
Automating Vibrational Spectroscopy Data
Preprocessing and Multivariate Analysis

with MATLAB®

by Tanmoy Bhattacharjee

doi: http://dx.doi.org/10.1117/3.2543229

PDF ISBN: 9781510631250

epub ISBN: 9781510631267

mobi ISBN: 9781510631274

Published by

SPIE Press
P.O. Box 10
Bellingham, Washington 98227-0010 USA
Phone: +1 360.676.3290
Fax: +1 360.647.1445
Email: Books@spie.org
Web: http://spie.org

Copyright © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any
form or by any means without written permission of the publisher.

This SPIE eBook is DRM-free for your convenience. You may install this eBook on any
device you own, but not post it publicly or transmit it to others. SPIE eBooks are for
personal use only; for more details, see http://spiedigitallibrary.org/ss/TermsOfUse.aspx.

The content of this book reflects the work and thoughts of the author(s). Every effort has
been made to publish reliable and accurate information herein, but the publisher is not
responsible for the validity of the information or for any outcomes resulting from reliance
thereon.

Spotlight vol. SL52
Last updated: 3 September 2019

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

http://dx.doi.org/10.1117/3.2543229
mailto:Books@spie.org
mailto:Books@spie.org
http://spie.org
http://spie.org
http://spiedigitallibrary.org/ss/TermsOfUse.aspx
http://spiedigitallibrary.org/ss/TermsOfUse.aspx
http://spiedigitallibrary.org/ss/TermsOfUse.aspx

Table of Contents

Preface vi

1 Background 1

2 Overview 4

3 MATLAB Desktop 4

4 Note on Array Indexing and the “Loop” Function 5

4.1 Array indexing 5
4.2 “Loop” function 8

5 Basic Preprocessing Operations 9

5.1 Importing a spectrum 9
5.2 Separate wavenumbers from intensity 11
5.3 Perform the first derivation 11
5.4 Select a specific spectral range 13
5.5 Area normalization 15

6 Automating Preprocessing for Multiple Spectral Files 17

7 Automating Preprocessing for Multiple Files Contained
in Multiple Subfolders 24

8 Performing Multivariate Analysis 27

8.1 Principal component analysis 27
8.2 Principal component–linear discriminant analysis 31
8.3 Support vector machine 42

9 PCA Plotting 46

10 Turning Features On and Off 57

11 Note on MATLAB Functions 77

12 Final Note on How to Best Use the Script 79

iii

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

13 Common Errors 80

14 Automating Mean and Standard Deviations Calculations: An Example 81

References 87

iv Table of Contents

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

SPIE Spotlight Series

Welcome to the SPIE Spotlight series! This growing collection of concise eBooks
serves as an entry point for particular topics in optics and photonics suitable for
researchers, engineers, managers, executives, and educators. Spotlights fill the
community need for timely and relevant references at a level of detail bridging
the gap between in-depth journal articles and broad fundamental tutorials.
Whatever your interest or need, we hope this series meets your expectations and
encourage you to submit your own ideas for future Spotlights online.

Craig Olson, Series Editor
L3 Technologies

Associate Editors

Brian Sorg
National Cancer Institute
Biomedical Optics/Medical Imaging

Stefan Preble
Rochester Institute of Technology

Semiconductor, Nano-, and Quantum Technology

Daniel Gray
Gray Optics
Optical Design and Engineering

Matthew Jungwirth
CyberOptics Corp.

Optical Design and Engineering

,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

http://spiepress.msubmit.net

Preface

Vibrational spectroscopy, with its sensitivity to biochemical changes and its
potential for rapid noninvasive use, is a powerful tool for myriad clinical applica-
tions. A tremendous amount of research has been and continues to be reported,
supporting existing applications and opening up exciting new avenues. As a
result, the amount of data generated has exploded, demanding newer and faster
analysis tools. It is no longer tenable to rely on programming experts for each
and every problem since it restricts quick testing of ideas and exploring work-
flows. Knowledge of basic programming can help spectroscopy practitioners save
enormous amounts of time spent on data analysis and channel that time toward
experimentation. Learning general programming, however, can be time consum-
ing and labor intensive. Therefore, this Spotlight aims to specifically teach only
the commands necessary to analyze spectroscopic data (Raman/Fourier transform
infrared (FTIR)) using MATLAB®. It explains how to build an analysis routine to
apply a step-by-step combination of MATLAB commands and perform prepro-
cessing and multivariate analysis directly from spectra-containing folders with a
single click. As an example, an automated script that can import data from several
folders, perform first derivatization, select a specific spectral range, perform area
normalization and principal component analysis (PCA), plot PCA scores, save
principal components, perform linear discriminant analysis (LDA) on PCA
results, provide confusion matrix, cross-validate the LDA by the leave-one-out
method, and perform predictions using the LDA model, all with a single click,
is discussed in detail. A script for a support vector machine is also dealt with
briefly. Using these scripts, the reader can build their own script dedicated to
the routines used in their laboratory by making minor changes. As an example,
modification of the code to automate mean and standard deviation calculations
is included. The Spotlight is specifically meant for specialists from backgrounds
other than mathematics and programming who wish to automate repetitive analy-
sis and thus avoid technical jargon.

vi

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

1 Background

Vibrational spectroscopy is a method of probing sample molecular vibrations by
subjecting them to light irradiation. Most biomolecules present a unique set of
vibrations, which consequently produce an identifiable spectroscopic signature.
Thus, the technique can be used to detect and quantify changes in sample biomo-
lecular composition. Apart from specificity, vibrational spectroscopy is also very
sensitive and can detect minute changes. Additional attributes, such as the non-
invasive and nondestructive nature of analysis and amenability to in vivo applica-
tion designs, render it ideal for use in biology and medicine. Applications of this
phenomenon are myriad and widespread. It is beyond the scope of this Spotlight
to review all biological/medical applications, and readers can refer to excellent
reviews on the subject by Hanlon et al.,1 Tu and Chang,2 Pence and
Mahadevan-Jansen,3 Petry et al.,4 Singh et al.,5 Cialla-May et al.,6 Zhao et al.,7

Ahn et al.,8 Krafft et al.,9 and many others. One of the major focus areas is the
development of diagnostic and treatment tools for the biomedical industry, which
has a market with a 6.4% growth rate. Within this industry, vibrational spectros-
copy is especially suited for disease screening, early diagnosis, and disease pre-
vention, and caters to a market with a 7.3% growth rate.8

What mainly sets this technique apart from conventional screening/diagnostic
methodologies is its ability to provide a complete biochemical fingerprint of the
sample. Instead of detecting one or a few disease-associated factors, it gives infor-
mation on the whole metabolome—that is, the overall change in biomolecules
such as proteins, lipids, nucleic acids, carbohydrates, and some other specific mol-
ecules. This attribute is of particular advantage in complex diseases such as
cancer, where malignancy-specific changes vary greatly. The ability to profile an
entire sample’s biochemistry also makes this a powerful tool for detecting
changes from the normal, potentially signaling disease onset. However, this very
feature complicates data analysis to a great extent. Multiple spectral signatures
need to be compared across samples and give a single definitive output regarding
the sample. In light of extreme in-group variations encountered in biological sys-
tems, separating healthy tissue from diseased, especially for early onset, can
become very challenging.

Over the years, researchers have developed mathematical tools to tackle this
problem, giving rise to the field of chemometrics.10 A themed collection called
“Chemometrics: Tutorials” in advanced data analysis methods produced by the
Analytical Methods journal can be referred to for more insights on preprocessing11

and multivariate analysis.12,13 Gautam et al. have reviewed data processing in
detail, specifically for vibrational spectroscopy.14 The primary aim of the analysis
is to weigh the importance of each peak in the spectrum with respect to all other
spectra, decide which peaks have maximum variation, and reduce the data to take
only the chosen peaks into consideration for the final output. It is clear that the
analysis relies heavily on spectral variations, and thus it is very important to

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 1

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

remove all confounding variations from the input spectra before subjecting them
to analysis. This operation is referred to as preprocessing. Common confounding
factors corrected for are sample background, optical errors, sample fluorescence,
charge-coupled device (CCD) response, and intensity variations. Optical errors
and sample background are corrected by acquiring a spectrum without the sample
and subtracting it from the sample spectrum. CCD response variation is offset by
dividing the sample spectrum by response from a standardized material (such as a
National Institute of Standards and Technology material). This step is important
for between-machines comparison and need not be applied if all data originate
from the same instrument. Fluorescence background may be removed by baseline
correction or by spectrum-first derivatization. Baseline correction involves sub-
tracting a polynomial from the sample spectrum and can be subjective. First deri-
vatization is an objective method and reduces the regions of spectra, where any
change in the y-axis values is gradual with respect to the x-axis values to near
zero. Since fluorescence signals are broad in nature, fluorescence signals are
accordingly reduced to near zero. In the case of sharp vibrational peaks, changes
in y-axis values are very rapid with respect to the corresponding x-axis values,
leading to nonzero values, isolating signals from background. Finally, intensity-
related variations can be removed by normalization. Normalization helps analysis
based only on peak variations—presence/absence/shape changes, rather than peak
intensity.

The preprocessed spectra are subjected to multivariate analysis. As mentioned
earlier, this selects important spectral variations and provides output based only
on the chosen signatures. The most common multivariate analysis tool is principal
component analysis (PCA). It is an unsupervised tool that does not take group
information into consideration. Simply put, it does not matter whether input spec-
tra are supplied with labels “normal,” “abnormal,” etc., or are unlabeled. PCA cal-
culates the mean of all input spectra, calculates the variation of each spectrum
from the average, and then ranks the varying spectral signatures with respect to
prevalence.

Consider that wavenumbers 1200, 1450, and 1680 cm−1 vary in every input
spectra, 1340 and 1745 cm−1 vary in 50% input spectra, and 1300 cm−1 is varia-
ble in only 2% spectra; then PCA ranks the group 1200, 1450, and 1680 cm−1 as
most important, 1340 and 1745 cm−1 as next, and 1300 cm−1 as having little sig-
nificance. The data are transformed to contain only these important wavenumbers
and used to separate spectra on the basis of these wavenumbers. The PCA ranks
are called principal components (PCs), and the results are presented as graphs of
PC scores, where scores are values assigned to each spectrum depending on the
extent of variation with respect to the chosen PC. Thus, the plot of PC1 versus
PC2 will group spectra with respect to presence/absence/change in wavenumbers
1200, 1450, and 1680 cm−1 and 1340 and 1745 cm−1. PCA is usually considered
a robust analytical tool, uninfluenced and unbiased. However, it is limited by the
number of dimensions that can be plotted and visualized. For example, one cannot

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB2

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

visualize group separation in a plot of PC1 versus PC2 versus PC3 versus PC4,
since only three plotting axes are available.

One way to circumvent this problem uses supervised analysis, which requires
input in groups with labels. These methods work on principles similar to PCA,
but there is a bias toward increasing intergroup separation and decreasing intra-
group separation by selecting the best orientation in n-dimensions. The results are
presented in the form of a confusion matrix; it displays the placement of each indi-
vidual spectrum in a particular group. The spectrum may be correctly placed in the
correct group (the same group as labeled) or in the wrong group. By the unique
arrangement of the confusion matrix, all diagonal element spectra are correctly
placed, whereas nondiagonal elements are incorrectly grouped. Such discriminant
analyses can apply linear, quadratic, partial least square, or other equations to
achieve group separations. They are prone to over-fitting, which can lead to errone-
ous conclusions. To reduce the chances of such errors, the spectra are further sub-
jected to cross-validation. Cross-validation works by dividing the input spectra
into training and test groups. The validity of the analysis is then checked based
on the power of the subset training spectra group building a model that can cor-
rectly predict the test group spectra. The more spectra that are correctly predicted,
the better the analysis. A commonly used cross-validation is the leave-one-out
(LOO) method, whereby one spectrum is removed and the remaining input spectra
are used to train a model, which is then used to predict the group of the one
removed spectrum. This is repeated until all spectra have been left out once. The
robustness of the model is determined by the number of spectra placed correctly
in groups. Finally, for every type of analysis, one can use the built model to predict
the group of the spectra whose group is unknown. This process is called test
prediction.

There are several varied options available for preprocessing and analysis. Every
method has its own advantage and disadvantage, and spectroscopists need to adapt
the analysis routine that best suits the objectives of their studies. An analysis routine
is the group of consecutive steps that are followed to analyze spectroscopy data.
This understandably varies from lab to lab as well as experiment to experiment
within a lab. There are several types of software available to preprocess spectra
and perform multivariate analysis, such as LabSpec, Origin, OPUS, Minitab,
Cytospec, and many others. They are excellent tools for the exploration and fixing
of a routine. However, once a routine is established, it is time consuming to con-
tinue using multiple software for different steps. Programming platforms, such as
MATLAB®, R, Python, SciLab, etc., allow scripting that can incorporate all steps
and allow an analysis with a single click. Features such as turning on/off certain
steps or multivariate analysis can be designed without forgoing the single-click
option. Ultimately, the scripts may prove to be quickly exploratory as well as rou-
tine analysis tools, with the advantages of rapidity, accuracy, and ease of use. The
Spotlight details the simple commands that can achieve this with instructions for
using them to yield user-specific codes.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 3

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

2 Overview

The tutorial is structured according to the steps of preprocessing and multivariate
analysis. We will, therefore, start with a discussion on how to import a spectrum
into MATLAB, followed by how to derivatize this spectrum, select a specific
spectral range from the derivative spectrum, and normalize the derivative
spectrum of the selected range in Section 4. Section 5 will demonstrate how to
automate the preprocessing by scripting to import multiple spectra and applying
preprocessing commands to them. Section 6 will extend this concept to import
multiple spectra from multiple subfolders and preprocess them all. Section 7 will
provide details on applying PCA, PC-LDA, and leave-one-out cross validation
(LOOCV) on the preprocessed spectra with a note on support vector machines
(SVMs). Section 8 teaches scripting of test prediction code. Sections 9 and 10 will
discuss automating PCA plotting and script fine-tuning to build in options to turn
features on and off. Common errors encountered while executing the code and an
example of how to adapt the code to automate other processes such as mean and
standard deviation calculations are included at the end.

3 MATLAB Desktop

Extensive documentation on the installation and use of MATLAB can be found
using MATLAB help or by using any search engine. Figure 1 shows the editor,

Figure 1 Desktop view of MATLAB. The command window is where commands are typed,
while the variable window or workspace is where variables used can be seen. Editor is the
place where a set of commands can be written, edited, and executed.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB4

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

command window, and workspace. The initial sections will use the command
window to type the commands and produce the output. Later on, as we master
the commands, we will use them to make an automated script, wherein we will
be using the editor. In all of the sections, a set of commands or scripts to be
pasted in the editor and executed are enclosed in a box.

4 Note on Array Indexing and the “Loop” Function

Before we dive into the particulars of commands required for spectroscopy data
analysis, it will be helpful to understand two recurring concepts. The first is array
indexing. An array is a set of numbers arranged in a tabular form. Each number is
called an element, and the position of the element is called the index. Several of
the later commands will involve identifying the index, changing, isolating, or cut-
ting rows and columns, or deleting certain parts of the array. The other is the
“loop” function. As the name suggests, it is applied to repeat a set of commands
for a particular number of times. This function is critical, as we aim to automate
a repetitive process.

4.1 Array indexing

Let us begin with an example of a simple array:

1 6 11 16

2 7 12 17

3 8 13 18

4 9 14 19

5 10 15 20

We can assign them row and column numbers as follows:

Column 1 Column 2 Column 3 Column 4

Row 1 1 6 11 16

Row 2 2 7 12 17

Row 3 3 8 13 18

Row 4 4 9 14 19

Row 5 5 10 15 20

Now, we will assign a position to each element in brackets beside them.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 5

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Column 1 Column 2 Column 3 Column 4

Row 1 1 (1, 1) 6 (1, 2) 11 (1, 3) 16 (1, 4)

Row 2 2 (2, 1) 7 (2, 2) 12 (2, 3) 17 (2, 4)

Row 3 3 (3, 1) 8 (3, 2) 13 (3, 3) 18 (3, 4)

Row 4 4 (4, 1) 9 (4, 2) 14 (4, 3) 19 (4, 4)

Row 5 5 (5, 1) 10 (5, 2) 15 (5, 3) 20 (5, 4)

Thus, every element has a unique set of numbers to identify its position, called
the index. The index of “1” is “(1, 1),” whereas the index of “20” is “(5, 4).”

To create an array in MATLAB, we can simply type it out, row by row, and
press enter to start a new row within square brackets. Let us assign the array to a
variable “a” (any alphabet or word can serve as a variable, it is up to the user).

>> a =

[1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20]

a =

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

Note that the input is shown in bold after the symbol “>>” in “Courier
New” font, and the output by MATLAB is in italics.

To find out the number at a particular position in an array, we can simply type
the name of the array (row, column). For example, if we want to find the number
in the first column of the first row of array “a,” we can type

>> a (1,1)
ans= 1

Similarly, to find the number in the second column of the fifth row, we
can use

>> a (5,2)
ans= 10

To find out all elements in the first row, we use the name of the array (row, :).
The colon symbol translates to “all” in this case. Thus, MATLAB understands the

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB6

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

same command as the name of the array (row, all). To find all of the elements in
row 1, we type

>> a (1, :)
ans= 1 6 11 16

Similarly, to get all elements in a column, e.g., column 2, we type

>> a (: , 2)
ans =

6
7
8
9
10

To find all elements in more than one row, we can simply provide the range
of rows—name of the array (from row x to row y, :), where x and y are any num-
ber. For example, to find all elements in the first three rows of the array “a,”
we type

>> a (1:3, :)
ans =

1 6 11 16
2 7 12 17
3 8 13 18

Here, the colon translates to “to.” For example, if we want MATLAB to list
all numbers from one to five, we can type

>> 1:5
ans =

1
2
3
4
5

If we want MATLAB to display the numbers at particular intervals, the com-
mand is—from number x: interval: to number y, where x and y can be any num-
ber. So, if we want MATLAB to show every second number between 1 and 5,
we can type

>> 1:2:5
ans =

1
3
5

Finally, we may need MATLAB to find numbers that are neither complete
rows nor columns. In such cases, we can simply give the range for both rows

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 7

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

and columns for which we need the elements displayed —name of the array (row
x to row y, column v to column u), where x, y, u, and v can be any number. For
example, if we want all elements that belong to rows two to three and columns
one to three, we can type

>> a (2:3, 1:3)
ans =

6 11
7 12
8 13

4.2 “Loop” function

The structure of a loop command is

for (number of repeats)
commands to be repeated

end

For example, if we want a variable, say, “b,” to change from one to five, we
can type

>> for i= 1:5;
b= i

end

b = 1
b = 2
b = 3
b = 4
b = 5

Note that the semicolon after “1.5” stops the result from being displayed.
If we do not include the semicolon, we will get the outcome of typing i = 1:5 in
MATLAB:

>> for i= 1:5
a= i

end

i = 1
i = 2
i = 3
i = 4
i = 5

b = 1
b = 2
b = 3
b = 4
b = 5

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB8

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

5 Basic Preprocessing Operations

5.1 Importing a spectrum

We will begin with the first step—importing a spectrum (Fig. 2). The command
for importing a spectrum file in extensions “txt” or “asc” is dlmread (filename).
To import a file with name “alpha spectra (1),” we need to type

>> dlmread(‘alpha spectra (1).txt’)
ans =

4000 0.055765
3998 0.055832
3996 0.056107
.
900 −0.06471

Certain spectra files contain text along with wavenumber/intensity informa-
tion. An example of such a file is shown in Fig. 3. In such cases, it is vital to
remove these text lines while importing into MATLAB. To achieve this, we can
extend the command—dlmread (filename,” number of lines to skip, 0). For exam-
ple, in the file in Fig. 3 named “alpha spectra (1),” there are a total of 56 lines of
text/spaces before the wavenumber and intensity values start. Thus, 56 lines need
to be skipped. For this, we can type

>>dlmread(‘alpha spectra (1).txt’,”,56,0)
ans =

4000 0.055765
3998 0.055832
3996 0.056107
.
900 −0.06471

Figure 2 An example of FTIR spectrum.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 9

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The spectral information is stored in the variable “ans.” It is more convenient
to define a variable and put the information in that variable by defining the name
of the variable= dlmread (filename). For example, we can store the spectral infor-
mation in “alpha spectra (1).txt” in the variable “data” by typing

>> data=dlmread(‘alpha spectra (1).txt’)
data =

4000 0.055765
3998 0.055832
3996 0.056107
.
900 −0.06471

Figure 3 A spectral file containing 56 lines of text.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB10

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

For files with extension “csv,” the command will change to csvread (filename,
number of lines to skip, 0). For example, for a file named “H2.csv,” where we need
not skip any lines, the import command will be csvread (“H2.csv,” 0, 0).

5.2 Separate wavenumbers from intensity

Every spectrum is a list of wavenumbers and their corresponding intensities.
However, only intensity values are subjected to preprocessing and not the wave-
numbers. Therefore, before proceeding to preprocessing, the “intensity” column
(column 2) needs to be separated from the “wavenumber” column (column 1).
We will store the wavenumbers in variable “datax,” since wavenumbers form
the x axis of the spectrum. The command for this is

>> datax=data(:,1)
datax =

4000
3999
3998
.
900

We will store the “intensity” column in variable “datay” with the command

>> datay=data(:,2)
datay =

0.055765
0.055832
0.056107

. . .
−0.06471

Script: Import single spectrum, separate wavenumber and intensity:

data=dlmread(‘alpha spectra (1).txt’);
datax=data(:,1);
datay=data(:,2);

5.3 Perform the first derivation

We will obtain first-order derivatives of intensity values in “datay” and store the
results in another variable called “fd.” To perform this, we will type

>> fd=diff(datay)./diff(datax)
fd =

−3.3E-05
−0.00014
8.65E-05

. . .
0.00072

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 11

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Since the operation involves the subtraction of every number from its con-
secutive number, the final array has one row less than the original array. Hence,
the wavenumber containing variable “datax” also needs to be reduced by one
row. This is done by typing

>> dataxd=datax(1:length(fd))
dataxd =

4000
3998
3996
. . .
902

The command—length, as the name suggests—finds the number of rows in a
particular array. We can take the example of array “a.” We type the following to
first get the array:

>> a
a =

1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20

Then, we type

>> length(a)
ans= 5

To find the length of the variable “datay,” we type

>> length(datay)
ans= 1552

Then, we find length of fd

>> length(fd)
ans= 1551

Thus, when we type dataxd = datax (1:length (fd)), it means
dataxd = datax (1: 1551). Thus, all elements from row 1 to row 1551 will
be stored in “dataxd,” which is one less than the original length.

Some spectroscopists may like to explore the use of the second-order deriva-
tive, instead of the first order. In such a case, the command will simply change to
diff (datay, 2)./ diff (datax, 2).

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB12

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Script: Import single spectrum, first derivative (Fig. 4):

data=dlmread(‘alpha spectra (1).txt’);
datax=data(:,1);
datay=data(:,2);
fd=diff(datay)./diff(datax); dataxd=datax(1:length(fd));

5.4 Select a specific spectral range

Some regions of spectra are rich in peaks (400 to 1800 cm−1 and 2800 to
4000 cm−1), while other regions lack spectral signatures (1800 to 2800 cm−1).
Spectroscopists tend to use the signature-rich regions for analysis. To
choose these regions in MATLAB, we can use the operations to extract
particular row and column elements from an array. We have already stored the
wavenumbers of the spectrum from “data” after applying the first derivative in
“dataxd”:

>> dataxd
dataxd =

4000 Row 1
3998 Row 2
3996 Row 3

1800 Row 1101
1798 Row 1102

1202 Row 1400
1200 Row 1401

902 Row 1551

Figure 4 Spectrum after applying the first derivative.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 13

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Let us say we wish to extract 1200 to 1800 cm−1 from this spectrum. In that
case, we need to find the index for elements 1200 and 1800. To find the index
of 1200 and store it in a variable “p1,” we type

>> p1=find(dataxd==1200)
p1= 1401

To store the index of 1800 in variable “p2,” we type

>> p2=find(dataxd==1800)
p2= 1101

We find out if p2 > p1 or p1 > p2 by

>> p3=p1−p2
p3= 300

Since “p3” is positive, p1 > p2. Therefore, while extracting, we have to start
from p2 and end with p1.

Then, we perform the element-selecting operation on the array “fd,” which
has the first derivative of the spectrum and store it in variable
“yInterpolate.” Note that the values are different from “data” because
we are using the results after applying the first-order derivative on “data”:

>> yInterpolate=fd(p2:p1)
yInterpolate =

0.000202
0.00013
−7.6E-05

. . .
−7.9E-05

Since the operation decreases the number of rows in the “intensity” column,
the number of rows need to correspondingly decrease in the “wavenumber”
column. We can use the same operation on “dataxd” and store the result in
variable “xInterpolate”:

>> xInterpolate=dataxd(p2:p1)
xInterpolate =

1800
1798
1796
. . .
1200

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB14

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Script: Import single spectrum, first derivative, selecting specific spectral
range (Fig. 5):

data=dlmread(‘alpha spectra (1).txt’);
datax=data(:,1);
datay=data(:,2);
fd=diff(datay)./diff(datax);
dataxd=datax(1:length(fd));
p1=find(dataxd==1200);
p2=find(dataxd==1800);
p3=p1-p2;
yInterpolate=fd(p2:p1);
xInterpolate=dataxd(p2:p1);

5.5 Area normalization

As mentioned earlier, normalization is used to remove intensity variation. There
are different types of normalization—specific peak normalization, highest peak
normalization, area normalization, and so on. In this tutorial, we will use area nor-
malization. We will use the output from the previous step. We have the wavenum-
ber values stored in “xInterpolate” and derivatized values in
“yInterpolate.” First, we will calculate the area under the curve and store
the area in variable “Area” using

>> Area=trapz(xInterpolate,yInterpolate)
Area= 0.0949

In this tutorial, the idea is to normalize the area under the curve of every
spectrum to 100. Therefore, we will divide the area by 100:

Figure 5 First derivatized spectrum after selecting the spectral range 1200 to 1800 cm−1.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 15

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

>> AreaS= Area/100
AreaS= 0.000949

We will then divide every intensity value by the “AreaS” and store it in
variable “norm” by

>> norm=yInterpolate/AreaS
norm =

0.212758
0.136924
−0.08005

. . .
0.08268

Script: Import single spectrum, first derivative, select spectral range, and
area normalization (Fig. 6):

data=dlmread(‘alpha spectra (1).txt’);
datax=data(:,1);
datay=data(:,2);
fd=diff(datay)./diff(datax);
dataxd=datax(1:length(fd));
p1=find(dataxd==1200);
p2=find(dataxd==1800);
p3=p1-p2;
yInterpolate=fd(p2:p1);
xInterpolate=dataxd(p2:p1);
Area=trapz(xInterpolate,yInterpolate);
AreaS= Area/100;
norm=yInterpolate/AreaS;

Figure 6 First derivatized spectrum in the selected spectral range after area normalization.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB16

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

6 Automating Preprocessing for Multiple Spectral Files

In this section, we will learn to automate the preprocessing for multiple spectral
files in a folder. Let us consider a folder containing 11 spectra files (Fig. 7).

To begin, we must first make this folder the current directory in MATLAB.
This can be done by typing (Fig. 8)

>> cd(‘C:\Users\Tanmoy\Desktop\Main Folder\A’)

We can then store the files with extension “txt” in a variable “d” by

>> d= dir (‘*.txt’)

We can find out the number of files using MATLAB by

>> length (d)
ans= 11

To import data from these files and subsequently preprocess them, we need
the filenames stored in “d.” The first filename can be retrieved by (Fig. 9)

>> d(1).name
ans= alpha spectra (1).txt

The information in the file can then be imported using dlmread.
Similarly, the second filename can be retrieved by

>> d(2).name
ans= alpha spectra (2).txt

Figure 7 An example of a folder containing spectra.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 17

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Figure 8 Output in MATLAB for commands cd, and dir. cd changes the directory to the
one mentioned in brackets. dir displays all the files in the folders.

Figure 9 MATLAB commands to identify the filename and import the spectrum in the file.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB18

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

We can automate the retrieval of names such that all names in the folder
are taken up into a variable “n,” one at a time, by using the “for” loop as
follows (Fig. 9):

>> for i= 1:length(d);
n= d(i).name

end

n = alpha spectra (1).txt
n = alpha spectra (2).txt
n = alpha spectra (3).txt
n = alpha spectra (4).txt
n = alpha spectra (5).txt
n = alpha spectra (6).txt
n = beta (1).txt
n = beta (2).txt
n = beta (3).txt
n = beta (4).txt
n = beta (5).txt

We can import the data by

>> for i=1:length(d)
n=d(i).name
data=dlmread(n);

end

The preprocessing commands can be added after “data = dlmread (n)”
and before “end,” and all data will be imported and preprocessed.

Script: Preprocess all spectra in a folder (Fig. 10)

cd(‘C:\Users\Tanmoy\Desktop\Main Folder\A’)
d=dir(‘*.txt’)
for i=1:length(d)
n=d(i).name
data=dlmread(n); datax=data(:,1); datay=data(:,2);
fd=diff(datay)./diff(datax); dataxd=datax(1:length(fd));
p1=find(dataxd==1200); p2=find(dataxd==1800);
yInterpolate=fd(p2:p1,:);
xInterpolate=dataxd(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;
end

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 19

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

One important aspect that remains is saving the preprocessed spectra. In the
above script, all variables—“i,” “n,” “data,” “fd,” “yInterpolate,”
“norm,” and others—change during every cycle of the “for” loop. This is criti-
cal, as it allows the same operations to be applied to data imported from each
spectrum. However, nothing gets stored! We must make provisions within the
code to save every final preprocessed spectrum. We can achieve this by declaring
an empty variable, say, “s,” and adding each preprocessed spectrum as a column
in the same. To declare an empty variable, we can type

>> s= []
s= []

The variable has to be declared outside the “for” loop.
To add preprocessed spectrum intensity values as a column, we type

>> s= [s norm];

This needs to be added inside the “for” loop, as follows:

>> s= [];
for i= 1:length (d);

n= d(i).name; ...; norm=yInterpolate/AreaS;
s=[s norm];

end

Figure 10 Demonstration of script that automates data import. From the output of “n,” it can
be seen that all filenames are identified one after the other.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB20

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

In order to understand how it works, let us take an example.
After declaring s = [], it looks as follows

s =
▭

Now, we initiate the “for" loop. In the first round, “i = 1,” so
“n= d(1).name = ‘alpha spectra (1).txt’,” which leads to “data
= dlmread(‘alpha spectra (1).txt’).” The “data” undergo prepro-
cessing and result in “norm.” Let

norm =
0.212758
0.136924
−0.08005

. . .

Since s= [s norm], and previously s= [], s will be

s =
0.212758 0.212758

[] + 0.136924 = 0.136924
−0.08005 −0.08005

.

In the second round, “i= 2,” “n= ‘alpha spectra (2)’” and they will
be preprocessed to get a new “norm.” Let it be

norm =
0.135933
0.358573
0.113558

. . .

So, s will become

s =
0.212758 0.135933 0.212758 0.135933
0.136924 + 0.358573 = 0.136924 0.358573
−0.08005 0.113558 −0.08005 0.113558

.

After 11 rounds of the “for” loop, s will have 11 columns, each representing
one preprocessed spectrum (Figs. 11–13).

This is not an efficient method of storing new spectra, because it may cause
“out of memory” errors. Preallocating memory to s can prevent the problem and
can be achieved by specifying s = zeros (total number of rows, total number of
columns).

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 21

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Figure 11 Demonstration of a script’s ability to automatically save preprocessed spectra. In
the first round, “alpha spectra (1).txt” is identified, and the preprocessed spectrum is stored
in the first column of s.

Figure 12 Demonstration of a script’s ability to automatically save preprocessed spectra.
The second spectrum filename is identified, and the preprocessed spectrum is stored in
the second column of s.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB22

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The same method can be applied to store filenames.

>> names = [];

>> for i = 1:length (d); names = [names {n}];
....... end

Script: Preprocess all spectra in a folder and save

s=[];names=[];
cd(‘C:\Users\Tanmoy\Desktop\Main Folder\A’)
d=dir(‘*.txt’)
for i=1:length(d)
n=d(i).name
data=dlmread(n); datax=data(:,1); datay=data(:,2);
fd=diff(datay)./diff(datax); dataxd=datax(1:length(fd));
p1=find(dataxd==1200); p2=find(dataxd==1800);
yInterpolate=fd(p2:p1,:); xInterpolate=dataxd(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;
s=[s norm]
names=[names {n}]
end

Figure 13 Demonstration of a script’s ability to automatically save preprocessed spectra.
The third spectrum filename is identified, and preprocessed spectrum is stored in the third
column of s.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 23

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

7 Automating Preprocessing for Multiple Files Contained
in Multiple Subfolders

Supervised multivariate analysis requires group information. Even unsupervised
PCA is visualized by applying different colors to different groups, thus requiring
group information. It is, therefore, common to make one subfolder for each group.
It would make data analysis extremely convenient if MATLAB could open sub-
folders, import spectra, assign them a group name, go to the next subfolder, and
so on, and provide the information on which spectrum belongs to which group
automatically to multivariate analysis script. This section describes ways to
achieve this.

Let us consider the following example. Two subfolders are created inside a
main folder. The subfolder named “A” contains all spectra from group A, and
subfolder “B” all spectra from group B. Group A has 11 spectra, whereas group
B has 13 spectra (Fig. 14).

We will first make the main folder, the current MATLAB directory (Fig. 15):

>> cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)

Figure 14 Example of folder and subfolder organization. The main folder contains two sub-
folders A and B, which contain 11 and 13 spectra, respectively.

Figure 15 Output of MATLAB command dir showing that the main folder has four
sub-folders: “.,” “..,” “A,” and “B.”

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB24

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Then, we will store the subfolder names in a variable “d1”:

>> d1=dir

Using the “for” loop, we will retrieve the names of each subfolder:

>> for ii= 3:length(d1);
n1= d1(ii).name

end

n1= A
n1 = B

Note that we are using ii= 3: length (d1), and not ii= 1:length (d1).
This is due to two default subfolders “.” and “ ..”.

Since we have retrieved the names of the subfolders, we can apply the
commands to read spectra files from the folders and preprocess them as before.
It is important to remember to put the command cd (‘C:\Users\Tanmoy\
Documents\Folder’) in the loop to enable MATLAB to return to the main
folder after processing each folder:

for ii= 3:length (d1);
n1= d1(ii).name;
....
for i= 1:length(d);

......
group_names=[group_names {n1}];

end
nome= [nome {n1}];
cd (‘C:\Users\Tanmoy\Documents\Main Folder’);

end

We can use variables “nome” and “group_names” to save the names of
subfolders in the same way we stored filenames. “nome” simply contains the
names of folders A and B, while “group_names” contain the group name
“A” or “B” for each file. In this case, there are 11 “A” group spectra and
13 “B” group spectra, so “group_names” will have 11 “A” and 13 “B.” This
becomes important during multivariate analysis LDA, when “group_names”
is provided as the input to indicate which spectrum belongs to which group
(Figs. 16 and 17).

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 25

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Figure 16 Demonstration of a script storing subfolder names in “nome.”

Figure 17 The group name for each spectrum stored individually in the variable
“group_names.”

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB26

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Script: Preprocess all spectra in every subfolder in a folder

clear;clc;
s=[];names=[];nome=[];group_names=[];
cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(‘*.txt’);
for i=1:length(d);

n=d(i).name;
data=dlmread(n); datax=data(:,1); datay=data(:,2);
fd=diff(datay)./diff(datax); dataxd=datax(1:length(fd));
p1=find(dataxd==1200); p2=find(dataxd==1800);
yInterpolate=fd(p2:p1,:);
xInterpolate=dataxd(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;
s=[s norm];
names=[names {n}];group_names=[group_names {n1}];
end
nome=[nome {n1}]
cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
end

8 Performing Multivariate Analysis

8.1 Principal component analysis

The script we have built until now preprocesses the “intensity” values of each
spectrum one by one from all subfolders and gathers them in one variable “s”:

>> s
s =

spectrum 1 spectrum 2 spectrum 24

0.212758 0.135933 . . . −0.06265

0.136924 0.358573 . . . 0.257174

−0.08005 0.113558 . . . 0.16409

.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 27

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

For PCA, we need to transpose this array, such that “observations,” that is,
spectra, are in the rows and “variables,” which are intensity values corresponding
to particular wavenumbers, are in the columns. The transpose operation can be
performed simply by

>> s’
ans =

spectrum 1 0.212758 0.136924 −0.08005 . . .

spectrum 2 0.135933 0.358573 0.113558 . . .

.

spectrum 24 −0.06265 0.257174 0.16409 . . .

Using this transpose function, PCA can be performed by the command

>> [pc,score,latent] = princomp(s’)
pc =

−0.00385 −0.00337 . . .
−0.00045 0.003497 . . .
−0.00066 −0.00035 . . .

.

score =

26.89575 4.828957 . . .
29.06787 5.086694 . . .
27.42997 5.222958 . . .

.

latent =

19955.98
174.8768
13.66114

. . .

Note that “princomp” is an old expression, used in earlier MATLAB
versions. The new expression is “pca.” So, “[pc,score,latent] =
princomp(s’)” can be replaced by “[pc,score,latent] = pca(s’)”.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB28

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The variable “pc” (Fig. 18) has 301 rows and 301 columns, “score” has
24 rows and 301 columns, and “latent” has 301 rows. The “pc” variable con-
tains all of the PCs, with each column representing a PC. Thus, column 1 is PC1,
column 2 is PC2, and so on. There are 301 PCs because the number of wavenum-
bers used as input is 301, from 1200 to 1800 cm−1. “score” contains a value for
each sample for every PC. This value reflects the position of that sample for
that PC with respect to others. Samples with values close to each other suggest
similarity in spectra. The 24 rows in “score” are due to 24 samples used as
input, and 301 columns correspond to 301 PCs. The variable “latent” provides
information on how much variation within the input samples are covered by that
particular PC. So, if the first column in “latent” after calculating the percentage
is 90%, it means that 90% of the spectral variation in the input sample has been
included in PC1. This can be conveniently observed using a scree plot. To obtain
this plot, we first divide every row of “latent” by the sum of all rows in
“latent” and save it in “contribution.” Since we want the plot to start
at “0,” we add a row containing “0” to the contribution array on the top in
“forplot.” We then plot “forplot” multiplied by 100 to get a percentage

Figure 18 First 10 PCs after applying the princomp function in MATLAB.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 29

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

(Fig. 19). Since most variation is generally covered in the first 10 PCs, we save
the contribution of the first 10 PCs in “PC_sig”:

>> contribution = cumsum (latent)./sum(latent);
forplot=[0
contribution];
plot(0:length(contribution),forplot*100);
PC_sig= contribution (1:10,:);

Script: Preprocess + PCA

clear;clc;
s=[];names=[];nome=[];group_names=[];
cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)

d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(‘*.txt’);
for i=1:length(d);

n=d(i).name;
data=dlmread(n); datax=data(:,1); datay=data(:,2);
fd=diff(datay)./diff(datax); dataxd=datax(1:length(fd));
p1=find(dataxd==1200); p2=find(dataxd==1800);
yInterpolate=fd(p2:p1,:);
xInterpolate=dataxd(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;
s=[s norm];
names=[names {n}];group_names=[group_names {n1}];
end
nome=[nome {n1}]
cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
end
[pc,score,latent] = princomp(s’);
contribution= cumsum (latent)./sum(latent);
PC_sig= contribution (1:10,:);
forplot=[0

contribution];
plot(0:length(contribution),forplot*100);
save pc.mat pc; save score.mat score;
save contribution.mat contribution

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB30

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

By plotting the columns in “score,” the PCA plots can be obtained. For
example, to plot PC1 versus PC2, one has to plot column 1 versus column 2 in
“score.” Plotting PCA and the script to automate the same is discussed in the
next section after multivariate analysis.

8.2 Principal component–linear discriminant analysis

As mentioned earlier, LDA is a supervised analysis method that can improve the
classification obtained by unsupervised analysis methods, such as PCA. In “unsu-
pervised” analysis, the spectra are input without mentioning which group they
belong to. Thus, for example, if we are analyzing “healthy” and “malignant”
spectra, in “unsupervised” analysis, all spectra are input together, without telling
the computer which spectra are from the “healthy” group and which are from
the “malignant” group. In supervised analysis, we tell the computer which group
the spectra belong to. Thus, using the same example, we will tell the computer
that spectra 1 to 10 are from “healthy” tissue and spectra 11 to 20 are from
“malignant” tissue.

There are two ways to do LDA: directly using preprocessed spectra, or on the
preprocessed spectra and use the results for LDA (PC-LDA). Using PCA before
LDA filters out the noise and may give more accurate results. We have already
discussed that PCA finds the most important variations in the spectra and ranks
them as PC1, PC2, and so on. In most cases, the important variations are covered
by the first 10 PCs; PCs beyond that are more likely to contain noise, and the
probability increases with increasing PC numbers. By using only the first few
PCs, the noise is eliminated, and only important variations are used for LDA,
increasing the chances of getting good results. In this tutorial, we will use
PC-LDA.

Supervised analysis has three components—training, validation, and predic-
tion. Training, as the name suggests, involves teaching the computer program to
recognize the spectrum as belonging to a particular group. For example, the

Figure 19 Scree plot generated by MATLAB. Note that x- and y-axis labels were added
later, and the x axis was adjusted to show 0 to 10 PCs.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 31

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

program will learn that spectra with a strong 1745-cm−1 band is “healthy” and
those with a weak or no 1745-cm−1 peak are “malignant.” The software goes
through multiple “healthy” and “malignant” spectra, learning the difference
between the two. The next step is validation, where we evaluate if the computer
program has learned correctly. This is done by removing one or more spectra
from the groups to see if the computer can still recognize the “healthy” or “malig-
nant” spectra. The logic behind this is to test if any particular spectrum is unduly
influencing the learning process. For example, let us say that one “malignant”
spectrum has a very strong 1299-cm−1 band due to some recording error or back-
ground noise. The computer may wrongly learn that the 1299-cm−1 band means
“malignant.” In validation, when the computer is tested by removing this spec-
trum, it will give different results for the remaining spectra since none of them
have the 1299-cm−1 band. The change in the result becomes an indication that
the training may not have been correct. The final phase is prediction. In this, we
further test how well the computer has learned. Without labeling, we input a
“malignant” spectrum and ask the computer program to tell us if the spectrum is
“healthy” or “malignant.” We do this with several spectra. If the program identi-
fies the group correctly, we can say that the “learning” is good. Another use of
prediction is to determine the group of an unknown spectrum, which is of great
benefit in clinical situations. For example, a device that can identify “malignant”
from “healthy” is installed in a clinic. In such a situation, the clinician will record
the spectra, and the algorithm can tell if it is “healthy” or not using prediction.

Note the concepts of sensitivity, specificity, and receiver operating character-
istics (ROC) here. Sensitivity is the number of times the computer correctly iden-
tifies the group of the input spectra. For example, suppose that 9 out of 10
“malignant” spectra are identified as “malignant” and 8 out of 10 “healthy” spec-
tra are classified as “healthy,” as shown in the confusion matrix table below:

Predicted

Malignant Healthy

Actual Malignant 9 1

Healthy 2 8

which can be relabeled as

Predicted

Disease No disease

Actual Disease True positive= 9 False negative= 1

No disease False positive= 2 True negative= 8

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB32

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

As can be seen, when actual disease is also predicted correctly as disease, we
call it a “true positive,” and when a disease is wrongly predicted as “no disease,”
we call it a “false negative.” When an actual “no disease” is wrongly predicted as
“disease,” it is a “false positive,” and when “no disease” is correctly predicted as
“no disease,” it is a “true negative.” Sensitivity is

True Positive

True Positiveþ False Negative
� 100 ¼ 9

9þ 1
� 100 ¼ 90%:

Specificity is

TrueNegative

TrueNegativeþ False Positive
� 100 ¼ 8

8þ 1
� 100 ¼ 80%:

The ROC curve helps evaluate the performance of the analysis. It is a plot of
the true negative rate (1-specificity) versus the true positive rate (sensitivity). It tells
us the chances that the true negative and true positive will be identified as separate.
The ROC for the above example is shown in Fig. 20(a). When the area under the
ROC curve is calculated, it will come to 0.7% or 70%, which tells us that there is
a 70% chance that the true negative and true positive will be separate
[Fig. 20(b)], as the false negative + false positive overlap region is 10 + 20 = 30%.
The ideal condition where the area under the ROC curve is 1 is shown in
Fig. 20(c), wherein there is no overlap region between true negative and true posi-
tive, as both are 100% [Fig. 20(d)].

We will now examine how to write the script for each step.
Training: As mentioned, we will have to tell the computer which spectra

belong to which group in this step. Recall that we had stored the name of the
group for each spectrum in “group_names.” We will begin by storing the
folder names in the variable “group_names” in a new variable “y” in trans-
posed form:

>> y=group_names’
y =

A
A
A
. . .

Since important variations can generally be found in the first 10 PCs, we
will separate out the scores of the first 10 PCs into another variable. Since
they are stored in the columns of the variable “scores,” we can take out the first
10 columns, which will have scores for the first 10 PCs and store them in the
variable “X”:

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 33

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

>> X=score(:,1:10)
X =

26.89575 4.828957 . . .
29.06787 5.086694 . . .
27.42997 5.222958 . . .

.

Now, we have the group names in “y” and the PCA scores in “X.” This is
what we need as input for PC-LDA. We will build the training model by telling
which rows in “X” belong to group A and which belong to group B using “y”
as follows:

>> Model = fitcdiscr(X,y);

The “fitcdiscr” function uses the information to train the algorithm, and
the outcome is stored in the variable “Model.” We create a confusion matrix

Figure 20 ROC curves.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB34

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

using this “Model.” In order to see how well the training has worked, we ask the
algorithm to display a confusion matrix. It shows how many spectra are correctly
predicted for a group and how many are incorrectly classified. The commands for
getting the confusion matrix are as follows:

>> ldaClass = resubPredict(Model);
[LDA,grpOrder] = confusionmat(y,ldaClass)

As seen in Fig. 21, the output is a confusion matrix. It does not give out a
labeled confusion matrix but gives the numbers and the labels separately. The
above can easily be assembled into a labeled confusion matrix as shown in the
following table:

A B

A 10 1

B 0 13

Figure 21 Output of LDA and cross-validation commands. The confusion matrices for LDA
and LOOCV are seen along with the group order. The labels in group order are important to
understand which columns and rows belong to which group.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 35

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Validation: The next step is validation. There are several methods of cross-
validation, of which we will use LOOCV. The commands for performing
LOOCV are as follows:

>> order = unique(y);
cp= cvpartition(y,‘leaveout’);
f= @(xtr,ytr,xte,yte)confusionmat(yte,...
classify(xte,xtr,ytr),‘order’,order);
cfMat2=crossval(f,X,y,‘partition’,cp);

Again, we will ask the algorithm to display the output in the form of a confu-
sion matrix to evaluate the results. For this, we use the following command:

>> LOOCV=reshape(sum(cfMat2),length(d1)-2,length(d1)-2)

Note that we use length(d1)-2 and length(d1)-2 in the above com-
mand. This is because the dimensions of the matrix have to be specified.
However, the dimensions will change depending on the number of groups.
For example, in the above case, the dimensions of the confusion matrix will be
2 × 2. But if there are three groups, say, “A,” “B,” and “C,” then the confusion
matrix dimensions will be 3 × 3. In an automated algorithm, this should be iden-
tified automatically.

To program this, we use the following logic. The spectra are supplied to the
algorithm in a subfolder with group names. The names of the subfolders are
stored in the variable “d1.” Thus, we can ask the algorithm to find out how many
subfolders there are in “d1” and make the confusion matrix dimensions accord-
ingly. So, if there are two subfolders in “d1,” the confusion matrix should be
2 × 2, and if there are three subfolders, the confusion matrix should be 3 × 3.

The only catch is that “d1” always contains two additional files by default:
“.” and “..” (see Fig. 15). Therefore, if “d1” has two subfolders, the size of “d1”
will be 4, and if there are three subfolders, the size of “d1” will be 5. To correct
for this, we can subtract 2 from size “d1.” We do this by using

length(d1)-2

Thus, when “d1” has two subfolders, length(d1)=4, length(d1)-2
= 2. Thus, LOOCV=reshape(sum(cfMat2),length(d1)-2,length
(d1)-2)will become LOOCV=reshape(sum(cfMat2),2,2), giving
a 2 × 2 matrix as required.

Figure 21 shows the results of LOOCV, which, as before, we will arrange
into a labeled confusion matrix.

A B

A 9 2

B 1 12

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB36

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Compare this with the result before validation:

A B

A 10 1

B 0 13

We observe a slight change. Instead of 10/11 correctly classified as “A,” after
LOOCV, 9/11 are correctly classified. Similarly, the correct classification for “B”
after LOOCV is 12/13 instead of 13/13. Despite this, the results of LOOCV are
very close to the model, and the training can be considered robust.

LOO is just one of the several methods of cross-validation. One can opt to
use k-fold cross validation, wherein the data are divided into “k” number of
groups; “k” is any number specified by the user. So, if “k” is 10, the data will
be divided into 10 groups of equal size. In this case, the training model will be
built using nine groups, leaving one group out. The left-out group will be used
to test the performance of the model built using the other nine groups. This will
be repeated until all groups are left out once. LOO is a special case of k-fold
cross-validation, where instead of groups, each spectrum is left out once. To apply
k-fold, the command is

cp= cvpartition(y,‘KFold’, ‘k’)

Another option is the holdout method, where a particular number of data
points “p,” where “p” is a number specified by the user, is left out, and the model
is built with the rest. The left out data points are then used to test the model built.
The command for this is as follows:

cp= cvpartition(y,‘HoldOut’, ‘p’)

The user can replace “cp = cvpartition(y,‘leaveout’);” with
either of the above commands and the rest of the code remains the same:

>> order = unique(y);
cp= cvpartition(y,‘leaveout’);
f= @(xtr,ytr,xte,yte)confusionmat(yte,...
classify(xte,xtr,ytr),‘order’,order);
cfMat2=crossval(f,X,y,‘partition’,cp);

Finally, we will save the model and the confusion matrix for later viewing/
analysis using the “save” command:

>> save Model.mat; save LDA.mat; save LOOCV.mat

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 37

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Script: Preprocess + PCA + PC-LDA
clear;clc;

s=[];names=[];nome=[];group_names=[];

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)

d1=dir;

for ii=3:length(d1);

n1=d1(ii).name;

cd(n1);

d=dir(‘*.txt’);

for i=1:length(d);

n=d(i).name;

data=dlmread(n); datax=data(:,1); datay=data(:,2);

fd=diff(datay)./diff(datax); dataxd=datax(1:length(fd));

p1=find(dataxd==1200); p2=find(dataxd==1800);

yInterpolate=fd(p2:p1,:); xInterpolate=dataxd(p2:p1,:);

Area=trapz(xInterpolate,yInterpolate); AreaS=Area/100;

norm=yInterpolate/AreaS;

s=[s norm];

names=[names {n}];group_names=[group_names {n1}];

end

nome=[nome {n1}]

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)

end

[pc,score,latent]= princomp(s’);

contribution = cumsum (latent)./sum(latent);

PC_sig= contribution (1:10,:);

forplot=[0

contribution];

plot(0:length(contribution),forplot*100);

save pc.mat pc; save score.mat score;

save contribution.mat contribution

y=group_names’; X=score(:,1:10);

Model=fitcdiscr(X,y);save Model.mat;ldaClass=resubPredict(Model);

[LDA,grpOrder] = confusionmat(y,ldaClass)

order = unique(y); % Order of the group labels

cp= cvpartition(y,‘leaveout’); % Stratified cross-validation

f= @(xtr,ytr,xte,yte)confusionmat(yte,...

classify(xte,xtr,ytr),‘order’,order);

cfMat2=crossval(f,X,y,‘partition’,cp);

LOOCV=reshape(sum(cfMat2),length(d1)-2,length(d1)-2)

save LDA.mat

save LOOCV.mat

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB38

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Cross-validation can also be performed directly on the “Model” by using the
following:

cfMat2=crossval(Model,‘Leaveout’,‘on’);
[label,pcldascore] = kfoldPredict(cfMat2);

and a confusion matrix is created by

LOOCV= confusionmat(y,label)

In this case, the code will look as follows (the above code replaces the
crossed-out lines):

clear;clc;

s=[];names=[];nome=[];group_names=[];

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)

d1=dir;

for ii=3:length(d1);

n1=d1(ii).name;

cd(n1);

d=dir(‘*.txt’);

for i=1:length(d);

n=d(i).name;

data=dlmread(n); datax=data(:,1); datay=data(:,2);

fd=diff(datay)./diff(datax); dataxd=datax(1:length(fd));

p1=find(dataxd==1200); p2=find(dataxd==1800);

yInterpolate=fd(p2:p1,:); xInterpolate=dataxd(p2:p1,:);

Area=trapz(xInterpolate,yInterpolate); AreaS=Area/100;

norm=yInterpolate/AreaS;

s=[s norm];

names=[names {n}];group_names=[group_names {n1}];

end

nome=[nome {n1}]

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)

end

[pc,score,latent] = princomp(s’);

contribution = cumsum (latent)./sum(latent);

PC_sig= contribution (1:10,:);

forplot=[0

contribution];

plot(0:length(contribution),forplot*100);

save pc.mat pc; save score.mat score;

save contribution.mat contribution

y=group_names’; X=score(:,1:10);

Model=fitcdiscr(X,y);save Model.mat;ldaClass=resubPredict(Model);

[LDA,grpOrder]= confusionmat(y,ldaClass)

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 39

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

cfMat2=crossval(Model,‘Leaveout’,‘on’);

[label,pcldascore] = kfoldPredict(cfMat2);

LOOCV= confusionmat(y,label)

order= unique(y); % Order of the group labels

cp = cvpartition(y,‘leaveout’); % Stratified cross-validation

f= @(xtr,ytr,xte,yte)confusionmat(yte,...

classify(xte,xtr,ytr),‘order’,order);

cfMat2=crossval(f,X,y,‘partition’,cp);

LOOCV=reshape(sum(cfMat2),length(d1)-2,length(d1)-2)

save LDA.mat

save LOOCV.mat

We discussed earlier that LDA can be performed directly without going
through PCA. In this case, we can ask the algorithm to directly perform LDA
on the preprocessed spectra stored in variable “s” using the following. In this
case, all commands will remain the same, except “X = score(:,1:10)” will be
replaced by “X= s.”

Prediction: We will now discuss prediction. As mentioned previously, in this
step, we ask the trained algorithm to determine the “group” of an unknown spec-
trum. We have already trained a “model” for groups “A” and “B,” which we will
use to predict the “group” of the unknown spectra. For this, we will first need to
tell the algorithm that we will be using “model” for prediction. So, we will open
the folder where the PC-LDA model is saved and load the same:

>> clear;clc;
cd(‘C:\Users\Tanmoy\Desktop\Main Folder’);
load(‘Model.mat’);

Next, for the sake of convenience, we will put all of the unknown spectra in
this example, labeled as “test (1),” “test (2),” and so on, in a single folder called
“T,” as shown in Fig. 22.

Then, we will preprocess all the spectra and perform PCA in the same manner
as before, but the path here will be different:

>> s=[];names=[];
cd(‘C:\Users\Tanmoy\Desktop\T’)
d=dir(‘*.txt’);
for i=1:length(d);... y=names’; X=score(:,1:10); end

We will then use the model to predict the PCA scores of test spectra:

>> Pred=predict(Model,X);
output=[y Pred]

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB40

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Figure 23 shows the outcome of the test prediction. In the left column are the
names of the spectra, and in the right are the predictions made by the algorithm.
Thus, according to the trained software, “test (1)” belongs to group “A,”
“test (10)” belongs to group “B,” and so on.

Figure 22 Example of a folder created to store test spectra.

Figure 23 Output of test prediction. The left column lists the spectra names, and the right
column displays the predictions.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 41

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Script: PC-LDA Test Prediction

clear;clc;
cd(‘C:\Users\Tanmoy\Desktop\Main Folder’);
load(‘Model.mat’);

s=[];names=[];
cd(‘C:\Users\Tanmoy\Desktop\T’)
d=dir(‘*.txt’);
for i=1:length(d);
n=d(i).name;
data=dlmread(n); datax=data(:,1); datay=data(:,2);
fd=diff(datay)./diff(datax); dataxd=datax(1:length(fd));
p1=find(dataxd==1200); p2=find(dataxd==1800);
yInterpolate=fd(p2:p1,:); xInterpolate=dataxd(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate); AreaS=Area/100;
norm=yInterpolate/AreaS;
s=[s norm];
names=[names {n}];
end
[pc,score,latent] = princomp(s’);
y=names’; X=score(:,1:10);

Pred=predict(Model,X);
output=[y Pred]

8.3 Support vector machine

An SVM is another supervised analysis method that can help classify groups. This
method works with two groups at a time, so it cannot be used on multiple groups
at once. Instead, it should be done on two groups at a time. The advantage of an
SVM is that it can give better classification for groups that are very close to each
other. For example, consider we analyze two groups “A” and “B” with 10 spectra
each. Imagine the second spectrum in “A” (A2) is very similar to the third spec-
trum of “B” (B3). LDA may find it difficult to classify A2 and B3 and may erro-
neously put A2 in “B” or erroneously put B3 in “A.” If there are more spectra
close to each other, the result of LDA classification will be very poor. An SVM
can help get better results as it can differentiate close points. The reader can refer
to the books and papers mentioned in the introduction to get a detailed idea of
how it works. Put in very simplified terms, LDA finds a single line to classify
“A” and “B.” We need to imagine a plot with the 10 “A” spectra and 10 “B”
spectra as points on the plot. LDA draws a line that separates the “A” points
from the “B.” But because A2 and B3 are very close, they may lie on the

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB42

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

wrong side of the line. An SVM uses supporting lines, called support vectors, in
addition to the main line to achieve classification. This increases the chance of
all points from a group being on the correct side of the lines, giving better classi-
fication results.

An SVM is particularly useful in nonlinear problems, that is, in cases where
there is no possibility of any line to classify two groups. Imagine all points from
“A” are surrounded by “B” points on a plot. There is no way LDA can draw a
line that can separate “A” and “B.” An SVM can draw a circle around “A” points,
separating them from “B” points.

The following will provide some simple commands that can help one perform
SVMs and integrate them in the code we have built to automate the process. The
user can build upon it to perform more complicated SVM operations.

The following is the script that we applied for LDA:

clear;clc;

s=[];....
.........
end
[pc,score,latent] = princomp(s’);
contribution= cumsum (latent)./sum(latent);
PC_sig= contribution (1:10,:);
forplot=[0

contribution];
plot(0:length(contribution),forplot*100);
save pc.mat pc; save score.mat score;
save contribution.mat contribution
y=group_names’; X=score(:,1:10);
Model= fitcdiscr(X,y);save Model.mat;
ldaClass = resubPredict(Model);
[LDA,grpOrder] = confusionmat(y,ldaClass)
order= unique(y); % Order of the group labels
cp = cvpartition(y,‘leaveout’); % Stratified cross-
validation
f= @(xtr,ytr,xte,yte)confusionmat(yte,...
classify(xte,xtr,ytr),‘order’,order);
cfMat2=crossval(f,X,y,‘partition’,cp);
LOOCV=reshape(sum(cfMat2),length(d1)-2,length(d1)-2)

save LDA.mat
save LOOCV.mat

We have performed PCA and have the scores stored in the variable “X” and
group names in “y.” For LDA, we used the following command to build the
model:

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 43

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Model= fitcdiscr(X,y);

For building the SVM model, we will use

SVMModel = fitcsvm(X,y)

Then, we use the following to get the confusion matrix for LDA:

ldaClass = resubPredict(Model);
[LDA,grpOrder] = confusionmat(y,ldaClass)

We use the following for an SVM:

svmClass=resubPredict(SVMModel)
[SVM,grpOrder] = confusionmat(y,svmClass)

The commands for SVM cross-validation are similar to those of LDA:

CVSVMModel = crossval(SVMModel)
[label,svmscore] = kfoldPredict(CVSVMModel)
SVMCV= confusionmat(y,label)

Script: Preprocess + PCA + PC-SVM

clear;clc;
s=[];names=[];nome=[];group_names=[];
cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(‘*.txt’);
for i=1:length(d);

n=d(i).name;
data=dlmread(n); datax=data(:,1); datay=data(:,2);
fd=diff(datay)./diff(datax); dataxd=datax(1:
length(fd));
p1=find(dataxd==1200); p2=find(dataxd==1800);
yInterpolate=fd(p2:p1,:);
xInterpolate=dataxd(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;
s=[s norm];
names=[names {n}];group_names=[group_names {n1}];
end
nome=[nome {n1}]

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB44

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
end
[pc,score,latent] = princomp(s’);
y=group_names’; X=score(:,1:10);
SVMModel = fitcsvm(X,y)
svmClass=resubPredict(SVMModel)
[SVM,grpOrder] = confusionmat(y,svmClass)
CVSVMModel = crossval(SVMModel)
[label,svmscore] = kfoldPredict(CVSVMModel)
SVMCV= confusionmat(y,label)
save SVMModel.mat
save SVM.mat
save SVMCV.mat

As before, SVM can be performed without PCA by using the preprocessed
spectra directly as input instead of PCA scores by using “X=s’.”

Finally, we can perform prediction using the SVM model by applying the
following commands:

Pred=predict(SVMModel,X);
output=[y Pred]

where “X” contains the preprocessed/PCA scores of spectra whose groups are to
be predicted. As can be seen again, the command structures are very similar to
ones used in LDA:

Script: PC-SVM Test Prediction

clear;clc;
cd(‘C:\Users\Tanmoy\Desktop\Main Folder’);
load(‘Model.mat’);

s=[];names=[];
cd(‘C:\Users\Tanmoy\Desktop\T’)
d=dir(‘*.txt’);
for i=1:length(d);
n=d(i).name;
data=dlmread(n); datax=data(:,1); datay=data(:,2);
fd=diff(datay)./diff(datax); dataxd=datax(1:length(fd));
p1=find(dataxd==1200); p2=find(dataxd==1800);
yInterpolate=fd(p2:p1,:);
xInterpolate=dataxd(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 45

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

s=[s norm];
names=[names {n}];
end
[pc,score,latent] = princomp(s’);
y=names’; X=score(:,1:10);

Pred=predict(SVMModel,X);
output=[y Pred]

9 PCA Plotting

Plotting PCA is a routine operation performed for the majority of spectroscopic
analysis pertaining to biological experiments, especially disease diagnosis experi-
ments. Getting the plots manually can be very tedious, especially when several
combinations of PCs need to be checked for the best representation of group clas-
sification. The process becomes even more time-consuming when the number of
groups increases, and each group has to be selected and colored separately. The
following section will show how to automate the entire process.

To understand the programming required, let us consider hypothetical data:

>> dat=
[1 2 3
3 4 5

10 20 30
30 40 50]

After pressing the Enter key, the following output will appear in the
MATLAB window:

dat =
1 2 3
3 4 5
10 20 30
30 40 50

Let columns 1, 2, and 3 be the scores of PCs 1, 2, and 3, respectively. Let the
first two rows be scores of “healthy” tissue spectra, and rows 3 and 4 be scores of
“malignant” tissue spectra, as follows:

Group/PC PC1 score PC2 score PC3 score

Healthy 1 2 3

Healthy 3 4 5

Malignant 10 20 30

Malignant 30 40 50

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB46

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

To plot PC1 versus PC2, the command will be (“filled” is for filled circle
markers)

>> scatter (dat (:,1), dat (:,2), ‘filled’)

If we wish to color the “healthy” black and “malignant” red, we will have to
type the commands separately for each group (“k” is for black, and “r” is for red;
see Figs. 24 and 25):

>> scatter (dat (1:2,1), dat (1:2,2), ‘k’, ‘filled’)
scatter (dat (3:4,1), dat (3:4,2), ‘r’, ‘filled’)

If we add the command “hold on” between the two lines, both will be dis-
played together:

>> scatter (dat (1:2,1), dat (1:2,2), ‘k’, ‘filled’);
hold on
scatter (dat (3:4,1), dat (3:4,2), ‘r’, ‘filled’)

Figure 24 Plot of PC1 score versus PC2 score for “healthy” and “malignant” sample
spectra.

Figure 25 Plot of PC1 versus PC2 scores of “malignant” spectra, colored red. The scores of
“healthy” spectra are not visible, as a new plot replaced the old plot.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 47

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

If the start and end positions of the groups are in a matrix, it will be possible
to automate the process (Figs. 26 and 27). Let us put the start numbers in an array
“start” and end numbers in an array “endm”:

>> start = [1 3]

start= 1 3

>> endm= [2 4]

endm= 2 4

We can write a “for” loop:

>> for sevi= 1:length (start)
scatter (dat (start (sevi):end (sevi), 1), dat
(start (sevi):end(sevi), 2), ‘filled’); hold on

end

Figure 26 By applying hold on between commands, both “healthy” and “malignant” spec-
tra PC1 versus PC2 scores are plotted. Using separate commands helps color groups
separately.

Figure 27 Automating PCA plotting—first round.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB48

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Since “length(start) = 2,” the “for” loop will have two rounds,
“sevi = 1” and “sevi = 2.” When “sevi = 1,” “start (sevi)” =
“start (1)” = “1.” Similarly, “end (sevi)” = “end (1)” = “2.” Thus,
the command in the first round of the “for” loop will be

>> scatter (dat (1:2, 1), dat (1:2, 2), ‘filled’); hold on

In the second round of the “for” loop, “sevi = 2.” Therefore, “start
(sevi)” = “start (2)” = “3”; and “end (sevi)” = “end (2)” = “4.”
Thus, in the second round, the command will be automatically

>> scatter (dat (3:4, 1), dat (3:4, 2), ‘filled’);
hold on

The markers for “healthy” and “malignant” are plotted together, because of
the “hold on” command (Fig. 28).

The colors remain the same. To have different colors, we can create a separate
matrix for colors:

C= {“k,” “r,” “b,” “g,” “y,” [.5 .6 .7],[.8 .2 .6]}

Here, k, r, b, g, y, [.5 .6 .7], and [.8 .2 .6] stand for black, red, blue, green,
yellow, gray, and purple colors, respectively. We can then ask MATLAB to use
different colors during each round of plotting by (Fig. 29)

>> for sevi= 1:length (start)
scatter (dat (start (sevi):end (sevi), 1), dat
(start (sevi):end(sevi), 2), C {sevi} ,
‘filled’); hold on

end

Since “sevi = 1” in the first round, “C {sevi}” = “C {1}” = “k,” that is
black. In the second round, “sevi = 2”; “C {sevi}”= “C {2}”= “r,” that is
red. With the “hold on,” we get the plot in Fig. 28.

Figure 28 Automating PCA plotting—second round.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 49

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

We can similarly change the markers by adding a marker matrix:

mkr={‘o’ ‘s’ ‘d’ ‘h’}
>> for sevi= 1:length (start)

scatter (dat (start (sevi):end (sevi), 1), dat
(start (sevi):end(sevi), 2), C {sevi}, mkr
{sevi}, ‘filled’); hold on

end

It is not enough to automate the plotting of individual plots. We need the
script to plot scatter graphs with each group colored separately for every combina-
tion of the first three PCs. We need the x axis to change from 1 to 3. So,

>> facsev = 1:3
facsev= 1
facsev= 2
facsev= 3

We need the y axis to start with a number after the x axis. For example, when
the x axis is 1, the y axis should change from 2 to 3. This way, we will get plots
for PC1 versus PC2, and PC1 versus PC3. Similarly, when the x axis = 2, the y
axis should be 3, and we will get PC2 versus PC3. Thus,

>> facsev2 = facsev + 1:3
facsev2= 2
facsev2= 3
facsev2= 4

We will achieve this by adding two additional “for” loops for the x and y
axes, respectively. We will add the command “figure (),” so that every plot
of PCx versus PCy appears in a different figure:

>>for facsev=1:3;
for facsev2=facsev+1:3; figure ();

for sevi= 1:length (start)

Figure 29 Including a separate matrix for color and calling them in a scatter function helps
to color groups separately and automatically.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB50

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

scatter (dat (start (sevi):end (sevi), 1),
dat (start(sevi):end(sevi), 2), C {sevi},
mkr {sevi}, ‘filled’); hold on

end
end

end

The next step will be to automatically get the “start” and “endm” matrices
from the PC-LDA script to use them for PCA plotting. We can add some com-
mands in the script to save the group start and end numbers, just as we saved
the spectra and group names.

We will use the same example as before—importing spectra from two sub-
folders A and B, contained within the main folder. Subfolder A has 11 spectra,
whereas subfolder B has 13 spectra. When we import and preprocess, we save
all spectra in columns of variables called “s.” Thus, “s” has 11 + 13 = 24 col-
umns, and 301 rows corresponding to wavenumbers from 1200 to 1800 cm−1.
In “s,” columns 1 to 11 belong to group A, and columns 12 to 24 belong to group
B. Thus, group A starts from column 1, while group B starts from column 12. The
end columns for groups A and B are 11 and 24, respectively. This means that we
need to obtain two matrices, “start”= [1 12] and “endm”= [11 24].

The spectra are imported one by one until one subfolder is finished. Then the
script goes to the main folder and opens the next subfolder. This means that
before the script goes to the main folder, “s” contains only spectra from one sub-
folder. If we determine the number of columns in “s” at this point, we will know
the end number for the subfolder. In our example, when subfolder A is read and
processed, “s” will have 11 columns. This can be determined using the following
command:

>> amt= size (s)

amt= 301 11

Here, 301 and 11 correspond to rows and columns, respectively, but we need
only columns. So,

>> amt1= amt (:,2)

amt1= 11

We will save the “amt1” in every round of the “for” loop. First, we will
declare two arrays outside the loop:

>> fstno = [1]; lastno = [0];

We will then store “amt1” in “lastno” by declaring it inside the “for” loop:

>> lastno = [lastno amt1];

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 51

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The PC-LDA script will look as follows:

>> s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno= [0];

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(‘*.txt’);
for i=1:length(d);

n=d(i).name;
data=dlmread(n); datax=data(:,1); datay=
data(:,2);
fd=diff(datay)./diff(datax); dataxd=da-
tax(1:length(fd));
p1=find(dataxd==1200); p2=find(dataxd==1800);
yInterpolate=fd(p2:p1,:); xInterpolate=
dataxd(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;
s=[s norm];
names=[names {n}];group_names=[group_-
names {n1}];

end
nome=[nome {n1}];
amt = size (s); amt1 = amt (:,2); lastno = [lastno
amt1];

fstno=[fstno lastno(:,i-1)+1];

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
end

Let us consider an addition to the script. In the first iteration of the “for”
loop, “ii = 3,” “n1=d1(ii).name,” so “n1 =A,” that is the subfolder “A.”
“cd(n1)” will become “cd(A)” and open the subfolder “A.”
“d=dir(‘*.txt’)” will open all “.txt” files and save them in “d.” In this case,
as we have already seen, “amt = [301 11],” because subfolder “A” has 11
spectral files in it, which get stored in columns, and 301 wavenumbers, which
are stored in rows. From this, we need the number of files in subfolder “A,”
and can easily get it using “amt1= amt (:,2),” which gives “amt1= 11.” We
store this in the variable “lastno” using “lastno = [lastno amt1].” So now,
“lastno” = 11. This will tell the algorithm that it will have to plot all up to the

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB52

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

11th column in the same color in the PCA scatter plot. But this does not tell it
from which column to start. We know that the 1st to 11th column have to be plot-
ted in the same color as they all belong to subfolder “A.” We can calculate this by
using “fstno = [1 lastno(:,3-1) +1].” The calculations will occur as
follows:

fstno= [1 lastno(:,3-1)+1] = [1 lstno (:,2)+1] = [1 11+1]
= [1 12].

We now have a matrix “fstno”= [1 12] and “lstno”= [0 11].
In the same manner, in the second iteration of the “for” loop:

ii =4
amt= [301 24], amt1= 24,
‘lastno = [0 11 amt1]’= ‘[0 11 24]’,

and

‘fstno = [1 12 lastno(:,4-1)+1]’= ‘[1 12 lastno(:,3)+1]’
= ‘[1 12 24+1]’= ‘[1 12 25]’.

We now have a matrix “fstno”= [1 12 25] and “lstno”= [0 11 24].
We need PCA to be plotted from 1 to 11 and then 12 to 24. Thus, the num-

bers “25” in “fstno” and “0” in “lstno” are not required. We will remove them
as follows:

>> szfst=size(fstno)
szfst= 1 3

>> start=fstno(:,1:szfst(:,2)-1)
start= 1 12

In the above command, “szfst(:,2)-1” translates to “1:(3-1),” which
is equal to “1:2.” So, “start=fstno(:,1:szfst(:,2)-1)” becomes
“start=fstno(:,1:2),” which means “start= [1 12].”

Similarly,

>> szlst=size(lastno)
szlst= 1 3

>> endm=lastno(:,2:szlst(:,2))
endm= 11 24

Now that “start” and “endm” are automatically obtained by the script, the
entire process of preprocessing, PCA, and PCA plotting becomes automated.

Three things remain to be added to the automated PCA plotting script—graph
legends, titles, and loading plots. Legends are extremely convenient to identify the
groups instead of having to look up which color is mentioned first in the array.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 53

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Moreover, sometimes the order of importing in MATLAB is not the same as seen
in Windows. In such cases, legends become vital.

We can easily give legends to the graphs by using the sub-folder names stored
in variable “group_names.” We ask MATLAB to save the first “group_name” in
every round of the “for” loop:

>> Legend{sevi} = [{group_names(start(sevi))}]
Legend1= A (in round 1)
Legend2= B (in round 2)

We also store the number of rows and columns in the “Legend” by

>> sz23=size(Legend)
sz23= 1 1 (in round 1)
sz23= 1 2 (in round 2)

At the end of plotting each graph, we use the “for” loop to create the legends:

>> for ijk=1:sz23(1,2);
L{ijk}= [Legend{1,ijk}{1,1}{1,1}];

end

L1= A
L2= B

Finally, we command to place the legend in the graph by

>> legend(L)

We create the titles for each graph—PC1, 2 denoting the plot of PC1 versus
PC2, and so on—by

>> T{facsev}=[‘PCA Plot factors’, num2str(facsev),’,’,
num2str(facsev2)]

T1= PCA Plot factors 1, 2
T2= PCA Plot factors 1, 3
T2= PCA Plot factors 1, 4
T1= PCA Plot factors 1, 5
T2= PCA Plot factors 2, 3
T2= PCA Plot factors 2, 4
T1= PCA Plot factors 2, 5
T2= PCA Plot factors 3, 4
T2= PCA Plot factors 3, 5
T1= PCA Plot factors 4, 5

and call to place the title in the graph by

>> title(T)

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB54

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Finally, we create and save the PC loadings as follows:

>> FL1=[xInterpolate pc(:,1)];
FL2=[xInterpolate pc(:,2)];
FL3=[xInterpolate pc(:,3)];
FL4=[xInterpolate pc(:,4)];
FL5=[xInterpolate pc(:,5)];
save FactorLoading1.txt FL1 -ascii
save FactorLoading2.txt FL2 -ascii
save FactorLoading3.txt FL3 -ascii
save FactorLoading4.txt FL4 -ascii
save FactorLoading5.txt FL5 -ascii

Script: Preprocess + PCA + PC-LDA + Plot PCA (Fig. 30)

s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno=[0];
cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(‘*.txt’);
for i=1:length(d);

n=d(i).name;
data=dlmread(n);datax=data(:,1); datay=data(:,2);
fd=diff(datay)./diff(datax); dataxd=datax(1:
length(fd));
p1=find(dataxd==1200); p2=find(dataxd==1800);
yInterpolate=fd(p2:p1,:); xInterpolate=dataxd
(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;
s=[s norm];
names=[names{n}];group_names=[group_names{n1}];

end
nome=[nome {n1}];
amt= size (s); amt1= amt (:,2); lastno= [lastno amt1];

fstno=[fstno lastno(:,ii-1)+1];

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)

end

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 55

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

[pc,score,latent] = princomp(s’);
contribution= cumsum (latent)./sum(latent);
PC_sig= contribution (1:10,:);
forplot=[0

contribution];
plot(0:length(contribution),forplot*100);
save pc.mat pc; save score.mat score;
save contribution.mat contribution

y=group_names’; X=score(:,1:10);
Model = fitcdiscr(X,y);save Model.mat;ldaClass
= resubPredict(Model);
[LDA,grpOrder] = confusionmat(y,ldaClass)
order= unique(y); % Order of the group labels
cp = cvpartition(y,‘leaveout’); % Stratified cross-
validation
f= @(xtr,ytr,xte,yte)confusionmat(yte,...
classify(xte,xtr,ytr),‘order’,order);
cfMat2=crossval(f,X,y,‘partition’,cp);
LOOCV=reshape(sum(cfMat2),length(d1)-2,
length(d1)-2)

save LDA.mat
save LOOCV.mat

szfst=size(fstno);
szlst=size(lastno);
start=fstno(:,1:szfst(:,2)-1);
endm=lastno(:,2:szlst(:,2));

C = {‘k’,‘b’,‘r’,‘g’,‘y’,[.5 .6 .7],[.8 .2 .6]};
mkr={‘o’ ‘s’ ‘d’ ‘h’};
aha=[1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2
3 4 5 6];
aha2=[1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 6
6 6 6 6 6];

for facsev=1:5;
for facsev2=facsev+1:5

figure();
for sevi=1:length(start)

div=sevi/6;
Legend{sevi} = [{group_names(start(-
sevi))}];sz23=size(Legend);

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB56

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

scatter(score(start(sevi):endm(sevi),facsev),
score((start(sevi):endm(sevi)),facsev2),100,
C{aha(1,sevi)},mkr{aha2(1,sevi)},‘filled’);

hold on
T{facsev}=[‘PCA Plot factors’, num2str
(facsev),’,’,num2str(facsev2)];

end
for ijk=1:sz23(1,2);
L{ijk}= [Legend{1,ijk}{1,1}{1,1}];
end

legend(L)
title(T);

end
T=[];

end
FL1=[xInterpolate pc(:,1)];
FL2=[xInterpolate pc(:,2)];
FL3=[xInterpolate pc(:,3)];
FL4=[xInterpolate pc(:,4)];
FL5=[xInterpolate pc(:,5)];
save FactorLoading1.txt FL1 -ascii
save FactorLoading2.txt FL2 -ascii
save FactorLoading3.txt FL3 -ascii
save FactorLoading4.txt FL4 -ascii
save FactorLoading5.txt FL5 -ascii

Note that the matrices “aha” and “aha2” are used to change the color and
marker according to a pattern. They allow all colors to be used up with the first
marker before changing to the second marker. This way, 7 × 4= 28 combinations
are possible before the color and marker are repeated. Thus, 28 groups can be dis-
tinctly plotted using this script.

10 Turning Features On and Off

There may be situations, especially in the exploratory phase of study, where the
user might be interested in turning off a particular preprocessing step or have
some steps on while others are off. There may be times when one is interested
in only looking at the confusion matrix and not PCA plots. A simple way to
achieve this is to copy/paste only the required parts of the code, but that can be
tedious and error prone. It is much more convenient to have all of the on/off fea-
tures at the beginning, where one can quickly make changes and refer back to it
after the analysis. In this section, we take this fine-tuning into consideration.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 57

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

For this part, we will be using the condition function “if.” The function
offers the option to perform an operation only when a condition is met. For
example,

>> a=7;

>> if a > 5
b=1

else
b=2

end
b=1

The output is thus based on the condition. Since a = 7, a > 5; hence, MATLAB
displays b= 1, as instructed.

Let us use this for the “import” function. We have already seen that if the
extension is “txt” or “asc,” we use “dlmread,” whereas if the extension is
“csv,” we use “csvread.” We can make the code more user-friendly by asking
for user input regarding the extension beforehand and automatically deciding the
correct command. We ask the user to make changes in the code at a particular
location:

Figure 30 Output of automatic PCA plotting. Different combinations of PCs are automati-
cally plotted with titles PCA plot factors PCx axis, PCy axis. Note that groups are automati-
cally colored differently.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB58

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

%%% Enter 1 for ‘csv’,2 for ‘txt’, and 3 for ‘asc’ %%%%%%%%%%
Extension =

The user provides input:

Extension =3

The code will now have to be changed to react as per user input. Originally,
the code was as follows:

>> clear;clc;

s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno= [0];

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(‘*.txt’);

for i=1:length(d);
n=d(i).name;
data=dlmread(n); datax=data(:,1); datay=
data(:,2);
fd=diff(datay)./diff(datax); dataxd=datax
(1:length(fd));
p1=find(dataxd==1200); p2=find(dataxd==
1800);
yInterpolate=fd(p2:p1,:); xInterpolate=
dataxd(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;
s=[s norm];
names=[names {n}];group_names=[group_names
{n1}];

end
nome=[nome {n1}];
amt= size (s); amt1= amt (:,2); lastno= [lastno amt1];

fstno=[fstno lastno(:,ii-1)+1];

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)

end

[pc,score,latent] = princomp(s’);...

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 59

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

This will change to
>> clear;clc;

%%% Enter 1 for ‘csv’, 2 for ‘asc’, and 3 for ‘txt’ %%%%%%%%%%

Extension =

%%% Automated script %%%%%%%%%%

s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno= [0];

if Extension==1;
Ext=‘csv’;

else if Extension==2;
Ext=‘txt’;

else if Extension==3;
Ext=‘asc’;

end
end

end

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(strcat(‘*.’,Ext));

for i=1:length(d);
n=d(i).name;

if Extension==1;
norm=csvread(n,skip_lines,0);

else
norm=dlmread(n,’’,skip_lines,0);

end

datax=norm(:,1); datay=norm(:,2);
fd=diff(datay)./diff(datax); dataxd=datax
(1:length(fd));
p1=find(dataxd==1200); p2=find(dataxd==1800);
yInterpolate=fd(p2:p1,:); xInterpolate=
dataxd(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;
s=[s norm];

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB60

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

names=[names {n}];group_names=[group_names
{n1}];

end
nome=[nome {n1}];
amt = size (s); amt1 = amt (:,2); lastno = [lastno
amt1];

fstno=[fstno lastno(:,ii-1)+1];

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
end

[pc,score,latent] = princomp(s’);...

All data will be stored in “norm” from the beginning to avoid confusion.
We can turn “on” or “off” the derivatization step and also ask the user to

choose a particular order of derivative—first or second—by making the following
changes:

>> clear;clc;

%%% Change parameters here %%%%%%%%%%

Extension =3; %%% Enter 1 for ‘csv’, 2 for ‘txt’, and 3
for ‘asc’ %%%%%

Derivative=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%
Which_Derivative=1; %%% Enter 1 for ‘First derivative’
and 2 for ‘Second derivative’ %%%%%

%%% Automated script %%%%%%%%%%

s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno= [0];

if Extension==1;
Ext=‘csv’;

else if Extension==2;
Ext=‘txt’;

else if Extension==3;
Ext=‘asc’;

end
end

end

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 61

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

d=dir(strcat(‘*.’,Ext));
for i=1:length(d);

n=d(i).name;

if Extension==1;
norm=csvread(n,skip_lines,0);

else
norm=dlmread(n,’’,skip_lines,0);

end

xaxis=norm(:,1);

if Derivative~=0;
if Which_Derivative==1;
norm=diff(norm(:,2))/
diff(xaxis);
xaxis=xaxis(1:length(norm),:);
else if Which_Derivative==2;
norm=diff(norm(:,2),2)/
diff(xaxis,2);

xaxis=xaxis (1:length(norm),:);
end
end

else
norm=norm(:,2);xaxis=xaxis;

end

p1=find(dataxd==1200); p2=find(dataxd==1800);
yInterpolate=fd(p2:p1,:); xInterpolate=
dataxd(p2:p1,:);
Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;
s=[s norm];
names=[names {n}];group_names=[group_names
{n1}];

end
nome=[nome {n1}];
amt= size (s); amt1= amt (:,2); lastno= [lastno amt1];

fstno=[fstno lastno(:,ii-1)+1];

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)

end

[pc,score,latent] = princomp(s’);...

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB62

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Next, we add the same “on/off” option to select a specific spectral range as
follows:

>> clear;clc;

%%% Change parameters here %%%%%%%%%%

Extension =3; %%% Enter 1 for ‘csv’, 2 for ‘txt’, and 3 for
‘asc’ %%%%%

Derivative=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%

Which_Derivative=1; %%% Enter 1 for ‘First derivative’
and 2 for ‘Second derivative’ %%%%%

Interpolation=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%
Interpolate_from=1200; Interpolate_to=1800; %%% Enter
range %%

%%% Automated script %%%%%%%%%%

s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno= [0];

if Extension==1;
Ext=‘csv’;

else if Extension==2;
Ext=‘txt’;

else if Extension==3;
Ext=‘asc’;

end
end

end

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(strcat(‘*.’,Ext));

for i=1:length(d);
n=d(i).name;

if Extension==1;
norm=csvread(n,skip_lines,0);

else
norm=dlmread(n,’’,skip_lines,0);

end

xaxis=norm(:,1);

if Derivative~=0;

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 63

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

if Which_Derivative==1;
norm=diff(norm(:,2))/diff(xaxis);
xaxis=xaxis(1:length(norm),:);
else if Which_Derivative==2;
norm=diff(norm(:,2),2)/
diff(xaxis,2);

xaxis=xaxis (1:length(norm),:);
end
end

else
norm=norm(:,2);xaxis=xaxis;

end

if Interpolation~=0;

p1=find(xaxis==Interpolate_from);
p2=find(xaxis==Interpolate_to);
p3=p1-p2;

if p3<0;
norm=norm(p1:p2,:);xaxis=
xaxis(p1:p2);

else if p3>0;
norm=norm(p2:p1,:);xaxis=
xaxis(p2:p1);

end
end

else
norm=norm; xaxis=xaxis;

end

Area=trapz(xInterpolate,yInterpolate);
AreaS=Area/100;
norm=yInterpolate/AreaS;
s=[s norm];
names=[names {n}];group_names=[group_names
{n1}];

end
nome=[nome {n1}];
amt = size (s); amt1 = amt (:,2); lastno = [lastno
amt1];

fstno=[fstno lastno(:,ii-1)+1];

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
end

[pc,score,latent] = princomp(s’);...

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB64

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

To achieve the same for area normalization:

>> clear;clc; %%% Change parameters here %%%%%%%%%%

Extension =3; %%% Enter 1 for ‘csv’, 2 for ‘txt’, and 3 for
‘asc’ %%%%%

Derivative=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%

Which_Derivative=1; %%% Enter 1 for ‘First derivative’
and 2 for ‘Second derivative’ %%%%%

Interpolation=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%

Interpolate_from=1200; Interpolate_to=1800; %%% Enter
range %%

Area_Normalization=1; %%% Enter 0 for ‘NO’ and 1 for
‘Yes’ %%%%%

%%% Automated script %%%%%%%%%%

s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno= [0];

if Extension==1;
Ext=‘csv’;

else if Extension==2;
Ext=‘txt’;

else if Extension==3;
Ext=‘asc’;

end
end

end

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(strcat(‘*.’,Ext));

for i=1:length(d);
n=d(i).name;

if Extension==1;
norm=csvread(n,skip_lines,0);

else
norm=dlmread(n,’’,skip_lines,0);

end

xaxis=norm(:,1);

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 65

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

if Derivative~=0;
if Which_Derivative==1;
norm=diff(norm(:,2))/diff(xaxis);
xaxis=xaxis(1:length(norm),:);
else if Which_Derivative==2;
norm=diff(norm(:,2),2)/
diff(xaxis,2);

xaxis=xaxis (1:length(norm),:);
end
end

else
norm=norm(:,2);xaxis=xaxis;

end

if Interpolation~=0;

p1=find(xaxis==Interpolate_from);
p2=find(xaxis==Interpolate_to);
p3=p1-p2;

if p3<0;
norm=norm(p1:p2,:);xaxis=
xaxis(p1:p2);

else if p3>0;
norm=norm(p2:p1,:);xaxis=
xaxis(p2:p1);

end
end

else
norm=norm; xaxis=xaxis;

end

if Area_Normalization~=0;
Area=trapz(xaxis ,norm); AreaS=Area/100;
norm=norm/AreaS;

else;
norm=norm;

end
s=[s norm];

names=[names {n}];group_names=[group_
names {n1}];

end
nome=[nome {n1}];
amt= size (s); amt1= amt (:,2); lastno= [lastno amt1];

fstno=[fstno lastno(:,ii-1)+1];

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB66

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)

end
[pc,score,latent] = princomp(s’);...

As mentioned earlier, “norm” is used throughout instead of different variable
names as was used before. This is to avoid extra coding lines. For example, we
start with wavenumbers and intensity values imported in variable “data.”
Then, we use the first derivative on it and call it “fd.” The command will be

fd= diff (data)

To select the spectral range, we have to command

interpolate= fd (p1:p2)

But consider if the user had skipped the derivatization step. There is no “fd;”
thus, the command fd (p1:p2) will be unrecognized, and MATLAB will show
an error. To account for this, we will have to have two separate commands:

interpolate= fd (p1:p2) when user applies derivatization

and

interpolate= data (p1:p2) when user skips derivatization.

The problem becomes more complicated with each step and condition, requir-
ing more and more coding lines. By having the same variable name for all, the
continuity is not broken.

The final option we will discuss is the ability to turn on/off the PCA plotting
function. Sometimes, the user is just interested in LDA/LOOCV results and does
not want PCA plots popping up at every run. We use the same logic as before to
enable the user to choose whether or not PC plotting is desired:

>> clear;clc;%%% Change parameters here %%%%%%%%%%

nnnn=‘C:\Users\Tanmoy\Desktop\Main Folder’;%%Enter
folder path%%

Extension =2; %% Enter 1 for ‘csv’, 2 for ‘txt’, and 3 for
‘asc’ %%%%%

skip_lines=0; %%% Enter number of lines to be skipped %%%%%

Derivative=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%

Which_Derivative=1; %%% Enter 1 for ‘First derivative’
and 2 for ‘Second derivative’ %%%%%

Interpolation=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 67

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Interpolate_from=1200; Interpolate_to=1800; %%% Enter
range %%

Area_Normalization=1; %%% Enter 0 for ‘NO’ and 1 for
‘Yes’ %%%%%

Plot_PCA=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%

%%% Automated script %%%%%%%%%%

s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno= [0];

if Extension==1;
Ext=‘csv’;

else if Extension==2;
Ext=‘txt’;

else if Extension==3;
Ext=‘asc’;

end
end

end

cd(nnnn)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(strcat(‘*.’,Ext));

for i=1:length(d);
n=d(i).name;

if Extension==1;
norm=csvread(n,skip_lines,0);

else
norm=dlmread(n,’’,skip_lines,0);

end

xaxis=norm(:,1);

if Derivative~=0;
if Which_Derivative==1;
norm=diff(norm(:,2))/
diff(xaxis);
xaxis=xaxis(1:length(norm),:);
else if Which_Derivative==2;
norm=diff(norm(:,2),2)/
diff(xaxis,2);

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB68

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

xaxis=xaxis (1:length(norm),:);
end
end

else
norm=norm(:,2);xaxis=xaxis;

end

if Interpolation~=0;

p1=find(xaxis==Interpolate_from);
p2=find(xaxis==Interpolate_to);
p3=p1-p2;

if p3<0;
norm=norm(p1:p2,:);
xaxis=
xaxis(p1:p2);

else if p3>0;
norm=norm(p2:p1,:);
xaxis=
xaxis(p2:p1);

end
end

else
norm=norm; xaxis=xaxis;

end

if Area_Normalization~=0;
Area=trapz(xaxis ,norm);
AreaS=Area/100; norm=norm/AreaS;

else;
norm=norm;

end
s=[s norm];

names=[names {n}];group_names=[group_
names {n1}];

end
nome=[nome {n1}];
amt=size (s); amt1= amt (:,2); lastno=[lastno amt1];

fstno=[fstno lastno(:,ii-1)+1];

cd(nnnn)
end

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 69

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

[pc,score,latent] = princomp(s’);
contribution= cumsum (latent)./sum(latent);
PC_sig= contribution (1:10,:);
forplot=[0

contribution];
plot(0:length(contribution),forplot*100);
save pc.mat pc; save score.mat score;
save contribution.mat contribution

y=group_names’; X=score(:,1:10);
Model = fitcdiscr(X,y);save Model.mat;ldaClass
= resubPredict(Model);
[LDA,grpOrder] = confusionmat(y,ldaClass)
order= unique(y);
cp= cvpartition(y,‘leaveout’);
f= @(xtr,ytr,xte,yte)confusionmat(yte,...
classify(xte,xtr,ytr),‘order’,order);
cfMat2=crossval(f,X,y,‘partition’,cp);
LOOCV=reshape(sum(cfMat2),length(d1)-2,length(d1)-2)

save LDA.mat
save LOOCV.mat

if Plot_PCA~=0;

szfst=size(fstno);
szlst=size(lastno);
start=fstno(:,1:szfst(:,2)-1);
endm=lastno(:,2:szlst(:,2));

C = {‘k’,‘b’,‘r’,‘g’,‘y’,[.5 .6 .7],[.8 .2 .6]};
mkr={‘o’ ‘s’ ‘d’ ‘h’};
aha=[1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
1 2 3 4 5 6];
aha2=[1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5
6 6 6 6 6 6];

for facsev=1:5;
for facsev2=facsev+1:5

figure();
for sevi=1:length(start)

div=sevi/6;
Legend{sevi} = [{group_names(start
(sevi))}];sz23=size(Legend);

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB70

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

scatter(score(start(sevi):endm(sevi),facsev),
score((start(sevi):endm(sevi)),facsev2),100,
C{aha(1,sevi)},mkr{aha2(1,sevi)},‘filled’);

hold on
T{facsev}=[‘PCA Plot factors’,
num2str(facsev),’,’,
num2str(facsev2)];

end
for ijk=1:sz23(1,2);
L{ijk} = [Legend{1,ijk}{1,1}{1,1}];
end

legend(L)
title(T);

end
T=[];

end
FL1=[xaxis pc(:,1)];
FL2=[xaxis pc(:,2)];
FL3=[xaxis pc(:,3)];
FL4=[xaxis pc(:,4)];
FL5=[xaxis pc(:,5)];
save FactorLoading1.txt FL1 -ascii
save FactorLoading2.txt FL2 -ascii
save FactorLoading3.txt FL3 -ascii
save FactorLoading4.txt FL4 -ascii
save FactorLoading5.txt FL5 -ascii
else

FL1=[xaxis pc(:,1)];
FL2=[xaxis pc(:,2)];
FL3=[xaxis pc(:,3)];
FL4=[xaxis pc(:,4)];
FL5=[xaxis pc(:,5)];
save FactorLoading1.txt FL1 -ascii
save FactorLoading2.txt FL2 -ascii
save FactorLoading3.txt FL3 -ascii
save FactorLoading4.txt FL4 -ascii
save FactorLoading5.txt FL5 -ascii

end

Note the script line with the gray background. This is to enable the user to
enter the path right at the beginning. The line in the light blue background allows
skipping lines. Also note that even if PCA is not plotted, the PCA loadings are
saved.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 71

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Script I: Preprocess, PC-LDA, Plot PCA with ON/OFF
features

clear;clc;%%% Change parameters here %%%%%%%%%%

nnnn=‘C:\Users\Tanmoy\Desktop\Main Folder’;%%
Enter folder path%%

Extension =2; %% Enter 1 for ‘csv’, 2 for ‘txt’, and 3
for ‘asc’ %%%%%

skip_lines=0; %%% Enter number of lines to be skipped
%%%%%

Derivative=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%

Which_Derivative=1; %%% Enter 1 for ‘First deriva-
tive’ and 2 for ‘Second derivative’ %%%%%

Interpolation=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’
%%%%%

Interpolate_from=1200; Interpolate_to=1800; %%%
Enter range %%

Area_Normalization=1; %%% Enter 0 for ‘NO’ and 1 for
‘Yes’ %%%%%

Plot_PCA=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%

%%% Automated script %%%%%%%%%%

s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno = [0];

if Extension==1;
Ext=‘csv’;

else if Extension==2;
Ext=‘txt’;

else if Extension==3;
Ext=‘asc’;

end
end

end

cd(nnnn)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(strcat(‘*.’,Ext));

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB72

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

for i=1:length(d);
n=d(i).name;

if Extension==1;
norm=csvread(n,skip_lines,0);

else
norm=dlmread(n,’’,skip_lines,0);

end

xaxis=norm(:,1);

if Derivative~=0;
if Which_Derivative==1;
norm=diff(norm(:,2))/diff(xaxis);
xaxis=xaxis(1:length(norm),:);

else if Which_Derivative==2;
norm=diff(norm(:,2),2)/
diff(xaxis,2);

xaxis=xaxis (1:length
(norm),:);
end
end

else
norm=norm(:,2);xaxis=xaxis;

end

if Interpolation~=0;

p1=find(xaxis==Interpolate_from);
p2=find(xaxis==Interpolate_to);
p3=p1-p2;

if p3<0;

norm=norm(p1:p2,:);xaxis=xaxis(p1:p2);
else if p3>0;

norm=norm(p2:p1,:);xaxis=xaxis(p2:p1);
end
end

else
norm=norm; xaxis=xaxis;

end

if Area_Normalization~=0;
Area=trapz(xaxis ,norm); AreaS=Area/
100;
norm=norm/AreaS;

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 73

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

else;
norm=norm;

end
s=[s norm];

names=[names {n}];group_names=[group_
names {n1}];

end
nome=[nome {n1}];
amt = size (s); amt1 = amt (:,2); lastno =
[lastno amt1];

fstno=[fstno lastno(:,ii-1)+1];

cd(nnnn)
end
[pc,score,latent] = princomp(s’);
contribution = cumsum (latent)./sum(latent);
PC_sig= contribution (1:10,:);
forplot=[0

contribution];
plot(0:length(contribution),forplot*100);
save pc.mat pc; save score.mat score;
save contribution.mat contribution

y=group_names’; X=score(:,1:10);
Model = fitcdiscr(X,y);save Model.mat;ldaClass
= resubPredict(Model);
[LDA,grpOrder] = confusionmat(y,ldaClass)
order = unique(y);
cp= cvpartition(y,‘leaveout’);
f= @(xtr,ytr,xte,yte)confusionmat(yte,. ..
classify(xte,xtr,ytr),‘order’,order);
cfMat2=crossval(f,X,y,‘partition’,cp);
LOOCV=reshape(sum(cfMat2),length(d1)-2,
length(d1)-2)

save LDA.mat
save LOOCV.mat

if Plot_PCA~=0;

szfst=size(fstno);
szlst=size(lastno);
start=fstno(:,1:szfst(:,2)-1);
endm=lastno(:,2:szlst(:,2));

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB74

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

C = {‘k’,‘b’,‘r’,‘g’,‘y’,[.5 .6 .7],[.8 .2 .6]};
mkr={‘o’ ‘s’ ‘d’ ‘h’};
aha=[1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4
5 6 1 2 3 4 5 6];
aha2=[1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 5 5 5
5 5 5 6 6 6 6 6 6];

for facsev=1:5;
for facsev2=facsev+1:5

figure();
for sevi=1:length(start)

div=sevi/6;
Legend{sevi}= [{group_names(start
(sevi))}];sz23=size(Legend);

scatter(score(start(sevi):endm(sevi),facsev),
score((start(sevi):endm(sevi)),facsev2),100,
C{aha(1,sevi)},mkr{aha2(1,sevi)},‘filled’);

hold on
T{facsev}=[‘PCA Plot factors’,
num2str(facsev),’,’,num2str
(facsev2)];

end
for ijk=1:sz23(1,2);
L{ijk}=[Legend{1,ijk}{1,1}{1,1}];
end

legend(L)
title(T);

end
T=[];

end
FL1=[xaxis pc(:,1)];
FL2=[xaxis pc(:,2)];
FL3=[xaxis pc(:,3)];
FL4=[xaxis pc(:,4)];
FL5=[xaxis pc(:,5)];
save FactorLoading1.txt FL1 -ascii
save FactorLoading2.txt FL2 -ascii
save FactorLoading3.txt FL3 -ascii
save FactorLoading4.txt FL4 -ascii
save FactorLoading5.txt FL5 -ascii
else

FL1=[xaxis pc(:,1)];
FL2=[xaxis pc(:,2)];

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 75

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

FL3=[xaxis pc(:,3)];
FL4=[xaxis pc(:,4)];
FL5=[xaxis pc(:,5)];
save FactorLoading1.txt FL1 -ascii
save FactorLoading2.txt FL2 -ascii
save FactorLoading3.txt FL3 -ascii
save FactorLoading4.txt FL4 -ascii
save FactorLoading5.txt FL5 -ascii

end

Since options have been incorporated, the same should be done in the script
for the test prediction. Note that the information for turning on/off the features
is stored in the “Model” obtained using the PC-LDA script and need not be
repeated. The modified script is shown below:

Script II: Test Prediction with model built using
Script I

clear; clc;
%%%%%% Importing model information%Enter path for
Model%%%%%%%%
nnnn1=‘C:\Users\Tanmoy\Desktop\Main Folder’;
cd(nnnn1);load(‘Model.mat’);
%%%%%% Enter path for test spectra %%%%%%%%%%%
nnnn=‘C:\Users\Tanmoy\Desktop\T’;
%%%%%%% SCRIPT AUTOMATED HEREON %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%
cd(nnnn); d=dir(strcat(‘*.’,Ext));s=[];nome=[];s1=[];
for i=1:length(d);

n=d(i).name;
nome=[nome {n}];
if Ext==‘csv’;

norm=csvread(n,skip_lines,0);
else

norm=dlmread(n,’’,skip_lines,0);
end
xaxis=norm(:,1);

if Derivative~=0;
if Which_Derivative==1;
norm=diff(norm(:,2))/diff(xaxis);
xaxis=xaxis(1:length(norm),:);
else if Which_Derivative==2;
norm=diff(norm(:,2),2)/diff(xaxis,2);

xaxis=xaxis (1:length(norm),:);
end

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB76

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

end
else

norm=norm(:,2);xaxis=xaxis;
end

if Interpolation~=0;

p1=find(xaxis==Interpolate_from);
p2=find(xaxis==Interpolate_to);p3=p1-p2;

if p3<0;
norm=norm(p1:p2,:);xaxis=xaxis(p1:p2);

else if p3>0;
norm=norm(p2:p1,:);xaxis=xaxis(p2:p1);

end
end

else
norm=norm; xaxis=xaxis;

end
if Area_Normalization~=0;
Area=trapz(xaxis ,norm); AreaS=Area/100; norm=-
norm/AreaS;
else;

norm=norm;
end
s=[s norm];
end
[pc, score] = princomp(s’);
%lda prediction
y=nome’;X=score(:,1:10);Pred=predict(Model,X);
xx=[y Pred];save pred.mat
xx

11 Note on MATLAB Functions

We have seen how to program on/off features. There is an easier way to do this,
and many other operations, using MATLAB functions. MATLAB functions are
separate scripts for performing specific tasks, which can be put together as a sin-
gle line in the final script. Let us consider the following code:

>> clear;clc;

%%% Enter 1 for ‘csv’, 2 for ‘asc’, and 3 for ‘txt’ %%%%%%%%%%

Extension =

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 77

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

%%% Automated script %%%%%%%%%%

s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno= [0];

if Extension==1;
Ext=‘csv’;

else if Extension==2;
Ext=‘txt’;

else if Extension==3;
Ext=‘asc’;

end
end

end

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)....
....
....
....
....
end

[pc,score,latent] = princomp(s’);...

We can create a function for the yellow highlighted section in a new
MATLAB script as follows:

function Ext= DecideExtension(Extension)

if Extension==1;
Ext=‘csv’;

else if Extension==2;
Ext=‘txt’;

else if Extension==3;
Ext=‘asc’;

end
end

end

We then save it as DecideExtension.m in Desktop.
In the final script, the function can be called in a single line:

>> clear;clc;

%%% Enter 1 for ‘csv’, 2 for ‘asc’, and 3 for ‘txt’ %%%%%%%%%%

Extension =

%%% Automated script %%%%%%%%%%

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB78

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno= [0];

cd(‘C:\Users\Tanmoy\Desktop’)

[Ext]= DecideExtension(Extension)

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)....
....
....
....
....
end

[pc,score,latent] = princomp(s’);...

The advantage is that the final script is cleaner, less cluttered, and less confus-
ing. Another advantage is that the same function can be used in different scripts
without having to write it again and again.

It is important to note here that we have to first open the folder where the
function file is saved. In this example, we have stored it on the Desktop. Hence,
we first open the Desktop using “cd(‘C:\Users\Tanmoy\Desktop’),”
and then call the function “[Ext] = DecideExtension(Extension).”
The next line in the script opens the folder where the spectral files are stored
“cd(‘C:\Users\Tanmoy\Desktop\Main Folder’).” In case there is
no subsequent command line returning the script to the operational folder (in
our case, the one containing the spectra), then it should be added after calling
the function. This will ensure that the script is redirected for rest of the functions
to the operational folder and also stores the results in the same. The function file
should not be stored in the operational folder in the case of this script, as the
script is designed to recognize folders and open them, and if the function file is
in there, the script will try to open it, thinking it is a folder, will be unable to do
so, and will return an error, stopping the script.

The same can be done for all preprocessing steps, other on/off features, PCA,
PC-LDA, and plotting PCA, as well as prediction.

12 Final Note on How to Best Use the Script

It is clear that the script is folder dependent. One of the ways to carry out analysis
is to change the folder path in

cd(‘C:\Users\Tanmoy\Desktop\Main Folder’)

All user choices, PCA scores, loadings, PC significance, LDA, LOOCV, and
preprocessing step information, as well as the LDA model, are stored in this
folder. It is, therefore, imperative to use the same folder while predicting an
unknown spectrum. Thus, the test prediction script needs two paths: one to

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 79

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

specify the location of the “Model,” and the other to specify the location of test
spectra:

%%%%%% Importing model information% Enter path for Model
%%%%%%%%
nnnn1=‘C:\Users\Tanmoy\Desktop\Main Folder’; cd(nnnn1);
load(‘Model.mat’);
%%%%%% Enter path for test spectra %%%%%%%%%%%
nnnn=‘C:\Users\Tanmoy\Desktop\T’;

The specification of folder paths is critical for analysis, but it may be tedious
to change the folder path each time. An alternative is to create folders for LDA
and testing in a suitable location and copy the subfolders into them before analy-
sis. Once analysis is done, all of the files along with results can be transferred to
another folder labeled appropriately. Say one is testing “before treatment A” and
“after treatment A” spectra. Subfolders with the same name can be made in the
LDA folder and spectra can be transferred in them. The PC-LDA script can then
be run. After the analysis, the subfolders, along with PCs, LDA model, LDA
result, and LOOCV result, can be transferred from LDA to a folder labeled “treat-
ment A – before after.” The empty LDA folder can be used for another analysis.
When spectra need to be predicted against a treatment A before-and-after
PC-LDA model, all of the contents of folder “treatment A – before after” need
to be copied into the LDA folder, the test spectra copied into the test folder, and
then run the test prediction script. After prediction, both the LDA and test folders
should be emptied before the next analysis. This way, any number of analyses can
be performed without making changes in the script folder paths.

13 Common Errors

Errors are very common when running the script due to several reasons. One must
check the following before running the script to avoid errors:

1. The LDA and test folders should contain no other file other than the spectra
and they should be within proper subfolders. Any spectra or file out of a
subfolder or files that do not match the other spectral files within the sub-
folder will cause error. For example, if one has a few files with spectrum
information starting from line 1, and a few others starting from line 2,
MATLAB will show an error.

2. It is important to specify lines to be skipped, as MATLAB will not read text
lines and will show error.

3. Before giving a spectral range, check whether the spectrum has those
wavenumbers. If MATLAB is asked to select a spectra range of 1200 to
1800 cm−1, but the spectrum has wavenumbers 1199, 1201, 1203 cm−1. . . ,
MATLAB will show an error. Also, it is important to remember that the first

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB80

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

derivatization reduces the spectral data by one. So, if there are spectra from
400 to 1800 cm−1 and the first derivatization is performed, the result will
be an array with wavenumbers 400 to 1799 cm−1 or 1798 cm−1, depending
on the interval. In such a case, selecting 1200 to 1800 cm−1 will not work,
and MATLAB will show an error.

4. If the extension of the file is other than asc, csv, or txt, MATLAB will show
an error.

5. It is important to make sure that the folder/subfolder has spectra. If empty,
MATLAB will show an error.

6. If the number of spectra per group are too few, MATLAB will show an
error. It is recommended that each group has at least 10 spectra.

7. There must be a minimum of two subfolders for analysis. If one is exploring
trends in a dataset with group information not known, it is best to divide the
spectra randomly into two groups and visualize the data.

In case of error despite all precautions, contact the author. All datasets are dif-
ferent, and minor elements may give error unless script is fine-tuned according to
the dataset.

14 Automating Mean and Standard Deviations Calculations:
An Example

As mentioned earlier, the same script can be adapted for other purposes. In this
section, we will briefly examine how to use the script for calculating mean and
standard deviations.

Calculating mean and standard deviation is not a challenge and can be easily
performed using Microsoft Excel or Origin. Then, why do we need MATLAB?
The reason is to reduce tedium and manual errors. Imagine we have three groups
“A,” “B,” and “C,” each containing 30 spectra, and we need to find the mean
spectrum and its standard deviation for each group. In this case, we have to
copy/paste each spectrum to the Excel sheet, delete the wavenumbers column,
and then put in the formula. It is possible that we may forget to copy all spectra
or forget to delete a wavenumbers column, in which case the calculations will
be erroneous. Origin allows one to import files at one go, but we still have to
delete the wavenumber columns. Further, if the number of groups is large, the
work becomes time consuming.

We can use MATLAB to automate the process. We have already learned to
design a script that can import spectra from multiple subfolders and perform
PCA and PC-LDA on them. Instead of PCA/PC-LDA analysis, we can ask
MATLAB to calculate mean and standard deviations of the spectra imported from
each subfolder.

Let us examine the first part of the script, excluding the parts that deal with
PCA and PC-LDA:

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 81

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

clear;clc;%%% Change parameters here %%%%%%%%%%

nnnn=‘C:\Users\Tanmoy\Desktop\Main Folder’;%%Enter
folder path%%

Extension =2; %% Enter 1 for ‘csv’, 2 for ‘txt’, and 3 for
‘asc’ %%%%%

skip_lines=0; %%% Enter number of lines to be skipped %%%%%

Derivative=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%

Which_Derivative=1; %%% Enter 1 for ‘First derivative’
and 2 for ‘Second derivative’ %%%%%

Interpolation=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%

Interpolate_from=1200; Interpolate_to=1800; %%% Enter
range %%

Area_Normalization=1; %%% Enter 0 for ‘NO’ and 1 for
‘Yes’ %%%%%

Plot_PCA=1; %%% Enter 0 for ‘NO’ and 1 for ‘Yes’ %%%%%

%%% Automated script %%%%%%%%%%

s=[];names=[];nome=[];group_names=[]; fstno = [1];
lastno= [0];

if Extension==1;
Ext=‘csv’;

else if Extension==2;
Ext=‘txt’;

else if Extension==3;
Ext=‘asc’;

end
end

end

cd(nnnn)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name;
cd(n1);
d=dir(strcat(‘*.’,Ext));
for i=1:length(d);

n=d(i).name;

if Extension==1;
norm=csvread(n,skip_lines,0);

else

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB82

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

norm=dlmread(n,’’,skip_lines,0);
end

xaxis=norm(:,1);

if Derivative~=0;
if Which_Derivative==1;
norm=diff(norm(:,2))/diff(xaxis);
xaxis=xaxis(1:length(norm),:);
else if Which_Derivative==2;
norm=diff(norm(:,2),2)/
diff(xaxis,2);
xaxis=xaxis (1:length(norm),:);
end
end

else
norm=norm(:,2);xaxis=xaxis;

end

if Interpolation~=0;

p1=find(xaxis==Interpolate_from);
p2=find(xaxis==Interpolate_to);
p3=p1-p2;

if p3<0;
norm=norm(p1:p2,:);
xaxis=
xaxis(p1:p2);

else if p3>0;
norm=norm(p2:p1,:);
xaxis=
xaxis(p2:p1);

end
end

else
norm=norm; xaxis=xaxis;

end

if Area_Normalization~=0;
Area=trapz(xaxis ,norm);
AreaS=Area/100; norm=norm/AreaS;

else;
norm=norm;

end

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 83

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

s=[s norm];

names=[names {n}];group_names=[group_
names {n1}];

end
nome=[nome {n1}];
amt= size(s);amt1= amt (:,2); lastno= [lastno amt1];

fstno=[fstno lastno(:,ii-1)+1];

cd(nnnn)

end

Note the parts of the script marked in yellow deal with preprocessing the
spectrum or with PCA plotting, which we do not need to perform. So, we can
simply delete those parts. Here is how it looks after that, with the places that need
change highlighted in yellow:

clear;clc;%%% Change parameters here %%%%%%%%%%

nnnn=‘C:\Users\Tanmoy\Desktop\Main Folder’;%%Enter
folder path%%

Extension =2; %% Enter 1 for ‘csv’, 2 for ‘txt’, and 3 for
‘asc’ %%%%%

skip_lines=0; %%% Enter number of lines to be skipped %%%%%

%%% Automated script %%%%%%%%%%

s=[];names=[];nome=[];group_names=[];

if Extension==1;
Ext=‘csv’;

else if Extension==2;
Ext=‘txt’;

else if Extension==3;
Ext=‘asc’;

end
end

end

cd(nnnn)
d1=dir;
for ii=3:length(d1);

n1=d1(ii).name; s= [];
cd(n1);
d=dir(strcat(‘*.’,Ext));

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB84

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

for i=1:length(d);
n=d(i).name;

if Extension==1;
norm=csvread(n,skip_lines,0);

else
norm=dlmread(n,’’,skip_lines,0);

end

xaxis=norm(:,1);

s=[s norm(:,2)];

names=[names {n}];group_names=[group_
names {n1}];

end
HERE
nome=[nome {n1}];

cd(nnnn)

end

We see there are three places that need changing—line 21 (“s= []”), line 35
[“norm(:,2)”], and after line 37 marked with “here” written in large font with
yellow highlight. We will discuss the line 21 change last. The minor change in
line 35 from “norm” to “norm(:,2)” makes sure that only intensity values
are stored in the variable instead of both wavenumbers and intensity values.
This is because we calculate the mean of intensity values, while the wavenumber
values remain unchanged.

The major changes are made after line 37 marked by “here.” Continuing with
the example given before, we need to calculate the mean and standard deviations
for spectra in each group, “A,” “B,” and “C.” For this reason, we have saved all
spectra in each group in subfolders “A,” “B,” and “C,” inside the “main folder”
as before. The script until line 37 opens the “main folder,” then opens the first
subfolder “A,” and gathers all the intensity values in the variable “s.” The next
step is to calculate the mean.

We can, therefore, insert the MATLAB command for calculating the average:

y=mean((s’));

We use the transpose function (’), because MATLAB calculates mean for
rows, and we have spectra arranged in columns, where one column= 1 spectrum.
By transposing, we make 1 row= 1 spectrum. Then, the “mean” function can be
used. We then store the calculated mean in variable “y” and transpose it again
for convenience and store it in variable “y1”:

y1=y’;

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 85

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

We calculate the standard deviation again after transposing the variable “s,”
then transpose the result in “z1,” and store it in “z”:

z=std((s’));z1=z’;

Next, we calculate “mean + standard deviation” and “mean − standard
deviation” as follows:

s1=y1 + z1; s2=y1-z1;

We then plot the results as follows (recall that the wavenumbers are stored in
the variable “xaxis”):

figure();
plot(xaxis, y1, ‘-r’); hold on
plot(xaxis, s1, ‘-b’); hold on
plot(xaxis, s2, ‘-g’); hold on

and save them as

save(strcat(n1,‘mean’),‘y1’,‘-ascii’);
save(strcat(‘stp’,n1),‘s1’,‘-ascii’);
save(strcat(‘ntp’,n1),‘s2’,‘-ascii’);

Recall that the variable “n1” contains the name of the subfolder, that is the
group name, and that the command “strcat” will join the text within the brackets.
So, if “n1” is “A,” “strcat(n1,‘mean’)” will result in “Amean,” which will
help identify the saved file.

We keep

cd(nnnn)

While these calculations are going on, the script is in the first subfolder “A.”
The above command will return the script to the “main folder” then open the next
sub-folder “B,” and so on.

The final and very important step is to add “s=[]” after the beginning of the
first “for” loop. This is the change that is made in line 21. This ensures that the
variable “s” is empty to receive spectra from the next subfolder, say, “B.” If this
is not done, spectra from the previous subfolder, say, “A,” will remain in “s,” and
when spectra from “B” subfolder get added, the calculated mean will be the mean
of “A” and “B,” and not just “B.” We need the mean of each folder separately, the
mean of “A,” mean of “B,” and so on. So, this step is critical.

With this script, the mean spectrum with the spectra mean + standard
deviation and mean − standard deviations will be calculated for each subfolder
and saved within the subfolder. Plots of the same will pop up as figures for each
subfolder, too, which can help a quick visualization of the mean and standard
deviations of each group. The script does not do any preprocessing, but most
spectroscopists prefer to preprocess all the spectra before calculating the mean.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB86

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

The user can choose to use preprocessed spectra as input or write a script for auto-
mated preprocessing and append it before the above script.

All precautions outlined in Section 13 apply for this script, too.

References
1. E. Hanlon et al., “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1

(2000).
2. Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomed.:

Nanotechnol. Biol. Med. 8(5), 545–558 (2012).
3. I. Pence and A. Mahadevan-Jansen, “Clinical instrumentation and applications of Raman spec-

troscopy,” Chem. Soc. Rev. 45(7), 1958–1979 (2016).
4. R. Petry, M. Schmitt, and J. Popp, “Raman spectroscopy—a prospective tool in the life scien-

ces,” ChemPhysChem 4(1), 14–30 (2003).
5. B. Singh et al., “Application of vibrational microspectroscopy to biology and medicine,”

Curr. Sci. 102(2), 232–244 (2012), http://eprints.iisc.ac.in/id/eprint/43712 and https://pdfs.
semanticscholar.org/5e51/be4f6fadf16c8a211e3dafe761cdcd245f99.pdf.

6. D. Cialla-May et al., “Recent progress in surface-enhanced Raman spectroscopy for biological
and biomedical applications: from cells to clinics,” Chem. Soc. Rev. 46(13), 3945–3961 (2017).

7. Z. Zhao et al., “Applications of vibrational tags in biological imaging by Raman microscopy,”
Analyst 142(21), 4018–4029 (2017).

8. H. Ahn et al., “Emerging optical spectroscopy techniques for biomedical applications—a brief
review of recent progress,” Appl. Spectrosc. Rev. 53(2–4), 264–278 (2018).

9. C. Krafft et al., “Disease recognition by infrared and Raman spectroscopy,” J. Biophotonics
2(1–2), 13–28 (2009).

10. P. K. Hopke, “The evolution of chemometrics,” Anal. Chim. Acta 500(1–2), 365–377 (2003).
11. Å. Rinnan, “Pre-processing in vibrational spectroscopy-when, why and how,” Anal. Methods

6(18), 7124–7129 (2014).
12. R. Bro and A. K. Smilde, “Principal component analysis,” Anal. Methods 6(9), 2812–2831

(2014).
13. D. Ballabio and V. Consonni, “Classification tools in chemistry. Part 1: linear models.

PLS-DA,” Anal. Methods 5(16), 3790–3798 (2013).
14. R. Gautam et al., “Review of multidimensional data processing approaches for Raman and

infrared spectroscopy,” EPJ Tech. Instrum. 2(1), 1–38 (2015).

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB 87

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

http://dx.doi.org/10.1088/0031-9155/45/2/201
http://dx.doi.org/10.1088/0031-9155/45/2/201
http://dx.doi.org/10.1016/j.nano.2011.09.013
http://dx.doi.org/10.1016/j.nano.2011.09.013
http://dx.doi.org/10.1039/C5CS00581G
http://dx.doi.org/10.1002/cphc.v4:1
http://eprints.iisc.ac.in/id/eprint/43712
http://eprints.iisc.ac.in/id/eprint/43712
http://eprints.iisc.ac.in/id/eprint/43712
http://eprints.iisc.ac.in/id/eprint/43712
https://pdfs.semanticscholar.org/5e51/be4f6fadf16c8a211e3dafe761cdcd245f99.pdf
https://pdfs.semanticscholar.org/5e51/be4f6fadf16c8a211e3dafe761cdcd245f99.pdf
http://dx.doi.org/10.1039/C7CS00172J
http://dx.doi.org/10.1039/C7AN01001J
http://dx.doi.org/10.1080/05704928.2017.1324877
http://dx.doi.org/10.1002/jbio.v2:1/2
http://dx.doi.org/10.1002/jbio.v2:1/2
http://dx.doi.org/10.1016/S0003-2670(03)00944-9
http://dx.doi.org/10.1039/C3AY42270D
http://dx.doi.org/10.1039/C3AY42270D
http://dx.doi.org/10.1039/C3AY41907J
http://dx.doi.org/10.1039/C3AY41907J
http://dx.doi.org/10.1039/c3ay40582f
http://dx.doi.org/10.1140/epjti/s40485-015-0018-6

Tanmoy Bhattacharjee received his M.S.
(Biotechnology) from the University of Mumbai
(2007) and Ph.D. (Life Science) from the Homi
Bhabha National Institute, Mumbai (2015). He was
a post-doctoral fellow at the University of Paraiba
Valley, Brazil (2016-2017), and currently works as a
post-doctoral researcher at the University of Otago,
New Zealand. He has 22 publications and has
co-authored a book on Raman spectroscopy. His
research interests include the development of diagnos-
tic devices, animal models of diseases, biological
applications of spectroscopy and ultrasound tech-

niques, and writing MATLAB- and R-based scripts for data analysis.

Bhattacharjee: Automating Data Preprocessing and Analysis with MATLAB88

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

