
E2

(λz)2

∫
dρ′′

∫
dρ′ E (ρ′′) E (ρ′) exp

{
i2π

λz
[ρ · (ρ′′ − ρ′)] + δ

}
,

where δ = χ (ρ,ρ′′, z) + χ (ρ,ρ′, z) + i [φ (ρ,ρ′′, z) − φ (ρ,ρ′, z)] .
I am interested in the ensemble average of this intensity. Assume that the

phase and log-amplitude fluctuations are Gaussian in character. This is not true
for the log-amplitude except for low turbulence levels; however, since the phase
variance dominates the structure function it is a good approximation. I use a
general result for Gaussian statistics where A and B are independent Gaussian
variables

〈exp (αA + βB)〉

= exp

[
α2

2

〈
(A − 〈A〉)2

〉
+ α 〈A〉 +

β2

2

〈
(B − 〈B〉)2

〉
+ β 〈B〉

]
, (2.138)
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2.5 Beam Shape and Strehl Ratio 59

where angle brackets denote ensemble average.
Let

α = (ρ′′ − ρ′) /D, (2.139)

and
α′ = (ρ′′ + ρ′)/2D. (2.140)

Introduce the covariance of the log-amplitude as

Cχ(αD,ρ′) = 〈[χ(ρ′′) − 〈χ(ρ′′)〉] [χ(ρ′) − 〈χ(ρ′)〉]〉. (2.141)

The structure function of log amplitude can be expressed as

Dχ (αD,ρ′) = 〈[χ(αD + ρ′) − χ(ρ′)]2〉 = 2[Cχ(0,ρ′) − Cχ(αD,ρ′)]. (2.142)

Turbulence does not change the average energy in the beam; it just redis-
tributes it. To obtain an important result, choose α = 0, β = 2 and B = χ in
eq. 2.138. Then, the left hand side, which is the average normalized energy, is
equal to unity, and the expression in the exponential on the right must equal
zero. This leads to the requirement that the average log-amplitude is equal to
the log-amplitude correlation

〈χ(ρ′)〉 = −〈[χ(ρ′) − 〈χ(ρ′)〉]2〉 = −Cχ(0,ρ′). (2.143)

If one starts with the basic equations for log-amplitude, this is a result that
requires second-order Rytov theory to derive. In first-order Rytov theory the
average value of χ(ρ) in eq. 2.96 is zero.

Two other results that will be needed are

〈[χ(ρ′) + χ(ρ′′)] [φ(ρ′) − φ(ρ′′)]〉
= · · ·Re [exp(iκ · ρ′) + exp(iκ · ρ′′)] [exp(iκ · ρ′) − exp(iκ · ρ′′)]

∗

= Re {1 − 1 − exp[iκ · (ρ′ − ρ′′)] + exp[iκ · (ρ′′ − ρ′)]}
= 0, (2.144)

〈[χ(ρ′′) − 〈χ(ρ′′)〉 + χ(ρ′) − 〈χ(ρ′)〉]2〉 + 2〈χ(ρ′)〉
= 〈[χ(ρ′′) − 〈χ(ρ′′)][(χ(ρ′) − 〈χ(ρ′)〉]〉 + 〈[χ(ρ′) − 〈χ(ρ′)〉]2〉 − 2Cχ(0,ρ′)
= Cχ(αD,ρ′) + Cχ(0,ρ′) − 2Cχ(0,ρ′)
= Dχ(αD,ρ′). (2.145)

We will also use the relations

Dφ (αD,ρ′) = 〈[φ(αD + ρ′) − φ(ρ′)]2〉. (2.146)

and
D (αD,ρ′) = Dφ (αD,ρ′) + Dχ (αD,ρ′) . (2.147)

Use of eq. 2.138 with α = 1, β = i, A = χ (ρ,ρ′′, z) + χ (ρ,ρ′, z), and
B = φ (ρ,ρ′′, z) − φ (ρ,ρ′, z) and the above results allows the average intensity
to be expressed as
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60 2 Basic Equations for Wave Propagation in Turbulence

〈E (ρ)E∗ (ρ)〉 =
E2

(λz)2

∫
dρ′′

∫
dρ′ E (ρ′′)E (ρ′)

× exp
[
i2π

λz
(ρ · αD ) −D (αD,ρ′) /2

]
.

The normalized expected value of the intensity is

I(ρ) =
(

4

πD

)2∫
dρ′′

∫
dρ′ E (ρ′′)E (ρ′) exp

[
i2π

λz
(ρ · αD ) −D (αD,ρ′) /2

]
,

(2.148)
which leads to an expression for the Strehl ratio of

SR =
(

4

πD

)2 ∫
dρ′′

∫
dρ′ E (ρ′′)E (ρ′) exp [−D (αD,ρ′) /2] . (2.149)

If the source distribution in the aperture is uniform, then, E (ρ ) = E W (ρ ),
where

W (ρ ) = U (D/2 − |ρ |) . (2.150)

If the structure function is a function of ρ′, then the integral over the four
aperture coordinates must be performed. If the amplitude is constant over the
aperture, the coordinate transformations ρ′ = ρ′ and α = (ρ′′ − ρ′) /D result
in

I(ρ) =
(

4

πD

)2 ∫ 2π

0
dθα

∫ 1

0
αdα

∫ 2π

0
dθρ

∫ D/2

0
ρ′dρ′

× W (ρ′ + αD)W (ρ′) exp
[
i2π

λz
[ρ · αD ] −D (αD,ρ′) /2

]
. (2.151)

2.5.1 Structure function dependent on aperture position

In this section some relations are developed for use when the structure function
depends on position. This will be used in the calculation of the Strehl ratio for
a tracked beam.

The function W (ρ′) is equal to unity within a circle of diameter D/2 centered
on the origin. The only time the integrand has a non-zero value is when the
argument of W (ρ′ − αD) is less than D/2. Therefore, the product of the two
functions can be replaced by a unit step function to give

I(ρ) =
(

4

πD

)2 ∫ 2π

0
dθα

∫ 1

0
αdα

∫ 2π

0
dθρ

∫ D/2

0
ρ′dρ′

× U (D/2 − |ρ′ + αD|) exp
{

i2π

λz
[ρ · αD ] −D (αD,ρ′) /2

}
. (2.152)

The Strehl ratio in this case is

SR =
(

4

πD

)2 ∫ 2π

0
dθα

∫ 1

0
αdα

∫ 2π

0
dθρ

∫ D/2

0
ρ′dρ′

× U (D/2 − |ρ′ + αD|) exp {−D (αD,ρ′) /2} . (2.153)
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2.5 Beam Shape and Strehl Ratio 61

In performing the numerical integration, we have found that the convergence
properties of eq. 2.149 are better than eq. 2.153.

The often used assumption that the structure function is a function only of the
difference of positions is not true for some cases of interest, the most common
being when the tilt is subtracted from the phase. The phase variance will be
higher in the aperture center than at the edge. These problems are more difficult
to solve because the integral over α′ cannot be performed analytically; therefore,
there is an additional two-dimensional integral to be performed numerically.

To show that the resulting field can be significantly affected by a phase vari-
ance that varies with position, I will use a pathological case. On an aperture
let the phase variance be zero out to the diameter Do and very large from Do

to D. The average phase variance is very large and one would get a very small
intensity if only the average phase variance were used in the expression. For the
actual distribution there is no contribution to the integral if either ρ′ or ρ′′ is
in the annulus where the phase variance is very large. The intensity on axis is
equal to (Do/D)2 of the intensity with no phase variance over the aperture. This
answer is significantly different from that assuming an average phase variance.

The structure function contains the phase difference at two points. Because
of this, any long range phase correlations will cancel. Therefore, even though
the phase variance with infinite outer scale is infinite, the structure function is
finite. The phase subtraction is not the same as piston removal. Very often in
systems that use a return from some beacon to drive an adaptive-optics system,
there is a tracker that removes tilt, and the Strehl ratio with tilt removed is
what is sought. The expression for the structure function above can be modified
by subtracting the tilt term in eq. 3.27 to give

D (αD,ρ′) = 0.2073 k2
0

L∫
0

dz C2
n(z)

∫
dκ f(κ)F (κ)

×
[
2 [1 − cos (γκ · αD)] − 4J2(γκD/2)

γκD/2
(2ρ′/D) cos(θ′ − ϕ) sin (γκ · αD)

]
,

(2.154)

where θ′ is the angle in ρ′ space. Calculation of the Strehl ratio with a position-
dependent structure function is illustrated in Sec. 7.5.

One can also consider the effect of using a servo system that does not remove
all the tilt. Make the coordinate transformations in κ space used in Sec. 2.4 and
introduce the servo response in the manner given there. The resulting formula is
the structure function with the effects of the tracking servo system with response
Ff (ω) included.
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62 2 Basic Equations for Wave Propagation in Turbulence

D (αD,ρ′) = 0.2073 k2
0

L∫
0

dz C2
n(z)

{∫
dκ f(κ)F (κ)2 [1 − cos (γκ · αD)]

− 1

πv2(z)

∫ ∞

0
dωFf (ω)

∫ ∞

0
dc

cU(c − 1)√
c2 − 1

4J2(γωcD/2v(z))

γωcD/2v(z)

×(2ρ′/D) cos(θ′ − ϕ) sin (γκ · αD)F (κ)
}

, (2.155)

where in the last line of the formula κ has to be replaced by

κ = i
ω

v(z)
+ j

ω

v(z)

√
c2 − 1. (2.156)

2.5.2 Structure function independent of aperture position

Let us now address the simpler case in which the variance is independent of po-
sition, the structure function can be represented by a relation that only depends
on the difference in position of two points, and can be written as

[Dφ (αD,ρ′)
Dχ (αD,ρ′ )

]
=
[Dφ (αD)
Dχ (αD)

]
= 2

[ 〈φ2(0)〉 − 〈φ (αD) φ(0)〉
〈χ2(0)〉 − 〈χ (αD) χ(0)〉

]
, (2.157)

where this structure function is defined in eq. 2.123 as

D (d) = 0.2073 k2
0

L∫
0

dz C2
n(z)

∫
dκ f(κ)F (γκ) 2 [1 − cos (κ · d )] . (2.158)

In this next section the Strehl ratio for two common beam shapes will be cal-
culated: a top-hat distribution that has a constant amplitude across an aperture
of diameter D and a Gaussian distribution whose field has fallen by 1/e from
the peak at the radius W0. I will prove an important relation that can be used
more generally: the Strehl ratio for the two cases is the same for large diameters
if D = 2

√
2W0.

Strehl ratio for a top-hat beam

For the simpler case of a uniform variance and uniform intensity over a circular
aperture, the integral over the sum coordinate, α′, can be performed analytically
in the following manner. Express the original coordinates in terms of new ones as
ρ′′ = α ′D+αD/2, and ρ′ = α ′D−αD/2. The expected value of the intensity
divided by the intensity with no turbulence can be written as

I (ρ) =
∫

dα exp
[
i2π

λz
(ρ · αD) −D (αD) /2

]

×
∫

dα′ W (α′D + αD/2) W (α′D − αD/2) . (2.159)
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2.5 Beam Shape and Strehl Ratio 63

The function W (x) is unity anywhere in a circle of diameter D centered on x.
Integration over the two overlapping circles W (α′D + αD/2) W (α′D − αD/2)
can easily be performed as shown by Fried (1967). The result is∫

dα′ W (α′D + αD/2) W (α ′D − αD/2) = K(α)

=
16

π

[
cos−1(α) − α

(
1 − α2

)1/2
]
U(1 − α), (2.160)

where U (x) is the Heaviside unit step function defined in eq. 1.20. With this
result the normalized intensity is given by

I (ρ ) =
1

2π

∫
dαK(α) exp [ik0D ρ · α/z −D (αD) /2] . (2.161)

If the structure function is isotropic, the integration in the aperture over angle
can be performed to give

I (ρ) =

1∫
0

dααK(α) J0

(
k0 ρDα

z

)
exp

[
−D(αD)

2

]
. (2.162)

The Strehl ratio, the most common description of the performance of an
optical system, is given by the value of normalized intensity evaluated at ρ = 0.

SR =
1

2π

∫
dαK(α) exp

[
−D (αD)

2

]
. (2.163)

When the structure function is isotropic, the integration over angle in the
aperture can be performed to yield

SR =

1∫
0

dααK(α) exp

[
−D(αD)

2

]
. (2.164)

Mellin transform techniques are of limited usefulness in evaluating this inte-
gral. The integral can be put in the form

SR =
1

2πi

8√
π

∫
ds

x−s

s + 2
Γ
[
s/2 + 3

2

s/2 + 3

]
M

[
exp

(
−D(αD)

2

)]
. (2.165)

The only structure function for which the Mellin transform can be evaluated
analytically is when the structure function is a power of the argument. That is
the case for uncorrected turbulence and for the effect of tilt on the Strehl ratio.
Those problem are solved analytically in Chap. 8. For other problems the Strehl
ratio must be evaluated numerically as illustrated in Sec. 8.5.

Eq. 2.164 can be written as

SR = exp
(
−σ2

) 1∫
0

dααK(α) exp [〈φ (αD) φ(0)〉 + 〈χ (αD) χ(0)〉] , (2.166)
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64 2 Basic Equations for Wave Propagation in Turbulence

where the total variance is

σ2 =
〈
φ2(z)

〉
+
〈
χ2(z)

〉
. (2.167)

If phase and log-amplitude have a short correlation distance, then the expo-
nential term in the integrand can be replaced by unity to give

SR = exp
(
−σ2

)
. (2.168)

If amplitude fluctuations are small, as they are for many situations, this
becomes the extended Maréchal approximation

SR ≈ exp
(
−σ2

φ

)
, (2.169)

where σ2
φ is the phase variance. The validity of this approximation is extended

for anisoplanatic effects in Sec. 8.3.
If phase variance is small compared to unity and is not strongly correlated at

different points, one obtains the Maréchal approximation

SR ≈ 1 − σ2
φ. (2.170)

For some problems the correlation distance is not small, and the above ap-
proximation is accurate only for variances that are less than 0.1. For instance, for
uncorrected turbulence there is considerable energy at long wavelengths, which
causes a long length correlation. For anisoplanatism problems the difference be-
tween the two waves will greatly reduce the long wavelength turbulence effect;
therefore, the Maréchal approximation should be valid for smaller Strehl ratios
for those types of problems.

Strehl ratio for a gaussian beam

For a Gaussian beam, the field is given by

E (ρ, z) =
A

1 + iα z
exp

[
ik0z − k0α ρ2

2(1 + iα z)

]
, (2.171)

where
α = αr + i αi = λ/πW 2

o + i/Ro. (2.172)

The parameter Ro is the radius of beam curvature at the source. It is equal to
infinity for a collimated beam. For convenience let e = k0 α/(2(1 + iα z)).

The equivalent of eq. 2.149 for a Gaussian beam is

SR = C
∫

dρ′′
∫

dρ′ E (ρ′′, z)E (ρ′, z) exp {−D [(ρ′′ − ρ′),ρ′] /2} , (2.173)

where C is a constant that will be chosen to give a SR of unity when there is
no turbulence. Substitute in the Gaussian field and use eq. 2.139 and eq. 2.140
with α → α′ and α′ → α′′ to avoid confusion with the α in e to obtain
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2.5 Beam Shape and Strehl Ratio 65

SR = C ′
∫

dα′
∫

dα′′ exp [−D (α′,ρ′) /2] exp
[
−2e

(
α′′2 + α′2/4

)]
. (2.174)

If the structure function only depends on the magnitude of α′, then the two
angular integrations and the integration over α′′ can be performed to obtain

SR = C ′′
∫ ∞

0
α′dα′ exp [−D (α′,ρ′) /2] exp

(
−eα′2/2

)
. (2.175)

For no turbulence, where the structure function is zero, the last integration
can be performed. Setting the result equal to unity, one obtains C ′′ = e; there-
fore; the Strehl ratio is

SR = e
∫

α′dα′ exp [−D (α′,ρ′) /2] exp
(
−e α′2/2

)
. (2.176)

For normal turbulence in which the structure function is

D (α′) = 6.88 (α′/ro)
5/3

, (2.177)

the Strehl ratio is

SR = e
∫

α′dα′ exp
[
−3.44 (α′/ro)

5/3
]
exp

(
−e α′2/2

)
. (2.178)

For plane waves the coherence diameter r0 is equal to

r0 =
(
0.423 k2

0 μ0

)−3/5
. (2.179)

Make the substitutions x = eα′2/2 and y = er2
o/2 ∗ 3.446/5 to obtain

SR =
∫ ∞

0

dx

x
x exp

[
− (x/y)5/6

]
exp (−x) . (2.180)

With the same methods that are used to derive the Strehl ratio for the top-hat
in the Chap. 7 express the Strehl ratio as

SR =
6

5

1

2πi

∫
C

ds Γ [s + 1, −6s/5] y−s. (2.181)

The solution can be written by inspection as a Fox H-function using eq. 1.39
to give

SR =
6

5
H1,1

0,0

[
y

∣∣∣∣∣ (0, 1)(
0, 6

5

) ] . (2.182)

The integral will also be evaluated to give a power series since there are no
commercial programs to plot the H-function. Since Δ = −1/5, the integral can
be closed in the right-half plane. Encircled poles are located at s = 5n/6, for
n = 0, 1, 2, . . . . Residues at the enclosed poles give the following convergent
series
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66 2 Basic Equations for Wave Propagation in Turbulence

SR =
∞∑

n=0

(−1)n

n !
Γ [1 + 5n/6]

(
er2

o

3.446/52

)−5n/6

. (2.183)

For small values of the coherence diameter this series converges slowly, and
an asymptotic series is more convenient. For this case one can show that the
steepest-descent contribution has exponential decay; therefore, the asymptotic
solution is equal to the sum of pole residues on the left side of the integration
path. For small coherence diameters only the first pole at s = −1 contributes
significantly. The first term of the asymptotic series is

SR∼6Γ [6/5]y/5. (2.184)

It is this relation that will be the basis for the definition of the equivalent diam-
eter of a beam wave. If one is in the near field, then

e =
k0α

2(1 + iα z)
≈ k0α

2
. (2.185)

For this case

SR∼
(

ro

2
√

2W0

)2

, (2.186)

where W0 is the 1/e2 beam radius. Therefore, the diameter for a beam wave that
corresponds to the diameter for uniform illumination is

De = 2
√

2W0. (2.187)

This relationship is only true in the asymptotic limit of small coherence di-
ameters. In Fig. 2.8 the difference between the Strehl ratio for a Gaussian and a
top-hat beam normalized to the Strehl ratio of a top-hat beam is plotted. One
sees that the maximum error in determining the Strehl ratio of a Gaussian beam
from the relation for a top-hat beam is that the calculated value is as much as
11% too low.

It will be shown when the Zernike modes of a Gaussian beam are found that
this relation applies more generally than just for the Strehl ratio.

At a radius
√

2W0 on the Gaussian wave the field is exp(−2) = 0.1353 of its
value in the center, giving an intensity of exp(−4) = 0.01832 of the peak value.

The convergent series can be rewritten in terms of this equivalent diameter
as

SR =
∞∑

n=0

(−1)n

n !
Γ [1 + 5n/6] (1.10)5n/6

(
De

ro

)−5n/3

. (2.188)

The first few terms of this series are

SR = 1 − 1.018
(

De

ro

)5/3

+ 0.8818
(

De

ro

)10/3

− 0.7029
(

De

ro

)5

· · · (2.189)

To obtain more terms of the asymptotic series, the integral can be closed in the
left-half plane. Encircled poles are located at s = −1 − n, for n = 0, 1, 2, . . . .
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2.5 Beam Shape and Strehl Ratio 67

Figure 2.8. Normalized difference of the exact value of the Strehl ratio for
a Gaussian beam and that calculated using the top-hat expression with the
substitution De = 2

√
2W0. The actual Strehl ratio for a Gaussian beam can be

as much as 11% higher than that calculated using the top-hat expression.

SR∼
N∑

n=0

(−1)n

n !

Γ [6/5 + 6n/5]

Γ [6/5]

(
ro

De

)2+2n

. (2.190)

The first few terms of the series are

SR∼
(

ro

De

)2

− 1.353
(

ro

De

)4

+ 2.024
(

ro

De

)6

− 3.238
(

ro

De

)8

. (2.191)
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Chapter 3

Filter Functions

In the last chapter expressions for phase and log-amplitude variances were de-
rived. These expressions contained an aperture filter function. In this chapter
explicit filter functions are derived for many cases of interest. First, those needed
to calculate variances of any Zernike mode on an unobscured circular aperture
are found. Next, expressions to find piston and tilt on an annular aperture are
derived.

Filter functions required to determine the effect of either a finite-size source
or receiver on the scintillation are derived. The filter function to be used when
both the receiver and source are finite in size is also given.

Often in adaptive-optics systems the phase produced by a focused beam of
finite size is used to correct an outgoing collimated beam. The source of the
focused beam may not be coaxial with the outgoing beam. Filter functions that
apply for each of these cases are derived.

All filter functions are given assuming the wave is collimated and infinite
in extent. These filter functions can be applied to focused or finite beams by
changing the transverse coordinate to γ times the transverse coordinate, where
γ is the propagation parameter defined in eq. 2.74 for a source at z = 0, and in
eq. 2.77 for a source at z = L.

New filter functions can be created from existing complex filter functions by
taking the absolute value squared of their difference. This technique is used to
find the filter function that applies to the performance of an adaptive-optics
system. This technique is used mainly in the next chapter.

Filter functions derived in this chapter are for circular apertures, which are
the most commonly encountered. Filter functions for other shapes can be derived
with similar methods.

Generally, one can use the filter functions for the variance. For some problems
that have several effects present, one is required to start with the expressions
for phase and log-amplitude and apply the filter functions before the variance is
found. The method and two examples illustrating it are given at the end of the
chapter.

To evaluate various integrals, I shall need some Bessel function relations. The
recurrence relations for Bessel functions are
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70 3 Filter Functions

d [rpJp(ar)]

dr
= arp Jp−1(ar), and (3.1)

d

dr

[
Jp(ar)

rp

]
= − a

rp
Jp+1(ar). (3.2)

Two important special cases are

d [rJ1(ar)]

dr
= ar J0(ar), and (3.3)

d

dr
[J0(ar)] = −a J1(ar). (3.4)

I also use the following integrals where n is an integer

Jn(r) =
i−n

2π

2π∫
0

dϕ cos (nϕ) exp [i r cos (ϕ)] =
1

2π

2π∫
0

dϕ cos [r cos (ϕ) + nϕ] ,

(3.5)
and

2π∫
0

dϕ sin (nϕ) exp [i r cos (ϕ)] = 0. (3.6)

3.1 Circular Aperture Modes

One often is interested in obtaining weighted averages of the phase or log-
amplitude over a receive aperture. The weights typically are polynomials, nor-
mally referred to as “modes”. Commonly, the receive aperture is an unobscured
circle or an annulus. In this section unobscured apertures are considered. Filter
functions for an annulus are found in a similar fashion in the next section. Modes
are defined for a Gaussian beam in the next chapter.

Consider the Zernike modes that were defined in a very useful way by Noll
(1976). His expressions are for an aperture of unit diameter, and they are mod-
ified here to apply to an aperture of diameter D. The definition of the x and y
components of the Zernike polynomials are

Zm,n(ρ, θ)x =
√

n + 1R m
n (2ρ/D)

√
2 cos (mθ) , and (3.7)

Zm,n(ρ, θ)y =
√

n + 1R m
n (2ρ/D)

√
2 sin (mθ) , (3.8)

for m �= 0. For m = 0 one uses

Z0,n(ρ, θ) =
√

n + 1R 0
n (2ρ/D) . (3.9)

The radial function is given by

R m
n (2ρ/D) =

(n−m)/2∑
q=0

(−1)q

q !

(n − q)! (2ρ/D)n−2q

[(n + m)/2 − q]! [(n − m)/2 − q]!
. (3.10)
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3.1 Circular Aperture Modes 71

There are requirements that m ≤ n, and that n − m be even.
These polynomials are of interest because they correspond to the common

optical aberrations. Z0,0 (ρ, θ) is piston, Z1,1 (ρ, θ)x and Z1,1 (ρ, θ)y are the two
components of tilt, Z0,2(ρ, θ) is focus, and Z2,2 (ρ, θ)x and Z2,2 (ρ, θ)y are the two
components of astigmatism, Z1,3 (ρ, θ)x and Z1,3 (ρ, θ)y are the two components
of coma, and Z0,4 (ρ, θ) is third-order spherical distortion.

Of particular interest are the modes for piston

Z0,0(ρ, θ) = 1, (3.11)

and tilt

Z1,1(ρ, θ)x =
4ρ

D
cos(θ), (3.12)

Z1,1(ρ, θ)y =
4ρ

D
sin(θ). (3.13)

These modes are orthonormal. The normalization of the Zernike modes was
chosen so that

4

πD2

∫
dρZ2

n,m(ρ, θ)W (ρ) = 1. (3.14)

The aperture function W (ρ), defined in eq. 2.150, is equal to unity inside the
aperture and zero outside. Expressed in terms of the unit step, it is

W (ρ) = U (D/2 − |ρ |) . (3.15)

The Fourier transforms of Zernike polynomials defined by using eq. 2.99

G (κ) =
4

πD2

∫
dρW (ρ)Zm,n(ρ, θ) exp (iκ · ρ) , (3.16)

are equal to

Gm,n (κ)x

Gm,n (κ)y

G0,n (κ)

⎫⎪⎬
⎪⎭ =

√
n + 1

2Jn+1 (κD/2)

κD/2

⎧⎪⎨
⎪⎩

(−1)(n−m)/2in
√

2 cos (mϕ) ,
(−1)(n−m)/2in

√
2 sin (mϕ) ,

(−1)n/2 (m = 0).
(3.17)

These are the complex filter functions for extracting Zernike modes. Note that
the direction of the Zernike mode is in the direction of κ. The absolute value
squared of these, referred to simply as filter functions, are

Fm,n (κ)x

Fm,n (κ)y

F0,n (κ)

⎫⎪⎬
⎪⎭ = (n + 1)

[
2Jn+1 (κD/2)

κD/2

]2
⎧⎪⎨
⎪⎩

2 cos2 (mϕ) ,
2 sin2 (mϕ) ,
1 (m = 0).

(3.18)

Piston and tilt filter functions are of particular interest. Two representations
of these filter functions are given. For different problems, one or the other rep-
resentation is appropriate. For piston, the first representation gives the filter
function that extracts phase variance due to piston. In the second represen-
tation, the filter function extracts variance of the stroke of a flat mirror that
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72 3 Filter Functions

produces this piston by reflection. For tilt, the first filter function extracts phase
variance due to tilt, and the second extracts the variance of the corresponding
angular displacement in real space. The condition n = m = 0 gives the piston
phase-variance filter function

F (κ) =

[
2J1 (κD/2)

κD/2

] 2

. (3.19)

To obtain the representation that extracts the mean-square piston stroke, the
filter function has to be divided by the wavenumber squared. The filter function
to find piston stroke variance is thus

F (κ) =
(

1

k0

)2
[
2J1 (κD/2)

κD/2

]2

. (3.20)

This filter function can be used to calculate effects such as aperture averaging
of scintillation, which affects the twinkling of stars and planets, because piston
is basically a simple aperture average.

The terms n = m = 1 gives the filter function to determine tilt phase variance

Fx (κ)
Fy (κ)
F (κ)

⎫⎪⎬
⎪⎭ =

[
4J2 (κD/2)

κD/2

]2
⎧⎪⎨
⎪⎩

cos2 (ϕ) ,
sin2 (ϕ) ,
1.

(3.21)

The three terms are the x, y, and total tilt phase variance.
The filter function for variance of tilt angle in real space is a factor of (4/k0 D)2

times the phase-variance filter function. The filter function to determine tilt angle
variance is

Fx (κ)
Fy (κ)
F (κ)

⎫⎪⎬
⎪⎭ =

(
16

k0D

)2
[
J2 (κD/2)

κD/2

]2
⎧⎪⎨
⎪⎩

cos2 (ϕ) ,
sin2 (ϕ) ,
1 .

(3.22)

The local or final diameter must be inserted in k0D depending on the problem.
Often one wants the average phase variance on an aperture with some Zernike

modes removed. This will be found by first calculating the phase variance at
any point in the aperture, which is needed for some problems such as those
concerning the structure function, and then averaging this expression over the
aperture.
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Consider the case where the phase is multiplied by a filter function G(κ) that
arises from anisoplanatism. From the definition above Gn,m(γκ) is either purely
real or imaginary. For this case

F̂ ′ (γκ) = |G(κ)|2
∣∣∣∣∣exp (iγκ · ρ) −

∑
n,m

Gn,m(γκ)Zn,m(ρ, θ)

∣∣∣∣∣
2

= F (κ)

(
1 − 2 cos (γκ · ρ)

∑
n,m

ReGn,m(γκ)Zn,m(ρ, θ)

− 2 sin (γκ · ρ)
∑
n,m

ImGn,m(γκ)Zn,m(ρ, θ)

+
∑
n,m

∑
o,p

Gn,m(γκ)G∗
o,p(γκ)Zn,m(ρ, θ)Zo,p(ρ, θ)

)
. (3.23)

This is the filter function that multiplies the phase expression to obtain phase
with some Zernike modes removed if the phase is not averaged over the aperture.
When the integration in κ space is performed, the cross product terms with
different values of m integrate to zero. However, for the same m the cross product
terms do not integrate to zero, which is the indication that the Zernike modes
are not statistically independent.

The mode function for piston and tilt are given, since they are the most
important. For piston

G0,0 (γκ)Z0,0 (ρ) =
2J1(γκD/2)

γκD/2
. (3.24)

For the x component of tilt

G1,1 (γκ)x Z1,1 (ρ, θ)x = i
16J2(γκD/2)

γκD/2
(ρ/D) cos(θ) cos(ϕ), (3.25)

and for the y component of tilt

G1,1 (γκ)y Z1,1 (ρ, θ)y = i
16J2(γκD/2)

γκD/2
(ρ/D) sin(θ) sin(ϕ). (3.26)

As a reminder, θ is the angle in real space and ϕ is the angle in κ space. For
the total tilt

G1,1 (γκ)Z1,1 (ρ, θ) = i
16J2(γκD/2)

γκD/2

ρ

D
cos(θ − ϕ) = i

16J2(γκD/2)

γκD/2

ρ · κ
Dκ

.

(3.27)
The filter function to remove piston when there is no aperture averaging is

F (γκ) = 1 − 2 cos (γκ · ρ)

[
2J1 (γκD/2)

γκD/2

]
+

[
2J1 (γκD/2)

γκD/2

]2

. (3.28)

The filter function to remove tilt when there is no aperture averaging is
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74 3 Filter Functions

F (γκ) = 1 − 32 cos(θ − ϕ) cos (γκ · ρ)

[
ρJ2 (γκD/2)

γκD2/2

]

+

[
16ρJ1 (γκD/2)

γκD2/2
cos(θ − ϕ)

]2

. (3.29)

Let us now find the aperture-averaged phase variance with some Zernike
modes removed. In that case one needs to integrate the filter function over the
entire aperture of area A to obtain

F̂ (γκ) =

∫
dρ F̂ ′ (γκ)

A
= F ′(γκ)

[
1 −

∑
n,m

Fn,m (γκ)

]
, (3.30)

where eq.2.99 and the orthonomality of the Zernike modes on the aperture were
used.

The phase variance that results from this filter function is the total phase
variance minus the variance of each of the Zernike modes that are to be removed.
For instance, the filter function to find the aperture-averaged variance with
piston removed is

F (γκ) =

⎡
⎣1 −

0,0∑
n,m=0

Fn,m (γκ)

⎤
⎦ = 1 −

[
2J1 (γκD/2)

γκD/2

]2

. (3.31)

For piston and tilt removal the filter function is

F (γκ) = 1 −
[
2J1 (γκD/2)

γκD/2

]2

−
[
4J2 (γκD/2)

γκD/2

]2

. (3.32)

One cannot use these last two equations in calculating the structure function
with some Zernike modes removed because for the structure function the modes
are not integrated over the aperture. One approach is to use an orthogonal
decomposition into Karhunen-Loève polynomials which are statistically inde-
pendent. The lowest order Karhunen-Loève polynomials are close in shape to
the Zernike polynomials. Wang and Markey (1978) show that assuming Zernike
modes are statistically independent results in errors of as much as 10%.

Rather than doing that, we will find an expression for the structure function
with some Zernike modes removed. The structure function is

Dφ (αD,ρ) = 〈[φ(ρ) − φ(αD + ρ)]2〉. (3.33)

Let A(ρ) represent the sum of Zernike modes that need to be removed

A(ρ) =
∑
n,m

Gn,m (γκ)Zn,m (ρ, θ) . (3.34)
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Let the phase without the Zernike modes removed be f(ρ)

Dφ (αD,ρ) = 〈[f(ρ) − A(ρ) − f(ρ + αD) + A(ρ + αD)]2〉
= 〈[f(ρ) − f(ρ + αD)]2〉 − 〈[A(ρ) − A(ρ + αD)]2〉

+ 2〈{f(ρ) − A(ρ) − [f(ρ + αD) − A(ρ + αD)]} [A(ρ + αD) − A(ρ)]〉.
(3.35)

We need to calculate these three terms to obtain the structure function. Often
we want to remove tilt, and for this case use eq. 3.27 to obtain

[A(ρ) − A(ρ + αD)]2 = 7.190
(

γD

r0

)5/3

α2. (3.36)

Let us now give the filter function for another type of tilt. The Zernike com-
ponent of tilt is also referred to as Z-tilt. Some tilt sensors respond to this
quantity, while others respond to the centroid position of the focused aperture
distribution, a quantity that is closer to gradient tilt. The definition of G-tilt
phase is

G-tilt =
4

π D2

∫
dρ ∇t Φ (ρ) , (3.37)

where the integration is over the circular aperture and ∇t is the transverse
gradient. G-tilt, in a geometric sense, is equal to the average ray direction,
corresponding to the average phase gradient over the aperture. One can calculate
this in transform space by multiplying the piston component of phase by iκ/k0.
The filter function to find gradient-tilt angle variance is thus

Fx (κ)
Fy (κ)
F (κ)

⎫⎪⎬
⎪⎭ =

(
4

k0D

)2

J2
1 (κD/2)

⎧⎪⎨
⎪⎩

cos2 (ϕ) ,
sin2 (ϕ) ,
1 .

(3.38)

The filter function to calculate phase variance of G-tilt is obtained by using
the same arguments as before. The filter function to find the phase variance due
to gradient tilt is thus

Fx (κ)
Fy (κ)
F (κ)

⎫⎪⎬
⎪⎭ = J2

1 (κD/2)

⎧⎪⎨
⎪⎩

cos2 (ϕ) ,
sin2 (ϕ) .
1 .

(3.39)

3.2 Piston and Tilt on an Annulus

As with a filled-in circular aperture, the complex filter function for Zernike tilt
on an annulus is the Fourier transform of the aperture function for tilt. For tilt
in the x-direction, the filter function is

Gx(κ) =
∫

dρ gx(ρ) exp (iκ · ρ) = a
∫

dρx exp (iκ · ρ) , (3.40)
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76 3 Filter Functions

where a is a normalizing factor, and the integration is over an annulus with
inner diameter Di and outer diameter D. Note that gx(ρ) = ax. The angular
and radial integrations can be performed with eq. 3.5 and eq. 3.1 to give

Gx (κ) =
πa cos (ϕ)

4

[
D3J2 (κD/2)

κD/2
− D3

i J2 (κDi/2)

κDi/2

]
, (3.41)

where ϕ is the angle in κ space. To get the correct constant assume that a pure
x-tilt is applied, i.e., let the phase be

φ (ρ) = b x.

The tilt angle in real space is b/k0. Therefore,

b/k0 =
∫

dρ gx(ρ)ϕ(ρ) = a b
∫

dρx2 =
πa b (D4 − D4

i )

64
.

This gives a = 64/πk0 (D4 − D4
i ).

The filter function is the absolute magnitude squared of the complex filter
function. The filter function to find the x-component of Zernike-tilt angle vari-
ance on an annulus is given by

Fx (κ) =

[
16/k0 D

1 − (Di/D)4

]2 [
J2 (κD/2)

κD/2
−
(

Di

D

)3 J2 (κDi/2)

κDi/2

]2

cos2 (ϕ) . (3.42)

The complex filter function for the x-component of gradient tilt on an annular
aperture can be found in exactly the same way to obtain

Gx (κ) =
1[

1 − (Di/D)2
]
[
2J1 (κD/2)

κD/2
− 2J1 (κDi/2)

κDi/2

]
iκ

k0

cos (ϕ) . (3.43)

The filter function of G-tilt angle in the x-direction is

Fx (κ) =

{
4/k0 D

1 − (Di/D)2}

}2 [
J1 (κD/2) − Di

D
J1 (κDi/2)

]2

cos2 (ϕ) . (3.44)

The y component of tilt has the cosine replaced by a sine. The total tilt has the
cosine replaced by unity.

The filter function for tilt variance is obtained from the filter function for tilt.
Given the tilt T on an annulus, the phase variance (now referring to averaging
over the aperture) due to this tilt, which can be arbitrarily taken to be in the x
direction, is

σ2
T =

1

A

∫
dρ (k0T · ρ)2 =

k2
0 T 2

A

D/2∫
Di/2

dρ ρ3

2π∫
0

dθ cos2 (θ) =
T 2k2

0

16

(
D2 + D2

i

)
.

Therefore, the filter function for total tilt phase variance on an annulus is
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3.2 Piston and Tilt on an Annulus 77

F (κ) =

[
16

1 + (Di/D)2

] [
J2 (κD/2)

κD/2
−
(

Di

D

)3 J2 (κDi/2)

κDi/2

]2

. (3.45)

As before, one obtains the x (y) component by multiplying this expression by

cos2 (ϕ)
(
sin2 (ϕ)

)
.

The piston filter functions can be found in the same manner. The Zernike
piston on an annulus is the Fourier transform of the aperture function, i.e.,

Gs(κ) = a
∫

dρ exp (iκ · ρ) ,

where a is a normalizing factor, and the integration is over the annulus. The
angular and radial integrations can be performed with eq. 3.5 and eq. 3.3 to give

G (κ) = πa [D J1 (κD/2) − Di J1 (κDi/2)] . (3.46)

To get the normalizing constant a assume that a pure piston is applied, i.e., let
the phase be φ (ρ) = b. The piston in mirror stroke is b/k0, so

b/k0 = a b
∫

dρ = πa b
(
D2 − D2

i

)
/4.

Therefore, a = 4/πk0 (D2 − D2
i ). The complex filter function is

G (κ) =
2

k0

[
1 − (Di/D)2

]
[
J1 (κD/2)

κD/2
−
(

Di

D

)2 J1 (κDi/2)

κDi/2

]
. (3.47)

The filter function is the absolute magnitude squared of the complex filter func-
tion. The filter function for piston stroke variance on an annulus is given by

F (κ) =

⎧⎨
⎩ 2

k0

[
1 − (Di/D)2

]
⎫⎬
⎭

2 [
J1(κD/2)

κD/2
−
(

Di

D

)2 J1(κDi/2)

κDi/2

]2

. (3.48)

Given the piston P on the aperture, the average phase variance due to piston is

σ2
P =

1

A

∫
dρ (k0 P )2 = k2

0 P 2,

where A is the aperture area. Therefore, one finds the filter function to obtain
the piston phase variance by multiplying the filter function for the piston by k2

0.
The filter function for piston phase variance on an annulus is given by

F (κ) =

[
2

1 − (Di/D)2

]2 [
J1 (κD/2)

κD/2
−
(

Di

D

)2 J1 (κDi/2)

κDi/2

]2

. (3.49)
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78 3 Filter Functions

3.3 Finite Apertures and Focal Anisoplanatism

I derive filter functions for two types of problems that are analyzable in a similar
fashion. The analysis is a generalization of the two-wave problem considered in
Chap. 2. Here the source is allowed to be finite in size.

The first type of filter function is for either a distributed source or a finite-size
receive aperture that produces phase and scintillation levels in a receiver that
can be very different from those of a point source or point receiver. For instance,
the finite angular size of a planet causes it to have much lower scintillation than
a star.

The second type of filter function applies to adaptive-optics systems. Often
in the operation of an adaptive-optics system, the beacon source or reflector is
either a point or a distributed source, and the corrected signal is a collimated
beam. The important question that arises in this case is: How much do path
differences between a beacon and corrected beam affect phase variance on the
corrected beam? Variances due to this effect vary with position within the out-
going aperture. For that reason a structure function that varies solely with the
difference between aperture positions does not exist. Nevertheless, one can still
calculate average variance over the outgoing aperture to derive a filter function
that gives the average phase variance on the aperture.

First, I consider a distributed source and finite receive aperture as shown in
Fig. 3.1. This geometry applies to the physically interesting cases of reflection
from a corner-cube array or a diffuse plate, or return from a planet. Let us direct
our attention to problems in which the turbulence-induced effects on rays going
from various source to receiver points is the most important effect, rather than
problems in which the source phase is important. This assumption applies to
aperture averaging of scintillation or to estimating the average wavefront slope
from a distributed source.

For this case, the distance between a ray parallel to the z-axis (direction
of propagation) that passes through ρ on the receive aperture and a ray from
aperture point ρ to the source point ρ′ is

d =
z

L
(ρ − ρ′) . (3.50)

This anisoplanatic shift from one point in the source plane to one point in the
receive plane can be inserted into expressions for phase and log-amplitude in
eq. 2.96 and eq. 2.97 to obtain

[
χR(L)
φR(L)

]
=k0

L∫
0

dz
∫
dν(κ, z)

[
sin [P (γ, κ, z)]
cos [P (γ, κ, z)]

]
exp(iκ · ρ) exp

[
iκ · (ρ − ρ′)

z

L

]
.

Let us consider a finite-size source, where intensity S (ρ′) can vary with po-
sition, and a finite-size receiver. To set up the correct expression for the error
due to a finite beacon, one must understand the measurement process. A point
beacon will radiate to the aperture, and its wavefront tilt will be measured
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Figure 3.1. Geometry of a distributed source and finite size aperture.

with the wavefront sensor. There will be some average tilt of the beacon that
will be removed when the system is aligned. The beacon wavefront will have a
turbulence-induced tilt in a subaperture that will be measured and imposed on
the outgoing wavefront. Any displacement between the direction of the outgoing
wave and the beacon will result in an anisoplanatic error.

Consider another point beacon, incoherent with the first, that propagates
toward the receive aperture. It also has a tilted wavefront, which may be different
than that of the first point beacon. Since that source is incoherent with the first,
because of the way wavefront sensors measure tilt, the tilts add with a weighting
depending on the power of the individual point beacons. Therefore, the error
from several incoherent beacons is the weighted sum of the beacon intensities
multiplied by the individual anisoplanatic errors. This sum can be turned into
an integral for a distributed beacon. Similar arguments apply to the intensity.

The resultant expressions one obtains by integrating over the source and
aperture and normalizing to the total source intensity are[

χR(L)
φR(L)

]
= k0

L∫
0
dz

∫
dν (κ, z)

[
sin [P (γ, κ, z)]
cos [P (γ, κ, z)]

]

×
∫

dρ
∫

dρ′ S (ρ′) exp
[
iκ · ρ

(
1 − z

L

)]
exp

(
iκ · ρ′ z

L

)
AA

∫
dρ′ S (ρ′)

, (3.51)

where AA is the aperture area. When the integration over the receive aperture
is performed, one obtains by factorization the filter function for a finite size
receiver and a finite size source with nonuniform intensity

F (κ) =

{
2
J1 [κD (1 − z/L) /2]

κD (1 − z/L) /2

}2
∣∣∣ ∫ dρ′ S (ρ′) exp

(
−iκ · ρ ′ z

L

)∣∣∣2
|
∫

dρ′ S (ρ′)|2
, (3.52)
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80 3 Filter Functions

where D is the aperture diameter. If source intensity is constant, then the inte-
grations in eq. 3.52 can be performed yielding the filter function for a finite size
receiver and uniform circular source as

F (κ) =

{
2
J1 [κD (1 − z/L) /2]

κD (1 − z/L) /2

}2 [
2
J1 (κDs z/2L)

κDs z/2L

]2

, (3.53)

where Ds is the source diameter. From this relation special cases can be found.
The filter function for a uniform, circular source located at a distance L, and a
point receiver is

F (κ) =

[
2
J1 (κDs z/2L)

κDs z/2L

]2

. (3.54)

The filter function for a finite size receive aperture with a point source located
at a distance L is

F (κ) =

[
2
J1 (κD (1 − z/L) /2)

κD (1 − z/L) /2

]2

. (3.55)

If the point source is located at infinity, then the filter function for a finite size
receiver is

F (κ) =

[
2
J1 (κD/2)

κD/2

]2

. (3.56)

These filter functions are used in Sec. 7.8.
Similarly, the filter function for a Gaussian intensity distribution with 1/e

radius of R, S(ρ) = 1/ (πR2) exp[−(ρ/R)2], gives a filter function

F (κ) =

{
2
J1 [κD (1 − z/L) /2]

κD (1 − z/L) /2

}2 {
exp[−(κRz/2L)2]

}2
. (3.57)

In an adaptive-optics system the beacon source is often small, and the trans-
mitted beam is collimated. Rays from the small source do not sample exactly the
same turbulence as that of the collimated beam; this results in a distortion on
the collimated beam after it traverses the atmosphere. This effect is referred to
as focal anisoplanatism. The phase difference arises from an offset of collimated
and focused rays in the aperture. To find the filter function in this case start
with eq. 2.119

σ2
φR = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ) |exp (γ1 κ ) − exp (γ2 κ )|2 . (3.58)

For a distributed source the incoming wave must be integrated over the bea-
con distribution. Consider the path difference between a ray parallel to the
propagation direction that passes through the receiver at ρ and a ray that also
passes through ρ that originates from a point in the distributed source whose
center is offset from the receive aperture center by b. The isoplanatic difference
is exp (iκ · ρ) exp {iκ · [ρ (1 − z/L) + (ρ′ + b) z/L]} .
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3.3 Finite Apertures and Focal Anisoplanatism 81

To find the phase at any point in the receive aperture, the phase expression
must be integrated over the normalized source distribution. Thus, the anisopla-
natic difference phase is

φR(L) = k0

L∫
0

dz
∫

dν (κ, z) cos [P (γ, κ, z)]

×
[
exp (iκ · ρ) −

∫
dρ′ S (ρ′) exp {iκ · [ρ (1 − z/L) + (ρ′ + b) z/L]}∫

dρ′ S (ρ′)

]
.

The filter function is the absolute value squared of the term after the cosine

F (κ) =

∣∣∣∣∣1 −
∫

dρ′S (ρ′) exp {iκ · [−ρz/L + (ρ′ + b) z/L]}∫
dρ′ S (ρ ′)

∣∣∣∣∣
2

. (3.59)

If the beacon is a uniform circular source, then the integrations can be carried
out early to give

F (κ) = 1 − 2
2 J1(Dsh)

Ds h
cos [κ · z (b − ρ)/L] +

[
2
J1 (Ds h)

Ds h

]2

, (3.60)

where h = κ z/2L.
The phase variance is not the same everywhere in the receive aperture. The

filter function above can be used to find the phase variance at any point in the
aperture. Most of the time we are interested in the aperture-averaged phase
variance. To find this filter function, the previous filter function is averaged over
the aperture with eq. 3.5 to give

F (κ) = 1 − 2
2 J1 (Ds h)

Ds h

2 J1 (D h)

D h
cos

(
κ · zb

L

)
+

[
2
J1 (Ds h)

Ds h

]2

. (3.61)

If there are no other filter functions in the problem that depend on the angle in
κ-space, then the integral over angle can be performed; this leads to the filter
function for focal anisoplanatism with a uniform circular source offset b from
boresight

F (κ) = 1 − 2
2 J1(Ds h)

Ds h

2 J1(D h)

D h
J0

(
κbz

L

)
+

[
2
J1(Ds h)

Ds h

]2

. (3.62)

The aperture-averaged filter function for focal anisoplanatism with a uniform
circular source on boresight is

F (κ) = 1 − 2
2 J1(Ds h)

Ds h

2 J1(D h)

D h
+

[
2
J1 (Ds h)

Ds h

]2

. (3.63)

If the source diameter is zero, then one obtains the aperture-averaged filter
function for focal anisoplanatism with circular symmetry for a point source with
no offset as
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82 3 Filter Functions

F (κ) = 2

[
1 − 2

J1 (D h)

D h

]
. (3.64)

To find the piston or tilt component of focal anisoplanatism when the beacon
has finite size, one starts with the expression for these components for a single
source point in eq. 2.118

φ (ρ, L) = k0

L∫
0

dz′
∫

dν (κ, z′)

× [cos [P (γ1, κ, z′)] exp (iγ1κ · ρ) − cos [P (γ2, κ, z′)] exp (iγ2κ · ρ)] . (3.65)

and integrates over the source distribution.
Allowing for an offset of the beams and setting γ1 = 1 and γ2 = 1− z/L, the

isoplanatic term is multiplied by a piston or tilt aperture function and integrated
over the source aperture to obtain

φR(L) = k0

L∫
0

dz′
∫

dν (κ, z) cos [P (γ, κ, z)]

×
∫

dρ′
∫

dρ g(ρ)

⎛
⎝exp (iκ ·ρ)−

S (ρ′) exp
{
iκ ·

[
ρ
(
1 − z

L

)
+ (ρ′+ b) z

L

]}
∫

dρ′ S (ρ′)

⎞
⎠ .

The aperture integration is evaluated to obtain an expression for a single source
point at ρ′ as

F (κ) = 4

∣∣∣∣∣ν Jν (a)

a
− exp

(
iκ · b z

L

)
ν Jν (e)

e

∫
dρ′ S (ρ′) exp (iκ · ρ′ z/L)∫

dρ′ S (ρ′)

∣∣∣∣∣
2

,

(3.66)
where a = κD/2, e = κD (1 − z/L) /2, ν = 1 for piston, and ν = 2 for tilt. If
the source distribution is uniform, then integrations over ρ′ are readily evaluated
to obtain the total piston or tilt. Thus, the filter function to find the piston or
tilt component of focal anisoplanatism with a uniform circular source offset b
from boresight is

F (κ) =

∣∣∣∣∣2ν Jν (a)

a
− exp

(
iκ · b z

L

)
2ν Jν (e)

e

2 J1 (Ds h)

(Ds h)

∣∣∣∣∣
2

. (3.67)

The filter function to find the piston or tilt component of focal anisoplanatism
with a uniform circular source on boresight is

F (κ) =

[
2ν Jν (a)

a
− 2ν Jν (e)

e

2 J1 (Ds h)

(Ds h)

]2

. (3.68)

If the source size goes to zero, the filter function for the Zernike modes reduces
to eq. 2.117.
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3.4 Adaptive-Optics Systems

If the conjugate of the amplitude and phase of the received wave were applied
to the outgoing beam, then the resulting beam would be perfectly corrected.
Presently, most adaptive-optics systems only apply the conjugate of the phase.

In a phase-conjugate adaptive-optics system, a beacon beam is propagated
downward through the atmosphere, and the phase impressed on the beam by
atmospheric turbulence is measured by a phase sensor. The conjugate of the
measured phase is applied at the origin to an outgoing beam along a propagation
path that is displaced by a distance d from the beacon path. To calculate system
performance, one has to calculate the residual phase or log-amplitude on the
wave after correction. One finds the filter function by calculating the behavior of
the system for a single phase screen at z = z′ and integrating over the turbulence
distribution.

Consider a single phase screen at z′ of strength dν (κ, z′) dz′. The phase-
related quantity measured at the origin from the downward propagating beacon
with the diffraction parameter in eq. 2.83 is

dν (κ, z′) cos
(
κ2z′/2k0

)
dz′.

An adaptive-optics system applies the negative of this phase to a scoring beam.
The phase or log-amplitude at z = L is made up of two phase components.
The first is due to the measured phase that is impressed at the origin, which
is propagated a distance L. The second is caused by the phase screen through
which the wave passes. This second component propagates a distance L − z,
and can have an isoplanatic component. The scintillation on the beam above
the turbulence is also caused by two phase components: the first due to the
phase screen and the second due to the phase at the origin produced by the
adaptive-optics system.

In this case the formula for variance is a modification of the standard formula
because the effect of the sinusoid and cosinusoid is included in the filter function.
The formula for variance is⎡

⎢⎣
σ2

φR

σ2
χR

σ2
R

⎤
⎥⎦ = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

⎡
⎢⎣

F ′
φ (γκ)

F ′
χ (γκ)

F ′
t (γκ)

⎤
⎥⎦F (γκ) . (3.69)

The complex filter function associated with this process is[
G′

φ (γκ)

G′
χ (γκ)

]
=

[
cos (aL) cos (az) − exp(iκ · d) cos [a(L − z)]

sin (aL) cos (az) − exp(iκ · d) sin [a(L − z)]

]
, (3.70)

where a = γκ2/2k0. The filter function to obtain the phase and log-amplitude
variances is the absolute value squared of the complex filter function given by⎡

⎢⎢⎣
F ′

φ (γκ)

F ′
χ (γκ)

F ′
t (γκ)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
|cos (aL) cos (az) − exp (iκ · d) cos [a(L − z)]|2

|sin (aL) cos (az) − exp (iκ · d) sin [a(L − z)]|2

sin2(az) + 2 cos2(az) [1 − cos (κ · d)]

⎤
⎥⎥⎦ , (3.71)
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where the total variance is the sum of the phase and the log-amplitude variances
given by F ′

t (γκ) is
F ′

t (γκ) = F ′
φ (γκ) + F ′

χ (γκ) . (3.72)

The total variance was obtained with the trigonometric identities

cos (A + B) = cos (A) cos (B) − sin (A) sin (B) , and

sin (A + B) = sin (A) cos (B) + cos (A) sin (B) .

If the offset is zero, the filter function reduces to

⎡
⎢⎢⎣

F ′
φ (γκ)

F ′
χ (γκ)

F ′
t (γκ)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

sin2(γκ2L/2k0) sin2(γκ2z/2k0)

cos2(γκ2L/2k0) sin2(γκ2z/2k0)

sin2(γκ2z/2k0)

⎤
⎥⎥⎦ . (3.73)

One obtains the aperture-related variances by inserting this into eq. 3.69. Note
that the residual total filter function is the same as the one for amplitude vari-
ance. Therefore, the residual variance on a perfect phase conjugate adaptive-
optics system is that due to the amplitude variance of the received wave.

3.5 Structure Function for a Distributed Beacon

The displacement to put into the structure function when there is only one
ray is clear; however, when there is a distributed source it is not clear where
the integral over the source distribution should be placed relative to the other
integrals. It is incumbent to go back to the initial definition of the phase and the
structure function to develop the correct expression that applies in this case.

If we solve one problem, then you can use it as a guide to solve new problems.
Let us consider a finite sized beacon of diameter Ds and develop the structure
function for that case.

Consider the phase received at ρ in the aperture plane from a small area
of the beacon that has a displacement of d relative to the beam that is to be
transmitted. Let the transmitted beam have a different value of γ than the
received beam. The differential phase received is derived from eq. 2.106 as

φ(ρ) = k0

L∫
0

dz′
∫

dν (κ, z′)

×{exp (iγ1κ · ρ) cos [P (γ1, κ, z′)] − exp (iγ2κ · (d + ρ)) cos [P (γ2, κ, z′)]} .

(3.74)
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3.5 Structure Function for a Distributed Beacon 85

Adding up the phase contributions from a distributed source with intensity
S (ρ′), one obtains

φ(ρ) = k0

L∫
0

dz′
∫

dν (κ, z′)

⎧⎨
⎩ exp (iγ1κ · ρ) cos [P (γ1, κ, z′)]

−
∫

dρ′ S (ρ′) exp (iκ · ρz/L)∫
dρ′ S (ρ′)

exp (iγ2κ · ρ′) cos [P (γ2, κ, z′)]

}
. (3.75)

If S (ρ) is uniform over a circle of radius Ds/2, then for the term in braces

I = exp (iγ1κ · ρ) cos [P (γ1, κ, z′)]

−8 exp (iγ2κ · ρ)

D2
s

∫ Ds/2

0
ρ′ dρ′

∫ 2π

0
dθ exp (iγ2κ · aρ′) cos [P (γ2, κ, z′)] . (3.76)

Integrating over angle and then over radius, one obtains

I = exp (iγ1κ · ρ) cos [P (γ1, κ, z′)] − 2J1 (κh)

κh
exp (iγ2κ · ρ) cos [P (γ2, κ, z′)] ,

where h = γ2Dsz/2L.
For the case where the transmitted beam is also focused at L, γ1 = γ2 = γ =

1 − z/L, then

I = exp (iγκ · ρ) cos [P (γ, κ, z′)]

[
1 − 2J1 (κh)

κh

]
. (3.77)

The phase variance for this particular case is

〈φ(ρ)φ∗(ρ)〉 =

〈
k2

0

L∫
0

dz′
∫

dν (κ′, z′)

L∫
0

dz′′
∫

dν (κ′′, z′)

× cos [P (γ, κ′, z′)] cos [P (γ, κ′′, z′′)]

×
[
1 − 2J1 (κ′h)

κ′h

] [
1 − 2J1 (κ′′h)

κ′′h

]〉
. (3.78)

The expression can be simplified in the same manner as was done in the last
chapter to obtain for the phase variance

σ2
φ = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

[
1 − 2J1 (κh)

κh

]2

cos2 [P (γ, κ, z)] . (3.79)

This can be integrated over angle in κ space to give

σ2
φ = 1.303 k2

0

L∫
0

dz C2
n(z)

∫ ∞

0
κ dκ f(κ)

[
1 − 2J1 (κh)

κh

]2

cos2 [P (γ, κ, z)] .

(3.80)
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86 3 Filter Functions

We will consider the case where a does not depend on the receiving aperture
position ρ. For instance, this applies to the case where the propagating beam
is focused at the beacon for which a = z/L. Note that the variance is constant
over the aperture, allowing the simpler expression to be used to calculate the
Strehl ratio.

The structure function is given in eq. 2.157 as

[Dφ (αD,ρ′)
Dχ (αD,ρ′ )

]
=
[Dφ (αD)
Dχ (αD)

]
= 2

[ 〈φ2(0)〉 − 〈φ (αD) φ(0)〉
〈χ2(0)〉 − 〈χ (αD) χ(0)〉

]
. (3.81)

The expression for the correlation function of phase is

Cφ (αD) = 〈φ(0)φ∗(αD)〉 =

〈
k2

0

L∫
0

dz′
∫

dν (κ′, z′)

L∫
0

dz′′
∫

dν (κ′′, z′)

× cos (γκ′ · αD) cos [P (γ, κ′, z′)] cos [P (γ, κ′′, z′′)]

×
[
1 − 2J1 (κ′h)

κ′h

] [
1 − 2J1 (κ′′h)

κ′′h

]〉
. (3.82)

This can be simplified to obtain

Cφ(αD) = 0.2073 k2
0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

[
1 − 2J1 (κh)

κh

]2

× cos (γκ · αD) cos2 [P (γ, κ, z)] . (3.83)

This can be integrated over angle in κ space to give

Cφ(αD) = 1.303 k2
0

L∫
0

dz C2
n(z)

∫ ∞

0
κ dκ f(κ)

[
1 − 2J1 (κh)

κh

]2

×J0 (γκαD) cos2 [P (γ, κ, z)] . (3.84)

The correlation function of the amplitude has the cosine squared term re-
placed by a sine squared term. The total structure function, which is the sum
of the phase and amplitude structure functions, is equal to

D (αD) = Dφ (αD) + Dχ (αD)

= 2.606 k2
0

L∫
0

dz C2
n(z)

∫ ∞

0
κdκ f(κ)

[
1 − 2J1 (κDsz/2L)

κDsz/2L

]2

× [1 − J0 (γκαD)] . (3.85)

If one wanted to find the Strehl ratio with some Zernike modes removed,
then one would modify the above structure functions as the one in eq. 3.35 was
modified. The structure function then would be a function of ρ.
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3.6 Developing New Variance Filter Functions 87

3.6 Developing New Variance Filter Functions

In the previous sections filter functions to apply to the variance, F (κ), were
developed. These are effective for many of the problems that one encounters;
however, sometimes one has to deal with a more complicated situation where it
is not clear what filter function should be applied. In those cases it is necessary
to start with the expression for phase and log-amplitude given in (2.105) and
apply a filter function, G (κ). After doing that, the expression for the variance
can often be written by inspection, since the same steps that were originally
used to go from the phase and log-amplitude to their variances apply. One then
has the filter function for the variance, F (κ) = G (κ)G∗ (κ), that applies to
this problem.

Two examples of applying that technique to a particular problem are illus-
trated. First consider the tilt variance that would be obtained using an adaptive-
optics system that is designed to send a focused beam to a target where the phase
is measured from a distributed beacon at the focal point. The tilt is measured
with respect to the center of the beacon distribution. To attack this problem,
start with the expression for the phase in eq. 2.105

φR(L) = k0

L∫
0

dz′
∫

dν (κ, z′)G (γ κ) cos [P (γ, κ, z′)] , (3.86)

and insert the filter functions for tilt for a point source from eq. 3.22 and aniso-
planatic offset from eq. 2.122, where the separation is a maximum at L and is
equal to d. It is a linear function of the distance from the aperture.

The tilt direction as determined from the definition of the Zernike modes in
κ space is in the direction of κ. The expression for the total anisoplanatic tilt
jitter with the diffraction term neglected, i.e. cos [P (γ, κ, z′)] = 1 is

ti =
16

D

L∫
0

dz′
∫

dν (κ, z′)

[
4J2 (γκD/2)

γκD/2

]
[1 − exp (iκ · dz/L)]

κ

κ
, (3.87)

where D is the diameter of the receiving aperture.
Consider a distributed beacon. First, I will write down the expressions for

the vector tilt from a differential area of the beacon. Next, I will integrate the
tilt over the beacon area, then I will evaluate the expected value of the variance
of the tilt. The exponential term in the above equation for a distributed beacon
becomes

exp (iκ · d) → 1

A

∫
drf(r) exp (iκ · rz/L) , (3.88)

where A is the weighted area of the beacon A =
∫

drf(r) and f(r) is its dis-
tribution in space. The sensor integrates the tilt from each sensor area. The
exponential can be written as

B(θ, z) =
1

A

∫
drf(r) exp [iκr cos(θ − φ)z/L] , (3.89)
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88 3 Filter Functions

where the angle of κ with respect to the x-axis is ϕ, and the angle of the
differential beacon component with respect to the x-axis is φ.

This expression is substituted into eq. 3.87, then it is multiplied by its complex
conjugate, and its expected value is found. The steps to perform these operations
are exactly the same as those previously used to find the variances, and the result
is ⎡

⎢⎣
σ2
‖

σ2
⊥

σ2

⎤
⎥⎦ = 0.2073

L∫
0

dz C2
n(z)

∫
dκ

⎡
⎢⎣ cos2 (ϕ)

sin2 (ϕ)
1

⎤
⎥⎦κ−11/3

×
(

16

D

)2
[
J2 (γκD/2)

γκD/2

]2

|1 − B(ϕ, z)|2 , (3.90)

where σ2 is the total variance, which is equal to the sum of the parallel and per-
pendicular variances. For any beacon distribution this expression can be evalu-
ated to obtain the tilt variances in the two directions.

Let us consider a symmetrical beacon. Rotating the beacon produces no
change in this case. If the beacon is a uniformly illuminated circle of radius
R, then the exponential term is

B(ϕ, z) =
1

πR2

∫ R

0

∫ 2π

0
dφ rdr exp [iκr cos(φ)z/L] . (3.91)

The φ integration can be performed to give for this term

B(ϕ, z) =
2

R2

∫ R

0
rdrJ0 (κRz/L) . (3.92)

The radial integration can be performed to give

B(ϕ, z) =
2J1 (κRz/L)

κRz/L
. (3.93)

For small values of the argument J1 (x) ≈ x/2, B(ϕ, z) approaches 1 when
the beacon radius gets very small, thus causing the value for tilt anisoplanatism
in eq. 3.90 to approach zero, as it should.

Notice that this does not depend on ϕ. Substituting this into eq. 3.90, one
obtains ⎡

⎢⎣
σ2
‖

σ2
⊥

σ2

⎤
⎥⎦ = 0.2073

L∫
0

dz C2
n(z)

∫
dκ

⎡
⎢⎣ cos2 (ϕ)

sin2 (ϕ)
1

⎤
⎥⎦κ−11/3

×
(

16

D

)2
[
J2 (γκD/2)

γκD/2

]2 [
1 − 2J1 (κRz/L)

κRz/L

]2

. (3.94)

This expression is the same as the one to calculate the tilt variance except for
the presence of the last term in brackets. For large values of the beacon radius,
the second Bessel function in the last bracketed term approaches zero, and the
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3.6 Developing New Variance Filter Functions 89

term in brackets approaches unity. Therefore, for very large beacon sizes the tilt
approaches the value from uncorrected turbulence. For small values of the radius
J1 (x) ≈ x/2, thus causing the value for tilt anisoplanatism to approach zero, as
it should.

This expression can be evaluated numerically. Below the expression is evalu-
ated analytically.

Let a = γDL/2zR. The θ integration can be performed to give

⎡
⎢⎣

σ2
‖

σ2
⊥

σ2

⎤
⎥⎦ =

105.1

D1/3

⎡
⎢⎣ 1/2

1/2
1

⎤
⎥⎦

L∫
0

dz C2
n(z) γ5/3

×
∫ ∞

0
dx x−14/3J2

2 (x)

[
2J1 (x/a)

x/a
− 1

]2

. (3.95)

Notice that the variance is the same in both directions. This expression is
the same as the one for tilt variance if the Bessel function term in the second
brackets is eliminated.

The x integration can be performed by Mellin transform techniques or with
Mathematica, then the z integration can be performed to determine the jit-
ter introduced by a finite-sized beacon. To perform the x integration write the
integral as the sum of two integrals

∫ ∞

0
dx x−14/3J2

2 (x)

[
2J1 (x/a)

x/a
− 1

]2

= I1 + I2, (3.96)

where

I1/2 = −
∫ ∞

0
dx x−14/3J2

2 (x)

[
2J1 (x/a)

x/a
− 1

]
, (3.97)

and

I2 =
∫ ∞

0
dx x−14/3J2

2 (x)

⎧⎨
⎩
[
2J1 (x/a)

x/a

]2

− 1

⎫⎬
⎭ . (3.98)

I1 and I2 can be evaluated to give separate solutions for small and large values
of the parameter

I1 = 0.1156
{
1 − 3F2

[
23
6
,−11

6
, 1

6
;−4

3
, 2;

(
1

4a2

)]}

+ 0.001768a−14/3
3F2

[
−3

2
, 1

2
, 5

2
; 10

3
, 13

3
;
(

1

4a2

)]
, a > 1/2, (3.99)

and
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90 3 Filter Functions

I1 = −0.1158 + 0.1165a1/3
3F2

[
−5

6
, 1

6
, 5

2
; 3, 5; 4a2

]
, a < 1/2. (3.100)

I2 = 0.05788
{
−1 + 4F3

[
−23

6
,−11

6
, 1

6
, 3

2
;−4

3
, 2, 3;

(
1

a2

)]}

− 0.006168a−14/3
4F3

[
−3

2
, 1

2
, 5

2
, 23

6
; 10

3
, 13

3
, 16

3
;
(

1

a2

)]
, a > 1, (3.101)

and

I2 = −0.05788 + 0.054044F3

[
−11

6
,−5

6
, 1

6
, 5

2
;−1

3
, 3, 5; a2

]
0.0026984F3

[
−1

2
, 1

2
, 3

2
, 23

6
; 7

3
, 13

3
, 19

3
; a2

]
, a < 1. (3.102)

To see the effect of a finite size beacon, in Fig. 3.2 the tilt is plotted versus
beacon radius for the Clear1 turbulence model with the platform at 12 km, the
range to the target at 400 km, the aperture diameter at 1 meter, and the target
height at 60 km. The tilt jitter is of the order of 100 microradians for a beacon
size of 50 cm.
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Figure 3.2. Tilt jitter due to a finite beacon of radius R measured in an aperture
of diameter D for the Clear1 turbulence model with the platform at 12 km, a
target range of 400 km, an aperture 1-meter receiver diameter, and a target
height of 60 km.

The second example that is considered is a scenario in which an illuminator
beam on a platform is directed at a target, and the target return is imaged to
choose a track point. The illuminator beam is then kept as steadily as possible
on this track point. A beacon beam is then sent to the target, and its return is
used to control an adaptive-optics mirror off which a scoring beam is directed
at the target.
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3.6 Developing New Variance Filter Functions 91

To get the maximum amount of energy on the target, it is important to
make higher-order corrections as accurately as possible, which is achieved by not
having any anisoplanatic offset for the scoring beam. In addition, the distortion
measured on the beacon is applied as quickly as possible. The only delay is
due to the processing time tp of the beacon measurements needed to generate a
change in the shape of the deformable mirror.

To have maximum energy density on the target, the scoring beam is pointed
in the same direction as the beacon beam, which implies that the separation of
the beacon beam from the scoring beam on the target is vtτ where vt is the
velocity of the target and τ is the sum of the processing delay and the two-way
propagation time from platform to target τ = tp +2L/c, where L is the distance
between target and platform, and c is the speed of light.

Given the aim point of the scoring beam, this selection then determines where
the beacon must be placed to satisfy the requirement that there be no tilt
anisoplanatism between the beacon and scoring beams. The separation between
the illuminator and beacon beams is no longer an independent parameter, and
there can be tilt anisoplanatism between the beams.

One would like to reduce this anisoplanatism, and several options have been
considered for controlling the beam pointing. One proposal is to use the informa-
tion about the illuminator beam pointing to reduce this effect. The illuminator
tilt that is measured is a combination of tilt due to movement of the platform,
whose velocity is vp, and due to turbulence-induced tilt. If one were to use the
delayed illuminator turbulence-induced tilt information that corresponds to the
present path of beacon propagation, then the tilt anisoplanatism due to target
motion is minimized, which has the potential to reduce the beacon jitter.

In another option the measured beacon tilt is immediately used to direct the
scoring beam. That approach could suffer greater anisoplanatism than the one
using the delayed illuminator tilt.

Another option has been proposed to reduce tilt anisoplanatism. The return-
ing beacon has a tilt that can be measured by the wavefront sensor. This tilt
is a combination of the deterministic angular change of the platform due to
its motion in the two-way transit time of the beacon and due to the different
turbulence encountered by the outgoing and returning beams.

With no platform motion, there is no useful information in the tilt measured
by the waveform sensor since the outgoing and incoming beacon paths are the
same, which causes the outgoing turbulence-induced tilt to cancel the incoming
turbulence-induced tilt; hence, the turbulence-induced tilt is not sensed. This is
not exactly true since the target is finite in size, part of the beacon beam does
not strike the target, which can cause a tilt to be sensed by the returning beam.
I will neglect that effect in this analysis. For a moving platform, some tilt will
be sensed even if the target were infinite in extent. One of the options I will
examine is the effect of applying the turbulence-induced tilt from the beacon
return to the scoring beam to see if that reduces the scoring-beam jitter.

Scintillation will affect the jitter; that will not be considered here.
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To answer the question of whether using the beacon tilt reduces the jitter,
I will find the relative rms anisoplanatic tilt jitter between the illuminator and
scoring beam for each option. To find the effectiveness of each option we need
to determine the magnitude of < |td − atb|2 > for any value of a, where td is
the tilt jitter between the illuminator and scoring beams with no correction for
beacon tilt, and tb is the turbulence-induced tilt of the beacon.

To attack this problem start with the expression for the phase in eq. 2.105

φR(L) = k0

L∫
0

dz′
∫

dν (κ, z′)G (γ κ) cos [P (γ, κ, z′)] , (3.103)

and insert the filter functions for tilt from eq. 3.17 and anisoplanatic offset from
eq. 2.122 to obtain for the total anisoplanatic tilt jitter between the beacon and
illuminator with no correction

td = k0

L∫
0

dz′
∫

dν (κ, z′)

[
4J2 (κD/2)

κD/2

]
[1 − exp (iκ · d)] cos [P (γ, κ, z′)]

κ

κ
.

(3.104)
This expression applies when the beacon tilt is not used.

For convenience latter let

B = [1 − exp (iκ · d)] . (3.105)

For the option of using the beacon tilt, the anisoplanatic tilt caused by the
offset between the illuminator and scoring paths d is modified by having a
fraction of the tilt measured on the returned beacon subtracted from this tilt.
The beacon tilt is caused by the platform motion and the turbulence motion
due to the wind during the propagation time, which results in a path difference
db through the frozen turbulence between the outgoing and returning beacon.
The expression for this tilt is the same form as the illuminator-scoring beam
tilt. Form the difference of the uncorrected anisoplanatic tilt and a fraction of
the beacon tilt to obtain

td − atb = k0

L∫
0

dz′
∫

dν (κ, z′)

[
4J2 (κD/2)

κD/2

]
A cos [P (γ, κ, z′)]

κ

κ
, (3.106)

where
A = 1 − exp (iκ · d) − a [1 − exp (iκ · db)] . (3.107)

To obtain the tilt variance, one multiplies this tilt expression by its complex
conjugate and then finds its expected value. I will sketch the derivation of the
result for the case of not using the beacon tilt. It will be shown that the case of
using the beacon tilt is a combination of expressions from the first option.

The entire derivation will not be given here; however, the term with the offset
will be examined since its form is needed for the second option. In the derivation
one finds that
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BB∗ = [1 − exp (iκ · d)] [1 − exp (−iκ · d)] = 2 [1 − cos (κ · d)] . (3.108)

If the variance is found by using the same procedure as was followed in Chap.
2, then one obtains the expression for tilt anisoplanatism that is given in Sec.
7.6.

Consider now the second option. The term comparable to the one just eval-
uated given in eq. 3.107 is written as

A = 1 − exp (ib) − a [1 − exp (if)] , (3.109)

where
b = κ · d, (3.110)

and
f = κ · db. (3.111)

It is easy to show that

AA∗ = 2(1−a) [1 − cos(b)]−2a(1−a) [1 − cos(f)]+2a [1 − cos(b − f)] . (3.112)

Since the three terms are each of the same form as those in the analysis for the
first option in eq. 3.108, the tilt jitter variance corrected for beacon tilt can be
written as the sum of three terms, each of which is a tilt anisoplanatic variance
term with different displacements

Tcorrected = (1 − a)T (d) − a(1 − a)T (db) + aT (d − db). (3.113)

Notice that if no correction is applied, that is a = 0, then the expression
reduces to the first term, which is the tilt with no correction. With a = 1 the
expression becomes

Tcorrected = T (d − db). (3.114)

For any situation one can find the value of a that minimizes the tilt.
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Chapter 4

Zero-Parameter Problems

In the second chapter I derived general formulas that enable one to write phase
and log-amplitude variances, power spectral densities, and Strehl ratios as inte-
grals. Different cases differ only in the appearance of different filter functions. In
the last chapter explicit filter functions were derived for a variety of problems.
With the use of these filter functions, integrands contain the following functions:
sin (x), cos (x), sin2 (x), cos2 (x), Jν (x), Jν (x) Jμ (x), J2

ν (x), exp (x), (1 + x)−p,
(x − 1)−p U (x − 1), and K (x).

The Mellin transforms of these functions are given in Table 1.1. (Integrals
containing cos2 (x) are evaluated by substituting 1 − sin2 (x).) Therefore, all
problems in which the phase or log-amplitude variances are wanted and in which
the filter functions in Chap. 3 and the turbulence spectra given in Chap. 2 can
be used are solvable by Mellin transform techniques.

In this chapter problems of electromagnetic-wave propagation in turbulence
that can be solved by table lookup are addressed. The following expressions
are found: (1) variances of the Zernike tilt of collimated and focused waves,
(2) gradient tilt variance, (3) variance of the difference between Zernike and
gradient tilt, (4) beam movement at a target due to tilt, (5) angle-of-arrival jitter
of a tracked target, (6) scintillation of collimated and focused waves, (7) phase
variance of a system with temporal filtering, and (8) total variance with a phase-
only adaptive-optics system with and without a beacon offset. These examples
illustrate how easily solutions are obtained once the technique described in this
book is mastered.

The Mellin transform technique is particularly well suited to evaluate inte-
grals obtained in wave propagation in turbulence, because the integrand term
x−s matches the form of the turbulence spectrum in the most important region
— the inertial subrange. Results are expressed as moments of the turbulence dis-
tribution in altitude. After defining the full and partial moments, I express their
values analytically for the Hufnagel-Valley turbulence model. Other frequently
used turbulence models are also defined.
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4.1 Turbulence Models and Moments

Several different models are commonly used to represent effects of atmospheric
turbulence. The Hufnagel-Valley model is based on one proposed by Hufnagel
(1974) from measurements made by Bufton et al. (1972), and modified by Valley
(1980) to include ground level turbulence. It is

C2
n(h) = 0.00594

(
W

27

)2 (
10−5 × h

)10
exp

(
− h

1000

)

+ 2.7 × 10−16 exp

(
− h

1500

)
+ A exp

(
− h

100

)
, (4.1)

where W is the pseudo-wind, and A is a parameter that is usually set equal to
1.7 × 10−14, and h is in meters. The turbulence is usually assumed to be zero
above 30 km. The turbulence strength is usually changed by a variation of the
W term. For instance, the HV-21 model has the above value for A, and W is
equal to 21. This model is sometimes referred to as the HV5/7 model since the
coherence diameter is about 5 cm, and the isoplanatic angle is about 7 μrad for
a wavelength of 0.5 μm.

The full moments, which are defined for propagation from the ground to
space, are

μm ≡
∞∫
0

dz C2
n(z) zm = secm+1 (ξ)

∞∫
0

dhC2
n(h)hm, (4.2)

where ξ is the zenith angle. Notice that the zenith dependence is contained in
the turbulence moments. For constant turbulence along L, the moments are

μm = C2
n L(m+1)/(m + 1). (4.3)

The integrations can be performed for the Hufnagel-Valley model to give

μm =

∞∫
0

dz C2
n(z) zm = secm+1 (ξ)

{
5.94 × 10−20+3m (W/27)2 Γ [m + 11]

+ 4.05 × 10−13Γ [m + 1] (1500)m + A × 100m+1Γ [m + 1]
}

. (4.4)

For propagation to a distance L, which is at a height H, so that L = sec (ξ)H,
define the partial moments in the following way

μ+
m(L) ≡

∞∫
L

dz C2
n(z) zm = secm+1 (ξ)

∞∫
H

dhC2
n(h)hm, and (4.5)

μ−
m(L) ≡

L∫
0

dz C2
n(z) zm = secm+1 (ξ)

H∫
0

dhC2
n(h)hm. (4.6)

Using the lower- and upper-incomplete gamma functions, which are
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4.1 Turbulence Models and Moments 97

γ [b + 1, x] =

x∫
0

dy yb exp(−y), and Γ [b + 1, x] =

∞∫
x

dy yb exp(−y), (4.7)

one can find the partial moments of turbulence as

μ+
m(L) =

∞∫
L

dz C2
n(z) zm = secm+1(ξ)

{
5.94

1020−3m

(
W

27

)2

Γ
[
m + 11,

H

1000

]

+ 4.05 × 10−13Γ
[
m + 1,

H

1500

]
(1500)m + A × 100m+1Γ

[
m + 1,

H

100

]}
;

(4.8)

μ−
m(L) =

L∫
0

dz C2
n(z) zm = secm+1(ξ)

{
5.94

1020−3m

(
W

27

)2

γ
[
m + 11,

H

1000

]

+ 4.05 × 10−13γ
[
m + 1,

H

1500

]
(1500)m + A × 100m+1γ

[
m + 1,

H

100

]}
.

(4.9)

The above formulas apply to a flat earth model. For propagation at low
elevation angles, the curvature of the earth must be taken into account. In that
case for propagation from a platform at hp to a receiver at range at z, the value
of height in the turbulence profile must be replaced by

h(z) = −RE +
[
(hp + RE)2 + z2 + 2z (hp + RE) sin(el)

]1/2
, (4.10)

where el is the elevation angle, and RE is the earth radius, 6.4 × 106 m.
For this case the turbulence moment is

μm =

∞∫
0

dz C2
n(h(z)) zm. (4.11)

It can be useful to express results in terms of coherence diameter and isopla-
natic angle. Define the coherence diameter ro as

r0 =

⎡
⎣0.423k2

0

L∫
0

dz C2
n(z)γ5/3

⎤
⎦
−3/5

. (4.12)

and the isoplanatic angle θo as

θ0 =

⎡
⎣2.91k2

0

L∫
0

dz C2
n(z)z5/3

⎤
⎦
−3/5

. (4.13)

This can be expressed as
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98 4 Zero-Parameter Problems

θ
−5/3
0 = 2.91 k2

0 μ−
5/3(L). (4.14)

For an infinite plane wave for which γ = 1, one obtains

r
−5/3
0 = 0.423 k2

0 μ−
0 (L). (4.15)

For a spherical wave focused at z = 0 for which γ = z/L, one obtains

r
−5/3
0s = 0.423 k2

0 μ−
5/3(L)L−5/3. (4.16)

Both the coherence diameter and isoplanatic angle vary as the six-fifths power
of wavelength. As shown in Sec. 8.1 this definition of coherence diameter comes
naturally from consideration of the beam size. As shown in Sec. 8.4.1 the iso-
planatic angle is the characteristic angle that affects the Strehl ratio.

In addition to the Hufnagel-Valley model, the SLC Day and Night models are
often used. C2

n(z) is usually assumed to be zero above 20.5 km for both models.
The SLC Day model, also called SLCSAT Day, is based on the day-time Miller-
Zieske profile (1979), which can be approximated by a set of power-law segments
as:

C2
n (z) = 3.96 × 10−13/z1.05, 18.5 ≤ z ≤ 232

= 1.3 × 10−15, 232 ≤ z ≤ 880

= 8.87 × 10−7/z3, 880 ≤ z ≤ 7220

= 2.0 × 10−16/z0.5, 7220 ≤ z ≤ 20500. (4.17)

The units of C2
n(z) are m−2/3 and the altitude is in meters. The SLC Night

model, which differs from the SLC Night model at lower altitudes, is given by:

C2
n (z) = 5.0 × 10−15, z ≤ 18.5

= 2.875 × 10−12/z2, 18.5 ≤ z ≤ 110

= 2.5 × 10−16, 110 ≤ z ≤ 1500

= 8.87 × 10−7/z3, 850 ≤ z ≤ 7000

= 2.0 × 10−16/z0.5, 7000 ≤ z ≤ 20500. (4.18)

Another turbulence profile that is regularly used is the Clear1-night profile,
which is given by

log 10 [C2
n (z)] = −10.7025 − 4.3507z + 0.8141z2, 1.23 km ≤ z ≤ 2.13 km

= −16.2897 + 0.0335z − 0.0134z2, 2.13 km ≤ z ≤ 10.34 km

= −17.0577 − 0.0449z − 0.0005z2

+ 0.6181 exp
{
−0.5 [(z − 15.5617)/3.4666]2

}
, 10.34 km ≤ z.

(4.19)

In this model z is given in kilometers.
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4.2 Tilt and Piston for Collimated and Focused Beams 99

These turbulence models apply for optical propagation. At radar wavelengths,
moisture in the air causes the turbulence profile to differ from the above models.
Measurements indicate that the turbulence strength typically is 10 to 100 times
the above values. Even higher values have been measured, levels of 10−12 from
ground level to 4 km have been reported. The spatial spectrum of this turbulence
is not known.

Table 4.1. Coherence diameter and isoplanatic angle for a wavelength of 0.5
μm and moments of Hufnagel-Valley turbulence models for propagation from
the ground to 30 kilometers. The turbulence moments are in mks units, and the
units of the nth moment are mn+1/3.

HV-21 HV-35 HV-54 HV-72

r0(cm) 4.96 4.67 4.18 3.70
θo(μrad) 6.90 3.95 2.40 1.71
μ0 2.23 × 10−12 2.47 × 10−12 2.97 × 10−12 3.64 × 10−12

μ−1/3 5.50 × 10−13 5.60 × 10−13 5.83 × 10−13 6.14 × 10−13

μ5/6 5.45 × 10−10 1.08 × 10−9 2.24 × 10−9 3.80 × 10−9

μ1 2.21 × 10−9 4.76 × 10−9 1.03 × 10−8 1.76 × 10−8

μ5/3 8.97 × 10−7 2.20 × 10−6 5.06 × 10−6 8.91 × 10−6

μ2 1.91 × 10−5 4.97 × 10−5 1.16 × 10−4 2.04 × 10−4

μ3 2.32 × 10−1 6.30 × 10−1 1.49 2.64
μ11/3 1.32 × 102 3.62 × 102 8.58 × 102 1.52 × 103

μ4 3.18 × 103 8.75 × 103 2.08 × 104 3.69 × 104

μ14/3 1.91 × 106 5.29 × 106 1.25 × 107 2.23 × 107

μ5 4.74 × 107 1.31 × 108 3.11 × 108 5.53 × 108

μ6 7.55 × 1011 2.09 × 1012 4.97 × 1012 8.84 × 1012

Table 4.1 contains various useful moments for several turbulence models in
mks units. Values of coherence diameters and isoplanatic angles in the table are
for a wavelength of 0.5 μm. The HV-21 and SLCSAT Day models are plotted
versus altitude in Fig. 4.1.

4.2 Tilt and Piston for Collimated and Focused Beams

Tilt jitter is one of the most significant effects of turbulence. Tilt of a mirror is
described by a Zernike tilt, and that measured by a centroid sensor is closely
approximated by gradient tilt. The calculation of Zernike tilt is considered first.
Since this is a single wave problem, eq. 2.112 applies. In calculations of the tilt
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10-13

.01

10-15

10-14

10-16

10-17

10-18

10-19
.1 1 10

ALTITUDE (km)

SLCSAT DAY

HV-21

C
2 n

Figure 4.1. Plots of the Hufnagel-Valley 21 and SLCSAT DAY models of tur-
bulence versus altitude. The units of turbulence strength are m−2/3.

here and in the next two sections it will be assumed that diffraction effects are
not important, thereby allowing the cosine term to be replaced by unity. The
effect of diffraction on tilt is considered in Sec. 7.5. I show that as long as one
is well within the Fresnel distance, effects of diffraction are negligible. If inner-
and outer-scale effects are neglected, the Kolmogorov spectrum given in eq. 2.35
applies. With the filter function for two-axis Zernike tilt given in eq. 3.22 one
obtains for the tilt angle variance

T 2
Z = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ κ−11/3

(
16

k0D

)2
[
J2 (γκD/2)

γκD/2

]2

. (4.20)

The diameter that must be used in the term 16/k0D is the final aperture diam-
eter. The phase variance due to local turbulence is added along the propagation
path, and it is only at the aperture that the phase is converted into a tilt. The
integrand in the second integral does not depend on the angle in kappa space.
Integration over this angle, and substitution of x = γκD/2 yields

T 2
Z =

105.1

D1/3

L∫
0

dz C2
n(z) γ5/3

∞∫
0

dx

x
x−11/3J2

2 (x)

=
105.1

2
√

πD1/3

L∫
0

dz C2
n(z) γ5/3 Γ

[
s/2 + 2, −s/2 + 1

2

−s/2 + 3, −s/2 + 1

]∣∣∣∣∣
s=−11

3

=
105.1

2
√

πD1/3

L∫
0

dz C2
n(z) γ5/3Γ

[
1
6
, 7

3
29
6
, 17

6

]
.
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4.2 Tilt and Piston for Collimated and Focused Beams 101

The x integration is equal to the Mellin transform given in eq. 1.52 evaluated at
s = −11/3. The composite gamma function defined in eq. 1.19 is equal to the
ratio of four individual gamma functions. The composite gamma function above
is equal to 0.2052. This gives for the two-axis tilt variance

T 2
Z =

6.08

D1/3

L∫
0

dz C2
n(z) γ5/3. (4.21)

For an infinite collimated beam, γ is equal to unity. For this case the inte-
gration over z can be performed with the turbulence moments given in eq. 4.2.
The 2-axis Z-tilt angle jitter variance is

T 2
Z =

6.08μ0

D1/3
= 0.3641

(
D

r0

)5/3
(

λ

D

)2

, (4.22)

where the coherence diameter is defined in eq. 4.15.
The separate x and y tilt variances are half this value.

T 2
Zx = T 2

Zy = T 2
Z/2. (4.23)

Because the variance is proportional to the zeroth moment of turbulence, it
varies as the secant of the zenith angle, sec (ξ). Notice that the tilt variance
goes to infinity as the diameter goes to zero. This singularity is removed in Sec.
5.3 by introducing a finite inner scale. For a 0.6-m diameter aperture and HV-
21 turbulence, the rms tilt is 4 μrad at zenith. This is much larger than the
diffraction-limited beam size of 1 μrad at 0.5 μm, and it causes considerable
smearing of a star image.

If the turbulence is constant along the path of length L, the two-axis tilt
variance is

T 2
Z =

6.08C2
nL

D1/3
. (4.24)

If the wave originated as a point source propagating from the ground to space,
the value of γ would be equal to z/L. The tilt angle variance of a point source
on the ground as viewed from space is

T 2
Z =

6.08μ5/3

D1/3L5/3
=

0.169λ2

D1/3L5/3θ
5/3
o

. (4.25)

This tilt also decreases the resolution of an imaging system in space. Since the
tilt is correlated from one point to another, the resolution can be improved by
the use of short-exposure images or by tracking the image during the exposure.

By dividing the tilt variance value by the factor (4/k0 D)2 given after eq. 3.21
and using the relation in eq. 4.15, one can obtain the phase variance. The tilt
phase variance averaged over the aperture is

σ2
T = 0.380μ0 k2

0 D5/3 = 0.899
(

D

r0

)5/3

. (4.26)
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102 4 Zero-Parameter Problems

Total and piston phase variances are infinite for Kolmogorov turbulence.
Their difference, which is piston-removed phase variance, is finite, and it is found
with the relation for phase variance given in eq. 2.112 and the filter function for
piston phase variance given in eq. 3.19. For a collimated beam it is

σ2
PR = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ κ−11/3

⎧⎨
⎩1 −

[
2 J1(κD/2)

κD/2

]2
⎫⎬
⎭.

The angle and axial integrations can be evaluated, and when the substitution
x = κD/2 is made one obtains

σ2
PR = 1.64D5/3μ0k

2
0

∞∫
0

dx

x
x−11/3

[
x2

4
− J2

1 (x)

]
= − 1.64

2
√

π
μ0k

2
0 D5/3 Γ

[
−5

6
, 7

3
23
6
, 17

6

]
.

The integral of individual functions in the integrand does not converge if the
exponent of the power of x that multiplies dx/x is less than −2. However, because
x2/4 is the first term of a power series of J2

1 (x), the integral can be analytically
continued and converges for the exponent in the range −2 to −4, since the
residues at two poles cancel as in the derivation of eq. 1.22. Thus the integral is
simply the Mellin transform of the squared Bessel function in eq. 1.52 evaluated
at s = −11/3. The value of the composite gamma function is −0.9438. Thus,
the phase variance with piston removed is

σ2
PR = 1.033

(
D

r0

)5/3

. (4.27)

Since piston and tilt are orthogonal on a circular aperture, the phase variance
with piston and tilt removed is the difference of eq. 4.27 and eq. 4.26 , i.e.,

σ2
PTR = 0.134

(
D

r0

)5/3

. (4.28)

These piston- and tilt-variance relationships are often used to get a first cut at
system performance. Tilt variance is 87% of the piston-removed phase variance.
For this reason adaptive-optics systems are usually designed to have a separate
tilt mirror to limit the dynamic range of deformable mirror motion that responds
only to the tilt-removed phase. If turbulence to be corrected can be so large that
one can have D/r0 = 10, then the rms piston-and-tilt-removed phase standard
deviation is 2.49 rads or 0.397 waves. This value can be used to estimate the
dynamic range of actuator motion required in the deformable mirror.

In a similar fashion, the phase variance can be found for any Zernike mode.
This result is given in eq. 6.170.

4.3 Gradient Tilt

In an exactly analogous fashion, the two-axis G-tilt integral is found with the
filter function given in eq. 3.38 and the general formula in eq. 2.112, to obtain
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T 2
G = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ κ−11/3

(
4

k0D

)2

J2
1 (γκD/2). (4.29)

After the same integrations, substitutions, and Mellin transforms as above, one
obtains for a collimated beam

T 2
G =

6.564μ0

D1/32
√

π
Γ

[
1
6
, 4

3
17
6
, 11

6

]
=

5.675μ0

D1/3
= 0.3399

(
D

r0

)5/3
(

λ

D

)2

. (4.30)

This gives a tilt that is 3.5% lower than Z-tilt. This is the same result obtained
by Ellerbroek (1984) and Tatarski (1971).

4.4 Difference Between Gradient and Zernike Tilt

Sometimes a target position is measured with a centroid sensor that responds
essentially to G-tilt. The pointing system uses tilt from this sensor to direct
a beam at a target by tilting a mirror that changes the Z-tilt of the wave. It
is of interest to know what residual tilt jitter is expected at the target even
if this process is performed perfectly. This problem was analyzed by Yura and
Tavis (1985) and given the name centroid anisoplanatism. The variance of the
difference between G-tilt and Z-tilt is found with the filter functions for G- and
Z-tilt given by the square roots of the expressions in eq. 3.22 and eq. 3.38. Insert
these into eq. 2.117, which determines the variance of two collimated waves that
have different aperture functions, to obtain

T 2
D =0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ κ−11/3

(
4

k0D

)2
[
4J2(κD/2)

κD/2
−J1(κD/2)

]2

. (4.31)

If the bracket is expanded, one obtains three terms. Two are the sum of Zernike
and Gradient tilts. The third can be evaluated with the Mellin transform in
eq. 1.53, to obtain

T 2
D =

6.564μ0

2
√

πD1/3

(
16Γ

[
1
6
, 7

3
29
6
, 17

6

]
+ Γ

[
1
6
, 4

3
17
6
, 11

6

]
− 8Γ

[
1
6
, 7

3
23
6
, 17

6

])
.

If the gamma functions are evaluated directly, then one requires five-place ac-
curacy to achieve three-place accuracy in the final answer, since the terms in
braces almost cancel. Rather than doing that, one uses the recurrence relation
for gamma functions to show that

T 2
D =

6.564μ0

2
√

πD1/3
Γ

[
1
6
, 4

3
17
6
, 11

6

] (
4608

4301
+ 1 − 384

187

)
.

This is equal to
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T 2
D =

0.102μ0

D1/3
= 0.0061

(
D

r0

)5/3
(

λ

D

)2

. (4.32)

Beamwidth of a diffraction-limited system is 1.2λ/D; therefore, there is a
one-third of a beamwidth jitter when the aperture diameter is six times the
coherence diameter. This tilt jitter would be observable only if the image or
outgoing beam were significantly corrected for other effects of turbulence. It
was shown by Herrmann (1981) that the major difference between the two tilts
is due to coma distortion. If an adaptive-optics system corrected most of this
distortion, centroid anisoplanatism would be greatly reduced.

4.5 Zernike Mode Variance

The variance of any Zernike mode with Kolmogorov turbulence can be obtained
by inserting the filter function for Zernike modes in eq. 3.18 into the general
phase variance formula eq. 2.112

Z(m,n)x

Z(m,n)y

Z0,n

⎫⎪⎬
⎪⎭ = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ κ−11/3

⎧⎪⎨
⎪⎩

Fm,n (κ)x

Fm,n (κ)y

F0,n (κ)
. (4.33)

The integration over angle gives the same result for all three components.
Each variance is denoted by Zn. Substitution of x = γκD/2 yields

Zn = 0.1641D5/3(n + 1)k2
0

L∫
0

dz C2
n(z) γ5/3

∞∫
0

dx

x
x−11/3J2

n+1(x)

=
0.08205D5/3(n + 1)k2

0√
π

L∫
0

dz C2
n(z) γ5/3 Γ

[
s/2 + n + 1, −s/2 + 1

2

−s/2 + n + 2, −s/2 + 1

]∣∣∣∣∣
s=−11

3

= 0.04130D5/3k2
0

L∫
0

dz C2
n(z) γ5/3Γ

[
−5

6
+ n, 7

3
23
6

+ n, 17
6

]
. (4.34)

For a collimated beam the Zernike phase variance is equal to

Zn = 1.0945(n + 1)Γ

[
−5

6
+ n, 7

3
23
6

+ n, 17
6

] (
D

r0

)5/3

. (4.35)

The phase variance of each tilt component is 0.449(D/r0)
5/3, for each of

the three second-order Zernike modes of focus and the two axes of astigma-
tism it is 0.0232(D/r0)

5/3, and for each of the four third-order distortions it is
0.00619(D/r0)

5/3.
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4.6 Piston and Tilt of a Gaussian Beam

Modes for a Gaussian beam are derived, and these are shown to be in excellent
agreement with expressions for top-hat beams if D is replaced by 2

√
2w0. This

was the relationship that gave the same Strehl ratio in the large diameter limit
for a top hat and Gaussian beam.

A normalized Gaussian field without diffraction can be expressed as

Field =
1

πw2
0

exp

(
− ρ2

w2
0

)
. (4.36)

The field is normalized so that the integration of the field over all space is
equal to unity. ∫

dρ
1

πw2
0

exp

(
− ρ2

w2
0

)
= 1. (4.37)

The modes of a Gaussian beam will now be defined. One must decide how
the infinite extent of the beam should be handled. A reasonable assumption is
to weight the mode function by the field amplitude at that point. I will show
that this assumption gives results that are consistent with a top-hat field over
a diameter D.

With this assumption, the filter function for the piston of a Gaussian wave
is the Fourier transform of the field times the mode function, which for piston
is unity. This gives

G (κ) =
∫

dρ
1

πw2
0

exp

(
− ρ2

w2
0

)
exp [iκ · ρ] = exp

(
−κ2w2

0/4
)
. (4.38)

This was evaluated by breaking the integral into one over ρx and one over ρy.
Each of these integrals yields the same result.

The piston filter function applicable for a Gaussian beam is

F (κ) = G (κ)G∗ (κ) = exp
(
−κ2w2

0/2
)
. (4.39)

The equation for the phase and log-amplitude of a Gaussian beam that is the
analogy of eq. 2.112 is

[
σ2

φR

σ2
χR

]
= 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

[
cos2 [P (γ, κ, z)]

sin2 [P (γ, κ, z)]

]

× exp
(
−κ2w2

0/2
)
F̂ (γκ) . (4.40)

Using the Gaussian filter function, one can find the phase variance with piston
removed as

σ2
PR = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ κ−11/3

(
1 − exp

[
−κ2w2

0/2
])

. (4.41)
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Integrate over the angle and z, and make the substitution x = w0κ to obtain

σ2
PR = 1.303 k2

0 μ0 w
5/3
0

∫ ∞

0
dx x−8/3

[
1 − exp

(
−x2/2

)]
. (4.42)

The integral is equal to 1.87; use eq. 4.15 to obtain

σ2
PR = 5.77

(
w0

r0

)5/3

. (4.43)

Using the substitution D = 2
√

2w0 one obtains for the piston-removed phase
variance of a top-hat beam

σ2
PR = 1.02

(
D

r0

)5/3

. (4.44)

The same result derived directly for a top-hat beam in eq. 4.28 has a coefficient
of 1.033. The results are almost identical, which helps to justify the weighting
used.

As additional evidence to support the weighting, I will derive the gradient
tilt of a Gaussian beam. For a Gaussian beam it is reasonable to assume that
the tilt is the average of the local tilt in the beam. This is the G-tilt phase. It is
given by

G-tilt =
∫

dρ ∇t Φ (ρ) . (4.45)

In Fourier space the transverse gradient produces a factor of iκ times the
gradient filter function just as the case for the top-hat beam. To obtain the tilt
from the phase slope divide by k0. The G-tilt filter function applicable for a
Gaussian beam is

G (κ) =
iκ

k0

exp
(
−κ2w2

0/4
)
, (4.46)

which gives

F (κ) = G (κ)G∗ (κ) =
κ2

k2
0

exp
(
−κ2w2

0/2
)
. (4.47)

Therefore, the G-tilt variance is

σ2
G−Tilt = 0.2073

L∫
0

dz C2
n(z)

∫
dκ κ−11/3κ2 exp

(
−κ2w2

0/2
)
. (4.48)

Integrate over the angle and z, and make the substitution x = w0κ to obtain

σ2
G−Tilt = 1.303μ0/w

1/3
0

∫ ∞

0
dx x−2/3 exp

(
−x2/2

)
. (4.49)

The integral is equal to 3.124. Therefore, the G-tilt variance is equal to

σ2
G−Tilt = 4.071μ0/w

1/3
0 . (4.50)

Making the substitution D = 2
√

2w0, one obtains

σ2
G−Tilt = 5.76μ0/D

1/3. (4.51)

The coefficient given in eq. 4.30 for tilt of a top-hat beam is 5.675. Again the
correspondence is very close.
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4.7 Beam Movement at a Target 107

4.7 Beam Movement at a Target

Turbulence causes the beam boresight to move at a target. This movement is
found for a source on the ground projected into space, and vice versa. Tilt causes
a beam to change position on a target as shown in Fig. 4.2. In this problem one
obtains the filter function by finding an expression for the beam movement on
target for a given local tilt, and then taking the absolute value squared. It is

LINE BETWEEN
TRANSMITTER
AND TARGET

EFFECTIVE UPPER LIMIT 
OF ATMOSPHERIC

TURBULENCE

TARGET
BEAM
PATH

TURBULENT ATMOSPHERE

TRANSMITTER

BEAM
MOVEMENT

Figure 4.2. Beam movement at a target board.

assumed that scintillations are small, and the beam is not broken up. If there are
significant scintillations, these will increase the movement calculated here. Far
field effects decrease the movement. It is also assumed that diffraction is unim-
portant; therefore, a ray-optics calculation is adequate. With these assumptions,
the amount of beam jitter at a target at L from turbulence at z is equal to the
product of the local tilt and the distance over which it acts, L − z. Therefore,
the tilt filter function for this problem is

F (κ) = (L − z)2

(
16

k0γD

)2 [
J2 (γκD/2)

γκD/2

]2

. (4.52)

One must use the local diameter, which is given by γD, to find the local tilt to
multiply by the lever arm. The one-axis variance of beam movement is

X2 = 0.2073 k2
0

L∫
0

dz C2
n(z)

∫
dκκ−11/3(L − z)2

(
16

k0γD

)2 [
J2 (γκD/2)

γκD/2

]2

.

(4.53)
This expression can be evaluated for the collimated case, for which case γ = 1,
to give

X2 =
6.08

D1/3

(
L2μ0 − 2Lμ1 + μ2

)
. (4.54)
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108 4 Zero-Parameter Problems

For distances at which the target is well above the turbulence, the first term in
brackets is dominant; this gives the physically reasonable result that rms move-
ment is rms tilt times distance. For a target at 100 km with HV-21 turbulence
and a 60-cm aperture, the rms beam movement is 40 cm.

If turbulence is constant along the path, one finds

X2 =
2.03L3C2

n

D1/3
. (4.55)

This functional dependence with constant turbulence is the same as that re-
ported in Fante (1980) where the fourth moment of the field was used to cal-
culate the beam displacement. The coefficient found by Fante was 1.92 in that
case. A Gaussian beam, as calculated by Prokhorov et al. (1975), gives the same
dependence with the coefficient equal to 1.6. The advantage of the approach
here is that the answer is arrived at in a straightforward manner, and the ex-
pression given in eq. 4.54 applies for turbulence that can vary in space. For the
beam focused at the target board, for which case γ = (L − z) /L, the movement
variance is

X2 =
6.08L2

D1/3

L∫
0

dz C2
n(z)(1 − z/L)5/3. (4.56)

For constant turbulence along the path, this can be integrated to give

X2 =
2.03L3C2

n

D1/3

(
9

8

)
. (4.57)

The movement variance is 112% that of a collimated beam, and the rms move-
ment is 106% that of a collimated beam.

For a source in space, the same argument as above gives a filter function

F (κ) = z2

(
16

k0γD

)2 [
J2 (γκD/2)

γκD/2

]2

. (4.58)

Variance of the beam movement for a collimated beam propagated from space
to ground is

X2 =
6.08μ2

D1/3
. (4.59)

This movement is equal to 1.2 cm for the HV-21 model with a 0.6-m aperture.
Thus it is much easier to hit a target on the ground from space with a laser
beam than vice versa.

4.8 Angle-of-Arrival Jitter

Suppose a tracking system is doing a perfect job of keeping a laser beam centered
on a target. There will still be an angle-of-arrival jitter of the laser beam at the
target because the beam has to traverse the atmosphere differently as turbulence
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4.8 Angle-of-Arrival Jitter 109

changes. This is illustrated in Fig. 4.3. This jitter can cause movement of a beam
relayed from a mirror at the space target to another object if the relay mirror
is not tilted to compensate for this effect.

The statement that a target is being perfectly tracked means that, at each
turbulence realization, the beam movement due to the tilted tracking mirror is
exactly canceled out by the displacement caused by the atmospheric turbulence
tilt. The mirror and atmospheric tilts are not the same since the lever arm differs
for the two tilts.

The angle-of-arrival tilt will be calculated for a turbulence screen at z. If
dTo is the mirror tilt needed to compensate for the displacement due to the
turbulence-induced tilt, dT , then one obtains for perfect tracking

LdTo − (L − z) dT = 0; (4.60)

therefore,
dTo = (1 − z/L) dT. (4.61)

The residual tilt at the target dTt is the tilt through turbulence minus the mirror
tilt. This results in the angle-of-arrival jitter

dTt = dT − dTo = z dT/L. (4.62)

Therefore, the filter function for angle-of-arrival jitter is the tilt filter function

TURBULENT ATMOSPHERE

TRANSMITTER

BEAM PATH
(Line of Sight)

TARGET

LINE BETWEEN TRANSMITTER
AND TARGET

EFFECTIVE UPPER LIMIT OF
ATMOSPHERIC TURBULENCE

Figure 4.3. Angle-of-arrival jitter of a beam at a target that is being perfectly
tracked by a ground system.

multiplied by z/L, which gives for the variance of angle-of-arrival tilt jitter the
filter function

F (κ) =
(

z

L

)2
(

16

k0γD

)2 [
J2 (γ κD/2)

γ κD/2

]2

. (4.63)

As in the last section, one must use the local tilt, which is why a γ appears in
1/koD. Remember that γ is equal to unity for a collimated beam, γ is equal to
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1−z/L for a beam focused at the target, and γ is equal to z/L for a point source
on the ground. Substitution of this filter function into eq. 2.112 and evaluation
of the κ integral gives

T 2
t =

6.08

D1/3L2

L∫
0

dz C2
n(z)z2γ−1/3. (4.64)

One obtains for a collimated wave

T 2
t = 6.08

μ2

D1/3 L2
. (4.65)

For a 0.6-m system with a target at 300-km range and HV-21 turbulence, the
rms tilt is 39 nrads.

For a beam focused at the object, the tilt variance is

T 2
t =

6.08

D1/3 L2

L∫
0

dz C2
n (z) z2 (1 − z/L)−1/3 . (4.66)

If the target is well above the turbulence, then the angle-of-arrival tilt jitter is
almost equal to that of a collimated beam.

For a point source on the ground, γ is equal to z/L; the angle-of-arrival
variance at a target in space is

T 2
t = 6.08

μ5/3

D1/3 L5/3
. (4.67)

For a 0.6-m target aperture at 300-km range and HV-21 turbulence, the rms tilt
is 69.4 nrads.

This problem was also analyzed by Tyler (1985). His results are in the form
of curves that are derived from a numerical integration.

4.9 Scintillation for Collimated and Focused Beams

First-order Rytov theory expressions that are derived for scintillation are valid
when the log-amplitude variance values that are 0.25 or less, which is well below
the saturation value of 0.3—0.4. The variance of log-intensity is four times the
value of variance of log-amplitude.

In this section the scintillation is calculated for the infinite beam case that
applies to a point source or a large collimated beam. When the Fresnel number
is in the range from 0.01 to 10, then the finite beam analysis in Chap. 10 should
be employed.

To calculate scintillation of a wave that propagates from 0 to L with inner
and outer scale neglected, again use eq. 2.112 with the diffraction parameter
given in eq. 2.77, to obtain
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4.9 Scintillation for Collimated and Focused Beams 111

σ2
χ = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ κ−11/3 sin2

[
γκ2(L − z)

2k0

]
. (4.68)

The log-amplitude variance is often referred to as the Rytov number. Some-
times the variance of the log-intensity is referred to as the Rytov variance. If
propagation were from L to 0, then L − z should be replaced by z in the last
equation to obtain

σ2
χ = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ κ−11/3 sin2

(
γκ2z

2k0

)
. (4.69)

As explained in Sec. 2.3, to compare this form with expressions obtained by
others such as Hufnagel (1978), one must make the substitution κ → κ/γ.

With a change in variables x2 = γκ2z/2k0 in the last integration, it can be
evaluated by using eq. 1.50 with the result that for propagation from L to 0 one
obtains

σ2
χ = 0.5631 k

7/6
0

L∫
0

dz C2
n(z) (γz)5/6 . (4.70)

For a plane wave, for which γ = 1, the standard result for scintillation of a
wave propagating from space to the ground is obtained

σ2
χ = 0.5631 k

7/6
0 μ5/6. (4.71)

This varies as sec11/6 (ξ). It is the scintillation observed from a star and is equal
to 0.059 for the HV-21 model at 0.5 μm wavelength and zero zenith angle. Even
though this value is small, it produces significant scintillation. Since the variance
of log-intensity is four times that of the log-amplitude; its value is 0.236. Since the
log-intensity distribution is Gaussian, the one-sigma fluctuation of the intensity
is about ±20% of the mean.

The expression for the variance of the log-intensity for plane-wave propagation
from L to 0 is

σ2
lnI = 2.25 k

7/6
0 μ5/6. (4.72)

If the turbulence strength is constant along the path, then the log-amplitude
variance for a plane wave is equal to

σ2
χ = 0.3071 k

7/6
0 C2

nL
11/6. (4.73)

For the log-intensity, the value is

σ2
lnI = 1.23 k

7/6
0 C2

nL
11/6. (4.74)

Return to the expression in eq. 4.68 for propagation from 0 to L. Integrating
over angle and making the substitution x2 = γκ2(L − z)/2k0, one obtains
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σ2
χ = 0.731 k

7/6
0

L∫
0

dz C2
n(z)(L − z)5/6γ5/6

∞∫
0

dx

x
x−5/3 sin2

(
x2
)
.

Using the Mellin transform in eq. 1.50 evaluated at s = −5/3, for propagation
from 0 to L one obtains

σ2
χ = 0.5631 k

7/6
0

L∫
0

dz C2
n(z)(L − z)5/6γ5/6. (4.75)

This must be integrated numerically in general. For a receiver well above the
turbulence, the approximate value of σ2

χ for a plane wave, for which γ = 1, is

σ2
χ ≈ 0.5631 k

7/6
0 μ0 L5/6. (4.76)

This varies as sec (ξ). The log-amplitude variance is greater than unity for ranges
larger than 2.5 km for a propagation wavelength of 0.5 μm and for a typical
turbulence strength of 10−14m−2/3. Therefore, scintillation of a beam projected
a modest distance along the ground or to space will be saturated.

The above expression has the scintillation increasing without bound as L
increases. This does not happen because at long ranges the Fresnel number is
small and the point source case is approached. In that region γ = z/L in eq. 4.75
and the dependence on L cancels.

As pointed out in the introduction, expressions for the phase variance are
usually valid even for saturated scintillation. However, if the particular appli-
cation requires detailed knowledge of the amplitude profile as, for instance, in
using the amplitude profile as a tracker input, then the results based on the
Rytov approximation are invalid. One must use either a wave-optics simulation
or a theoretical approach that works with saturated scintillation.

For a point source on the ground for which γ = z/L, the scintillation observed
in space, where L is much larger than the height to which turbulence extends,
is approximately equal to

σ2
χ ≈ 0.5631 k

7/6
0 μ5/6. (4.77)

This is the same scintillation level seen on the ground from a collimated beam
from space that was derived above. If the turbulence is constant along the path,
then the scintillation for this case is

σ2
χ = 0.5631 k

7/6
0 C2

n

L∫
0

dz (L − z)5/6
(

z

L

)5/6

= 0.5631 k
7/6
0 C2

nL
11/6B

(
11

6
,
11

6

)
,

(4.78)

where B
(

11
6
, 11

6

)
is a Beta function whose value for this case is 0.2205. There-

fore, for constant turbulence along the path, the variance for a spherical wave
propagating from a focus at z = 0 to a receiver at L is

σ2
χ = 0.124 k

7/6
0 L11/6C2

n. (4.79)
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This is about a factor of 2.5 lower than the plane wave result in eq. 4.73 for
constant turbulence. Similarly, for a point source in space propagating towards
the ground, one obtains

σ2
χ = 0.5631 k

7/6
0

L∫
0

dz C2
n(z)

(L − z)5/6z5/6

L5/6
. (4.80)

For a point source at L well above turbulence, the scintillation is the same as
that for a plane wave propagating from space, as would be expected. This result
is given in eq. 4.71.

4.10 Phase Variance with Finite Servo Bandwidth

Greenwood (1977) derived the phase variance of an adaptive-optics system with
finite temporal servo bandwidth with either a one-pole filter or an infinitely
sharp filter. All other errors are neglected. Residual rms-phase error from a
finite frequency response is calculated here with the same servo filter treated by
Greenwood. Consider the following filter,

Ff (ω) =

∣∣∣∣∣1 − 1

1 + i (ω/ω3dB)n

∣∣∣∣∣
2

. (4.81)

The single-pole filter case corresponds to n = 1, and the sharp cutoff case
corresponds to n = ∞ . Insert this filter into eq. 2.134 with diffraction neglected.
Putting the result into eq. 2.133, and considering propagation from L1 to L2,
one obtains

σ2
φ = 0.8295 k2

0

L2∫
L1

dz C2
n(z)

v5/3 (z)

ω
5/3
3dB

∞∫
0

dx

x

x2n−5/3

1 + x2n

∞∫
0

dc

c

U(c − 1)c−5/3

√
c2 − 1

,

where x = ω/ω3dB = f/f3dB.
Using the Mellin transform in eq. 1.54 with p = 1, the relation in eq. 1.9 with

p = 2n, and the identity Γ [s]Γ [1 − s] = π/ sin (π s), one obtains

∞∫
0

dx

x

x2n−5/3

1 + x2n
=

π

2n sin (5π/6n)
.

Using the Mellin transform in eq. 1.56 with a = 1/2, and the relation in
eq. 1.19 with p = 2, one obtains

∞∫
0

dc

c

U(c − 1)c−5/3

√
c2 − 1

=

√
π

2
Γ

[
4
3
11
6

]
= 0.8413.

With these results, the phase variance is
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σ2
φ =

(
fG

f3dB

)5/3

=
0.051 k2

0 v5/3

f
5/3
3dB n sin (5π/6n)

, (4.82)

where the velocity moment is defined by

vm =

L2∫
L1

dz C2
n(z) vm(z) = sec (ξ)

H2∫
H1

dhC2
n(h) vm(h), (4.83)

where v(z) is the velocity perpendicular to the propagation direction.
For propagation between any two points, the integration is over the prop-

agation path, and the velocity is the component transverse to the path. For a
single-pole filter (n=1) one finds the characteristic frequency, sometimes referred
to as the Greenwood frequency, is

fG = 0.254 k
6/5
0 v

3/5
5/3. (4.84)

For a sharp cutoff filter, the limit of the phase variance as n gets very large
is found from L’Hospital’s rule. This gives the same form for the Greenwood
frequency; however, the coefficient is lower. In this case

fG = 0.0945 k
6/5
0 v

3/5
5/3. (4.85)

These are the same results obtained by Greenwood (1977).

4.11 Variances for Beams Corrected by Adaptive Optics

If an adaptive-optics system applies the conjugate in both amplitude and phase
of the beacon, then an outgoing wave propagating in a direction exactly opposite
to the beacon would be perfectly corrected. This result can be derived from the
reciprocity relations for wave propagation. Most adaptive-optics systems apply
only the conjugate of phase, and the direction of the outgoing beam may be
offset from that of the beacon. For that case the filter function given in eq. 3.73
applies, and the residual log-amplitude and phase variances, after correction by
an adaptive-optics system, are given by eq. 3.69 with F (γ κ) = 1 as
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[
σ2

φc

σ2
χc

]
= 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκκ−11/3

×
[
|cos (aL) cos (az) − exp (iκ · d ) cos [a(L − z)] |2

|sin (aL) cos (az) − exp (iκ · d ) sin [a(L − z)] |2
]
, (4.86)

where a = γκ2/2k0. Let us first consider the case in which the offset between
the outgoing and beacon beams d is zero. The variance in this case is

[
σ2

φc

σ2
χc

]
= 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκκ−11/3

[
sin2(az) sin2(aL)

sin2(az) cos2(aL)

]
. (4.87)

A simple relation can be found by the addition of the two variances to obtain

σ2
φc + σ2

χc = 0.2073 k2
0

L∫
0

dz C2
n(z)

∫
dκκ−11/3 sin2

(
γκ2z

2k0

)
. (4.88)

Note that the angle integration in the last two equations can be performed in
κ space to obtain a factor of 2π. The last equation is the one obtained for
scintillation of either a point or focused source propagating towards the ground
that was analyzed in Sec. 4.7, and the result for a collimated beam is

σ2
φc + σ2

χc = 0.5631 k
7/6
0 μ5/6 = σ2

χ. (4.89)

Therefore, total variance is equal to the variance of the scintillation on the bea-
con. This expression includes the effect of diffraction, and is valid for distributed
turbulence.

The corrected beam in a phase-only adaptive-optics system can be distorted
by several causes. Here the distortion in a system that has an anisoplanatic error
produced by an offset of the outgoing beam by θ from the beacon is considered.
The filter function for the total beam distortion is given in eq. 3.71 as

F ′
t (γκ) = sin2

(
γκ2z

2 k0

)
+ 2 cos2

(
γκ2z

2 k0

)
[1 − cos (κ · d )] . (4.90)

The first term is the same one encountered with correctly aligned beams, and
its variance is given in eq. 4.89. It will be assumed that diffraction is negligible,
which enables the first cosine to be replaced by unity. To find the total distortion
with an angular offset θ for which d = θz, use the expression for the variances
in eq. 3.69 with outer and inner scale effects neglected. Sum the phase and log-
amplitude variances and integrate over angle to obtain for the total variance of
a corrected offset beam

σ2
co = σ2

χ + 0.2073 (4π) k2
0

L∫
0

dz C2
n(z)

∞∫
0

dκ

κ
κ−5/3 [1 − J0(κθz)] . (4.91)
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The integral can be evaluated with the Mellin transform in eq. 1.51 and the
definition of isoplanatic angle in eq. 4.14 to obtain

σ2
co = σ2

χ + (θ/θo)
5/3 . (4.92)

The angle-dependent variance is equal to the variance of angular anisoplanatism
that is derived in Sec. 8.4.2.
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Chapter 5

Integral Evaluation with Mellin Transforms

In this chapter I continue the development of techniques for evaluating the
wavenumber integrals in turbulence propagation theory. With appropriate nor-
malization, the wavenumber (κ) integration can be expressed in a standard form
depending only on zero, one, or more parameters. If no parameters are present,
the integration is performed simply by table lookup as was done in the last chap-
ter. The one parameter case requires a transformation of the integral into the
complex plane that is subsequently evaluated by pole-residue techniques. De-
tails of this process are considered in this chapter. Integrals with more than one
parameter are evaluated by extensions of this technique and are considered in
Chap. 10. Tatarski considered the evaluation of one-parameter integrals in which
inner scale was finite. He expanded the function that multiplies the decaying ex-
ponential, which contains the inner scale, into a Taylor series, and integrated
term by term. Since the integral over each term of the power series converges
absolutely, this method is valid. Tatarski expressed the resulting power series as
a hypergeometric function. His approach does not always work with zero inner
scale and restricts the range of problems that can be solved. This limitation does
not apply to the technique discussed here. The integrals evaluated here are of
the form

I =

∞∫
0

dx xa f (b xc) g (d xe) , (5.1)

where f (x) and g (x) are Meijer’s G-functions, a special case of which are gen-
eralized hypergeometric functions. The only restriction on a, b, c, d, and e is that
the integral converges. Sometimes it will be required that dc/be �= 1.

A powerful method for evaluating these integrals is described by Marichev
(1983). His method applies to all integrals whose integrand is the product of
two generalized hypergeometric functions and a power of the integration vari-
able. He shows that the integral, which can be transformed into a Mellin-Barnes
integral in the complex plane, can be expressed as a finite sum of generalized
hypergeometric functions or, equivalently, as a Meijer G-function.

He puts integrals into a standard form to which Slater’s (1966) theorem ap-
plies. This is convenient for some problems and is also used here. However, for
other problems this approach is not always convenient. The calculation of the
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118 5 Integral Evaluation with Mellin Transforms

Strehl ratio in turbulence in Chap. 8 is an example. The Strehl ratio for uncor-
rected turbulence can be written as the sum of six generalized hypergeometric
functions of the form 6F11[ ]. This form is not convenient for either obtaining
physical insight or in numerical evaluation. For these cases, I short circuit the
step of transforming the integrand into standard form, since I can obtain the
answer as a more convenient infinite series.

The parameters in the integrand can be less than or greater than unity. For
small parameter values the Taylor series is useful, and for large values an as-
ymptotic solution is sometimes applicable. Each of these solutions is obtained in
a straightforward manner. The Taylor series can be expressed as generalized hy-
pergeometric functions. For the problems considered in this book, the solutions
will be given both as generalized hypergeometric and power series.

In this chapter the theory of using Mellin transforms to obtain both Taylor
series and asymptotic solutions is given. The formulas are a generalization of
those given by Marichev (1983) and apply to cases where coefficients of the
complex variable in gamma functions need not be unity. I discuss examples with
repeated poles in the complex plane, which give rise to characteristic logarithmic
terms.

Computer algebra programs can often be used to obtain the evaluation of
integrals that result in generalized hypergeometric functions. With these pro-
grams it is no longer necessary to use the Mellin transform techniques to obtain
these functions. However, at the present time these programs do not provide the
asymptotic solution. Often there are numerical difficulties in evaluating these
functions for some parameter ranges. In the table at the end of this chapter
formulas are given to obtain the asymptotic solution.

5.1 Integral Evaluation with One Parameter

The Mellin transform pair is given by

h(x) → H(s) ≡ M [h (x)] ≡
∞∫
0

dx

x
h(x) x s, and (5.2)

h(x) =
1

2πi

∫
C

dsH(s) x−s. (5.3)

The integral in eq. 5.2 only converges when the value of s is within certain limits.
The integration path in the inverse transform goes from η − i∞ to η + i∞,
and the value of the real part of s along the integration path is determined by
convergence properties of the function.

The Mellin transform of any function that can be expressed as a generalized
hypergeometric function times a power of the integration variable is a ratio of
gamma functions as discussed in Sec. 1.3. This category includes most common
functions such as algebraic, exponential, trigonometric, inverse trigonometric,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5.1 Integral Evaluation with One Parameter 119

hyperbolic, logarithmic, complete elliptic, sine and cosine integrals, error func-
tions, incomplete gamma, parabolic cylinder, Gegenbauer polynomials, Hermite,
Laguerre, Whittaker, Legendre, Bessel, and other orthogonal functions. The Mel-
lin transform of these functions and others are given in Appendix A.

Marichev (1983) lists 1200 Mellin transforms that are expressed as the ratio
of gamma functions. There is also a similar list in Prudnikov et al. (1990). Ober-
hettinger (1974) also has an extensive list of Mellin transforms, but they are not
all expressed as ratios of gamma functions. Table 1.1 contains Mellin transforms
of functions that are used for problems of wave propagation in turbulence. Other
transforms are in Appendix A. The range of s for which the integral converges
is also given.

The Mellin transform definition and a list of Mellin transforms is all that
is necessary to solve many simple problems as in Chap. 4. More complicated
problems are solved with the Mellin convolution integral, which is the parallel
to the Fourier convolution integral. This was derived in Sec. 1.2 as

h(x) =

∞∫
0

dy

y
h0(y)h1(x/y) → M [h (x)] ≡ H(s) = H0(s)H1(s). (5.4)

Notice the appearance of the multiplier 1/y, and the appearance of 1/y in the
argument of the second function. Obtaining the Mellin transform of a function
in which the variable is the reciprocal of the usual variable, as required above,
is trivially obtained by the replacement of s by −s in the function’s Mellin
transform, as in eq. 1.9. The single parameter in eq. 5.4 is x or its inverse.

Using this formula one can transform the general integral given in the intro-
duction to this chapter into an integral in the complex plane as

I =

∞∫
0

dw wa f (b wc) g (dwe)

=
b−(1+a)/c

e c

1

2πi

∫
C

ds
(
d1/e b−1/c

)s
F
(

s + a + 1

c

)
G
(
−s

e

)
(5.5)

for c > 0. When c < 0, the sign of the result changes. F and G are the Mellin
transforms of f and g. The integration path in the complex plane has to be
consistent with the restrictions on s in the individual Mellin transforms. The
integral in the complex plane can always be performed with the methods to be
discussed when d b−e/c is not equal to unity.

In the single parameter case, one evaluates the integral in the complex plane
by closing the integration path in a clockwise or counterclockwise direction de-
pending on the integrand. By Cauchy’s residue theorem the value of the integral
is 2πi times the sum of residues of the enclosed poles. The sign of the residues
for the poles going to infinity are positive whether the path is closed in a clock-
wise or counterclockwise direction. The change in path direction is negated by the
change in sign of s in the gamma function. The sign of the residues is negative
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120 5 Integral Evaluation with Mellin Transforms

for poles that are on the other side of the integration path as a result of series
terms being subtracted from the function.

I now develop a method for evaluating the integral as a Taylor or asymptotic
series that gives an accurate answer with the fewest number of terms for the
case of a a single parameter. Since each Mellin transform in eq. 5.5 is the ratio
of gamma functions, the general form of the integral in the complex plane is a
Mellin-Barnes integral given by

h(x) =
1

2πi

∫
C′

ds x−s

A∏
i=1

Γ [ai + αi s]
B∏

j=1
Γ [bj − βj s]

C∏
k=1

Γ [ck + γk s]
D∏

m=1
Γ [dm − δm s]

. (5.6)

The terms are arranged so that all coefficients of s are positive. The poles closest
to the coordinate axis and integration path for a typical integral are shown in
Fig. 5.1. In general, x can be negative or complex, as it is in the beam-wave
case. For infinite waves x is positive and real. This is the case considered in this
chapter. The general case of complex x is treated in Chap. 8. The integration
path can have all poles of a gamma function on one side of the integration
path or can split its poles. In all the turbulence problems considered so far, the
integration path had all the poles or all the poles but the first and rarely the
second on one side of the integration path. The methods developed here allow
one to evaluate the integral regardless of the pole locations.

Re s

s-PLANEIm s

X

PATH OF
INTEGRATION

TYPICAL POLES OF
A TERMS TYPICAL POLES OF

B TERMS

X X X X X

X X X X X XX
X X X X X X

X X X X X

Figure 5.1. Typical integration path and pole locations for the general integral.
The poles extend to infinity in both directions.

The general integral in eq. 5.6 for all the poles of an individual gamma func-
tion to one side of the integration path can be expressed as a Fox H-function,
defined in eq. 1.39, as

h(x) =HB, A
A+D, B+C

[
1

x

∣∣∣∣ (1 − a1, α1) , . . . , (1 − aA, αA) , (d1, δ1) , . . . , (dD, δD)
(b1, β1) , . . . , (bB, βB) , (1 − c1, γ1) , . . . , (1 − cC , γC)

]
.

(5.7)
Since this function is not readily evaluated with current software, I generally do
not express the integral in this form but as generalized hypergeometric functions.
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5.1 Integral Evaluation with One Parameter 121

If software becomes available to evaluate the Fox H-function, this form, which
is found by inspection, would become the form of choice.

To apply Cauchy’s residue theorem, the integration path must be closed at
infinity. Marichev considered the conditions that allow closing the path along
the infinite semicircle when the coefficients of s in the gamma functions in eq.
5.6 are unity. In this form it is easy to reduce the integrals to sums of gener-
alized hypergeometric functions. One can obtain unity coefficients when all the
coefficients of s are rational by the substitution s = a y, where a is the least
common denominator of the coefficients of s. This substitution makes all the
coefficients of y integers, and application of the Gauss-Legendre multiplication
formula given in eq. 1.15, results in unity coefficients of y. The number of gamma
functions is equal to the sum of the coefficients of y. Using that procedure, one
arrives at final answers that are sometimes the sum of many high-order general-
ized hypergeometric functions. For some problems this form is not only lengthy
to evaluate, but also it provides little physical insight. In such cases, a differ-
ent procedure can be used. The coefficients of s are left as they are, and the
final answer is obtained as a rapidly converging series in powers of the parame-
ters. This method works even if the coefficients are irrational. Separate power
series are obtained for large and small parameter values, while under certain
conditions for large parameter values, an asymptotic solution can be obtained.
For many problems one can reduce the integral to sums of a few generalized
hypergeometric functions.

Pole-residue integration is the method used to evaluate these integrals. To
apply this method, the integration path must be closed in the complex plane,
and the value of the integral is 2πi times the sum of the residues at the enclosed
poles. The only singularities of Γ [ai + αi s] are simple poles that occur when
s = − (n + ai) /αi with residues equal to (−1)n/αi n !. The resulting residue
sum is a power series of the parameter that can be expressed as

h(x) =
∑
n

x−sn G (sn) , (5.8)

where G (sn) is the residue at the pole occurring at sn. The summation is over
all poles enclosed within the integration path. To close the path on the infinite
semicircle without affecting the value of the integral, the integrand must de-
crease faster than 1/s for large values of s. Conditions for convergence along the
semicircle in the left half plane are now obtained.

To determine whether the integration path can be closed in the left half plane,
the asymptotic behavior of the integrand must be examined. The behavior of
the gamma function for large arguments is given by Stirling’s formula

Γ [s] ∼
√

2π ss−1 2 exp(−s)
[
1 + 1/(12 s) + 1/(288 s2) + · · ·

]
, | arg{s}| < π.

(5.9)
This can be used to find the asymptotic form for the gamma functions with
negative coefficients of s; however, it is not valid in the entire left half plane
when the gamma function argument is positive. To obtain a valid expression,
the duplication formula
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122 5 Integral Evaluation with Mellin Transforms

1

Γ [s]
=

sin(πs)

π
Γ [1 − s] (5.10)

is used to eliminate the gamma functions with positive coefficients of s; this
results in an integrand of the following form

In = x−sπA−C

B∏
j=1

Γ [bj − βj s]
C∏

k=1
Γ [1 − ck − γk s] sin [(ck + γk s) π]

D∏
m=1

Γ [dm − δm s]
A∏

i=1
Γ [ 1 − ai − αi s] sin [(ai + αi s) π]

. (5.11)

All constants are assumed to be real, and in addition, the coefficients of s are
assumed to be non-negative. To examine behavior at negative infinity, the fol-
lowing two relations are necessary

lim
s→−∞

sin [(a + αs)π] = O [exp (απ |Im {s}|)] , and (5.12)

lim
s→−∞

Γ [s] = O {exp [(s − 1/2) ln(s) − s]} . (5.13)

The symbol O is used to denote the quantity’s order of magnitude. Using these
relations in the integrand, rearranging terms, and using the definitions in Ta-
ble 5.1, one shows the integrand is

In = O (exp {ΔRe (s) ln | s | + (− ln |s| − Δ + Δ′) Re (s) + (ν − Ξ/2) ln |s|

+ |Im (s)| [Ξ arg{−s} + π (C ′ − A′)] + Im (s) arg(−s)}) . (5.14)

It is assumed that the original integral converged; therefore, the sign of the ex-
ponent as the integration path goes to ±∞ along the imaginary axis does not
have to be considered. The sign of the exponent must be negative for the integral
along the semicircle to be negligible. There is a hierarchy of terms that deter-
mine the properties at infinity. The terms in decreasing order of importance are
Re {s} ln |s|, Re {s}, and ln |s|. The sign of these terms determines the direction
of path closure.

The dominant term that determines the sign of the exponent at infinity is
ΔRe {s} ln |s|. Δ is the sum of the coefficients of s in the numerator gamma
functions minus those in the denominator. If Δ > 0, the integral can be closed
in the left half plane. A similar analysis shows that when Δ < 0 the integral can
be closed in the right half plane without changing the value of the integral. For
both cases, a single power series that applies to all parameter values is obtained,
and it converges quickly for small values of the parameter. For large parameter
values the series converges slowly, and there can be numerical difficulties when
one evaluates a summation composed of large terms that may alternate in sign.
In this parameter regime, an asymptotic solution is appropriate, and the method
to derive this solution is discussed in the next section.

If Δ = 0, the term with (− ln |x | + Δ′) Re {s} is the most important. Let

Π = − ln |x | + Δ′. (5.15)
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5.1 Integral Evaluation with One Parameter 123

For Π < 0, the path can be closed in the right half plane. For Π > 0, the path
can be closed in the left half plane. Typically, if Δ = 0, then also Δ′ = 0, and
in that case, for | x | > 1 the path can be closed in the right half plane, while
for |x | < 1 the path can be closed in the left half plane. Here, separate power
series for large and small values of x are obtained, and both converge rapidly,
except possibly close to x equal to unity.

If both Δ = 0 and Π = 0, the integrand behaves as

I = O
[
s(ν−Ξ/2)

]
. (5.16)

For convergence on the infinite semicircle, the integrand has to decrease faster
than 1/s, and this gives the condition

Ω = ν − Ξ/2 + 1 < 0. (5.17)

If this condition is satisfied, the integration path can be closed in either direction.
If this condition is not satisfied, the path cannot be closed at infinity, and pole-
residue integration cannot be used.

To illustrate the technique consider the integral

I =

∞∫
0

dy

y
yμ exp (−ay) Jν(by) . (5.18)

After normalizing by letting x = ay, one can convert the integral into one in the
complex plane with the Mellin convolution integral, the Mellin transforms in eq.
1.47 and eq. 1.51, and the relation in eq. 1.8, to give

I =
1

2 aμ

1

2πi

∫
C

ds
(

2a

b

)−s

Γ
[
s + μ, −s/2 + ν/2

s/2 + ν/2 + 1

]
. (5.19)

With the use of eq. 1.39 the solution can be written by inspection as a Fox
H-function

I =
1

2 aμ
H1, 1

1, 2

[(
2 a

b

) ∣∣∣∣ (1 − μ, 1)
(ν/2, 1/2) , (−ν/2, 1/2)

]
. (5.20)

To express this as a Meijer G-function, make the substitution s → 2 s in eq. 5.19
and use the multiplication formula in eq. 1.16 to obtain

I =
1

2
√

π

(
2

a

)μ 1

2πi

∫
C

ds

(
b

a

)2s

Γ
[
s + μ/2, s + μ/2 + 1

2
, −s + ν/2

s + ν/2 + 1

]
. (5.21)

From eq. 1.40 the solution can be written as

I =
1

2
√

π

(
2

a

)μ

G1, 2
2, 2

⎡
⎣( b

a

)2 ∣∣∣∣ 1 − μ/2, 1/2 − μ/2
ν/2, −ν/2

⎤
⎦ . (5.22)
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124 5 Integral Evaluation with Mellin Transforms

The solution can also be expressed as a generalized hypergeometric function.
Since Δ = 0 in eq. 5.21, for b/a > 1 close the integration path to the right and
obtain pole contributions at s = ν/2 + n for n = 0, 1, . . . . The value of the
integral is

I =
2μ−1bν

√
π aν+μ

∞∑
n=0

(−1)n

n!

(
b

a

)2n

Γ
[
n + μ+ν

2
, n + μ+ν+1

2

n + ν + 1

]
. (5.23)

Use the rules in Sec. 1.3 to convert this into a generalized hypergeometric func-
tion, and use the multiplication formula to simplify the expression to

I =

(
b

2 a

)ν

a−μΓ
[
ν + μ
ν + 1

]
2F1

⎡
⎣μ+ν

2
, μ+ν+1

2
; ν + 1;−

(
b

a

)2
⎤
⎦ , b > a. (5.24)

This is the same formula as in Gradshteyn and Ryzhik (1980, eq. 6.621 #1).
When a/b > 1 the integration path is closed to the left, and one obtains pole

contributions at s = −n − μ/2, and s = −n − μ/2 − 1/2 for n = 0, 1, . . . . The
value of the integral expressed as generalized hypergeometric functions is

I =
1

2

(
2

b

)μ

Γ
[ ν+μ

2
ν−μ+2

2

]
2F1

[
μ+ν

2
, μ−ν

2
; 1

2
;−

(
a

b

)2
]

− a

b

(
2

b

)μ

Γ
[ ν+μ+1

2
ν−μ+1

2

]
2F1

[
μ+ν+1

2
, μ−ν+1

2
; 3

2
;−

(
a

b

)2
]
, a > b. (5.25)

I now examine the convergence properties when a = b, in which case the
integral is

I =

∞∫
0

dy

y
yμ exp (−y) Jν (y) . (5.26)

Equation eq. 5.17 states that the solution in eq. 5.24 converges when μ < 1/2.
This is equivalent to the third condition given after eq. 1.34. The integral con-
verges even if this requirement is not satisfied; however, Mellin transform tech-
niques do not apply. It will be shown in Chap. 10 that the single point at which
the method does not apply expands to a finite volume when there is more than
one parameter.

An integral can also be evaluated easily when an integrand factor has the
first term of its power series subtracted. Consider, e.g.,

I =

∞∫
0

dy

y
yμ [exp (−ay) − 1] Jν (by) . (5.27)

With this change eq. 5.21 becomes

I =
2μ−1

√
π aμ

1

2πi

∫
C

ds

(
b

a

)s

Γ
[
s + μ/2∗, s + μ/2 + 1

2
, −s + ν/2

s + ν/2 + 1

]
, (5.28)
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5.1 Integral Evaluation with One Parameter 125

where the asterisk indicates that the integration path falls between the first and
second poles of a gamma function. The solution in this case is simply the solution
above with one series term moved from the expression valid for a > b to the one
for a < b to give

I =

(
b

2 a

)ν

a−μΓ
[
ν + μ
ν + 1

]
2F1

⎡
⎣μ+ν

2
, μ+ν+1

2
; ν + 1;−

(
b

a

)2
⎤
⎦

− 1

2

(
2

b

)μ

Γ
[ ν+μ

2
ν−μ+2

2

]
, b > a, and (5.29)

I =
1

2

(
2

b

)μ

Γ
[ ν+μ

2
ν−μ+2

2

]{
2F1

[
μ+ν

2
, μ−ν

2
; 1

2
;−

(
a

b

)2
]
− 1

}

− a

b

(
2

b

)μ

Γ
[ ν+μ+1

2
ν−μ+1

2

]
2F1

[
μ+ν+1

2
, μ−ν+1

2
; 3

2
;−

(
a

b

)2
]
, a > b. (5.30)

The first function on the right of the last equation can be expressed as another
generalized hypergeometric function with the relation in eq. 1.42 to obtain

I =
(

a

b

)2 (2

b

)μ

Γ
[ ν+μ+2

2
ν−μ

2

]
3F2

[
μ+ν+2

2
, μ−ν+2

2
, 1; 3

2
, 2;−

(
a

b

)2
]

− a

b

(
2

b

)μ

Γ
[ ν+μ+1

2
ν−μ+1

2

]
2F1

[
μ+ν+1

2
, μ−ν+1

2
; 3

2
;−

(
a

b

)2
]
, a > b. (5.31)

Similarly, the integral can be evaluated when the first term of the power series
is subtracted from the second factor in the integrand in eq. 5.18

I =

∞∫
0

dy

y
yμ exp (−ay)

[
Jν (by) − 1

Γ [ν + 1]

(
by

2

)ν]
. (5.32)

In this case the asterisk is associated with the third numerator gamma function
in eq. 5.21. The integral can be evaluated to give

I =
1

2

(
2

b

)μ

Γ
[ ν+μ

2
ν−μ+2

2

]
2F1

[
μ+ν

2
, μ−ν

2
; 1

2
;−

(
a

b

)2
]
−
(

b

2 a

)ν

a−μΓ
[
ν + μ
ν + 1

]

− a

b

(
2

b

)μ

Γ
[ ν+μ+1

2
ν−μ+1

2

]
2F1

[
μ+ν+1

2
, μ−ν+1

2
; 3

2
;−

(
a

b

)2
]
, a > b, and (5.33)

I =

(
b

2 a

)ν

a−μΓ
[
ν + μ
ν + 1

]⎧⎨
⎩2F1

⎡
⎣μ+ν

2
, μ+ν+1

2
; ν + 1;−

(
b

a

)2
⎤
⎦− 1

⎫⎬
⎭, b > a.

(5.34)
Using eq. 1.42 one can show that the last expression is

I = −
(

b

2 a

)ν+2

a−μΓ
[
ν + μ + 2

ν + 2

]
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126 5 Integral Evaluation with Mellin Transforms

× 3F2

⎡
⎣μ+ν+2

2
, μ+ν+3

2
, 1; ν + 2, 2;−

(
b

a

)2
⎤
⎦ , b > a. (5.35)

To summarize, if Δ �= 0, a solution is obtained for any parameter value. If
Δ = 0, a solution is found for all parameter values except for certain conditions,
when the solution is not found for the parameter equal to unity.

5.2 Asymptotic Solutions

Asymptotic solutions are often used to obtain insight into the behavior of a so-
lution for large parameter values and to ease the computations. There are many
techniques to obtain an asymptotic solution. The Mellin transform technique is
applicable to a wide variety of problems, including all turbulence problems—
but by no means to all. Wong (1989) discusses several ways to find asymptotic
solutions. He has a small section on Mellin transforms that is not as general as
that presented here. Many of the examples that he solves by other techniques
could be solved by the Mellin transform method. In general, Mellin transform
techniques are underutilized.

When Δ = 0, separate power series are obtained for small and large parameter
values. Each Taylor series has good convergence properties except possibly when
the parameter is equal to one, which allows them to be readily evaluated without
numerical difficulties. The solution for large parameters is a convergent Taylor
series. I do not refer to such a solution as an asymptotic solution. Wong calls
these asymptotic series. I reserve the term asymptotic series for non- convergent
series.

When Δ �= 0, a single power series is obtained, which converges slowly for
large parameter values. To overcome numerical difficulties, for large parameter
values an asymptotic solution is preferred. One finds the asymptotic solution not
by closing the integration path at infinity, but by deforming the integration path
to go through a saddle point in the direction of steepest descent as shown in
Fig. 5.2. The asymptotic solution is composed of the two contributions from poles
crossed in the path deformation and from the steepest-descent integration. The
steepest-descent contribution can be found for complex parameters; however,
this is more complicated than that for real values. The case when x is positive
real is the only one considered in this chapter. The general case is considered in
Chap. 8.

The value of the integral along the new integration path is found by a modi-
fication of the method of steepest descent. In this method the path is deformed
from the original path to a path through a saddle point such that the function’s
value decreases most rapidly along the path away from the saddle point. Along
this new path, the value of the integrand is a maximum at the saddle point and
decreases away from it. For large parameter values, the saddle point is located
at a large value of s in the complex plane. Near the saddle point one writes
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Figure 5.2. Original and deformed integration paths used to evaluate the as-
ymptotic series.

I =
∫
C

ds exp [f(s)] . (5.36)

Write the argument of the exponent as a Taylor series given by

f(s) ≈ f (so) +
df (so)

ds
(s − so) +

1

2

d2f (so)

ds2
(s − so)

2 . (5.37)

It may be shown that if the parameter is very large, then only these three terms
are necessary to express the value of the integral with sufficient accuracy. At
a saddle point, the value of the first derivative is zero. This condition gives
equations to determine the real and imaginary parts of so at the saddle point. It
will be seen that the contribution of derivative terms higher than the second to
the integral are small compared to the second and can be normally neglected.
The integral along this path is approximately that of a Gaussian function with
infinite limits that is easily evaluated to give

I ≈
∫
C

ds exp

[
f (so) +

1

2

d2f (so)

ds2
(s − so)

2

]
=

√
− 2π

d2f (so)/ds2
exp [f (so)] .

(5.38)
This is the first term of the asymptotic expansion. Additional terms can be

found if desired by the inclusion of more terms in the expansion of f(s) in eq.
5.37. For problems examined to date, the first term of the asymptotic series
gives sufficient accuracy to get a seamless fit between the Taylor and asymptotic
series. For that reason, it is the only one evaluated here.

The asymptotic value of the integral has contributions from poles crossed in
the path deformation, in addition to the steepest-descent contribution. Under
certain conditions, one of these two terms dominates, and the other can be ne-
glected. If there are no poles to the right of the original integration path, the
steepest-descent contribution must always be included. The pole contribution
decays algebraically with the parameter. I show below that the steepest-descent
contribution can vary sinusoidally, can have exponential decay, or can have ex-
ponential growth. For the sinusoidal variation, both pole and steepest-descent
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128 5 Integral Evaluation with Mellin Transforms

contributions are important, and both must be retained. When the steepest-
descent contribution decays exponentially, it can be neglected if there are any
pole contributions. If the steepest-descent contribution increases exponentially,
pole contributions are negligible. Conditions that allow the steepest-descent con-
tribution to be neglected will be considered later.

The asymptotic value of the integral in eq. 5.90 is now found. Only the
case Δ > 0 needs to be considered. In this case, the integration path can be
closed in the left half plane to obtain the convergent power series. If Δ < 0,
the substitution s → −s transforms the integral to one in which Δ > 0, and
the results derived below again apply. For the asymptotic series, the behavior of
the integrand in the right half plane must be examined. As a simple case, the
asymptotic series for B = D = 0 in eq. 5.90 will be derived first. (This case also
encompasses the situation in which B = D, but all the poles of the B gamma
functions are cancelled by poles of the denominator gamma functions. In this case
the ratio of gamma functions can be replaced by a polynomial.) When there are
no poles in the right-half plane, the asymptotic series does not have a branch cut
in the right half plane, and the evaluation of the steepest-descent contribution
is straightforward. The behavior of the integrand for large s is needed. Unlike
the order of magnitude calculation previously made to determine whether the
integral converges on an infinite circle, more accurate integrand estimates are
required to obtain the actual value of the integral. The asymptotic form of a
gamma function is

Γ [ai + αi s] ∼
√

2π exp [(ai + αi s − 1/2) ln (ai + αi s) − ai − αi s] . (5.39)

The following approximation for the logarithm is used

ln (ai + αi s) = ln [αi s (1 + ai/αi s)] ≈ ln (αi) + ln (s) + ai/αi s. (5.40)

If these are inserted into eq. 5.6 and a similar expansion is performed for the
other gamma functions, one obtains

h (x) =
(2π)Ξ/2

2πi

∫
C

ds exp {Δ′′ − Δ′′′/2

+ s [Δ′ − Δ − ln (x)] + ln(s) (ν − Ξ/2) + Δs ln(s)} . (5.41)

The new symbols introduced above are defined in Table 5.1.
If the exponent is designated by f(s), the saddle point is located at

df(s)

ds
= 0 = [Δ′ − Δ − ln (x)] +

ν − Ξ/2

s
+ Δ [1 + ln (s)] . (5.42)

Since |s| is large (I will check this below by consistency), its value can be ap-
proximated by

ln (so) ≈ [ln (x) − Δ′] /Δ, (5.43)

which yields

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5.2 Asymptotic Solutions 129

so = x1/Δ exp (−Δ′/Δ) . (5.44)

The value of so is large and positive since x is large; this agrees with the assump-
tion that the integration path was to be moved far into the right half plane.

The second derivative is

d2f(so)

ds2
= −ν − Ξ/2

s2
o

+
Δ

so

≈ Δ

so

. (5.45)

Since this is positive in the right half plane, the steepest-descent path must be in
the imaginary direction as shown in Fig. 5.2 to make the quadratic term in eq.
5.37 negative. Each higher-order derivative has an increasingly higher power of s
in the denominator. Therefore, the higher-order derivatives are small compared
to the second, and the assumption that f(s) can be accurately expressed as a
constant term plus a quadratic term is valid. If these values are substituted into
eq. 5.38, one obtains for the steepest-descent contribution

E(x) =
(2π)(Ξ−1)/2

√
Δ

xρ exp
[
−Δx1/Δ exp (−Δ′/Δ) + Δ′′ − Δ′′′/2 − ρΔ′

]
, (5.46)

where ρ = [ν + (1 − Ξ)/2] /Δ. For most problems encountered in propagation
through turbulence one has the condition, Δ′ = Δ′′ = Δ′′′ = 0. For that case
one obtains the expression used by Marichev (1983, eq. 4.40)

E(x) =
(2π)(Ξ−1)/2

√
Δ

xρ exp
(
−Δx1/Δ

)
. (5.47)

This solution has an exponential decay and can be neglected if there are pole
contributions.

The more general case has B and D not equal to zero in eq. 5.11. This
case is more complicated since one must deal with the multi-valued nature of
the asymptotic behavior of the functions. Luke (1969) derives expressions for
this case, and a similar approach can be used to obtain the steepest-descent
contribution for the case where the coefficients of s in the gamma functions are
not unity. The details of this derivation are considered in Chap. 8 where x is
allowed to be complex. The result for Λ′ ≥ 0 is

E(x) =
2(2π)(Ξ−1)/2

√
Δ

xρ

× exp
[
−Δx1/Δ exp (−Δ′/Δ) cos (πΛ′/Δ) + Δ′′ − Δ′′′/2 − ρΔ′

]

× cos
[
Δx1/Δ exp (−Δ′/Δ) sin (πΛ′/Δ) + π (−ρΛ′ − Λ′′ + Λ/2)

]
. (5.48)

Notice the factor of 2 that multiplies this expression that is not present in
eq. 5.47. This is a consequence of the addition of two steepest-descent contri-
butions that are complex conjugates of each other. In eq. 5.93 if B = D = 0
or, equivalently, if the argument of the second cosine is zero, then the answer
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130 5 Integral Evaluation with Mellin Transforms

must be divided by two. If Λ′ < 0, then the steepest-descent contribution has
exponential decay. The decay coefficient is found with the procedure discussed
in Sec. 8.2. For the simpler case that applies to many problems of interest in
which

Δ′ = Δ′′ = Δ′′′ = 0, B = B′, and D = D′, (5.49)

one obtains a result equivalent to that obtained by Marichev (1980, eq. 4.51)

E(x) =
2(2π)(Ξ−1)/2

√
Δ

xρ exp
[
−Δx1/Δ cos (πΛ/Δ)

]

× cos
{
Δx1/Δ sin (πΛ/Δ) + π [(1/2 − ρ)Λ − Λ′′]

}
. (5.50)

Designate the sum of the residues of all poles crossed in the integration path
deformation by W (x). The general asymptotic solution is

h(x) ∼ W (x) + E(x). (5.51)

The general equations necessary to obtain E(x) are given in Table 5.1. In some
cases, one of E or W is insignificant compared to the other. That will be obvious
once the terms are evaluated. Rather than always evaluating the steepest-descent
contribution, one can state conditions in which only the pole contributions are
significant for the asymptotic solution. These are

If B′ > 0 and Λ′/Δ �= 1/2, then h (x) ∼ W (x) . (5.52)

In this case the asymptotic solution has pole contributions, and the steepest-
descent contribution has exponential decay, which makes it negligible.

As an example of obtaining an asymptotic series, consider the inverse trans-
form of the function considered in eq. 1.22

J0(x) − 1 = 1over2πi
∫
C

ds
1

2

(
x

2

)−s

Γ
[

s/2∗
−s/2 + 1

]
. (5.53)

Using eq. 5.94 in eq. 5.51, one obtains the pole residue at s = 0, and the saddle
point contribution, to get

J0(x) − 1 ∼
√

2/πx cos (x − π/4) − 1. (5.54)

This is the standard result.
Asymptotic solutions have useful properties that allow them to be treated

almost like Taylor series, and the ones obtained here are all of the Poincaré type
(Bleistein and Handelsman 1986) that have the following characteristics:

1. The error in truncation is less than the first term neglected.
2. The asymptotic series of the sum or product of two functions is equal to the

sum or product of the asymptotic series of the individual functions.
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3. If the asymptotic series of the integral or derivative of a function exists, it is
equal to the integral or derivative of the asymptotic series of that function.

4. The asymptotic series is unique for a given function.

As the number of terms in the asymptotic series is increased, the error in the
value of the integral first decreases, and after some number of terms no starts to
increase. The value of no can be found from the position of the steepest-descent
path for a given parameter value. In practice, one does not evaluate no since a
few terms of the asymptotic series give an accurate result for large parameter
values.

E(x) is the first term of the series representation of the asymptotic series.
Typically, for most problems this answer is accurate enough. If more terms of the
series are required, they can be obtained with Luke’s approach. This approach
is complicated, and different expressions apply for different conditions on the
parameters. The details of this approach will not be given here since, for all
problems considered so far, the first term is sufficient to produce a region of
overlap in which the values obtained from the Taylor and the asymptotic series
are very close to each other.

5.2.1 Alternate method of integral evaluation

The method of evaluating integrals presented in this chapter is straightforward
in concept. One finds Taylor series by closing the integration path in a direction
that does not change the value of the integral. For some problems an asymptotic
solution is found by the addition of the residues of poles on the other side of the
integration path to a steepest-descent contribution. In Chap. 10 I will consider
the evaluation of integrals in multiple complex planes. A natural approach in
this more complicated scenario would be to extend the technique developed in
this chapter. Unfortunately, one encounters difficulties in trying to decide which
pole-contributions to include in a solution. The Mellin convolution theorem leads
to gamma functions that contain the sum of complex integration variables; this
results in a problematic coupling of integration paths.

Fortunately, another approach does provide a conceptually straightforward
generalization to several complex planes. This approach does not rely on con-
sidering how the contours must be closed. Instead, all power series arising from
poles on either side of the integration are written down. One obtains the value
of the integral by choosing the correct power series. The Taylor series solution
is simply the sum of those power series that converge for the parameter size of
interest.

The asymptotic solution is obtained in the following manner: Express all
power series in terms of the parameter or its inverse, whichever gives a positive
exponent. The asymptotic series is the sum of those diverging series for which
the parameter in the series is less than unity. A steepest-descent contribution
must be added to the asymptotic series to obtain a complete solution.

If the integration path splits the poles of a gamma function so that p poles
are on the other side of the integration path, then that summation starts at the
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132 5 Integral Evaluation with Mellin Transforms

index equal to p. If a series that starts with the index equal to p is excluded
from the solution by the criteria above, then the series with index value varying
from zero to p must be added to the solution.

It is easy to see that this approach gives the same answer as that obtained
with the method expounded in this chapter. In this second method, one is not
concerned with how contours are closed. The series that are selected from all
possible power series are those with the appropriate convergence properties. This
method can be applied directly to the evaluation of integrals in multiple complex
planes. It is further developed in Chap. 10 and it is used in Chaps. 11 and 12 to
solve specific problems.

5.3 Multiple Poles

I show in this section that the occurrence of multiple poles, although requiring
special treatment, does not pose any conceptual difficulties when one calculates
the power or asymptotic series. One finds the residue at a multiple pole by
expanding all integrand functions into a Laurent series centered at the multiple-
pole position, by multiplying all the series together, and by determining the
coefficient of the resulting simple pole. This is illustrated with examples that
contain double and triple poles.

In turbulence theory there are typically fractional powers in integrals. The
Mellin transforms of the functions encountered in turbulence theory do not have
multiple poles. The poles of the transforms of functions that multiply the frac-
tional powers are at negative integers or halfway between the negative integers.
When the fractional power is introduced in the convolution theorem, the poles
of the convolved functions do not coincide. I have not encountered any problems
in turbulence wave propagation that have multiple poles. However, in other con-
texts some of the functions in the integral can have Mellin transforms that have
multiple poles. For that reason, the method to evaluate integrals in which mul-
tiple poles occur is developed here. Multiple poles have been encountered in the
expansion of Kν (x) in Chap. 1.

A function that has multiple poles and occurs in elementary particle physics
is the polylogarithm. The polylogarithm function of order n, Ln (z), arises from
an integral with a multiple pole of order n. The definition is

Ln (z) =
1

2πi

∫
C

ds
Γ [s, −s]

(−s)n−1 (−z)−s , n = 0, 1, 2, . . . . (5.55)

This function is discussed extensively in Marichev. Its Mellin transform is given
in Appendix A.

5.3.1 Expansion of integrand functions

To calculate the residue in the presence of a multiple pole, the functions in the
integrand are expanded in power series at the pole, and the coefficient of the
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5.3 Multiple Poles 133

simple pole term is calculated. To facilitate this process, in this section two
expansions of the gamma function are derived: one when the singular point is
not at a pole of the gamma function; the second when it is. The function z−s is
also expanded in a power series.

The expansion of the gamma functions is normally expressed in terms of the
logarithmic derivative of the gamma function, defined by

ψ(z) ≡ d ln (Γ [z])

dz
=

Γ ′ [z]

Γ [z]
. (5.56)

This psi or digamma function is given in Gradshteyn and Ryzhik (1980, eq. 8.362
#1) as

ψ(z) = −C +
∞∑

n=0

(
1

n + 1
− 1

z + n

)
, (5.57)

where C is Euler’s constant, which is equal to 0.577216. . . . The derivative of
the last expression gives the trigamma function

ψ′(z) =
∞∑

m=0

1

(z + m)2 . (5.58)

The higher order derivatives are given by

dn ln (Γ [z])

dzn
≡ ψ(n) (z) = (−1)n+1 n !

∞∑
m=0

1

(z + m)n+1 . (5.59)

These expressions can be summed numerically to find the values, which are most
often needed: ψ (1) = −C = − 0.577216; ψ (0.5) = −C − 2 ln (2) = − 1.964;
ψ′ (−0.5) = 4−π2/2 = 8.935; ψ (−0.5) = 2−C−2 ln (2) = −0.03649; ψ′ (0.5) =
π2/2 = 4.935; and ψ′ (1) = π2/5 = 1.645.

For positive z one expands

Γ [z + ε] = Γ [z]
{
1 + ε ψ(z) + ε2

[
ψ′(z) + ψ2(z)

]
/2 + · · ·

}
. (5.60)

The Gamma function Γ [s] has a pole at s = −N . To find the Laurent expansion
about a pole use the identity

Γ [−N + ε] =
(−1)N

ε

Γ [1 + ε]Γ [1 − ε]

Γ [1 + N + ε]
. (5.61)

This identity can be proved with the recursion relation in eq. 1.14 and the
identity Γ [s] Γ [1 − s] = π/ sin (πs). If each of the three gamma functions on
the right is expanded with eq. 5.61, one gets the series representation

Γ [−N + ε] =
(−1)N

εN !

∞∑
n=0

an(N) εn. (5.62)

The first few coefficients of this expansion are
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a0(N) = 1, a1(N) = ψ(1 + N), and (5.63)

a2(N) = ψ′(1) + [ψ2(1 + N) − ψ′(1 + N)]/2. (5.64)

Finally the Taylor series expansion of z−s about the point s = k is

z−s
∣∣∣
s=k+ε

=z−k
∞∑

n=0

(−1)n

n !
[ln(z)]n εn !=z−k

{
1−ε ln (z) +

ε2

2
[ln (z)]2 + · · ·

}
.

(5.65)
The integrals considered in the following examples are of the form

I =
1

2πi

∫
C

dsF (s), (5.66)

where the integration path and integrand are defined in each particular problem.

5.3.2 Example 1

Consider the following integrand with a double pole

F (s) =
1

s2
= Γ

[
s, s

s + 1, s + 1

]
. (5.67)

I seek to evaluate

I =
1

2πi

∫
C

ds Γ
[

s, s
s + 1, s + 1

]
. (5.68)

The integration path and pole location are shown in Fig. 5.3. It is obvious from
the first term to the right of the equality in eq. 5.67 that there is no term
that varies as 1/s; therefore, the integral is zero. This is not obvious when the
function is expressed as the ratio of gamma functions. If the gamma functions
in the numerator and denominator are expanded with eq. 5.62 and eq. 5.60, the
terms with 1/ε cancel, and no simple pole exists. Therefore, the integral is zero.

This integration in the complex plane corresponds to an integral in real space.
Using the Mellin convolution integral, one finds that an integral that would give
this integral in the complex plane is

I =

∞∫
0

dx

x
U(1 − x)U (1 − z/x) , z = 1. (5.69)

This integral is easily evaluated to give

I =

1∫
z

dx

x
= − ln(z)U (1 − z), (5.70)

which is indeed equal to zero for z = 1.
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Figure 5.3. The integration path and pole location for Examples 1 and 2.

5.3.3 Example 2

Consider the slightly more complicated integrand

F (s) =
z−s

s2
= z−sΓ

[
s, s

s + 1, s + 1

]
. (5.71)

The integration path and pole location are the same as in Fig. 5.3 . Here Δ = 0,
and the direction of path closure depends on the magnitude of z. For z > 1
the integration path can be closed in the right half plane, and the value of the
integral is zero. For z < 1 the integration path can be closed in the left half
plane. If the expansions in eq. 5.62, eq. 5.60, and eq. 5.65 are used, the 1/ε term
comes from the second term of the first equation and the second terms of the
second equation. One obtains for the value of the integral

I = − ln(z)U(1 − z). (5.72)

The integral in real space corresponding to this complex integration is the same
one given in eq. 5.69.

5.3.4 Example 3

Consider the integrand

F (s) =
Γ [s]

s
z−s = Γ

[
s∗, s∗
s + 1

]
z−s. (5.73)

The asterisks appear after both numerator gamma functions because the cho-
sen integration path passes between the first and second poles of the gamma
functions. The integration path and pole location are shown in Fig. 5.4. This
corresponds to the real space convolution integral

I =

∞∫
0

dx

x
[exp (−x) − 1] [1 − U (1 − z/x)] =

z∫
0

dx

x
[exp (−x) − 1] . (5.74)
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The poles go to infinity to the left just as they do in the succeeding examples.
For this example, Δ = 1, and the integration path can be closed to the left for
all z. All the enclosed poles are simple since the only double pole at z = 0 is on
the right side of the integration path. The integral is equal to

I = −
∞∑

n=1

(−1)n

n!

zn

n
. (5.75)

x x x x x x x

–6 –5 –4 –3 –2 –1 0

PATH OF
INTEGRATION

lm s

s-PLANE

x

Re s

Figure 5.4. The integration path and pole location for Example 3.

For large z an asymptotic series can be found. Since B = 0, the steepest-
descent contribution has exponential decay as given in eq. 5.92. With eq. 5.63
and eq. 5.65 for the numerator and eq. 5.60 for the denominator, the asymptotic
series, which only has 3 terms in this case, is

I ∼ exp(−z)/z + ln(z) + C, z >> 1. (5.76)

The decaying exponential term is negligible.

5.3.5 Example 4

Consider the integrand
F (s) = Γ [s∗, −s] z−s. (5.77)

The integration path and pole location are shown in Fig. 5.5. This corresponds
to the real space convolution integral

I =

∞∫
0

dx

x
[exp (−x) − 1] exp(−x/z). (5.78)

Since Δ = Δ′ = 0, the integration path can be closed in the left half plane when
z < 1, and in the right half plane when z > 1. There is a double pole to the
right at z = 0 that can be evaluated with eq. 5.62, eq. 5.60, and eq. 5.65. This
yields

I =
∞∑

n=1

(−z)n

n
= − ln (z + 1) , z < 1, and (5.79)
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5.3 Multiple Poles 137

I =
∞∑

n=1

(−z)−n

n
+ ln(z) = − ln (z + 1) + ln (z) = − ln (1 − 1/z) , z > 1.

(5.80)

x x x x x x x
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Re s

Figure 5.5. The integration path and pole location for Example 4.

5.3.6 Example 5

Consider the integrand

F (s) = Γ
[
s∗, −s − N

(
∗N

)]
z−s. (5.81)

The
(
∗N

)
term indicates that the first N terms of the power series are subtracted

from the function whose Mellin transform results in that gamma function. The
integration path and pole location are shown in Fig. 5.6 for the case N = 4. For
general N this corresponds to the real space convolution integral

I =

∞∫
0

dx

x
[exp(−x) − 1]

(
z

x

)N
[
exp (−x/z) −

N−1∑
n=0

1

n !

(
−x

z

)n
]
. (5.82)

The value of Δ = Δ′ = 0, and the direction of path closure depends on the
magnitude of z. There is one double pole to the right of the integration path, N
double poles to the left, and simple poles on both sides of the integration path.
The result is

I = (−1)N
N∑

n=1

ln(z) + ψ(1 + N − n) − ψ(1 + n)

n ! (N − n) !

+ (−z)N+1
∞∑

n=0

n! (−z)n

(N + n + 1)!
, z < 1, and (5.83)

I = (−1)N ψ(1) − ψ(1 + N) − ln(z)

N !
+ (−1)N

∞∑
n=0

n ! (−z)−n−1

(N + n + 1)!
, z > 1. (5.84)
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x x x x x x

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6
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INTEGRATION

lm s

s-PLANE

Re s

x x x x x x x x x x x

x

Figure 5.6. The integration path and pole location for Example 5.

5.3.7 Example 6

Consider the following integrand that has triple poles

F (s) = Γ
[
s∗, s, −N − s

(
∗N

)]
z−s. (5.85)

The integration path and pole location are shown in Fig. 5.7 for the case N = 4.
For this case Δ = 1, and there is one triple pole to the right of the integration
path, and N triple poles and an infinity of double poles to the left. Three terms
in the Laurent expansions of each factor must be retained to get the complete
residue at each of the triple poles. Since Δ = 1, the integration path can be

x x x x x x

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

PATH OF
INTEGRATION

lm s

Re s

x x x x x x x x x x

x

x x x x x

x

x x
s-PLANE

Figure 5.7. The integration path and pole location for Example 6.

closed in the left half plane. The residue at a double pole that occurs at s =
−k, k = N + 1, N + 2 . . . is referred to as R2 (k) and is given by

R2 (k) = Γ [k − N ] [2ψ(1 + k) − ψ(k − N) − ln(z)]
zk

(k !)2
. (5.86)

The residue at a triple pole that occurs at s = −1,−2, . . . , N is referred to
as R3 (k) and is given by
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R3 (k) =
{
ln2(z) /2 + ln(z) [ψ (1 + N − k) − 2ψ (1 + k)]

+ 2ψ2(1 + k) + 3ψ′(1) +
[
ψ2(1 + N − k) − ψ′(1 + N − k)

]
/2

− ψ′(1 + k) − 2ψ(1 + N − k)ψ(1 +k)
} (−1)N−k−1zk

(k!)2(N − k)!
. (5.87)

The value of the integral is thus

I =
∞∑

k=N+1

R2 (k) +
N∑

k=1

R3 (k). (5.88)

For large values of z an asymptotic series is needed. Since the condition in
eq. 5.52 applies, the asymptotic series is equal to the residues of the poles to the
right of the integration path. This contains one triple pole, and the sum of the
single poles at s = n − N, for n = N + 1, N + 2 . . . . The asymptotic series is
thus

I∼ (−1)N+1

z

∞∑
n=0

(−1)n (n!)2

(N + n + 1)!
z−n+

zN

(N !)2

{
ln(z) [ψ(1)−2ψ(1 + N)]+

ln2(z)

2

+ 2ψ2(1 + N)+
5ψ′(1)

2
+

ψ2(1)

2
− ψ′(1 + N) − 2ψ(1)ψ(1 + N)

}
. (5.89)
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140 5 Integral Evaluation with Mellin Transforms

Table 5.1 Equations to obtain the steepest-descent term E(x). If Δ < 0,
then make the substitution s → −s before applying the equations below. In
that case the parameter x becomes 1/x.

Equation whose asymptotic value is wanted for large values of x.

h(x) =
1

2πi

∫
C′

ds x−s

A∏
i=1

Γ [ai + αi s]
B∏

j=1
Γ [bj − βj s]

C∏
k=1

Γ [ck + γk s]
D∏

m=1
Γ [dm − δm s]

(5.90)

Ξ ′ = A + D − B − C, Ξ = A + B − C − D

Δ =
A∑

i=1

αi +
D∑

m=1

δm −
B∑

j=1

βj −
C∑

k=1

γk

Δ′ =
A∑

i=1

αi ln (αi) +
D∑

m=1

δm ln (δm) −
B∑

j=1

βj ln (βj) −
C∑

k=1

γk ln (γk)

ν =
A∑

i=1

ai +
B∑

j=1

bj −
C∑

k=1

ck −
D∑

m=1

dm

A′ =
A∑

i=1

αi, B′ =
B∑

j=1

βj, C ′ =
C∑

k=1

γk, D′ =
D∑

m=1

δm

ρ = [ν + (1 − Ξ)/2] /Δ, B′′ =
B∑

j=1

bj, D′′ =
D∑

m=1

dm

Λ = D − B, Λ′ = D′ − B′, Λ′′ = D′′ − B′′

Δ′′ =
A∑

i=1

ai ln (αi) +
B∑

j=1

bj ln (βj) −
C∑

k=1

ck ln (γk) −
D∑

m=1

dm ln (δm)
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Δ′′′ =
A∑

i=1

ln (αi) +
B∑

j=1

ln (βj) −
C∑

k=1

ln (γk) −
D∑

m=1

ln (δm)

If B = D = 0 and Λ′ > 0, then

E(x) =
(2π)(Ξ−1)/2

√
Δ

xρ exp
[
−Δx1/Δ exp (−Δ′/Δ) + Δ′′ − Δ′′′/2 − ρΔ′

]
. (5.91)

If Δ′ = Δ′′ = Δ′′′ = 0, Λ′ > 0 and B = D = 0, then

E(x) =
(2π)(Ξ−1)/2

√
Δ

xρ exp
(
−Δx1/Δ

)
. (5.92)

If B or D �= 0 and Λ′ > 0, then

E(x) =
2(2π)(Ξ−1)/2

√
Δ

xρ

× exp
[
−Δx1/Δ exp (−Δ′/Δ) cos (πΛ′/Δ) + Δ′′ − Δ′′′/2 − ρΔ′

]

× cos
[
Δx1/Δ exp (−Δ′/Δ) sin (πΛ′/Δ) + π (−ρΛ′ − Λ′′ + Λ/2)

]
. (5.93)

If B or D �= 0 and Λ′ > 0, and Δ′ = Δ′′ = Δ′′′ = 0, B = B′, D = D′, then

E(x) =
2(2π)(Ξ−1)/2

√
Δ

xρ exp
[
−Δx1/Δ cos (πΛ/Δ)

]

× cos
{
Δx1/Δ sin (πΛ/Δ) + π [(1/2 − ρ)Λ − Λ′′]

}
. (5.94)

If Λ′ ≤ 0, then E(x) has exponential decay with specific values discussed in
Sec. 8.2.
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142 5 Integral Evaluation with Mellin Transforms

Table 5.2 Equations to obtain the asymptotic solution for a generalized
hypergeometric function.

Express the generalized hypergeometric function as

pFq [(b); (d); z]

= Γ
[
d1, d2, . . . , dq

b1, b2, . . . , bp

]
1

2πi

∫
C′

ds (−z)−s

p∏
j=1

Γ [bj − s]Γ [s]

q∏
m=1

Γ [dm − s]
. (5.95)

For functions of the form 0F1 [e; z], d1 = e.
The asymptotic solution is a sum of pole and steepest-descent contributions

pFq [(b); (d); z] ∼ W (z) + E(z), where (5.96)

W (z) = Γ
[
d1, d2, . . . , dq

b1, b2, . . . , bp

]

×
p∑

k=1

np∑
n=0

(−1)n(−z)−n−bk

n!

p∏
j=1,j �=k

Γ [bj − bk − n]Γ [bk + n]

q∏
m=1

Γ [dm − bk − n]
, (5.97)

and

E(−z) = Γ
[
d1, d2, . . . , dq

b1, b2, . . . , bp

]
2(2π)(1−Δ)/2

√
Δ

zρ exp
{
−Δz1/Δ cos [π(1 − 1/Δ)]

}

× cos

{
Δz1/Δ sin

(
π
[
1 − 1

Δ

])
+ π

[
Δ − 1

2Δ
+

1

Δ

( p∑
i=1

bi −
q∑

m=1

dm

)]}
, (5.98)

where
Δ = q − p + 1, and (5.99)

ρ =

( p∑
1=1

bi −
q∑

m=1

dm +
Δ − 1

2

)
/Δ. (5.100)

When q = p + 1, then Δ = 2, the exponential term is equal to unity, and the
steepest-descent contribution is

E(−z) = Γ
[
d1, d2, . . . , dq

b1, b2, . . . , bp

]
zρ

√
π

cos

{
2 z1/2 + π

[
1

4
+

1

2

( p∑
i=1

bi −
q∑

m=1

dm

)]}
.

(5.101)
The behavior in this case is oscillatory.
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Chapter 6

Examples with a Single Positive Parameter

Several interesting problems relating to wave propagation in turbulence are
solved in this chapter. The Zernike tilt jitter is calculated for finite outer scale
with both von Kármán and Greenwood models for outer scale effects. It is shown
that outer scale significantly affects tilt even if the diameter is much smaller than
the outer scale. It is shown that inner scale limits the maximum tilt that can
be measured on an aperture. Tilt is calculated on an annulus, and it is shown
that this tilt does not differ much from that of a filled aperture unless most
of the aperture is obscured. The effect of diffraction on tilt is calculated. It is
shown that tilt variance goes to half of its near-field value in the far field. The
amount of tilt difference between two displaced sources is calculated. The power
spectral density of tilt is found. An asymptotic series describes the behavior at
high frequencies. I show that finite size sources and apertures can significantly
reduce scintillation. Characteristic sizes for the source and aperture at which the
reduction is significant are found. Inner scale is found to reduce the scintillation
for typical inner-scale sizes. Scintillation of a beam corrected for turbulence by
the use of a beacon that is displaced from the corrected beam is found. The
scintillation difference between two sources in the sky is found. The phase vari-
ance of focus is found, and the correlation function of focus is calculated. The
solution for anisoplanatism for any Zernike mode is then addressed. The prob-
lem of correcting turbulence with artificial beacons is addressed, and the phase
variances with a point, distributed, and offset beacon are calculated.

The first few problems are solved in detail, and subsequent discussions leave
out some intermediate steps that are repeated from problem to problem. This
chapter illustrates how readily solutions are obtained with the algorithmic ap-
proach developed in this book. Many of these problems are difficult to solve by
other means.

The solutions to many problems contain a single turbulence moment; how-
ever, for those problems in which the integration parameter is a function of the
propagation coordinate, the solution is the sum of terms with different turbu-
lence moments. For most problems considered here this does not pose a problem;
however, there are cases in which the individual terms are infinite. In that case,
an infinite sum of moments cannot be used, and the function in the axial integral
must be evaluated at each position and multiplied by the turbulence strength.
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146 6 Examples with a Single Positive Parameter

An example of an integral in which this occurs is
L∫
0
dz C2

n(z) exp(−a/z). This

integral is finite. However, if the exponential is expanded in a Taylor series,
for the case in which the turbulence is non-zero at the origin, only the integral
of the first term is finite. As examples of cases where this occurs in practice
are the aperture-averaged scintillation considered in Sec. 6.8; the evaluation of
scintillation with inner scale as treated in Sec. 6.3, if one were to consider the
case of turbulence that varies along the path; and the calculation of tilt power
spectral density as discussed in Sec 6.7, if the velocity were slew dominated, for
which case it is proportional to z.

The answers for single parameter problems are expressed in terms of general-
ized hypergeometric functions. The evaluation of these expressions for particular
parameters can be performed using programs such as Mathematica or Maple,
which evaluate these functions. An alternative is to use the recursion relation to
evaluate the generalized hypergeometric functions.

6.1 Zernike Modes and Tilt for the von Kármán
Spectrum

The significant effect of outer scale on tilt jitter was pointed out by Valley (1979)
and a solution for all Zernike modes is given by Winker (1991). To set up this
problem, the general expression given in eq. 2.112 with diffraction and inner
scale neglected is used with the filter function for Zernike tilt given in eq. 3.21,
for a plane wave (γ = 1). The von Kármán turbulence spectrum given in eq. 2.26
with zero inner-scale size is used to obtain for two-axis tilt variance,

Zn = 0.4146 k2
0(n + 1)

L∫
0

dz C2
n(z)

∫
dκ

(
κ2 + κ2

o

)−11/6
[
2Jn+1 (κD/2)

κD/2

]2

. (6.1)

It is assumed that outer scale does not depend on z. The integrations over angle
and z can be performed easily. Make the substitution x = κD/2 to obtain

Zn =
83.38μ0 k2

0 κ−11/3
o

D2

∞∫
0

dx

x
J2

n+1(x)

⎡
⎣( x

κo D/2

)2

+ 1

⎤
⎦
−11/6

. (6.2)

This varies with zenith angle as sec(ξ). This expression can be converted into
an integral in the complex plane with the use of the Mellin convolution integral.

Define h0(x) = J2
n+1(x), and h1(a/x) =

[
(a/x)−2 + 1

]−11/6
. Use the Mellin

transform in eq. 1.52 for the first function. For the second, use the Mellin trans-
form in eq. 1.54 with q = 11/6, and use eq. 1.9 with p = 2 to obtain

Zn =
83.38μ0 k2

0 κ−11/3
o

4
√

π Γ
[

11
6

]
D2

1

2πi

∫
C

ds
(

κo D

2

)−s
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6.1 Zernike Modes and Tilt for the von Kármán Spectrum 147

×Γ

[
s/2 + n + 1, −s/2 + 1

2
, −s/2, s/2 + 11

6

−s/2 + n + 2, −s/2 + 1

]
, (6.3)

where the integration path does not split any poles of an individual gamma
function. After the substitution s → 2s, one obtains

Zn =
25μ0 k2

0 κ−11/3
o

D2

1

2πi

∫
C

ds
(

κo D

2

)−2s

Γ

[
s + n + 1, −s + 1

2
, −s, s + 11

6

−s + n + 2, −s + 1

]
.

(6.4)
We will now look in detail at the tilt variance. For that case let n = 1 and

multiply the previous equation by (4/k0D)2 to obtain

T 2
o =

400μ0 κ−11/3
o

D4

1

2πi

∫
C

ds
(

κo D

2

)−2s

Γ

[
s + 2, −s + 1

2
, −s, s + 11

6

−s + 3, −s + 1

]
. (6.5)

The only singularities of the integrand are associated with the numerator gamma
functions that have poles where the argument of the gamma function is a nega-
tive integer. The poles of Γ [as] occur at s = −n/a and have a residue (−1)n /an !
for n = 0, 1, 2, . . . . The locations of the poles closest to the origin are shown in
Fig. 6.1.

x x x

s = –11/6 – n –23/6 –11/6

0 1 2

PATH OF
INTEGRATION

lm s

Re s

s-PLANE

x x x–17/6

x xs = –2 – n

–3 –2 x x

1/2 3/2

s = 1/2 + n

s = n

Figure 6.1. Location of the poles and integration path for determining the tilt
with finite outer scale for the von Kármán turbulence spectrum.

As discussed in Chap. 5, the quantity Δ that determines the direction of path
closure is the sum of the coefficients of s of the numerator gamma functions
minus the sum of the coefficients of s in the denominator gamma functions.
For this integral Δ = 2, and the integration path can be closed in the left half
plane. There are pole contributions at s = −11/6 − n, and s = −2 − n for
n = 0, 1, 2, . . . . Use the definition of outer scale given in eq. 2.21 to obtain
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148 6 Examples with a Single Positive Parameter

T 2
o =

6.08μ0

D1/3

[
5.18

∞∑
m=0

(−1)m

m !

{(
πD

Lo

)2m

Γ

[
−m + 1

6
, m + 7

3
, m + 11

6

m + 29
6
, m + 17

6

]

+
(

πD

Lo

)2m+1/3

Γ

[
m + 5

2
, m + 2, −m − 1

6

m + 5, m + 3

]}]
. (6.6)

This expression can be converted into the sum of two generalized hypergeometric
functions with the rules in Sec. 1.3 to give

T 2
o =

6.08μ0

D1/3

{
2F3

[
11
6
, 7

3
; 5

6
, 29

6
, 17

6
;
(

πD

Lo

)2
]

− 1.4234
(

D

Lo

)1/3

2F3

[
2, 5

2
; 7

6
, 5, 3;

(
πD

Lo

)2
]}

. (6.7)

The lowest order terms in eq. 6.6 for D/Lo � 1 are

T 2
o ≈ 6.08μ0

D1/3

(
1 − 1.42 e1/3 + 3.70 e2 − 4.01 e7/3 + 4.21 e4 − 4.00 e13/3

)
, (6.8)

where e = D/Lo. Tilt jitter is affected by outer scale, and the fractional decrease
from the value with infinite outer scale is shown in Fig. 6.2. If outer-scale size
is 100 times the aperture diameter, then the rms tilt jitter is still decreased by
15%. This decrease occurs because tilt jitter is caused mainly by long wavelength
turbulence. A finite outer scale decreases turbulence at long wavelengths and,
thereby, decreases tilt variance.

The first two terms in braces give a good approximation to the tilt variance if
outer scale is larger than several times the aperture diameter. This is an example
of how to write down the answer as a few terms of a power series. If outer-scale
size were much smaller than diameter, then the series would converge slowly,
and an asymptotic series would be appropriate.

In Sec. 11.4 it is shown that the difference of tilt between two closely spaced
apertures separated by a distance d is little affected by the outer scale. One can
use the first two series terms for the expression for tilt, T 2

0 and tilt anisoplana-
tism, T 2

d , to derive an expression for the outer scale as

L0 = 0.35
[
0.569(D/d)2 − T 2

0 /T 2
d

]3
.
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Figure 6.2. Tilt standard deviation for the von Kármán turbulence spectrum
with outer scale, normalized to tilt standard deviation with infinite outer scale.
Notice that there is a significant reduction of tilt even if outer scale is 100 times
the diameter. This curve is independent of the turbulence distribution along the
propagation path.

The variance of the Zernike modes can be expressed as

Zn = 1.512(n + 1)
(

D

r0

)5/3
{
Γ

[
n − 5

6
,

n + 23
6

]
2F3

[
11
6
, 7

3
; 11

6
− n, 23

6
+ n, 17

6
;
(

πD

Lo

)2
]

+ 1.54
(

πD

Lo

)−5/3+2n

Γ

[
n + 3

2
, 5

6
− n, n + 1

2n + 3, n + 2

]

×2F3

[
n + 1, 3

2
+ n; 1

6
+ n, 3 + 2n, 2 + n;

(
πD

Lo

)2
]}

. (6.9)

If one does a series expansion of this for any mode higher than tilt, then the
first and second terms of the expansion come from the first function and the
variance is of the form

Zn = a − b
(

D

L0

)2

, n > 1. (6.10)

For these modes the effect of outer scale decreases rapidly when the outer
scale is greater than the diameter.
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150 6 Examples with a Single Positive Parameter

6.2 Tilt for the Greenwood Spectrum

The equation to find tilt variance with the Greenwood outer-scale model is the
same as the one in the last section except that the spectrum in eq. 2.24 is used,

T 2
o = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ

(
κ2 + κκo

)−11/6
(

16

k0D

)2
[
J2 (κD/2)

κD/2

]2

.

(6.11)
It is assumed again that outer scale does not depend on z. The integrations over
angle and z can be performed easily. Make the substitution x = κD/2 to obtain

T 2
o =

1334μ0κ
−11/6
o

D4

(
D

2

)11/6 ∞∫
0

dx

x
x−11/6J2

2 (x)

(
x

κo D/2
+ 1

)−11/6

. (6.12)

This varies with zenith angle as sec(ξ). Define h0(x) = x−11/6J2
2 (x), and

h1(a/x) =
[
(a/x)−1 + 1

]−11/6
. Use the Mellin transform in eq. 1.52 for the first

function, exploiting eq. 1.8 with a = −11/6. For the second function, start with
(1.54) with q = 11/6, and use eq. 1.9 with p = −1. After the substitution
s → 2s, one obtains

T 2
o =

800μ0 κ−11/6
o

D4

(
D

2

)11/6 1

2πi

∫
C

ds
(

κo D

2

)−2s

×Γ

[
s + 13

12
, −s + 17

12
, −2s, 2s + 11

6

s + 47
12

, −s + 23
12

]
, (6.13)

where the integration path does not split any poles of an individual gamma
function. Since once again Δ = 2, the integration path can be closed in the left
half plane, and there are pole contributions at s = −11/12−n/2, and −13/12−n
for n = 0, 1, 2, . . . . Use the definition of outer scale given after eq. 2.20 to obtain

T 2
o =

6.08μ0

D1/3

{ ∞∑
n=0

(−1)n

n !

[
5.18

(
πD

Lo

)n

Γ

[
−n/2 + 1

6
, n/2 + 7

3
, n + 11

6

n/2 + 29
6
, n/2 + 17

6

]

+ 15.18
(

D

Lo

)1/3

Γ

[
n + 5

2
, 2n + 13

6
, −2n − 1

3

n + 5, n + 3

] (
πD

Lo

)2n
]}

. (6.14)

If the coefficients of s in the gamma functions in eq. 6.13 are made unity with
the multiplication theorem for gamma functions given in eq 1.16, the solution
can be expressed as
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6.2 Tilt for the Greenwood Spectrum 151

T 2
o =

6.08μ0

D1/3

{
3F4

[
11
12

, 7
3
, 17

12
; 5

6
, 29

6
, 17

6
, 1

2
; −

(
πD

Lo

)2
]

+ 1.764
(

D

Lo

)
3F4

[
17
12

, 23
12

, 17
6
; 7

6
, 4

3
, 3

2
16
3
, 10

3
, −

(
πD

Lo

)2
]

− 1.848
(

D

Lo

)1/3

3F4

[
5
2
, 13

12
, 19

12
; 7

6
, 5, 3 7

6
, 2

3
, −

(
πD

Lo

)2
]}

. (6.15)

This is plotted in Fig. 6.3.
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Figure 6.3. Tilt standard deviation for the Greenwood turbulence spectrum
with outer scale, normalized to tilt standard deviation with infinite outer scale.
Notice that there is a significant reduction of tilt even if outer scale is 100 times
the diameter. This curve is independent of the turbulence distribution along the
propagation path.

The lowest-order terms of the summations in eq. 6.14 for D/Lo � 1 give

T 2
o ≈ 6.08μ0

D1/3

(
1 − 1.85 e1/3 + 1.76 e − 5.24 e2 + 6.70 e7/3 − 3.77 e3

)
, (6.16)

where e = D/Lo. Tilt jitter is also significantly affected by outer-scale effects
for the Greenwood spectrum. The leading correction term has the 1/3 power of
D/Lo in both spectra considered here; this results in a significant effect on tilt
jitter even when outer scale is much larger than aperture diameter.
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152 6 Examples with a Single Positive Parameter

6.3 Tilt with Finite Inner Scale

The expression for Zernike tilt variance given in eq. 4.22 goes to infinity when the
diameter goes to zero. This obviously is an incorrect physical limit; to determine
the correct tilt for very small apertures, the inner scale must be included. To
find this tilt, the turbulence spectrum with Tatarski’s model for inner scale is
used in eq. 4.34 with diffraction neglected to obtain

T 2
i =

105.1μ0

D1/3

∞∫
0

dx

x
x−11/3J2

2 (x) exp
[
−(x/b)2

]
, (6.17)

where b = κi D/2, and it is assumed that the inner scale does not depend on z.
This varies with zenith angle as sec(ξ). Mellin transforms in eq. 1.52 and eq. 1.47
can be used in the convolution integral, and after the substitution s → 2s, one
obtains

T 2
i =

29.64μ0

D1/3

1

2πi

∫
C

ds Γ

[
s + 1

6
, −s + 7

3
, −s

−s + 29
6
, −s + 17

6

]
b−2s. (6.18)

The pole locations are shown in Fig. 6.4.

PATH OF

INTEGRATION

s = – 1/6 – n
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s = 7/3 + n

–7/6

s-PLANE

–13/6 –1/6 s =  n

0 1 2

xx

7/3 10/3

Figure 6.4. Pole location and integration path for determining the tilt with
finite inner scale.

Since Δ = 1, the integration path can be closed in the left half plane. There
are poles at s = −1/6 − n, for n = 0, 1, 2, . . . . The tilt variance is

T 2
i =

29.64μ0

D1/3

∞∑
n=0

(−1)n

n !
Γ

[
n + 5

2
, n + 1

6

n + 5, n + 3

] (
πD

Li

)2n+1/3

. (6.19)

With the rules in Sec. 1.3 the solution is

T 2
i =

6.69μ0

L
1/3
i

2F2

[
5
2
, 1

6
; 5, 3;−

(
πD

Li

)2
]
. (6.20)
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If inner scale is larger than diameter, then tilt variance determined only from
the leading series term is

T 2
i ≈ 6.08μ0

(0.75Li)
1/3

, Li � D. (6.21)

From this solution it is seen that for inner scale large with respect to D, the
tilt formula is the same as that with zero inner scale except that the diameter to
place in the formula is 0.75 times the inner scale. If the inner scale is 1 millimeter,
the rms tilt one would measure with a very small aperture is 12 μrads with the
HV-21 turbulence distribution.

For inner scale much smaller than diameter, a case that normally occurs,
the above power series converges slowly. For this case, an asymptotic solution
is appropriate. The conditions given in eq. 5.52 are satisfied, which means that
the asymptotic solution is simply found from the pole residues in the right half
plane that are located at s = m + 7/3, and s = m for m = 0, 1, 2, . . . . This
gives

T 2
i ∼ 6.08μ0

D1/3

no∑
m=0

(−1)m

m!
4.875

{
Γ

[
m + 1

6
, −m + 7

3

−m + 29
6
, −m + 17

6

] (
Li

πD

)2m

+ 0.00479
(

Li

D

)14/3 ( Li

πD

)2m

Γ

[
m + 5

2
, −m − 7

3

−m + 5
2
, −m + 1

2

]}
. (6.22)

The value to use for no was discussed in Sec. 5.2.
The two most significant pole contributions are at s = 0 and 1 in the first

summation. The approximate solution from those poles is

T 2
i ∼ 6.08μ0

D1/3

[
1 − 0.089

(
Li

D

)2
]
, D � Li. (6.23)

The first term corresponds to the result given in eq. 4.22 where the inner
scale is zero. Tilt with inner scale is plotted in Fig. 6.5.

6.4 Piston- and Tilt-Removed Phase Variance on an
Annulus

Most apertures for astronomical telescopes and beam directors have a central
obscuration whose diameter is 25% or less of the aperture diameter. In most
analyses the effect of this obscuration is ignored because it is assumed to be
small. Here it is shown explicitly that the central obscuration has little effect on
piston-removed phase and tilt.

To obtain piston-removed phase variance σ2
PR on an annulus, the filter func-

tion that removes piston phase variance given in eq. 3.48 must be subtracted
from unity in the standard formula in eq. 2.112 for phase variance of a single
wave. This yields
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Figure 6.5. Effect of inner scale on the tilt, normalized to that with zero inner
scale. This curve is independent of the turbulence distribution along the propa-
gation path. Tilt is close to that of tilt with zero inner scale once the diameter
is larger than inner scale.

σ2
PR = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκκ−11/3

×

⎧⎪⎨
⎪⎩1 − 4[

1 − (Di/D)2
]2
[
J1 (κD/2)

κD/2
−
(

Di

D

)2 J1 (κDi/2)

κDi/2

]2
⎫⎪⎬
⎪⎭. (6.24)

For vanishingly small wavenumbers the filter function for piston approaches
unity, thereby the unity term in the braces is cancelled, thus the apparent sin-
gularity at the origin in wavenumber space is cancelled. Expand the expression
in braces, and rearrange terms to obtain three integrals that each converge to
give
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σ2
PR =

5.212 k2
0 μ0[

1 − (Di/D)2
]2

∞∫
0

dκ

κ
κ−5/3

⎛
⎝−

⎧⎨
⎩
[
J1 (κD/2)

κD/2

]2

− 1

4

⎫⎬
⎭

−
⎧⎨
⎩
[(

Di

D

)2 J1 (κDi/2)

κDi/2

]2

− 1

4

(
Di

D

)4
⎫⎬
⎭

+

[
2
J1 (κD/2)

κD/2

(
Di

D

)2 J1 (κDi/2)

κDi/2
− 1

2

(
Di

D

)2
]⎞⎠ . (6.25)

The first term in braces is the only term remaining when the central obscuration
goes to zero, and produces the standard result in eq 4.27. The second term in
braces gives the same result with a multiplier.

Let x = κD/2, and β = Di/D to obtain

σ2
PR = 1.033

(
D

ro

)5/3
(
1 + β17/3

)
(1 − β2)2 + 1.94

(
D

ro

)5/3 4

(1 − β2)2βI. (6.26)

The remaining integral to be evaluated is

I =

∞∫
0

dx

x
x−11/3

[
J1(x)J1 (βx) − x

2

βx

2

]
. (6.27)

The form of this integral is not one that has been considered before. It is
the product of two functions minus the product of the first terms of their series
expansions. If A and B are the two functions, and a and b are the first terms of
the series expansions, then the following identity will express the integral in a
form that can be evaluated with the techniques that have been developed.

AB − ab = (A − a)(B − b) + a(B − b) + b(A − a). (6.28)

The original integral I can now be broken up into the sum of three separate
integrals that are

I1 =

∞∫
0

dx

x
x−11/3

[
J1(x) − x

2

] [
J1 (βx) − βx

2

]
, (6.29)

I2 = 0.5 β8/3

∞∫
0

dy

y
y−8/3

[
J1(y) − y

2

]
= − 0.1525β8/3, and (6.30)

I3 = 0.5 β

∞∫
0

dy

y
y−8/3

[
J1(y) − y

2

]
= − 0.1525β. (6.31)

The last two integrals were evaluated with the Mellin transform in eq. 1.51.
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Use the convolution theorem to evaluate I1. By using eq. 1.51 and letting
s → 2s, one can transform I1 into the complex plane as follows

I1 =
2−14/3

2πi

∫
C

ds β2s Γ

[
s − 4

3
∗, −s + 1

2
∗

−s + 10
3
, s + 3

2

]
, (6.32)

where the asterisk indicates that the integration path passes between the first
and second poles of the gamma function.

Since Δ = Δ′ = 0, and β < 1, the integration path is closed to the right. The
contributions of the poles at s = 4/3, and s = 1/2 + n for n = 1, 2, . . . , give

I1 = 2−14/3

{
3.873 β8/3 + β

∞∑
n=1

(−1)n

n !
β2nΓ

[
n − 5

6

−n + 17
6
, n + 2

]}
. (6.33)

From the rules in Sec. 1.3 this is equivalent to

I1 = 0.1525β8/3 − 0.1525β
(

2F1

[
−5

6
,−11

6
; 2; β2

]
− 1

)
. (6.34)

Therefore, the sum of the three integrals is

I = I1 + I2 + I3 = − 0.1525β 2F1

[
−5

6
,−11

6
; 2; β2

]
. (6.35)

The piston-removed phase variance is thus

σ2
PR =

1.033

(1 − β2)2

(
D

ro

)5/3 (
1 + β17/3 − 1.146 β2

2F1

[
−5

6
,−11

6
; 2; β2

])
. (6.36)

This is plotted in Fig. 6.6.
The expression for Zernike tilt phase variance on an annulus is obtained by

inserting the filter function in eq. 3.42 into the standard formula eq. 2.112 for
the phase variance of a single wave with diffraction neglected. The tilt variance
in this case is thus

T 2
az = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ

[
16

k0D (1 − β4)

]2

×
[
J2 (κD/2)

κD/2
− β3J2 (κβD/2)

κβD/2

]2

. (6.37)

The angular and axial integrations can be performed easily, and if the square
of the sum in brackets is expanded, the first term gives the Zernike tilt of a full
aperture, and the second term squared is the same as the first term except it
is multiplied by a constant. Making the substitution x = κD/2, one can thus
express the tilt variance as

T 2
az =

6.08μ0

D1/3 (1 − β4)2

⎡
⎣1 + β23/3 − 34.55 β2

∞∫
0

dx

x
x−11/3J2(x) J2 (βx)

⎤
⎦ . (6.38)
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Figure 6.6. Normalized piston-removed phase variance on an annulus versus
the obscuration ratio. For a typical obscuration ratio of 25% there is little change
in tilt from that of a filled aperture. This curve is independent of the turbulence
distribution along the propagation path.

Using the Mellin convolution theorem with the Mellin transform in eq. 1.51 and
making the substitution s → 2s, one obtains for the integral in eq. 6.38

I =
2−14/3

2πi

∫
C

ds β2s Γ

[
s − 5

6
, −s + 1

−s + 23
6
, s + 2

]
. (6.39)

Since Δ = Δ′ = 0, and the obscuration ratio is always less than 1, the
integration path is closed in the right half plane. The integral is equal to the
residues at s = 1 + n, for n = 0, 1, 2, . . . . Tilt variance is thus equal to

T 2
az =

6.08μ0

D1/3 (1 − β4)2

{
1 + β23/3− 1.36

∞∑
n=0

(−1)n

n !
β4+2n Γ

[
n + 1

6

−n + 17
6
, n + 3

]}
.

(6.40)
This can be expressed as a generalized hypergeometric function with the rules
in Sec. 1.3,

T 2
az =

6.08μ0

D1/3 (1 − β4)2

(
1 + β23/3 − 2.196 β4

2F1

[
1
6
,−11

6
; 3; β2

])
. (6.41)

The first few terms of the solution, which give an answer accurate to better than
1% for β < 0.5, are

T 2
az ≈ 6.08μ0

(
1 + β23/3 −2.196 β4 + 0.2237β6− 0.02718β8 −0.0006544β10

)
D1/3 (1 − β4)2 .

(6.42)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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Therefore, using the constant in eq. 3.45 to convert tilt angle variance to tilt
phase variance, one obtains

σ2
T = 0.899

(
D

ro

)5/3 (1 + β2)

(1 − β4)2

(
1 + β23/3 − 2.196 β4

2F1

[
1
6
,−11

6
; 3; β2

])
. (6.43)

Piston and tilt modes are orthogonal on an annulus; therefore, the phase
variance with piston and tilt removed σ2

PTR is

σ2
PTR = σ2

PR − σ2
T . (6.44)

This is equal to

σ2
PTR =

(
D

ro

)5/3
{

1.033

(1 − β2)2

(
1 + β17/3 − 1.146 β2

2F1

[
−5

6
,−11

6
; 2; β2

])

− 0.899

[
1 + β2

(1 − β4)2

] (
1 + β23/3− 2.196 β4

2F1

[
1
6
,−11

6
; 3; β2

])}
. (6.45)

The piston-and-tilt-removed phase variance is plotted in Fig. 6.7. For large
obscuration ratios the terms in brackets almost cancel. To obtain an accurate
answer for obscuration ratios approaching unity, the numerical constants must
be replaced by their exact values, which are 1.146 → 2−8/3

√
π Γ

[
23
6

]
/Γ

[
7
3

]
, and

2.196 → 2−11/3
√

π Γ
[

29
6

]
/Γ

[
7
3

]
.
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Figure 6.7. Normalized piston-and-tilt-removed phase variance on an annulus
versus the obscuration ratio. For a typical obscuration ratio of 25% there is little
change in variance from that of a filled aperture. This curve is independent of
the turbulence distribution along the propagation path.
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In a similar way gradient tilt variance can be calculated with eq. 2.112, and
the filter function for gradient tilt on an annulus given in eq. 3.44, to obtain

T 2
ag =

3.317

[D (1 − β2)]2

L∫
0

dz C2
n(z)

∫
dκ [J1 (κD/2) − βJ1 (κDi/2)]2 . (6.46)

This is evaluated in the now standard way to obtain

T 2
ag =

5.675μ0

D1/3 (1 − β2)2

(
1 + β11/3 − 2.156 β2

2F1

[
1
6
,−5

6
; 2; β2

])
. (6.47)

The first few terms of the solution, which result in an answer accurate to better
than 1% for β < 0.5, are

T 2
ag ≈ 5.675μ0

×

(
1 + β11/3 − 2.156 β2 + 0.1497β4 + 0.00485β6 + 0.00102β8

)
D1/3 (1 − β2)2 . (6.48)

Normalized Zernike and gradient tilt variances are plotted in Fig. 6.8.
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Figure 6.8. Normalized Zernike and gradient tilt variances on an annulus versus
the obscuration ratio. For a typical obscuration ratio of 25% there is little change
in variance from that of a filled aperture. These curves are independent of the
turbulence distribution along the propagation path.
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160 6 Examples with a Single Positive Parameter

6.5 Effect of Diffraction on Tilt

As a beam propagates, it eventually spreads due to diffraction, and tilt can be
affected. The effect of diffraction on Zernike tilt is obtained by not setting the
cosine term equal to 1 as has been done until now. The formula for tilt of an
infinite plane wave that propagates from ground to space is obtained from the
standard formula for variance of a single wave given in eq. 2.112, with the filter
function for Zernike tilt given in eq. 3.22, to obtain

T 2
d =

53.07

D2

L∫
0

dz C2
n(z)

∫
dκκ−11/3

[
J2 (κD/2)

κD/2

]2

cos2

[
κ2(L − z)

2k0

]
. (6.49)

Integrate over angle, let x = κD/2, and y = D
√

k0/2(L − z) to obtain

T 2
d =

105

D1/3

L∫
0

dz C2
n(z)

∞∫
0

dx

x
x−11/3J2

2 (x)
[
1 − sin2(x/y)2

]
. (6.50)

The first term in brackets corresponds to Zernike tilt without diffraction. With
the Mellin convolution theorem, the Mellin transforms given in eq. 1.52 and
eq. 1.50, and the substitution s → 4s, one obtains

T 2
d =

6.08μ0

D1/3

×
⎧⎨
⎩1 +

4.318

μ0

L∫
0

dz C2
n(z)

1

2πi

∫
C

ds y−4s Γ

[
2s + 1

6
, −2s + 7

3
, −s∗

−2s + 29
6
, −2s + 17

6
, s + 1

2

]⎫⎬
⎭ .

With the multiplication formula for gamma functions in eq. 1.16 one obtains
for the integral over s

I = 2−25/6 1

2πi

∫
C

ds y−4s Γ

[
s + 1

12
, s + 7

12
, −s + 7

6
, −s + 5

3
, −s∗

−s + 29
12

, −s + 35
12

, −s + 17
12

, −s + 23
12

, s + 1
2

]
.

(6.51)
Since Δ = 2, the integration path should be closed in the left half plane. There
are poles located at s = 0, and s = −1/12−n, and −7/12−n for n = 0, 1, 2, . . . .
The pole at zero gives a term that is minus one-half the diffraction-free term.
The full result is
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T 2
d =

6.08μ0

D1/3

⎡
⎣0.5 +

2.159

μ0

L∫
0

dz C2
n(z)

×
⎛
⎝∞∑

n=0

(−1)n

n !

⎧⎨
⎩
[

k0D
2

2(L − z)

]n+1/12

Γ

[
−n + 1

2
, n + 5

4
, n + 7

3
, n + 1

12

n + 3, n + 2, −n + 5
12

, n + 5
2
, n + 3

2

]

+

[
k0 D2

2(L − z)

]n+7/12

Γ

[
−n − 1

2
, n + 7

4
, n + 9

4
, n + 7

12

n + 3, n + 2, −n − 1
12

, n + 5
2
, n + 14

3

]⎫⎬
⎭
⎞
⎠
⎤
⎦ . (6.52)

For very long ranges the first term dominates, and one finds that tilt variance
is one-half that of the tilt in the near field. Use the rules in Sec. 1.3 to obtain

T 2
d =

6.08

D1/3

∫ L

0
dz C2

n(z)

×
⎧⎨
⎩0.5 − 0.07341

(
k0 D2

(L − z)

)1/12

4F5

⎡
⎣5

4
, 7

3
, 1

2
,−3

2
; 2, 3, 1

2
, 3

2
, 5

2
;

(
k0 D2

2 (L − z)

)2
⎤
⎦

+ 0.01095

(
k0 D2

(L − z)

)7/12

4F5

⎡
⎣7

4
, 9

4
, 7

12
, 13

12
; 2, 3, 14

3
, 3

2
, 5

2
;

(
k0 D2

2 (L − z)

)2
⎤
⎦
⎫⎬
⎭ .(6.53)

When the observation plane is well above the turbulence, L−z can be replaced
by L in the above expression to obtain

T 2
d =

6.08μ0

D1/3

×
⎧⎨
⎩0.5 − 0.07341

(
k0 D2

L

)1/12

4F5

⎡
⎣5

4
, 7

3
, 1

2
,−3

2
; 2, 3, 1

2
, 3

2
, 5

2
;

(
k0 D2

2L

)2
⎤
⎦

+ 0.01095

(
k0 D2

L

)7/12

4F5

⎡
⎣7

4
, 9

4
, 7

12
, 13

12
; 2, 3, 14

3
, 3

2
, 5

2
;

(
k0 D2

2L

)2
⎤
⎦
⎫⎬
⎭ . (6.54)

Tilt is independent of wavelength at very long and short ranges. For inter-
mediate ranges tilt can depend on wavelength.

Define the Fresnel number as

FN = W 2
o /λL, (6.55)

where Wo is the beamwidth defined in eq. 2.69. In terms of FN , the first few
terms of the series solution are

T 2
d ≈ 6.08μ0

D1/3

×
(
0.5+ 0.3911F

1/6
N + 0.004572F

7/6
N − 0.002281F

13/6
N − 8.912 × 10−5 F

19/6
N

)
.

(6.56)
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162 6 Examples with a Single Positive Parameter

This solution converges rapidly for Fresnel numbers comparable or smaller than
unity. The factor of one-half in the tilt for large ranges is due to conversion of
half the phase variance into log-amplitude variance. There is a conversion back
and forth between amplitude and phase scintillations. The conversion rate varies
with spatial wavelength, and this results in an equipartition of variance at long
ranges. For large distances the first two terms in parenthesis in eq. 6.56 provide
a good estimate of tilt variance. The one-sixth power law dependence of the
second term causes the variance to approach the infinite-range value slowly.

For small ranges an asymptotic solution is appropriate, and the simple poles
in the right half plane that are located at s = 7/6 + n, and s = 5/3 + n for
n = 0, 1, 2, . . . , and at s = n, for n = 1, 2, 3, . . . give an asymptotic series that
is the sum of these terms plus the E(x) term. Again assuming that the target
is much higher than the top of the turbulence, one finds

T 2
d ∼ 6.08μ0

D1/3

×
(

1 + 2.159

{
no∑

n=0

(−1)n

n !

(
2L

k0D2

)n+7/3

Γ

[
n + 5

2
,−n/2 − 7

6

−n + 5
2
,−n + 1

2
, n/2 + 5

3

]

+ 2
no∑

n=1

(−1)n

n !

(
2L

k0D2

)2n

Γ

[
2n + 1

6
,−2n + 7

3

−2n + 29
6
,−2n + 17

6
, n + 1

2

]
+ E

(
2L

k0D2

)})
.

(6.57)

The first few terms of the series, plus the E term, for FN � 1 give

T 2
d ∼ 6.08μ0

D1/3

[
1 − 0.7353

F 2
N

+
0.5419

F
7/3
N

− 0.112

F
10/3
N

− 0.2363

F
31/6
N

cos
(

πFN

2
+

π

4

)]
.

(6.58)
Tilt variance normalized to the value at very short distances is plotted in Fig. 6.9
and Fig. 6.10 on linear and logarithmic scales. From this result one sees that the
Fresnel number has to be very small before tilt variance drops to the far-field
value. For accurate tracking one wants small deviations from the near field value;
tilt variance has dropped by 5% when the Fresnel number is 3.
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Figure 6.9. Tilt versus the Fresnel number on a linear scale. If the range is
such that the Fresnel number is greater than 3, then tilt variance is within 5%
of the very near field tilt variance. This curve is independent of the turbulence
distribution along the propagation path.
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Figure 6.10. Tilt versus Fresnel number on a logarithmic scale. This plot more
clearly shows tilt at low Fresnel numbers.
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164 6 Examples with a Single Positive Parameter

6.6 Tilt Anisoplanatism

Tilt anisoplanatism is the differential tilt jitter between two sources. The size of
tilt anisoplanatism is of interest in many important applications. If the position
of a source were measured, and a laser beam were directed at the source, there
could be a jitter if the transmit aperture were not exactly aligned with the receive
aperture. If a satellite were tracked, and a laser beam sent to the satellite, so
that the laser beam would have to lead the perceived position of the target by
an angle determined by light velocity and satellite velocity (about 50 μrads for
low-altitude satellites), then this difference between the receiver and transmitter
pointing angles leads to jitter of the laser beam at the target. Tilt anisoplanatism
also accounts for the apparent jitter between two stars simultaneously viewed
through the atmosphere. In this section I calculate Z-tilt anisoplanatism for two
apertures displaced in distance or displaced in angle. In the second case, physical
displacement is a function of the distance from the source. G-tilt anisoplanatism
has been calculated by Ellerbroek and Roberts (1984), and one can obtain their
results by using the approach illustrated below with a G-tilt rather than a Z-tilt
filter function.

Tilt anisoplanatism is often much less than a beamwidth for scenarios con-
sidered in adaptive optics. When the beam is corrected, the tilt measured by
sensors is closer to the Zernike tilt even for a centroid sensor, which for uncor-
rected beams measures a value closer to the gradient tilt (Herrmann 1981). For
corrected beams the results obtained here are closer to values that would be
measured than the G-tilt values.

To find the total value of tilt anisoplanatism and components both parallel
and perpendicular to the displacement direction, eq. 2.123 with diffraction ne-
glected is used with the filter function for Zernike tilt given in eq. 3.22. The
general case will be considered so that the final formula can be applied to both
collimated and focused beams. The γ factor multiplies the value of κ in the filter
function for tilt, but it does not appear in the anisoplanatism term. Since the
tilt is wanted at the aperture, the γ factor does not multiply the D in 1/D2.
The resulting expression for tilt anisoplanatism is

⎡
⎢⎣

σ2
‖

σ2
⊥

σ2

⎤
⎥⎦ = 0.2073

L∫
0

dz C2
n(z)

∫
dκ

⎡
⎢⎣ cos2 (ϕ)

sin2 (ϕ)
1

⎤
⎥⎦κ−11/3

×
(

16

D

)2
[
J2 (γκD/2)

γκD/2

]2

2 {1 − cos [κd cos (ϕ)]} , (6.59)

where σ2 is the total variance, which is equal to the sum of the parallel and
perpendicular variances.

The angular integration can be performed with Gradshteyn and Ryzhik (1980,
eq. 8.4.11 #7)
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π∫
0

dx exp [iβ cos(x)] sin2ν(x) =
√

π

(
2

β

)ν

Γ
[
ν + 1

2

]
Jν(β), Re {ν} > − 1

2
.

(6.60)
Use the trigonometric identity cos2 (ϕ) = 1 − sin2 (ϕ) to express the first

integral in eq. 6.59 in the form of eq. 6.60. Using eq. 3.5 one can perform the ϕ
integration to obtain

⎡
⎢⎣

σ2
‖

σ2
⊥

σ2

⎤
⎥⎦ =

667

D2

L∫
0

dz C2
n(z)

⎡
⎢⎣ IT − I1

I1

IT

⎤
⎥⎦ . (6.61)

The two integrals that allows one to evaluate all three variances in kappa-
space are

I1 = −
∞∫
0

dκ κ−8/3

[
J2 (γκD/2)

γκD/2

]2 [
J1 (κd)

κd
− 1

2

]
, and (6.62)

IT = −
∞∫
0

dκ κ−8/3

[
J2 (γκD/2)

γκD/2

]2

[J0 (κd) − 1]. (6.63)

Set y = κd, and x = 2d/γD, to obtain

[
I1

IT

]
= − 4d11/3

(γD)2

∞∫
0

dy

y

[
y−14/3

[
J1(y) − y

2

]
y−11/3 [J0(y) − 1]

]
J2

2 (y/x) . (6.64)

The Mellin transforms of the functions in brackets can be found from eq. 1.51
and eq. 1.8 with a = −14/3 and −11/3. The Mellin transform of J2

2 (x) is given in
eq. 1.52. After the substitution s → 2s, the integrals in eq. 6.64 are transformed
into

[
I1

IT

]
= −0.0889 d11/3

(γD)2

1

2πi

∫
C

ds

(
d

γD

)−2s

×Γ

[
s − 11

6
∗, −s + 2, s + 1

2

s + 3, s + 1

] ⎡⎣1/2Γ
[
−s + 23

6

]
1/Γ

[
−s + 17

6

]
⎤
⎦ . (6.65)

The integration path and pole locations are the same for both integrals and are
shown in Fig. 6.11.

Since Δ = Δ′ = 0, the direction of path closure is determined by the para-
meter d/γD in the integral. Different Taylor’s expansions are obtained for small
and large displacements. The point in the atmosphere at which the character
of the solution changes from one series to another is where the two beams just
barely overlap. For d/γD < 1, the integration path is closed to the left, and
one obtains the residues of poles at s = −1/2 − n for n = 0, 1, 2, . . . , and
s = 11/6 − n, for n = 1, 2, 3, . . . . For d/γD > 1, the path is closed to the
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Figure 6.11. Pole location and integration path for tilt anisoplanatism.

right, and one obtains the residues of poles at s = 2 + n for n = 0, 1, 2, . . . ,
and the single pole at s = 11/6. The resultant values of the integrals for small
displacements are

[
I1

IT

]
L

= −0.0889 d11/3

(γD)2

×
⎧⎨
⎩

∞∑
n=1

(−1)n

n !

(
d

γD

)−11/3+2n

Γ

[
n + 1

6
, −n + 7

3

n + 1, −n + 29
6
, −n + 17

6

] [
0.5
n+1

1

]

+
∞∑

n=0

(−1)n

n !

(
d

γD

)1+2n

Γ

[
−n − 7

3
, n + 5

2

n + 10
3
, −n + 5

2
, −n + 1

2

] ⎡⎣ 0.5

n+
10
3

1

⎤
⎦
⎫⎬
⎭, d < γD.(6.66)

For large displacements the integrals are equal to

[
I1

IT

]
U

=
0.0889 d11/3

(γD)2

⎧⎨
⎩
(

d

γD

)−11/3

Γ

[
1
6
, 7

3
29
6
, 17

6

] [
0.5

1

]

−
∞∑

n=0

(−1)n

n !

(
d

γD

)−4−2n

Γ

[
n + 1

6
, n + 5

2

−n + 5
6
, n + 5, n + 3

] ⎡
⎣ 0.5

−n+
5
6

1

⎤
⎦
⎫⎬
⎭ , d > γD.

(6.67)
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Substituting the last two results into eq. 6.64 results in

[
σ2
‖

σ2
⊥

]
= −29.6

D1/3

L∫
0

dz C2
n(z)γ5/3

×
⎧⎨
⎩

∞∑
n=1

(−1)n

n !

(
d

γD

)2n

Γ

[
n + 1

6
, −n + 7

3

n + 2, −n + 29
6
, −n + 17

6

] [
2n + 1

1

]

+
∞∑

n=0

(−1)n

n !

(
d

γD

)2n+14/3

Γ

[
−n − 7

3
, n + 5

2

n + 13
3
,−n + 5

2
,−n + 1

2

][
2n + 17

3

1

]⎫⎬
⎭, d < γD.

(6.68)

For large displacements one obtains

[
σ2
‖

σ2
⊥

]
=

6.08

D1/3

L∫
0

dz C2
n(z)γ5/3

{[
1
1

]

− 4.86
∞∑

n=0

(−1)n

n !

(
γD

d

)1/3+2n

Γ

[
n − 5

6
, n + 5

2

−n + 5
6
, n + 5, n + 3

]⎡⎣2
(
n − 1

3

)
−1

⎤
⎦
⎫⎬
⎭, d > γD.

(6.69)

If the displacement does not depend on the propagation direction and γ = 1,
then the integration over the axial coordinate can be performed. One finds that
tilt variances for small displacements are

[
σ2
‖

σ2
⊥

]
= −29.6μ0

D1/3

×
⎧⎨
⎩

∞∑
n=1

(−1)n

n !

(
d

D

)2n

Γ

[
n + 1

6
, −n + 7

3

n + 2, −n + 29
6
, −n + 17

6

] [
2n + 1

1

]

+
∞∑

n=0

(−1)n

n !

(
d

D

)2n+14/3

Γ

[
−n − 7

3
, n + 5

2

n + 13
3
,−n + 5

2
,−n + 1

2

][
2n + 17

3

1

]⎫⎬
⎭, d < D.

(6.70)

For large displacements one obtains

[
σ2
‖

σ2
⊥

]
=

6.08μ0

D1/3

{[
1
1

]

− 4.86
∞∑

n=0

(−1)n

n !

(
D

d

)1/3+2n

Γ

[
n − 5

6
, n + 5

2

−n + 5
6
, n + 5, n + 3

]⎡⎣2
(
n − 1

3

)
−1

⎤
⎦
⎫⎬
⎭, d > D.

(6.71)
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For very large displacements the first term is the only significant one. Tilt
variance for each component for very large separations is equal to the total tilt
variance of a single wave given in eq. 4.22. This is what one would expect since
two uncorrelated tilts are being subtracted.

For small displacements, the first term in eq. 6.70 is the only significant term
and gives [

σ2
‖

σ2
⊥

]
≈ 2.67μ0

D1/3

(
d

D

)2 [
3
1

]
. (6.72)

The parallel component is three times the perpendicular component of tilt
variance. The value of total rms tilt is

T ≈ 3.27μ
1/2
0

D1/6

d

D
. (6.73)

In some systems that propagate laser beams, a tracking system looks through
a certain part of the main aperture, and the laser beam may propagate out of
a different part of the aperture. This misregistration can cause a relative jitter
on the laser beam if the tracked signal is used to direct it. For a 60-cm aperture
with a displacement of 5 cm, the rms jitter is 442 nanoradians for an HV-21
turbulence model at zenith.

Change the summations to generalized hypergeometric functions, and con-
vert the expression of one minus such a function into a different generalized
hypergeometric function with eq. 1.42, to obtain

[
σ2
‖

σ2
⊥

]
=

6.08μ0

D1/3

⎧⎪⎨
⎪⎩
⎡
⎢⎣ 1.316

(
d
D

)2

5F4

[
7
6
,−17

6
,−5

6
, 5

2
, 1;−1

3
, 3, 3

2
, 2;

(
d
D

)2
]

0.4392
(

d
D

)2

4F3

[
7
6
,−17

6
,−5

6
, 1;−1

3
, 3, 2;

(
d
D

)2
]

⎤
⎥⎦

+

⎡
⎢⎣ 2.195

(
d
D

)14/3

4F3

[
5
2
,−3

2
, 1

2
, 23

6
; 17

6
, 13

3
, 10

3
;
(

d
D

)2
]

0.388
(

d
D

)14/3

3F2

[
5
2
,−3

2
, 1

2
; 13

3
, 10

3
;
(

d
D

)2
]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ , d < D, (6.74)

and

[
σ2
‖

σ2
⊥

]
=

6.08μ0

D1/3

⎧⎪⎨
⎪⎩
⎡
⎢⎣ 1

1

⎤
⎥⎦−

⎡
⎢⎣ 0.531

(
D
d

)1/3

4F3

[
−5

6
, 5

2
, 1

6
, 2

3
; 5, 3,−1

3
;
(

D
d

)2
]

0.799
(

D
d

)1/3

3F2

[
−5

6
, 5

2
, 1

6
; 5, 3;

(
D
d

)2
]

⎤
⎥⎦
⎫⎪⎬
⎪⎭ ,

d > D. (6.75)

These variances vary with zenith angle as sec(ξ) if the displacement is not a
function of z. They are plotted in Fig. 6.12 versus displacement.
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Figure 6.12. Tilt anisoplanatism versus displacement, normalized to aperture
tilt. The tilt component parallel to the displacement is 1.73 times that of the
perpendicular component, for small displacements. For very large displacements
these components are equal. The tilt variance increases rapidly with displace-
ment so that when the displacement is equal to the diameter, tilt variance is
one-half that of a single wave. This curve is independent of the turbulence dis-
tribution along the propagation path.

For reference the expression for tilt anisoplanatism for the general case is
given by
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and
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[
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If one is interested in calculating tilt anisoplanatism for two beams pointing
in different directions, then displacement is a function of distance, and the axial
integration results in the summation that contains various different moments
of the turbulence distribution. For the Hufnagel-Valley-turbulence model these
can be evaluated analytically; therefore, it is very easy to make calculations for
specific turbulence levels, aperture sizes, and zenith angles.

If the displacement between the two beams is an angle θ, then the expression
for tilt anisoplanatism is obtained with the substitution d = θz in the above
equations. The displacement is a small distance low in the atmosphere, however
it can exceed the diameter at higher altitudes. Therefore, the solution for small
displacement applies at low altitudes and that for large displacements applies at
higher altitudes. The solution is a sum of a lower and upper contribution,
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. (6.78)

The lower contribution, with Hc = D cos (ξ) /θ, is
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The upper contribution is
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(6.80)

The upper and lower partial turbulence moments, μ+
m and μ−

m, are defined in
Sec. 4.1.

The turbulence above 30 km is small and is generally negligible. For small
displacement angles such that Hc is higher than the uppermost turbulence, the
anisoplanatic tilt variance is given solely by the lower contribution, and the
leading terms of the series are

[
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]
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)14/3 [ 17
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+ · · · . (6.81)

The total anisoplanatic tilt multiplied by the diameter is plotted versus aper-
ture diameter for various angular separations in Fig. 6.13 for the HV-21 tur-
bulence model. As one can observe in the figure, the plotted values decrease
as the one-sixth power of the diameter for most regions of the plots. In those
regions, the tilt is given with small error solely by the first term of the series.
The one-term approximation applies when θ < D/40, 000. In this region for the
HV-21 turbulence model, the total rms tilt anisoplanatism σT is given by

σT (nrad) ≈ 14.2 θ (μrad) sec1.5 (ξ) /D7/6.

Define a characteristic tilt anisoplanatic angle as the angle between two
sources for which the tilt jitter is equal to one-half the diffraction-limited beam
size. At this angle the jitter radius is equal to that of the perfectly corrected
spot. For these small angles the first term of the expression above gives a rea-
sonable approximation of the angle jitter, and the partial moment becomes a
full moment. This characteristic tilt anisoplanatic angle θTc is

θTc =
0.184λD1/6

μ
1/2
2

. (6.82)

For a HV-21 turbulence model and a 1-m diameter aperture at 0.5 μm oper-
ating wavelength the characteristic tilt anisoplanatic angle is 21 μrad.

For large angles in which the transition altitude is close to the ground, tilt
variance is given solely by the upper contribution as
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Figure 6.13. Tilt anisoplanatism at zenith times aperture diameter versus aper-
ture diameter with the HV-21 turbulence model. Plots are given for source sep-
arations of 10, 20, 40, and 50 μrad.
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The leading term is twice the tilt variance of a single wave. The angular
separation of the beams has to be very large before this asymptotic limit is
approached.

6.7 Power Spectral Density of Tilt

In this section, the power spectral density for tilt of a collimated wave is de-
rived. Plane-wave results have been discussed briefly in Tatarski (1971), and
presented in more detail in Greenwood and Fried (1976) who made a simplify-
ing assumption in order to obtain simple, analytic results. Fields (1983) coined
the term “parallel approximation” for this simplification. One consequence of
the parallel approximation is that the rate at which spectra decay at high fre-
quencies is underestimated. Tyler (1986) subsequently analyzed plane-wave tilt
spectra without making this approximation. However, his results remain in in-
tegral form, which has an integral over a dummy variable related to spatial
frequency and an integral over altitude. In a subsequent report, Vaughn (1986)
provided numerical techniques to solve the integrals presented by Tyler, but no
solutions have been published that do not rely heavily on numerical integration.
A similar approach has been used in tilt spectra associated with a point source
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6.7 Power Spectral Density of Tilt 173

(spherical wave analysis). This leads to integral expressions given in Hogge and
Butts (1976) and Butts (1980) that also must be evaluated numerically.

Power spectral density of tilt is found here with the use of the general ex-
pression for power spectral density given in eq. 2.134 and the filter function for
Zernike tilt in eq. 3.22. It is assumed that one is in the near field so that the co-
sine term can be replaced by unity. This assumption breaks down at sufficiently
high frequencies, where the exact equation must be used. The effect of including
the cosine term is to lower the high-frequency spectrum. The spectral density is

ST (ω) = 2.606 k2
0ω

L∫
0

dz
C2

n(z)

v2(z)

×
∞∫
0

dc
c U(c − 1)√
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[
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v(z)

]−11/3 (
16

k0D

)2
{

J2 [ωcD/2v(z)]

ωcD/2v(z)

}2

. (6.84)

Let x = 2v(z)/ωD, to give

ST (ω) =
2668

D4ω14/3

L∫
0

dz C2
n(z) v11/3(z)
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0

dc

c

U(c − 1)√
c2 − 1

J2
2

(
c

x

)
c−11/3. (6.85)

To evaluate the integral over c, define the functions h1(x/c) = J2
2 (c/x), and

h2(c) = U(c − 1)/
√

c2 − 1 c−11/3. The integral over c can be expressed as a Mellin
convolution integral with the Mellin transforms in eq. 1.52 and eq. 1.56. Let
s → 2s to obtain for the c integral

I =
1

2

1

2πi

∫
C
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[
−s + 1

2
, s + 2, s + 7

3

−s + 1, −s + 3, s + 17
6
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2v(z)

]−2s

. (6.86)

Since Δ = 2, the integration path is closed in the left-half plane, and the
contributions at the two sets of poles at s = −2 − n, and s = −7/3 − n for
n = 0, 1, 2, . . . give

I =
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∞∑
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3
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}
. (6.87)

To obtain the spectral density, the velocity profile must be inserted into the
above series, and the integrations along the path performed. Various velocity
moments, defined in eq. 4.83, have to be calculated. The final result is a series
solution for the power spectral density,
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For the slew-dominated case in which the velocity is proportional to axial po-
sition, the velocity moments in the above expression are infinite. To obtain a
solution for this problem, one must evaluate the power series in eq. 6.87, which
is finite, and then perform the axial integration.

The low-frequency asymptote comes from the first term of the first series,
and the dependence is ω−2/3. For large frequencies, one obtains an asymptotic
series by deforming the integration path into the right half plane, thus obtaining
the pole contributions at s = −1/2 − n for n = 0, 1, 2 . . . , no. The E(x) term
is significant in this case. It is found with eq. 5.94. Inserting this into eq. 5.51,
one finds the asymptotic solution is
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. (6.89)

The power spectral density at high frequencies is thus
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The first series term, which is the high-frequency asymptote, varies as ω−17/3.
If velocity is constant along the path, spectral density for small values of

ωD/2v is found with the rules in Sec. 1.3 as
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. (6.91)

The spectral density for large values of ωD/2v is
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(6.92)

Power spectral density is plotted in Fig. 6.14. The spectrum is normalized to
give a value of unity when f D/v is unity. In the figure both Taylor series (first
40 terms) and asymptotic solution (first 5 terms) are plotted. For f D/v < 1,
the asymptotic series was set equal to unity since the series is very inaccurate
in that region, and above 5 the Taylor series was discarded because it becomes
inaccurate with the 40-term approximation. The two series give virtually the
same answer in the parameter range between 1 and 5. Notice the strong influence
of the cosine term on the spectrum. If velocity is allowed to vary along the path,
various cosine terms for different velocities tend to average to zero, and the
spectrum does not exhibit nearly as strong an oscillatory behavior.
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Figure 6.14. Log-linear plot of the power spectral density of tilt. The velocity
and turbulence are constant along the path. Notice the agreement of asymptotic
and Taylor series over a considerable range. This curve is independent of the
turbulence distribution along the propagation path.
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6.8 Scintillation with Finite Apertures and Sources

Scintillation in a receiver is considerably reduced from that measured with a very
small aperture if the aperture is a few inches in diameter. Also, the scintillation
from a finite size object such as a planet is considerably lower than that from a
point source such as a star. A receiver in space, if large enough, can average the
scintillation from a transmitter on the ground.

These averaging effects can be calculated with the filter function approach. In
these problems one is interested in the average scintillation over an aperture or
at a point receiver from a finite source. One has to average the intensity, but the
statistical expressions are given in terms of the log intensity. The Rytov approxi-
mation, upon which this work is based, is valid for low levels of scintillation, and
in that approximation the normalized intensity is well approximated by the log
intensity. Therefore, the average of the log intensity approximates the average
of the intensity. The scintillation from stars is low, and the approximation holds
for that practical problem.

The exact solution was found by Fried (1967) for the case where the scintil-
lation is not saturated by using a numerical integration. Andrews (1992) used
the low scintillation approximation to obtain asymptotic results for constant
turbulence with finite inner scale. His results agree with those given here.

The scintillation averaged over an aperture is obtained with the filter function
in eq. 3.56 for a source at infinity that is inserted into the formula for variance
given in eq. 2.112. The aperture-averaged scintillation is

σ2
χA ≈ 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ) sin2 [P (γ, κ, z)]

[
2J1 (γκD/2)

γκD/2

]2

. (6.93)

The diffraction parameter is P (γ, κ, z) = γκ2z/2k0 for propagation towards
the receiver. Assuming Kolmogorov turbulence and performing the angular in-
tegration, one obtains

σ2
χA = 1.303 k2

0

L∫
0

dz C2
n(z)

∞∫
0

dκ

κ
κ−5/3 sin2

(
γκ2z

2k0

)[
2J1 (γκD/2)

γκD/2

]2

. (6.94)

Let w2 = γκ2z/2k0, and x =
√

2z/γD2k0, to obtain

σ2
χA = 2.925 k

7/6
0

L∫
0

dz C2
n(z) (zγ)5/6 x2

∞∫
0

dw

w
w−11/3 sin2

(
w2

)
J2

1 (w/x) . (6.95)

The last integral can be evaluated with the Mellin transforms in eq. 1.50 and
eq. 1.52. After the substitution s → −2s it is equal to
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Because both the sign of the integration variable and the direction of the inte-
gration path are changed, the sign of the expression remains unchanged. Since
Δ = 1, the integration path is closed to the left, and one obtains residues of
poles at s = −11/6, and at s = −n − 1 for n = 0, 1, 2, . . . , which gives
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}
.

(6.97)
With this result the scintillation in a receiver at z = 0 is equal to
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⎫⎬
⎭ . (6.98)

One could express this result in terms of generalized hypergeometric functions
by making the additional substitution s → −2s in eq. 6.96 and then using the
Gauss-Legendre multiplication formula to obtain unity coefficients for s in all
the Gamma functions. That will not be done here. For very small diameters the
first series term dominates, and one obtains the point-source result.

One cannot evaluate this expression by using turbulence moments, since the
negative moments are equal to infinity. In this case one obtains the scintillation
by first evaluating the power series in eq. 6.98, and then performing the axial
integration.

Very often the parameter in the previous equation is very large, and the
answer can be approximated by the first term of the asymptotic series. The
steepest-descent contribution is negligible since it has exponential decay. The
pole at s = 1/6 gives the asymptotic contribution as

σ2
χA ∼ 4.34

D7/3

L∫
0

dz C2
n(z)

z2

γ1/3
. (6.99)

This approximate result could also be obtained by making the approximation
sin2(w2) ≈ w4 in eq. 6.95 and then evaluating the integral by table lookup.

For propagation from space to ground γ = (L − z) /L. If the source is well
above the atmosphere, then this is close to unity. In this case the scintillation is
equal to
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σ2
χA ∼ 4.34μ2

D7/3
. (6.100)

The aperture-averaged scintillation does not depend on the wavelength. That
is the reason that no scintillation-induced color is evident in a star image as
seen in a telescope. The aperture-averaged scintillation depends on the second
moment of turbulence, which is close to the five-thirds moment that is needed to
calculate the isoplanatic angle. By modifying the aperture function using masks
in their isoplanometer, Walters et al. (1979) were able to closely approximate
the aperture-averaged scintillation by the five-third moment of turbulence. In
this manner the instrument is used to estimate isoplanatic angle.

If turbulence is constant along the path, for plane-wave propagation the vari-
ance is

σ2
χA ∼ 1.45C2

n L3

D7/3
. (6.101)

Scintillation with no averaging is given in eq. 4.77 as

σ2
χ = 0.5631 k

7/6
0 μ5/6. (6.102)

The scintillation reduction ratio is

σ2
χA

σ2
χ

∼ 7.7
μ2

μ5/6 D7/3k
7/6
0

= 0.902
μ2

μ5/6

(
λ

D2

)7/6

=
(

Dc

D

)7/3

, D � Dc,

(6.103)
where Dc is a characteristic diameter for scintillation averaging. It is given by

Dc = 0.957

(
μ2

μ5/6

)3/7 √
λ sec(ξ)1/2, (6.104)

where the zenith dependence has been explicitly shown. The diameter needed
for scintillation averaging increases as one moves off zenith.

For the HV-21 model of turbulence, the relevant turbulence moments are
μ2 = 1.91 × 10−5m7/3 and μ5/6 = 5.45 × 10−10m7/6. At a wavelength of 0.5 μm
the characteristic diameter is 6 cm.

If turbulence is constant along the path, eq. 6.103 becomes

σ2
χA

σ2
χ

∼ 0.109

(√
λL

D/2

)7/3

, D �
√

λL. (6.105)

This formula agrees with the power-law dependence given in Tatarski (1971).
For this case the characteristic diameter is

Dc = 0.774
√

λL. (6.106)

One can show for constant turbulence along the path that the characteristic
diameter for a spherical wave with source at z = L is twice the plane-wave value.

DcSpherical = 2Dc. (6.107)
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6.8 Scintillation with Finite Apertures and Sources 179

The formula for large diameter can be made valid for any diameter by using
the interpolation formula given by Andrews (1992)

σ2
χA

σ2
χ

=

[
1 +

(
D

Dc

)2
]−7/6

. (6.108)

Sometimes one is interested in the structure of turbulence for a wave prop-
agating from ground to space. This information can be used to determine the
aperture averaging of an aperture in space or the grid spacing required to re-
solve the scintillation structure in a numerical propagation code. For the case of
propagation from z = 0 to z = L, one must replace z with L − z in eq. 6.98 to
obtain

σ2
χA = −0.3656 k

7/6
0

L∫
0

dz C2
n(z) ((L − z)γ)5/6

⎧⎨
⎩0.1331

(
γD2k0

2(L − z)

)5/6

+
∞∑

n=0

(−1)n

n !

(
γD2k0

2(L − z)

)n

Γ

⎡
⎣ n/2 − 5

12
, n + 3

2

− n/2 + 11
12

, n + 3, n + 2

⎤
⎦
⎫⎬
⎭ . (6.109)

For a point source on the ground γ = z/L and for L well above the atmosphere
so that L − z ≈ L, one obtains

σ2
χA = −0.3656 k

7/6
0

L∫
0

dz C2
n(z)z5/6

⎧⎨
⎩0.1331

(
zD2k0

2L2

)5/6

+
∞∑

n=0

(−1)n

n !

(
zD2k0

2L2

)n

Γ

⎡
⎣ n/2 − 5

12
, n + 3

2

− n/2 + 11
12

, n + 3, n + 2

⎤
⎦
⎫⎬
⎭ . (6.110)

The first term of the power series gives eq. 4.77, which is the scintillation in
space for a point receiver, which is

σ2
χ ≈ 0.5631 k

7/6
0 μ5/6. (6.111)

The asymptotic series for this case can be obtained from eq 6.99 by changing
z to L − z to obtain

σ2
χA ∼ 4.34

D7/3

L∫
0

dz C2
n(z)

(L − z)2

γ1/3
. (6.112)

For very long distances this is

σ2
χA ∼ 4.34

D7/3
L7/3μ−1/3. (6.113)

One can form the ratio of the aperture-averaged scintillation and that for a
point receiver to find a characteristic diameter for aperture averaging as
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Dc = 0.957
√

λL

(
μ−1/3

μ5/6

)3/7

sec(ξ)−1/2, (6.114)

where the zenith dependence has been explicitly shown. The diameter needed
for scintillation averaging decreases as one moves off zenith.

The diameter increases linearly with distance, which means that the scintil-
lation structure is preserved; the beam structure expands linearly with distance.
The structure of the scintillation has a characteristic angle given by

θχ = 0.957

(
μ−1/3

μ5/6

)3/7 √
λ sec(ξ)−1/2, (6.115)

For the HV-21 turbulence model at zenith, the characteristic angle is 35.2
μrad. A receiver in space that subtends less than this angle as viewed from the
ground does not significantly reduce the scintillation. For a wave propagation
code, one would have to have the mesh spacing closer than half this angle in
order to capture the effect of scintillation.

Next, the case of a source of finite angular extent viewed by a point receiver
is considered. In this case the filter function for a source of diameter Ds given
in eq. 3.54 is rewritten in terms of the angle subtended by the source θs, where
θs = Ds/L. The filter function is thus

F (γ κ ) =

[
2J1 (γ κθs z/2)

γ κθs z/2

]2

. (6.116)

The analysis proceeds in the same manner as above, and with the definitions

w2 = γκ2z/2k0, and x =
√

2/zθ2
s k0 γ, one obtains eq 6.95, which is evaluated

in eq. 6.96 to eq. 6.98. If the value of x is inserted into eq 6.98, one obtains

σ2
χA = −0.3656 k

7/6
0

L∫
0

dz C2
n(z) (zγ)5/6

⎧⎨
⎩0.1331

(
γzθ2

s k0

2

)5/6

+
∞∑

n=0

(−1)n

n !

(
γzθ2

s k0

2

)n

Γ

⎡
⎣ n/2 − 5

12
, n + 3

2

− n/2 + 11
12

, n + 3, n + 2

⎤
⎦
⎫⎬
⎭ . (6.117)

The leading term of the asymptotic series is

σ2
χA ∼ 4.34

θ
7/3
s

L∫
0

dz C2
n(z) (γz)−1/3 . (6.118)

The negative moment of turbulence is finite. The leading term for scintillation
from a finite source, just as for aperture averaging, does not depend on the
wavelength. For propagation from space to the ground γ = (L − z) /L. If the
source is well above the atmosphere, then this is close to unity. When both this
is true and the source is large, the scintillation reduction ratio is
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6.9 Scintillation with Finite Inner Scale 181

σ2
χA

σ2
χ

∼ 7.7
μ−1/3

μ5/6 θ
7/3
s k

7/6
0

= 0.902
μ−1/3

μ5/6

(
λ

θ2
s

)7/6

=

(
θχ

θs

)7/3

, θs � θχ, (6.119)

where θχ, the characteristic angle of the source for scintillation reduction, is

θχ = 0.957

(
μ−1/3

μ5/6

)3/7 √
λ sec(ξ)−1/2, (6.120)

where the zenith dependence has been explicitly shown. This angle is the same as
that required for a receiver to subtend in space in order to average scintillation.

For the HV-21 model the characteristic angle is equal to 35.2 μrad at a
wavelength of 0.5 μm. For a planet like Venus whose apparent angular size varies
between 24 and 145 μrad, there can be a significant reduction in scintillation.

If turbulence is constant along the path, the scintillation reduction factor is

σ2
χA

σ2
χ

∼ 2.48

(
λ

Lθ2
s

)7/6

, θs �
√

λ/L. (6.121)

The characteristic angle in this case is

θχ = 1.48
√

λ/L. (6.122)

6.9 Scintillation with Finite Inner Scale

The phase disturbances that results from turbulence bend the ray paths of the
propagating waves. These bent rays after propagating some distance have regions
of bunching and expansion, thus leading to scintillation. For close distances it
is the shorter scale turbulence that affects the scintillation most significantly.
Therefore, it is at short ranges that inner scale affects the scintillation most
strongly, and measurements in this regime have confirmed the presence of the
bump in the Hill turbulence spectrum. Most of these measurements are per-
formed over a horizontal path for which the turbulence can be considered to
be constant. I find the scintillation versus propagation distance on a collimated
beam for both the Hill and Tatarski inner-scale spectra for the case in which
the turbulence is constant along the propagation direction. I show the difference
between their scintillation and the one with zero inner scale that for constant
turbulence in eq. 4.71 is

σ2
χ = 0.3071 k

7/6
0 L11/6C2

n. (6.123)

Hill and Clifford (1978) found the scintillation for the Hill spectrum by using
a numerical integration.

To obtain analytical results, use the formula for scintillation given in eq. 2.112,
with the turbulence spectrum given in eq. 2.34, which has the Tatarski inner-
scale spectrum. Set the outer-scale size to infinity to obtain
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χ2
T = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκκ−11/3 exp

[
−
(

κ2

κ2
i

)]
sin2

(
κ2z

2k0

)
. (6.124)

The plane wave is propagated from z = 0 to z = L. Assume that the tur-
bulence strength is constant, integrate over angle in kappa-space and along the
propagation direction, to obtain

χ2
T = −0.6513 k3

0 C2
n

∞∫
0

dκ

κ
κ−11/3 exp

[
−
(

κ2

κ2
i

)] [
sin

(
κ2L

k0

)
− κ2L

k0

]
. (6.125)

Let y = κ (L/k0)
1/2, and x = κi (L/k0)

1/2. Use the Mellin convolution theorem,
the substitution s → 4s, and the Legendre multiplication theorem in eq. 1.15 to
obtain

χ2
T = −0.04571 k

7/6
0 L11/6C2

n

1

2πi

∫
C

ds x−4sΓ

[
s − 5

12
∗, −s, −s + 1

2
23
12

− s

]
. (6.126)

Since Δ = 0, the direction of path closure is determined by the parameter size.
Evaluating this integral in the standard way, one obtains

χ2
T = 0.3072 k

7/6
0 L11/6C2

n

{
2F1

[
− 5

12
,−11

12
; 1

2
;−x−4

]

+ 6.841 2F1

[
1
12

,− 5
12

; 3
2
;−x−4

]
/x2 − 7.086x−5/3

}
, x > 1, and (6.127)

χ2
T = 2.177 k

7/6
0 L11/6C2

n x−5/3
{

2F1

[
1
12

,− 5
12

; 3
2
;−x4

]
− 1

}
, x < 1. (6.128)

This is equivalent to a result given by the computer algebra program Mathe-
matica that applies over the entire parameter range as

χ2
T = 0.1977 k

7/6
0 L11/6C2

n

{
−11x2 + 6 (1 + x4)

11/12
sin [11 arctan (x2) /6]

}
x2 | (x5/3) | .

(6.129)
I will now find the scintillation for the Hill spectra given in eq. 2.29. The

scintillation in this case is

χ2
H = 0.2073 k2

0

L∫
0

dz C2
n(z)

×
4∑

n=0

an

∫
dκκ−11/3 (κLin)n exp (−δ |κ|Lin) sin2

(
κ2z

2k0

)
. (6.130)

The constants are given by δ = 1.1090, a0 = 1, a1 = 0.70937, a2 = 2.8235,
a3 = −0.28086, and a4 = −0.08277.

Again assume the turbulence is constant along the path, integrate over angle
and propagation direction, and make the substitutions y = κ (L/k0)

1/2, and

x =
√

L/k0 / (Lin δ) to obtain

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



6.9 Scintillation with Finite Inner Scale 183

χ2
H = −0.6513 k

7/6
0 L11/6 C2

n

×
4∑

n=0

an

(δ x)n

∞∫
0

dy

y
y−11/3+n exp (−y/x)

[
sin

(
y2
)
− y2

]
. (6.131)

Use the Mellin convolution theorem and the substitution s → 4s to get

χ2
H =−0.324 k

7/6
0 L11/6C2

n

4∑
n=0

an

(δ x)n

1

2πi

∫
C

ds

(
x2

2

)2s

Γ

[
−s − 5

12
+ n

4
∗, 4s

23
12

− n
4

+ s

]
.

(6.132)
The multiplication theorem can be used to obtain unity coefficients in the gamma
functions, in which case one obtains a solution which is the sum of four 2F1 [ ]
functions and the residue at the single pole. Rather than doing that, I give the
single series solution. Since Δ = 2, the integration path is closed to the left,
and one obtains the contributions from the poles at s = −5/12 + n/4 and at
s = −m/4 for m = 0, 1, 2, . . . to obtain

χ2
H = 0.081 k

7/6
0 L11/6C2

n

4∑
n=0

an

δn

⎧⎪⎨
⎪⎩4.514Γ [n − 5/3]

⎛
⎝Lin δ

√
2 k0

L

⎞
⎠

5/3

−
∞∑

m=0

(−1)m

m !

⎛
⎝Lin δ

√
2 k0

L

⎞
⎠

m+n

Γ

⎡
⎢⎣ (n + m) /4 − 5

12

− (n + m) /4 + 23
12

⎤
⎥⎦
⎫⎪⎬
⎪⎭ . (6.133)

The scintillation for the Tatarski and Hill spectra versus propagation distance
are plotted in Fig. 6.15. Notice the substantial difference in the scintillation,
which can be used to verify the actual spectrum shape.

For small distances one can obtain an asymptotic series for the Hill spectrum.
The steepest-descent contribution is exponentially small since Λ′ = −1 and can
be neglected. The most significant contribution is from the first pole on the left
located at s = 7/12. The normalized scintillation for small propagation distances
is

χ2
H/σ2

χ ∼ 0.90
(√

λL/Lin

)7/3
,

√
λL/Lin � 1. (6.134)

The first term of the relation in eq. 6.128 gives the Tatarski scintillation for
small distances as

χ2
T/σ2

χ ∼ 1.22
(√

λL/Lin

)7/3
,

√
λL/Lin � 1. (6.135)

Both spectra produce the same functional form in the asymptotic limit although
the coefficients differ.

One can find the value of the inner scale by measuring the scintillation along
a path of constant turbulence with a small aperture and a large aperture of
diameter, DL. The larger aperture filters out effects of the inner scale. Take the
ratio of eq. 6.134 and eq. 6.105 to find

Lin = 1.24DL

(
σ2

χL/σ2
χ

)3/7
.
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Figure 6.15. Scintillation for a collimated beam propagating over a region of
constant turbulence normalized to the scintillation with zero inner scale for the
Tatarski and Hill spectra of inner scale. This is plotted versus the normalized
propagation distance.

6.10 Scintillation Anisoplanatism

Here, differential scintillation between two uncorrected beams that originate
exoatmospherically and are displaced from each other is calculated. One appli-
cation of this result is to find the scintillation difference between the components
of a double star system. The second application is to the reconstruction of a
diffraction-limited image of a target outside the atmosphere. In this reconstruc-
tion, which was applied by Lynds et al. (1976) to obtain a resolved image of
Betelgeuse, the short exposure images of an object are added to each other after
the brightest speckles are aligned. This procedure works only if speckles from
different parts of the image are strongly correlated.

The variance of log-amplitude difference in eq. 2.123 for two offset infinite
waves that propagate from z = L to z = 0 is

χ2 = 0.2073 k2
0

L∫
0

dz C2
n(z)

∫
dκκ−11/3 sin2

(
γκ2z

2k0

)
2 [1 − cos (γκ · d )] .

(6.136)
Perform the angle integration and let y = γκd, and x2 = 2γ k0 d2/z to obtain

χ2 = −2.606 k2
0

∞∫
0

dz C2
n(z)(γd)5/3

L∫
0

dy

y
y−5/3 [J0(y) − 1] sin2

[(
y

x

)2
]
. (6.137)
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6.10 Scintillation Anisoplanatism 185

The last integral can be converted into one in the complex plane with the Mellin
transforms in eq. 1.51 and eq. 1.50, the substitution s → 4s, and the multipli-
cation theorem for gamma functions, to give

I = −
√

π

219/3

1

2πi

∫
C

ds
(

x

4

)−4s

Γ

[
s − 5

12
∗, s + 1

12
, −s∗

11
12

− s, 17
12

− s, s + 1
2

]
. (6.138)

Since Δ = 2, close the integration path in the left half plane and pick up
the pole contributions at s = 0, 5/12 − n for n = 1, 2, 3, . . . , and −1/12 − n
for n = 0, 1, 2, . . . . Therefore, the scintillation difference, after the use of the
rules in Sec. 1.3 to change the summation into a generalized hypergeometric
function, and eq. 1.42 to reduce one minus that function to another generalized
hypergeometric function, is

χ2 = k2
0

L∫
0

dz C2
n(z) (γd)5/3

×
⎧⎨
⎩1.457 − 0.8757

(
γk0 d2

z

)1/6

2F3

⎡
⎣ 1

12
, 7

12
; 3

2
, 3

2
, 1;−

(
γk0 d2

8 z

)2
⎤
⎦

− 0.00244

(
γk0 d2

z

)7/6

3F4

⎡
⎣ 7

12
, 13

12
, 1; 3

2
, 3

2
, 2, 2;−

(
γk0 d2

8 z

)2
⎤
⎦
⎫⎬
⎭ . (6.139)

Consider a collimated beam for which γ = 1. For very large separations, the
first pole on the right side of the integration path located at s = 5/12 is the
main contributor. Evaluating the residue at this pole, one obtains for large path
separations

χ2 ≈ 2 × 0.5631 k
7/6
0 μ5/6. (6.140)

This is twice the scintillation for a point source, and it is what is expected since
scintillations from the two sources are uncorrelated for large separations. The z
integration in eq. 6.139 cannot be performed term by term, since after the first
few terms the integral diverges at z equal to zero. Either the hypergeometric
functions must be evaluated or the asymptotic solution must be used for small
values of z. The integral over z of the first two terms of the general solution
converge, and for two paths separated by a small angle the scintillation is

χ2 ≈ 0.50 (θ/θo)
5/3 − 0.8757 k

13/6
0 θ2 μ11/6, θ � θo. (6.141)

The above approximation is valid only for angles smaller than the isoplanatic
angle. The scintillation increases rapidly with angle and is substantial when
separation is equal to the isoplanatic angle. This is to be contrasted with tilt
anisoplanatism in which tilt difference is small compared to tilt from a single
object even for angles many times the isoplanatic angle. The reason for this
difference is that tilt is caused by turbulence with long wavelengths, and there
has to be a substantial difference in path separations to get a sizeable effect. In
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186 6 Examples with a Single Positive Parameter

contrast, small wavelength disturbances contribute most strongly to scintillation,
and a small separation between paths produces significant effects.

One cannot practically use the relative scintillation difference between stars
to get a direct measurement of turbulence distribution since, for reasonable star
separations, several terms of the series solution are needed to get the correct
scintillation, and each term contains a different turbulence moment.

6.11 Focus Anisoplanatism

It has been proposed to determine range to an airborne vehicle by using the
focus component of a wavefront return from the vehicle. The concept requires
that focus be measured with an error of less than 1/1000 of a wave. There are
stable systematic errors such as optical aberrations of the measurement system
that, hopefully, can be taken out with calibrations. There are also systematic
errors that change with time such as the static focus term of the aerodynamic
boundary layer that varies with angle-of-attack, altitude, and aircraft speed.
There are also stochastic noise sources such as focal changes caused by the
vibrations of optics and turbulence in the path. These last errors can be reduced
by averaging. To calculate the effect of averaging individual focus measurements
as the aircraft moves lateral to the line of sight, the focus correlation distance
must be found.

I calculate the total focus variance and focus correlation distance. The focus
variance is found with the filter function for focus, which is the Z(0, 2) Zernike
mode, and is given in eq. 3.18 as

F (κ ) = 6

[
2 J3 (κD/2)

κD/2

]2

. (6.142)

Insert this into eq. 2.112 for single-wave variance with diffraction neglected to
get

σ2
f = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκκ−11/3 3

[
2J3(κD/2)

κD/2

]2

. (6.143)

Integrate over axial distance and angle, and make the substitution x = κD/2,
to obtain

σ2
f = 9.846 k2

0 μ0 D5/3

∞∫
0

dx

x
x−11/3 J2

3 (x) , (6.144)

where μ0 is the zeroth moment of turbulence. The value of the last integral is
found with the Mellin transform in eq. 1.52 that is evaluated at s = −11/3, and

is equal to 1.996× 10−3. Since the coherence diameter is r
−5/3
0 = 0.423 k2

0 μ0, the
total phase variance due to focus is

σ2
f = 0.046 (D/r0)

5/3 . (6.145)
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The focus correlation function is the variance of focus difference between two
displaced apertures and is given by eq. 2.123 with the focus filter function as

Cf (d ) = 2.488 k2
0

L∫
0

dz C2
n(z)

∫
dκκ−11/3

[
2J3(κD/2)

κD/2

]2

[1 − cos (κ · d )] .

(6.146)
Assume that the displacement is constant and perpendicular to the axial di-
rection. Perform the axial and angular integrations and make the substitutions
x = κD/2, and y = D/2d, to obtain

Cf (d) = 46.56 (D/r0)
5/3

∞∫
0

dx

x
x−11/3J2

3 (x) [1 − J0 (x/y)]. (6.147)

Form the ratio of this quantity with the focus phase variance given in eq. 6.145
to obtain

R(d) =
σ2

fd

σ2
f

= 1002

∞∫
0

dx

x
x−11/3J2

3 (x) [1 − J0 (x/y)] . (6.148)

Notice that this ratio does not depend on the turbulence strength along the path.
Inserting the transforms in eq. 1.52 and eq. 1.51 into the Mellin convolution

integral given in eq. 1.28, and making the substitution s → 2s, one obtains

R (d) = −282.7
1

2πi

∫
C

ds
(

D

d

)−2s

Γ

[
s + 7

6
, −s + 7

3
, −s∗

−s + 35
6
, −s + 17

6
, s + 1

]
. (6.149)

Since Δ = Δ′ = 0, the integration path is closed to the right for separations less
than the diameter, and closed to the left for larger separations. Evaluating the
pole residues at s = 7/3 + n for n = 0, 1, 2, . . . , and s = n for n = 1, 2, 3 . . . ,
one obtains for small displacements

R(d) = −282.7

⎧⎨
⎩

∞∑
n=1

(−1)n

n !

(
d

D

)2n

Γ

[
n + 7

6
, −n + 7

3

−n + 35
6
, −n + 17

6
, n + 1

]

+
∞∑

n=0

(−1)n

n !

(
d

D

)2n+14/3

Γ

[
n + 7

2
, −n − 7

3

−n + 7
2
, −n + 1

2
, n + 10

3

]⎫⎬
⎭ , d < D.

(6.150)

For large displacements one uses the pole-residues at s = −7/6 − n for n =
0, 1, 2, . . . and the single pole at s = 0. The result is

R(d) = 2 − 282.7
∞∑

n=0

(−1)n

n !

(
D

d

)2n+7/3

Γ

[
n + 7

2
, n + 7

6

n + 7, n + 4, −n − 1
6

]
, d > D.

(6.151)
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188 6 Examples with a Single Positive Parameter

Notice that as the separation gets very large, the ratio becomes 2, which is to be
expected since one is subtracting two quantities that are uncorrelated. Expressed
as generalized hypergeometric functions with the rules in Sec. 1.3 and eq. 1.42,
one obtains

R(d) = 15.51

(
d

D

)2

4F3

⎡
⎣13

6
,−23

6
,−5

6
, 1;−1

3
, 2, 2;

(
d

D

)2
⎤
⎦

+ 74.76

(
d

D

)14/3

3F2

⎡
⎣7

2
,−5

2
, 1

2
; 10

3
, 10

3
;

(
d

D

)2
⎤
⎦ , d < D, (6.152)

and R(d) = 2 + 0.03008 (D/d)7/3
3F2

[
7
2
, 7

6
, 7

6
; 7, 4; (D/d)2

]
, d > D. (6.153)

This function is plotted in Fig. 6.16. It shows that the focus term is essentially
uncorrelated when the separation is one-half the aperture diameter.

2.5

N
O

R
M

A
LI

Z
E

D
 V

A
R

IA
N

C
E 2.0

1.5

1.0

0.5

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

SEPARATION d/D

Figure 6.16. Normalized difference of the focus variance versus separation of
two apertures. When the path separation is one-half the aperture diameter the
focus components on the two apertures are essentially uncorrelated. This curve
is independent of the turbulence distribution along the propagation path.

6.12 Zernike Anisoplanatism

Zernike anisoplanatism is the difference in the level of a Zernike mode between
two sources. This difference can be the result of a difference in angle between
two sources or due to a simple displacement between two apertures. Because the
two apertures are looking through different turbulence, there will be a difference
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6.12 Zernike Anisoplanatism 189

in the level of each Zernike mode measured at any time. This difference will
increase as the angle or displacement of the two apertures increases until the
variance of the difference saturates at a level that is two times the variance of
the mode measured in a single aperture.

We have considered tilt and focus anisoplanatism previously. Anisoplanatism
for higher order aberrations is important in applications such as adaptive-optics
systems that correct for Zernike modes rather than local parts of the aperture. It
is important to determine over what angle a correction applies. It will be shown
that the angle decreases as the mode order increases. Obviously, if the angle over
which the correction applies is less than the resolution of the system, then the
correction is worthless.

The calculation of the variance of Zernike anisoplanatism is a simple extension
of the calculation performed to find the tilt anisoplanatism. The filter function
for the Zernike modes is substituted for the tilt filter function into the expression
for the variance of tilt anisoplanatism. The evaluation of the resulting integral
follows the same path as that for tilt anisoplanatism. The result is an analytical
expression given in terms of generalized hypergeometric functions.

To find the total value of Zernike anisoplanatism and both the components
parallel and perpendicular to the displacement direction that is taken to be along
the x-axis, eq. 2.123 with diffraction neglected is used with the filter function
for a Zernike mode given in eq. 3.18. Just as for tilt anisoplanatism, one can
analyze the general problem by including γ in the filter function to obtain for
the phase variance

⎡
⎢⎣σ2

x

σ2
y

σ2

⎤
⎥⎦

n,m

= 0.2073 k2
0

L∫
0

C2
n(z) dz

∫
dκ

⎡
⎢⎣ cos2 (mϕ)

sin2 (mϕ)
1

⎤
⎥⎦

×κ−11/3 (n + 1)

(
2Jn+1 (γκD/2)

γκD/2

)2

4 [1 − cos {κd cos (ϕ)}] , (6.154)

where σ2 is the total variance, which is equal to the sum of the x and y variances.
The bottom term is the variance when m is equal to zero, in which case the

top two terms do not apply. There are the requirements that m ≤ n and n−m is
even. Common aberrations expressed in terms of (m,n) are (0, 0) is piston, (1, 1)
is tilt, (0, 2) is focus, (2, 2) is astigmatism, and (1, 3) is coma. The displacement
is considered to be along the x axis and the top term is the x component of the
aberration. Therefore, in a more general sense the top term is the phase variance
due to a movement parallel to that component of the aberration, and the middle
term is a perpendicular movement.

The above equation, which has Kolmogorov turbulence, does not converge for
piston; therefore, the results are not valid for n = 0. If a turbulence spectrum
with finite outer scale is inserted into the integral, then the results would be
valid for piston.

This expression gives the phase variance for a particular Zernike mode. One
can use this result to obtain other information, for instance, if the expression for
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190 6 Examples with a Single Positive Parameter

tilt anisoplanatic phase variance is multiplied by 4k0/D
2, then one obtains the

tilt variance, which is the variance of the angular jitter of a signal that arrived
with that displacement.

The angular integration can not be performed in the same way as was done
for tilt anisoplanatism. For this more general case the angular integration can
be written as

Ia = 2

2π∫
0

dϕ

⎡
⎢⎣ cos2 (mϕ)

sin2 (mϕ)
1

⎤
⎥⎦ [1 − cos {κd cos (ϕ)}]

=

2π∫
0

dϕ

⎡
⎢⎣ 1 + cos (2mϕ)

1 − cos (2mϕ)
2

⎤
⎥⎦ [1 − cos {κd cos (ϕ)]] . (6.155)

The integral in G & R Sec. 3.715 # 19 can be extended over the full circle to
give

2π∫
0

cos [β cos(x)] cos(2mx) dx = (−1)m 2π J2m(β) . (6.156)

Use this to obtain⎡
⎢⎣σ2

x

σ2
y

σ2

⎤
⎥⎦

n,m

= 10.42k2
0 (n + 1)

L∫
0

dz C2
n(z)

∞∫
0

κ−8/3 dκ

[
Jn+1 (γκD/2)

γκD/2

]2

×

⎡
⎢⎣ 1 − J0 (κd) − (−1)m J2m (κd)

1 − J0 (κd) + (−1)m J2m (κd)
2 [1 − J0 (κd)]

⎤
⎥⎦ . (6.157)

There are two integrals that, when evaluated, allow one to evaluate all three
integrals in kappa-space. These are

I1 = −
∞∫
0

κ−8/3 dκ

[
Jn+1 (γκD/2)

γκD/2

]2

J2m (κd), (6.158)

and

IT = −
∞∫
0

κ−8/3 dκ

[
Jn+1 (γκD/2)

γκD/2

]2

[J0 (κd) − 1]. (6.159)

The previous integrals expressed in terms of these two are equal to⎡
⎢⎣σ2

x

σ2
y

σ2

⎤
⎥⎦

n,m

= 10.42k2
0 (n + 1)

L∫
0

dz C2
n(z)

⎡
⎢⎣ IT + (−1)m I1

IT − (−1)m I1

2IT

⎤
⎥⎦ . (6.160)

Letting t = κd and x = 2d/γD, one obtains

[
I1

IT

]
= − 4d11/3

(γD)2

∞∫
0

dt

t
t−11/3

[
J2m (t)
J0(t) − 1

]
J2

n+1 (t/x) . (6.161)
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6.12 Zernike Anisoplanatism 191

The IT integral is similar to the integral that was evaluated in the tilt aniso-
planatism section. The top integral can be evaluated by taking the Mellin trans-
form of J2m(t), which can be found from eq. 1.51 and eq. 1.8 with a = −11/3.
The Mellin transforms of J2

n+1(t) is given in eq. 1.52. After the substitution
s → 2s, the integral can be transformed into

I1 = − d11/3

28/3(γD)2
√

π

1

2πi

∫
C

ds

(
d

γD

)−2s

Γ
[
s − 11

6
+ m, −s + n + 1, s + 1

2

−s + m + 17
6
, s + n + 2, s + 1

]
.

(6.162)
Since Δ = 0, the direction of path closure is determined by the parameter

d/γD in the integral. Different Taylor’s expansions are obtained for small and
large displacements. The point in the atmosphere at which the character of
the solution changes from one series to another is where the two beams start to
overlap. For d/γD < 1, the integration path is closed to the left, and one obtains
the residues of the poles at s = −1/2−p for p = 0, 1, 2, . . . , and s = 11/6−p−m,
for p = 0, 1, 2, . . . .

For d/γD > 1, the path is closed to the right, and one obtains the residues
of the poles at s = p + n + 1 for p = 0, 1, 2, . . . .

The resultant value of the integral for small displacements, d/γD < 1, is

I1L =
−d11/3

28/3(γD)2
√

π

⎡
⎣ ∞∑

p=0

(−1)p

p!

(
d

γD

)−11/3+2p+2m

×Γ
[
p + m + n − 5

6
, −p − m + 7

3

p + 2m + 1, −p − m + n + 23
6
, −p − m + 17

6

]

+
∞∑

p=0

(−1)p

p!

(
d

γD

)1+2p

Γ
[−p + m − 7

3
, p + n + 3

2

p + m + 10
3
, −p + n + 3

2
, −p + 1

2

]⎤⎦ . (6.163)
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For large displacement, d/γD > 1, the integral is equal to

I1U = − d11/3

28/3(γD)2
√

π

∞∑
p=0

(−1)p

p!

(
d

γD

)−2p−2n−2

×Γ
[

p + n + m − 5
6
, p + n + 3

2

−p + m − n + 11
6
, p + 2n + 3, p + n + 2

]
. (6.164)

The second integral is

IT =
−4d11/3

(γD)2

∞∫
0

dy

y
y−11/3 [J0(y) − 1] J2

n+1 (y/x) . (6.165)

In the Mellin transform plane this is equal to

IT = − d11/3

28/3(γD)2
√

π

1

2πi

∫
C

ds

(
d

γD

)−2s

Γ
[
s − 11

6
∗, −s + n + 1, s + 1

2

s + n + 2, s + 1,−s + 17
6

]
.

(6.166)
Since Δ = Δ′ = 0, the direction of path closure is determined by the para-

meter d/γD in the integral. Different Taylor’s expansions are obtained for small
and large displacements. The point in the atmosphere at which the character
of the solution changes from one series to another is where the two beams just
barely overlap. For d/γD < 1, the integration path is closed to the left, and one
obtains the residues of poles at s = −1/2−p for p = 0, 1, 2, . . . , and s = 11/6−p,
for p = 1, 2, 3, . . . . For d/γD > 1, the path is closed to the right, and one obtains
the residues of poles at s = p + n + 1 for p = 0, 1, 2, . . ., and the single pole at
s = 11/6.

The resultant value of the integral for small displacements is

ITL = − d11/3

28/3(γD)2
√

π

⎡
⎣ ∞∑

p=1

(−1)p

p!

(
d

γD

)−11/3+2p

×Γ
[

p + n − 5
6
, −p + 7

3

p + 1, −p + n + 23
6
, −p + 17

6

]

+
∞∑

p=0

(−1)p

p!

(
d

γD

)1+2p

Γ
[ −p − 7

3
, p + n + 3

2

p + 10
3
, −p + n + 3

2
, −p + 1

2

] ⎤⎦ ; d < γD .

For large displacements, d/γD > 1, the result is

ITU =
d11/3

28/3(γD)2
√

π

⎡
⎣( d

γD

)−11/3

Γ
[
n − 5

6
, 7

3

n + 23
6
, 17

6

]

−
∞∑

p=0

(−1)p

p!

(
d

γD

)−2p−2n−2

Γ
[

p + n − 5
6
, p + n + 3

2

−p − n + 11
6
, p + 2n + 3, p + n + 2

] ⎤⎦ ;

d > γD .

These results can be combined and can be written as generalized hypergeo-
metric functions using the algorithm given in Chap. 1. For small displacements,
d/γD < 1, the result is

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



6.12 Zernike Anisoplanatism 193

[
σ2

x

σ2
y

]
= 0.9259k2

0D
5/3 (n + 1)

L∫
0

dz C2
n (z) γ5/3

×0.6904
(
−Γ

[
n − 5

6

n + 23
6

] {
3F2

[
n − 5

6
,−n − 17

6
,−11

6
; 1,−4

3
;
(

d
γD

)2
]
− 1

}

+26.52
(

d
γD

)14/3

3F2

[
n + 3

2
,−n − 1

2
, 1

2
; 10

3
, 10

3
;
(

d
γD

)2
]

∓ (−1)m Γ
[
m + n − 5

6
,−m + 7

3

2m + 1, n − m + 23
6
, 17

6
− m

] (
d

γD

)2m

×3F2

[
m + n − 5

6
,m − n − 17

6
,m − 11

6
; 2m + 1,m − 4

3
;
(

d
γD

)2
]

∓ (−1)m Γ
[
m − 7

3
, n + 3

2

m + 10
3
, n + 3

2
, 1

2

] (
d

γD

)14/3

×3F2

[
n + 3

2
,−n − 1

2
, 1

2
;m + 10

3
,−m + 10

3
;
(

d
γD

)2
])

, d < γD. (6.167)

For large displacements, d/γD > 1, the result is

[
σ2

x

σ2
y

]
= 0.9263k2

0D
5/3 (n + 1)

L∫
0

dz C2
n (z) γ5/3

×
{
0.6904 Γ

[
n − 5

6

n + 23
6

]
− Γ

[
n − 5

6
, n + 3

2

−n + 11
6
, 2n + 3, n + 2

] (
γD
d

)2n−5/3

×3F2

[
n − 5

6
, n + 3

2
, n − 5

6
; 2n + 3, n + 2;

(
γD
d

)2
]

∓ (−1)m Γ
[
n + m − 5

6
, n + 3

2

m − n + 11
6
, 2n + 3, n + 2

] (
γD
d

)2n−5/3

×3F2

[
m + n − 5

6
, n + 3

2
, n − m − 5

6
; 2n + 3, n + 2;

(
γD
d

)2
]}

, d > γD. (6.168)

The total variance and the variance when m = 0 is given by either the x or
the y variance with the ± terms deleted. For very large separations the x and y
variances are equal to each other and are equal to the total variance (sum of the
x and y components) of that Zernike component. Note that the expression for
large separations diverges when n = 0. The only value of m that is possible is 0,
since m ≤ n, which is the piston. We know that the piston variance is infinite
when outer scale effects are not considered, so this result is expected.

The total variance of a Zernike component for a single wave is given by the
first term in the last equation as

σ2
m,n = 0.6395D5/3k2

0 (n + 1)

L∫
0

dz C2
n (z) γ5/3Γ

[
n − 5

6

n + 23
6

]
. (6.169)

For a collimated beam in which γ = 1, one obtains

σ2
m,n = 0.6395μ0 k2

0D
5/3Γ

[
n − 5

6

n + 23
6

]
(n + 1) . (6.170)
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This gives the standard result for the tilt phase variance of a collimated beam

σ2
Tilt = 0.380μ0 k2

0D
5/3. (6.171)

If there is an angular displacement between the two beams, θ, then the expres-
sion for Zernike anisoplanatism is obtained by making the substitution d = θz.
For small angles the first term of the series expansion is a good approximation,
and for a collimated beam gives a total variance of

Total V ariance = 1.759(n + 1)Γ
[
n + 1

6

n + 17
6

]
k2

oD
−1/3μ2θ

2. (6.172)

Notice how the variance varies as the square of the angular offset for small
angles.

There are many ways to define a characteristic angle. One definition allows
us to gauge the effectiveness of an adaptive optics system. The angle will be
defined as that which would produce the same variance as an aperture with no
correction. If the anisoplanatic error is equal to or greater than the value with no
correction, then it does no good to correct for that mode. With this definition,
the characteristic Zernike anisoplanatic angle, θnC , is found by setting to unity
the ratio of the most significant term of the total Zernike anisoplanatism for
small offsets given in eq. 6.167 by the Zernike variance given in eq. 6.169 to give

θnC = 0.603D

(
μ0

μ2 (n − 5/6) (n + 17/6)

)1/2

. (6.173)

Notice that this is independent of the wavelength; therefore, for shorter wave-
lengths a larger number of pixels is corrected. For a HV-21 turbulence model
this formula reduces to

θnC =
206D√

(n − 5/6) (n + 17/6)
μrad. (6.174)

For a 1-m diameter aperture at 0.5 μm operating wavelength, the character-
istic tilt anisoplanatic angle is 258 μrad, which is considerably larger than the
21 μrad one gets when the criteria is that the anisoplanatic tilt jitter is one-half
a beamwidth. When n = 2 the angle is 87 μrad, and for n = 3 the angle is 58
μrad. For large n the angle is 206D/n μrad; the angle gets very small at high
Zernike numbers.

The angles above are the largest angles for which correcting that Zernike aber-
ration provides any improvement in the image. For the lowest order aberrations
a much smaller angle is required if one wants to approach diffraction-limited
performance.

The variance of a wavefront on a 1-m diameter aperture operating at a wave-
length of 0.5 μm that looks through HV-21 turbulence for the first 14 values of n
are 133.7, 6.92, 1.84, 0.73, 0.35, 0.20, 0.12, 0.075, 0.050. 0.035, 0.025, 0.019, 0.014,
and 0.011 μrad2. Notice that the tilt variance far exceeds the other variances,
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6.13 Focal Anisoplanatism for Point Sources 195

which is the reason why tilt must be very well corrected. The other aberrations
can also contribute a significant variance. Since the variance for any Zernike
aberration varies as the square of the angular offset for small offsets, one can
easily determine how much the angles given above must be reduced for a par-
ticular aberration to be below a certain level. One can calculate the error for
which the phase variance is under 1 rad2 by using the first term of the series
expansion to obtain

θ
(
1 rad2

)
= 0.17

λD1/6

μ
1/2
2

√
n + 1

Γ
[
n + 17

6

n + 7
6

]
. (6.175)

For a 1-m diameter aperture at 0.5 μm operating wavelength, the angle for
n = 1 is 31.5 μrad; for n = 2 the angle is 46.6 μrad, and for n = 3 the angle is
60.3 μrad. For a requirement that the error in any mode be less than 0.1 rad2,
the angle must be reduced by a factor of 3.16. A 0.1 rad2 requirement results in
very small correction angles. These angles increase as the operating wavelength
increases. This formula does not apply for all n, since, as shown above, the
variance never exceeds 0.1 rad2 when n > 7.

6.13 Focal Anisoplanatism for Point Sources

Focal anisoplanatism refers to errors made by using a phase disturbance mea-
sured with a focused beam to correct for turbulence effects on a collimated beam.
It has also been called focus anisoplanatism and cone anisoplanatism. If a point
source is very far away, the error is very small. For closer sources, such as ar-
tificial beacons that are used in the ‘guidestar’ concept [Gardner et al. (1990);
Murphy et al. (1991); Primmerman et al. (1991); Fugate et al. (1991); Welsh and
Gardner (1989); Welsh and Thompson (1991)], the effect can be significant and
may result in a low Strehl ratio. The phase variance from this effect is calculated
in this section. First, an expression for variance is obtained that has both piston
and tilt components present. Next, expressions for piston and tilt variances are
obtained. If the last variances are subtracted from the total variance, then one
obtains the piston-and-tilt-removed phase variances due to focal anisoplanatism.

The technique to find the variance is the same one that has been used on
previous problems. The filter function for a distributed, circular, uniform beacon
of diameter Ds and offset b that is at a range L and altitude H as given in eq. 3.62
is inserted into the formula for phase variance of a single wave given in eq. 2.112.
Assume one is operating in the near field, thereby allowing the cosine term to
be replaced by 1.
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196 6 Examples with a Single Positive Parameter

After doing the angle integration, one obtains for the aperture-averaged phase
variance

σ2
−d = 1.303 k2

0

L∫
0

dz C2
n(z)

∞∫
0

dκ κ−8/3

×
⎧⎨
⎩1 − 2

2 J1 (aDs)

aDs

2 J1 (aD)

aD
J0

(
κbz

L

)
+

[
2J1 (aDs)

aDs

]2
⎫⎬
⎭ , (6.176)

where a = κz/2L. The subscript d on the variance refers to a distributed source.
The minus subscript means that it is the component from the turbulence below
the beacon. The component above the beacon will be added to this to obtain
the total variance. If the d subscript is missing, it means a point source is being
considered. Piston and tilt are present in σ2

d.
This equation is the starting point for the evaluation of the total phase vari-

ance for all cases considered in this and the next two sections. The problem is
solved in steps, since the results for a point source, a distributed source, and a
displaced source are of interest for different situations.

The phase variance of a point source on the aperture center with piston and
tilt present can be found from eq. 6.176 by setting the source diameter and
displacement equal to zero to obtain

σ2
− = 2.606 k2

0

L∫
0

dz C2
n(z)

∞∫
0

dκ κ−8/3

[
1 − 2J1 (aD)

aD

]
. (6.177)

Let x = κDz/2L to obtain

σ2
− = −5.212 k2

0

L∫
0

dz C2
n(z)

(
Dz

2H

)5/3 ∞∫
0

dx x−8/3−1
[
J1(x) − x

2

]
. (6.178)

The last integral converges by analytical continuation as discussed in evaluating
eq. 5.5, and its value of 0.305 is just the Mellin transform of the Bessel function
given in eq. 1.51 evaluated at s = −8/3. The phase variance is equal to

σ2
− = 0.5 k2

0 μ−
5/3

(
D

L

)5/3

=

(
0.348D

Lθ−o

)5/3

, (6.179)

where the partial isoplanatic angle is defined as

(
θ−o
)−5/3

= 2.91 k2
0 μ−

5/3. (6.180)

The phase variance results from an angular offset of the collimated and focused
rays. The phase variance varies with radius; however, one can consider the av-
erage phase variance to be due to an angular offset equal to that of the ray that
emanates from the point that is about 0.7 of the radius from the center. This
angle is 0.348D/L.
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6.13 Focal Anisoplanatism for Point Sources 197

This phase variance with piston included is finite unlike the result for unfil-
tered turbulence, which is infinite. The infinite result comes from the zero spatial
wavelength term. This infinity cancels out in the subtraction of the collimated
beam phase from that of a focused beam. Even though the above result is finite,
it might be possible that the major component of this variance is due to the
piston, which is no practical interest. It can be shown that at satellite altitudes
the piston contribution is less than 10% of the variance. At 10 km it can be as
large as 20%. Therefore, the above simple expression is a reasonable zero-order
approximation to phase variance. A 60-cm aperture pointed at a point source at
300 km would have the same phase variance as two beams with angular offset of
0.7 μrads. For typical isoplanatic angles, this will produce a very small variance.

Often one is interested in phase variance with piston or piston and tilt re-
moved. The phase variance due to piston and tilt can be calculated separately
and subtracted from the total phase variance to obtain these. Piston and tilt
phase variances are found by using eq. 2.117 with filter functions given in eq. 3.67

σ2
−Z = 0.2073 k2

0

L∫
0

dz C2
n(z) 4 ν2

∫
dκκ−11/3

×
{

Jν (κD/2)

κD/2
− exp

(
iκ · b z

L

)
Jν [κD(1 − z/L)/2]

κD(1 − z/L)/2

2J1 (κDs z/2L)

κDs z/2L

}2

,

(6.181)

where Ds is the source diameter, and b is displacement of the source from
boresight. The value of ν is 1 for piston and 2 for tilt. The subscript Z is either
P or T .

First consider the case of zero source size and no offset. Perform the angular
integration. The evaluation of the integral in kappa space poses some difficulty.
The two terms in brackets almost cancel especially for very high beacon alti-
tudes. If the bracket is expanded, three terms result. Two of these terms can be
evaluated by table lookup. The term that is the product of the two terms must
be evaluated with the Mellin convolution integral. The final answer is expanded
in a power series in the parameter z/L to enable the answer to be expressed as a
sum of turbulence moments. Let κD/2 = x, and y = 1/(1−z/L). The variances
are equal to

σ2
−Z = 1.642 k2

0 ν2 D5/3

L∫
0

dz C2
n(z) I, where (6.182)
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198 6 Examples with a Single Positive Parameter

I =

∞∫
0

dx x−14/3

×
{[

J2
ν (x) − a x2

4

]
+

[
y2 J2

ν (x/y) − a x2

4

]
− 2

[
Jν (x) y Jν (x/y) − a x2

4

]}
.

The value of a is unity for piston and zero for tilt. Add the constant terms,
whose sum is zero, to obtain three integrals that converge. Express the integral
as the sum of three integrals

I = I1 + I2 + I3, (6.183)

to obtain for the first two terms

I1 + I2 =

(
1 + y−5/3

)
2
√

π
Γ

[
−11

6
+ ν, 7

3

ν + 17
6
, 17

6

]
. (6.184)

For piston the third integral is

I3 = −2 y

∞∫
0

de

e
e−11/3

[
J1(e)J1

(
e

y

)
− e

2

e

2y

]
. (6.185)

If y = 1/β, this is the same integral that was evaluated in eq. 6.27. Its value is

I3 = −y 2−11/3Γ

[
−5

6
17
6

]
2F1

[
−5

6
,−11

6
; 2; (1 − z/L)2

]
. (6.186)

The piston phase variance due to turbulence below the beacon is

σ2
−P = 0.5 k2

0 D5/3

L∫
0

dz C2
n(z)

×
⎧⎨
⎩2F1

[
−5

6
,−11

6
; 2; (1 − z/L)2

]
−

[
1 + (1 − z/L)5/3

]
√

π 2−8/3
Γ

[
7
3
23
6

]⎫⎬
⎭ . (6.187)

This can be integrated numerically; however, to express this as turbulence mo-
ments, the expression in braces is expanded in a Taylor series about the point
z/L = 0. Some care must be taken in expanding this series to obtain a short
series that is a good approximation to the exact calculation. It has been found
that a good approximation to the exact result for typical turbulence models and
aperture diameters is

σ2
−P ≈ 0.0833 k2

0 D5/3μ
−
2 (H)

L2
. (6.188)

The integrations can be performed for tilt to obtain
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6.13 Focal Anisoplanatism for Point Sources 199

σ2
−T = 0.8345 k2

0 D5/3

L∫
0

dz C2
n(z)

×
⎧⎨
⎩
[
1 + (1 − z/L)5/3

]
√

π 2−11/3
Γ

[
7
3
29
6

]
−
(
1 − z

L

)
2F1

[
1
6
,−11

6
; 3;

(
1 − z

L

)2
]⎫⎬
⎭. (6.189)

After expansion of this Taylor series in the same way as was done for piston, the
tilt variance is closely approximated by

σ2
−T ≈ 0.368 k2

0 D5/3 μ−
2 (H)

L2
. (6.190)

The displacement can be found in the same way as in Sec. 4.5. The tilt has
a lever arm of (L − z) to give a displacement variance of

σ2
−DT = 0.8345 k2

0 D5/3

L∫
0

dz C2
n(z)(L − z)2

×
⎧⎨
⎩
[
1 + (1 − z/L)5/3

]
√

π 2−11/3
Γ

[
7
3
29
6

]
−
(
1 − z

L

)
2F1

[
1
6
,−11

6
; 3;

(
1 − z

L

)2
]⎫⎬
⎭. (6.191)

Using the same approximation as for the tilt, one obtains

σ2
−DT ≈ 0.368 k2

0 D5/3

(
μ−

2 (H) − 2μ−
3 (H)

L
+

μ−
4 (H)

L2

)
. (6.192)

If the point source beacon is located at z = 0, then the focal anisoplanatic
tilt can be found by making the substitution 1 − z/L → z/L in eq. 6.189. The
approximate value of this tilt is

σ2
−T ≈ 0.368 k2

0 D5/3

(
μ−

0 (H) − 2μ−
1 (H)

L
+

μ−
2 (H)

L2

)
. (6.193)

The piston-removed variance is

σ2
−PR =

(
0.348D

Hθ−o

)5/3

− σ2
−P . (6.194)

The piston-and-tilt-removed variance is

σ2
−PTR =

(
0.348D

H θ−o

)5/3

− σ2
−P − σ2

−T . (6.195)

With the above results, a good approximation to the piston-removed phase
is

σ2
−PR =

(
0.348D

Hθ−o

)5/3

− σ2
−P ≈ k2

0 D5/3

2

⎡
⎣μ−

5/3 (H)

L5/3
− 0.167

μ−
2 (H)

L2

⎤
⎦ . (6.196)
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200 6 Examples with a Single Positive Parameter

Similarly, a good approximation to the piston-and-tilt-removed phase is

σ2
−PTR =

(
0.348D

H θ−o

)5/3

− σ2
−P − σ2

−T ≈ k2
0 D5/3

2

⎡
⎣μ−

5/3 (H)

L5/3
− 0.903

μ−
2 (H)

L2

⎤
⎦ .

(6.197)
For changes in zenith angle, when the beacon is kept at the same altitude, it is
clear from the variation of each term in brackets that the zenith dependence is
simply sec(ξ).

The effect of turbulence above the beacon is obtained by modifying the results
in Sec. 4.2. The phase variance with piston removed is

σ2
+PR = 1.033

(
D/r+

0

)5/3
, (6.198)

where the coherence diameter looking up from the beacon altitude is

(
r+
0

)−5/3
= 0.423 k2

0 μ+
0 . (6.199)

The expression for phase variance from turbulence above the beacon with piston
and tilt removed is

σ2
+PTR = 0.134

(
D/r+

0

)5/3
. (6.200)

The contribution due to the unsensed turbulence increases with increasing aper-
ture size, and one will find that the beacon altitude must be increased for larger
diameters in order to keep this component manageable.

The total phase variance with piston removed is

σ2
PR = σ2

−PR + σ2
+PR. (6.201)

The total phase variance with piston and tilt removed is

σ2
PTR = σ2

−PTR + σ2
+PTR. (6.202)

In Fig. 6.17 the total, piston-removed, and piston-and-tilt-removed phase vari-
ances due to turbulence below the beacon are plotted for a single beacon op-
erating with a 60-cm diameter aperture with the HV-21 turbulence model. In
Fig. 6.18 the piston-removed and piston-and-tilt-removed phase variances of the
entire atmosphere are plotted for the same conditions.

6.14 Focal Anisoplanatism for Distributed Sources

The artificial beacon source is adequately approximated by a point source for
very distant beacons. This, however, is a poor approximation for some closer
beacons. In trying to use resonant sodium backscatter from the sodium layer at
about 90 km, one wants to use as large a beacon as possible that does not signif-
icantly increase the phase variance over that of a point source. A large beacon
is desirable because the return from a given area saturates at a certain power.
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Figure 6.17. Phase variance of turbulence below the beacon for a single beacon
operating with a 60-cm diameter aperture for the HV-21 turbulence model. The
total, piston-removed, and tilt- and piston-removed phase variances are plotted.
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Figure 6.18. Piston-removed phase variance and piston-and-tilt-removed phase
variance caused by turbulence of the entire atmosphere for a single beacon op-
erating with a 60-cm diameter aperture for the HV-21 turbulence model.
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202 6 Examples with a Single Positive Parameter

To increase the return signal, not only must the beacon power be increased, but
also, the focused spot size must be increased.

The expression for the phase variance for a distributed source centered on
the aperture with piston and tilt present is found from eq. 6.176 by setting b
equal to zero to obtain

σ2
−d = 1.303 k2

0

L∫
0

dz C2
n(z)

∞∫
0

dκ κ−8/3

×
⎧⎨
⎩1 − 8

J1 (aDs)

aDs

J1 (aD)

aD
+

[
2J1 (aDs)

aDs

]2
⎫⎬
⎭ , (6.203)

where a = κz/2L. To evaluate this integral, it is written as the sum of two
integrals.

Let w = κD z/2L, y = κDs z/2L, and x = D/Ds, to obtain

σ2
−d = 6.55

(
0.348D

Lθ−o

)5/3

(−I + J). (6.204)

The J term is easily evaluated with eq. 1.52 to give

J =
1

2

(
Ds

D

)5/3 ∞∫
0

dy y−11/3−1

[
J2

1 (y) −
(

y

2

)2
]

= −0.1331
(

Ds

D

)5/3

. (6.205)

The first integral is

I = x

∞∫
0

dw

w
w−11/3

[
J1(w)J1

(
w

x

)
− w

2

w

2x

]
. (6.206)

The value of I depends on x, which is not a function of z. J is also not a
function of z. Therefore, the phase variance due to turbulence below the beacon
depends solely on the five-thirds moment of turbulence.

The expression for I is exactly the same expression as that in eq. 6.185. Use
the results of the evaluation of that integral to obtain for Ds/D < 1

σ2
−d =

(
0.348D

Lθ−o

)5/3 {
2F1

[
−5

6
,−11

6
; 2;

(
Ds

D

)2
]
− 0.872

(
Ds

D

)5/3
}

,

Ds/D < 1. (6.207)

The first few terms of this solution are

σ2
−d =

(
0.348D

Lθ−o

)5/3 [
1 − 0.872

(
Ds

D

)5/3

+ 0.764
(

Ds

D

)2

−0.0177
(

Ds

D

)4

− 0.000287
(

Ds

D

)6

+ · · ·
]
, Ds/D � 1. (6.208)
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The first three terms in brackets give a good approximation to the phase variance
when Ds/D < 1.

When Ds/D > 1, the variance is

σ2
−d =

(
0.348Ds

Lθ−o

)5/3 {
−0.872 + 2F1

[
−5

6
,−11

6
; 2;

(
D

Ds

)2
]}

, Ds/D > 1.

(6.209)
The first few terms of this solution are

σ2
−d =

(
0.348Ds

Lθ−o

)5/3 [
0.128 + 0.764

(
D

Ds

)2

−0.0177
(

D

Ds

)4

− 0.000287
(

D

Ds

)6

+ · · ·
]
, Ds/D � 1. (6.210)

The normalized variance is plotted in Fig. 6.19. Initially, the phase variance
caused by the turbulence below the beacon decreases as source size increases,
then it increases.
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Figure 6.19. Phase variance below the beacon. Effect of beacon diameter on
the phase variance due to focal anisoplanatism normalized to the phase variance
due to focal anisoplanatism from a point source with piston and tilt present.
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6.15 Focal Anisoplanatism for Offset Sources

The beacon may not be placed in the exact location that the correction is wanted;
this results in a decreased Strehl ratio. This error can be caused by errors both
in positioning the beacon and in knowing which direction to point the beacon.
If a laser beam is to be projected in the point-ahead direction, which is typically
about 50 μrad, there is an error made in pointing the mirrors caused by tilt
anisoplanatism. This error can be as much as a microradian.

The phase variance with a point source offset from the origin is obtained by
setting the source diameter equal to zero in eq. 6.176. After performing the angle
integration, one obtains

σ2
−o = 1.303 k2

0

L∫
0

dz C2
n(z)

∞∫
0

dκ κ−11/32

[
1 − 2J1(κDz/2L)

κDz/2L
J0

(
κbz

L

)]
. (6.211)

The o subscript refers to an offset source. Make the substitutions y = κDz/2L,
and x = D/2b, to obtain

σ2
−o = 2.606 k2

0

(
D

2L

)5/3 L∫
0

dz C2
n(z) z5/3

∞∫
0

dy

y
y−5/3

[
1 − 2 J1 (y)

y
J0 (y/x)

]
.

(6.212)
Since the parameter in the last integral does not depend on the axial coordinate,
the axial integration can be performed to give

σ2
−o = 5.212 k2

0 μ−
5/3

(
D

2L

)5/3 ∞∫
0

dy

y
y−8/3

[
y

2
− J1 (y) J0 (y/x)

]
. (6.213)

The expression in brackets can be manipulated into two integrable terms as

1 − 2J1 (y)

y
J0 (y/x) = [1 − J0 (y/x)] +

2

y

[
y

2
− J1 (y)

]
J0 (y/x) . (6.214)

The integral of the first term is evaluated by table lookup and the analytical
continuation arguments used in evaluating eq. 1.22 to give

σ2
1 = 1.118 k2

0 μ−
5/3

(
2b

L

)5/3

. (6.215)

The last integral can be converted into an integral in the complex plane as

I = −2−11/3

2πi

∫
C

ds
(

D

2 b

)−2s

Γ

[
s − 5

6
∗, −s

−s + 17
6
, s + 1

]
. (6.216)

Since Δ = 0, the direction of path closure depends on the parameter magnitude.
When the displacement is less than aperture radius, the integration path is closed
to the right, and there are poles at s = n for n = 0, 1, 2, . . . and at s = 5/6.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



6.15 Focal Anisoplanatism for Offset Sources 205

The last term cancels the contribution of σ2
1. For this case, phase variance from

turbulence below the beacon is

σ2
−o = −0.1293 k2

0 μ−
5/3

(
D

L

)5/3

×
∞∑

n=0

(−1)n

n !

(
2b

D

)2n

Γ

[
n − 5

6

−n + 17
6
, n + 1

]
, 2b/D < 1. (6.217)

This can also be written as

σ2
−o = 0.5 k2

0μ
−
5/3

(
D

L

)5/3

2F1

⎡
⎣−5

6
,−11

6
; 1;

(
2b

D

)2
⎤
⎦ , 2b/D < 1. (6.218)

The variance normalized to that of an on-axis source is

σ2
−o

σ2
−o (b = 0)

= 2F1

⎡
⎣−5

6
, −11

6
; 1;

(
2b

D

)2
⎤
⎦

= 1 + 6.12

(
b

D

)2

− 0.848

(
b

D

)4

+ · · · , 2b/D < 1. (6.219)

When the displacement is zero, the hypergeometric function is equal to unity,
and one obtains the previous result

σ2
−o (b = 0) = 0.5 k2

0 μ−
5/3

(
D

L

)5/3

. (6.220)

When the displacement is larger than the radius, the integration path is closed
to the left, and there are poles at s = −n + 5/6 for n = 1, 2, . . . , thus one
obtains

σ2
−o = 1.293 k2

0 μ−
5/3

(
D

L

)5/3 ∞∑
n=0

(−1)n

n !

(
D

2b

)2n−5/3

Γ

[
n − 5

6

−n + 11
6
, n + 2

]
,

2b/D > 1. (6.221)

The variance normalized to that of an on-axis source is

σ2
−o

σ2
−o (b = 0)

= 1.833

(
2b

D

)5/3

2F1

[
−5

6
,−5

6
; 2,

(
D

2b

)2
]
, 2b/D > 1. (6.222)

The variance normalized to that with no offset is plotted in Fig. 6.20.
For larger source displacements than those plotted, one can use the approxi-

mation
σ2
−o

σ2
−o (b = 0)

≈ 1.833

(
2b

D

)5/3

, 2b/D > 3. (6.223)

The phase variances in this and the last section can be used to determine the
importance of beacon size and placement; however, the piston and tilt terms are
included. The evaluation of the integrals to determine the phase variance with
these components removed can be done by the techniques discussed in Chap.
10. The analysis is complicated and lengthy and is not given here.
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Figure 6.20. Total phase variance below the beacon for focal anisoplanatism
with a displaced point source. The variance is normalized to that of a source
on axis. Piston and tilt are present. It is plotted versus twice the displacement
divided by the aperture diameter.
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Chapter 7

Strehl Ratio

Strehl ratio is an important performance measure for adaptive-optics systems. Its
calculation is more complicated than that of variances. Nevertheless, it is shown
below that one can obtain exact expressions for the Strehl ratio for propagation
through uncorrected turbulence, and through turbulence for which all modes
except tilt have been corrected. Asymptotic expressions are also obtained that
apply when the distortion is high.

The effect of anisoplanatism on the Strehl is especially important. Here I
consider isoplanatic effects of aperture displacement in space and angle, time
delay, and chromatic offsets. A formula is obtained that is a good approximation
to the Strehl ratio when it is above 0.2. Fortunately, this is the region of greatest
interest in adaptive-optics system design.

For many problems one must revert to numerical techniques to find the Strehl
ratio. Normally, this can be done with little difficulty; however, there are cases in
which the structure function is a function of position in the aperture. Problems
in which one is interested in the Strehl ratio when the tilt is removed generally
fall into this category. For these cases a 7-fold integration must be performed. It
is only recently that computer speed allows these integrations to be performed
on even a reasonably fast computer cluster in less than a day. Examples of these
types of problems are given.

7.1 Strehl Ratio for Propagation Through Turbulence

The problem of determining the on-axis intensity of a plane wave propagating
through atmospheric turbulence was analyzed by Fried (1966), and the resultant
integral was evaluated numerically. Here a compact analytic expression for the
Strehl ratio is obtained. A second form expressible as an infinite series is also
obtained. This second solution is more convenient, since a few series terms give an
accurate answer for small levels of turbulence. An asymptotic series is obtained
that is applicable when turbulence is more severe. It is shown that the first
two terms of the series give an accurate result in the regime in which most
astronomical telescopes operate.

Strehl ratio is the most common description of optical system performance,
and it is the normalized intensity evaluated at the beam center. Its general
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210 7 Strehl Ratio

expression was derived in Sec. 2.5, and for an isotropic structure function it is
given in eq. 2.164 as

SR =

1∫
0

dααK(α) exp [−D(αD)/2] . (7.1)

The integral is over a circular aperture of unit radius, D(αD) is the structure
function, α is the normalized radius that is equal to unity at the aperture edge,
and K(α) is a constant times the optical transfer function, given by

K(α) =
16

π

[
cos−1(α) − α

(
1 − α2

)1/2
]

U(1 − α), (7.2)

where U(x) is the Heaviside unit step function defined in (1.20).
The structure function is given in eq. 2.123, and for the Kolmogorov turbu-

lence spectrum with inner and outer scale neglected is

D(αD) =
〈
[φ (a + αD ) − φ (a )]2

〉

= 0.4146 k2
0

∞∫
0

dz C2
n(z)

∫
dκκ−11/3 [1 − cos (κ · αD)] . (7.3)

D is the local diameter of the wave. Integrate over angle in kappa space with
eq. 3.5, and perform the last integration with the relation in eq. 1.22, to obtain

D(αD) = 2.605 k2
0

∞∫
0

dz C2
n(z)

∞∫
0

dκ κ−5/3−1 [1 − J0 (καD)]

= 2.605 k2
0(αD)5/3

∞∫
0

dz C2
n(z)M [1 − J0(x)]

∣∣∣∣∣∣
s=−5/3

= 2.91 μ0k
2
0(αD)5/3. (7.4)

Write the structure function in the form

D(αD) = 6.88 (αD/r0)
5/3 . (7.5)

For plane waves D is constant, and the coherence diameter r0 is equal to

r0 =
(
0.423 k2

0 μ0

)−3/5
. (7.6)

This reproduces the standard definition of r0.
When Strehl ratio calculations are made for values of D/r0 > 7, small errors

in the coefficients can produce significant differences in the calculated value
of the Strehl ratio. For those cases one should substitute the more accurate
values of the constants given by 6.88 → 2(24/5Γ [6/5)5/6 = 6.88388, 0.2073 →
10Γ [5/6]/(24/3π1/29Γ [2/3]) = 0.207379, and r0 = (0.42336 k2

0 μ0)
−3/5

.
For spherical waves with a focus at 0, the separation of beam centers decreases

toward the focus so that D → D z/L. For this case one obtains the spherical-
wave coherence diameter
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7.1 Strehl Ratio for Propagation Through Turbulence 211

ros0 = L
(
0.423 k2

0 μ5/3

)−3/5
= 3.18Lθo, (7.7)

where L is the distance from the aperture at z = L to the beam focus at z = 0,
and θo is the isoplanatic angle defined in eq. 4.14. This equation implies that if
one measured the structure function at the receiver from a point source, then
one could determine the isoplanatic angle at the point source.

One can also consider the case of a wave focused at z = L, in which case the
coherence diameter is

rosL =

⎡
⎣0.423 k2

0

L∫
0

dz C2
n(z) (1 − z/L)5/3

⎤
⎦
−3/5

. (7.8)

The spherical wave coherence diameter determines the system resolution. The
angular resolution looking up is λ/rosL, and that looking down is λ/ros0. For
distant sources rosL ≈ r0, which allows ro to be used in resolution calculations
looking towards space. For HV-21 turbulence r0 is about 5 cm at 0.5 μm. For
a system looking down from 100 km above the earth the coherence diameter is
2.2 m at this wavelength, which is a factor of 44 times the resolution looking
up. This is why the resolution of an imaging system looking down toward the
earth is much greater than that of an imaging system on the ground looking at
an object in space.

Insert the structure function into the integral for Strehl ratio to obtain

SR =

∞∫
0

dααK(α) exp
[
−3.44 (αD/r0)

5/3
]
. (7.9)

Another type of coherence diameter ρo is sometimes used, and it is related
to r0 by r0 = 2.1 ρ0. This coherence diameter results in a unity coefficient in
the exponential when inserted into the last equation. This is the integral that
was evaluated numerically by Fried (1966). It is analytically evaluated here. Use
the Mellin convolution integral given in eq. 1.28 and the Mellin transforms in
eq. 1.64 and eq. 1.47, and eq. 1.9 with p = 5/3, to express the Strehl ratio as

SR =
24

5
√

π

1

2πi

∫
C

ds Γ

[
s/2 + 3

2
, −3s/5

s/2 + 3

] (
1

s + 2

) [
3.44 (D/r0)

5/3
]3s/5

. (7.10)

Let s → −5s/3, and replace the fraction by a ratio of gamma functions with

the recursion relation −s + 6/5 = Γ
[
−s + 11

5

]
/Γ

[
−s + 6

5

]
to obtain

SR =
24

5
√

π

1

2πi

∫
C

ds Γ

[
s, −5s/6 + 3

2
, −s + 6

5

−5s/6 + 3, −s + 11
5

] [
3.44

(
D

r0

)5/3
]−s

. (7.11)

The coefficients of s in the gamma functions can be made equal to unity by
the substitution s → 6s and with the Gauss-Legendre multiplication theorem
in eq. 1.15 to obtain
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SR =

√
0.6

25π3

1

2πi

∫
C

ds

[(
6

3.44

)6 (r0

D

)10
]s

Γ

[
s, s + 1

6
, s + 1

3
, s + 1

2

−s + 6
5
, −s + 3

5
, −s + 4

5

]

×Γ

[
s + 2

3
, s + 5

6
, −s + 1

5
, −s + 3

10
, −s + 1

2
, −s + 7

10
, −s + 9

10
, −s + 11

10

−s + 1, −s + 6
5
, −s + 7

5

]
.

(7.12)

The result can be written by inspection as a Meijer G-function, which is defined
in eq. 1.40, or as a Fox H-function, which is defined in eq. 1.39, as

SR =

√
0.6

25π3
G6, 6

12, 6

[(
6

3.44

)6 (r0

D

)10
∣∣∣∣∣1,

5
6
, 2

3
, 1

2
, 1

3
, 1

6
, 6

5
, 3

5
, 4

5
, 1, 6

5
, 7

5
1
5
, 3

10
, 1

2
, 7

10
, 9

10
, 11

10

]

=
24

5
√

π
H2, 1

1, 4

⎡
⎣ 1

3.44

(
r0

D

)5/3
∣∣∣∣∣∣
(1, 1) ,

(
3, 5

6

)
,
(

11
5
, 1
)

(
3
2
, 5

6

)
,
(

6
5
, 1
)

⎤
⎦ . (7.13)

An equivalent solution, which provides more physical insight, expresses the
Strehl ratio as an infinite sum in which coefficients of the integers in the argu-
ments of the gamma functions are fractions. Since Δ = 1 in eq. 7.11, the integral
can be closed in the left-half plane. Encircled poles are located at s = −n, for
n = 0, 1, 2, . . . . Residues at the enclosed poles give the following convergent
series

SR =
24

5
√

π

∞∑
n=0

(−1)n

n !
Γ

[
3
2

+ 5n/6, n + 6
5

3 + 5n/6, n + 11
5

] [
3.44

(
D

r0

)5/3
]n

. (7.14)

The first few terms of this series are

SR = 1 − 1.032
(

D

r0

)5/3

+ 0.7982
(

D

r0

)10/3

− 0.5015
(

D

r0

)5

+ · · · . (7.15)

For large diameters this series converges slowly, and an asymptotic series is
more convenient. For this case one can show with eq. 5.93 that the steepest-
descent contribution has exponential decay; therefore, the asymptotic solution
is equal to the sum of pole residues on the left side of the integration path. The
poles are at s = 6/5, and s = 6n/5 + 9/5 for n = 0, 1, 2, . . . . (Remember to
multiply the second set of residues by 6/5 because the coefficient of s in the
gamma function is not unity.) The gamma function that produces the pole at
s = 6/5 only has a single contributing pole because the residues at the other
poles of the gamma function are zero. The asymptotic series is

SR∼
(

r0

D

)2

− 24

5
√

π
3.44−9/5

no∑
n=0

(−1)n

n !
(
n + 1

2

)Γ

[
6n/5 + 9

5

−n + 3
2

]
3.44−6n/5

(
r0

D

)3+2n

,

(7.16)
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7.1 Strehl Ratio for Propagation Through Turbulence 213

where no is a number of terms discussed in Sec. 5.2. The first few terms of this
series are

SR ∼
(

r0

D

)2

− 0.6159
(

r0

D

)3

+ 0.0500
(

r0

D

)5

+ 0.0132
(

r0

D

)7

+ · · · . (7.17)

It is this relation that was the basis for the definition of coherence diameter. For
very large apertures the field on axis has the same value as would be produced by
a transmitter with diameter r0 that propagates through free space. The Strehl
ratio is plotted in Fig. 7.1.
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Figure 7.1. Strehl ratio for uncorrected turbulence versus D/r0.

If one calculates the Strehl ratio using solely the first term of the asymptotic
series for D/r0 = 2, 5, and 10, then one obtains errors of 32%, 13%, and 6%.
The use of the first two terms produces errors of 0.8%, 0.04%, and 0.005%,
respectively. Therefore, the first two terms of the asymptotic expansion give a
value of Strehl ratio when D/r0 > 2 that has an error of less than 1%.

An approximation proposed by Andrews and Phillips that has an error of less
than 6% over the entire range is

SR =
(
1 + (D/r0)

5/3
)−6/5

. (7.18)

The phase structure function and Strehl ratio can also be found with a finite
outer scale. With the von Kármán spectrum the structure function is

D(αD) = 2.605 k2
0

∞∫
0

dz C2
n(z)

∞∫
0

dκ κ
(
κ2 + κ2

0

)−11/6
[1 − J0 (καD)] . (7.19)
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After the substitution y = κ0αD, the integrals can be evaluated to give

D (r) = 6.88
(

αD

r0

)5/3
(

0.895

{
Γ [5/6]y−5/3 − 21/6y−5/6K5/6[y]

2Γ [11/6]

})
. (7.20)

The effect of outer scale is contained in the term in braces that multiplies the
structure function with infinite outer scale. This factor is plotted in Fig. 7.2. The
structure function has been reduced by about 50% when the separation is 1/25
of the outer scale. Therefore, the effect of outer scale is much more dramatic on
the phase structure function than the density structure function.
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Figure 7.2. Reduction of the phase structure function versus the ratio of sep-
aration (αD) to the outer scale size.

When this structure function is inserted into the Strehl ratio expression for
different ratios of the diameter to the outer scale size, one obtains the curves
plotted in Fig. 7.3. There is a significant increase in the Strehl ratio for ratios
of the diameter to outer scale that are expected in common situations.

To reify this effect, consider an aperture size of 1 meter with an outer scale
size of 10 meters. The ratio of SR with the finite outer scale to that with infinite
outer scale versus D/r0 is plotted in Fig. 7.4. Notice that the Strehl ratio can
be almost a factor of 2 higher than the case with infinite outer scale.

7.2 Strehl Ratio with Beam Jitter

Typical adaptive-optics systems correct higher-order terms; tilt is corrected by
a separate tracking system and mirror. Any jitter associated with this tracking
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Figure 7.3. Strehl ratio versus D/r0 for various ratios of the diameter to the
outer scale size.
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Figure 7.4. Increase in SR versus D/r0 for D/L0 = 0.1.
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216 7 Strehl Ratio

system reduces intensity on axis, and its effect on system resolution must be
known during system design. For propagation through turbulence, jitter can be
expressed as a function of turbulence strength. Yura and Tavis (1985) solved
for the structure function of the difference between Zernike and gradient tilts.
Many tracking systems measure gradient tilt, which is sensitive to higher-order
Zernike aberrations. The difference between gradient and Zernike tilt represents
an inherent source of tilt jitter in such a system and is referred to as centroid
anisoplanatism. An adaptive-optics system reduces this error as explained in
Sec. 4.4. Yura and Tavis presented numerical results for the Strehl ratio. They
also presented a simple expression that is a reasonable approximation to the
Strehl ratio. Here an analytic solution is derived for the Strehl ratio for centroid
anisoplanatism and also for the Zernike and gradient tilts.

The structure function of tilt-induced phase is equal to the expected value
of the square of the difference between tilt-induced phase at two points in the
aperture, and is expressed as

D(ρ1 − ρ2)=
〈
[φ (ρ1) − φ (ρ2)]

2
〉
=k2

0

〈
[T · (ρ1 − ρ2)]

2
〉
=

k2
0 T 2

2
|ρ1 − ρ2|2 ,

(7.21)
where T is the two-axis tilt of a wave that is randomly distributed in angle. The
structure function is solely a function of the position difference. This tilt can
be due solely to tracking jitter or can be considered to be due to atmospheric
turbulence. If it is due to turbulence, then it is assumed that there is an adaptive-
optics system that corrects all higher order modes of wavefront distortion, which
leaves tilt as the only remaining distortion. The same expression with different
constants is valid for gradient and Zernike tilt and for their difference. Two-axis
tilt variances for atmospheric turbulence, which are listed in eq. 4.22, eq. 4.30,
and eq. 4.32, are given by

T 2 =
1

π2

(
D

Mr0

)5/3
(

λ

D

)2

, (7.22)

where M is equal to 0.4642, 0.4838, and 5.394 for Zernike tilt (Z-tilt), gradient
tilt (G-tilt), and their difference respectively. Therefore,

D (ρ1 − ρ2) /2 = D (αD) /2 = α2
(

D

Mr0

)5/3

= α2σ2, (7.23)

where σ2 = (D/Mr0)
5/3. This form leads to one plot that applies to all three

tilts. With this relation one can write the Strehl ratio as

SR =

1∫
0

α dαK(α) exp
(
−σ2α2

)
. (7.24)

To evaluate this integral use the Mellin transforms in eq. 1.64 and eq. 1.10 in
the Mellin convolution integral, and let s → 2s to obtain
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SR = − 4√
π

1

2πi

∫
C

ds
(

1

s − 1

)
Γ

[
s, −s + 3

2

−s + 3

] (
σ2
)−s

. (7.25)

The pole location and integration path are shown in Fig. 7.5. The recursion
relation for gamma functions, Γ [s] = (s − 1) Γ [s − 1], is used to simplify the
integrand. The substitution s → s + 1 gives

SR = − 4

σ2
√

π

1

2πi

∫
C

ds Γ

[
s∗, −s + 1

2

−s + 2

] (
σ2
)−s

, (7.26)

where the asterisk signifies that the integration path passes between the first
and second poles of that gamma function.

x x x

s =  – n 0

PATH OF
INTEGRATIONlm s

Re s

s-PLANE

s = 3/2 + n

x

x x x–2 –1
1

3/2 5/2 7/2

Figure 7.5. Pole location and integration path in the complex plane for the
problem to determine the Strehl ratio with tilt jitter.

For this case Δ = 1, and the integration path can be closed in the left-half
plane. The enclosed poles are located at s = −n, n = 1, 2, 3, . . . . The Strehl
ratio given by the sum of the residues at the enclosed poles is

SR =
4√
π

∞∑
n=0

(−1)n

(n + 1) !
Γ

[
n + 3

2

n + 3

] (
D

Mr0

)5n/3

= 2F2

[
3
2
, 1; 3, 2;−

(
D

Mr0

)5/3
]
. (7.27)

This can also be expressed as a confluent hypergeometric function as

SR = 4
(

Mr0

D

)5/3
{

1 − 1F1

[
1
2
; 2;−

(
D

Mr0

)5/3
]}

. (7.28)

Strehl ratio is plotted for the general case in Fig. 7.6. The first few terms of this
series are

SR = 1−0.25
(

D

Mr0

)5/3

+0.0521
(

D

Mr0

)10/3

−0.00911
(

D

Mr0

)5

+ · · · . (7.29)
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Figure 7.6. General Strehl ratio for any type of tilt. M is equal to 0.4642,
0.4838, and 5.394 for Z-tilt, G-tilt, and their difference, respectively.

For large parameter values an asymptotic solution is needed to get an ap-
proximation that is accurate with only a few terms. One could use the results in
Abramowitz and Stegun (1964) for confluent hypergeometric functions or, alter-
natively, one can easily calculate the series. The steepest-descent contribution
given by eq. 5.93 decays exponentially in this case. The asymptotic series is equal
to the residues of the poles on the right side of the integration path located at
s = 0, and s = n + 1/2 for n = 0, 1, 2, . . . . The asymptotic series is

SR ∼ 4
(

Mr0

D

)5/3

− 4√
π

no∑
n=0

(−1)n

n !
Γ

[
n + 1

2

−n + 3
2

] (
Mr0

D

)5n/3+5/2

. (7.30)

The first few terms of this series are

SR∼4
(

Mr0

D

)5/3

− 4.51
(

Mr0

D

)5/2

+ 1.13
(

Mr0

D

)25/6

+ 0.423
(

Mr0

D

)35/6

+ · · · .
(7.31)

Yura gives an approximation

SR ≈
[
1 +

1

4

(
D

M r0

)5/3
]−1

=

[
1 +

(
πT D

2λ

)2
]−1

. (7.32)

One can obtain this expression by dividing unity by the sum of unity and the
inverse of the first term of the asymptotic series. For very large or small di-
ameters this approximation gives the same result as the exact calculation. For
intermediate diameters this approximation gives a Strehl ratio that is too large,
but not by more than 10%.
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7.3 Strehl Ratio with Anisoplanatism

In adaptive-optics systems the paths of the beacon signal and the imaging or
projected laser should be the same. In general, this is not possible to achieve
in practice, and there is a degradation in performance caused by time delays,
displacement of the two paths by translation and angle, and differences in wave-
length of the beacon and measurement or projecting systems. The effect of dis-
placement, angular mispointing, time delay, and atmospheric dispersion can each
be treated as an anisoplanatic effect. In fact, if all displacements are present si-
multaneously, they can be combined to get a total offset of the measurement
from the imaging paths. In this section, the effect of that displacement on the
Strehl ratio is determined. To find the Strehl ratio, the structure function must
first be determined. Use the expression for the structure function in eq. 2.123
with d = αD and s = d(z).

The diameter to insert is the local diameter. The following analysis is per-
formed for a collimated beam. To obtain expressions for a beam focused at z = L
one needs to make the substitution D → (1 − z/L)D. If this is done, then one
finds that the approximations made in this section are not valid. The power
series expansion in this section is only valid for a collimated beam.

Using Kolmogorov turbulence one obtains for the collimated case

D(αD) = 0.4146 k2
0

∞∫
0

dz C2
n(z)

∫
dκκ−11/3

× [1 − cos (κ · αD)] 2 {1 − cos [κ · d(z)]} . (7.33)

The integrand can be expanded and the trigonometric identity for the product
of cosines used to get

I = 2
∫

dκκ−11/3 (1 − cos (κ · αD) − cos [κ · d(z)]

+ cos {κ · [αD + d(z)]} /2 + cos {κ · [αD − d(z)]} /2) . (7.34)

This expression is integrated over angle with eq. 3.5, and after rearranging terms,
one obtains

I = 4π

∞∫
0

dκ κ−8/3 ({1 − J0 (καD)} + {1 − J0 [κd(z)]}

− {1 − J0 [κ |αD + d(z)|]} /2 − {1 − J0 [κ |αD − d(z)|]} /2) . (7.35)

Using eq. 1.22 for each of the four terms, one obtains for the structure function
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D (αD) = 2(2.91) k2
0

∞∫
0

dz C2
n(z)

×
[
(αD)5/3+ d5/3(z) − 1

2
|αD + d(z) |5/3 − 1

2
|αD − d(z) |5/3

]
. (7.36)

The sum of terms in brackets almost cancel, which causes difficulties if one tries
to evaluate this integral numerically. The terms in the absolute value sign are
equal to

|αD ± d(z) |5/3 =
[
(αD)2 ± 2αD d(z) cos (ϕ) + d2(z)

]5/6
, (7.37)

where ϕ is the angle between α and d.
This expression can be simplified and numerical difficulties eliminated with

the use of Gegenbauer polynomials Cλ
p (x). Their generating function is

(
1 − 2ax + a2

)−λ
=

∞∑
p=0

Cλ
p (x) ap. (7.38)

These functions are sometimes referred to as ultraspherical functions because
they are a generalization of the Legendre polynomials Pn(t) whose generating
function is (

1 − 2ax + a2
)−1/2

=
∞∑

p=0

Pp(x) ap. (7.39)

The Gegenbauer polynomials can be represented as

Cλ
p [cos (ϕ)] =

p∑
m=0

Γ [λ + m] Γ [λ + p − m] cos [(p − 2m)ϕ]

m! (p − m)! {Γ [λ]}2 . (7.40)

A Gegenbauer polynomial that is useful in this analysis is

C
−5/6
2 [cos (ϕ)] = 5

6

[
1 − 1

3
cos2 (ϕ)

]
. (7.41)

For αD > d(z) the terms in the structure function can be expanded in Gegen-
bauer polynomials. The zeroth and all odd order terms cancel. When the sum-
mation index is changed by the substitution m → 2m, the result is

D(αD) = 2(2.91) k2
0

∞∫
0

dz C2
n(z)

×
⎧⎨
⎩d5/3(z) − (αD)5/3

∞∑
p=1

C
−5/6
2p [cos (ϕ)]

[
d(z)

αD

]2p
⎫⎬
⎭ . (7.42)

It is this canceling of the first two terms of the power series that would cause
numerical difficulties if the original integral were evaluated numerically. Define
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dm ≡ 2.91 k2
0

∞∫
0

dz C2
n(z) dm(z), and (7.43)

σ2
φ = d5/3. (7.44)

Unlike the calculation for the Strehl ratio for uncorrected turbulence and
for corrected turbulence with tilt jitter, an exact analytical solution cannot be
found for anisoplanatism. Fortunately for adaptive-optics systems, the Strehl
ratio should be fairly high by design, which requires the structure function to be
small. This assumption allows one to retain only the first term of the Gegenbauer
expansion to give

D(αD) ≈ 2σ2
φ − 2x, (7.45)

where
x = d2

[
1 − 1

3
cos2 (ϕ)

]
5
6
(αD)−1/3. (7.46)

I justify this single-term approximation below by showing that its value is
close to the exact result. The assumption that αD > d(z) is not true close to
the center of the aperture, but it is typically true over most of the aperture. The
error in the center is ameliorated by the α factor in the integral. There will be
an error, which increases with each term of the series, caused by the integration
of this approximate expression over the entire aperture. In fact, because of this
assumption, if the exponential is expanded in a power series, only the integral
of the first six terms converges. An expansion in Gegenbauer polynomials that
applies close to the aperture center can be performed, and different expansions
can be used for different parts of the aperture. These integrals cannot be evalu-
ated in simple form, which is why it is not done here. The Strehl ratio with the
six-term approximation is

SR ≈
exp

(
−σ2

ϕ

)
2π

∫
dαK(α)

(
1 + x +

x2

2
+

x3

6
+

x4

24
+

x5

120

)
. (7.47)

If just the first term in the last parentheses is retained, the result is equivalent
to the extended Maréchal approximation. It is shown below that the six-term
approximation is best for aperture sizes that are normally encountered. The in-
tegrals over angle and aperture coordinate are performed analytically. The angle
integral for the nth term, after the use of the binomial theorem, is proportional
to

Φ(n) =
1

2π

2π∫
0

dϕ
[
1 − 1

3
cos2 (ϕ)

]n
=

1

2π

n∑
m=0

(
n

n − m

)
3−m

2π∫
0

dϕ cos2m (ϕ) ,

(7.48)

where
(

n

n − m

)
=

n !

(n − m) !m !
. (7.49)

Equation 4.641 #4 in Gradshteyn and Ryzhik (1980) is

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



222 7 Strehl Ratio

π/2∫
0

dϕ cos2m (ϕ) =
π(2m − 1) ! !

2(2m) ! !
, where (7.50)

(2m−1) ! ! = (2m−1)(2m−3) . . . (3)(1), and (2m) ! ! = (2m)(2m− 2) . . . (4)(2).
With these relations, the angle integral is equal to

Φ(n) = 1 −
n∑

m=1

(
n

n − m

)
3−m (2m − 1) ! !

(2m) ! !
. (7.51)

The needed values are Φ (0) = 1, Φ (1) = 0.8333, Φ (2) = 0.7083, Φ (3) = 0.6134,
Φ (4) = 0.5404, and Φ (5) = 0.4836. The aperture integration for the nth term is
proportional to

Y (n) =

1∫
0

dαα1−n/3K(α). (7.52)

From eq. 1.64, the needed values are Y (0) = 1, Y (1) = 1.402, Y (2) = 2.087,
Y (3) = 3.396, Y (4) = 6.419, and Y (5) = 16.94. If these values are used, then
the approximation to the Strehl ratio is

SR ≈ exp
(
−σ2

φ

)
×
(
1 + 0.9736E + 0.5133E2+ 0.2009E3 + 0.06970E4+ 0.02744E5

)
,

E < 0.5 (7.53)

where E = d 2/D
1/3.

As mentioned above, the Gegenbauer polynomial expansion is not valid near
the center of the aperture. There is an error made in the use of this approx-
imation for the central part of the aperture that increases with each term in
the approximation. One has to determine whether this error is less or greater
than the increased accuracy achieved over the remainder of the aperture by the
inclusion of additional series terms. To resolve these uncertainties, I compared
the Strehl ratio using various numbers of terms with the exact calculations.

I calculated the Strehl ratio numerically for the case in which the displacement
does not vary with propagation distance. In Fig. 7.7 are plotted the exact Strehl
ratio versus displacement for the Hufnagel-Valley 21 model of turbulence, and
the Strehl ratio from eq. 7.53 for D/r0 = 1 with only the unity term in brackets
(Maréchal approximation), and with different numbers of terms in the brackets.
This case of low turbulence is a region in which the approximation fares most
poorly. The curves are plotted past their region of applicability to show how they
begin to deviate from the correct values. The approximation that includes three
or more terms is good out to a displacement that is one-third of the diameter,
and the extended Maréchal approximation is always worse than that obtained
with additional terms. The three-, four-, five-, and six-term approximations are
the best.

In Fig. 7.8 and Fig. 7.9 are plotted the comparisons of the exact Strehl ratio
for D/r0 = 5 and 10 with the extended Maréchal approximation and the ap-
proximation derived here. The six-term approximation is the best, and it gives
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Figure 7.7. Comparison of the Maréchal and two- to six-term approximations
with the exact value of Strehl ratio, for an anisoplanatic displacement, for D/r0

equal to 1.

accurate Strehl ratio values down to values of 0.2. The six-term approximation
is always best when D/r0 > 5. The extended Maréchal approximation is poor.
The six-term approximation gives results accurate to 1% over the first half of
the range of plotted values of d/D for D/r0 = 5 and 10. The error approaches
10% at the maximum values of d/D that are plotted. As the ratio of coherence
diameter to aperture diameter gets smaller, the approximation improves. The
close agreement between the exact results and those obtained with this approxi-
mation shows that the use of the one-term expansion in Gegenbauer polynomials
was justified.

I now apply this approximate expression to calculate the Strehl ratio for
various types of specific anisoplanatic effects.
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Figure 7.8. Comparison of Maréchal and five- and six-term approximations
with the exact value of the Strehl ratio, with an anisoplanatic displacement that
is constant along the propagation path, for D/r0 equal to 5.
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Figure 7.9. Comparison of Maréchal and six-term approximations with the
exact value of the Strehl ratio, with an anisoplanatic displacement, for D/r0

equal to 10.
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7.4 Strehl Ratio for Various Anisoplanatic Effects

The Strehl ratio for various types of anisoplanatic effects is found with the
expression given in eq. 7.53, and the three terms

E = d 2/D
1/3, (7.54)

σ2
φ = d 5/3, and (7.55)

dm ≡ 2.91 k2
0

∞∫
0

dz C2
n(z) dm(z). (7.56)

7.4.1 Displacement anisoplanatism

In this simplest case of displacement anisoplanatism, which was treated in
the Sec. 7.3, the displacement is constant along the propagation direction.
Terms needed to find the Strehl ratio are d(z) = d, d 2 = 2.91 k2

0 μ0 d2,

E = 6.88 (d/D)2 (D/r0)
5/3, and σ2

φ = 2.91 k2
0 μ0 d5/3 = 6.88 (d/r0)

5/3 , where
the turbulence moments are defined in eq. 4.2, and the coherence diameter is
r0 = (0.423 k2

0 μ0)
5/3. The Strehl ratios are plotted in Fig. 7.8 and Fig. 7.9.

7.4.2 Angular anisoplanatism

When the propagation beam is offset by a constant angle from the direction along
which turbulence is measured, the effect is called angular anisoplanatism (Fried
1982). It arises naturally when one is tracking a satellite target and directing a
laser beam at it. Because of the finite speed of light, the laser beam has to lead
the tracking direction; this results in an angular difference between the direction
along which the target is tracked and the one along which the laser beam is
directed. This error can be eliminated if the target has a reflector for the beacon
that extends a suitable distance in the point-ahead direction. For the case of an
angular error θ, one obtains

d(z) = θz, (7.57)

d 2 = 2.91 k2
0 μ∗

2 θ2, (7.58)

E = 6.88
μ∗

2

μ0

(
θ

D

)2 (
D

r0

)5/3

= 0.68
μ∗

2 μ
1/5
0

μ
6/5
5/3

(
D

r0

)−1/3
(

θ

θ0

)2

, and (7.59)

σ2
φ = 2.91 k2

0 θ5/3

L∫
0

dz C2
n(z)z5/3 = (θ/θo)

5/3 , (7.60)

where the relation in eq. 7.60 defines the isoplanatic angle, which is defined by

θo =
(
2.91 k2

0 μ5/3

)−3/5
. The turbulence moment μ∗

2 is equal to μ2 for a collimated

beam and
L∫
0
dz C2

n(z)z2(1 − z/L)−1/3 for a wave focused at z = L.
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The only dependence on the particular turbulence distribution in the expres-
sion for Strehl ratio is the term 0.68μ2 μ

1/5
0 /μ

6/5
5/3. This varies little with large

changes in turbulence moments caused by different turbulence distributions. Its
value is 1.13, 0.99, 0.88, and 0.82 for the HV-21, HV-35, HV-54, and HV-72
turbulence models respectively. Therefore, the Strehl ratio depends mainly on
the ratios r0/D and θ/θ0 and weakly on the particular turbulence distribution.

The Strehl ratio versus offset angle for various turbulence models is plotted
in Fig. 7.10 for a collimated beam directed vertically and in Fig. 7.11 for a
collimated beam directed at 30 degrees off zenith.
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Figure 7.10. Strehl ratio of a collimated beam for angular anisoplanatic error
at zenith, for various turbulence models, versus separation angle for a 0.6-m
system. Upper-altitude turbulence has a strong effect on Strehl ratio.

7.4.3 Time-delay anisoplanatism

If there is a time delay τ between when turbulence is measured and a correction
is applied to the deformable mirror, there is a degradation in performance as
noted by Tyler (1984). This effect is not often thought of as an anisoplanatic
effect; however, it can be treated as such. The Strehl ratio decays because the
wind velocity v(z) carries the turbules across the field of view. Using Taylor’s
frozen turbulence assumption discussed in Sec. 2.4, one obtains

d(z) = v(z)τ, (7.61)

d2 = 2.91 k2
0

L∫
0

dz C2
n(z) v2(z) τ 2 = (τ/τ2)

2 , (7.62)
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Figure 7.11. Strehl ratio of a collimated beam for angular anisoplanatism at
30 degrees from zenith for a 0.6-m system.

E =
τ 2

τ 2
2 D1/3

, and (7.63)

σ2
φ = 2.91 k2

0

L∫
0

dz C2
n(z) v5/3(z) τ 5/3 =

(
τ/τ5/3

)5/3
. (7.64)

The temporal moment is defined as

τm =

⎡
⎣2.91 k2

0

L∫
0

dz C2
n(z) vm(z)

⎤
⎦
−3/5

. (7.65)

The time τ5/3 is the characteristic time of the problem. It is related to the
Greenwood frequency, defined in Sec. 4.8, by

fGτ5/3 =

[
0.0175

n sin (5π/6n)

]3/5

, (7.66)

where n is the order of the filter in the servo system. For a single-pole filter
fG τ5/3 = 0.134 as noted by Fried (1990).

The Strehl ratio is plotted in Fig. 7.12 for various turbulence models at zenith
for a Bufton wind model with a ground speed of 5 m/s, and it is plotted at 30
degrees off zenith in Fig. 7.13. The Bufton wind model gives the wind versus
altitude as

v(h) = vg + 30 exp

⎡
⎣−

(
h − 9400

4800

)2
⎤
⎦ , (7.67)

where vg is the ground speed.
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Figure 7.12. Strehl ratio versus time delay at zenith for 0.6-m system.
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Figure 7.13. Strehl ratio versus time delay for 0.6-m system at 30 degrees
zenith angle.

7.4.4 Chromatic anisoplanatism

If the beacon beam that senses the turbulence has a wavelength different from
that of the laser beam that is sent out, then the two beams will follow different
paths through the atmosphere because of the atmosphere’s dispersive properties.
The analysis given here parallels that given by Belsher and Fried (1981). Geomet-
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ric optics is used to obtain the path displacement for chromatic anisoplanatism.
If n(h) is the refractive index seen by the first wave and n(h) + Δn(h) is that
seen by the second and if ξ(h) is the zenith angle of the first and ξ(h) + Δξ(h)
is that of the second, Snell’s law, which states that n sin (ξ) is a constant, gives

Δξ(h) = −Δn(h) tan [ξ(h)] . (7.68)

This can be integrated along the path to yield

dc (z) =

z∫
0

dz Δξ(h) = −ξ sin (ξ)Δn0

ξ cos2 (ξ)

z∫
0

dz′ α (z′) , (7.69)

where Δn0 is the difference in refractive index between the two colors at wave-
lengths λ1 and λ2 at the beginning of the path, and α (z) is the air density
normalized to the value at sea level. The change of refractive index with wave-
length has been given by Allen (1963) as

Δn0 =
(
λ2

1 − λ2
2

) [ 29498.1

(146λ2
2 − 1) (146λ2

1 − 1)
+

255.4

(41λ2
2 − 1) (41λ2

1 − 1)

]
10−6,

(7.70)
when the wavelengths are given in μm. The atmospheric density versus altitude
is given in Cole (1965). The ratio of the atmospheric density at any altitude
normalized to that at sea level was approximated by Belsher and Fried as

α (h) = exp
(
−1.11 × 10−4h

)
, h < 10 km, and

α (h) = 1.6 exp
(
−1.57 × 10−4h

)
, h > 10 km. (7.71)

A plot of the absolute value difference in the refractive index between waves at
0.5 μm and other wavelengths is shown in Fig. 7.14. The normalized air density
versus height is plotted in Fig. 7.15.

To calculate the Strehl ratio, the displacement as a function of range is found
with eq. 7.68. At the target range R, the displacement is dc(L), and to hit the
target squarely one must change the launching angle by dc(L) /L. Thus the beam
displacement along the path is

dc(z) = −ξ sin (ξ) Δn0

ξ cos2 (ξ)

⎡
⎣ z∫

0

dz′ α (z′) − z

L

L∫
0

dz′ α (z′)

⎤
⎦ . (7.72)

Define the integral of air density as

I (z) =

z∫
0

dz′ α (z′) . (7.73)

This is evaluated as

I(z) = 9010
[
1 − exp

(
−1.11 × 10−4z

)]
, z < 10 km, and
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Figure 7.14. A million times the difference in refractive index between 0.5 μm
and another wavelength.
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Figure 7.15. Normalized air density versus altitude.

I(z) = 8161 − 10 190 exp
(
−1.57 × 10−4z

)
, z > 10 km. (7.74)

The moments of this displacement are

dm =

[
sin (ξ)Δn0

cos2 (ξ)

]m

Tm, (7.75)

where

Tm = 2.91 k2
0 sec (ξ)

H∫
0

dhC2
n(h)

[
I(h) − h sec (ξ)

L
I(L)

]m

. (7.76)

H is the altitude of the target. The last term in brackets goes to zero as the
range becomes infinite. A Strehl ratio comparison of a target at 300 km and one
at infinity is plotted in Fig. 7.16. There is very little difference in the two results.
For infinite range, the above equation reduces to
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Tm = 2.91 k2
0 sec (ξ)

H∫
0

dhC2
n(h) Im(h). (7.77)
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Figure 7.16. Comparison of the Strehl ratio at infinite and 300 km range versus
beacon wavelength. The two results are close in value. This allows a simpler
calculation for finite range problems.

The result for finite range entails a numerical calculation for each range. The
infinite-range results can be calculated once for each turbulence model and used
for different zenith angles. Table 7.1 contains values of T2 and T5/3 for various
turbulence models.

Table 7.1. Values of T2 and T5/3 for various turbulence models. The units of T2

are m1/3, and T5/3 is dimensionless.

Model T2 T5/3

SLCDAY 2.706 × 10−6 2.004 × 10−7

SLCNIGHT 2.258 × 10−6 1.512 × 10−7

HV-21 6.160 × 10−6 3.596 × 10−7

HV-54 3.399 × 10−5 1.867 × 10−6

HV-72 5.949 × 10−5 3.247 × 10−6

The relevant quantities to calculate Strehl ratio are

E =

[
sin (ξ)Δn0

cos2 (ξ)

]2
T2

D1/3
, and (7.78)
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σ2
φ =

[
sin (ξ)Δn0

cos2 (ξ)

]5/3

T5/3. (7.79)

As a specific example, Fig. 7.17 contains plots of Strehl ratio for the SLCSAT
day model for various elevation angles for an infinite-range target, when one
beam is at 0.5-μm wavelength.
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Figure 7.17. Strehl ratio for SLCSAT day turbulence with the scoring beam at
0.5 μm for a 0.6-m system and zenith angles between 10 and 45 degrees. Notice
that above 45 degrees elevation angle the Strehl ratio exceeds 0.7 for the first
beam at 0.5 μm and the second at any longer wavelength.

7.4.5 Combined displacement anisoplanatism

If there are several anisoplanatic effects present, with each not decreasing the
Strehl ratio much, it is a common practice to multiply the Strehl ratios for the
individual effects to get a combined Strehl ratio. The validity of this assumption
is now examined. The total displacement that is due to a translation, an angular
offset, a time delay, and a chromatic offset is

dt(z) = d + θz + v(z)τ + dc(z), (7.80)

where chromatic displacement is given in eq. 7.73. The two terms necessary to
calculate the Strehl ratio are E = d 2/D

1/3, and σ2
φ = d5/3, where

dm = 2.91 k2
0

∞∫
0

dz C2
n(z) dm

t (z).
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Let us examine the case in which the effects of displacement, angular offset,
and temporal delay are comparable. Chromatic anisoplanatism is assumed to
be zero. To obtain comparable effects from the remaining three types of aniso-
planatism, the angular offset in microradians is 850 times the displacement in
meters. The time delay in milliseconds is 130 times the displacement in meters
for the Bufton wind model with a ground speed of 5 m/sec.

In Fig. 7.18 the Strehl ratios are plotted for these effects present individually
and combined for the SLCSAT Day turbulence model with a 0.6-m diameter
system. It was assumed that the three vector displacements either were all in
the same direction or were separated by 120 degrees. Also plotted is the product
of the Strehl ratios from the individual effects. Note that the Strehl ratio for all
the effects combined can be less than or greater than the Strehl ratio obtained
by the common practice of multiplying individual Strehl ratios. The relative
direction of the displacements is crucial. It is possible to get some cancellation if
the displacements cancel. Tyler et al. (1982) took advantage of the vector nature
of the displacement almost to eliminate the effect of chromatic anisoplanatism
on an adaptive-optics system by choosing an optimal offset angle of a beacon
from the propagation direction.
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Figure 7.18. Strehl ratios for displacement, angle, and time delay anisoplana-
tism presented separately and combined for the SLCSAT-Day turbulence model.
The displacement is constant along the propagation path. The angle offset in
microradians is 850 times the displacement in meters. The time delay in mil-
liseconds is 130 times the displacement in meters. The combined effects are for
all displacements in line and at 120 degrees to each other.
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7.5 Strehl Ratio Using Numerical Integration

For most of the examples considered in this book the variances of phase- and
amplitude-related quantities are calculated. For some problems that is not ad-
equate. Often one wants to know the intensity on target, for which one must
calculate the Strehl ratio.

For small variances one can use the Maréchal approximation to calculate the
Strehl ratio. That approximation is not valid for large variances or when the
correlation function has significant range. Uncorrected turbulence is such a case
where the approximation is completely inadequate. Tilt makes up 87% of the
phase variance with piston removed, yet for large values of D/r0, removing the
tilt hardly affects the Strehl ratio. It was evident in the approximation in (7.17)
that SR ∼ (r0/D)2 − 0.6159(r0/D)3 rather than an exponential dependence.

Although the analytical expressions for the Strehl ratio for some problems was
obtained, calculating the Strehl ratio for most problem must be done numerically,
which accounts for some reluctance to find the Strehl ratio. When the Strehl
ratio is calculated, usually the simpler formula that assumes that the structure
function is not a function of position is used. In this case

SR =
1

2π

∫
dαK(α) exp

[
−D (αD)

2

]
, (7.81)

where αD = ρ′ − ρ.
This is a two-fold integration. Sometimes the structure function contains an

integration over the axial coordinate z, requiring a three-fold integration. If
evaluating the structure function requires a calculation in κ- or x-space, then a
four- or five-fold integration is required.

For many problems of interest, such as calculating the Strehl ratio with tilt
removed, the structure function depends on position, and eq. 7.81 is not valid.
One must use

SR =
(

4

πD

)2 ∫
dρ′

∫
dρW (ρ′)W (ρ) exp {−D ([ρ′ − ρ],ρ′) /2} . (7.82)

In this case, there are two additional integrals over the aperture, and one
must perform either a four-, five-, six-, or seven-fold integration for the cases
considered above. Because of the computer resources required to do this, in the
past, people have made approximations to the structure function or used eq. 7.81
when eq. 7.82 was appropriate. These approximations were made with arguments
that some terms could be neglected or the aperture average structure function
could be used. These arguments are not backed up with quantitative results
that the approximations were valid. Because the structure function appears in
an exponential and one of its factors (D/r0)

5/3 can be large, small errors in one
factor could produce large errors in the calculation.

Here, the exact calculation is performed and compared to the approximate
results. Examples are given for the Strehl ratio for uncorrected turbulence, for
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a finite beacon with the corrected beam focused at the beacon center, and for a
finite beacon with a collimated corrected beam. The Strehl ratio is given for tilt
present and removed and compared to the Maréchal approximation.

The general formula for structure function in eq. 3.35 with a quantity, A(ρ),
subtracted from the phase-related quantity, f(ρ), is

Dφ (αD,ρ) = 0.207378 k2
0

L∫
0

dz C2
n(z)

∫ 2π

0
dϕ

∫ ∞

0
dκ κ−8/3

× [f(ρ) − A(ρ) − f(ρ + αD) + A(ρ + αD)]2

= D1(αD,ρ) + D2(αD,ρ) + D3(αD,ρ). (7.83)

where the three structure functions result from the respective terms in

[f(ρ) − A(ρ) − f(ρ + αD) + A(ρ + αD)]2

= [f(ρ) − f(ρ + αD)]2 − [A(ρ) − A(ρ + αD)]2

+2 [f(ρ) − A(ρ) − {f(ρ + αD) − A(ρ + αD)}] [A(ρ + αD) − A(ρ)] .

(7.84)

The meaning of the above equations is clear in real space. In κ-space some
of the quantities are complex. In that case the last term, which is the product
of two different quantities, is calculated in the following manner

1

2
[AB∗ + A∗B] = Re [AB∗]. (7.85)

Each of the three components of the structure function will be calculated
separately. The first component is the structure function of the phase-related
quantities. The second is the structure function of the quantity to be subtracted,
and the third contains a combination of both terms.

Unlike the first two terms, the third term cannot be evaluated analytically
for most problems. For instance, for turbulence with tilt removed one finds that
the total structure function is equal to

D(αD,ρ) = D1(αD,ρ) + D2(αD,ρ) + D3(αD,ρ)

= 6.8839
(

D

r0

)5/3 (
α5/3 − 1.04332α2 + αC

)
, (7.86)

where C is a double integral that is derived in the next section.
Because of the singularity at κ = 0 in some of the integrals, a Taylor series

expansion is performed in κ, and the integral is evaluated analytically for small
values of κ.

7.5.1 Strehl ratio for uncorrected turbulence with tilt present and
removed

First, calculate the Strehl ratio for uncorrected turbulence with tilt present and
removed. The structure function with tilt present is given in eq. 7.5 as
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D(αD) = D1(αD) = 6.8839 (αD/r0)
5/3 , (7.87)

where r0 = (0.42336 k2
0 μ0)

−3/5
. The coefficient in the coherence diameter is more

accurate than the standard value of 0.423 because for large values of D/r0 more
accurate coefficients are required in the calculations. Errors in the fourth decimal
place produce errors of several per cent in the Strehl ratio when D/r0 = 10. As
explained above, the integral expression for this term will be used.

Fried (1966) calculated the Strehl ratio for tilt present and tilt removed.
He used eq. 7.81 to find the Strehl ratio with tilt present. He then made the
assumption that the third component of the structure function, which is the
correlation of the difference of the phase with tilt removed at two points and
the tilt, is zero. This is true for the average over the aperture, but is not true
without the aperture average, since tilt and the other modes are not statistically
independent. The structure function he used in his calculations was

D(αD) = 6.8839 (αD/r0)
5/3 (1 − α1/3). (7.88)

With this, he found that the tilt-removed Strehl ratio was significantly im-
proved for small values of D/r0 with a maximum improvement of a factor of 4.3
when D/r0 = 3.8. Fried actually gives the factor multiplying the α1/3 term as
1.026 (It actually is 1.04332) but he approximates it by 1. The reason he did
that is because with the coefficient 1.026 the structure function is negative as
α approaches one, which is physically impossible for a squared real quantity.
Using the correct value of 1.04332 in the structure function, one finds that the
Strehl ratio actually increases for increasing values of D/r0 for D/r0 > 7. This
obviously incorrect result calls into question the accuracy of the results for lower
values of D/r0.

This problem was subsequently addressed by Heidbreder (1967), Yura (1973),
Tavis and Yura (1976), and Valley (1979). Valley found that outer scale can
have a significant effect of the Strehl ratio. None of these analysis treat the
full problem because computer resources were not adequate at the time. Faster
computers make it possible to calculate the structure function for this case.

Now calculate the three components of the structure function. To find the
first component, first evaluate

[f(ρ) − f(ρ + αD)]2 = | exp(κ · ρ) − exp[iκ · (ρ + αD)|2
= 2 [1 − cos(κ · αD)] . (7.89)

Using this result, the first term of the structure function is
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D1 (αD,ρ) = 0.207379 k2
0

L∫
0

dz C2
n(z)

∫ 2π

0
dϕ

∫ ∞

0
dκ κ−8/32 [1 − cos(κ · αD)]

= 1.95935
(

αD

r0

)5/3 ∫ π

0
dϕ

∫ ∞

0
dx x−8/3 {1 − cos[x cos(θd − ϕ)]}

= 6.8839
(

αD

r0

)5/3

, (7.90)

where use was made of the fact that if π is added to the phase, then it does
not change the value of the integrand. In addition, use the definition r

−5/3
0 =

0.42336 k2
0 μ0, and let x = καD. The value of the dot products is obtained from

the definition of the angles, ρ · κ/κ = ρ cos(θρ − ϕ), ρ′ · κ/κ = ρ′ cos(θρ′ − ϕ),
and (ρ′ − ρ) · κ/κ = |ρ′ − ρ| cos(θd − ϕ), where θd is the angle between ρ′ − ρ
and the x-axis given by

θd = arctan

[
ρ′ sin(θρ′) − ρ sin(θρ)

ρ′ cos(θρ′) − ρ cos(θρ)

]
. (7.91)

In numerically computing θd one needs to use an arctangent function that has
a 2π range. The magnitude of the vector is

|αD| = |ρ′ − ρ| =
{
[ρ′ sin(θρ′) − ρ sin(θρ)]

2
+ [ρ′ cos(θρ′) − ρ cos(θρ)]

2
}1/2

.

(7.92)
The value of D2(αD,ρ), which is the square of the tilt difference at the two

points, is obtained by using eq. 3.27

G1,1 (γκ)Z1,1 (ρ, θ) = i
16J2(γκD/2)

γκD/2

ρ

D
cos(θρ − ϕ) = i

16J2(γκD/2)

γκD/2

ρ · κ
Dκ

.

(7.93)
For the case γ = 1, this leads to

[A(ρ) − A(ρ + αD)]2 =

∣∣∣∣∣i16J2(κD/2)

κD/2

ρ · κ
Dκ

− i
16J2(κD/2)

κD/2

(ρ + αD) · κ
Dκ

∣∣∣∣∣
2

=

[
16J2(κD/2)

κD/2

α · κ
κ

]2

=

[
16J2(κD/2)

κD/2

]2

cos2(θd − ϕ), (7.94)

which inserted into the formula for the structure function gives
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D2 (αD,ρ)

= −0.207378 k2
0

L∫
0

dz C2
n(z)

∫ 2π

0
dϕ

[
κ · α
|κ|

]2 ∫ ∞

0
dκ κ−8/3

[
16α

J2(κD/2)

κD/2

]2

= −78.996α2
(

D

r0

)5/3 ∫ π

0
dϕ[cos(θd − ϕ)]2

∫ ∞

0
dx x−8/3

[
J2(x)

x

]2

= −7.182
(

D

r0

)5/3

α2 = −6.8839
(

αD

r0

)5/3

1.04334α1/3, (7.95)

where x = κD/2.
The third component is equal to

{f(ρ) − A(ρ) − [f(ρ + αD) − A(ρ + αD)]} [A(ρ + αD) − A(ρ)]

= Re

{[
exp(iκ · ρ) − i16

J2(κD/2)

κD/2

ρ · κ
Dκ

− exp(iκ · ρ′) + i16
J2(κD/2)

κD/2

ρ′ · κ
Dκ

]

×
[
−i16

J2(κD/2)

κD/2

(ρ′ − ρ) · κ
Dκ

]}
. (7.96)

After setting ρ′ = ρ + αD and inserting the values of the dot products, and
x = κD/2, the third component of the structure function is equal to

D3 (αD,ρ) = 9.869
(

D

r0

)5/3

α
∫ ∞

0
dx x−11/3J2(x)

×
∫ π

0
dϕ cos(θd − ϕ)

{
sin

[
2x

D
ρ cos(θρ − ϕ)

]
− 16

ρ

D
cos(θρ − ϕ)

J2(x)

x

− sin
[
2x

D
ρ′ cos(θρ′ − ϕ)

]
+ 16

ρ′

D
cos(θρ′ − ϕ)

J2(x)

x

}
. (7.97)

If the four terms in brackets are expanded into Taylor series, then the linear
terms cancel. The first non-zero term is the cubic term. The cubic terms from
the first two terms and the last two terms almost cancel for small values of α.
Because of this, the main contribution from this correlation term is from smaller
wavelengths of turbulence and for larger values of α. The first term of the power
series is

x−11/3J2(x)

{
sin

[
2x

D
ρ cos(θρ − ϕ)

]
− 16

ρ

D
cos(θρ − ϕ)

J2(x)

x

− sin
[
2x

D
ρ′ cos(θρ′ − ϕ)

]
+ 16

ρ′

D
cos(θρ′ − ϕ)

J2(x)

x

}

≈ x4/3

[
ρ

48D
cos(θρ − ϕ) − 1

6

(
ρ

D

)3

cos3(θρ − ϕ)

− ρ′

48D
cos(θρ′ − ϕ) +

1

6

(
ρ′

D

)3

cos3(θρ′ − ϕ)

⎤
⎦ , x << 1. (7.98)
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This term is the one that Fried neglected. The remaining terms do not depend
on ρ or ρ′, enabling his use of the simpler expression in eq. 7.81 to calculate the
Strehl ratio.

The total structure function is equal to

DTR(αD,ρ) = D1(αD,ρ) + D2(αD,ρ) + D3(αD,ρ)

=
∫ π

0
dϕ

∫ ∞

0
dx x−8/3

[
1.95935α5/3 {1 − cos[x cos(θd − ϕ)]}

−78.996α2[cos(θd − ϕ)]2
[
J2(x)

x

]2

+ 9.869α

(
cos(θd − ϕ)

{
sin

[
2x

D
ρ cos(θρ − ϕ)

]
− 16

ρ

D
cos(θρ − ϕ)

J2(x)

x

− sin
[
2x

D
ρ′ cos(θρ′ − ϕ)

]
+ 16

ρ′

D
cos(θρ′ − ϕ)

J2(x)

x

})]
. (7.99)

To find the exact Strehl ratio, the structure function in eq. 7.99 must be
inserted into eq. 2.153. The resulting expression is

SR =
(

4

πD

)2 ∫ 2π

0
dθρ′

∫ D/2

0
ρ′dρ′

∫ 2π

0
dθρ

∫ D/2

0
ρdρ exp [−DTR (αD,ρ) /2] .

(7.100)
This is a six-fold integration. If the problem were solved strictly in real space

as suggested by Heidbreder (1967), then a six-fold integration is also required.
Here, use the κ-space formulation as a prelude to solve more complicated prob-
lems.

Stock and Herrmann performed the six-fold integration in real space and their
results are identical to those reported here. In Fig. 7.19 is plotted the Strehl ratio
on a linear scale of the uncorrected turbulence and three calculations of the Strehl
ratio with tilt removed. The top most curve has the Fried approximation with
the coefficient of the α2 term equal to 1.04332. The structure function becomes
negative as α approaches unity, which results in the Strehl ratio increasing at
values of D/r0 above 6. This approximation is good for D/r0 < 4. The Fried
approximation with the coefficient of the α2 term equal to 1.0 gives values of
the Strehl ratio that are lower than the exact result, which is also plotted. In
Fig. 7.20 are the same plots on a log scale. Fig. 7.21 has the ratio of the tilt-
removed Strehl ratio to that with tilt present. Notice that there is as much as a
factor of 5.5 improvement.

A Strehl ratio approximation when tilt is removed valid for values of D/r0 <
10 is

SRTR =
{
1 +

[
D/

(
r0 4.651−D/13.5r0

)]5/3
}−6/5

D/r0 < 10. (7.101)

7.5.2 Strehl ratio for a finite beacon and focused corrected beam

Next, consider the case where there is a beacon at z = L of diameter Ds and
the outgoing beam is focused at the center of the beacon. This case applies
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Figure 7.19. Strehl ratios for various situations versus the ratio D/r0 plotted
on a linear scale. The highest curve is for the tilt-removed Fried approximation
with the coefficient of the tilt term 1.4332. The next lowest curve is the exact
calculation with tilt removed. The next lowest curve is for the tilt-removed Fried
approximation with the coefficient of the tilt term 1.0. The lowest curve is for
uncorrected turbulence with the tilt present.
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Figure 7.20. Strehl ratios for various situations versus the ratio D/r0 plotted
on a log scale. The highest curve is for the tilt-removed Fried approximation
with the coefficient of the tilt term 1.4332. The next lowest curve is the exact
calculation with tilt removed. The next lowest curve is for the tilt-removed Fried
approximation with the coefficient of the tilt term 1.0. The lowest curve is for
uncorrected turbulence with the tilt present.
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Figure 7.21. The ratio of the Strehl ratio for uncorrected turbulence with the
tilt removed to that for uncorrected turbulence versus the ratio D/r0.

to a target that is illuminated by a beacon, and the scoring beam is focused
at the target. As discussed in Sec. 3.5 the finite beacon introduces a term
2J1 (κDsz/2L)/(κDsz/2L) in the expression for the incoming beacon signal.
For this case, γ = γi = 1 − z/L for both the incoming and the outgoing beams,
and

f(ρ)2 =

[
exp[iγiκ · ρ] − 2J1 (κDsz/2L)

κDsz/2L
exp(iγiκ · ρ)

]2

=

[
1 − 2J1 (κDsz/2L)

κDsz/2L

]2

= f(ρ + αD)2, (7.102)

and

− 2f(ρ)f(ρ + αD) = −2

[
1 − 2J1 (κDsz/2L)

κDsz/2L

]2

cos (γiκ · αD) . (7.103)

Therefore, the structure function with tilt present is given by using eq. 3.85
as

D (αD) = 0.8295 k2
0

L∫
0

dz C2
n(z)

∫ π

0
dϕ

∫ ∞

0
κ−8/3dκ

×
[
1 − 2J1 (κDsz/2L)

κDsz/2L

]2

[1 − cos (γiκ · αD)] . (7.104)

The previous equation is not the total structure function, it is the structure
function for phase without the diffraction term. Assume that diffraction is neg-
ligible and the scintillation is small, so the phase structure function is a good
approximation to the total structure function.
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Let x = κDsz/2L and e = Dsz/2LαDγ1 to obtain

D (αD) = D1 (αD) = 0.26128 k2
0D

5/3
s

L∫
0

dz C2
n(z)(z/L)5/3

∫ π

0
dϕ

∫ ∞

0
x−8/3dx

×
[
1 − 2J1 (x)

x

]2 {
1 − cos

[
2x

e
cos(θd − ϕ)

]}

= 0.82084 k2
0D

5/3
s

L∫
0

dz C2
n(z)(z/L)5/3

∫ ∞

0
x−8/3dx

×
[
1 − 2J1 (x)

x

]2

[1 − J0(x/e)] . (7.105)

The integral over x can be evaluated in terms of generalized hypergeometric
functions.

This structure function with tilt present does not depend on ρ, and eq. 7.81
can be used to calculate the Strehl ratio. The integrand is small for large wave-
lengths, and it is expected that the correlation of phase to decay rapidly with
distance, which should result in the Maréchal formula being a better approxima-
tion for the Strehl ratio for small values of the parameter than for uncorrected
turbulence.

The variance is equal to

σ2 = 0.13064 k2
0D

5/3
s

L∫
0

dz C2
n(z)

(
z

L

)5/3 ∫ π

0
dϕ

∫ ∞

0
x−8/3dx

[
1 − 2J1 (x)

x

]2

= 0.06362 k2
0(Ds/L)5/3μ5/3 = (θ/9.91θ0)

5/3, (7.106)

where θ = Ds/L is the angle subtended by the beacon. This is similar to the
formula for variance for an anisoplanatic offset and the Strehl ratio calculated
using an angular offset of θ/9.91 provides a good approximation for the Strehl
ratio.

As an example of this calculation consider a transmitter at 12.2 km and a
receiver 273 km away at an altitude of 20.9 km with a CLEAR1 turbulence
model. Fig. 7.22 shows the Strehl ratio versus the ratio of beacon to transmit
diameter. Also plotted is the result from the Maréchal formula. Notice the good
agreement up to a ratio of 0.25. The third curve is the result obtained from the
formula for tilt anisoplanatism. There is good agreement up to a ratio of 2.
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Figure 7.22. The Strehl ratio, the Maréchal approximation, and the approxima-
tion using the tilt anisoplanatic expression versus the ratio of beacon diameter
to receive diameter. The transmitter is at 12.2 km and a receiver is 273 km away
at an altitude of 20.9 km with a CLEAR1 turbulence model.

The square of the tilt difference at the two points is

[A(ρ) − A(ρ + αD)]2 =

∣∣∣∣∣i16J2(γiκD/2)

γiκD/2

ρ · κ
Dκ

[
1 − 2J1 (κDsz/2L)

κDsz/2L

]

− i
16J2(γiκD/2)

γiκD/2

(ρ + αD) · κ
Dκ

[
1 − 2J1 (κDsz/2L)

κDsz/2L

]∣∣∣∣∣
2

=

[
16J2(γiκD/2)

γiκD/2

α · κ
κ

]2 [
1 − 2J1 (κDsz/2L)

κDsz/2L

]2

= 256α2

[
J2(γiκD/2)

γiκD/2

]2 [
1 − 2J1 (κDsz/2L)

κDsz/2L

]2

cos2(θd − ϕ). (7.107)

Let x = κDsz/2L and d = zDs/LDγi to obtain for the second component of
the structure function

D2 (αD) = −33.444α2 k2
0 D5/3

s

L∫
0

dz C2
n(z)(z/L)5/3

∫ π

0
dϕ cos2(θd − ϕ)

×
∫ ∞

0
x−8/3dx

[
J2 (x/d)

x/d

]2 [
1 − 2J1 (x)

x

]2

= −52.534α2 k2
0 D5/3

s

L∫
0

dz C2
n(z)(z/L)5/3

×
∫ ∞

0
x−8/3dx

[
J2 (x/d)

x/d

]2 [
1 − 2J1 (x)

x

]2

. (7.108)
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The third component of the structure function is found from

[f(ρ) − A(ρ) − {f(ρ + αD) − A(ρ + αD)}] [A(ρ + αD) − A(ρ)]

= Re

{[
exp(iγiκ · ρ)X − i16

J2(γiκD/2)

γiκD/2

ρ · κ
Dκ

X

− exp(iγiκ · ρ′)X + i16
J2(γiκD/2)

γiκD/2

ρ′ · κ
Dκ

X

]

×
[
−i16

J2(γiκD/2)

γiκD/2

(ρ′ − ρ) · κ
κD

X

]}
, (7.109)

where

X =

[
1 − 2J1 (κDsz/2L)

κDsz/2L

]
. (7.110)

Using this, one finds

D3 (αD,ρ) = 4.1805αk2
0D

5/3
s

∫ L

0
dz C2

n(z)(z/L)5/3
∫ π

0
dϕ cos(θd − ϕ)

×
∫ ∞

0
dx x−8/3J2(x/d)

x/d

[
1 − 2J1 (x)

x

]2 {
sin

[
2xρ

dD
cos(θρ − ϕ)

]

−16
ρ

D
cos(θd − ϕ)

J2(x/d)

x/d
− sin

[
2xρ′

dD
cos(θρ′ − ϕ)

]}
, (7.111)

where x = κDsz/2L and d = zDs/LDγi.
The total tilt-removed structure function is

DTR (αD) = k2
0 D5/3

s

L∫
0

dz C2
n(z)(z/L)5/3

∫ π

0
dϕ

∫ ∞

0
x−8/3dx

×
⎛
⎝0.26128

[
1 − 2J1 (x)

x

]2 {
1 − cos

[
x

e
cos(θd − ϕ)

]}

−33.444α2 cos2(θd − ϕ)

[
J2 (x/d)

x/d

]2 [
1 − 2J1 (x)

x

]2

+ 4.1805α cos(θd − ϕ)
J2(x/d)

x/d

[
1 − 2J1 (x)

x

]2

×
{

sin
[
2xρ

dD
cos(θρ − ϕ)

]
− 16

ρ

D
cos(θd − ϕ)

J2(x/d)

x/d

− sin

[
2xρ′

dD
cos(θρ′ − ϕ)

]}⎞
⎠ . (7.112)

For the same example as plotted in Fig. 7.22, the Strehl ratio with tilt
present, with tilt removed, and the tilt anisoplantic approximation are plot-
ted in Fig. 7.23. Notice that removing tilt significantly increases the Strehl ratio
for larger beacon sizes. It was found that for the several cases that were tried
that the third term D3 only changed the Strehl ratio by at most 2%. Numeri-
cally, this is the most difficult term to calculate since the κ integration cannot
be performed analytically.
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Figure 7.23. The Strehl ratio with tilt present and removed, and the approxi-
mation using the tilt anisoplanatic expression versus the ratio of beacon diameter
to receive diameter. The transmitter is at 12.2 km and a receiver is 273 km away
at an altitude of 20.9 km with a CLEAR1 turbulence model.

7.5.3 Strehl ratio for a finite beacon and collimated corrected beam

Next, consider the case where there is a beacon at z = L of diameter Ds and the
outgoing beam is collimated. This case applies to using a guidestar to correct
for a telescope, or to use the guidestar to correct a beam that is collimated. The
formulas that are developed are more complicated than the previous case. For
this case γ = γi = 1 − z/L for the incoming beam, and γ = 1 for the outgoing
beam. For this case the phase variance term is

f(ρ)2 =

[
exp(iκ · ρ) − 2J1(x)

x
exp(iγiκ · ρ)

]2

= 1 − 2
2J1 (x)

x
cos (κ · ρz/L) +

[
2J1 (x)

x

]2

, (7.113)

where x = κDsz/2L. Notice that this term depends on ρ. Similarly

f(ρ + αD)2 =

{
exp[iκ · (ρ + αD)] − 2J1(x)

x
exp [iγiκ · (ρ + αD)]

}2

= 1 − 2
2J1 (x)

x
cos (κ · (ρ + αD)z/L) +

[
2J1 (x)

x

]2

. (7.114)

Also
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−2f(ρ)f(ρ + αD) = −2

⎛
⎝cos [κ · αD] + 2

[
2J1 (x)

x

]2

cos (γi κ · αD)

−
[
2J1 (x)

x

]
{cos [ κ · (−ρz/L + γi αD)] + cos [κ · (ρz/L + αD)]}

)
.

(7.115)

The phase variance is

σ2 = 0.06532D5/3
s k2

0

L∫
0

dz C2
n(z)(z/L)5/3

∫ π

0
dϕ

∫ ∞

0
x−8/3dx

⎧⎨
⎩1 − 2

2J1 (x)

x
cos

[
2xρ

Ds

cos(θρ − ϕ)
]

+

[
2J1 (x)

x

]2
⎫⎬
⎭ . (7.116)

Integrating over angle gives

σ2 = 0.4104 k2
0 D5/3

s

L∫
0

dz C2
n(z)(z/L)5/3

∫ ∞

0
x−8/3dx

⎧⎨
⎩1 − 2

2J1 (x)

x
J0 [2xρ/Ds] +

[
2J1 (x)

x

]2
⎫⎬
⎭ . (7.117)

The aperture-averaged phase variance is equal to

σ2
Ave = 0.4104 k2

0D
5/3
s

L∫
0

dz C2
n(z) (z/L)5/3

∫ ∞

0
x−8/3dx

⎧⎨
⎩1 − 2

2J1 (x)

x

2J1 (Dx/Ds)

Dx/Ds

+

[
2J1 (x)

x

]2
⎫⎬
⎭ . (7.118)

The phase structure function with tilt present is found from

[f (ρ + αD) − f (ρ)]2 = 2 [1 − cos(κ · αD)] + 2Y 2 [1 − cos(γiκ · αD)]
− 2Y {cos(κ · ρz/L) + cos[κ · (ρ + αD)z/L]
− cos[κ · (−ρz/L + αDγi)] − cos[κ · (αD + ρz/L)]} , (7.119)

where Y = 2J1(κDsz/2L)/(κDsz/2L).
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Using these relations, the structure function with tilt present is given as

D (αD) = D1 (αD) = 0.8292 k2
0

L∫
0

dz C2
n(z)

∫ π

0
dϕ

∫ ∞

0
κ−8/3dκ

×
⎛
⎝[1 − cos(κ · αD)] +

[
2J1 (κDsz/2L)

κDsz/2L

]2

[1 − cos(κ · γiαD)]

−
[
2J1 (κDsz/2L)

κDsz/2L

]
{cos(κ · ρz/L) + cos(κ · ρ′z/L)

− cos[κ · (−ρz/L + γiαD)] − cos[κ · (ρz/L + αD)]}
⎞
⎠ . (7.120)

The dot products can be replaced by expressions that contain the cosine of
angles. For instance

κ · (ρz/L + γiαD) = κρz cos(θρ − ϕ)/L + γiκαD cos(θd − ϕ). (7.121)

As in the last section, the previous equation is not the structure function, it
is the structure function for phase without the diffraction term. Assume that
diffraction is negligible and the scintillation is small, so the phase structure
function is good approximation to the total structure function. The integrand is
small for large wavelengths, and it is expected that the correlation of phase to
decay rapidly with distance, which should result in the Maréchal formula being
a better approximation for the Strehl ratio than for uncorrected turbulence.

A comparison of the Maréchal formula and the Strehl ratio is plotted in
Fig. 7.24. Note that the Strehl ratio is only slightly higher than the approxima-
tion even for values of the beacon diameter to aperture diameter of 4.

The square of the tilt difference at the two points is

[A(ρ) − A(ρ + αD)]2 =

∣∣∣∣∣i16J2(κD/2)

κD/2

ρ · κ
Dκ

− iY
16J2(γiκD/2)

γiκD/2

ρ · κ
Dκ

− i
16J2(κD/2)

κD/2

(ρ + αD) · κ
Dκ

+ iY
16J2(γiκD/2)

γiκD/2

(ρ + αD) · κ
Dκ

∣∣∣∣∣
2

= 256 α2

{
J2(κD/2)

κD/2
−
[
2J1 (κDsz/2L)

κDsz/2L

]
J2(γiκD/2)

γiκD/2

}2

cos2(θd − ϕ).

(7.122)

The second component of the structure function is

D2 (αD) = −33.444 α2 k2
0 D5/3

L∫
0

dz C2
n(z)

∫ π

0
dϕ cos2(θd − ϕ)

×
∫ ∞

0
x−8/3dx

[
J2 (x)

x
− 2J1 (x/b)

x/b

J2 (γix)

γix

]2

. (7.123)

where x = κD/2 and b = DL/Dsz.
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Figure 7.24. The Strehl ratio and the Maréchal approximation for a beacon of
diameter Ds and a collimated scoring beam. The aperture diameter is 1 meter,
the range L is 90 km, and the isoplanatic angle is 22 microradians.

Once again set the finite beacon function Y = 2J1 (κDsz/2L)/(κDsz/2L).
The third component of the structure function is found from

{f(ρ) − A(ρ) − [f(ρ + αD) − A(ρ + αD)]} [A(ρ + αD) − A(ρ)]
= Re {[exp(iκ · ρ) − Y exp(iγiκ · ρ) − exp(iκ · ρ′) + Y exp(iγiκ · ρ′)

− i16
J2(κD/2)

κD/2

ρ · κ
Dκ

+ i16Y
J2(γiκD/2)

γiκD/2

ρ · κ
Dκ

+ i16
J2(κD/2)

κD/2

ρ′ · κ
Dκ

− i16Y
J2(γiκD/2)

γiκD/2

ρ′ · κ
Dκ

]

× (−i16)

[
J2(κD/2)

κD/2

α · κ
κ

− Y J2(γiκD/2)

γiκD/2

α · κ
κ

]}

= 16α

{
sin(κ · ρ) − Y sin(γiκ · ρ) − sin(κ · ρ′) + Y sin(γiκ · ρ′)

+ 16

[
J2(κD/2)

κD/2
+ Y

J2(γiκD/2)

γiκD/2

]
α cos(θd − ϕ)

}

×
[
J2(κD/2)

κD/2
− Y

J2(γiκD/2)

γiκD/2

]
cos(θd − ϕ), (7.124)
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Using this result, the third component of the structure function is equal to

D3 (αD,ρ) = 6.636αk2
0

∫ L

0
dz C2

n(z)
∫ π

0
dϕ cos(θd − ϕ)

∫ ∞

0
dκ κ−8/3

×
{

sin(κ · ρ) − Y sin(γiκ · ρ) − sin(κ · ρ′) + Y sin(γiκ · ρ′)

+ 16

[
J2(κD/2)

κD/2
− Y

J2(γiκD/2)

γiκD/2

]
α cos(θd − ϕ)

}

×
[
J2(κD/2)

κD/2
− Y

J2(γiκD/2)

γiκD/2

]
. (7.125)

Set x = κD/2 to obtain

D3 (αD,ρ) = 2.090αk2
0 D5/3

∫ L

0
dz C2

n(z)
∫ π

0
dϕ cos(θd − ϕ)

∫ ∞

0
dx x−8/3

×
(

sin
(

2x

D
ρ cos(θρ − ϕ)

)
−
[
2J1(x/b)

x/b

]
sin

(
2x

D
γiρ cos(θρ − ϕ)

)

− sin
(

2x

D
ρ′ cos(θρ′ − ϕ)

)
+

[
2J1(x/b)

x/b

]
sin

(
2x

D
γiρ

′ cos(θρ′ − ϕ)
)

+ 16

{
J2(x)

x
−
[
2J1(x/b)

x/b

]
J2(γix)

γix

}
α cos(θd − ϕ)

)

×
{

J2(x)

x
−
[
2J1(x/b)

x/b

]
J2(γix)

γix

}
. (7.126)

A comparison of the Strehl ratio with tilt present and tilt removed is plotted
in Fig. 7.25.
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Figure 7.25. The Strehl ratio with tilt present and with tilt removed for a
beacon of diameter Ds and a collimated scoring beam. The aperture diameter
is 1 meter, the range L is 90 km, and the isoplanatic angle is 22 microradians.
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Chapter 8

Mellin Transforms with a Complex Parameter

When one analyzes beam-wave propagation through turbulence, the propaga-
tion parameter γ is complex. This causes complications when one evaluates the
steepest-descent contribution to an asymptotic solution. In some problems, the
spatial filter functions contain a decaying exponential times a function that
grows exponentially when γ is complex. Consequently, the Mellin convolution
relation must be generalized to allow for convergent integrals that contain in-
tegrands that are the product of functions that exhibit exponential growth and
exponential decay. In addition, methods developed in Chap. 5 must be extended
to include asymptotic results for a non-positive parameter. This requires an ex-
tension of saddle-point results to complex-parameter cases. These extensions are
discussed in this chapter.

The theory of asymptotic expressions for general integrals has been consid-
ered by Luke (1969). Marichev (1983) states asymptotic results for integrals
with complex parameters that apply specifically to Mellin-Barnes integrals with
unity coefficients of the complex variable in the gamma functions. These results
are generalized here to allow asymptotic series to be written for Mellin-Barnes
integrals in which the coefficients of the complex variable are not unity. Also,
the results are given in a form that is directly applicable to the evaluation of
integrals encountered in turbulence problems.

8.1 Mellin-Barnes Integrals with Complex Parameters

In beam-wave analysis, the integral expression that must be evaluated is

h(z) =

∞∫
0

dy

y
h0(y)h1 (z/y), (8.1)

where the parameter z in general is complex. If z = x, x real, the convolution
integral in eq. 1.28 may be used to obtain the Mellin transform of the integral

h(x) =

∞∫
0

dy

y
h0(y)h1 (x/y) → M [h(x)] = H(s) = H0(s)H1(s). (8.2)
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252 8 Mellin Transforms with a Complex Parameter

The function h(x) is written as an inverse Mellin transform that is evaluated
with pole-residue methods. In the case of a complex parameter, however, the
Mellin transform of one integrand function may be undefined because it exhibits
exponential growth. Let that function be h1(x). It is not obvious how to ap-
ply the convolution integral in this case. Marichev (1983, Theorem 23) gives a
generalized Parseval’s equality that is applicable here. Before the statement of
the theorem, it is necessary to show how to express a function with a complex
parameter as a Mellin-Barnes integral.

The general integral of interest is given by eq. 5.90

h(z) =
1

2π i

∫
C′

ds z−s

A∏
i=1

Γ [ai + αi s]
B∏

j=1
Γ [bj − βj s]

C∏
k=1

Γ [ck + γk s]
D∏

m=1
Γ [dm − δm s]

. (8.3)

The parameter z in the above equation may, in general, be complex. In this
discussion if the parameter is real, it will be represented by x. The contour C ′

along which the integral is normally evaluated is given by the vertical line from
η−i∞ to η+i∞, where η is a real constant chosen to insure that the integration
path lies within the strips of analyticity of the integrand functions. When the
parameter is complex, however, convergence conditions may require that the
integration path be closed either in the left-half-plane or the right-half-plane.
This issue is discussed further by Luke (1969) and Marichev (1983). An example
of this condition is provided by the Bessel function of the first kind Jν(z). If
z = x is real, the Mellin-Barnes integral representation of Jν(z) is given by

Jv(x) =
1

4πi

η+i∞∫
η−i∞

ds Γ

[
s/ + ν/2

−s/2 + 1 + ν/2

] (
x

2

)−s

, (8.4)

where x > 0, and −Re {v} < η < 3/2. If z = β x is complex, a similar integral
expression may be written,

Jv(βx) =
1

4πi

∫
C−∞

ds Γ

[
s/2 + ν/2

−s/2 + 1 + ν/2

] (
βx

2

)−s

, (8.5)

where the new integration path C−∞ is the left loop surrounding all poles of
Γ [(v + s) /2]. These poles occur at s = −v − 2n for n = 0, 1, 2, . . . .

In problems treated in this book and encountered in analyzing the effects
of turbulence, the parameters ai, α1, bj, βj, ck, γk, dm, and δm are all real.
Therefore, all the integrand’s poles occur along the real axis. This makes it
possible to paraphrase Marichev’s theorem (1983) as below:

Theorem 1. If the following three conditions hold:
a) for certain x > 0 and η, the integrals

∞∫
0

dy

y
h0 (y) h1(x/y),

1

2π i

η+i∞∫
η−i∞

dsH0(s)H1(s) x−s (8.6)
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8.2 Asymptotic Results with a Complex Parameter 253

exist;
b) H0(s) is an analytic function of s without singularities for Re {s} < η (or

Re {s} > η); and
c) h1(y) is a function of hypergeometric type (a hypergeometric function with

a power of the argument multiplying it, or such that some terms of its power
series are subtracted from it ) such that H1(s) exists with

h1(y) =
1

2πi

∫
L∓∞

dsH1(s) y−s, (8.7)

where the integration is over the appropriate loop L−∞ (or L+∞) such that all
the poles of H1(s) are enclosed, then

∞∫
0

dy

y
h0 (y) h1(z/y) =

1

2π i

η+i∞∫
η−i∞

dsH0(s)H1(s) z−s. (8.8)

The Bessel function satisfies the conditions required for h1(y), and for complex
z can have exponential growth. In practice, when conditions for the theorem
are satisfied one substitutes the Mellin transforms of the functions with real
parameters into the convolution integral and ignores the fact that the individual
Mellin transforms may not exist for a complex parameter.

Use of this result is illustrated in Sec. 8.3 where the Mellin transform of
exp (−αx2) Jv (βx) is derived for β complex.

8.2 Asymptotic Results with a Complex Parameter

As discussed in Chap. 5, when the parameter associated with a Mellin convolu-
tion is large, the series result obtained by pole-residue techniques may converge
slowly. Consequently, asymptotic results are useful when accurate approxima-
tions are desired. Asymptotic expressions were obtained in Chap. 5 when the
parameter was assumed to be positive real (complex argument has zero imag-
inary part). These results are now generalized to allow complex or negative
parameters.

The general form of the Mellin-Barnes integral that must be evaluated is
given in eq. 8.3. The definitions in the table at the end of this chapter are
used in our analysis. One finds the asymptotic form of eq. 8.1 by deforming the
original integration path so that the new path goes through all saddle points in
the direction of steepest descent. The asymptotic approximation of the integral
includes the pole residues picked up through path deformation. One calculates
the asymptotic contribution of the deformed path by computing a steepest-
descent contribution, and one finds the pole-residue contributions by changing
the normal direction of contour closure as described in Chap. 5.

To find the steepest-descent contribution to the integral, one uses the asymp-
totic form of the integrand. The identity

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



254 8 Mellin Transforms with a Complex Parameter

Γ [ν] Γ [1 − ν] = π/sin(πν) (8.9)

allows eq. 8.3 to be expressed so that the coefficients of s in all gamma functions
are negative. The asymptotic expressions for the gamma functions,

Γ [e + εs] ∼
√

2π exp [(εs + e − 1/2) ln(εs) − εs] , (8.10)

where e and ε are arbitrary numbers, and the sine functions

sin(πs) ∼ 1
2
exp

[
−iπ

(
s − 1

2

)]

when Im {s} > 0, and

sin(πs) ∼ 1
2
exp

[
iπ

(
s − 1

2

)]

when Im {s} < 0, may be used to obtain the asymptotic form for the integral,

h(z) ∼ −i(2π)Ξ/2−1
∫

ds exp [f(s)] . (8.11)

The function in the exponent is given by

f(s) = Δ′′ − Δ′′′/2 + s [Δ′ − Δ − ln(z)]

+ ln(s)
(
ν − Ξ

2
+ Δs

)
− iλπ (−Λ′′ + Λ/2 + sΛ′) . (8.12)

This expression is valid for −π < arg {s} < π. When Im {s} > 0, then λ = 1,
and when Im {s} < 0, then λ = −1.

To find the steepest-descent contribution, the saddle points of f(s) must be
found. These are the points at which

df(s)

ds
= 0 = Δ ln(s) + Δ′ − ln(z) − iλπΛ′. (8.13)

Terms which depend upon 1/s have been dropped from this expression because
at the saddle point |s| is large for large |z|. Two cases must be considered. If a
saddle point exists in the upper half plane, then the solution of eq. 8.13 for s
requires λ = 1. Similarly lower-half-plane saddle points require λ = −1.

The upper-half-plane saddle point is located at

so = z1/Δ exp
[
− 1

Δ
(Δ′ − iπΛ′)

]
, (8.14)

and the requirement on arg{z} for the existence of the saddle point in the upper
half-plane is

−πΛ′ < arg{z} < π (Δ − Λ′) . (8.15)

Similarly, the lower-half-plane saddle point is located at

so = z1/Δ exp
[
− 1

Δ
(Δ′ + iπΛ′)

]
, (8.16)
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8.2 Asymptotic Results with a Complex Parameter 255

and the corresponding restriction on arg{z} is

−π (Δ − Λ′) < arg{z} < πΛ′. (8.17)

If Λ′ = 0, then for positive-real z the saddle point is located on the real axis.
If −1 < Λ′/Δ < 0, there is a contradiction. If one assumes the saddle point is
in the upper half plane, one finds that the saddle point specified by eq. 8.14 is
located in the lower half plane. A contradiction also results if one assumes that
the saddle point is located in the lower half plane. The only other possibility
is to assume that the saddle point is located on the real axis. For this case the
sinusoid cannot be represented by their asymptotic equivalents. A simple case
arises when B = D = 0. For this case one should set λ = 0 in eq. 8.12, and
indeed the single saddle point is located on the real axis at

so = z1/Δ exp (−Δ′/Δ) . (8.18)

One obtains the correct value for the steepest-descent contribution in this case
from the final answer given in eq. 8.25 and eq. 8.26 by setting Λ′′ = Λ′ = Λ = 0
and dividing the answer by two. For the more general case of Λ′ < 0, eq. 8.12
becomes

f(s) = Δ′′ − Δ′′′/2 + s [Δ′ − Δ − ln(z)]

+ ln(s)
(
ν − Ξ

2
+ Δs

)
+ exp

⎛
⎜⎜⎜⎝ln

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D∏
m=1

sin [π (δms − dm + 1)]

B∏
j=1

sin [π (βjs − bj + 1)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠ . (8.19)

The steepest-descent point in this case is located at the solution of the equation

so = z1/Δ exp

(
−Δ′

Δ

)

× exp

⎛
⎝ π

Δ

⎧⎨
⎩

D∑
m=1

δm cot [π (δmso + 1 − dm)] −
B∑

j=1

βj cot [π (βj so + 1 − bj)]

⎫⎬
⎭
⎞
⎠ .

(8.20)

The right-hand side of the equation is always positive for positive-real z; there-
fore, the saddle point is located in the right half plane. The equation has mul-
tiple solutions but the one closest to the origin gives the largest contribution.
For this case the saddle point has exponential decay. Often knowledge of this
fact allows the steepest-descent contribution to the value of the integral to be
neglected compared to pole contributions. If there are no pole contributions in
the right-half plane, then eq. 8.20 must be solved to find the steepest-descent
contribution.

For the case in which the saddle point is on the real axis, it is located in the
right half plane. Therefore, in deforming the path to pass through the saddle
point, one picks up poles that were not included in the Taylor series solution.
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256 8 Mellin Transforms with a Complex Parameter

When there are two complex saddle points, they are also located in the right half
plane. To prove that, first note that all Mellin transforms have fewer or the same
number of denominator gamma functions than numerator gamma functions (this
stems from the requirement that the inverse transform integrand must go to zero
at ±∞). Also note that for this case Δ′ > 0 and Δ > 0. The direction of the
upper-complex saddle point is determined by

0 <
Λ′

Δ
=

1

2
− 1

2

(
A + B − C − D

Δ

)
≤ 1

2
. (8.21)

Therefore, the saddle point specified by eq. 8.14 is located in the upper-right
complex plane for positive-real z.

One finds the line integral contribution to the asymptotic form of the original
integral by evaluating the steepest-descent contribution at upper- and lower-half-
plane saddle points. The exponent in eq. 8.12 is expanded in a Taylor series given
by

f(s) ≈ f (so) +
df (so)

ds
(s − so) +

1

2

d2f (so)

ds2
(s − so)

2 . (8.22)

The magnitudes of second and higher-order derivatives at the saddle point are
proportional to s1−n

o , where n is the order of the derivative. Since |so| is large,
higher-order terms may be neglected. At the saddle point

f(s) ≈ f (so) +
1

2

d2f (so)

ds2
(s − so)

2 . (8.23)

With this approximation and an appropriate change of variables, the integral in
eq. 8.11 becomes the integral of a Gaussian function that, when evaluated, gives
the following results

h(z) ∼ E(z) = E1(z) + E2(z), (8.24)

where E1(z) and E2(z) are the upper- and lower-half-plane contributions, re-
spectively. E1(z) is given by

E1(z) =
(2π)(Ξ−1)/2

√
Δ

zρ exp

[
−ρ (Δ′ − iπΛ′)

− Δz1/Δ exp

(
−Δ′ + iπΛ′

Δ

)
+ Δ′′ − Δ′′′

2
− iπ

(
−Λ′′ +

Λ

2

)]
(8.25)

when −πΛ′ < arg{z} < π (Δ − Λ′), and E1(z) = 0 otherwise. E2(z) is given by

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



8.3 The Mellin Transform of an Exponential Times a Bessel Function 257

E2(z) =
(2π)(Ξ−1)/2

√
Δ

zρ exp

[
−ρ (Δ′ + iπΛ′)

− Δz1/Δ exp

(
−Δ′ + iπΛ′

Δ

)
+ Δ′′ − Δ′′′

2
+ iπ

(
−Λ′′ +

Λ

2

)]
(8.26)

when −π (Δ − Λ′) < arg{z} < πΛ′, and E2(z) = 0 otherwise.
I have actually underestimated the range of arg{z} over which the approxi-

mations in eq. 8.25 or eq. 8.26 are valid. It may be extended by using asymptotic
approximations for the gamma function Γ [α], that are valid for other ranges of
arg{a}. When this is done, results from steepest-descent methods reported here
match those obtained by Luke (1969) that were derived from the properties of
the Meijer G function. Marichev (1983) summarizes these results. With this ex-
tension, eq. 8.25 can be used for −πΛ′ < arg{z} < π (Δ − Λ′ + ς), and eq. 8.26
can be used for −π (Δ − Λ′ + ς) < arg{z} < πΛ′ where ς = 1/2 when Δ = 1,
and ς = 1 when Δ > 1.

To determine which terms dominate the asymptotic solution, the steepest-
descent and the pole-residue portions of the asymptote must be examined. If
E(z) exhibits exponential growth, it will dominate the asymptote. If E(z) ex-
hibits exponential decay, and there is a pole-residue contribution to the asymp-
tote, then the pole-residue portion is dominant. An example that illustrates the
use of these techniques is given in the next section.

When the parameter z is positive real, these results reduce to the saddle-point
expression given in eq. 5.93.

8.3 The Mellin Transform of an Exponential Times a
Bessel Function

In this section the technique that was developed above is used to evaluate an
integral with a complex parameter to illustrate how to find the pole and steepest-
descent contributions in this case.

The integral expression for the Mellin transform of exp (−αx2) Jv (βx) is
given by

Q(s) = M
[
exp

(
−αx2

)
Jν (βx)

]
=

∞∫
0

dx

x
xs exp

(
−αx2

)
Jν (βx), (8.27)

where β is complex, and α is real and greater than zero. This integral is of inter-
est not only because its solution demonstrates the techniques described in this
chapter, but also because it occurs in the log-amplitude and phase variance ex-
pressions for propagation in the presence of Kolmogorov turbulence through
complex cascaded optical systems, referred to as ABCD systems (Yura and
Hanson 1989), and in the evaluation of the scintillation in the next chapter.
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258 8 Mellin Transforms with a Complex Parameter

In addition, one can use this transform as an intermediate step in finding the
Mellin transform of exp (−αx2) J2

v (βx), which is encountered in beam-wave tilt
analysis.

I use the extension to the Mellin convolution integral discussed in Sec. 9.2,
with the expression for the Mellin-Barnes representation of the Bessel function
given in eq. 8.4, to evaluate the integral given above. Note that Mellin transforms
of Bessel functions with complex arguments do not converge although they do
satisfy condition (c) of the theorem in Sec. 8.2. The exponential function that
appears in the integrand satisfies condition (b) of the theorem and balances the
exponential growth of the Bessel function (when β is complex) with exponential
decay.

As discussed in Sec. 8.1, the Mellin transform of the Bessel function to be
inserted into the convolution integral is given by

M [Jν (βx)] =
1

2
Γ

[
s/2 + ν/2

−s/2 + ν/2 + 1

](
β

2

)−s

. (8.28)

With these results, the Mellin transform in eq. 1.47, and the substitution u → 2u,
eq. 8.27 is equal to

Q(s) =

(
α−s/2

2

)
1

2πi

η+i∞∫
η−i∞

duΓ

[
−u + s

2
, u + ν

2

−u + ν
2

+ 1

](
β2

4α

)−u

, (8.29)

where Re {−ν/2} < η < Re {−s/2}. In this integral Δ = 1; therefore, in order
to obtain a converging series solution for the integral, the integration path is
closed to the left, and one obtains the pole contributions at u = −n − ν/2 for
n = 0, 1, 2, . . . . Pole-residue techniques applied to the integral give

exp
(
−αx2

)
Jν (βx) → 1

2αs/2

(
β2

4α

)ν/2 ∞∑
n=0

(−1)n

n !
Γ

[
s/2 + ν/2 + n

ν + 1 + n

](
β2

4α

)n

=
1

2αs/2

(
β2

4α

)ν/2

Γ

[
ν+s
2

ν + 1

]
1F1

[
ν

2
+

s

2
; ν + 1;−β2

4α

]
, (8.30)

for Re {ν + s} > 0, and α > 0.
The natural parameter that results from this analysis is β2/4α. When the

magnitude of this parameter is small, the series given in eq. 8.30 converges
quickly, thereby only a few terms are needed to accurately approximate the
transform. If the parameter magnitude is large, and an approximation for the
integral is needed, the asymptotic solution for eq. 8.29 is more appropriate. The
integral is closed to the right in order to pick up the pole-residue contributions.
One obtains path-integral contributions to the asymptotic form by evaluating
the integral with the steepest-descent methods discussed in Sec. 9.2.

The poles which contribute to the asymptotic form for the Mellin transform
occur at the points u = n + s/2 for n = 0, 1, 2, . . . . This leads to a pole-residue
contribution given by
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W =
1

2

(
2

β

)s no∑
n=0

(−1)n

n !
Γ

[
n + s/2 + ν/2

−n − s/2 + ν/2 + 1

](
β2

4α

)−n

. (8.31)

no is selected to minimize the error in the asymptotic approximation as discussed
in Sec. 5.2.

Added to W are the steepest-descent components of the integral. Equations
eq. 8.25 and eq. 8.26 are evaluated, and it is found that

E1 =
α1−s

2

(
−β2

4

)s/2−1

exp

(
−β2

4α
+

iπν

2

)

for 0 < arg
{
β2/4α

}
< 3π/2, and (8.32)

E2 =
α1−s

2

(
−β2

4

)s/2−1

exp

(
−β2

4α
− iπν

2

)

for −3π/2 < arg
{
β2/4α

}
< 0. (8.33)

These terms are dominant only when Re {β2/4α} < 0 in which case E1 or
E2 exhibit exponential growth. When E1 or E2 have sinusoidal behavior (when
Re {β2/4α} = 0), both W and E components must be included in the asymp-
totic solution. Combining these results, one obtains the following asymptotic
form for the Mellin transform of exp (−αx2) Jv (βx):

Q(s) ∼ E1 when
π

2
< arg

{
β2/4α

}
<

3π

2
, (8.34)

Q(s) ∼ E1 + W when arg
{
β2/4α

}
=

π

2
, (8.35)

Q(s) ∼ W when − π

2
< arg

{
β2/4α

}
<

π

2
, (8.36)

Q(s) ∼ E2 + W when arg
{
β2/4α

}
= −π

2
, and (8.37)

Q(s) ∼ E2 when − 3π

2
< arg

{
β2/4α

}
< −π

2
. (8.38)

As a check on this result, examine the case when s = 1, for which results are
available in the literature. Replace β by iδ (δ is still complex.) Note the identity
that relates Bessel and modified Bessel functions,

Iν(z) = exp
(
−iπν

2

)
Jν (iz) ,

[
−π < arg{z} ≤ π

2

]
, (8.39)

and the relation in Gradshteyn and Ryzhik (1980, eq. 9.238 #2)

Iν(x) =
2−ν

Γ [ν + 1]
xν exp (−x) 1F1

[
1

2
+ ν; 1 + 2ν; 2x

]
. (8.40)
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Substitute these results in eq. 8.30 to give

∞∫
0

dx

x
x exp

(
−αx2

)
Iν (δ x) =

1

2

√
π

α
exp

(
δ2

8α

)
Iν/2

(
δ2

8α

)
(8.41)

for Re {ν} > −1, and α > 0. This agrees with the result given in Gradshteyn
and Ryzhik (1980, eq. 6.618 #4).

If δ is real, Gradshteyn and Ryzhik (1980, eq. 8.451 #5) gives the asymptotic
form for the modified Bessel function

Iν(z) ∼ exp (z)√
2πz

. (8.42)

This leads to the asymptotic form for the integral given by

Q(1) = exp
(

iπν

2

) ∞∫
0

dx

x
x exp

(
−αx2

)
Iν (δ x)

∼ 1

δ
exp

(
δ2

4α

)
exp

(
iπν

2

)
,

∣∣∣∣∣δ
2

α

∣∣∣∣∣ >> 1. (8.43)

With these methods I can obtain asymptotic results for arbitrary values of
s. For the present case arg {β2/4α} = π, and the steepest-descent contribution
dominates. One finds this by inserting eq. 8.32 into eq. 8.34 to obtain

Q(s) ∼ α1−s

2

(
−β2

4

)s/2−1

exp

(
−β2

4α

)
exp

(
iπν

2

)
,

∣∣∣∣∣β
2

α

∣∣∣∣∣ >> 1. (8.44)

For s = 1 this result is identical to eq. 8.43. The case of arbitrary s is not
generally available.
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Chapter 9

Finite Beam Characteristics As Examples with

a Single Complex Parameter

In Chap. 2 I introduced a method for easily expressing in integral form the second
moment of phase and log-amplitude related quantities for infinite collimated and
focused waves propagating through turbulence. It was shown how these integrals
could be evaluated using Mellin transform techniques. I extend these methods
here to solve for the propagation of beam waves with Gaussian shape. Earlier
results are a special case of this more general case. To express results as integrals,
the approach in Chap. 2 is followed to the point where the propagation parameter
γ was assumed to be real. Here γ must be complex to handle beams of finite
extent. I derive the filter function for two counterpropagating or copropagating
waves.

The filter function for the general case has a complex propagation parameter,
which results in functions with exponential growth in the integrand. The Mel-
lin convolution integral was generalized to this contingency in the last chapter
by applying Parseval’s equality. The Taylor series obtained using pole-residue
integration are not more difficult to derive in this case. For large parameters I
derive asymptotic expressions that have a more complicated dependence than
for the infinite-wave case, because the functional form can change depending on
the argument of the propagation constant in the complex plane. The method is
applied to find the scintillation on a beam wave.

Recent results from computer simulations show that these results are not
correct for every geometry. The restrictions on the validity of the solution are
discussed. In addition, these results only apply to the case in which the beam
is tracked so that its center stays on axis. Heuristic formulas that apply in the
other cases for both the tracked and untracked cases are given.

9.1 Phase and Log-Amplitude Variances of Beam Waves

The derivation of the second moment expressions for beam-wave problems is the
same as in Chap. 2 up to eq. 2.95. At that point the propagation parameter γ is
allowed to be complex, which requires that the succeeding equations be modified.
The assumptions of a beam being on axis and not varying in size that were used
in the derivation of the equations for phase and log-amplitude variations do not
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262 9 Finite Beam Characteristics As Examples with a Single Complex Parameter

apply for all beam propagation scenarios. For instance, there are cases in which
the tilt jitter causes a movement of the beam that is greater than the beam
diameter. In that case the turbulence does not cause a small perturbation of the
field. Charnotskii (1964) divided the propagation space into different regions with
different properties. Baker (2006) observed that Charnotskii’s D1 region is one
in which the formulas developed here are incorrect and defines two parameters

NL = k0w
2
0/2L |1 + L/R0| , (9.1)

and
Nτ = k0w

2
0/2zτ |1 + zτ/R0| , (9.2)

where zτ is the location or thickness of the turbulence and R0 is the range at
which the beam is focused.

In the D1 region where Nτ > 1 and NL < 1, the formulas derived here do
not apply. For other regions the formulas that are derived here are valid for the
case in which the beam is tracked and kept on axis.

At the end of this chapter, formulas are given that apply for both the tracked
and untracked cases for all values of the two parameters. These formulas were
derived heuristically by observing the output of computer code calculations for
many scenarios.

The relevant equations from Chap. 2 are repeated here as eq. 9.3 to eq. 9.11
for convenience. The phase and log-amplitude are given by

[
iφ (ρ, z)
χ (ρ, z)

]
= 1

2
[Φ1(ρ, z) ∓ Φ∗

1(ρ, z)] , (9.3)

where

Φ1(ρ, L) =

L∫
0

dz′
∫

dν (κ, z′)H(κ, L, z′) exp (iγκ · ρ) , (9.4)

H(κ, L, z) = ik0 exp [−iP (γ, κ, z)] , (9.5)

k0 = 2π/λ, and λ is the wavelength in the propagating medium. The requirement
that the refractive index is real gives

dν(κ, z) = dν∗(−κ, z) . (9.6)

For propagation from z = 0 to z = L the diffraction parameter is given by

P (γ, κ, z) =
γκ2(L − z)

2k0

, (9.7)

and for propagation from z = L to z = 0, the diffraction parameter is equal to

P (γ, κ, z) =
γκ2z

2k0

. (9.8)

The value of γ is

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



9.1 Phase and Log-Amplitude Variances of Beam Waves 263

γ =
1 + iα z

1 + iα L
(9.9)

for a wave propagating from z = 0 to z = L, and

γ =
1 + iα (L − z)

1 + iα L
(9.10)

for a wave propagating from z = L to z = 0.
The value of α is

α = αr + i αi = λ/π W 2
o + i/Ro. (9.11)

The parameter Ro is the radius of curvature of the beam at the source. It is
equal to infinity for a collimated beam. At the radius equal to Wo, the intensity
has dropped to 1/e2 of its value on axis.

Change the sign of κ in eq. 9.4, take the complex conjugate, use eq. 9.6 and
the evenness of H (κ, L, z) with respect to κ. Substitute the result and eq. 9.4
into eq. 9.3 to obtain

[
iφ (ρ, L)
χ (ρ, L)

]
=

L∫
0

dz′
∫ dν (κ, z′)

2
[H (κ, L, z′) exp (iγκ · ρ ) ∓ H∗ (κ, L, z′) exp (iγ∗κ · ρ )] .

(9.12)

These expressions apply to a single point in space. Often the aperture average
of the phase times a weighting function g (ρ ) is required, as in the case of tilt.
For the beam wave case, the aperture averaging function does not have to be
centered on the beam axis but can be displaced by a distance ρ. In that case
phase and log-amplitude related quantities are

[
iφR(ρ, L)
χR(ρ, L)

]
=

1

2

∫
dρ ′

L∫
0

dz′
∫

dν (κ, z′) g (ρ ′ − ρ )

× [H(κ, L, z′) exp (iγκ · ρ ′) ∓ H∗(κ, L, z′) exp (iγ∗κ · ρ ′)] . (9.13)

Now interchange the integration order. The integral over a finite aperture con-
verges and is recognized as the two-dimensional Fourier transform of the aperture
function

G (γκ ) =
∫

dρ ′ g (ρ ′) exp (iγκ · ρ ′) (9.14)

with the transform variable γκ. This gives
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264 9 Finite Beam Characteristics As Examples with a Single Complex Parameter

[
iφR (ρ, L)
χR (ρ, L)

]
=

1

2

L∫
0

dz′
∫

dν (κ, z′)

× [H (κ, L, z′)G(γκ) exp (iγκ · ρ ) ∓ H∗ (κ, L, z′)G (γ∗κ) exp (iγ∗κ · ρ )] .

(9.15)

Up to now only a single wave has been considered. Generalize this to the
case of finding the difference between the phase and log-amplitude of two waves
that can have different propagation constants. This will allow consideration of
the difference between displaced counterpropagating and copropagating waves
that are focused or collimated. Let the second wave be multiplied by a quantity
A (κ, z) that can be a function of the axial coordinate and transverse wavenum-
ber. If this multiplier is zero, one is back to the single-wave case, and if it is a
complex exponential, it corresponds to anisoplanatism. Finally, let the aperture
weighting factor be different for each wave. The result is

[
iφR (ρ, L)
χR (ρ, L)

]
=

1

2

L∫
0

dz′
∫

dν (κ, z′)

×{[H1 (κ, L, z′)G1 (γ1 κ) exp (a1) ∓ H∗
1 (κ, L, z′)G1 (γ∗

1κ) exp (a∗
1)]

−A (κ, z′) [H2(κ, L, z′)G2(γ2κ ) exp (a2) ∓ H∗
2 (κ, L, z′)G2(γ

∗
2 κ) exp (a∗

2)]},
(9.16)

where an = iγnκ · ρ.
The second moment of this quantity is found by multiplying it by its complex

conjugate and taking the expected value. The same manipulations as between
eq. 2.107 and eq. 2.110 are applied to eliminate integrations over κ and the axial
coordinate, to obtain

[
σ2

φR (ρ )

σ2
χR (ρ )

]
=

0.2073

4

L∫
0

dz C2
n(z)

∫
dκ f(κ)

×{[H1 (κ, L, z)G1 (γ1 κ ) exp (a1) ∓ H∗
1 (κ, L, z)G1 (γ∗

1 κ) exp (a∗
1)]

−A (κ, z) [H2 (κ, L, z)G2 (γ2 κ) exp (a2) ∓ H∗
2 (κ, L, z)G2 (γ∗

2 κ) exp (a∗
2)]}

×{ [H∗
1 (κ, L, z)G∗

1 (γ1 κ) exp (−a∗
1) ∓ H1 (κ, L, z)G∗

1 (γ∗
1 κ) exp (−a1)]

−A∗ (κ, z) [H∗
2 (κ, L, z)G∗

2(γ2 κ) exp(−a∗
2) ∓ H2(κ, L, z)G∗

2(γ
∗
2 κ) exp(−a2)]}.

(9.17)

This is the central formula for beam-wave problems and is the analog of
eq. 2.110. This expression does not simplify as nicely as its analog did for the
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9.1 Phase and Log-Amplitude Variances of Beam Waves 265

special cases considered in Chap. 2. Consequently, only the expression for a
single beam will be treated explicitly. If there is only one beam, A (κ, z) is zero.

The above expression, which has two exponentials with opposite signs, can
be simplified by using the evenness of H (κ, L, z) and f (κ) with respect to κ
and the relation G (γκ) = G∗ (−γ∗κ), which comes from the Fourier-transform
definition in eq. 9.14. If in addition G (γκ) is even in κ, which it is for all filter
functions considered in this book, then eq. 9.17 reduces to

[
σ2

φR (ρ )
σ2

χR (ρ )

]
=

0.2073

2

L∫
0

dz C2
n(z)

∫
dκ f(κ)

×
(
|H (κ, L, z)G (γκ)|2exp(−2γi κ · ρ)∓ Re

{
[H (κ, L, z)]2G (γκ)G (−γκ)

})
.

(9.18)

For the Zernike modes defined in eq. 3.7 to eq. 3.10, G (−γκ) = (−1)m G (γκ),
where m is the order of the azimuthal mode.

In a similar manner the correlation function can be found. If the phase and
amplitude related quantities in eq. 9.15 are multiplied by the same functions
displaced by d, then one obtains

[
BφR (ρ, d)
BχR (ρ, d)

]
=

0.2073

4

L∫
0

dz C2
n(z)

∫
dκ f(κ)

×
[
|H (κ, L, z)G (γκ)|2exp(−2γi κ · ρ) [exp(−iγκ · d) + exp (−iγ∗κ · d)]

∓
{
[H (κ, L, z)]2 G (γκ)G (−γκ) exp (−iγκ · d)

+[H∗ (κ, L, z)]2G (γ∗κ)G (−γ∗κ) exp (−iγ∗κ · d)
}]

. (9.19)

From eq. 9.5 and eq. 9.7 for a wave going from z = 0 to L, one obtains

|H (κ, L, z)|2 = k2
0 exp

[
γi κ

2(L − z)/k0

]
, and (9.20)

Re
{
H (κ, L, z)2

}
= −Re

{
k2

0 exp
[
−iγκ2(L − z)/k0

]}
, (9.21)

where γ is expressed in real and imaginary parts as

γ = γr + iγi. (9.22)

Insert these relations into eq. 9.18 to obtain

[
σ2

φR (ρ )

σ2
χR (ρ )

]
=

0.2073 k2
0

2

L∫
0

dz C2
n(z)

∫
dκ f(κ)

×
[
F (γκ ) exp (γi b) exp (−2γi κ · ρ ) ± (−1)m Re

{
exp (−i γb)G2 (γ κ)

}]
,

(9.23)
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266 9 Finite Beam Characteristics As Examples with a Single Complex Parameter

where b = κ2(L − z)/k0, and F (γκ) = G (γκ)G∗ (γκ). For γ real this reduces
to the result in eq. 2.112. The real expression in the last term can be expressed
as the exponential of the real part times the cosine of the imaginary part of the
argument. This form is closer to the form in eq. 2.112 when γ is real. Although it
is tempting to do this, I will not, since it results in an integral with an additional
parameter, thereby complicating evaluation.

On axis the variances are[
σ2

φR (ρ )

σ2
χR (ρ )

]
=

0.2073 k2
0

2

L∫
0

dz C2
n(z)

∫
dκ f(κ) exp

(
γiκ

2(L − z)/k0

)

×
[
F (γκ ) ± (−1)m Re

{
exp (−i γrb)G2 (γ κ)

}]
. (9.24)

If the filter function is unity, then this reduces to a form similar to (2.112)

[
σ2

φR

σ2
χR

]
= 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ f(κ)

[
cos2 [P (γ, κ, z)]

sin2 [P (γ, κ, z)]

]
exp

(
γiκ

2(L − z)

k0

)
.

(9.25)
In a similar way the correlation function can be expressed as

[
BφR (ρ, d)
BχR (ρ, d)

]
=

0.2073 k2
0

4

L∫
0

dz C2
n(z)

∫
dκ f(κ)

×
[
|G (γκ)|2 exp (γib) exp(−2γi κ · ρ) [exp(−iγκ · d) + exp (−iγ∗κ · d)]

±
{
[exp (−iγb)]2 G (γκ)G (−γκ) exp (−iγκ · d)

+[exp (iγ∗b)]2G (γ∗κ)G (−γ∗κ) exp (−iγ∗κ · d)
}

. (9.26)

If G (γκ) does not depend on angle, the angular integration can be performed
readily to give

[
σ2

φR (ρ )

σ2
χR (ρ )

]
=

1.303 k2
0

2

L∫
0

dz C2
n(z)

∞∫
0

dκ κ f(κ)

×
(
F (γκ) exp (γib) J0 (2iγiκρ)± (−1)m Re

{
exp (−iγb)G2 (γκ)

})
. (9.27)

The correlation function for this case is

[
BφR (ρ, d)
BχR (ρ, d)

]
= 0.3256 k2

0

L∫
0

dz C2
n(z)

∞∫
0

κ dκ f(κ)

×
{
|G (γκ)|2 [J0 (κ |2iγi ρ−γd|) + J0 (κ |2iγi ρ−γ∗d|)]

∓ [exp (−iγb)G (γκ)G (−γκ)J0 (γκd)

+ exp (iγ∗b)G (γ∗κ)G (−γ∗κ)J0 (γ∗κd)]
}

. (9.28)

One can find the equivalent expressions for the structure function.
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9.3 Scintillation on Beam Waves 267

9.2 Power Spectral Density of Beam Waves

The derivation of power spectral density follows the same procedure that was
used in Chap. 2. The arguments that lead up to eq. 2.134 also apply here, to
obtain for the power spectral density of a single wave,

[
Sφ(ω)
Sχ(ω)

]
= 1.303 k2

0 ω

L∫
0

dz
C2

n(z)

v2(z)

∞∫
0

dc
c U(c − 1)√

c2 − 1
f

[
ω c

v (z)

]
Ff (ω)

×
(

exp

[
γi ω

2c2(L − z)

v2(z)k0

]
F

[
γ ω c

v(z)

]
J0

[
2iγiωcρ

v(z)

]

± (−1)m Re

{
exp

[
−i

γω2c2(L − z)

v2(z)k0

]
G2

[
γ ω c

v(z)

]})
, (9.29)

where Ff (ω) is the response of a servo system.
This reduces to the earlier results for collimated and spherical waves when the

appropriate values of gamma are inserted. As with the variance, these formulas
only apply to a beam that is tracked and the geometry is such that one is not in
the D1 region. I shall not consider further the power spectral density of a beam
wave.

9.3 Scintillation on Beam Waves

An adaptive-optics system requires a reference wave that propagates along the
same path that is to be imaged or along which a laser beam is to be propagated.
The reference wave provides information used to deform a mirror to correct for
turbulence. It can be generated by an active source on the target or by a laser
signal reflected from a retroreflector on the target. A minimum return energy
is necessary to drive the wavefront sensor that measures the integrated turbu-
lence distribution. For good performance the signal must also not drop out too
frequently due to scintillation fades. To properly design a beacon transmitter
one needs to know the intensity and scintillation for various beacon-transmitter
diameters and wavelengths. Knowledge of the variation of average intensity and
scintillation as one moves off the optical axis is necessary to specify the accu-
racy of the reference-wave tracking system. This set of problems is analyzed for
collimated beams in this section.

The analysis of this problem is complicated since different effects occur as the
transmitter diameter varies. For very small diameters, scintillation approaches
that of a point source, and for very large diameters, the scintillation approaches
that of an infinite plane wave. Scintillation of the plane wave is several orders
of magnitude larger than that of a point source for typical target ranges. In the
intermediate range the behavior is complicated by two factors. As the diameter
gets larger the beamwidth gets smaller than the turbulence-induced-tilt jitter.
In this regime there is a rapid increase in scintillation with increasing beam
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268 9 Finite Beam Characteristics As Examples with a Single Complex Parameter

diameter. For smaller apertures one finds that scintillation can decrease with
increasing diameter. For intermediate size apertures, the scintillation of a beam
wave on axis can be less than that of a point source.

Scintillation also varies with the distance off axis. It will be shown that the
scintillation can grow rapidly as one moves away from beam boresight.

This problem has been partially analyzed by others. Ishimaru (1969, 1978a,
1978b) develops an expression for scintillation of a beam wave. The formula
applies to the general case in which turbulence is allowed to vary along the
propagation path; however, he evaluates the expression only for constant tur-
bulence strength along the beam path. Kinoshita et al. (1968) also finds the
scintillation for constant turbulence, but with a Gaussian correlation function.
The scintillation for propagation with constant turbulence strength was found
by Fried and Siedman (1967), and for ground-to-space-propagation where the
turbulence is not constant by Fried (1967). The Kolmogorov turbulence spec-
trum is used in these calculations. In Fried (1967), the approximation is made
that the target is well into the far field of the beam, which implies that the di-
ameter cannot be large, yet the analysis is carried out to large beams, for which
it is found that the scintillation decreases as the −7/3 power of the Gaussian
beam size. It is not clear to what range of diameters this solution applies.

To obtain an expression for scintillation of a wave that propagates from
ground to space, use eq. 9.27 with the aperture filter function set equal to unity
to obtain

σ2
χ (ρ ) = 0.2073πk2

0

L∫
0

dz C2
n(z)

∞∫
0

dκ κf(κ)

×
(
J0 (2iγi κρ) exp

[
γi κ

2(L − z)

k0

]
− Re

{
exp

[
i
γ κ2(L − z)

k0

]})
.

(9.30)

The propagation parameter is given in terms of its real and imaginary parts as

γr =
1 + α2z L

1 + (αL)2 =
FN + F−1

N z/L

FN + F−1
N

, and (9.31)

γi = − α(L − z)

1 + (αL)2 = − 1 − z/L

FN + F−1
N

, (9.32)

and the Fresnel number is defined to be

FN = Re (1/αL) = π W 2
o /λL. (9.33)

For a collimated beam α = λ/πW 2
o . The inner scale of turbulence with the

Tatarski spectrum can be included without an increase in complexity of the
expression. The spectrum given in eq. 2.34 is used with infinite outer scale.
After the use of these relations, the log-amplitude variance is equal to
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9.3 Scintillation on Beam Waves 269

σ2
χ(ρ) = 0.2073π k2

0

L∫
0

dz C2
n(z)

∞∫
0

dκ

κ
κ−5/3

×
(
J0 (2iγi κ ρ) exp

[
γi κ

2(L − z)

k0

− κ2

κ2
i

]
−Re

{
exp

[
−i

γ κ2(L − z)

k0

− κ2

κ2
i

]})
.

(9.34)

Each integral diverges due to a simple pole at the origin. The residues at
these two poles cancel, so the region of validity of the integral can be analytically
continued, which enables these integrals to be evaluated with Mellin transforms.

The Bessel function can be left with an imaginary argument because the
exponential that multiplies it causes the integrand to go to zero at infinity.
As shown in the previous chapter, one can obtain the Mellin transform of this
function.

Make the changes of variables A2 = −γi(L − z)/k0+1/κ2
i , B

2 = iγ(L − z)/k0+
1/κ2

i , and κA = x in the first integral, and κB = x in the second, and
y = A/2iγi ρ. The integral is then equal to

σ2
χ(ρ) = 0.2073π k2

0

L∫
0

dz C2
n(z)

×
⎛
⎝A5/3

∞∫
0

dx

x
x−5/3 exp

(
−x2

)
J0 (x/y)− Re

⎧⎨
⎩B5/3

∞∫
0

dx

x
x−5/3 exp

(
−x2

)⎫⎬
⎭
⎞
⎠

= 0.1037π k2
0 Γ

[
−5

6

] L∫
0

dz C2
n(z) (I1 − I2) . (9.35)

The second integral in braces with the pole contribution neglected, which is
designated by the d superscript, is equal to

Id
2 =

2

Γ
[
−5

6

]Re

{
B5/3

2
Γ [s/2]|s=−5/3

}
= Re

{
B5/3

}
. (9.36)

The Mellin convolution theorem and the substitution s → −2s in the first
integral gives

I1 =
A5/3

Γ
[
−5

6

] 1

2π i

∫
C

ds

(
−γ2

i ρ2

A2

)−s

Γ

[
−s − 5

6
, s

−s + 1

]
. (9.37)

The pole locations and integration path are shown in Fig. 9.1.
Since Δ = 1, close the integration path to the left, and obtain pole contribu-

tions at s = −n for n = 0, 1, 2, . . . . As explained above, the residue at s = −5/6
is cancelled by an opposite contribution from the second integral so this pole
contribution can be neglected. The integral is thus effectively equal to

Id
1 =

A5/3

Γ
[
−5

6

] ∞∑
n=0

1

n !

(
γ2

i ρ2

A2

)n

Γ
[
n − 5

6

n + 1

]
= A5/3

1F1

[
−5

6
; 1;

γ2
i ρ2

A2

]
. (9.38)
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Figure 9.1. Pole locations and integration path for the beam-wave scintillation
problem.

When the parameter is large, an asymptotic series is appropriate. The steepest-
descent contribution given in eq. 5.94 grows exponentially; therefore, the pole
contributions are negligible, and the asymptotic series is

I1 ∼
A5/3

Γ
[
−5

6

]
(

A2

γ2
i ρ

2

)11/6

exp

(
γ2

i ρ2

A2

)
. (9.39)

Using these results, one obtains for the Taylor series solution

σ2
χ(ρ) =

2.176 k
7/6
0 L5/6(

FN + F−1
N

)5/6

L∫
0

dz C2
n(z) (1 − z/L)5/3

×Re

⎧⎨
⎩
[
i
FN + F−1

N z/L

(1 − z/L)
+1+ ζ

]5/6

− (1+ ζ)5/6
1F1

⎡
⎣−5

6
; 1;

k0 ρ2/L(
FN + F−1

N

)
(1+ζ)

⎤
⎦
⎫⎬
⎭,,

(9.40)

where

ζ =
k0

(
FN + F−1

N

)
Lκ2

i (1 − z/L)2 . (9.41)

This expression is valid out to radii for which the paraxial assumption holds,
which requires that ρ4 << L3λ as discussed in Sec. 2.3.

If the turbulence is constant along the propagation path, this result reduces
to that obtained by Ishimaru. This also reduces to the standard results for a
collimated or focused infinite wave. For a collimated infinite wave the Fresnel
number is infinite, and the scintillation variance with zero inner-scale is
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σ2
χ(ρ)= lim

FN→∞

2.175 k
7/6
0(

FN +F−1
N

)5/6
Re

⎧⎨
⎩

L∫
0

dz C2
n(z)

[
i
(
FN +F−1

N z/L
)]5/6

(L − z)5/6

⎫⎬
⎭

=2.176 k
7/6
0 Re

{
i5/6

} L∫
0

dz C2
n(z) (L − z)5/6= 0.5631 k

7/6
0

L∫
0

dz C2
n(z) (L − z)5/6,

(9.42)

since Re
{
i5/6

}
= cos (5π/12) = 0.2588. As the diameter goes to zero the Fresnel

number goes to zero and one obtains

σ2
χ(ρ) = lim

FN→0

2.176 k
7/6
0(

FN +F−1
N

)5/6
Re

⎧⎨
⎩

L∫
0

dz C2
n(z)

[
i
(
FN +F−1

N z/L
)]5/6

(L − z)5/6

⎫⎬
⎭

= 0.5631 k
7/6
0

L∫
0

dz C2
n(z)(L − z)5/6 (z/L)5/6 . (9.43)

The limiting expressions in eq. 9.42 and eq. 9.43 are the same as in eq. 4.75
and eq. 4.80. In this limit even though the inverse of the Fresnel number goes
to infinity, it is multiplied by the altitude. For sufficiently small altitudes this
limit is not valid. One requires z � π2W 4

0 /λ2L for this limit to be valid. If the
turbulence contribution below that )altitude is significant, then the scintillation
can differ from the limiting value.

Fig. 9.2 shows the log-amplitude variance versus Fresnel number for various
target distances, normalized to scintillation of a point source given by eq. 9.43.
The scintillation approaches that of a point source for small aperture sizes. As the
aperture size increases, the scintillation decreases initially and then increases to
approach the value for an infinite diameter source. The results plotted are correct
only when σ2

χ < 0.5 because above this value the Rytov approximation breaks
down, and scintillation is less than that calculated above. For a system that
operates at 0.5-μm wavelength with the Hufnagel-Valley 21 turbulence model,
the point source scintillation is 0.059; therefore, the results when the normalized
scintillation is above 4 are too high.

As the distance increases the formulas predict that the value of the scintil-
lation in the dip gets lower. This is an incorrect result. The scintillation found
from computer simulations does not have as much as a pronounced dip. The
computer simulations also show that for the untracked case that the scintilla-
tion starts increasing at lower Fresnel numbers.

Scintillation with inner-scale sizes of 10 mm and zero at a target distance
of 500 km are plotted versus the Fresnel number in Fig. 9.3. For larger Fresnel
numbers the two curves are identical. An inner-scale size of 1 mm, a value that is
often quoted as typical, produces scintillation that is virtually identical to that
with zero inner scale.
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Figure 9.2. Scintillation on axis versus Fresnel number for a target at 100- and
500-km range for HV-21 turbulence. The Fresnel number is defined in eq. 9.33.
The scintillation is normalized by that of a point source.
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Figure 9.3. Scintillation on axis versus Fresnel number for a target at 500 km
with HV-21 turbulence and inner scale of zero and 10 mm.
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9.3 Scintillation on Beam Waves 273

Scintillation as a function of distance off axis is considered for several specific
cases that are close to the minimum of the scintillation curve in Fig. 9.2. Con-
sider a target at 500 km, with a system that operates in the visible at 0.5-μm
wavelength. The value of

4
√

L3λ is 500 meters; therefore, the paraxial assumption
is valid to about 50 meters off axis. For beam radii of 0.625, 1.25, and 2.5 cm,
the beam waist at 500 km is 12, 6, and 3 meters, respectively. Fig. 9.4 shows
the scintillation out to those radii for these three cases. Notice that even though
scintillation on axis is smaller for a 2.5-cm beam, it increases more rapidly away
from beam center than for beams that started off with smaller beam waists at
the transmitter. These results can be used to do a tradeoff in a beacon illumi-
nation system between tracking accuracy versus laser power required to get an
intensity above a certain level at a space target.
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Figure 9.4. Normalized scintillation versus distance from the beam center at
a 500 km target for various transmitted beam sizes, for the HV-21 turbulence
model. The increase of scintillation with distance off axis is a strong function of
beam size.
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274 9 Finite Beam Characteristics As Examples with a Single Complex Parameter

9.4 Heuristic Scintillation Formulas

As mentioned, the beam-wave formulas that were derived do not apply to all
situations. Expressions for the variance of scintillation for the tracked and un-
tracked case were derived by observing the output of many computer runs. The
process of doing that is contained in Parenti et al. (2005). These formulas apply
even in saturated scintillation.

The scintillation for the untracked case is

σ2
I =

√
[σ2

I ]
2
FF + [σ2

I ]NF

1 + exp [−3r0/w0] [σ2
I ]NF

. (9.44)

If the object is tracked, then the phase distortion is the figure distortion. The
scintillation for the tracked case with the focus at the target is

[
σ2

I

]
fig

=

√
[σ2

I ]
2
FF + [σ2

I ]NF,fig

1 + exp [−3r0/w0] [σ2
I ]NF,fig

, (9.45)

where

[
σ2

I

]
FF

= 2.25k
7/6
0

∫ L

0
dz z5/6(1 − z/L)5/6

[
1 + 1.39(1 − z/L)

k0w
2
0

z

]−7/6

C2
n(z),

(9.46)[
σ2

I

]
NF

= 0.550k2
0w

5/3
0

∫ L

0
dz (1 − z/L)5/3C2

n(z), (9.47)

and

[
σ2

I

]
NF,fig

= 0.0234k
14/5
0 w

7/3
0

[∫ L

0
dz (1 − z/L)5/3C2

n(z)

]7/5

. (9.48)

For both cases of tilt present and removed the intensity variance approaches
unity as the diameter gets very large.

REFERENCES

1. Charnotskii, M. I., “Asymptotic analysis of finite beam scintillation in a
turbulent medium”, Waves Random Media, 4, (1994) pp. 243–273.

2. Baker, G. J., “Scintillation of a Ground-to-Space Laser Illuminator”, J. Opt.
Soc. Am. A, 57, (1967) pp. 980–983.

3. Fried, D., “Scintillation of a Ground-to-Space Laser Illuminator”, J. Opt.
Soc. Am., 57, (1967) pp. 980–983.

4. Fried, D., Seidman, J., “Laser-Beam Scintillation in the Atmosphere”, J.
Opt. Soc. Am., 57, (1967) pp. 181–185.

5. Ishimaru, A., “Fluctuations of a beam wave propagating through a locally
homogeneous medium”, Radio Sci., 4, (1969) pp. 293–305.

6. Ishimaru, A., Laser Beam Propagation in the Atmosphere (Edited by Stro-
hbehm, J.W.) Springer-Verlag, Berlin, (1978).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



9.4 Heuristic Scintillation Formulas 275

7. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic
Press, New York, (1978).

8. Kinoshita, Y., Asakura, T., Suzuki, M.,”Fluctuation Distribution of a Gaussian
Beam Propagating Through a Random Medium”, J. Opt. Soc. Am., 58,
(1968) pp. 798–807.

9. Parenti, R. R., Sasiela, R. J.,”Distribution Models for Optical Scintillation
Due to Atmospheric Turbulence”, Lincoln Laboratory Technical Report TR-
1108, (12 Dec. 2005).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Chapter 10

Mellin Transforms in N Complex Planes

In Chaps. 4 and 6 Mellin transform techniques were used to solve problems of
wave propagation through turbulence in which there was zero or one parameter.
Here, that technique is generalized to allow one to solve problems with any num-
ber of parameters. Analytical solutions that are easily evaluated are obtained
for problems that have previously been considered analytically intractable and
for which only numerical results are available. The method to obtain the solu-
tion in integral form by the insertion of the transverse spatial filter functions
into the standard formula for variances is exactly the same as that discussed in
Chap. 2. This process produces a three-dimensional integral over the transverse
spatial-transform coordinates and the propagation path. The integration over
angle in transform space can usually be performed analytically. The integration
over the magnitude of the spatial transform coordinate in which there are two
or more parameters in the integrand is addressed in this chapter. I show that
it can be evaluated to give a series solution. The remaining integration over the
propagation path can be performed term by term in most cases. For some cases
the infinite series terms after the axial integration are infinite, in which cases
one must evaluate the integration along the propagation direction first.

The integration over the magnitude of the transform coordinate is the one
that is difficult. For some problems, more than one parameter remains in the
integrand after a normalization of the variables. For N parameters, this inte-
gral can be transformed into an integral in N complex planes with the Mellin
convolution integral extended to N functions given in eq. 1.30 as

h (x1, . . . , xN) =

∞∫
0

dy

y
h0(y)

N∏
j=1

hj (xj/y) → M [h (x1, . . . , xN)]

= H0 (s1 + s2 + · · · + sN)
N∏

j=1

Hj (sj) = H (s1, s2, . . . , sN) . (10.1)

The original integral is equal to an integration in N complex planes given by

h (x1, . . . , xN)=
1

(2πi)N

∫
C1

· · ·
∫

CN

ds1 · · · dsN H (s1, s2, . . . , sN) x−s1
1 . . . x−sN

N .

(10.2)
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278 10 Mellin Transforms in N Complex Planes

For the problems that are considered here, the function H (s1, s2, . . . , sN) is
the product of ratios of gamma functions. The evaluation of integrals of this type
is an area of mathematics that is not well developed. Pole-residue integration
cannot easily be applied in problems; also, the steepest-descent contributions for
the asymptotic series have been evaluated only for limited conditions. Because
the complex variables appear either alone or in sums, however, Shelton and I
(1993) have been able to extend pole-residue integration into this new area. I
show how to evaluate these integrals and develop Taylor series and asymptotic
solutions. The technique to select which power series apply for different para-
meter regimes is new.

If a function in the integrand of the original integral has the first term of its
power series subtracted from it, the integration path moves over one pole as it did
in the single-parameter case. This property eliminates difficulties one encounters
in evaluating some integrals numerically. Deciding which pole residues contribute
is more difficult than in the single-parameter case; however, procedures are given
to make those decisions.

The solution for multiparameter problems is reduced to a technique that is
straightforward, in principle, but may be algebraically lengthy. The types of
problems it is possible to solve with this technique often are very difficult to
solve with standard methods.

I begin by introducing the necessary background. First, the convergence prop-
erties of multiple infinite series are examined. Next, I show that Cauchy’s residue
theorem can be extended into N complex planes for integrands that contain the
product of ratios of gamma functions. The value of the integral depends on the
residues at points at which there is a confluence of N poles. After all the possible
power series are written down, which corresponds to all ways of closing contours,
those that are pertinent to the parameter range of interest are selected with a
simple procedure that relies on the convergence properties of the series. The
justification for this approach is given in the next section where it is shown that
if a power series converged, then the integration path could have been closed to
enclose the poles that led to that power series.

This procedure is demonstrated on a “toy” problem in which the integrand
is a product of three unit step functions. A second “toy” problem in which the
integrand is the product of three exponentials is subsequently solved. In this
example one clearly sees why the power series solution sometimes is valid in a
parameter region that is smaller than the convergence region of the integral.
This example is also used to illustrate how to evaluate integrals in which the
integrand functions have terms of their power series subtracted from them.

It is straightforward to write down the solution as convergent power series.
This is a complete solution to the problem. Sometimes these solutions converge
slowly and require great accuracy for individual series terms; however, computer
algebra programs in which one can specify the accuracy of calculation are suit-
able for this purpose. For faster convergence and to obtain insight into how the
solution varies with the parameters, an asymptotic solution is appropriate. It is
easy to find the asymptotic series. The technique to obtain the steepest-descent
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10.1 Convergence of Multi-Parameter Series 279

contribution is more complicated than that for a single complex plane (Bleistein
and Handelman 1986; Dingle 1973). Methods to find the asymptotic series and
saddle-point contributions are developed here. Restricting the class of integrals
to Mellin-Barnes integrals with certain restrictions on functions allows one to
obtain readily evaluated expressions for the saddle-point contribution to the as-
ymptotic form of the integral. Results on saddle-point contributions available in
the literature are not directly applicable here because the integrals are gener-
ally not in the standard form assumed in traditional saddle-point treatments. In
addition, in problems considered here, saddle-point contributions are not only
necessary when all parameters in the original integral are large, but may also be
required when one or more of the parameters are small. The reason behind this
phenomenon is discussed in Sec. 10.4.

The form of the solutions, which is composed of the sum of multiple infi-
nite summations, looks complicated. However, because typically few terms are
necessary to get an answer that is accurate to 1%, these solutions are easy to
evaluate using the recursion relations for the summations. The examples in this
book were evaluated on a personal computer.

10.1 Convergence of Multi-Parameter Series

The convergence properties of power series obtained by pole-residue integration
are used in Sec. 10.3 in criteria to decide whether to include a particular series in
the solution. For that reason these properties are important. The conditions for
convergence of multiple series are more complex than those for a single series.
Books on advanced calculus discuss multiple integrals; however, they normally do
not discuss multiple series. When there is a discussion (Whittaker and Watson)
it is general, such as the statement of Pringsheim’s theorem that if the sum
exists, then the sum by rows and columns gives the same results. This is not
useful for the purpose of this section. Specific convergence criteria that apply to
series encountered in turbulence problems are developed below.

First, consider the double series

F (x, y) =
∞∑

n=0

∞∑
m=0

Am,n xmyn. (10.3)

The series coefficients, as found by pole-residue techniques, are of the form

Am,n =
∏
i

Γ [ai + uim + vin] /Γ [ai], (10.4)

where the coefficients ui and vi are typically either 1, −1, or 0. One achieves this
form from the normal form by moving gamma functions in the denominator into
the numerator with the identity 1/Γ [1 − s] = Γ [s] sin (πs) /π. Some solutions
can have the sign of Am,n alternate in one or both indices. If the series converges
absolutely, this alternating series also converges.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



280 10 Mellin Transforms in N Complex Planes

The form of the coefficients in eq. 10.4 is a special case of the general function
with arbitrary integer coefficients studied by Horn (1889). This function can be
generalized to N variables, in which case the coefficients of the power series are
of the form

An1,..., nN
=
∏
i

Γ [ai + ci1n1 + · · · + ciNnN ] /Γ [ai]. (10.5)

This is also the form of the coefficients of the residues for the typical N -parameter
case. Horn derived general convergence criteria for multiple series, which are
discussed for double series by Erdélyi (1981, p. 227) and for multiple series in
Exton (1978, p. 30). I give here the criteria for a double series, followed by the
general criteria.

The criteria for convergence give two regions of parameter space, and the
region of convergence is the space within the intersection of the two regions.
The first region comes from the requirement that the series must converge when
one of the indices is zero. The second region results from a rearrangement of
the series terms so that one obtains an infinite sum of a finite sum of terms for
which the sum of the indices is the same. The two series that result are

F (x, y) =
∞∑

n=0

n∑
p=0

An−p, p xn−pyp =
∞∑

m=0

m∑
p=0

Ap, m−p xpym−p. (10.6)

The ratio test, which requires each successive term to decrease in the limit as
the index goes to infinity, is applied to each series. In the series in eq. 10.6 it is
applied to each term of the second series. To express the result in a convenient
form define the functions

Am+1, n

Am, n

= P1(m,n), and
Am, n+1

Am, n

= P2(m,n), (10.7)

where it is required that these be algebraic functions, a condition that is satisfied
if the coefficients of the indices (m and n) in the gamma functions are integers.
Also, define

Φ1(m,n) = lim
ε→∞

P1(εm, εn), and η = |y| = 1/ |Φ2(0, 1)| . (10.8)

The first region in the x − y plane is a rectangle in the quadrant in which both
variables are positive. Two sides of the rectangle are formed from the x and y
axes and the origin. The other two sides are the two lines

ξ = |x| = 1/ |Φ1(1, 0)| , and η = |y| = 1/ |Φ2(0, 1)| . (10.9)

The second region is a surface that includes the origin and the x and y axes and
is bounded by the surface that is defined by the parametric equations

ξ = |x| = 1/Φ1(m,n), and η = |y| = 1/Φ2(m,n). (10.10)
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10.1 Convergence of Multi-Parameter Series 281

This second surface may be identical to the rectangle defined above or may be
a subregion of the rectangle.

For problems solved by Mellin transform techniques, the region defined by
eq. 10.9 is a unit square. The parametric equations are always of the form

ξ = |x| =
(m + n)k

mk
, and η = |y| =

(m + n)k

nk
, (10.11)

where k is an integer that can be positive or negative. The equation of the
bounding surface is

|x|1/k + |y|1/k = 1. (10.12)

For positive k this region lies within the unit square; therefore, it determines
the region of convergence. For parameter values that lie between this curve and
the unit square no analytical solutions can be found with this method.

For negative k the unit square lies within this region; therefore, the series
converges if the magnitude of both parameters is less than unity. Solutions for
all parameter values except possibly those on the boundary of the unit square
are obtained in this case.

To summarize the convergence criteria for two variables, define Ω2(Ω1) as
the sum of all coefficients of n(m) in the numerator gamma functions minus
the sum of those in the denominator. A factorial function is equivalent to a
gamma function in this definition. I refer to Ω2(Ω1) as the “net factorial power”
of n(m). From the criteria above, the following statements are evident. If Ω2(Ω1)
is negative, the series converges for all values of x(y). If Ω2(Ω1) is negative, and
Ω1(Ω2) is zero, then the series converges for all values of x(y) and for y(x) less
than unity. All these series are Taylor series. If either Ω2 or Ω1 is positive, then
the series does not converge for any finite values of x or y. These series are
asymptotic series. The only complicated case occurs when Ω1 = Ω2 = 0. In this
case the convergence criteria vary from problem to problem. Examples of this
case are considered in the next section and in Chap. 11.

In a similar manner as in the single complex plane case, one can define quan-
tities Δs1 and Δs2 that are the sum of coefficients of s1 and s2 in the numerator
gamma functions minus the sum of coefficients of the denominator gamma func-
tions in an integral. The condition Δs1 = Δs2 = 0 corresponds to the case
Ω1 = Ω2 = 0.

For the general case, a summation with p variables is

F (x1, . . . , xp) =
∞∑

n1=0

. . .
∞∑

np=0

An1,..., npx
n1
1 · · · xnp

p . (10.13)

Define
An1,..., nq−1, (nq+1), nq+1,..., np

An1,..., nq ,..., np

= Pq (n1, . . . , np) , and (10.14)

Φq (n 1, . . . , nq, . . . , np) = lim
ε→∞

Pq (εn1, . . . , εnp) , q = 1, 2, . . . , p. (10.15)
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282 10 Mellin Transforms in N Complex Planes

The space within the intersection of two regions is again the region of conver-
gence. The first region is a hyper-rectangle formed by the origin, the positive
part of the coordinate axes, and a bounding hyperplane given by

ξq = |xq| = 1/ |Φq(0, . . . , 1, . . . , 0)| , q = 1, 2, . . . , p. (10.16)

Only the qth term in parenthesis is not equal to zero.
The second region is a hypersurface that includes the origin, the coordinate

axes, and a bounding surface that is defined by the parametric equations

ξq = |xq| = 1/Φq (n1, . . . , np) , q = 1, 2, . . . , p. (10.17)

The region of convergence equivalent to the one in eq. 10.12 is

|x1|1/k + |x2|1/k + · · · + |xp|1/k = 1. (10.18)

These regions are found for a particular problem in Sec. 11.3.
Criteria for convergence of functions that are not Horn functions, a case that

does not occur in the examples in this book, can be developed with the approach
developed by Slater (1966) that is used to find the convergence regions of the
four Appell functions.

The results on convergence can be used to show that if a power series con-
verges, then the integration path can be closed to include the poles that lead
to that power series. This result is proved for two complex planes. The proof is
easily generalized to N complex planes.

10.2 Path Closure at Infinity

In this section I show that if the power series converges, then the integration
path could have been closed at infinity to encircle the poles that generate the
power series. Consider the general form of the integral in two complex planes

I =
1

(2πi)2

∫
C

ds
∫
C

dt x−sy−t F (s, t) , (10.19)

where s and t are the two complex variables. To be able to close the contour at
negative infinity for the two complex variables, one requires the contribution of
the line integral at infinity to be zero, i.e.,

lim
s→−∞
t→−∞

x−sy−t F (s, t) s t = 0. (10.20)

If F (s, t) has more gamma functions in both complex variables in the denom-
inator than in the numerator, then it is easy to show that eq. 10.20 is true. If
F (s, t) has more gamma functions in the t complex variable in the denominator
than in the numerator and the same number for s, then the series converges if
x < 1. This is shown with l’Hospital’s rule, which gives
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10.2 Path Closure at Infinity 283

lim
s→−∞

x−s s = lim
s→−∞

s

xs
= lim

s→−∞

1

ln (x) xs
= 0. (10.21)

Since the limit in this equation is zero, one can close the integration path along
an infinite semicircle in the left half plane about the poles that contribute to the
series.

The only complicated case is the one in which there are the same number of
gamma functions in each variable in the numerator and denominator. Consider
the case when the infinite series results from poles in the left half plane for both
complex variables. The integrand for large values of the complex variables, for
the case of the integrand composed of the ratio of gamma functions, is given by

lim
s→−∞
t→−∞

x−sy−t F (s, t) s t = lim
m→∞
n→∞

xmyn
{
Γ
[
m + n
m, n

]}k

mn = 0, (10.22)

where k is an integer that can be positive or negative. For convergence, the
mildest restrictions on x and y are that they are both less than unity. There can
be constants added to the arguments of the gamma functions. These constants do
not affect the limits; therefore, for notational convenience they are not explicitly
displayed. For large index values one obtains from Stirling’s approximation to
the gamma function

Γ

[
m + n

m, n

]
∼ A

(m + n)m+n

mmnn
, (10.23)

where A is a factor that does not affect convergence at infinity.
There are two cases to consider, one in which one index goes to ∞ with the

other remaining finite, and one in which both indices go to ∞. Suppose n goes
to ∞ and m remains finite, then

lim
n→∞

xmyn

{
Γ

[
m + n

m, n

]}k

mn = A
exp (mk)xm

mmk−1
lim

n→∞
ynnmk+1. (10.24)

I made use of the relation

lim
n→∞

(1 + m/n)n = exp (m) . (10.25)

If k is negative, then the limit in eq. 10.24 is obviously zero for |y| < 1. For k
positive, one has

lim
n→∞

ynnmk+1 = lim
n→∞

nmk+1

y−n
= lim

n→∞
(mk + 1)nmk

− ln (y) y−n

= . . . = lim
n→∞

(mk + 1) !

(−1)mk+1 lnmk+1 (y) y−n
= 0. (10.26)

Consider the case in which both indices go to ∞. I will let m = n. With the
form given in eq. 10.22 series convergence requires
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284 10 Mellin Transforms in N Complex Planes

y1/k = 1 − x1/k − δ, (10.27)

where δ is a small positive number. One obtains

lim
s→−∞
t→−∞

x−sy−t F (s, t) s t = A lim
n→∞

n2
[
4kx

(
1 − x1/k − δ

)k
]n

. (10.28)

The maximum value of the expression, which one finds by setting the derivative
of the term in braces equal to zero, occurs at xMax = (1/2)k. Inserting this into
the above expression, one finds

lim
s→−∞
t→−∞

x−sy−t F (s, t) s t = A lim
n→∞

n2 (1 − 2 δ)k n = lim
n→∞

n2

exp (2 δ k n)
= 0.

(10.29)
Therefore, the contributions along the infinite paths in the two complex variables
are zero, and one could close the integration path at infinity without affecting
the value of the integral.

The infinite series coefficients are the values of the residues of the integrand
at the pole locations. It may turn out that many of those residues are zero,
which is the case when a gamma function in the denominator is of the form
Γ [1 − n − m]. For that case only the n = m = 0 term contributes. Notice that
the proof above depended only on the indices in the gamma functions and not on
any constants added to them. Therefore, when calculating whether to include
a series one must determine if the series is of a convergent form rather than
whether it actually converges. A series of convergent form is defined to be one
in which the parameters lie within the convergent region defined in eq. 10.9 for
the two complex-plane case and eqs. 10.16—10.17 for the general case.

10.3 Integration in Multiple Complex Planes

The space of several complex variables can be very complicated geometrically,
and much of the recent work has been concerned with the validity of basic
concepts in complex geometries. For problems in which the Mellin transform
theorem applies, the only singularities of the integrand are poles of finite order
and branch cuts. To evaluate these integrals only the simplest concepts are nec-
essary. One can obtain the residues at the poles with Cauchy’s integral formula
on polydisks. A polydisk P (a, r) is the space in the N -dimensional complex
plane CN that is analogous to the unit circle in one complex plane. It has a
multiradius r = (r1, . . . , rN) centered at a and is defined by the condition

P (a, r) =
{
z ∈ CN , |zj − aj| < rj, 1 ≤ j ≤ N

}
. (10.30)

An example of a polydisk in two complex planes is represented in Fig. 10.1.
The extension of the Cauchy pole-residue integral theorem given in Range

(1986, p. 8) to the polydisk is
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⎮Z2⎮ 

⎮Z1⎮ 

r2

r1

Figure 10.1. Representation of a polydisk in the space of the absolute value of
each complex variable.

f(z1, z2, . . . , zN)=
1

(2πi)N

∫
C1

. . .
∫

CN

ds1 . . . dsN
f (s1, s2, . . . , sN)

(s1 − z1) . . . (sN − zN)
, z ∈ P,

(10.31)
where the contour encloses all poles, and the function f (s1, s2, . . . , sN) is holo-
morphic (has no singularities) in the integration region. For Mellin transform
problems there are poles that depend on the individual complex variables as
above, and poles that have the sum of the variables. The method to evaluate
these is to expand the integrand in partial fractions in which there are N inde-
pendent poles in the denominator of each term. The terms with the sum of the
variables is converted into the above form by a change of a single variable

sN+1 = s1 + s2 + · · · + sN . (10.32)

Since the Wronskian of the transformation is unity, this new variable is treated
just like the others.

The method to evaluate an integral in which the integrand is a ratio of gamma
functions multiplied by a power of the integration variable is first considered for
two complex planes. The generalization of this result to more complex planes is
obvious. The partial fraction expansion is equivalent to one choosing from the
set of all possible poles the pairs of poles in which the variables are independent.
A gamma function has an infinite number of simple poles that occur at the
points where the gamma function’s argument has a negative integer value. For
integrands that contain the product of gamma functions, one must consider all
sets of pole pairs (2-poles) formed by gamma functions whose arguments are
linearly independent in the two complex variables. The complete solution is the
sum of all pole residues for these sets of 2-poles that are contained in the closed
integration path. To determine which poles are enclosed in the integration path
is not obvious for the multiple complex-plane geometry.

I will generally evaluate the complex-contour integration by simultaneously
performing the integration over N -complex planes. As an example I will first
evaluate the integral traditionally and then with the method espoused here. As
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286 10 Mellin Transforms in N Complex Planes

shown above, if one writes down the power series resulting from the evaluation
at the multiple poles, then the series that should be included are the ones that
converge, since the contour path could be closed at infinity thereby encircling
those poles without affecting the value of the integral. As a “toy” problem,
consider the integration of a product of unit step functions given by

I = d

∞∫
0

dx

x
xd U (a − x) U (x − b) U (x − c)

= 0 if a < b or a < c,

= ad − cd if a > b, a > c, and c > b,

= ad − bd if a > b, a > c, and b > c . (10.33)

U(x) is unity for x > 0 and zero for x < 0. Convert this into an integral in two
complex planes with the convolution integral in eq. 10.1, the inverse transform
relation in eq. 10.2 and the Mellin transforms in eq. 1.59 and eq. 1.60, to obtain

I =
dad

(2πi)2

∫
C1

∫
C2

ds1 ds2

(
b

a

)−s1 ( c

a

)−s2

Γ

[
s1 + s2 + d, s1, s2

s1 + s2 + d + 1, s1 + 1, s2 + 1

]

=
d ad

(2πi)2

∫
C1

∫
C2

ds1 ds2

(
b

a

)−s1 ( c

a

)−s2 1

(s1 + s2 + d) s1 s2

=
ad

(2πi)2

∫
C1

∫
C2

ds1 ds2

(
b

a

)−s1 ( c

a

)−s2

×
[

1

s1 s2

− 1

(s1 + s2 + d) s1

− 1

(s1 + s2 + d) s2

]
. (10.34)

The last form of the integrand is used in the traditional evaluation of the integral.
The integration path as determined from the individual Mellin transforms is such
that if one closed the path in the negative half plane in each complex plane, then
one would include all poles. If a < b or a < c, at least one of the integration
paths must be closed in the right half plane of s1 or s2, and one obtains zero. If
a > b and a > c, perform the s2 integration first, and obtain contributions from
one pole in each of the first two terms and from two poles of the third term. For
two of the terms the s1 integration can be subsequently performed since a > b
and a > c to give

I = ad − bd +
cd

2πi

∫
C1

ds1

(
c

b

)s1
(

1

s1 + d
− 1

s1

)
. (10.35)

If c < b, the integration path is closed to the right, and the integral does not
have any contribution. If c > b, the integration path is closed to the left, and
both poles contribute. The net result is that one obtains the result in eq. 10.33.
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Next, the solution is found by the method developed in this book by listing
the three possible power series that are solutions of the complex integration that
appear in the first line of eq. 10.34 and by choosing those that converge. Since
information is required on the convergence of the series, the full power series are
written down even if all the terms but the first have a coefficient of zero. The
locations of the 2-poles that contribute are:

(1) s1 = −n; s2 = −m; therefore, s1 = −n; s2 = −m,
(2) s1 + s2 + d =−m; s1 =−n; therefore, s1 = −n; s2 = n − m − d, and
(3) s1 + s2 + d = −n; s2 = −m; therefore, s1 = −n + m − d; s2 = −m.

(10.36)

This leads to the following three double series:

I1 = d ad S (0, 0)

(
b

a

)n (
c

a

)m

Γ

[
−m − n + d

1 − m, 1 − n, 1 − n − m + d

]
= ad, (10.37)

I2 = d ad S (0, 0)

(
b

c

)n (
c

a

)m+d

Γ

[
n − m − d

1 − m, 1 − n, 1 + n − m − d

]
= −cd,

(10.38)

I3 = d ad S (0, 0)

(
b

a

)n+d (
c

b

)m

Γ

[
m − n − d

1 − m, 1 − n, 1 − n + m − d

]
= −bd.

(10.39)
I have introduced a notation to keep the equation size manageable. In the above
equations and many subsequent equations I use

S (p1, . . . , pk) =
∞∑

n1=p1

· · ·
∞∑

nk=pk

(−1)n1+···+nk

n1! · · ·nk!
. (10.40)

If the series is asymptotic in any variable, then an a is inserted next to the
number that represents the lower limit.

As explained at the end of Sec. 10.2, even if a series is truncated because
terms of the series are zero, one must still apply the convergence criteria given
in Sec. 10.1 to determine if a given series should be included in the solution
for particular parameter values. The convergence criterion in Sec. 10.1 requires
a > b and a > c for I1 to be included, c > b and a > c for I2 to be included, and
a > b and b > c for I3 to be included. Include only those series that converge in
the region of convergence to obtain the same result as in eq. 10.33.

The method discussed here replaces considerations of contour closure neces-
sary in the usual treatment of complex-contour integrals with a criterion based
upon series convergence. In the physical problems this results in a tremendous
simplification. When the Mellin transform of products of more than three hy-
pergeometric functions are sought, the resulting complex contour integral may
contain two or more complex variables of integration. The geometric consider-
ations necessary to determine the direction of contour closure rapidly become
very cumbersome especially as three or more complex variables are introduced.
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288 10 Mellin Transforms in N Complex Planes

Replacing this often intractable requirement with an algebraic basis for deter-
mining the proper solution provides a method for easily solving these otherwise
difficult integrals. In addition, this technique may be used to find the asymptotic
series for an integral of Mellin type. The asymptotic forms are enumerated as
part of the solution process for convergent series solutions; this requires only the
occasional addition of a steepest-descent contribution.

To apply this method to find the convergent and asymptotic series, the se-
ries that result from pole-residue evaluation are written such that the exponents
that appear in the power series are positive. By this I mean, for example, that
if I have double series in indices m and n, the parameters in the power series
are raised to the powers m and n rather than −m and −n. All possible infi-
nite series are enumerated and the Taylor series solution is the sum of those
series that converge for the parameter range of interest. Parameters that appear
in these power series may have magnitudes greater than 1. When an approxi-
mation is desired that contains only a few terms, in these cases an asymptotic
approximation should be used. One obtains this by examining all possible series
and retaining those that contain parameters with all magnitudes less than 1.
The asymptotic approximation appropriate for a particular parameter range is
the sum of those series that contain series parameters that are less than unity.
A steepest-descent contribution must be added when any Taylor series are ex-
cluded because their parameters have magnitudes greater than 1. This leads to
a straightforward way to evaluate the integral that no longer requires explicit
consideration of the direction of contour closure in a 2N -dimensional space.

Using this method to evaluate the integral given by eq. 10.34, one must
write down all combinations of two independent poles, which are called 2-poles,
evaluate the residue at each of these 2-poles, and sum the contributions of the
enclosed 2-poles. Let the integral be a product of factors in which there are n1

poles that contain only the first variable, n2 poles with only the second, and n3

poles with the sum of the two variables. The number of potential infinite series
in the solution is equal to the total number of ways that two poles can be picked
from the total number of poles—A = (n1 + n2 + n3) (n1 + n2 + n3 − 1), minus
the number of ways in which two poles could be chosen solely from each of the
three categories. Therefore, the total number of 2-poles for the two complex-
plane case is

Nt = 0.5 [A − n1 (n1 − 1) − n2 (n2 − 1) − n3 (n3 − 1)]
= n1 n2 + n1 n3 + n3 n2. (10.41)

The last form of the equation, in which there is the product of every combination
of the number of each complex variable with one deleted, also applies to cases
where there are more than two complex planes.

In the discussion that follows, a Taylor series is defined to be a series that
converges. An asymptotic series is a series that diverges as the number of terms
in the series gets arbitrarily large. For some problems the solution contains two
Taylor series, one of which applies when the parameter is less than unity and the
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10.3 Integration in Multiple Complex Planes 289

other when the parameter is greater than unity. Some authors, i.e., Wong (1989),
call this second series an asymptotic series. In this book the term asymptotic
series is only applied to a divergent series.

A second “toy” problem is solved to illustrate two important concepts. First
I show that the restricted region of validity of the solution as compared to the
region of convergence of the integral results from the power series form of the
solution. The same integral is then evaluated with terms of the power series
subtracted from the integrand functions to illustrate that these integrals pose
no conceptual difficulties. Consider an integral that contains the product of three
exponentials

I =

∞∫
0

du exp(−u) exp(−xu) exp(−yu). (10.42)

For 1 + x + y > 0 this is easily solved to give

I =
1

1 + x + y
. (10.43)

To evaluate this with Mellin transform techniques, use the Mellin convolution
theorem with the Mellin transform in eq. 1.47 to obtain

I =
1

(2πi)2

∫
C1

∫
C2

ds1 ds2 Γ [s1 + s2 + 1, −s1, −s2] x
s1ys2. (10.44)

Since n = m = p = 1, eq. 10.41 states that there are three sets of 2-poles in the
integrand. These three 2-poles are:

(1) − s1 = −n; −s2 = −m,
(2) s1 + s2 + 1 = −m; −s1 = −n, and
(3) s1 + s2 + 1 = −n; −s2 = −m. (10.45)

These 2-poles lead to the following powers of the parameters and powers of the
factorial of the summation indices in the summation:

(1) xnym (n!)0 (m!)0 ,

(2) xny−n−m−1 (n!)0 (m!)0 = y−m−1

(
x

y

)n

F (0, 0) , and

(3) x−n−m−1ym (n!)0 (m!)0 = x−n−1
(

y

x

)m

F (0, 0) . (10.46)

New parameters were formed in the second and third terms that are combinations
of the original parameters. The constant terms added to the exponent do not
affect series convergence and will be suppressed in subsequent problems. The
powers of the factorials represent the behavior of the terms of the summation as
the index goes to infinity. The powers of these factorials were previously defined
as Ω. I have introduced the notation

F (Ω1, . . . , Ωk) = (n1!)
Ω1 . . . (nk!)

Ωk . (10.47)
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290 10 Mellin Transforms in N Complex Planes

The three double sums that result from the evaluation of the integral at these
three 2-poles are:

I1 = S (0, 0) Γ [1 + n + m] xn ym, (10.48)

I2 = S (0, 0) Γ [1 + n + m]

(
x

y

)n

y−m, and (10.49)

I3 = S (0, 0) Γ [1 + n + m] x−n
(

y

x

)m

. (10.50)

The definition of S (0, 0) was introduced in the last example. In this example
Ω1 = Ω2 = 0 for all three series; therefore, the three series are Taylor series.
Their convergence depends on the sizes of the parameters. The parameters x
and y can be either less than or greater than unity. To be specific, assume that
1 > x > y. To find the region of convergence of I1 note that

Φ1 (m,n) =
n + m

m
, and Φ2 (m,n) =

n + m

n
. (10.51)

Therefore, the first criterion for the region of convergence gives the unit square.
The parametric equations obtained from the second criterion for the region of
convergence are

ξ =
m

m + n
, and η =

n

m + n
. (10.52)

The variable m and n can be eliminated from these two equations, which leads to
the condition η + ξ < 1. Therefore, this double series converges when x + y < 1.
This is sometimes true for the assumed relation between the parameters as shown
in Fig. 10.2. From the same criteria one finds that I2 converges when 1 + x < y,
and I3 converges when 1 + y < x. These last two conditions are never satisfied
with the assumed relations between the parameters. Since these series do not
converge, they are not included in the solution.

�

�
�
�

�
�
�

�
�
�

1

y

x 1

Figure 10.2. Hatched area is the parameter region in which the power series
converges.
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The value of the integral is

I =

∞∫
0

du exp(−u) exp(−xu) exp(−yu) = S (0, 0) Γ [1+n+m] xnym, x+y < 1.

(10.53)
If the ordering of the magnitudes of 1, x, and y were chosen differently, then one
of the other power series would have been selected.

To show the equivalence of the direct result in eq. 10.43 with this double
infinite series, note that for x + y < 1, one obtains

I =
1

1 + x + y
=

∞∑
n=0

(−1)n (x + y)n . (10.54)

This can be expressed as a double series by using the binomial theorem when
x > y to obtain

I =
∞∑

n=0

n∑
m=0

(−1)nxn
(

y

x

)m n !

(n − m) ! m !
. (10.55)

If one changes variables to m → m′ and n → n′ + m′ with m ≤ n, then
the summation reduces to the result given in eq. 10.53 that was obtained with
Mellin transform techniques. Therefore, the Mellin transform method produces
the correct result although it was expressed as an infinite series rather than a
simple function as in the direct integration. In general, one would not recognize
the double series that was obtained as being equivalent to the simple function.
The conditions on the parameters are more restrictive than the requirement that
1 + x + y > 0 as obtained by the direct integration. This is a direct result of the
requirement that the solution be expressible as a double series, and results from
the restriction on the expansion to obtain the series in eq. 10.54.

From this example, one learns that in solving problems of this type, the
conditions obtained to get an answer, even though they are correct, may be
too restrictive. An answer exists for other parameter values, but it cannot be
expressed as a double series. To find a solution in those regions, specialized
techniques that are peculiar to individual integrals are used (Gervois and Navelet
1985, 1986).

The fact that an answer is not in the most compact form and expressible in
terms of simple functions is not a major deficiency because more complicated
problems cannot, in general, be expressed as elementary functions. If the original
function that is represented by the double summation can be found, then the
region in which the solution applies can be extended. To do this one must invert
two power series in succession. I am unaware of any general techniques to do
this.

Up to now it has been assumed that the integration path has all poles of
each gamma function on one side. For this case all summations start at the
index equal to zero. There is an additional complication that arises when a
summation does not start at zero. In the single complex plane case if there is a
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term of the form
∞∑

n=b
Dnx

n that applies when x is less than unity, then
b−1∑
n=0

Dnx
n

must be added to the series that applies when x is greater than unity. This is
easily generalizable to the case of two complex planes. Consider first the case
where one series starts at zero, and the other starts at the index equal to unity.
This series can be represented as

B1 =
∞∑

n=1

∞∑
m=0

Amnx
nym (10.56)

and applies when x and y are less than unity. In parallel to the single complex
plane case, when x is greater than unity and y is less than unity, the term

B2 =
∞∑

m=0

Am0y
m (10.57)

must be added to the solution. Similarly, for the other index starting at unity,
assume the series

C1 =
∞∑

n=0

∞∑
m=1

Amnx
nym (10.58)

applies when x and y are less than unity. When x is less than unity and y is
greater than unity, then

C3 =
∞∑

n=0

A0nx
n (10.59)

must be added to the solution.
In the most general case both indices can start at a non-zero value. Assume

the expression that applies when x and y are less than unity is

A1 =
∞∑

n=a

∞∑
m=b

Amnx
nym. (10.60)

When x is greater than unity and y is less than unity, then

A2 =
a−1∑
n=0

∞∑
m=b

Amnx
nym (10.61)

must be added to the solution. When x is less than unity and y is greater than
unity, then

A3 =
∞∑

n=a

b−1∑
m=0

Amnx
nym (10.62)

must be added to the solution. When x and y are greater than unity, then

A4 =
a−1∑
n=0

b−1∑
m=0

Amnx
nym (10.63)

must be added to the solution. All possible solutions in which the summations
do not start at zero are summarized in Table 10.1. For each set of parameter
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Table 10.1. Expressions to include for different parameter ranges when the
indices m and n do not start at zero.

x y Terms to include

< 1 < 1 A1 B1 C1

> 1 < 1 A2 B2

< 1 > 1 A3 C3

> 1 > 1 A4

values for a given pole set, only one of the tabulated series is included in the
solution. If the indices m and n start at zero, then none of these additional
expressions is included.

To illustrate this, consider a modified version of the integral considered in
the previous example

I =

∞∫
0

du exp(−u) [exp(−xu) − 1] exp(−yu). (10.64)

This integral transforms into

I =
1

(2πi)2

∫
C1

∫
C2

ds1 ds2 Γ [s1 + s2 + 1, −s1∗, −s2] xs1ys2 , (10.65)

where * means that the integration path passes between the first and second
poles of that gamma function. The three 2-poles are:

(1) − s1 = −n∗; −s2 = −m,
(2) s1 + s2 + 1 = −m; −s1 = −n∗, and
(3) s1 + s2 + 1 = −n; −s2 = −m. (10.66)

The asterisk indicates that the summation index starts at 1. The solution con-
tains the same summation as in the first example except that the n summation
starts at 1. There is a potential to pick up one term of the second summation;
however, that is added to the solution when y > 1 and y/x > 1. Since that is
not the case being considered, this term is not added to the solution. Therefore,
the value of this integral is

I = S (1, 0) Γ [1 + n + m] xnym =
1

1 + x + y
− 1

1 + y
, x + y < 1. (10.67)

This is the same result that is obtained from direct integration.
If unity is also subtracted from the last exponential in eq. 10.64, then the

answer is obtained in a similar manner. Consider the following integral

I =

∞∫
0

du exp(−u) [exp(−xu) − 1] [exp(−yu) − 1] . (10.68)
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294 10 Mellin Transforms in N Complex Planes

This transforms into

I =
1

(2πi)2

∫
C1

∫
C2

ds1 ds2 Γ [s1 + s2 + 1, −s1∗, −s2∗]xs1ys2 . (10.69)

The three 2-poles are:

(1) − s1 = −n∗; −s2 = −m∗ ,
(2) s1 + s2 + 1 = −m; −s1 = −n∗, and
(3) s1 + s2 + 1 = −n; −s2 = −m ∗ . (10.70)

The solution contains the same summation as in the first example except that
the n and m summations both start at 1. Again there is a potential to pick up
one term of the second and third summations; however, the first term of the
second is added to the solution when x > 1 and y/x > 1, and the first term of
the third is added to the solution when y > 1 and y/x > 1. Since these are not
the cases being considered, these terms are not added to the solution. The value
of this integral is thus

I = S (1, 1) Γ [1 + n + m] xnym =
1

1 + x + y
− 1

1 + y
− 1

1 + x
+ 1, x + y < 1 .

(10.71)
This is the same result that is obtained from direct integration. In these examples
no terms from the other series appeared in the solution.

The problem of being unable to represent the solution to an integral for all
parameter ranges surfaces in various fields. For instance, one can show (Jackson
1962) that the electric potential in space caused by an infinitely thin conducting
disc of radius a with a charge q is

V (ρ, z) = q

∞∫
0

dk
sin (ka)

ka
exp (−kz) J0 (kρ) . (10.72)

One can evaluate this integral with the methods developed in the chapter to
obtain a solution as a double series. This series does not converge for some
ratios of the parameters close to unity. For this case a solution that applies for
all space is available in Gradshteyn and Ryzhik (1980, eq. 6.752 #1) as

V (ρ, z) =
q

a
sin−1

⎛
⎝ 2a√

(ρ − a)2 + z2 +
√

(ρ + a)2 + z2

⎞
⎠ . (10.73)

The above result was obtained with eq. 3.5 to convert the Bessel function into
an integral over angle, the evaluation of the integral over k, followed by the
evaluation of the integral over angle. This technique does not work if the index
of the Bessel function is different than unity or if the power of the integration
variable in the integrand is other than −1. I know of no general procedures to
convert double power series into such complicated functional relations.
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10.4 Asymptotic Solution in Two or More Complex Planes 295

10.3.1 Evaluation procedure for N complex planes

The procedure to obtain Taylor series solutions in more than two complex planes
is easily extended from the procedure given above. After all possible power series
are determined, choose only those series that converge for the parameter range
of interest. With this procedure it is straightforward to obtain Taylor series for
very complicated integrals. Examples of the application this procedure to 3 and
N complex planes are given in Sec. 11.3.

10.4 Asymptotic Solution in Two or More Complex
Planes

In general, different Taylor (convergent) series may be readily obtained for var-
ious parameter regimes. For many problems this solution is adequate. For other
problems, the Taylor series converge slowly for some parameter regimes, and it
is desirable to obtain asymptotic solutions in these regimes.

The procedure to obtain the series that converge most rapidly is rather simple;
write down the series terms that correspond to every pole set in the entire
complex plane in a form such that the parameters have positive exponents, and
choose only those series for which the parameter magnitude is less than unity. If a
Taylor series convergent for the parameter magnitudes over the range of interest
is excluded because of this procedure, then an asymptotic solution that consists
of an asymptotic series and a steepest-descent contribution must be included.
Normally this will be obvious because the procedure will automatically require
the inclusion of an asymptotic series. In some cases, however, no asymptotic
series will be called for because the coefficients in the asymptotic series are all
zero. In these cases, the steepest-descent contribution by itself is the asymptotic
form for the excluded Taylor series.

It is possible to have the sum of Taylor and asymptotic solutions for the same
range of parameter values. This is a consequence of the fact that the integrand’s
decomposition into the partial-fraction expansion as given in eq. 10.34 results in
a sum of functions. Some of the functions may contribute a Taylor series, and
some may contribute an asymptotic form to the final solution. This procedure
is applied in Sec. 11.4—11.7.

The technique to obtain asymptotic expressions for an integral in a single
complex plane discussed in Chaps. 5 and 8 is extended here to obtain steepest-
descent contributions for integrals in two or more complex planes. A simple case
to evaluate occurs in the parameter regime where the power series is convergent
in one parameter and asymptotic in the other. In that case the integration in the
complex variable that leads to the convergent series is performed first, followed
by the evaluation of the asymptotic solution for the second integral. The result
is a sum of power series that are the ones that would be chosen from all possible
power series by the application the rules of the last section. In addition, one
needs to obtain the steepest-descent contribution.
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296 10 Mellin Transforms in N Complex Planes

The situation is more complicated when the parameter regime is such that
both power series are asymptotic and a change of variables cannot be made to
make one integral result in a convergent series. I show that when the complex
variables are not strongly coupled that one can still perform the integrations
serially.

I will now discuss the general case. As for a single complex plane, the inte-
gration path of the complex variables is deformed so that all saddle points of
the integrand are crossed in the directions of steepest descent. The asymptotic
expression for the integral is given by the sum of the contributions of poles
crossed as a result of the path deformation, and the contribution of the path
integral along the steepest-descent path. The asymptotic series are found with
the procedure discussed in the last section. In this section the method to find
the steepest-descent contribution is discussed.

For a single-complex-plane case the steepest-descent contribution was found
by a modification of the normal method in which one is concerned with evalu-
ating integrals of the form

I(λ) =
∫
C

ds g(s) exp[−λf (s)] , (10.74)

where λ is large. The difference in the application of this technique for Mellin
transform problems is that there is no large quantity that is immediately evident.
It was shown in Chap. 5 when the parameter was large that the second derivative
of f(s) was much larger than the higher order derivatives at the saddle point
with the result that the procedure essentially reduced to the normal steepest-
descent procedure. For more than one complex plane a similar procedure is
attempted. It is found that it does not work in general; however, for a class of
problems one can find the steepest-descent contribution by the simple process
of evaluating integrals in each complex plane in sequence. This special case
occurs often in practice, and it applies to every turbulence problem discussed
in the next chapter. The only case for which a general method to obtain the
asymptotic solution for two complex planes is not available is when there is a
steepest-descent contribution that must be retained for the first integration no
matter which integral is performed first.

To develop this method, I will discuss the standard problem of steepest de-
scent in two variables, then I will modify those results to apply to Mellin trans-
form problems. The integral to be evaluated with the normal method is

I (λ) =
∫
C2

ds2

∫
C1

ds1 g (s1, s2) exp [−λf (s1, s2)] . (10.75)

We will recast the Mellin convolution integral into this form. The general form
for the inverse Mellin transform integral in two complex planes is

h (x1, x2) =
1

(2πi)2

∫
C2

∫
C1

ds1 ds2 H0 (s1 + s2) H1 (s1)H2 (s2) x−s1
1 x−s2

2 , (10.76)
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10.4 Asymptotic Solution in Two or More Complex Planes 297

where the paths C1 and C2 represent a sheet in 4-space that must be contained
within the hyper-volumes where H0 (s1 + s2), H1 (s1), and H2 (s2) are analytic.
In the one complex-plane case, asymptotic results are needed only when the
parameter magnitude |x| is large. In two complex planes, asymptotic analysis is
more complicated for the following reason: Expansion of the integral in eq. 10.76
into a form that allows the use of pole-residue methods was discussed in Sec.
10.2. Pole-residue integration produces terms that each contain the product of
a holomorphic function and a function with one simple pole for each complex
variable. The resultant power series may contain a factor xn+m

1 x−m
2 that reduces

to (x1/x2)
nxm

1 . The ratio |x1/x2| may be large even though |x1| and |x2| are
small. This type of possibility demonstrates the potential need for asymptotic
analysis even when both |x1| and |x2| are small. Three distinct cases are possible:
|x1| and |x2| are small, |x1| is small (large) and |x2| is large (small), and |x1| and
|x2| are large.

In problems discussed in this book, the integrand may be expressed as the
ratio of products of gamma functions

H0 (s1 + s2)H1 (s1)H2 (s2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1∏
j=1

Γ [a1, j + s1]
B1∏
j=1

Γ [b1, j − s1]

C1∏
j=1

Γ [c1, j + s1]
D1∏
j=1

Γ [d1, j − s1]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A2∏
j=1

Γ [a2, j + s2]
B2∏
j=1

Γ [b2, j − s2]

C2∏
j=1

Γ [c2, j + s2]
D2∏
j=1

Γ [d2, j − s2]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A3∏
j=1

Γ [a3, j + s1 + s2]
B3∏
j=1

Γ [b3, j − s1 − s2]

C3∏
j=1

Γ [c3, j + s1 + s2]
D3∏
j=1

Γ [d3, j − s1 − s2]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (10.77)

The coefficients of s1, s2, and s1 + s2 are unity in the above expression, unlike
the more general case considered in the single-parameter case. If integrals that
contain noninteger, rational coefficients must be evaluated, make the substitu-
tion s → us where u is the least common denominator of the coefficients, and
use the Gauss-Legendre multiplication theorem to expand the gamma functions
until all the coefficients are unity.

Define the following quantities:

Δn = An + Dn − Bn − Cn for n = 1, 2, 3, and (10.78)

Δsn = Δn + Δ3 for n = 1, 2. (10.79)

These Δ’s play an important role in the determination of the asymptotic prop-
erties of the integral. If Δs1 = Δs2 = 0, no asymptotic form for h (x1, x2) is
necessary. As in the one-dimensional case, path closure is determined by the
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298 10 Mellin Transforms in N Complex Planes

magnitude of the parameters x1 and x2, and a rapidly converging series always
results in the parameter regime in which the series converges. If either Δs1 or
Δs2 is less than zero, then a change of variables s1 → −s1 and / or s2 → −s2

should be used to rewrite the integral so that these Δ’s are greater than or equal
to zero.

The identity Γ [s] Γ [1 − s] = π csc(πs) is used to rewrite gamma functions
that contain −s1, −s2, and − (s1 + s2) in terms of gamma functions that contain
s1, s2, and s1 +s2. This allows the use of an asymptotic expansion for all gamma
functions that is valid in the sector where the phase of the argument of the
gamma function is greater than −π and less than π. Because the integrand’s
behavior at large values of s1 and s2 is of interest, the gamma functions are
replaced with the asymptotic equivalent given as

Γ [a + s] ∼
√

2π exp [(s + a − 1/2) ln(s) − s] . (10.80)

The asymptotic form for the sine terms obtained through application of the
previously discussed identity is also used. One must use different representations
for the sine terms depending upon the sign of the imaginary part of the sine’s
argument.

If Im {πs} > 0, then

sin(πs) ∼ 1
2
exp

[
−iπ

(
s − 1

2

)]
. (10.81)

Similarly, if Im {πs} < 0, then

sin(πs) ∼ 1
2
exp

[
iπ

(
s − 1

2

)]
. (10.82)

Incorporate the sign of iπ into quantities λ as in Sec. 8.1, one for each s1, s2, and
s1 +s2. This leads to six conditions that require separate treatment as tabulated
in Table 10.2.

Table 10.2. Conditions on the imaginary parts of s1, s2, and s1+s2 that require
separate treatment.

Case 1 Im{s1}>0 Im{s2}>0 Im {s1 + s2}>0 λ1 =1 λ2 =1 λ3 =1

Case 2 Im{s1}<0 Im{s2}<0 Im {s1 + s2}<0 λ1 =−1 λ2 =−1 λ3 =−1

Case 3a Im{s1}>0 Im{s2}<0 Im {s1 + s2}>0 λ1 =1 λ2 =−1 λ3 =1

Case 3b Im{s1}>0 Im{s2}<0 Im {s1 + s2}<0 λ1 =1 λ2 =−1 λ3 =−1

Case 4a Im{s1}<0 Im{s2}>0 Im {s1 + s2}>0 λ1 =−1 λ2 =1 λ3 =1

Case 4b Im{s1}<0 Im{s2}>0 Im {s1 + s2}<0 λ1 =−1 λ2 =1 λ3 =−1

Cases 1, 2, 3, and 4 correspond to different quadrants in 4-space. The distinc-
tions in Case 3 (a and b) and in Case 4 (a and b) arise because of the possibility
that Im (s1 + s2) may be positive or negative in each instance.

Combining the exponential form of the gamma functions with the logarithm
of the parameters x1 and x2 one obtains
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h (x1, x2) = (2π)([Ξ1+Ξ2+Ξ3]/2−2)
∫
C1

∫
C2

ds1 ds2 exp [f(s1, s2 )] , (10.83)

where

f (s1, s2) =
2∑

j=1

{
(νj − Ξj /2 + Δj sj) ln (sj) − sj ln (xj) − Δj sj

− iπλj

[
Λ′′

j + Λj

(
sj + 1

2

)]}
+ [ν3 − Ξ3/2 + Δ3(s1 + s2)] ln (s1 + s2)

− Δ3 (s1 + s2) − iπλ 3

[
Λ′′

3 + Λ3

(
s1 + s2 + 1

2

)]
, (10.84)

Ξn = An + Bn − Cn − Dn, (10.85)

νn =
An∑
j=1

an,j +
Bn∑
j=1

bn,j −
Cn∑
j=1

cn,j −
Dn∑
j=1

dn,j, (10.86)

Λn = Bn − Dn, and (10.87)

Λ′′
n =

Bn∑
j=1

bn,j −
Dn∑
j=1

dn,j, (10.88)

for n = 1 to 3. The contributions of the sine terms, that depend upon the
quadrant of the saddle point, are contained in the terms dependent upon λn.

The first step in one’s calculating the integral’s steepest-descent value is to
locate the saddle points of f (s1, s2). These points occur at (s̃1, s̃2) where

0 =
∂f (s1, s2)

∂ s1

∣∣∣∣∣
(s1,s2 )= (s̃1,s̃2)

and 0 =
∂f (s1, s2)

∂ s2

∣∣∣∣∣
(s1,s2 )=(s̃1,s̃2)

. (10.89)

This gives the two equations

∂f (s1, s2)

∂s1

≈ − ln (x1) + Δ1 ln (s1) + Δ3 ln (s1 + s2)

+ iπ [λ1 (B1 − D1) + λ3 (B3 − D3)]

+
ν1 − Ξ1/2

s1

+
ν3 − Ξ3/2

s1 + s2

, and (10.90)
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∂f (s1, s2)

∂s2

≈ − ln (x2) + Δ2 ln (s2) + Δ3 ln (s1 + s2)

+ iπ [λ2 (B2 − D2) + λ3 (B3 − D3)]

+
ν2 − Ξ2/2

s2

+
ν3 − Ξ3/2

s1 + s2

. (10.91)

Another set of partial derivatives that is necessary to evaluate saddle-point
contributions are given by

∂2f (s1, s2)

∂ 2s1

= α (s1, s2) ≈
Δ1

s1

+
Δ3

s1 + s2

− ν1 − Ξ1/2

s2
1

− ν3 − Ξ3/2

(s1 + s2)
2 , (10.92)

∂2f (s1, s2)

∂2s2

= β (s1, s2) ≈
Δ2

s2

+
Δ3

s1 + s2

− ν2 − Ξ2/2

s2
2

− ν3 − Ξ3/2

(s1 + s2)
2 , (10.93)

and
∂ 2f (s1, s2)

∂ s1 ∂ s2

= γ (s1, s2) ≈
Δ 3

s 1 + s 2

− ν3 − Ξ3/2

(s 1 + s 2)
2 . (10.94)

At the saddle point, Taylor’s theorem may be used to show that f (s1, s2) is
given by

f (s1, s2) ≈ f (s̃1, s̃2) +
(s1 − s̃1)

2

2
α (s̃1, s̃2)

+
(s2 − s̃2)

2

2
β (s̃1, s̃2) + (s1 − s̃1) (s2 − s̃2) γ (s̃1, s̃2) . (10.95)

Only terms up to quadratic order in s1 and s2 are kept. As in the case of a single
complex variable, higher-order terms will generally not contribute significantly
to the integral. The first term in the expansion given above does not depend
upon the integration variables and may be moved outside the integral. The
remaining integral is evaluated along the paths of steepest descent, i.e., along
the paths where the imaginary part of f(s1, s2) is constant. The result is a two-
dimensional analog of the Gaussian integral that is obtained by the application
of steepest-descent techniques to an integral over a single complex variable.

First restrict ourselves to the case when Δ1, Δ2, and Δ3 are all positive. In
that case when |x1| and |x2| are large, the saddle points occur where |s1|, |s2|,
and |s1 + s2| are large. This fact allows one to neglect terms with the square of
the complex variables in the denominators of eqs. 10.92—10.94. The final result
of this manipulation is

h (x1, x2) ∼ (2π)[(Δ1+Δ2+Δ3)/2−1] exp [f (s̃1, s̃2)]√
α (s̃1, s̃2)β (s̃1, s̃2) − γ2 (s̃1, s̃2)

. (10.96)

The term under the square root can be expressed as

α (s̃1, s̃2) β (s̃1, s̃2)− γ 2 (s̃1, s̃2) =
Δ1 Δ2

s̃1 s̃2

+
Δ1 Δ3

s̃1 (s̃1 + s̃2)
+

Δ2 Δ3

(s̃1 + s̃2) s̃2

. (10.97)
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10.4 Asymptotic Solution in Two or More Complex Planes 301

This term is referred to as Hesse’s determinant, and can be generalized to N
complex variables (Ishimaru 1991).

If Δ1, Δ2, and Δ3 are all positive, then one can find the saddle points. The
second derivatives are large, and the steepest-descent contribution can be found.
This typically is a difficult procedure because the equations to be solved are
nonlinear.

For many integrals to be evaluated and all the problems in turbulence that
I have considered, a simpler procedure applies. Looking at the Mellin transform
tables, one sees that the sums of the coefficients of s in the numerator minus
those in the denominator are either positive or zero. One could possibly obtain
a negative sum by finding the Mellin transform of the inverse of the variable.
However, for turbulence problems and many integrals, the functions do not have
the inverse of the argument, and the quantities Δ1, Δ2, and Δ3 are not all
positive. First, assume that they are all nonzero and arrange the functions so
that Δ3 is negative. Because of the difference in sign, a large parameter size does
not guarantee that the second derivatives given in eqs. 10.92—10.94 are large
or even positive. It is not clear that there is a steep saddle point in this case
that allows the line integral to be approximated by an integration along a short
segment. I will not discuss this case further.

A case that often occurs in practice is the one in which one of the Δ’s is zero.
The signs of the complex variables can be changed if necessary so that the other
two Δ’s are positive. The functions can be arranged in the integral so that the
Δ that is zero is Δ3. In this case the saddle point is approximately located at

s1 ≈ x
1/Δ1

1 , and s2 ≈ x
1/Δ2

2 . (10.98)

In this case if x1 is large, then s1 is large, and if x2 is large, then s2 is large. The
derivatives higher than second order are much smaller than the second order
ones. The steepest-descent results in eq. 10.96 apply. Notice that in eq. 10.97
only one of the three terms on the right is non-zero. The denominator term
has the product of the two non-zero Δ’s. This suggests that the double integral
might be broken into the product of two single integrals. Thus examine f (s1, s2)
in eq. 10.84. With Δ3 = 0, the only term that couples the two complex variables
is ln (s1 + s2). As in the single complex plane case, the dominant term in this
exponential function are terms of the form s ln(s). There are two terms of that
form due to Δ1 and Δ2, and the coupling term is small compared to these terms.
Since I am only interested in calculating the first term of the steepest-descent
contribution, this coupling is neglected, and the double integral is performed as
a cascade of two single integrals.

When one of the Δ’s is zero, the three cases of relative parameter magnitude
are all treated similarly to obtain the steepest-descent contribution. In the first
case where the magnitudes of both parameters are small, the integral over one
of the two complex variables is evaluated to obtain the pole contributions. One
or more of the resulting power series depend on the ratio of the parameters. For
only those series in which this ratio can be large is the second integral examined
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to obtain solely the steepest-descent contributions. For the second case, when
one parameter is large and the other small, the integration over the complex
variable associated with the large variable is performed first to obtain only the
steepest-descent contribution. The remaining integral is performed with pole-
residue techniques. Doing the integration in this order reduces the amount of
algebra. In the final case both parameters are large. One obtains the steepest-
descent contribution to the double integral by first evaluating the asymptotic
solution to the first integral. This includes both the asymptotic series and the
steepest-descent contribution. The second integral is then evaluated to obtain
only the steepest-descent contribution from each series, and the steepest-descent
contribution and asymptotic series for the steepest-descent result of the first
integration.

In actuality the functions do not have to be arranged so that when one of the
Δ’s is zero it is Δ3. Suppose Δ2 is zero. By making the substitutions s1+s2 → s2

and s2 → s1 + s2 one can make the same arguments as above. Therefore, the
integrals can be evaluated one at a time as long as any of the Δ’s is zero. In
fact, even though it was assumed that the coefficients of s in the gamma functions
were unity in the derivation of eq. 10.96 , for the case in which the integration
is performed sequentially, the coefficients of s can be arbitrary. This procedure
is illustrated in Secs. 11.4 to 11.7.

A similar analysis applies for more than two complex planes when one of the
Δ’s is zero. Arrange the functions in the integrand so that the Δ associated
with the sum of the N complex variables is zero. The function in the expo-
nential, f (s1, s2, . . . sN), can again be approximated by the sum of terms that
each depend on a single complex variable, thereby allowing one to perform the
integration as a cascade of integrals.

If two of the Δ’s are zero, that implies that either Δs1 or Δs2 is zero. In this
case the series in one of the variables is a convergent series with a net factorial
of zero. The asymptotic series has to be found in only one variable. One of
Poincaré’s theorems on asymptotic series given in Sec. 5.2 states that the integral
of asymptotic series is equal to the asymptotic series of the integral. Therefore,
the asymptotic solution can be found for the integral whose complex variable
has the non-zero value of Δs, and the remaining integral can be evaluated with
pole-residue techniques. This applies even if Δ1, Δ2, and Δ3 are all positive.

Above I showed that if Δ1, Δ2, and Δ3 are all positive and both parameters
are large, then it is not possible in general to obtain a steepest-descent contri-
bution to the integral. If only one of the parameters is large, then an asymptotic
solution can be found for one variable and pole-residue integration performed
for the second. This can be generalized to the case of N parameters. Define Δ1

to ΔN+1 as in eq. 10.78. If all these Δ’s are positive and only one parameter
is large, then one evaluates the integral by obtaining the steepest-descent con-
tribution of the complex variable associated with the large parameter followed
by evaluating the remaining multiple integral by the method described in this
chapter.
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10.4 Asymptotic Solution in Two or More Complex Planes 303

The results of this chapter are now summarized. To evaluate an integral with
N parameters, one must first determine the locations of the N -poles and the
power series associated with them. The Taylor series solution is simply the sum
of those series that converge in the parameter regime of interest. Conditions for
convergence are given in this chapter. An exact convergent solution is always
obtained except for certain parameter regimes when more than one of the Δ’s
is zero. In those parameter regimes no valid solution is obtained.

If terms of the power series are subtracted from some integrand functions,
then the summations do not start at zero. Criteria for the inclusion of additional
partial series in the solution were developed.

If some of the series converge slowly, it is often possible to obtain an asymp-
totic solution for the integral. This solution is composed of a sum of series plus
a steepest-descent contribution. To find the series solution, express all power
series such that the parameters in the series are raised to a positive exponent.
The asymptotic series part of the solution is simply the sum of all series that
have all parameters in the summation less than unity for the parameter regime
of interest.

The steepest-descent contribution can be found for those cases in which the
integrals can be arranged so that either the result of the first integration is a
rapidly convergent series for the parameter range of interest or one of the Δ’s
is zero. For these cases one finds the steepest-descent part of the solution by
performing the integrals sequentially. There are several ways in which the first
integral can result in a convergent series:

1. The result of the first integration is a rapidly convergent series regardless of
the size of the parameter when either Δs1 or Δs2 is zero. In this case separate
power series are obtained for small and large parameters.

2. If neither Δs1 nor Δs2 is zero, then the order of the integrals sometimes
may be arranged so that the single power series that results from the first
integration converges rapidly for the parameter range of interest. In this
case, the steepest-descent contribution is found when the second integral is
subsequently evaluated.

3. If neither Δs1 nor Δs2 is zero but Δ1 = ±Δ2, then by making the substitu-
tions s → ∓s, t → s + t, and s + t → t one obtains Δs1 = 0. This has now
been reduced to the first case.

For cases where a steepest-descent contribution cannot be found by sequential
evaluation of the integrals in the complex plane and all the Δ’s are positive, one
can obtain that contribution by solving the nonlinear equations given in this
section. For the remaining cases it is not clear that an asymptotic solution with
a single-term, steepest-descent contribution can be found that gives an accurate
approximation to the integral.
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Chapter 11

Integral Evaluation with N Parameters

The mathematical technique developed in the last chapter is used to find an-
alytical solutions to seven problems. The first three are purely mathematical
problems, and the last four are problems related to turbulence.

The first three examples have solutions that are in integral tables. The same
solution and range of applicability is obtained with the Mellin transform method.
The second problem, which contains a product of three Bessel functions, has
applicability in the calculation of the correlation coefficients of various modes
on a circular aperture. The third example has an integrand that contains a
sinusoid and the product of Bessel functions. Two cases are considered; in the
first there are three Bessel functions and in the second there are N . This example
is the only one given in this book that illustrates how to use the technique in
more than two complex planes.

For the first four problems asymptotic solutions are not required. In the last
three problems they are required. It may not be necessary to use asymptotic
solutions for certain applications since if enough Taylor series terms are used
they can provide a sufficiently accurate answer. In the calculation of the power
spectral density in Sec. 6.7 a 40-term Taylor series was sufficient to calculate the
spectrum to large frequencies. The asymptotic solution does have one advantage
over the Taylor series in that the dependence on parameters is clearly evident.

Four problems in wave propagation in turbulence are solved. These problems
were chosen to illustrate the various techniques one must use to obtain asymp-
totic solutions under different conditions. The first three are generalizations of
problems solved earlier in the book. It is shown that these solutions approach
the former solutions at the proper limits. These three solutions determine the
effect of outer scale on tilt anisoplanatism, the effect on tilt variance with both
inner-scale and outer-scale effects present, and the tilt power spectral density
with outer-scale effects. The fourth solution gives phase structure and correla-
tion functions with inner and outer scale effects. These solutions demonstrate
one of the most valuable assets of this technique. From the first term that cou-
ples the two effects, one can determine when the coupling starts to affect the
result. From this term, one can determine when coupling can be neglected. The
specific form of the coupling is difficult to ascertain when numerical methods
are used to evaluate the integral.
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306 11 Integral Evaluation with N Parameters

For notational convenience, in two-complex-plane problems the two complex
variables are designated s and t rather than s1 and s2. The notation introduced
in the last chapter is used extensively in this chapter. For convenience it is
repeated here.

S (p1, . . . , pk) =
∞∑

n1=p1

· · ·
∞∑

nk=pk

(−1)n1+···+nk

n1! · · ·nk!
. (11.1)

If an a is placed next to the limit, it indicates that the series is asymptotic and
only a finite number of terms should be summed. The argument of S (p1, . . . , pk)
has the n limit first followed by the m limit. Sometimes when there are multiple
series, the summations are separated by other terms. In that case there will be
two terms of the form S(0), and I will add either an n or an m subscript to make
it clear which summation is first.

The other function gives the factorial behavior of series terms as the summa-
tion index goes to infinity.

F (Ω1, . . . , Ωk) = (n1!)
Ω1 · · · (nk!)

Ωk . (11.2)

11.1 An Integral with Two Bessel Functions and a
Sinusoid

This first example is chosen because the value of the integral is a particularly sim-
ple expression. Consider the integral in Gradshteyn and Ryzhik (1980, eq. 6.711
# 3)

I =

∞∫
0

du uν−μ−2Jμ(au) Jν (bu) sin(cu) =
2ν−μ−1aμ b−νcΓ [ν]

Γ [μ + 1]
, (11.3)

with a > 0, b > 0, b − a > c > 0, and 0 < Re {ν} < Re {μ} + 3. The last
condition results from the requirement that the integral must converge at the
upper and lower limits.

Without loss of generality, the functions can be arranged so that a < b. This
integral is put into the standard form by the following transformations au = y,
y = a/b, and z = a/c, to give

I = a−ν+μ+1

∞∫
0

dx

x
xν−μ−1Jμ(x) Jν

(
x

y

)
sin

(
x

z

)
.

This can be converted into an integral in two complex planes with the Mellin
transforms in eq. 1.51 and eq. 1.48 and the Mellin convolution integral given in
eq. 1.31. After the substitutions s → 2s and t → 2t, one obtains

I =

√
π

2

(
a

2

)1−ν+μ 1

(2πi)2

∫
C1

∫
C2

ds dt
(

a

b

)−2s (a

c

)−2t
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11.1 An Integral with Two Bessel Functions and a Sinusoid 307

×Γ

[
s + t + ν/2 − 1/2, −s + ν/2, −t + 1/2

−s − t − ν/2 + μ + 3/2, s + 1 + ν/2, t + 1

]
.

Since Δs = Δt = 0, there is no asymptotic series.
The technique discussed in Chap. 10 is used to evaluate this integral. The

locations of the 2-poles are:

(1) − t + 1/2 = −m ; −s + ν/2 = −n,
(2) − s + ν/2 = −n ; s + t + ν/2 − 1/2 = −m, and
(3) − t + 1/2 = −m ; s + t + ν/2 − 1/2 = −n. (11.4)

To determine which 2-pole contributions must be retained, the above relations
are used to find the power-law dependence of the parameters for large values of
m and n. If the exponents have m and n indices in the same exponent, one must
separate the terms by defining new parameters. This statement is made clearer
when one performs this process for the three sets of two-poles to give:

(1)

(
b

a

)2n (
c

a

)2m

F (0, 0),

(2)

(
b

c

)2n (
a

c

)2m

F (0, 0), and

(3)
(

a

b

)2n (c

b

)2m

F (0, 0). (11.5)

As discussed in Chap. 10 the values of Ω1 and Ω2 in F (Ω1, Ω2) are the values
of the exponent of the factorial function. These are referred to as the “net
factorial power”, and they determine the series type. If both values are non-
positive, then the series is a Taylor series, otherwise it is an asymptotic series.
The parameters with a single index in the exponent are the natural parameters
of the problems, and are independent of initial substitutions made to put the
integral into the canonical form. The constant terms in the exponents do not
affect series convergence and, therefore, the direction of path closure, and have
not been displayed explicitly. The three power series are Taylor series that apply
to different parameter ranges. The range of applicability of the various series is
given in Table 11.1.

Table 11.1. Range of applicability of various series.

2–Pole Solution Parameter Range

Set Type

1 Taylor b < a c < a

2 Taylor b < c a < c

3 Taylor a < b c < b

From the condition b − a > c > 0 the first two series diverge, in which case
only the third series is convergent, and the integral is equal to
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308 11 Integral Evaluation with N Parameters

I =
√

π
aμ c

bν 22−ν+μ
S (0, 0)

(
a

b

)2n (c

b

)2m

Γ

[
m + n + ν

n + μ + 1,−m − n + 1, m + 3/2

]
.

(11.6)
The term Γ [−m − n + 1] in the denominator is infinite at all n and m except
m = n = 0. Therefore, all residues vanish except those at m = n = 0. The single
series term gives the result in eq. 11.3. The particular value of the power of x
produces this simple form for the result. The expression is more complicated for
a general exponent in the original integral, and this method can be used to get
a double-series solution for this case. This will not be pursued here since this
type of series is illustrated in the next example.

One must examine the convergence region of this solution. Since the net
factorial power for both summation indices is zero, one has to use the criteria
for convergence of the power series given in Sec. 10.2. Even though terms other
than the first are zero, in order to get the first term, one had to close the
integration path at infinity to encompass all terms of this series; therefore, the
convergence criteria must be applied as if all series terms are non-zero. Equation
10.8 gives Φ1(m,n) = (m + n)2/m2, and Φ2(m,n) = (m + n)2/n2. From eq. 10.9
one finds the first of the two regions is a rectangle with sides of unity length.
The parametric equations given by eq. 10.10 are ξ = |x| = m2/(m + n)2, and
η = |y| = n2/(m + n)2. These equations satisfy the relation

√
x +

√
y < 1.

Since x = (a/b)2 and y = (c/b)2, one requires that a/b + c/b < 1. The area
in the x–y plane defined by this condition is contained within the unit square;
therefore, this more restrictive condition defines the region of convergence. From
this, one obtains the same condition as that in the integral tables given by
b − a > c.

11.2 An Integral with Three Bessel Functions

Consider the following integral whose value is needed to evaluate the Zernike
covariance matrix

I =

∞∫
0

dω

ω
ωdJμ(aω) Jν(bω) Jρ(cω). (11.7)

This integral is tabulated in Gradshteyn and Ryzhik (1980, eq. 6.578 # 1). The
condition for convergence at the lower limit is μ+ν +ρ+d > 0. For convergence
at the upper limit one requires Re {d} < 5/2. Without loss of generality, one
can arrange the Bessel functions so that c > b > a. With this last condition the
only region in parameter space for which a solution is required is the hatched
region of Fig. 11.1.

Watson (1934) considered this integral but was unable to evaluate it. Bailey
(1936) found its value when a + b < c, which is in the integral table, and is the
result derived below.

Evaluate the integral by letting x = cω to give

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



11.2 An Integral with Three Bessel Functions 309
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a/c 1

Figure 11.1. Hatched area is the parameter region in which a solution is re-
quired for the integral of 3 Bessel functions.

I = c−d

∞∫
0

dx

x
xd Jρ(x) Jμ [x/ (c/a)] Jν [x/ (c/b)] .

Use the generalized Mellin convolution theorem and the Mellin transform in
eq. 1.51, and make the substitutions s → 2s, and t → 2t, to write the integral
in the s and t complex planes as

I =
2d−1

cd

1

(2πi)2

∫
C1

∫
C2

ds dt
(

c

b

)−2s ( c

a

)−2t

×Γ

[
s + t + (d + ρ) /2, −s + ν/2, −t + μ/2

−s − t + (ρ − d) /2 + 1, s + ν/2 + 1, t + 1 + μ/2

]
.

Since Δs = Δt = 0, there is no asymptotic series. The 2-poles are located at:

1) s + t + (d + ρ) /2 = −n ; −s + ν/2 = −m,
2) s + t + (d + ρ) /2 = −m ; −t + μ/2 = −n, and
3) − s + ν/2 = −n ; −t + μ/2 = −m.

These 2-poles lead to terms of the type:

(1)
(

c

a

)2n
(

b

a

)2m

F (0, 0) ,

(2)
(

a

b

)2n (c

b

)2m

F (0, 0) , and

(3)

(
b

c

)2n (
a

c

)2m

F (0, 0) .

These three sets of 2-poles give three Taylor series that are applicable for different
parameter ranges, given in Table 11.2.
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310 11 Integral Evaluation with N Parameters

Table 11.2. Range of applicability of various series for the problem in which
the product of three Bessel functions is integrated.

2–Pole Solution Parameter Range

Set Type

1 Taylor c < a b < a

2 Taylor a < b c < b

3 Taylor b < c a < c

For the case being considered in which c > b > a, the power series that
corresponds to the third pole set is the only one applicable, and the solution is

I =
2d−1aμbν

cd+μ+ν
S (0, 0)

(
b

c

)2n (
a

c

)2m

×Γ

[
m + n + (ν + ρ + μ + d) /2

−m − n + (ρ − ν − μ − d) /2 + 1, m + 1 + μ, n + 1 + ν

]
.

The summation can be written as an Appell function of the fourth kind to get
exactly the same result as in the integral tables

I =
2d−1aμbν

cd+μ+ν
Γ

[
(ν + ρ + μ + d) /2

1 − (ν − ρ + μ + d) /2, 1 + ν, 1 + μ

]

×F4

⎡
⎣(ν + ρ + μ + d)

2
,
(ν − ρ + μ + d)

2
, 1 + μ, 1 + ν;

(
a

c

)2

,

(
b

c

)2
⎤
⎦ . (11.8)

Since the net factorial power for both summation indices is zero, one has to
examine the convergence criteria of the power series in this case. The analysis
to find the region of convergence proceeds exactly as in the last section, and
the parametric equations are identical. Since in this problem x = (b/c)2, and
y = (a/c)2, one obtains the same condition as in the integral tables a + b < c.
The two potential regions of convergence represented by the above inequality
and the unit square are shown in Fig. 11.2. Both hatched regions are ones in
which the power series does not apply even though the parameters are less than
one. The horizontally hatched region is half the area of interest as depicted in
Fig. 11.1. In that region 1/2 < c/2b < 1. For parameter values in this region,
the integration path cannot be closed around the poles, and the above technique
does not give an answer even though the integral converges. Gervois and Navelet
(1985, 1986) gave results in the horizontally hatched region for special values of
the order of the Bessel function and exponent in the integration. The analytic
value of the integral for arbitrary parameter values is not known.
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Figure 11.2. Regions in which the power series has different convergence prop-
erties for the integral of 3 Bessel functions.

11.3 Example in Three and N Complex Planes

As an example of the technique in three complex planes, an integral similar to
the first example, whose value has a particularly simple form, is worked out. By
examining the steps in obtaining this solution, one can obtain by inspection the
result of the integration in N complex planes. Consider the following integral

I =

∞∫
0

du uν−μ−λ−2 Jν (bu) sin(cu) Jμ(au) Jλ(du)

=
2ν−μ−λ−1 b−ν Γ [ν] c aμ dλ

Γ [μ + 1]Γ [λ + 1]
, (11.9)

with a > 0, b > 0, d > 0, b > a + c + d > 0, and 0 < Re {ν} < Re {μ + λ}+ 3.5.
The last condition results from the convergence requirement at the upper and
lower limits.

Without loss of generality, functions can be arranged so that a < b and d < b.
This integral is converted into standard form by the following transformations
au = x, y = a/b, z = a/c, and w = a/d, to give

I = a−ν+μ+λ+1

∞∫
0

dx

x
xν−μ−λ−1Jμ(x) Jν

(
x

y

)
sin

(
x

z

)
Jλ

(
x

w

)
.

This can be converted into an integral in three complex planes with the Mellin
transforms in eq. 1.51 and eq. 1.48 and the Mellin convolution integral given in
eq. 1.31. The third complex variable is r.
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312 11 Integral Evaluation with N Parameters

After the substitutions s → 2s, r → 2r, and t → 2t, one obtains

I =
√

πa−ν+μ+λ+12−2+ν−μ−λ 1

(2πi)3

∫
C1

∫
C2

∫
C3

ds dt dr
(

a

b

)−2s(a

c

)−2t(a

d

)−2r

×Γ
[
s + t + r + ν/2 − λ/2 − 1/2, −s + ν/2, −t + 1/2, −r + λ/2
−s − t − r − ν/2 + λ/2 + μ + 3/2, s + 1 + ν/2, t + 1, r + 1 + λ/2

]
.

The technique discussed in the last chapter is used to evaluate this integral. The
locations of the 3-poles are:

(1) − t +
1

2
= −m ; −s +

ν

2
= −n ; −r +

λ

2
= −p,

(2) − s +
ν

2
= −n ; s + t + r + ν/2 − λ

2
− 1

2
= −m ; −r +

λ

2
= −p,

(3) − t +
1

2
= −m ; s + t + r +

ν

2
− λ

2
− 1

2
= −n ; −r + λ/2 = −p, and

(4) s + t + r +
ν

2
− λ

2
− 1

2
= −p ; −s +

ν

2
= −n ; −t +

1

2
= −m.

To determine which 3-pole contributions must be retained, the above relations
are used to find the power-law dependence of the variables for large values of m,
n, and p, which are:

(1)

(
b

a

)2n (
c

a

)2m
(

d

a

)2p

F (0, 0, 0) ,

(2)

(
b

c

)2n (
a

c

)2m
(

d

c

)2p

F (0, 0, 0) ,

(3)
(

a

b

)2n (c

b

)2m
(

d

b

)2p

F (0, 0, 0) , and

(4)

(
b

d

)2n (
c

d

)2m (
a

d

)2p

F (0, 0, 0) .

All four lead to Taylor series that converge for different parameter ranges. It will
be required that c < b, and since a < b and d < b, only the third Taylor series
converges so that the integral is equal to

I =
√

πaμ c 2−2+ν−μ−λ b−ν dλS (0, 0, 0)
(

a

b

)2n (c

b

)2m
(

d

b

)2p

×Γ

[
m + n + p + ν

n + μ + 1, −m − n − p + 1, m + 3/2, p + λ + 1

]
. (11.10)

The term Γ [−m − n − p + 1] in the denominator is infinite at all n, m, and p
except for m = n = p = 0. Therefore, all poles have zero residue except the
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3-pole at m = n = p = 0. The one term that remains gives the same result as
that in eq. 11.9. The particular form of the power of x produces the simple form
for the result, and the expression is more complicated for a general exponent.

As before, because the net factorial power for the three summation indices is
zero, one has to examine the criteria for convergence of Sec. 10.2. Equation 10.15
gives Φ1(m,n, p) = (m + n + p)2/m2, Φ2(m,n, p) = (m + n + p)2/n2, and
Φ3(m,n, p) = (m + n + p)2/p2. From eq. 10.17 one finds that the hyper-rectangle
of possible convergence has sides of unity length. The parametric equations to
determine the second convergence criterion are ξ = |x| = n2/(m + n + p)2,
η = |y| = m2/(m + n + p)2, and φ = |z| = p2/(m + n + p)2.These conditions
require

√
x +

√
y +

√
z < 1.

Since x = (a/b)2, y = (c/b)2, and z = (d/b)2, then b > c + a + d. The
volume in the x–y–z plane defined by this condition is contained within the
hyper-rectangle; therefore, this more restrictive condition defines the conver-
gence region. The above result agrees with the special case of the integral in
Prudnikov et al. (1990, eq. 7 of Sec. 2.12.44) when one notes that

J1/2 (cx) =

√
2

πcx
sin (cx) . (11.11)

The extension of this technique to evaluate integrals with more Bessel func-
tions, which require more than three complex planes, is obvious. The result is

I =

∞∫
0

du u

(
ν−2−

N∑
i=1

ai

)
Jν(bu) sin(cu)

N∏
i=1

Jai
(diu)

= 2

(
ν−1−

N∑
i=1

ai

)
c

bν
Γ [ν]

N∏
i=1

dai
i

Γ [1 + ai]
. (11.12)

For convergence at the lower and upper limits, one requires

0 < Re {ν} < Re

{
N∑

i=1

ai

}
+

N + 5

2
. (11.13)

The convergence criteria are easily extended into N -complex planes to obtain

b > c +
N∑

i=1
di. This integration formula also agrees with the special case of the

above-mentioned integral in Prudnikov et al. (1990).
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11.4 Effect of Outer Scale on Tilt Anisoplanatism

Tilt anisoplanatism with an infinite outer scale was considered in Sec. 6.6. Here
this problem is solved with a finite outer turbulence scale for the von Kármán
spectrum. I will show that outer scale’s effect is not as significant here as its effect
on tilt in Sec. 6.1. The equivalent of eq. 6.59 with outer-scale effects included is

⎡
⎢⎢⎣

σ2
‖

σ2
⊥

σ2

⎤
⎥⎥⎦ = 0.4146

(
16

D

)2 L∫
0

dz C2
n(z)

∫
dκ

⎡
⎢⎣

cos2(ϕ)

sin2(ϕ)
1

⎤
⎥⎦

×
(
κ2 + κ2

o

)−11/6
[
J2 (κD/2)

κD/2

]2

{1 − cos [κd cos (ϕ)]} . (11.14)

Let w = κd, y = 2πd/Lo, and x = 2d/D, and integrate over angle. The equiva-
lent of eq. 6.65 is

[
I1

IT

]
= −4 d11/3

D2

∞∫
0

dw

w

[
w−14/3

[
J1(w) − w

2

]
w−11/3 [J0(w) − 1]

]
J2

2 (w/x)
[
1 + (y/w)2

]−11/6
.

Using the Mellin convolution theorem with the Mellin transforms in eq. 1.51,
eq. 1.52, and eq. 1.54, and making the substitutions s → 2s and t → 2t, one
can convert this into an integral in two complex planes as

[
I1

IT

]
=

−0.0945 d11/3

D2

1

(2πi)2

∫
C1

∫
C2

ds dt

(
πd

Lo

)−2s (
d

D

)−2t

×Γ

[
s + t − 11

6
∗, −t + 2, t + 1

2
, s, −s + 11

6

t + 3, t + 1

]⎧⎪⎪⎨
⎪⎪⎩

1

2Γ

[
−s−t+

23
6

]
1

Γ

[
−s−t+

17
6

]
⎫⎪⎪⎬
⎪⎪⎭ .

The asterisk indicates that the integration path passes between the first and
second poles of that gamma function.

The list of 2-poles are:

(1) − s + 11
6

= −m ; t + 1
2

= −n,
(2) − s + 11

6
= −m ; −t + 2 = −n,

(3) − s + 11
6

= −m ; s + t − 11
6

= −n∗,
(4) s = −m ; 1

2
+ t = −n,

(5) s = −m ; −t + 2 = −n,
(6) s = −m ; s + t − 11

6
= −n∗

(7) t + 1
2

= −n ; s + t − 11
6

= −m∗, and
(8) − t + 2 = −n ; s + t − 11

6
= −m ∗ .

The values of m and n are integers that vary between 0 and ∞. The asterisk
after a term means that the index varies between 1 and ∞ on one side of the
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11.4 Effect of Outer Scale on Tilt Anisoplanatism 315

integration path, and is equal to 0 on the other. The general terms of the various
possible series are:

(1)
(

Lo

πd

)2m
(

d

D

)2n

F (0, 2) ,

(2)
(

Lo

πd

)2m
(

d

D

)2n

F (0, 2) ,

(3)
(

Lo

πD

)2m
(

d

D

)2n∗

F (0, 2) ,

(4)

(
πd

Lo

)2m (
d

D

)2n

F (0,−2) ,

(5)

(
πd

Lo

)2m (
D

d

)2n

F (0,−2) ,

(6)

(
d

D

)2n∗ (
πD

Lo

)2m

F (0,−2) ,

(7)
(

Lo

πD

)2n
(

πd

Lo

)2m∗

F (2,−2) , and

(8)
(

πD

Lo

)2n
(

πd

Lo

)2m∗

F (−2,−2) .

This process produces the parameters that are relevant to the problem. The
new parameter introduced above is πD/Lo. In this analysis, this ratio as well as
πd/Lo is considered to be less than 1. To determine which pole residues must be
included, the rule given in the last chapter must be applied. These results are
summarized in Table 11.3. Series 1, 2, 3, and 7 are asymptotic series that apply
when the displacement or diameter is much greater than the outer-scale size. I
am not interested in this parameter range; therefore, these series are discarded.
For d/D < 1, Series 4 for all m and n, and Series 6 for all m and n greater than
0 contribute. For d/D > 1, Series 5 for all n and m, and Series 6 for n = 0 and
all m contribute. Series 8 contributes for all ranges of d/D for all n and for m
greater than 0. Series 6 corresponds to a series of type B1 in Table 10.1 and the
term with n = 0 must be added to the solution when d/D > 1.

Since the only relevant series are Taylor series, steepest-descent contributions
do not have to be added to the solution. With these properties the value of the
integral for small displacements, d/D < 1, can be expressed as
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Table 11.3. Series ranges of applicability for most rapid convergence, for the
problem where the effect of outer scale on tilt anisoplanatism is found.

2–Pole Solution Parameter Range

Set Type

1 Asymp πD/Lo > 1 d < D

2 Asymp πd/Lo > 1 d < D

3 Asymp πD/Lo > 1 d < D

4 Taylor πd/Lo < 1 d < D

5 Taylor πd/Lo < 1 d > D

6 Taylor πD/Lo < 1 d < D

7 Asymp πD/Lo > 1 πd/Lo < 1

8 Taylor πD/Lo < 1 πd/Lo < 1

[
I1

IT

]
=

−0.0945 d11/3

D2

×
⎧⎨
⎩S (0, 0)

(
πd

Lo

)2m(
d

D

)2n+1

Γ

[
−m − n − 7

3
, n + 5

2
, m + 11

6

−n + 5
2
,−n + 1

2
, n + m + 10

3

][ 0.5

n+m+
10
3

1

]

+ S (1, 0)
(

πD

Lo

)2m
(

d

D

)− 11
3

+2n

Γ

[
n−m + 1

6
, m−n + 7

3
, m + 11

6

−n + m + 29
6
,−n+m+ 17

6
, n + 1

][ 0.5
n+1

1

]

+
(

D

d

)4

S (0, 1)

(
πd

Lo

)2m+ 1
3(πD

Lo

)2n

Γ

[
n + 5

2
,−m−n− 1

6
, m+n+2

n + 5, n + 3, m + 1

][ 0.5
m+1

1

]⎫⎬
⎭.

(11.15)

For large displacements, d/D > 1, the integral is equal to

[
I1

IT

]
=

−0.0945 d11/3

D2

⎧⎨
⎩
(

D

d

)4

S (0, 1)

(
πd

Lo

)2m+1/3 (
πD

Lo

)2n

×Γ

[
n + 5

2
, −m − n − 1

6
, m + n + 2

n + 5, n + 3, m + 1

][
0.5

m+1

1

]

+ S (0, 0)

(
πd

Lo

)2m(
d

D

)−4−2n

Γ

[
−m + n + 1

6
, n + 5

2
, m + 11

6

n + 5, n + 3, m − n + 5
6

]⎡⎣ 0.5

m−n+
5
6

1

⎤
⎦

−
(

D

d

)11/3

S (0)
(

πD

Lo

)2m

Γ

⎡
⎣−m + 1

6
, m + 7

3
, m + 11

6

m + 29
6
, m + 17

6

⎤
⎦[ 0.5

1

]⎫⎬
⎭ . (11.16)

If the outer scale goes to infinity, only terms with m = 0 in the first two summa-
tions for large or small displacements contribute, and these expressions reduce
to the ones in which the outer scale was neglected in eq. 6.67 and eq. 6.70.
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For relatively small displacements, d/D < 1, the tilt variance is

[
σ2
‖

σ2
⊥

]
=

−31.5μ0

d1/3

×
⎧⎨
⎩S(0, 0)

(
πd

Lo

)2m(
d

D

)2n+5

Γ

[
−m−n− 7

3
, n + 5

2
, m + 11

6

−n+ 5
2
,−n + 1

2
, n+m+ 13

3

][
2n+2m+ 17

3

1

]

+S (1, 0)
(

πD

Lo

)2m
(

d

D

)2n+1/3

Γ

[
n − m + 1

6
, m − n + 7

3
, m + 11

6

−n+m+ 29
6
,−n + m + 17

6
, n + 2

][
2n+1

1

]

+S (0, 1)

(
πd

Lo

)2m+1/3(
πD

Lo

)2n

Γ

[
n + 5

2
,−m−n− 1

6
,m + n + 2

n + 5, n + 3, m + 2

][
2m+1

1

]⎫⎬
⎭.

(11.17)

The most significant terms for small displacements are the n = 1, m = 0, and
the n = 1, m = 1 terms of the second summation, which give

[
σ2
‖

σ2
⊥

]
≈ 2.67μ0

D1/3

(
d

D

)2 [
3
1

] [
1 − 20.6

(
D

Lo

)2

+ 27.4
(

D

Lo

)7/3
]
. (11.18)

The first term is the same as that in eq. 6.72 in which outer scale was neglected.
In Sec. 6.1 where tilt with outer scale was considered, outer scale had a significant
effect on tilt because the leading term had the ratio of diameter to outer scale
raised to the inverse one-third power. Here, the effect is small if the outer-scale
size is significantly greater than the diameter because the leading term is the
inverse second power of that ratio. The physical reason this occurs is that for
small relative aperture displacements the two apertures see the same tilt from
long-wavelength turbulence, which cancels when the tilts are subtracted from
each other. Mathematically, this subtraction results from the requirement that
the third summation starts at m = 1 rather than 0. The term that was eliminated
has the one-third power-law dependence on outer scale.

Plots of tilt for various ratios of outer scale to diameter are given in Fig. 11.3
and Fig. 11.4 for the parallel and perpendicular components of tilt anisopla-
natism, respectively. When outer scale is 100 times the diameter, the curve is
virtually identical to that for infinite outer scale, and is not plotted on the graph.
This is in contrast to the result for tilt with outer scale as seen in Fig. 6.2, for
which tilt is reduced by 15% for the same ratio of outer scale to diameter.

11.5 Tilt with Inner and Outer Scale

Tilt with outer scale was found in Sec. 6.1 and with inner scale in Sec. 6.3.
Here tilt with both effects present is found. The integral expression for tilt with
non-zero inner and finite outer scale can be found from eq. 6.1 by the insertion
of the Tatarski inner-scale term to obtain
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Figure 11.3. Tilt parallel to the displacement, versus displacement, for various
outer-scale sizes, normalized to the tilt on the aperture.
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Figure 11.4. Tilt perpendicular to the displacement, versus displacement, for
various outer-scale sizes, normalized to the tilt on the aperture.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
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T 2
o = 0.2073 k2

0

L∫
0

dz C2
n(z)

∫
dκ

(
κ2 + κ2

o

)−11/6
(

16

k0D

)2

×
[
J2 (κD/2)

κD/2

]2

exp
(
−κ2/κ2

i

)
. (11.19)

The integrations over angle and z can easily be performed. The substitution
x = κD/2 gives

T 2
o =

1334μ0

D4 κ
11/3
o

∞∫
0

dx

x
J2

2 (x)

⎡
⎣( x

κo D/2

)2

+ 1

⎤
⎦
−11/6

exp
{
− [x/ (κi D/2)]2

}
.

Using the Mellin convolution integral and the Mellin transforms given by
eq. 1.52, eq. 1.54, and eq. 1.47, and making the substitutions s → 2s and t → 2t,
one obtains

T 2
o =

400μ0κ
−11/3
o

D4

1

(2πi)2

∫
C1

∫
C2

ds dt
(

κoD

2

)−2s (κiD

2

)−2t

×Γ

[
s + t + 2, −s − t + 1

2
, −s, s + 11

6
, −t

−s − t + 3, −s − t + 1

]
. (11.20)

From eq. 10.77 one finds that Δs = 2, and Δt = 1. There are 8 sets of 2-poles
that are given by:

(1) s + t + 2 = −n ; −s = −m,
(2) s + t + 2 = −n ; s + 11

6
= −m,

(3) s + t + 2 = −n ; −t = −m,
(4) − s − t + 1

2
= −n ; −s = −m,

(5) − s − t + 1
2

= −n ; s + 11
6

= −m,
(6) − s − t − 1

2
= −n ; −t = −m,

(7) − s = −n ; −t = −m, and
(8) s + 11

6
= −n ; −t = −m.

This leads to terms of the type:

(1)
(

Lo

Li

)2m (
πD

Li

)2n

F (−1, 1) ,

(2)
(

Li

Lo

)2m (
πD

Li

)2n

F (−1,−1) ,

(3)
(

Li

Lo

)2m (
πD

Lo

)2n

F (−2,−1) ,

(4)
(

Lo

Li

)2m (
Li

πD

)2n

F (1, 1) ,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



320 11 Integral Evaluation with N Parameters

(5)
(

Li

Lo

)2m (
Li

πD

)2n

F (1,−1) ,

(6)
(

Li

Lo

)2m (
Lo

πD

)2n

F (2,−1) ,

(7)
(

Lo

πD

)2n ( Li

πD

)2m

F (2, 1) , and

(8)
(

πD

Lo

)2n ( Li

πD

)2m

F (−2, 1) .

The Taylor series solution is the sum of the second and third series. This con-
verges slowly for normal parameter values, and the solution is not expressed
in this form. Instead, a solution that contains asymptotic series that gives an
accurate answer with the fewest number of terms is found.

Table 11.4 contains the range of applicability of the various series. Terms 1,
2, 4, 6, and 7 apply only when the outer scale is less than the diameter or the
inner scale, or if the inner scale is larger than the diameter. Therefore, these are
not included in the solution of interest. The only terms that are appropriate in
the case in which outer scale is larger than the diameter and also inner scale is
less than the diameter are 3, 5, and 8.

Table 11.4. Series ranges of applicability for most rapid convergence, for the
problem in which the effect of inner and outer scale on the tilt is found.

2–Pole Solution Parameter Range

Set Type

1 Asymp Li > Lo Li/πD > 1

2 Taylor Li < Lo Li/πD > 1

3 Taylor Li < Lo Lo/πD > 1

4 Asymp Li > Lo Li/πD < 1

5 Asymp Li < Lo Li/πD < 1

6 Asymp Li < Lo Lo/πD < 1

7 Asymp Li/πD < 1 Lo/πD < 1

8 Asymp Li/πD < 1 Lo/πD > 1
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These asymptotic and Taylor series lead to

T 2
o ∼ 6.08μ0

D1/3

×
{

5.18S (0, 0)
(

πD

Lo

)2n+1/3 (Li

Lo

)2m

Γ

[
n + 5

2
, n + m + 2, −n − m − 1

6

n + 5, n + 3

]

+ 5.18S (0, 0a)
(

πD

Lo

)2n ( Li

πD

)2m

Γ

[
m − n + 1

6
, n − m + 7

3
, n + 11

6

n − m + 29
6
, n − m + 17

6

]

+ 0.0248S (0a, 0)
(

Li

D

)14/3 (Li

Lo

)2m (
Li

πD

)2n

×Γ

[
n + 5

2
, m + 11

6
, −n − m − 7

3

−n + 5
2
, −n + 1

2

]}
. (11.21)

The steepest-descent contribution must be added to these asymptotic series.
The technique discussed in Sec. 10.4 is used to determine this part of the solution.
As seen from eq. 11.20, the parameter associated with the complex variable s is
small, and the parameter πD/Lo associated with the complex variable t is large.
Since Δ1 = 0, the complex integral is evaluated sequentially with the evaluation
of the steepest-descent contribution over the variable t and normal, pole-residue
evaluation over the variable s. Equation 11.20 is rewritten as

T 2
o =

400μ0κ
−11/3
o

D4

1

2πi

∫
C1

ds
(

κo D

2

)−2s

Γ [−s]

× 1

2πi

∫
C2

dt
(

κi D

2

)−2t

Γ

[
s + t + 2, −s − t + 1

2
, −t, s + 11

6

−s − t + 3, −s − t + 1

]
. (11.22)

Using eq. 5.94 to evaluate the steepest-descent contribution, one finds that it
has exponential decay and can be neglected compared to the pole contributions.
This exponential decay was the same behavior found in Sec. 6.3 when the inner
scale was much smaller than the diameter. Therefore, the solution in eq. 11.21
is the complete solution.

If inner scale goes to zero, the only terms left are the m=0 terms of the first
and last summations, which reduce to the series obtained in eq. 6.6. If the outer
scale goes to infinity, the only terms left are the n = 0 term of the first series,
and the m = 0 term of the third series, which reduce to the series obtained in
eq. 6.22. A plot of the change in variance, divided by the variance with zero
inner-scale size, is given in Fig. 11.5.

11.6 Power Spectrum of Tilt with Outer Scale

The temporal power spectrum of Zernike tilt with infinite outer-scale size was
found in Sec. 6.7. When finite outer scale is considered, a two-dimensional com-
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Figure 11.5. Fractional change of the tilt variance versus the ratio of the outer-
scale size to the diameter, with various inner-scale sizes. Notice that the effect
of inner scale is to change the scaling of the curves. There is little change in
shape. This occurs because inner and outer scale operate at opposite ends of the
turbulence spectrum and their effects are almost independent.

plex integral must be evaluated to compute the tilt power spectral density. The
integral that must be evaluated has the general form given in eq. 6.84 except
that the spectrum has outer scale included and is equal to

ST (ω) = 2.606 k2
0 ω

L∫
0

dz
C2

n(z)

v2(z)

×
∞∫
0

c dc
U(c − 1)√

c 2 − 1
cos2

[
γ ω2 c2z

2v2(z)k0

]
f

[
ω c

v(z)

]
F

[
γ ω c

v(z)
, z

]
. (11.23)

One neglects diffraction by setting the cosine term equal to unity. The collimated
beam case is considered for which γ = 1. The filter function for tilt is given in
eq. 3.21. Change variables by letting x = 2 v(z)/ω D, and y = v(z)κo/ω. The
tilt spectrum is expressed as

ST (ω) =
2668

ω D4 κ
11/3
o

L∫
0

dz C 2
n (z)

∞∫
0

dc

c

U(c − 1)√
c 2 − 1

J2
2

(
c

x

) ⎡
⎣1 +

(
c

y

) 2
⎤
⎦
−11/6

.

(11.24)
With the generalized Mellin convolution integral and the Mellin transforms in
eq. 1.56, eq. 1.52, and eq. 1.54, and after the substitution s → −2s and t → −2t,
the integral over c transforms into
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I =
1

2Γ [11/6]

1

(2πi)2

∫
C1

∫
C2

ds dt Γ

[
s + 2, −s + 1

2
, t, −t + 11

6
, s + t + 1

2

−s + 1, −s + 3, s + t + 1

]

×
[

ωD

2v(z)

]−2s [
Lo ω

2π v(z)

]−2t

.

From the definition in eq. 10.79, Δs = 2, and Δt = 0. There are eight sets of
2-poles that can contribute to I:

(1) s + 2 = −m ; t = −n,
(2) − s + 1/2 = −m ; t = −n,
(3) s + 2 = −m ; −t + 11/6 = −n,
(4) − s + 1/2 = −m ; −t + 11/6 = −n,
(5) s + t + 1/2 = −m ; t = −n,
(6) s + t + 1/2 = −m ; −t + 11/6 = −n,
(7) s + 2 = −m ; s + t + 1/2 = −n, and
(8) − s + 1/2 = −m ; s + t + 1/2 = −n.

For each of these cases, the 2-poles lead to power series that contain terms which
vary as:

(1)

[
ωD

2v(z)

]2m [
Lo ω

2π v(z)

]2n

F (0,−2) ,

(2)

[
2v(z)

ωD

]2m [
Lo ω

2π v(z)

]2n

F (0, 2) ,

(3)

[
ωD

2v(z)

]2m [
2π v(z)

Lo ω

]2n

F (0,−2) ,

(4)

[
2v(z)

ωD

]2m [
2π v(z)

Lo ω

]2n

F (0, 2) ,

(5)

[
ωD

2v(z)

]2m (
Lo

π D

)2n

F (2,−2) ,

(6)

[
ωD

2v(z)

]2m (
πD

Lo

)2n

F (−2,−2) ,

(7)
(

πD

Lo

)2m
[

Lo ω

2π v(z)

]2n

F (0,−2) , and

(8)
(

Lo

πD

)2m
[

Lo ω

2π v(z)

]2n

F (0, 2) .

Table 11.5 summarizes the series type and the parameter range over which the
series should be used to obtain a solution that requires the least number of series
terms to obtain an accurate answer.
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Table 11.5. Properties of series solutions and ranges of applicability for most
rapid series convergence in the problem in which the temporal power spectrum
of tilt with outer scale is found.

2–Pole Solution Parameter Range

Set Type

1 Taylor 2πv (z) /ωLo > 1 2v (z) /ωD > 1

2 Asymp 2πv (z) /ωLo > 1 2v (z) /ωD < 1

3 Taylor 2πv (z) /ωLo < 1 2v (z) /ωD > 1

4 Asymp 2πv (z) /ωLo < 1 2v (z) /ωD < 1

5 Asymp πD/Lo > 1 2v (z) /ωD > 1

6 Taylor πD/Lo < 1 2v (z) /ωD > 1

7 Taylor 2πv (z) /ωLo > 1 πD/Lo < 1

8 Asymp 2πv (z) /ωLo > 1 πD/Lo > 1

Here I assume that D/Lo << 1, which results in eliminating the contribution
of asymptotic series 2, 5, and 8. The remaining 5 series fall into three parameter
regimes:

1. For low frequencies, ω < 2πv(z)/Lo, terms 1, 6, and 7 provide Taylor series.
The natural parameters in eq. 11.24 are given by ωD/2v(z) and Lo ω/2πv(z).

2. At mid-frequencies, 2πv(z)/Lo < ω < 2v(z)/D, terms 3 and 6 provide Taylor
series.

3. At high frequencies, ω > 2v(z)/D, terms 3 and 6 continue to provide the
Taylor series solution for the spectrum although they converge slowly. The
asymptotic series from term 4 and the steepest-descent contribution may
be used in this regime rather than the slowly converging Taylor series to
approximate the spectrum with only a few series terms.

The steepest-descent contribution to the asymptotic form of I is obtained
with the use of the procedure explained in Sec. 10.4. Since Δ2 = Δ3 = 0,
the integral is evaluated sequentially. Accordingly, the integral in eq. 11.24 is
rewritten as

E =
1

2Γ [11/6]

1

2πi

∫
C2

dt Γ
[
t, −t + 11

6

] [ Lo ω

2πv(z)

]−2t

I2, (11.25)

where

I2 =
1

2πi

∫
C1

ds Γ

[
s + 2, −s + 1

2
, s + t + 1

2

−s + 1, −s + 3, s + t + 1

] [
ωD

2v(z)

]−2s

. (11.26)

Equation eq. 5.94 is used to show that

I2 ∼
1√
π

[
2v(z)

ωD

]3/2

cos

[
ωD

v(z)
− π

4

]
. (11.27)
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In this problem I2 does not depend upon t, and the evaluation of eq. 11.25 is
trivial. Because Δt = 0 and Loω/2π v(z) > 1, the contour in eq. 11.25 is closed to
the right, and pole residues are evaluated at the points t = m+11/6. This gives
a series result that can be expressed as a generalized hypergeometric function
with the rules in Sec. 1.3 as

E ∼
κ11/3

o /
√

2/π

D3/2Γ (11/6)

[
v(z)

ω

]31/6

cos

[
ωD

v(z)
− π

4

]
S (0)Γ

[
m + 11

6

][ 2π v(z)

Loω

]2m

∼ κ 11/3
o

D3/2

√
2

π

[
v(z)

ω

]31/6

cos

[
ωD

v(z)
− π

4

]
1F0

⎡
⎣11

6
;−

[
2πv(z)

Lo ω

]2
⎤
⎦ . (11.28)

With the identity given in eq. 1.67, this becomes

E ∼ κ 11/3
o

D3/2

√
2

π

[
v(z)

ω

]31/6
⎧⎨
⎩1 +

[
2πv(z)

Loω

]2
⎫⎬
⎭

−11/6

cos

[
ωD

v(z)
− π

4

]
. (11.29)

Using pole residues to evaluate series 1, 3, 4, 6, and 7 combined with the result
given above leads to the expressions that follow for the power spectral density
of tilt with finite outer scale.

For ω < 2πv(z)/Lo, after the interchange of m and n in the first summation,

ST (ω) =
88.64

κ
2/3
o

S (0, 0)
(

πD

Lo

)2n

v−2m−1

×
{
Γ
[
n + 5

2
, m − n + 1

3
, −m + n + 3

2

−m + 1
2
, n + 3, n + 5

] (
Loω

2π

)2m

+
(

πD

Lo

)2/3

Γ
[
n + 11

6
, m + n + 17

6
, −m − n − 1

3

−m + 1
2
, m + n + 10

3
, m + n + 16

3

] (
ωD

2

)2m
}

. (11.30)

The contribution from Series 1 does not appear here because the coefficients in
this series are all zero. The nth velocity moment defined in eq. 4.83 is expressed
as vn in these results. For 2πv(z)/Lo < ω < 2v(z)/D one obtains

ST (ω) =
52.53D2/3

Γ [11/6]

(
2

ωD

)2/3

S (0, 0)
(

ωD

2

)2m

×
{
Γ

[
m + 5

2
, n + 11

6
, −m + n + 1

3

m + 3, m + 5, −m + n + 5
6

] (
2π

Lo ω

)2n

v−2m+2n−1/3

+Γ

[
n + 11

6
, m + n + 17

6
, −m − n − 1

3

−m + 1
2
, m + n + 10

3
, m + n + 16

3

](
ωD

2

)2/3(πD

Lo

)2n

v−2m−1

}
.

(11.31)
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For ω > 2v(z)/D, eq. 11.30 provides a slowly converging Taylor series solution.
The asymptotic solution for the power spectral density in this regime is given
by

ST (ω) ∼ 52.53D2/3

Γ [11/6]

(
2

ωD

)17/3

×
⎧⎨
⎩

L∫
0

dz C2
n(z)

Γ [11/6]√
π

[
2 v(z)

ωD

]1/2 v(z)14/3 cos
[
ωD/v(z) − π

4

]
[
1 + (2πv(z)/Lo ω)2

]11/6

+ S(0, 0a)Γ

⎡
⎣ m + 5

2
, n + 11

6
, m + n + 17

6

−m + 1
2
,−m + 5

2
,m+n + 10

3

⎤
⎦( 2

ωD

)2m( 2π

Loω

)2n

v2m+2n+14/3

⎫⎬
⎭ .

(11.32)

At low frequencies, ω < 2πv(z)/Lo, the tilt spectrum is flat, or stated equiv-
alently, the spectrum is proportional to ω0. In the mid-range of frequencies,
2πv(z)/Lo < ω < 2v(z)/D, the tilt spectrum is proportional to ω−2/3. This
regime corresponds to the low-frequency portion of the tilt spectrum in the ab-
sence of outer-scale effects. At high frequencies, ω > 2v(z)/D, the tilt spectrum
is proportional to ω−17/3 as is the case when outer scale is neglected. In the
limit as Lo grows large and outer scale no longer influences the tilt spectrum,
eq. 11.30 and eq. 11.31 reduce to the expressions for tilt spectrum without outer
scale derived in Sec. 6.7.

For a constant velocity (independent of altitude), the tilt spectrum for the
three frequency regimes is given by the following equations. For ω < 2πv(z)/Lo,

ST (ω) =
88.64μ0

v κ
2/3
o

S (0, 0)
(

πD

Lo

)2n

×
{
Γ

[
n + 5

2
, m − n + 1

3
, −m + n + 3

2

−m + 1
2
, n + 3, n + 5

] (
Loω

2π v

)2m

+
(

πD

Lo

)2/3

Γ

[
n + 11

6
, m + n + 17

6
, −m − n − 1

3

−m + 1
2
, m + n + 10

3
, m + n + 16

3

] (
ωD

2v

)2m
}

. (11.33)

For 2πv/Lo < ω < 2v/D,

ST (ω) =
52.53μ0 D2/3

v Γ [11/6]
S (0, 0)

×
{
Γ

[
m + 5

2
, n + 11

6
, −m + n + 1

3

m + 3, m + 5, −m + n + 5
6

] (
ωD

2v

)2m−2/3 (2πv

Loω

)2n

+ Γ

[
n + 11

6
, m + n + 17

6
, −m − n − 1

3

−m + 1
2
, m + n + 10

3
, m + n + 16

3

] (
ωD

2v

)2m (
πD

Lo

)2n
}

. (11.34)
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For ω > 2v/D, eq. 11.33 provides a slowly converging Taylor series solution.
The asymptotic solution for the power spectral density in this regime is given
by

ST (ω) ∼ 52.53μ0 D2/3

v

(
2 v

ωD

)17/3
{

1√
π

(
2 v

ωD

)1/2 cos
(
ωD/v − π

4

)
[
1 + (2πv/Loω)2

]11/6

+
S (0, 0a)

Γ [11/6]
Γ

[
m + 5

2
, n + 11

6
, m + n + 17

6

−m + 1
2
, −m + 5

2
, m + n + 10

3

] (
2 v

ωD

)2m (
2πv

Lo ω

)2n
}

.

(11.35)

The power spectral density is plotted in Fig. 11.6 as a function of f D/v for
several values of the parameter D/Lo. The curves have been normalized so that
the power spectral density at f D/v = 1 is unity for infinite outer scale. These
spectra are similar to the spectra without outer scale given in Fig. 6.14 except
that the spectrum saturates below the frequency ω = 2πv/Lo due to outer-scale
effects. Because it was assumed that Lo > D, outer scale has little impact on
the high-frequency portion of the tilt spectrum.

Figure 11.6. Normalized tilt power spectral density with the assumption of a
constant wind velocity and several ratios of outer-scale size to aperture diameter.
Smaller outer scale causes a lowering and leveling off of the spectral power at
lower frequencies.
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11.7 Structure and Correlation Functions with Inner and
Outer Scales

In Sec. 11.6 the impact of non-zero inner and finite outer scale on tilt variance
was examined. Inner and outer scales also influence the phase variance of a wave
that has propagated through turbulence. For example, if infinite outer scale in
Kolmogorov turbulence is assumed, the phase variance is unbounded, and if finite
outer scale in Kolmogorov turbulence is assumed, the phase variance is finite.
Unfortunately, the inclusion of inner and outer scale in turbulence calculations
often leads to integrals that are difficult to evaluate. This is one of the reasons to
assume that the outer scale is infinite and to work around the problem of infinite
phase. Structure functions are often used in calculations rather than correlation
functions for this reason. As shown in this section, Mellin transform methods
can be used to solve for both structure and correlation functions with inner and
outer scale. First, one derives the structure function, after which solving for the
phase correlation function is a simple extension.

The expression for the structure function in eq. 2.123 with the turbulence
spectrum in eq. 2.34 is

D (d ) = 0.4146 k2
0

L∫
0

dz C2
n(z)

×
∫

dκ
(
κ2 + κ2

o

)−11/6
exp

(
−κ2/κ2

i

)
cos2

[
κ2(L − z)

2k0

]
[1 − cos (κ · d )] .

(11.36)

Furthermore, it is assumed that turbulence is in the near field of the receiver;
therefore, the cos2 term may be set to unity. The integral over angle in κ space
may be performed to give

D (d) = 2.605 k2
0

L∫
0

dz C2
n(z)

∞∫
0

dκ κ
(
κ2 + κ2

o

)−11/6
exp

(
−κ2/κ2

i

)
[1−J0(κ d)] .

(11.37)
The integral over κ is evaluated with Mellin transform techniques. In order to
generalize the results, the exponent −11/6 is replaced with −α/2. For Kol-
mogorov turbulence, α = 11/3. After the change of variables q = κd, x = dκi,
and y = dκo, the integral over κ becomes

Q =
1

d2κα
o

∞∫
0

dq

q
q2 [1 − J0 (q)] exp

[
−(q/x)2

] [
1 + (q/y)2

]−α/2
.

With standard Mellin transform techniques, this integral is converted into a
contour integral over two complex planes with the transforms in eq. 1.47, eq. 1.51,
and eq. 1.54, and the substitutions s → −2s and t → −2t to obtain
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Q =
−2

d2Γ [α/2] κα
o

1

(2πi)2

∫
C1

∫
C2

ds dt
(

x

2

)−2s (y

2

)−2t

×Γ

[
s + t + 1∗, −s, −t, t + α/2

−s − t

]
.

The * indicates that the contour of integration is shifted to the left by one pole
location. In this problem, Δs = 1, and Δt = 2. The two-poles associated with
the integrand are located at:

(1) s + t + 1 = −m∗; −s = −n,
(2) s + t + 1 = −n∗; −t = −m,
(3) s + t + 1 = −n∗; α/2 + t = −m,
(4) − s = −n; −t = −m, and
(5) − s = −n; α/2 + t = −m.

The range of the integers m and n are from 0 to ∞. The asterisk after an index
indicates that the range of that index is 1 to ∞ for one series and 0 to ∞ for
the other. These relations lead to terms of the form:

(1)

(
πd

Lo

)2m∗ (
Li

Lo

)2n

F (−1,−2) ,

(2)
(

Lo

Li

)2m
(

πd

Li

)2n∗

F (−1, 1) ,

(3)
(

Li

Lo

)2m
(

πd

Li

)2n∗

F (−1,−1) ,

(4)
(

Lo

πd

)2m (
Li

πd

)2n

F (1, 2) , and

(5)

(
πd

Lo

)2m (
Li

πd

)2n

F (1,−2) . (11.38)

The sum of Taylor series 1 and 3 gives the complete solution for all pa-
rameter values. The Taylor series solution, however, converges slowly when
Li/π < d < Lo/π, and even more slowly when d > Lo/π. To ease computational
requirements, I seek asymptotic approximations when d > Li/π that allow me to
approximate the structure function with only a few terms. The approximations
also more clearly illustrate the functional dependence of the structure function
on parameters πd/Li, πd/Lo, and Li/Lo in the regimes where many terms from
the Taylor series are required. One can determine the parameter regimes where
asymptotic approximations are useful by examining Table 11.6.

There are three regimes in this problem. In the first regime where d < Li/π,
Taylor series 1 and 3 converge rapidly. In the second regime that occurs when
Li/π < d < Lo/π, Taylor series 1, asymptotic series 5, and a steepest-descent
component should be used to obtain accurate estimates with a few terms. In
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Table 11.6. Series ranges of applicability for most rapid convergence for struc-
ture function with inner and outer scale present.

2–Pole Solution Parameter Range

Set Type

1 Taylor Li < Lo πd < Lo

2 Asymp Li > Lo πd < Li

3 Taylor Li < Lo πd < Li

4 Asymp πd > Li πd > Lo

5 Asymp πd > Li πd < Lo

the third regime, where d > Lo/π, asymptotic series 4 and a steepest-descent
component provide a good approximation to the structure function. Because
the inner-scale size Li is always less than the outer-scale size Lo, the series that
corresponds to the second pole set in the table never contributes. The series
that results from the evaluation of the residues at 2-poles 1, 3, 4, and 5 are
given below:

Q1 =
−2π2κ−α

o

L2
o Γ [α/2]

S (0, 1)
(

Li

Lo

)2n
(

πd

Lo

)2m

Γ

[
m + n + 1, −m − n + α/2 − 1

m + 1

]
,

Q3 =
−2π2 (d/2)α

L2
i Γ [α/2]

S (1, 0)
(

Li

Lo

)2m
(

πd

Li

)2n−α

Γ

[
−m + n−α/2 + 1, m + α/2

n + 1

]
,

Q4 =
−2κ−α

o

d2 Γ [α/2]
S (0a, 0a)

(
Li

πd

)2n (Lo

πd

)2m

Γ
[
m + n + 1, m + α/2
−m − n

]
= 0,

and

Q5 =
−2 (d/2)α

d2 Γ [α/2]
S (0a, 0)

(
Li

πd

)2n
(

πd

Lo

)2m

Γ

[
−m + n − α/2 + 1, m + α/2

m − n + α/2

]
.

Because Γ [−m − n] is infinite for all m and n, Q4 is equal to zero. I must also
be concerned with the B2 and C3 terms discussed in Sec. 10.3 and defined in
eq. 10.57 and eq. 10.59. In the second and third regimes, the third set of two-
poles contributes a series of type B2. The first set of two-poles contributes a
series of type C3 in the third regime. These terms are given by

B2 =
−2π

Γ [α/2] cos (πα/2)

(
Li

2π

)α ( π

Li

)2

exp
(

Li

Lo

)2

, and (11.39)

C3 =
−2

Γ [α/2]

(
Lo

2π

)α ( π

Lo

)2 ∞∑
n=0

(−1)n Γ [−n + α/2 − 1]
(

Li

Lo

)2n

. (11.40)

The steepest-descent contributions to the asymptotic forms for the integral must
be calculated for the second and third regimes. Since Δ2 = 0, the steepest-
descent contribution is found by sequential evaluation of the two-dimensional
integral.
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In the second regime, x is large and y is small. The integral may be rewritten
as

Q̃ =
−2κ−α

o

d2 Γ [α/2]

1

(2πi)2

∫
C1

dt
(

y

2

)−2t

Γ [−t, t + α/2]

×
∫
C2

ds
(

x

2

)−2s

Γ
[
s + t + 1∗, −s
−s − t

]
. (11.41)

The tilde over Q is used to acknowledge the fact that pole contributions may
be counted more than once as a result of our separating the integrations over
s and t. As I noted before, multiple counting of poles residues is not a concern
when the saddle-point solution is being sought since pole residues are neglected.
Using eq. 5.94 one finds that the steepest-descent contribution has exponential
decay and can be neglected compared to the pole contributions in this parameter
regime.

The steepest-descent contribution in the third parameter regime is now cal-
culated. Both x/2 and y/2 are greater than one, which requires the full asymp-
totic solution for the first integral. There are pole contributions at t = n for
n = 0, 1, 2, . . . as well as a steepest-descent contribution. Exponentially decay-
ing terms are retained since there is no pole contribution in this region for the
correlation function. The result of the evaluation of the t integration is

Q̃=
−2κ−α

o

d2Γ [α/2]

1

2πi

∫
C2

ds
(

x

2

)−2s
[
S(0a)

(
y

2

)−2n

Γ [n + α/2]Γ
[
s + n + 1∗, −s
−s − n

]

+
√

π Γ [−s]
(

y

2

)2 s+(α+1)/2

exp (−y)

]
. (11.42)

For the first term Δs = 1, and the parameter x/2 is large. The steepest-descent
contribution is obtained from eq. 5.94. In the last term Δs = −1; therefore, let
s → −s making Δs = 1. The parameter y/x is small, and the integration path
is closed to the left. There are pole contributions at s = −m for m = 0, 1, 2, . . ..
Adding all these contributions gives the steepest-descent contribution as

Q ∼ − κ−α
o

Γ [α/2]

⎧⎨
⎩ κ2

i S(0a)

2 exp
[
(πd/Li)

2
]
(

πLod

L2
i

)2n

+
2
√

π (πd/Lo)
(α+1)/2

d2 exp
[
(Li/Lo)

2 + κod
]
⎫⎬
⎭ .

(11.43)
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332 11 Integral Evaluation with N Parameters

Collecting all the results from this section and assuming that the inner- and
outer-scale lengths do not change with altitude and performing the integration
over z, one obtains the final expression for the structure function given by the
following: Regime 1 (d < Li/π)

D(d) =
−51.42 k2

0 μ0

Γ [α/2] κα
o

×
⎧⎨
⎩
(

1

Lo

)2

S (0, 1)
(

Li

Lo

)2n
(

πd

Lo

)2m

Γ

[
m + n + 1, −m − n − 1 + α/2

m + 1

]

+
(

1

Li

)2(Li

Lo

)α

S (1, 0)
(

Li

Lo

)2m
(

πd

Li

)2n

Γ

[
−m + n − α/2 + 1,m + α/2

n + 1

]⎫⎬
⎭ .

(11.44)

Regime 2 (Li/π < d < Lo/π)

D(d) ∼ −51.42 k2
0 μ0

Γ [α/2]

×
⎧⎨
⎩
(

1

Lo

)2

κ−α
o S (0, 1)

(
Li

Lo

)2n
(

πd

Lo

)2m

Γ

[
m + n + 1, −m − n − 1 + α/2

m + 1

]

+
(

1

πd

)2
(

d

2

)α

S(0a, 0)
(

Li

π d

)2n
(

πd

Lo

)2m

Γ

[
−m + n − α/2 + 1,m + α/2

m − n + α/2

]⎫⎬
⎭ .

(11.45)

Regime 3 (d > Lo/π)

D(d) ∼ k2
0 μ0

Γ [α/2] κα
o

⎧⎨
⎩51.42

L2
o

Sn(0)Γ [−n − 1 + α/2]

(
Li

Lo

)2n

−1.30κ2
i exp

[
− (πd/Li)

2
]
S(0a)

(
πLod

L2
i

)2n

− 9.23 (πd/Lo)
(α+1)/2

d2 exp
[
(Li/Lo)

2 + κod
]
⎫⎬
⎭ .

(11.46)

The first term in Regime 2 comes from the B2 term from the third set of two-
poles. In Regime 3, the terms are the B2 and C3 components from Series 3 and 1,
respectively. The steepest-descent contributions have been neglected here since
they decay exponentially with increasing d and contribute negligibly to the final
solution.

It may be shown that in the limit as Lo → ∞, Tatarski’s (1961) result for the
structure function with inner scale is reproduced. For this case α = 11/3. A plot
of the structure function for several values of Li/Lo is shown in Fig. 11.7. Note
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11.7 Structure and Correlation Functions with Inner and Outer Scales 333

that in Regime 2, which spans the range from πd/Lo = Li/Lo to πd/Lo = 1, the
structure function has a 5/3-power-law dependence. In Regime 1, which occurs
where πd/Lo < Li/Lo, there is a power-law dependence of 2. The structure
function approaches a constant equal to twice the phase variance in Regime 3.

Let us look at the case in which α = 11/3, d < L0/π, and the inner scale is
zero. The expression for Regime 2 reduces to

D(d) ∼ −51.42 k2
0 μ0

Γ [11/6]

⎧⎨
⎩
(

1

Lo

)2

κ−11/3
o

∞∑
m=1

(−1)m

m!

(
πd

Lo

)2m

Γ[−m + 5/6]

+
(

1

πd

)2
(

d

2

)11/3 ∞∑
m=0

(−1)m

m!

(
πd

Lo

)2m

Γ[−m − 5/6]

⎫⎬
⎭ . (11.47)

Using the series expansion for the modified Bessel function of the third kind
given in eq. 1.25, one can show that this formula reduces to the previously
derived formula for the structure function given in eq. 7.20.
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Figure 11.7. Structure function for several values of Li/Lo. The structure func-
tion has been normalized by twice the variance and has been plotted against the
normalized displacement, πd/Lo. Notice that as the inner scale gets smaller,
the structure function increases at small separations because the turbulence in-
creases at the smaller scales.

Because a finite outer scale is included in this problem, the variance is
bounded, and a phase correlation function may be computed. One can obtain
this result from the previous derivation by noting that the correlation function
defined in eq. 2.124 is given by

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



334 11 Integral Evaluation with N Parameters

Bφ (d) = 2.605 k2
0

L∫
0

dz C2
n(z)

∞∫
0

dκ κ
(
κ2 + κ2

o

)−11/6
exp

(
−κ2/κ2

i

)
J0 (κd) /2.

(11.48)
This differs from the expression for the structure function given in eq. 11.38 in
the factor associated with the Bessel function. As a result, the two-dimensional
contour integral expression for the structure function eq. 11.38 may be used with
slight modification. Analytic continuation need not be used to get the Mellin
transform of the factor that contains the Bessel function, and the asterisks in
eq. 11.38 should be eliminated. The subsequent analysis is identical except that
summation indices for terms due to the first and second set of two-poles range
from 0 to ∞ for both m and n, and there are no terms due to the B2 and C3

components.
The expression for the phase correlation function becomes:

Regime 1 (d < Li/π)

Bφ(d) =
25.71 k2

0 μ0

Γ [α/2]κα
o

×
⎧⎨
⎩
(

1

Lo

)2

S (0, 0)
(

Li

Lo

)2n
(

πd

Lo

)2m

Γ

[
m + n + 1, −m − n − 1 + α/2

m + 1

]

+
(

1

Li

)2 (Li

Lo

)α

S (0, 0)
(

Li

Lo

)2m
(

πd

Li

)2n

Γ

[
−m + n − α/2 + 1,m + α/2

n + 1

]⎫⎬
⎭.

(11.49)

Regime 2 (Li/π < d < Lo/π)

Bφ(d) ∼ 25.71 k2
0 μ0

Γ [α/2]κα
o

×
⎧⎨
⎩
(

1

Lo

)2

S (0, 0)
(

Li

Lo

)2n
(

πd

Lo

)2m

Γ

[
m + n + 1, −m − n − 1 + α/2

m + 1

]

+
(

1

πd

)2
(

π d

Lo

)α

S (0a, 0)
(

Li

πd

)2n
(

πd

Lo

)2m

Γ

[
−m + n−α/2+1,m+ α/2

m − n + α/2

]⎫⎬
⎭ .

(11.50)

Regime 3 (d > Lo/π)

Bφ(d) ∼ − k2
0 μ0

Γ [α/2]κα
o

×
⎧⎨
⎩0.65κ2

i exp
[
− (πd/Li)

2
]
S (0a)

(
πLod

L2
i

)2n

+
4.62 (πd/Lo)

(α+1)/2

d2 exp
[
(Li/Lo)

2 + κod
]
⎫⎬
⎭.

(11.51)
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11.7 Structure and Correlation Functions with Inner and Outer Scales 335

The steepest-descent contributions in Regime 2 have been discarded because
of their negligible contribution. Note that in Regime 3 the only contribution
comes from steepest-descent terms. A plot of the correlation function for the
same parameter ranges used for the structure function in Fig. 11.7 is given in
Fig. 11.8 for α = 11/3. How Li/Lo affects the correlation function is less obvious
than its effect on the structure function.
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Figure 11.8. Normalized phase correlation function for several values of Li/Lo.
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πd/Lo. As inner scale increases, the displacement must be larger to get the same
reduction in correlation.
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Chapter 12

Beam Shape

Propagating a wave through turbulence not only reduces the Strehl ratio, but
also changes the beam shape. Mellin transform techniques can be used to calcu-
late the beam shape using the same technique as previously applied. Determining
the beam shape simply adds another parameter to an integral. The beam profile
after propagating through uncorrected turbulence, or through a medium with
turbulence-induced beam jitter present, or with anisoplanatic effects can all be
represented as special cases of a general integral. Results from evaluating the
general integral are used to find the average beam profiles for the three specific
cases.

12.1 General Formula for Beam Shape

A framework for finding the beam profile for any ratio of coherence diameter to
aperture diameter is developed here. The starting point for obtaining the beam
profile with uncorrected turbulence is the general expression for the normalized
beam shape with isotropic turbulence in eq. 2.162 and the structure function for
uncorrected turbulence given in eq. 7.7. This gives

I (ρ) =

1∫
0

dααK(α) J0

(
k0 ρDα

z

)
exp

[
−3.44

(
αD

ro

)5/3
]
. (12.1)

Similar integrals are required to determine the beam shape both with tilt jitter
and with anisoplanatism. To evaluate the three beam shapes at the same time,
use the fact that K(α) is zero for α > 1 to define

P (ρ, ν, q, g) =

∞∫
0

dα

α
α2+ν K(α) J0

(
k0 ρDα

z

)
exp (−gq αq) , (12.2)

where for the case of uncorrected turbulence

I (ρ) = P

(
ρ, 0, 5/3,

3.443/5D

ro

)
. (12.3)
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338 12 Beam Shape

This integral will be evaluated by using the Mellin transform techniques in two
complex planes developed in Chap. 10. Let x = z/k0ρD, and y = 1/g. Using
the Mellin convolution integral and the Mellin transforms in eq. 1.64, eq. 1.51,
and eq. 1.47, one can transform the integral into

P (ρ, ν, q, g) =
4

q
√

π

1

(2πi)2

∫
C1

∫
C2

ds dt (2x)−s y−t

× 1

(s + t + ν + 2)
Γ

[
s+t+ν

2
+ 3

2
, −s/2, −t/q

s+t+ν
2

+ 3, s/2 + 1

]
.

Let s → 2s, and t → 2t, and use the recursion relation

1

(s + t + ν/2 + 1)
=

Γ [s + t + ν/2 + 1]

Γ [s + t + ν/2 + 2]

to obtain

P (ρ, ν, q, g) =
8

q
√

π

1

(2πi)2

∫
C1

ds
∫
C2

dt (2x)−2s y−2t

×Γ
[
s + t + ν/2 + 3

2
, s + t + ν/2 + 1, −s, −2t/q

s + t + ν/2 + 3, s + t + ν/2 + 2, s + 1

]
.

To evaluate this integral, 2-poles must be listed, and these are:

(1) s + t + ν/2 + 3
2

= −m; −s = −n,
(2) s + t + ν/2 + 1 = −m; −s = −n,
(3) s + t + ν/2 + 3

2
= −m; −2t/q = −n,

(4) s + t + ν/2 + 1 = −m; −2t/q = −n, and
(5) − s = −n; −2t/q = −m.

These lead to terms of the form:

(1)

(
1

g

)2m (
k0 ρD

2gz

)2n

(m !)2/q (n !)2/q−2 ,

(2)

(
1

g

)2m (
k0 ρD

2gz

)2n

(m !)2/q (n !)2/q−2 ,

(3)

(
2z

k0 ρD

)2m (
2 zg

k0 ρD

)qn

(m !)2 (n !)q−1 ,

(4)

(
2z

k0 ρD

)2m (
2 zg

k0 ρD

)qn

(m !)2 (n !)q−1 , and

(5)

(
k0 ρD

2z

)2n

gqm (m !)−1 (n !)−2 .
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12.1 General Formula for Beam Shape 339

Table 12.1. Region in which the series have most rapid convergence for the
general problem of finding the beam shape with uncorrected turbulence, tilt
jitter, or anisoplanatism.

2–Pole Solution Parameter Range

Set Type

1 Asymp g > 1 2g z > k0 ρD

2 Asymp g > 1 2g z > k0 ρD

3 Asymp 2g z < k0 ρD k0 ρD > 2z

4 Asymp 2g z < k0 ρD k0 ρD > 2z

5 Taylor g < 1 k0 ρD < 2z

The series in n can be a Taylor or an asymptotic series depending on the value
of q. The ranges of applicability of the 5 double series to get the most rapid
convergence are given in Table 12.1.

As described in Chap. 10 these series are useful for different parameter ranges.
The single Taylor series gives a solution that is applicable for all parameter
ranges and is a complete solution to the problem. It is given by

P (ρ, ν, q, g) =
4√
π
S(0, 0)

(
k0ρD

2z

)2n
gqm

n!

×
(

1

n + mq/2 + ν/2 + 1

)
Γ
[
n + mq/2 + ν/2 + 3

2

n + mq/2 + ν/2 + 3

]
. (12.4)

Because of the presence of the term (n !)2 m ! in the denominator, the above
series converges rapidly even for relatively large distances off the beam axis and
can be used rather than the asymptotic series. For instance, if the parameter
k0ρD/2z is equal to 10, then the error in using 30 terms of the series is one part
in 105 of the value on axis.

For some parameter ranges a large number of terms is necessary to get an
accurate answer. In these regions an asymptotic series may be more convenient.
The asymptotic series given by the second and first set of 2-poles is

P (ρ, ν, q, g)AS ∼ 8

q
√

π
S (0a)

(
k0ρD

2zg

)2n
⎧⎨
⎩
(

1

g

)ν+2 √
πΓ [2n/q + ν/q + 2/q]

+ Sm (0)
1(

m + 1
2

)
(

1

g

)2m+ν+3

Γ

[
2n/q + 2m/q + ν/q + 3/q

−m + 3
2

]⎫⎬
⎭ . (12.5)

Since Δ3 = 0, the steepest-descent contribution is found by sequential evalua-
tion of the two-dimensional integral. In the regime in which the above equation
applies, integrate eq. 12.4 first over s assuming that x is large, and then integrate
over t assuming y is small. The result is equal to zero.
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340 12 Beam Shape

The asymptotic solution given by the third and fourth set of 2-poles is

P (ρ, ν, q, g)AS ∼
4√
π
S (0a)

(
2g z

k0ρD

)nq
⎧⎨
⎩
(

2z

k0 ρD

)ν+2√
πΓ

[
nq/2 + ν/2 + 1
−nq/2 − ν/2

]

−Sm (0a)
1(

m + 1
2

)
(

2z

k0 ρD

)2m+ν+3

Γ

[
m + nq/2 + ν/2 + 3

2

−m + 3
2
, −m − nq/2 − ν/2 − 1

2

]⎫⎬
⎭ .

(12.6)

The steepest-descent contribution that is found by integrating eq. 12.4 first over
t assuming that y is large, then over s assuming x is small, is

P (ρ, ν, q, g)SD = −32

π

(
z

k0 ρD

)3

sin

(
k0 ρD

z

)
exp

[
−
(

g

2

)q]
. (12.7)

12.2 Beam Shape for Uncorrected Turbulence

For the specific case of uncorrected turbulence, the beam shape is given in
eq. 12.3 as P

(
ρ, 0, 5/3, 3.443/5D/ro

)
. The range of applicability of the series

is obtained by inserting the parameters into Table 12.1 to give the ranges in
Table 12.2.

Table 12.2. Region in which the series have most rapid convergence for uncor-
rected turbulence.

2–Pole Solution Parameter Range

Set Type

1 Asymp 0.4765ro < D k0 ρro < 4.197z

2 Asymp 0.4765ro < D k0 ρro < 4.197z

3 Asymp k0 ρro > 4.197z k0 ρD > 2z

4 Asymp k0 ρro > 4.197z k0 ρD > 2z

5 Taylor 0.4765ro > D k0 ρD < 2z

The Taylor series solution for this case that applies for all turbulence values
and distances from the axis is

I (ρ) =
4√
π

S(0, 0)
1

n !

(
k0ρD

2z

)2n [
3.44

(
D

ro

)5/3
]m

×
(

1

n + 5m/6 + 1

)
Γ

[
n + 5m/6 + 3

2

n + 5m/6 + 3

]
. (12.8)

Notice that the only way turbulence enters the expression is in the form of the
coherence diameter.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



12.2 Beam Shape for Uncorrected Turbulence 341

It is instructive to consider the solution for infinite ro. That can be done
by examining the solution above, or alternatively, by evaluating the integration
over t in eq. 12.4 and only evaluating the pole at t = 5m/6. Set m = 0 to obtain

I(ρ) =
1

2πi

∫
C

ds
2√
π

Γ

[
s/2,−s/2 + 3

2

−s/2 + 2,−s/2 + 3

](
k0ρD

2z

)s

. (12.9)

From eq. 1.52, one sees that this integral produces an Airy pattern given by

I(ρ) =

[
J1

(
k0ρD

2z

)
/

(
k0ρD

4z

)]2

. (12.10)

The beamwidth in the plots in this chapter is the value of radius that results
in a zero value for the intensity. The argument is 3.8 at this radius, and the
normalizing function to convert the arguments of the function into beamwidths
is 1.22ρD/λz.

The beam profiles versus axial position of a wave that propagated through
turbulence with values of D/ro of 0, 0.5, 0.7, and 1 are plotted in Fig. 12.1. The
beam shape is similar for all cases out to the beamwidth that is plotted. If the
beamwidth increased by the inverse of the square root of the Strehl ratio, then
the normalized half-power beamwidths would be 1, 1.15, 1.28, and 1.60 for these
cases. The beamwidths are 1, 1.11, 1.23, and 1.56, which are close to the above
values.
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Figure 12.1. Beam shape of a wave that propagated through turbulence with
the ratio D/ro equal to 0, 0.5, 0.7, and 1.0.
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342 12 Beam Shape

Only a few terms of the Taylor series are necessary to get an accurate answer
for low turbulence and small distances from the axis. For stronger turbulence
conditions or larger distances off axis, asymptotic solutions are easier to evaluate.
The asymptotic series in eq. 12.5 are applicable when the coherence diameter
is much less than the aperture diameter, and the angle off-axis is less than the
diffraction-limited size of an aperture of diameter ro. These are given by

I (ρ) ∼ 24

5
√

π
S (0)

1

n !

(
0.238 ro k0 ρ

z

)2n
⎧⎨
⎩
(

0.4765 ro

D

)2 √
πΓ

[
6n/5 + 6

5

]

−Sm (0)
1(

m + 1
2

) (0.4765 ro

D

)2m+3

Γ

[
6n/5 + 6m/5 + 9

5

−m + 3
2

]⎫⎬
⎭ . (12.11)

For the second and fourth sets of poles the only value of m that gives a non-zero
contribution is m = 0. The third and fourth double series in eq. 12.4 and the
steepest-descent contribution in eq. 12.4 gives the asymptotic solution that is
applicable for large distances from the axis. These expressions are

I (ρ) ∼ 4√
π
S (0a)

(
4.197z

rok0ρ

)5n/3
⎧⎨
⎩
(

2z

k0ρD

)2 √
πΓ

[
5n/6 + 1

−5n/6

]

−Sm (0a)
1(

m + 1
2

)
(

2z

k0 ρD

)2m+3

Γ

[
m + 5n/6 + 3

2

−m + 3
2
, −m − 5n/6 − 1

2

]⎫⎬
⎭

− 32

π

(
z

k0 ρD

)3

sin

(
k0 ρD

z

)
exp

⎡
⎣−

(
3.443/5D

2 ro

)5/3
⎤
⎦ . (12.12)

Two curves are plotted in Fig. 12.2. One is the beam shape with turbulence;
the other is the beam shape for a wave with no turbulence that was transmitted
from an aperture with a diameter equal to the coherence diameter. The hor-
izontal axis is distance normalized to the beamwidth so that a value of unity
corresponds to the first zero of the Airy pattern of an unperturbed beam. Notice
that the shapes of the two profiles are close to each other when the intensity is
above 0.2 of the value on axis.

12.3 Beam Shape with Tilt Jitter

There are some occasions when the higher-order Zernike modes of turbulence are
well corrected, yet tilt jitter remains. One can use an artificial beacon to correct
for higher-order turbulence terms as discussed in Secs. 6.12–6.14. This beacon
provides no information on the jitter of the source. Since tilt jitter is several
microradians, it must be well corrected to prevent significant tilt smearing of
the image. One technique of reducing the jitter is to track a bright source close
to the object to be corrected. There is some tilt remaining that results from
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Figure 12.2. Beam shape with and without turbulence. Notice how closely the
average beam profile in turbulence is approximated down to a normalized inten-
sity of 0.2 by a diffraction-limited beam profile transmitted from a coherence-
diameter sized aperture.

the angular offset of the guide star that will degrade the image. In another
scenario, which is not common, one can correct for turbulence in an adaptive-
optics system and track on the uncorrected image. This results in a tilt jitter
due to the difference of gradient and Zernike tilt, which is referred to as centroid
anisoplanatism by Yura and Tavis (1980). Tilt jitter affects the beam shape, and
it is shown that it basically increases its area by a factor equal to the inverse of
the reduction in Strehl ratio.

The expression for beam shape with tilt jitter is given by substituting the
structure function in eq. 7.23 into eq. 2.162 to obtain

I (ρ) = K(α)J0

(
k0ρDα

z

)
exp

[
−α2

(
D

Mro

)5/3
]

= P

(
ρ, 0, 2,

(
D

Mro

)5/6
)

. (12.13)

M is equal to 0.4642, 0.4838, and 5.394 for Zernike tilt (Z-tilt), gradient tilt (G-
tilt), and their difference respectively. The ranges of applicability of the series
are obtained by inserting the parameters into Table 12.1 to give the ranges in
Table 12.3.

The Taylor series good for all radii and turbulence strengths is

I (ρ) =
4√
π
S (0, 0)

1

n!

(
k0ρD

2z

)2n (
D

M ro

)5m/3 ( 1

n + m + 1

)
Γ
[
n + m + 3

2

n + m + 3

]
.

(12.14)
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Table 12.3. Region in which the series have most rapid convergence for beam
shape with beam jitter.

2–Pole Solution Parameter Range

Set Type

1 Asymp M ro < D (M ro)
5/6 k0 ρD1/6 < 2z

2 Asymp M ro < D (M ro)
5/6 k0 ρD1/6 < 2z

3 Asymp k0 ρD > 2z (M ro)
5/6 k0 ρD1/6 > 2z

4 Asymp k0 ρD > 2z (M ro)
5/6 k0 ρD1/6 > 2z

5 Taylor M ro > D k0 ρD < 2z

Notice that the only way turbulence enters the formulas is in the form of the
coherence diameter as was the case for uncorrected turbulence. The beam shape
is plotted in Fig. 12.3 for D/M ro equal to 0, 1, 2, and 3 versus the beamwidth
1.2λz/D. The normalized beamwidths are 1, 1.09, 1.30, and 1.58 for these cases.
If the beamwidth varied as the inverse of the square root of the Strehl ratio,
they would be 1, 1.12, 1.37, and 1.66, which are close to the actual values. This

1.0

0.8

0.6

0.4

0.2

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

RADIAL POSITION (Beamwidths)

N
O

R
M

A
LI

Z
E

D
 IN

T
E

N
S

IT
Y

3
2
1
0

D/Mro

Figure 12.3. Beam shape of a wave that propagated through turbulence with
the ratio D/M ro equal to 0, 1, 2, and 3 that has all distortions except tilt
corrected.

expression reduces to an Airy pattern if the coherence diameter becomes infinite.
The asymptotic series that applies when the angle off-axis is much less than the
diffraction-limited size of an aperture of diameter D and the coherence diameter
is smaller than the aperture diameter is given in eq. 12.5 as
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I (ρ) ∼ 4√
π
S (0)

[
D1/6 k0 ρ

2 z
(Mro)

5/6

]2n

×
⎧⎨
⎩
(

M ro

D

)5/3 √
π − Sm (0a)

1

n !
(
m + 1

2

) (M ro

D

)5m/3+3

Γ

[
n + m + 3

2

−m + 3
2

]⎫⎬
⎭ .

(12.15)

The asymptotic solution that applies when the angle off-axis is much greater
than the diffraction-limited size of an aperture of diameter D is given in eq. 12.6
and eq. 12.7 as

I (ρ) ∼ 4√
π
S (0a)

[
rok0ρ

2z

(
D

Mro

)5/6
]2n

⎧⎨
⎩
(

2z

k0ρD

)2 √
πΓ

[
n + 1

−n

]

−Sm(0a)
1(

m + 1
2

)
(

2z

k0ρD

)2m+3

Γ

[
m + n + 3

2

−m + 3
2
, −m − n − 1

2

]⎫⎬
⎭

− 32

π

(
z

k0 ρD

)3

sin

(
k0 ρD

z

)
exp

[
−1

4

(
D

M ro

)5/3
]
. (12.16)

The Taylor series expression given in eq. 12.14 reduces to the Strehl ratio
given in eq. 7.32 if it is evaluated on axis. The ratio of beam intensity on axis
with tilt jitter to that with all turbulence for very high turbulence levels is

I (Jitter)

I (Turbulence)
= 4M5/3

(
D

ro

)1/3

, D >> ro. (12.17)

The same result is also obtained by taking the ratio of Strehls in eq. 7.31 and
eq. 7.17.

12.4 Beam Shape with Anisoplanatism

Next, the more complicated problem of finding the beam shape with anisoplana-
tism is solved. I expand the exponential in the integral into a series of Gegenbauer
polynomials as was done in the calculation of Strehl ratio. For this reason, the
range of applicability of this calculation is the same as that for the calculation
of Strehl ratio. The beam profile calculation is valid when the displacements at
the altitudes that contribute most to the reduction in Strehl ratio are less than
0.3 of the beam diameter. Fortunately, for adaptive-optics systems, that is often
the region of greatest interest. The starting point is the expression for the beam
profile given in eq. 2.161, repeated here

I (ρ) =
1

2π

∫
dαK(α) exp [ik0Dρ · α/z −D (αD) /2] . (12.18)
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346 12 Beam Shape

The integration is over the unit circle. The structure function is the same as
that used for Strehl ratio. It is again expanded into Gegenbauer polynomials,
and only the first term is retained. If the exponential is expanded into a power
series as was done before, the expression equivalent to that given in eq. 7.47 is

I (ρ) ≈
exp

(
−σ2

ϕ

)
2π

∫
dαK(α) exp (ik0Dρ · α/z)

×
(

1 + x +
x2

2
+

x3

6
+

x4

24
+

x5

120

)
, (12.19)

where x is the same quantity as defined in eq. 7.46 and repeated here

x = 5
6
d2

[
1 − 1

3
cos2 (ϕ)

]
(αD)−1/3. (12.20)

The integration over angle is not as straightforward as before since there is an
additional term in the exponential that also depends on angle. Rather than
performing a complicated calculation, at this point I make an approximation.
The angular dependence of x is weak, especially for the lower-order terms. I will
replace the angular expression in x by the values averaged over angle that were
calculated for the Strehl ratio. This eliminates any angular dependence of the
beam profile; therefore, the calculations below give the beam profile averaged
over angle. The angular integration can then be evaluated to get a Bessel function
for the exponential term. Define

Q(ν) =
1

P (0, ν, 0, 0)

1∫
0

dα

α
αv+2 K(α)J0 (k0ρDα/z) =

P (ρ, ν, 0, 0)

P (0, ν, 0, 0)
, (12.21)

where P (0, ν, 0, 0) is found from eq. 12.4 as

P (0, ν, 0, 0) =
4√
π

1

(ν/2 + 1)
Γ
[
ν/2 + 3

2

ν/2 + 3

]
. (12.22)

With these definitions, the beam profile is

I(ρ) ≈ exp
(
−σ2

ϕ

) [
Q(0) + 0.9736EQ

(
−1

3

)
+ 0.5133E2Q

(
−2

3

)

+ 0.2009E3Q (−1) + 0.06970E4Q
(
−4

3

)
+ 0.02744E 5Q

(
−5

3

)]
. (12.23)

The value of Q (ν) is obtained from the evaluation P (ρ, ν, 0, 0). Substituting the
values of the parameters into Table 12.1, one obtains Table 12.4 for the ranges
of applicability of the series.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



12.4 Beam Shape with Anisoplanatism 347

Table 12.4. Region in which the series have most rapid convergence for beam
shape with anisoplanatism for which g = 0.

2–Pole Solution Parameter Range

Set Type

1 Asymp 0 < 1 k0 ρD > gz

2 Asymp 0 > 1 k0 ρD > gz

3 Asymp k0 ρD > 0 k0 ρD > 2z

4 Asymp k0 ρD > 0 k0 ρD > 2z

5 Taylor 0 < 1 k0 ρD < 2z

Since the conditions for Series 1 and 2 cannot be satisfied, these series do not
apply for this problem. The Taylor series solution obtained from eq. 12.4 is

Q(ν) = (ν/2 + 1)Γ
[
ν/2 + 3
ν/2 + 3

2

]

×S (0)
1

n ! (n + 1 + ν/2)
Γ
[
n + 3

2
+ ν/2

n + 3 + ν/2

] (
k0 ρD

2z

)2n

= 2F3

⎡
⎣3

2
+ ν/2, 1 + ν/2; 3 + ν/2, 2 + ν/2, 1;−

(
k0 ρD

2z

)2
⎤
⎦. (12.24)

For large radii, an asymptotic solution is needed. This series is obtained from
eq. 12.6 and eq. 12.7 as

Q(ν) ∼ (ν/2 + 1)Γ
[
ν/2 + 3
ν/2 + 3

2

]

×
⎧⎨
⎩S (0)

−1(
m + 1

2

)Γ

[
m + 3

2
+ ν/2

−m − 1
2
− ν/2, −m + 3

2

](
2z

k0 ρD

)2m+3+ν

+
√

πΓ

[
ν/2 + 1

−ν/2

] (
2z

k0 ρD

)ν+2

− 8√
π

(
z

k0 ρD

)3

sin

(
k0 ρD

z

)⎫⎬
⎭ . (12.25)

The beam pattern can be plotted for various types of anisoplanatism by in-
sertion of the appropriate values of E and σ2

φ which were derived in Secs. 7.4.1—
7.4.5. The beam pattern is plotted for angular anisoplanatism in Figs. 12.4 and
12.5 for various values of offset angles. Notice how the dips in the Airy pattern
fill in as anisoplanatism increases, and the power gets redistributed to larger ra-
dial distances. In Fig. 12.6 the curves are normalized to unity at zero radius for
angular offsets of 0, 9, and 18 μrad. The intensity on axis for these three cases
is 1, 0.7, and 0.45, and they reach a normalized intensity of 0.5 at 0.423, 0.435,
and 0.494 beamwidths, respectively. If anisoplanatism causes the peak to spread
by an amount proportional to the inverse of the square root of the Strehl ratio,
then the half power points would occur at 0.423, 0.505, and 0.630 beamwidths.
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348 12 Beam Shape

The beamwidth of the central core is narrower for these anisoplanatism levels
that indicates that the effect of small offsets is to decrease the power on axis
without a substantial affect on the near-axis beamwidth. Small angular aniso-
planatic errors mainly affect the high spatial spectral components, which scatter
energy out to large angles, thus they produce a distribution with a narrow peak
and a low plateau of energy that extends much further out.

OFFSET (µrad)

0

3

6

9

12

15

18

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

RADIAL POSITION (Beamwidths)

N
O

R
M

A
LI

Z
E

D
 IN

T
E

N
S

IT
Y

Figure 12.4. Beam shape close to the beam axis with angular anisoplanatism
for a 0.6-m aperture at zenith for the SLCSAT day model. The intensity is
normalized to that with no turbulence.
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Figure 12.5. Beam shape with angular anisoplanatism for a 0.6-m aperture at
zenith for the SLCSAT day model. The intensity is normalized to that with no
turbulence.
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Figure 12.6. Beam shape with angular anisoplanatism for a 0.6-m aperture at
zenith for the SLCSAT day model with offset of 0, 9, and 18 μrad. The intensity
is normalized to unity on axis.
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Appendix A

Additional Mellin Transforms

This table contains Mellin transforms to supplement the ones at the end of
Chap. 1. These are still a small fraction of the transforms that are listed in
Marichev (1983). The special functions that are not commonly used are defined
in Appendix B. The value of n is an integer in the transforms below.

h(x) → M [h(x)] ≡ H(s) =

∞∫
0

dx

x
h(x) xs (A.1)

1

1 − x
→ πΓ

[
s, 1 − s

s + 1
2
, 1

2
− s

]
, 0 < Re {s} < 1 (A.2)

|1 − x|−p → π

Γ [p] cos (πp/2)
Γ

[
s, p − s

s + (1 − p)/2, (1 + p)/2 − s

]
,

0 < Re {s} < Re {p} < 1 (A.3)

[
x2 + 2x cos (πb) + 1

]−1
→− π

sin (πb)
Γ
[

s, 1 − s
s b − b, 1 + b − s b

]

0 < Re {s} < 2 , |b| < 1 (A.4)

sin (x + bπ) →
√

π 2s−1Γ
[

s/2, s/2 + 1
2

s/2 + b, 1 − b − s/2

]
, 0 < Re {s} < 1 (A.5)

cos (x + bπ) →
√

π 2s−1Γ
[

s/2, s/2 + 1
2

s/2 + b + 1
2
, 1

2
− b − s/2

]
, 0 < Re {s} < 1 (A.6)

sin2n−1 (x) →
√

π

4n−s/2

n−1∑
k=0

(−1)n+k−1 (2n − 1)!

k ! (2n − k − 1)!
(2n − 2 k − 1)−s

×Γ
[
s/2 + 1

2

1 − s/2

]
, |Re {s}| < 1 (A.7)
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sin2n (x) → 2−2n
√

π
n−1∑
k=0

(−1)n+k (2n)!

k! (2n − k)!
(n − k)−sΓ

[
s/2

1
2
− s/2

]
,

− 2 < Re {s} < 0 (A.8)

cos2n−1 (x) → 4s/2−n
√

π
n−1∑
k=0

(2n − 1)!

k! (2n − k − 1)!
(2n − 2k − 1)−sΓ

[
s/2

1
2
− s/2

]
,

0 < Re {s} < 1 (A.9)

cos2n (x) − 1 → 2−2n
√

π
n−1∑
k=0

(2n)!

k! (2n − k)!
(n − k)−sΓ

[
s/2

1
2
− s/2

]
,

− 2 < Re {s} < 0 (A.10)

ln (x)U (1 − x) → Γ
[

s, −s
1 + s, 1 − s

]
, 0 < Re {s} (A.11)

ln (x)U (x − 1) → −Γ
[

s, −s
1 + s, 1 − s

]
, 0 > Re {s} (A.12)

ln (1 + x) → −Γ [s, −s] , −1 < Re {s} < 0 (A.13)

ln |1 − x| → −π Γ
[

s, −s
s + 1

2
, 1

2
− s

]
, −1 < Re {s} < 0 (A.14)

ln(x)

x − 1
→ Γ [s, s, 1 − s, 1 − s] , 0 < Re {s} < 1 (A.15)

ln(x)

x + 1
→ −π Γ

[
s, s, 1 − s, 1 − s
s + 1

2
, 1

2
− s

]
, 0 < Re {s} < 1 (A.16)

Ln (−x) → (−s)1−n Γ [s, −s] , −1 < Re {s} < 0 (A.17)

sinh [v arcsinh (x)] → v cos (π v/2)

4
√

π
Γ
[
s/2 + 1

2
, v/2 − s/2, −v/2 − s/2
1 − s/2

]
,

−1 < Re {s} < − |Re {v}| (A.18)

arcsin (x)U (1 − x) → π

4
Γ
[

s/2
s/2 + 1

]
+

√
π

4
Γ
[
s/2 + 1

2
, −s/2

s/2 + 1, 1 − s/2

]
, −1< Re {s}

(A.19)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



A Additional Mellin Transforms 353

arccos (x)U (1 − x) → −
√

π

4
Γ
[
s/2 + 1

2
, −s/2

s/2 + 1, 1 − s/2

]
, 0 < Re {s} (A.20)

arctan (x) → 1

4
Γ
[
s/2 + 1

2
, 1

2
− s/2, −s/2

1 − s/2

]
, −1 < Re {s} < 0 (A.21)

K (x) → π

4
Γ
[

s/2, 1
2
− s/2

s/2 + 1
2
, 1 − s/2

]
, 0 < Re {s} < 1 (A.22)

K (ix) → 1

4
Γ
[
s/2, 1

2
− s/2, 1

2
− s/2

1 − s/2

]
, 0 < Re {s} < 1 (A.23)

K
(√

1 − x
)
U (1 − x) → π

2
Γ
[

s, s
s + 1

2
, s + 1

2

]
, 0 < Re {s} (A.24)

E
(√

1 − x
)
U (1 − x) → π

2
Γ
[

s, s + 1
s + 1

2
, s + 3

2

]
, 0 < Re {s} (A.25)

E

(
1√

1 + x

)
1√

1 + x
→ Γ

[
s, s + 1, 1

2
− s

s + 1
2

]
, 0 < Re {s} < 1/2 (A.26)

Ei (−x) → −Γ
[

s, s
s + 1

]
, 0 < Re {s} (A.27)

exp (x)Ei (−x) → −Γ [s, s, 1 − s] , 0 < Re {s} < 1 (A.28)

Si (x) → −
√

π

4
2s Γ

[
s/2, s/2 + 1

2

s/2 + 1, 1 − s/2

]
, −1 < Re {s} < 0 (A.29)

si (x) → −
√

π

4
2s Γ

[
s/2, s/2 + 1

2

s/2 + 1, 1 − s/2

]
, 0 < Re {s} < 2 (A.30)

Ci (x) →
√

π

4
2s Γ

[
s/2, −s/2

1 − s/2, 1
2
− s/2

]
, 0 < Re {s} < 2 (A.31)

Erf (x) → 1

2
√

π
Γ
[
s/2 + 1

2
, −s/2

1 − s/2

]
, −1 < Re {s} < 0 (A.32)

exp
(
−x2

)
Erf (ix) → i

2
Γ
[
s/2 + 1

2
, 1

2
− s/2

1 − s/2

]
, 1 > |Re {s}| (A.33)

Erfc (x) → 1

2
√

π
Γ
[
s/2 + 1

2
, s/2

s/2 + 1

]
, 0 < Re {s} (A.34)

exp
(
x2
)

Erfc (x) → 1

2π
Γ
[
s/2 + 1

2
, s/2, 1

2
− s/2

]
, 0 < Re {s} < 1 (A.35)

S (x) → −2s

4
Γ
[

s/2 + 3
4
, s/2

s/2 + 1, 3
4
− s/2

]
, −3/2 < Re {s} < 0 (A.36)
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C (x) → −2s

4
Γ
[

s/2 + 1
4
, s/2

s/2 + 1, 1
4
− s/2

]
, −1/2 < Re {s} < 0 (A.37)

γ [a, x] → Γ
[
s + a, −s

1 − s

]
, −Re {a} < Re {s} < 0 (A.38)

Γ [a, x] → Γ
[
s + a, s
s + 1

]
, Re {s} > −Re {a}, 0 < Re {s} (A.39)

exp
(
−x2/4

)
Dν (x) → 2s/2+ν/2−1/2 Γ

[
s/2, s/2 + 1

2

s/2 + (1 − ν) /2

]
, 0 < Re {s} (A.40)

exp
(
x2/4

)
Dν (x) →

[
2−s/2+ν/2+3/2

√
π Γ [−ν]

]−1

×Γ
[
s/2, s/2 + 1

2
, −ν/2 − s/2

]
, 0 < Re {s} < −Re {ν} (A.41)

Nν (x) → 2s

2
Γ
[

s/2 + ν/2, s/2 − ν/2
s/2 − (1 + ν) /2, (3 + ν) /2 − s/2

]
,

|Re {ν} | < Re {s} < 3/2 (A.42)

Hν (x) → 2s

2
Γ
[
s/2 + (1 + ν) /2, (1 − ν) /2 − s/2
1 + ν/2 − s/2, 1 − ν/2 − s/2

]
,

Re {s} < 3/2, −1 < Re {s + ν} < 1 (A.43)

su,ν (x) → 2s/2+u−2 Γ
[
u − ν + 1

2
,
u + ν + 1

2

]

×Γ
[
s/2 + (u + 1) /2, (1 − u) /2 − s/2
1 − ν/2 − s/2, 1 + ν/2 − s/2

]
,

|Re {s + u}| < 1,Re {s} < 3/2 (A.44)

exp (−x) Iν (x) → 2−s

√
π

Γ
[
s + ν, 1

2
− s

1 + ν − s

]
, Re {ν} < Re {s} < 1/2 (A.45)

exp (−x)Kν (x) → 2−s
√

πΓ
[
s + ν, s − ν

s + 1
2

]
, |Re {ν} | < Re {s} (A.46)
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A Additional Mellin Transforms 355

exp (x)Kν (x) → 2−s cos (πν)√
π

Γ
[
s + ν, s − ν, 1

2
− s

]
,

|Re {ν}| < Re {s} < 1/2 (A.47)

Pn (2x − 1)U (1 − x) → Γ
[

s, s
s + n + 1, s − n

]
, 0 < Re {s} (A.48)

Pn (2x − 1)U (x − 1) → Γ
[−n − s, 1 + n − s

1 − s, 1 − s

]
, −n > Re {s} (A.49)

Pn (x)U (1 − x) → 1

2
Γ
[

s/2, s/2 + 1
2

s/2 + (1 − n) /2, s/2 + 1 + n/2

]
, 0 < Re {s} (A.50)

Pn (x)U (x − 1) → 1

2
Γ
[
(1 + n) /2 − s/2, −n/2 − s/2

1 − s/2, 1
2
− s/2

]
, −n > Re {s} (A.51)

(1 − x)−1/2 U (1 − x)Tn (2x − 1) →
√

π Γ
[

s, s + 1
2

s + 1
2
− n, s + 1

2
+ n

]
,

0 < Re {s} (A.52)

(1 − x)1/2 U (1 − x)Un (2x − 1) →
√

π
n + 1

2
Γ
[

s, s − 1
2

s + 3
2

+ n, s − 1
2
− n

]
,

0 < Re {s} (A.53)

(x − 1)1/2 U (x − 1)Un (2x − 1) →
√

π
n + 1

2
Γ
[ 3

2
+ n − s, −1

2
− n − s

1 − s, 3
2
− s

]
,

−1/2 − n > Re {s} (A.54)

Hn (x) exp (−x/2) → 2n−1 Γ
[

s/2, s/2 + 1
2

s/2 + (1 − n) /2

]
, 0 < Re {s} (A.55)

La
n (x) exp (−x) → 1

n!
Γ
[
s, 1 + n + a − s

1 + a − s

]
, 0 < Re {s} (A.56)
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356 A Additional Mellin Transforms

Cλ
n (2x − 1)U (1 − x) (1 − x)λ−1/2 → (2λ)n

n!
Γ
[
λ + 1

2

]

×Γ
[

s, s − λ + 1
2

s + λ + n + 1
2
, s − λ − n + 1

2

]
, 0 < Re {s}, Re {λ} > −1/2 (A.57)

Cλ
n (2x − 1)U (x − 1) (x − 1)λ−1/2 → (2λ)n

n!
Γ
[
λ + 1

2

]

×Γ
[ 1

2
− n − λ − s, 1

2
+ n + λ − s

1 − s, λ + 1
2
− s

]
,

1/2 − n − Re {λ} > Re {s},Re {λ} > −1/2 (A.58)

P (a,b)
n (2x − 1)U (1 − x) (1 − x)a → Γ [a + n + 1]

n!

×Γ
[

s, s − b
s + a + n + 1, s − b − n

]
, 0 < Re {s}, Re {a} > −1 (A.59)

P (a,b)
n (2x − 1)U (x − 1) (x − 1)a → Γ [a + n + 1]

n!

×Γ
[
1 + n + b − s, −a − b − s

1 + b − s, 1 − s

]
,Re {s} < −n − Re {a},Re {a} > −1 (A.60)

P u
ν (2x − 1)U (1 − x) (1 − x)−u/2 → Γ

[
s + u/2, s − u/2

s + ν + 1 − u/2, s − ν − u/2

]
,

Re {s} > |Re {u}| /2, Re {u} < 1 (A.61)

P u
ν (2x − 1)U (x − 1) (x − 1)−u/2 → Γ

[
u/2 − ν − s, u/2 + 1 + ν − s

1 + u/2 − s, 1 − u/2 − s

]
,

Re {s}<1 + Re {u/2} + Re {ν}, Re {s}<Re {u/2} − Re {ν}, Re {u}<1 (A.62)

(1 + x)−u/2 Qu
ν (1 + 2x) → exp (iπu)

2

×Γ
[
s + u/2, s − u/2, ν + 1 + u/2 − s

s + ν + 1 − u/2

]
,

|Re {u}| /2 < Re {s} < 1 + Re {ν + u/2} (A.63)
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A Additional Mellin Transforms 357

1F1 [a; c;−x] → Γ
[
c
a

]
Γ
[
a − s, s
c − s

]
, 0 < Re {s} < Re {a} (A.64)

exp (−x) 1F1 [a; c; x] → Γ
[

c
c − a

]
Γ
[
c − a − s, s

c − s

]
,

0 < Re {s} < Re {c − a} (A.65)

Ψ [a, c; x] → 1

Γ [a, 1 + a − c]
Γ [s, s + 1 − c, a − s] ,

Re {c − 1} < Re {s} < Re {a}, 0 < Re {s} (A.66)

exp (−x)Ψ [a, c; x] → Γ
[

s, s + 1 − c
s + a + 1 − c

]
, Re {c− 1}< Re {s}, 0 < Re {s}(A.67)

exp (−x/2)Ma,u (x) → Γ
[

2u + 1
a + u + 1

2

]
Γ
[

s + u + 1
2
, a − s

u + 1
2
− s

]
,

− Re {u − 1/2} < Re {s} < Re {a} (A.68)

exp (−x/2)Wa,u (x) → Γ
[

s + u + 1
2
, s + 1

2
− u

s + 1 − a

]
, Re {s} < 1/2 + |Re {u}|

(A.69)

exp (x/2)Wa,u (x) → 1

Γ
[

1
2
− u − a, 1

2
+ u − a

]

×Γ
[
s − u + 1

2
, s + 1

2
+ u,−a − s

]
, −1/4+ |Re {u}|<Re {s}<− |Re {a}| (A.70)

1F1 [a, b; c;−x] → Γ
[

c
a, b

]
Γ
[
a − s, b − s, s

c − s

]
,

0 < Re {s} < Re {a},Re {s} < Re {b} (A.71)

Ai (z) → 3s/3

6π 31/6
Γ
[
s/3 + 1

3
, s/3

]
, Re {s} > 0 (A.72)
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Appendix B

Transcendental Functions

Below are the definitions of functions whose Mellin transforms are given in App.
A. If an expression contains gamma functions, it is not valid for arguments that
give an infinite result. For functions of the form 2F1 [a, b; c, z] the expression is
only valid when |z| < 1.

Polylogarithm

Ln (z) =
∞∑

k=1

zk

kn
|z| < 1 (B.1)

Complete elliptic integral of the second kind

E (k) =

π/2∫
0

dϕ
√

1 − k2 sin2 (ϕ) =
π

2
2F1

[
−1

2
, 1

2
; 1; k2

]
(B.2)

Elliptic integral of the first kind

K (k) =

π/2∫
0

dϕ√
1 − k2 sin2 (ϕ)

=
π

2
2F1

[
1
2
, 1

2
; 1; k2

]
(B.3)

Exponential integral

Ei (x) =

x∫
−∞

dt
exp (t)

t
= − exp (x)Ψ [1, 1;−x] , x < 0 (B.4)

Lower Sine integral

Si (x) =

x∫
0

dt
sin (t)

t
(B.5)

Upper Sine integral

si (x) = Si (x) − π

2
= −

∞∫
x

dt
sin (t)

t
(B.6)
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360 B Transcendental Functions

Cosine integral

Ci (x) = −
∞∫
x

dt
cos (t)

t
(B.7)

Error function

Erf (x) =
2√
π

∞∫
x

dt exp
(
−t2/2

)
=

2x√
π

1F1

[
−1

2
; 3

2
;−x2

]
(B.8)

Complementary error function

Erfc (x) = 1 − Erf (x) =
exp (−x2)√

π
Ψ
[
−1

2
, 1

2
; x2

]
(B.9)

Fresnel sine integral

S (x) =
1√
2π

x∫
0

dt
sin (t)√

t
(B.10)

Fresnel cosine integral

C (x) =
1√
2π

x∫
0

dt
cos (t)√

t
(B.11)

Lower incomplete gamma function

γ [a, x] =
xa

a
1F1 [a; a + 1;−x] , Re {a} > 0 (B.12)

Upper incomplete gamma function

Γ [a, x] = exp (−x)Ψ [1 − a, 1 − a; x] (B.13)

Parabolic cylinder function

Dν (x) = 2ν/2 exp
(
−z2/4

)
Ψ
[
−ν/2, 1

2
; z2/2

]
(B.14)

Bessel function of the second kind or Neumann function

Nν (z) = − 1

π

(
z

2

)−ν

Γ [ν] 0F1

[
1 − ν;−z2/4

]

− 1

π
cos (πν)

(
z

2

)ν

Γ [−ν] 0F1

[
1 + ν;−z2/4

]
(B.15)
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B Transcendental Functions 361

Struve function

Hν (z) =
2√
π

(
2

z

)ν+1 1

Γ
[
ν + 3

2

] 1F2

[
1; 3

2
, ν + 3

2
;−z2/4

]
(B.16)

Lommel function

su,ν (z) =
zu+1

(u − ν + 1) (u + ν + 1)
1F2

[
1; (u − ν + 3) /2, (u + ν + 3) /2;−z2/4

]
(B.17)

Bessel function of imaginary argument

Iν (z) =
(

z

2

)ν 1

Γ [ν + 1]
0F1

[
ν + 1; z2/4

]
(B.18)

Bessel Function of the Third Kind or Macdonald or Kelvin function

Kν (z) =
1

2

(
z

2

)ν

Γ [−ν] 0F1

[
ν + 1; z2/4

]
+

1

2

(
z

2

)−ν

Γ [ν] 0F1

[
1 − ν; z2/4

]
(B.19)

Legendre polynomials

Pn (z) =
2−n

n!

dn

dzn

(
z2 − 1

)n
= 2F1

[
−n, 1 + n; , 1;

1 − z

2

]
(B.20)

Chebyshev or Tchebcheff polynomial of the first kind

Tn (z) = cos [n arccos (z)] = 2F1 [−n, n; 1/2; (1 − z) /2] (B.21)

Chebyshev polynomial of the second kind

Un (z) =
sin [(n + 1) arccos (z)]√

1 − z2
= (n + 1) 2F1 [−n, n + 2; 3/2; (1 − z) /2] (B.22)

Hermite polynomials

Hn (z) = (−1)n exp
(
z2
) dn

dzn
exp

(
−z2

)
= 22nz1F1

[
(1 − n) /2; 3

2
; z2

]
(B.23)

Laguerre polynomials

La
n (z) =

exp (z) z−a

n!

dn

dzn

[
exp (−z) zn+a

]
= Γ

[
a + n + 1
a + 1, n + 1

]
1F1 [−n; a + 1; z]

(B.24)
Gegenbauer polynomials

Cλ
p (z) = Γ

[
2λ + p
2λ, p + 1

]
2F1

[
−p, p + 2λ;λ + 1

2
;
1 − z

2

]
(B.25)

Jacobi polynomials

P (a,b)
n (z) = Γ

[
a + n + 1
a + 1, n + 1

]
2F1

[
−n, n + a + b + 1; 1 − a;

1 − z

2

]
(B.26)
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362 B Transcendental Functions

Associated Legendre function of the first kind

P u
ν (z) =

(
z + 1

z − 1

)u/2 1

Γ [1 − u]
2F1

[
−ν, 1 + ν; 1 − u;

1 − z

2

]
, |arg (z ± 1)| < π

(B.27)
Associated Legendre function of the second kind

Qu
ν (z) = 2−ν−1 Γ

[
u + ν + 1
ν + 3

2

]
exp (iuπ)

√
π z−u−ν−1

(
z2 − 1

)u/2

= 2F1

[
(u + ν + 1) /2, (u + ν + 2) /2; ν + 3/2; 1/z2

]
,

|arg (z ± 1)| < π, |arg z| < π (B.28)

Tricomi function

Ψ [a, c; x] = Γ
[

1 − c
a − c + 1

]
1F1 [a; c; z] + z1−cΓ

[
c − 1
a

]
1F1 [a − c + 1; 2 − c; z]

(B.29)
Degenerate Whittaker hypergeometric function

Mb,u (z) = exp (−z/2) zu+1/2 = 1F1 [1/2 − b + u; 2u + 1; z] (B.30)

Airy function

Ai (z) =
1

π

∞∫
0

dw cos
(
w3/3 + w z

)
=

z1/2

π
√

3
K1/3

(
2z3/2/3

)

=
Γ
[

1
3

]
π 31/6 0F1

[
2
3
; z3/9

]
+

Γ
[
−1

3

]
π 35/6

z 0F1

[
4
3
; z3/9

]
(B.31)
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Index

adaptive optics, 4

filter function, 83

focal anisoplanatism, 80, 195

variance, 114

Zernike anisoplanatism, 188

anisoplanatism

angular, 225

beam shape, 345

centroid, 103

chromatic, 228

cone, 195

displacement, 225

focal

distributed source, 200

offset source, 204

point source, 195

focus, 186, 195

scintillation, 184

Strehl ratio, 219

tilt, 164

outer scale, 314

time delay, 226

Zernike, 188

annulus

piston

filter function, 77

variance, 153

tilt

filter function, 76

variance, 153

aperture averaging

filter function, 78

Gaussian beam, 80

scintillation, 176

Appell function, 310

asterisk notation, 10

asymptotic series

N complex planes, 295

complex parameter, 253

Poincaré, 130

positive parameter, 126

asymptotic solutions, 126, 253, 295

atmospheric density, 229

beam movement, 107

beam shape, 57, 337

anisoplanatism, 345

general solution, 337

tilt jitter, 342

uncorrected turbulence, 340

beam wave

filter function, 264

phase, 261

power spectral density, 267

scintillation, 261

Bessel function, 10

complex argument, 252

integrals, 69

modified, 260

third kind, 12

Born approximation, 39

Buckingham’s Pi theorem, 27

Bufton wind model, 227

Cauchy residue theorem, 119

N complex planes, 284

characteristic sizes

aperture, 178

coherence diameter, 97

isoplanatic angle, 97

source angle, 181

tilt anisoplanatism, 171

time, 227

coherence diameter, 97, 211

spherical wave, 210

convergence of power series, 279

convolution

N complex planes, 14

one complex plane, 13

correlation

beam wave, 265
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364 Index

correlation function

density, 37

focus, 187

inner and outer scale, 328

refractive index, 37

covariance function

filter function, 55

diffraction

tilt, 160

diffraction parameter, 44

digamma function, 133

distributed source, 78, 176

Euler’s constant, 133

filter function, 69

adaptive optics, 83

anisoplanatism, 54

annulus, 75

beam wave, 264

covariance function, 55

finite aperture, 78

focal, 78

general formula, 51

piston, 72

annulus, 77

power spectral density, 56

beam wave, 267

servo, 57

single wave, 52

tilt, 72

annulus, 76

gradient, 75

Zernike modes, 71

focal anisoplanatism, 195

focus, 186

Fourier transform

definition, 29

Fox H-function, 17, 120, 123, 212

Fresnel number, 161

Fried’s coherence diameter, 97

gamma function

definition, 8

duplication formula, 9

Gauss-Legendre formula, 9

recursion relation, 9

residue, 8

Stirling’s formula, 10

Gauss hypergeometric function

definition, 15

examples, 22

Gaussian beam

tilt, 106

Gaussian beam, 41, 105

aperture averaging

filter function, 80

piston, 105

Strehl Ratio, 64

Gegenbauer polynomials, 220, 356, 361

generalized hypergeometric function, 15

Greenwood frequency, 114

Greenwood spectrum, 33

guidestar, 195

Heaviside function, 10

Hesse’s determinant, 301

Hill spectrum, 33

Horn function, 280

Hufnagel-Valley turbulence, 96

Huygens-Fresnel approximation, 58

hypergeometric function

examples, 22

Gauss, 15, 22

generalized, 15

incomplete gamma function, 96

inner scale, 26, 33, 181, 317

correlation function, 328

definition, 33

scintillation, 176

tilt, 152, 317

intermittency, 38

isoplanatic angle, 97, 225

Karhunen-Loève polynomials, 74

Kolmogorov spectrum, 31

Legendre function, 220

log-amplitude, 46

log-polar transform, 8

Macdonald function, 12

Maréchal approximation, 64

extended, 64

Maxwell’s equations, 38

Meijer G-function, 17, 212

Mellin convolution theorem, 13

N complex planes, 14

Mellin transform

N complex planes, 277

definition, 7

properties, 7

Mellin-Barnes integral, 16

complex parameter, 251

Miller-Zieske, 98

mirages, 25

moment

temporal, 227
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Index 365

turbulence, 96

velocity, 114

Navier-Stokes equations, 27

outer scale, 33, 317

correlation function, 328

definition, 31

spectrum, 33

tilt

Greenwood spectrum, 150

von Kármán spectrum, 146

turbulence spectrum, 31

paraxial assumption, 42

phase, 46

beam wave, 261

covariance function, 55

piston

annulus, 153

Gaussian beam, 105

infinite beams, 99

Pochhammer symbol, 15

Poincaré series, 130

polylogarithm, 132

power spectral density

beam wave, 267

filter function, 56

tilt, 172, 321

propagation parameter γ, 43

psi function, 133

Radar effects, 26

refractive index, 25, 229

resolution, 211

Reynolds number, 28

Riccati equation, 39

Rytov approximation, 37

scintillation, 110

adaptive optics, 114

anisoplanatism, 184

aperture averaging, 176

beam wave, 261

covariance function, 55

finite apertures, 176

finite sources, 176

focused beam, 112

infinite beam, 112

inner scale, 181

saturated, 38, 41

servo system, 57

beam wave, 267

variance, 113

SLCSAT Day turbulence, 98

SLCSAT Night turbulence, 98

steepest descent, 126

N complex planes, 296

complex parameter, 253

Stirling’s formula, 10

Strehl Ratio

Gaussian beam, 64

top-hat beam, 62

Strehl ratio, 57, 209

anisoplanatism, 219, 225

angular, 225

chromatic, 228

combined effects, 232

displacement, 225

time delay, 226

beam jitter, 214

outer scale, 213

tilt removed, 234

uncorrected turbulence, 209

Structure function, 84

outer scale, 214

structure function, 55

density, 28

inner and outer scale, 328

log-amplitude, 55, 62

phase, 55, 62, 328

velocity, 27

Taylor frozen turbulence, 56

temporal moment, 227

thermal blooming, 38

tilt

angle-of-arrival, 108

anisoplanatism, 164

outer scale, 314

annulus, 153

collimated, 101

diffraction, 160

focused, 101

Gaussian beam, 106

gradient, 102

Greenwood spectrum, 150

inner and outer scale, 317

inner scale, 152

power spectral density, 172

outer scale, 321

von Kármán spectrum, 146

Zernike, 99

top-hat beam, 42

transform

Fourier, 29

log-polar, 8

Mellin, 7

trigamma function, 133
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366 Index

turbulence

Strehl ratio, 209

turbulence models, 96

Hufnagel-Valley, 96

SLC Day, 98

SLC Night, 98

turbulence moments, 96

full, 96

partial, 96

turbulence spectra

Greenwood, 33

Hill, 33

Kolmogorov, 31

Tatarski, 33

von Kármán, 31

modified, 33

turbulence strength C2
n, 28

two-thirds power law, 27

velocity moment, 114

von Kármán spectrum, 31, 146

wind model, 227

Zernike anisoplanatism, 188

Zernike modes, 70, 104

focus, 186

piston, 72

tilt, 72, 99
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