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Preface

This book is an outgrowth of a short course frequently given over the past ten
years for The International Society for Optical Engineering (SPIE). Basic optical-
engineering concepts are covered in a manner accessible to anyone with a preparation
equivalent to a bachelor's degree in electrical engineering. Students with backgrounds in
mechanical engineering, technology, and management have also taken the course
successfully.

The topics covered are those most likely to be useful in an entry-level,
laboratory-oriented setting. These include: imaging, radiometry, sources, detectors, and
lasers. Special emphasis is placed on flux-transfer issues, which are particularly
important in practical measurements. A first-order approach is taken throughout, so that
the student can quickly make the back-of-the-envelope calculations necessary for initial
setup of optical apparatus. The treatment is at an elementary conceptual and
computational level.

The material contained herein represents some of what I wished I had known
about optics when I first began working as an engineer, fresh from The University. Over
the intervening years, I have developed the opinion that, while valuable for advanced
students, such topics as the eikonal equation or the method of stationary phase are not as
important for the young engineer as answers to questions like: where is the image, how
big is it, how much light gets to the detectors, and how small of an object can we see?

I would like to thank the students who have taken my SPIE short courses on
this material. Their questions and enthusiasm have provided the impetus for a number of
revisions of the presentation. Special thanks are also due to Eric Pepper of SPIE, who
has shown remarkable patience with innumerable schedule slippages. His unfailing
optimism and cheerfulness are sincerely appreciated.

Finally, I want to thank my favorite technical editor, Maggie Boreman, for the
time that she has invested in this project, transforming my convoluted prose into standard
English.

GDB
Geneva, Florida, 1998
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Chapter 1
Geometrical Optics

1.1 Introduction
Geometrical optics is the study of image formation. The function of lens and

mirror systems is to collect radiation from the object and produce a geometrically similar
distribution of flux, an image, across the image plane.

We consider first the electromagnetic spectrum, then proceed to the principles of
image formation. We then consider issues affecting image quality and conclude this
chapter by surveying the optical properties of materials.

1.2 Electromagnetic Spectrum
Light is a sinusoidal electromagnetic wave that travels either in a material

medium or in a vacuum. We describe electromagnetic (EM) radiation using wavelength
(ij, defined as the distance over which a sinusoidal waveform repeats itself. We will
consider many optical phenomena that depend on wavelength. Radiation classified
according to wavelength falls into one of the categories listed in Table 1.1. The divisions
between the various categories are approximate and based on differences in source and
detector technologies, the response of the human eye, and atmospheric transmission.
Optical radiation is only a small portion of the entire EM spectrum, which extends from
radio waves at long X to x rays at short X. Electromagnetic radiation to which our eyes
respond has wavelengths between approximately 0.4 µm (violet) and 0.7 µm (red).
Invisible radiation includes ultraviolet (UV) radiation, which has wavelengths shorter than
violet, and infrared (IR) radiation, which has wavelengths longer than red.

Table 1.1. Electromagnetic spectrum.

Wavelength (?ti)	 Designation

10-6 to 10-2 µm x rays
10-2 to 0.4 µm ultraviolet
0.4 to 0.7 µm visible

0.40 - 0.46 violet
0.46 - 0.49 blue
0.49 - 0.55 green
0.55 - 0.58 yellow
0.58 - 0.60 orange
0.60 - 0.70 red

0.7 µm to 3 µm near infrared
3 µm to 5 µm middle infrared
5 µm to 15 µm long-wave infrared
15 µm to 1 mm far infrared
1 mm to 1 cm millimeter waves
1 cm to 1 m microwaves
1 m to 10 km radiowaves
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2 / Chapter 1

The wavelength is related to the oscillation's optical frequency (v) according to

V =
	

(1.1)

where c = 3 x 108 m/s is the speed of light in vacuum (or air). As the wave travels
throught various media, the wavelength will change. However, the frequency of the
radiation will not change, once the wave has been generated. Thus, a decrease in velocity
requires a corresponding decrease in wavelength. The index of refraction (n) is the
proportionality constant, and is defined as the ratio of the wave's vacuum velocity to the
wave velocity in the material (v)

n = c/v	 (1.2)

Because an EM wave has its maximum velocity in vacuum, the refractive index is a
number greater than one for any material medium.

Another relationship involving wavelength and frequency is

9 = hcO,= by	 (1.3)

where c' is the photon energy, and h = 6.67 x 10-34 J s is Planck's constant.
For infrared radiation at ? = 10 µm, Eq. (1.3) predicts a frequency of = 3 x 10 13

Hz and a photon energy of = 2 x 10 -20 J. At a shorter wavelength of 1 µm, the frequency
and the photon energy both increase by a factor of ten, to yield v = 3 x 10 14 Hz and 9 =
2 x 10 -19 J. A typical visible wavelength of 0.6 pm has a frequency on the order of 5 x
1014 Hz. Because present-day electronics does not permit direct temporal measurements
on time scales shorter than approximately 10 -9 seconds, at optical and IR frequencies we
cannot measure directly the amplitude and phase of the EM wave. Measurements can be
made only on average power, averaged over many cycles of the wave.

1.3 Rays
A fundamental concept in geometrical optics is that of a ray. A ray is a line

along which energy flows from a source point. The ray model is an approximation that
ignores the effects of diffraction, and thus assumes that light travels in straight lines. The
ray model is a useful starting point for analysis, because of its simplicity. We can
calculate image size and image location using the ray model, and later include the effect of
diffraction in the design process. Because we want to see how objects and images can be
constructed on a point-by-point basis, we will begin our discussion of rays with a point
source of radiation.

Figure 1.1. Rays from a point source.
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Geometrical Optics / 3

A point source emits rays uniformly in all radial directions. In Fig. 1.1,
wavefronts can also be seen. The wavefronts represent families of points that are at a
given time of flight (phase value) from the source. The wavefronts for a point source are
concentric circles centered on the source. Note that the rays and the wavefronts are
everywhere perpendicular.

Optical systems are often configured to form an image of a distant target. In
drawing the ray diagram for such a system, we need a construction for a point source at
infinity. Modifying the construction seen in Fig. 1.1, we find in Fig. 1.2 that the
wavefronts eventually become planar, at least sufficiently planar over a limited region of
space. Any optical system will necessarily have a finite aperture, so the very small
curvature of the wavefront from the source can be neglected. As the wavefronts become
planar, the associated rays become parallel. Very often, we see optical systems drawn
with entering rays that are parallel. These rays come from a point source which is "at
infinity."

Figure 1.2. A point source at infinity is a source of parallel rays.

1.4 Imaging Concepts
We will concentrate on what is called first-order (paraxial) optics, an approx-

imation which assumes that angles made by rays with the horizontal axis are sufficiently
small that the sine of an angle can be replaced by the angle itself in radians. This
linearizes the raytrace equations that determine ray paths through the optical system, and
allows us to predict image size and image location. A more detailed analysis is necessary
for prediction of image quality, involving the tracing of nonparaxial rays at larger angles.

Referring to Fig. 1.3, an object is a spatial distribution of brightness. The optic
axis is a line of symmetry for the lens that contains the centers of curvature of the lens
surfaces. Each location in the object can be considered an independent source point that
emits light rays into all forward directions. The object information is that each source
point can have a different strength. The lens causes a geometrically similar distribution
of brightness to be reproduced in the image. The action of the lens ensures that rays
diverging from a particular object point will intersect again at a corresponding point in
the image plane, building the image point by point. The brightness at any image
location is proportional to the brightness of the corresponding object point, so that the
image is a distribution of flux that is geometrically similar to that of the object. Given
that the number of object points is infinite (each with an infinite number of rays that
could be drawn), we want to simplify our diagrams, drawing only a few rays from selected
object points.

Downloaded from SPIE Digital Library on 17 May 2011 to 66.165.46.178. Terms of Use: http://spiedl.org/terms

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4 /Chapter 1

'lane

Dptic Axis

Figure 1.3. Image formation.

To obtain the maximum insight from just a few rays, we choose the rays that
we want to draw using the graphical raytrace rules shown in Fig. 1.4. In this figure, we
assume that the lens is thin. The thin-lens approximation assumes that the lens
thickness along the optical axis is negligible compared to its focal length, object distance,
or image distance; or that any ray has only a very small change in height while
traversing the lens. The graphical raytrace rules applicable to thin lenses are:

1. Rays entering the lens parallel to the optic axis exit through a focal point.
2. Rays entering the lens through a focal point exit parallel to the optic axis.
3. Rays that pass through the center of the lens do not change direction.

Figure 1.4. Graphical raytrace rules.

A lens has a focal point on each side, as seen in Fig. 1.5, and parallel rays
entering from the left will converge to the focal point on the right side of the lens.
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Geometrical Optics / 5

Similarly, rays that diverge from the focal point on the left side of the lens will emerge
parallel to the optic axis. The construction in Fig. 1.5 justifies Rules 1 and 2. For a
thin lens, we measure the focal length from the lens itself to either of the focal points.
The focal length is the same on either side, provided that the propagation medium
(usually air) is the same on either side. Focal length is positive for the lens in Fig. 1.5.

Q--------->

Figure 1.5. Definition of focal length for a thin lens.

Rule 3 can be justified considering the region of the lens near the axis as
approximately a plane parallel plate as seen in Fig. 1.6. By Snell's Law, the ray passing
through this region will be shifted parallel to its original direction. For a thin lens, the
shift is small, and the ray appears to go straight through the center of the lens.

Figure 1.6. Raytrace Rule 3.
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6 / Chapter 1

A useful application of the graphical raytrace rules is seen in Fig.! .7, in which a
point source at infinity creates a parallel bundle of rays that make an angle a (in radians)
with respect to the optic axis. Assuming that a is small, the bundle of rays will focus at
a distance af above the axis, and at a distance f to the right of the lens.

rui af 

^{---------> <----------> 

Figure 1.7. Off-axis ray bundle.

The graphical raytrace rules can be used to develop a pair of algebraic relations
for thin-lens imaging:

1+1 = 1
p	 q	 f	 (1.4)

and

X _ him, __ 9

hobI	 p .	 (1.5)

As seen in Fig. 1.8, the distance p is that from the object to the lens (p is defined to be
positive to the left of the lens) and the distance q is that from the lens to the image (q is
defined to be positive to the right of the lens). The ratio of the image height (h ;mg) to the
object height (h obt) defines the linear magnification A.• Both heights are defined to be
positive above the optic axis, resulting in a minus sign in Eq. (1.5) corresponding to the
inverted image formed by a single positive lens.

hobj

h.img
;negative)

Figure 1.8. Imaging equation for single thin lens; all quantities except h ung are positive.
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him„, x'

h.
1mg, y

h
 obj, y

Figure 1.9. Area magnification.

Geometrical Optics / 7

Using Eqs. (1.4) and (1.5), we can calculate the (paraxial) image location and
image size, given the object location, object size, and the focal length of the lens. As an
example, given a lens with a focal length of 5 cm, and a 3-mm-tall object located 20 cm
to the left of the lens, we find q = 6.67 cm and A = — 0.33, yielding an image that is 1

mm in dimension below the axis. Usually objects and images are centered on the optic
axis, but using just the dimension above or below the axis allows us to keep track of the
image orientation as well.

Let us examine some limiting cases of Eqs. (1.4) and (1.5). If the object is
located at infinity on the left, then the image is formed at the focal point of the lens on
the right. As the object comes in from infinity, the image is formed at an increasing
distance to the right of the lens. As the object is moved toward the left-hand-side focal
point, the image will be formed at infinity on the right-hand side.

We can also use Eq. (1.4) to show that the distance e _— p + q between real

object and real image (p and q both positive) has a minimum value of £ = 4f. For the

symmetrical case where p = q = 2f, Eq. (1.5) yields JV? = —1. For an object-to-image

distance. > 4f, we use the quadratic equation to find two pairs of p and q that satisfy Eq.
(1.4) and produce reciprocal magnifications:

p 2 ±	 2	 (1.6)

In the previous situation, we had p = 6.67 cm, and q = 20 cm, for a total length e = 26.67

cm and a magnification J , _ —0.33. Another solution with the same total length is p =

6.67 and q = 20, which yields <fl = — 3. The magnification A defined in Eq. (1.5) is a
linear magnification, and if the areas of the object and image are the quantities of interest,
the area magnification J122 is used, as seen in Fig. 1.9

Aimg _ 2 himg,Y 2 himg,x) = Nt 2= (q) 2

AobJ (2 hobj,Y) (2 h.bi ,x)	 U ^ f	p	 (1.7)
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8 / Chapter 1

1.5 Aperture Stop, Marginal Ray, and F/#
The size and location of apertures in an optical system affect both the flux-

transfer efficiency and the image quality of the system. We begin by considering an axial
ray, seen in Fig. 1.10. An axial ray starts at the on-axis point in the object and ends at
the on-axis point in the image. The aperture stop is the surface that limits the acceptance
angle for axial rays. The marginal ray is that particular axial ray that goes through the
edge of the aperture stop.

I Marginal ray

Object	 Axial ray
Image

Aperture stop

Figure 1.10. Axial ray, aperture stop, and marginal ray.

The marginal ray is used to define the relative aperture or f-number (F/#), which compares
the aperture diameter to the object distance, image distance, or focal length. The F/# can
be defined in one of three ways, depending on the situation under consideration. If the
object is at infinity (Fig. 1.11), the image is formed at the focus of the lens, according to
Eq. (1.4). In this case, the marginal ray defines the image-space Fl# as

(F/#) image-space = f/Daperture-stop • 	 (1.8)

Aperture stop

ray
Object point	D

at infinity	 I

I f
< >

Figure 1.11. F/#for object at infinity.

For objects that are at finite conjugates (object not at infinity) as seen in Fig. 1.12, an
F/# can be defined either in object or image space as

(F/#)object-space = Pmaperture-stop	 (1.9)

(F/#)image-space = gtDaperture-stop .	 (1.10)
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Geometrical Optics! 9

Uaperture-stop

(F/#)obj—space:^
V

._..._ (F/#)img—space

Object p	q
n	 Image

Marginal ray

Figure 1.12. F/#for object at finite conjugates.

F/# is a parameter that depends on the inverse of the aperture-stop diameter.
Hence, a large F/# implies that less relative aperture is used. A system with a large F/#
is termed "slow" and one with a small F/# is termed "fast," referring to the relative
exposure speeds that can be used with each system. We will see later that a fast system
produces a higher image brightness than a slow system. We compare F/1 (F/# = 1) and
F/3 (F/# = 3) systems in Fig. 1.13, where F/1 implies that f = Daperture-stop and F/3

implies that Daperture-stop = (1/3) x f.

Figure 1.13. A comparison of F/1 and F/3 systems.

1.6 Field Stop, Chief Ray, and Field of View
Another important ray in an optical system is the chief ray. As seen in Fig.

1.14, the chief ray starts at the maximum extent of the object and goes to the maximum
extent of the image, and passes through the center of the aperture stop. The maximum
extent of the object and image is determined by a surface called the field stop. Without a
field stop, there would be an infinite extent of the object plane that would be imaged onto
the image plane. The portions of the image that were formed at a considerable distance
from the optic axis would have poor image fidelity; they would be blurry. In any real
imaging system, a field stop is necessary to define the region of image space over which
an image will be recorded with a given degree of image quality. The field stop is usually
determined by the limited size of the recording medium (e.g., photographic film, a
detector array, or a single detector) placed in the image plane.
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hobj

Field stop
(detector array)

Chief ray

Figure 1.14. Field stop, chief ray, and field of view.

The field of view (FOV) is the angular coverage of an optical system, and can be
defined in terms of either a full angle or a half angle. Using the half-angle FOV
convention of Fig. 1.14, we find

-1(h

obj -1 himg
FOVhalf-angle = tan p = tan q

(1.11)

The angles used to define FOV in Eq. (1.11) are equivalent because of graphical raytrace
Rule #3, which says that the chief ray is not changed in angle because it passes through
the center of the aperture stop.

We usually think of the object as being imaged onto the image plane. A useful
alternative construction is available when the image plane acts as the field stop with a
detector array located there, as seen in Fig. 1.14. We consider the image of the detector
array in object space. Any individual detector will have a "footprint" in object space.
The footprint is that region of object space that contributes flux to (is imaged onto) the
detector of interest. Figure 1.15 illustrates a specific case that represents the typical
situation in remote-sensing applications. When the object is sufficiently far away that the
image is formed at the focus of the lens (p = oo implies that q = f), the linear dimension
of the footprint in the object plane is

Yfootprint = Y fp (1.12)

where yd is the linear dimension of the individual detector. Surely any linear dimensions
in the object and image plane are related by Eq. (1.5), but Eq. (1.12) applies to the
condition where the object is essentially at infinity.

For the object-at-infinity case it is also of interest to relate FOV and
magnification. As seen in Fig. 1.16, the (full angle) FOV = yaray/f, and for a given
detector array, a long-focal-length lens yields a narrow FOV while a short-focal-length
lens yields a wide FOV. In this figure, the footprint of the detector array (for a given
lens) will appear as full width on the video display. This relationship between FOV and
magnification can be seen from the relation of Eq. (1.5), VNL = —q/p, and, because q = f, a

longer focal length implies a longer image distance which yields a higher magnification.
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Figure 1.15. Detector footprint.
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Figure 1.16. Field of view, magnification, and focal length.

In the last two sections, we have explored two special rays, the marginal ray and
the chief ray. These rays define two parameters of the optical system, the F/# and FOV,
respectively. The F/# and the FOV affect both flux transfer and image quality. A small
F/# and large FOV both promote a high flux-transfer efficiency, but the image quality
suffers (large aberrations). In contrast, a system with a large F/# and a small FOV will
have better image quality (smaller abberations), but less flux reaching the image plane.

1.7 Thick Lenses and Lens Combinations
Equations (1.4) and (1.5) describe the paraxial imaging for thin lenses, that is,

for lenses where the focal length can be described simply as the distance from the lens
itself to the focal point. To describe imaging for optical elements with appreciable
thickness (compared to their focal length), or for combinations of thin lenses, we develop

wide
FOV

V
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12 /Chapter 1

the concept of principal planes. A pair of these planes acts as equivalent refracting planes
for a given optical system. For thick lenses, the focal length must be measured from the
focal point to the principal point (rather than to the lens itself). The procedure for
locating the principal points of a thick lens is straightforward, and follows the steps
illustrated in Fig. 1.17.

second principal plane

focal length, f	 pp2	 second focal point<-------- -> 1

- --------	 ---,	 --

first focal point focal length, f

first principal plane

Figure 1.17. Principal planes.

The steps for location of the principal planes are:

1) Use a ray entering parallel to the optic axis from the right.
2) Project the entering ray and the exiting ray until they intersect.
3) Construct a perpendicular line to the optic axis.
4) Intersection of the perpendicular and optic axis is the first principal point pp l .
5) Second principal point PP2 can be found in a similar fashion, using a parallel ray

entering from the left.

The focal length f is measured from the principal point to the corresponding
focal point, and is the same on each side of the lens, provided that the index of refraction
of object and image space is equal. The distance from the last physical surface of the lens
to the focal point (called the back focal distance) is not necessarily the same on each side,
but the focal length will be equal. For thin lenses, both principal points coincide at the
lens.

Using the concept of principal planes, we can describe several useful
combinations of thin lenses. The first combination we consider is two positive thin
lenses, with focal lengths f 1 and f2, separated by a distance d (Fig. 1.18). The focal
length of the combination is:

_ 1	 1 _ d
f combination — — + —

fl	fZ	fl f2	(1.13)

As seen in Fig. 1.18, the focal length is measured from the appropriate principal plane,
not from either of the individual lenses.
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Geometrical Optics / 13

As we let the separation approach zero, we obtain a formula for two lenses in
contact:

1 	_ = 1 + 1

(combination	 fl	 f2 •	 (1.14)

For example, two thin lenses in contact, each with a focal length of 3 cm, will result in a
combination focal length of 1.5 cm.

PP2

Figure 1.18. Two thin lenses, separated by distance d.

A useful special case of the two-lens combination is the relay-Iens pair, seen in
Fig. 1.19. The object is placed f1 to the left of the first lens, and the image is formed at
f2 to the right of the second lens. The separation of the lenses affects both the location of
the principal planes and the focal length of the combination. However, because the object
is located at the front focal point of the lens #1, axial rays will be parallel to the optic
axis in the space between the lenses. The lens separation will thus not affect the
magnification of the relay, which is

himg _ _ f2
relay

hobt	 f 1 •	 (1.15)

For increasing interlens separation, the required diameter of the second lens will increase
to allow for an object of finite size to be imaged without losing the edges (vignetting).
Consider the chief ray from the top of the object to the bottom of the image in Fig. 1.19.
As the lenses are moved apart, the size of lens #2 must increase to pass the chief ray.

Figure 1.19. Relay-lens pair.
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14 /Chapter 1

Afocal telescopes are two-lens systems intended to be used with the object at
infinity. The two lenses are separated by the sum of their focal lengths. The
combination focal length is indeterminate using Eq. (1.13), which is interpreted to mean
that an afocal telescope has no single-lens equivalent. A parallel marginal-ray bundle of
diameter Dinput is input from the left, and a parallel marginal-ray bundle of diameter

Doutput is output to the right. No single lens can accomplish this. Afocal telescopes do
not produce an image by themselves, but provide an angular magnification of the
marginal rays, c 'angular

eoutput _ _ f1
angular —

einpur	 f2	 (1.16)

= Din ut
''angular —

P __

Doutput	 f 	 .	 (1.17)

One basic afocal telescope is the Keplerian telescope seen in Fig. 1.20, which combines
two lenses with positive focal length. The angular magnification for this telescope is
negative, because both focal lengths are positive in Eq. (1.16).

Dinput -- ----- - -------------------- ---- f2-- - ---	 Doutput

Figure 1.20. Keplerian telescope.

Another afocal-telescope configuration is the Galilean telescope, where the first
lens is positive and the second lens is negative. The lens separation is the algebraic sum
of the focal lengths. As seen in Fig. 1.21, using Eq. (1.16), the angular magnification
for the Galilean telescope is positive. Galilean telescopes have a shorter physical length
for a given angular magnification than the Keplerian configuration. A reflective analog to
the Galilean telescope is seen in Fig. 1.22. The obstruction caused by the secondary
mirror of this telescope makes the aperture stop an annulus. Slight adjustment of the
spacing between the elements or the focal lengths yields a non-afocal configuration that
can focus parallel rays called a Cassegrain system (Fig. 1.23).
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Geometrical Optics / 15

Dinput

f2

Figure 1.21. Galilean telescope.

•
Figure 1.22. Reflective analog of the Galilean afocal telescope.

principal plane

<-------------- f 	----- >

Figure 1.23. Cassegrain system.
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16 / Chapter 1

Afocal telescopes are typically used as the front-end element to modify the FOV
of an image-forming system (Fig. 1.24). The afocal telescope does not form an image by
itself, but acts in concert with a final positive lens (f 3) to form the final image on the
detectors. The focal length of the three-lens combination is different from the original
focal length of the imaging lens by a factor of the angular magnification (Eq. (1.16)) of
the afocal. A change in the focal length of the system changes the FOV (and thus the
magnification) of the system, as seen in Fig. 1.16. The focal length of the three-lens
system (measured from the principal plane to the focal plane) is given by

f1xf3
(combination = 	 = I `	 angular) X f3	

1.182	 (	 )

The system focal length can also be expressed as the focal length of the front lens of the
afocal, multiplied by the magnification of the relay-lens pair formed by the second and
third lenses

f1Xf3
	f combination 

_
— f 	= f 1 X I `relay	

1.19	2 	 (	 )

The magnification of the afocal is chosen to give the final desired FOV, and can be
conveniently changed for another afocal assembly on the front end of the system.

f,	 r^rinrir»Í t-lana

"system

Figure 1.24. Three-lens combination of afocal telescope and imaging lens.

1.8 Image Quality and Diffraction
In our previous development, we made the paraxial assumption of perfect

imaging: that is, points in the object map to points in the image. However, because of
the effects of diffraction and aberrations, points in the object map to finite-sized blur spots
in the image. Intuitively, better image quality is obtained for smaller blur spots.

Diffraction is caused by the wave nature of electromagnetic radiation. An optical
system with a finite-sized aperture stop can never form a point image. Rather, a
characteristic minimum blur diameter is formed, even when other image defects
(aberrations) are absent. An imaging system limited only by the effects of diffraction is
capable of forming a blur spot whose diameter is related to the image-space F/# of the
marginal rays that converge to the ideal image point:
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Geometrical Optics / 17

2.4?q
ddiffraction - 2.4 A, (F/#)image-space = D

aperture-stop	 (1.20)

ddiffraction = 2.4 X (F/#)image-space = D .4 A f (for object at cc)

	aperture-stop	 (1.21)

The actual blur-spot diameter formed by a particular system may well be larger because of
aberrations. The diffraction-limited spot diameter quoted in Eqs. (1.20) and (1.21) is the
best (smallest) spot size that an optical system can form, for a given wavelength and F/#.
The diffraction pattern of a point source has some ring structure in it, as seen in Fig.
1.25, and the spot diameter quoted above is the diameter out to the first dark ring, which
encloses 84% of the flux in the diffraction pattern. The functional form of the radial
irradiance profile of the diffraction pattern for a sysem with a circular aperture is

2

2J, r

E(r) [W/cm ] _	 i (F/#)

	(^ (F/#))	 (1.22)

proportional to the square of the Fourier transform of the aperture itself. The first dark
ring of E(r) occurs at r = 1.2 2 F/#, where the J 1 Bessel function has its first zero.

m

[!A

r
? F/# U.J	 1	 1.5	 G

Figure 1.25. Diffraction pattern, radial irradiance profile: W/cm2 vs. r/[ L(F/#)].

Let us consider a numerical example of a diffraction-limited F/2 system using
infrared radiation of ? = 10 µm. This system is capable of forming a spot diameter no
smaller than 48 µm. The same system operating at F/8 would form a spot diameter of
192 tm. It can be seen that low-F/# systems have the smallest diffraction-limited spot
sizes, and thus the best potential image-quality performance. However, we will see in the
next section that the effect of aberrations makes low-F/# systems more difficult to correct
to a diffraction-limited level of performance.
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18 / Chapter 1

The effects of diffraction may also be expressed in angular terms, as seen in Fig.
1.26. For the case of a single thin lens with the stop at the lens, the diffraction-limited
angular blur ß depends only on the diameter of the aperture stop and the wavelength

ß = 2.4?

Daperture-stop .	 ( 1.23)

This angular blur can be multiplied by the image distance q (or f for an object at infinity)
to yield a spot diameter consistent with Eqs. (1.20) and (1.21). The diffraction blur angle
can also be multiplied by the object distance p to yield the footprint of the diffraction blur
in the object plane. This footprint bx p represents the minimum resolution feature in the
object.

Daperture—stop

dmimimum obj feature = ß X P

Image plane

I	 CJ11-11:-	

k F/#_$ ddiffract — 2.4
—

f (for obj at oo)
- -----------

Objeetplane	 q (for obj not at 00)

Figure 1.26. Diffraction-limited resolution angle.

1.9 Image Quality and Aberrations
Aberrations are image defects that arise from the deviation of rays from the ideal

paraxial (small-angle) behavior. These deviations arise because an optical system is
typically comprised of spherical surfaces. A system with a finite number of spherical
surfaces cannot produce geometrically perfect imaging for all possible object points. The
following aberrations are not fundamentally caused by defects in manufacture or
alignment, but are inherent in systems having spherical surfaces: spherical aberration,
coma, astigmatism, distortion, field curvature, and chromatic aberration. All of these
image defects get worse with either decreasing F/#, increasing field angle, or both. A
system that operates at a low F/# has the smallest diffraction-limited spot size, and thus
the best potential performance. However, the effects of aberrations generally become
worse (producing larger spot sizes) as the F/# decreases, so that a low-F/# system is
harder to correct to a diffraction-limited level of performance.

Point sources in the object thus map to blur spots in the image, whose size
depends on the F/# of the imaging lens and the field angle of the particular object point
being considered. Control of aberrations in the design process generally dictates a
minimum allowable F/# and a maximum allowable FOV. However, the design of any
optical system must also consider the system's flux-transfer and field-coverage
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Geometrical Optics / 19

requirements. Thus, it can be seen that a fundamental tradeoff exists between the amount
of flux in the image (which increases with increasing FOV and decreasing F/#) and the
image quality.

Beyond restriction of field coverage and relative aperture, the optical designer
achieves an optimization of image quality by a tradeoff process, exploiting two free
variables in particular: the distribution of power between the surfaces of any element
(lens bending) and the location of the aperture stop of the system. Neither of these
variables affects the focal length of the lens, and both have large impact on image quality.
Further optimization of image quality usually involves the creation of more degrees of
freedom in the system (e.g., curvatures, thicknesses, indices of refraction). A more
complex system, with smaller aberrations, is the result. In the optical-design process,
correction of aberrations so that the aberration spot size is smaller than the spot size
dictated by diffraction provides negligible benefit. The larger diffraction blur at infrared
wavelengths makes it possible for infrared systems to be simpler than visible-wavelength
imaging systems with similar aperture and field requirements.

1.10 Materials Considerations
The fundamental material property from an optics viewpoint is the refractive

index (n), defined as the ratio between the velocity of an electromagnetic wave in free
space to its velocity in the material under consideration. For most optical glasses, the
refractive index ranges between 1.5 and 1.7. The refractive index of water is 1.33. Some
infrared-transmitting materials have a high refractive index, such as silicon (n = 3.4) and
germanium (n = 4.0).

An optical system will typically contain a number of interfaces between the
various optical materials (including air) that comprise the system. These refractive-index
boundaries cause some of the light to be reflected and some to be transmitted (refracted) at
each interface. Both Snell's Law and the Fresnel equations depend on the difference in
refractive index across a material boundary. The orientation of the refracted rays are
determined by Snell's law, and the distribution of power between the reflected and refracted
component is determined by the Fresnel equations. Hence, the refractive index of a
material will affect both the direction and strength of the light rays that propagate into
that material.

The refractive index of any material depends on the wavelength of the incident
radiation. This property is called material dispersion. Figure 1.27 shows the
characteristic s-shape of the refractive index-vs-wavelength curve.

n

Figure 1.27. Material dispersion.
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20 /Chapter l

Whenever a ray crosses a boundary between two materials having different
refractive indices, the distribution of power between the transmitted and reflected
components is determined by the Fresnel equations:

2n2 - n lR=
n2 + n 1 	(1.24)

4n2 n,T=
(n2 + n 1 ) 2 	(1.25)

where n 1 and n2 are the indices on each side of a boundary. The reflected power per
surface (R), and the transmitted power per surface (T) are used as follows:

4)reflected = 4)incident x R 	(1.26)

4)transmitted = 4)incident x T	 (1.27)

where the symbol 0 represents power (W). Equations (1.24) and (1.25) sum to unity,
indicating that the absorption of the materials is assumed to be negligible. Another
assumption inherent in Eqs. (1.24) and (1.25) is that they are approximations for small
angle of incidence. At Iarger angles of incidence, R generally increases and T
correspondingly decreases.

An example of the Fresnel equations can be found in Fig. 1.28, where the
incident power is unity and the block of material is immersed in a medium of uniform
refractive index. The reflected ray from the first surface has a strength R, with T being
transmitted into the material. The ray reflected from the second surface is R times the ray
strength in the material, or T x R. This leaves T x T transmitted back into the
surrounding medium. If the block of material were immersed in air and had a refractive
index typical of optical glass, R would be 4% and the overall transmitted power through
the block would be 92%. However, if the block were made of a higher-index medium,
say n = 3.0, then the power reflection coefficient R would be 25%, with an overall
transmitted power of 56.25%. For such high-index materials (common in infrared
applications), the use of thin-film antireflection coatings is necessary to reduce such large
reflection losses.

00 = 	 4transmitted = T	 1 Otransmitted = T X T

reflected = R I	 4reflected = T X R

Figure 1.28. Fresnel equation example.
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Geometrical Optics / 21

Antireflection coatings operate on the principle of interference of waves, and are
used to increase the transmittance of optical elements above that dictated by Eqs. (1.24) to
(1.27). Referring to Fig. 1.29, a film of quarter-wavelength thickness

tfilm = ( 4nfilm)	 (1.28)

is deposited on the substrate material. Rays reflected from the top of the film will thus
be 180° out of phase with the rays that have been reflected from the film-substrate
interface, having travelled one round trip through the film. The phase shift between these
two rays will allow them to interfere destructively to zero if their strengths are equal. If
we approximate this condition (neglecting multiply-reflected rays inside of the film) by
setting the power reflection coefficient R equal for the surround-film and film-substrate
interfaces, we obtain the requirement

nf,lm = v nsurround nsubstrate .	 ( 1.29)

If the requirements of Eqs. (1.28) and (1.29) are satisfied, the two reflected rays will
cancel, allowing all of the power in the incident ray to proceed into the substrate.

Figure 1.29. Single-layer antireflection coating.
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Chapter 2
Modulation Transfer Function

2.1	 Introduction
An optical system's image quality can be characterized in the spatial domain

using the impulse response (spot size) of the system, or in the spatial-frequency domain
using the Fourier transform of the impulse response, the transfer function. An ideal
system would form a point image of a point object. But, because of diffraction and
aberrations, a real system has an impulse response of nonzero width. The impulse
response of a system is the two-dimensional image formed in response to a delta-function
object, and is denoted by the symbol h(x,y). The actual image, g, formed by the system
is the ideal image, f (an exact replica of the object with appropriate size scaling),
convolved with the impulse response, h:

f(x,y) ** h(x,y) = g(x,y) ,	 (2.1)

where the double asterisk denotes a two-dimensional convolution. A narrower impulse
response gives better image quality than a wide impulse reponse.

Alternately, we can consider the imaging process in the spatial-frequency
domain. In this context, we are concerned with the imaging of sinusoids of different
frequencies, rather than the imaging of point objects. The irradiance distribution of an
object can be thought of as composed of "spatial frequency" components, in the same way
as a time-domain electrical signal is composed of various temporal frequencies by means
of a Fourier analysis. First, consider an irradiance distribution as a function of x and y, as
seen in Fig. 2.1. This irradiance distribution can represent either an object or an image.
From a one-dimensional profile of the distribution, we obtain a single-variable function
that can be Fourier decomposed into its constituent spatial frequencies (cycles/mm).

Figure 2.1. Generation of a one-dimensional waveform for Fourier analysis.

23
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24 / Chapter 2

By means of this spatial-frequency-domain description, an object or image
waveform can be decomposed into its component sinusoids (Fig. 2.2), with a spatial
period X (e.g., mm) and a spatial frequency 1/X (e.g., cycles/mm). A two•
dimensional object will be decomposed into a basis set of two-dimensional sinusoids,
each having two parameters. In rectangular coordinates, any given sinusoid at an arbitrary
orientation has an x-domain spatial-frequency component () corresponding to the inverse
of the crest-to-crest distance (X) along x, as well as a y-domain spatial-frequency
component (rl) corresponding to the inverse of the crest-to-crest distance (Y) along y. In
polar coordinates, the same sinusoid can again be decribed by two parameters, a minimum
crest-to-crest distance and an orientation angle with respect to the coordinate axes.

Figure 2.2. Examples of one- and two-dimensional sinusoidal basis functions.

Spatial frequency can also be described in angular units (Fig. 2.3). When the
range R and spatial period X are in the same units, the angular spatial frequency ang =
R/X is in cycles/radian. However, typically the range is longer than the spatial period,
yielding units for dang of cycles/milliradian. Angular-spatial-frequency units are often
used in the specification of MTF performance for a system when the distance from the
system to the object is not known exactly. For any specific situation where the distance
is known, the angular units can easily be converted back to the usual units of cy /mm.

Figure 2.3. Angular spatial frequency.
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Modulation Transfer Function / 25

2.2	 Transfer Functions
The convolution of the ideal image function with the impulse response entails a

loss of fine detail. This filtering operation can be cast in the spatial-frequency domain
using the convolution theorem. Taking the Fourier transform of both sides of Eq. (2.1)
yields

F(E,il) x H(4,rl) = G(^,i) ,	 (2.2)

where the uppercase functions denote the Fourier transforms of the corresponding lower-
case functions. We can thus interpret F(^,r) as the Fourier spectrum of the object and
G(^,rl) as the Fourier spectrum of the image. Note that the Fourier transformation has
converted the convolution of Eq. (2.1) into a multiplication. Thus, H(^,rl), the Fourier
spectrum of the impulse reponse, is a transfer function that multiplicatively relates the
object and image spectra.

The frequency-domain viewpoint is convenient because multiplications are easier
to perform and visualize than are convolutions. This computational and conceptual
advantage is most apparent when several subsystems (e.g., atmosphere, optics, detector,
electronics, display, observer) are to be cascaded, each having its own impulse response
and image-quality degradation. A transfer function can be defined for each subsystem, and
the resulting system transfer function can be found by a one-frequency-at-a-time
multiplication of the individual transfer functions.

Usually, H(^,rl) is normalized such that it has value of unity at zero spatial
frequency. This yields a transfer function for any given frequency that is relative to the
value of the transfer function at low frequencies, and normalizes any attenuation factors
that are independent of spatial frequency (such as Fresnel-reflection losses). With this
normalization, H(4,rl) is referred to as the optical transfer function (OTF). The OTF is,
in general, a complex function, having both a magnitude and a phase portion. The
magnitude portion of the OTF is termed the modulation transfer function (MTF), while
the phase portion is called the phase transfer function (PTF):

OTF(^,r]) = MTF(,r)) exp{ jPTF(4,rl)) . 	 (2.3)

The interpretation of the MTF is that of the magnitude response of the optical
system to sinusoids of different spatial frequencies. We consider the imaging of sinewave
inputs rather than point inputs. A linear shift-invariant optical system images a sinusoid
as another sinusoid. In general, the output sinusoid will have some phase shift and a
reduced modulation depth, compared to the input waveform. The effect of the limited
resolution of the optical system is to reduce the modulation depth in the image, compared
to that in the object. We define modulation depth in Fig. 2.4 as

M = Amax- Amin

Amax+ Amin	 (2.4)

where A max and Amin are the maximum and minimum values of the object or image
brightness in appropriate units (radiance, exitance, or irradiance). The modulation depth is
the ac value of the waveform divided by the dc bias. It should be noted that, because
brightness is strictly a positive quantity, 0 <_ M 5 1. We see from Eq. (2.4) that M = 1
whenever the minimum value of the object or image sinusoid is zero, and that M = 0 if
the ac component of the waveform is zero.
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UP

position

Figure 2.4. Definition of modulation depth.

Conceptually, if we test the optical system with a target consisting of a set of
sinusoids of various spatial frequencies (Fig. 2.5), the MTF can be directly seen from the
modulation depth in the output waveform. The image modulation depth as a function of
frequency is the MTF, assuming a constant object modulation.

Object brightness

Image brightness	
position in object

position in image

spatial frequency

Figure 2.5. MTF is the modulation transfer as a function of spatial frequency.

Because of the limited resolution of the optical system, the valleys of the image-
plane sinusoids will be less deep and the peaks of the image-plane sinusoids will be less
high, decreasing the modulation depth of the image compared to the object. The
modulation transfer, for any given spatial frequency E, is the ratio of the image modulation
to the object modulation. It is evident that the modulation transfer depends on spatial
frequency. The limited resolution is manifest more drastically at high spatial frequencies
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where the desired detail is smaller. With increasing spatial frequency, the blurring
becomes more noticeable and the modulation transfer decreases. If we plot the modulation
transfer as a function of spatial frequency (assuming a constant object modulation as in
Fig. 2.5) we obtain the MTF:

MTF() = Mimage(4)/Mobiect •	 (2.5)

2.3	 Resolution
Resolution has a number of alternate definitions. As illustrated in Fig. 2.6, it

can be defined in the spatial domain as the separation in object space angle or in image
plane distance for which two point sources can be discerned as being separate. It can also
be defined in the spatial frequency domain as the inverse of this separation, or as the
spatial frequency at which the MTF falls below a certain criterion (Fig. 2.7). When we
compare the figures of merit offered by MTF and resolution, we find that resolution is
usually conveniently stated as a single-number specification, while the MTF provides
additional information regarding image quality over a range of spatial frequencies because
it is a functional relationship rather than a single number.

Image plane

Object plane

--------------- ----

Resolution
	 Resolution

Figure 2.6. Resolution specified in terms of spacing of point sources or their images.

num detectable
lulation depth

Limiting resolution

Fig. 2.7. Resolution specified in terms of a limiting spatial frequency.
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A specification of resolution alone can be at best incomplete, or at worst
misleading. For example, Fig. 2.8 shows that two systems can have identical limiting
resolutions, while system A clearly has superior performance over system B. In Fig. 2.9,
the criterion of resolution may provide an incorrect assessment of system performance if
the midband range of spatial frequencies is most important for the task at hand.

Limiting resolution

Figure 2.8. System A is better than system B, but both have identical resolution.

MTF

A
B

------------------ --	 -------

Limiting /	 \ Limiting
resolution	 resolution

for system A	 for system	 B

Figure 2.9. System A is better than B at midrange frequencies, but has poorer resolution.

One common criterion for image quality is to obtain the maximum area under
the MTF curve, over the frequency range of interest, perhaps with a weighting function
that takes into account the relative importance of a given spatial frequency band for the
specific task of interest.
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2.4	 MTF Calculations
We can estimate the performance of a well-corrected system by calculating the

diffraction-limited MTF (Fig. 2.10). For a square aperture of dimension D x D, the MTF
is of particularly simple form:

MTF() = 1 - 4/ cut , 	 (2.6)

where
4cut = 1/(XF/#) . 	 (2.7)

For a circular aperture of diameter D, we have

2 112

MTF	 _ cos 	 1 -	 _^^^
`scat	 cut	 cnt	 cut

	 (28)

In Eqs. (2.7) and (2.8) we take the usual definitions of F/# as f/D for an object at infinity,
as p/D for object space, and q/D for image space.

M

M

;11A

kut -I-

Figure 2.10. Diffraction-limited MTFs for square aperture and circular aperture.

We calculate the diffraction-limited MTF, first for the case of an object at finite
conjugates and second for an object at infinity. For the finite-conjugate example, assume
a diffraction-limited system with a rectangular aperture of 2 cm by 2 cm, and a
wavelength of 0.6 p.m. We take the object distance as p = 5 cm and the image distance as
q = 10 cm. According to Eq. (2.7), the object-space cutoff frequency is cutoffobj = [0.6
µm (5 cm/2 cm)] -1 = 666.6 cycles/mm, and the image-space cutoff frequency is cutoff,img
= [0.6 µm (10 cm/2 cm)] -1 = 333.3 cycles/mm. The difference between object-space and
image-space spatial frequencies is simply a manifestation of the difference between the
object-space and image-space F/#. The same filtering caused by the finite aperture can be

U.Z	 U.4	 U.b	 U.ö
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thought of as occuring in either space. These equations are useful if, for example, we
want to find the spatial frequency at which the MTF is equal to 30%. According to Eq.
(2.6), the MTF is 30% when the spatial frequency is 70% of the cutoff frequency, which
is an image-plane spatial frequency of 233.3 cycles/mm in the image.

For an object at infinite conjugates, we find that the MTF can be expressed in
terms of either angular spatial frequency in object space, or in image space in cycles /mm.
As shown in the previous example, the filtering experienced in either space is equivalent.
Given a focal length of 3.33 cm and a 2-cm-by-2-cm aperture stop, the cutoff angular
frequency in object space is scut =  D/?, yielding 33.3 cycles/mrad. The corresponding
spatial frequency in the image space is 1/(2 F/#) = 1000 cycles /mm. We verify the
correspondence between angular spatial frequency in the object and the image-plane spatial
frequency in Fig. 2.11, where the spatial period X = f 0 = 1/4. The angular spatial
freqency in the object is 1/0, yielding the relationship

dang = 1/0 [cycles/mrad] = ^[[cycles/mm] x f [mm] x 0.001 [rad/mrad]	(2.9)

Figure 2.11. Relation of object-plane to image-plane spatial frequency.
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Chapter 3
Radiometry

3.1 Introduction
Radiometric concepts are necessary for a quantitative understanding of flux

transfer through optical systems. The primary question to be addressed is: given an
optical system and a source configuration, how much power from the source is collected
and brought to the detector surface? The radiometric efficiency of the system is crucial to
the overall signal-to-noise ratio and image detectability.

We consider the radiometry of incoherent thermal sources. Radiometry of lasers
and other coherent sources is excluded. We neglect interference effects, calculating the
distribution of energy over a surface as a scalar sum of powers, rather than as a vector
sum of amplitudes, as would be necessary in the calculation of an interference pattern.
We also neglect diffraction effects, except for the case of point sources. We will often
make the approximation that an angle is small enough that its sine can be expressed as
the angle itself in radians. This paraxial approach to radiometry is consistent with our
treatment of geometrical optics in Chapter 1.

We use a set of SI-based units, although not all quantities are strictly MKS. We
will need a number of physical constants, which are listed in Table 3.1 in the form
usually used for calculations.

Table 3.1. Physical constants.

Speed of light in a vacuum	 c = 3 x 10-8 	m s' 1
Boltzmann's constant	 k = 1.38 x 10 -23 J K-4
Planck's constant 	 h = 6.6 x 10-34 J s
Stefan-Boltzmann constant 	 6 = 5.7 x 10-12 W cm 2 K-4

We will use the Kelvin temperature scale, which is degrees Celsius + 273. The
formulae used to express radiometric quantities require an absolute temperature scale, one
which does not have a zero in the middle of the range. Temperatures in the Fahrenheit or
Rankine scales are also easily converted to Kelvin, as seen in Table 3.2.

Table 3.2. Temperature scales.

Kelvin (K)
Absolute Zero 0
Water Freezes 273
Human Body 310
Water Boils 373

Celsius (°C)	 Fahrenheit(°F) 	 Rankine (°R)
-273	 -460	 0
0	 32	 492
37	 99	 559
100	 212	 672

31
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3.2 Solid Angle
Solid angle is the quantity used to specify the range of pointing directions in

three-dimensional space that takes one from a point in space to a surface. Solid angle is a
dimensionless quantity, with units of steradian (sr). It is helpful to recall the analogous
definition of radians in plane geometry seen in Fig. 3.1. An angle 0 is measured in
radians as the ratio of arc length s to radius r, where s and r are measured in the same
units. The solid angle f2 is defined in steradians as the area on the surface of a sphere
divided by the square of the radius of the sphere.

Figure 3.1. Planar angle in radians and solid angle in steradians.

Taking the surface area of a sphere as 47Er2 and the solid-angle definition

S2, = A/r2	(3.1)

we find that a sphere contains 471 steradians of solid angle. For surface areas that are
small compared to the total sphere surface, it is an acceptable approximation to simply
use the area of the surface in Eq. (3.1), whether it is a flat area, or an area on the surface
of the sphere. For example, a small flat disc of area A, located at a distance r, with its
surface normal parallel to the line of sight has a solid-angle subtense of SZ = A/r2. A flat
disc is a good approximation to the entrance aperture of an optical system, and this result
holds for other flat surfaces, such as squares, as long as the linear dimension of the surface
is small compared to the viewing distance. A more exact derivation of the solid angle for
a flat disc yields the expression

Odisc = 4rt sin2 (tp/2)	 (3.2)

where cp is the planar half-angle of the disc as seen in Fig. 3.2. It is easily shown that
this expression goes to A/r2 for small angles cp.

- -- -- ----------------------- --------- ---------- 	 ------- ---
r	 A

Figure 3.2. Definition of cp for small flat disc.
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Another useful expression is the solid angle of a small flat area which is tilted
with respect to the line of sight. The surface normal makes an angle 8 with the line of
sight, as seen in Fig. 3.3. The solid angle is decreased by the factor cosO to yield

S2 = A/r2 cosA .	 (3.3)

r	 A
------------------------------------------------------------------------------------ ---

6

Figure 3.3. Solid angle of a tilted flat disc.

3.3 Flux-Transfer Calculations
Quantitative characterization of flux transfer requires its own set of units. Table

3.3 shows the pertinent quantities. Calculational examples of each will follow.

Table 3.3. Energy-based radiometric units.

Symbol Quantity Units

Q Energy J
0 Flux (power) W = J/s
I Intensity W/sr
E Irradiance W/cm2
M Exitance Wlcm2
L Radiance W/(cm2 sr)

These units are derived from a number of Joules, and are referred to as energy-
based units.	 An analogous set of units can be derived on the basis of a number of
photons. Photon-derived quantities (Table 3.4) are denoted with a subscript q.

Table 3.4. Photon-based radiometric units.

Symbol Quantity Units

Qq Photon number Photons
Oq Photon flux Photons/s
Ig Photon intensity Photons/(s sr)
Eq Photon irradiance Photons/(s cm2)
Mq Photon exitance Photons/(s cm2)
Lq Photon radiance Photons/(s cm2 sr)

Downloaded from SPIE Digital Library on 17 May 2011 to 66.165.46.178. Terms of Use: http://spiedl.org/terms

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



34 / Chapter 3

Conversion between the two sets of units is easily accomplished using the
relationship for the amount of energy carried per photon

9 = he/X .	 (3.4)

A units analysis yields, for example, 0 (J/s) = Oq (photon/s) x 9 (J/photon). We will

see in Chapter 4 that the photon-based units are useful in the description of detectors that
respond directly to absorbed photons (so-called photon detectors), while the energy-based
units are appropriate for the description of detectors which respond to absorbed thermal
energy (so-called thermal detectors). Note that 9, and thus the conversion between the

two sets of units, depends on ? . A longer-wavelength photon carries less energy than a
short-wavelength photon. At an infrared wavelength of 10 tm, the photon energy is
approximately 2 x 10-20 J/photon, while at a visible wavelength of 0.5 .Lm, the photons
are a factor of 20 more energetic, having approximately 4 x 10-19 J/photon. This units
conversion can also be thought of in terms of X/hc, that is, how many photons/s it takes
to make 1 W of power. At 10 µm, there are 5 x 1019 photons/s in 1 W. For the more
energetic photons at a shorter wavelength of 0.5 µm, fewer photons/s (2.5 x 1018) are
required to make 1 W. Note that when wavelength-dependent quantities are plotted, the
use of either of these two different sets of units will yield curves of different shape.

Irradiance and exitance have the same units (W/cm2), but a different
interpretation. Irradiance characterizes the spatial power density associated with a surface
that receives power, while exitance refers to a surface that emits power. Referring to Fig.
3.4, we assume that a uniform irradiance of 4 W/cm2 is incident on a 1 -cm-by-1 -cm
surface. Consider a small portion of that surface as a single detector element in a
two-dimensional focal-plane array of detectors. How much power falls onto a 1 -mm-by-1-
mm portion of the surface? We use the relationship

O=AxE (3.5)

which yields a flux received of 40 mW. If a uniform irradiance is specified, the flux
received by a detector element is, according to Eq. (3.5), simply the irradiance multiplied
by the area of the detector, assuming that the detector is smaller than the irradiance
distribution.

Figure 3.4. Irradiance example.
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Exitance is used to calculate the total power radiated from an emitting surface.
For example, let the radiating surface have an emitting area (1 mm)2, and a uniform
exitance of 3 W/cm 2. The total power radiated from that surface is seen to be 30 mW,
calculated from

$ = A x M .	 (3.6)

Note that the power 0 in Eq. (3.6) is the total power that would be collected by a
hemisphere that bounds the radiating surface, as seen in Fig. 2.5. The distribution of
irradiance over the surface of the hemisphere is not uniform, as we will see in the
description of radiance.

Figure 3.5. Exitance example.

Intensity is measured in W/sr, and it is the quantity that must be used to
characterize radiation from a point source. Intensity can also be used to characterize
extended sources. One definition of a point source is that the source has a linear
dimension that is small compared to the viewing distance. A point source can also be
defined as a source with a dimension that is smaller than the resolution element of the
optical system (the source is smaller than the projection of the resolution spot at the
object plane). The simplest calculation involving intensity is: how many watts are
radiated by a point source with a uniform intensity? The total solid angle into which the
point source radiates is 4it, so for an intensity of 3 W/sr, we find, using

(3.7)

that the total radiated power is 12 it W. This example does not represent the typical
calculation, because we do not usually collect the flux from a point source over all
directions, but rather we are concerned with the flux collected by a receiver (either a
detector or the entrance aperture of an optical system) having a given solid angle subtense
when seen from the point source. Thus, the calculation becomes a two-step process:
first we calculate the solid angle of the recevier as seen from the point source, and then we
use Eq. (3.7) to calculate the flux transferred. For example, assume we want to find the
power transmitted by a circular aperture in an opaque screen, as seen in Fig. 3.6, for the
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source discussed above. The aperture has a radius of I mm, and the screen is placed at a
distance of 3 cm from the point source. First we calculate the solid angle of the aperture
as seen from the point source using Eq. (3.1). This yields a solid angle of L = A/r2 =
3.5 x 10-3 sr. Next, using Eq. (3.7) we calculate 0 = I x S2 = 10.5 mW.

Figure 3.6. Intensity example.

Another example of intensity calculations is that irradiance falls off as 1/r 2 from
a point source, as seen in Fig. 3.7. Consider a receiver of area A, which is placed at
various distances from a point source of intensity I. Both the flux and the irradiance fall
off as 1/r2 , which can be thought of as the condition that requires the same amount of
flux to pass through any particular sphere. For calculation of irradiance at any location,
the flux collected on a small area a is determined, and divided by that area. This procedure
provides a convenient means to solve for E, particularly in more complex geometries,
such as seen in Fig. 3.8, where we solve for E as a function of 0 on a flat screen placed at
a distance r from a point source.

•------------------------------- A

O = IxS2=I xA1r2

E = 4/A =I/r2

Figure 3.7. Irradiance falls off as Ure from a point source.

Radiance, L, has units of W/(cm2 sr) and is used to characterize extended sources.
Radiance is defined for a particular ray direction, as seen in Fig. 3.9, as the radiant power
per unit projected source area (perpendicular to the ray) per unit solid angle. We see that

L = i0
DAscos0s and ,	 (3.8)

where a 24 is the power radiated into the cone. The double differential indicates that D 24
is incremental with respect to both projected area and solid angle.
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A

<---------------------------->

0= I x S2 = I x (A cos9)/(r/cos8)2

^=IA(cos0)/(r 2)
E=OIA=I(cos8)/(r 2)

Figure 3.8. An off-axis geometry for irradiance calculation.

Cross multiplying Eq. (3.8), we obtain

= L aAscoses DKId .	 (3.9)

Note that because of the definition of radiance in terms of projected source area, a  24 has a
cosine-8 dependence even for the case of a Lambertian radiator where L is a constant,
independent of 0. An approximation can be made for the case of small but finite-sized
source area AS and receiver solid angle Std

0 = L Ascos0 s Std .	 (3.10)

Figure 3.9. Geometry for definition of radiance.

For the simplest calculational example of radiance, let the view angle O = 0, as
seen in Fig. 3.10. Given an extended source of area 1 cm by 1 cm, specified by a radiance
of 5 W/(cm2 sr). At an axial distance of 10 m, there is located a detector of dimensions 1
mm by 1 mm. How much power falls on the detector?
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Ad

I ----------

Figure 3.10. Geometry for flux-transfer calculation using radiance.

First, we calculate the solid angle of the detector as seen from the source, f2, d =
Ad/r2 = 10-8 Sr. We multiply this solid angle by the area of the source and the radiance of
the source to obtain the power on the detector: 4det = L A S i2 d = 5 x 10-8 W. We can
write the equation for the flux on the detector in two equivalent alternate ways, depending
on whether the r2 is grouped with AS or Ad . Assuming small angles,

^=LAs d =L AsAd =LAd S2s

r	 (3.11)

The flux on the detector is equal to the radiance of the source multiplied by an AS2
product, either the area of the source and the solid angle of the detector, or the area of the
detector and the solid angle of the source. We can take whichever A92 product is most
convenient because they are equivalent, within the small-angle approximation. The AS2
product can be thought of as a throughput or flux-gathering capability. The A52 product
is a way of counting up how many rays get from source to receiver, as seen in Fig. 3.11.
If we assume that each ray carries a certain incremental amount of power, AS1 product is
proportional to flux transferred.

M Qs

Figure 3.11. AS2 product for free-space propagation.

Using our expression Eq. (3.3) for the solid angle of a tilted receiver, we can
write the following expression for the case of flux transfer to an on-axis tilted detector,
seen in Fig. 3.12. If we define the angle O d to be the angle between the line of centers
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and the surface normal to the detector, we see in Eqs. (3.12) and (3.13) that both the flux
collected on the detector and irradiance on the detector are decreased by a factor of cos6 d :

Ad cosGd
LA SZ LA=	 s d =	 s	 2
	 (3.12)

E_ = L
 As cos9d

^
Ad	 r	 (3.13)

r

AS ----------------------------- 	 `d

ed

Figure 3.12. Flux transfer to tilted receiver.

Before we consider flux transfer in situations where 0S ^ 0, we need to define the
concept of a lambertian radiator, which has a radiance L that is independent of view angle
0S• This does not mean that a lambertian radiator radiates an equal amount of flux into all
solid angles. Referring to Eq. (3.9) we find that D 20 (the amount of flux radiated into a
cone of solid angle aCl from an area DA s) falls off proportional to cosO s , for the case
where L is independent of 6 S . For a nonlambertian radiator, L is explicitly a function of
0S , so generally a24 falls off faster than cosA5 .

For a lambertian source, the following relation holds between L and M:

M [W/cm2] = L [W/(cm2 sr)] x it [sr] .	 (3.14)

The units of this equation are consistent, but since the flat lambertian source radiates into
the full forward hemisphere, why is the proportionality factor equal to  lt and not 27c? The
flux a20 from the lambertian source falls off proportional to cos8 5 , yielding a nonuniform
illumination of the hemisphere (Fig. 3.13). An integration over all O s in the hemisphere
yields a factor of it rather than a factor of Zit. We begin with the definition of exitance:

	Themisphere M As .	 (3.15)

Then we define the flux reaching the hemisphere from the lambertian source as a sum:

Themisphere a0
cosOS l	 (3.16)

Expressing this sum as an integral:
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hemisphere L A coses dId
hemisphere	 ,	 (3.17)

where in spherical coordinates,

dA r sine de d p
dS2d = 2d

 — 2	= sine de d(p
r	 r	 (3.18)

Substituting Eq. (3.18) into Eq. (3.17), we find that

n

hemisphere	 L As coses sine de dq
(3.19)

Evaluating the integral in Eq. (3.19) yields:

4hemisphere = it L Ag .	 (3.20)

Substitution of Eq. (3.20) into Eq. (3.15) yields the desired relationship between exitance
and radiance for a lambertian source, Eq. (3.14).

Figure 3.13. Relationship between exitance and radiance for a lambertian radiator.

We now consider flux transfer from flat lambertian sources having nonzero view
angles 9. Considering the case where 9S # 0 and Ad = 0, we find a cos 30, dependence of
flux received by the detector, as seen in Fig. 3.14. Compared to the perpendicular
distance r, the longer line-of-centers distance w = r/cos9s is used in the calculation of the
solid angle of the detector. Combined with the cosO s flux falloff inherent in a lambertian
source, this yields a cosine-cubed dependence
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^d = L AscosA s Std = L AscosOs
Ad

1t.	 (3.21)

Od  L Ascos0 s Ad 2 « cos A s
(r/cos95)	 _	 (3.22)

As

^^-----------------------------------------`-------------------....------------>
Figure 3.14. Flux transfer to an off-axis detector.

Our final example of the use of radiance is the flux transfer between two parallel
surfaces, as seen in Fig. 3.15. This leads to the well-known cosine-to-the-fourth falloff
in flux. For this geometry, the flux transfer equation becomes

= L Ascos8 s Std = L A scoses
Adcos%

z
w	 (3.23)

As
^^----------------------------------------------------------.-.-------------->

Figure 3.15. Geometry for cosine-to-the fourth falloff.

If we use the fact that the source and detector are parallel and set 9 s = Ad = 0, we find the
cos49 dependence:
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AdcosOd
 « cos A^d = L Ascos9s	 2

	(r /cos6s)	 (3.24)

We now consider paraxial flux transfer in image-forming systems. The
calculation is performed in two steps. The first is to evaluate the flux collected by the
optical system and transferred to the image plane. This is the standard 0 = L x A92
equation between the source and the collecting aperture of the lens. Referring to Fig.
3.16, we can see that this equation (neglecting reflection and scattering losses in the lens)
can take any one of the following forms because of the equivalence of the AD product:

4collected = Lobj Aobj Ulens from obj	 (3.25)

4collected = Lobj Aimg Ulens from img	 (3.26)

4collected = Lobj `lens Uobj	 (3.27)

4collected = Lobj Alens Uimg •	 (3.28)

Figure 3.16. Flux transfer in an image forming system.

The AD products can be interpreted as counting the ray paths from object to
image, as seen in Fig. 3.17. The total flux transferred from object to image is
proportional to the FOV2 and [1/(F/#)] 2. Recall that FOV and F/# are defined in terms of
planar angles, so that areas and solid angles are the squares of these quantities.

The second part of the calculation for flux transfer in an image-forming system
is to find the image irradiance. This is a quantity of interest from the point of view of
evaluating the exposure of a detector array or a piece of film. For an image-plane flux
distribution that is larger in extent than the size of an individual image-receiver element
(pixel or film grain), the energy received is the power incident on the element multiplied
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by the exposure time. The power incident on the receiving element is the image-plane
irradiance multiplied by the area of the individual element, according to Eq. (3.5). The
image-plane irradiance is the flux collected (found using Eqs. (3.25) through (3.28))
divided by the illuminated image area. Using Eq. (1.7) for the area magnification, we find
the image area is Aobj x (q/p)2 .

Aobj^i.ens from obj 	 Aimg^tens from img
	

Alensobj Alensgimg

Figure 3.17. Equivalent AD products for paraxial image forming systems.

Carrying out this calculation yields a significant result. The image-plane
irradiance for an extended-source object is seen to depend only on the image-space F/# of
the imaging system. Beginning with Eq. (3.26), and dividing both sides of the equation
by Aimg , we obtain (in the paraxial, or large-F/#, approximation)

Eimage = Lobj Olen from img = Lobj x it/4>< [1/(F/#)]2 .	 (3.29)

For imaging systems where the chief ray makes a substantial angle with the
optic axis, the image-plane irradiance will have a cosine-to-the-fourth falloff consistent
with Eq. (3.24). Equation (3.28) implies that the amount of flux reaching the image
plane is numerically equivalent to having a source the size of the lens, which has the
same radiance as the original object. The lens is considered as a flat surface with a given
area and radiance. The flux transfer to the image plane produces the falloff in irradiance
seen in Fig. 3.18.

Figure 3.18. Cosine-to-the-fourth falloff in image plane irradiance.
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Example of an irradiance calculation
Consider the system seen in Fig. 3.19, with the following parameters:

p = 5 cm; q = 3 cm; M = —q/p = —3/5; A1ens = 1 cm2; Lobj = 2W/(cm2 sr).

The object is 1 mm x 1 mm. Aobj = 0.01 cm2 and Almg = Aobj X J122 = 0.0036 cm2.

Using Eq. (3.25), $collected = Lobj Aobj a1ens from obj = Lobj Aobj (`lens/p2) = 8 x lO-4 W.

On-axis image irradiance, E _ 4collected/Aimg = 8 x 10-4 W/0.0036 cm2 = 0.22W/cm2.

Figure 3.19. Image irradiance calculation example.

Using image irradiance we can calculate the flux on a detector, provided that the
detector is smaller than the illuminated region of the image. This is the situation in Fig.
3.19, Case I, where the detector is smaller than the image of the source, and hence acts as
the field stop. The flux collected by this detector is consistent with Eq. (3.5), Odet =
Eimage x Ader A 204tm-by-20-µm detector will thus collect 0.88 µW of power.
Equation (3.5) is not valid for Fig. 3.19 (Case II). If the detector is larger than the image
of the source, the source acts as the field stop, and the detector receives all the flux
transferred to the image plane. For the example given, the detector receives 8 x 10-4 W.

We have thus far considered extended-source imaging. The radiometry for
point-source imaging is affected by the finite size of the impulse response formed by the
optical system, as seen in Fig. 3.20. Assuming that the system is diffraction-limited,
84% of the flux collected by the lens from the point source, 0 = I S21ens, is concentrated
into a blur spot of diameter d = 2.44 ?, (F/#)image-space• The average image-plane
irradiance (a flat-top approximation within the first lobe of the diffraction pattern) is

(104 ie^5	 1
Eavg = 0.84 'source

2
	 2

p 42.44 q
I4	 D1 e^^	 (3.30)

If the area of the optic is held constant, the flux collected is a constant. If the F/# is
decreased, while the system is kept in a diffraction-limited state of correction, the
irradiance will increase because of the smaller image area.
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Figure 3.20. Radiometry for point-source imaging.
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Chapter 4
Sources of Radiation

4.1	 Introduction
Heated solid bodies emit radiation that is particularly concentrated in the infrared

region of the spectrum, roughly from 1 to 10 µm in wavelength. Such heated solid
bodies emit their radiation in a continuum of wavelengths, rather than at a collection of
discrete spectral lines characteristic of gaseous emission. To describe the radiation
characteristic of a source which emits a finite total power over a range of wavelengths, we
must introduce spectral quantities. Spectral quantities have units of pm in the
denominator, and are denoted with a subscript A to distinguish them from the
corresponding integrated quantities. For example, spectral radiance L X has units of
W/(cm2 sr gm), and is the radiance per gm of wavelength interval. For a measurement
over a 1-µm spectral bandpass, the integrated radiance (also called the in-band radiance)
numerically equals the spectral radiance. For spectral bandpasses larger or smaller than I
.tm, the integrated radiance scales with AA _— X.i — ?^2, as seen in Eqs. (4.1) and (4.2):

X2
	L Watt =^

	

Watt	dA [µm]
cm sr 	 cm sr µm

(4.1)

X2

[

Watt ] _	 Watt	^µM—	 Ma f Z	d^ m
1 cm	 lcm gm

	^`^	 (4.2)

The integration is usually carried out numerically, using the trapezoidal approximation
seen in Fig. 4.1. This process can be made as accurate as desired, by choice of the
interval size A. As seen in Fig. 4.2, to maintain accuracy for a wider passband,
individual intervals are summed together. It is necessary to choose interval locations
properly if the desired passband includes a peak of the radiation curve.

Figure 4.1. Trapezoidal integration.
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Figure 4.2. Integration over a wider passband.

4.2	 Blackbody Radiation
A blackbody is an ideal radiation source, which can be completely described by

specifying the temperature. A blackbody has the maximum spectral exitance possible for
a heated body at a particular specified temperature. This condition is true over any 0;,
interval, and also over all wavelengths. A blackbody is a convenient baseline for
comparison with real sources, because any real source at a given temperature is
constrained to emit less radiation than the blackbody source at that temperature. Because
of the population inversion inherent in laser gain media, the usual thermodynamic
definition of temperature does not apply. Lasers can have spectral radiances that far exceed
any blackbody source, because of their narrowband emission and their narrow beamwidth.

Blackbody radiation is also called cavity radiation. The radiation emitted from a
small aperture in front of an isothermal cavity depends only on the temperature of the
enclosure and not on the material of which the cavity is constructed. Typical cavity
configurations are seen in Fig. 4.3, which are the basis for construction of practical
blackbody simulators.

Figure 4.3. Cavity-radiator configurations.
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The spectral exitance of a blackbody is a function of two variables: temperature
and wavelength. For a given temperature, exitance is a function of wavelength. This
results in a family of spectral exitance curves dependent on temperature. The equation for
spectral exitance is the Planck equation:

MX(X,T) =
2nhc'

? (exp{hc/A,kT} - 1) . 	 (4.3)

Blackbodies are lambertian radiators by definition, so their spectral radiance is simply
their spectral exitance function divided by 7t, consistent with Eq. (3.15). Figures 4.4 and
4.5 show a family of Planck curves, covering a range of temperatures from 600 K to
2000 K. Two characteristics can be noted directly from the plots of the Planck equations.
As the source temperature increases, the total area under the curve (integrated exitance)
increases much faster than the absolute temperature. We will quantify this observation as
the Stefan-Boltzmann Law. As the source temperature increases, the wavelength of peak
exitance moves toward shorter wavelengths. This relationship is known as the Wien
Displacement Law.

0.

0.

0.

0.

0.

0..

0..

2 [µm] -	 `s	 v	 0	 1U	 1G	 14

Figure 4.4. Blackbody spectral exitance for temperatures of 600, 750, and 900 K.

These plots can be used directly for approximate calculation of in-band
quantities, as in the example of a blackbody source at 800 K with an area of 1 cm 2 . A 1-
mm x 1-mm detector is placed at a range of 1 m. How much power falls on the detector
within the 8- to 10-pm band? We must calculate the radiance L that goes into the usual
flux-transfer equation 4' = LASf d. Because the source in question is a blackbody, we can
use Eq. (3.14), L = Mut. The quantity M is the integrated in-band exitance, which we
find by a trapezoidal integration. Assuming that an integration using one trapezoid is
sufficiently accurate, M = MX(? midband)A? . From the plot in Fig. 4.4, we find that
MX(? = 9µm) = 0.1 W cm -2 µm 1 . Thus, with a AX = 2 µm, M = 0.2 W/cm 2. Hence,
the in-band flux on the detector 4' = 6.4 x 10-8 W.
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0
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Figure 4.5. Blackbody spectral exitance for temperatures of 1300, 1500, 1800, 2000 K.

For other temperatures or other wavelength ranges, or to obtain more accurate
numerical values, calculations can be made directly from Eq. (4.3). Calculation
algorithms should be verified using the plots in Fig. 4.4 and 4.5, taking care to ensure
that the correct units (W cm'2 µm' 1 ) are obtained. As an example, we calculate MA(? = 3
.tm, T = 900 K). Checking the graph of Fig. 4.4, we expect that our calculation will
yield approximately MX = 0.75 W cm 2 µm4 .

Considering the units in the expression of Eq. (4.3), hc/XkT must be
dimensionless, because it is in the exponent. This requires

he _ Jsx m/s =1
?kTi m x J/K x K	 ,	 (4.4)

implying that we must input wavelength into the equation in units of meters. The units
of hc2/25 (with 1s in m) are

he Jsx(m/s)2_W
5	 5	 3

	m 	 m . 	 (4.5)

The Planck equation is interpreted as a spatial power density per unit wavelength interval.
To convert the units of M X to W cm -2 µm 1 , multiply by a factor of 10 -10 after the
calculation is performed. Evalutating M),(3 .tm, 900 K), we find that he/AkT = 5.31;
(exp {5.31 } - 1) = 201.35. Thus, MX = 7.6 x 109 W/m3 = 0.76 W cm -2 µm -1 , in good
agreement with our initial estimate from the plot.

The Stefan-Boltzmann Law relates the total exitance at all wavelengths to the
source temperature, integrating out the wavelength dependence of the blackbody curve:
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dX=dT

(4.6)

where 6 is the Stefan-Boltzmann constant. The total exitance of a blackbody source
increases as the fourth power of the absolute temperature, when the integration is taken
over all wavelengths. When the range of integration is limited, the exponent of the
dependence of the in-band exitance on temperature can be greater or smaller than 4,
because some portions of the spectral-exitance curve change faster than T4, and some
portions change more slowly.

The Wien Displacement Law describes the wavelength of peak exitance of a
blackbody as a function of temperature. It can be derived by setting the derivative of the
Planck equation with respect to wavelength equal to zero

aM_(_,T) = 0
ax	 (4.7)

producing the Wien-Law relationship of peak-exitance wavelength and temperature

2898 [µm K]
Amax =	

T [K]	 (4.8)

For example, a blackbody source at room temperature (300 K) will have a wavelength of
peak exitance at around 10 µm. A hotter source, e.g. at 1000 K, will have a shorter peak-
exitarice wavelength; in this case around 3 µm. Additional insight to the behavior of
blackbody sources can be found from the power relationships relative to the half-power
points of the Planck function. If we define the half-power point on the short-wavelength
side of the peak as leshort' and the corresponding half-power point on the long-wavelength
side as along , the following relationships can be found

1800 [µm K]
^S"°"	 T [K]	

(4.9)

5100 [µm K]
long
	 T [K]	 (4.10)

For example, a 300-K blackbody has its half-power points at 6 µm and 17 gm. The area
under the Planck curve from ? = 0 to leshort' is 3% of aT4 . The area from Xshort to Xmax
is 25% of 6T4 . The area from 2m to 1on,g is 35% of 6T4, and the area from to —
is 37% of 6T4 . The Planck function is seen to be very steep at short wavelengths,
relatively slowly varying at long wavelengths, and has 60% of its output between the
short- and long-wavelength half-power points.

4.3	 Emissivity
Although the assumption of blackbody radiation provides an initial model for

real sources, a correction factor is often applied to improve the accuracy of flux-transfer
calculations. This factor is the emissivity, E, a dimensionless number that is the ratio of
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the radiation from the actual source to the radiation from a blackbody at the same
temperature. Some definitions of emissivity are based on the various radiation quantities
of Table 3.3. A commonly used definition is that of the hemispherical emissivity,
written in terms of the ratio of exitance quantities:

£(A,, T) - Ma(), T)source

M(?, T)blackbody • (4.11)

In general, c is a function of both wavelength and temperature, but is typically a slow
function of both, so for engineering calculations, the usual specification for emissivity is
just a single number for a given material. We see from Eq. (4.11) that emissivity is a
number between 0 and 1. A blackbody source has the maximum emissivity of unity.

A graybody source has an emissivity that is less than unity and independent of
wavelength. The radiation spectrum of a graybody source is identical to a blackbody
source of the same temperature. The peak exitance is at the same wavelength and the
spectral exitance at any wavelength is a constant fraction, s, of what a blackbody source
at the same temperature would produce. In Fig. 4.6, we show the spectral exitance as a
function of wavelength for a series of 2000-K sources: a blackbody with s = 1.0, and
graybodies with E = 0.75, 0.5, and 0.25.

Emissivity values for some common materials are seen in Table 4.1. Polished
metal surfaces typically have a high reflectivity, a low absorption, and (by Kirchoff's
Law) a correspondingly low emissivity. The emissivity is strongly dependent on surface
finish, oxidation, or surface contamination. The emissivity values quoted are valid in the
long-wave infrared portion of the spectrum, and for temperatures around 300 K.
Emissivity tends to increase with increasing temperature, and tends to decrease at longer
wavelengths.

2 '

11

X [µm] D

Figure 4.6. MX(, i, 2000 K) curves for e = 1.0, 0.75, 0.5, and 0.25.
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Table 4.1. Emissivity values for some common materials.

Material	 Emissivity

Aluminum
Polished 0.05

Copper
Polished 0.05
Oxidized 0.78

Nickel
Polished 0.05
Oxidized 0.37
with 25 gm oil film 0.27
with 125 gm oil film 0.72

Stainless steel
Polished 0.07
Oxidized 0.79

Brick 0.93
Concrete 0.92
Sand 0.90
Water 0.96
Human skin 0.98
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Chapter 5
Detectors

5.1 Introduction
Detectors are transducers: they produce a measurable electrical output in response

to radiation intercepted by the sensing element. The three overall quantities of concern for
all detectors are responsivity, response speed, and sensitivity.

Responsivity is a measure of output per unit input. Because there are various
input and output quantities, there are a variety of ways to specify responsivity: for
example, in volts per watt or in amps per photon per second. Responsivity (R) allows

prediction of the magnitude of the sensor's response, given a radiometric calculation of
flux on the sensor. Thus, responsivity determines the voltage levels involved at the
interface between the detector and the preamplifier that follows.

The response speed of a detector is pertinent because any signal of interest will
vary with time. How fast can the signal flux vary and still have the detector follow the
variation? The Fourier transform of the time-domain impulse response is the transfer
function, the relative response of the sensor as a function of temporal frequency.

Sensitivity is a separate quantity from responsivity. While responsivity is a
measure of the output level for a given level of input flux, sensitivity specifies the signal-
to-noise ratio (SNR) that the user can expect for a given input flux level. The SNR is a
crucial parameter in the determination of image detectability, that is, whether a given
feature in the image can be reliably discerned above the noise.

The two primary classes of detectors are thermal detectors and photon detectors.
Both kinds of detectors respond to absorbed photons, but their mechanism of response
differs, leading to differences in response speed and responsivity as a function of
wavelength.

Thermal detectors absorb the energy of the photon as heat. This heat causes a
temperature rise in the sensing element. The sensing element has some temperature-
dependent electrical property, such as resistance. The change in this electrical property as
a function of input flux level is measured by an external circuit.

Photon detectors use the energy of the photon not as heat, but to increase the
energy of a charge carrier, so that the carrier makes an electronic transition across a
forbidden energy gap. This is typically a transition of an electron from the valence band
to the conduction band in a semiconductor material. The excitation of these carriers into a
higher energy state affects the sensor's electrical properties. The change of electrical
properties as a function of input flux level is measured by external circuitry.

We compare the properties of thermal and photon sensors in terms of response
speed and spectral responsivity A (?). Thermal detectors are slow because a finite time is

required for the sensing element to rise in temperature after the absorption of energy.
Typical time constants for thermal detectors are in the range of tenths of seconds to
milliseconds. A trade-off exists between response speed and response magnitude for
thermal detectors. Because of their relatively long thermal time constants, waiting a
longer time generally produces a larger response from a thermal detector. Photon
detectors are fast, because an electronic transition is virtually instantaneous upon photon
absorption. Typical time constants for photon detectors are in the microsecond range and
shorter. Response speed is often determined by the resistance-capacitance (RC) product of
the external readout circuit that interfaces to the photon detector.
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5.2	 Cutoff Wavelength
In terms of spectral responsivity T (A), responsivity as a function of wavelength

of the incoming radiation, a thermal detector has a flat response, when plotted in energy-
based units. As seen in Fig. 5.1, the ideal thermal sensor has a responsivity that is
independent of wavelength because a watt of radiation absorbed by the sensor at ? = 1 µm
will cause the same temperature rise in the sensing element as a watt of radiation at =
10 tm. There is no long-wavelength cutoff behavior in thermal sensors because no
energy gap is inherent in the mechanism. Practically, the wavelength range for a thermal
sensor is limited by the spectral absorption of the sensor material and the spectral
transmission range of the window material that typically covers the sensor.

Figure 5.1. Spectral responsivity fora thermal detector.

A photon detector has an inherent nonuniformity of response as a function of
wavelength. For a photon incident on the sensor to be absorbed by the material and
impart its energy to an electron, its energy must be sufficient to lift the electron across
the energy gap. Recall that Eq. (3.4)

	

9 = he/k	 (5.1)

implies that the photon energy 9 [Joules/photon] is inverse with wavelength. As seen in

Fig. 5.2, given a photon sensor with an energy gap g gap , photons with wavelength

longer than the long-wavelength cutoff Xcut = he/9gap are not absorbed and not detected.

The wavelength where the photon has just enough energy to bridge c' gap

corresponds to the long-wavelength cutoff scut = he/c' gap , and is the longest wavelength

that will be detected by a sensor with a given e gap . We can solve for the long-

wavelength cutoff of the photon detector in terms of Çap:

h 	 6.6x10 	dni34 Js 3xlls x 	1 eV 	_ 1.24[eV]=---=_
ga 

P 	scut	
1cut tm x l0 6 m/µm	 1.6 x 10 19 J scut [gm] . (5.2)
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If Si, with ggap = 1.12 eV, is used as a sensor, photons with wavelengths

shorter than 1.1 µm will be detected. If InSb, which has a smaller 9gap = 0.22 eV, is

used, the sensor will detect photons with wavelengths shorter than 5.6 µm.

Figure 5.2. Origin of cutoff wavelength for a photon detector.

5.3	 Cooling Requirements
To detect long-wavelength photons, the sensor element in photon detectors must

often be cooled. Charge carriers in a semiconductor material have an energy that is
proportional to kT, where k is Boltzmann's constant (8.62 x 10 -5 eV/K). In a photon
detector, the thermal energy of the charge carriers can cause excitation of electrons across
the energy gap of the sensor without the detection of photons, a phenomenon known as
dark current. Once the electrons have been raised in energy, thermally excited electrons
are indistinguishable from photogenerated electrons. There is a shot noise associated with
dark current. We will see later in this chapter that the shot-noise current has an rms value
proportional to the square root of the dark current.

The sensor element must be kept at a sufficiently low temperature that the
charge carriers have a statistically small probability of having enough thermal energy to
cross the energy gap. The detection of long-wavelength photons requires smaller energy
gaps. Thus, lower temperatures are needed for supression of the dark current. In Table
5.1 we compare kT to ' gap for various photon detectors.

Table 5.1. Comparison of kT to energy gap for photon sensors.

Si:	 xcut= 1.1 pm	 Cap  1.12 eV kT @ 300 K = 0.026 eV = 2.3% of cgap

InSb: 2cut= 5.6 µm	 ggap = 0.22 eV kT @ 180 K = 0.015 eV = 6.8% of ggap

kT @ 300 K = 11.8% of 'gap

HgCdTe 2 c„t= 10 tm ggap 0.12 eV kT @ 77 K = 0.0066 eV = 5.5% of ggap

kT @ 300 K: 22% of egap
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While Si can be operated at room temperature, neither InSb nor HgCdTe has
acceptable levels of dark current at 300 K. InSb requires at least 180 K, a temperature
typically reached with thermoelectric coolers, while HgCdTe requires cooling to 77 K,
typically obtained with open-cycle liquid nitrogen or mechanical refrigerators.

5.4	 Spectral Responsivity
As seen in Fig. 5.1, the spectral responsivity curve for a thermal detector is

plotted in energy-derived units (e.g., V/W or A/W). Ideally, these curves are constant
with wavelength, and do not exhibit a long-wavelength cutoff. Spectral responsivity for
ideal photon detectors goes to zero for wavelengths longer than the cutoff wavelength of
Eq. (5.2), but the curve can be plotted with respect to either energy-derived or photon-
derived units. Photon detectors are most naturally described in photon-derived units but
for historical reasons are often plotted with respect to energy-derived units. Because the
proportionality between these two sets of units, 9 = he/X, depends on wavelength, these
two sets of units will produce responsivity curves of different shape, as seen in Fig. 5.3.

R(X) [Volt/(photon/sec)]

> ^
ut

,

` ,(X) [Volt/Watt]
peak spectral =

-	 (^)	 (scut)
responsivity	 _ - _	 Xcut
'(scut)	 --	 for <_ kcut

Acu' 	 > a,
t

Figure 5.3. Spectral responsivity for an ideal photon detector, plotted in photon units and
in energy units.

An ideal photon detector has a flat	 (A.) out to ,cut when plotted in photon-
derived units (e.g., A/(photon/s). Each photon produces the same amount of response, as
long as the photon has enough energy to bridge the gap. If (?) is plotted as a function
of energy-derived units, a linear increase in responsivity is seen up to Xcur It takes more
photons at long wavelengths to make 1 W of power and the detector responds the same to
each photon up to Xcur For photons with ?, = I µm, 1 W = 5 x 10 18 photons/s, for
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photons with ? = 10 µm, 1 W = 50 x 1018 photons/s. If the sensor responds equally on
a per-photon basis, it will appear to have a factor of 10 higher responsivity at 10 µm than
at 1 p.m, if the spectral responsivity is plotted in energy-derived units. In this case, an
ideal photon detector has a spectral responsivity of the form

(^) _ X ` '(Xcut) for X < Xcut ; /(?) = 0 for X > Xcut
?cut	 (5.3)

The significance of the spectral responsivity from a design viewpoint is that it is
used to calculate the output from a detector in response to flux from a spectrally
distributed source

Output = j
 •

X(?) ` .(?) d?.
0

[V] = [W/µm] [VIWI [µm ] •	 (5.4)

In the overlap integral of Eq. (5.4), there is a contribution to detector output only at those
wavelengths where both $ 9) and ,(X) are nonzero. The spectral flux falling on the
detector can be calculated from spectral exitance as

$^(^) = M ij A»d .	 (5.5)

As an example of calculation of the output of an ideal photon detector and a
blackbody source, when both are specified in energy-based units, Eq. (5.4) becomes

cut

Output = As^d 	5 2 rt h c 	?	 ut) dl
0

(exp{hc/?kT} - 1 ) lcut
(5.6)

For a thermal detector (flat `? as a function of X) and a blackbody source, when both are
specified in energy-based units, Eq. (5.4) becomes

AOutput = s"d	 2 ir h c 	`2, dl = As^d 6 T SD,
0 Ä,5 (exp{hc/IkT} - 1 )

(5.7)

Response of a detector to a laser source can also be calculated using Eq. (5.4), by taking
the spectral flux from the laser to be approximately a delta function

00') _ $laser S ( `laser) •	 (5.8)

Using the sifting property of the delta function, the detector output is then
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Output =	 (^J0 Glaser S—Glaser) R(X) d? = Olasera(^laser)
(5.9)

5.5 Frequency Response and Noise-Equivalent Bandwidth
A frequency-domain transfer function can be obtained for a sensor by the Fourier

transform of the time-domain impulse response. This transfer function will multiply the
spectral responsivity developed in Section 5.4. Two particular forms of the impulse
response are of interest for sensor analysis. The first is the decaying-exponential impulse
response seen in Eq. (5.10):

v(t) = vo (t-to)/ti	
(5.10)

This type of impulse response naturally arises from charge-carrier-lifetime effects in
semiconductors and from the RC time constant of electronic circuits, where i is
interpreted as the carrier lifetime or the RC product. Taking the magnitude of the Fourier
transform of the impulse reponse in Eq. (5.10), we obtain the voltage transfer function

?(fl= 	1

1 + (2^tif)2 ,	 (5.11)
which is plotted in Fig. 5.4.

0.

0.^

0..

0.;

0.2	 0.4	 0.6	 0.8	 1	 ft
Figure 5.4. Frequency response for decaying-exponential impulse reponse.

The integrator is a second type of impulse response important for detectors. The impulse
response seen in Eq. (5.12) corresponds to a system that integrates a signal for a time
period, producing a square-pulse response

v(t) = vo rect ƒ
t — to

	ti 	 (5.12)

Calculation of the transfer function for this impulse response produces the sinc-function
form seen in Eq. (5.13), which is plotted in Fig. 5.5

(fl = Isin(nc f)

TLtif (5.13)
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ft
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0 »
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Figure 5.5. Frequency response for integrator impulse reponse.

As an example of the use of the frequency response, suppose we have a sensor
with a do responsivity of 5 mV/mW, and an exponential time response with a time
constant i = 133 µs. If a steady-state flux of 10 mW falls on the detector, its output is
50 mV. If the incoming flux is modulated at f = 25 Hz, the transfer function of Eq.
(5.11) will be approximately 1, and the modulated peak-to-peak signal amplitude is still
50 mV. If the flux is modulated at 1200 Hz, then` ,(f) = 0.707, and the signal
amplitude is decreased to 33.35 mV. If the flux is modulated at 1800 Hz, the signal level
is further decreased to 27.75 mV.

The frequency response is also used to calculate the noise-equivalent bandwidth
(Af) of a system. The noise-equivalent bandwidth is the width of a flat-bandpass filter,
seen in Fig. 5.6, that will pass the same amount of white-noise power as the original
transfer function.

f

Figure 5.6. Noise-equivalent bandwidth.

The calculation of the noise-equivalent bandwidth uses the square of the original voltage
transfer function, because power is proportional to the voltage squared

°°	 2
Af =	 ` R(fl df

0 I(f=°) (5.14)
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Carrying out the integration in Eq. (5.14) for the exponential-impulse-response transfer
function of Eq. (5.11) yields

Af = 1/(4'r)	 (5.15)

and for the integrator transfer function of Eq. (5.13), the noise-equivalent bandwidth is

Af = 1/(2'c) .	 (5.16)

Equation (5.16) is often used in noise analyses, assuming the integrator form of the
transfer function. Both Eqs. (5.15) and (5.16) imply that a brief impulse response
implies a broad bandwidth. Conversely, more time must be taken to make a
measurement with a narrow bandwidth than one with a wide bandwidth.

5.6 Noise Terminology
There is always some fluctuation in any electrical quantity being measured. The

small sizes of the typical voltages and currents involved in detection of optical or infrared
radiation dictate that we consider sources of noise. Noise may arise in the sensor itself, in
the amplifier, or as external interference. In high-performance systems, the detector (or
detector array) is often a component whose cost strongly influences the overall cost of the
system. In such a situation, the amplifier is usually designed so that the sensitivity of
the system is detector-noise limited. For lower-cost systems that have reduced sensitivity
requirements, the system sensitivity will often be limited by noise in the amplifier.

We can describe the time-domain noise in terms of either voltage or current. If,
for example, we designate a random-noise voltage waveform v(t) [volts], three main
descriptors exist for this noise waveform: (1) the mean value

 T
vn [volts] = 1 f vn(t) dt

T J o	 ,	 (5.17)

(2) the mean-square (ms) value, in units of volts 2 or power; the variance of the waveform

Tan [volts ] = T J0 (vn(t) - vn)2 dt
	> 	 (5.18)

and (3) the root-mean-square (rms) value; the standard deviation of the waveform

6n [volts] =	
T J0 (v

n(t) - vn)2 dt
(5.19)

Noise contributions arising from separate (uncorrelated) sources must be added in terms of
power. This so-called addition in quadrature adds the mean-square (power) quantities and
then takes the square root of the sum to yield an rms value

rmstotal = J(rms 1 ) 2 + (rms2) 2 ^ (rms 1 )2 + (rms2)2 ,	 (5.20)

For example, if two independent voltage noise sources of 3 V rms each are added in series,
as seen in Fig. 5.7, the result is 4.24 V rms.
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3 V, RMS (~j
	v	 = 32 +32 = 4.24V^6

total, rms
3 V, RMS

Figure 5.7. Addition of two uncorrelated noise sources in quadrature.

For optical and infrared sensors, we calculate a signal-to-noise ratio (SNR) as a
peak signal voltage (or current) divided by an rms noise voltage (or current). The rms
noise voltage (or current) is the addition of all the significant noise sources in quadrature.
In optics, the usual SNR is a voltage (or current) SNR rather than a power SNR, which
is common in the specification of radio-frequency systems.

Noise can also be decribed in terms of a noise power spectrum [W/Hz], a power
per unit frequency, also called the power spectral density (PSD). The PSD, seen in Fig.
5.8, gives insight into the origin of the various noise components because of their
differing frequency contents. This frequency dependence of the noise affects the choice of
modulation frequency for a narrowband (e.g., communication) system or affects the choice
of the lower and upper bandwidth limits for a wideband (e.g., electronic-imaging) system.
At low frequencies (less than 1 kHz), 1/f noise generally dominates. In the midband range
of frequencies the main noise contribution is either shot noise or generation-
recombination (G-R) noise. The PSD in this midrange is generally flat from the 1/f
rolloff frequency out to the inverse of the carrier lifetime at about 20 kHz to 1 MHz.
Beyond that carrier-lifetime rolloff frequency, the main noise contributions are Johnson
noise and amplifier noise. These are generally flat, even to the highest frequencies of
interest for sensor systems. The passband for electronic-imaging systems is typically set
to utilize the flat midband region of the spectrum. The charge-carrier rolloff frequency is
an upper limit for the signal, because the signal is necessarily transmitted by charge
carriers. A system bandwidth with a higher cutoff frequency will pass excess levels of
noise with no additional signal. The lower limit of the system passband typically rolls
off the 1/f noise, making an ac-coupled system with little or no response at dc.

Log Noise Power Density
4\ (W/Hz)

l/f noise

shot or G-R noise	 Johnson or
amplifier noise

Log f (Hz)
1 /Ccarrier

Figure 5.8. Plot of power spectral density provides insight into noise mechanisms.
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The assumption of white noise (flat PSD) is often made in engineering
calculations. White noise power scales with bandwidth, as seen in Fig. 5.9, and thus rms
noise scales as the square root of the bandwidth. For example, if a particular noise source
has a noise PSD of 50 nW/Hz, then in a 1-Hz bandwidth, the source has 50 x 10 -9 W of
noise power. Over a Of of 10 Hz, the source yields 500 nW, and over a 500 KHz
bandwidth there is 25 mW of noise power.

1.T,_.-. fl('l-N 

f (Hz)

Figure 5.9. White-noise power is proportional to bandwidth.

Oftentimes the spectrum of the noise is discussed in terms of rms quantities, as a
noise-voltage spectrum (V/Hz 1/2) or a noise-current spectrum (A/Hz 112). As noted above,
these rms quantities scale with the square root of the bandwidth. For example, if a noise
source has an rms noise of 7.5 µV in a 50-Hz bandwidth, the noise-voltage spectrum is
7.5 x 10 -6/50 1 /2 = 1.1 x 10 -6 V/Hz 1 /2 . Over a bandwidth of 500 kHz, this source will
yield an rms noise voltage of 1.1 x 10 -6 x 500,000 1 /2 = 7.8 x 10-4 V.

5.7 Shot Noise and Generation-Recombination Noise
Shot noise arises because both photons and charge carriers are quantized. Neither

an electron nor a photon can be divided. In the context of photon detection, a photon
either excites an electron or it does not. This quantization is the origin of a fluctuation
that affects the SNR, noticed primarily at low levels of photon or electron flow. Shot
noise is present in devices such as photovoltaics or vacuum photodiodes, where the
photogenerated charge carriers must cross a potential-energy barrier in order to be detected.
Carrier generation is a random process, depending on the statistics of photon arrivals and
the quantum efficiency. However, in these diode-like devices, carrier recombination is a
nearly deterministic process, with the potential-energy-barrier transit time determining an
effective carrier lifetime. Shot noise is replaced by generation-recombination noise in
devices such as photoconductors that lack the potential-energy barrier. Shot noise is zero
in devices that have a zero current flow, such as an open-circuit photovoltaic detector.

The rms shot-noise current ß ; (amps) that arises from a dc current flow of i avg is:

6i = 2gIavgdf ,	 (5.21)

where q is the charge on an electron equal to 1.6 x 10 -19 Coulomb, and Of is the noise-
equivalent bandwidth of the noise measurement, generally taken as 1/(2ti), where i is the
measurement interval. Electrons are particles that obey Poisson statistics, hence the
square-root dependence of the standard deviation on the mean current. For an average

Downloaded from SPIE Digital Library on 17 May 2011 to 66.165.46.178. Terms of Use: http://spiedl.org/terms

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Detectors / 65

current flow of 1 mA, the rms noise current is 2 x 10 -10 A in a 100-Hz bandwidth. Let
us examine the two functional dependences for shot noise: bandwidth and mean current
level. The square-root-of-bandwidth dependence can be interpreted to mean that more
averaging (longer measurement interval, narrower noise bandwidth) results in less noise,
as seen in Fig. 5.10.

Figure 5.10. Longer measurement times mean less shot noise.

The other square-root dependence is that of rms noise on the average current
level. A larger do current implies a larger rms variation, as seen in Fig. 5.11, but shot-
noise fluctuations are noticed primarily at low current levels. Lower levels of current
have smaller rms noise, but also are seen to have a lower SNR.

Assume that the average current flowing is entirely caused by the signal that we
want to detect. Then the shot noise on the signal current is the dominant noise source.
This situation is called the signal-shot-noise limit. We see in Fig. 5.11 that when the
mean current level is increased, the rms noise level increases as the square root of the
mean. Larger current means more noise. However, the signal-shot-noise-limited SNR is

__	 l sig	__	 IsigSNR
signal-shot-limit 	 g

lnoise, rms	 2 q sig Af	(5.22)

Equation (5.22) shows that the shot noise is most troublesome (yielding the lowest value
of SNR) at low current levels. Even though the numerical value of the rms noise grows
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with increasing current, the SNR increases because while noise grows as the square root
of the signal current, the signal grows linearly, producing an overall square-root
dependence for SNR.

Figure 5.11. Larger average current means more shot noise.

In addition to the generation of electrons by signal photons, there are other
electron-generation processes that often contribute to the total current, as seen in Fig.
5.12. The total current can include dark-current electrons (generated by thermal excitation
of carriers over the energy gap of the detector) and electrons generated by detection of
background photons

'total = 'sig + 'bkg + 'dark . 	 (5.23)

The dc portion of the nonsignal contributions can be subtracted from the total current.
However, each source of excess carriers beyond those generated from signal photons
produces additional current fluctuation which does not subtract as a dc level. Shot noise
is associated with each of these excess-current sources, reducing the overall SNR.

For the general case of shot-noise-limited performance we find

Isig	_	lsigSNR
shot-noise-limit —

2 q itotal zf	2 q (isig + ibkg + idark) Af	(5.24)

Making Eq. (5.24) specific to the case of background-shot-noise-limited detection, we find
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__	 lsigS NRbkg-shot-noise-limit
2 q 'bkg Af ,	 (5.25)

and for the dark-current shot-noise limit, we find

isig
S NRdark- shot-noise-limit

2 q 'dark Ef •	 (5.26)

Figure 5.12. Background and dark-current carriers contribute to shot niose.

Equation (5.24) applies only to the case of shot-noise-limited detection. Any
other sources of noise, such as amplifier noise or Johnson noise, will add in quadrature in
a calculation of the total rms noise.

In detectors such as photoconductors that do not have a potential energy barrier,
both generation and recombination are random processes. Thus generation-recombination
(G-R) noise has a larger fluctuation than shot noise, because it is the summation of two
random processes. The two processes add their noises in quadrature, producing an rms
noise which is the square root of two larger than that indicated by the shot noise
expression, Eq. (5.21). When all other factors (e.g., photon flux level, quantum
efficiency, bandwidth) are held constant, photovoltaic sensors have a higher SNR than do
photoconductors.

5.8 Johnson Noise and 1/f Noise
Charge carriers in a resistive element have thermal energy at any temperature

above absolute zero. This thermal energy is manifest as Brownian motion of the carriers.
Higher temperatures produce more vigorous motion. Across the open circuit of the
terminals of a resistor, a zero-mean fluctuating voltage is seen with an rms value of

v = 4kTROf (5.27)Johnson, nos ,

where R is the resistance of the element, T is the temperature in Kelvin, and k is
Boltzmann's constant. The (Thevenin) circuit model used is that of a noise-free resistance
in series with an rms voltage source described by Eq. (5.27), as seen in Fig. 5.13.
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	1	-o
R

VJohnson, 
rms = 4 k T R Of 	VJohnson, rms

L p 1

Figure 5.13. Johnson-noise voltage model.

An alternate (Norton) model for the resistor can be used to model the rms noise current
that flows when the terminals of the resistor are shorted. An rms current source is taken
to be in parallel with a noise-free resistor, where the rms Johnson-noise current is

4kTOf
1Johnson, rms'V	 R	 (5.28)

as seen in Fig. 5.14.

O

rĵ k TAf
1Johnson, rms —R	

^1,rms	 R

O

Figure 5.14. Johnson-noise current model.

To show that the models of Figs. 5.13 and 5.14 are two-terminal equivalent, a load
resistor is placed across the output terminals, and we find that the same power is
dissipated in the load in each case

2
p	 _ vrms =i2 R = 4kTROf R

dissip. in RL — R 	rms L	 2

	

L	 (R + RL)	 (5.29)

As a numerical example, consider a 50-b2 resistor at room temperature (300 K),
where we find that the rms Johnson-noise voltage per root Hz is (4 k T R) 1 /2 = 0.9
nV/Hz 1t2 . Over a bandwidth of 500 kHz, this resistor yields an rms noise voltage of 0.63
µV. A 1-Me resistor at room temperature produces an rms Johnson-noise voltage per
root Hz of (4 k T R) 1 í2 = 0.13 tV/Hz 1 "2 . Over Of = 500 kHz, this resistor yields an rms
noise voltage of 0.13 .V/Hz 1 "2 x (500,000) 1 /2 = 92 RV. For the same resistor, the
corresponding Johnson-noise current spectrum at 300 K is 1.3 x 10-13 A/Hz 1 "2 .

When two resistors (typically corresponding to a detector resistance and a load
resistance) are at different temperatures, the total rms noise is found by quadrature
addition. Often the detector is at 77 K while the load (imput impedance of the
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preamplifier) is at room temperature. Suppose we have two resistors in parallel, a
resistance R i at a temperature T l and a resistance R2 at a temperature T2. As seen in Fig.
5.15, we take the Norton model of each resistor, add the parallel current noises in
quadrature, and combine the noise-free resistors in parallel as usual.

R 1 R2

 ltotalR	 r 

11 + i2
1 + 2

=	 4 k Mf R_i + _ R2

1	 2

Figure 5.15. Parallel combination of resistors at two different temperatures.

One-over-f noise is present when a bias current flows (such as in bolometers and
photoconductors), and is absent in the open-circuit voltage-generation mode of
photovoltaic detectors. One-over-f noise has a power spectrum that is inverse with
frequency

2 Amp2  idc Of

f	(5.30)

and is often the dominant noise source at low freqencies, below approximately 1 kHz.
The fluctuations are often noticed as a low-frequency drift in the current level. The causes
of 1/f noise include the non-ohmic nature of electrical contacts between metals and
semiconductors. The usual method for reduction of 1/f noise is the application of a low-
frequency electronics filter, which ac couples the current information, rolling off the
response at dc.

5.9 Noise Specification of Detectors: Noise-Equivalent Power
We desire a means to specify the noise performance of a detector, so that we can

predict the SNR which will be obtained when a given amount of power falls on the
detector. Considering Fig. 5.16, the responsivity relates the output of a detector to the
incident input flux. If the input flux is decreased, the output level will decrease to a point
where the rms noise provides the baseline response, which is independent of flux level.

The noise-equivalent power (NEP) is the amount of flux [W] that would produce
an output equal to the rms value of the noise, assuming a linear responsivity curve.
Thus, NEP is the input flux required to produce SNR = 1. Noise-equivalent power is
thus interpreted as the "minimum detectable power," although SNR = 1 is only a
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reference level, and the actual input flux required for acceptable sensor operation will
depend on the SNR requirements which are usually determined by the false-alarm rate and
the probability of detection. The definition of NEP is

NEP = Odet
SNR ,	 (5.31)

which shows that NEP is the 4det for SNR =1. Equation (5.31) also allows calculation
of the required Odet for a given system as the product of SNR and NEP. Sensitivity is
better for smaller NEP, in that the SNR produced is higher for a given sensor flux level.
With reference to the triangle in Fig. 5.16, NEP can also be written in terms of the rms
noise and the responsivity as

NEP = vn,rms = 1n,rms

v	 Sqi	 1

	 (5.32)

where , v is the voltage responsivity [V/WI and R, j is the current responsivity [A/W].

Detector output
(Volts or Amps)

_ rms noise
NEP

rms noise

NEP

output
input

Flux on detector
4d (Watts)

Figure 5.16. Noise-equivalent power and responsivity.

We now consider some numerical-calculation examples with noise-equivalent
power. A detector has been measured to have a responsivity of 10 V/W, and an rms noise
voltage of 7.5 µV in a bandwidth of 500 kHz. The NEP is calculated using Eq. (5.32) as
NEP = [7.5 µV]/[10 V/W] = 7.5 x 10 -7 W. Using this NEP and Eq. (5.31), we predict
the SNR when 1 p W of signal power falls on the detector as SNR = 1 µW/0.75 tW =
6.7. If the bandwidth is changed from 500 kHz to 20 Hz, both the rms noise and the
NEP will change by a factor of the square root of the ratio of the bandwidths. Thus the
new rms noise is 7.5 µV x (20/500,000) 1/2 = 47 nV. Assuming that the responsivity is
independent of noise bandwidth, the new NEP can be calculated by Eq. (5.32) as NEP =
[47 nV]/[10 V/W] = 4.7 nW. The system sensitivity was improved by reduction of the
noise bandwidth.
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5.10 Normalized Detectivity D *
The normalized detectivity, D*, is a figure of merit often used to specify the

performance of a detector. D* is inversely proportional to the NEP, so that bigger D*
corresponds to better sensitivity. D* is also proportional to the square root of the detector
area and the square root of the measurement bandwidth

D*_ d Of [cm i1
.NEP	 L Watt	 (5.33)

Normalization with respect to detector area and measurement bandwidth cancels out the
dependence of NEP on these quantities. We have seen in Eq. (5.32) that NEP is
proportional to the rms noise and hence (for white noise) to the square root of the
measurement bandwith. This dependence will cancel in the calculation of D *, yielding a
figure of merit independent of the bandwidth used to make the measurement. Similar
reasoning is used for the root-area dependence. It is found empirically that the rms noise
level measured in a detector is proportional to the square root of the area of the detector.
More detector area and hence more volume of detector material tends to generate more
noise power. The normalization used in Eq. (5.33) yields a figure of merit independent of
both the measurement bandwidth and the detector area. Thus, D* is most useful in the
comparison of the merits of different detector materials and fabrication processes, without
consideration of a particular bandwidth or area inherent in a given application.
Manufacturers of detectors often specify the performance of their generic detector products
using D*. Given the D*, an end user can calculate the SNR using a combination of Eqs.
(5.33) and (5.31)

SNR = ^det = Odet D*
NEP á 0 f ,	 (5.34)

The D* is a consideration when choosing an appropriate detector technology for
a particular application. However, the NEP remains the fundamental quantity for the
calculation of SNR. Calculation of SNR requires a specification of the detector area for a
particular application, in consideration of requirements of field of view and the detector
footprint as detailed in Section 1.6. The required update rate of the sensor system will
ultimately determine the noise bandwidth. Although their effect on D* has been
normalized out according to Eq. (5.33), both the detector area and the bandwidth affect the
final SNR achieved by the sensor system.

Other useful relationships involving D* can be obtained by combining Eqs.
(5.31), (5.32), and (5.33)

D* = Ad Af SNR
Odet	 (5.35)

D*= Ad Af `̂ß
Vn,rms	 (5.36)
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D*= Ad Af `̂R
1	 1n,rms (5.37)

where we can see that D* is proportional to SNR and also to responsivity. Recalling
from Eq. (5.33) that D* is specified in energy-based units, we find that when D* is
plotted as a function of wavelength for an ideal photon detector (Fig. 5.17), a curve shape
similar to Fig. 5.3 is seen, with a linear increase in D* with wavelength up to Xcutoff•
Spectral D* for an ideal thermal detector is flat with wavelength, similar to Fig. 5.1.

Peak-spectral D*

D* (scut)
^^	 D* `Icu)

k
cut

for 1 <_ Xcut 

scut

Figure 5.17. D* as a function of wavelength for an ideal photon detector.

We now consider some numerical-calculation examples using D*, remembering
that when the detector area and bandwidth change, NEP changes but D* does not. A
detector of dimensions 1 mm x 1 mm has a responsivity of 100 V/W, and is measured to
have 3 µV of rms noise within a 1-MHz bandwidth. Using Eq. (5.36) we calculate D* as
3.3 x 109 cm Hz112 W-1. If this same detector material is fabricated into a 50 .tm x 50
.tm detector, which is used in a bandwidth of 500 kHz, we can find NEP using Eq. (5.33),
given that the D* is independent of area and bandwidth. The NEP is 1.06 x 10-9 W. If
0.5 pW of power is received by the detector, the SNR = 471, according to Eq. (5.31).

5.11 Photovoltaic Detectors
A photovoltaic (PV) detector operates by the mechanism of an absorbed photon

generating a hole-electron pair at a p-n junction in a semiconductor. As seen in Fig.
5.18, a built-in electric field exists in the vicinity of the junction. This causes an
immediate separation of the hole and the electron once they are generated, allowing the
photovoltaic detector to develop a voltage across an open circuit. By comparison, a
photoconductor has no junction and thus no built-in electric field. A photoconductor
must be biased to sense a change in conductivity, and cannot develop an open-circuit
voltage. Being a photon detector, a PV has a cutoff wavelength consistent with Eq. (5.2).
Some typical PV cutoff wavelengths are shown in Table 5.2.
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Figure 5.18. Photovoltaic detector.

Table 5.2. Typical cutoff wavelengths for PV detectors.

PV Material
	

?cut Eµm]

CdS 0.52
CdSe 0.69
GaAs 0.80
Si 1.1
GaAIAs 1.3
Ge 1.9
PbS 3.0
InSb 5.6
Hg l Cd,tTe 10 — 12 (depending on mixing ratio, x)

The p-n junction in the photovoltaic detector is a diode, so the current-voltage (i-
v) characteristic of the PV detector is that of a diode. For the case of no photon
irradiance, where the detector is in the dark:

'dark 
— 

I
 (e^

O
V/ßkT-

 1
) 	

(5.38)

where ß is the diode non-ideality factor, q is the electronic charge, and k is Boltzmann's
constant. With photons incident on the detector, the total diode current becomes

'total - 'dark 'photogenerated , 	 (5.39)

where the negative sign comes from the direction of the photogenerated current compared
to the convention for positive current flow in a diode. The expression for photogenerated
current is
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I	 1c i]	{electron
1
	 ^photon .

ql	 J

(
photogenerated[, 

_
—	 ^qphoton	 electron	 (5.40)

where rl is the quantum efficiency and O q is the photon flux incident on the detector. A
typical i-v plot for a photovoltaic is seen in Fig. 5.19.

current, I

'dark (no 4q )

voltage, V

10 ,t	 —^^^ 1 / Vopen -okt

'short-ckt

Itotat (with 4q )

Fig. 5.19. Typical i-v plot for a photovoltaic detector,
showing short-circuit and open-circuit operating points.

Circuit interfacing to photovoltaic detectors is typically accomplished using
operational amplifiers. In the open-circuit mode of the PV, the total current through the
device is held at zero, and photon irradiation produces an open-circuit voltage, as seen in
Fig. 5.20. This mode of operation is unique to the PV and cannot be used in a
photoconductive detector, which lacks the p-n junction necessary for charge separation.

The magnitude of the open-circuit voltage is found from Eqs. (5.38) - (5.40) as

V 	__ i i 	+ 11
open-ckt	 q 	 1,^	 J	 (5.41)

The open-circuit voltage is seen to be proportional to the natural log of the photon flux,
providing an increased dynamic range at the expense of linearity.

In the short-circuit mode of operation, the current flow through the diode is
measured when the two terminals of the diode are kept at the same voltage, as seen in
Fig. 5.21. A short-circuit current is seen to be linearly proportional to the photon flux

Ishon•ckt — T qq .	 (5.42)

As an example of calculations for short-circuit PV operation, suppose we have a
photon flux of 8 x 1012 photons/s. Assuming a quantum efficiency of 80%, we have a
photogenerated current of 1.025 .tA. If the feedback resistance is 10 kSZ, a voltage of
10.25 mV is seen at the output of the op-amp circuit.
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Itotat =0

ut=V00 (R1 +R2)/R2

Figure 5.20. Open-circuit operation of a photovoltaic detector.

Rf

Ishort-cktRf

Figure 5.21. Short-circuit operation of a photovoltaic detector.

Photovoltaic detectors can also be operated in a reverse-bias mode, as seen in
Fig. 5.22. In this case the current is also linearly proportional to photon flux,

'short-ckt = Io —1 1$g4 .	 (5.43)

The advantage of this configuration is that the reverse bias decreases the capacitance of the
p-n junction by increasing the separation of the space-charge layer. This is similar to the
approach used in p-i-n detectors, where an undoped intrinsic layer accomplishes the same
purpose. A decreased capacitance lowers the RC time constant, leading to a faster
response.
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Rf

ItotaLRf

`'bias

Figure 5.22. Reverse-bias operation of a photovoltaic detector.

Photovoltaic response in the visible and near-IR portion of the spectrum is
typically provided by Si detectors, in the 3- to 5 -.tm band by InSb, and in the 8- to 12-
µm band by HgCdTe. Noise-equivalent powers are in the range of 10 -10 to 10-12 W for
PV detectors, and time constants are typically in the range of is to ns, with p-i-n diodes
providing the fastest response of the PVs at about 100 ps.

5.12 Schottky-Barrier Detectors
Schottky-barrier detectors, seen in Fig. 5.23, are fabricated of thin ( 100 A)

films of metal deposited onto a semiconductor substrate. Silicon is the most commonly
used substrate material because of the well-developed fabrication processes available for
Si. The metal-semiconductor junction is back-illuminated through the Si, with absorbed
photons releasing electrons from the metal into the substrate.

p-type Si	 UMetal(_.100)

electron o

Figure 5.23. Schottky-barrier photdiode.

The quantum efficiency of the photogeneration process is an order of magnitude
lower than for photovoltaic materials such as Si and HgCdTe, but the uniformity of
response is independent of the exact thickness of the metal. Schottky-barrier detectors can
be fabricated in arrays that have excellent detector-to-detector uniformity, which is a
valuable feature in IR focal plane arrays. The limiting noise in IR-detector arrays often
results from spatial nonuniformity rather than temporal noise.
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The most common metals used for Si-based Schottky-barrier detectors are:
iridium, with a cutoff wavelength of 9.5 .tm; platinum, with a cutoff wavelength of 5.6
µm; palladium, with a cutoff wavelength of 2.6 gm; and nickel, with a cutoff wavelength
of 1.8 .tm. Of these, PtSi is the best-developed technology, providing detector arrays in
the 3- to 5-µm band that operate at 77 K.

5.13 Photoconductive Detectors
The mechanism for a photoconductive (PC) detector is the generation of electron-

hole pairs by photon absorption. However, unlike a photovoltaic detector, a photo-
conductor is constructed from homogeneous semiconductor material. Lacking a junction,
a photoconductor simply changes conductivity in response to applied photons, and cannot
generate an open-circuit voltage. A PC detector must have a bias voltage applied to
render the change in conductivity measurable, as seen in Fig. 5.24.

Figure 5.24. Photoconductor readout circuit.

The spectral response of a PC is similar to that of a PV detector, in that the
photon to be detected must have sufficient energy to raise an electron across the energy
gap from the valence band to the conduction band. In the 3- to 5-µm band, lead salts are
important photoconductors, with PbS having a cutoff wavelength of 3 gm, and PbSe
having a cutoff of 4.5 gm. Alloys of HgCdTe can be used for PCs that allow cutoff
wavelengths out as far as 25 gm. However, because there is no need to create a p-n
junction, PC materials have an added design flexibility compared to PV materials. It is
possible to take an intrinsic semiconductor and add impurity doping to create an
intermediate energy level inside of the energy gap. This configuration is called an
extrinsic semiconductor. Typically the host semiconductor for these materials is Ge or Si
because of the processing convenience. As seen in Fig. 5.25, the energy gap of the
extrinsic material is smaller than the corresponding intrinsic material, and hence the
extrinsic PC has a longer cutoff wavelength. Spectral response to 40 gm can be
achieved. The two most common extrinsics are Si:In, with a cutoff of 7 µm and Ge:Hg
with a cutoff of 14 gm. Longer cutoff wavelengths imply colder operation to suppress
dark current, which typically requires liquid He cooling for wavelengths past 12 gm.
Extrinsic PCs have an order of magnitude lower quantum efficiency than do intrinsic PCs,
becuase the dopant levels in a semiconductor lattice are necessarily much lower than the
carrier concentrations arising from the host atoms in an intrinsic material.

Photoconductor performance in terms of NEP is similar to that of the corres-
ponding PV detectors, except that photoconductors have a noise penalty of the square root
of two because generation-recombination noise has a higher rms variation than does shot
noise. In addition, 1/f noise is always present in a PC, because there must be a do current
flow. NEPs of 10-10 to 10-12 W are typical.
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Figure 5.25. Comparison of intrinsic and extrinsic energy-band diagrams.

Time constants for PCs are also similar to those for PVs, typically in the ps to
ns range. Photoconductive gain (a phenomenon where the photogenerated carrier lifetime
is longer than the carrier transit time through the device) can be used to increase the signal-
to-noise ratio, at the expense of a slower temporal response.

5.14 Photoemissive Detectors
Another class of photon detector operates on the photoelectric effect. Electrons

are emitted into a vacuum from a metal surface called a cathode when photons are
absorbed. The photons must have sufficient energy to overcome the "work function" of
the metal surface. Typical photoemissive detectors have their best response in the high-
energy (blue) end of the spectrum, with limited response toward the red and near IR. The
photoexcited electrons are accelerated across a vacuum gap by application of high
(typically kV) voltage and are collected on a metal plate called an anode. The basic form
of a photoemissive detector is seen in Fig. 5.26. Because of the requirements of an
optically transparent evacuated enclosure and a high voltage, this type of detector is not
practically used in the form seen in Fig. 5.26, but is used only in conjunction with
electron-amplification techniques that operate by secondary emission of electrons.

Oq

Figure 5.26. Vacuum photodiode.
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Secondary emission of electrons allows construction of a high-gain, low-noise
current amplifier. Figure 5.27 is a schematic of a photomultiplier tube (PMT), which
represents the best sensitivity obtainable from a photon detector. Electrons that are
accelerated in a vacuum are allowed to impinge on a surface called a dynode. When a
single electron reaches the dynode surface, the impact of the electron releases more
electrons from the surface. If several dynodes are used in series, with an electron-
accelerating voltage across each, a substantial current can be collected at the anode in
response to the absorption of only a single electron at the cathode. The amplification of
the photocurrent in this way has noise advantage over taking the photocurrent produced in
the vacuum photodiode of Fig. 5.26 directly to an external amplifier.

Performance of PMTs is generally limited by shot noise of either the signal
current or the dark current. Dark current is caused by thermionic emission from the
cathode and can be decreased by cooling the sensor. Response to individual photon events
is possible, with a NEP in the range of 5 x 10 -19 W. Responsivity is best in the blue,
with some capability to 1.2 µm with "negative electron affinity" cathode materials, which
have a particularly low work function. Time response for PMTs can be as short as 1 ns.
For certain laboratory-based applications, the advantages of single-photon sensitivity
(allowing photon counting) and fast response time can outweigh the disadvantages of the
PMTs limited spectral response, and the requirements of an evacuated glass envelope and a
high-voltage bias source.

^.- photon

evacuated glass envelope

e-

cathode	 more
electrons

bias	 loutput

voltage

anode

dynodes

Figure 5.27. Photomultiplier tube.

5.15 Bolometric Detectors
The bolometric sensor is a common type of thermal detector. A bolometer is a

resistor with a temperature-dependent resistance. Photons are absorbed on the sensor
surface, and the energy of the absorbed photons cause a temperature rise in the sensor.
The resulting change in resistance is sensed by an external circuit, as seen in Fig. 5.28.
As with the photoconductor, a bias current is required to sense the change in resistance.
The load resistor is often an element identical to the sensor but shielded from radiation.
This allows the circuit to be insensitive to changes in ambient temperature. As with the
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photoconductor, a bias current is required to sense the change in resistance. The load
resistor is often an element identical to the sensor but shielded from radiation. This
allows the circuit to be insensitive to changes in ambient temperature.

A figure of merit for bolometers is a, the fractional change in resistance per
degree of temperature change

a_IDR
R aT .	 (5.44)

Typically a is positive (= 0.5%I°C) for metals, because resistance of a metal rises with
increased temperature. For superconducting materials held near the transition temperature,
a is also positive and is orders of magnitude larger. For semiconductors, the resistance
decreases with increasing temperature, giving a a value in the range of — 5%/°C for
semiconductors at room temperature. Typical bolometer resistances are 10 kf2 to 1 MS.

Figure 5.28. Bolometric readout circuit.

The primary advantage of bolometers is their wide spectral response, from
visible to the long-wave IR. They are useful in applications where cryogenic cooling is
not feasible (from a weight, power, or cost viewpoint) but where IR detection is required
at wavelengths that would require photon detectors to be cooled. Time constants are
typically in the range of 1 to 100 ms, with NEPs in the range of 10-8 to 10 10 W. Better
sensitivities are obtained for the longer time constants. Bolometers have been recently
demonstrated in large focal-plane-array configurations, allowing development of uncooled
IR imaging sensors.

5.16 Pyroelectric Detectors
Another useful thermal detector is the pyroelectric. These sensors are fabricated

from materials (such as triglycerine sulfate) of sufficient asymmetry that they possess a
permanent dipole moment even in the absence of an applied electric field. The magnitude
of this dipole moment is temperature dependent. The sensing mechanism is based on the
fact that as photons are absorbed, the temperature of the element is changed, and there is
motion of bound charge on the surface of the material corresponding to the change in
dipole moment. If this material is placed between the plates of a capacitor, as seen in
Fig. 5.29, the motion of bound charge induces a current flow in the circuit connected to
the plates in response to dT/dt. The magnitude of the current flow is
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i= AI
dt ,	 (5.45)

where p is the pyroelectric coefficient (in the range of 10-8 Coul cm -2 K-1 ) and A is the
area of the capacitor. It is seen from Eq. (5.45) that a pyroelectric detector responds only
to a change in temperature. Cooling a pyroelectric sensor is generally not required,
because there is no dark-current contribution from the ambient-temperature environment.

Rf

r
pyroelectric

material
gout

capacitor
q 	plates

0 ---

Figure 5.29. Pyroelectric sensor configuration.

Pyroelectric sensors have both an electrical and a thermal time constant. The
electrical time constant is just the product of the feedback resistance and the capacitance of
the plates. An equivalent circuit used to determine the electrical time constant is shown in
Fig. 5.30. The thermal time constant is determined by the thermal mass of the sensor
material, and by the thermal conductance of the heat-loss paths.

Vout

Figure 5.30. Equivalent circuit for pyroelectric sensor.

The value chosen for the feedback resistance Rf affects both the responsivity and
the response time. As seen in Fig. 5.31, a large Rf (e.g., 10 9 S2) gives slow response
but large responsivity. Conversely, a small R f (e.g., 103 S2) gives faster response but at
the expense of a smaller responsivity.
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Figure 5.31. Choice of feedback resistor affects both responsivity and response time.

Noise performance for pyroelectrics is determined by Johnson noise and amplifier
noise. Better noise performance is achieved by pyroelectrics than by most other uncooled
thermal detectors, in the range of 10 -9 to 10-10 W. The time response is quite fast for a
thermal detector, with time constants of 100 ns or shorter possible, although with
relatively small responsivity. For many laser-measurement applications, the disadvantage
of small responsivity is outweighed by the good values of time response and NEP, along
with the broad spectral response typical of a thermal detector. Pyroelectric sensors are
widely used in laboratory instrumentation.
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Chapter 6
Lasers

6.1 Introduction
Our discussion of lasers will concentrate on the unique properties of laser

radiation. We will initially consider the characteristics of directionality, mono-
chromaticity, and brightness, and then investigate the Gaussian wave nature of a typical
laser output beam. We will conclude with issues relating to measurement of laser-beam
parameters.

6.2 Directionality, Monochromaticity, and Brightness
Directionality is one of the most useful properties of laser radiation. Laser light

propagates as a highly collimated beam, and has a diffraction angle that is determined
soley by diffraction effects. This high degree of collimation is unique to lasers, and is a
consequence of the fact that a laser is an extended source of plane wavefronts, as seen in
Fig. 6.1. The entire exit aperture of a laser emits rays that are parallel to the optic axis.
This behavior can be compared to a nonlaser extended source, where each point on the
source is an independent radiator that emits rays in all forward directions.

Laser Source	 Nonlaser Source

Figure 6.1. Comparison of laser and nonlaser extended sources.

Each source will have a divergence angle caused by diffraction, which is approximately
the wavelength divided by the beam diameter

9 = a,/Dbeam	 (6.1)

In a nonlaser source, the beam divergence caused by the lack of collimation is much larger
than that caused by diffraction. In the laser source, the diffraction spreading is the only
contribution to beam divergence.

A laser beam can be focused to a very small spot, whose size is determined by
diffraction. Only a very small region of the surface of the nonlaser source can be focused
to a diffraction-limited spot, as seen in Fig. 6.2. The size of that region is, as seen in
Fig. 1.26, determined by the footprint of the diffraction blur in the object plane of the
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optical system used to focus the radiation. Using such a small region of the nonlaser
source does not yield much focusable power. For example, the amount of flux that
passes through a 20-µm pinhole placed in front of a blackbody source is negligible.

Laser Source

Nonlaser Source

Figure 6.2. Focusing laser and nonlaser sources.

To obtain more focused power from a nonlaser source, we must increase the area
of the source that contributes to the focused beam (Fig. 6.3). In this case, an image of an
extended portion of the source is produced, with a size determined by geometrical
magnification effects, rather than a diffraction-limited spot. The issue of interest for
applications such as drilling or welding is spatial power density rather than power. The
total power in the focused image is increased, but the irradiance remains constant.

Nonlaser Source

Figure 6.3. Focusing of an extended region of a nonlaser source.
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Monochromaticity is another unique property of laser radiation. Lasers have a
very narrow spectral bandwidth AX

Xiaser = Xmidband + AX .	 (6.2)

A typical AX is 10-5 to 10 -8 µm. This very small wavelength interval can also be more
conveniently and commonly expressed in terms of a frequency interval. From the
relationship between frequency and wavelength (f = c/X), we obtain by a derivative

IAfI = AX, (c/X2) .	 (6.3)

For example, a laser with a X = 0.63 µm and a AX = 10-5 has a frequency bandwidth Af
8000 MHz. A laser at the same center wavelength and AX = 10-8 has Af = 8 MHz.

Compared to nonlaser sources, a laser is perceived to be very bright because the
solid angle into which the beam radiates and the spectral bandwidth of the beam are both
small. As a means to compare the perceived brightness, let us compare the spectral
radiance, L X (W cm 2 sr -1 µm-1 ), of a 5-mW laser having a divergence angle 0 = 1 mrad,
and AX = 10 -6 µm, with the spectral radiance of the sun (approximated by a blackbody at
6000 K) we find that L^ laser = 10 12 , while L^ sun = 106 •

6.3 Gaussian Beams
The simplest output from a laser has a circular Gaussian profile as seen in Fig.

6.4. Expressed in terms of irradiance, a radial profile of the beam has the form

E(p)= Eo exp{-2p2/w2 } ,	 (6.4)

where w is the semidiameter of the beam to the 1/e2 point (13.5% of the on-axis value) in
irradiance

E(p=w)= Eo exp{-2w2/w2 } = Eo exp{ -2} = Eo x 0.135 .	 (6.5)

Figure 6.4. Circular Gaussian irradiance profile of a laser beam.
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As seen in Fig. 6.5, given a value of w, any other beam dimension can be
calculated. The full-width-at-half-maximum (FWHM) can be found by solving for p such
that

E(p)= 0.5 Eo	(6.6)

0.5 = exp{-2p2/w2 } = Ln {0.5} _ —2p 2/w2 	(6.7)

p=0.589w; FWHM=2p=1.18w . 	 (6.8)

Figure 6.5. FWHM of laser beam is 1.18 w.

Because the irradiance profile of the beam is Gaussian, it extends to infinity in
the transverse direction. From the point of view of the size, weight, and cost of the
optical system, we must truncate the beam at some finite diameter and will lose some of
the power in the beam. The diameter of the optics is typically sized on the following
criteria. An aperture of diameter equal to 2w will pass 86% of the beam. An aperture of
diameter equal to 3w will pass 99% of the beam. Often, even for those situations in
which the power loss can be tolerated, the optics is sized at the D = 3w criterion because,
for that aperture size, the amount of diffracted power arising at the edge of the beam being
truncated is minimal.

Laser beams having a Gaussian profile will change w as they propagate, but will
keep a Gaussian profile for all distances z, as seen in Fig. 6.6. This property is a
consequence of diffraction, because the Fourier transform of a Gaussian is also a
Gaussian. Figure 6.6 assumes that the attenuation of the propagation medium is zero.
The decrease in peak beam irradiance seen with increasing z is a consequence of the fact
that the finite beam power is spread over a beam of increasing semidiameter as z
increases.

The beam waist, denoted w 0, is the minimum size that the beam attains as a
function of z. Diffraction determines the divergence angle 0 of a Gaussian beam, which
behaves as if the beam diffracts from an effective aperture that is approximately the size of
the beam waist

8 = ?Jicwp .	 (6.9)
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Figure 6.6. Gaussian beam changes semidiameter with z but keeps Gaussian profile.

We see in Fig. 6.7 that a beam with a smaller waist diverges more rapidly and a
beam with a larger waist diverges more slowly. The product of beam size and divergence
angle is a constant. Beam-expanding telescopes as seen in Fig. 6.8 are often used to
increase the beam diameter and hence reduce the divergence angle, especially where beam
propagation over a long distance is required. Expansion of the beam before propagation
results in a smaller beam size and higher irradiance downstream.

Figure 6.7. Divergence angle related to beam waist size.
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Figure 6.8. Beam-expanding telescopes reduce divergence.

Calculations with Gaussian beams are based on the propagation equation, which
defines the beam semidiameter w as a function of distance z. The location of the beam
waist is taken to be at the z = 0 point.

2

w(z) = wo 	1 + ^,z

w0	 (6.10)

We can use Eq. (6.10) to investigate the effect of expansion on long-range beam
size. Assuming a wavelength of 0.6 pm, let us compare the beam size w at z = 1 km for
a beam with w 0 = 1 mm and for the same beam after passing through a beam expander of
the type seen in Fig. 6.8, starting with a wo = 5 mm. We find that w(1 km) = 20 cm for
the unexpanded beam, and w(1 km) =4 cm for the expanded beam.

We can find the initial beam-waist size w 0 that minimizes w for any particular
distance z (neglecting the effect of atmospheric turbulence) by setting the partial derivative
aw(z)/awo = 0.

Evaluating Eq. (6.10) in the limit of large z, such that

2

w z» ßw0 _ 5,z
a,	 7n wo	

(6.11)

we obtain an expression for the far-field divergence angle

0 
w(z » it w^/%,)

=
z	 it w() .	 (6.12)
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The Rayleigh range ZR is the distance from the waist at which the semidiameter
of the beam has increased to a factor of 1.4 wo

zR = lt wOfl ,	 (6.13)

which can be verified by substitution of Eq. (6.13) into Eq. (6.10). Rayleigh range is a
measure of the distance over which the beam remains collimated. Note the quadratic
dependence of Rayleigh range on the beam waist size. A larger beam remains collimated
over a much longer distance.

Focusing a laser beam to a small spot is important to many applications of
lasers. For the typical case seen in Fig. 6.9 of the input beam waist located at the lens,
the focused spot size is calculated by multiplying the divergence angle 9 of the input
beam by the lens focal length. We obtain an expression for the size of the beam waist
located at the focus of the lens

wrocus =Af= Xf
71 winPut	 (6.14)

According to Eq. (6.14), given light with a wavelength of 0.63 µm, a focal length of 20
mm (corresponding to a 10-power microscope objective), and a winput = 0.5 mm, we find

wfocus = 8 tm. For the usual lens-diameter criterion used with Gaussian beams (Diens =
3 winput)> Eq. (6.14) is consistent with the usual diffraction formula of Eq. (1.21). The
difference between the two formulations is that Eq. (1.21) assumes that the aperture of the
system is uniformly illuminated, and Eq. (6.14) accounts for the apodization resulting
from the Gaussian beam profile. In both cases, the focused spot size (in the absence of
aberrations) is determined by diffraction effects.

Figure 6.9. Focusing a Gaussian beam to a spot.
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6.4 Temporal Laser-Beam Measurements
In this section we consider temporal and spatial measurements of laser beams.

From the temporal viewpoint, the simplest measurement is average power 4 in W. This
is adequate for continuous wave (cw) laser output, which does not have a fast time
dependence. The output voltage from the detector is proportional to the average power
falling on the detector within the measurement interval. A thermal detector is typically
used for an average-power measurement, with a time constant in the range of 0.2 to 0.5 s.
Typical measurement accuracy is 5%, over a range of beam powers from 100 µW to 100
W. Generally the active detector area is of sufficient size to acquire the entire beam.

For measurement of pulsed laser output, the parameters of interest seen in Fig.
6.10 are 4(t) (laser power as a function of time), the pulse duration r (how much time the
laser power exceeds a certain threshold value), the period T (amount of time in which a
periodic P(t) repeats itself), the repetition rate 1/T (number of pulses per second), and the
duty cycle ti/T (fraction of time for which the laser power exceeds threshold). Typical
values of duty cycle are 0.1% to 5%. The peak power is the maximum value of 0(t),
which can be measured with a "peak hold" circuit following the detector. The average
power is the energy per pulse divided by the period. The energy per pulse (Joules) is the
area under the 4(t) during the pulse duration.

Figure 6.10. Temporal laser-beam parameters.

Given a measurement of average power of 300 mW, with a duty cycle of 1%,
and a repetition rate of 40 pulses/s, we can find (assuming square pulses) the energy per
pulse and the peak power. The period T = 25 ms, and r = 0.01 x T = 250 µs. For 300
mW average power, the energy contained in one period is 300 mW x 0.025 s = 7.5 mJ.
However, this energy is contained in 250 p.s of the pulse. Thus, the peak power is 7.5
mJ/250 gs = 30 W. The energy per pulse (7.5 mJ) is equal to the energy per period.

6.5 Spatial Laser-Beam Measurements
When measuring the spatial distribution of irradiance of a laser beam, the main

parameter of interest is the diameter to the 1/e 2 point in irradiance (2w). Also of interest
is the spatial profile function: that is, how closely is the beam modelled by a Gaussian?

There are three approaches to this problem. The beam size can be estimated by
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eye with a calibrated target. An example of this is to shine the beam on the wall and
measure the width with a ruler. This approach is cheap and convenient, but it has poor
accuracy, and is limited in effectiveness to relatively large beams. A second method is to
use an array of individual photodetectors, such as a CCD array. This approach is fairly
expensive, but has the advantage of being able to display the beam profile on a TV
monitor or an oscilloscope in real time. The beam size must be fairly large for this
approach to work well. Considering that the detector-to-detector spacing is generally
greater that 15 µm, this technique is not appropriate for tightly focused beams.

The most versatile technique is a movable blocking device with a single large
detector. This method is inexpensive to implement, and can measure the profile of beams
near their focus. As seen in Fig. 6.11, typically a blocking element (pinhole, slit, or
knife edge) is placed on a movable micrometer stage in front of the detector. The output
is recorded as a function of the along-scan position of the blocking device. Multiple
scans can be recorded at various along-beam positions to find the best-focus position of
the beam.

pinhole, slit,
knife edge

laser beam	 detector

micrometer stage

Figure 6.11. Movable blocking device for beam-profile measurement.

When a pinhole is used as the blocking device, a point measurement of the beam
is approximated (Fig. 6.12). There is a small amount of averaging in the
perpendicular-to-scan direction. A pinhole scan provides information on the actual profile
of the beam, and can verify or disprove the assumption of a Gaussian profile. The
pinhole measurement does not require a large dynamic range in the detector, in that the
whole beam is never allowed to fall on the detector. Because the measured profile will be
the convolution of the beam profile with the pinhole profile, the pinhole size must be
considered relative to the size of the beam to be measured. The effect of the finite
dimension of the pinhole can be removed by a deconvolution procedure in the data
processing.

Using a slit, as seen in Fig. 6.13, rather than a pinhole results in averaging of
the beam profile in the direction perpendicular to the scan. This yields less information
about the actual profile than the pinhole measurement. The resulting data will usually
approximate a Gaussian, even if the original beam profile is not. Compared to a pinhole
scan, a larger linear dynamic range is required of the detector system, because more of the
beam is passed to the sensor. As with pinhole-based measurements, the effect of the slit
width must also be considered in the interpretation of the measurement results.
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pinhole

laser beam	 detector

micrometer stage

Figure 6.12. Beam-profle measurement using a pinhole.

slit

laser beam	 detector

micrometer stage

Figure 6.13. Beam-profle measurement using a slit.

If a knife edge (Fig. 6.14) is used as the beam-blocking device there is no
convolution effect in the data. The knife-edge scan produces a cumulative profile of the
beam, averaged in the perpendicular-to-scan direction. As seen in Fig. 6.15, taking the
spatial derivative of the knife-edge data yields the beam profile. A good initial signal-to-
noise ratio is required because the derivative process is susceptible to noise in the data.
This approach requires the widest linear dynamic range from the detector, because the
amount of flux passing to the sensor ranges from zero to the full beam power.

laser detector

micrometer stage

Figure 6.14. Beam-profle measurement using a knife edge.
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detector signal 

d/dx

knife edge	 distance
position

Figure 6.15. Data processing for knife-edge scan.

Figure 6.16 illustrates a convenient way of displaying a laser beam profile in
real time, using a stationary slit and detector, with a beam that is moved past them by a
galvanometer mirror or a rotating-polygon scanner. This method requires distance for
implementation of the optical lever, and so will not work close to a focusing lens. The
beam scans repetetively across the detector, so that the results can be displayed on an
oscilloscope, which is useful if the beam changes with time.

Figure 6.16. Beam-profle measurement using a stationary slit and a scanned beam.
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Johnson noise, 63, 67-69	 Quantum efficiency, 74

Kelvin, 31 Radiance, 33, 36-40, 47
Keplerian telescope, 14, 87-88 Radiometric units, 33
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Marginal ray, 8-9 Resolution, 18, 26-28
Modulation depth, 25-26 Response speed, detector, 55, 60-62,
Modulation transfer function, 25-30 75-76, 78-79, 82

Responsivity, 55-56, 58-59, 70, 82
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Open-circuit voltage, 74 Signal-to-noise ratio, 55, 63, 65-66,
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Optical transfer function, 25 Solid angle, 32-33, 35-37

Spatial frequency, 23-30
Paraxial approximation, 3, 7, 16, 18, 31, Spectral responsivity, 55-56, 58-59

38, 43 Spectral units, 47-48, 50, 59
Phase transfer function, 25 Speed of light, 2, 31
Photoelectric effect, 78-79 Spherical aberration, 18
Photoemissive detector, 78-79 Stefan-Boltzmann constant, 31, 51
Photomultiplier tube, 79 Stefan-Boltzmann Law, 49-51
Photon detector, 55-59, 72 Steradian, 32
Photon energy, 2, 34, 56
Photon-based units, 33-34, 58, 59 Telescope, afocal, 14-16
Photoconductive detector, 72, 77-78 Telescope, Galilean, 14-15
Photovoltaic detector, 72-76 Telescope, Keplerian, 14
Planck equation, 49-51 Temperature, 31, 48-49
Planck's constant, 2, 31 Thermal detector, 55-56, 59
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Transfer function, temporal, 61-62
Transmission, 20
Trapezoidal integration, 47-49
Units, radiometric 33

Vignetting, 13

Waist, laser beam, 86-89
Wavefront, 3, 83
Wavelength, 1-2, 17-18,47
Wavelength, cutoff, 56-58, 72-73, 77-78
White noise, 64
Wien Displacement Law, 49, 51
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