
Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Tutorial Texts Series

• Artificial Neural Networks: An Introduction, Kevin L. Priddy and Paul E. Keller, Vol. TT68
• Basics of Code Division Multiple Access (CDMA), Raghuveer Rao and Sohail Dianat, Vol. TT67
• Optical Imaging in Projection Microlithograpy, Alfred Kwok-Kit Wong, Vol. TT66
• Metrics for High-Quality Specular Surfaces, Lionel R. Baker, Vol. TT65
• Field Mathematics for Electromagnetics, Photonics, and Materials Science, Bernard Maxum, Vol. TT64
• High-Fidelity Medical Imaging Displays, Aldo Badano, Michael J. Flynn, and Jerzy Kanicki, Vol. TT63
• Diffractive Optics–Design, Fabrication, and Test, Donald C. O’Shea, Thomas J. Suleski, Alan D.

Kathman, and Dennis W. Prather, Vol. TT62
• Fourier-Transform Spectroscopy Instrumentation Engineering, Vidi Saptari, Vol. TT61
• The Power- and Energy-Handling Capability of Optical Materials, Components, and Systems, Roger M.

Wood, Vol. TT60
• Hands-on Morphological Image Processing, Edward R. Dougherty, Roberto A. Lotufo, Vol. TT59
• Integrated Optomechanical Analysis, Keith B. Doyle, Victor L. Genberg, Gregory J. Michels, Vol. TT58
• Thin-Film Design: Modulated Thickness and Other Stopband Design Methods, Bruce Perilloux, Vol. TT57
• Optische Grundlagen für Infrarotsysteme, Max J. Riedl, Vol. TT56
• An Engineering Introduction to Biotechnology, J. Patrick Fitch, Vol. TT55
• Image Performance in CRT Displays, Kenneth Compton, Vol. TT54
• Introduction to Laser Diode-Pumped Solid State Lasers, Richard Scheps, Vol. TT53
• Modulation Transfer Function in Optical and Electro-Optical Systems, Glenn D. Boreman, Vol. TT52
• Uncooled Thermal Imaging Arrays, Systems, and Applications, Paul W. Kruse, Vol. TT51
• Fundamentals of Antennas, Christos G. Christodoulou and Parveen Wahid, Vol. TT50
• Basics of Spectroscopy, David W. Ball, Vol. TT49
• Optical Design Fundamentals for Infrared Systems, Second Edition, Max J. Riedl, Vol. TT48
• Resolution Enhancement Techniques in Optical Lithography, Alfred Kwok-Kit Wong, Vol. TT47
• Copper Interconnect Technology, Christoph Steinbrüchel and Barry L. Chin, Vol. TT46
• Optical Design for Visual Systems, Bruce H. Walker, Vol. TT45
• Fundamentals of Contamination Control, Alan C. Tribble, Vol. TT44
• Evolutionary Computation: Principles and Practice for Signal Processing, David Fogel, Vol. TT43
• Infrared Optics and Zoom Lenses, Allen Mann, Vol. TT42
• Introduction to Adaptive Optics, Robert K. Tyson, Vol. TT41
• Fractal and Wavelet Image Compression Techniques, Stephen Welstead, Vol. TT40
• Analysis of Sampled Imaging Systems, R. H. Vollmerhausen and R. G. Driggers, Vol. TT39
• Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Valery Tuchin, Vol. TT38
• Fundamentos de Electro-Óptica para Ingenieros, Glenn D. Boreman, translated by Javier Alda, Vol. TT37
• Infrared Design Examples, William L. Wolfe, Vol. TT36
• Sensor and Data Fusion Concepts and Applications, Second Edition, L. A. Klein, Vol. TT35
• Practical Applications of Infrared Thermal Sensing and Imaging Equipment, Second Edition, Herbert

Kaplan, Vol. TT34
• Fundamentals of Machine Vision, Harley R. Myler, Vol. TT33
• Design and Mounting of Prisms and Small Mirrors in Optical Instruments, Paul R. Yoder, Jr., Vol. TT32
• Basic Electro-Optics for Electrical Engineers, Glenn D. Boreman, Vol. TT31
• Optical Engineering Fundamentals, Bruce H. Walker, Vol. TT30
• Introduction to Radiometry, William L. Wolfe, Vol. TT29
• Lithography Process Control, Harry J. Levinson, Vol. TT28
• An Introduction to Interpretation of Graphic Images, Sergey Ablameyko, Vol. TT27
• Thermal Infrared Characterization of Ground Targets and Backgrounds, P. Jacobs, Vol. TT26
• Introduction to Imaging Spectrometers, William L. Wolfe, Vol. TT25
• Introduction to Infrared System Design, William L. Wolfe, Vol. TT24

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Bellingham, Washington USA

Tutorial Texts in Optical Engineering
Volume TT68

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Library of Congress Cataloging-in-Publication Data

Priddy, Kevin L.
 Artificial neural networks : an introduction / Kevin L. Priddy and Paul E. Keller.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-8194-5987-9
 1. Neural networks (Computer science) I. Keller, Paul E. II. Title.

QA76.87.P736 2005
006.3'2--dc22 2005021833

Published by

SPIE—The International Society for Optical Engineering
P.O. Box 10
Bellingham, Washington 98227-0010 USA
Phone: +1 360 676 3290
Fax: +1 360 647 1445
Email: spie@spie.org
Web: http://spie.org

Copyright © 2005 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed
in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author(s).
Every effort has been made to publish reliable and accurate information herein,
but the publisher is not responsible for the validity of the information or for any
outcomes resulting from reliance thereon.

Printed in the United States of America.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Introduction to the Series

Since its conception in 1989, the Tutorial Texts series has grown to more than 60
titles covering many diverse fields of science and engineering. When the series
was started, the goal of the series was to provide a way to make the material
presented in SPIE short courses available to those who could not attend, and to
provide a reference text for those who could. Many of the texts in this series are
generated from notes that were presented during these short courses. But as
stand-alone documents, short course notes do not generally serve the student or
reader well. Short course notes typically are developed on the assumption that
supporting material will be presented verbally to complement the notes, which
are generally written in summary form to highlight key technical topics and
therefore are not intended as stand-alone documents. Additionally, the figures,
tables, and other graphically formatted information accompanying the notes
require the further explanation given during the instructor’s lecture. Thus, by
adding the appropriate detail presented during the lecture, the course material can
be read and used independently in a tutorial fashion.

What separates the books in this series from other technical monographs and
textbooks is the way in which the material is presented. To keep in line with the
tutorial nature of the series, many of the topics presented in these texts are
followed by detailed examples that further explain the concepts presented. Many
pictures and illustrations are included with each text and, where appropriate,
tabular reference data are also included.

The topics within the series have grown from the initial areas of geometrical
optics, optical detectors, and image processing to include the emerging fields of
nanotechnology, biomedical optics, and micromachining. When a proposal for a
text is received, each proposal is evaluated to determine the relevance of the
proposed topic. This initial reviewing process has been very helpful to authors in
identifying, early in the writing process, the need for additional material or other
changes in approach that would serve to strengthen the text. Once a manuscript is
completed, it is peer reviewed to ensure that chapters communicate accurately the
essential ingredients of the processes and technologies under discussion.

It is my goal to maintain the style and quality of books in the series, and to
further expand the topic areas to include new emerging fields as they become of
interest to our reading audience.

Arthur R. Weeks, Jr.
University of Central Florida

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Contents

Preface xi

Acknowledgements xii

Chapter 1 Introduction 1
1.1. The Neuron 1
1.2. Modeling Neurons 2
1.3. The Feedforward Neural Network 8

1.3.1. The Credit-Assignment Problem 9
1.3.2. Complexity 10

1.4. Historical Perspective on Computing with Artificial Neurons 11

Chapter 2 Learning Methods 13
2.1. Supervised Training Methods 13
2.2. Unsupervised Training Methods 13

Chapter 3 Data Normalization 15
3.1. Statistical or Z-Score Normalization 15
3.2. Min-Max Normalization 16
3.3. Sigmoidal or SoftMax Normalization 16
3.4. Energy Normalization 17
3.5. Principal Components Normalization 17

Chapter 4 Data Collection, Preparation, Labeling, and Input Coding 21
4.1. Data Collection 21

4.1.1. Data-Collection Plan 21
4.1.2. Biased Data Set 23
4.1.3. Amount of Data 24
4.1.4. Features/Measurements 24
4.1.5. Data Labeling 25

4.2. Feature Selection and Extraction 25
4.2.1. The Curse of Dimensionality 26
4.2.2. Feature Reduction/Dimensionality Reduction 26
4.2.3. Feature Distance Metrics 28

vii

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

viii Contents

Chapter 5 Output Coding 31
5.1. Classifier Coding 31
5.2. Estimator Coding 31

Chapter 6 Post-processing 33

Chapter 7 Supervised Training Methods 35
7.1. The Effects of Training Data on Neural Network Performance 36

7.1.1. Comparative Analysis 37
7.2. Rules of Thumb for Training Neural Networks 42

7.2.1. Foley’s Rule 42
7.2.2. Cover’s Rule 42
7.2.3. VC Dimension 43
7.2.4. The Number of Hidden Layers 43
7.2.5. Number of Hidden Neurons 43
7.2.6. Transfer Functions 43

7.3. Training and Testing 44
7.3.1. Split-Sample Testing 44
7.3.2. Use of Validation Error 46
7.3.3. Use of Validation Error to Select Number of Hidden Neurons 46

Chapter 8 Unsupervised Training Methods 49
8.1. Self-Organizing Maps (SOMs) 49

8.1.1. SOM Training 51
8.1.2. An Example Problem Solution Using the SOM 53

8.2. Adaptive Resonance Theory Network 57

Chapter 9 Recurrent Neural Networks 61
9.1. Hopfield Neural Networks 61
9.2. The Bidirectional Associative Memory (BAM) 63
9.3. The Generalized Linear Neural Network 66

9.3.1. GLNN Example 67
9.4. Real-Time Recurrent Network 68
9.5. Elman Recurrent Network 68

Chapter 10 A Plethora of Applications 71
10.1. Function Approximation 71
10.2. Function Approximation—Boston Housing Example 74
10.3. Function Approximation—Cardiopulmonary Modeling 75
10.4. Pattern Recognition—Tree Classifier Example 80
10.5. Pattern Recognition—Handwritten Number Rrecognition Example 85
10.6. Pattern Recognition—Electronic Nose Example 89
10.7. Pattern recognition—Airport Scanner Texture Recognition Example 92
10.8. Self Organization—Serial Killer Data-Mining Example 95
10.9. Pulse-Coupled Neural Networks—Image Segmentation Example 97

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Contents ix

Chapter 11 Dealing with Limited Amounts of Data 101
11.1. K-fold Cross-Validation 101
11.2. Leave-one-out Cross-Validation 102
11.3. Jackknife Resampling 102
11.4. Bootstrap Resampling 103

Appendix A. The Feedforward Neural Network 107
A.1. Mathematics of the Feedforward Process 107
A.2. The Backpropagation Algorithm 109

A.2.1. Generalized Delta Rule 110
A.2.2. Backpropagation Process 113
A.2.3. Advantages and Disadvantages of Backpropagation 116

A.3. Alternatives to Backpropagation 116
A.3.1. Conjugate Gradient Descent 117
A.3.2. Cascade Correlation 117
A.3.3. Second-Order Gradient Techniques 118
A.3.4. Evolutionary Computation 122

Appendix B. Feature Saliency 125

Appendix C. Matlab Code for Various Neural Networks 131
C.1. Matlab Code for Principal Components Normalization 131
C.2. Hopfield Network 132
C.3. Generalized Neural Network 133
C.4. Generalized Neural Network Example 134
C.5. ART-like Network 135
C.6. Simple Perceptron Algorithm 137
C.7. Kohonen Self-Organizing Feature Map 138

Appendix D. Glossary of Terms 143

References 151

Index 163

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Preface

This text introduces the reader to the fascinating world of artificial neural networks,
a journey that the authors are here to help you with. The authors have written this
book for the reader who wants to understand artificial neural networks without
necessarily being bogged down in the mathematics. A glossary is included to assist
the reader in understanding any unfamiliar terms. For those who desire the math,
sufficient detail for most of the common neural network algorithms is included in
the appendixes.

The concept of data-driven computing is the overriding principle upon which
neural networks have been built. Many problems exist for which data are plentiful,
but there is no underlying knowledge of the process that converts the measured
inputs into the observed outputs. Artificial neural networks are well suited to this
class of problem because they are excellent data mappers in that they map inputs to
outputs. This text illustrates how this is done with examples and relevant snippets
of theory.

The authors have enjoyed writing the text and welcome readers to dig further
and learn how artificial neural networks are changing the world around them.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Acknowledgements

We wish to acknowledge our mentor and friend, Dr. Steven K. Rogers, aka Captain
Amerika, for his enthusiasm and encouragement throughout our careers in utilizing
artificial neural networks. Many of the concepts and ideas were borrowed from
discussions and presentations given by Dr. Rogers.

We could not have done this work without the support of our families and es-
pecially our wives, Wendy Priddy and Torie Keller. We wish to acknowledge the
assistance of Samuel Priddy in preparing the manuscript. In addition, The Interna-
tional Society for Optical Engineering (SPIE) has been very helpful in encouraging
us to write this text and in its final preparation for publication.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Chapter 1

Introduction

Artificial neural networks are mathematical inventions inspired by observations
made in the study of biological systems, though loosely based on the actual bi-
ology. An artificial neural network can be described as mapping an input space
to an output space. This concept is analogous to that of a mathematical function.
The purpose of a neural network is to map an input into a desired output. While
patterned after the interconnections between neurons found in biological systems,
artificial neural networks are no more related to real neurons than feathers are re-
lated to modern airplanes. Both biological systems, neurons and feathers, serve
a useful purpose, but the implementation of the principles involved has resulted
in man-made inventions that bear little resemblance to the biological systems that
spawned the creative process.

This text starts with the aim of introducing the reader to many of the most
popular artificial neural networks while keeping the mathematical gymnastics to a
minimum. Many excellent texts, which have detailed mathematical descriptions for
many of the artificial neural networks presented in this book, are cited in the bib-
liography. Additional mathematical background for the neural-network algorithms
is provided in the appendixes as well. Artificial neural networks are modeled after
early observations in biological systems: myriads of neurons, all connected in a
manner that somehow distributes the necessary signals to various parts of the body
to allow the biological system to function and survive. No one knows exactly how
the brain works or what is happening in the nervous system all of the time, but
scientists and medical doctors have been able to uncover the inner workings of the
mind and the nervous system to a degree that allows them to completely describe
the operation of the basic computational building block of the nervous system and
brain: the neuron.

1.1 The Neuron

The human body is made up of a vast array of living cells. Certain cells are in-
terconnected in a way that allows them to communicate pain, or to actuate fibers
or tissues. Some cells control the opening and shutting of minuscule valves in the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

2 Chapter 1

veins and arteries. Others tell the brain that they are experiencing cold, heat, or
any number of sensations. These specialized communication cells are called neu-
rons. Neurons are equipped with long tentacle-like structures that stretch out from
the cell body, permitting them to communicate with other neurons. The tentacles
that take in signals from other cells and the environment itself are called dendrites,
while the tentacles that carry signals from the neuron to other cells are called ax-
ons. The interaction of the cell body itself with the outside environment through its
dendritic connections and the local conditions in the neuron itself cause the neuron
to pump either sodium or potassium in and out, raising and lowering the neuron’s
electrical potential. When the neuron’s electrical potential exceeds a threshold, the
neuron fires, creating an action potential that flows down the axons to the synapses
and other neurons. The action potential is created when the voltage across the cell
membrane of the neuron becomes too large and the cell “fires,” creating a spike
that travels down the axon to other neurons and cells. If the stimulus causing the
buildup in voltage is low, then it takes a long time to cause the neuron to fire. If it
is high, the neuron fires much faster.

The firing rate of the neuron can thus be close to zero, as in a case involving
no stimulus, to a maximum of approximately 300 pulses per second, as in the case
of a stimulus that causes the neuron to fire as fast as possible. Because a neuron
is a physical system, it takes time to build up enough charge to cause it to fire.
This is where adrenaline comes into play. Adrenaline acts as a bias for the neuron,
making it much more likely to fire in the presence of a stimulus. In this book
the reader will see how man-made neural networks mimic this potential through
weighted interconnections and thresholding terms that allow the artificial neurons
to fire more rapidly, just as a biological cell can be biased to fire more rapidly
through the introduction of adrenaline. Figure 1.1 is a simplified depiction of a
neuron.

The neuron has a central cell body, or soma, with some special attachments,
dendrites and axons. The dendrites are special nodes and fibers that receive elec-
trochemical stimulation from other neurons. The axon allows the neuron to com-
municate with other neighboring neurons. The axon connects to a dendrite fiber
through an electrochemical junction known as a synapse. For simplicity, the neu-
ron is depicted with a handful of connections to other cells. In reality, there can
be from tens to thousands of interconnections between neurons. The key concept
to remember is that neurons receive inputs from other neurons and send outputs to
other neurons and cells.

1.2 Modeling Neurons

From the previous section, the reader learned that neurons are connected to other
neurons. A simple model of the neuron that shows inputs from other neurons and
a corresponding output is depicted in Fig. 1.2. As can be seen in the figure, three
neurons feed the single neuron, with one output emanating from the single neuron.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Introduction 3

Figure 1.1 Simplified diagram of a neuron.

The reader may recall that neurons send signals to other neurons by sending an ac-
tion potential down the axon. This is modeled through the use of a transfer function
that mimics the firing rate of the neuron action potential, as shown in Fig. 1.3.

Some inputs to the neuron may have more relevance as to whether the neuron
should fire, so they should have greater importance. This is modeled by weighting
the inputs to the neuron. Thus, the neuron can be thought of as a small computing
engine that takes in inputs, processes them, and then transmits an output. The arti-
ficial neuron with weighted inputs and a corresponding transfer function is shown
in Fig. 1.4. The output for the neuron in Fig. 1.4 is given by

z = f

(
3∑

i=0

wixi

)
. (1.1)

The reader has probably already determined that Eq. (1.1) lacks a definition for
the transfer function. Many different transfer functions are available to the neural
network designer, such as those depicted in Fig. 1.5.

The most commonly used transfer function is the sigmoid or logistic function,
because it has nice mathematical properties such as monotonicity, continuity, and
differentiability, which are very important when training a neural network with
gradient descent. Initially, scientists studied the single neuron with a hard-limiter
or step-transfer function. McCulloch and Pitts used an “all or nothing” process to
describe neuron activity [McCulloch, 1949]. Rosenblatt [Rosenblatt, 1958] used a
hard limiter as the transfer function and termed the hard-limiter neuron a percep-
tron because it could be taught to solve simple problems. The hard-limiter is an
example of a linear equation solver with a simple line forming the decision bound-
ary, as shown in Fig. 1.6.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

4 Chapter 1

Figure 1.2 Artificial neuron with inputs and a single output.

Figure 1.3 Transfer function representation of neuron firing rate.

Figure 1.4 Neuron model with weighted inputs and embedded transfer function.

The most common transfer function is the logistic sigmoid function, which is
given by the following equation:

output = 1

1 + e−(
∑

i wixi+w0)
, (1.2)

where i is the index on the inputs to the neuron, xi is the input to the neuron, wi is
the weighting factor attached to that input, and w0 is the bias to the neuron.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Introduction 5

Figure 1.5 Three different types of transfer function—step, sigmoid, and linear in unipolar
and bipolar formats.

Figure 1.6 Simple neuron model with decision boundaries.

The aggregation and selective use of these decision boundaries is what makes
artificial neural networks interesting. Artificial neural networks were created to per-
mit machines to form these decision boundaries with their associated class regions
as derived from the data. In fact, a more proper name for artificial neural networks
may very well be data-driven computational engines. Neural networks can be used
to combine these decision regions together to form higher and higher levels of
abstraction, which can result in neural networks with some amazing properties.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

6 Chapter 1

To illustrate the how a decision boundary can be formed, consider the neuron
in Fig. 1.6 and the associated subfigures. Looking at the subfigure on the lower left,
the reader will see a small circle and an ellipse. Each shape represents objects that
belong to the same set or class; e.g., the circle could represent all mammals (M)
and the ellipse could represent all birds (B). The neuron, combined with a hard-
limiter transfer function, can find a line that will separate the two classes {M, B}
as depicted by the drawn lines in Fig. 1.6. Each line represents the locus of neuron
activation values possible for a given set of weights associated with the neuron. For
example, in Fig. 1.6, the reader will see an equation for the neuron net stimulus, or
activation, given as

Net Stimulus =
2∑

i=0

wifi = w2f2 + w1f1 + w0, (1.3)

which can be rearranged to form

f2 = w1f1

w2
+ (w0 − Net Stimulus)

w2
, (1.4)

which is an equation of a line with a slope of w1/w2 and an intercept of
(w0 − Net Stimulus)/w2 on the f2 axis. Thus, for a given node with weighted in-
puts, the activation must lie on the line described by Eq. (1.4).

Decision engines that follow the form of Eq. (1.4) are called linear classifiers.
This important observation, that all possible neuron activation values lie on a line,
cannot be emphasized enough, because by changing the weights and using a non-
linear transfer function a decision engine can be produced that places one set of
objects on one side of the line and other objects or classes on the other side of the
line. Thus, by changing w0,w1,w2 and the net stimulus value, the position of the
line can be moved until one side of the line contains all the examples of a given
class and the other side contains all examples of other classes, as shown in Fig. 1.6.
When more than two feature dimensions are used, the equation becomes that of a
separating hyperplane. In principle, the concept is similar to the line described pre-
viously: On one side of the hyperplane is one class, and on the other side, all the
other classes. Whenever a decision engine can produce such a line or hyperplane
and separate the data, the data is called a linearly separable set.

One of the best-known linear classifiers is the perceptron, first introduced by
Rosenblatt [Rosenblatt, 1958]. The perceptron adjusts its weights using the error
vector between a data point and the separating decision line. Changes are made
to the weights of the network until none of the training-set data samples produces
an error. The perceptron algorithm is presented in simplified form in Table 1.1.
The reader will find Matlab code in the appendixes that implements the perceptron
algorithm.

The perceptron has the ability to form separating lines and hyperplanes to per-
mit linearly separable classification problems to be solved. Many examples of data

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Introduction 7

exist in the real world in which the classes are not linearly separable, such as that
shown in Fig. 1.7. This demonstrates that no single line can separate the green cir-
cle from the red kidney-shaped object. It will be shown later that multiple linear
classifiers can be combined to produce separable decision regions with a single
classifier.

Researchers discovered that combining neurons into layers permits artificial
neural networks to solve highly complex classification problems. The next section

Table 1.1 Perceptron Learning Algorithm

1. Assign the desired output of the perceptron {−1,1} to each data point in the training set
2. Augment each set of features for each data point with one to form x = {1,x1,x2, . . . ,xn}
3. Choose an update step size (eta ∈ (0,1)) usually eta = 0.1
4. Randomly initialize weights w = {w0,w1,w2, . . . ,wn}
5. Execute perceptron weight adjustment algorithm
error_flag = 1
while error_flag = 1

error = 0
for ii = 1 to total number of data points in training set

grab a feature vector (x) and its desired output {1,−1}
output = signum(wxT)
if output not equal to desired

w = w − eta · x
error = error + output − desired

end
end
if error = 0

error_flag = 0
end

end

Figure 1.7 Example of a nonlinearly separable classification problem.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

8 Chapter 1

introduces the feedforward neural network, which is composed of layers of neu-
rons.

1.3 The Feedforward Neural Network

A depiction of a simple feedforward neural network is given in Fig. 1.8. On the left
portion of the figure are inputs to the first layer of neurons, followed by intercon-
nected layers of neurons, and finally with outputs from the final layer of neurons.
Note that each layer directly supplies the next layer in the network, feeding the
inputs forward through the network, earning this network architecture the feedfor-
ward network label. The transfer functions of the neurons do not affect the feed-
forward behavior of the network. The reader will see many feedforward networks
with sigmoid transfer functions, but the neurons in feedforward networks can be
any transfer function the designer wishes to use. In addition, the reader should note
that a neuron on the first layer could feed a neuron on the third as well as the second
layer. Feedforward networks feed outputs from individual neurons forward to one
or more neurons or layers in the network. Networks that feed outputs from a neu-
ron back to the inputs of previous layers themselves or other neurons on their own
layer are called recurrent networks. Suffice it to say that neural network topologies
can vary widely, resulting in differences in architecture, function, and behavior.

Just as the perceptron allowed machines to form decision regions with a single
hyperplane, the multilayer feedforward neural network allows machines to form ar-
bitrarily complex decision regions with multiple hyperplanes to solve classification
problems as shown in Fig. 1.9.

The process of modifying the weights in a neuron or network to correctly per-
form a desired input-to-output mapping is termed learning in the neural-network
community. As the reader will discover, many methods exist for training neural net-

Figure 1.8 Multilayer feedforward neural network.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Introduction 9

Figure 1.9 Multilayer feedforward neural network forms complex decision regions to solve
nonlinearly separable problem.

works, but all learning is based upon adapting the weights between interconnected
neurons. Once a particular network architecture is chosen, the designer must de-
termine which weight to modify to effect the desired network behavior. This is
discussed in the next section.

1.3.1 The Credit-Assignment Problem

Once a set of neurons is interconnected, how does the designer train the neurons
to do what he/she wants? Which weights should be modified and by how much?
These questions are all related to what is often called the credit-assignment prob-
lem, which can be defined as the process of determining which weight should be
adjusted to effect the change needed to obtain the desired system performance. If
things go well, which weight gets the pat on the back with reinforcement of the
desired response? Likewise, when things go wrong, which weight gets identified
as the guilty party and is penalized? Other questions that need to be answered con-
cern the number of neurons to put in each layer, the number of hidden layers, and
the best way to train the network. The answers to all of these questions would fill
volumes.

Rosenblatt, with his perceptron, showed some interesting results as long as the
classes were linearly separable. Minsky and Papert [Minsky, 1969] showed quite
conclusively that there were many classes of problems ill-suited for linear classi-
fiers, so the neural-network community went back to work to find a better solution
for the nonlinearly separable class of problems. Werbos showed that by adding

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

10 Chapter 1

layers of neurons and carefully defining their transfer functions to be sigmoids, the
credit-assignment problem could be solved and the issues pointed out by Minsky
and Pappert overcome. Thus, by using monotonic continuous-transfer functions,
Werbos solved the credit-assignment problem—which weight is the slacker or con-
versely the worker bee—by taking the derivative of the mean squared error with
respect to a given weight (see Appendix A for the derivation). This is often referred
to as gradient descent, as depicted in Fig. 1.10. Werbos’ result allowed researchers
to add any number of hidden layers between the input and output. Researchers dis-
covered that problems occurred with the gradient-descent approach because of the
time required to train the network as well as a propensity to find local minima in
the overall solution space. Local minima are locations in the solution space that
form a minimum, which causes network convergence to a non-optimal solution.

1.3.2 Complexity

Some people argue that a neural network is a black box, because either they can-
not understand its inner workings or they believe it is too complex a system for
the problem. They would prefer a simpler solution that can be easily dissected.
A neural network is a complex structure used to solve complex data-analysis prob-
lems. Henry Louis Mencken [Mencken, 1917], an early twentieth-century editor,
author, and critic, once wrote, “. . . there is always an easy solution to every human
problem—neat, plausible, and wrong.”

While this statement was intended as social commentary, it does indicate
mankind’s desire for easy solutions. Usually, it is best to find the simplest solution
to a problem, but the complexity of the solution must be comparable to the com-
plexity of the problem. This does not mean that a designer should build the most

Figure 1.10 Gradient descent for mean-squared-error cost function.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Introduction 11

complex system. The designer should develop the simplest solution that solves the
problem within the given constraints. Harry Burke [Burke, 1996] presents the idea
that a neural network is a powerful tool for capturing complex relationships:

Artificial neural networks are nonparametric regression models. They can capture any
phenomena, to any degree of accuracy (depending on the adequacy of the data and the
power of the predictors), without prior knowledge of the phenomena. Further, artificial
neural networks can be represented, not only as formulae, but also as graphical mod-
els. Graphical models can improve the manipulation, and understanding, of statistical
structures. Artificial neural networks are a powerful method for capturing complex phe-
nomena, but their use requires a paradigm shift, from exploratory analysis of the data to
exploratory analysis of the model.

1.4 Historical Perspective on Computing with Artificial Neurons

Researchers back to the late nineteenth century, most notably Alexander Bain
[Bain, 1873] and William James [James, 1890], realized the potential for man-
made systems based on neural models. By the middle of the twentieth century,
Warren McCulloch and Walter Pitts [McCulloch, 1943] had shown that groups of
neurons were Turing capable, and Donald Hebb [Hebb, 1949] had developed a
learning rule that showed how neurons used reinforcement to strengthen connec-
tions from important inputs. Inspired by Hebb’s work, Belmont Farley and Wesley
Clark developed the first digital computer-based artificial neural network in the
early 1950s. [Farley, 1954] In their neural network, neurons were randomly con-
nected. This system was followed by a self-assembled neural network developed by
Nathaniel Rochester, John Holland, and their colleagues. [Rochester, 1956] Frank
Rosenblatt developed the perceptron for pattern classification [Rosenblatt, 1958].
Unfortunately, perceptrons could not perform complex classifications, and the re-
search was abandoned in the late 1960s. Also during this time, the ADALINE
(Adaptive Linear Element) was developed by Bernard Widrow and Marcian Hoff
[Widrow, 1960]. It implemented an adaptive-learning system that eventually was
used for adaptive signal processing to eliminate echoes in telephone systems.

During the 1970s, neural-network research was limited to a few research
groups. Based on physiological studies of the nervous system, Stephen Grossberg
developed a self-organizing neural-network model known as Adaptive Resonance
Theory (ART) [Grossberg, 1976a and c]. Also during this period, Teuvo Koho-
nen developed both matrix-associative memories [Kohonen, 1972] and a theory
in which neurons self-organize into topological and tonotopical mappings of their
perceived environment [Kohonen, 1987]. Paul Werbos in 1974 developed a learn-
ing rule in which the error in the network’s output is propagated backwards through
the network, and the network’s synaptic weights are adjusted by using a gradient-
descent error-minimization approach [Werbos, 1974; Werbos, 1994]. While this
work was unknown to most neural network researchers at the time, this technique
is the backpropagation of error algorithm. It is often referred to as backpropaga-
tion (or backprop for short), and is currently the most widely used artificial neural
network model.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

12 Chapter 1

John Hopfield, who argued that a neural network’s computational abilities were
based on the collective action of the network and not the function of the individual
neurons, rekindled general interest in neural networks in 1982 [Hopfield, 1982].
He modeled this interaction as an energy-minimization process. In the mid-1980s,
David Rumelhart, Geoffrey Hinton, Ronald J. Williams, and others popularized the
backpropagation algorithm [Rumelhart, 1986; Parker, 1982; LeCun, 1985].

Clearly, today’s work with artificial neural networks is based upon the research
of many mathematicians, scientists, and engineers.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Chapter 2

Learning Methods

The past few sections have introduced the reader to the neuron and the feedforward
neural network. The neuron is the building block for all the network architectures
that will be presented in this book. The concept of a learning system, which fol-
lows, will prepare the reader for the rest of the text. The reader may recall that the
perceptron learning rule required the addition of a desired output before the net-
work could adapt the weights to find the line that separated one class from the other.
This process of using desired outputs for training the neural network is known as
supervised training.

2.1 Supervised Training Methods

Supervised training employs a “teacher” to assist in training the network by telling
the network what the desired response to a given stimulus should be. This type
of training is termed supervised learning and is analogous to a student guided by
a teacher. This is exemplified by the diagram in Fig. 2.1. As can be seen in the
diagram, the learning system is exposed to the environment, which is represented
by a measurement vector of features. The measurement vector is also presented to
a teacher who, based on experience, determines the desired response. The desired
response is then used to create an error signal that adapts the weights of the learning
system. Thus, each input-feature vector has an associated desired-output vector,
which is used to train the neural network. The important principle is that supervised
learning requires an input and a corresponding desired output. In many situations,
it is neither practical nor possible to train the learning system by using supervised-
learning methods. The next section introduces the concept of an unsupervised-
learning method to handle situations in which supervised training is impractical.

2.2 Unsupervised Training Methods

This section outlines the basic principles of unsupervised learning. The unsuper-
vised-training model (see Fig. 2.2) is similar to the supervised model but differs in

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

14 Chapter 2

Figure 2.1 Block diagram of supervised-learning model.

Figure 2.2 Unsupervised-training model.

that no teacher is employed in the training process. It is analogous to students learn-
ing the lesson on their own. The learning process is a somewhat open loop, with
a set of adaptation rules that govern general behavior. The unsupervised-training
model consists of the environment, represented by a measurement vector. The mea-
surement vector is fed to the learning system and the system response is obtained.
Based upon the system response and the adaptation rule employed, the weights of
the learning system are adjusted to obtain the desired performance. Note that un-
like the supervised-training method, the unsupervised method does not need a de-
sired output for each input-feature vector. The adaptation rule in the unsupervised-
training algorithm performs the error-signal generation role the teacher performs
in the supervised-learning system. Thus, the behavior of the unsupervised learning
system depends in large measure on the adaptation rule used to control how the
weights are adjusted.

Two of the most popular unsupervised-learning techniques, which will be re-
viewed in detail later, are the Self-Organizing Map (SOM), developed by Teuvo
Kohonen, and the Adaptive Resonance Theory (ART) network, developed by
Stephen Grossberg and Gail Carpenter. Many other unsupervised training meth-
ods are available to choose from, which all follow the basic model provided in
Fig. 2.2.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Chapter 3

Data Normalization

One of the most common tools used by designers of automated recognition systems
to obtain better results is to utilize data normalization. There are many types of data
normalization. Ideally a system designer wants the same range of values for each
input feature in order to minimize bias within the neural network for one feature
over another. Data normalization can also speed up training time by starting the
training process for each feature within the same scale. Data normalization is es-
pecially useful for modeling applications where the inputs are generally on widely
different scales. The authors present some of the more common data normalization
techniques in this chapter, beginning with statistical or Z-score normalization.

3.1 Statistical or Z-Score Normalization

The statistical or Z-score normalization technique uses the mean (µ) and standard
deviation (σ) for each feature across a set of training data to normalize each input
feature vector. The mean and standard deviation are computed for each feature, and
then the transformation given in Eq. (3.1) is made to each input feature vector as
it is presented. This produces data where each feature has a zero mean and a unit
variance. Sometimes the normalization technique is applied to all of the feature
vectors in the data set first, creating a new training set, and then training is com-
menced. Once the means and standard deviations are computed for each feature
(xi) over a set of training data, they must be retained and used as weights in the
final system design. Equation (3.1) is applied to any input feature vector presented
to the network as a preprocessing layer within the neural network structure. Other-
wise, the performance of the neural network will vary significantly because it was
trained on a different data representation than the unnormalized data. One of the
statistical norm’s advantages is that it reduces the effects of outliers in the data.
The statistical norm is given by

x′
i =

[
(xi − µi)

σi

]
. (3.1)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

16 Chapter 3

3.2 Min-Max Normalization

There are times when the neural network designer may wish to constrain the range
of each input feature or each output of a neural network. This is often done by
rescaling the features or outputs from one range of values to a new range of values.
Most often the features are rescaled to lie within a range of 0 to 1 or from −1 to 1.
The rescaling is often accomplished by using a linear interpolation formula such
as that given in Eq. (3.2):

x′
i = (maxtarget −mintarget) ×

[
(xi − minvalue)

(maxvalue −minvalue)

]
+ mintarget, (3.2)

where (maxvalue −minvalue) �= 0. When (maxvalue −minvalue) = 0 for a feature, it
indicates a constant value for that feature in the data. When a feature value is found
in the data with a constant value, it should be removed because it does not provide
any information to the neural network. As can be seen in Eq. (3.2), the maximum
and minimum values (minvalue,maxvalue) for each feature in the data are calcu-
lated and the data are linearly transformed to lie within the desired range of values
(mintarget,maxtarget). When the min-max normalization is applied, each feature
will lie within the new range of values; but the underlying distributions of the cor-
responding features within the new range of values will remain the same. This al-
lows the designer more flexibility in designing neural networks and in determining
which features are of more worth than others when making a decision. Min-max
normalization has the advantage of preserving exactly all relationships in the data,
and it does not introduce any bias.

3.3 Sigmoidal or Softmax Normalization

Sigmoidal or Softmax normalization is a way of reducing the influence of extreme
values or outliers in the data without removing them from the data set. It is use-
ful when you have outlier data that you wish to include in the data set while still
preserving the significance of data within a standard deviation of the mean. Data
are nonlinearly transformed by using a sigmoidal function: either the logistic sig-
moid function or the hyperbolic tangent function. These functions were illustrated
in Fig. 1.5. The mean and standard deviation are computed for each feature and
used in the transformation given in Eq. (3.3) with a logistic sigmoid. It puts the
normalized data in a range of 0 to 1. Equation (3.4) shows the normalization with
a hyperbolic tangent; it puts the normalized data in a range of −1 to 1:

x′
i ≡ 1

1 + e
−

(
xi−µi

σi

) , (3.3)

x′
i ≡ 1 − e

−
(
xi−µi

σi

)

1 + e
−

(
xi−µi

σi

) . (3.4)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Data Normalization 17

This transformation is almost linear near the mean value and has a smooth non-
linearity at both extremes to ensure that all values are within a limited range. This
maintains the resolution of most values that are within a standard deviation of the
mean. Since most values are nearly linearly transformed, it is sometimes called
Softmax normalization.

3.4 Energy Normalization

While the statistical, min-max, and sigmoidal norms work on each feature across
a set of training vectors, the energy norm works on each input vector indepen-
dently. The energy normalization transformation using any desired Minkowski
norm (1,2, . . .) [see Eq. (3.4)], is given in Eq. (3.5). The two most popular energy
norms used are the L1 (n = 1) or taxicab norm and the L2 (n = 2) or Euclidean
norm. The normalized feature vector is computed by dividing each input feature
vector by its length, L1 norm or L2 norm, such that when a dot product of the
normalized vector is computed with itself, the length is 1.

Mn(x) = n

√∑N

i=1
|xi |n, (3.5)

x′
i = xi

n

√∑N
i=1 |xi |n

. (3.6)

As in the case of the previous normalization schemes, once a network has been
trained with the energy normalization process, the energy normalization process
must be performed on every feature vector presented to the neural network. Failure
to perform the normalization will result in poor performance by the neural network
because the designer will have asked it to solve one problem, while in practice
presenting it with different data than it had been trained with.

3.5 Principal Components Normalization

Another very popular normalization method employed by pattern recognition ex-
perts is that of principal components analysis (PCA). PCA is sometimes also re-
ferred to as the Hotelling transform [Hotelling, 1933]. Principal components nor-
malization is based on the premise that the salient information in a given set of
features lies in those features that have the largest variance. This means that for
a given set of data, the features that exhibit the most variance are the most de-
scriptive for determining differences between sets of data. This is accomplished
by using eigenvector analysis [Jackson, 1991] on either the covariance matrix or
correlation matrix for a set of data. The use of the covariance matrix requires that
the features be constrained to similar ranges of values. Hence, a statistical nor-
malization (or norm) or min-max norm may need to be performed on the data
prior to performing the PCA transformation. Jackson points out that the principal

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

18 Chapter 3

components obtained on the covariance matrix differ from those obtained from
the correlation matrix. We will demonstrate how the principal components method
can assist in solving pattern recognition problems by using the Fisher iris data set.
The Fisher iris data set is well known in the pattern classification literature, hav-
ing been popularized by Sir Ronald Fisher [Fisher, 1936] from data collected by
Edgar Anderson [Anderson, 1935]. The Fisher iris data consists of 150 vectors of
four features: (1) sepal length, (2) sepal width, (3) petal length, and (4) petal width
for three different varieties of iris: (1) setosa, (2) virginica, and (3) versicolor. Fig-
ure 3.1 shows a scatter plot for each of the features on the Fisher iris data. As can
be observed in the scatter plot, there is significant overlap of the data between most
of the features. It will be shown that the use of PCA analysis can assist in finding
the best way to dichotomize, i.e., divide up, the classes of data. Figure 3.2 shows
the iris data plotted against the first three features. As can be seen in Fig. 3.2 and
by observing the scatter plots in Fig. 3.1, the data are overlapped, which makes
pattern recognition between the classes difficult. The PCA transformation helps to
minimize the overlap between data classes, as shown in Fig. 3.3. By projecting the
data onto the eigenvectors, sorted largest to smallest, of the covariance matrix of
the original data, a new set of features is obtained that provides the best separation
for the data, starting with the maximum variance down to the smallest. As with the
other normalization techniques, once the desired eigenvectors are found, all data
presented to the neural network will need to be projected into features in the PCA
domain before the proper output is obtained from the network.

To illustrate the power of the PCA technique, consider Fig. 3.2, which depicts
good separation of the data with the first three features of the Fisher iris data set.

Figure 3.1 Scatter plot of Fisher iris data.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Data Normalization 19

The axes in Fig. 3.2 were rotated by hand until a reasonable amount of separa-
tion was obtained. Using PCA, a much better separation of the data are obtained,
as shown in Fig. 3.3. Now imagine what would happen if you had 100 features
rather than 4 to search for the best separation. You could readily see that the PCA
method is far superior to any method that could be obtained by hand. As is shown
in Fig. 3.3, the data are now easily separated by any classifier. There are classes
of problems where PCA fails and other methods such as independent component
analysis [Hyvärinen, 1999; Hyvärinen, 2000] are used to separate data. If you have
good features to start with, you will always have a good classifier. This is something
that the reader should always remember! Most pattern recognition experts spend

Figure 3.2 Fisher iris data plotted for first three features.

Figure 3.3 Fisher iris data after PCA transformation using projection of the original data
onto the first three eigenvectors of the covariance matrix as features.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

20 Chapter 3

the majority of their time developing good robust features. Then, the selection of
the classifier is a matter of choice based upon system constraints. The eigenvectors
obtained from the PCA process for the Fisher iris data are given in Fig. 3.4. Once
the eigenvectors of the covariance matrix are found they can be incorporated into
the feedforward neural net architecture. A feedforward neural network implemen-
tation of the PCA transformation for the Fisher iris data are given in Fig. 3.5. The
PCA transformation algorithm is given as Matlab code in Appendix C.

The normalization schemes and PCA transformation presented in this chapter
are just a few of many different ways to obtain robust features. Oftentimes, the
desired features are problem domain dependent. For example, if you are doing
vibration analysis on rotating machinery, it is a natural extension to transform data
from the time domain to the frequency domain to improve performance.

e1 e2 e3

03616 0.6565 0.5810
–0.0823 0.7297 –0.5964
0.8566 –0.1758 –0.0725
0.3588 –0.0747 –0.5491

Figure 3.4 First three eigenvectors for Fisher iris data.

Figure 3.5 Feedforward neural network implementing PCA for the Fisher iris data set.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Chapter 4

Data Collection, Preparation,
Labeling, and Input Coding

Since neural networks are data driven, the adage “garbage in, garbage out” is highly
relevant to the task of building a neural network. Proper collection, preparation,
labeling, and coding of the data can make the difference between a successful and
unsuccessful experience with neural networks.

4.1 Data Collection

While the process of collecting data seems simple, the network designer should
put some thought into the data-collection process. The designer needs to decide
what he wants the neural network to do and what data requirements are needed to
train the network. Will it be a classifier, an estimator (modeler), or a self-organizer
(clusterer)? The designer needs to determine how and from where to obtain the data
and what types of data to collect. He must also determine what the neural network
will output in response to the data used as the network input. The steps in a typical
data-collection plan are described next.

4.1.1 Data-Collection Plan

1. Define the problem and how the neural network will be used in its
solution. From this, define the goals and objectives of the data-collection
process. What is the neural network expected to do? What data will be
needed to accomplish the goals and objectives? By knowing whether a net-
work is expected to identify different input-feature vectors, performing as
a classifier; predict the output of a system based upon an input, performing
as an estimator; or determine common attributes for a set of input-feature
vectors, performing as a clusterer, the designer is in a much better position
to determine what data are needed to achieve the desired result.

2. Identify the quantities of data to be collected. What measurements are be-
ing made and what outputs are the neural network expected to learn? If the
designer is developing a classifier, then target classes must be assigned. If

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

22 Chapter 4

an estimator is desired, then the target estimated outputs must be assigned.
If the designer plans a self-organizing system, he still needs to know some-
thing about the data to interpret the categories that the neural network will
form. Generally, all the data will need to be in numerical form for training
and operating the neural network.

3. Define the methodology for the data collection. The neural network de-
signer needs to make sure that he will be forming a data set that is rep-
resentative of the population or space to which the neural network will be
exposed during its operation. This means the data used to train the network
must be sampled across the population as shown in Fig. 4.1. For example, if
the network is trained to predict the outcome of a national election and data
from only one region of the country are collected, the neural network will
not see a representative sample during training and may be unduly biased
during operation. If the network is being trained to utilize time-series data,
the designer should make sure the data are sampled often enough to capture
any important changes. If the designer is dealing with spatial data (e.g., im-
ages), he should be certain to sample at a fine enough resolution to capture
important details.

4. Identify the expected ranges for the data. The designer should identify
the expected range for each feature in the input data to determine whether
systematic errors occur during data collection. Using these ranges will allow
the designer to flag erroneous data. For example, if a measurement system is
collecting ambient-air-temperature data and the data contain readings over
60◦C, most likely equipment problems exist, because the hottest ambient
air temperature ever recorded on the surface of the Earth was 57.8◦C. After
the data are collected, the designer should perform basic statistical analysis
to determine the range and other statistics of each feature (e.g., minimum,
maximum, mean, standard deviation). He should make sure each feature is
within the expected ranges. If feature vectors exist with features well beyond
the expected values (often termed outliers), the designer should determine

Figure 4.1 The process of sampling a population. Ideally, this sampling should be repre-
sentative of the whole population of interest.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Data Collection, Preparation, Labeling, and Input Coding 23

why these outliers occurred. Outliers should be investigated thoroughly, be-
cause they might represent an important condition the designer had not con-
sidered. But, if the designer suspects a feature vector is erroneous, it should
be removed from the data set. If the data contain a large number of outliers,
the designer should suspect the entire data-collection process is flawed, and
identify and correct the problem before starting over.

5. Make sure the data-collection process is repeatable, reproducible, and
stable. The network designer should make sure the data-collection process
is repeatable, reproducible, and stable in order to ensure the accuracy of the
feature vectors, or samples, is maintained.

6. Ensure the data are protected from unauthorized access. The network
designer will encounter many applications, where the data or its application
could contain information that needs protection from unauthorized access
(e.g., personal, strictly private, proprietary, business-sensitive, confidential,
official-use-only, or classified data). If necessary, the data-collection plan
should include appropriate procedures to protect the data and its intended
application from unauthorized access. For example, medical technologies
under development often require human subjects’ boards to show how pa-
tient information was protected from unauthorized access. This often in-
volves scrubbing sensitive information (e.g., name, patient identification,
etc.) from the data used during the training and testing process, limiting ac-
cess to the data, and destroying all data records at the completion of the
effort.

4.1.2 Biased Data Set

When the statistics of the training data do not represent the statistics of the data
encountered during operation, the network is said to be biased. Biased data sets
can result in classifiers with lower classification rates, estimators with lower pre-
diction accuracies, and clustering algorithms (also known as self-organizers) with
increased variance in groupings. It must be stressed that a large number of represen-
tative training samples, or feature vectors, is necessary to train a neural network so
that it will operate properly over the expected range of the input-feature space with-
out memorizing the training data. The ability of a network to perform the desired
mapping, from input to output, without memorization, is called generalization. The
data must include all the different characteristics necessary to produce the desired
output under any anticipated condition. It is also important to select samples or
feature vectors that do not have major dominant features that are unrelated to the
problem but are common to the specific condition. In many data sets, the unrelated
dominant features cannot be determined until a neural network has been trained
and checked against a validation data set. (In Appendix B, the authors present a
method for determining which features are the most relevant.) While biased data
sets are often undesirable, in some situations biased data sets are beneficial. These
include situations in which important samples are underrepresented or the outcome

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

24 Chapter 4

must be biased in one direction or another to reduce error. For example, if a sam-
ple in the data set represents a unique situation but has a very low probability of
occurrence, it is likely that the neural network will not learn this input-to-output
mapping because it is so rare. By training on this case more often (i.e., increasing
its a priori probability), the neural network is more likely to learn this input-to-
output mapping. This biases the neural network but improves the chances that the
neural network will learn this rare situation.

One well-known example showing how a biased training set can affect perfor-
mance is that of a neural network developed for the U.S. Army in the late 1980s. Its
purpose was to examine images of a forest scene and determine whether military
tanks were in the images [Fraser, 1998]. One hundred images of tanks hiding be-
hind trees and 100 images of trees without tanks were collected. Half of the images
were used in training and half were set aside for testing. After training, the neural
network was presented with the test data. The network worked remarkably well at
discriminating between images with tanks and those without.

While the U.S. Army was pleased with the results, officials were suspicious of
the neural network’s success. A second data-collection round was commissioned
and the network re-tested. This time, the neural network performed poorly. After
a lengthy examination, it was determined that all the original images of tanks had
been collected on a cloudy day and all the images without tanks were collected
on a sunny day. The neural network had learned to discriminate between a sunny
day and a cloudy day, not between images with tanks and those without. It is criti-
cally important for the designer to collect training data that is representative of all
situations that he anticipates the neural network will process.

4.1.3 Amount of Data

In general, more data are better than fewer data. A larger number of samples (i.e.,
a bigger data set) will generally give the network a better representation of the de-
sired problem and will increase the likelihood that the neural network will produce
the desired outputs. More data also help when noise is present in the data.

4.1.4 Features/Measurements

An individual sample is described by a unique set of measurements. In pattern-
recognition vocabulary, these measurements are known as features [Duda, 1973].
Each feature forms a dimension in a space known as feature space. For example,
if we wanted to classify different evergreen trees in the forest, we would measure
different characteristics of each tree. We could measure the length of the needle
and length of the cone as illustrated in Fig. 4.2. This would represent two features.
So, for every sample we would measure two quantities and this would form a two-
dimensional feature vector to help identify the type of tree. These vectors are then
represented by points in feature space. Figure 4.3 shows a feature space for this
example with four types of evergreen trees and two features. Most applications will
involve many more features and will result in a multidimensional feature space.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Data Collection, Preparation, Labeling, and Input Coding 25

Figure 4.2 Process of collecting data through measurement. In this example, a forest rep-
resents the population. By measuring two features (needle length and cone length), a data
set of samples is generated to represent the population.

Figure 4.3 Example of a two-dimensional feature space representing vectors from samples
taken from four types of evergreen trees.

4.1.5 Data Labeling

For supervised approaches, the data must be labeled or truthed. This requires the
neural-network designer, or a model, to assign target values to each sample col-
lected. If the label is not already a number, then it must be converted to a numerical
form in order for the neural network to be trained via computer.

While samples do not generally need to be labeled for unsupervised ap-
proaches, the neural-network designer does need to know something about the
data in order to interpret the results. It is useful to record ancillary information
(i.e., metadata) that might not be used as inputs to the unsupervised neural network
but that can provide a better understanding of the groupings that it produces.

4.2 Feature Selection and Extraction

Feature selection is key to developing a successful neural network. When the num-
ber of features is small and the number of samples is large, the designer can allow

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

26 Chapter 4

the neural network to choose the importance of each feature in making its deci-
sions. On the other hand, if many features and few samples exist, the designer can
have a situation in which the neural network might not produce a unique mapping,
resulting in poor performance. We discuss the relationship between the number of
samples and the number of features in more detail in Section 4.2.2.

4.2.1 The Curse of Dimensionality

As the number of features or dimensions increases, so does the amount of informa-
tion. While having a large number of features may seem preferable, it is possible
that a neural network would perform worse with more than with fewer features. In
addition, as features are added, more samples are needed to prevent the neural net-
work from memorizing the data. This is often termed “the curse of dimensionality,”
a term coined by Richard Bellman as an observation that the number of data points
needed to sample a space grows exponential in its dimensionality. In his book, he
states:

In view of all that we have said in the forgoing sections, the many obstacles we appear
to have surmounted, what casts the pall over our victory celebration? It is the curse
of dimensionality, a malediction that has plagued the scientist from the earliest days.
[Bellman, 1961, p. 97]

As stated previously, a neural network is a mapping of an input space to an
output space. Each additional input to the neural network adds another dimension
to the space that is being mapped. During training, data representative of every oc-
cupied part of input space are needed to train the neural network so that it properly
maps input space to output space. There must be sufficient data to populate the
space densely enough to represent the mapping relationship, so significantly more
samples are required to represent a higher dimension space than a lower dimen-
sion space. Covering the input space consumes resources including time, memory,
and data. Fortunately, this curse of dimensionality can be ameliorated by proper
selection and reduction of features. We present one method for determining which
features are the most important or salient in Appendix B. Knowing the salient fea-
tures allows the neural network designer to reduce the dimensionality of the input
data by eliminating poor features.

4.2.2 Feature Reduction/Dimensionality Reduction

For some applications, the number of input features is overwhelming. In these
instances, the number of features must be reduced. This is done through feature
selection, feature extraction, or a combination of the two. The basic principles of
feature reduction follow.

The features in the data set might not be the most efficient in representing the
information presented to the neural network because they can include inputs unre-
lated to the relationship between the input and output space that is to be learned.
Feature vectors can contain features that are correlated with one another, which

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Data Collection, Preparation, Labeling, and Input Coding 27

represents redundant information. When applied properly, feature selection and ex-
traction preserves the information necessary for training while reducing the number
of features. However, blindly applying feature reduction can lead to poor perfor-
mance, and the process of selecting and extracting a set of features to produce a
reduced number of inputs can require application-specific domain knowledge. The
extracted or retained features should preserve class separation in classifiers, esti-
mation accuracy for estimators, and groupings in self-organizers.

Some common feature-extraction approaches include averaging, principal
components analysis (PCA) [Hotelling, 1933], moment invariants [Hu, 1962],
Fourier coefficients, wavelet analysis, resampling, linear discriminant analysis
(LDA) or Fisher mapping [Fisher, 1936], independent components analysis (ICA)
[Hyvärinen, 2001], principal curves [Hastie, 1989], Sammon mapping [Sammon,
1969], and self-organizing maps (SOMs) [Kohonen, 1982]. The description of
these techniques would easily fill an entire book. The main thing to remember
when dealing with neural networks, and classifiers in general, is that the feature
extractor does much of the work.

One example of feature extraction is the Standard and Poor’s 500 Index (S&P
500), a weighted average of 500 of the largest publicly traded U.S. companies.
Each stock in the index is selected for liquidity, size, and industry and is weighted
for market capitalization. Using the S&P 500 feature rather than each of the indi-
vidual stocks to track the market is a way to reduce the total number of individual
stocks that need to be tracked, while retaining important trend information. Thus,
the S&P 500 index is an extracted feature that uses domain-specific knowledge.
For some applications, an extracted feature can provide all of the information the
neural network needs. For other applications, the extracted feature might miss im-
portant details related to a specific condition, or stock in the S&P 500 example,
that degrades the performance of the neural network.

Another reason to employ feature extraction is to reduce or eliminate feature re-
dundancy. In a weather application, measurements such as temperature, dew point,
and humidity are recorded. Humidity is related to temperature and dew point and
can be mathematically derived from the two. Therefore, we can reduce the num-
ber of features we have from three to two by excluding humidity with no loss of
information.

Image analysis is one domain that requires a significant amount of feature ex-
traction prior to neural-network development. A typical image might contain sev-
eral million colored pixels. It would be nearly impossible to train a usable neural
network with several million inputs (and certainly ill advised, because of the curse
of dimensionality). Another domain with even more need of feature extraction is
video analysis. Many methods have been developed to extract features from images
and video. The goal of these feature-extraction methods is to drastically reduce or
compress the amount of information into something the neural network can use.
Distance metrics, introduced in the next section, offer one method for determining
how close two feature vectors are to one another.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

28 Chapter 4

4.2.3 Feature Distance Metrics

A distance metric, d(x, y), can be used to measure the similarity of two feature
vectors, x and y, in a feature space of N dimensions. The distance metric must
have the following properties:

1. The distance between two identical vectors is zero:

d(x,x) = 0. (4.1)

2. The distance between x and y is the same as the distance between y and x:

d(x,y) = d(y,x). (4.2)

4. The sum of two distances must be less than or equal to the sum of the indi-
vidual distances:

d(x, z) ≤ d(x,y) + d(y, z). (4.3)

Some of the common distance metrics follow.

4.2.3.1 Euclidean distance metric

The Euclidean distance metric for two feature vectors, x and y, of length N is
defined as

d(x,y) =
√√√√ N∑

i=1

(xi − yi)2. (4.4)

4.2.3.2 Sum of squared difference metric

In many applications the sum of squared difference (SSD) metric is used in place of
the Euclidean distance to save processing time. For two vectors, x and y, of length
N it is defined as

d(x,y) =
N∑

i=1

(xi − yi)
2. (4.5)

4.2.3.3 Taxicab distance metric

The taxicab, city block, or Manhattan distance metric is less computational than
the Euclidean distance metric and is easier to implement in specialized hardware.
For two vectors, x and y, of length N it is defined as

d(x,y) =
N∑

i=1

|xi − yi |. (4.6)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Data Collection, Preparation, Labeling, and Input Coding 29

4.2.3.4 Mahalanobis distance metric

The Mahalanobis distance metric is a more advanced version of the Euclidean
distance metric. It takes into account the distribution of feature vectors of length
N and is useful in comparing feature vectors whose elements are quantities hav-
ing different ranges and amounts of variation. It is mathematically described by
Eq. (4.7), where the feature vectors x and y come from the same distribution and
have a covariance matrix C:

d(x,y) =
√

(x − y)C−1(x − y). (4.7)

4.2.3.5 Hamming distance metric

The Hamming distance metric is used to determine the difference between two
binary-valued vectors, x and y, of length N and is defined as

d(x,y) =
N∑

i=1

|xi − yi |. (4.8)

Notice that the Hamming distance is identical to the taxicab metric with the stipu-
lation that the feature vectors be binary.

The distance metrics presented help to determine how close one feature vector
is to another. If a feature vector is within a specific distance of the exemplar (the
desired feature vector), then the pattern is classified as a member of the exemplar’s
group. All the unsupervised methods presented in this book use a distance metric
and neighborhood around an exemplar. Figure 10.17 in Section 10.5 illustrates
how these distance metrics can be used to group features in the tree recognition
example.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Chapter 5

Output Coding

The output neurons of most neural-network architectures produce data in the range
of −1 to 1 or 0 to 1, depending on the type of neuron. Therefore, the desired outputs
must be coded to fit this scale. Also, non-numeric labels, such as those found with
classifiers, must be converted to something numeric. This necessitates coding the
target outputs. Once the neural network is trained and in operation, the reverse
applies and these unitless values must be converted into useful terms. This is done
through post-processing of the neural network outputs.

5.1 Classifier Coding

For classifiers, the outputs are generally coded with a 1 for existence in that class
and 0 or −1 for absence from that class. With sigmoidal output neurons, sometimes
the target output values are pushed back from the extreme edges of the sigmoid so
that 0.9 and 0.1 for a logistic function or 0.9 and −0.9 for a hyperbolic tangent
function are used instead. For example, if we were trying to classify trees, there
would be one output class for each tree. Table 5.1 shows an output-coding scheme
for the four classes, with 0.9 representing existence in that class and 0.1 represent-
ing absence from that class.

5.2 Estimator Coding

For estimators, systems that predict an output based upon an input, the target output
needs to be scaled within the neuron’s output range. The target output is often

Table 5.1 Example output coding scheme for a four-tree classifier.

Tree Output 1 Output 2 Output 3 Output 4

Black Spruce 0.9 0.1 0.1 0.1
Western Hemlock 0.1 0.9 0.1 0.1
Western Larch 0.1 0.1 0.9 0.1
White Spruce 0.1 0.1 0.1 0.9

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

32 Chapter 5

scaled back from the extreme edges of the neuron’s output range in order to prevent
multiple inputs from receiving the same output value, a condition known as data
squashing. Sometimes the target output is transformed by the activation function
of the output neuron (e.g., sigmoidal function). Another option is to use a linear
activation function for the output neuron. Equation (5.1) represents the rescaling of
a target output, t , to the neuron’s output range and through the neuron’s activation
function, ƒ.

t ′ = (maxtarget −mintarget) · f
(

t − minvalue

maxvalue −minvalue

)
+ mintarget . (5.1)

For example, if one of the outputs for a neural network is an estimate of the am-
bient air temperature anywhere on the earth’s surface, it would be best to use the
expected range for ambient air temperature to rescale all target values. The coldest
temperature ever recorded was −89.5◦C in Vostok, Antarctica. The hottest temper-
ature ever recorded was 57.8◦C in El Azizia, Libya. The network designer could
use this knowledge to rescale the target temperatures to a range of 0.1 to 0.9 by
Eq. (5.2).

t ′ = (0.9 − 0.1) · f
(

t + 89.5◦C

57.8◦C + 89.5◦C

)
+ 0.1. (5.2)

Output neurons from a neural network can represent either continuous or binary
values. The network designer must decide whether to code the output as one con-
tinuous value by using a single neuron, or as several binary values by using multiple
neurons. For example, an estimation application might output the day of the week.
These days could be represented by one continuous output scaled from 1 to 7, or
a set of seven binary outputs with one output for each day of the week. Assign-
ing continuous values of 1 through 7 to represent the days of the week implies a
predetermined ranking for each day. Sunday (1) and Monday (2) are next to each
other on a continuous scale. Sunday (1) and Saturday (7) are at the opposite ends of
the scale. If Saturday and Sunday had more in common than Sunday and Monday,
the predetermined ranking could confuse the training process. There might be no
reason to believe that there is a specific relationship between the days of the week,
even though we know there might be. Therefore, by creating seven binary-output
neurons, there is no predetermined ranking and each day is treated independently.
The disadvantage of having seven outputs instead of one is that additional weights
connect to the output layer, which results in more training time and the need for
more training data. Also, if the days of the week are related by this order, then the
information contained in the order is not used.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Chapter 6

Post-processing

As mentioned in the previous section, the output of a neural network is generally
a set of unitless numbers on a scale between 0 to 1 or −1 to 1. Therefore, for
applications that require data ranges outside of the neuron output, the data must be
rescaled to the desired data range.

Classifiers usually have a separate output for each class. In this case, the outputs
need to be thresholded so that a value above the threshold indicates that a given in-
put is classified in that class and a value below the threshold indicates that input is
not a member of that class. This thresholding is often accomplished by using a step
function like those shown in Fig. 6.1, which results in a binary output as shown
on the left side of Fig. 6.1. The value used to threshold the output can be adjusted
to produce the optimum ratio of detection to false alarms. Sometimes, it is useful
to have an upper and lower threshold for a given classifier design, permitting the
classifier to have a “not sure” or indeterminate region. If an output falls above the
upper threshold, it is marked as part of the class. If it falls below the lower thresh-
old, it is marked as not part of the class. If it falls between the two thresholds, then
the class should be considered indeterminate. This results in two binary outputs:
one indicating class membership and one indicating no class membership. If both
outputs are low, then class membership is possible but not definite, indicating an
indeterminate condition, as shown on the right side of Fig. 6.1.

In many estimation or modeling applications, the output values represent a con-
tinuous scale and need to be interpreted as real-world quantities with real-world
units. Rescaling the outputs linearly to the range of the real-world quantity will

Figure 6.1 Process of thresholding neural-network outputs to determine class membership.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

34 Chapter 6

accomplish this, as represented by Eq. (6.1), where y represents the output of the
neuron and y′ represents the rescaled output. If the target values were not initially
scaled by the neuron’s activation function, as shown in Eq. (6.1), and the activation
function was a sigmoid, the designer can include an output transform by an inverse
sigmoid. This is shown in Eq. (6.2).

y′ = (Max_value − Min_value)

×
(

y − Min_target

Max_target − Min_target

)
+ Min_value, (6.1)

y′ = (Max_value − Min_value)

×f −1
(

y − Min_target

Max_target − Min_target

)
+ Min_value. (6.2)

Returning to the weather estimator example, we rescale the neuron’s output with
Eq. (6.3). For the maximum (57.8◦C) and minimum (−89.5◦C) temperature ex-
ample, scaling the neuron output produces a value that has meaning in terms of
recorded temperature:

y′ = (57.8◦C + 89.5◦C) ·
(

y − 0.1

0.9 − 0.1

)
− 89.5◦C. (6.3)

Once the network designer has determined the scaling to be performed on the data,
he/she can then choose the best learning method to solve a given problem.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Chapter 7

Supervised Training Methods

Most artificial neural networks are trained with supervised learning methods.
A simple model for supervised learning is given in Fig. 7.1. The outside world
is measured and the measurement vector, x, is given to a knowledge expert who
outputs a desired response, f (x). The learning system is exposed to the same mea-
sured variable and also computes a result, f̃ (x). The error between the output of the
learning system and the desired response from the knowledge expert is measured.
The error signal is then used to modify the response of the learning system, adapt-
ing weights for neural networks, so that its response more closely matches that of
the knowledge expert. The knowledge expert can be a human expert, a function, a
set of rules, a set of measured system outputs, and so forth. The learning system can
be trained by using any number of adaptation methods such as backpropagation,
fuzzy logic, expert-system rules, evolutionary computation, statistical methods, or
an ad hoc method. The key principle is that a set of input data and the desired
system responses are used to adapt the learning system.

The most common neural network trained with supervised training methods
is a feedforward neural network containing sigmoid transfer functions. Usually, a
form of backpropagation (see Appendix A) is used to train the feedforward neural
network, but other training methods could be employed. As mentioned previously,

Figure 7.1 Supervised learning model.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

36 Chapter 7

the weights of the feedforward network are adjusted such that the error between
the desired output and the actual output of the network is minimized by the weight-
update method.

7.1 The Effects of Training Data on Neural Network
Performance

As machine-learning systems are developed and applied to different problem
domains, questions often arise as to the best method for training the system.
The machine-learning system can be trained and implemented as a single mul-
ticlass system or as a modular system. The system’s performance and reusabil-
ity are traded against one another in the designer’s decision process. This section
presents four methods of training a feedforward artificial neural network architec-
ture [Priddy, 2004] to illustrate the effect of training on the decision region of the
classifier. The four methods involve using a four-class feedforward neural network
and a composite network comprised of four individual feedforward neural net-
works, followed by a decision layer. Both are trained by using the data as found in
the problem domain, followed by training both networks on the same training data,
augmented with zeros. The feedforward network is an approximation to a Bayes
[Ruck, 1990b] optimal discriminant function, a hyperplane that divides classes in
an optimal way, which makes it an excellent choice for illustrating the effects of
training on decision regions for a machine-learning classifier.

The feedforward multilayer perceptron maps from input space to output space
by using a combination of layers and nonlinear neurons. A typical single-hidden-
layer feedforward neural network is depicted in Fig. 7.2.

While the multiclass method of utilizing classifiers is valid, it has some draw-
backs when the problem domain involves extensive training time for the classifier.
This has forced developers to adopt a modular approach to classifier design that can
potentially reduce the time required to train or add new classes to the classification
system. An example modular system is given in Fig. 7.3.

Figure 7.2 Multiclass feedforward neural network.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Supervised Training Methods 37

Figure 7.3 Multiple single-class feedforward neural networks, combined to solve a classifi-
cation problem.

7.1.1 Comparative Analysis

An example problem set is presented that illustrates the effects of training methods
and of network architecture. Cybenko [Cybenko, 1989] showed that a single-layer
feedforward neural network with logistic sigmoid transfer functions could perform
any measurable mapping, given a finite but large enough number of hidden layer
nodes. Therefore, one would not expect a large difference in behavior between the
two systems in classification performance. To illustrate the differences that do exist,
a sample data set is given along with the decision regions formed by the networks.
The networks used in this example were created using Netlab [Nabney, 2002],
which is available on the Web as a package of modular Matlab routines. As men-
tioned previously, feedforward networks can contain any desired transfer function,
but the feedforward networks presented in this section contained sigmoidal trans-
fer functions. The training set is presented in Fig. 7.4 as a four-class problem with
overlap between classes. Given the training data presented in Fig. 7.4, a two-layer
feedforward neural network was trained with two input nodes, six hidden-layer
nodes, and four output nodes. The neuron transfer functions were sigmoids with
the weights between neurons trained with a quasi-Newton training method (see
Appendix A), rather than using backpropagation to reduce training time. The re-
sultant decision regions for each class are shown in Fig. 7.5, and the combined
result is given in Fig. 7.6.

As can be seen in Fig. 7.5, the feedforward network has done a good job of
separating each class. The composite picture in Fig. 7.6 shows how each decision
region separates the classes. This training method produces excellent results, but
with the constraint that as new data or classes are introduced, it becomes necessary
to retrain the entire network. This is simple enough for minor problems such as
the one presented here, but has serious ramifications when dealing with systems
that have been trained on tens and hundreds of thousands of input feature vectors.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

38 Chapter 7

Figure 7.4 Class distributions for four-class classification problem.

Figure 7.5 Classifier decision boundaries for four-class problem.

Thus, classifier developers often modularize the system as depicted previously in
Fig. 7.3. Modularization is accomplished by training a single network for each class
and then combining the networks with a supervisory layer such as a max-picker
(a component that selects the maximum output). Each individual network is trained

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Supervised Training Methods 39

Figure 7.6 Individual decision regions for multiclass classifier trained on the data illustrated
in Fig. 7.4 (Method 1).

to output a 1 when feature vectors from its assigned class are presented and a 0
when those from the other classes are presented. In the example presented here, the
supervisory layer simply chooses the subnetwork with the maximum output as the
class type and reports the type along with the corresponding output of the winning
subnetwork. The resultant decision regions for the modularized system (Method 2)
are depicted in Fig. 7.7. Thus, it can be seen that while the decision regions for
the multiclass (Method 1) and modular (Method 2) approaches are similar, they
are definitely different. In both cases (see Figs. 7.5 and 7.7), it can be seen that for
some portions of the feature space, decision regions extend much farther than the
data sets used to create them.

This can be addressed by a variety of means, such as using Mahalanobis dis-
tance [Mahalanobis, 1936] to constrain the network or adding additional training
vectors that are outside the data to assist the network in partitioning the feature
space. One way to overcome this deficiency is to augment the data with zeros
where no samples are found.

The third training method consisted of augmenting each of the class data sets
with a set of feature vectors that uniformly spanned the feature space and had a
value of zero as the network’s target value. Thus, if the data were not contained
in the desired class, the network was trained to output a zero. Using this train-
ing method on the multiple single-class feedforward neural networks resulted in
the decision regions shown in Fig. 7.8. As can be seen in Fig. 7.8, augmenting
the known data with zeros results in tight decision regions. Depending upon the
desired classifier response, this may or may not be a preferred training method.
Generally, networks trained with the third method are best suited to classifier de-

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

40 Chapter 7

Figure 7.7 Decision boundaries for the modular neural network trained using Method 2.

Figure 7.8 Decision regions for modular network trained with augmented data (Method 3).

signs for which the input data ranges are known and the designer is comfortable
with the underlying statistics of the input features.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Supervised Training Methods 41

Figure 7.9 Decision regions for multiclass neural network trained on augmented data
(Method 4).

Lastly, the multiclass neural network was retrained with the augmented data,
with the resultant decision regions depicted in Fig. 7.9. Note that the regions are
non-overlapping, which may but is not guaranteed to result in better performance.
In the example presented here, the overall performance difference between the net-
works trained using Method 3 and Method 4 is slight.

The results for each classifier are presented in confusion matrices. A confusion
matrix is constructed with the input class or truth for the test feature vectors on
the left (row) and the classifier output on the right (column) indices. Thus, an ideal
confusion matrix would have values only on the diagonal. Off-axis terms in the
rows indicate the confusion of the input with the different possible choices. Off-
axis terms in the columns represent labels missed by the classifier.

The confusion matrix results for a test data set are nearly identical for net-
works trained using Method 1 and Method 4, as shown in Tables 7.1 and 7.3.
However, if there were data belonging to a “new” class that is introduced within
the measurement space, then the false-alarm rate for Method 1 would increase dra-
matically, whereas it would not increase nearly as much for the network trained
through Method 4. Likewise, if the training data are not representative of the actual
distributions seen in the field, but are covered by the decision regions formed by
using Method 1, then there would be an increase in the number of correct decisions.
Therefore, the designer must know the problem domain well in order to create the
optimal classification system.

The point of this exercise, which the authors could not stress more strongly, is
that the way the designer sets up the network training really does matter! In the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

42 Chapter 7

Table 7.1 Confusion matrix on a test set for a multiclass feedforward network classifier
trained using Method 1.

Method 1 Call Percent

Threshold = 0.5 Class 1 Class 2 Class 3 Class 4 Identified

Class 1 237 11 0 5 93.31%
Class 2 11 216 15 0 89.26%

T
ru

th

Class 3 0 12 233 2 94.33%
Class 4 6 0 2 249 97.89%

Percent Correctly Classified 93.31% 90.38% 93.20% 97.89%

Table 7.2 Confusion matrix on a test set for a multiclass feedforward network classifier
trained using Method 4.

Method 4 Call Percent

Threshold = 0.5 Class 1 Class 2 Class 3 Class 4 Identified

Class 1 238 10 1 5 93.60%
Class 2 8 218 16 0 90.08%

T
ru

th

Class 3 0 10 234 3 94.74%
Class 4 13 0 1 243 94.55%

Percent Correctly Classified 91.89% 91.60% 92.86% 97.81%

training examples presented in this section, the network topologies were identi-
cal: a single multiple-output feedforward neural network and a composite network
consisting of multiple single-class feedforward networks. All the authors did was
change how the data were presented to each of the networks, which resulted in
drastically different decision regions. How the designer sets up the training data,
along with the corresponding network topology, will definitely affect the results.
This leads to some rules of thumb to use while training feedforward neural net-
works.

7.2 Rules of Thumb for Training Neural Networks

7.2.1 Foley’s Rule

The ratio of the number of samples per class (S) to the number of features (N)

should exceed 3 to obtain optimal performance (S/N > 3). Foley showed in his
seminal paper [Foley, 1972] that when S/N > 3, the training-set error would ap-
proximate the test-set error and that the resultant error would be close to that of a
Bayes optimal classifier.

7.2.2 Cover’s Rule

Thomas Cover [Cover, 1965] showed that when the ratio of training samples to
the total number of degrees of freedom for a two-class classifier is less than 2,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Supervised Training Methods 43

then the classifier will find a solution even if the classes are drawn from the same
distribution. It could be said that if a classifier is given enough rope (that is, degrees
of freedom), it will hang itself.

7.2.3 VC Dimension

The Vapnik-Chervonenkis (VC) dimension [Vapnik, 1995] is the size of the largest
set S of training samples for which the system can partition all 2S dichotomies
on S. For single hidden-layer feedforward neural networks, the lower bound is the
number of weights between the input and the hidden layer, while the upper bound
is approximately twice the total number of weights in the network. In practice,
neural-net designers often choose the total number of training samples to be 10
times as large as the VC dimension [Rogers, 1997].

7.2.4 The Number of Hidden Layers

Cybenko [Cybenko, 1989] demonstrated that a single hidden layer, given enough
neurons, can form any mapping needed. In practice, two hidden layers are often
used to speed up convergence. While some feedforward networks have been re-
ported in the literature to contain as many as five or six hidden layers, the addi-
tional layers are not necessary. The important thing to remember is that the net-
work learns best when the mapping is simplest, so use good features. A network
designer should be able to solve almost any problem with one or two hidden lay-
ers.

7.2.5 Number of Hidden Neurons

For a small number of inputs (fewer than 5), approximately twice as many hidden
neurons as there are network inputs are used. As the number of inputs increases, the
ratio of hidden-layer neurons to inputs decreases. The number of hidden neurons,
with their associated weights, should be minimized in order to keep the number
of free variables small, decreasing the need for large training sets. Validation-set
error (see Section 7.3.3) is often used to determine the optimal number of hidden
neurons for a given classification problem.

7.2.6 Transfer Functions

Almost any transfer function can be used in a feedforward neural network. In order
to use the backpropagation training method, the transfer function must be differen-
tiable. The most common transfer functions are the logistic sigmoid, the hyperbolic
tangent, the Gaussian, and the linear transfer function. In general, linear neurons
require very small learning rates in order to train properly. Gaussian transfer func-
tions are employed in radial basis function networks, often used to perform func-
tion approximation. For classification problems, nonlinear transfer functions work
best.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

44 Chapter 7

7.3 Training and Testing

Once the network designer has defined the problem, chosen the neural network
architecture, and collected, prepared, and labeled the data, he is ready to train the
neural network. The training goal is to find the training parameters that result in the
best performance, as judged by the neural network’s performance with unfamiliar
data. This determines how well the network will generalize. Generalization is a
measure of how well the classifier performs on data samples with which it has
never been presented, but that are within the acceptable limits of the input feature
space. Generalization is used to determine whether the classifier is memorizing the
input data. When a network has been overtrained, it will usually memorize the data
in classification tasks or will overfit the data when used for estimation tasks. It is
critical to use testing data that were not used to train the neural network, since the
goal is to find the configuration with the best performance on independent data
(e.g., data newly collected or unseen during training).

7.3.1 Split-Sample Testing

To find the optimum neural network configuration, an ideal approach is to ran-
domly sample the population three times to produce three independent data sets:
a training set, a validation set, and a test set as shown in Fig. 7.10. This is known
as independent-sample testing. However, usually the network designer is given a
single data set from which the population has already been sampled. When this
situation occurs, a common approach to divide the available data into three dis-
joint sets, through the use of random selection, is shown in Fig. 7.11. This is
known as split-sample testing and is outlined in Table 7.3. Unfortunately, the use
of the terms “test set” and “validation set” are reversed between the statistics and
machine-learning communities. This discussion will use the definitions common
to the statistics community. In statistics terminology [Bishop, 1995], the training
set is used to fit models, the validation set is used to estimate prediction error for

Figure 7.10 Randomly sampling population to form three independent data sets for inde-
pendent-sample testing.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Supervised Training Methods 45

model selection, and the test set is used to determine the generalization error of the
final chosen model.

The training set is a set of samples used to adjust or train the weights in the
neural network to produce the desired outcome. The validation set (sometimes
called the test set in machine-learning vocabulary) is a set of samples used to find
the best neural-network configuration and training parameters. For example, it can
be employed to monitor the network error during training to determine the opti-
mal number of training iterations or epochs. It can also be used to determine the
optimal number of hidden neurons. The validation set is used to choose between
multiple trained networks. When the validation set is used to stop training, the
neural network is optimistically biased, having been exposed to the data.

The test set (sometimes called the validation set in machine-learning vocab-
ulary) is a set of samples used only to evaluate the fully trained neural network.
Often, it is collected separately from the training and validation sets to help ensure

Figure 7.11 Random selection of data from a previously sampled population to form three
independent data sets for split-sample testing.

Table 7.3 Procedure for Training and Testing Supervised Neural Networks

Step 1a. Randomly sample the population in three sessions to form three independent data sets:
training set, validation set, and test set as shown in Fig. 7.10 (i.e., independent-sample
testing).

Step 1b. If you only have access to the sampled data, then divide the available data into training,
validation, and test sets through random selection as shown in Fig. 7.11 (i.e., split-
sample testing).

Step 2. Choose a neural network, configure its architecture, and set its training parameters.
Step 3. Train with the training-set data and monitor with the validation set.
Step 4. Evaluate the neural network by using the validation-set data.
Step 5. Repeat Steps 2 through 4 with different architectures and training parameters.
Step 7. Select the best network by identifying the smallest error found with the validation set.
Step 7. Train the chosen best network with data from the training set, while monitoring with

the validation set.
Step 8. Assess this best neural network by using the test-set data and report only its perfor-

mance.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

46 Chapter 7

independence. The neural network is biased toward both the training and validation
sets, so the independent test set must be used to determine generalization error. The
test set should never be used to choose between neural networks, so that it remains
an unbiased estimate of the network’s generalization error [Ripley, 1996].

7.3.2 Use of Validation Error to Stop Training

During supervised learning, the network’s output error is monitored. It should de-
crease monotonically if a gradient-descent or Newton method is used. In addition,
the validation set error is also often monitored to determine the optimum point to
stop training. Normally, the error on the validation set will also decrease during the
initial training phase. However, when the network begins to overfit the data, the
output error produced by the validation set will typically begin to rise, as shown in
Fig. 7.12. When the validation error increases for an appreciable number of itera-
tions to indicate that the trend is rising, the training is halted, and the weights that
were generated at the minimum validation error are used in the network for op-
eration. This approach should give the best generalization. The weights generated
beyond this point are more likely to fit the idiosyncrasies of the training data, and
will not interpolate or generalize well.

7.3.3 Use of Validation Error to Select Number of Hidden Neurons

In Section 7.2.4, we discussed rules of thumb for estimating the number of hidden
neurons necessary to solve the problem. An empirical approach is to retrain the
network with varying numbers of hidden neurons and observe the output error as
a function of the number of hidden neurons. Figure 7.13 shows the result of one
network repetitively trained with different numbers of hidden neurons.

Figure 7.12 Illustration of training set and validation set error as a function of epoch. As
training progresses, both errors will drop until a point is reached that validation set error
begins to rise. This is the point at which training should cease.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Supervised Training Methods 47

Figure 7.13 Illustration of training set and validation set error as a function of the number
of hidden neurons. The optimum number of hidden neurons is determined by finding the
lowest validation error as a function of the number of hidden neurons.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Chapter 8

Unsupervised Training
Methods

The unsupervised training model (see Fig. 8.1) is similar to the supervised model,
but differs in that no teacher is employed in the training process. It is analogous to
students learning the lesson on their own. Two of the most popular unsupervised
learning techniques used in the neural-network community are the self-organizing
map (SOM), developed by Teuvo Kohonen, and the adaptive resonance theory
(ART) network, developed by Stephen Grossberg and Gail Carpenter. The unsu-
pervised training model consists of the environment, represented by a measure-
ment vector. The measurement vector is fed to the learning system and the system
response is obtained. Based upon the system response and the adaptation rule em-
ployed, the learning-system weights are adjusted to obtain the desired performance.
The learning process is an open loop with a set of adaptation rules that govern gen-
eral behavior such as a neighborhood and learning rate in the case of the Kohonen
SOM [Kohonen, 1982] and the vigilance parameter in the case of the ART network
[Carpenter, 1987].

8.1 Self-Organizing Maps (SOMs)

The function of a self-organizing map (SOM) neural network is to map the rela-
tionship among the input patterns to a reduced relationship of the output patterns,

Figure 8.1 Unsupervised training model.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

50 Chapter 8

while preserving the general topological relationships. In simple terms, the SOM
places things that are similar in the input data into new groupings of reduced di-
mension that retain the spatial relationship between similar items. An example is
depicted in Fig. 8.2 below. Unlike the feedforward neural networks the reader has
been introduced to, in the SOM, the weights leading to each neuron are trained to
place items with similar characteristics, such as cars or planes, together, yet pro-
vide separation for items that are not alike. SOMs are unique in that they construct
topology-preserving mappings of the training data where the location of a neuron
encodes semantic information. One of the main applications for SOMs is clustering
data for display as a two-dimensional image so that the data are easy to visualize.
However, the SOM is not limited to a two-dimensional output space, nor only to
visualization tasks.

The principles used to construct SOM maps are not limited to two dimensions
and can be expanded to any desired dimensionality. A simple Kohonen network
is presented in Fig. 8.3. As can be seen, every input neuron is connected to every
node in the map. Also, the map is an ordered array of neurons. In the example, the
map is a rectangle. However, the map can be a line, a circle, a hexagonal structure,
or a multi-dimensional structure of any desired shape. Once a map is constructed,
it must be trained to group similar items together, a process called clustering, as
shown in Fig. 8.2.

Figure 8.2 Self-organizing map with clusters of similar objects.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Unsupervised Training Methods 51

8.1.1 SOM Training

The SOM is trained using a combination of neighborhood size, neighborhood up-
date parameters, and a weight-change parameter. The SOM is formed initially with
random weights between the input layer neurons and each of the neurons in the
SOM. Each neuron in the input layer is connected to every neuron in the SOM. A
neighborhood is the region around a given neuron that will be eligible to have the
weights adapted, as shown in Fig. 8.4. Neurons outside the region defined by the
neighborhood do not undergo any weight adjustment. As the training is performed,
the neighborhood size is adjusted downward until it surrounds a single neuron. The
use of a neighborhood that reduces in size over time allows the SOM to group sim-
ilar items together. The neighborhood decay parameter, α, controls the shrinkage
of the neighborhood; and the weight-update parameter, η, controls how far each
weight is adjusted toward the desired value.

Figure 8.3 Simple Kohonen self-organizing map.

Figure 8.4 SOM neighborhood as a function of count. At count = 0, the entire network of
SOM neurons is adjusted. As training continues, the neighborhood is reduced until at the
end it is operating on a single neuron.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

52 Chapter 8

Once the initial network weights and training parameters are set, the train-
ing begins with the introduction of an input feature vector. The distance, usually
Euclidean distance, between the input vector and the corresponding weight vector
for each neuron in the SOM is measured. The neuron closest in distance to the
input is declared the winner (see Fig. 8.5). Once the winner is found, all neurons
in the neighborhood are updated to be similar to the input feature vector, according
to the update formula as given in the SOM training process shown in Table 8.1.

The weight update for each weight vector in the neighborhood of the winning
neuron is depicted in Fig. 8.6. As can be seen in the figure, the weight vector em-
anating from the input layer to the neuron is moved in the direction of the input
vector. Thus, in a simple description, the neuron is being trained to be a “grand-

Figure 8.5 SOM with winning neuron and corresponding neighborhood.

Figure 8.6 Weight update for SOM network in direction of input vector.

Table 8.1 Kohonen SOM Training Process

Step 1: Choose number of neurons, total iterations (loops), η,α, etc.
Step 2: Initialize weights
Step 3: Loop until total iterations meet
Step 4: Get data example and find winner. Winner is node closest to input vector by a prede-

termined distance metric (L1, L2, L3, etc.)
Step 5: Update winner and all neurons in the neighborhood

w+ = w− + α(x − w−)

Step 6: Update neighborhood size and lower η,α, as needed
Step 7: End loop

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Unsupervised Training Methods 53

mother cell.” That is, the neuron is being trained to respond to a specific input
feature vector, such as a picture of your grandmother. Thus, when the neuron is
presented with a picture of your grandmother, the neuron fires.

8.1.2 An Example Problem Solution Using the SOM

The SOM can be used to perform a variety of mappings. In the example given in
Fig. 8.7, a three-dimensional cube is compressed into a two-dimensional object. By
observing Fig. 8.7, you will soon notice that the portions of the cube that lie close
together in three-dimensional space are also close together in two-dimensional
space, preserving much of the topology in the original cube. The maps given in
Fig. 8.7 are produced by polling each of the nodes in the SOM and coloring the
result to match the closest class in the original three-dimensional cube. Thus, eight
distinct portions exist in the cube and eight corresponding areas in the SOM. The
SOM’s ability to preserve the topological spacing of items makes it a valuable tool
for many pattern-recognition problems.

The reader may be wondering at this point why the SOM would be so valuable.
In real-world problems that pattern-recognition experts encounter, a great deal of
data are often available, but the majority are not “truthed.” In other words, the data
are available but the knowledge of what classes they belong to is missing. If a
developer has enough time and money, he or she can hire one or more experts to

Figure 8.7 Compressing a cube: SOM weights for various network-training iterations.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

54 Chapter 8

grade each feature vector and tell him/her what the desired system response should
be. This is optimal in one sense, but impractical because experts are expensive, and
usually too much data exists to truth by hand. Another method, often incorporated
to overcome this difficulty, is to have an expert “truth” a portion of the feature
vectors for known conditions, and then to hold these data as a reference set. The
designer then uses an unsupervised method, such as the SOM, to cluster the data.
Because the SOM preserves topology, we know that points in the map that are
close together represent feature vectors that are close together in the feature space
of the measurements. Thus, a SOM is often formed using the “untruthed” data.
The designer then uses the set of known inputs and corresponding classes and the
SOM’s topology-preserving feature to identify which neurons lie in which class.
Then a supervised neural network maps the SOM nodes to the desired network
output. We will illustrate this process using the Fisher iris data set.

As you may recall from the principal components discussion, the Fisher iris
data [Fisher, 1936] consist of 150 feature vectors (50 per class) that utilize four fea-
tures (sepal length, sepal width, petal length, petal width) to discriminate among
three classes of iris (setosa, virginica, versicolor). The data points for the three
classes are shown in Fig. 8.8. As can be seen, the setosa class is separable, but the
virginica and versicolor varieties are not separable using the four features mea-
sured by Fisher. A scatter plot for each of the iris classes in Fisher’s iris data set
is given in Fig. 8.9. The scatter plot also shows that the classes are not separa-
ble. What if the reader merely had the set of 150 feature vectors and was asked
to discover what he could about the data? Could he determine how many classes
existed? How close would the results be to the “known” classes? The authors will
now show how it can be done using the SOM.

Figure 8.8 Depiction of Fisher’s iris data plotted against the first three features.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Unsupervised Training Methods 55

The authors start by training a SOM for 1000 iterations, about seven passes
through the entire training set. The resultant SOM map is given in Fig. 8.10, which
shows that the map contains three distinct regions. Examining the map, perhaps
the reader can define one class as those pixels that are shades of blue but not cyan,
another class as those pixels that are mostly cyan to almost yellowish-green, and

Figure 8.9 Scatter plot for Fisher’s iris data.

Figure 8.10 SOM output after training on Fisher’s iris data set.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

56 Chapter 8

the last class yellowish-green to red, as shown in Fig. 8.11. The actual results found
using the Fisher iris data set are given in Fig. 8.12. As can be seen in the figure,
the initial boundaries were pretty good, but need to be adjusted slightly based upon
the “truthed” data. Thus, with no knowledge about how many classes were in the
iris set, the SOM net could be used discern three classes and approximately where
their boundaries would lie.

Figure 8.11 Potential class boundaries obtained using SOM output after training on Fisher’s
iris data set.

Figure 8.12 Class boundaries obtained using SOM output after training on Fisher’s iris data
set, along with winning neurons and corresponding iris data.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Unsupervised Training Methods 57

8.2 Adaptive Resonance Theory Network

The adaptive resonance theory (ART) network was developed by Stephen Gross-
berg in the 1970s. The first ART network, ART1, performed unsupervised learning
for binary input patterns [Grossberg, 1976a, b, c; Grossberg, 1987]. The ART2
network was developed to handle both continuous and binary input patterns [Car-
penter, 1987b]. The ART3 network performs parallel searches of distributed recog-
nition codes in a multilevel network hierarchy [Carpenter, 1990]. The FuzzyART
network is almost exactly the same as ART1, except that it can also handle con-
tinuous input patterns [Carpenter, 1991]. The training rules for FuzzyART are ba-
sically the same as those for ART1, except that the intersection operator of ART1
is replaced with a minimum operator working on the fuzzy membership functions.
Gaussian ART uses Gaussian classifiers as the discriminates, implemented as ra-
dial basis functions [Williamson, 1996].

The authors present a simplified version of the ART network that works equally
well on binary and floating-point data. The essence of the ART network is that the
network begins with a memory composed of neurons with unassigned weights that,
during the course of training, become assigned to cluster centers based upon the
input data. Each neuron is assigned a vigilance parameter that controls the size
of the hypersphere. This can be considered to be a spherical neighborhood in a
high-dimensional feature space, which defines the membership of an input vector
to the cluster center represented by the weights of the assigned neuron. As new pat-
terns are presented to the ART network, with separation larger than the vigilance,
additional neurons are assigned with their centers at the location in feature space
represented by the input. Figure 8.13 contains a simplified block diagram model
of an ART network that contains a preprocessing layer that normalizes incoming
feature vectors. Generally, the Euclidean energy norm is taken, which stretches
or squashes incoming feature vectors onto the unit hypersphere, as depicted in
Fig. 8.14.

Figure 8.13 Block diagram of adaptive resonance theory (ART) network.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

58 Chapter 8

Figure 8.14 Energy normalization of input vectors onto unit hypersphere.

The angle between the vectors, θ, is preserved, allowing the vectors to be dis-
criminated by the ART network. The normalized input is passed onto the F1 neuron
layer and the network finds the closest match among the stored neurons on the F2
layer. The comparison layer calculates how similar the vectors are to one another
(−1 ≤ S ≤ 1) using the dot product, and compares the magnitude of the result to
the vigilance parameter. Thus, inputs that are exactly the same as an F2 neuron
would have a similarity value of 1, and those that are antipodal (exactly the oppo-
site) would have a value of −1. The larger the vigilance parameter, the easier it is
to add neurons, because a match is harder to achieve.

If an input feature vector meets the vigilance parameter for a given stored neu-
ron, then the neuron weights are adapted to move the center of the neuron to better
capture the new input vector. Because of the unsupervised nature of the ART al-
gorithm, the network designer must guard against allowing the neurons to rotate
too far. To envision how this could be a problem, consider a series of input vectors
spaced 30 degrees apart on the unit hypersphere for a network with a vigilance of
0.8. If, without accounting for prior history, the network blindly adapts the neuron
weights, then after the fourth vector is presented, the neuron weights would be or-
thogonal to the original vector that created the neuron in the first place. Guarding
against the ease by which vectors can be rotated is often accomplished by updating
the weights by increasingly smaller amounts as new vectors that meet the vigilance
condition are used to adapt the weights of the winning neuron. For example, if only
one feature vector was used to create the weights of the winning neuron, then the
next feature vector that meets the vigilance condition would affect the weights
equally with the first. Then, succeeding input vectors that meet the vigilance con-
dition would have one-third the impact, then one-fourth, one-fifth, one-sixth, and
so on. In the limit, the stored neurons in the F2 layer would be the means of the
cluster centers. This is borne out by comparing the ART-like algorithm’s neuron
weights shown in Table 8.2 to the means of the normalized input vectors for each
of the Fisher iris classes given in Table 8.3. The results in Tables 8.2 and 8.3 are
nearly identical.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Unsupervised Training Methods 59

Table 8.2 ART neuron weights for energy-normalized
Fisher iris data.

Feature 1 Feature 2 Feature 3 Feature 4

Node 1 0.8027 0.5467 0.2352 0.0389
Node 2 0.7494 0.3498 0.5368 0.1669
Node 3 0.7053 0.3192 0.5944 0.2175

Table 8.3 Feature means for each class using energy-
normalized Fisher iris data.

Feature 1 Feature 2 Feature 3 Feature 4

Mean 1 0.8022 0.5477 0.2346 0.0391
Mean 2 0.749 0.3495 0.5375 0.1673
Mean 3 0.7056 0.3185 0.5946 0.217

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Chapter 9

Recurrent Neural Networks

Recurrent neural networks are networks that feed the outputs from neurons to other
adjacent neurons, to themselves, or to neurons on preceding network layers. Two of
the most popular recurrent neural networks are the Hopfield and the Bidirectional
Associative Memory (BAM) networks.

9.1 Hopfield Neural Networks

The Hopfield network [Hopfield, 1982] rekindled interest in neural networks in the
early 1980s, but it is rarely used today. The Hopfield network is often used as an
auto-associative memory or content-associated network with fully recurrent con-
nections between the input and output, as depicted in Fig. 9.1. Its primary purpose
is to retrieve stored patterns by presenting a portion of the desired pattern to the
network.

In the Hopfield neural network, each neuron is connected to every other neuron
through weighted synaptic links. A set of P patterns with bits encoded as Mpi ∈
{−1,1} are encoded in the synaptic weights by using an outer-product learning rule
[Hopfield, 1982]. The encoded synaptic weights are determined by

wij = MT M − pI, (9.1)

where p is the total number of training patterns and I is the identity matrix. Ta-
ble 9.1 summarizes the steps involved in configuring a Hopfield network.

Figure 9.1 Hopfield Neural Network.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

62 Chapter 9

Table 9.1 Process of configuring a Hopfield neural network.

Step 1. Encode each pattern as a binary vector.
Step 2. Form an N(number of inputs) by P (number of patterns) dimensional matrix to store

the pattern vectors. Each vector becomes a row in the matrix.
Step 3. Encode the weights in the network through the use of an outer product of the pattern

matrix and its transpose. Then zero out the diagonal terms. This is described mathe-
matically in Eq. (9.1).

The output of the Hopfield network is given by

output = f

(∑
j �=i

wij inputi

)
. (9.2)

In Hopfield’s original work [Hopfield, 1982], the step function was used as the
activation function for all the neurons in the network.

For the Hopfield network, a noisy or corrupted pattern is presented at the input,
and the network iterates until it reaches a steady state or a limit cycle. A pattern
is recalled when stability is reached. In general, if the input pattern is some cor-
rupted or noisy version of a pattern stored in the network, then the recalled pat-
tern should be the ideal or uncorrupted version of this input pattern. Figure 9.2
illustrates the process of pattern recall. This specific example was generated on an
opto-electronic implementation of the Hopfield network with interconnect weights
stored holographically [Keller, 1991].

In the Hopfield representation, the patterns stored in the associative memory are
distributed throughout the network. This distribution of patterns provides a large
degree of fault tolerance and allows the network to function even with several bad
synaptic connections. Unfortunately, this redundancy is costly, and Hopfield-style
networks have a low storage capacity and operate in a forced-decision fashion. That
is, the Hopfield network will try to converge on the closest memory state whether
the input is valid or merely random noise. The maximum number of patterns that
can be stored in a Hopfield auto-associative memory has been shown to be

Pmax = N

2 ln(N)
(9.3)

Figure 9.2 Illustration of the recall process of a Hopfield network.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Recurrent Neural Networks 63

for a network of N neurons [McEliece, 1987]. Several modifications have been
made to improve this network. In Hopfield’s formulation, the self-connection
weights, wii , are set equal to zero. However, better performance is achieved when
the self-connection weights are included [Gindi, 1988]. Also, better memory-recall
performance can be achieved by using unipolar quantities and an optimized thresh-
old or offset [Gmitro, 1989].

Hopfield networks have also been devised to solve optimization problems
[Hopfield, 1985]. Here, the synaptic weights encode an energy cost function for
the problem. An initial or test solution is presented to the network. The network
iterates until it reaches stability. At that point, the network’s output encodes the
solution to the problem. One particular problem that has been encoded in a Hop-
field network is the classic NP-complete traveling-salesman problem (NP = non-
polynomial function). The computational complexity of most problems increases
as a polynomial function of the number of elements in the problem. Functions that
have polynomial complexity are known as P -complete problems (P = polynomial
function) and are relatively easy to compute when compared to NP-complete prob-
lems. On the other hand, the computational complexity of an NP-complete problem
is not a polynomial function of the number of elements in the problem and typically
increases exponentially with the number of elements [Johnson, 1985].

9.2 The Bidirectional Associative Memory (BAM)

The Hopfield neural network utilizes a symmetric weight matrix that requires the
input and output to be the same size. It is an auto-associative neural network, which
means the inputs and outputs map to the same state.

What if the network designer wanted a hetero-associative neural network?
Could it be done using the outer-product scheme utilized for the Hopfield net-
work? It happens that Kosko [Kosko, 1987] and his associates solved this problem
in the 1980s and called the network the bidirectional associative memory, or BAM
for short.

But suppose the designer had never heard of Kosko or Hopfield and was faced
with this dilemma, what should he or she do? The first step is to ask what is really
happening when data passes through the Hopfield neural network. The answer is
that the operation of the network could be split into two phases: (1) a forward pass
and (2) a backward pass, as depicted in Fig. 9.3, that continues until convergence
is reached.

Given this snapshot of the Hopfield neural network, the reader can clearly see
that at any given point in time the output and input are computed with a feedforward
pass through a weight matrix. In the case of the Hopfield matrix, the weight matrix
is symmetric, but there is no reason to assume that this symmetric matrix is the
only weight matrix available. What if the output only had three neurons instead of
five? What would the matrix W look like? In the pass from the input to the output,
it would be a 5 × 3 matrix, while the pass from the output back to the input would

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

64 Chapter 9

Figure 9.3 Depiction of Hopfield network at a given point in time.

Figure 9.4 Bidirectional associative memory (BAM) neural network.

be a 3 × 5 matrix. Thinking in terms of a non-symmetric W, the authors finish the
problem by showing how the weights needed for W are calculated.

Figure 9.4 illustrates the BAM network. All neurons are connected through
feedback to all other neurons in the network. A set of P input patterns with bits
encoded as Api ∈ {−1,1} and P output patterns with bits encoded as Bpi ∈ {−1,1}
are encoded in the synaptic weights by using an outer-product learning rule. The
encoded synaptic weights are determined by

W = AT B, (9.4)

where A is the set of P input patterns and B is the set of P output patterns.
The output of the BAM network is given by

output = f (W · input). (9.5)

The input of the BAM network is given by

input = f (WT · output). (9.6)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Recurrent Neural Networks 65

Table 9.2 summarizes the steps involved in configuring the weights of a BAM
network.

Thus, the reader can see that the BAM is a generalization of the Hopfield net-
work in that an arbitrary number of input neurons can be associated with an arbi-
trary number of output neurons. This enables the neural-network designer to asso-
ciate different sets of items. For example, he may wish to associate objects such as
numbers, trucks, and airplanes with their corresponding name, as shown in Fig. 9.5
[Tarr, 1992].

Associating objects with labels is what made hetero-associative networks in-
teresting from an academic point of view. But, just as occurred with the Hopfield
neural network, the BAM fell out of use because there was still a problem with
the number of items that could be stored before the network would converge to
unwanted “spurious” states.

The authors now introduce a use for the Hopfield neural network that works to
its strength. Suppose the designer had a set of equations he wanted to solve, but
had finite resources to calculate the answer? In other words, he cannot compute
the inverse directly because the matrix needed for the inversion is not of sufficient
rank or has a bad condition number, or he has very limited computing resources.

Table 9.2 Process of configuring a BAM neural network.

Step 1. Encode each input pattern as a binary vector.
Step 2. Form an N (number of inputs) by P (number of patterns) dimensional matrix to store

the input pattern vectors. Each vector becomes a row in the matrix, A.
Step 3. Encode each output pattern as a binary vector.
Step 4. Form an M (number of outputs) by P (number of patterns) dimensional matrix to store

the output pattern vectors. Each vector becomes a row in the matrix, B.
Step 5. Encode the weights in the network through the use of an outer product of the transpose

of the input pattern matrix, A, and the output pattern matrix, B. This is described
mathematically in Eq. (9.4).

Figure 9.5 Example of the inputs and outputs encoded by a BAM network.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

66 Chapter 9

Could he still find a reasonable approximate solution? The next section describes
just such a solution using the Hopfield neural network. The new implementation
of the Hopfield network is called the generalized linear neural network (GLNN)
[Lendaris, 1999].

9.3 The Generalized Linear Neural Network

The generalized linear neural network (GLNN) is an extension of the Hopfield
neural network that uses linear activation functions. That is, the summed product
is not squashed but used as is. This provides some interesting properties that enable
the solution of systems of equations using a Hopfield neural network.

Considering the Hopfield neural network’s properties, the reader would see that
it multiplies the input by the weight matrix until it converges on a solution or
reaches a limit cycle. If care is taken to insure that the network is sufficiently sized
for the number of desired memory states, the network can be represented by an
equation of the form:

x(n + 1) = W · x(n) + u, (9.7)

where x(n + 1) ≡ next state, W ≡ weight matrix, and u ≡ starting input, which
in the limit as n → ∞ means that x(n + 1) ∼= x(n). Taking that thought process
further, the reader will find the following:

x ∼= Wx + u, (9.8)

x(I − W) ∼= u, (9.9)

x ∼= (I − W)−1 · u. (9.10)

As you can see, the Hopfield network is actually computing an inverse of a matrix.
By making the following substitutions:

u = αAT · y, 0 < α <
2

trace(AT A)
,

W = I − α · AT A,

and performing some mathematical manipulations, we find

x = (AT A)−1y, (9.11)

the Moore-Penrose form of a matrix pseudo-inverse for an overdetermined set of
equations. The GLNN for an overdetermined set of equations is shown in Fig. 9.6.

Likewise, when there are fewer equations than unknowns, by substituting:

u = y

W = I − α · AAT , 0 < α <
2

trace(A · AT)
,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Recurrent Neural Networks 67

Figure 9.6 Block diagram of the generalized linear neural network for the overdetermined
and full-rank cases.

Figure 9.7 Block diagram of the generalized linear neural network for the underdetermined
case.

and performing some mathematical manipulations, the reader will find

x = (AAT)−1y, (9.12)

which is the Moore-Penrose form of a matrix pseudo-inverse for an underdeter-
mined set of equations. The GLNN for an underdetermined set of equations is
shown in Fig. 9.7.

By using the GLNN to solve a system of equations, the designer can avoid the
need to take the classical inverse of a set of data. The GLNN allows the designer
to compute the inverse on the fly.

9.3.1 GLNN Example

Given the system of inputs and outputs represented by

A =

−4.207 1.410 0.451 −0.910
−0.344 −3.473 2.380 3.267

3.733 −1.999 −3.728 2.85
1.096 −4.277 1.538 −3.952

 y =

0.902
−27.498
−0.48

3.734

solve the equation A · x = y for x.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

68 Chapter 9

Using the GLNN and iterating the Hopfield network for 100 iterations yields

xest =

1.02
2.015

−2.977
−3.998

 , where xact =

1
2

−3
−4

 .

Figure 9.8 depicts the error between the GLNN output and the actual value versus
iterations for the first element of the x vector.

As can be seen in Fig. 9.8, the GLNN solves the set of linear equations in
a small number of iterations by utilizing the Hopfield network embedded in the
GLNN. The Matlab code needed to calculate a GLNN and its associated Hopfield
network is given in Section C.2, with the code used to generate the example given
in Section C.4.

Figure 9.8 GLNN prediction error versus iterations for the example problem.

9.4 Real-Time Recurrent Network

The real-time recurrent neural network of Williams and Zipser [Williams, 1990]
as shown in Fig. 9.9, has also found success in a number of applications. Williams
and Zipser introduced time into the gradient-descent algorithm, which allows the
network to capture time-varying dynamics.

9.5 Elman Recurrent Network

The recurrent neural network developed by Elman [Elman, 1991] uses a single
recurrent pass of the hidden layer to store time-varying dynamics, as shown in

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Recurrent Neural Networks 69

Fig. 9.10. Each neuron in the hidden layer is connected to one neuron in the recur-
rent layer. This copies the information output from the hidden layer and cycles it
back through a weighting factor on the next sample presentation. This adds a delay
loop to store values from the previous time step to be used in the current time step.
This way, a small portion of information from the previous time, t −1, is combined
with the current time, t . Indirectly, decreasing portions of information from time
t − 2, t − 3, t − 4, etc., are also captured, thus enabling recurrent operation in this
network to model the temporal dynamics of the data. The Elman network has found
success in a number of medical applications such as that shown in Section 10.3.

Figure 9.9 Williams and Zipser real-time recurrent neural network.

Figure 9.10 Elman neural network with hidden layer holding a single time-delay sample.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Chapter 10

A Plethora of Applications

Artificial neural networks have been used in a staggering number of applications.
Not all of them can be listed here, but the authors will highlight areas where neural
networks have found success. As has been pointed out, neural networks are very
good at mapping inputs to outputs. This ability to map inputs to outputs is very
useful in function approximation, pattern recognition, and database mining. The
authors present examples showing how neural networks can be applied in these
areas without becoming overly detailed. Several come from the authors’ work ex-
perience, while others come from publicly available data sources.

10.1 Function Approximation

Function approximation can be useful in many applications. For example, the net-
work designer could approximate a function f (x) by using the model in Fig. 10.1,
which shows that the desired input is presented to the learning system, with the
function generator f (x) acting as the expert. The network output is compared to
the desired output (f̃ (x)). The error between the desired output, f (x), and the ac-
tual output, f̃ (x), is used to create an error term that adapts the behavior of the
learning system. The authors will illustrate this process using a feedforward neural

Figure 10.1 Block diagram of function-approximation training model.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

72 Chapter 10

network (see Fig. 10.2) to approximate the following function:

f (x) = 0.02
(
12 + 3x − 3.5x2 + 7.2x3)[1 + cos(4πx)][1 + 0.8 sin(3πx)] (10.1)

on the interval [0, 1]. The transfer functions can be sigmoids, Gaussians, hyperbolic
tangents, or any smooth monotonic function. For this example, the authors used the
sigmoid function.

The feedforward neural network, as shown in Fig. 10.2, is trained using pairs of
data values consisting of the input and the corresponding desired function output.
Once training is completed, over thousands of iterations and samples, the resul-
tant neural network approximates the desired function. For the function defined in
Eq. (10.1), the approximation by the feedforward network on the interval [0, 1] is
very good, as shown in Fig. 10.3. Note that as the neural network is used to ap-
proximate the function outside the training interval, the prediction performance is
not nearly as good as the region where it was trained.

Figure 10.3 shows that for the input points where the neural network was
trained, the outputs are approximated very well. This is a strength of feedforward
neural networks: that is, they are good at interpolation and approximation. Outside
the regions where the network was trained, the approximation was much worse.
This highlights a weakness of simple feedforward neural networks, which is that
they do not perform extrapolation tasks well. The reader should also be careful
concerning the order of the network used to approximate a function. By using a
network with too few neurons, the fit to the function will be of a lower order than
the ideal, as in the case of a straight line attempting to fit a series of points of much
higher order (see Fig. 10.4). In addition, using too many neurons to fit a function
will result in an overfit to the approximation, which results in wild errors for re-
gions outside the points used for training. Thus, an ideal approximating network
will be on the same order as the function to be approximated.

Figure 10.2 Feedforward neural network used to perform function approximation.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 73

The reader may be wondering why one would use a neural network for function
approximation when it can simply be computed. The answer is that the process
shown in Fig. 10.1 is very general. It can be used to approximate any function
[Cybenko, 1989]. Many times in engineering and industrial applications, data are
available but a model of the process is desired. This is often termed system identi-
fication in control theory. The objective is to model an unknown plant using inputs
to the plant along with the associated outputs from the plant to train a neural net-
work that will be used to model the plant, as shown in Fig. 10.5. As the reader
can readily see, the form of the method used to model the unknown plant, depicted
in Fig. 10.5, is identical to the form of the function-approximation method shown
earlier in Fig. 10.1. The supervised-training method is very powerful. The perfor-
mance of control systems can be improved in other ways, but they are beyond the
scope of this book.

Figure 10.3 Depiction of the function-approximation capability for the feedforward neural
network.

Figure 10.4 Examples of underfit, overfit, and ideal fit for a set of training points.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

74 Chapter 10

Figure 10.5 Conceptual diagram of a supervised-learning system used to perform system
identification.

The reader can obtain additional references related to control applications for
neural networks in the references section at the end of this book.

10.2 Function Approximation—Boston Housing Example

As a more extensive example of function approximation, the authors present a
neural-network estimator that takes in housing price attributes for a neighborhood,
then estimates the median value of owner-occupied homes in that neighborhood.
These data come from David Harrison, Jr., and Daniel L. Rubinfeld, [Harrison,
1978] through the University of California-Irvine (UCI) Repository for Machine
Learning databases [Blake, 1998]. The data consist of 506 samples of housing
price attributes collected in the Boston area in 1978. The attributes include the
crime rate (CRIM), the proportion of zoned large residential lots (ZN), the propor-
tion of non-retail business land (INDUS), a binary index indicating whether the
tract bounds the Charles River (CHAS), the nitric oxides concentration (NOX), the
average number of rooms per dwelling (RM), the proportion of owner-occupied
units built prior to 1940 (AGE), the weighted distances to five Boston employment
centers (DIS), the index of accessibility to radial highways (RAD), the full-value
property tax rate (TAX), the average pupil-to-teacher ratio in local schools (PTRA-
TIO), an ethnic proportion factor (B), an economic-status factor (LSTAT), and the
median value of owner-occupied homes at 1978 price levels. The median home
value (MHV) is the quantity the neural-network estimator will be trained to pre-
dict. The authors wish to point out that any of the attributes could potentially be
predicted based upon the other attributes. For example, the neural-network estima-
tor could be used to predict TAX rather than the MHV.

The components of the neural-network price estimator are shown in Fig. 10.6.
The 13 housing features are collected for a neighborhood. The 13 features are
each scaled by statistical Z-score normalization and fed into a feedforward neural
network. The mean and standard deviation are generated from the training set and
will be stored as weights to normalize the inputs from the test and validation sets.
The neural network’s output has a value from 0 to 1, so it must be rescaled to the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 75

Figure 10.6 Block diagram of the Boston housing-price estimator illustrating the inputs (13
housing attributes), outputs (estimated mean housing price), and major components.

range of housing prices in Boston during 1978, which was $5,000 to $50,000 for
the relevant neighborhoods.

The neural network consists of a four-layer feedforward network with 13 in-
puts, two hidden layers with 10 and 5 neurons respectively, and one output neuron
as shown in Fig. 10.7. In general, a single hidden layer can solve most estima-
tion problems. We used two hidden layers here to improve the training time. The
number of hidden neurons (10 in the first layer and 5 in the second) was deter-
mined through a search process performed by the training software. To develop
and test this network, the authors use split-sample testing and break the 506 sam-
ples, representing 506 neighborhoods, into a training set of 253 neighborhoods, a
validation set of 76 neighborhoods, and a test set of 177 neighborhoods. For this
application, the standard backpropagation training algorithm was used to adapt the
weights of the feedforward network. The test results for the trained network are
given in Table 10.1. An overall summary of this application and the associated
network training parameters is given in Table 10.2.

10.3 Function Approximation—Cardiopulmonary Modeling

The next application demonstrates function approximation for a time-varying pa-
rameter. It involves a medical system that was developed in 1995 for evaluating
graded exercise stress tests for use in cardiopulmonary evaluation [Keller, 1995].
The system is described in U.S. Patent 5,680,866 [Kangas, 1997]. A physician col-
lected a variety of static and dynamic parameters from individuals during graded
exercise stress tests, which involved the patient running on a treadmill or pedaling

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

76 Chapter 10

a stationary bike while several key physiological parameters were recorded to de-
termine how well the patient’s heart and lungs respond to physical activity. A pho-
tograph of a bicycle graded exercise test setup is shown in Fig. 10.8. The physician
felt a bit overwhelmed by the amount of data and was interested in developing a
diagnostic aid to help him grade the exercise tests and compare the results to other
tests, including previous tests the patient had undergone. The authors decided to
build a cardiopulmonary modeler as part of the system to capture the relationship
between several measured physiological variables and the workload on the patient.

The role of the cardiopulmonary modeler is to take key measured physiolog-
ical parameters and predict the metabolic equivalent workload for a patient. This
predicted value is then compared to the actual workload to determine whether the

Figure 10.7 Neural network used in Boston housing-price example with 13 inputs from
neighborhood attributes, two hidden layers, and one output that represents the median hous-
ing price for the neighborhood.

Table 10.1 Results of the Boston housing-price estimator test with a few
samples from the test set.

Neighbor- Town Tract Actual Predicted Error Error
hood ID ID value value ($) (%)

71 Burlington 3321 $24,200 $24,000 $200 −0.8%
269 Brookline 4012 $43,500 $44,100 $600 1.4%

3 Swampscott 2022 $34,700 $38,300 $3,600 10.4%
333 Holbrook 4212 $19,400 $20,300 $900 4.6%

4 Marblehead 2031 $33,400 $34,900 $1,500 4.5%
79 Woburn 3335 $21,200 $20,800 $400 −1.9%

210 Waltham 3685 $20,000 $20,500 $500 2.5%
218 Watertown 3702 $28,700 $26,100 $2,600 −9.1%
62 Beverly 2174 $16,000 $15,700 $300 −1.9%
44 Peabody 2103 $24,700 $24,200 $500 −2.0%

343 Hull 5001 $16,500 $15,900 $600 −3.6%

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 77

patient is responding as expected. A deviation in response could indicate a problem
with the cardiopulmonary system. The overall diagnostic aid included two neural
networks for the modeling, one for the static and one for the dynamic variables,
and a neural-network model-based reasoning system for diagnostics to compare
the modeled to actual outputs. Only the subsystem that performs dynamic mod-
eling will be discussed here. A block diagram of this subsystem is illustrated in
Fig. 10.9, with a variety of physiological parameters recorded: oxygen consump-
tion, carbon dioxide production, expired ventilation of oxygen, expired ventilation
of carbon dioxide, blood-oxygen saturation, respiratory rate (RR), systolic blood
pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), and pulse rate,
along with several derived parameters. Workload, ambient temperature, and time
were also recorded.

Figure 10.8 A photograph of a graded exercise bicycle test that was used to collect data for
this application. This is Dr. Paul A. Allen and his two assistants.

Table 10.2 Summary of the Boston housing-price example.

Application Predicting mean home price for a neighborhood
Data Model 13 inputs, 1 output, static
Learning Supervised
Input Features 13 attributes taken from neighborhood assessments
Output 1-Predicted mean home price within neighborhood
Data Samples 506 neighborhoods in suburban Boston
Data Source David Harrison, Jr. and Daniel L. Rubinfeld
Testing Method Split-sample testing
Training Set 253 neighborhoods (50%)
Validation Set 76 neighborhoods (15%)
Test Set 177 neighborhoods (35%)
Normalization Z-score normalization
Neural Network Feedforward (13-10-5-1)
Training Backpropagation
Post-processing Rescale from unitary scale to dollars
Test Result Root mean squared (RMS) error = $4,120

R2 = 0.800

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

78 Chapter 10

Figure 10.9 Block diagram of the cardiopulmonary-response estimator illustrating the in-
puts (workload and ambient temperature), outputs (heart rate, respiratory rate, systolic blood
pressure, and diastolic blood pressure), and major components.

The first experimental modeler used only four physiological parameters (respi-
ratory rate, heart rate, systolic blood pressure, diastolic blood pressure) along with
workload and ambient temperature. That network will be discussed here, although
the final modeling system used all of the measured parameters.

Because the workload and physiological parameters varied with time, it was
necessary to capture the time element in the model. The use of a recurrent layer
added to a feedforward network (see Fig. 10.10), known as an Elman network [El-
man, 1990; Elman, 1991], accomplished this. The model has two inputs (workload
and ambient temperature) and four predicted outputs (RR, HR, SBP, DBP). Each
neuron in the hidden layer is connected to one neuron in the recurrent layer. This
copies the information output from the hidden layer and cycles it back through a
weighting factor onto the next sample presentation. This has the effect of adding
a delay loop to store values from the previous time step to be used in the current
time step. This way, a small portion of information from the previous time, t − 1,
is combined with the current time, t . Indirectly, decreasing portions of information
from time t − 2, t − 3, t − 4, etc., are also captured, enabling recurrent operation in
this network to model the temporal dynamics of the data. A physiological model of
the individual can thus be developed over the time span of the test. The recurrent
layer also allows the network to adapt to time-varying conditions during operation.

An overall summary of this application is given in Table 10.3. A data set of ap-
proximately 80 to 100 patient exercise tests collected by the physician partner, with
between 10 and 30 minutes of data collected on each test, were available to develop
and test the network. For this application, a modified backpropagation algorithm
was used to train the Elman network. The input and target data were normalized

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 79

Figure 10.10 Neural network used to model the temporal relationship among four physio-
logical parameters, workload, and ambient temperature. It uses an Elman network with a
recurrent layer to capture time-changing information.

Table 10.3 Summary of the cardiopulmonary modeling example.

Application Predict patient’s response to cardiopulmonary
stress test

Data Model 2 inputs, 4 outputs, temporally dynamic
Learning Supervised
Input Features 2—metabolic workload and ambient temperature
Outputs 4—heart rate, breathing rate, systolic blood

pressure, diastolic blood pressure
Data Samples Approximately 80 to 100 patients, some with

several tests
Data Source Dr. Paul A. Allen, M.D., Life Link Inc.
Testing Method The system was tested on data collected from

patients on their second and third tests
Normalization Min-max normalization
Neural Network Elman type network
Training Backpropagation
Post-processing Rescale data to actual ranges
Test Result Figure 10.11

to a scale of 0 to 1, based on the calculated minimum and maximum values. The
result of one test, showing a typical run with plots of time versus workload, actual
and predicted heart rate, and actual and predicted systolic blood pressure, can be
seen in Fig. 10.11.

Because the neural network adapts to each individual’s stress responses, it be-
comes a model of the individual’s cardiopulmonary system. If the model is devel-
oped when the individual is healthy, the predicted physiological parameters can
be compared to a later stress test. Any differences between the predicted and ac-
tual parameters can be employed to evaluate and diagnose medical conditions that
affect the individual’s cardiopulmonary system. The stress test can also be com-
pared to general models, based on groupings such as age and gender, to determine
whether the individual’s cardiopulmonary system is responding as it should for the
appropriate age or gender.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

80 Chapter 10

Figure 10.11 A comparison of the modeled and actual heart rate and systolic blood pres-
sure during a graded exercise stress test.

The function approximation and system identification applications all used su-
pervised training. Another application that uses supervised training is that of pat-
tern classification or recognition.

10.4 Pattern Recognition—Tree Classifier Example

Pattern recognition involves taking an input and mapping it to a desired recognition
class. We will first illustrate the pattern recognition process with an example that
uses cones and leaves to identify four different species of evergreen trees in the
Pacific Northwest (see Fig. 10.12). This figure shows the features to be used to
identify the species are needle length and cone length. The desired outputs are the
four species: black spruce, western hemlock, western larch, and white spruce. We
begin by collecting samples of needles and cones for each species and measuring
the lengths, resulting in the data shown in Table 10.4.

The raw data have been normalized to assist the neural network during training.
The feature space for the data collected for this application example is depicted

in Fig. 10.13. This demonstrates that there is virtually no overlap in the feature
space among the four species to be identified. This means that the classifier will
not have to work hard to separate the various species from each other and then
to use that information to identify a given feature vector with its associated tree
species.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 81

Figure 10.12 Pattern recognition example for distinguishing different evergreen trees in the
Pacific Northwest.

Table 10.4 Raw data for distinguishing four evergreen
trees in the Pacific Northwest.

Tree Raw Data Normalized Data

Cone Needle Cone Needle
Length Length Length Length

Black Spruce 25 mm 11 mm –0.32 –0.38
Black Spruce 26 mm 11 mm –0.29 –0.38
Black Spruce 24 mm 9 mm –0.35 –0.46
Western Hemlock 20 mm 13 mm –0.47 –0.30
Western Hemlock 21 mm 14 mm –0.44 –0.26
Western Hemlock 21 mm 20 mm –0.44 –0.02
Western Larch 37 mm 31 mm 0.05 0.42
Western Larch 33 mm 33 mm 0.42 0.50
Western Larch 32 mm 28 mm –0.11 0.30
White Spruce 51 mm 19 mm 0.47 –0.06
White Spruce 50 mm 20 mm 0.44 –0.02
White Spruce 52 mm 20 mm 0.50 –0.02

The use of good features cannot be emphasized enough. The vast majority of
the work to be performed in pattern classification is to obtain a good set of features.
Once that is accomplished, the classifier system used is not overly critical.

Once the data are collected, normalized, and the associated class identified for
each feature vector, the data are presented to a neural network for training. The
weights in the neural network are initially set to small random values. We have
placed the initial hyperplanes used by the feedforward neural network on the fea-
ture space map, as shown in Fig. 10.14.

As the neural network is trained, the hyperplanes shift and begin to carve out
decision regions. Feedforward neural networks, with sigmoidal transfer functions,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

82 Chapter 10

Figure 10.13 Feature space for distinguishing different evergreen trees in the Pacific North-
west.

Figure 10.14 Feature space for distinguishing different evergreen trees with initial
neural-network hyperplanes.

use the hyperplanes to form what mathematicians term half-spaces. That is, one
side of the hyperplane contains one decision region, such as A, and the other side
contains the not of that decision region, A, as depicted in Fig. 10.15.

The four species of evergreen trees can be identified by using three hyperplanes.
The logic used by the output layer of the neural network would be something like

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 83

Figure 10.15 Final hyperplanes after 3000 iterations of the network training.

this:

B ∩ A Western Hemlock
A ∩ C Western Larch
A ∩ C White Spruce
B ∩ C Black Spruce

The final network and associated decision regions are given in Fig. 10.16. Note
that the hyperplanes that define the various tree species do not have limits in the
feature space. This means that any new tree species introduced will be recognized
as one or more of the learned classes. In addition, notice that the neural network
is classifying large areas in the feature space where there has never been a sample.
This is something that the reader must always keep in mind when training clas-
sifiers that use hyperplanes to make decisions. Making sure that the data in the
feature space are used effectively is paramount. These deficiencies can be over-
come by partitioning the data in a special way during training, as described in
Section 7.3.1.

A summary of the neural network used in this example is given in Table 10.5.
While this example was solved using a feedforward neural network employing

hyperplanes, it could just as easily been solved with a clustering algorithm such as
the ART or the SOM. Using one of these classifiers with different distance metrics
for determining the range of support for each cluster center, or neuron, results
in different decision regions that bound each tree species in the feature space, as
shown in Fig. 10.17.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

84 Chapter 10

Figure 10.16 Neural network used to classify four species of evergreen with associated
decision regions.

Table 10.5 Summary of the tree classifier example.

Application Recognition of evergreen trees
Data Model 2 inputs, 4 outputs, static
Learning Supervised
Input Features 2 measurements from trees: needle length and cone

length
Outputs 4 classes representing four species of evergreen tree
Data Samples 200 samples from several trees
Data Source Authors of this book
Testing Method Split-sample collection for the test set
Training Set 120 samples (60% of total)
Validation Set 30 samples (15% of total)
Test Set 50 samples (25% of total)
Normalization Z-score normalization
Neural Network Feedforward network (2-3-4)
Training Backpropagation
Post-processing Threshold applied to each output followed by a

max-picker to find the most likely class
Test Results 100% classification rate

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 85

Figure 10.17 Clustering neural-network solutions with associated decision regions using
three different distance metrics for each cluster: Mahalanobis (left), Euclidean (right), and
taxicab (bottom).

10.5 Pattern Recognition—Handwritten Number Recognition
Example

Another pattern recognition success for neural networks has been optical character
recognition (OCR) used in applications such as handwriting recognizers for zip
codes and personal digital assistants (PDAs), or OCR for scanned pages of text. We
present a handwriting recognizer trained with data obtained from Ethem Alpaydin
[Alpaydin, 1998] through the UCI Machine Learning Repository [Blake, 1998].
Figure 10.18 summarizes how the data were broken out into training, validation,
and test sets.

In this example, the authors present a method of performing handwriting recog-
nition using a simple mouse-driven interface. The reader can easily visualize how
this could be extended to laptop finger pads and PDA pen pads. The traditional
pattern classification process is shown in Fig. 10.19.

Pattern classification is generally represented by (1) the environment; (2) a sens-
ing system; (3) a set of measurements for the environment obtained for the sensor;
(4) extracted features; (5) data normalization; (6) a pattern classifier; and (7) a la-
beler. The proposed Neural Network Optical Character Recognition (NNOCR)
system, shown in Fig. 10.20, uses all of the steps outlined for a pattern recognition
system: inputs, feature extraction, data normalization, classifier, and the system

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

86 Chapter 10

Figure 10.18 Data used to train the optical character recognizer.

Figure 10.19 Block diagram of pattern classification process.

Figure 10.20 Block diagram of neural network OCR system.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 87

output. The training inputs are created by using handwriting samples for each of
the characters in the appropriate alphabet, which in this example are the integer
numbers [0,1,2, . . . ,9]. To create training input, human users enter the desired
characters using a mouse, finger on a touchpad, or stylus. The reader will notice
that during this process, the inputs are changed from raw pixels to features. The
features are averaged pixel values obtained from the input, which converts 1024
input pixel values into 64 features. The recognition system must be able to handle
changes in the character set ascribed to translation, scale, and rotation. Examples
of various characters that need to be recognized are given in Fig. 10.21. Note how
closely the characters 4 and 9 resemble one another.

The system is created using the normalized features as inputs, with the desired
numerical value represented by a given neuron, yielding 10 outputs for our exam-
ple. Each output is trained to be 1 for its associated character and 0 when others
are presented. Generally, this is done by dividing available data into a training set
and test set. Sometimes, when there are sufficient data, they are divided into train-
ing, validation, and test sets. The training set is used to adjust the weights of the
neural network. The validation set measures performance without adjusting the
weights. The training-set and validation-set error as a function of iterations for the
NNOCR are presented in Fig. 10.22. The curves are very similar, showing that
the neural network has generalized very well. When a network is overtrained, the

Figure 10.21 Example handwritten characters used to train the NN optical character recog-
nizer.

Figure 10.22 Training-set and validation-set error as a function of epochs through the train-
ing set.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

88 Chapter 10

validation-set error will increase while the training-set error is still decreasing (see
Fig. 10.23). A useful insight is that the neural-network training should be halted
when the validation-set error is consistently larger than the training-set error. The
resultant confusion matrix for the system is shown in Fig. 10.24. The confusion
matrix for the NNOCR is nearly ideal, which would contain only diagonal terms.
The NNOCR system was implemented using Visual Basic with a mouse interface.
The input character is drawn with a mouse and the network produces an output as
depicted in Fig. 10.25. The output of each of the 10 nodes is given so the user can
see how closely the input matches any of the stored characters. For example, the
letters “o” and “a” should most closely match the number 0. The output neuron
with the maximum output value, commonly called a max-picker, is chosen as the
network output, which is neuron 7. Table 10.6 summarizes the design aspects of
the NNOCR.

Figure 10.23 Training-set and validation-set error as a function of feature vector presenta-
tions.

Figure 10.24 Confusion matrix for the NN optical character recognizer.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 89

Figure 10.25 Visual Basic GUI for the NN optical character recognizer with the input/output
neuron values and final output of the OCR.

Table 10.6 Summary of the NNOCR example.

Application Recognition of handwritten numbers
Data Model 64 inputs, 10 outputs, static
Learning Supervised
Input Features 32 × 32 array of pixels averaged down to 64 features
Outputs 10 classes representing the numbers 0 through 9
Data Samples 5620 handwritten numbers digitized to 1024 pixels
Data Source Ethem Alpaydin and Cenk Kaynak at Bogazici

University in Turkey
Testing Method Independent sample collection for the test set
Training Set 2676 samples from 30 people (70% of initial data)
Validation Set 1147 samples from the same 30 people (30% of

initial)
Test Set 1797 samples from 13 additional people
Normalization Z-score normalization
Neural Network Feedforward network (64-15-10)
Training Backpropagation
Post-processing Threshold applied to each output followed by a

max-picker to find the most likely class
Test Result 95% classification rate (see Fig. 10.24)

10.6 Pattern Recognition—Electronic Nose Example

An electronic nose takes inspiration from biology in both its sensing and pattern
recognition traits. Both the olfactory system and the electronic nose consist of an
array of chemical-sensing elements and a pattern recognition system. In 1993, one
of the authors developed a simple electronic nose prototype to test pattern recog-
nition techniques necessary for building fieldable electronic nose systems [Keller,
1994]. A photo of the system is shown in Fig. 10.26; Fig. 10.27 illustrates the
electronic-nose system; and Table 10.7 summarizes the design aspects. While this
system is rudimentary by today’s standards, it shows how neural networks can be
used in fieldable systems. Many of the commercial electronic noses available today
employ these basic concepts [Keller, 1999a].

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

90 Chapter 10

Figure 10.26 Photograph of the prototype electronic nose in operation.

Figure 10.27 Block diagram of the electronic nose illustrating the inputs (nine chemi-
cal-sensor values, temperature and humidity), outputs (five chemicals and a category for
none), and major components.

The system works by placing a chemical sample in a 5-liter sampling box,
which contains a sensor array and mixing fan. The volatile compounds produced
are blown over the sensor array by the mixing fan. This transports odorant mole-
cules to the sensors and produces a uniform mixture across the sensor array. The
sensors respond physically to the odorant molecules through a chemical reduction
process that changes the resistance of the sensor. In this prototype, an array of nine
Taguchi-type tin-oxide vapor sensors, one humidity sensor, and one temperature

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 91

Table 10.7 Summary of the electronic-nose example.

Application Odor classification
Data Model 11 inputs, 6 outputs, static
Learning Supervised
Input Features 11 sensor values (9 chemical, 1 temperature, 1 humidity)
Outputs 6 classes representing 5 chemicals and 1 “none”

class
Data Samples 815 odor samples collected from five different

household chemicals, along with mixtures of the
odors

Data Source Pacific Northwest National Laboratory
Testing Method Independent collection of test set

Split-sample for validation set
Training Set 433 sensor-response vectors
Validation Set 186 sensor-response vectors
Test Set 196 sensor-response vectors
Normalization Z-score normalization
Neural Network Feedforward (A-A-6)

ARTmap
Training Backpropagation

Fuzzy ARTmap (vigilance = 0.98 train and 0.80
test)

Post-processing Threshold applied to each output followed by a
max-picker to find the likely odor class or classes

Test Result Backpropagation: Classification Rate = 92.9%
Fuzzy ARTmap: Classification Rate = 93.4%

sensor were used. The electrical signals from the sensors are then sent from the
sampling box to an analog-to-digital converter within a desktop computer, so that
the digitized sensor values are available to the neural-network software within the
computer.

During the data collection process, different chemicals (acetone, ammonia, iso-
propanol alcohol, lighter fluid, vinegar) along with mixtures were presented to the
sampling box and their corresponding sensor values were recorded over several
days to collect training and validation data. Additional samples were taken later
for testing. This resulted in 619 samples for use in training and validation and 196
samples for testing.

The collected data were normalized by Z-score normalization with the mean
and standard deviation computed from the training set. The inputs to the neural
networks consisted of the 11 sensor values. The outputs consisted of six classes:
one for each chemical plus an additional category for “none.” Two types of neural
networks were trained for this prototype: a feedforward network trained with back-
propagation and a fuzzy ARTmap. The feedforward network had 11 neurons in the
hidden layer. The fuzzy ARTmap network is a supervised version of the ART net-
work that was discussed in Section 8.2. We used a training vigilance of 0.98 and a
test vigilance of 0.80.

The performance levels of the two networks were essentially equivalent, rang-
ing from 89.7% to 98.2% correct identification on the test set, depending upon the
random selection of training patterns. Table 10.8 summarizes the network perfor-
mances on the test data.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

92 Chapter 10

Table 10.8 The performance of the prototype electronic nose when tested on common
household chemicals with both the backpropagation and fuzzy ARTmap neural networks.

Number of Number of Classification Rate on Test Set
Training Test Backpropagation Fuzzy ARTmap
Examples Examples Input Chemical

67 28 None 96.4% 96.4%
106 25 Lighter Fluid 100.0% 96.0%
75 22 Acetone 100.0% 100.0%
74 27 Ammonia & Lighter Fluid 100.0% 92.6%
64 14 Ammonia 100.0% 100.0%
66 21 Vinegar 81.0% 95.2%
93 28 Isopropanol 92.9% 100.0%
68 26 Ammonia & Vinegar 92.3% 76.9%
5 3 Ammonia & Isopropanol 0.0% 66.7%
1 2 Isopropanol & Vinegar 0.0% 0.0%

619 196 Totals 92.9% 93.4%

10.7 Pattern Recognition—Airport Scanner Texture
Recognition Example

Another sensing application that demonstrates the use of neural networks in pat-
tern recognition is airport security [Keller, 2000]. In this application, an individual
is imaged with millimeter waves in the frequency range of 12 to 33 GHz (wave-
length range of 9 to 25 mm). This wavelength range penetrates clothing to reveal
hidden objects carried on the person in or beneath their clothing. A drawing and
photograph of the cylindrical scanner is shown in Fig. 10.28, specifically showing
hidden weapons and explosives, including nonmetallic items. This raises privacy

Figure 10.28 Cylindrical millimeter-wave scanner used to screen individuals for hidden
weapons and explosives.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 93

issues, because human screeners could see beneath the clothing of the passengers.
Therefore, an automated approach to locate potentially threatening objects was
needed.

One of the components of this automated system used a feedforward neural
network to identify speckle in the images. Plastic, ceramic, and other dielectric
items are partially transparent to the millimeter-wave illumination, which often
leads to a speckled texture on these items resulting from wave interference to the
various coherent reflected and transmitted waves. To an operator, this effect ap-
pears as a granular texture. The texture of human skin is smooth and produces very
little pixel-to-pixel variation, so the speckle is greatly reduced. Since the texture
produced by dielectrics is substantially different from that imaged from the human
body, a neural network could be trained to segment dielectric (i.e., plastic) items.

The texture-recognition neural network was designed to examine small regions
of the millimeter-wave image. For the system, illustrated in Fig. 10.29, it was found
that a 7 × 7 array of pixels provided enough information for the neural network to
identify the speckle effect. Since the images are generally 128× 512 pixels in size,
the system works by scanning the entire image in a method similar to that of a
kernel-based image-processing filter operator. Therefore, the network only sees a
small region of the image at any given time. The output of the neural network is
thresholded to produce a binary output: speckle or no speckle. This threshold can
be varied to change the output sensitivity. This output is then overlaid onto an out-
line, silhouette, or three-dimensional mannequin model of the scanned individual.
The output is further processed by a series of median-window and dilation filters

Figure 10.29 Block diagram of the texture detector with the inputs (millimeter-wave image),
outputs (processed image), and major components.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

94 Chapter 10

Figure 10.30 A man with RDX explosive strapped to his back is shown on the left. The
millimeter-wave image is shown in the middle. Notice the speckle in the center of the back
produced by the explosive. On the right is the final output image as the screener sees it.

to remove spurious pixels identified as speckle. Post-processing reduces noise and
false alarms in the output images. The entire system recognizes the presence or
absence of speckle across various regions in the image. This produces an output
image that marks regions of potential interest to the screener. An example is pre-
sented in Fig. 10.30. The scanner images a person with RDX explosive and the
output of the neural network and associated post-processing filters produces an
image that reveals the location of interest while preserving some privacy for the
individual.

In this application, almost all the pixels in the data sets do not represent speckle.
Approximately 4% of the pixels within the region of the individual represent
speckle. So, for training it was necessary to bias the process, increasing the rep-
resentation of speckle during training by increasing its a priori probability as men-
tioned in Section 4.1.2.

The results of the test with the human screeners and the speckle detector at two
sensitivities are shown in Table 10.9. At low sensitivity, the probability of false
alarm (Pfa) is substantially lower for the speckle detector than the human screeners,
but the detection probability (Pd) is somewhat reduced. For the high-sensitivity
case, the probability of detection has increased, but so has the probability of false
alarms. Overall, these results show that the performance of the speckle detection
algorithm is comparable to that of the human screeners with regard to the detection
of plastic threats. A summary for the network training is given in Table 10.10.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 95

Table 10.9 Test results for human screeners and the neural-network-based speckle detector
on plastic guns and plastic explosives at low and high sensitivities.

Detection False Alarm
Detection Method Probability (Pd) Probability (Pfa)

Human Screener 61.5% 31.0%
Texture Detector Set at Low Sensitivity 62.5% 17.2%
Texture Detector Set at High Sensitivity 75.0% 38.5%

Table 10.10 Summary of the airport scanner texture detection example.

Application Plastic identification in analysis of speckle in
millimeter-wave security images

Data Model 49 inputs, 1 output, static
Learning Supervised
Input Features 49 extracted millimeter-wave image pixels
Outputs 1 output indicating presence or absence of speckle
Data Samples 50 sequences, each consisting of 36 images per

sequence and each containing 128 × 512 pixels
Data Source Pacific Northwest National Laboratory
Testing Method Independent collection of test set
Training Set 17 image sequences
Validation Set 8 image sequences
Test Set 25 image sequences
Normalization Z-score normalization
Neural Network Feedforward (49-36-18-1)
Training Backpropagation
Post-processing Thresholding, placement of point onto output

image, followed by morphological image operators
and frame-to-frame consistency check

Test Result 62.5% to 75% classification rate
17.2% to 38.5% false positive rate

10.8 Self-Organization—Serial Killer Data-Mining Example

This application demonstrates that a Self-organizing map can be used to visualize
an entire database. Developed by our colleague Lars Kangas [Kangas, 1999] to
aid in the investigation of serial murders, it is known as CATCH, for Computer-
aided Tracking and Characterization of Homicides, and was developed for the
U.S. Department of Justice with assistance from the Washington State Attorney
General’s Office.

When a serial offender strikes, it usually means that the investigation is un-
precedented for the investigating police agency, which can be overwhelmed by
incoming leads and pieces of information. These investigations are generally long-
term, with the suspect remaining unknown and continuing to commit crimes.
CATCH assesses likely characteristics of unknown offenders by relating a specific
crime case to other cases and by providing tools for clustering similar cases that
may be attributed to the same offenders. One of the clustering tools in CATCH is
a self-organizing map that learns to cluster similar cases from approximately 5000

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

96 Chapter 10

murders and 3000 sexual assaults. These cases reside in a database, with each one
detailed by 225 parameters that describe modus operandi, the offenders’ signature
characteristics, and other attributes of the victim, offender, and crime scene [Cop-
son, 1997; Keppel, 1999]. These parameters are derived from a series of questions
asked of the local investigator by an investigator from the state crime laboratory.

CATCH maps the 225 parameters, which can be thought of as a 225-
dimensional space, to a two-dimensional space organized as 4096 cells in a 64×64
grid, as shown in Fig. 10.31. The proximity of cases within a two-dimensional rep-
resentation of the clusters allows the analyst to identify similar or serial murders
and sexual assaults. This figure highlights a section of the map that contains cases
from the Green River murders [Keppel, 1995]. The training phase assigns each
crime to exactly one of these cells. The specific cell to which each crime is as-
signed is based on the clustering algorithm. Similar crimes are placed in closer
proximity to each other. Identical or nearly identical crimes may be placed in the
same cell. Some cells may not be assigned any crimes during training, but may
be assigned new crimes as they are entered into the database. The SOM should be
retrained periodically, when a sufficient number of new cases has been added to
the database, to take advantage of all available crime data. The SOM portion of
CATCH is detailed in Fig. 10.32 and summarized in Table 10.11.

Figure 10.31 A self-organizing map representing about 5000 murders. Each cell in the
64-by-64 map typically contains eight or fewer crimes. A lighter cell color indicates a higher
number of crimes in that cell, while a black cell contains no crimes. The white cells within the
two highlighted regions indicate cases considered to be committed by two infamous serial
killers in the Pacific Northwest.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 97

Figure 10.32 Block diagram of CATCH system with the inputs (225 parameters about the
offender and victim), outputs (two-dimensional visual mapping of the database), and major
components.

Table 10.11 Summary of the CATCH example.

Application Visualization of murder and sexual-assault cases to
determine similarities that might indicate a serial
offender

Data Model 225 inputs, 4096 outputs (64 × 64), static
Learning Unsupervised
Input Features 225 parameters representing details about the

offender, the victim, and the crime scene
Outputs A two-dimensional map containing 4096 nodes

arranged in a 64 ×64 hexagonal grid
Data Samples Approximately 5000 murder cases and 3000 serial-

rape cases
Data Source State of Washington Attorney General’s Office
Testing Method All data can be used in training and operation
Neural Network Self-Organizing Map (225-4096)
Training Self-Organizing Map
Test Result See Figure 10.31

10.9 Pulse-Coupled Neural Networks—Image Segmentation
Example

In this example, we discuss the application of a significantly different kind of neural
network. This pulse-coupled neural network (PCNN) is a model based on the mam-
malian visual cortex. Eckhorn [Eckhorn, 1990; Eckhorn, 1991] proposed the un-
derlying network to explain the experimentally observed pulse-synchrony process
found in the cat visual cortex. Neurons in the visual cortex will fire together to

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

98 Chapter 10

represent areas of the image field that should be bound together. These could have
similar structure or texture.

The PCNN is significantly different from other neural networks in both struc-
ture and operation. In the PCNN model, each neuron in the processing layer is
tied directly to an image pixel or set of neighboring image pixels as shown in
Fig. 10.33 [Linblad, 1998]. Each neuron iteratively processes signals feeding from
these nearby image pixels (i.e., feeding inputs) and linking from nearby neurons
(i.e., linking inputs) to produce a pulse train. The PCNN does not require training.
The properties of the PCNN are adjusted by changing threshold levels and decay-
time constants. Figure 10.34 illustrates a PCNC-type neuron. It has inputs (i.e.,
feeding inputs) from a neighborhood in the image plane and inputs from neigh-
boring neurons in the neuron layer (i.e., linking inputs). Similarities in the input
pixels cause the associated neurons to fire in synchrony, indicating similar struc-
ture or texture. This synchrony of pulses is then used to segment similar structures

Figure 10.33 A PCNN network with an input image plane and an output neuron plane. A
certain region in the image plane is fed into each neuron along with inputs from neighboring
neurons.

Figure 10.34 A PCNN neuron with links to the image plane and neighboring neurons. This
neuron produces an output representative of a pulse train.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A Plethora of Applications 99

or textures in the image. We will discuss a simple application of a PCNN to the
segmentation of anatomical structures in a magnetic-resonance image (MRI).

In Fig. 10.35 is a MRI cross-section of the abdomen of a patient with an en-
larged kidney, visible on the left side of the image. While the physician can easily
see that the kidney is enlarged, image segmentation is used to determine a quanti-

Figure 10.35 Magnetic resonance image (MRI) showing a cross-section of the abdominal
region, with an enlarged kidney on the left side of the image.

Figure 10.36 Process of combining PCNN image segments to form an image highlighting
the important regions. The image in the upper-left segments the fat and muscle tissue within
the abdomen and forms the white region in the combined segment image. The abdominal
cavity is segmented in the upper-middle image and is represented as light gray in the com-
bined segmented image. The kidneys are segmented in the upper-right image and show as
dark gray in the combined segmented image. In this figure, an enlarged kidney is evident in
the left when compared to the kidney on the right.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

100 Chapter 10

tative figure for the kidney size. Figure 10.36 shows an idealized segmentation of
the kidneys produced by a PCNN. This was achieved by running the PCNN with
a wide linking radius (8 pixels), followed by an adaptive process of segment com-
bination and spatial filtering with a smoothing filter and a median-window filter
[Keller, 1999]. The resulting segmentation process showed that the segmented area
of the enlarged kidney was 3.82 times larger than that of the kidney on the right.
A full-volume comparison can be computed by processing all the cross-sectional
images of the abdomen that contain the kidneys.

Figure 10.37 Block diagram of the PCNN image-segmenter system with the inputs (MRI
image), outputs (segmented image), and major components.

Table 10.12 Summary of the PCNN example.

Application Segmentation of anatomical structures found within
MRI images

Data Model 65,536 inputs, 65,536 outputs, static
Learning None
Input Features Entire MRI image
Outputs Segmented version of entire image
Data Samples 1 image
Data Source Database of radiological examples for medical students
Testing Method All data can be used in training and operation
Neural Network Pulse Coupled Neural Network
Training None—parameters are manually adjusted
Test Result See Fig. 10.36

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Chapter 11

Dealing with Limited Amounts
of Data

The process of collecting and labeling data can be resource intensive, so the amount
of data available to the neural-network designer to develop a neural network is
often limited. Furthermore, properly training and testing a neural network requires
splitting the data into a training, a validation, and a test set, which further reduces
the amount of data. Several statistical techniques have been developed for dealing
with limited amounts of data. These techniques involve multiple resamplings of the
data into a series of sets. The neural-network designer can also use these techniques
to judge the performance of neural networks with limited data.

Statisticians originated these techniques for use with statistical estimation and
classification, but they are applicable to neural networks. In statistics, they are used
to estimate the model’s generalization error and to choose its structure [Weiss,
1991; Efron, 1993; Hjorth, 1994; Plutowski, 1994; Shao, 1995]. This is true as well
for neural networks. With neural networks, the designer can use these techniques to
choose the network architecture, the number of hidden neurons, the salient inputs,
training parameters, etc. They can also be used to evaluate the neural network’s
general performance. A-fold cross-validation, leave-one-out cross-validation, jack-
knife resampling, and bootstrap resampling are the most common techniques used
with neural networks to deal with limited data. When large amounts of data are
available and the data are representative of the entire population, then these tech-
niques are generally not needed.

11.1 K-fold Cross-Validation

The k-fold process involves partitioning the data into k separate sets, where k is
the number of sets chosen. This division is usually done randomly into k mutu-
ally exclusive subsets of approximately equal size. This process is illustrated in
Fig. 11.1. A-1 sets are used to train the neural network, and one set is held out and
used to test the neural-network architecture and determine its generalization error.
This process is repeated k times until all data have been used in both training and
testing, but independently. In statistical estimation problems, a value of 10 for k

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

102 Chapter 11

Figure 11.1 Process of randomly breaking data into k-subsets, followed by assignment of
subsets to the training and test sets. Training data are used to train the neural network and
are generally broken into a training and a validation set.

is popular [Breiman, 1992; Kohavi, 1995]. A specific rule of thumb does not exist
for neural networks, but generally a value of 5 to 10 works fine. It is important to
remember that k-fold cross-validation is different from the split-sample or holdout
validation described earlier.

11.2 Leave-one-out Cross-Validation

The leave-one-out method, illustrated in Fig. 11.2, is similar to k-folding, but only
removes one sample at a time for testing. It is the same as k-fold cross-validation
where k is equal to the sample size, except that it is more resource intensive than
k-fold cross-validation, because it involves leaving out all possible subsets so the
entire process is run as many times as there are samples (n).

Leave-one-out cross-validation is also easily confused with jackknifing. Both
involve omitting each training case in turn and retraining the network on the re-
maining subset. However, cross-validation is used to estimate generalization error,
while jackknifing is used to estimate the bias of a statistic or neural network.

Leave-one-out cross-validation often works well for continuous-error functions
such as the root-mean-square error used in backpropagation. It may perform poorly
for discontinuous error functions such as misclassification percentage. If a discon-
tinuous error function is used in the neural-network training, then k-fold cross-
validation should be used instead of leave-one-out cross-validation.

11.3 Jackknife Resampling

The jackknife resampling technique was originated by Maurice Quenouille in 1956
[Quenouille, 1956] as a way to study bias in estimators. The name jackknifing
comes from John Tukey [Tukey, 1958] after the way a jackknife works. Think
of the entire data set as the whole set of knifes. Each subset or each sample is

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Dealing with Limited Amounts of Data 103

Figure 11.2 Process of randomly selecting a data sample for use in the test set with the
remaining data going towards training. Training data are used to train the neural network
and are generally broken into a training and a validation set.

a different knife. Each time the developers train a neural network, they pull into
the test set the data represented by one of the knives and into the training set the
data represented by the remaining knives. In this way, a separate neural network is
tested on each subset of data and trained with all the remaining data.

On the surface, jackknifing looks like leave-one-out or k-fold cross-validation.
The difference is in what question is being answered by the results for each sub-
set . The purpose of jackknifing is to use the statistics of each subset to determine
the neural network’s bias, while the purpose of cross-validation (k-fold and leave-
one-out) is to estimate the neural network’s ability to generalize. If the neural net-
work produces identical or similar statistics for each subset used in the jackknifing
process and then for the entire set, then the neural network is considered to be
unbiased.

11.4 Bootstrap Resampling

For cross-validation and jackknife resampling to be effective, the error distribution
used to select the samples needs to be known. For most cases, this error distribu-
tion is not known, so a normal distribution is used. However, a normal distribution
might not be representative of the data. The bootstrapping method, invented by
Bradley Efron [Efron, 1979], is a more accurate way of dealing with a small sam-
ple size. It involves creating a large number of new samples from the original data,
resampling the available data to build a sampling distribution. This assumes the
sample distribution is representative of the entire population. A Monte Carlo tech-
nique, randomly generating new data sets to simulate the process of data genera-
tion, accomplishes this resampling. To do this, the Monte Carlo process must draw
from an error distribution representative of the problem. The name refers to the
phrase “to pull oneself up by one’s bootstraps.” Figure 11.3 illustrates the process
of bootstrapping. The original data set containing n items (10 in this example) is

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

104 Chapter 11

Figure 11.3 Process of forming a series of bootstrap sets from the original data set. Training
data are used to train the neural network and are generally broken into a training and a
validation set.

randomly sampled with replacement b times to produce a new bootstrap set with
exactly n items. The replacement value is randomly selected from the remaining
samples and this process can be repeated many times. Four repetitions are shown
in this example. A bootstrap set then forms the data used to train a neural network,
while the unused data serves to test the neural network. The result is several data
sets for use in training and testing. The number of samples (n) in the data set used
to train the neural network remains equal to the number of samples in the original
data set. The number of test samples can vary. In this illustration, an individual
sample can be repeated multiple times in the training data.

Bootstrapping differs from cross-validation in that it involves repeated analy-
sis of subsamples of the data, not subsets of the data. In many cases, bootstrapping
seems to work better than the cross-validation methods [Efron, 1983]. More sophis-
ticated versions of bootstrapping exist. One is used to estimate confidence bounds
for the network outputs [Efron, 1993]. Another is useful for estimating generaliza-
tion error in classification problems [Efron, 1997].

While bootstrapping has been used by statisticians for the past 25 years, neural-
network designers have only used it for the past decade [Baxt, 1995; Tibshirani,
1996; Masters, 1995]. Bootstrapping is still not a common neural-network tech-
nique and knowledge about its use is still somewhat limited; therefore, bootstrap-
ping with neural networks has not been thoroughly researched. It is known that
bootstrapping does not work well for some other methodologies [Breiman, 1984;
Kohavi, 1995]. It is also known that time-series data are often more complex than
typical data used for classification and require complicated methods for bootstrap-
ping [Snijders, 1988; Hjorth, 1994].

In statistics, the bootstrapping technique has been shown to perform remark-
ably well and to produce surprisingly accurate estimates of statistical sampling
distributions. With bootstrapping, the resampled data sets remain the same size as
the original. However, some samples are duplicated, while others are discarded.
When compared with cross-validation, this resampling increases the variance that

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Dealing with Limited Amounts of Data 105

can occur in each run, but bootstrapping provides a more realistic simulation of
real life [Efron, 1993]. Bootstrapping preserves the a priori probabilities of the
classes throughout the random selection process. It has an added benefit in that it
can obtain accurate measures of both the bias and variance of the neural-network
model. Bootstrapping should be considered when the sample size is small and the
error distribution is suspected to be abnormal.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix A. The Feedforward
Neural Network

A feedforward network is composed of neurons arranged in layers, as illustrated by
Fig. 1.10 in the introduction. Data are introduced into the system through an input
layer. This is followed by processing in one or more intermediate (hidden) layers.
Output data emerge from the network’s final layer. The transfer functions contained
in the individual neurons can be almost anything. In this appendix, we describe
the mathematics behind the feedforward neural network and the backpropagation
algorithm that is commonly used to train feedforward networks with sigmoidal
transfer functions. We also mention some of the alternatives to backpropagation
for training feedforward networks.

For the mathematical derivations within this appendix, we will use the notations
given in Table A.1. This follows the terminology found in many sources that deal
with backpropagation. We will also use superscripts to indicate the index of the
layer. Subscripts indicate indices for neurons and patterns (data samples).

A.1 Mathematics of the Feedforward Process

The input layer, also known as the zeroth layer, of the network serves to redistrib-
ute the input values and does no processing. The outputs of this layer are described
mathematically by Eq. (A.1), where xi represents the input vector and N0 repre-
sents the number of neurons in the input or zeroth layer:

o0
i = xi, where i = 1, . . . ,N0. (A.1)

The input to each neuron in the first hidden layer in the network is a summation
of all weighted connections between the input or zeroth layer and the neuron in
the first hidden layer. This weighted sum is sometimes called the net stimulus or
net input, and is commonly denoted as net. We can write the net input to a neuron
from the first layer as the product of that input vector, xi , and the weight factor,
wi , plus a bias term, θ. The total weighted input or net stimulus to the neuron is a
summation of these individual input signals and is described by Eq. (A.2), where

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

108 Appendix A. The Feedforward Neural Network

Table A.1 A summary of variable names and symbols used in the description of feedforward
neural networks and the backpropagation algorithm.

E total output error when all patterns are presented
Ep total output error when pattern p is presented
xpi input to the ith neuron in the input or zeroth layer when pattern p is presented
ypi output of ith neuron in the final layer when pattern p is presented
tpi target output for the ith neuron in the final layer when pattern p is presented
f �
j
(u) activation function for the j th neuron in �th layer

ḟ �
j
(u) derivative of the activation function

o�
pi

output of ith neuron in �th layer when pattern p is presented

w�
ki

weights linking the ith neuron in the � − 1st layer to the kth neuron in the �th layer
θ bias term for activation function
w�

j0 bias term written as a weight to a unitary input

net net stimulus to ith neuron in �th layer when pattern p is presented
N� number of neurons in the �th layer
i, j, k indices for the neurons and weights (1, . . . ,NL)
L number of layers for the network excluding the input layer
� layer index (0, . . . ,L; where 0 = input and L = output)
P number of patterns in the training set
p pattern index (1, . . . ,P)

δ�
ik

delta term containing the error needed to update the connection linking the ith neuron
in the � − 1st layer to the kth neuron in the �th layer

�w�
ki

weight update for the connection linking the ith neuron in the � − 1st layer to the kth

neuron in the �th layer
η learning rate
α momentum

N represents the number of neurons in the input layer:

net stimulus =
N∑

i=1

wixi + θ. (A.2)

The net stimulus to the neuron is transformed by the neuron’s activation or transfer
function, f (u), to produce a new output value for the neuron. With backpropaga-
tion, this transfer function is most commonly either a sigmoid or a linear function.
In addition to the net stimulus, a bias term, θ, is generally added to offset the input.
Often, the bias is designated as a weight coming from a unitary valued input and
denoted as w0. So, the final output of the neuron is given by the following equation
and shown graphically in Fig. A.1.

output = f (net) = f

(
N∑

i=1

wixi + θ

)
= f

(
N0∑
i=1

wio
0
i + w0

)
. (A.3)

Now we expand to multiple neurons and multiple layers. The outputs of the neurons
in one layer, o�

i , are interconnected via weights to neurons in the next layer. So the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix A. The Feedforward Neural Network 109

Figure A.1 Process of summing weighted connections into a neuron and then applying an
activation function to produce an output.

net stimulus of the j th neuron in the �th layer is given by Eq. (A.4), and the output
of the neuron is described by Eq. (A.5).

net�j =
N�−1∑
i=1

w�
jio

�−1
i + θ�

j =
N�−1∑
i=1

w�
jio

�−1
i + w�

j0, (A.4)

o�
j = f �

j (net�j) = f �
j

(
N�−1∑
i=1

w�
jio

�−1
i + w�

j0

)
. (A.5)

The outputs that emerge from the network at the final or Lth layer are described by

yj = oL
j , (A.6)

where j = 1, . . . ,NL.
Often, the input layer is not included in the network’s total layer count since

it performs no processing and is only used to redistribute the incoming signals.
A common notation for describing the network topology (i.e., distribution of neu-
rons in the network) of a feedforward network is

N0 − N1 − N2 − · · · − NL. (A.7)

For example, a network with three inputs, one hidden layer with 10 neurons, and
two outputs, is referred to as a 3-10-2 feedforward network.

A.2 The Backpropagation Algorithm

Earlier we mentioned that backpropagation is the most common technique for
training a supervised neural network. In this section, we go through the mathemat-
ics behind this algorithm. More complete derivations can be found in Rumelhart’s,
Pao’s, and Haykin’s books [Rumelhart, 1986; Pao, 1989, pp. 120–128; Haykin,

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

110 Appendix A. The Feedforward Neural Network

1994, pp. 142–156]. The goal of backpropagation, as with most training algo-
rithms, is to iteratively adjust the weights in the network to produce the desired
output by minimizing output error. The algorithm’s goal is to solve the credit-
assignment problem. Backpropagation is a gradient-descent approach in that it uses
the minimization of first-order derivatives to find an optimal solution. It works with
a training set of input vectors, x, and target output vectors, t. The training algorithm
iteratively tries to force the generated outputs represented by vector y to the desired
target output vector, t, by adjusting the weights in the network through the use of a
generalized delta rule.

A.2.1 Generalized Delta Rule

When an input vector is presented to the feedforward network, the output error can
be computed by a squared error. The squared error is calculated as the sum of the
squared differences between the target values and output values:

Ep = 1

2

NL∑
j=1

(tpj − ypj)
2. (A.8)

The output error for all vectors presented to the feedforward network is given by

E =
P∑

p=1

Ep = 1

2

P∑
p=1

NL∑
j=1

(tpj − ypj)
2. (A.9)

To reduce the error in the network, we minimize error with respect to the weights
in the network by taking the partial derivative of error with respect to all of the
weights in the network and forcing it to zero. This gradient-descent error mini-
mization is defined by

∂E

∂w�
jk

≡ 0. (A.10)

The partial derivative of the total error can be broken up into a summation of the
errors for each presented pattern:

∂E

∂w�
ji

=
P∑

p=1

∂Ep

∂w�
ji

. (A.11)

Next, we break down the partial derivative into two parts by using the chain rule.
The first term contains the change in error with respect to net stimulus and the

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix A. The Feedforward Neural Network 111

second term contains the change in net stimulus with respect to weights:

∂Ep

∂w�
ji

= ∂Ep

∂net�pj

∂net�pj

∂w�
ji

. (A.12)

The second term in the chain rule is easier to solve, so we tackle it first. This change
in net stimulus as a function of a change in weights can be solved by substituting
the net stimulus, which is given in Eq. (A.4). This results in the output of a neuron
as shown in Eq. (A.13):

∂net�pj

∂w�
ji

= ∂

∂w�
ji

N�∑
k=1

(
w�

jko
�−1
pk

) + w�
j0 = o�−1

pk . (A.13)

By substituting Eq. (A.13) back into Eq. (A.12), we get Eq. (A.14). Equa-
tion (A.14) looks similar to a learning rule known as the delta rule, which was
used in perceptron learning and was a precursor to backpropagation. By defining
the change with respect to net stimulus as a delta term, we get Eq. (A.15). Substitut-
ing back, we get Eq. (A.16), and call it the generalized delta rule for its similarities
to the delta rule developed by Widrow and Hoff in the late 1950s for use in training
perceptrons with the least-mean-square method [Widrow, 1960]:

∂Ep

∂w�
ji

= ∂Ep

∂net�pj

o�−1
pi , (A.14)

δ�
pj ≡ − ∂Ep

∂net�pj

, (A.15)

∂Ep

∂w�
ji

= −δ�
pjo

�−1
pi . (A.16)

Now we return to solving the change in error with respect to net stimulus. This must
be further broken down, using the chain rule, into a term that measures change in
output error with respect to the output of a neuron in any layer and the change in
the neuron output with respect to its net stimulus. This gives us

∂Ep

∂net�pj

= ∂Ep

∂o�
pj

∂o�
pj

∂net�pj

. (A.17)

The second term in this chain rule is the easier to solve so we tackle it first. By
substituting Eq. (A.5), we get the derivative of the neuron’s activation function
evaluated with the net stimulus of the neuron:

∂o�
pj

∂net�pj

= ∂

∂net�pj

ḟ �
j

(
net�pj

) = ḟ �
j

(
net�pj

)
. (A.18)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

112 Appendix A. The Feedforward Neural Network

This leaves the more complicated partial derivative of the error with respect to any
neuron’s output. When we are computing this for the output layer, we know from
Eq. (A.4) that that error is a summed square of the difference between target and
output:

∂Ep

∂o�
pj

= ∂

∂o�
pj

[
1

2

NL∑
j=1

(tpj − opj)
2

]
= −(tpj − opj) when � = L. (A.19)

The variation in output error as a function of hidden-layer neuron output requires a
more complex analysis. Each output in a hidden layer is connected to all neurons in
the successive layer, so the variation is distributed to all neurons succeeding (i.e.,
downstream from) it in the network. So, a change in a weight in one layer affects
all outputs downstream. The variation in output error with respect to an internal
neuron’s output is determined by the variation in its net stimulus. Therefore, we
must sum over all variations in downstream layers to get the total variation in output
error with respect to the output of a hidden neuron. We write this as Eq. (A.20).

∂Ep

∂o�
pj

=
N�+1∑
k=1

(
∂Ep

∂net�+1
pk

· ∂net�+1
pk

∂o�
pj

)
when � < L (i.e., hidden layers). (A.20)

The first term in the summation is the delta term that we defined earlier.

∂Ep

∂net�+1
pk

= −δ�+1
pk when � < L (i.e., hidden layers). (A.21)

The second term in the summation can be solved by substituting the net stimulus
to give us

∂net�+1
pk

∂o�
pj

= ∂

∂o�
pj

(
N�∑
i=1

w�+1
ki o�

i + w�+1
k0

)
= w�+1

kj when � < L. (A.22)

So Eq. (A.20) becomes

∂Ep

∂o�
pj

= −
N�+1∑
k=1

δ�+1
pk w�+1

kj when � < L. (A.23)

Now we return to the delta term of Eq. (A.15). From this, we see that Eq. (A.20)
becomes Eq. (A.24) for the output layer and Eq. (A.25) for the hidden layers:

δL
pj = ḟ L

j

(
netLpj

) · (tpj − ypj) when � = L (i.e., output layer), (A.24)

δ�
pj = ḟ �

j

(
net�pj

) �+1∑
k=1

δ�+1
pk w�+1

kj when � < L (i.e., hidden layer). (A.25)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix A. The Feedforward Neural Network 113

We can see from Eq. (A.25) that we need to calculate the delta term for the output
layer first, then go backwards from the output layer to the input layer, calculating
the deltas for the hidden neurons. The error term shows up directly in the delta
term for the output layer. So, we are propagating an error backwards through the
network. This gives rise to the name backpropagation of error.

Now, we will return to the original goal—minimizing output error with respect
to weights. Figure 1.10 in the introduction shows an idealized gradient descent.
The first-order partial derivative of error with respect to weights gives a direction
for the weights to change to reduce error. To reduce the output error, we change the
weights in the direction indicated by the gradient by subtracting from the weights
a portion of this first-order partial derivative scaled by η. This scale factor is called
the learning rate and determines the size of the step to take in optimizing the
weights. This gives us a weight update equation:

�w�
pji = −η

∂Ep

∂w�
pji

. (A.26)

By combining this with Eq. (A.16), we get

�w�
pji = ηo�

pjo
�−1
pi . (A.27)

Gradient descent assumes an infinitesimal step size. However, if the learning rate is
set too low, then the time needed to learn the synaptic weights will be exceedingly
long. If the learning rate is set too high, then the algorithm tends to oscillate and the
trained network tends to perform poorly because the weight changes are too radical.
Therefore, the learning rate is used to control the convergence of the algorithm.

These weight changes can be applied after each pattern is presented, or all
computed changes can be summed up until all patterns are presented and then
applied to the weights in the network. This summation is shown in Eq. (A.28):

�w�
ji =

P∑
p=1

�w�
pji . (A.28)

As mentioned earlier, the bias or offset term of the activation function is generally
considered to be a weight that is connected to a fixed-unit output node. It is updated
the same way as all the other weights in the network.

A.2.2 Backpropagation Process

Table A.2 lists the steps of the backpropagation algorithm. Initially, the weights
in the network are set to random values. Each iteration contains two phases: a
feedforward phase and an error backpropagation phase.

In the first phase, a training vector, xpi , is presented to the network. It is prop-
agated forward to produce an output vector, ypj . Then, each output is compared to

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

114 Appendix A. The Feedforward Neural Network

Table A.2 Backpropagation Training Procedure.

Step 1. Initialize Weights

w�
ij = Uniformly Random Over −ε to ε for all i, j, and �.

Step 2. Pick a labeled pattern (input and target) from the training set and present input pattern
to the network.

input = xpi target = tpj

for i = 1 to N0 (all input nodes)
for j = 1 to NL (all output neurons)
for p = 1 to P (all patterns)

Step 3. Propagate data forward and generate the output pattern.
output = ypj

for j = 1 to NL (all output neurons)
Step 4. Calculate error between target and actual output by using Eq. (A.8).
Step 5. Propagate error backwards through network and calculate changes to the synaptic

weights that will reduce output error by using the weight-update formula, either with
or without momentum, as given by Eq. (A.27) or Eq. (A.31).

Step 5a. If batch mode, do not apply the weight changes until Step 7.
Step 5b. If incremental mode, apply the weight changes.
Step 6. If there are more patterns (i.e., p < P) in the training set, loop back to Step 2.
Step 7a. If batch mode, update synaptic-weight values in the network by using the summation

of all weight changes from all pattern presentations as given by Eq. (A.28).
Step 8. If output error is high or the maximum number of iterations has not been met, then

loop back to Step 2.

the target output, tpj , and the error between the actual output and target output is
calculated with Eq. (A.8).

During the second phase, the synaptic weights are adjusted using the calcu-
lated error values that are propagated from the output layer back to the hidden
layers. The weights in the network are adjusted using the generalized delta rule as
given to minimize the output error. Weights can also be adjusted after each sample
is processed, or after all samples have been processed. Adjustment following each
sample is known as incremental, instantaneous, continuous, or online learning. Ad-
justment after all samples are presented is known as batch learning.

This process is repeated with a large number of labeled samples (inputs with
targets) until the error converges to a minimum. A small fraction of the observed
error is removed by passing the error backwards through the network while per-
forming small adjustments on the synaptic connections that would decrease the
error if the same information mapping was tried again in the network. The fraction
of error that is removed is called the learning rate, η, and is used to control the
algorithm’s convergence rate. If the learning rate is set too low, the time needed to
learn the synaptic weights will be long. If the learning rate is set too high, the al-
gorithm tends to oscillate and the synaptic weights that are generated will produce
poor classifications or estimations.

Many additional details should be considered when using the backpropagation
algorithm. The activation function must be differentiable and nondecreasing. A sig-
moid function, either logistic or hyperbolic tangent, is generally used as the activa-

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix A. The Feedforward Neural Network 115

tion function. The logistic sigmoid has a derivative in the form given by Eq. (A.29);
the hyperbolic tangent, in the form given by Eq. (A.30):

ḟ (u) = d

du
logistic(u) = e−u

(1 + e−u)2
= f (u)[1 − f (u)], (A.29)

ḟ (u) = d

du
tanh(u) = 1 − tanh2(u) = 1 − f 2(u). (A.30)

Both of these derivatives are written in a form that contains the original function, so
values calculated during the feedforward phase can be used in the backpropagation
phase to decrease computation time.

To reduce the chances of becoming stuck in a local minima or oscillating
around the error surface, a momentum term is often added to the weight-update
equation [Rumelhart, 1986; Hagiwara, 1992]. This momentum term is called the
heavy ball method in numerical analysis [Poljak, 1964; Bertsekas, 1996]. The
role of momentum is to filter out rapid changes in error surface, as illustrated in
Fig. A.2. In this figure, the error drops through a local minima and rises to a local
maxima before falling into the global minimum. The momentum keeps the weight
changes going in the same direction even when a local minima is encountered. To
include the momentum term in the weight-update equation, we add a fraction of the
previous iteration’s weight change to the current weight change. This is shown in
Eq. (A.31), where α is the momentum, �w(n − 1) is the weight update calculated
during the previous iteration, and �w(n) is the new weight update:

�w�
pij (n) = ηδ�

pjo
�
pij + α�w�

pij (n − 1). (A.31)

The momentum value should be in the range of 0 to 0.9, with 0.5 to 0.9 being
common. Momentum affects how quickly learning accelerates or decelerates. Also,

Figure A.2 The use of momentum is illustrated. Think of it as a heavy-ball analogy: A heavy
ball rolling downhill will roll up and over a small hill, representing a local maxima.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

116 Appendix A. The Feedforward Neural Network

it allows effective weight steps to be bigger, which often decreases training time
by moving weights faster in the direction of prior changes.

Another way to improve performance is to add exponential smoothing [Se-
jnowski, 1987]. The update formula looks similar to momentum with a smoothing
term, σ, used, as shown in Eq. (A.32):

�w�
pij (n) = (1 − σ)ηδ�

pjo
�
pij + σ�w�

pij (n − 1). (A.32)

A.2.3 Advantages and Disadvantages of Backpropagation

As we mentioned earlier, backpropagation is the most common algorithm used to
train feedforward systems. It has several advantages, listed in Table A.3, and sev-
eral disadvantages, listed in Table A.4. A modified version of backpropagation has
also been developed by Tohru Nitta [Nitta, 1997] for use with complex numbers.
In the next section, we will discuss alternatives to backpropagation for training
feedforward networks.

A.3 Alternatives to Backpropagation

When backpropagation was becoming popular, computers were significantly lim-
ited by today’s standards in terms of speed and memory. Several alternatives were

Table A.3 Advantages of the backpropagation algorithm for training
feedforward networks.

• It is easy to use, with few parameters to adjust.
• The algorithm easy to implement.
• It is applicable to a wide range of problems.
• It is able to form arbitrarily complex nonlinear mappings (i.e., it is a universal

approximator).
• It is popular and widely used for training feedforward networks as well as

some recurrent networks.

Table A.4 Disadvantages of the backpropagation algorithm for training
feedforward networks.

• There is an inability to know how to precisely generate any arbitrary mapping
procedure.

• It is hard to know how many neurons and layers are necessary.
• Learning can be slow.
• New learning will overwrite old learning unless old patterns are repeated in

the training process.
• It has no inherent novelty detection so it must be trained on known outcomes.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix A. The Feedforward Neural Network 117

developed to improve training speed. Some techniques make minor modifications
to the gradient-descent approach used in backpropagation. These alterations in-
clude changing the way weights are updated, using a different error function, or
adding dynamic adjustments to the learning rate and momentum [Chan, 1987; Stor-
netta, 1987; Jacob, 1988; Vogel, 1988; Huang, 1990; Tollenaere, 1990; Riger, 1991;
Sarkar, 1995; Bianchini, 1996; Dai, 1997]. Other techniques try to improve speed
by using a second-order derivative [Becker, 1989; Battiti, 1992; Stäger, 1997],
while still others use a combination of iterative and direct techniques to compute
the weights [Verma, 1997]. The reader may recall that backpropagation uses the
derivative of the error with respect to each weight, combined with a fixed step size,
to adapt the weights. By using knowledge contained in the second derivative of
the error with respect to a weight, the optimum step size could be computed as the
network trained. Unfortunately, a second-order derivative of error with respect to
weights results in a tensor of rank two that must be solved. A significantly differ-
ent approach to feedforward training is to use evolutionary computation to train the
weights [Fogel, 2000].

A.3.1 Conjugate Gradient Descent

The conjugate gradient-descent optimization technique was developed by Hestenes
and Stiefel [Hestenes, 1952] and several enhancements have since been made
[Fletcher, 1964]. As an optimization technique, the conjugate gradient descent can
be applied to neural-network training by adapting weights as was done in back-
propagation. Conjugate gradient descent can work with large numbers of weights,
unlike several other alternatives to backpropagation [Stäger, 1997].

Conjugate gradient descent performs a series of line searches across the error
surface. It determines the direction of steepest descent and then projects a line in
that direction to locate the minimum, then makes an update in weights once per
epoch. Another search is then performed along a conjugate direction from this
point. This direction is chosen to ensure that all the directions that have been min-
imized stay minimized. It does this on the assumption that the error surface is
quadratic. If the quadratic assumption is wrong and the chosen direction does not
slope downward, it will then calculate a line of steepest descent and search that
direction. Each epoch involves searching in a specific direction. This results in a
search that does not generally follow the steepest descent, but it often produces a
faster convergence than a search along the steepest descent direction because it is
only searching in one direction at a time. As the algorithm moves closer to a mini-
mum point, the quadratic assumption is more likely to be true and the minimum is
then located quickly.

A.3.2 Cascade Correlation

The cascade-correlation neural network was developed by Scott E. Fahlman and
Cristian Lebiere at Carnegie Mellon University [Fahlman, 1990] as a way to speed
up the training of a feedforward network by training individual neurons one at a

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

118 Appendix A. The Feedforward Neural Network

time. Two concepts give rise to the name: cascading architecture and correlation
training. The first involves candidate hidden neurons, which are added one at a
time in a cascading sequence. The second concept is that the learning algorithm at-
tempts to maximize the magnitude of the correlation between the candidate hidden
neuron’s output and the error term to be minimized. Variations and enhancements
to cascade correlation exist. Prechelt reviewed some enhanced versions to this al-
gorithm and compared them empirically [Prechelt, 1997].

The algorithm begins by constructing a minimal network with no hidden neu-
rons. It minimizes the output error through use of the Widrow-Hoff delta rule
[Widrow, 1960] or quick propagation [Fahlman, 1988]. It then creates a candidate
hidden neuron. This candidate neuron is trained by maximizing the magnitude of
the correlation between the candidate’s output and the error term to be minimized.
Gradient descent is used to minimize the network’s output error, while a gradient
ascent is employed to maximize the correlation. If the candidate neuron is success-
ful, its weights are frozen and it is added to the network. That means this neuron
does not learn any longer and its weights remain unchanged, so it becomes a per-
manent feature detector in the network. It is connected to all inputs and all other
pre-existing hidden neurons. The algorithm automatically adds new hidden neu-
rons one by one, so that the network is built up neuron by neuron, constructing
its own structure, until the desired output error is achieved. This process continues
until we are satisfied with the output error or have run out of time. Cascade cor-
relation not only trains the network, but also configures the structure and neurons.
Table A.5 lists the steps used in training a cascade-correlation network.

A.3.3 Second-Order Gradient Techniques

The backpropagation algorithm computes the Jacobian of the error with respect
to the weights to find the best direction to adjust the weights, and then applies a
fixed weight update step size, η, in that direction to adjust the weights. Second-
order gradient techniques use the Hessian, ∂2E/∂w2, of the error with respect to
the weights to adapt the step size in the direction of the optimal weight update. The
second-order gradient techniques essentially start by trying to solve Eq. (A.33)

Table A.5 Cascade-correlation Training Procedure.

Step 1. Initialize a feedforward network with no hidden neurons.
Step 2. Train the network until a minimum mean square error is reached.
Step 3. Add a candidate hidden neuron and initialize its weights.
Step 4. Train the candidate hidden neuron and stop if the correlation between its output

and the network output error is maximized.
Step 5. Add the hidden candidate neuron to the full neural network by freezing its

weights, connecting it to the other hidden neurons (if any), and connecting to
the output neurons.

Step 6. Train the full network that includes the new hidden neuron and stop when the
minimum mean square error is reached.

Step 7. Repeat 3–6 until the desired error is reached.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix A. The Feedforward Neural Network 119

instead of Eq. (A.26), which relates to backpropagation:

∂2E

∂wl2

jk

≡ 0. (A.33)

Parker had proposed second-order gradients in his original formulation of back-
propagation, but they took too long to compute [Parker, 1982]. To reduce the com-
putational complexity of a second-order gradient, many techniques make some
assumption that the error surface, or at least the region near a minimum, can be
described by a second-order curve as shown in Fig. A.3. One approach developed
in the late 1980s, quick propagation, assumes quadratic error surface, so that the
second-order derivative is a constant while another approach tries to approximate
a Newton descent (e.g., Quasi-Newton methods, Levenberg–Marquardt).

A.3.3.1 Quick Propagation

Quick propagation is a variation of the standard backpropagation algorithm de-
veloped by Scott Fahlman [1989]. It assumes the local is quadratic and employs
an approximation to the second-order derivative of the quadratic to make weight
changes. It has been shown to be faster than backpropagation for some applica-
tions, but is not generally faster than backpropagation. It also can get trapped in lo-
cal minima or become unstable in a manner similar to backpropagation. For these
reasons, it is not considered a general purpose method for training feedforward
networks, but a specialized technique that can sometimes produce rapid training.

During the first epoch, the weights are updated through gradient descent, as
in backpropagation. From then on, the quadratic error assumption is used. The
quadratic calculation is approximated by a difference of gradients between the cur-
rent epoch (n) and the previous epoch (n− 1). It assumes that each weight is inde-
pendent of all others during the weight update calculation. Equation (A.34) shows
the basic weight update where S(n) is the gradient, ∂E/∂w, during the current

Figure A.3 A minimum can often be approximated by a second-order curve (i.e., parabola,
quadratic).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

120 Appendix A. The Feedforward Neural Network

iteration and S(n − 1) is the gradient from the previous iteration:

�w(n) = S(n)

S(n − 1) − S(n)
�w(n − 1). (A.34)

If the slope becomes constant, the gradient will be zero and there will be no up-
dates. Also, if the slope gets steeper (i.e., S(n) > S(n − 1)), then weight changes
are proceeding away from the minimum. Therefore, a second weight update, as
given in Eq. (A.35), must be used for all cases that are not trending downward. In
this equation, a is an acceleration coefficient:

�w(n) = a�w(n − 1). (A.35)

A.3.3.2 Quasi-Newton

Quasi-Newton methods are popular algorithms for nonlinear optimization. They
use second-order derivatives to find the optimal solution, so they generally con-
verge faster than first-order techniques such as the gradient-descent method used
in backpropagation. Quasi-Newton methods can be used to train feedforward net-
works as well, and they can be used in most configurations that work for backprop-
agation. However, their memory requirements and computation complexity scale
as the square of the number of weights, so generally they are not suited for training
networks with many weights.

Quasi-Newton assumes that the error surface is quadratic near a minimum, so
that if it is close to a minimum, it can solve the minimization in one step through
the use of second-order partial derivatives of the error surface with respect to the
weights. The second-order derivatives are computed in a Hessian matrix, H. The
weight update is a product of the inverse Hessian matrix, H, and the direction of
the steepest descent, g. Since it works on the average gradient of the error surface,
a batch update of weights is performed at the end of each epoch:

�w = −H−1g. (A.36)

Since determining the weight updates involves the use of a Hessian matrix with all
the second-order partial derivatives, the computation is difficult and time consum-
ing. By using approximations to the Hessian matrix, speed can be increased. The
most efficient way of computing weight updates is through the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) formula [Broyden, 1970a; Broyden, 1970b; Fletcher,
1970; Goldfarb, 1970; Shanno, 1970]. The Davidon–Fletcher–Powell (DFP) algo-
rithm is also efficient [Davidon, 1959; Fletcher, 1963]. In general, quasi-Newton
techniques can become stuck in local minima more often than other optimization
techniques, and the memory requirements scale as the square of the number of
weights in the network.

Since the error surface is not really quadratic in most cases, the technique gen-
erates incorrect weight updates. Therefore, it must iteratively build up an approxi-
mation to the inverse Hessian. At the start of the process, the Hessian matrix, H, is

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix A. The Feedforward Neural Network 121

initialized to the identity matrix, I. The algorithm then starts in the direction of the
steepest descent, g, which is the same direction found in backpropagation. During
each epoch, a backtracking line search is performed in the direction of the weight
change. This approximation initially follows the line of steepest descent, then later
follows the estimated Hessian more closely.

A.3.3.3 Levenberg–Marquardt

The Levenberg–Marquardt (LM) algorithm [Levenberg, 1944; Marquardt, 1963] is
another nonlinear optimization algorithm based on the use of second-order deriv-
atives. It has been adapted for use on training feedforward neural networks by
Martin Hagan and Mohammad Menhaj [Hagan, 1994]. As with backpropagation,
it computes weight changes. It is, however, more restricted than backpropagation.
Like quasi-Newton methods, the memory requirements for the LM algorithm scale
as a function of the square of the number of weights, so it is restricted to smaller
networks, typically on the order of a few hundred weights. It also works only with
summed squared error functions, so it is often used for estimation (i.e., regression)
applications [Masters, 1995; Bishop, 1995].

The LM algorithm is a combination of the features of gradient descent found in
backpropagation and the Newton method. It assumes that the underlying function
being modeled is linear and that the minimum error can be found in one step. It cal-
culates the weight change to make this single step. It tests the network with these
new weights to determine whether the new error is lower. A change in weights
is only accepted if it improves the error. When the error decreases, the weight
change is accepted and the linear assumption is reinforced by decreasing a con-
trol parameter, µ. When the error increases, the weight change is rejected and, like
backpropagation, it follows a gradient descent by increasing the control parameter
to de-emphasize the linear assumption. In this way, the LM algorithm is a compro-
mise between a Newton and gradient-descent process. Near a minimum, the linear
assumption is approximately true, so the LM algorithm makes very rapid progress
by using this second-order Newton-like feature. Away from the minimum, the lin-
ear assumption is often bad, but since it uses gradient descent when error doesn’t
improve, it still will converge to a minimum error. The process is repeated until the
desired error or maximum number of iterations is reached.

The LM algorithm approximates the Hessian matrix used in the quasi-Newton
method as the product of a Jacobian matrix of the first-order partial derivatives,
with its transpose as shown in Eq. (A.37). Since it uses a Jacobian matrix, J, instead
of a Hessian matrix, H, the calculation is easier:

H ≈ JT J. (A.37)

The gradient is computed as the product of the Jacobian containing the first-order
partial derivatives and a vector, e, that contains the errors being minimized:

g = JT e. (A.38)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

122 Appendix A. The Feedforward Neural Network

Table A.6 Levenberg–Marquardt Training Procedure.

Step 1. Initialize Weights

w�
ij = Uniformly Random Over −ε to ε for all i, j, and �.

Step 2. Present each pattern to the input of the network.
Step 3. Propagate data forward and generate the output pattern. Calculate the error between

the target output and the actual output.
Step 4. If there are more patterns (i.e., p < P) in the training set, loop back to Step 2.
Step 5. Now calculate the error vector, e, between target and actual output for all patterns

presented by using summed squared error as in Eq. (A.8).
Step 6. Compute the Jacobian matrix, J, from the first-order partial derivatives.
Step 7. Compute the weight update as given in Eq. (A.36).
Step 8. Recalculate the sum of squared errors. If the new error is lower, reduce µ by a factor

β, update the weights by �w, and go to Step 9. If the new error is higher, increase
µ by β and go back to Step 7.

Step 9. If the norm of the gradient, g, is less than the desired amount, stop; otherwise loop
back to Step 1.

This gives us a weight-update formulation in Eq. (A.39), where I is the identity
matrix and µ is the control parameter:

�w = −(JT J + µI)−1JT e. (A.39)

From this equation, it is shown that if µ is 0, then this is a Newton method with an
approximated Hessian matrix. Larger values of µ make it look more like a gradient-
descent method.

A.3.4 Evolutionary Computation

Evolutionary computation mimics the processes of biological evolution, using ran-
dom variation and natural selection to provide effective solutions for optimiza-
tion problems. This approach is significantly different from other search and opti-
mization approaches, and has been successfully applied to search and optimization
problems for which other approaches have failed. It has proven to be well suited to
the optimization of specific nonlinear multivariable systems, and can be useful in
training neural networks. Several paradigms in evolutionary computation were de-
veloped separately, including genetic algorithms, evolutionary programming, and
evolution strategies.

These techniques usually consist of a set of candidate solution states that are
generated. This is called the population. A fitness function is used to evaluate each
solution in the population. The parameters encoding the solutions may be broken
apart and recombined with variation operators such as cross-over, mutation, and
forms of recombination to form new solutions (i.e., offspring), which may be more
fit than their parents in the previous iteration (i.e., generation). The process is re-
peated until an acceptable solution is found within specific time constraints.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix A. The Feedforward Neural Network 123

Evolutionary computation has existed since the late 1940s [Fogel, 1998]. The
main branches developed independently during the 1960s. Lawrence Fogel devel-
oped evolutionary programming, which used mutations to evolve populations of
finite state machines, to solve optimization and prediction problems [Fogel, 1962].
John Holland developed the genetic algorithm (GA) for use in adaptive robust sys-
tems [Holland, 1962]. This employed the concept of solution states encoded as
binary-valued strings, where a bit is analogous to a gene and the string is anal-
ogous to a chromosome, and used cross-over and mutation. Earlier, Alex Fraser
[Fraser, 1957] developed the genetic algorithm for modeling genetic systems, and
Hans Bremmermann [Bremmermann, 1962] invented genetic algorithms for func-
tion optimization. Ingo Rechenberg and Hans-Paul Schwefel developed evolution
strategies for parameter optimization [Rechenberg, 1973; Schwefel, 1965], which
incorporates many features of the genetic algorithm but uses real-valued in place
of binary-valued parameters.

A simple evolutionary-computation approach for training a neural network,
based on the discussion in David Fogel’s book [Fogel, 2000], is given in Table A.7.
Basically, several neural networks are generated with a traditional training algo-
rithm. This forms the initial population, with each network representing a parent in
the population. Random variations are applied to the networks to produce offspring
networks. These offspring are competitively evaluated and the best performers be-
come the new parents in the next generation. This process continues until a network
is found that has the desired outcome.

Table A.7 Evolutionary-computation Training Procedure.

Step 1. Select a neural-network architecture specifying the number of inputs and outputs.
Step 2. By using the training data, train several neural networks to produce a population of

trained networks with a training algorithm of your choice. Each network can have
different numbers of hidden neurons, hidden layers, learning rates, momentums, or
other control parameters.

Step 3. Use the test data to evaluate the networks in the population of trained networks.
A common evaluation function is the standard mean squared error between the tar-
get output and the actual output that we used with backpropagation.

Step 4. Create offspring from the parents by randomly varying the number of neurons and
layers and/or the neurons’ weights and biases. A probability distribution function
will determine the likelihood of selecting specific combinations. When new neurons
are added, their weights can be initialized by random numbers as shown in Step 1
of backpropagation.

Step 5. Evaluate the offspring neural networks with test data, as in Step 3.
Step 6. Conduct a series of competitions between paired networks to determine the relative

worth of each proposed network by randomly selecting pairs of offspring networks
and evaluating their performance. The better network of the two is marked as the
winning network. Repeat this process several times and the networks with the most
wins become the parents of the next population.

Step 7. If the desired result has been obtained; otherwise, return to Step 4.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix B. Feature Saliency

When designing a classifier, the developer is always concerned with which features
to use to solve a particular classification or mapping problem. In this appendix, we
will present one method in which the weights of a trained neural network can be
used to discover which features are important. We begin by asking how, if you
were the feedforward network, you could reduce the effect of a “bad” feature on
the network. The logical answer is to drive the weights tied to the “bad” feature
towards zero, so that it has no contribution to any neuron tied to it in the layer
above it. Similarly, you would increase the weights tied to a “good” feature so its
effect would be greater. Thus, you may decide to define a saliency metric such as
the following:

Λi =
N�∑
j=1

∣∣w�
ji

∣∣, (B.1)

where � ≡ layer above the neuron of interest, i ≡ neuron index on lower layer, j ≡
neuron index on upper layer, w�

jl ≡ weight between neuron i on lower layer (�−1)

and neuron j on upper layer (�), N� ≡ number of neurons on layer �.
You could try many other metrics, but this one is simple to compute and yields

excellent results. The metric in Eq. (B.1), while simple, is in fact related to the
Bayesian nature [Ruck, 1990b; Priddy, 1993] of feedforward neural networks.
Ruck showed that the outputs of a feedforward neural network, given a sufficient
number of hidden units to model the underlying probability density functions in
the training data, approximate the a posteriori probabilities for each class in the
training set, as depicted in Eq. (B.2):

zj = P(Cj | x), (B.2)

where zj ≡ output of node j on the output layer, P(Cj | x) ≡ the a posteriori
probability of class Cj given input vector x, x ≡ input feature vector.

From Bayesian statistics we know that

∑
j

zj =
∑
j

P (Cj | x) = 1. (B.3)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

126 Appendix B. Feature Saliency

Thus, the probability of an error for a given output neuron is simply

Perror(j,x) = 1 −
∑
j

P (Cj | x) =
∑
k �=j

zk. (B.4)

By taking the partial derivative of the summed outputs
∑

k �=j zk with respect to a
given input feature, xi , we can measure how sensitive the output is to that feature.
Thus, we can directly measure the saliency, or relevance, of any given feature.
Now, let’s take the derivative of the probability of error with respect to a given
input feature to measure its saliency:

∂Perror(j,x)

∂xi

= ∂

∂xi

∑
k �=j

zk. (B.5)

The output, zk , is given by

zk = f �
k

(
N�−1∑
i=1

w�
kio

�−1
i + w�

k0

)
, (B.6)

where � ≡ the layer above a weight, � − 1 ≡ the layer below a weight, w�
ki ≡ the

weight from node i on layer �−1 to node k on layer �, f �
k () ≡ the transfer function

of neuron k on layer �, o�−1
i ≡ the output of neuron i on layer � − 1, which, for a

feedforward network with two hidden layers, would be

zk = f 3
k

(
N2∑
i=1

w3
kio

2
i + w3

k0

)
. (B.7)

Note that in Appendix A we defined the transfer function for a sigmoid logistic
function to be

f (u) = 1

1 + e−u
. (B.8)

The derivative of the logistic function is given as

∂f (u)

∂u
= ∂

∂u

(
1

1 + e−u

)
= e−u

(1 + e−u)2
= f (u)[1 − f (u)]. (B.9)

Substituting Eq. (B.7) into Eq. (B.5) yields

∂Perror(j,x)

∂xi

= ∂

∂xi

∑
k �=j

f 3
k

(
N2∑
i=1

w3
kio

2
i + w3

k0

)
. (B.10)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix B. Feature Saliency 127

We now define a new term δ3
k to help with subsequent calculations:

δ3
k ≡ zk(1 − zk). (B.11)

Continuing the process yields

∂Perror(j,x)

∂xi

=
∑
k �=j

δ3
k ·

∑
m

w3
km · ∂

∂xi

(o2
m), (B.12)

which, when you reach the input layer (layer 0), yields

∂Perror(j,x)

∂xi

=
∑
k �=j

δ3
k ·

∑
m

w3
kmδ2

m ·
∑
n

w2
mnδ

1
n · w1

ni . (B.13)

We now define a saliency metric, Ωi based on the magnitude of the changes in
Perror as the feature xi is varied over its range of values. The saliency can be cal-
culated as follows: Take each training vector (x) in the training set S. For the ith

feature, sample at various locations over the expected range of the feature while
holding all other features (x) constant. Now compute the L1 norm of the partial
derivative of the output zk for the sample values. Sum the L1 norm over the output
nodes (j), the sampled values of x(Di), and the training set S, which yields

Ωi =
∑
j

∑
x∈S

∑
xi∈Di

∣∣∣∣∂Perror(j,x)

∂xi

∣∣∣∣, (B.14)

which, by substituting Eq. (B.4) into Eq. (B.14), can be rewritten as

Ωi =
∑
j

∑
x∈S

∑
xi∈Di

∣∣∣∣∑
k �=j

∂zk

∂xi

∣∣∣∣. (B.15)

Because zk is the output of the logistic function, we know each ∂zk/∂xi exists and
is finite. Therefore, we can invoke the triangle inequality to obtain

Ωi =
∑
j

∑
x∈S

∑
xi∈Di

∣∣∣∣∑
k �=j

∂zk

∂xi

∣∣∣∣ ≤
∑
j

∑
x∈S

∑
xi∈D

∑
k �=j

∣∣∣∣∂zk

∂xi

∣∣∣∣ ≤ Constant. (B.16)

Now substituting Eq. (B.13) into Eq. (B.16), we obtain

Ωi �
∑
j

∑
x∈S

∑
xi∈D

∑
k �=j

∣∣∣∣δ3
k ·

∑
m

w3
kmδ2

m ·
∑
n

w2
mnδ

1
n · w1

ni

∣∣∣∣ ≤ C. (B.17)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

128 Appendix B. Feature Saliency

Invoking the triangle inequality again yields

Ωi �
∑
j

∑
x∈S

∑
xi∈D

∑
k �=j

∣∣∣∣δ3
k ·

∑
m

w3
kmδ2

m ·
∑
n

w2
mnδ

1
n · w1

ni

∣∣∣∣ (B.18)

Ωi �
∑
j

∑
x∈S

∑
xi∈D

∑
k �=j

δ3
k ·

∑
m

∣∣w3
km

∣∣δ2
m ·

∑
n

∣∣w2
mn

∣∣δ1
n · ∣∣w1

ni

∣∣ ≤ C. (B.19)

While this seems like a great deal of work, what is really important is that we can
now clearly see the following:

Ωi ∝
∑
n

∣∣w1
ni

∣∣ = Λi , (B.20)

which is the L1 norm of the weight vector, wi , emanating from the feature, xi , in
the input vector, x. Thus, the saliency metric we proposed based on intuition, Λi ,
is related to the Bayes probability of error when the network is used as a classifier.

We caution the reader that this derivation involves several implicit assumptions
that must be considered whenever this saliency metric is employed: (1) the training
set S is representative of all of the conditions expected for the input feature space;
(2) the features of vectors in S all have the same range of values, which means a
statistical norm or max-min norm must be applied to the data to create S; (3) the
network is of sufficient size and capacity to ensure the underlying probability den-
sity functions for each class can be adequately modeled by the network; (4) the
saliency metric is computed over a fairly large number of networks by using the
same topology, but different initial weights and presentation orders for the training
vectors in S.

Once the multiple training runs have been completed and the features rank
ordered for each run, a histogram is formed for each feature, as shown Table B.1.

Table B.1 Histogram of each feature for a classification problem af-
ter training 100 feedforward networks with identical architectures but
different starting weights.

Importance

9th 8th 7th 6th 5th 4th 3rd 2nd 1st

Feature 1 0 0 0 0 0 2 4 19 75
Feature 2 15 17 13 8 12 20 9 5 1
Feature 3 4 4 8 4 19 20 24 15 2
Feature 4 24 9 11 23 15 10 7 0 1
Feature 5 16 24 12 19 8 11 8 2 0
Feature 6 24 17 23 15 19 9 0 2 0
Feature 7 14 18 19 10 21 6 10 2 0
Feature 8 2 6 13 16 8 11 18 24 1
Feature 9 1 5 1 5 7 11 19 31 20

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix B. Feature Saliency 129

Once the histogram is formed, the features can be ranked using a metric, such
as

Feature_rank =
N∑

n=1

Kn · (N − n − 1), (B.21)

where Kn ≡ Count for importance n for the feature of interest, n ≡ the importance
value for a given feature (best = 1, worst = N), N ≡ Total number of features in
the input vector (x).

Applying the formula of Eq. (B.21) to the results in Table B.1 yields the fol-
lowing results for each feature tabulated in Table B.2.

Observing Table B.2, the reader will find that the ranks of features 1 and 9 are
high and fairly distinct from the other features. The ranks of features 4, 5, 6, and 7
are consistently low, with feature 7 being the worst. The remaining features, 2, 3,
and 8, are in between. Thus, more than likely features 4, 5, 6, and 7 can be removed
with no loss of performance. For the classification problem that generated the fea-
ture ranking shown in Table B.2, the top three features (1, 9, 3) performed as well
as all nine features, resulting in a much smaller network to solve the classification
problem.

Table B.2 Feature rankings for histograms of Table B.1.

Rank Score Overall Rank

Feature 1 767 1
Feature 2 312 5
Feature 3 473 3
Feature 4 260 8
Feature 5 254 6
Feature 6 207 9
Feature 7 274 7
Feature 8 457 4
Feature 9 596 2

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix C. Matlab Code for
Various Neural Networks

C.1 Matlab Code for Principal-Components Normalization

function [C, eigvecs, lambdas] = pca(A,N)
%
%usage:
% [C, eigvecs, lambdas] = pca(A,N)
%
%
% A – The input data array of feature vectors
% N – the number of eigenvalues/eigenvectors to return and can be left
% blank.
% C – The transformed data array obtained from a projection of A onto the
% N eigenvectors of the cov(A).
% eigvecs – The N eigenvectors of the cov(A) sorted from largest to smallest in
% column-major order
% lambdas – The sorted N eigenvalues from largest to smallest.
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% pca.m
%
% Simple Principal Components Analysis
%
% Written By Kevin L. Priddy
% Copyright 2004
% All Rights Reserved
%
% This instantiation returns the transformed data array obtained from a
% projection of A onto the N eigenvectors of the cov(A). If N is missing, N
% is set to min(size(A)).
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

132 Appendix C. Matlab Code for Various Neural Networks

B = cov(A) % Compute the covariance of the input array
if exist(’N’,’var’)

if (N > size(B,1)) % Make sure that we don’t have too many eigenvalues
N = size(B,1);

end
else

N = size(B,1); % Make sure that we have the right number of eigenvalues
end
[V D] = eig(B);
[rows cols] = size(D);
% Check to see if the result is in descending order and reorder N eigenvectors
% in descending order
if D(1,1) < D(rows,rows) % If true sort the array in descending order

for ii = 1:N
eigvecs(:,ii) = V(:,rows-(ii-1));
lambdas(ii,1) = D(rows-(ii-1),rows-(ii-1));

end
else

eigvecs = V(:,1:N);
for ii = 1:N

lambdas(ii,1) = D(ii,ii);
end

end

% Project the original data onto the first N eigenvectors of the covariance matrix.

C = A*eigvecs;

C.2 Hopfield Network

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% hop.m
%
% usage: [result, x] = hop(n,u,W)
%
%
% result is the predicted solution
% x is the predicted x values for each iteration through the Hopfield network
% n is the number of allowed iterations
% u is the initial input to the network
% W is the Weight matrix
%
% called by glnn.m
%
% Author: Kevin L. Priddy
% Copyright 2004
% All rights reserved
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix C. Matlab Code for Various Neural Networks 133

function [result, x] = hop(n,u,W)
x(:,1) = W*u;
for ii = 2:n

x(:,ii) = W*x(:,ii-1) + u;
end
result = x(:,n);

C.3 Generalized Neural Network

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% usage: [result, x] = glnn(A,y,n)
%
% glnn.m
%
% A is the data matrix
% y is the set of desired outputs
% x is the solution to the problem
% n is the number of allowed iterations
%
% calls the lin_hop function included in glnn.m
%
% Author: Kevin L. Priddy
% Copyright 2004
% All rights reserved
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [result, x] = glnn(A,y,n)

% full rank and overdetermined cases

[rows cols] = size(A);
if rows >= cols

alpha = 1/(trace(A′*A)); % 0 < alpha < 2/(trace(A′*A)) to ensure convergence
W = eye(size(A′*A,2))-alpha*(A′*A);
u = alpha*A′*y;
[result, x] = lin_hop(n,u,W);

else

% underdetermined case

alpha = 1/(trace(A*A′)); % 0 < alpha < 2/(trace(A*A′)) to ensure
convergence

W = eye(size(A*A′,2))-alpha*(A*A′);

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

134 Appendix C. Matlab Code for Various Neural Networks

Wff = alpha*A′*y;
[result, xp] = lin_hop(n,y,W);

x = Wff*xp;
end

function [result, x] = lin_hop(n,u,W)
x(:,1) = W*u;
for ii = 2:n

x(:,ii) = W*x(:,ii-1) + u;
end
result = x(:,n);

C.4 Generalized Neural-Network Example

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% glnn_example.m
%
% Demonstrates how the GLNN can solve a set of simultaneous equations
% A is the data matrix
% y is the set of desired outputs
% result is the glnn solution to the problem
% n is the number of allowed iterations
% x is the predicted x values for each iteration through the Hopfield
network
%
% calls the glnn.m function
%
% Author: Kevin L. Priddy
% Copyright 2004
% All rights reserved
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear
n = 500; % Set iterations to 500

A = [–4.207 1.410 0.451 –0.910;
–0.344 –3.473 2.380 3.267;
3.733 –1.999 –3.728 2.850;
1.096 –4.277 1.538 –3.952];

y = [0.902; –27.498; –0.480; 3.734];

x_act = [1; 2; –3; –4];

[result, x] = glnn(A,y,n);

% plot the mean squared error for x as a function of n

for ii = 1:n

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix C. Matlab Code for Various Neural Networks 135

mse(ii) = ((x(:,ii)-x_act)′*(x(:,ii)-x_act))/size(x,1);
end

close all
figure(1)
semilogy(mse, ‘r’, ‘linewidth’, 2);
grid on
ylabel(‘Mean Squared Error’);
xlabel(‘Iterations through Hopfield Network’);
title(‘Mean Squared Error for the Estimated Values of x’);

x_act
result
delta = x_act-result

C.5 ART-like Network

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% usage neuron = artl(outfile, A, num_nodes, vigilence);
%
% ARTL(outfile, A, num_nodes, vigilence)
% Computes an ART-Like network using floating point numbers
% A is the data matrix
% nodes is the total number of neurons in the F2 Layer
% vigilence is the fitness of a normalized vector to the winning node.
%
% Author: Kevin L. Priddy
% Copyright 2004
% All rights reserved
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function neuron = artl(outfile, A, num_nodes, vigilence);

% First Set up some default variables

[numvecs vecsize] = size(A);

%seed = 12345;
neuron = zeros(nodes,vecsize);
node_wins = zeros(num_nodes,1);
count = 1;
flag = 0;
for ii = 1:numvecs

temp = A(ii,:);
temp = temp/norm(temp);

if(flag == 0) % Set the first neuron to be the first normalized vector in the set

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

136 Appendix C. Matlab Code for Various Neural Networks

neuron(1,:) = temp;
flag = 1;
node_wins(1) = 1;
win_node(ii,1) = 1;

else
% Find the winning neuron

% Set the initial winner to be the first F2 neuron
winner = 1;
win_val = temp*neuron(1,:)′;

% Now compare the input to the rest of the F2 neurons
for jj = 2:count

dotprod = temp*neuron(jj,:)′
if(dotprod > win_val)

winner = jj;
win_val = dotprod;

end
end
node_wins(winner) = node_wins(winner) + 1;

% Compare with Vigilence—small number means need a new neuron
if(win_val < vigilence)

if(count < num_nodes)
count = count + 1;
neuron(count,:) = temp;
node_wins(count) = 1;
win_node(ii,1) = count;

else
error(‘You are out of neurons. Decrease vigilence and try again.’);

end
else

% adjust centroid of winning neuron. We will weight the shift by the previ-
ous

% number of hits for a given winning neuron and then renormalize.
neuron(winner,:) = temp/(node_wins(winner)) + neuron(winner,:)*

((node_wins(winner)-1)/(node_wins(winner)));
% renormalize the winner
neuron(winner,:) = neuron(winner,:)/norm(neuron(winner,:));
win_node(ii,1) = winner;

end

end

end
result = [A win_node];

% Save the result into a file

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix C. Matlab Code for Various Neural Networks 137

save(outfile, ‘neuron’, ‘result’, ‘-ascii’);

% Note that the norm(X) function is simply the L2 or Euclidean norm of X.
% In C it would be:
%
% *float norm(*float x, int length)
% {
% int i;
% *float temp, tempval;
% tempval = 0.0;
% for (ii = 0; ii < length-1; ii++)
% {
% tempval + = x[ii]*x[ii];
% }
% tempval = sqrt(tempval);
% for (jj = 0; jj < length-1; jj++)
% {
% temp = x[ii]/tempval;
% }
% return(temp);
% }

C.6 Simple Perceptron Algorithm
function [W, count] = perceptron(InArray, Desired_Output, eta)
%
%usage:
% [W, count] = perceptron(InArray, Desired_Output, eta)
%
% InArray – the set of input feature vectors used for training (N vectors *
% M input features) Desired_Output – The associated output
% value(-1,1) for a given feature vector (N vectors x 1 output)
%
% eta – The desired weight update step size (usually set in the
% range (0.1,1))
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% perceptron.m
%
% Simple Perceptron Program
%
% Written By Kevin L. Priddy
% Copyright 2004
% All Rights Reserved
%
% This instantiation updates the weight vector whenever a feature vector
% presentation produces an error
% Execution stops when there is a hyperplane that produces no errors over

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

138 Appendix C. Matlab Code for Various Neural Networks

% the training set
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate the bias term by augmenting each input with a 1
InArray = [InArray ones(size(InArray,1),1)];

% note we’ve included the bias term in the number of features

[num_vecs num_features] = size(InArray);
bias = 0;
W = zeros(1,num_features); % Include the bias term as a weight
error_flag = 1
count = 1;
while error_flag == 1 % Keep adjusting the weights until there are no errors

error = 0;
for ii = 1:num_vecs % Run through the set of input vectors

invec = [InArray(ii,:)’]; % Get an input vector
out(ii,1) = W*invec; % Compute the perceptron output and apply the

signum transfer function
if out(ii,1) >= 0

out(ii,1) = 1;
else

out(ii,1) = −1;
end

if out(ii,1) ∼= Desired(ii,1) % Update the weights each time an error occurs
W = W − eta*invec’;
error = error + (out(ii,1) - Desired(ii,1));

end
end

total_error(count) = error % Update the error for plotting when finished

if total_error(count) == 0 % Check for NO ERROR case
error_flag = 0; % breaks the while loop

end
count = count + 1 % update the counter

end

figure(1)
plot(total_error) % Plot the total error versus count

C.7 Kohonen Self-Organizing Feature Map

% SOFM(outfile, A,Wrows, Wcols, nh_size, eta, iterations,num_maps)

% Computes a two-dimensional Kohonen Self-organizing Map using square neigh-
borhoods
%
% Written by: Kevin L. Priddy

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix C. Matlab Code for Various Neural Networks 139

% Copyright 2004
% All rights reserved
%
% A is the data matrix (M rows by N features) where M is the total number
% of feature vectors
% Wrows is the number of rows in the SOFM
% Wcols is the number of cols in the SOFM
% nh_size is the starting neighborhood size (nh_size x nh_size)
% eta is the stepsize for the weight update
% iterations is the total number of iterations to be performed
% num_maps is the number of maps to be stored for the total number of iterations

function W = sofm(outfile, A, Wrows, Wcols, nh_size, eta, iterations,num_maps);

% First Set up some default variables

[numvecs vecsize] = size(A);
A_max = max(max(A));
A_min = min(min(A));
map = zeros(10*Wrows*Wcols,vecsize);
% set up initial weight ranges for SOM. Note that we will be
% using the row and column indexing scheme to index each
% row vector that corresponds to the weights from a given node in the
% SOM to the input array

%seed = 12345; % Select a seed if desired

% Spread weights throughout data cloud
W = rand(Wrows*Wcols,vecsize)*(A_max-A_min) + A_min;

%Make sure neighborhood size is odd
if((nh_size > 1)&(mod(nh_size,2) == 0))

nh_size = nh_size-1;
end
% Calculate until iterations are used up
count = 1;
map_count = 1;
for m = 1:5

for n = 1:floor((iterations/5) + 0.5)
%grab an input exemplar from the data set
temp = A(ceil(rand*(numvecs-1) + 0.5),:);
%now find closest neuron in SOM to input
min_D = (W(1,:)-temp)*(W(1,:)-temp)’;
win_row = 1;
win_col = 1;

for i = 1:Wrows
for j = 1:Wcols
%Compute Euclidean Distance
D = (W((i-1)*Wcols + j,:) - temp)*(W((i-1)*Wcols + j,:) - temp).’;
if (min_D > D) %Check if D is new winner for W(i,j)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

140 Appendix C. Matlab Code for Various Neural Networks

win_row = i;
win_col = j;
min_D = D;

end
end

end
% now we update the winner and everyone in the neighborhood
row_min = win_row-floor(nh_size*0.5);
if row_min < 1

row_min = 1;
end
col_min = win_col-floor(nh_size*0.5);
if col_min < 1

col_min = 1;
end
row_max = win_row + floor(nh_size*0.5);
if row_max > Wrows

row_max = Wrows;
end
col_max = win_col + floor(nh_size*0.5);
if col_max > Wcols

col_max = Wcols;
end
for i = row_min:row_max

for j = col_min:col_max
%win_row
%win_col
%temp
%old_wts = W((i-1)*Wcols + j,:)
delta = eta * (temp - W((i-1)*Wcols + j,:));
%delta
%update the node in the neighborhood
W((i-1)*Wcols + j,:) = W((i-1)*Wcols + j,:) + delta;

end
end
if(mod(count,floor(iterations/num_maps)) == 0)

for ii = 1:Wrows
for jj = 1:Wcols

map((map_count-1)*Wrows*Wcols + (ii-1)*Wcols + jj,:) =
W((ii-1)*Wcols + jj,:);

end
end
map_count = map_count + 1

end
count = count + 1;

end
%decrement eta and neighborhood size
eta = eta*0.8;

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix C. Matlab Code for Various Neural Networks 141

if nh_size > 1
nh_size = nh_size - 2;

end
end
save(outfile, ’map’, ’-ascii’);

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix D. Glossary of Terms

Activation function: A mathematical function that determines the output signal
level of a processing element (neuron) from the input signal levels. It is similar to
the firing rate in biological systems.

ANN: artificial neural network.

ART: adaptive resonance theory.

Artificial intelligence (AI): Any computation method based on some understand-
ing of how human intelligence works.

Association neuron: A biological neuron found in the brain or spinal chord that
performs computational tasks.

Axon: The long part of a neuron leading away from the cell body. It transmits
impulses from one neuron to other neurons.

Backpropagation: Also known as backpropagation of error. This is one of many
learning algorithms used to train neural networks and is currently the most widely
used algorithm. During training, information is propagated forward through the
neural network. The output response is compared to a desired (or target) response.
The observed error is propagated backwards through the network and used to make
small adjustments in the synaptic connections. This gives rise to its name. The
network is trained by repetitively applying this algorithm with a large number of
labeled patterns until the output error is minimized.

Backprop: See backpropagation.

BAM: See bidirectional associative memory.

Bayes optimal classifier: A classifier that selects the Bayes optimal decision
boundary based upon the application of a priori information. For example, if the
classifier is solving a two-class problem where P(class1) + P(class2) = 1, then
the optimal decision rule would be to choose the output of the classifier to be class
1 if P(class1) ≥ P(class2) and class 2 otherwise. Costs are often associated with
making a wrong decision that will influence the decision boundary as well.

Bayes rule: The application of a priori probability, e.g., P(A), information to
predict a posteriori probabilities, e.g., P(B | A), of occurrence. Bayes rule is often

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

144 Appendix D. Glossary of Terms

used in classification and is defined as

P(A | B) = P(A)P (B | A)

P (B)
.

Bias: A value used to shift the neuron’s firing threshold. In artificial systems, it is
an offset to the activation function. Typically, each neuron has its own bias, which
is often set by the training algorithm. The term bias means something different in
statistics terminology. See statistical bias.

Bidirectional associative memory: Bidirectional associative memory (BAM) is
an outer product memory, which can include hetero-associative mappings. For ex-
ample, the BAM can map an image of a cat to an image of the word cat. Like
the Hopfield network when used for pattern association, the BAM will try to map
any input to one of its memory patterns. Thus, caution is needed when presenting
patterns to the BAM.

CAM: content addressable memory.

Classifier: A system, e.g., neural network, that assigns data to a predefined set of
labeled categories.

Clusterer: A system, e.g., neural network, that groups data into groups or clusters.

Confusion matrix: A tabular method of comparing the neural network’s output
classification to the desired classification. It shows how the classifier confuses
the classes. All off-diagonal terms indicate misclassifications. A perfect classifier
would have no non-zero off-diagonal terms.

Connection: In an artificial system, a link or pathway between two processing
elements (neurons) used to transfer information from one to the other. Generally,
a connection has a weight associated with it. The output signal of one neuron is
multiplied by this weight as it is fed into the other neuron. This is analogous to a
synapse in a biological system.

Connectionist model: Synonym for an artificial neural network.

Confusion matrix: A tabular method of comparing the neural network’s output
classification to the desired classification.

Credit assignment problem: The process of determining which weight should be
adjusted to effect the change needed to obtain the desired system performance.

Cross-validation: A statistical technique used to estimate generalization through
the use of subsets of the collected data to maximize its use.

Dendrite: A highly branched, tree-like structure at one end of a neuron that brings
impulses (signals) from other neurons into the neuron’s cell body.

Epoch: This term refers to a complete pass during which all the training data are
presented to the learning algorithm.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix D. Glossary of Terms 145

Estimator: A system, e.g., neural network, that produces an approximated output
based on input data.

Excitatory connection: A connection between neurons that increases a neuron’s
ability to fire. In artificial systems, this is usually a connection with a positive
weight value.

Fault tolerance: The ability of a neural network to function within acceptable
limits when some neurons or synapses are malfunctioning.

Feedback network: A neural network in which each neuron can take information
from any neuron in the network, including itself.

Feedforward network: A neural network composed of layers. The inputs of the
neurons in one layer come from the outputs of neurons in a previous layer.

Function approximator: See estimator.

Generalization: A neural network’s ability to learn the basic structure of the data
presented to it without memorizing the data, so that it can produce the same output
from similar examples that it has never seen. This is similar to a person’s ability
to examine known information, draw conclusions, and apply these conclusions to
similar but unknown information.

Genetic algorithm (GA): A specific class of evolutionary computation algorithms
that performs a stochastic search by using the basic principles of natural selection
to optimize a given objective function where parameters are encoded in something
analogous to a gene.

GLNN: Generalized linear neural network.

Gradient descent: An optimization approach used in the backpropagation algo-
rithm to change the weights in the network. On an error surface, changes in the
output error with respect to the changes in the synaptic weights descend the steep-
est path toward the point of minimum error.

Hebb’s Rule: Connections to a neuron that tend to produce a desired output are
strengthened, while connections that tend to produce an undesired output are weak-
ened.

Hidden layer: A layer of processing elements (neurons) that is hidden from direct
connections to points outside of the neural network. All connections to and from a
hidden layer are internal to the neural network.

Hopfield network: The Hopfield neural network includes a single layer of fully
interconnected neurons with the inputs and outputs also connected. The Hopfield
network can be used to perform auto-associative mappings, to solve optimization
problems, and to solve solutions to sets of equations. When used for pattern associ-
ation, the Hopfield network will try to map whatever input is provided to one of its
memory patterns. Thus, caution is needed when presenting patterns to the network.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

146 Appendix D. Glossary of Terms

Hyperbolic tangent: A trigonometric function used as an activation or transfer
function. It has a sigmoidal shape that is commonly used with the networks trained
by backpropagation. The function can be mathematically written as

f (x) = tanh

(
x

2

)
= 1 − e−x

1 + e−x
.

Identity function: An activation or transfer function that identically reproduces
the input. It is mathematically written as

f (x) = x.

Inhibitory connection: A connection between neurons that decreases a neuron’s
ability to fire. In artificial systems, this is usually a connection with a negative
weight value.

Input layer: A layer of neurons that feed data into the neural network. In general,
the input layer acts as a distribution layer and performs no processing on the data.

Jackknifing or jackknife resampling: A statistical technique used to estimate
bias in an estimator or classifier, including neural networks.

Labeled pattern: An input pattern (or stimulus) and its associated output response
(target).

Layer: A grouping of neurons (processing elements). See also input layer, hidden
layer, and output layer.

Learning: In neural networks, both artificial and biological, this is the process of
adjusting the synaptic (connection) weights between neurons to produce a desired
response as the output of the neural network.

Learning rate: This is a factor used to scale the rate at which the weights in the
neural network are adjusted during training. In the backpropagation algorithm, this
term is generally denoted by η and is generally set to a value in the range of 0 to 1.

Learning rule (algorithm): Method of configuring and training a neural network.
There are many learning rules and the most common is backpropagation.

Levenberg–Marquardt (LM): An alternative to backpropagation for use in train-
ing feedforward neural networks based on a nonlinear optimization. It uses an ap-
proximation of second-order derivatives to speed up training. It works well for
networks with a few hundred weights or less.

Linear function: An activation function that scales the output linearly.

LM: See Levenberg–Marquardt.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix D. Glossary of Terms 147

Logistic sigmoid: An activation or transfer function with a sigmoidal shape that is
commonly used with the networks trained by backpropagation. The function can
be mathematically written as

f (x) = 1

1 + e−x
.

MAM: Matrix associative memory.

Memorization: See overtraining.

Monte Carlo: Any technique that uses randomness to provide approximate solu-
tions to a variety of problems through the use of computer simulation and statistical
sampling.

Momentum: This term denotes the proportion of the last weight change that is
added into the new weight change. It often provides a smoothing effect. In the
backpropagation algorithm, this term is generally denoted by the symbol α and is
often set to a value of 0.9.

Motor neurons: These are biological neurons that relay impulses from the brain
or spinal cord and transmit them to the effectors.

MSE (mean squared error): Commonly used as a measure of training and testing
accuracy in supervised learning. In the gradient-descent approach taken in back-
propagation, this is the factor being minimized. For an output response, y, and a
target response, t , the mean squared error is

M.S.E. =
N∑

i=1

(ti − yi)
2.

Multilayer perceptron (MLP): A type of feedforward neural network composed
of layers of neurons with an input layer, at least one hidden layer, and an output
layer. Neurons in one layer are connected to the previous layer through weighted
connections. The name is derived from perceptron neural networks, but an MLP
can solve problems beyond linearly separable ones.

Nerve: In a biological system, a bundle of neuron fibers used to carry impulses of
information.

Neural network: A collection of interconnected neurons working in unison to
solve a common task. A highly parallel system of interconnected processing ele-
ments. The term can refer to a mathematical model of a collection of neurons in
the brain or an information-processing paradigm. When used as an information-
processing paradigm, it is also known as an artificial neural network or neurocom-
puter.

Neurocomputer: Synonym for an artificial neural network.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

148 Appendix D. Glossary of Terms

Neuron: In a biological system, a neuron is a specialized cell in the nervous system
that relays and processes information. In an artificial system, it is the fundamental
information-processing element involved in transforming and relaying informa-
tion. Equivalent to processing element, node, and unit.

NN: Neural network.

Node: Synonymous with processing element except that it can also include distri-
bution elements that perform no processing.

OLAM: Optimal linear associative memory.

Output layer: A layer of neurons that feed data out of a neural network. This
output represents the network’s response.

Overtraining: A neural network’s tendency to learn specifics about the data pre-
sented to it in addition to or instead of learning the data’s basic structures. This
results in a high error rate when testing the neural network with patterns not used
in the training process. This is also known as memorization. In data and curve-
fitting methods, this is known as overfitting the data. See also generalization.

Parallel distributed processing (PDP): Sometimes used as a synonym for ar-
tificial neural networks. This refers to the distributed processing and distributed
memory properties of a neural network.

Pattern recognition: The ability to recognize and identify patterns based on prior
knowledge or training.

PCNN: Pulse-coupled neural network.

Principal-components analysis (PCA): A statistical method to rank the impor-
tance of dimension through the use of covariance and to reduce dimensionality by
eliminating low-ranking dimensions.

Processing element (PE): In the context of artificial neural networks, a processing
element (PE) is synonymous with an artificial neuron. In general, it is the basic
component of an information-processing system used for transforming and relay-
ing information.

Pulse-coupled neural network (PCNN): A type of neural network originally de-
veloped to explain the experimentally observed pulse-synchrony process found in
the cat visual cortex. This model is significantly different from other neural net-
works in both its structure and operation and is used in image processing and
segmentation. No training is involved and its properties are adjusted by changing
threshold levels and decay-time constants.

Quick propagation: A modification of backpropagation for training feedforward
networks. It assumes a simple quadratic model for the error surface and calculates
the weight updates independently along each weight to speed up training.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Appendix D. Glossary of Terms 149

Radial-basis function (RBF) network: A neural network that uses Gaussian
transfer functions to operate on the weighted inputs to produce the neuron output.
RBFs are used in many classification and function-approximation applications.

Self-organization: A neural network’s ability to create its own organization for the
patterns presented during learning. Many neural networks are not self-organizing.
Self-organization is related to unsupervised learning.

SOM: Self-organizing map.

Sensory neuron: A biological neuron that relays impulses from receptors to the
brain or spinal cord.

Sigmoid: A class of activation functions that has upper and lower saturation limits,
is monotonically increasing, and is continuous. It has a shape somewhat similar to
a slanted, skewed letter S. The hyperbolic-tangent and logistic-sigmoid functions
fall within this class of activation functions.

Statistical bias: The expected value of a statistic differs from that expected from
the population. This can occur if certain areas of the population are oversampled
or undersampled.

Success criterion: This term denotes the conditions for ending a training process,
usually after achieving the desired output-error goal.

Supervised learning: A learning process that requires a set of labeled patterns
(i.e., input patterns with known target outputs). This is analogous to a lesson being
guided by an instructor. See also unsupervised learning.

Synapse: In a biological system, a synapse is the electrochemical junction con-
necting an axon fiber to a dendrite fiber. Information is transmitted from the axon
to the dendrite through the synaptic connection. The strength of the connection
determines the strength of the signal that is routed from one neuron to another.
A synapse is analogous to a connection weight in an artificial system.

Target: The desired output or response of a neural network to a given input pattern.

Test set: A data set used only to evaluate the generalization performance of the
fully trained neural network.

Threshold: In biological neurons, the input stimulus level at which the neuron
begins to fire. In artificial neurons, a value that shifts the activation function. See
also bias.

Tessellation: Tessellation (tiling) connections allow each node in a destination
layer to be connected only to a subset of the nodes in a source layer. These con-
nections are created by a regular tiling of the source layer by the nodes in the
destination layer. Tessellation creates nodes with limited receptive fields.

Training schedule: Schedule for adjusting parameters used in the training process.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

150 Appendix D. Glossary of Terms

Training set: This is a set of inputs (and in the case of supervised learning, target
outputs) used to train the neural network.

Transfer function: See activation function.

Unit: See node and processing element.

Unsupervised learning: Learning process that does not require a desired response.
The network determines the appropriate response to a given input. This is analo-
gous to a student deriving a lesson totally on his own, and is also a part of the
self-organization process. Unsupervised learning is also used in several classical
pattern-recognition clustering algorithms.

Validation set: A data set used to tune or adjust the parameters of a neural network
during training.

Vigilance: A parameter used in ART networks to determine how closely an input
pattern needs to match a candidate category prototype. It is usually denoted by ρ.

Weight: In an artificial neural network, a weight is the strength of a connection
between two processing elements (neurons). The output signal of one neuron is
multiplied by the weight as it is fed into the other neuron. It is analogous to a
synapse in a biological system.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

References

D. H. Ackley, G. E. Hinton and T. J. Sejnowski (1985). “A learning algorithm for
Boltzmann machines.” Cognitive Science 9: 147–169.

E. Alpaydin and C. Kaynak (1998). “Cascading Classifers.” Kybernetika 34(4):
369–374.

E. Anderson (1935). “The irises of the Gaspé Peninsula.” Bulletin of the American
Iris Society 59: 2–5.

A. Bain (1873). Mind and Body: The Theories of Their Relation. London, Henry
King.

P. V. Balakrishnan, M. C. Cooper, V. S. Jacob and P. A. Lewis. (1994). “A study of
the classification capabilities of neural networks using unsupervised learning:
A comparison with A-means clustering.” Psychometrika 59(4): 509–525.

E. B. Baum and D. Haussler (1989). “What size net gives valid generalization.”
Neural Computation 1(1): 151–160.

W. G. Baxt and H. White (1995). “Bootstrapping confidence intervals for clinical
input variable effects in a network trained to identify the presence of acute
myocardial infarction.” Neural Computation 7(3): 624–638.

S. Becker and Y. LeCun (1989). Improving the convergence of back-propagation
learning with second order methods. Proceedings of the 1988 Connectionist
Summer School. D. Touretzky, G. E. Hinton and T. Sejnowski. San Mateo, CA,
Morgan Kaufmann Publishers: 29–37.

R. E. Bellman (1961). Adaptive Control Processes: A Guided Tour. Princeton, NJ,
Princeton University Press.

L. M. Belue and K. W. Bauer, Jr. (1995). “Determining input features for multilayer
perceptrons.” Neurocomputing 7(2): 1A–121.

D. P. Bertsekas and J. Tsitsiklis (1996). Neuro-Dynamic Programming. Belmont,
MA, Athena Scientific.

M. Bianchini and M. Gori (1996). “Optimal Learning in Artificial Neural Net-
works: A Review of Theoretical Results.” Neurocomputing 13(5): 313–346.

C. M. Bishop (1995). Neural Networks for Pattern Recognition. Oxford, Oxford
University Press.

C. L. Blake and C. J. Merz (1998). UCI Repository of machine learning databases.
Irvine, CA, University of California, Department of Information and Computer
Science: http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

152 References

L. Breiman (1996). “Heuristics of instability and stabilization in model selection.”
Annals of Statistics 24(6): 2350–2383.

L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone (1984). Classification
and Regression Trees, Kluwer Academic Publishers.

L. Breiman and P. Spector (1992). “Submodel selection and evaluation in regres-
sion: The X-random case.” International Statistical Review 60(3): 291–319.

J. S. Bridle (1990). Training Stochastic Model Recognition Algorithms as Net-
works can lead to Maximum Mutual Information Estimation of Parameters.
Advances in Neural Information Processing Systems. D. S. Touretzky. San Ma-
teo, CA, Morgan Kaufmann Publishers. 2: 2A–217.

H. B. Burke (1996). The Importance of Artificial Neural Networks in Biomedi-
cine. Applications of Neural Networks in Environment, Energy, and Health.
P. E. Keller, S. Hashem, L. J. Kangas and R. T. Kouzes. Singapore, World Sci-
entific Publishing: 145–153.

C. Cardaliaguet and E. Guillaume (1992). “Approximation of a function and its
derivative with a neural network.” Neural Networks 5(2): 207–220.

G. A. Carpenter (1997). “Distributed learning, recognition, and prediction by ART
and ARTMAP neural networks.” Neural Networks 10(8): 1473–1494.

G. A. Carpenter and S. Grossberg (1987a). “A massively parallel architecture for a
self-organizing neural pattern recognition machine.” Computer Vision, Graph-
ics, and Image Processing 37(1): 54–115.

G. A. Carpenter and S. Grossberg (1987b). “ART2: Stable self-organization of pat-
tern recognition codes for analog input patterns.” Applied Optics 26(23): 4919–
4930.

G. A. Carpenter and S. Grossberg (1990). ART3: Self-organization of Distributed
Pattern Recognition Codes in Neural Network Hierarchies. Proceedings of the
International Conference on Neural Networks (INNC’90). Amsterdam, Kluwer
Academic Publishers, North-Holland. 2: 801–804.

G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds and D. B. Rosen
(1992). “Fuzzy ARTMAP: A Neural Network Architecture for Incremental Su-
pervised Learning of Analog Multidimensional Maps.” IEEE Transactions on
Neural Networks 3(5): 698–713.

G. A. Carpenter, S. Grossberg and J. H. Reynolds (1995). “A Fuzzy ARTMAP
Nonparametric Probability Estimator for Nonstationary Pattern Recognition
Problems.” IEEE Transactions on Neural Networks 6(6): 1330–1336.

G. A. Carpenter, S. Grossberg and D. B. Rosen (1991). “Fuzzy ART: Fast Stable
Learning and Categorization of Analog Patterns by an Adaptive Resonance
Systems.” Neural Networks 4(6): 759–771.

G. A. Carpenter and W. D. Ross (1995). “ART-EMAP: A Neural Network Archi-
tecture for Object Recognition by Evidence Accumulation.” IEEE Transactions
on Neural Networks 6(4): 805–818.

T. P. Caudell, S. D. G. Smith, R. Escobedo and M. Anderson (1994). “NIRS: Large
Scale ART-1 Neural Architectures for Engineering Design Retrieval.” Neural
Networks 7(9): 1339–1350.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

References 153

L.-W. W. Chan and F. Fallside (1987). “An adaptive training algorithm for back-
propagation networks.” Computer Speech and Language 2: 205–218.

T. Chen and H. Chen (1995). “Universal Approximation to Nonlinear Operators
by Neural Networks with Arbitrary Activation Functions and Its Application to
Dynamical Systems.” IEEE Transactions on Neural Networks 6(4): 9A–917.

G. Copson, R. Badcock, J. Boon and P. Britton (1997). “Articulating a systematic
approach to clinical crime profiling.” Criminal Behaviour and Mental Health
7: 13–17.

T. M. Cover (1965). “Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition.” IEEE Transactions on
Electronic Computers E3-14(3): 326–334.

G. Coward (1992). Tree Book: Learning to Recognize Trees of British Columbia.
Victoria, BC, Canada, Forestry Canada.

N. Cristianini and J. Shawe-Taylor (2000). An Introduction to Support Vector Ma-
chines. Cambridge, Cambridge University Press.

G. V. Cybenko (1989). “Approximation by Superpositions of a Sigmoidal Func-
tion.” Mathematics of Control, Signals, and Systems 2(4): 303–314.

H. Dai and C. Macbeth (1997). “Effects of learning parameters on learning proce-
dure and performance of a BPNN.” Neural Networks 10(8): 1505–1521.

J. S. Denker and Y. LeCun (1991). Transforming Neural-Net Output Levels to
Probability Distributions. Advances in Neural Information Processing Systems.
R. Lippmann, J. E. Moody and D. S. Touretzky. San Mateo, CA, Morgan Kauf-
mann Publishers. 3: 853–859.

H. Drucker and Y. LeCun (1992). “Improving Generalization Performance Using
Double Backpropagation.” IEEE Transactions on Neural Networks 3(6): 991–
997.

H. Drucker, D. Wu and V. N. Vapnik (1999). “Support Vector Machines for Spam
Categorization.” IEEE Transactions on Neural Networks 10(5): 1048–1054.

R. O. Duda and P. E. Hart (1973). Pattern Analysis and Scene Classification. New
York, John Wiley & Sons.

R. O. Duda, P. E. Hart and D. G. Stork (2001). Pattern Classification, 2nd Edition.
New York, John Wiley & Sons Inc.

R. Eckhorn, H. J. Reitboeck, M. Arndt and P. Dicke (1990). “Feature linking via
synchronization among distributed assemblies: Simulations of results from cat
visual cortex.” Neural Cooperativity 2(3): 293–307.

B. Efron (1979). “Bootstrap methods: Another look at the jackknife.” Annals of
Statistics 7(1): 1–26.

B. Efron (1982). The Jackknife, the Bootstrap and Other Resampling Plans.
Philadelphia, Society for Industrial and Applied Mathematics.

B. Efron (1983). “Estimating the error rate of a prediction rule: Improvement on
cross-validation.” Journal of the American Statistical Association 78: 316–331.

B. Efron and R. Tibshiran (1986). “Bootstrap methods for standard errors, confi-
dence intervals, and other measures of statistical accuracy.” Statistical Science
1: 54–77.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

154 References

B. Efron and R. J. Tibshirani (1993). An Introduction to the Bootstrap. London,
Chapman & Hall.

B. Efron and R. J. Tibshirani (1997). “Improvements on cross-validation: The
.632+ bootstrap method.” Journal of the American Statistical Association 92:
548–560.

J. L. Elman (1991). “Distributed representations, simple recurrent networks, and
grammatical structure.” Machine Learning 7: 195–225.

S. E. Fahlman (1989). Faster Learning Variations on Back Propagation: An Em-
pirical Study. Proceedings of the 1988 Connectionist Models Summer School.
D. Touretzky, G. E. Hinton and T. Sejnowski. San Mateo, CA, Morgan Kauf-
mann Publishers: 38–51.

S. E. Fahlman and C. Liebiere (1990). The Cascade—Correlation Learning Archi-
tecture. Advances in Neural Information Processing Systems. D. S. Touretzky.
San Mateo, CA, Morgan Kaufmann Publishers. 2: 524–532.

B. G. Farley (1960). Self-Organizing Models for Learned Perception. Self-
Organizing Systems. M. C. Yovits and S. Cameron. Oxford, UK, Pergamon
Press.

B. G. Farley and W. A. Clark (1954). “Simulation of Self-Organizing Systems by
Digital Computer.” IRE Transactions on Information Theory 4(4): 76–84.

B. G. Farley and W. A. Clark (1955). Generalization of pattern recognition in a
self-organizing system. Proceedings of the 1955 Western Joint Computer Con-
ference: 86–91.

R. A. Fisher (1936). “The use of multiple measurements in taxonomic problems.”
Annual Eugenics 7(Part II): 179–188.

D. Fogel (1990). “An Information Criterion for Optimal Neural Network Selec-
tion.” IEEE Transactions on Neural Networks 2(5): 490–497.

D. H. Foley (1972). “Considerations of Sample and Feature Size.” IEEE Transac-
tions on Information Theory IT-18(5): 618–626.

N. Fraser (1998). Neural Network Follies. http://neil.fraser.name/writing/tank/.
B. R. Frieden (1983). Probability, Statistical Optics, and Data Testing. Berlin Hei-

delberg New York, Springer-Verlag.
K. Fukunaga (1990). Introduction to Statistical Pattern Recognition. San Diego,

CA, Academic Press, Inc.
K. Funahashi (1989). “On the approximate realization of continuous mappings by

neural networks.” Neural Networks 2(3): 183–192.
V. J. Geberth (1996). Practical Homicide Investigation: Tactics, Procedures, and

Forensic Techniques. Boca Raton, Florida, CRC Publishing.
K. A. Gernoth and J. W. Clark (1995). “Neural Networks That Learn to Predict

Probabilities: Global Models of Nuclear Stability and Decay.” Neural Networks
8(2): 291–311.

G. R. Gindi, A. F. Gmitro and K. Parthasarathy (1988). “Hopfield Model Asso-
ciative Memory with Nonzero-Diagonal Terms in Memory Matrix.” Applied
Optics 27(1): 129–134.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

References 155

A. F. Gmitro, P. E. Keller and G. R. Gindi (1989). “Statistical performance of outer-
product associative memory models.” Applied Optics 28(10): 1940–1948.

C. Goutte (1997). “Note on free lunches and cross-validation.” Neural Computa-
tion 9(6): 12A–1215.

S. Grossberg (1976a). “Adaptive pattern classification and universal recording:
I. Parallel development and coding of neural detectors.” Biological Cybernetics
23: 121–134.

S. Grossberg (1976b). “On the Development of Feature Detectors in the Visual
Cortex with Applications to Learning and Reaction-Diffusion Systems.” Bio-
logical Cybernetics 21(3): 145–159.

S. Grossberg (1976c). “Adaptive pattern classification and universal recording:
II. Feedback, expectation, olfaction, illusions.” Biological Cybernetics 23: 187–
202.

S. Grossberg (1987). The Adaptive Brain I: Cognition, Learning, Reinforcement,
and Rhythm. Amsterdam, Elsevier/North-Holland.

M. Hagiwara (1992). Theoretical derivation of momentum term in back-
propagation. Proceedings of the International Joint Conference on Neural Net-
works (IJCNN’92). Piscataway, NJ, IEEE. 1: 682–686.

C. L. Harris and J. L. Elman (1989). Representing variable information with simple
recurrent networks. Proceedings of the Tenth Annual Conference of the Cogni-
tive Science Society. Hillsdale, NJ, Lawrence Erlbaum: 635–642.

D. Harrison, Jr. and D. L. Rubinfeld (1978). “Hedonic housing prices and the de-
mand for clean air.” Journal of Environmental Economics and Management
5(1): 81–102.

S. Haykin (1994). Neural Networks: A Comprehensive Foundation. New York,
Macmillan College Publishing Company.

M. A. Hearst, B. Scholkopf, S. Dumais, E. Osuna and J. Platt (1998). “Trends
and Controversies: Support Vector Machines.” IEEE Intelligent Systems 13(4):
18–28.

D. O. Hebb (1949). The Organization of Behavior. New York, John Wiley & Sons.
R. Hecht-Nielsen (1987). “Counterpropation networks.” Applied Optics 26(23):

4979–4983.
J. S. U. Hjorth (1994). Computer Intensive Statistical Methods Validation, Model

Selection, and Bootstrap. London, Chapman & Hall.
A. L. Hodgkin and A. F. Huxley (1952). “A Quantitative Description of Membrane

Current and its Application to Conduction and Excitation in Nerve.” Journal of
Physiology 117: 500–544.

J. J. Hopfield (1982). “Neural networks and physical systems with emergent collec-
tive computational abilities.” Proceedings of the National Academy of Sciences
USA 79: 2554–2558.

J. J. Hopfield (1984). “Neurons with graded response have collective computa-
tional properties like those of two-state neurons.” Proceedings of the National
Academy of Sciences USA 81: 3088–3092.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

156 References

J. J. Hopfield and D. W. Tank (1985). “‘Neural’ computation of decisions in opti-
mization problems.” Biological Cybernetics 52: 141–152.

J. J. Hopfield and D. W. Tank (1986). “Computing with neural circuits: A model.”
Science 233: 625–633.

K. Hornik, M. Stinchcombe and H. White (1989). “Multilayer feedforward net-
works are universal approximators.” Neural Networks 2: 359–366.

H. Hotelling (1933). “Analysis of a complex of statistical variables into principal
components.” Journal of Educational Psychology 24: 417–441 and 498–520.

J. Huang, M. Georgiopoulos and G. L. Heileman (1995). “Fuzzy ART Properties.”
Neural Networks 8(2): 203–213.

S.-C. Huang and Y.-F. Huang (1990). “Learning Algorithms for Perceptrons Using
Back Propagation with Selective Updates.” IEEE Control Systems Magazine
10(3): 56–61.

C.-A. Hung and S.-F. Lin (1995). “Adaptive Hamming Net: A Fast-Learning ART
1 Model Without Searching.” Neural Networks 8(4): 605–618.

B. Hunt, M. S. Nadar, P. Keller, E. VonColln and A. Goyal (1993). “Synthesis of
a Nonrecurrent Associative Memory Model Based on a Nonlinear Transfor-
mation in the Spectral Domain.” IEEE Transactions on Neural Networks 4(5):
873–878.

C. M. Hurvich and C.-L. Tsai (1989). “Regression and time series model selection
in small samples.” Biometrika 76: 297–307.

D. R. Hush and B. G. Horne (1993). “Progress in Supervised Neural Networks:
What’s New Since Lippmann?” IEEE Signal Processing Magazine 10(1): 8–
39.

A. Hyvärinen and E. Oja (1999). Independent Component Analysis: A Tutorial.
http://www.cis.hut.fi/∼ aapo/ps/NN00.pdf. Espoo, Finland, Helsinki Univer-
sity of Technology.

A. Hyvärinen and E. Oja (2000). “Independent Component Analysis: Algorithms
and Applications.” Neural Networks 13(4-5): 4A–430.

J. E. Jackson (1991). A User’s Guide to Principal Components. New York, John
Wiley & Sons Inc.: 63–69.

R. A. Jacobs (1988). “Increased Rates of Convergence Through Learning Rate
Adaptation.” Neural Networks 1(4): 295–307.

W. James (1890). Principles of Psychology. New York, Henry Holt.
D. S. Johnson and C. H. Papadimitriou (1985). Computational Complexity. The

Traveling Salesman Problem. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy
Kan and D. B. Shmoys. New York, John-Wiley & Sons: 37–85.

B. L. Kalman and S. C. Kwasny (1992). Why Tanh: Choosing a Sigmoidal Func-
tion. Proceedings of the International Joint Conference on Neural Networks
(IJCNN’92). Piscataway, NJ, IEEE. 4: 578–581.

L. J. Kangas, K. M. Terrones, R. D. Keppel and R. D. La Moria (1998).
Computer Aided Tracking and Characterization of Homicides & Sexual As-
saults (CATCH). Applications and Science of Computational Intelligence
II—Proceedings of the SPIE. K. L. Priddy, P. E. Keller, D. B. Fogel and
J. C. Bezdek. Bellingham, WA, SPIE. 3722: 250–260.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

References 157

P. P. Kanjilal and D. N. Banerjee (1995). “On the Application of Orthogonal Trans-
formation for the Design and Analysis of Feedforward Networks.” IEEE Trans-
actions on Neural Networks 6(5): 1061–1070.

M. Kearns (1997). “A bound on the error of cross validation using the approxima-
tion and estimation rates, with consequences for the training-test split.” Neural
Computation 9(5): 1143–1161.

P. E. Keller and A. D. McKinnon (1999). Pulse-Coupled Neural Networks for
Medical Image Analysis. Applications and Science of Computational Intelli-
gence II—Proceedings of the SPIE. K. L. Priddy, P. E. Keller, D. B. Fogel and
J. C. Bezdek. Bellingham, WA, SPIE. 3722: 444–451.

P. E. Keller, D. L. McMakin, D. M. Sheen, A. D. McKinnon and J. W. Summet
(2000). Privacy Algorithm for Airport Passenger Screening Portal. Applica-
tions and Science of Computation Intelligence III – Proceedings of the SPIE.
K. L. Priddy, P. E. Keller and D. B. Fogel. Bellingham, WA, SPIE. 4055: 476–
483.

R. D. Keppel and R. Walter (1999). “Profiling Killers: A Revised Classification
Model for Understanding Sexual Murder.” International Journal of Offender
Therapy and Comparative Criminology 43(4): 417–437.

R. Kohavi (1995). A study of cross-validation and bootstrap for accuracy estima-
tion and model selection. Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI’95). San Mateo, CA, Morgan Kaufmann Publish-
ers: 1137–1143.

T. Kohonen (1972). “Correlation Matrix Memories.” IEEE Transactions on Com-
puters 3-21: 353–359.

T. Kohonen (1982). “Self-organized formation of topologically correct feature
maps.” Biological Cybernetics 43: 59–69.

T. Kohonen (1987). “Adaptive, associative, and self-organizing functions in neural
computing.” Applied Optics 26(23): 4910–4918.

T. Kohonen (1988). “The ‘Neural’ Phonetic Typewriter.” IEEE Computer Maga-
zine 21(3): A-22.

T. Kohonen (1989). Self-Organization and Associative Memory. Berlin Heidelberg
London, Springer-Verlag.

B. Kosko (1987). “Constructing an associative memory.” Byte 12(10): 137–144.
B. Kosko (1987). “Adaptive bidirectional memories.” Applied Optics 26(23):

4947–4960.
B. Kosko (1988). “Bidirectional associative memory.” IEEE Transactions on Sys-

tems, Man and Cybernetics SM3-18(1): 49–60.
B. Kosko (1992). Neural Networks for Signal Processing. Upper Saddle River, NJ,

Prentice Hall.
A. Kowalczyk (1997). “Estimates of storage capacity of multilayer perceptron with

threshold logic hidden units.” Neural Networks 10(8): 1417–1433.
M. A. Kraaijveld, J. Mao and A. K. Jain (1995). “A Nonlinear Projection Method

Based on Kohonen’s Topology Preserving Maps.” IEEE Transactions on
Neural Networks 6(3): 548–559.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

158 References

A. H. Kramer and A. L. Sangiovanni-Vincentelli (1989). Efficient parallel learning
algorithms for neural networks. Advances in Neural Information Processing
Systems. D. S. Touretzky. San Mateo, CA, Morgan Kaufmann Publishers. 1:
40–48.

Y. LeCun (1985). Une procedure d’apprentissage pour reseau a seuil assymetrique.
Cognitiva ’85: A la frontière de l ’intelligence Artificielle des Sciences de la
Connaissance des Neuronsciences: 599–604.

G. G. Lendaris, K. Mathia and R. E. Saeks (1999). “Linear Hopfield Networks and
Constrained Optimization.” IEEE Transactions of Systems, Man & Cybernetics
29(1): 114–118.

K. Levenberg (1944). “A method for the solution of certain problems in least
squares.” Quart. Applied Mathematics 2: 164–168.

T. Linblad and J. M. Kinser (1998). Image Processing using Pulse-Coupled Neural
Networks. London, Springer.

R. Lippmann (1987). “An Introduction to Computing with Neural Networks.” IEEE
ASSP Magazine 4(2): 4–22.

P. C. Mahalanobis (1936). “On the generalized distance in statistics.” Proceedings
of the National Institute of Science of India 2: 49–53.

O. L. Mangasarian and D. R. Musicant (1999). “Successive Overrelaxation for
Support Vector Machines.” IEEE Transactions on Neural Networks 10(5):
1032–1037.

J. Mao and A. K. Jain (1996). “A Self-Organizing Network for Hyperellipsoidal
Clustering (HEC).” IEEE Transactions on Neural Networks 7(1): 16–29.

D. W. Marquardt (1963). “An algorithm for least-squares estimation of nonlinear
parameters.” Journal of the Society of Industrial Applied Mathematics 11: 431–
441.

S. Marriott and R. F. Harrison (1995). “A Modified Fuzzy ARTMAP Architecture
for the Approximation of Noisy Mappings.” Neural Networks 8(4): 619–641.

T. Masters (1995). Advanced Algorithms for Neural Networks: A C++ Sourcebook.
New York, John Wiley & Sons.

W. S. McCulloch and W. H. Pitts (1943). “A Logical Calculus of the Ideas Immi-
nent in Nervous Activity.” Bulletin of Mathematical Biophysics 5: 115–133.

R. J. McEliece, E. C. Posner, E. R. Rodemich and S. S. Venkates (1987). “The ca-
pacity of the Hopfield associative memory.” IEEE Transactions on Information
Theory 33(4): 461–482.

R. G. Miller (1974). “The jackknife, a review.” Biometrika 61: 1–15.
M. L. Minsky and S. A. Papert (1969). Perceptrons: An introduction to Computa-

tional Geometry. Cambridge, MA, MIT Press.
C. Z. Mooney and R. D. Duval (1993). Bootstrapping: A Nonparametric Approach

to Statistical Inference, Sage Publications.
B. Moore (1988). ART 1 and Pattern Clustering. Proceedings of the 1988 Con-

nectionist Summer School. D. Touretzky, G. E. Hinton and T. Sejnowski. San
Mateo, CA, Morgan Kaufmann Publishers: 174–185.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

References 159

F. M. Mulier and V. S. Cherkassky (1995). “Statistical Analysis of Self-
organization.” Neural Networks 8(5): 717–727.

I. Nabney (2002). Netlab: Algorithms for Pattern Recognition. Berlin Heidelberg
London, Springer-Verlag.

T. Nitta (1997). “An extension of the back-propagation algorithm to complex num-
bers.” Neural Networks 10(8): 1391–1415.

E. Oja (1991). Data compression, feature extraction, and auto-association in feed-
forward neural networks. Proceedings of the 1991 International Conference on
Artificial Neural Networks (ICANN’91). T. Kohonen, K. Makisara, O. Simula
and J. Kangas. Amsterdam, Elsevier Science Publishers B. V. 1: 737–746.

E. Oja (1991). “A simplified neuron model as a principal component analyzer.”
Journal of Mathematical Biology 15: 267–273.

Y.-H. Pao (1989). Adaptive Pattern Recognition and Neural Networks. Reading,
MA, Addison-Wesley Publishing Company, Inc.

D. Parker (1982). Learning-logic. Invention Report S81-64, File 1. Palo Alto, CA,
Stanford University, Office of Technology Licensing.

M. Plutowski, S. Sakata and H. White (1994). Cross-validation estimates IMSE.
Advances in Neural Information Processing Systems. J. D. Cowan, G. Tesauro
and J. Alspector. San Mateo, CA, Morgan Kaufmann Publishers. 6: 391–398.

T. Poggio (1975). “On optimal nonlinear associative recall.” Biological Cybernet-
ics 19: 201–209.

B. T. Poljak (1964a). O nekotoryh sposobah uskoreni� shodimosti ite-
racionnyh metodov.” �urn. vyq. mat. i mat. fiz. — Zhurnal Vy-
chislitel’noi Matematiki I Matematicheskoi Fiziki 4(5): 791–803.

B. T. Poljak (1964b). “Some methods of speeding up the convergence of iteration
methods.” USSR Computational Mathematics and Mathematical Physics 4(5):
1–17.

K. L. Priddy, S. K. Rogers, D. W. Ruck, G. L. Tarr and M. Kabrisky (1993).
“Bayesian selection of important features for feedforward neural networks.”
Neurocomputing 5(2): 91–103.

K.L. Priddy (2004). “A comparative analysis of machine classifiers.” Intelligent
Computing: Theory and Applications II, Proceedings of SPIE. K. L. Priddy.
Bellingham, WA, SPIE. 5421: 142–148.

M. H. Quenouille (1949). “Approximate tests of correlation in time series.” Journal
of the Royal Statistical Society B 11: 18–84.

M. H. Quenouille (1956). “Notes on bias reduction.” Biometrika 43: 353–360.
S. Raudys (2000). “How Good are Support Vector Machines?” Neural Networks

13(1): 17–19.
S. Raudys (2001). Statistical and Neural Classifiers: An Integrated Approach to

Design. Berlin Heidelberg London, Springer-Verlag.
B. D. Ripley (1996). Pattern Recognition and Neural Networks. Cambridge, Cam-

bridge University Press.
N. Rochester, J. H. Holland, H. L. H. and W. L. Duda (1956). “Tests on a Cell

Assembly Theory of the Action of the Brain Using a Large Digital Computer.”
IRE Transactions on Information Theory IT-2(3): 80–93.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

160 References

S. K. Rogers (1997). Tools for Pattern Recognition. EENG 617 Class Handout.
Wright-Patterson AFB, OH, Air Force Institute of Technology.

F. Rosenblatt (1958). “The Perceptron: a Probabilistic Model for Information Stor-
age and Organization in the Brain.” Psychological Review 65: 386–408.

F. Rosenblatt (1959). Principles of Neurodynamics. New York, Spartan Books.
W. A. Rosenblith and H. B. Barlow (1990). “Sensory communications.” Scientific

American.
D. W. Ruck, S. K. Rogers and M. Kabrisky (1990a). “Feature selection using a

multilayer perceptron.” Journal of Neural Network Computing 2(2): 40–48.
D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley and B. S. Suter (1990b). “The

Multilayer Perceptron as an Approximation to a Bayes Optimal Discriminant
Function.” IEEE Transactions on Neural Networks 1(4): 296–298.

D. E. Rumelhart, G. E. Hinton and R. J. Williams (1986). Learning internal repre-
sentations by error propagation. Parallel Distributed Processing: Explorations
in the Microstructures of Cognition. 1: Foundations. D. E. Rumelhart and
J. L. McClelland. Cambridge, MA, MIT Press. 1: 318–362.

T. D. Sanger (1989a). An optimality principle for unsupervised learning. Advances
in Neural Information Processing Systems. D. S. Touretzky. San Mateo, CA,
Morgan Kaufmann Publishers. 1: A–19.

T. D. Sanger (1989b). “Optimal unsupervised learning in a single-layer linear feed-
forward neural network.” Neural Networks 2(6-7): 459–473.

T. J. Sejnowski and C. R. Rosenberg (1987). “Parallel Networks that Learn to Pro-
nounce English Text.” Complex Systems 1: 145–168.

J. Shao (1993). “Linear model selection by cross-validation.” Journal of the Amer-
ican Statistical Association 88: 486–494.

J. Shao (1997). “An asymptotic theory for linear model selection.” Statistica Sinica
7: 221–264.

J. Shao and D. Tu (1995). The Jackknife and Bootstrap. Berlin Heidelberg London,
Springer-Verlag.

T. A. B. Snijders (1988). On cross-validation for predictor evaluation in time series.
On Model Uncertainty and Its Statistical Implications. T. K. Dijkstra. Berlin,
Springer-Verlag: 56–69.

F. Stäger and M. Agarwal (1997). “Three methods to speed up the training of feed-
forward and feedback perceptrons.” Neural Networks 10(8): 1435–1443.

M. Stone (1977). “Asymptotics for and against cross-validation.” Biometrika 64:
29–35.

M. Stone (1979). “Comments on model selection criteria of Akaike and Schwarz.”
Journal of the Royal Statistical Society, Series B 41: 276–278.

W. S. Stornetta and B. A. Huberman (1987). An Improved Three-Layer, Back Prop-
agation Algorithm. Proceedings of the IEEE Conference on Neural Networks
(ICNN’87). Piscataway, NJ, IEEE. 2: 637–644.

Y. Suzuki (1995). “Self-Organizing QRS-Wave Recognition in ECG Using Neural
Networks.” IEEE Transactions on Neural Networks 6(6): 1469–1477.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

References 161

D. W. Tank and J. J. Hopfield (1986). “Simple Neural Optimization Networks: An
A/D Converter, Signal Decision Circuit, and a Linear Programming Circuit.”
IEEE Transactions on Circuits and Systems 33(5): 533–541.

G. Tarr, K. Priddy and S. Rogers (1992). “NeuralGraphics: A general purpose envi-
ronment for neural network simulation,” Applications of Artificial Neural Net-
works III, Proceedings of SPIE. S. K. Rogers Bellingham, WA, SPIE. 1709:
1047–1056.

R. Tibshirani (1996). “A comparison of some error estimates for neural network
models.” Neural Computation 8: 152–163.

J. W. Tukey (1958). “Bias and Confidence in Not-Quite Large Samples.” Annals of
Mathematical Statistics 29: 614.

V. N. Vapnik (1995). The Nature of Statistical Learning Theory. Berlin Heidelberg
London, Springer-Verlag.

B. Verma (1997). “Fast Training of Multilayer Perceptrons.” IEEE Transactions on
Neural Networks 8(6): 1314–1320.

R. Vitthal, P. Sunthar and C. D. Rao (1995). “The Generalized Proportional-
Integral-Derivative (PID) Gradient Descent Back Propagation Algorithm.”
Neural Networks 8(4): 563–569.

S. Watanabe and K. Fukumizu (1995). “Probabilistic Design of Layered Neural
Networks Based on Their Unified Framework.” IEEE Transactions on Neural
Networks 6(3): 691–702.

S. M. Weiss and C. A. Kulikowski (1991). Computer Systems That Learn. San
Mateo, CA, Morgan Kaufmann Publishers.

P. J. Werbos (1974). “Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences.” Ph.D. Thesis, Cambridge, MA.

P. J. Werbos (1994). The Roots of Backpropagation. New York, John Wiley & Sons.
B. Widrow (1962). Generalization and information Storage in Networks of Adaline

Neurons. Self-Organizing Systems. M. C. Yovits, G. T. Jacobi and G. D. Gold-
stein. Washington, D.C., Spartan Books.

B. Widrow and M. E. Hoff, Jr. (1960). Adaptive Switching Circuits. 1960 IRE
WESCON Convention Record, Part 4. New York, Institute of Radio Engineers:
96–104.

B. Widrow and M. A. Lehr (1990). “30 Years of Adaptive Neural Networks: Per-
ceptron, Madaline, and Backpropagation.” Proceedings of the IEEE 78: 1415–
1441.

A. L. Wilkes and N. J. Wade (1997). “Bain on Neural Networks.” Brain and Cog-
nition 33: 295–305.

R. J. Williams and D. Zipser (1989). “A learning algorithm for continually running
fully recurrent neural networks.” Neural Computation 1(2): 270–280.

R. J. Williams and D. Zipser (1990). Gradient-based learning algorithms for recur-
rent connectionist networks. Technical Report NU-CCS-90-9. Boston, North-
eastern University, College of Computer Science.

R. J. Williams and D. Zipser (1995). Gradient-Based Learning Algorithms for
Recurrent Networks and Their Computational Complexity. Backpropagation:

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

162 References

Theory, Architectures, and Applications. Y. Chauvin and D. E. Rumelhart.
Hillsdale, NJ, Lawrence Erlbaum Publishers: 433–486.

J. R. Williamson (1996). “Gaussian ARTMAP: A neural network for fast incremen-
tal learning of noisy multidimensional maps.” Neural Networks 9(5): 881–897.

G. V. Wilson and G. S. Pawley (1988). “On the stability of the traveling salesman
problem algorithm of Hopfield and Tank.” Biological Cybernetics 58(1): 63–
70.

Y. Zheng and J. F. Greenleaf (1996). “The Effect of Concave and Convex Weight
Adjustments on Self-Organizing Maps.” IEEE Transactions on Neural Net-
works 7(1): 87–96.

H. Zhu and R. Rohwer (1996). “No free lunch for cross-validation.” Neural Com-
putation 8(7): 1421–1426.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Index

a priori probability, 94
activation function, 108, 114–115
Adaptive linear element, 11
Adaptive resonance theory, 11, 14, 49, 57,

143
airport scanner, 91, 95
alternatives to backpropagation, 116
amount of data, 101
applications

airport scanner texture recognition, 91
Boston housing, 74
cardiopulmonary modeling, 75
Computer Aided Tracking and Characteri-

zation of Homicides, 95
electronic nose, 89
tree classifier, 85

ART network, 49, 57, 91, 150
associative memory, 62
augmented data, 40–41
axon, 2, 149

backpropagation, 75, 114, 116–117, 119–
121, 123, 146

advantages, 116
alternatives, 116
disadvantages, 116
process, 113
training procedure, 114

backpropagation of error, 11, 113, 143
BAM, see bidirectional associative memory
Bayes optimal discriminant, 36
bias, 2, 4, 15–16, 94, 102–103, 105, 107–108,

113, 138, 144, 146, 149, 159
biased, 2, 22–24, 45–46
biased data set, 23
bidirectional associative memory, 64–65
biological systems, 1, 143
bootstrap resampling, 103
bootstrapping, 103–105
brain, 1, 143, 147, 149
Broyden–Fletcher–Goldfarb–Shanno

(BFGS) formula, 120

cascade correlation, 117–118
CATCH, see Computer Aided Tracking and

Characterization of Homicides
cell membrane, 2
city-block distance, see taxicab distance
class membership, 33
classifier, 19–21, 36, 38–39, 42, 80–81, 85,

125, 128, 144, 146
clusterer, 21, 144
clusters, 50, 96, 144
complexity, 10, 63, 119–120
components analysis, 27
Computer Aided Tracking and Characteriza-

tion of Homicides, 94–95, 156
confusion matrix, 41, 87, 144
conjugate gradient, 117
conjugate gradient descent, 117
cost function, 63
credit assignment, 9, 10
cross-validation, 144
curse of dimensionality, 26

data collection, 21–24, 77, 90
data collection plan, 21, 23
data driven computing, ix
data normalization, 15, 86
Davidon–Fletcher–Powell (DFP) algorithm,

120
dendrite, 2, 149
distance metric, 28–29

eigenvector, 17
electronic nose, 89–90, 92
Elman network, 78–79
energy minimization, 12
energy normalization, 17
error surface, 115, 117, 119–120

quadratic, 119
estimation, 74–75, 121

estimator, 74, 145
function approximation, 71, 73–75, 80

estimator, 21–22, 34, 74–76, 146
Euclidean distance, 28–29

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

164 Index

Euclidean norm, 17, 137
evolutionary computation, 35, 117, 122–123,

145

feature, 15–17, 22, 24, 26–29, 37, 39, 51–
54, 57–58, 80–81, 83, 86, 88, 118, 121,
125–129, 131, 137, 139, 157, 159

extraction, 26–27, 86, 159
extractor, 27
reduction, 26–27
redundancy, 27
saliency, 125
selection, 26
space, 24, 28, 39, 54, 80–81, 83, 128
vector, 15, 17, 28–29, 38–39, 51–54, 57–

58, 81, 88, 131, 137, 139
feedforward neural network, 8, 20, 35–37, 39,

42–43, 72–73, 75, 81, 83, 92, 107–108,
121, 125, 146–147, 159–160

firing rate, 2–3, 143
first-order partial derivatives, 121
Fisher iris data, 18, 54
Fisher mapping, 27
function approximation, see estimation
function approximator, 145
fuzzy ARTmap, 91
FuzzyART, 57

generalization, 44, 46
Generalized Delta Rule, 110
genetic algorithms, 122
gradient descent, 3, 10, 36, 46, 110, 113, 117–

122

Hamming distance, 29
handwriting recognizer, 84
hard-limiter, 3
heavy ball, see momentum
Hebb, 11, 145, 155
Hessian matrix, 120–122
hetero-associative networks, 65
hidden layer, 9, 36–37, 43, 69, 75–76, 78, 91,

107, 109, 112, 114, 123, 126, 145–147
hidden neuron, 118
hidden number of neurons, 46
Hopfield network, 61–66, 68, 132, 134
hyperbolic tangent function, 31
hyperplane, 8, 137

independent-components analysis, 27
interpolation, 16, 72

Jackknife Resampling, 102, 146
Jacobian matrix, 121

learning rates, 123
Levenberg–Marquardt, 119, 121–122, 146
Levenberg–Marquardt training procedure,

122
linear classifiers, 9
linear function, 108, 146
LM algorithm, 121
LM, see Levenberg–Marquardt
local maxima, 115
local minima, 115
logistic function, 31
logistic sigmoid function, 4, 16, 149

machine learning, 36, 44–45, 151
magnetic resonance image, 98–99
Mahalanobis distance, 29
Mahalanobis distance metric, 29
Manhattan distance, see taxicab distance
mapping, 26
matrix associative memories, 11
max-picker, 38
median window filter, 99
millimeter wave scanner, 92
min-max normalization, 17
Minkowski norm, 17
modular neural network, 40
momentum, 115, 117, 123

heavy ball, 115
monotonic, 10
Moore-Penrose, 66, 67
multiclass neural network, 41

neighborhood, 49, 51–52, 74, 76–77, 98,
139–140

nervous system, 1, 11, 148
net stimulus, 107
Netlab, 37, 159
neurons, 1–2

hidden, 47
Newton descent, 119
nonparametric regression models, 11
NP-complete, 63
number of hidden layers, 10
number of hidden neurons, 43, 45–46, 75, 101

optical character recognition, 84
optimization, 120, 122–123
optimization problems, 63
outer product, 61, 65
outer product learning rule, 61, 64
output coding, 31
over fit, 46
overdetermined, 66, 133

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Index 165

pattern recognition, 17, 19, 24, 53, 71, 80, 84,
86, 88, 91, 150, 152–154

PCNN, see pulse-coupled neural network
perception, 138, 160
perceptron, 3, 8–9, 36, 111, 137, 147, 157
post-processing, 31, 94
principal components analysis, 17, 27
principal curves, 27
pulse-coupled neural network, 96, 148

quasi-Newton, 119–121
quick propagation, 119, 148

recurrent layer, 78
recurrent neural networks, 61
regression, 11
reinforcement, 9, 11
relationship, 26
Repository for Machine Learning databases,

74
rules of thumb, 42, 46

second order, 121
second order derivative, 117, 121
second order gradient, 118–119
second order gradient techniques, 118
segmentation, 98
self-organize, 11, 23, 27
self-organizer, 21, 23, 27
self-organizing map, 27, 50, 94–96
self-organizing system, 22, 154
sigmoid function, 3, 108, 114
softmax normalization, 16–17
spatial data, 22
split-sample testing, 44–45, 75
statistical normalization, 17

step function, 33, 62
stop training, 46
storage capacity, 62
supervised approaches, 25
supervised learning, 13, 35, 46, 74, 147, 150
synaptic weights, 63, 107, 114
system identification, 73–74, 80

taxicab distance, 28
temporal dynamics, see time series
thresholding, 33
time series, 69, 78
time series data, 22, 104
training procedure, 123
training set, 46
training time, 15, 32, 36, 75
transfer function, 3–5, 9, 37, 43, 108, 126,

138, 146–147
tree classifier, 31, 84

underdetermined, 67, 133
unit hypersphere, 58
unsupervised approaches, 25
unsupervised learning, 13–14, 49, 57, 149,

160
unsupervised training model, 14, 49

validation error, 46
validation set, 46
VC dimension, 43
visual cortex, 97

weight update, 51–52, 108, 113–115, 119–
120, 122, 137, 139

weights, 114

Z-score normalization, 15, 75, 84, 89, 91, 95

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

About the Authors

Paul E. Keller received a B.S. degree in physics from Boise State
University in 1985, an M.S. degree in electro-optics from the
University of Dayton in 1987, and a Ph.D. in optical sciences from the
University of Arizona in 1991. He has been a scientist with Battelle at
the Pacific Northwest National Laboratory since 1992. His research
areas include optics, photonics, neural networks, sensor data analysis,
image processing, and computational physics. He has worked on
applications in homeland security, nuclear nonproliferation, national
defense, medicine, environmental technologies, telecommunications,
computing, and energy distribution. He has taught several short courses
on neural networks and their applications and also served as an adjunct
faculty at Washington State University in the area of neural networks.

He has authored and co-authored more than 60 conference papers, journal articles, and book
chapters on the topics of neural networks, medical technologies, optical computing, and Internet
technologies. He holds three U.S. patents, with several pending.

Kevin L. Priddy received a B.S. degree in electrical engineering from
Brigham Young University in 1982, an M.S. degree in electro-optics
from the Air Force Institute of Technology in 1985, and a Ph.D. in
electrical engineering from the Air Force Institute of Technology in
1992. Dr. Priddy is currently a team leader in the ATR & Fusion
Algorithms Branch, Sensors Directorate, of the Air Force Research
Laboratory. Dr. Priddy has over 40 conference papers and journal
articles in the fields of artificial neural networks and electrical
engineering. He has been awarded two patents and has others pending
in the computational intelligence field. His research interests
include computational intelligence, automated recognition systems,
intelligent sensors, image processing and signal processing.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 14 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

	Front Matter
	CHAPTER 1.__Introduction
	CHAPTER 2.__Learning Methods
	CHAPTER 3.__Data Normalization
	CHAPTER 4.__Data Collection, Preparation, Labeling, and Input Coding
	CHAPTER 5.__Output Coding
	CHAPTER 6.__Post-processing
	CHAPTER 7.__Supervised Training Methods
	CHAPTER 8.__unsupervised Training Methods
	CHAPTER 9.__Recurrent Neural Networks
	CHAPTER 10.__A Plethora of Applications
	CHAPTER 11.__Dealing with Limited Amounts of Data
	Appendix A. The Feedforward Neural Network
	Appendix B. Feature Saliency
	Appendix C. Matlab Code for Various Neural Networks
	Appendix D. Glossary of Terms
	Backmatter

