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Preface

Signal sampling is the major method for converting analog signals into sets of
numbers that form digital models of the signals. The key issues in the
sampling theory and practice are

– What is the minimal amount of numbers, or what is the minimal
sampling rate, sufficient to represent analog signals with a given
accuracy?

– What kinds of signal distortions are caused by their sampling?
– What signal attributes determine the minimal sampling rate?
– How can one sample signals with sampling rates close to the theoretical

minimum?
– Is it possible to resample sampled signals without introducing

additional distortions due to the resampling?
– What are adequate discrete representations of signal transforms, such

as convolution and Fourier transforms?

All of these issues are addresed in this book, supplemented by MATLAB® 

exercises, which you can download via the following link: http:/spie.org/
Samples/Pressbook_Supplemental/PM315_sup.zip

Researchers, engineers, and students will benefit from the most updated 
formulations of the sampling theory, as well as practical algorithms of signal 
and image sampling with sampling rates close to the theoretical minimum and 
interpolation-error-free methods of signal/image resampling, geometrical 
transformations, differentiation, and integration.

Leonid Yaroslavsky
December 2019
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Chapter 1

Introduction

1.1 A Historical Perspective of Sampling: From Ancient Mosaics
to Computational Imaging

It is easier to grasp a subject by tracing its evolution. Sampling as a
mechanism for image formation was first developed by nature in the form of
compound and retinal eyes (Figs. 1.1 and 1.2).

Light-sensitive cells (photoreceptors) of the eyes convert the luminosity of
small individual areas around different points of observed objects into signals
that are sent to the visual cortex of the brain, thus creating an object image.

At the dawn of human culture, ancient people discovered that small pieces
of glass, pottery, or small tiles placed together in an appropriate order create a
picture (Fig. 1.3). This led to the art of mosaic, which appeared throughout
the world. In Byzantium, from the 4th to 14th centuries, it became the leading
form of pictorial art.

Ancient artists knew how to intuitively choose the size of the tiles to make
good-quality mosaic pictures with the minimal number of tiles. They taught
their apprentices that skill; however, no “sampling theory” governed their
knowledge, and no need for such a theory existed.

Such a need arose with the creation of the first electrical communication
devices. Shortly after the early commercial success of telegraphy in the 1840s,
engineers attempted to send more than one signal over a single wire and over
increasingly larger distances. In 1854, the first transatlantic telegraph cable
project began.1 The first official telegram to pass between two continents was
a letter of congratulations from Queen Victoria of the United Kingdom to the
President of the United States, James Buchanan, on August 16, 1858.

However, the signal quality declined rapidly, slowing transmission to an
almost unusable speed. The Atlantic Telegraph Company’s chief electrician,
E. O. W. Whitehouse, decided that the reason for the low speed of
transmission was insufficiently high voltage, and so he applied excessive
voltage to the cable in the hope of achieving faster operation. The excessive
voltage destroyed the cable.1

1
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To explain and solve the problem, the company invited famous physicist
Sir William Thomson, who sought to apply his theory of heat propagation. In
particular, he used Fourier series to solve differential equations.

After accumulating sufficient experience in the transmission of telegraph
and, later, sound and image signals, communication engineers eventually
understood that the speed of information transmission is limited by the wave
bandwidth of communication channels. This is what one of the founders of
communication theory, Dennis Gabor, wrote in his seminal paper2 in 1944:

The principle that the transmission of a certain amount of information
per unit time requires a certain minimum wave-band width dawned
gradually upon communication engineers during the third decade
of this (20-th) century. Similarly, as the principle of conservation of
energy emerged from slowly hardening conviction of impossibility of
perpetuum mobile, this fundamental principle of communication

Figure 1.1 Anatomy and structure of compound eyes of insects.

Figure 1.2 The retinal eye of vertebrates.
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engineering arose from the refutation of ingenious attempts to break 
the as yet unformulated law. When in 1922 John Carson3 disproved 
the claim that frequency modulation could economize some of the 
bandwidth required by amplitude modulation methods, he added that 
such schemes “are believed to involve some fallacy.” This conviction 
was cast into a more solid shape, when, in 1924, Nyquist4 and 
Küpfmüller5 independently discovered an important special form of 
the principle by proving that the number of telegraph signals, which 
can be transmitted over any line, is directly proportional to its 
waveband width. In 1924 Hartley6 generalized this and other results, 
partly by inductive reasoning, and concluded that “the total amount 
of information, which may be transmitted . . . is proportional to 
frequency range which is transmitted and the time which is available 
for the transmission. . . ”

From this understanding, only one step was left to formulate a mathematical
theorem.

In 1933, the young Russian communications engineer Vladimir
Aleksandrovich Kotelnikov published a paper7 in which he formulated the
sampling theorem for low-pass and band-pass signals, and he considered the

Figure 1.3 Mona Lisa of the Galilee, 4th-century Roman mosaic in Sepphoris, Israel.
Image courtesy of udi Steinwell.
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bandwidth requirements of discrete signal transmission for telegraphy and
images. Although Kotelnikov’s name later became known in the West as a result
of his subsequent work, particularly that on optimal detection, his pioneering
1933 results received little attention at the time outside Russian-speaking areas.

In 1949, Claude Shannon published the paper “Communication in the
Presence of Noise,” which set the foundation of information theory.8 In order
to formulate his rate distortion theory, Shannon needed a general mechanism
for converting an analog signal into a sequence of numbers. This led him to
state the classic sampling theorem at the very beginning of his paper, which is
one of the theoretical works that has had the greatest impact on modern
communications and electrical engineering.

While Shannon deserves full credit for formulating the sampling theorem
and for realizing its potential for communication theory and signal processing,
he did not claim it as his own. In fact, he said the following about the theorem:
“This is a fact which is common knowledge in the communication art.” He
was also well aware of equivalent forms of the theorem that had appeared in
the mathematical literature, i.e., particularly the work of Whittaker.9

In subsequent years, sampling theory was further refined and extended in
many respects, such as the analysis of errors associated with the sampling and
reconstruction of real non-band-limited signals, sampling multi-dimensional
signals, interpolation of sampled data, irregular sampling as opposed to
regular sampling dictated by the sampling theorem, and signal super-
resolution by means of combining several individually sampled, low-
resolution copies of a signal.

Perhaps the major achievement of these years was the realization that
sampling is a special case of signal discretization by means of their expansion
over sets of basis functions of signal transforms and that much more compact
discrete representation of analog signals can be achieved if signal transform
coefficients, rather than their samples, are used for this purpose. This idea,
which can be traced back to Gabor,2 eventually led to the development of
transform signal coding methods such as JPEG and MPEG, without which
modern digital audio, video, and TV would not exist.

Transform coding, however, is a two-step process, in which signals are first
redundantly sampled in the regular classic way, and then obtained samples are
compressed. The compressibility of data acquired by standard sampling
motivated attempts to find sampling methods that would not require
subsequent compression. These attempts resulted in the concept of “compressed
sensing”10 (or “compressed sampling”11), and a number of nonlinear techniques
were suggested that allow for the exact reconstruction of signals sampled with
speeds lower than that prescribed by the classic theory, under a condition that
the signals are sparse in a certain “sparsifying” transform, i.e., if they have only
a limited number of non-zero transform coefficients. This concept gained

4 Chapter 1
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considerable popularity and initiated a steady flow of publications demonstrat-
ing its applicability in different applications.

Although it eventually turned out that the compressed sensing methods still
require certain redundancy in signal sampling, the concept of signal sparsity as
a generalization of the classic concept of signal-band limitations proved to be
very fruitful. It stimulated reformulation of the sampling theory in terms of
signal sparsity, the proof that signal sparsity defines the minimal signal
sampling rate sufficient for signal reconstruction with the accuracy that
corresponds to the level of its sparsity, and the demonstration that this minimal
sampling rate can be achieved using the means of computational imaging.12,13

1.2 Book Overview

The book is divided into two parts, supplemented with MATLAB-based
exercises. The first part (Chapters 2 to 7) is devoted to different aspects of
signal sampling.

Chapter 2 begins with the classic formulation (Section 2.1) of the sampling
theorem for 1D band-limited signals. It is then extended in Section 2.2 to
sampling 1D band-limited band-pass signals and, in Section 2.3, to band-
limited 2D signals, for which the concept of optimal 2D regular lattices is
introduced. Section 2.4 deals with sampling distortions, which take place
when sampling real, non-band-limited signals. In Section 2.5, a realistic re-
formulation of the sampling theorem is provided that does not assume the
band-limitedness of signals and is based on mathematical models of real signal
sampling and reconstruction devices, as well as the realization that no precise
signal reconstruction from a sampled representation is possible. The last two
sections of the chapter address, through two complementary approaches,
the problem of evaluating the minimal sampling rate sufficient for signal
reconstruction with a given accuracy. In Section 2.6, sampling of signal sub-
band decompositions is considered as a model of sampling with the minimal
sampling rate, and in Section 2.7, a formulation of the discrete sampling
theorem and its extension to continuous signals are provided for use in
Chapters 3 and 4.

Chapter 3 is devoted to demystifying the concept of compressed sensing.
First, in Section 3.1, the ubiquitous compressibility of images sampled using
the standard regular sampling methods is demonstrated and explained with
examples of sampled images. In Section 3.2, the concept of compressed
sensing is elucidated with a simple model that demonstrates how and under
what conditions can one precisely reconstruct a signal sampled with aliasing,
i.e., sampled by violating the sampling theorem. In Section 3.3, the sampling
redundancy required by compressed sensing methods for precise signal
reconstruction is estimated to evaluate how far these methods are from
reaching the minimal signal sampling rates.

5Introduction
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In Chapter 4, a method of arbitrary image sampling and bounded 
spectrum reconstruction is introduced, which allows for image sampling rates 
close to the minimal rate defined by the sampling theory. Section 4.1 presents 
a detailed description of the method. In Section 4.2, results of experimental 
verification of the method are provided. Section 4.3 discusses some important 
practical issues of implementing the method, such as noise robustness, the 
choice of standard spectrum-bounding shapes for image reconstruction, 
practical aspects of image anti-aliasing pre-filtering, and computational 
complexity of the spectrum-bounded spectrum image reconstruction. In 
Section 4.4, possible applications of the method are illustrated, such as 
achieving image super-resolution by means of fusing several low-resolution, 
stochastically sampled copies, image reconstruction from sparsely sampled or 
decimated projections, and image reconstruction from sparsely sampled 
Fourier spectra.

Chapter 5 offers a thorough treatment of the problem of signal and image 
resampling. The introductory Section 5.1 poses resampling as an interpolation 
problem and introduces convolutional interpolators. In Section 5.2, the 
concept of the perfect resampling filter is introduced, and it is shown that 
discrete sinc interpolation is the gold standard for resampling sampled data. 
Section 5.3 describes methods for the efficient algorithmic implementation of 
discrete sinc interpolation for image sub-sampling, fractional shift, and 
rotation. Section 5.4 presents experimental evidence of the superiority of the 
discrete sinc interpolation over other convolutional interpolation methods.

Chapter 6 exposes discrete sinc interpolation in other applications and 
implementations. In Section 6.1, perfect numerical differentiation and 
integration algorithms are introduced that are capable of precise differentia-
tion and, correspondingly, integration of analog signals presented by their 
sampled data. In addition, the experimental results of their comparison with 
traditional numerical differentiation and integration algorithms are presented 
that demonstrate their paramount superiority. Section 6.2 describes local 
(“elastic”) algorithms for image shift-variant resampling, i.e., resampling 
according to arbitrary maps of pixel displacement. Section 6.3 presents the 
application of discrete sinc interpolation for “filtered back-projection” and 
“direct Fourier method” algorithms of image reconstruction from parallel 
projections and for projection data “rebinning” for image reconstruction from 
fan beam projections.

Chapter 7 concludes Part 1. Section 7.1 introduces the discrete uncertainty 
principle, a discrete counterpart of the classic continuous uncertainty 
principle, and Section 7.2 demonstrates the existence of discrete signals with 
sharply bounded support both in signal and Fourier domains, and postulates 
the existence of discrete orthogonal systems of sharply band-limited basis 
functions with sharply limited support.

6 Chapter 1
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Sampling theory would not be complete without treating the discrete
representation of analog signal transformations such as convolution and the
integral Fourier transform. Three chapters—8, 9, and 10—address this issue
in Part 2 of the book.

In Chapter 8, the basic principles of the discrete representation of signal
transformations are formulated, which are used to derive discrete representa-
tions of the convolution integral transformation in Chapter 9 and of the
integral Fourier transform in Chapter 10.

Chapter 9 is dedicated to the discrete representation of the convolution
integral. In Section 9.1, the sampled representation of continuous signals
is used to convert the convolution integral into a digital convolution. In
Section 9.2, the concept of a continuous filter equivalent to a given digital
filter is introduced, and such important characteristics of digital filters are
derived as their point spread functions and frequency responses, as well as the
point spread functions and frequency responses of the continuous filters that
correspond to them. Section 9.3 discusses different methods of treating signal
borders in digital convolution.

Chapter 10 is dedicated to the discrete representation of the integral
Fourier transform. In Section 10.1, the sampled representation of continuous
signals is used to convert the 1D Fourier integral to the canonical 1D discrete
Fourier transform (DFT) and its more general modifications, shifted DFT
and scaled shifted DFT. In Section 10.2, 2D DFTs are derived in their
rotated, scaled, and shifted 2D DFT forms. In Section 10.3, it is shown that
mirror signal reflection from its borders converts the DFT into the discrete
cosine transform (DCT), a very useful signal transform with a good energy-
compaction property. Section 10.4 demonstrates how the DCT can used to
implement a boundary-effect-free fast digital convolution. Section 10.5 shows
that the frequency responses of digital filters, which are their main
characteristic, can be expressed through the DFT coefficients of their point
spread functions.

Appendices A1 and A2 contain auxiliary reference materials concerning
the properties of the integral Fourier transform and DFT, correspondingly.

7Introduction
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Chapter 2
Sampling Theorems

2.1 Kotelnikov–Shannon Sampling Theorem: Sampling
Band-Limited 1D Signals

The Kotelnikov’s and Shannon’s classic formulation of the sampling theorem 
reads as follows.7,8

Theorem: If a function of time aðtÞ contains no frequencies higher than F∕2 
cycles per second (cps), it is completely determined by giving its ordinates at a
series of points spaced 1∕F seconds apart:

aðtÞ ¼
X̀
k¼�`

aðk∕FÞ sin½pFðt� k∕FÞ�
pFðt� k∕FÞ : (2.1)

The proof of this theorem is based on the properties of the integral Fourier
transform (Appendix A1). Let a( f ) be the Fourier spectrum of a(t):

að f Þ ¼
Z̀
�`

aðtÞ expði2pf tÞdt (2.2)

and

aðj f j . F∕2Þ ¼ 0,

i.e.,

aðtÞ ¼
Z̀
�`

að f Þ expð�i2pf tÞdf ¼
ZF∕2

�F∕2

að f Þ expð�i2pf tÞdf : (2.3)

In the interval [�F∕2, F∕2], the function a( f ) can be represented by its
Fourier series

að f Þ ¼ rect
�
f
F

� X̀
k¼�`

ak exp
�
i
2pkf
F

�
, (2.4)

where

11
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ak ¼
1
F

ZF∕2
�F∕2

að f Þ exp
�
�i2p

kf
F

�
¼ 1

F
a
�
k
F

�
(2.5)

are Fourier series coefficients of the function, and

rectðxÞ ¼
�
1, �1∕2 , x , 1∕2
0, otherwise

(2.6)

is a rectangular window function.
Therefore,

að f Þ ¼ 1
F
rect

�
f
F

� X̀
k¼�`

aðk∕FÞ exp
�
i
2pkf
F

�
: (2.7)

Signal a(t) can be found through the inverse Fourier transform of its spectrum
a( f ), as given by Eq. (2.7):

aðtÞ ¼
Z̀
�`

að f Þ expð�i2pf tÞdf

¼ 1
F

X̀
k¼�`

aðk∕FÞ
Z̀
�`

rect
�
f
F

�
exp½�i2pf ðt� k∕FÞ�df

¼ 1
F

X̀
k¼�`

aðk∕FÞ
ZF∕2

�F∕2

exp½�i2pf ðt� k∕FÞ�df

¼
X̀
k¼�`

aðk∕FÞ sin½pFðt� k∕FÞ�
pFðt� k∕FÞ :

(2.8)

This proves the theorem.
In order to give a physical interpretation of this result, consider a

virtual signal ãðtÞ whose spectrum ãð f Þ is the Fourier series of spectrum a( f )
of signal a(t):

ãð f Þ ¼ 1
F

X̀
k¼�`

a
�
k
F

�
exp

�
i
2pkf
F

�
: (2.9)

By applying to spectrum ãð f Þ the inverse Fourier transform and using the
definition of the delta function given by Eq. (A1.40) in Appendix A1, the
result is

12 Chapter 2
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ãðtÞ ¼ 1
F

Z̀
�`

� X̀
k¼�`

a
�
k
F

�
exp

�
i
2pkf
F

��
expð�i2pf tÞdf

¼ 1
F

X̀
k¼�`

a
�
k
F

� Z̀
�`

exp
�
�i2pf

�
t� k

F

��
df

¼ 1
F

X̀
k¼�`

a
�
k
F

�
d

�
t� k

F

�
,

(2.10)

i.e., virtual signal ãðtÞ is a sequence of delta functions weighted by samples
faðk∕FÞg of signal a(t) and placed at sampling points fk∕Fg. Note that
spectrum ãð f Þ, as a Fourier series of signal spectrum a( f ), is a periodic
replication of this spectrum:

ãð f Þ ¼ 1
F

X̀
k¼�`

a
�
k
F

�
exp

�
i
2pkf
F

�
¼

X̀
m¼�`

að f þ FmÞ: (2.11)

Equations (2.10) and (2.11) imply that

• Signal sampling with sampling interval Dt¼ 1/F can be treated as
generating a virtual signal ãðtÞ whose specrum is the periodic replication
of the spectrum of signal a(t) with a replication period F ¼ 1∕Dt.

• Signal reconstruction from its samples defined by Eq. (2.8) can be
treated as the extraction of the signal spectrum a( f ) from the
periodically replicated spectrum

ãð f Þ ¼
X̀
m¼�`

að f þ FmÞ (2.12)

of the virtual discrete signal

ãðtÞ ¼ 1
F

X̀
k¼�`

a
�
k
F

�
d

�
t� k

F

�
(2.13)

by multiplying its periodic spectrum by a rectangular window function
rectð f ∕FÞ, i.e., by passing the virtual discrete signal ãðtÞ through the
ideal low-pass filter with frequency response rectð f ∕FÞ and point-
spread function

PSFilpf ðtÞ ¼
sinðpFtÞ
pFt

¼ sincðpFtÞ, (2.14)

which interpolates signal samples using the sinc function [defined in
Appendix A1.5, Eq. (A1.41)] as an interpolation kernel. This
interpolation method is called sinc interpolation (illustrated in Fig. 2.1).
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The sampling theorem implies that the number of samples of band-limited
signals with bandwidth [�F∕2, F∕2] per unit of signal length, i.e., the signal
sampling rate, equals F. This rate is called the Nyquist sampling rate, a name
that was coined by Shannon8 in recognition of Nyquist’s important
contributions to communication theory.

The Nyquist sampling rate F is the minimal sampling rate sufficient to
reconstruct band-limited signals from their samples. If the signal sampling
rate is lower than F, the period of the periodic spectrum replication due to
signal sampling will be lower than the spectrum width. Therefore, the signal
spectrum will overlap with its periodic replicas and cannot be separated by the
ideal low-pass filter without distortions.

2.2 Sampling 1D Band-Pass Signals

1D band-limited signals treated in the previous section are called baseband
signals. Their Fourier spectrum is concentrated within a bounded interval
[�F∕2, F∕2] around zero frequency. This interval is called the signal
baseband.

Figure 2.1 Interpretation of signal sampling to generate a virtual discrete signal with a
Fourier spectrum formed by the periodically replicated Fourier spectrum of the signal. From
top to bottom: a test signal, its Fourier spectrum, a virtual discrete signal comprising samples
of the test signal, and its Fourier spectrum.
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1D band-limited signals whose spectrum is concentrated within intervals
[ f 0 � F∕2, f 0 þ F∕2] and [�f 0 � F∕2, � f 0 þ F∕2] around a non-zero
frequency f 0 are called band-pass signals. According to the properties of the
Fourier transform (Appendix A1), spectral components or real-valued signals
on these intervals are mutually complex conjugates, and a band-pass signal
aPBðtÞ can be regarded as a baseband signal aBBðtÞ modulated by a sinusoidal
signal of frequency f 0:

aPBðtÞ ¼ aBBðtÞ sinð2pf 0tÞ: (2.15)

Therefore, the classic sampling theorem can be applied to band-pass
signals if, before sampling, band-pass signals are converted into correspond-
ing baseband signals by demodulating them with a sinusoidal signal of
frequency f 0 and subsequent low-pass filtering within the baseband
[�F∕2, F∕2]. This band-pass–to–baseband conversion is illustrated in
Fig. 2.2.

Correspondingly, the reconstruction of band-pass signals for their
sampled representation can be performed by reconstructing their baseband
copies by sinc interpolation of their samples and the subsequent modulation-
obtained baseband signal with a sinusoidal signal of frequency f0. This implies

Figure 2.2 From top to bottom: spectra of a band-pass signal and its demodulated version,
and a demodulated low-pass filtered version.
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that the number of samples per unit of signal length is the same as that for
their corresponding baseband signal, i.e., equal to the width F of the baseband
signal spectrum.

2.3 Sampling Band-Limited 2D Signals; Optimal Regular
Sampling Lattices

The classic 1D sampling theorem can be extended to 2D signals aðx, yÞ given
in Cartesian coordinates ðx, yÞ if their Fourier spectra að f x, f yÞ are in
Cartesian coordinates ð f x, f yÞ bounded by a rectangle [�Fx∕2 ≤ f x ≤ Fx∕2;
�Fy∕2 ≤ f y ≤ Fy∕2]. Such signals can be precisely reconstructed from their
samples aðk∕Fx, l∕FyÞ taken at nodes ðk∕Fx, l∕FyÞ of a regular rectangular
sampling lattice with sampling intervals ð1∕Fx, 1∕FyÞ by means of their 2D
separable sinc interpolation:

aðx, yÞ ¼
X̀
k¼�`

X̀
l¼�`

a
�

k
Fx

,
l
Fy

�
sinc

�
pFx

�
x� k

Fx

��
sinc

�
pFy

�
y� l

Fy

��
,

(2.16)

that is, by means of the ideal 2D low-pass filtering a virtual discrete signal
composed of signal samples:

ãðx, yÞ ¼ 1
FxFy

X̀
k¼�`

X̀
l¼�`

a
�

k
Fx

,
k
Fy

�
d

�
x� k

2Fx

�
d

�
y� l

Fy

�
: (2.17)

In such a sampling, the number of samples per unit of signal area equals
the area ðFx � FyÞ of the rectangle that bounds the signal spectrum. This is
the minimum number of samples per unit of signal area that suffices for the
exact reconstruction of a signal with a Fourier spectrum bounded by rectangle
[�Fx∕2 ≤ f x ≤ Fx∕2; �Fy∕2 ≤ f y ≤ Fy∕2].

Regular sampling at nodes of rectangular sampling lattices is the simplest
implementation of sampling 2D signals. It has become the standard for the
discrete representation of images and the assumed default in image processing
software and image displays. It is also the base for building discrete
representations of signal transformations (Chapters 8–10). However, it secures
the minimal sampling rate only for images with a spectrum bounded by a
rectangle. If the image spectrum is bounded by another figure, other sampling
lattices will optimally minimize the image sampling rate. Note that whatever
regular periodic sampling lattice is used always corresponds to a reciprocal
periodic replication of the image spectra and that the sampling rate always
equals the area of repeated elements of the periodic spectral pattern.
Therefore, minimization of the sampling rate requires maximization of the
density of the spectra packed in their periodic replication.
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Two of the most immediate examples of spectral bounding figures other
than a rectangle are a superellipse (Fig. 2.3) and a circle (Fig. 2.4).

The first case conforms to the properties of human vision, which is less
sensitive to diagonal spatial frequencies then to horizontal and vertical ones.
The area of the 45° rotated square (Fig. 2.3(b)), which circumscribes the
superellipse and is the element of the periodic spectral pattern (Fig. 2.3(d))
that corresponds to the 45° rotated sampling lattice, is two times less than the
area of the square (Fig. 2.3(a)) with vertical and horizontal sides, which is
the element of the periodic spectral pattern (Fig. 2.3(c)) that corresponds to
the canonic rectangular sampling lattice. Therefore, using a 45° rotated
rectangular sampling lattice instead of the canonic vertical/horizontal version
yields a twofold reduction of the image sampling rate. This method of image
sampling and display has found an application in the print industry
(Fig. 2.3(g)).

The second case conforms to natural images that have isotropic spectra.
For sampling such images, the hexagonal sampling lattice shown in
Fig. 2.4(f)) secures the densest packing of periodically replicated copies of
image spectra (Fig. 2.4(d)) and yields a 13.4% reduction of the sampling rate
with respect to the canonic sampling over the rectangular sampling lattice.
This estimate is a relative difference between the area 4R2 of the square
(Fig. 2.4(a)) that circumscribes a circle of radius R and the area
2

ffiffiffi
3

p
R2 � 3.46R2 of the hexagon (Fig. 2.4(b)) that circumscribes the same

circle.
There are numerous examples of hexagonal arrangements of light-

sensitive cells in the eyes of animals and humans (see, for instance, Figs. 1.1
and 1.2), because they place the maximum number of cells of a certain
diameter in a given area. Hexagonal sampling lattices are also used in the
print industry for color printing and in some image displays.

2.4 Sampling Real Signals; Signal Reconstruction Distortions
due to Spectral Aliasing

The classic sampling theorem holds for band-limited signals. In reality, the
Fourier spectra of signals and images are never band-limited; they only more
or less rapidly decay with growing frequency. Therefore, precise signal
reconstruction from samples is never possible because signal sampling
inevitably introduces distortions in reconstructed signals.

These distortions are associated with the phenomenon of spectral
aliasing: due to the signal spectrum periodic replication caused by
sampling, replicas of two complex conjugated signal spectral components
with frequencies �F∕2� Df and F∕2þ Df , which are outside the signal
baseband [�F∕2, F∕2], penetrate the baseband with frequencies
�F∕2� Df þ F ¼ F∕2� Df and F∕2þ Df � F ¼ �F∕2þ Df . For 2D
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Figure 2.3 Spectrum bounding shape “superellipse” (a) inscribed in a square with
horizontal and vertical sides and (b) inscribed in a 45° rotated square; (c) patterns of spectra
periodically replicated in vertical and horizontal directions and (d) in 45° rotated directions;
(e) rectangular sampling lattice and (f) 45° rotated rectangular sampling lattice; and (g) an
example of a rastered image sampled in a 45° rotated rectangular sampling lattice.
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signals, this phenomenon is illustrated in Fig. 2.5, generated by the program
Aliasing_2D_SPIE.m (see Exercises).

With respect to sinusoidal signals, the lowering of the signal fre-
quency due to its sub-Nyquist sampling is called the strobe effect.
Figures 2.5 and 2.6 illustrate spectral aliasing and the strobe effect for a

Figure 2.4 Circular spectrum bounding shape inscribed (a) in a square and (b) in a
hexagon; circular spectra periodically replicated (c) in rectangular and (d) in hexagonal
coordinates; and corresponding (e) rectangular and (f) hexagonal sampling lattices.
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2D sinusoidal signal aðx, yÞ ¼ cosð2pf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ and for a 2D chirp signal

aðx, yÞ ¼ cos [2pf ðx2 þ y2Þ], respectively.
To avoid these distortions, the signal should be subjected to the ideal low-

pass pre-filtering before sampling, which will convert the signal to its band-
limited approximation. By virtue of Parseval’s relation (Appendix A1.3),

Figure 2.5 Spectrum of a signal sampled with aliasing due to sub-Nyquist sampling.

Figure 2.6 Strobe-effect in sampling and reconstruction of two 2D chirp-signals, (a) in 
which local spatial frequencies do not exceed the Nyquist sampling frequency, and 
(b) in which local spatial frequencies exceed the Nyquist sampling frequency and is 
reconstructed with the strobe effect.
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the mean squared error (MSE) s2 of this approximation equals the signal
spectrum a( f ) energy outside the sampling baseband:

s2 ¼ 2
Z̀
F∕2

jað f Þj2df. (2.18)

If the ideal low-pass filter is used for signal reconstruction from samples,
as dictated by the sampling theorem, this error is the minimal error caused by
signal sampling. If, however, the signal reconstruction filter is not the ideal
low-pass filter, i.e., if the signal reconstruction filter passes some signal
components outside the baseband [�F∕2, F∕2], then additional distortions
occur. In the case of sinusoidal signals with frequencies �ðF∕2� Df Þ, these
additional distortions appear to beat with a frequency Df of these signals with
aliasing components of frequencies �ðF∕2þ Df Þ. This effect is called the
moiré effect (Fig. 2.7).

Appropriate image pre-sampling filtering and interpolation of samples is
crucial for the readability of images reconstructed from their samples, as
illustrated in Fig. 2.8.

2.5 The Sampling Theorem in a Realistic Reformulation

The classic sampling theorem is based on idealistic assumptions of the
existence of band-limited signals and ideal low-pass filters. However, there are
no ideal band-limited signals, just as there are no ideal low-pass filters.
Therefore, no precise signal reconstruction from a sampled representation is
possible, and one can only try to minimize signal reconstruction errors. This
section provides a realistic reformulation of the sampling theorem that
directly addresses these issues. The approach is based on the following
mathematical model of real sampling and reconstruction devices.

Signal sampling devices produce samples faðsÞk g of signal a(x) as samples

aðsÞk ¼
Z
X
aðjÞPSF ðsÞðx� jÞdj

����
x¼kDx

(2.19)

of the result of convolution of the signal with the point spread function (PSF)
PSF ðsÞðxÞ of the signal sampling device, i.e., of the result of filtering the signal
by signal sampling device. The samples are taken with equidistant intervals
Dx, called the signal sampling interval, at points fkDxg, where fkg are integer

indices of the samples. The superscript ðsÞ in faðsÞk g indicates that the signal
samples are not instantaneous values of the signal itself but rather
instantaneous samples of this signal filtered by the sampling device.

Signal reconstruction from samples is carried out in signal reconstruction
devices by means of the interpolation
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Figure 2.7 Moiré effect in sampling and reconstruction of a sinusoidal signal: (a) test signal
of frequency f 0 ¼ 0.4 (fraction of the sampling baseband width) and this signal sampled and
reconstructed; (b) spectra of the test and sampled test signals for the case where the
bandwidth of the reconstruction filter [�0.6, 0.6] exceeds the baseband [�0.5, 0.5] defined
by the signal sampling rate.
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āðxÞ ¼
X
k

aðsÞk PSF ðrÞðx� kDxÞ (2.20)

of signal samples fakg by the point spread function PSF ðrÞðxÞ of the signal
reconstruction device as an interpolation kernel.

Note that this formulation mades a deliberate, simplifying assumption
that the coordinate of the signal sample with index k ¼ 0 is x ¼ 0 in both

Figure 2.8 Results of the computer-simulated reconstruction of an image from its samples
for different pre-sampling filtering and reconstruction interpolations of samples: (top left) test
image oversampled to imitate a non-sampled image; (top right) image reconstructed by
means of nearest-neighbor interpolation of its samples obtained by sampling with steps 2�2
with no pre-sampling filtering; (bottom left) image reconstructed by means of nearest-
neighbor interpolation of its samples obtained by sampling an image with steps 2�2 after
pre-sampling filtering by means of computing the local means over 2�2 samples; (bottom
right) image reconstructed by means of sinc interpolation of its samples obtained by
sampling a test image with steps 2�2 after low-pass pre-sampling filtering.
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signal sampling and reconstruction devices, and that the sampling intervals of
image sampling and reconstruction devices are identical. In reality, there
might be an arbitrary shift of the signal sampling lattice with respect to the
sampling- and reconstruction-device coordinate systems and arbitrary scaling
of the sampled and reconstructed images. However, in the analysis of signal
sampling, possible arbitrary shifts and scaling play no essential role and can
be disregarded. Appendix A2 will show that the possible shifts of sampling
positions in coordinate systems of signal sampling and reconstruction devices,
as well as image scaling, must be taken into account in discrete representations
of the integral Fourier transform.

Generally, integration over j in Eq. (2.19), as well as summation over k in
Eq. (2.20), are performed within signal boundaries. Without violating the
generality, one can, in order to simplify further mathematical analysis, rewrite
integration in Eq. (2.19) in infinite limits:

aðsÞk ¼
Z̀
�`

aðjÞPSF ðsÞðx� jÞdj
����
x¼kDx

(2.21)

assuming that signal aðjÞ equals zero outside the real intervals of 
support. Accordingly, this section assumes that an unlimited number of signal 
samples are available for signal reconstruction and rewrites Eq. (2.20) as

aðrÞðxÞ ¼
X̀
k¼�`

aðsÞk PSF ðrÞðx� kDxÞ: (2.22)

Now modify Eqs. (2.19) and (2.21) in the following way using the delta
function dð:Þ and its properties defined and described in Appendix A1:

aðsÞk ¼
Z̀
�`

aðjÞPSF ðsÞðx� jÞdj
����
x¼kDx

¼
Z̀
�`

�Z̀
�`

aðjÞPSF ðsÞðx� jÞdj
�
dðkDx� xÞdx

¼
Z̀
�`

aðsÞðxÞdðkDx� xÞdx,

(2.23)

aðrÞðxÞ¼
X̀
k¼�`

akPSF ðrÞðx�kDxÞ¼
X̀
k¼�`

ak

Z̀
�`

PSF ðrÞðx�jÞdðj�kDxÞdj

¼
Z̀
�`

� X̀
k¼�`

aðsÞk dðj�kDxÞ
�
PSF ðrÞðx�jÞdj¼

Z̀
�`

ãðsÞðjÞPSF ðrÞðx�jÞdj:

(2.24)
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These representations introduce “virtual” signals

aðsÞðxÞ ¼
Z̀
�`

aðjÞPSF ðsÞðx� jÞdj (2.25)

and

ãðsÞðxÞ ¼
X̀
k¼�`

aðsÞk dðx� kDxÞ: (2.26)

Signal aðsÞðxÞ is the initial signal a(x) filtered by an image sampling device
before sampling it. Signal ãðsÞðxÞ is a virtual continuous signal comprising

samples faðsÞk g of signal aðsÞðxÞ.
Further analysis of signal sampling is simplified in the Fourier transform

domain. Compute the Fourier spectra of virtual signals aðsÞðxÞ and ãðsÞðxÞ.
According to the convolution theorem (Appendix A1), the spectrum aðsÞð f Þ of
signal aðsÞðxÞ (Eq. (2.25)), whose instantaneous values faðsÞk g form the sampled
representation of signal a(x), is thus a product

aðsÞð f Þ ¼ að f ÞFRðsÞð f Þ (2.27)

of the spectrum a( f ) of the signal a(x) and frequency response FRðsÞð f Þ of the
sampling device, and the Fourier transform of its point spread function
PSF ðsÞðxÞ:

FRðsÞð f Þ ¼
Z̀
�`

PSF ðsÞðxÞ expði2pf xÞdx. (2.28)

The Fourier spectrum of the virtual signal ãðsÞðxÞ (Eq. (2.26)) involved in

the reconstruction of signal a(x) from its sampled representation faðsÞk g can be,
according to the definition of the delta function, found as

ãðsÞð f Þ ¼
Z̀
�`

ãðsÞðxÞ expði2pf xÞdx

¼
Z̀
�`

� X̀
k¼�`

aðsÞk dðx� kDxÞ
�
expði2pf xÞdx ¼

X̀
k¼�`

aðsÞk expði2pf kDxÞ

¼
X̀
k¼�`

expði2pf kDxÞ
Z̀
�`

aðsÞðpÞ expð�i2ppkDxÞdp

¼
Z̀
�`

aðsÞðpÞ
X̀
k¼�`

exp½i2pð f � pÞkDx�dp:

(2.29)
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By virtue of the Poisson summation formula (Eq. (A1.46)),

X̀
k¼�`

exp½i2pð f � pÞkDx� ¼
1
Dx

X̀
m¼�`

d

�
f � p� m

Dx

�
: (2.30)

The following is then obtained:

ãðsÞð f Þ ¼ 1
Dx

Z̀
�`

X̀
m¼�`

aðsÞðpÞd
�
f � p� m

Dx

�
dp ¼ 1

Dx

X̀
m¼�`

aðsÞ
�
f � m

Dx

�
,

(2.31)

i.e.,

ãðsÞð f Þ ¼ 1
Dx

X̀
m¼�`

aðsÞ
�
f � m

Dx

�
¼ 1

Dx

X̀
m¼�`

a

�
f � m

Dx

�
FRðsÞ

�
f � m

Dx

�
:

(2.32)

Equation (2.32) means that the Fourier spectrum ãðsÞð f Þ of the virtual signal
ãðsÞðxÞ consists of periodic replicas of the spectrum aðsÞð f Þ of signal aðsÞð f Þ.

This analysis reveals that

• Signal sampling devices can be treated as a combination of a linear
filter characterized by its point spread function PSF ðsÞðxÞ and a

sampling unit that takes instantaneous values faðsÞk g of a “pre-filtered”
signal aðsÞðxÞ at the filter output.

• Signal sampling can be interpreted as converting a pre-filtered input
signal aðsÞðxÞ into a virtual signal ãðsÞðxÞ (Eq. (2.26)), whose Fourier
spectrum consists of periodically replicated replicas (with replication
period 1∕Dx) of the initial signal spectrum modified by the frequency
response of a signal sampling device (Eq. (2.32)). Signal sampling
interval Dx defines the signal baseband BB ¼ [�1∕2Dx, 1∕2Dx].

• Signal reconstruction from its sampled representation can be treated as
a “post-filtering” of the virtual discrete signal ãðsÞðxÞ (Eq. (2.26)) in the
reconstruction device characterized by its point spread function
PSF ðrÞð · Þ:

aðrÞðxÞ ¼
Z̀
�`

ãðsÞðjÞPSF ðrÞðx� jÞdj: (2.33)

This “post-filtering” can be described in the Fourier transform domain
as the multiplication
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aðrÞð f Þ ¼ ãðsÞð f ÞFRðrÞð f Þ (2.34)

of the spectrum ãðsÞð f Þ of the virtual signal ãsðxÞ by the frequency
response FRðrÞð f Þ of the signal reconstruction device:

FRðrÞð f Þ ¼
Z̀
�`

PSF ðrÞðxÞ expði2pf xÞdx: (2.35)

The described interpretation of signal sampling and signal reconstruction
from its samples is illustrated by flow diagrams in Fig. 2.9. Fourier domain
representation of signal sampling and reconstruction is illustrated in Fig. 2.10.

Distortions of the reconstructed signal compared to the initial non-
sampled signal are due to the following reasons:

• Modifications of the signal spectrum by its pre-filtering in the sampling
device (Eq. (2.27)).

• Penetrating tails of periodic replicas of the pre-filtered signal spectrum
into the signal baseband, which causes spectral aliasing.

• Fragments of the signal spectrum periodic replicas outside the signal
baseband not perfectly filtered out by the “post-filtering” in the
reconstruction device.

Therefore, signal distortions due to sampling can be minimized in terms of
the signal-reconstruction mean square error (MSE) if signal pre-filtering and
post-filtering are performed by the ideal low-pass filters with frequency
responses FRðsÞð f Þ ¼ rectð fDxÞ and FRðrÞð f Þ ¼ Dxrectð fDxÞ, respectively. In
this case, the MSE of signal reconstruction is

MSERec ¼ 2
Z̀

1∕2Dx

jað f Þj2df : (2.36)

Figure 2.9 Flow diagram of (a) signal sampling and (b) reconstruction.
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In the ideal case of band-limited signals with no spectral components outside
the baseband, the signal is reconstructed precisely (MSERec ¼ 0).

The above represents a realistic reformulation of the classic sampling
theorem. Its extension to 2D signals is straightforward in its assumption of
signal sampling over a rectangular sampling lattice.

Let ðDx, DyÞ be 2D signal sampling intervals in signal Cartesian coordinates
ðx, yÞ, and PSF ðsÞðx, yÞ and PSF ðrÞðx, yÞ be point spread functions of the
signal sampling and reconstruction devices, respectively. Then

aðsÞk,l ¼
Z̀
�`

aðx, yÞPSF ðsÞðx� kDx, y� lDyÞdxdy (2.37)

and

aðrÞðx, yÞ ¼
X̀
k¼�`

aðsÞk,lPSF
ðrÞðx� kDx, y� lDyÞ (2.38)

Figure 2.10 Fourier domain representation of signal sampling and reconstruction. The
upper plot shows the initial signal spectrum, its spectrum after “pre-filtering” in the sampling
device, and the frequency response of the sampling device. The lower plot shows periodic
replicas of a sampled signal spectrum (Eq. (2.32)) and frequency responses of the signal
reconstruction device and of the ideal low-pass reconstruction filter.
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are signal samples, and the reconstructed signal from samples

aðsÞðx, yÞ ¼
Z̀
�`

aðj, hÞPSF ðsÞðx� j, y� hÞdjdh, (2.39)

ãðsÞðx, yÞ ¼
X̀
k¼�`

aðsÞk,ldðx� kDxÞdðx� kDxÞ, (2.40)

ãðsÞð f x, f yÞ ¼
1

DxDy

X̀
m¼�`

aðsÞ
�
f x �

m
Dx

, f y �
n
Dx

�

¼ 1
DxDy

X̀
m¼�`

a

�
f x �

m
Dx

, f y �
n
Dx

�
FRðsÞ

�
f x �

m
Dx

, f y �
n
Dx

�

(2.41)

are the virtual pre-sampling signal and the virtual input signal of the signal
reconstruction device and its Fourier spectrum, respectively. Then,

MSERec ¼
Z̀
�`

Z�`

�`

jað f x, f yÞj2df xdf y�
Z1∕2Dx

�1∕2Dx

Z1∕2Dy

�1∕2Dy

jað f x, f yÞj2df xdf y (2.42)

is the minimal MSE of signal reconstruction from its samples that assumes 
ideal low-pass signal pre-filtering before sampling and post-filtering during 
reconstruction from its samples.

2.6 Image Sampling with a Minimal Sampling Rate by Means
of Image Sub-band Decomposition

The fundamental question of the sampling theory is this: what is the minimal 
rate of image sampling sufficient for image reconstruction from sampled data 
with a given accuracy?

Assume that the accuracy of signal reconstruction from its sample 
representation is evaluated in terms of the MSE of reconstruction. Define a 
zone in the image Fourier spectrum that contains the largest spectral 
components, which reconstructs the image with a given MSE; this zone will be 
called the energy compaction zone (EC zone). Borders of the image-spectrum 
EC zone bound the image spectrum at the level of the given MSE. In this 
sense, given their reconstruction MSE, images can be considered with a 
bounded spectrum.

Consider the image shown in Fig. 2.11(a). Split the figure of this spectrum 
into a set of M rectangles until they cover the largest possible portion of the
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Image sub-band decomposition has been applied to image compression

in the form of multi-scale sampling using wavelets (see, for instance,14

Chapter 7).

Figure 2.11 (a) Bounded spectrum of an image and (b) its sub-bands.

area of the spectrum (Fig. 2.11(b)). These rectangles designate fractions of 
the image spectrum called spectrum sub-bands, and each one corresponds to 
an image, a component of the initial image. Decomposition of an image into 
a set of images that correspond to the image sub-bands is called sub-band 
decomposition.

Of all the sub-bands shown in Fig. 2.11(b), one is a baseband image 
(sub-band-0), and the rest are band-pass images. Sub-band-0 image can be 
sampled with minimal sampling rate equal to the area, which sub-band-0 
occupies in entire image spectrum. Other sub-band images should be 
“demodulated” to bring their spectra to the baseband, as described in 
Section 2.2, and then they can be sampled with a minimal sampling rate 
that equals their corresponding areas in the image spectrum. Thus, the 
minimal total number of samples per unit of image area sufficient for 
reconstruction of the entire image with an MSE defined by the covered 
portion of the image spectrum equals to the sum of the minimal numbers of 
samples per unit of image area for sub-bands. In the limit, when M → `, 
the sub-band decomposition covers the entire image bounded spectrum, 
i.e., its spectrum EC zone. Therefore, the lower bound of the image 
sampling rate sufficient for image reconstruction with a given MSE equals
the area SSecz of its spectrum energy compaction zone, defined by the 
reconstruction MSE. This statement is the essence of the sampling theorem 
in its realistic formulation.

As opposed to the case where images have a spectrum bounded by a 
rectangle, for which the classic sampling theorem holds, sampling sub-band-
decomposed images results in a set of samples of its sub-band components 
rather than in a set of samples of the image itself.
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2.7 The Discrete Sampling Theorem and Its Generalization to
Continuous Signals

2.7.1 Theorem formulation

This section supports the above formulated statement of the sampling
theorem that the minimal sampling rate of signals per unit of its size sufficient
for signal reconstruction with a given MSE s2 equals the size SSecz of the
signal spectral EC zone that contains a ðE � s2Þ∕E fraction of the signal
energy by an alternative approach based on the the discrete sampling theorem
and its generalization to continuous signals. This approach assumes direct
signal sampling and opens a way to practical algorithms that allow one to
reach the minimal rate.

Consider the following discrete model. Let AN be a vector of N samples
fakgk¼0,...,N�1 of a discrete signal, FN be an N �N orthonormal transform
matrix, composed of orthonormal basis functions fwrðkÞg

FN ¼ fwrðkÞgr¼0,1,...,N�1, (2.43)

and GN be a vector of signal transform coefficients fgrgr¼0,...,N�1 such that

AN ¼ FNGN ¼
�XN�1

r¼0

grwrðkÞ
	

k¼0,1,...N�1

: (2.44)

Assume that only K , N signal samples fak̃gk̃∈K̃ are available, where K̃ is a
K-size subset fk̃g of indices f0,1, .., N � 1g. These available K signal samples
define a system of K equations:

�
ak̃ ¼

XN�1

r¼0

grwrðk̃Þ
	

k̃∈K̃

(2.45)

for K signal transform coefficients fgrg of certain K indices r.
Select a subset R̃ of K transform coefficients indices fr̃ ∈ R̃g and define a

“KofN”-bounded spectrum approximation ÂðBSÞ
N to the signal AN as

ÂðBSÞ
N ¼

�
âk ¼

X
r̃∈R̃

gr̃wr̃ðkÞ
	
: (2.46)

Rewrite this equation in a more general form that involves all transform
coefficients:

ÂBS
N ¼

(
âk ¼

XN�1

r¼0

g̃rwrðkÞ
)
, (2.47)
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assuming that all transform coefficients with indices r ∈= R̃ are set to zero:

g̃r ¼
�
gr, r ∈ R̃
0; otherwise:

(2.48)

Then the vector ÃK of available signal samples fak̃g can be expressed in terms
of the basis functions fwrðkÞg of transform FN as

ÃK ¼ KofNF · G̃K ¼
�
ak̃ ¼

X
r̃∈R̃

gr̃wr̃ðk̃Þ
	
, (2.49)

where a K � K sub-transform matrix KofNF consists of samples wr̃ðk̃Þ of the
basis functions with indices fr̃ ∈ R̃g for signal sample indices k̃ ∈ K̃, and G̃K is
a vector composed of the corresponding sub-set fgr̃g of signal non-zero
transform coefficients. This subset of the coefficients can be found by means
of an inverting matrix KofNF as

G̃K ¼ fgr̃g ¼ KofN�1
F · ÃK (2.50)

provided that the matrix KofN�1
F inverse to the matrix KofNF exists, which,

in general, is conditioned for a specific transform by positions k̃ ∈ K̃ of
available signal samples and by the selection of the subset fR̃g of the
transform basis functions that correspond to non-zero transform coefficients.

By virtue of the Parseval’s relationship for orthonormal transforms, the
bounded spectrum signal ÂBS

N approximates the complete signal AN with the
MSE:

MSE ¼




AN � ÂN





2 ¼ XN�1

k¼0

jak � âkj2 ¼
X
r∈=R

jgr̃j2: (2.51)

This error can be minimized by an appropriate selection of K basis
functions of the sub-transform KofNF. In order to do so, one must know the
energy compaction ordering of the basis functions of the transform FN . If, in
addition, one knows for a class of signals a transform that features the best
energy compaction in the smallest number of transform coefficients, one can,
by choosing this transform, secure the best minimal MSE bounded spectrum
approximation of the signal fakg for the given subset fãkg of its samples.

In this way, we arrive at the following discrete sampling theorem, which
can be formulated in two statements:

1. For any discrete signal of N samples defined by its K ≤ N samples, its
bounded spectrum approximation, in terms of a certain transform FN ,
defined by Eq. (2.46), can be obtained with the MSE defined by
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Eq. (2.51) provided positions of the samples secure the existence of the
matrix KofN�1

F inverse to the sub-transform matrix KofNF that
corresponds to the spectrum bounding. The approximation error can
be minimized by using a transform with the best capability of
compacting the signal energy in a small number of signal transform
coefficients (i.e., energy compaction capability).

2. Any signal of N samples that is known to have only K≤N non-zero
transform coefficients for a certain transform FN (a FN-transform
“bounded spectrum” signal) can be precisely recovered from exactly K
samples provided that positions of the samples secure the existence of
the matrix KofN�1

F inverse to the sub-transform matrix KofNF that
corresponds to the spectrum bounding.

In this formulation, the discrete sampling theorem is applicable to signals
of any dimensionality. It requires no assumptions regarding the compactness
of the signal spectral non-zero coefficients in the transform domain. The
signal dimensionality affects only the formulation of the signal spectrum
bounding.

2.7.2 Discrete sampling theorem formulations for specific transforms

The applicability of particular transforms for a bounded spectrum signal
approximation from its given K samples depends on whether the KofN
matrix for this transform is invertible, i.e., whether placement of the
available signal samples is compatible with the type of signal spectrum
bounding chosen for this transform. This subsection addresses the
invertibility conditions most widely used in applications such as the discrete
Fourier transform (DFT), discrete cosine transform (DCT), and Walsh and
wavelet transforms.

Discrete Fourier transform and discrete cosine transforms

For discrete Fourier and discrete cosine transforms, the following statements
hold:15,16

1. For any discrete signal of N samples, its bounded DFT (DCT)
spectrum approximation with K ≤ N non-zero spectral coefficients
defined by Eq. (2.46) can be obtained with a mean squared
approximation error defined by Eq. (2.51) from exactly K of their
samples taken in arbitrary positions.

2. DFT and DCT bounded spectrum signals of N samples with only K
non-zero transform coefficients can be precisely recovered from exactly
K of their samples taken in arbitrary positions.

Statements 1–4 constitute the discrete sampling theorem for discrete
Fourier and discrete cosine transforms. Although the validity of these
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statements was mathematically proved only for 1D signals and for 2D signals
with separable spectrum bounding,15 it is supported by considerable
experimental evidence.

Presented here are the results of the verification experiments, which were
conducted with computer-generated test signals and images with bounded
DFT and DCT spectra using a direct matrix inversion and an iterative
Gerschberg–Papoulis-type algorithm for signal reconstruction from samples.
This algorithm, described in detail in Sections 4.1 and 4.2, computes at each
iteration a signal DFT or corresponding DCT spectrum that zeros all
transform coefficients but the selected ones, reconstructs the signal by inverse
DFT (DCT) of the modified spectrum, and then restores the available signal
samples at their known positions.

Plots in Fig. 2.12(a–b) illustrate the exact reconstruction of a DFT
“bounded spectrum” signal (solid line) by matrix inversion for two cases:
(a) all available signal samples are randomly placed within signal support, and
(b) the available signal samples form a compact group.

Figures 2.13 and 2.14 illustrate precise reconstruction from sparse
samples of computer-generated images band-limited in the DCT domain by
a square (separable band-limitation) and by a 90° pie sector (inseparable
band-limitation).

Figure 2.12 Reconstruction of a DFT bounded-spectrum signal by means of matrix
inversion for the cases of (a) random and (b) compactly placed signal samples, as well as
(c) the case using the iterative Gerschberg–Papoulis-type algorithm for the case of randomly
placing signal samples. Plot (d) shows the standard deviation of signal reconstruction error
as a function of the number of iterations in reconstruction by the iterative algorithm. The
experiment was conducted for a test signal of 64 samples and a bandwidth of 13 frequency
samples (~1/5 of the signal baseband). In all plots, the original signal is represented in the
solid line obtained, for display purposes, by linear interpolation of its samples; available
samples are represented by stems, and reconstructed samples are represented by dots.
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The image in Fig. 2.13(a) is a 64-� 64-pixel test image low-pass band-
limited in the DCT domain by a square of 9� 9 samples (Fig. 2.13(b)). It has
only 81 non-zero DCT spectral components out of the 64� 64¼ 4096 ones.
This image was sampled at 82 “random” positions obtained from the standard
MATLAB pseudo-random number generator. The figure shows that the
iterative algorithm provides accurate reconstruction of the initial image
after only a few iterations, though more precise reconstruction may require
many more.

An important peculiarity of the iterative reconstruction process is that the
convergence of iteration is not uniform within the image area. Usually, the
image reconstruction error quickly reduces throughout the image, and only in
some parts with a low sample density do reconstruction errors remain
substantial and decay slowly.

Image band limitation by a square is separable over image coordinates
and is not isotropic. Experiments show that in the case of the isotropic band
limitation in the DCT domain by a pie sector, the speed of convergence of
the iterative algorithm drops significantly, though again reconstruction error
remains substantial only in limited areas of the image. The speed of

Figure 2.13 Reconstruction of an image with spectrum bounded by a square in the DCT
domain: (a) initial image with 82 “randomly” placed samples in positions shown by white
dots; (b) DCT spectrum bounding shape; (c) image reconstructed by the iterative algorithm
after 100,000 iterations; (d) iterative reconstruction error (white¼ large errors, dark¼ small
errors); and (e) RMS of iterative reconstruction error vs. the number of iterations.
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convergence can be increased if the number of samples slightly exceeds the
minimum defined by the sampling theorem (see Fig. 2.14).

The image in Fig. 2.14(a) is a 64-� 64-pixel test computer-generated
image low-pass band-limited in the DCT domain by a pie sector. It has 73
non-zero DCT spectral components out of 64� 64¼ 4096, all located within
a pie sector shown as white in Fig. 2.14(b). Compared to Fig. 2.13(a), this
image was sampled at 93 “random” positions. The redundancy 93∕73 ¼ 1.27
in the number of samples with respect to the number of non-zero spectral
coefficients approximately equals the ratio of the area of a square to the
area of the circle sector inscribed into this square. As shown in Fig. 2.14(e),
with such a redundancy, iterative reconstruction converges quickly, and
the overall reconstruction error after 100,000 iterations is comparable with

Figure 2.14 Reconstruction of an image with DCT spectrum bounded by a pie sector:
(a) test image with 93 “randomly” placed samples in positions shown by white dots; (b) the
spectrun bounding shape in the DCT domain, where the upper-left corner corresponds to the
lowest spatial frequencies and the bottom-right corner corresponds to the highest spatial
frequencies; (c) image reconstructed by the iterative algorithm after 100,000 iterations;
(d) reconstruction error found as a difference between the initial test and reconstructed
images displayed as an image with light corresponding to large errors and dark
corresponding to small errors; and (e) RMS of reconstruction errors vs. the number of
iterations.
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that for the separable band limitation by a square illustrated in Fig. 2.13.
Once again, the convergence of the iterative algorithm is not uniform
over the image, and relatively large reconstruction errors occur only in a
small area of the image where the density of available samples happens
to be low.

Wavelets and other bases

The main peculiarity of wavelet bases is that their basis functions are most
naturally ordered in terms of two parameters: scale, and position within the
scale. The scale index is analogous to the frequency index for the DFT and
DCT. The position index only describes the shift of the same basis function
within the signal extent on each scale. Therefore, band limitation for the
DFT translates to scale limitation for wavelets. Limitation in terms of
position is trivial: it simply means that some parts of the signal are not
relevant.

Discrete wavelets are commonly designed for signals whose length is an
integer power of 2 (N ¼ 2n). For such signals, there are s ≤ n scales and
possible “band limitations.”

The simplest special case of wavelet bases is the Haar basis. Signals with
N ¼ 2n samples and with only a K lower index non-zero Haar transform (only
transform coefficients with indices f0, 1, : : : , K � 1g are non-zero) are
s̃ ¼ ðblog2ðK � 1Þc þ 1Þ, i.e., “band limited,” where bxc is an integer part of x.
Such signals are piecewise constant. The shortest interval of the signal
constancy contains 2n�s̃ samples.

The first eight basis functions of the Haar transform are presented in the
right column of Fig. 2.15. For any two samples located within the same
interval, all Haar basis functions on this and lower scales have the same value.
Therefore, more than one sample per constant interval will not change the
rank of the matrix KofNF. The condition for perfect reconstruction is,
therefore, to have at least one sample on each of those intervals.

For other wavelets, as well as for other bases, a general necessary,
sufficient, and easily verified condition for the invertibility of a KofNF-
trimmed transform sub-matrix has yet to be found. Standard linear algebra
procedures to determine matrix rank can be used to test the invertibility of the
matrix in each case.

Compared to other bases, the Walsh function basis is one of the most
attractive thanks to its relation to the sinusoidal functions of the Fourier
transform. For Walsh basis functions, the function index corresponds to the
number of zero crossings of the basis function, called the sequency, which
carries a certain analogy with the signal frequency. For many natural signals,
the ordering of basis functions according to their sequency (which is
characteristic for the Walsh transform) preserves the more or less regular
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decay of the transform coefficients’ energy with their index.15 Therefore, for
the Walsh transform, a low-pass band-limited signal approximation similar to
that described for the DFT can be used.

Walsh basis functions (the left column in Fig. 2.15), similar to the Haar
basis function, can be characterized by the scale index, which specifies the
shortest interval of signal constancy. Signals with N ¼ 2n samples and the
band-limitation of K Walsh transform coefficients have the shortest intervals of
signal constancy of 2n�s̃ samples, s̃ ¼ ðblog2ðK � 1Þc þ 1Þ. Perfect reconstruc-
tion requires K signal samples taken on different intervals. Unlike the Haar
transform case, not all of the intervals need to be sampled, only K intervals of
the total. For a special case of K equal to a power of 2, there are K intervals,
each of which has to be sampled to secure perfect reconstruction. This is the
case when the reconstruction condition for the Walsh transform is identical to
that for the Haar transform.

Figure 2.15 First eight Walsh and Haar basis functions grouped according to the scale
parameter.
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2.7.3 The general sampling theorem

In the limit when N → `, the considered discrete model converts to a
continuous model. In particular, if the discrete Fourier transform is chosen as
the image transform, it converts to the integral Fourier transform, and the
discrete sampling theorem for the DFT converts to the general sampling
theorem, which refers to the signal Fourier spectra and states

1. The minimal number of signal samples per unit of signal area (sampling
rate) sufficient for signal reconstruction from their arbitrarily placed
samples with the MSE of reconstruction s2 equals the area BV of the
spectrum EC zone V in the signal Fourier domain that contains the
ðE � s2Þ∕E-th fraction of the image signal energy E.

2. Signals known to have a Fourier spectrum bounded by a figure V can
be precisely reconstructed from their arbitrarily placed samples taken
with the density per unit of signal area equal to the area BV of the
spectrum bounding figure.

Chapter 4 discusses sampling with rates close to the theoretical miminum.

2.8 Exercises

The following MATLAB programs are provided as examples:

Aliasing_1D_SPIE.m
A demonstration, in the form of a movie, of sampling aliasing effects: strobe
and moiré effects. Displayed are test sinusoidal signals of frequencies that
linearly grow from frame to frame, corresponding Fourier spectra at a fixed
sampling rate, corresponding signals reconstructed from their samples and
their Fourier spectra, and the frequency response of the reconstruction filter.

Aliasing_2D_SPIE.m
A demonstration, in the form of a movie, of aliasing effects in sampling 2D
signals. As test signals, 2D sinusoidal signals with different spatial frequencies
that linearly grow from movie frame to frame are used. Displayed are test
images, corresponding images reconstructed from their samples, and their
Fourier spectra.

Fringe_aliasing_demo_SPIE.m
A demonstration, in the form of a movie, of the strobe effect in the sampling
and reconstruction of 2D chirp signals with different growth speeds of spatial
frequencies.

StrobEffect3D_SPIE.m
A demonstration, in the form of a movie, of the 3D strobe effect in image
sampling and reconstruction with an example row-wise readout of a rotating
image.
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IdealVsNonidealSampling_SPIE.m
A demonstration of the visual effects of image sampling and reconstruction
using pre-sampling and reconstruction filters with rect functions and sinc
functions as filter point spread functions.

Five pre-prepared test images are provided; using any other image from
image database as test images is also possible. Three downsampling rates can
be chosen: 1/2, 1/3, and 1/4 of sampling rate of test images. Displayed are

• the chosen test image;
• the image reconstructed by nearest-neighbor interpolation (rect

function as the reconstruction filter PSF) from the result of down-
sampling the test image with the chosen sampling rate;

• the image reconstructed by nearest-neighbor interpolation (rect
function as the reconstruction filter PSF) from the result of test image
downsampling with the chosen sampling rate after pre-filtering by a
filter with rect-function as the filter PSF of a width equal to the inverse
of the sub-sampling rate;

• the image reconstructed by sinc interpolation (sinc function as the the
reconstruction filter PSF) from the result of test image downsampling
with the chosen sampling rate after its pre-filtering by the ideal low-
pass filter of the corresponding bandwidth.

The option of displaying the Fourier spectra of tested and reconstructed
images is also provided.
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Chapter 3

Compressed Sensing
Demystified

3.1 Redundancy of Regular Image Sampling and Image Spectra
Sparsity

As mentioned previously, contemporary digital display devices and image
processing software imply by default that sampling over regular square
sampling lattices is used for image sampling. For such a sampling, the image
sampling interval ðDx, Dy ¼ DxyÞ is supposed to be chosen so that the square
sampling baseband [�1∕2Dxy ≤ f x ≤ 1∕2Dxy, �1∕2Dxy ≤ f y ≤ 1∕2Dxy] in the
image Fourier domain ð f x, f yÞ fully embraces the image spectrum EC zone
for the given accuracy of image reconsruction. This means that the area 1∕D2

xy

of this square zone, by necessity, exceeds the area of image spectrum EC zone,
which, by virtue of the general sampling theorem, defines the minimal
sampling rate sufficient for image reconstruction with the required MSE.
Threrefore, conventional regular image sampling is generally redundant. It
would be instructive to numerically evaluate this sampling redundancy of
sampled natural images.

Figure 3.1 presents a set of ten test images along with estimations of their
Fourier-spectrum EC zones. The Fourier spectra of the images were estimated
using the DFT as a discrete representation of the integral Fourier transform
(see Appendix A2). In order to avoid spectrum estimation errors due to
boundary effects as much as possible, images were multiplied before spectral
analysis by a circular apodization mask to smoothly bring them down to zero
at the edges of the sampled region. Highlighted in the figures of image spectra
are spectral EC zones that contain the largest image spectral components
sufficient for image reconstruction with the same MSE as that of the image
JPEG compression implemented by MATLAB.

These figures show that the spectral EC zones of all images occupy only a
fraction of the area of the sampling baseband. This fraction, i.e., the ratio of
the area of the image spectrum EC zone to the area of the sampling baseband,
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Figure 3.1 A set of sampled test images (first and third columns from the left) and their
corresponding Fourier spectra centered at their DC component (second and fourth columns).
From top to bottom, from left to right: “AerialPhoto512,” “AFM512,” “Barbara512,” “Blood-
Vessels512,” “Mushrooms512,” “Nish1024,” “Pirate1024,” “Rome512,” “WestConcord364,”
and “Test4CS1024.” Highlighted are the largest spectral components sufficient for image
reconstruction with the same MSE as that of their JPEG compression.

42 Chapter 3

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



is called the image spectrum sparsity for the given MSE of signal sparse
approximation. According to the discrete sampling theorem (Section 2.7),
signal spectrum sparsity defines the minimal sampling rate sufficient for signal
reconstruction with the MSE, for which the sparsity is found.

Estimates of image spectra sparsities for these images are given in
Table 3.1. They show that these images are 2.5 to 10 times oversampled.
These data illustrate the ubiquitous compressibility of images sampled in
common ways and the degree of sampling redundancy that is usually removed
by image compression after sampling.

3.2 Compressed Sensing: Why and How It Is Possible to
Precisely Reconstruct Signals Sampled with Aliasing

The phenomenon of ubiquitous compressibility of images acquired by
conventional methods raises a question: is it possible to directly measure
the minimal amount of data that will not be discarded? This question was
apparently first posed by the inventors of the compressed sensing approach as a
solution to this problem.10,11 Since its introduction, this approach (known also
known as compressed sampling) to digital image acquisition has gained
considerable popularity.

Conventional image sampling is based on image band-limited approxima-
tion. The compressed sensing approach is based on a similar but more general
idea of signal sparse approximation: an approximation by signals whose
spectrum in a certain chosen “sparsifying” transform is sparse, i.e., contains
fewer non-zero transform coefficients than the total number of transform
coefficients. The theory of compressed sensing states that if an image of N
samples is known to have, in the domain of a certain transform, only K non-
zero transform coefficients out of N, then the image can be precisely
reconstructed from M . K measurements by minimizing the number of image
non-zero spectral coefficients, i.e., by minimizing the L0 norm in the image

Table 3.1 Estimates of image spectra sparsities for test
images presented in Fig. 3.1.

Test Images Image Spectrum Sparsity

AerialPhoto512 0.29
AFM512 0.19
Barbara512 0.31
BloodVessels512 0.20
Mushrooms512 0.19
Nish1024 0.21
Pirate1024 0.29
Rome512 0.39
WestConcord364 0.37
Test4CS1024 0.10
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transform domain or, the more practical option, by minimizing the sum of the
modulus of the image spectral coefficients (minimizing the L1 norm (total
variation) of the signal transform coefficients). This, in particular, means that
the signal sampling rate, contrary to the conventional sampling, does not
directly depend on the signal’s highest frequency, which implies that the signal
sampling rate can be lower than twice the signal’s highest-frequency
components, i.e., a kind of “sub-Nyquist” sampling or sampling with aliasing,
is possible, which makes the compressed sensing approach especially appealing.

The following simple example will demonstrate the mechanism of image
acquisition and reconstruction with compressed sensing. Let a signal of N
samples composed of a known number K , N of sinusoidal components be
sub-sampled arbitrarily in M , N points; it is required to precisely
reconstruct the signal from these M samples, i.e., determine the amplitudes
and frequencies of the signal sinusoidal components. Figure 3.2, obtained
using the program Random_Sampling_Sinusoids_SPIE.m provided in the
exercises, illustrates how and when this can be done. Plots in the figure are
numbered from top to bottom.

In the figure, the test signal (the first plot) consists of three sinusoidal
components (K ¼ 3, N ¼ 256) seen as three Kronecker deltas in the signal
DCT spectrum (the second plot in Fig. 3.2). When this signal is downsampled
as shown in the third plot in Fig. 3.2, aliasing spectral components appear in
the spectrum of the sub-sampled signal, shown in the fourth plot in Fig. 3.2. In
this example, the signal is downsampled in random positions with a 0.15
sampling rate (M ¼ 38) of the baseband.

The intensity of the aliasing components grows as the downsampling rate
decreases. However, until the downsampling rate drops significantly, the true
spectral components of the signal will exceed the highest peaks of the aliasing
spectral components, and these true components can be detected by finding
the positions of the given number K (in this case, K ¼ 3) of the largest spectral
components (the fourth plot in Fig. 3.2). Once these positions are determined,
the following steps of an iterative Gerchberg–Papoulis-type signal reconstruc-
tion algorithm can be run:

• Compute the DCT of the current estimate of the reconstructed signal.
• Detect the given number K of largest spectral components.
• Set to zero all spectral components except the detected ones.
• Compute the inverse DCT of the signal spectrum thus modified to get a

new estimate of the reconstructed signal.
• Replace the samples of the estimated reconstructed signal in the

positions of available signal samples with those samples, and then
repeat the loop.

The plot of the reconstruction root mean squared error (RMSE) versus
the number of reconstruction iterations (the fifth plot in Fig. 3.2), and the plot
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of the reconstructed signal DCT spectrum (the sixth plot) show that virtually
precise reconstruction of the signal is achieved after a couple of tens of
iterations: after 25 iterations, the reconstruction RMSE is 3.8� 10–5. Note
that in this example the signal spectrum sparsity is Ss ¼ 3∕256 � 1.2� 10�2,
and therefore the sampling redundancy (ratio of the sampling rate to signal
spectrum sparsity) is R ¼ M∕K ¼ 38∕3 ≅ 12.7.

When the signal sub-sampling rate is too low and aliasing is severe,
reliable detection of the signal spectral components in the spectrum of the

Figure 3.2 From top to bottom: test signal composed of three sinusoidal components; its
DCT spectrum; this signal randomly sub-sampled (stems) and reconstructed (solid line);
DCT spectrum of the sub-sampled signal; plot of the reconstruction RMSE vs. the number of
reconstruction iterations; and the DCT spectrum of the reconstructed signal. The frequency
is given in fractions of the width of the sampling baseband.
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sampled signal, and thus signal reconstruction, becomes impossible. The
presence of noise in the sampled data hampers reliable detection of the signal
spectral components and requires additional sampling redundancy to produce
reliable signal reconstruction.

When sampling is performed in random positions, one can evaluate the
performance of the described method of signal reconstruction in terms of the
probability of error in detecting signal spectral components. This probability
depends on the downsampling rate and on the signal sparsity K∕N.
Figure 3.3(a) presents the results of the experimental evaluation of the
probability of frequency identification error as a function of the down-
sampling rate for a sinusoidal signal (K ¼ 1) of five frequencies (0.9, 0.7, 0.5,
0.3, and 0.1 of the signal baseband width), five signal lengths N (128, 256, 512,
1024, 2048) and, correspondingly, of five signal sparsities K∕N. The results
for each value of signal sparsity are averages over the results obtained for
different frequencies (Fig. 3.3(b)). Figure 3.3 shows the sampling redundancies
required for signal reconstruction by the above described algorithm with a
probability of signal frequency identification error less than 10�4, 10�3,
and 10�2. The results were obtained by a Monte Carlo simulation of
the algorithm with 5� 104 realizations of random sampling for each
individual experiment with a given sampling rate, signal frequency, and
signal length.

Figure 3.3 Plots of (a) the probabilities of error in identification of signal frequency and
(b) estimates of sampling redundancy as functions of signal sparsity K∕N for K ¼ 1 and
N ¼ 128, 256, 512, 1024, 2048.
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These results illustrate the principles of the compressed sensing approach
to reconstructing signals sampled with aliasing. They demonstrate also
that considerable sampling redundancy is required to secure reliable
reconstruction of signals sampled with aliasing, using a priori assumption of
their sparsity.

3.3 Compressed Sensing and the Problem of Minimizing the
Signal Sampling Rate

The potential benefits of compressed sensing to image sampling and
reconstruction are widely advertised in the literature, but much less is known
about its limitations, especially how many measurements are required for
signal and image acquisition compared to the theoretical minimum defined by
the sampling theory.

According to the theory of compressed sensing, the precise reconstruction
of a signal of N samples that has K , N non-zero transform coefficients
requires a number of measurements M that satisfies the following
inequality:17

M∕K . �2 log ½ðM∕KÞðK∕NÞ�: (3.1)

According to the discrete sampling theorem, the minimum number of
signal samples for signals with K non-zero spectral components equals K.
Therefore, the signal sparsity Ss ¼ K∕N is the theoretical minimum of the
sampling rate required for signal reconstruction, and the ratio R ¼ M∕K of
the number of required measurements M to the number K of signal non-zero
transform coefficients represents the sampling redundancy with respect to the
theoretical minimum. Equation (3.1) can be rewritten as a relationship
between the signal sparsity Ss ¼ K∕N and sampling redundancy R ¼ M∕K as

R . �2 log ðR� SsÞ: (3.2)

Numerical evaluation of Eq. (3.2) between the sampling redundancy and
signal sparsity is presented in Fig. 3.4 by the dash-dotted line. The solid line in
this figure is plotted on the base of experimental data collected in the
literature.18

Figure 3.4 shows that in the range of sparsities from 0.10 to 0.39 of the test
images in Fig. 3.1, the sampling redundancy of compressed sensing should
theoretically be larger than 2–3, and according to the experimental curve, it
should be larger than 2.5–5.0. Thus, the compressed-sensing sampling
redundancy for this set of test images is not much lower than the sampling
redundancy of the regular sampling (2.5–10.0), which meams that the former
is quite far from reaching the theoretical minimum of signal sampling rates.
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The sampling redundancy required by compressed sensing is not its only
drawback. The approach’s applicability is also impeded by its vulnerability to
noise in sensed data and by its inability to predict and secure the resolving
power of reconstructed images. The resolving power of images is determined
by the size and shape of the EC zones of their spectra. The spectral EC zones
of images reconstructed by compressed sensing are formed during reconstruc-
tion, not specified in advance from the requirements for image resolving
power.

Compressed sensing methods are, to a certain degree, capable of
reconstructing sparse approximations of signals and images sampled with
aliasing. No knowledge regarding the EC zones of image spectra is required;
one needs only choose an image sparsifying transform and define the
desired spectrum sparsity. However, ignorance of the EC zones has a price:
compressed sensing requires significant redundancy in the number of
measurements sufficient for signal and image reconstruction compared to
the theoretical minimum.

In many practical tasks of digital image acquisition, the assumption of
complete uncertainty regarding image-spectra EC zones has no justification.
In fact, if one is ready to accept a sparse approximation to an image and has
chosen an image sparsifying transform, as supposed by the compressed
sensing approach, one tacitly implies a certain knowledge of the energy
compaction capability of the chosen transform. Chapter 4 will show how
the use of this a priori knowledge allows image sampling with rates close to the
theoretical minimum.

Figure 3.4 Theoretical and experimental relationships between signal sparsity and
sampling redundancy required by compressed sensing. Signal reconstruction is only
possible for sampling redundancies above the curves.
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3.4 Exercise

RandomSamplingSinusoids_SPIE.m

Demonstration on a discrete simulating model of the effects of sparse random
sampling of signals composed of a given number of sinusoidal components;
reconstruction by detection in the spectra of the sampled signals of the given
number of the largest sinusoidal components; and subsequent determination
of their intensities using an iterative Gerschberg-Papoulis type algorithm.

The frequencies of the sinusoidal components of the test signals are chosen
randomly by a random number generator. The requested parameters are

• The number of samples of the signal discrete model,
• The number of signal sinusoidal spectral components, and
• The signal sampling rate (in fraction of the width of the signal

baseband).
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Chapter 4

Image Sampling and
Reconstruction with Sampling
Rates Close to the Theoretical
Minimum

4.1 The ASBSR Method of Image Sampling and Reconstruction

This chapter describes a method of image sampling and reconstruction with
sampling rates close to the minimal rate defined by the sampling theory. We
begin with a formulation of a discrete model, for which the discrete sampling
theorem holds.

The theorem implies the following image sampling and reconstruction
protocol:

• Choose the number N of image samples required for image display and
processing.

• Choose an image sparsifying transform.
• Specify a desired spectrum energy compaction zone of the image

spectrum, i.e., a set of M≤N transform coefficients to be used for
image reconstruction.

• Measure M image samples.
• Use M image samples to determine M transform coefficients of the

chosen EC zone.
• Set the N�M transform coefficients to zero and use the obtained

spectrum to reconstruct the required N image samples by applying the
inverse transform to the formed signal spectrum.

Consider possible ways to implement this principle:
Choosing a transform. The choice of transform is governed by the

transform’s energy compaction capability, i.e., the ability to compact most of
the image signal energy into a small number of transform coefficients. An
additional requirement is the availability of a fast transform algorithm. From
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this point of view, the DCT, DFT, and wavelet transforms are the primary
candidates.16

Specification of image-spectrum EC zones. The specification of the subset
of image transform coefficients to be used for image reconstruction, i.e., those
of the image-spectrum EC zone, can be made based on the known energy
compaction capability of the chosen transform. The following assumes the
DCT is used as the image sparsifying transform. The DCT efficiently compacts
the image transform’s largest coefficients into more or less compact groups in
the area of the coefficient’s lower indices around the DC component.

Considerable practical experience, including that obtained in the course of
developing zonal quantization tables for the JPEG image-compression
standard, shows that although these groups of DCT coefficients do not have
sharp borders, they are well concentrated and can be, with a reasonably good
accuracy in terms of preservation of the group total energy, circumscribed by
some standard shape that encompasses the area of the image’s low spatial
frequencies and is specified by few numerical parameters, such as area, aspect
ratio, angular orientation, etc.

Figure 4.1 presents a set of five standard shapes suited for the DCT as the
sparsifying transform: rectangle, triangle, pie-sector, ellipse, and superellipse.
In principle, each standard shape can be associated with a certain class of
images, such as micrographs, aerial photographs, space photos, indoor and
outdoor scenes, etc.

Experimental experience shows that no fine tuning of the shape
parameters is required to specify the chosen shapes as approximations of
image-spectrum EC zones. This property of sparse DCT spectra is illustrated
in Fig. 4.2 with an example of a sparse DCT spectrum of the test image
“BloodVessels512.” The image features the prevalence of horizontal edges,
which causes anisotropy of the image sparse spectrum, as seen in Fig. 4.2.
Images in Fig. 4.2(b–e) indicate the positions of the largest DCT coefficients
that reconstruct this image with a root mean square error (RMSE) of 3.85
gray levels of 255 levels—the same as the reconstruction RMSE of this image
after standard JPEG compression with MATLAB. These coefficients occupy
0.164 of the image baseband area and form the image-spectrum EC zone.

Figure 4.1 Standard shapes of image-spectrum EC zones for image DCT spectra. From
left to right: rectangle, triangle, pie-sector, oval, and superellipse. Spectrum DC components
are in the upper-left corner of the shapes.
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Additionally, boxes (b)–(e) show the borders of rectangular, triangular, and
oval shapes that have the same area (0.275 of the baseband area) and different
aspect ratios (0.35, 0.25, 0.3, and 0.45, respectively). When used as spectrum-
bounding shapes that approximate the image-spectrum EC zone, they all
reconstruct the test image with practically the same reconstruction RMSEs
(4.1, 3.7, 3.8, and 3.8 of the image gray levels, respectively) as that of the
JPEG compression (3.85).

Images with spectra bounded by one of these shapes are visually
indistinguishable from each other even though the patterns of the reconstruc-
tion errors look, naturally, a bit different. Two examples of such images
obtained for spectrum bounding by a rectangle (as in Fig. 4.2(b)) and by an
oval (as in Fig. 4.2(d)) are shown in Figs. 4.3(a) and (b) along with the
corresponding patterns of reconstruction errors (Figs. 4.3(c) and (d)). For
display purposes, reconstruction errors are eight times contrasted.

In Fig. 4.2, the shapes chosen to approximate the image-spectrum EC
zone do not include all of the spectral coefficients; in fact, they include some
spectral components that do not belong to the given zone. These components
have, by definition, lower intensity than the components of spectrum EC zone
that happen to be outside the shape. Therefore, given the energy of all spectral
components encompassed by the chosen spectral shape, the number of these
internal “no-EC-zone components” must exceed the number of spectrum EC
zone components not encompassed by the shape. Thus, the area of the shape
that defines the number of samples to be taken will always exceed the number
of spectrum EC zone coefficients, which, theoretically, is the minimal number
of samples required. For instance, the redundancies of approximating
the spectrum EC zone shapes in Fig. 4.2 are 0.275 / 0.164¼ 1.67. The
experimental results reported below show that the redundancies of standard
spectrum EC zones for natural images are, as a rule, of the same order of
magnitude. This redundancy is the tradeoff for not knowing the exact indices
of the transform coefficients that form the image-spectrum EC zone.

Figure 4.2 (a) Test image “BloodVessels512” with a 0.164 spectrum sparsity at the level of
3.85-RMSE JPEG encoding of image gray levels, and (b)–(e) the positions of the image’s
largest spectral components that reconstruct the image with a 3.85 RMSE (white dots) and
borders (white lines) of rectangular, triangular, and two oval shapes, which approximate the
image-spectrum EC zone.
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Specifying the positioning of image samples. Positioning of image samples
should permit computation from them samples of the group of transform
coefficients chosen for image reconstruction. As mentioned in Section 2.7.2,
some image transforms, such as wavelets, impose in this respect a certain
limitation on the positions of image samples. For the DFT and DCT, the
positions of image samples can be arbitrary. An additional advantage of using
the DFT and DCT as image sparsifying transforms is that, as shown in
Sections 10.1 and 10.3, they are discrete representations of the integral Fourier
transform and as such ideally match the characterization of imaging systems
in terms of their frequency responses.

Numerical algorithms for image reconstruction. The following two options
for image reconstruction are available:

• Direct inversion of the M�N transform sub-matrix that links M
available samples and M transform coefficients specified by the chosen
spectrum EC zone with the other N�M coefficients set to zero. The

Figure 4.3 (a), (b) Images reconstructed after bounding the DCT spectrum of the test
image of Fig. 4.2(a) by an oval (Fig. 4.2(d)) and a rectangular (Fig. 4.2) spectral mask; and
(c), (d) patterns of the corresponding reconstruction errors, displayed eight times
contrasted).
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inverse transform is then applied to the found spectrum to reconstruct
all required N samples. Generally, matrix inversion is a difficult
computational task, and no fast matrix inversion algorithms are
known. In the present case, a pruned fast transform matrix should be
inverted. Pruned versions of fast transforms exist to compute subsets of
transform coefficients of signals with all samples except several of those
that equal zero,20 which is inverse what is required in the given case.
The question whether these pruned fast algorithms can be inverted to
compute a subset of transform non-zero coefficients from a subset of
signal samples is open.

• An iterative Papoulis–Gerchberg-type algorithm, where each iteration
consists of two steps:
◦ The iterated reconstructed image is subjected to the direct transform,

and then spectral coefficients outside the chosen spectrum bounding
EC zone are zeroed to obtain an iterated image spectrum.

◦ The iterated image spectrum is inversely transformed, and then
samples of the obtained image at their originally obtained positions are
replaced by the corresponding available samples, which produces the
next iterated reconstructed image. As a zeroth-order approximation
from which the reconstruction iterations start, an image interpolated
from the available samples can be taken. The next section describes an
interpolation algorithm used in the verification experiments.

When the number of image samples N in the discrete model tends to
infinity, the discrete sampling theorem converts to the general sampling
theorem for continuous signals, and the above sampling and reconstruction
protocol for the discrete model translates to the following protocol of image
sampling and numerical reconstruction assuming the DCT as the image
sparsifying transform.

Image sampling

• Choose a required image spatial resolution SpR (in dots per inch), as
with conventional image sampling.

• Evaluate the image, and on this basis choose one of the standard
spectral bounding shapes to bound the EC zone of the DCT spectrum
and its shape parameters, such as the aspect ratio for a rectangle and
triangle, the aspect ratio and orientation angle for an ellipse, etc.

• Evaluate the X and Y dimensions ShSzX and ShSzY of the chosen
shape using SpR as the shape’s largest diameter.

• Specify the required number of pixels Nx and Ny per inch in the X and
Y dimensions of the reconstructed image Nx≥ ShSzX and Ny≥ ShSzY.

• For the chosen shape, evaluate the fraction Fr of the area that the shape
occupies in the rectangle Nx�Ny. This fraction times SpR� SpR
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determines the spatial density SpD¼ Fr�SpR2 of samples to be taken
(in dots per square inch). The number of samples M to be taken can be
found as a product of SpD and the image area ImgSzX� ImgSzY:
M¼ SpD� ImgSzX� ImgSzY.

• Choose whatever sampling lattice appropriate for the available image
sensor and sample the image in M positions using the sampling device
with the point spread function, which approximates the point spread
function that corresponds to the chosen image-spectrum EC zone.

Image reconstruction. Apply to the sampled image one of the aforementioned
reconstruction options using as the image-spectrum EC zone the chosen
spectrum bounding shape. In this way, an image with a spectrum in the chosen
transform bounded by the chosen EC zone, or a bounded spectrum (BS)
image, will be obtained, which has the prescribed spatial resolution SpR.

The described sampling protocol does not essentially differ from the
standard 2D sampling protocol. The only difference is that in the suggested
method arbitrary sampling lattices can be used, and evaluation of the image’s
expected spectrum shape to approximate the image-spectrum EC zone is
required in addition to specification of the desired image resolution, which
would be required by the standard sampling protocol anyway.

Image reconstruction from sampled data it not much different from the
standard one either. In the suggested method, low-pass filtering during
reconstruction is carried out numerically by bounding the image spectrum in
the chosen transform by the chosen spectral shape. The method thus reaches
the minimal sampling rate defined by the area of the chosen spectral shape.
As mentioned previously, the latter is somewhat larger than the area
occupied by the image sparse spectrum, which the chosen spectrum EC zone
shape approximates and which defines the absolute minimum of the image
sampling rate.

The described image sampling and reconstruction method can be called
the arbitrary sampling and bounded spectrum reconstruction (ASBSR)
method.

4.2 Experimental Verification of the Method

The ASBRS method of image sampling and reconstruction described in the
previous section was experimentally verified on a considerable database of test
images, including the ten images presented in Fig. 3.1. The experiments used
the iterative Gerchberg–Papoulis-type algorithm of image BS reconstruction
and tested three types of sampling lattices:

• “Quasi-uniform” sampling lattice, in which M image samples are
distributed uniformly with appropriate rounding of their positions to
the nearest nodes of the dense square sampling lattice of N samples;
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• Uniform sampling lattice with random jitter, in which the horizontal
and vertical positions of each of M samples are randomly chosen,
independently in each of two image coordinates, within the primary
uniform sampling intervals; and

• Totally pseudo-random sampling lattice, in which the positions of
samples are uniformly distributed in a pseudo-random order over
nodes of the dense sampling lattice of N samples.

The DCT was used as an image transform to compact the image
spectrum. As an admissible RMSE of the approximation of test images with
images of sparse DCT spectra, the RMSE of image compression by the
standard JPEG compression in MATLAB is taken. These RMSEs were used
to choose EC zone appriximating shapes for each image. The chosen shapes
were used to bound the image DCT spectra both for image pre-filtering before
sampling and during image reconstruction. The former is important not only
to avoid aliasing errors but also to secure convergence of the iterative
reconstruction algorithm to an image with a spectrum bounded by the chosen
EC shape.

As a zeroth-order approximation of reconstructed images, from which the
iterative reconstruction starts, each unavailable image sample was interpo-
lated from the three nearest available samples taken with weights inversely
proportional to their distances from the interpolated sample.

Figures 4.4–4.6 illustrate the results of experiments with ten images of the
tested set. Shown in Fig. 4.4 are

1. a test image;
2. a reconstructed image;
3. a sampled test image;
4. the border of the chosen shape of the image EC zone (solid line) and the

positions of the image DCT spectrum largest coefficients (white dots),
which reconstruct the image with a RMSE that equals that of the image
JPEG compression; and

5. plots of the RMSE of all reconstruction errors (the difference between
the initial test image pre-filtered to bound its spectrum before sampling
and the reconstructed image) and of the RMSE of the 90% smallest
reconstruction errors versus the iteration number.

The RMS of the 90% smallest reconstruction errors is counted separately
because the iterative reconstruction converges non-uniformly over the image
area: most of the errors decay with iterations more rapidly than the few
isolated large errors. Reconstruction RMSEs are given in units of image gray
levels from 0–255.

Figures 4.5 and 4.6 show only (i) reconstructed images (left column), (ii)
positions of the largest DCT coefficients of sparse approximation of the
corresponding test images and borders of their chosen-spectrum EC zones
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(middle column), and (iii) plots of the reconstruction RMSE versus the
number of iterations (right column).

For all shown images, sampling over uniform sampling lattices with
random jitter was used, for which reconstruction errors decayed with

Figure 4.4 Results of experiments on the sampling and BS reconstruction of the test
image “Rome512.” From top to bottom, left to right: test image; reconstructed BS image;
sampled test image; EC zone of the test image spectrum (white dots) and the border of the
chosen-spectrum EC zone shape (white solid line); color-coded (MATLAB color map “jet”)
absolute value of reconstruction error (difference between initial and reconstructed images);
plots of the RMSE of all (solid line) and of the smallest 90% (dashed line) reconstruction
errors vs. the number of iterations.
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Figure 4.5 Results of experiments on the sampling and reconstruction of test images.
From top to bottom: “AerialPhoto512,” “Barbara512,” “BloodVessels512,” and “Pirate1024.”
From left to right: reconstructed images; EC zones of image spectra (white dots) and borders
of the corresponding chosen-spectrum EC zone approximating shapes (white solid line);
plots of the RMSE of all (solid line) and of the smallest 90% (dashed line) reconstruction
errors vs. the number of iterations.
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Figure 4.6 Results of experiments on sampling and reconstruction of test images.
From top to bottom: “AFM1024,” “Mushrooms512,” “Nish1024,” “Test4CS1024,” and
“WestConcord364.” From left to right: reconstructed images; EC zones of image spectra
(white dots) and borders of the corresponding chosen-spectrum EC zone approximating
shapes (white solid line); plots of the RMS of all (solid line) and of the smallest 90% (dashed
line) reconstruction errors vs. the number of iterations.
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iterations most rapidly. For the same number of iterations, the reconstruction
RMSE for a totally random sampling lattice is about 1.5–2.0 times, and for a
“quasi-uniform” sampling lattice 2.0–2.5 times, larger than those for the
“uniform with jitter” sampling lattice. For “quasi-uniform” sampling lattices,
stagnation of the iteration process occurred, which can be attributed to the
presence of regular patterns of thickening and rarefication of sampling
positions due to the rounding of their coordinates to positions of nodes on the
regular uniform sampling lattice.

Table 4.1 summarizes the experimental results obtained for all ten test
images shown in Figs. 4.4–4.6 for reconstruction accuracy, spectrum sparsity,
sampling rate, redundancy of the chosen-spectrum EC zone approximating
shapes (the ratio of fractions of area they occupy in the sampling baseband to
the spectrum sparsity), sampling redundancy (the ratio of the sampling rate to
the relative area of the chosen-spectrum EC zone approximating shapes,
which is the theoretical minimum of sampling rate for the given shape), and
the overall sampling redundancy (the ratio of the sampling rate to the
spectrum sparsity).

Plots of the reconstruction RMSE versus the number of iterations in
Figs. 4.4–4.6 show that the RMS of reconstruction errors decay at first couple
of hundreds iterations quite rapidly but after they reach the value of about 2–3
quantization intervals, the error decay slows down. It was found in the
experiments that one can substantially accelerate the error decay, if the
number of samples is taken with a certain small redundancy, i.e., 10–20%
larger than the minimal number equal to the area of the chosen-spectrum EC-
zone-approximating shape (see the results for test image “Barbara512” in
Table 4.1).

Table 4.1 Summary of experimental results.

Test Image

Reconstruction
RMSE (Peak
Signal to

RMSE Ratio)
Spectrum
Sparsity

Sampling
Rate

Sampling Redundancy

Chosen
EC Zone

Redundancy
Approx. Shapes

Sampling
Redundancy

for the
Chosen Shape

Overall
Sampling

Redundancy

AerialPhoto 512 1.26 (46.2 dB) 0.227 0.365 1.6 1 1.6
AFM1024 1.1 (47.3 dB) 0.154 0.226 1.46 1 1.46
Barbara512 4.02 (36.1 dB) 0.265 0.412 1.55 1 1.55

0.69 (51.4 dB) 0.265 0.474 1.55 1.15 1.78
BloodVessels 512 1.94 (42.4 dB) 0.164 0.257 1.56 1 1.56
Mushrooms 512 1.46 (44.9 dB) 0.159 0.226 1.41 1 1.41
Nish1024 1.13 (47.1 dB) 0.17 0.25 1.47 1 1.47
Pirat1024 1.15 (46.9 dB) 0.245 0.42 1.61 1 1.61
Rome512 1.92 (42.5 dB) 0.314 0.5 1.59 1 1.59
Test4CS1024 1.06 (47.7 dB) 0.09 0.136 1.53 1 1.53
WestConcord 1.96 (42.3 dB) 0.314 0.521 1.73 1 1.73
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To summarize, the experiments confirm that images sampled with
sampling rates equal to the minimal rate for the chosen-spectrum EC-zone-
approximating shape of images can be reconstructed with sufficiently good
accuracy. The redundancy in the number of required samples associated with
the redundancy of the standard approximating shapes of image-spectra EC
zones is of the order 1.5–1.6, never exceeding 2.0 in experiments with other
images. These figures are estimates of the sampling redundancy of the
described ASBSR method.

4.3 Some Practical Issues

This section addresses four practical issues when applying the suggested
ASBSR method of image sampling and reconstruction: (i) robustness of the
method to the presence of noise in sensor data; (ii) practical considerations
regarding choosing shapes for bounding image spectra in image sampling and
reconstruction; (iii) image anti-aliasing pre-filtering; and (iv) computational
complexity of the method.

Noise robustness of the ASBSR method. Based on the description in
Section 4.1, the ASBSR method, just like the conventional sampling and
reconstruction, is linear, i.e., it satisfies the superposition principle. No
parameter of sampling and reconstruction algorithms depends on signal
values and, in particular, on the presence of noise in the signal. Therefore, the
sampling and reconstruction of an image that contains additive noise will
result in a reconstructed image that also contains additive noise with a power
spectrum bounded by the shape of the spectrum EC zone used for
reconstruction. In particular, if the sensor noise with variance s2 has a
uniform power spectrum within the sampling baseband, noise in the
reconstructed image will have variance ks2, where k < 1 is the relative area
of the reconstruction-spectrum EC zone approximating shape, and its power
spectrum will be uniform within the spectrum EC zone and zero outside it.

This conclusion is illustrated in Fig. 4.7 by the results of image sampling
and reconstruction with and without additive noise. The presence of noise in
sampled data has no influence on the work of the reconstruction algorithm.

Choosing the approximating shape of a spectrum EC zone to bound image
spectra for image sampling and BS reconstruction. As mentioned in Section 4.1,
no fine-tuning is practically required to specify the image-spectrum EC-
zone-shape parameters. Therefore, it is suggested that several standard shapes,
such as those shown in Fig. 4.1, should be found for different classes of images
such as landscape, portrait, micrographs, aerial and space photographs, etc.
This can be based, for instance, on a machine-learning algorithm trained on
various image databases. To sample images in a particular application, the user
should only specify an image class (this is the standard option for setting the
parameters of modern digital photocameras).
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Image anti-aliasing pre-filtering. As indicated in the previous section,
image pre-filtering before sampling is necessary to avoid aliasing effects and to
secure convergence of the iterative algorithm to an image with a bounded
spectrum. In ordinary imaging devices, anti-aliasing pre-filtering is carried out
by imaging optics together with the aperture of the image photosensor. The
ASBSR method generally includes choosing a spectrum EC zone shape for
each image. Ordinary photosensors cannot implement this choice. To solve
this problem, multiple aperture sensors can be used, such as those suggested in
Ref. 21. The required effective aperture of these sensors defined by the inverse
Fourier transform of the chosen-spectrum EC zone shape is synthesized by
combining, with appropriate weights, the signals from individual apertures.
The multiple aperture sensors are well suited for so-called single-pixel
cameras, where sampling is carried out using digital micro-mirror devices.

Figure 4.7 Images reconstructed (a) from a sampled noiseless test image and (b) from the
same sampled image contaminated with additive uncorrelated Gaussian noise with a
standard deviation of 20 gray levels; and (c), (d) the corresponding graphs of the RMSE of all
(solid lines) and of the smallest 90% (dashed lines) reconstruction errors vs. the number of
iterations.
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Computational complexity. The computational complexity of the image
BS-reconstruction iterative algorithm, per iteration, is determined by the
complexity O(2NlogN) of floating point operations for direct and inverse fast
transforms plus O(N) replacement operations of sample-wise modifications
of data in the image domain (M operations) and in its transform domain
(N�M operations). The order of magnitude of time required for one iteration
can be estimated from these data: for example, the elapsed time for a
MATLAB direct or inverse DCT of an array of N¼ 512�512 numbers
implemented on a PC (Lenovo ThinkPad X201 with an Intel i7 processor and
Windows 7 operating system) is 52 ms.

4.4 Other Possible Applications of the ASBSR Method of Image
Sampling and Reconstruction

The above discussed task of reconstruction of images of N samples from
M<N sampled data can be considered as a special case of underdetermined
inverse imaging problems. The solution to this problem, i.e., BS image
reconstruction, can be used to solve other underdetermined inverse imaging
problems, as well: (i) image super-resolution from multiple chaotically
sampled images, (ii) image reconstruction from sparsely sampled or decimated
projections, and (iii) image reconstruction from sparsely sampled Fourier
spectra.

4.4.1 Image super-resolution from multiple chaotically sampled video
frames

The first potential application is image super-resolution from multiple video
frames with chaotic pixel displacements due to atmospheric turbulence,
camera instability, or similar random factors.23 By means of elastic
registration of the sequence of frames of the same scene, one can determine
for each image frame and with sub-pixel accuracy (using the methods of image
correlation decribed in Section 5.3.3) the pixel displacements caused by the
random acquisition factors. Using these data, a synthetic fused image can be
generated by placing pixels from all available video frames in their proper
positions on the correspondingly denser sampling grid according to their
displacements. During this process, some pixel positions on the denser
sampling grid will remain unoccupied, especially when a limited number of
image frames are fused. These missing pixels can then be reconstructed using
the iterative BS-reconstruction algorithm described earlier. Figure 4.8 shows
an example of super-resolution from multiple chaotically sampled video
frames. The figure includes one of the low-resolution frames, an image fused
from 50 frames with pixel chaotic displacements, and the result of image
reconstruction from the fused image.23
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4.4.2 Image reconstruction from their sparsely sampled or decimated
projections

In computed tomography, a body slice often occupies only a fraction of the
entire image frame. This means that slice projections are Radon-transform
“bounded spectrum” functions. Therefore, regardless of how many projec-
tions or their samples are available, additional projections or samples
commensurate with the size of the slice’s empty zone, according to the discrete
sampling theorem, can be obtained, and a corresponding resolution increase
in the reconstructed images can be achieved using image BS reconstruction.
This option is illustrated in Figs. 4.9 and 4.10.

Figure 4.9 demonstrates the recovery of missing samples of image slice
projections sampled in random positions. In the experiment, simple
segmentation of the test image (Fig. 4.9(a)) found that the outer 55% of the
image area is empty. The same percentage of projection samples, selected
randomly using the MATLAB random number generator, were then zeroed
(Fig. 4.9(c)). The rest of the samples were used to recover missing samples
and, correspondingly, for image reconstruction with an iterative reconstruc-
tion algorithm identical to the image BS-reconstruction algorithm described
earlier except that the direct and inverse DCTs were replaced by direct and
inverse discrete Radon transforms.15

At each iteration of the algorithm, the current set of projections is
subjected to inverse Radon transform for obtaining a current estimate of the
reconstructed image. The outer empty zone of the reconstructed image is then
zeroed, and this modified image is subjected to a direct Radon transform to
obtain the next estimate of slice projections. In the obtained projections, their
available samples are restored, and the process repeats. The plot of the RMSE
of the slice-projection reconstruction error versus the iteration number shown

Figure 4.8 Image reconstruction with super-resolution from multiple chaotically sampled
frames: (a) one of the low-resolution frames; (b) the image fused by elastic image
registration from 50 frames; and (c) the result of iterative reconstruction with enhanced
resolution, obtained from image (b) after 50 iterations.
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in Fig. 4.9(d) and the result of recovering missing samples (Fig. 4.9(e)) show
that virtually perfect recovery of the missing 55% samples of slice projections
is possible with the iterative reconstruction algorithm after a few hundred
iterations.

Figure 4.10 illustrates that recovery of completely missing projections is
also possible. In the experiment, every second projection of the test
image shown in Fig. 4.9(a) was removed (Fig. 4.10(b)), and then all
initial projections were recovered (Fig. 4.10(c) by the above described
iterative algorithm that functions because the outer 55% of the image
area is known to be empty. This result suggests that for such cases,
when half or more of the image area is known to be empty, one can use
image BS reconstruction to achieve image reconstruction with super-
resolution that corresponds to a larger number of image projections than are
available.

Figure 4.9 Recovery of randomly sampled slice projections: test image (a); its slice
projections (b); slice projections randomly sub-sampled with rate 0.45 (c); plot of
slice projections reconstruction RMSE vs. the iteration number (d); the recovered slice
projections (e).

66 Chapter 4

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4.4.3 Image reconstruction from sparsely sampled Fourier spectra

Some imaging devices (e.g., some healthcare scanners) sample in the
transform domain. The proposed ASBSR method can be used in such
devices in common cases, when it is known that the object image is
surrounded by empty space. Figure 4.11 demonstrates this option with an
example of image reconstruction from its sparsely sampled Fourier spectrum.

In this example, the Fourier spectrum of the test image bounded by a
circular binary image mask was randomly sampled with a sampling rate equal
to the ratio of the image bounding circular area to the area of the entire image
frame. Additionally, the spectrum was bounded by a circular binary spectral
mask with a radius equal to the highest horizontal and vertical spatial
frequency of the baseband. This gives an additional 1�p/4¼ 21.5% savings
in the number of spectrum samples.

For image reconstruction, the iterative algorithm was used. At each
iteration, the iterated spectrum is inverse Fourier transformed to obtain an
iterated reconstructed image, and then the latter is multiplied by the bounding
circular image mask and Fourier transformed. Samples of the obtained
spectrum in the positions of available ones are replaced with those, and the
spectrum is bounded by the circular binary spectral mask to form an iterated
spectrum for the next iteration. The initial sparsely sampled and bounded
spectrum was used as a spectrum zeroth-order approximation, from which the
iterative reconstruction starts.

4.5 Exercises

ArbitrSamplingAndBSReconstr_SPIE.m

Simulation on a discrete model that uses the ASBSR method of image
sampling and reconstruction, featuring a DCT bounded spectrum iterative
reconstruction of images sampled with a sampling rate (SR) equal to (in
fractions of the sampling baseband in DCT domain) the area of a user-defined

Figure 4.10 (a) Recovery of missing image projections: original projections of the test
image of Fig. 4.9(a); (b) decimated projections with every second projection removed; and
(c) slice projections recovered from (b) using the iterative reconstruction algorithm.
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spectrum bounding shape times a user-defined sampling redundacy factor
Rednd (slightly larger than one). The latter is recommended to accelerate
iteration convergence. The number of iterations is a user-defined parameter.

Four types of the spectrum-bounding shapes can be chosen:

• Rectangle;
• Triangle;
• Oval; and
• Superellipse

Three types of sampling lattices can be used:

• Uniform: The positions of image samples are rounded off to positions
of the regular square sampling lattice that corresponds to the chosen

Figure 4.11 Image reconstruction from a sparsely sampled spectrum. Upper row, from left
to right: test image bounded by a binary circular mask with radius equal to 0.35 of the image
size; image bounding mask with bounding area 0.5; reconstructed image at the hundredth
iteration with the RMS of the reconstruction error equal to 2.5 gray levels (PSNR¼ 40 dB);
and pattern of reconstruction errors (the difference between test and reconstructed images).
Middle row, from left to right: absolute values of the Fourier spectrum of the test image, of its
spectrum randomly sampled with a sampling rate of 0.51, and of the reconstructed
spectrum. For display purposes, the absolute values of spectral samples are displayed
raised to a power of 0.3 and are shown with MATLAB color map “jet.” Bottom row: plot of the
reconstruction RMSE vs. the number of iterations.
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numbers of samples NofSamplX, NofSamplY (square root of the
product of image display size SzXxSzY and sampling rate);

• Uniform with random jitter: The X and Y coordinates of image samples
are randomly distributed between nodes of the square sampling lattice
of NofSamplXxNofSamplY pixels; and

• Totally random: The positions of image samples are randomly
distributed over nodes of the image display sampling lattice.

Zeroth-order approximation of the reconstructed image, from which
iterative reconstruction starts, is obtained by weighted summation of available
samples over Nint available pixels nearest to the sample being interpolated
within a window of pre-defined size Lxy with interpolation weights inversely
proportional to the distance of each nearest available sample from the
position of the pixel to be interpolated (subprogram Interpolation_Random-
Grid_spie.m).

Displayed are

• a test image,
• a sampled test image,
• a reconstructed image,
• a map of test image sparse spectrum and border of the chosen image

spectrum bounding shape,
• a plot of the RMS reconstruction error versus the number of iterations,

and
• the pattern of reconstruction error (difference between test and

reconstructed images).

The reconstructed image, reconstruction errors, and plots of the RMS
reconstruction error are displayed at each of the first 100 iterations and then
at each hundredth iteration. Non-square images are cropped to a square
shape.

SparseSampl_Recon_DFTspectrum_SPIE.m

Image reconstruction from its sparsely sampled DFT spectrum. The image is
supposed to be bounded by a circle with a user-defined radius. The image
DFT spectrum is sampled in random positions with a sampling rate equal to
the relative area of the image bounding circle times a user-defined sampling
redundancy coefficient. Slight redundancy (5–10%) is useful to accelerate the
algorithm convergence.
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Chapter 5

Signal and Image Resampling,
and Building Their Continuous
Models

5.1 Signal/Image Resampling as an Interpolation Problem;
Convolutional Interpolators

Many image processing applications must resample available digital images
in positions other than the original ones. Such applications include fusing
image data from different image modalities, building image mosaics from
many partly overlapped images, reconstructing images from projections,
producing image super-resolution from video sequences, stabilizing video
images distorted by atmosphere turbulence, locating targets, and tracking
with sub-pixel accuracy, to name a few.

Image resampling assumes that approximations of the original non-
sampled images are built by interpolating available image samples and then
resampling the obtained models in the required new positions. The most
feasible and amenable to optimization is signal interpolation by means of
digital convolution:

ãk ¼
XN�1

n¼0

hðintpÞn ak�n, (5.1)

where fãkg are samples of a signal obtained as a result of resampling the

initial signal samples fakg,
n
hðintpÞn

o
are samples of the interpolation filter

point spread function (PSF), and N is the number of available signal samples.
The problem of interpolating numerical data is one of the classic

mathematical problems that can be traced back to Babylonian times.22

Mathematical geniuses such as Newton, Euler, and Gauss contributed to its
solution. Presently, numerous interpolation methods are known. The most
popular in signal and image processing are convolutional methods, from the
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simplest nearest-neighbor and linear (bilinear, for the 2D case) interpolations
to more accurate cubic (bicubic, for the 2D case) and higher-order spline
methods. None of them, however, is perfect. According to the sampling
theorem (Section 2.5), sinc interpolation approximates continuous signals
from their samples with minimal RMS error. However, sinc interpolation
reconstruction requires an infinite number of samples, whereas digital signals
always have a finite number of samples. In the next section we show that
discrete sinc interpolation, i.e. interpolation with discrete sinc function as an
interpolation kernel, is a perfect discrete representation of continuous sinc-
interpolation and is a gold standard for numerical interpolation of samples
signals.

5.2 Discrete Sinc Interpolation: A Gold Standard for Signal
Resampling

Consider the design of a perfect resampling filter, i.e., determination of the

PSF
n
hðintpÞn

o
of an interpolation filter that is a discrete representation of the

continuous sinc function. To solve this problem, one can regard signal
coordinate shift as a general resampling operation, because samples of the
resampled signal for any required positions can be obtained one by one
through the corresponding shifts of the original signal to the given sample
positions.

In order to derive the perfect shifting filter, we will need the following
characteristics of digital filters and their properties, formulated in Sections 9.2
and 10.5:

• Discrete frequency response fhrg of a digital filter with PSF fhng
applied to the sampled signals of N samples. It is the DFT of its PSF:

hr ¼
1ffiffiffiffiffi
N

p
XN�1

n¼0

hn exp
�
i2p

nr
N

�
: (5.2)

• Continuous frequency response DFCFRð f Þ of a digital filter with the
discrete frequency response fhrg. According to Eq. (10.68), it is a
function

DFCFRð f Þ ¼ N
XN�1

r¼0

h

�
�N�1

2 ,0
�

r sincd½N, pð f ∕Df � rÞ�, (5.3)

interpolated from fhrg with the discrete sinc function

sincdðN, xÞ ¼ sinðxÞ
N sinðx∕NÞ (5.4)
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as an interpolation kernel, i.e., coefficients fhrg of the discrete frequency
response of a digital filter are samples of its continuous frequency
response DFCFRð f Þ taken with sampling interval Df at sampling points
frDf g:

fhr ¼ DFCFRð f ¼ rDf Þg: (5.5)

• Digital filter overall frequency response DFOFRð f Þ, i.e., frequency
response of a digital filter with respect to continuous signals that
correspond to samples of the filter input signals. For the ideal signal
sampling and reconstruction anti-aliasing low-pass filters, the overall
frequency response DFOFRð f Þ of a digital filter coincides with the
digital filter continuous frequency response DFCFRð f Þ within the signal
baseband [�1∕2Dx, 1∕2Dx] defined by the signal sampling interval Dx.

In these formulas, f is the frequency parameter of the integral Fourier
transform, and Df is the spectrum sampling interval for signal sampling
interval Dx and cardinal sampling Df ¼ 1∕NDx (Eq. (10.10)).

According to these definitions, the overall continuous frequency response

DFOFRðShiftÞ
dx ð f Þ of the perfect shifting filter for the x-coordinate shift dx must

equal (within the signal baseband [�1∕2Dx, 1∕2Dx]) the frequency response

HðShiftÞ
dx̃ ð f Þ of the continuous dx-shifting filter. The latter, by virtue of the

Fourier transform shift theorem (Appendix A1.4), equals expði2pf dxÞ.
Therefore,

DFOFRðShiftÞ
dx̃ ð f Þ ¼ HðShiftÞ

dx̃ ð f Þ ¼ expði2pf dxÞ; ð�1∕2Dx , f , 1∕2DxÞ:
(5.6)

Based on the formulated properties of the overall, continuous, and discrete
frequency responses of digital filters, it follows that the discrete frequency

response coefficients
n
h
ðdxÞ
r

o
of the perfect dx-shifting filter, for indices from

r ¼ 0 to r ¼ ðN � 1Þ∕2 for odd N and to r ¼ N∕2 for even N (which
correspond to the lowest and highest frequencies in the signal baseband), must
be samples in the sampling points frDf ¼ r∕NDxg of its continuous frequency
response. The rest of the coefficients should be set according to the symmetry

property h
ðdxÞ
r ¼ h

∗ðdxÞ
N�r of the DFT for real valued data (Eq. (A2.36)). Thus,

for an odd number of signal samples N, coefficients
n
h
ðdxÞ
r

o
must be set to

h
ðd̄xÞ
r ¼

8<
:

1ffiffiffi
N

p exp
�
i2p rd̄x

N

�
, r ¼ 0, 1, : : : , ðN � 1Þ∕2�

h
ðd̄xÞ
N�r

�
∗
, r ¼ ðN þ 1Þ∕2 , : : : , N � 1,

(5.7)
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where shift dx is expressed in fractions of the signal sampling interval:

d̄x ¼ dx∕Dx, (5.8)

the asterisk ∗ symbolizes the complex conjugacy, and the multiplier 1∕
ffiffiffiffiffi
N

p
is

introduced for normalization purposes.
For an even number of signal samples N, from the same requirement

h
ðdxÞ
r ¼ h

∗ðdxÞ
N�r it follows that coefficient hðdxÞ

N∕2, which corresponds to the signal’s
higher frequency in its baseband, must be a real number. Thus, for even N this
coefficient cannot be taken just as a sample of expði2prd̄x∕NDxÞ for r ¼ N∕2
and requires special treatment. The most natural setting is

h
ðdxÞ
r,opt ¼

8>><
>>:

1ffiffiffi
N

p expði2prd̄x∕NÞ , r ¼ 0, 1, : : : , N∕2� 1
Cffiffiffi
N

p cosðpd̄xÞ, r ¼ N∕2

h
ðdxÞ
r,opt ¼ ðhðdxÞ

N�r,optÞ∗ , r ¼ N∕2þ 1 , : : : , N � 1,

(5.9)

where C is a weight coefficient that defines the signal spectrum shape at its
highest-frequency component r ¼ N∕2.

For even N, the following three options for C are considered:

• Case 0 : C ¼ 0,
• Case 1 : C ¼ 1, and
• Case 2 : C ¼ 2:

(5.10)

Find the point spread function of the perfect shifting filter for an odd
number of samples N with a discrete frequency response defined by Eq. (5.7):

hðdxÞn ¼ 1ffiffiffiffiffi
N

p
XN�1

r¼0

h
ðd̄xÞ
r exp

�
�i2p

nr
N

�
¼

1ffiffiffiffiffi
N

p
( XðN�1Þ∕2

r¼0

h
ðd̄xÞ
r exp

�
�i2p

nr
N

�
þ

XN�1

r¼ðNþ1Þ∕2
h
ðd̄xÞ
r exp

�
�i2p

nr
N

�)
¼

1ffiffiffiffiffi
N

p
( XðN�1Þ∕2

r¼0

h
ðd̄xÞ
r exp

�
�i2p

nr
N

�
þ

XðN�1Þ∕2

r¼1

h
ðd̄xÞ
N�r exp

	
�i2p

n
N
ðN� rÞ


)
¼

1
N

( XðN�1Þ∕2

r¼0

exp
�
i2p

d̄x
N

r
�
exp

�
�i2p

nr
N

�
þ

XðN�1Þ∕2

r¼1

exp
�
�i2p

d̄x
NDx

�
exp

�
i2p

nr
N

�)
¼

1
N

( XðN�1Þ∕2

r¼0

exp
�
�i2p

n� d̄x
N

r
�
þ

XðN�1Þ∕2

r¼1

exp
�
i2p

n� d̄x
N

r
�)

:

(5.11)
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Now, Eq. (A2.8) can be used to obtain

hðdxÞn ¼ sincd½N, pðn� d̄xÞ�, (5.12)

where

sincdðN; xÞ ¼ sin x
N sinðx∕NÞ (5.13)

is the discrete sinc function, or sincd function.
In a similar way, one can obtain that for even N (Cases 0 and 2); the

perfect shifting filter PSFs are

hðd̄x, 0Þn ¼ sincdd½N � 1; N; pðn� d̄xÞ� (5.14)

and

hðdx,2Þn ðÞ ¼ sincdd½N þ 1; N; pðn� dx∕DxÞ�, (5.15)

respectively, where sincddðM; N; xÞ is the sincdd function defined by
Eq. (A2.49):

sincddðM; N; xÞ ¼ sinðMx∕NÞ
sinðx∕NÞ : (5.16)

Case 1 is an additive combination of Cases 0 and 2:

hðd̄x, 1Þn ¼ ½hðdx,, 0Þn ðd̄xÞ þ hðdx,, 2Þn ðd̄xÞ�∕2

¼
sin

h
pðN � 1Þ ðn�d̄xÞ

N

i
þ sin

h
pðN þ 1Þ ðn�d̄xÞ

N

i
N sin

�
p n�d̄x

N

�

¼ sin½pðn� d̄xÞ�
N sin½pðn� d̄xÞ∕N� cos½pðn� d̄xÞ∕N�,

(5.17)

that is,

hðdx,1Þn ðd̄xÞ ¼ cos
�
p
n� d̄x
N

�
sincd½N; pðn� d̄xÞ�: (5.18)

These three versions of sincd functions for Cases 0, 1, and 2 are illustrated
for comparison in Fig. 5.1.

The figure shows that the sincd function for Case 1 (Eq. (5.18)), apodized
by the cosine window, converges to zero substantially faster than for Cases 0

and 2 by halving the highest-frequency spectral coefficient hðint 1Þ
N∕2 . Thus, signal
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interpolation using this function as the interpolation kernel produces fewer
ringing oscillations in the interpolated signal at the signal edges, which makes
it preferable in practical applications.

Numerical interpolation using the discrete sincd functions given by
Eqs. (5.12), (5.14), (5.15), and (5.18) as the interpolation kernel is called
discrete sinc interpolation.

Figure 5.2 shows the continuous frequency response of the discrete sinc
interpolator (solid line) along with samples (stems) of the discrete frequency
response of the discrete sincd interpolator.

By definition (Eqs. (5.7) and (5.9)), the discrete frequency response of the
discrete sincd interpolator is by modulus a flat function within the signal
baseband except for halving the highest signal N∕2th frequency component
for Case 1 of the discrete sincd function for an even number N of signal
samples. This implies that discrete sinc interpolation does not distort the
intensity of the signal discrete spectrum within the baseband, and therefore it
secures perfect (for a given number of signal samples) resampling of discrete
signals that preserves the corresponding continuous signal power spectra in
their sampling points. All resampling filters with PSFs other than the discrete
sincd function will distort samples of the signal spectrum in the signal
baseband and, therefore, introduce additional interpolation error to the signal
distortions due to sampling. It is in this sense that discrete sinc interpolation
can be regarded as the “gold standard” of discrete signal interpolation.

Figure 5.1 Comparison of three versions of sincd functions.
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Section 5.4 will compare discrete sinc interpolation with other methods and
provide experimental evidence of its perfect performance and superiority.

5.3 Fast Algorithms of Discrete Sinc Interpolation and Their
Applications

5.3.1 Signal sub-sampling with DFT or DCT spectral zero-padding

One of the basic image resampling tasks is image sub-sampling (zooming in),
i.e., computing a set of intermediate samples from the given set of samples.
From properties of signal DFT spectra of sparse signals, discussed in
Appendix A2.9 (Eqs. (A2.47), (A2.48), (A2.50), and (A2.61)) it follows that
discrete sinc interpolated signal sub-sampling can be achieved by zero-
padding its DFT spectrum. Given the desired nomber N of the zoomed-in
signal samples and the number N0 of samples of the original signal, this
algorithm is described by the following equation:

ãk̃ ¼ IFFTNfDFT ZPN∕N0
½FFTN0

ðakÞ�g, (5.19)

where fakg, k ¼ 0, 1, : : : , N0 � 1 are the initial signal samples, fãk̃g are
zoomed-in signal samples, k̃ ¼ 0, 1, : : :N � 1, FFTN0

ð⋅Þ and IFFTNð⋅Þ are
N0-point direct and N-point inverse fast Fourier transform operators,
respectively, and DFT ZPN∕N0

[ ⋅ ] is a zero-padding operator. The zero-padding

Figure 5.2 Continuous (solid line) and discrete (solid stems) frequency responses of the
discrete sinc interpolator. Frequency indices are normalized by the width of the signal
sampling baseband.
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operator forms from an N0-point sequence of samples of the DFT spectrum of
signal fakg an N-point sequence by padding the former with a corresponding
number of zeros. Due to the symmetry properties of the signal DFT spectra, the
way in which the signal spectrum shoud be padded with zeros depends on
whether the number N0 of signal spectrum is odd or even (Fig. 5.3).

When N0 is an odd number, N �N0 zeros are placed between the
ðN � 1Þ∕2th and ðN þ 1Þ∕2th samples of the N0-point sequence of spectral
coefficients. When N0 is an even number, there are three options:

i. N �N0 þ 1 zeros are placed between the N0∕2� 1th and
N0∕2þ 1th samples of the N0-point sequence of spectral coefficients,
and the N0∕2th sample is zeroed;

ii. N �N0 � 1 zeros are placed after the N∕2th sample, and then the
sequence of spectral coefficients is repeated beginning from its
N0∕2th sample; and

iii. N0∕2th sample of the sequence is halved, N �N0 � 1 zeros are
placed after it, and then the N0∕2th through ðN0 � 1Þth samples of
the sequence are placed at the end (the N0∕2th sample is also
halved).

Cases i–iii implement the previously described Cases 0, 2, and 1 of discrete
sinc interpolation, respectively.

Sub-sampling of the 2D signals and image is implemented as separable in
two consecutive steps over each of two coordinates.

Although discrete sinc interpolation can perfectly preserve the signal
power spectrum, it has one major drawback. With the use of the FFT in the
resampling algorithm (Eq. (5.19)), images behave like they are periodic in
both coordinates. Therefore, samples at their left and right (and, correspond-
ingly, top and bottom) borders become immediate neighbors in the
interpolation process. Any discontinuity between opposite border samples
causes heavy oscillations due to the tails of the discrete sincd function that
propagate far from the borders.

A simple and very practical solution to this problem is zero-padding in
the domain of the DCT. For 1D signals, the DCT zero-padding algorithm for
the sub-sampling signal fakg of N0 samples (k ¼ 0, 1, : : : , N0 � 1), used to
obtain N . N0 samples of the sub-sampled signal fãk̃g, k̃ ¼ 0, 1, : : : , N � 1,
is defined by the equation

ãk̃ ¼ IDCTNfDCT ZPN∕N0
½DCTN0

fakg�g, (5.20)

where DCTN0
ð⋅Þ and IDCTNð⋅Þ are N0-point direct and N-point inverse

DCTs, and DCT ZPL[ ⋅ ] is a DCT spectrum zero-padding operator that
places N �N0 zeros after the last ðN0 � 1Þth DCT spectrum sample. For
faster decay of the interpolation kernel, it is also advisable to halve this last
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sample, which for the DCT represents the signal highest frequency
component. For 2D signals and images, this algorithm can be applied
separately to both coordinate indices.

Figure 5.3 Signal DFT spectrum zero-padding for an odd and even number of samples N0.
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The point spread function and frequency response of the DCT spectrum
zero-padding with and without halving its highest frequency component do
not exactly coincide with those of DFT, but they are very close to them.
Figure 5.4 compares the point spread functions and frequency responses of
DFT and DCT zero-padding of signal 5� sub-sampling.

The figure shows that halving the signal’s highest frequency component
fastens decaying oscillations of interpolation point spread functions very
substantially.

Contrary to the PSF of DFT zero-padding, which is a cyclic discrete
sincd function with a period that equals the number N of zoomed signal
samples, the PSF of DCT zero-padding is cyclic with a double period. Thus,
signal resampling by means of DCT spectrum zero-padding does not involve
signal samples from opposite borders, whereas DFT zero-padding does.
Figure 5.5 shows the PSFs of DFT and DCT zero-padding at the left and
right borders of the signal interval. This property of DCT zero-padding
prevents appearance of oscillations on image boards, which are characteris-
tic for image subsampling my means of DFT spectrum zero-padding.
Figure 5.6 demonstrates an improvement, in terms of boundary effects, in
image zooming by means of a DCT spectrum zero-padding algorithm
compared to the DFT spectrum zero-padding.

Computation-wise, zooming in on a signal N∕N0 times by zero-padding
its DFT or DCT spectra requires (with the use of FFT or fast DCT

Figure 5.4 Discrete point spread functions (a, b) and frequency responses (c, d) of DFT
and DCT zero-padding a signal with 5� sub-sampling (N ¼ 22, L ¼ 5) after zeroing (a, c)
and halving (b, d) the component with the highest signal frequency.
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algorithms) OðN0 logN0Þ operations for the direct transform of the signal
and OðN logNÞ operations for the inverse transform of the zero-padded
spectra. The next section presents DFT- and DCT-based signal subsampling
algorithms, which are, for integer zoom factors, less computationally costly.

The spectrum zero-padding method is a good practical solution for image
zooming with rational zoom factors. Image zooming with DCT spectral zero-
padding can be naturally used when images are represented in a compressed
form, e.g., JPEG compression. In this case, zooming can be performed
without the need to decompress images.

5.3.2 Signal sub-sampling (zooming-in) by means of DFT- and
DCT-based perfect fractional shift algorithms

This section introduces signal sub-sampling algorithms that are alternatives
to the above described spectrum zero-padding algorithms and are based on
the perfect dx-shifting filter introduced in Section 5.2. This filter can be used
to perform signal/image zooming (sub-sampling) with an arbitrary integer
sub-sampling factor L by repeatedly generating ðL� 1Þ signal/image copiesn
ãðl∕LÞk

o
shifted by a corresponding multiple of 1∕L shifts:

Figure 5.5 Point spread function of 5� signal sub-sampling by means of DFT and DCT
zero-padding on the (a) left and (b) right signal borders.

Figure 5.6 (a) Zooming in on an image fragment outlined by a white box (b) by zero-
padding its DFT spectrum and (c) by zero-padding its DCT spectrum.
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ãðl∕LÞk ¼ IFFTN

nh
h
ð1∕LÞ
r

i
•

h
FFTN

�
ãððl�1Þ∕NÞ
k

�io
, l ¼ 1, : : : , L� 1, (5.21)

where FFTNð⋅Þ and IFFTNð⋅Þ are the direct and inverse N-point FFTs,
respectively; • symbolizes the component-wise (Hadamard) matrix product of

elements of two arrays; and fhðl∕LÞ
r g is a set of coefficients defined for odd

and even N by Eqs. (5.7) and (5.9), respectively, in which d̄f are replaced by
fractional shifts l∕L.

The entire sub-sampled signal is obtained as a combination of the shifted
copies in the corresponding order:

˜̃akLþl ¼ ãðl∕LÞk ; k ¼ 0, : : : , N � 1, l ¼ 0, : : : , L� 1: (5.22)

The work of this algorithm is illustrated by a plot in Fig. 5.7 obtained
using the program Sincd_interpol_2D_SPIE.m provided in the Exercises. For
2D signal/image sub-sampling (zooming in), this algorithm should be applied
in two passes, say, row-wise and then column-wise, as illustrated in Fig. 5.8.

Mathematically, such a signal-zooming method is equivalent to the DFT
spectrum zero-padding described earlier, but it is less computationally costly.
Its computational complexity for a zooming factor L is OðlogNÞ per output
sample rather than OðlogLNÞ for the zero-padding method.

Zoomed-in signals/images obtained in this way represent the most perfect
“continuous” models that can be generated from the signal samples for a given
sub-sampling rate. Such models can be used to perform image resampling over
an arbitrary sampling grid. In this process, the required image samples (whose
positions do not coincide with one of sampling nodes of the denser sampling
lattice of the zoomed image) can be approximated by the nearest available
sample of the zoomed image (Fig. 5.9(a)).

Provided appropriately chosen zoom-factor, nearest-neighbor interpola-
tion in combination with discrete sinc interpolated zooming with a sufficiently
large zoom factor will not compromise interpolation accuracy substantially.

Figure 5.7 Initial signal samples (bold) and four sets of its sub-samples shifted by
1/5 (shift 1), 2/5 (shift 2), 3/5 (shift 3), and 4/5 (shift 4) of the sampling interval by the perfect
shifting filter.
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For instance, as one can see from the plot of the frequency response of the
nearest neighbor interpolator shown in Fig. 5.9(b) for a zoom-factor-5 decay
of the frequency response on the highest spatial frequency of the initial image
is only 1.3% and for a zoom factor of 3 it is 3.5%.

One of the important applications in which “continuous” image models
are required is the fast location and tracking of moving targets in video

Figure 5.8 Row-wise (upper row) and column-wise (bottom row) image sub-sampling
through fractional shifts.

Figure 5.9 (a) Nearest-neighbor interpolation for resampling zoomed images and (b) its
frequency response within the zoomed image baseband ([�0.5 ÷ 0.5]). Double arrows show
the basebands of initial images before their 5� and 3� zoom.
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sequences. In this case, template images of the target with arbitrary
orientation and scale can be very rapidly computed by means of correspond-
ing resampling of the zoomed-in template image of the target obtained with a
sufficiently large zoom factor.

Other application examples are image reconstruction from projections
using the direct Fourier reconstruction algorithm and image reconstruction
from fan-beam projections, which will be discussed in Section 6.2.

As a cyclic convolution, the “DFT-based” signal fractional shift algorithm
suffers from the same boundary effects as the DFT zero-padding algorithm
described earlier. An efficient practical solution computes the convolution in
the DCT domain instead of in the DFT domain, as will be described in
Section 10.4.

The DCT-based signal d̄x-shifting algorithm is defined by the equation

ãðd̄xÞk ¼ 1ffiffiffiffiffiffiffi
2N

p
�
a
ðDCTÞ
0 h̃

ðd̄xÞ
0 þ 2

XN�1

r¼1

a
ðDCTÞ
r Re

�
h̃
ðd̄xÞ
r

�
cos

�
p
k þ 1∕2

N
r
�
�

2ð�1Þk
XN�1

r¼1

a
ðDCTÞ
N�r Im

�
h̃
ðd̄xÞ
N�r

�
cos

�
p
k þ 1∕2

N
r
��

,

(5.23)

which follows from Eq. (10.63). Reð⋅Þ and Imð⋅Þ in Eq. (5.23) are, respectively,

real and imaginary parts of the operand. The filter coefficients
n
h̃
ðd̄xÞ
r

o
in this

equation are defined by Eqs. (10.55) and (10.58), in which one of the discrete
sincd functions defined by Eqs. (5.14), (5.15), and (5.17) should be used as the
convolution kernel fhng. Thus, the DCT-based algorithm is equivalent, in
terms of the interpolation accuracy, to the above DFT-based versions of a
perfect fractional shift algorithm.

When applied to L-times signal zoom, the algorithm must be applied
L� 1 times with shift d̄x ¼ l∕L, l ¼ 1, 2, : : : , L� 1, similar to the DFT-
based algorithm. With respect to boundary effects, the DCT-based
fractional shift algorithm is as efficient as the DCT spectrum zero-padding
algorithm. Figure 5.10 illustrates this with an example of sub-sampling a
saw-tooth signal.

The figure shows that the heavy oscillations that propagate from signal
borders in DFT-based discrete sinc interpolation almost completely disappear
when the DCT-based version of the algorithm is used.

5.3.3 Quasi-continuous signal spectral and correlational analysis
using the perfect fractional shift algorithm

One of the primary tasks of digital signal processing is signal spectral analysis,
i.e., the estimation of signal Fourier spectra, detection of signals’ periodic
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components, and measurement of their frequencies. The presence of periodic
components appears in the peaks of the Fourier spectra of signals, the
positions of which determine the frequencies of the components. As will be
shown in Chapter 10, to numerically evaluate a signal’s Fourier spectra from
their samples, DFTs can be used as a discrete representation of the integral
Fourier transform. Given a signal sampling interval Dx and a number of
signal samples N, the frequencies of the signal DFT spectra are quantized
with a spectrum sampling interval Df ¼ 1∕NDx (Section 10.1, Eq. (10.10)). It
is the basic resolving power of signal spectral analysis using DFTs. However,
in applied signal spectral analysis, it is frequently required to measure
frequencies of periodic signal components with sub-sampling interval
accuracy, i.e., to perform numerical “quasi-continuous” Fourier spectral
analysis. Above introduced perfect fractional shift filter applied to signal DFT
spectra enables such a “quasi-continuous” Fourier spectral analysis.

Analogous to the signal fractional shift algorithm (Eq. (5.21)) for the
“quasi-continuous” spectrum analysis of a signal fakg with sub-sampling rate

L, before computing the signal’s fractionally shifted spectra
n
a
ðl∕LÞ
r

o
,

l ¼ 0, : : : , L� 1, it should be modulated by the corresponding phase shifting

coefficients lðl∕NÞ
k :

ã
ðl∕LÞ
r ¼ FFTN

�
akl

ðl∕LÞ
k

�
¼ 1ffiffiffiffiffi

N
p

XN�1�

k¼0

akl
ðl∕LÞ
k exp

�
i2p

kr
N

�
: (5.24)

For an odd number N of signal samples, the modulation coefficientsn
l
ðl∕NÞ
k

o
are defined as

Figure 5.10 DFT-based vs. DCT-based 8� sub-sampling of a signal shown by dotted
stems.
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l
ðl∕NÞ
k ¼

8<
:

1ffiffiffi
N

p exp
�
i2p lk

NL

�
, k ¼ 0, 1, : : : , N�1

2�
l
ðl∕LÞ
N�k ,

�
∗
k ¼ Nþ1

2 , : : : , N � 1,
(5.25)

where the asterisk ∗ denotes complex conjugacy.
For an even number N of signal samples, the modulation coefficientsn

l
ðl∕NÞ
k

o
are defined as

l
ðl∕NÞ
k ¼

�
expði2pl∕LNÞ , k ¼ 0, 1, : : : , N∕2� 1
C cosðpl∕NÞ, k ¼ N∕2

l
ðl∕NÞ
k

ðdf Þ
k ¼

�
l
ðl∕NÞ
k

�
∗
, k ¼ N∕2þ 1 , : : : , N � 1,

(5.26)

which can use the same three options as those for signal fractional shift
(Eq. (5.10)):

• Case 0: C ¼ 0;
• Case 1: C ¼ 1; and
• Case 2, C ¼ 2.

As shown in Appendix A2.12, the spectrum
n
ã
ðl∕LÞ
r

o
of such a modulated

signal for odd N is l∕L-shifted over the frequency coordinate and discrete sinc
interpolated spectrum of the non-modulated signal

ã
ðl∕LÞ
r ¼

XN�1

s¼0

assincd½N; pðr� sþ l∕LÞ�: (5.27)

For even N, similar to the shifted discrete sinc interpolated signal
(Eqs. (5.14), (5.15), (5.16), and (5.18)), the l∕L-shifted discrete sinc
interpolated spectrum for Case 0 is

ã
ðl∕LÞ
r ¼

XN�1

s¼0

assincdd½ðN � 1Þ; N; pðr� sþ l∕LÞ�; (5.28)

for Case 1,

ã
ðl∕LÞ
r ¼

XN�1

s¼0

as cos½pðn� d̄xÞ∕N�sincd½pðn� sþ l∕LÞ�; (5.29)

and for Case 2,
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ã
ðl∕LÞ
r ¼

XN�1

s¼0

assincdd½ðN þ 1Þ; N; pðr� sþ l∕LÞ�; (5.30)

where sincdd[M; N; x] is the sincdd function (Eq. (5.16)).
The L mutually shifted interpolated copies of the signal spectrum should

be combined with the corresponding shifts to form a sub-sampled LN-point
signal spectrum:

˜̃aðl∕LÞ
rLþl ¼ ã

ðl∕LÞ
r ; r ¼ 0, : : : , N � 1, l ¼ 0, : : : , L� 1: (5.31)

This method of signal spectral analysis with sub-sample resolution is
illustrated in Fig. 5.11, obtained by using the program ContinuousSpectral
Analysis_SPIE.m provided in the Exercises.

Yet another important task in signal and image processing is computing
signal/image correlations. For instance, for target location in images, cross-
correlation between the image of the target object to be located and the image,
where the target is searched for, is computed and the position of the highest
cross-correlation peak is determined in the cross-correlation image and is
taken as coordinates of the target.20

In signal correlational analysis, direct localization of correlation peaks in
sampled signal is possible with the accuracy of the signal sampling interval Dx,
although some applications require more accurate localization. Such a
“quasi-continuous” correlation analysis can be implemented using the perfect
fractional shift algorithm.

Figure 5.11 Spectral analysis with sub-sample resolution.
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In order to enable locatization with sub-pixel accuracy cross-correlation,
the cross-correlation image should be computed as sub-sampled with respect
to correlated images. According to the convolution theorem (Appendix A2.5),
the DFT spectrum of the cross-correlation between two images is a product of
the DFT spectrum of the first image and the complex conjugate to the DFT
spectrum of the second image. Therefore, the sub-sampled cross-correlation
fckg between two images fakg and fbkg, k ¼ 0, : : : , N � 1, can, by direct
analogy with signal sub-sampling (Eqs. (5.21) and (5.22)), be computed as

˜̃ckLþl ¼ c̃ðl∕LÞk ; k ¼ 0, : : : , N � 1, l ¼ 0, : : : , L� 1, (5.32)

where

c̃ðl∕NÞ
k ¼ IFFTN

nh
h
ðl∕NÞ
r

i
• ½FFTNðakÞ� • ½FFTNðbkÞ�∗

o
, l ¼ 1, : : : , L� 1,

(5.33)

FFTNð⋅Þ and IFFTNð⋅Þ are N-point direct and inverse FFT operators, the
dot • symbolizes an element-wise product of arrays, the asterisk ∗ symbolizes

complex conjugacy, and the phase modulation coefficients
n
h
ðl∕NÞ
r

o
are

derermined for odd and even N by the corresponding Eqs. (5.7), (5.9), and
(5.10).

5.3.4 Fast image rotation using the fractional shift algorithm

Rotation of a 2D coordinate system by an angle u can be described in terms of
the geometrical transformation of signal coordinates as the multiplication of
signal coordinate vector ðx, yÞ by a rotation matrix ROTu:	

x̃
ỹ



¼ ROTu

	
x
y



¼

h cosu � sinu
sinu cosu

i	 x
y



: (5.34)

Given sampling intervals ðDx, DyÞ, the physical coordinates ðx, yÞ of
sampled signals are represented by the integer indices of pixels fk, lg:	

x
y



¼

	
kDx

lDy



, (5.35)

and the rotation matrix is applied to the vector of indices:	
k̃
l̃



¼ ROTu

	
k
l



¼

	
cosu � sinu
sinu cosu


	
k
l



: (5.36)

Equation (5.36) describes the resampling rule that should be applied to the
input image pixel indices fk, lg to generate the indices fk̃, l̃g of its rotated
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copy. In order to reduce the computational complexity of this transformation,
it is advisable to factorize the rotation matrix into a product of three matrices,
each of which modifies only one coordinate:

ROTu ¼
	
cosu � sinu
sinu cosu



¼

	
1 � tanðu∕2Þ
0 1


	
1 0
sinu 1


	
1 � tanðu∕2Þ
0 1



,

(5.37)

which implies that performing rotation in three passes will shift along one of
the coordinates: along rows for the first pass, along columns for the second
pass, and again along rows for the third pass. Specifically, when rotating an
image of Nx �Ny pixels (k ¼ 0, 1, : : : , Nx � 1, l ¼ 0, 1, : : : , Ny � 1)
around point (0 ≤ k0 ≤ Nx � 1; 0 ≤ l0 ≤ Ny � 1), during the first pass the

kth row is shifted by d
ðkÞ
x ∕Dx ¼ � tanðu∕2Þðk � k0Þ, during the second pass

the lth column is shifted by d
ðlÞ
y ∕Dy ¼ sinuðl � l0Þ, and during the third pass

the kth row is shifted by d
ðkÞ
x ∕Dx ¼ � tanðu∕2Þðk � k0Þ. This implementation

is known as the three-pass rotation algorithm, illustrated in Fig. 5.12.
The introduced DFT- or DCT-based signal fractional shift algorithms are

ideally suited to perform these shifts. As far as these algorithms implement a
cyclic convolution, image rotation by this method entails characteristic
aliasing effects at image borders. They are illustrated in Figs. 5.12(b) and (d).
They can be avoided by inscribing the image into an array of correspondingly
larger size, as shown in Fig. 5.12(a), or by using only the aliasing-free
image part inside the circle of the diameter, equal to the image linear size
(see Fig. 5.12(d)).

5.3.5 Signal and image resampling using scaled and rotated DFTs

DFT- and DCT-based fractional shift algorithms enable perfect signal/image
discrete sinc interpolated sub-sampling with rates defined by integer numbers.
The scaled DFT introduced in Chapter 10 (Eqs. (10.16) and (10.17)) enables,
in principle, signal/image discrete sinc interpolated resampling with arbitrary
rational scale factors. This capability follows from the fact that, for signals
fakg with N samples, the DFT scaled with a scale factor s is by definition
(Eq. (10.17))

a
ðsÞ
r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XdsNe�1

k¼0

ak exp
�
i2p

kr
dsNe

�
, (5.38)

equivalent to a dsNe-point canonic DFT of this signal padded with
ðdsNe �NÞ zeros:
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a
ðsÞ
r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XsN�1

k¼0

ãk exp
�
i2p

kr
dsNe

�
;

ãk ¼
�
ak, k ¼ 0, 1, : : : , N � 1

0, k ¼ N, N þ 1, : : : , dsNe � 1:

(5.39)

dsNe in these equations denotes the integer closest to dsNe.
This, in particular, means that the direct scaled DFT (Eq. (5.38)) perfoms

spectral analysis with a sub-sampling factor dsNe∕N, and the signal scaling

Figure 5.12 The principle of the three-pass image rotation algorithm and aliasing effects
associated with its implementation through cyclic convolution: (a) rotation without aliasing;
(b) rotation with aliasing effects owing to the cyclicity of the convolution; (c) initial image; and
(d) image rotated 36° ten times, which shows aliasing effects outside the circle of the
diameter equal to the image’s linear size.
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that uses the scaled DFT (ScDFT) is nothing but signal sub-sampling by
means of DFT spectrum zero-padding.

A non-trivial application involves the scaled DFT combined with image
rotation using rotated scaled DFT for simultaneous image zooming and
rotation. The algorithm of image resizing and rotation uses the following
steps:

• For image fam,ng of N �N pixels, compute its shifted DFT
spectrum far,sg with shift parameters fum; un; vr ¼ �ðN � 1Þ∕2;
vs ¼ �ðN � 1Þ∕2g;

• Pad the obtained spectrum far,sg with zeros in both coordinates to size
dsNe � dsNe, where s is the desired zoom factor; and

• Apply the inverse rotated and scaled shifted DFT (ShDFT)
(Eq. (10.32)) to the zero-padded spectrum with scale and rotation
angle parameters s and u, and with shift parameters in the signal
domain fuk; ulg and in the spectral domain fvr; vsg identical to those
used to compute the signal-shifted DFT.

Appendix A2.13 (Eq. (A2.83)) will show that the resulting image ãk,l is a
dsNe∕N-times zoomed and discrete sinc interpolated copy of the initial image
fam,ng rotated by angle u:

ãk,l ¼
N2

dsNe
XN�1

m¼0

XN�1

n¼0

am,n sincdfN; p½m̃�Nðk̃ cosuþ l̃ sinuÞ∕dsNe�g

� sincdfp½ñþNðk̃ sinu� l̃ cosuÞ∕dsNe�g,
m̃ ¼ mþ um, ñ ¼ nþ un; k̃ ¼ k þ uk, l̃ ¼ l þ ul:

(5.40)

Although the inverse rotated and scaled ShDFT cannot be directly
computed using FFT algorithms, it can be represented as a digital convolution
(as will be shown in Appendix A2.14), and thus it can be efficiently computed
using the FFT. To avoid the boundary effects associated with the cyclic
convolution of the FFT, convolution in the DCT domain is recommended.

To conclude the discussion of image resampling algorithms through
manipulations with the image DFT and DCT spectra: these algorithms
are ideally suited to adaptive image restoration and enhancement
by nonlinear modification of image spectra, such as soft and hard
thresholding.16 Figure 5.13 illustrates this option. It shows the result of
simultaneous image rotation and scaling, as well as the result of image
rotation, scaling, de-noising, and enhancement by hard thresholding the
low-energy DCT spectral coefficients combined with the rising absolute
values of the remaining (not zeroed by thresholding) image spectral
coefficients to a power P , 1 (in this case, P ¼ 0.5).
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5.4 Discrete Sinc Interpolation versus Other Interpolation
Methods: Performance Comparison

This section provides experimental evidence of the superiority of the discrete
sinc interpolation over other, more traditional numerical interpolation
methods in terms of the interpolation accuracy and signal preservation.
Compared with discrete sinc interpolation are the methods offered by the
MATLAB image-processing toolbox: nearest-neighbor interpolation, linear
(bilinear) interpolation, and cubic (bicubic) spline interpolation. Point spread
functions and frequency responses of the compared interpolation methods are
shown in Fig. 5.14.

Plots of the frequency responses of the methods (Fig. 5.14(c)) reveal a
major drawback of the traditional interpolation methods: they tend to
substantially attenuate high-frequency components within the signal baseband
(frequency interval [�0.5 ÷ 0.5]) and pass substantial aliasing frequency
components outside this interval. In imaging, this tendency results in image
blurring that can worsen the visual image quality and its applicability to
object recognition, target location, and such.

Figures 5.15–5.17 present the test images and results of comparison
experiments on image rotation by multiple of 360° performed using the
program RotateComparis_demo.m provided in the Exercises. In the
experiments, test images, a piece of text (Fig. 5.15(a)), and a realization of
pseudo-random image with a uniform Fourier spectrum within a square
[�0.35 , f x , 0.35; �0.35 , f y , 0.35 ] of the baseband (Fig. 5.15(b))
were rotated 1080° in 60 rotations of 18° using nearest-neighbor, bilinear,
bicubic, and discrete sinc interpolation. For nearest-neighbor, bilinear, and
spline interpolation methods, rotations were performed using the standard

Figure 5.13 Simultaneous image resizing, rotation, denoising, sharpening and
enhancement using the rotated scaled DFT (RotScDFT): (a) initial image; (b) 10°-rotated
and 1.7�-magnified image; and (c) 10°-rotated, 1.7�-magnified, denoised, sharpened, and
enhanced image.
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MATLAB program imrotate.m from the image-processing toolbox. For
discrete sinc interpolated rotation, a program was used that implements the
three-step rotation algorithm through the DFT-based fractional shift
algorithm described in Section 5.3.4.

The rotation results shown in Fig. 5.16 for the “Text” image
demonstrate (1) that the readability of the test image is completely destroyed
after 60 steps of rotation due to blur when the standard nearest-neighbor,
bilinear, and bicubic interpolation were used, and (2) that the test image is
perfectly preserved after the same number of rotations when using discrete
sinc interpolation.

In the analysis of interpolation errors, it is instructive to compare their
power spectra to see which spectral components suffer more. For this purpose,

Figure 5.14 (a, b) Point spread functions and (c) frequency responses of nearest-neighbor
(nn), linear (lin), bicubic spline (spl), and discrete sinc interpolators.
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Figure 5.15 Test images for comparison of interpolation methods: (a) “Text” image and
(b) realization of a pseudo-random image with a uniform spectrum within 0.7 of the
baseband (“Prus” image).

Figure 5.16 Discrete sinc interpolation vs. conventional numerical interpolation methods
used for 60�18° rotations of the test image “Text”: (a) nearest-neighbor, (b) bilinear,
(c) bicubic, and (d) discrete sinc interpolation.
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test image “Prus” is appropriate. Figure 5.17 presents the spectrum of the test
image (Fig. 5.17(a)) and the spectra of rotation errors computed as the spectra
of differences between the initial test image “Prus” and the results of its
rotation by 1080° performed in 60 steps using bilinear, bicubic, and discrete
sinc interpolations. The displayed error spectra were accumulated over 100
realizations of the test image “Prus.” The figure shows that in the case of
discrete sinc interpolation, the error spectrum is practically zero within the
baseband circle, whereas for bicubic and bilinear interpolation, the error
spectra intensity is low only for low spatial frequencies and grows to high
frequencies.

Figure 5.17 (a) Spectrum of test image “Prus” and spectra of rotation error after
60�18° rotations of the image using (b) bilinear, (c) bicubic, and (d) discrete sinc
interpolation. All spectra are shown in frequency coordinates (white arrows) centered at the
spectrum zero frequency (dc component), with the image luminosity proportional to the error
spectra intensity; the bright points in (d) are spectral aliasing components intentionally left at
the borders of the test image baseband to secure, for display purposes, the same image
dynamic range as in (b) and (c).
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To conclude this discussion of discrete sinc interpolation methods and
their applications, note that the fast Fourier transform algorithm was invented
about 200 years ago by Karl Friedrich Gauss to facilitate the numerical
interpolation of sampled astronomical observation data by means of spectral
zero-padding.25

5.5 Exercises

Sincd_interpol_2D_SPIE.m

Demonstration of 1D and 2D signal discrete sinc interpolated fast sub-
sampling with signal fractional shifts. User-defined parameters are the type of
test signals and the signal sub-sampling rate.

ContinuousSpectralAnalysis_SPIE.m

Demonstration of continuous spectrum analysis. Sinusoidal signals with non-
integer frequencies specified by the user are used as test signals. Displayed are
the test signal, interpolated signal DFT spectrum, and found estimate of the
signal frequency.

RotateComparis_demo_SPIE.m

Comparison of three interpolation methods of MATLAB’s routine imrotate.m
(nearest-neighbor, bilinear, and bicubic) and the three-step image rotation
algorithm with discrete sinc interpolation implemented in the DFT and DCT
domains. Three options are offered:

• Single rotation of test image “Text,”
• Multiple rotations of test image “Text,” and
• Multiple rotations of a pseudo-random test image by 10� 36° with the

rotation error spectra accumulating over a number of test image
realizations specified by the user.

Displayed are (a) images in the process of rotation, (b) rotation errors found as
the difference between the input and multiple 360°-rotated images, and (c) the
rotation-error DFT power spectra. In the titles of rotated images, the elapsed
computation time T is also indicated.
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Chapter 6

Discrete Sinc Interpolation
in Other Applications and
Implementations

6.1 Precise Numerical Differentiation and Integration of
Sampled Signals

6.1.1 Perfect digital differentiator and integrator

Signal numerical differentiation and integration are operations that require
measuring infinitesimal increments of signals and their arguments. Therefore,
the numerical computation of signal derivatives and integrals assumes the
building of “continuous” models of signals specified by their samples through
explicit or implicit interpolation between available signal samples.

Because differentiation and integration are shift-invariant linear operations,
methods of computing signal derivatives and integrals from their samples can
be conveniently designed and compared in the Fourier transform domain. Let
the Fourier transform spectrum of a continuous signal aðxÞ be að f Þ:

aðxÞ ¼
Z̀
�`

að f Þ expð�i2pf xÞdf : (6.1)

Then the Fourier spectrum of its derivative

d
dx

aðxÞ ¼
Z̀
�`

½ð�i2pf Það f Þ� expð�i2pf xÞdf (6.2)

will be ð�i2pf Það f Þ, and the Fourier spectrum of its integral

āðxÞ ¼
Z

aðxÞdx ¼
Z̀
�`

��
� 1
i2pf

�
að f Þ

�
expð�i2pf xÞdf (6.3)
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will be að f Þ∕ð�i2pf Þ. Therefore, signal differentiation and integration can be
regarded as signal linear filtering with filter frequency responses, respectively:

Hðdif f Þð f Þ ¼ �i2pf (6.4)

and

HðintgÞð f Þ ¼ i∕2pf : (6.5)

Let signal aðxÞ now be represented by its samples fakg, k ¼ 0, 1, : : : , N � 1,
and let farg be a set of DFT coefficients of the discrete signal fakg:

ak ¼
1ffiffiffiffiffi
N

p
XN�1

r¼0

ar exp
�
�i2p

kr
N

�
: (6.6)

Following the argumentation of Section 5.2 for the optimal resampling
filter and using the relationship of Eq. (A2.39) in Appendix A2.8 that
establishes mutual correspondence between the continuous signal frequency f

and frequency index r of its DFT, one can conclude that samples
n
h
ðdif f Þ
r,opt

o
and

n
h
ðintgÞ
r,opt

o
of the continuous frequency responses of perfect numerical

differentiation and integration filters are defined for even N as

h
ðdif f Þ
r ¼

8<
:

�i2pr∕N, r ¼ 0, 1, : : : , N∕2� 1
�p∕2, r ¼ N∕2
i2pðN � rÞ∕N, r ¼ N∕2þ 1, : : : , N � 1

(6.7)

and

h
ðintgÞ
r,opt ¼

8>>><
>>>:

0, r ¼ 0
iN∕2pr, r ¼ 1, : : : , N∕2� 1
�p∕2, r ¼ N∕2
iN∕2pðN � rÞ, r ¼ N∕2þ 1, : : : , N � 1,

(6.8)

and for odd N as

h
dif f
r ¼

��i2pr∕N, r ¼ 0, 1, : : : , ðN � 1Þ∕2� 1
i2pðN � rÞ∕N, r ¼ ðN þ 1Þ∕2, : : : , N � 1

(6.9)

and

h
ðintgÞ
r ¼

�
iN∕2pr, r ¼ 0, 1, : : : , ðN � 1Þ∕2� 1
iN∕2pðN � rÞ, r ¼ ðN þ 1Þ∕2, : : : , N � 1:

(6.10)
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Note that the coefficients hðdif f Þ
N∕2 and h

ðintgÞ
N∕2 in Eqs. (6.7) and (6.8) are halved,

which corresponds to the aforementioned Case 1 of discrete sinc interpolation
(Eq. (5.9)).

Equations (6.7)–(6.10) suggest the following algorithmic implementation
to compute the derivatives and integrals of signals specified by their samples:

fȧkg ¼ IFFT
�n

h
ðdif f Þ
r

o
• FFTðfakgÞ

	
, (6.11)

fākg ¼ IFFT
�n

h
ðintgÞ
r

o
• FFTðfakgÞ

	
, (6.12)

where FFTð⋅Þand IFFTð⋅Þ are direct and inverse FFTs, and • symbolizes
the element-wise multiplication of arrays. Thanks to the FFT, the compu-
tational complexity of the algorithms is OðlogNÞ operations per signal
sample. The digital filter described by Eq. (6.11) is called the discrete ramp
filter.

Like all DFT-based discrete sinc interpolation algorithms, DFT-based
differentiation and integration algorithms (the most accurate in terms of
preserving signal spectral components within the baseband) suffer from
boundary effects. Especially vulnerable in this respect is DFT-based
differentiation because of the potential discontinuities at signal borders due
to their periodic replication when processing in the DFT domain. This
drawback can be sufficiently alleviated by extending the signals to double
their length with mirror reflection at their borders before applying the DFT-
based algorithms described earlier. For such extended signals, DFT-based
differentiation and integration are reduced to using the fast DCT instead of
the FFT:

fȧkg ¼ � 2p

N
ffiffiffiffiffiffiffi
2N

p ð�1Þk
XN�1

r¼1

ðN � rÞaðDCTÞ
N�r cos

�
p
k þ 1∕2

N
r
�

(6.13)

and

fākg ¼
ffiffiffiffiffi
N

p

2p
ffiffiffi
2

p ð�1Þk
XN�1

r¼1

a
ðDCTÞ
N�r

N � r
cos

�
p
k þ 1∕2

N
r
�
, (6.14)

where
n
a
ðDCTÞ
r

o
are the DCT transform coefficients of the signal. Naturally,

the computational complexity of these algorithms is the same OðlogNÞ
operations per signal sample. These formulas can be obtained as special cases
of the fast digital convolution algorithms described in Section 10.4 if one
substitutes into Eq. (10.63) the frequency responses of differentiation and
integration filters given by Eqs. (6.7)–(6.10). We will refer to the filters defined
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by Eqs. (6.13) and (6.14) as the DCT-based differentiation ramp filter and
DCT-based integration filter, respectively.

6.1.2 Conventional numerical differentiation and integration
algorithms versus perfect DFT/DCT versions: performance
comparison

In numerical mathematics, signal numerical differentiation and integration
are commonly implemented through signal discrete convolution in the signal
domain:

ȧk ¼
XNh�1

n¼0

hðdif f Þn ak�n (6.15)

and

āk ¼
XNh�1

n¼0

hintn ak�n, (6.16)

and the following differentiating kernels of two and five samples are
recommended in manuals on numerical methods:26

hdif f ð1Þn ¼ ½�0.5, 0, 0.5� (6.17)

and

hdif f ð2Þn ¼ ½�1∕12, 8∕12, 0 , �8∕12, 1∕12�: (6.18)

Both are based on an assumption that, given inter-sample distances, signals
can be approximated by their Taylor series. We will refer to them as the D1
and D2 differentiation methods.

The best-known numerical integration methods are the Newton–Cotes
quadrature rules.26 The first three rules are the trapezoidal, Simpson, and
3/8 Simpson. In all of these methods, the value of the integral in the first point
is not defined because it affects only the result’s constant bias and can
be chosen arbitrarily. When it equals zero, the trapezoidal, Simpson, and
3/8-Simpson numerical integration methods are defined respectively (with k as
a running sample index) by the following equations:

āðTÞ
1 ¼ 0, āðTÞ

k ¼ āðTÞ
k�1 þ

1
2
ðak�1 þ akÞ, (6.19)

āðSÞ1 ¼ 0, āðSÞk ¼ āðSÞk�2 þ
1
3
ðak�2 þ 4ak�1 þ akÞ, (6.20)

and
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āð3∕8SÞ0 ¼ 0, āð3∕8SÞk ¼ āð3∕8SÞk�3 þ 3
8
ðak�3 þ 3ak�2 þ 3ak�1 þ akÞ: (6.21)

As will be discussed in Section 9.2, the continuous and overall frequency
responses of digital filters are determined, given signal sampling and
reconstruction devices, by their discrete frequency responses (DFT of their
point spread functions). Applying anN-point DFT to Eqs. (6.17), (6.18), (6.19),
(6.20), and (6.21) will produce the respective discrete frequency responses

h
dif f ð1Þ
r , hdif f ð2Þ

r , hint,T
r , hint S

r , and h
ðint,3∕8SÞ
r of the numerical differentiation and

integration methods:

h
dif f ð1Þ
r ∝ sinð2pr∕NÞ; r ¼ 0, 1, : : : , N⊥ � 1; (6.22)

h
dif f ð2Þ
r ∝

8 sinð2pr∕NÞ � sinð4pr∕NÞ
12

, r ¼ 0, 1, : : : , N⊥ � 1; (6.23)

h
ðint,TÞ
r ¼ ā

ðTrÞ
r

ar
¼

8<
:

0, r ¼ 0,

� cosðpr∕NÞ
2i sinðpr∕NÞ , r ¼ 1, : : : , N⊥ � 1; (6.24)

h
ðint,SÞ
r ¼ ā

ðSÞ
r

ar
¼

� 0, r ¼ 0

� cosð2pr∕NÞ þ 2
3i sinð2pr∕NÞ , r ¼ 1, : : : , N⊥ � 1;

(6.25)

and

h
ðint,3∕8SÞ
r ¼ ā

ð3SÞ
r

ar
¼

� 0, r ¼ 0

� cosð3pr∕NÞ þ 3 cosðpr∕NÞ
i sinð3pr∕NÞ , r ¼ 1, : : : , N⊥ � 1;

(6.26)

where N⊥ is an index that corresponds to the highest signal frequency:

N⊥ ¼
� ðN � 1Þ∕2 for oddN
N∕2 for evenN:

(6.27)

These frequency responses and the frequency responses of DFT-based
differentiation and integration filters are presented in Figs. 6.1 and 6.2,
respectively.

One can see from these figures that standard numerical differentiation and
integration methods entail certain and sometimes very substantial distortions
of signal spectral contents at high frequencies. All of them attenuate high
signal frequencies, and the Simpson and 3/8-Simpson integration methods—
being slightly more accurate than the trapezoidal method in the middle of the
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Figure 6.1 Absolute values of the frequency responses of differentiation filters described
by Eq. (6.22) (curve D1), Eq. (6.23) (curve D2), and Eqs. (6.7) and (6.9) (“ramp” filter). The
frequency coordinate is normalized by the highest signal frequency in the sampling
baseband.

Figure 6.2 Absolute values of the frequency responses of numerical integration filters
described by Eqs. (6.24), (6.25), and (6.26), as well as the DFT-based method (Eqs. (6.8)
and (6.10)). The frequency coordinate is normalized by the highest signal frequency in the
sampling baseband.
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signal baseband—tend to generate substantial integration errors if the signals
contain higher frequencies. The frequency response of the 3/8-Simpson rule
tends to infinity for 2/3 of the maximum frequency, and the frequency
response of the Simpson rule has almost the same tendency for the maximal
frequency in the baseband. This means, in particular, that noise that might be
present in input data and round-off computation errors will be overamplified
by Simpson and 3/8 Simpson at these frequencies.

Figures 6.3 and 6.4 present the results of the experimental performance
evaluation of the considered differentiation methods performed with the
simulation program differentiator_comparison_SPIE.m provided in the
Exercises. The program implements a statistical simulation of differentiation
by using pseudo-random signals with uniform spectrum in bands in the range
of 1/6 to 16/16 of the baseband.

Figure 6.3 Experimental data about a signal’s sample-wise normalized standard deviation of
the differentiation error (a) for D1, D2, and DFT-based differentiation methods and (b) for D2-,
DFT- and DCT-based methods. The numbers at the curves indicate the fraction (from one-
quarter to one) of the test signal bandwidth with respect to the width of the signal baseband.
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In the simulation, 16 series of statistical experiments with 100 experiments
in each run were carried out. In the runs, realizations of pseudo-random
signals of 32704 samples with a uniform Fourier spectrum were generated to
imitate, by means of 32-fold oversampling, continuous signals. In each run,
the generated pseudo-random signals were low-pass filtered to 1/32 of its
baseband using the ideal low-pass filter implemented in the DFT domain. The
filtered signal was then used as a model of a continuous signal, and its
derivative was computed using DFT domain ramp-filter and used as an
estimate of the signal ideal derivative. Then the central half of this signal that
encompasses 16352 samples taken 8196 samples apart from the signal borders
was sub-sampled at a rate of 32 to generate 511 signal samples that were used
in the differentiation by the D1 method (Eq. (6.17)), D2 method (Eq. (6.18)),
and the DFT-based (Eq. (6.11)) and DCT-based methods (Eq. (6.13)). The
corresponding central part of the ideal derivative signal was also sub-sampled
at a rate of 32 and was used as a reference to evaluate the differentiation
error for the tested methods. The differentiation error was computed as the
difference between the “ideal” derivative and the results of applying tested
differentiation methods. It was divided by the standard deviation of the
“ideal” derivative over all samples, thus producing estimates of the error mean
square value normalized to the energy of the signal derivative. Finally, the
standard deviation of the normalized error over 100 realizations was found for
each signal sample. The obtained results are plotted sample-wise in Fig. 6.3(a)
for the D1, D2, and DFT methods, and in Fig. 6.3(b) for D2, DFT, and DCT.

Figure 6.4 Normalized standard deviation of the differentiation error averaged over
100 samples in the middle of the test signal (samples from 200th to 300th) for D1, D2, DFT
and DCT differentiation methods as a function of test signal bandwidth (in fractions of the
width of the signal sampling baseband)
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Figure 6.3(a) shows that the simplest method, D1, performs very poorly,
whereas the D2 method outperforms the DFT method for signals with a
bandwidth less than 0.5 of the baseband because of the boundary effects for
the latter. The accuracy of the DFT differentiation method substantially
improves with distance from signal borders. However, even for samples
that are far from signal borders, boundary effects badly deteriorate the
differentiation accuracy. The data presented in Fig. 6.3(b) show that the
DCT-based differentiation method successfully overcomes the boundary
effect problem and substantially outperforms both the D1 and D2 methods,
even for narrowband signals.

Figure 6.4 presents plots of normalized error standard deviation computed
on average over only the central 100 samples (from 200th to 300th) of test
signals. These samples are sufficiently far from the signal borders, so the
presented data are not practically influenced by boundary effects. The plots
convincingly show that the D2 method secures better differentiation accuracy
only for signals with a bandwidth less than 0.05 of the baseband, which corres-
ponds to 20 times oversampling, and even for such signals normalized error
standard deviation for DCT method is anyway less than 10–5. For signals with
broader bandwidth, the accuracy of the DCT differentiation method is better
than of other methods by at least two orders of magnitude. One can also see that
masking the signal with a window (“apodization”) function (which gradually
brings signal samples in the vicinity of its border to zero) substantially improves
the differentiation accuracy of both DFT and DCT methods even further.

The above results imply that conventional numerical differentiation
methods maintain a good differentiation accuracy if the signals are substantially
oversampled, which undermines their only advantage of low computational
complexity.

One more way to evaluate the accuracy of numerical differentiation and
integration is the iterative application of successive differentiation and
integration in tandem to a test signal and comparing the reconstructed
signals with the initial signal. The plots in Fig. 6.5 obtained using the program
differentiat_integrat_error_SPIE.m (provided in the Exercises) illustrate the
results of a comparison of DCT-based differentiation and integration with the
conventional D2 method of differentiation and trapezoidal method of
integration. Plots in the left column show the original test rectangular
impulse (solid line) and a result of the iterative application of differentiation
and integration by DCT-based menthods (upper left plot, dots) and a D2
differention and trapezoidal integration method (bottom left plot, dots). Plots
in the right column show the RMS of signal reconstruction errors for DCT-
based differentiation and integration methods (upper right plot) and for D2
differentiation and trapezoidal integration methods (bottom fight plot). These
results are clear evidence of the superiority of DCT-based methods over
conventional methods of numerical differentiation and integration.
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6.2 Local (“Elastic”) Image Resampling: Sliding-Window
Discrete Sinc Interpolation Algorithms

Perfect DFT- and DCT-based fractional shift algorithms are computationally
efficient at performing regular shifts of whole signals and images. For image
resampling in arbitrary sampling lattices, they can be used to generate
sufficiently highly oversampled “quasi-continuous” image models, as described
in Section 5.3.2. However, this requires additional large memory buffers.

An alternative solution for image resampling in arbitrary sampling lattices
is the implementation of discrete sinc interpolation in sliding-window
processing. In sliding-window signal interpolation, the perfect shifting filter is
applied only to pixels within the window, and only interpolated signal samples
that correspond to the window central sample have to be computed at each
window position from signal samples within the window. The interpolation
function in this case is a discrete sincd-function, whose extent equals the
window size rather than the whole image size required for the perfect discrete
sinc interpolation. Therefore, sliding-window discrete sinc interpolation cannot
provide as prefect interpolation, as the “global” (full size) discrete sinc
interpolation. Figure 6.6 illustrates how well sliding-window discrete sinc
interpolation approximates the global one. It shows 1D frequency responses of
sliding-window discrete sinc interpolation for a window size of 15 pixels and
that of global discrete sinc interpolations for 3� image zoom.

Sliding-window implementation of the discrete sinc interpolation can be
regarded as a special case of signal-domain convolution interpolation
methods. As follows from the above theory, it has the highest interpolation

Figure 6.5 Comparison of signal reconstruction after iterative successive 100 differentia-
tions and integrations applied in tandem to a rectangular test signal for DCT-based
differentiation and integration methods (upper plots) and for a D2 differentiator and
trapezoidal rule integrator (bottom plots).
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accuracy, in principle, among all convolution interpolation methods with the
same filter window size. Additionally, implementation in the DFT or DCT
domain offers the option of image resampling with simultaneous restoration
and enhancement by local adaptive filtering.16,20

In local adaptive filtering carried out in a sliding window, at each position
of the transform coefficients of the window, samples are computed and then
nonlinearly modified by means of hard or soft thresholding to obtain
transform coefficients of the output signal samples in the window with a
reduced level of noise. These coefficients are then used to generate an estimate
of the window central pixel by inverse transform computed for the window
central pixel. Figure 6.7 illustrates the application of combined filtering and
interpolation for irregular-to-regular image resampling with denoising.

Figure 6.6 Frequency responses for a sliding window of 15 samples (dotted line) and of
the perfect (global) discrete sinc interpolation (solid line) for 3� signal zoom.

Figure 6.7 Image resampling and denoising in a sliding window: (a) noisy and irregularly
sampled image, and (b) elasic resampled (rectified) and denoised image.
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In this example, the left image is distorted by known displacements of pixels
with respect to regular equidistant positions and by additive noise. In the right
image, these displacements are compensated and noise is substantially reduced
with a sliding-window resampling and denoising algorithm.

6.3 Image Data Resampling for Image Reconstruction from
Projections

6.3.1 Discrete Radon transform and filtered back-projection method
for image reconstruction

Precise data resampling is a crucial issue in image reconstruction from
projections, which is based on the properties of the integral Radon transform
(RT). The main problem in the discrete representation of the integral RT is
the definition (for computing image projections) of the line integral under an
arbitrary angle over an image-sampling lattice.

Any definition of the discrete line integral should assume some method of
image interpolation to find image values along the projection line in points
that do not coincide with available image samples. For regular rectangular
sampling grids, only column-wise, row-wise, and 45°-diagonal-wise integra-
tions do not require any interpolation. One possible solution to this problem is
line integration over a “continuous” image model, obtained by means of the
above described method of image sub-sampling with discrete sinc interpola-
tion. An alternative and more computationally efficient solution is the
following algorithmic implemention of the discrete Radon transform (DRT):

Prður, sÞ ¼ SUMl½ROTurðfak,lgÞ�, (6.28)

where Prður, sÞ are samples of the rth projection, taken under angle ur, of the
image defined by its samples fak,lg over a square sampling lattice fk, lg;
ROTurð•Þ is an operator of image rotation by the angle ur around the center of
the sampling lattice; and SUMl[ • ] is the summation operator of the samples
of the rotated image over index l.

According to this algorithm, the required image interpolation is carried
out in the process of image rotation. In order to secure the smallest possible
interpolation error, image rotation should be performed with discrete sinc
interpolation. We will assume that for the implementation of the rotation
operator, the above described fast three-step rotation algorithm is used, which
preserves the number of image samples (although the previously described
image rotation algorithm with scaled coordinates can, in principle, be used as
well).

The most frequently used algorithm of image reconstruction from
projections is the filtered back-projection algorithm.16 This algorithm assumes
the accumulation of derivatives of projections projected backward (repeated)

108 Chapter 6

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



in the directions that they were obtained. According to the above definition of
the DRT, this image reconstruction algorithm can be implemented as

ak,l ¼ SUMrfROT�urfBckPlfRAMPFfPrður, kÞgggg, (6.29)

where fPrður, kÞg are samples of the image’s rth projection, taken under angle
ur; RAMPFf•g is an operator of ramp filtering for differentiation described in
Section 6.1; BckPlf•g is a back-projection operator to replicate the operand
over index r; and SUMrf•g is a summation operator that sums up the
replicated (projected backward) ramp-filtered projections over the entire set of
projection angles ur.

Figure 6.8 is generated using the program radon_invradon_demo_SPIE.m
provided in the Exercises to illustrate the DRT and image reconstruction
using the filtered back-projection algorithm.

6.3.2 Direct Fourier method of image reconstruction

According to the projection theorem for the RT, the Fourier spectra of image
projections are cross-sections of the image 2D spectrum under corresponding
angles. Therefore, if one computes the spectra of projections of an image and
appropriately arranges them in a polar coordinate system in the Fourier
domain to form a 2D image spectrum, one can reconstruct the image by the
inverse Fourier transform of this spectrum. This is called the direct Fourier
method of image reconstruction from projections. The problem is in the
implementation of the 2D inverse Fourier transform in polar coordinates.

The polar coordinate system of spectral samples in a Cartesian coordinate
system is shown in Fig. 6.9. Spectral samples are non-uniformly spaced in
Cartesian coordinates and are very sparse, especially high-frequency ones.
Available 2D inverse FFT algorithms assume a uniform sampling lattice in
Cartesian coordinates. Therefore, for spectral samples in polar coordinates,
one has to either resample the spectrum from polar to Cartesian coordinates
or, to reconstruct spectral samples and images on a uniform dense lattice,
apply the iterative algorithms for image recovery from sparse non-uniform

Figure 6.8 (a) Test image, (b) set of its projections with projection angle as the vertical
coordinate, (c) an example of a filtered projection projected backward along the horizontal
projected line, and (d) reconstructed image.
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samples considered in Chapter 4. However, the latter option does not seem
feasible. High-frequency spectral samples are sparse, whereas at low frequen-
cies the spectra are very oversampled, and this is not compensated by the
image natural redundancy associated with empty areas in the image domain
and image compressibility.

A feasible practical option for solving the problem image reconstruction
from its spectrum in polar coordinate system is polar-to-Cartesian coordinate
conversion of spectra of projections to 2D image spectrum by means of
resampling, in Cartesian coordinates, of a “continuous” model of the
projection spectra in a polar coordinate system formed through a separable
(radial-frequency- and angle-index-wise) sub-sampling projection spectra
using discrete sinc interpolation. Figure 6.10 presents an illustrative example
of image reconstruction from projections achieved through the inverse DFT
of the image 2D spectrum obtained by resampling the image spectrum in the
polar coordinate system.

6.3.3 Image reconstruction from fan-beam projections

The methods of image reconstruction from projections described earlier assume
image projection in parallel x-ray beams. This is the original classic image
tomographic projection method, for which well-developed reconstruction

Figure 6.9 Spectral samples (small circles) in a Cartesian sampling lattice (crosses).
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algorithms are available. In practice, commercial CT scanners use fan-beam
projections rather than parallel-beam because fan-beam projections can be
obtained with a point source of x rays, which is much easier for fabrication than
collimated parallel-beam sources.

The geometry of fan-beam projection is sketched in Fig. 6.11. The point
source of radiation makes a full 360° revolution around the object, and
the absorption integrals of radiation by the object over projection lines form

Figure 6.10 An illustrative example of image reconstruction from projections by the DFT
method through polar-to Cartesian resampling of zoomed-in spectra of projection: (a) test
image; (b1) spectra of projection; (b2) projection spectra 5 times sub-sampled (zoomed-in)
in both coordinates for polar-to-Cartesian coordinate conversion (only half of the spectral
coefficients that correspond to frequencies from zero to the highest one in the baseband are
displayed; the others that are complex conjugate to them are not shown); and (c) image
reconstructed by means of the inverse DFT applied to the 2D spectrum obtained by
resampling the zoomed-in projection spectra.
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(for each position angle a of the point source) projections Prða, bÞ as a
function of the ray angles b. A set of projections for �p ≤ a ≤ p is then used
for image reconstruction.

In principle, inverting the RT in fan-beam projection geometry requires
reconstruction algorithms that work in fan-beam projection geometry. There is
however an alternative and attractive option of converting, by an appropriate
resampling, the set of fan projections into a set of parallel projections and to
enable in this way image reconstruction with algorithms for image reconstruc-
tion from parallel projections. For the resampling, one can use the above
described algorithms for resampling by image sub-sampling using global or
local discrete sinc interpolation. The latter can, if required, be combined with
denoising, as discussed in Section 6.2. This process of converting one type of
projection into another type is called data rebinning. Figure 6.12 illustrates this
method of image reconstruction.

6.4 Exercises

differentiator_comparison_SPIE.m

Comparison of signal differentiation accuracy of two conventional differ-
entiators with point spread functions

Figure 6.11 Geometry of image fan projections.
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• PSFD1 ¼ [0.5 0.0 –0.5],
• PSFD2 ¼ [–1/12 2/3 0 –2/3 1/12],

and DFT- and DCT-based differentiators using, as test signals, realizations of
pseudo-random signals with 16 different bandwidths from 1/16 to 16/16 of the
signal baseband width. User-defined parameters:

• The number N of samples of the signal and its derivative,
• Oversampling rate M,
• The number Ntest of test realizations of pseudo-random signals.

diffrentiat_integrat_error_SPIE.m

Comparison of DCT-based differentiation and integration and D2&Simpson
differentiation and integration by means of repeated differentiation and

Figure 6.12 Image reconstruction from fan-beam projections: (a) initial test image; (b) its
fan-beam projections; (c) parallel projections converted from the fan-beam projections by
means of appropriate resampling them; and (d) image reconstructed from converted parallel
projections.
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integration operations in tandem of a test rectangular impulse. User-defined
parameter:

• The number of iterations Nit.

radon_invradon_demo_SPIE.m

Demo of the direct Radon transform implemented through projecting the
rotated image and image reconstruction using an inverse Radon ramp-filtered
back-projection algorithm.
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Chapter 7

The Discrete Uncertainty
Principle, Sinc-lets, and Other
Peculiar Properties of Sampled
Signals

7.1 The Discrete Uncertainty Principle

It is well known that continuous signals cannot both be sharply band-limited,
in terms of their Fourier spectra, and have sharply bounded support. In
reality, continuous signals are neither sharply band-limited nor have sharply
bounded support. They can only be more or less densely concentrated in the
signal and spectral domains. This property is mathematically formulated in
the form of the famous “uncertainty principle”:

X � F . Oð1Þ, (7.1)

where X is the interval in the signal domain, within which a signal is
concentrated; F is the interval in the signal Fourier spectral domain, within
which the signal spectrum is concentrated; and Oð1Þ is a constant on the order
of one, which depends on the methods of defining the degree of signal and its
spectrum concentration within those intervals. This principle is a fundamental
law of nature discovered by W. Heisenberg in quantum mechanics27 and
extended to signal theory by D. Gabor.2

How does this property translate to sampled continuous signals and their
DFT and DCT spectra, which originate from the integral Fourier transform?
Experiments show that discrete sampled signals specified by a finite number N
of samples that represent continuous signals can, in contrast with continuous
signals, be sharply bounded in both the signal and spectral domain, i.e., they
have a non-zero certain number Nsign ≤ N of their samples and certain
number Nspectr ≤ N of samples of their DFT or DCT spectra. Such space-
frequency sharply bounded signals can be generated using a simple iterative
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algorithm, which at each iteration applies the requested bounds alternatively
in the signal and spectral domain. Two examples of such space-frequency
sharply bounded images are shown in Fig. 7.1. They were generated using the
program SpaceLimSpectrlim_SPIE.m, provided in the Exercises.

The relationship between bounds in signal and DFT domains is defined by
the discrete uncertainty principle, which can be derived from the continuous
version. Let Dx and Df be the signal and its Fourier spectrum sampling
intervals, correspondingly. Then the size of the interval occupied by the
continuous signal that corresponds to the given sampled signal with Nsign non-
zero samples can be estimated as X � NsignDx, and the size of the interval in
the signal Fourier domain occupied by the signal spectrum Nspectr non-zero
samples can be estimated as F � NspectrDf . From the uncertainty principle for
continuous signals (Eq. (7.1)), it follows that

NsignDxNspectrDf . Oð1Þ, (7.2)

Figure 7.1 Portraits of C. Shannon (left column) and V. Kotelnikov (right column), and their
corresponding DFT spectra bounded by circular shapes (shown centered at their DC
component).

116 Chapter 7

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



or

NsignNspectr .
Oð1Þ
DxDf

: (7.3)

According to the cardinal sampling relationship, for which the DFT
represents the integral Fourier transform (Eq. (10.13)),

1
DxDf

¼ N, (7.4)

so the numbers Nsign and Nspectr of the signals and their spectral non-zero
samples are linked by the relationship

NsignNspectr∕N ≥Oð1Þ: (7.5)

This relationship can also be expressed in terms of densities Dsign ¼ Nsign∕N
and Dspectr ¼ Nspectr∕N of the signal and their spectral non-zero samples:

DsignDspectrN ≥Oð1Þ: (7.6)

Inequalities (7.5) and (7.6) formulate the discrete uncertainty principle.
Figure 7.2 illustrates the results of an experimental evaluation of the

constant Oð1Þ in these inequalities. In the experiment carried out using the
program UncertaintyPrinciple_SPIE.m, provided in the Exercises, the above-
mentioned iterative algorithm was used to generate (from a delta function as a
seed signal) signals of a given fixed width and DFT spectra of different widths.
The experiment evaluated the maximal amplitude of signals for different values
of the product DsignDspectrN varied from 0.5 to 10. Figure 7.2 shows that space-
limited and band-limited signals for which DsignDspectrN , 2 do not exist.

7.2 Sinc-lets: Sharply-Band-Limited Basis Functions with
Sharply Limited Support

The existence of sharply-space-frequency-bounded signals allows one to
hypothesize the existence of correspondingly sharply-space-frequency-bounded
basis functions that can be used to represent such signals. One can generate them
by means of the above-mentioned iterative procedure for generating sharply-
space-frequency-bounded signals using delta functions with different locations
within the chosen signal support interval in the signal domain as seed signals:

½sincletð0ÞðSlim; Blim; k0; kÞ� ¼ dðk � k0Þ,
½sincletðtÞðSlim; Blim; k0; kÞ� ¼
SlimðIDFTfBlimðDFT ½sincletðt�1ÞðSlim; Blim; k0; kÞ�ÞgÞ, t ¼ 1, 2, : : : ,

(7.7)
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Figure 7.2 Experimental evaluation of the uncertainty relationship between the length of
the signal and the width of its DFT spectrum for sharply-space-limited and sharply-band-
limited signals. From top to bottom: a realization of the space-limited and band-limited signal
with DsignDspectrN ¼ 10, its DFT spectrum, and a plot of maximal amplitudes of signals vs.
the value of the product DsignDspectrN.
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where DFTf•g and IDFTf•g are operators of the direct and inverse DFT;
Blimð•Þ and Slimð•Þ are, correspondingly, operators of the signal band
limitation and space limitations; k0 is the index of position of the delta
function; and t is the iteration index. Functions

sincletðSlim; Blim; k0; kÞ ¼ SlimðIDFTfBlimðDFTfsincletðSlim; Blim; k0; kÞgÞgÞ
(7.8)

Figure 7.3 Examples of LP sinc-lets in different positions within an interval of 103 samples
for a signal of 512 samples (solid lines, left column), and their corresponding DFT spectra
(right column). LP sinc-lets are shown along with the corresponding discrete sincd functions
of the same bandwidth (dashed lines).
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that are a fixed point of this algorithm are called “sinc-lets” because they
resemble discrete sinc functions, as can be seen from the illustrative examples
generated by the program Sinc_Lets_1D_DFT_SPIE.m provided in the
Exercises and presented in Fig. 7.3 for the case of a space interval of 103
samples and a spectral interval of 51 out of 512.

The speed of convergence of the intertive algorithm to generate sinc-lets is
illustrated in Fig. 7.4 for two cases: (i) a space interval of 103 samples and
spectral interval of 51 samples, and (ii) a space interval of 103 samples and
spectral interval of 103 samples out of 512. On the vertical axes on these plots,
the fraction of signal energy outside the chosen bounding interval is indicated,
in this case, an interval of 103 samples out of 512.

Sinc-lets with spectra concentrated around signal dc components, such as
those shown in Fig. 7.3, are low-pass band-limited sinc-lets (LP sinc-lets).
Figure 7.3 shows that LP sinc-lets are shift-variant functions: their shapes and
heights depend on the position.

Figures 7.5(a) and (b) show matrices of mutual correlations of LP sinc-lets
in different positions and their central cross-sections [(c) and (d)] obtained for
a space interval of 103 samples and spectral intervals of 51 and 103 samples.
These matrices allow one to hypothesize that sinc-lets shifted by an interval
DN ¼ N∕Blim inversely proportional to their bandwidth interval Blim form a
family of orthogonal functions. Band limitation in the DCT domain generates
similar sinc-lets, as illustrated in Fig. 7.6.

The shape of 2D LP sinc-lets depends on the shape of their space and
spectrum limitation. Obviously, for separable space and spectrum limitations,

Figure 7.4 Illustrative examples of the iteration convergence that generates (a) LP sinc-
lets shown in Fig. 7.3, left column, and (b) sinc-lets obtained on a sampling lattice of 512
samples for 103 non-zero signal samples and 103 non-zero samples of their DFT spectrum.
The curves on these plots correspond to different positions of sinc-lets. The vertical axes on
the plots represent the fraction of signal energy outside the chosen interval of 103 samples.
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2D sinc-lets are products of corresponding 1D sinc-lets. Examples of 2D sinc-
lets limited in space by circles and squares and circularly limited in the DFT
and DCT domains are shown in Fig. 7.7.

7.3 Exercises

SpaceLimSpectrlim_SPIE.m

Generates space-limited and DFT- or DCT-spectrum band-limited images.
Three options for choosing seed images:

• Delta function,
• “White noise” (an array of uncorrelated pseudo-random numbers),
• Any image from an image database.

Figure 7.5 Matrices of mutual correlations of LP sinc-lets in different positions for two
families of sinc-lets obtained for a space limitation of 103 samples and a band-limitation of
51 and 103 samples (displayed as images, upper row), and their corresponding central
cross-sections (bottom row).
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Two options for space-limitation shapes:

• Square,
• Circle.

Two options for spectrum-band limitation:

• Square centered at the spectrum dc component,
• Circle for the DFT or pie sector for the DCT centered at the spectrum

dc component.

The area of the space- and spectrum-bounding shapes are specified in a
fraction of the baseband.

Figure 7.6 (a) Sinc-let and (b) its DCT spectrum generated by band limitation in the DCT
domain, and (c) plot of the signal residual energy outside the selected interval vs. the
number of iterations. Gray rectangles indicate intervals in the space and frequency domain
within which the signal and its DCT spectrum are non-zero.
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Figure 7.7 Examples of (a)–(d) 2D circularly limited LP sinc-lets and (e)–(h) their circularly
limited DFT and DCT spectra. Size limitation (Slim) and band limitation (Blim) are given in
fractions of the size of the corresponding domain. All images are contrast enhanced for
display purposes.
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UncertaintyPrinciple_SPIE.m

Experimental verification of the uncertainty relationship between signal width
and width of its DFT spectrum using an iterative algorithm for generating
space-limited and band-limited signals. The initial test signal is the delta
impulse. The range of the product is tested:

SignalWidth � SpectrumWidth � NumberofSamples: 0.5–10.0.

User-defined parameters:

• The total number of signal samples N,
• Test signal width (in fraction of N),
• The number of iterations.

Sinc_Lets_1D_DFT_SPIE.m

Iteratively generates 1D sinc-lets (space-limited and DFT band-limited
signals). The seed signals are delta functions in different positions within
the space-limitation interval. User-defined parameters:

• The number of samples N,
• The number of iterations Nit,
• Fraction of the signal domain where the signal is a non-zero Slim,
• Fraction of the baseband where the spectrum is a non-zero Blim.
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Discrete Representation of
Signal Transformations

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Chapter 8

Basic Principles of Discrete
Representation of Signal
Transformations

Digital signal processing always deals with processing analog (continuous)
signals. For processing in digital processors, analog signals are first converted
into a discrete form, which most frequently is implemented by means of signal
sampling. The obtained discrete signals are then processed by computers or
specialized digital processors. There are generally two goals of processing:

– generating numerical control data for executive devices, such as
guiding moving vehicles;

– generating processed signals of the same nature as the input signals,
such as imaging or audio processing.

In the latter case, signal processing is carried out according to the general
diagram shown in Fig. 8.1.

The goal of obtaining output analog signals that, defined by the processing
task, correspond to given input signals dictates the necessity of treating the
entire processing system, including a signal sampling device, digital processing
unit, and analog signal reconstruction device, as an equivalent analog system
that should be characterized in terms of analog signal transformations. This
implies that the following two principles of the digital representation of analog
signal transformations must be put in the base discrete representation of analog
signal transformations:

– Consistency principle with digital representation of signals, and
– Mutual correspondence principle between analog and discrete signal

transformations.

The consistency principle requires that the digital representation of signal
transformations should parallel that of signals, i.e., should be consistent. The
mutual correspondence principle between continuous and digital transformations
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requires that both should act to transform identical input signals into identical
output signals.

Following the consistency principle, we will assume (a) that each
continuous signal a(x) is represented in the discrete form by its samples fakg:

ak ¼
Z̀

�`

aðxÞPSF ðsÞðkDx � xÞdx (8.1)

taken at nodes of a uniform sampling lattice with sampling interval Dx by a
sampling device with point spread function PSF ðsÞðxÞ, as defined by
Eq. (2.19); and (b) that each continuous signal is reconstructed from its
samples by their interpolation

aðxÞ ¼
X̀
k¼�`

akPSF
ðrÞðx� kDxÞ (8.2)

in a signal reconstruction device with point spread function PSF ðsÞðxÞ, as
defined by Eq. (2.22).

Chapters 9 and 10 will use these principles to derive discrete representa-
tions of the most important factors in analog signal transformations for signal
processing: the convolution integral and the integral Fourier transform.

As a discrete representation of the convolution integral, a digital filter
equivalent to a given analog filter is introduced, and its characterization in
terms of point spread function and frequency response of the corresponding
analog filter is developed. This enables the filter design and analysis.

As a discrete representation of the integral Fourier transform, various
versions of the DFT (which play a fundamental role in digital signal
processing) are derived, and their basic proprties are discussed.

Figure 8.1 General flow-diagram of digital signal processing.
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Chapter 9

Discrete Representation
of the Convolution Integral

9.1 Discrete Convolution

In signal theory, the convolution integral

bðxÞ ¼
Z̀
�`

aðjÞhðx� jÞdj (9.1)

is a mathematical model of shift-invariant filtering signal aðxÞ by a linear filter
with point spread function (PSF) hðxÞ. A discrete representation of the
convolution intergral can be obtained by finding a relationship between samples

bk ¼
Z̀
�`

bðxÞPSF ðsÞðkDx � xÞdx (9.2)

of the convolution result bðxÞ with samples fang of the convolved signal aðxÞ.
Insert Eq. (9.1) in Eq. (9.2) and replace the former signal aðxÞ with its
expression (Eq. (8.2)) through its samples fang:

bk ¼
Z̀
�`

�Z̀
�`

aðjÞhðx� jÞdj
�
PSF ðsÞðkDx � xÞdx

¼
Z̀
�`

PSF ðsÞðkDx � xÞdx
�Z̀

�`

�X
n

anPSF ðrÞðj� nDxÞ
�
hðx� jÞdj

�

¼
X̀
n¼�`

an

Z̀
�`

Z̀
�`

hðj� xþ ðk � nÞDxÞPSF ðrÞðjÞPSF ðsÞðxÞdjdx

¼
X̀
n¼�`

anhk�n,

(9.3)

129

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



where

hm ¼
Z̀
�`

Z̀
�`

hðj� x�mDxÞPSF ðrÞðjÞPSF ðsÞðxÞdjdx (9.4)

are samples of the convolution kernel hðxÞ taken using PSFs of the signal
sampling and reconstruction devices.

The obtained equation

bk ¼
X̀
n¼�`

anhk�n (9.5)

represents the convolution integral (Eq. (9.1)) in a discrete form, in which
samples fhmg act as a discrete convolution kernel or a filter PSF.
Equation (9.4) shows how can one find samples fhmg given the analog
convolution kernel hðxÞ and point spread functions PSF ðsÞðxÞ and PSF ðrÞðxÞ
of the analog signal sampling and reconstruction devices.

In practical applications, one should take into account that the number of
signal samples N, as well as the number Nh of filter PSF samples, is finite and
that as a rule Nh ,, N. Equation (9.5) should thus be modified in the
following way:

bk ¼
XNh�1

n¼0

hnak�n: (9.6)

This equation is considered as the canonical discrete representation of
analog shift-invariant filters and is referred to as a digital filter.

9.2 Point Spread Functions and Frequency Responses of
Digital Filters

Similar to analog filters, digital filters are characterized by their PSFs and
frequency responses. The set of coefficients fhng of the digital filter defined by
Eq. (9.6) is called a digital filter discrete point spread function (DPSF).

The correspondence principle between analog and discrete signal
transformations dictates that a digital filter should also be characterized by
the PSF of an equivalent analog filter. In order to derive this characteristic,
the express analog signal bðxÞ is reconstructed from a finite number N of
output samples fbkg of a digital filter as

bðxÞ ¼
XN�1

k¼0

bkPSF
ðrÞðx� kDxÞ ¼

XN�1

k¼0

 XNh�1

n¼0

hnak�n

!
PSF ðrÞðx� kDxÞ: (9.7)

Insert into Eq. (9.7) the expression Eq. (8.1) for samples fak�ng of the input
analog signal aðxÞ to obtain

130 Chapter 9

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



bðxÞ ¼
XN�1

k¼0

 XNh�1

n¼0

hn

Z̀
�`

aðjÞPSF ðsÞ½ðk � nÞDx � j�dj
!
PSF ðrÞðx� kDxÞ

¼
Z̀
�`

aðxÞdx
XN�1

k¼0

XNh�1

n¼0

hnPSF ðsÞððk � nÞDx � jÞPSF ðrÞðx� kDxÞ:
(9.8)

The double sum in Eq. (9.8)

heqðx, jÞ ¼
XN�1

k¼0

XNh�1

n¼0

hnPSF ðsÞ½ðk � nÞDx � j�PSF ðrÞðx� kDxÞ (9.9)

can be considered as the PSF of an analog filter that corresponds to a given
digital filter. This equivalent analog filter

bðxÞ ¼
Z̀
�`

aðjÞheqðx, jÞdj (9.10)

is a general, not shift-invariant, filter, though its corresponding digital filter is
designed to represent the shift-invariant filter defined by Eq. (9.1).

Characterization of digital filters in terms of their point spread functions is
complemented by their characterization in terms of filter frequency responses.
In order to derive them, consider the Fourier spectrum of the filter output
signal bðxÞ defined by Eq. (9.10):

bð f Þ ¼
Z̀
�`

bðxÞ expði2pf xÞdx ¼
Z̀
�`

�Z̀
�`

aðjÞheqðx, jÞdj
�
expði2pf xÞdx

¼
Z̀
�`

Z̀
�`

�Z̀
�`

½aðpÞ expð�i2ppjÞdp�heqðx, jÞdj
�
expði2pf xÞdx

Z̀
�`

aðpÞdp
Z̀
�`

Z̀
�`

heqðx, jÞdj exp½i2pð f x� pjÞ�dx

¼
Z̀
�`

aðpÞHeqð f , pÞdp,

(9.11)
where the function

Heqð f, pÞ ¼
Z̀
�`

Z̀
�`

heqðx, jÞ exp½i2pð f x� pjÞ�dxdj (9.12)
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can be regarded as a frequency response of the general filter defined by
Eq. (9.10).

Now we find the frequency response of an analog filter equivalent to a
given the digital filter defined by Eq. (9.6). Insert the expression Eq. (9.9) for
its PSF heqðx, jÞ into Eq. (9.12) to obtain

Hð f, pÞ¼
Z̀
�`

Z̀
�`

�XN�1

k¼0

XNh�1

n¼0

hnPSF ðsÞ½ðk�nÞDx� j�PSF ðrÞðx�kDxÞ
�

� exp½i2pð f x�pjÞ�dxdj

¼
XN�1

k¼0

XNh�1

n¼0

hn

Z̀
�`

Z̀
�`

PSF ðsÞðjÞPSF ðrÞðxÞexpfi2p½ f ðxþkDxÞþpj

�ðk�nÞpDx�gdxdj

¼
XN
k¼0

XNh�1

n¼0

hn

Z̀
�`

PSF ðsÞðjÞexpði2ppjÞdj
Z̀
�`

PSF ðrÞðxÞexpði2pfxÞdx

� expfi2p½ð f �pÞkDxþpnDx�g

¼
�Z̀
�`

PSF ðrÞðxÞexpði2pf xÞdx
�
�
�Z̀
�`

PSF ðsÞðjÞexpði2ppjÞdj
�

�
�XNh�1

n¼0

hn expði2ppnDxÞ
�
�
�XN�1

k¼0

exp½i2pð f �pÞkDx�
�
:

(9.13)

The first two multiplicands in the right part of Eq. (9.13) are frequency
responses of the signal reconstruction and sampling devices:

FRðrÞð f Þ ¼
Z̀
�`

PSF ðrÞðxÞ expði2pf xÞdx, (9.14)

FRðsÞðpÞ ¼
Z̀
�`

PSF ðrÞðjÞ expði2ppjÞdj: (9.15)

The third multiplicand

DFCFRðpÞ ¼
XNh�1

n¼0

hn expði2ppnDxÞ (9.16)

is a Fourier series with coefficients fhng of the digital-filter PSF. It can be
treated as a digital-filter continuous frequency response (DFCFR).
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The fourth multiplicand

DFSVMNð f � pÞ ¼
XN�1

k¼0

exp½i2pð f � pÞkDx� (9.17)

is defined solely by the number of samples of the digital filter output involved
in the reconstruction of its analog output (Eq. (9.7)). It can be regarded as a
digital filter space-variance measure (DFSVM) as it reflects the fact that the
digital filters correspond to space-variant analog filters.

Function DFSVMNð f � pÞ can be computed in a closed form as

DFSVMNð f � pÞ ¼
XN
k¼0

exp½i2pð f � pÞkDx� ¼
exp½i2pð f � pÞNDx� � 1
exp½i2pð f � pÞDx� � 1

¼ exp½ipð f � pÞNDx� � exp½�ipð f � pÞNDx�
exp½ipð f � pÞDx� � exp½�ipð f � pÞDx�

exp½ipð f � pÞðN � 1ÞDx�

¼ sin½pð f � pÞNDx�
sin½pð f � pÞDx�

exp½ipð f � pÞðN � 1ÞDx�

¼ N sincd½N; pð f � pÞNDx� exp½ipð f � pÞðN � 1ÞDx�,
(9.18)

where

sincdðN; xÞ ¼ sinðxÞ
N sinðx∕NÞ (9.19)

is the discrete sincd function.
The second multiplicand exp [ipð f � pÞðN � 1ÞDx] in the right part of

Eq. (9.18) is only a phase-shift function that is defined solely by the order in
which the signal samples fbkg are counted. It carries no other important
information, so we will disregard it and define the DFSVM as

DFSVMð f � pÞ ¼ N sincd½pð f � pÞNDx�: (9.20)

Finally, the frequency response of the digital filter defined by its discrete
point spread function fhng is

DFOFRNð f, pÞ ¼ FRðrÞð f ÞFRðsÞðpÞDFCFRðpÞN sincd½N; pð f � pÞNDx�
(9.21)

This function links the Fourier spectra of filter input and output analog
signals and can therefore be called the digital-filter overall frequency response.

One can easily see, when N tends to infinity, function
sincd[N; pð f � pÞNDx] converts to sinc function sinc[pð f � pÞNDx], which,
in its turn, tends to the delta function (see Appendix A1, Eq. (A1.40):

133Discrete Representation of the Convolution Integral

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



lim
N→`

N sincd½N; pð f � pÞNDx� ¼ dð f � pÞ: (9.22)

Therefore, in the limit, when the number of signal samples involved in the
analog reconstruction tends to infinity, the digital-filter overall frequency
response converts to

lim
N→`

fOFRDFNð f, pÞg ¼ FRðrÞð f ÞFRðsÞðpÞCFRDF ðhÞðpÞdð f � pÞ, (9.23)

and Eq. (9.11) converts to

bð f Þ ¼
Z̀
�`

aðpÞOFRDFð f, pÞdp

¼
Z̀
�`

aðpÞFRðrÞð f ÞFRðsÞðpÞCFRDF ðhÞðpÞdð f � pÞdp

¼ FRðrÞð f ÞFRðsÞð f ÞDFCFRð f Það f Þ,

(9.24)

which is the expression that, according to the convolution theorem for the
Fourier transform (see Section A2.5), links the spectra að f Þ and bð f Þ of the
input and output of a shift-invariant analog filter. Therefore, for a sufficiently
large number N of signal samples, the analog filter equivalent to a given
digital filter can be regarded as shift invariant.

The shift-invariant approximation of the digital filter overall frequency
response

DFOFRSpInvð f Þ ¼ FRðrÞð f ÞFRðsÞð f ÞDFCFRð f Þ (9.25)

has a clear physical interpretation: it equals the product of frequency
responses of all stages of digital filtering analog signals. In particular, it shows
that through an appropriate design of the digital filter (term DFCFRð f Þ), one
can compensate signal distortions in the sampling baseband introduced by
sampling and reconstruction devices (terms FRðrÞð f Þ and FRðsÞð f Þ).

Note also that the continuous frequency response of a digital filter
DFCFRð f Þ is, according to Eq. (9.16), a periodic function with period 1∕Dx.
Periodic replicas of this function outside the signal sampling baseband affect
periodic replicas of the signal spectrum, which, ideally, are supposed to be cut
out by frequency responses of signal sampling and reconstruction devices.
Otherwise, they contribute to signal sampling errors.

All of the above relationships are derived for 1D signals. Their extension
to 2D signals is straightforward. In particular, a 2D digital filter is defined as

bk,l ¼
XNh�1

m¼0

XMh�1

n¼0

hn,mak�m,l�n, (9.26)
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where fhn,mg is the filter’s discrete PSF. The overall frequency response of a
2D digital filter is

DFOFRNx, Ny
ð f x, px; f y, pyÞ

¼ FRðrÞð f x, f yÞFRðsÞð�px, � pyÞDFCFRðpx, pyÞ
�NxNysincd½pð f x � pyÞNxDx�sincd½pð f y � pyÞNyDy�,

(9.27)

where FRðsÞð�px, � pyÞ and FRðrÞð f x, f yÞ are the frequency responses of
signal sampling and reconstruction devices, ð f x, f yÞ and ðpx, pyÞ are spatial
frequencies, and

DFCFRðpÞ ¼
XNh�1

m¼0

XMh�1

n¼0

hm,n exp½i2pðpxmDx þ pyyDyÞ� (9.28)

is a continuous frequency response of the 2D digital filter with discrete PSF
fhm,ng.

9.3 Treatment of Signal Borders in Digital Convolution

Equation (9.6) defines digital convolution output signal samples fbkg only for
Nh � 1 ≤ k ≤ N � 1, where N is the number of input signal samples, and Nh is
the number of samples of the convolution kernel fhng. Signal samples for
k , Nh � 1 and k . N � 1 are not defined because the input signal samples
fang for n , 0 and n . N � 1 are not available. Therefore, digital filtering
reduces the number of output signal samples unless the unavailable input
signal samples are defined by some method of signal extrapolation. If so, then
the NðhÞ∕2 output signal samples at the signal borders are influenced by the
extrapolated values of the input signal; hence, the extrapolation method must
be selected to minimize the undesirable signal filtering distortions at the signal
borders.

Appropriate border processing is especially important in image processing
because of the “curse of dimensionality.” Compare, for instance, cases of an
audio signal with 106 samples, which corresponds to approximately one
minute of phonation, and an image frame of 103 � 103 ¼ 106 pixels. Let the
1D digital filter PSF has NðhÞ ¼ 100 samples. Correspondingly, the 2D filter
PSF of the same extent has NðhÞ ¼ 100� 100 samples. Then, for the audio
signal, border effects influence only 10�4th of the samples (6 ms of phonation),
whereas for the image signal 10�2th of the pixels are influenced, i.e., one-tenth
of each of image frame dimension.

In principle, image extrapolation outside the available frame of image
samples is a special case of signal recovery from an incomplete set of data. The
solution to this problem requires the formulation of a priori knowledge of the
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images or image ensembles and sophisticated and computationally expensive
methods of signal recovery. In practice, the following simpler methods are
commonly adopted:

– Padding signals outside the signal frame with zeros. This is, for
instance, implemented in MATLAB signal and image processing.
Justification for zero-padding may be found in the assumption that
signals can be extended by their mean value, which by default is

Figure 9.1 Signal border processing: zero-padding, periodic extension, and even
extension by mirror reflection at the signal borders.
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assumed to be zero. For many 1D signals, e.g., audio signals, the zero
mean assumption appears quite natural. For images, this assumption
(as a rule) is not relevant, although in some applications the images of
objects have an empty (zero) background, which can be extended
beyond the image frame. Astronomical images of extraterrestrial
objects and some tomographic images of body slices exemplify these
cases.

– In numerical and applied mathematics, another assumption, i.e., signal
periodicity, is quite popular. It originates from the Fourier series
expansion of functions and is well suited for tasks that assume the
DFT, which, as shown in Appendix 2, implies by the definition that
signals are periodic with a period that equals the number of signal
samples. However, in most image processing tasks, the periodic image
extension beyond its borders, which makes image samples at the left
and right, or top and bottom, borders immediate neighbors, is not
appropriate and frequently results in heavy border effects.

– The major source of border effects associated with the use of the above
two signal extrapolation methods is that they tend to introduce
discontinuities in the extrapolated signal at the borders of the initial
signal, which causes severe distortions when signals are processed using
the FFT, for instance, for fast signal convolution, correlation,
resampling, or spectral analysis. A method that allows one to avoid
these potential discontinuities is signal extension by using mirror
reflection from the borders.

The described signal extension methods and the way they work in signal
convolution are illustrated in Fig. 9.1.

Section 10.3 will show that even signal extension by mirror reflection
from its borders translates the discrete Fourier transform into the discrete
cosine transform (DCT), an orthogonal transform with very good energy
compaction that can replace the DFT for all applications (including Fourier
analysis, fast convolution, signal resampling, signal differentiation, etc.) that
are sensitive to boundary effects.
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Chapter 10

Discrete Representation of the
Fourier Integral Transform

10.1 1D Discrete Fourier Transforms

Let aðxÞ be a signal defined in its coordinate system ðxÞ (upper plot in
Fig. 10.1) and að f Þ its integral Fourier transform (Fourier spectrum)

að f Þ ¼
Z̀
�`

aðxÞ expði2pf xÞdx (10.1)

defined in the coordinate system of frequencies ð f Þ in the Fourier transform
domain (lower plot in Fig. 10.1).

According to the consistency principle for deriving the discrete
representation of signal transformations, the signal aðxÞ is assumed to belong
to the family of signals represented by its N samples fakg placed with
sampling interval Dx at nodes of a uniform sampling lattice shifted with
respect to the signal coordinate system by the uðrÞth fraction of sampling
interval Dx (upper plot in Fig. 10.1), from which it can be reconstructed using
a signal reconstruction device with the point spread function PSF ðrÞðxÞ:

aðxÞ ¼
XN�1

k¼0

akPSF ðrÞ½x� ðk þ uðrÞÞDx�: (10.2)

Assume also that the discrete representation of the signal spectrum að f Þ is its
samples farg

ar ¼
Z̀
�`

að f ÞPSF ðsÞ�ðrþ vðsÞÞDf � f
�

(10.3)
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taken by a sampling device with the point spread function PSF ðsÞð f Þ at the
nodes of a uniform sampling lattice shifted with respect to the signal
spectrum coordinate system by the vðsÞth fraction of the sampling interval Df

(bottom plot in Fig. 10.1). Accounting for possible shifts of sampling
positions in the signal and transform domains is essential to derive the
discrete representation of the integral Fourier transform because the Fourier
transform is a shift-variant transform—as opposed to the convolution
integral, where possible shifts of sampling positions with respect to the signal
coordinate system do not matter—and they were for this reason ignored in
the derivation of the discrete representation of the convolution integral in
Chapter 9.

To make the formulas more compact, the shifted indices are denoted as

r̃ ¼ rþ vðsÞ and k̃ ¼ k þ uðrÞ: (10.4)

Insert into Eq. (10.3) the expression Eq. (10.1) for signal spectrum and obtain

Figure 10.1 Sampling lattices for the signal (upper plot) and its Fourier spectrum (bottom
plot).
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ar ¼
Z̀
�`

2
4Z̀
�`

aðxÞ expði2pf xÞdx
3
5PSF ðsÞðr̃Df � f Þdf

¼
Z̀
�`

aðxÞdx
Z̀
�`

expði2pf xÞPSF ðsÞðr̃Df � f Þdf

¼
Z̀
�`

aðxÞdx
Z̀
�`

exp½i2pðr̃Df � f Þx�PSF ðsÞð f Þdf

¼
Z̀
�`

aðxÞ expði2pr̃Df xÞdx
Z̀
�`

PSF ðsÞð f Þ expð�i2pf xÞdf

¼
Z̀
�`

aðxÞ expði2pr̃Df xÞFRðsÞðxÞdx,

(10.5)

where

FRðsÞðxÞ ¼
Z̀
�`

PSF ðsÞð f Þ expð�i2pf xÞdf (10.6)

is the frequency response of the spectrum sampling device. Replace aðxÞ in
Eq. (10.5) with its expression through its samples and obtain

ar ¼
Z̀
�`

aðxÞ expði2pr̃Df xÞFRðsÞðxÞdx

¼
Z̀
�`

"XN�1

k¼0

akPSF ðrÞðx� k̃DxÞ
#
expði2pr̃Df xÞFRðsÞðxÞdx

¼
Z̀
�`

�XN�1

k¼0

akPSF ðrÞðxÞ
�
exp½i2pr̃Df ðxþ k̃DxÞ�FRðsÞðxþ k̃DxÞdx

¼
XN�1

k¼0

ak expði2pk̃ r̃DxDf Þ
Z̀
�`

PSF ðrÞðxÞFRðsÞðxþ k̃DxÞ expði2pr̃Df xÞdx

¼
XN�1

k¼0

ak expði2pk̃ r̃DxDf Þ ⋅ PSFFRðk, rÞ,

(10.7)
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where

PSFFRðk, rÞ ¼
Z̀
�`

PSF ðrÞðxÞFRðsÞðxþ k̃DxÞ expði2pr̃Df xÞdx: (10.8)

This term is a constant when the PSFs of a spectrum sampling device
PSF ðsÞð f Þ and a signal reconstruction device PSF ðrÞðxÞ are delta functions,
and it is believed to be approximately constant when the PSFs are well-
concentrated functions of their arguments. For this reason, the term
PSFFRðk, rÞ is disregarded, and the definition of the discrete representation
of the Fourier integral is built on the basis of the shortened relationship:

ar ¼
XN�1

k¼0

ak exp½i2pðk þ uðrÞÞðrþ vðsÞÞDxDf �: (10.9)

Parameters
�
uðrÞ, vðsÞ, Dx, Df

�
are analog parameters of the signal

reconstruction and spectrum sampling devices. Shift parameters
�
uðrÞ, vðsÞ

	
can be chosen arbitrarily. Sampling intervals Dx, Df are interrelated:
according to the uncertainty principle for functions and their Fourier spectra
(Section 7.1), the signal extent X ¼ NDx and sampling interval Df in the signal
spectrum domain are inversely proportional:

Df ¼ 1∕NDx: (10.10)

This relationship between the number of signal samples N and sampling
intervals Dx and Df in the signal and spectral domains is called the cardinal
sampling relationship. By applying it in Eq. (10.9) and assuming zero shifts of
the signal and its spectrum sampling lattices ðuðrÞ ¼ 0, vðsÞ ¼ 0Þ, we obtain the
following discrete representation of the Fourier integral transform:

ar ¼
XN�1

k¼0

ak exp


i2p

kr
N

�
: (10.11)

It is an orthogonal transform. In order to make it orthonormal, introduce
to it a normalizing multiplier 1∕

ffiffiffiffiffi
N

p
. In this way, we arrive at the following

definition of the DFT:

ar ¼
1ffiffiffiffiffi
N

p
XN�1

k¼0

ak exp


i2p

kr
N

�
: (10.12)

Depending on the sampling parameters, other versions of the DFT should be
considered.
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First, it is the case for non-zero shift parameters ðuðrÞ ≠ 0, vðsÞ ≠ 0Þ:

a
ðu,vÞ
r ¼ 1ffiffiffiffiffi

N
p

XN�1

k¼0

ak exp
�
i2p

ðk þ uðrÞÞðrþ vðsÞÞ
N

�
: (10.13)

We will call this version of the DFT the shifted discrete Fourier transform
(ShDFT).

Second, one should take into account that sampling in the signal or
spectral domain can be performed in scaled coordinates with respect to those
assumed in the definition of the integral transform given by Eq. (10.1), such
that

Df ¼ 1∕sNDx, (10.14)

where s ≠ 1 is a scale parameter. In this case, obtain from Eq. (10.9) the
following:

a
ðu,vÞ
r ¼ 1ffiffiffiffiffiffiffi

sN
p

XN�1

k¼0

ak exp
�
i2p

ðk þ uðrÞÞðrþ vðsÞÞ
sN

�
: (10.15)

The discrete transform in this form is irreversible unless sN is an integer
number. Therefore, we must replace in Eq. (10.15) sN with its closest integer
number dsNe and define the scaled shifted discrete Fourier transform
(ScShDFT) as

a
ðs;u,vÞ
r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XN�1

k¼0

ak exp
�
i2p

ðk þ uðrÞÞðrþ vðsÞÞ
dsNe

�
: (10.16)

Its special case of zero shift parameters ðuðrÞ ¼ 0, vðsÞ ¼ 0Þ is called the scaled
discrete Fourier transform (ScDFT):

a
ðsÞ
r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XN�1

k¼0

ak exp


i2p

kr
dsNe

�
: (10.17)

Note that direct scaled DFTs are just dsNe-point DFTs of a signal padded
with ðdsNe �NÞ zeros.

The primary version of DFTs given by Eq. (10.12) is sometimes called a
canonic DFT, depending on context, to distinguish it from other versions of
the DFT.

As it is shown in Appendix A2.1, all of these transforms are invertible:

Inverse canonic DFT: ak ¼
1ffiffiffiffiffi
N

p
XN�1

r¼0

ar exp


�i2p

kr
N

�
; (10.18)
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Inverse shifted DFT: ak ¼
1ffiffiffiffiffi
N

p
XN�1

r¼0

a
ðu,vÞ
r exp

�
�i2p

ðk þ uÞðrþ vÞ
N

�
; (10.19)

Inverse scaled DFT: ak ¼
1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XdsNe�1

k¼0

a
ðsÞ
r exp



�i2p

kr
dsNe

�
; (10.20)

Inverse scaled shifted DFT: ak ¼
1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XdsNe�1

k¼0

a
ðu,v,sÞ
r exp

�
�i2p

ðk þ uÞðrþ vÞ
dsNe

�
:

(10.21)

Inverse scaled DFTs are equivalent to dsNe-point inverse canonic DFTs of
the spectrum padded with dsNe �N zeros to the length dsNe.

Thanks to the availability of fast Fourier transform algorithms, the
canonic DFT plays a fundamental role in signal processing. All other versions
of the DFT are computable through the canonic DFT.

10.2 2D Discrete Fourier Transforms

Assuming that 2D signals are defined on a 2D rectangular sampling lattice
of N1 �N2 samples, 1D shifted scaled (direct and inverse) DFTs can be
straightforwardly generalized to 2D shifted scaled DFTs as

a
ðu1,v1;u2,v2Þ
r,s ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffids1N1eds2N2e

p XN1�1

k¼0

XN2�1

l¼0

ak,l exp
�
i2p



k̃ r̃
ds1N1e

þ l̃ s̃
ds2N2e

��
;

(10.22)

ak,l ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffids1N1eds2N2e

p Xds1N1e�1

r¼0

Xds2N2e�1

s¼0

a
ðu1,v1;u2,v2Þ
r,s exp

�
�i2p



k̃ r̃

ds1N1e
þ l̃ s̃
ds2N2e

��
,

(10.23)

where fk̃, l̃g and fr̃, s̃g are biased indices of the signal and its spectrum
samples:

k̃ ¼ k þ u1; k ¼ 0, : : : , N1 � 1; l̃ ¼ l þ u2; l ¼ 0, : : : , N2 � 1;

r̃ ¼ rþ v11 ; r ¼ 0, : : : , N1 � 1, s̃ ¼ sþ v22 , s ¼ 0, : : : , N2 � 1;
(10.24)

fu1, u2g and fv11 , v22g are corresponding shifts of sampling lattices in the
signal and Fourier transform domains; and fs1, s2g are scale parameters that
define the relationships between the signal, its spectrum sampling intervals
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fDx1, Dx2g, fDf 1, Df 2g, and the numbers fN1, N2g of the signal and
spectrum samples Dx1Df x1 ¼ 1∕s1N2, Dx2Df x2 ¼ 1∕s2N2. dxe denotes the
closest integer to x.

By definition, 2D DFTs are separable over their indices and can be
computed in two separate passes, row-wise and column-wise:

a
ðu,vÞ
r,s ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffids1N1eds2N2e

p XN1�1

k¼0

XN2�1

l¼0

ak,l exp
�
i2p



k̃ r̃
ds1N1e

þ l̃ s̃
ds2N2e

��

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
XN1�1

k¼0

exp


i2p

k̃ r̃
ds1N1e

� XN2�1

l¼0

ak,l exp


i2p

l̃ s̃
ds2N2e

�
:

(10.25)

Correspondingly, direct and inverse canonic 2D DFTs are defined as

ar,s ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

N1N2
p

XN1�1

k¼0

XN2�1

l¼0

ak,l exp
�
i2p


kr
N1

þ ls
N2

��
, (10.26)

ak,l ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

N1N2
p

XN1�1

r¼0

XN2�1

s¼0

ar,s exp
�
�i2p



kr
N1

þ ls
N2

��
: (10.27)

A natural generalization of 2D shifted and scaled DFTs is the 2D affine
discrete Fourier transform (AffDFT). The AffDFT is obtained with the
assumption that either the signal or its spectrum sampling or reconstruction is
carried out in coordinate systems ðx̃1, x̃2Þ, which are affine transformed, with
respect to signal/spectrum coordinate systems ðx1, x2Þ:�

x1
x2

�
¼
�
A B
C D

��
x̃1
x̃2

�
, (10.28)

where
�
A B
C D

�
is a matrix of the coordinate affine transform.

With sA ¼ 1∕N1ADx̃1Df 1 , sB ¼ 1∕N2BDx̃2Df 2 , sC ¼ 1∕N1CDx̃2Df x2
, and

sD ¼ 1∕N2DDx̃2Df 2—where Dx̃1 , Dx̃2 , Df 1 , and Df 2 are the signal and its
Fourier transform sampling intervals in the image ðx̃1, x̃2Þ and Fourier
ðf 1, f 2Þ planes—the AffDTF is defined as

ar,s ¼
XN1�1

k¼0

XN2�1

l¼0

ak,l exp
�
i2p



r̃ k̃
dsAN1e

þ s̃ k̃
dsCN1e

þ r̃ l̃
dsBN2e

þ s̃ l̃
dsDN2e

��
:

(10.29)
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A special case of affine transforms is rotation. For rotation angle u, the
signal coordinate transformation is defined as

�
x1
x2

�
¼
�

cosu sinu
� sinu cosu

��
x̃1
x̃2

�
: (10.30)

With N1 ¼ N2 ¼ N, Dx̃1 ¼ Dx̃2 ¼ Dx, Df 1 ¼ Df 2 ¼ Df , and DxDf ¼ 1∕N, the
2D rotated DFT (RotDFT) is obtained as

au
r,s ¼

1
N

XN�1

k¼0

XN�1

l¼0

ak,l exp
�
i2p


k̃ cosuþ l̃ sinu

N
r̃� k̃ sinu� l̃ cosu

N
s̃
��

: (10.31)

An obvious generalization of the RotDFT is the rotated and scaled DFT
(RotScDFT)

au
r,s ¼

1
dsNe

XN�1

k¼0

XN�1

l¼0

ak,l exp
�
i2p


k̃ cosuþ l̃ sinu

dsNe r̃� k̃ sinu� l̃ cosu
dsNe s̃

��
,

(10.32)

which assumes 2D signal sampling in a u-rotated and s-scaled coordinate
system.

The most important properties of the DFTs are reviewed in Appendix 2.

10.3 Discrete Cosine Transform

There are special cases of shifted DFTs worth special consideration, all of
which are associated with signals and/or spectra that exhibit certain
symmetry. The most important case is that of discrete cosine transform (DCT).

Consider a signal fakg, k ¼ 0, 1, : : : , N � 1. Form from this signal an
auxiliary symmetrized signal

ãk ¼


ak, k ¼ 0, 1, : : : , N � 1
a2N�k�1, k ¼ N, : : : , 2N � 1

(10.33)

and compute the shifted DFT of signal fãkg with shift parameters ð1∕2, 0Þ:
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ar ¼
1ffiffiffiffiffiffiffi
2N

p
X2N�1

k¼0

ãk exp


i2p

kþ 1∕2
2N

r
�

¼ 1ffiffiffiffiffiffiffi
2N

p
(XN�1

k¼0

ãk exp


i2p

kþ 1∕2
2N

r
�
þ
X2N�1

k¼N

ãk exp


i2p

kþ 1∕2
2N

r
�)

¼ 1ffiffiffiffiffiffiffi
2N

p
(XN�1

k¼0

ak exp


i2p

kþ 1∕2
2N

r
�
þ
X2N�1

k¼N

a2N�k�1 exp


i2p

kþ 1∕2
2N

r
�)

¼ 1ffiffiffiffiffiffiffi
2N

p
(XN�1

k¼0

ak exp


i2p

kþ 1∕2
2N

r
�
þ
XN�1

k¼0

ak exp


i2p

2N � k� 1∕2
2N

r
�)

¼ 1ffiffiffiffiffiffiffi
2N

p
(XN�1

k¼0

ak exp


i2p

kþ 1∕2
2N

r
�
þ
XN�1

k¼0

ak exp


�i2p

kþ 1∕2
2N

r
�)

¼ 2ffiffiffiffiffiffiffi
2N

p
XN�1

k¼0

ak cos


p
kþ 1∕2

N
r
�
:

(10.34)

In this way we produce the DCT defined for signal fakg with N
samples as

aDCT
r ¼ 2ffiffiffiffiffiffiffi

2N
p

XN�1

k¼0

ak cos


p
k þ 1∕2

N
r
�
: (10.35)

Based on the definition of the DCT (Eq. (10.34)), the DCT signal
spectrum is an odd (anti-symmetric) sequence if regarded outside its base
interval ½0, N � 1�

aDCT
r ¼ �aDCT

2N�r; aN ¼ 0, (10.36)

whereas the signal, by definition (Eq. (10.33)), is perfectly evenly
symmetric:

ak ¼ a2N�k�1: (10.37)

The inverse DCT can be found as the inverse ShDFT (1∕2, 0) of the
spectrum faDCT

r g with its odd symmetry (Eq. (10.36)):
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ak ¼
1ffiffiffiffiffiffiffi
2N

p
X2N�1

r¼0

aDCT
r exp



�i2p

k þ 1∕2
2N

r
�

¼ 1ffiffiffiffiffiffiffi
2N

p
(
aDCT
0 þ

XN�1

r¼1

aDCT
r exp



�i2p

k þ 1∕2
2N

r
�

þ
X2N�1

r¼Nþ1

aDCT
r exp



�i2p

k þ 1∕2
2N

r
�)

¼ 1ffiffiffiffiffiffiffi
2N

p
(
aDCT
0 þ

XN�1

r¼1

aDCT
r exp



�i2p

k þ 1∕2
2N

r
�

þ
XN�1

r¼1

aDCT
r exp

�
�i2p

ðk þ 1∕2Þð2N � rÞ
2N

�)

¼ 1ffiffiffiffiffiffiffi
2N

p
(
aDCT
0 þ

XN�1

r¼1

aDCT
r exp



�i2p

k þ 1∕2
2N

r
�

þ
XN�1

r¼1

aDCT
r exp



�i2p

k þ 1∕2
2N

r
�)

¼ aDCT
0 þ 2

XN�1

r¼1

aDCT
r cos



p
k þ 1∕2

N
r
�
:

(10.38)

Thus, the definition of the inverse DCT is

ak ¼
1ffiffiffiffiffiffiffi
2N

p
�
aDCT
0 þ 2

XN�1

r¼1

aDCT
r cos



p
k þ 1∕2

N
r
��

: (10.39)

As a shifted DFT of symmentrized signals, the DCT satisfies the Parseval’s
relationship:

XN�1

k¼0

a2k ¼
XN�1

r¼0

��aDCT
r

��2: (10.40)

The coefficient aDCT
0 is, similar to the case of the DFT, proportional to the

signal dc component:

aDCT
0 ¼

ffiffiffiffiffiffiffi
2N

p  
1
N

XN�1

k¼0

ak

!
: (10.41)

The ðN � 1Þth DCT coefficient
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aDCT
N�1 ¼ 2ffiffiffiffiffiffiffi

2N
p

XN�1

k¼0

akð�1Þk sin


p
k þ 1∕2

N

�
(10.42)

represents the signal’s highest frequency. This equation is similar to that for
the DFT (Eq. (A2.49)) except that the signal is multiplied by an “apodization”

function
n
sin
�
p kþ1∕2

N

�o
, which gradually puts the sinal values toward its

borders down to zero.
The DCT was first introduced by Ahmed, Natarajan, and Rao28 as an

approximation of the Karunen–Loew transform, and it has proved to have
some of the best energy compaction among orthogonal transforms.16 This
feature can be attributed to the fact that the DCT is the ShDFT (1∕2, 0) of
signals that are evenly extended outside its borders (Eq. (10.33)), which
eliminates any signal discontinuities at the signal borders that are
characteristic for DFT by virtue of its cyclicity and, therefore, eliminates
the need to reproduce them in high-frequency spectral components.

Being a derivative of DFTs, the DCT can, in principle, be computed using
the FFT with the same computational complexity of logN operations per
each of N signal samples. There also exist dedicated fast transform algorithms
of the FFT type to compute the DCT.

The absence of discontinuities at signal borders and the computational
efficiency make the DCT attractive for many signal and image processing
applications, such as audio and image compression, image perfection and
enhancement, as well as signal and image resampling (which are discussed in
Chapters 5 and 6). The DCT proved also to be a perfect substitute for the
DFT to implement a boundary-effect-free, fast signal digital convolution with
fast transforms. This application will be discussed in the next section.

The DCT has a complementary sine transform, the discrete cosine-sine
transform (DcST):

aDcST
r ¼ 2ffiffiffiffiffiffiffi

2N
p

XN�1

k¼0

ak sin


p
k þ 1∕2

N
r
�
: (10.43)

The DcST is an imaginary part of the ShDFT with shift parameters (1/2,0)

aDcST
r ¼ 1

i
ffiffiffiffiffiffiffi
2N

p
X2N�1

k¼0

ãk exp


p
k þ 1∕2

N
r
�

¼ 2ffiffiffiffiffiffiffi
2N

p
XN�1

k¼0

ak sin


p
k þ 1∕2

N
r
�

(10.44)

of a signal
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ãk ¼


ak, k ¼ 0, 1, : : : , N � 1
�a2N�k�1, k ¼ N, N þ 1, : : : , 2N � 1

(10.45)

extended to the interval ½0, 2N � 1� in an odd (anti-symmetric) way. From
this definition, it follows that the DcST spectrum exhibits even symmetry
when regarded in an extended interval ½0, 2N � 1�:

aDcST
r ¼ aDcST

2N�r , (10.46)

and that it assumes periodic replication, with a period 2N, of the signal
complemented with its anti-symmetrical copy:

ãk ¼ ãðkÞmod2N : (10.47)

Distinct from the DFT and the DCT, the DcST does not contain a signal
dc component:

aDcST
0 ¼ 0, (10.48)

which is an obvious consequence of the signal’s odd symmetry (Eq. (10.45)),
and the inverse DcST

ak ¼
1ffiffiffiffiffiffiffi
2N

p
�
aDcST
N þ 2

XN�1

r¼1

aDcST
r sin



p
k þ 1∕2

N
r
��

(10.49)

involves spectral coefficients with indices f1, 2, : : : , Ng rather than
f0, 1, : : : , N � 1g for the DCT.

Direct and inverse DcSTs can be computed through the DCT if one
reverses the order of the transform coefficient:

aDcST
N�r ¼ 2ffiffiffiffiffiffiffi

2N
p

XN�1

k¼0

ak sin
�
p
ðk þ 1∕2ÞðN � rÞ

N

�

¼ 2ffiffiffiffiffiffiffi
2N

p
XN�1

k¼0

ak



sin½pðk þ 1∕2Þ� cos



p
k þ 1∕2

N
r
�

� cos½pðk þ 1∕2Þ� sin


p
k þ 1∕2

N
r
��

¼ 2ffiffiffiffiffiffiffi
2N

p
XN�1

k¼0

ð�1Þkak cos


p
k þ 1∕2

N
r
�
,

(10.50)
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ak ¼
1ffiffiffiffiffiffiffi
2N

p
(
aDcST
N þ 2

XN�1

r¼1

aDcST
N�r sin

�
p
ðk þ 1∕2ÞðN � rÞ

N

�)

¼ 1ffiffiffiffiffiffiffi
2N

p


aDcST
N þ 2ð�1Þk

XN�1

r¼1

aDcST
N�r cos



p
k þ 1∕2

N
r
��

:

(10.51)

2D and multi-dimensional DCTs and DcSTs are defined as a separable
combination of 1D transforms on each of the dimensions. For instance, the
2D DCT of a signal fak,lg, k ¼ 0, 1, : : : , N1 � 1, l ¼ 0, 1, : : : , N2 � 1 is
defined as

aDCT
r,s ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi

N1N2
p

XN1�1

k¼0

XN2�1

l¼0

ak,l cos


p
k þ 1∕2

N1
r
�
cos


p
l þ 1∕2
N2

s
�
, (10.52)

which corresponds to the four-fold image symmetry

ak,l ¼ a2N�k�1,l ¼ ak,2N�l�1 ¼ a2N�k�,2N�l�1 (10.53)

illustrated in Fig. 10.2.

10.4 Boundary-Effect-Free Signal Convolution
in the DCT Domain

One of the most important applications of DFT in signal processing is fast
computing signal convolution. It is based on the convolution theorem
(Appendix A2, Section A2.5) for the DFT and the availability of FFT
algorithms. However, convolution using the FFT is a cyclic convolution that
implies that signals and convolution kernels are periodic sequences. Because
of this, signal samples at the left and the right signal borders act like
immediate neighbors in computing convolution in the vicinity of signal
borders. This can substantially deteriorate the signal structure and cause
heavy boundary effects, which will be discussed in Section 9.3. It was shown
that even signal extension to double length by means of mirror reflection from
their borders is a reasonable practical solution for treating border effects in
signal convolution. This section will show that the application of the DFT
convolution theorem to signals evenly extended to double length by mirror
reflection from their borders translates to a convolution in the DCT domain.

Let signal fãkg be obtained from the signal fakg of N samples by mirror
reflection extension and periodic replication of the result with a period of
2N samples:
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ãðkÞmod2N ¼


ak, k ¼ 0, 1, : : : , N � 1
a2N�k�1, k ¼ N, N þ 1, : : : , 2N � 1,

(10.54)

and let fh̃ng be a desired convolution kernel fhng of N samples
(n ¼ 0, 1, : : : , N � 1) zero-padded to the length 2N:

h̃n ¼
8<
:

0 , n ¼ 0, : : : , bN∕2c � 1
hn�bN∕2c, n ¼ bN∕2c, : : : , bN∕2c þN � 1
0 , bN∕2c þN, : : : , 2N � 1,

(10.55)

where bN∕2c is an integer part of N∕2. The first N samples of the cyclic
convolution

cðkÞmod2N ¼
XN�1

n¼0

h̃nãðk�nþbN∕2cÞmod2N (10.56)

are the desired convolution result, in which the involvement of distant signal
samples from the signal’s opposite sites associated with the cyclicity of

Figure 10.2 Four-fold image symmetry.
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convolution is removed due to the signal mirrored extension shown in
Fig. 9.1.

Consider the computing convolution of such signals by the inverse DFT
of the product of the signal and convolution kernel DFT spectra. The DFT
spectrum of the extended signal fãkg is

ãr ¼
1ffiffiffiffiffiffiffi
2N

p
X2N�1

k¼0

ãk exp


i2p

kr
2N

�

¼
(

2ffiffiffiffiffiffiffi
2N

p
XN�1

k¼0

ak cos


p
k þ 1∕2

N
r
�)

exp


�ip

r
2N

�

¼ a
ðDCTÞ
r exp



�ip

r
2N

�
,

(10.57)

where faðDCTÞ
r g are the DCT coefficients of the initial signal fakg.

For computing convolution, the signal spectrum defined by Eq. (10.57)
should be multiplied by the DFT coefficients of the zero-padded convolution
kernel:

h̃r ¼
1ffiffiffiffiffiffiffi
2N

p
X2N�1

n¼0

h̃n exp


i2p

nr
2N

�
, (10.58)

and then the inverse DFT of the product ãrh̃r should be computed for the first
N samples:

bk ¼
1ffiffiffiffiffiffiffi
2N

p
X2N�1

r¼0

a
ðDCTÞ
r exp



�ip

r
2N

�
h̃r exp



�i2p

kr
2N

�

¼ 1ffiffiffiffiffiffiffi
2N

p
X2N�1

r¼0

a
ðDCTÞ
r h̃r exp



�i2p

k þ 1∕2
2N

r
�
:

(10.59)

Split the sum in Eq. (10.59) into two terms and change the index r of
summation in the second term to 2N � r. Then obtain
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bk ¼
1ffiffiffiffiffiffiffi
2N

p
X2N�1

r¼0

a
ðDCTÞ
r h̃r exp



�i2p

k þ 1∕2
2N

r
�

¼ 1ffiffiffiffiffiffiffi
2N

p
(XN�1

r¼0

a
ðDCTÞ
r h̃r exp



�i2p

k þ 1∕2
2N

r
�

þ
X2N�1

r¼N

a
ðDCTÞ
r h̃r exp



�i2p

k þ 1∕2
2N

r
�)

¼ 1ffiffiffiffiffiffiffi
2N

p
(XN�1

r¼0

a
ðDCTÞ
r h̃r exp



�i2p

k þ 1∕2
2N

r
�

þ
XN
r¼1

a
ðDCTÞ
2N�r h̃2N�r exp

�
�i2p

ðk þ 1∕2Þð2N � rÞ
2N

�)

¼ 1ffiffiffiffiffiffiffi
2N

p
(XN�1

r¼0

a
ðDCTÞ
r h̃r exp



�i2p

k þ 1∕2
2N

r
�

þ
XN
r¼1

a
ðDCTÞ
2N�r h̃2N�r exp½�i2pðk þ 1∕2Þ� exp



i2p

k þ 1∕2
2N

r
�)

¼ 1ffiffiffiffiffiffiffi
2N

p
(XN�1

r¼0

a
ðDCTÞ
r h̃r exp



�i2p

k þ 1∕2
2N

r
�

�
XN
r¼1

a
ðDCTÞ
2N�r h̃2N�r exp



i2p

k þ 1∕2
2N

r
�)

:

(10.60)

By virtue of the properties of the DFT and DCT spectra (Eq. (10.36)), it
follows that aDCT

N ¼ 0, aDCT
r ¼ �aDCT

2N�r, and fh̃r ¼ h̃∗
2N�rg. The relationships

in Eq. (10.60) produce

bk ¼
1ffiffiffiffiffiffiffi
2N

p
(XN�1

r¼0

a
ðDCTÞ
r h̃r exp



�i2p

k þ 1∕2
2N

r
�

þ
XN�1

r¼1

a
ðDCTÞ
r h̃∗

r exp


i2p

k þ 1∕2
2N

r
�

¼ 1ffiffiffiffiffiffiffi
2N

p


a
ðDCTÞ
0 h̃0 þ 2

XN�1

r¼1

a
ðDCTÞ
r h̃re

r cos


p
k þ 1∕2

N
r
�

� 2
XN�1

r¼1

a
ðDCTÞ
r h̃im

r sin


p
k þ 1∕2

N
r
��

,

(10.61)
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where h̃re
r and h̃im

r are real and imaginary parts of h̃r. The first two terms of

this expression represent the inverse DCT of the product faðDCTÞ
r h̃re

r g, while
the third term is the DcST of the product faðDCTÞ

r h̃im
r g. As shown in the

previous section, the inverse DcST can be converted to the DCT by changing
the summation index r in the DcST by N � r (Eq. (10.50)):

XN�1

r¼1

a
ðDCTÞ
N�r h̃im

N�r sin
�
p
ðk þ 1∕2ÞðN � rÞ

N

�

¼ ð�1Þk
XN�1

r¼1

a
ðDCTÞ
N�r h̃im

N�r cos


p
k þ 1∕2

N
r
�
:

(10.62)

Substitute this expression into Eq. (10.61) and obtain the final formula for
computing (through the DCT) the digital convolution with virtually no
boundary effects:

bk ¼
1ffiffiffiffiffiffiffi
2N

p
(
a
ðDCTÞ
0 h̃0 þ 2

XN�1

r¼1

a
ðDCTÞ
r h̃re

r cos


p
k þ 1∕2

N
r
�

� 2ð�1Þk
XN�1

r¼1

a
ðDCTÞ
N�r h̃im

N�r cos


p
k þ 1∕2

N
r
�)

:

(10.63)

10.5 DFT and Discrete Frequency Responses of Digital Filters

This section will show that the frequency responses of digital filters, which are
their main characteristics, can be expressed through the DFT coefficients of
their PSFs. Consider the continuous frequency response (Eq. (9.16)) of a
digital filter defined by its discrete point spread function (DPSF) fhng

DFCFRð f Þ ¼
XN�1

n¼0

hn exp
�
i2pfDx

�
nþ uðsÞ

��
(10.64)

or

DFCFRð f Þ ¼
XN�1

n¼0

hn exp


i2p

f
Df

nþ uðsÞ

N

�
(10.65)

because according to Eq. (10.10)), DxDf ¼ 1∕N. This expression accounts for
the possible shift uðsÞ of the sampling lattice with respect to the signal
coordinate system because it affects the phase of the filter frequency response.

Let
n
h
ðu,0Þ
r

o
be a set of shifted DFT coefficients of the filter DPSF fhng

with shift parameters (u, 0):
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hn ¼
XN�1

r¼0

h
ðuðsÞ, 0Þ
r exp



�i2p

nþ u
N

r
�
: (10.66)

The set of coefficients fhðuðsÞ,0Þ
r g can be called the digital filter discrete

frequency response (DFDFR). Then obtain

DFCFRð f Þ¼
XN�1

n¼0

(XN�1

r¼0
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Df

� r
�
N�1
N

�

¼
XN�1

r¼0

h
ðuðsÞ,0Þ
r exp
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f
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N

� :

(10.67)

Finally, with the natural choice of shift parameters
u ¼ uðsÞ ¼ �ðN � 1Þ∕2, obtain the continuous frequency response of a digital

filter with a discrete frequency response
n
h
ð�N�1

2 ,0Þ
r

o
:

DFCFRð f Þ ¼ N
XN�1

r¼0

h
ð�N�1

2 ,0Þ
r sincd½N, pð f ∕Df � rÞ�, (10.68)

where sincdðN; xÞ is the discrete sincd function.
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Equation (10.68) implies that, at points f ¼ rDf , r ¼ 0, : : : , N � 1 within
one period of the periodicity of CFRDFð f Þ, its values are proportional to the
coefficients fhrg of the filter’s discrete frequency response. Between these
sampling points, CFRDFð f Þ is discrete sincd interpolated from samples fhrg
of its discrete frequency response.

Figure 10.3 illustrates the discrete and continuous frequency responses of
a digital filter with a PSF ½�1, 1�, which is frequently used for numerical
differentiation. The solid line in the figure shows the absolute value of the
frequency response in the signal baseband ½�1∕2Dx ÷ 1∕2Dx�; stems on the
curve indicate samples fhrg of the continuous frequency response that
represent the filter’s discrete frequency response.

Chapter 5 showed how the notion of digital-filter continuous and discrete
frequency responses is used to design discrete filters and, specifically, perfect
discrete interpolation, differentiation, and integration filters.

10.6 Exercises

dft_demo_SPIE.m

Demonstration of properties and applications of the DFT. Test options are

• Symmetry properties of the DFT;
• Signal spectra

◦ DFT spectra of sinusoidal signals,
◦ DFT spectra of sampled images,
◦ DFT spectra of interactively chosen image 32-� 32-pixel fragments;

• Shift theorem: shift invariance of DFT power spectrum;
• Convolution theorem (cyclic convolution);
• Ideal low-pass filtering in the DFT domain.

Figure 10.3 Continuous (solid line) and discrete frequency response (stems) of a digital
filter that is frequently used for numerical evaluation of signal first derivatives.
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convolution_demo_SPIE.m

Demonstration of digital convolution implemented with MATLAB function
conv2m, which assumes that the image is supposed to be zero outside its
border. Test options include

• the principle of convolution;
• computing the image’s local means in windows with 3� 3, 5� 5, and

15� 15 pixels;
• computing the image’s Laplacian.

conv_evenextension_demo_SPIE.m

Demo of convolution in the DCT domain (convolution of signals extended
outside their borders by mirror reflection from the borders). Three options for
the convolution kernel are

• Rectangular impulse (computing signal local mean),
• “Mexical hat,”
• Simple differentiator (convolution kernel [–1,1]).

Pseudo-random, band-limited, computer-generated sequences are used as
test signals. Displayed are the

• Test signal with current position of the convolution kernel in the course
of convolution;

• Test signal extended to its double length;
• Test signal extended to its double length with a convolution kernel;

overlaid in its current position in the course of convolution;
• Filtered signal in the process of filtering with a convolution kernel

overlaid in its current position.

dct_vs_dft_conv_demo_SPIE.m

Illustration of differences in the treatment of signal borders between
DCT-based and DFT-based convolutions. Shown is a rectangular convolu-
tion kernel moving sample by sample along the test signal (Kronecker delta)
from the signal center toward its right border, then from its left border back to
the center.
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Appendix 1

Fourier Series, Integral Fourier
Transform, and Delta Function

A1.1 1D Fourier Series

Function aðxÞ given on an interval [�X∕2 , x , X∕2] can be expanded in a
Fourier series

aðxÞ ¼ rect
�
x
X

� X̀
k¼�`

Ck exp
�
i2p

kx
X

�
, (A1.1)

where

Ck ¼
1
X

ZX∕2

�X∕2

aðxÞ exp
�
i2p

kx
X

�
dx (A1.2)

and

rectðxÞ ¼
�
1, �1∕2 , x , 1∕2
0, otherwise

(A1.3)

is a rectangular window function.
Function

ãðxÞ ¼
X̀
k¼�`

Ck exp
�
�i2p

kx
X

�
(A1.4)

is a periodic function with a period X : for any integer m,
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ãðxþ XmÞ ¼
X̀
k¼�`

Ck exp
�
�i2p

kðxþ XmÞ
X

�

¼
X̀
k¼�`

Ck expð�i2pkmÞ exp
�
�i2p

kx
X

�

¼
X̀
k¼�`

Ck exp
�
�i2p

kx
X

�
¼ ãðxÞ:

(A1.5)

A1.2 2D Fourier Series

The 2D function aðx, yÞ given on an interval [�X∕2 , x , X∕2;
[�Y∕2 , y , Y∕2; ]] can be expanded in a 2D Fourier series

aðx, yÞ ¼ rect
�
x
X

�
rect

�
y
Y

� X̀
k¼�`

X̀
l¼�`

Ck,l exp
�
�i2p

�
kx
X

þ ly
Y

��
, (A1.6)

where

Ck ¼
1

XY

ZX∕2

�X∕2

ZY∕2

�Y∕2

aðx, yÞ exp
�
i2p
�
kx
X

þ ly
Y

��
dxdy: (A1.7)

Function

ãðxÞ ¼
X̀
k¼�`

X̀
l¼�`

Ck,l exp
�
�i2p

�
kx
X

þ ly
Y

��
(A1.8)

is a periodic function in Cartesian coordinates with a 2D period ðX , Y Þ: for
any integer m and n,

ãðxþXm, yþYnÞ ¼
X̀
k¼�`

X̀
l¼�`

Ck,l exp
�
�i2p

�
kðxþXmÞ

X
þ lðyþYnÞ

Y

��

¼
X̀
k¼�`

X̀
k¼�`

Ck,l expð�i2pkmÞexp
�
�i2p

kx
X

�
expð�i2plnÞexp

�
�i2p

ly
Y

�

¼
X̀
k¼�`

X̀
l¼�`

Ck,l exp
�
�i2p

�
kx
X

þ ly
Y

��
¼ ãðx, yÞ:

(A1.9)
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A1.3 1D Integral Fourier Transform

The 1D integral Fourier transform of a function aðxÞ is defined as

að f Þ ¼
Z̀
�`

aðxÞ expði2pf xÞdx: (A1.10)

Function að f Þ is called the Fourier spectrum of function aðxÞ. The argument
f of the spectrum is called its frequency.

The integral Fourier transform is invertible:

aðxÞ ¼ lim
F→`

ZF∕2
�F∕2

að f Þ expð�i2pf xÞdf : (A1.11)

In this sense, the inverse 1D integral Fourier transform is defined as

aðxÞ ¼
Z̀
�`

að f Þ expð�i2pf xÞdf : (A1.12)

The most important properties of the integral Fourier transform are

1. Spectrum symmetry

If function aðxÞ is real, i.e., aðxÞ ¼ a∗ðxÞ, where the asterisk symbolizes a
complex conjugate, the following relationship holds for its Fourier spectrum
að f Þ:

að f Þ ¼ a∗ð�f Þ: (A1.13)

2. Convolution theorem

Let að f Þ be the Fourier spectrum of function aðxÞ, and let bð f Þ be the Fourier
spectrum of function bðxÞ. Then, function cðxÞ with a Fourier spectrum equal
to the product of spectra að f Þ and bð f Þ is a convolution of functions aðxÞ
and bðxÞ:

cðxÞ ¼
Z̀
�`

aðjÞbðx� jÞdj: (A1.14)
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Proof:

cðxÞ ¼
Z̀
�`

að f Þbð f Þ expð�i2pf xÞdf

¼
Z̀
�`

0
@Z̀

�`

aðjÞ expði2pf jÞdj
1
Abð f Þ expð�i2pf xÞdf

¼
Z̀
�`

aðjÞdj
0
@Z̀

�`

bð f Þ exp ½�i2pf ðx� jÞ�df
1
A ¼

Z̀
�`

aðjÞbðx� jÞdj:

(A1.15)

In signal theory, convolution describes signal shift-invariant filtering:

aðxÞ ¼
Z̀
�`

PSFðjÞaðx� jÞdj: (A1.16)

The convolution kernel PSFðjÞ is called the filter PSF. Its Fourier transform

FRð f Þ ¼
Z̀
�`

PSFðxÞ expði2pf xÞdx (A1.17)

is called the filter frequency response. According to the convolution theorem,
signal shift-invariant filtering is described in the frequency domain of the
signal Fourier transform as multiplication of the signal spectrum by the filter
frequency response.

3. Shift theorem

Let að f Þ be the Fourier spectrum of function aðxÞ. The spectrum of function
aðxþ dxÞ shifted by an dx interval with respect to function aðxÞ is
að f Þ expð�i2pf dxÞ. This follows directly from the definition of the Fourier
transform (Eq. (A1. 10)).

4. Modulation theorem

Let að f Þ be the Fourier spectrum of function aðxÞ. The spectrum ãcosð f Þ of
signal ãcosðxÞ ¼ aðxÞ cosð2pf 0xÞ modulated by a cosinusoidal signal of
frequency f 0 is

ãcosð f Þ ¼
að f þ f 0Þ þ að f � f 0Þ

2
, (A1.18)
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and the spectrum ãsinð f Þ of signal ãsinðxÞ ¼ aðxÞ sinð2pf 0xÞ modulated by a
sinusoidal signal of frequency f 0 is

ãð f Þ ¼ að f þ f 0Þ � að f � f 0Þ
2i

: (A1.19)

These relationships follow directly from Eq. (A1.10) and from identities

cosu ¼ ½expðiuÞ þ exp�ðiuÞ�∕2; sinu ¼ ½expðiuÞ � exp�ðiuÞ�∕2i: (A1.20)

5. Parseval’s relation

The signal energy, defined as

Ea ¼
Z̀
�`

jaðxÞj2dx, (A1.21)

is equal to the energy of its Fourier spectrum:

Z̀
�`

jaðxÞj2dx ¼
Z̀
�`

jað f Þj2df : (A1.22)

Proof: Z̀
�`

jaðxÞj2dx ¼
Z̀
�`

2
4Z̀
�`

að f Þ expð�i2pf xÞdf
3
5a∗ðxÞdx

¼
Z̀
�`

að f Þ
2
4Z̀
�`

a∗ðxÞ expð�i2pf xÞdx
3
5df

¼
Z̀
�`

að f Þa∗ð f Þdf ¼
Z̀
�`

jað f Þj2df .

(A1.23)

A1.4 2D Integral Fourier Transform

The 2D direct and inverse integral Fourier transform are defined in a
rectangular coordinate system as separable over two coordinates ðx, yÞ as

að f x, f yÞ ¼
Z̀
�`

aðx, yÞ exp ½i2pð f xxþ f yyÞ�dxdy, (A1.24)

aðx, yÞ ¼
Z̀
�`

að f x, f yÞ exp ½�i2pð f xxþ f yyÞ�df xdf y: (A1.25)
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Five of the most important properties of the 1D integral Fourier transform
listed above translate to the 2D integral Fourier transfom as follows.

1. Spectrum symmetry

If function aðx, yÞ is real, i.e., aðx, yÞ ¼ a∗ðx, yÞ, where the asterisk
symbolizes a complex conjugate, then

að f x, f yÞ ¼ a∗ð�f x, � f yÞ: (A1.26)

2. Convolution theorem

Let að f x, f yÞ be the Fourier spectrum of function aðx, yÞ and let bð f x, f yÞ be
the Fourier spectrum of function bðx, yÞ. Function cðx, yÞ with a Fourier
spectrum equal to the product of spectra að f x, f yÞ and bð f x, f yÞ can be
found as a convolution of functions aðx, yÞ and bðx, yÞ:

cðxÞ ¼
Z̀
�`

aðj, hÞbðx� j, y� hÞdjdh: (A1.27)

3. Shift theorem

Let að f x, f yÞ be the 2D Fourier spectrum of function aðx, yÞ. The spectrum
ãð f x, f yÞ of function aðxþ dx, yþ dyÞ shifted by a 2D interval ðdx, dyÞ with
respect to function aðx, yÞ is

ãð f x, f yÞ ¼ að f x, f yÞ exp ½�i2pð f xdx, f ydyÞ�: (A1.28)

4. Modulation theorem

Let að f x, f yÞ be the Fourier spectrum of function aðx, yÞ. The spectrum
ãcosð f x, f yÞ of signal ãcosðx, yÞ ¼ aðx, yÞ cos [2pð f x0xþ f y0yÞ] modulated by
a 2D cosinusoidal signal of frequency ð f x0 , f y0Þ is

ãcosð f Þ ¼
að f x þ f x0 , f y þ f y0Þ þ að f x � f x0 , f y � f y0Þ

2
, (A1.29)

and the spectrum ãsinð f x, f yÞ of signal ãsinðx, yÞ ¼ aðxÞ sin [2pð f x0xþ f y0yÞ]
modulated by a sinusoidal signal of frequency ð f x0 , f y0Þ is

ãsinð f Þ ¼
að f x þ f x0 , f y þ f y0Þ � að f x � f x0 , f y � f y0Þ

2i
: (A1.30)

5. Parseval’s relation

Parseval’s relation (Eq. (A1.22)) holds for a signal and its Fourier spectra of
any dimensionality.
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A1.5 Delta Function, Sinc Function, and the Ideal Low-Pass Filter

Let wðx, jÞ be a kernel of an invertible integral transform F:

aðjÞ ¼ F½aðxÞ� ¼
Z̀
�`

aðxÞwDirðx, jÞdx, (A1.31)

and winvðx, jÞ is a reciprocal kernel of the transform F̄ inverse to F:

aðxÞ ¼ F̄½aðjÞ� ¼
Z̀
�`

aðjÞwInvðj, xÞdj: (A1.32)

Insert Eq. (A1.31) into Eq. (A1.32),

aðxÞ ¼
Z̀
�`

0
@Z̀

�`

aðx̄ÞwDirðx̄, jÞdx̄
1
AwInvðj, xÞdj

¼
Z̀
�`

aðx̄Þ
0
@Z̀

�`

wDirðx̄, jÞwInvðj, xÞdj
1
Adx̄

(A1.33)

and introduce a function

dðx, x̄Þ ¼
Z̀
�`

wDirðx̄, jÞwInvðj, xÞdj (A1.34)

such that

aðxÞ ¼
Z̀
�`

aðx̄Þdðx, x̄Þdx̄: (A1.35)

The function dðx, x̄Þ, according to Eq. (A1.35), can be regarded as a
kernel of the identical integral transform and symbolizes the invertibility
of the transform F; it is called the Dirac delta function. Equation (A1.35)
is the general definition of the delta function. The most important
properties are

– The delta function dðx, x̄Þ of the integral Fourier transform is shift
invariant:

dðx, x̄Þ ¼ dðx� x̄Þ; (A1.36)
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– The delta function is an even function:

dðxÞ ¼ dð�xÞ; (A1.37)

– The integral of the delta function over any finite interval equals one:

ZX∕2

�X∕2

dðxÞdx ¼
Z̀
�`

rect
�
x
X

�
dðxÞdx ¼rect

�
0
X

�
¼ 1: (A1.38)

The delta function of the integral Fourier transform can be found by
inserting Eq. (A1.10) into Eq. (A1.11):

aðxÞ ¼ lim
F→`

ZF∕2
�F∕2

0
@Z̀

�`

aðjÞ expði2pf jÞdj
1
A expð�i2pf xÞdf

¼
Z̀
�`

aðjÞdj lim
F→`

ZF∕2
�F∕2

exp ½�i2pf ðx� jÞ�df :

(A1.39)

Therefore, the delta function of the integral Fourier transform is defined as

dðx, jÞ ¼ dðx� jÞ ¼ lim
F→`

ZF∕2
�F∕2

exp ½�i2pf ðx� jÞ�df

¼ lim
F→`

 
exp ½�ipFðx� jÞ� � ½ipFðx� jÞ�

�i2pðx� jÞ

!

¼ lim
F→`

 
F
sin ½pFðx� jÞ�
pFðx� jÞ

!

¼ lim
F→`

ðFsinc½pFðx� jÞ�Þ

¼
Z̀
�`

exp ½�i2pf ðx� jÞ�df :

(A1.40)

Function

sincðxÞ ¼ sinx
x

(A1.41)

is called the sinc function, which plays a fundamental role in sampling theory.
The most important properties are
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– The sinc function is an even function:

sincðxÞ ¼ sincð�xÞ; (A1.42)

– The sinc function sincðpFxÞ has zeros at equidistant points
fx ¼ k∕Fg, k ¼ �1, � 2, ...., except point x ¼ 0, where it equals one:

sincðpFxÞ ¼
�
1, x ¼ 0
0, x ¼ k∕F , k ¼ �1, � 2, ....

(A1.43)

A plot of function sincðpFxÞ is shown in Fig. A1.1.
– The sinc function sincðpFxÞ is the Fourier transform of the rectangular

window function rectð f ∕FÞ∕F :

1
F

Z̀
�`

rect
�
f
F

�
expð�i2pf xÞdf ¼ 1

F

ZF∕2
�F∕2

expð�i2pf xÞdf

¼ sinðpFxÞ
pFx

¼ sincðpFxÞ:

(A1.44)

Therefore, the sinc function is a PSF of the ideal low-pass filter that passes
signal frequency components within frequency interval [�F∕2, F∕2] and
rejects all frequencies outside this interval. According to the sampling
theorem, ideal low-pass filters are those used for image reconstruction from
samples with mininal mean square reconstruction error.

A1.6 Poisson Summation Formula

Consider function
P

`
k¼�`

d
�
f � k

Dx

�
. It is a periodic function with period

1∕Dx. Represent it as a Fourier series:

Figure A1.1 Plot of the sinc function sincð40pxÞ.
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X̀
k¼�`

d

�
f � k

Dx

�
¼
X̀

m¼�`

Dm exp ði2pf mDxÞ: (A1.45)

Coefficients Dm can be found as

Dm ¼ Dx

Z1∕2Dx

�1∕2Dx

dð f Þ expð�i2pf mDxÞdf ¼ Dx: (A1.46)

Therefore,

X̀
k¼�`

d
�
f � k

Dx

�
¼ Dx

X̀
m¼�`

exp ði2pf mDxÞ: (A1.47)

This identity is called the Poisson summation formula.
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Appendix 2

Discrete Fourier Transforms
and Their Properties

A2.1 Invertibility of Discrete Fourier Transforms and the Discrete Sinc
Function

Consider the general scaled shifted DFT of a signal with samples fakg

ar ¼
1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XN�1

n¼0

an exp
�
i2p

ñ r̃
dsNe

�
; ñ ¼ nþ u; r̃ ¼ rþ v (A2.1)

and show that its inverse is the transform

ak ¼
1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XdsNe�1

r¼0

ar exp
�
�i2p

k̃ r̃
dsNe

�
; k̃ ¼ k þ u; r̃ ¼ rþ v: (A2.2)

Insert the expression Eq. (A2.1) for farg into Eq. (A2.2) to obtain

ak ¼
1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XdsNe�1

r¼0

ar exp
�
�i2p

k̃ r̃
dsNe

�

¼ 1
dsNe

XdsNe�1

r¼0

�XN�1

n¼0

an exp
�
i2p

ñ r̃
dsNe

��
exp

�
�i2p

k̃ r̃
dsNe

�

¼ 1
dsNe

XN�1

n¼0

an
XdsNe�1

r¼0

exp
�
i2p

ðn� kÞ
dsNe ðrþ vÞ

�

¼
exp

h
i2p ðn�kÞ

dsNe v
i

dsNe
XN�1

n¼0

an
exp½i2pðn� kÞ� � 1

exp
�
i2p n�k

dsNe
�
� 1
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¼ 1
dsNe

XN�1

n¼0

an
exp½ipðn� kÞ� � exp½ipðn� kÞ�
exp

�
ip n�k

dsNe
�
� exp

�
ip n�k

dsNe
� exp½ipðn� kÞ 2vþN � 1

dsNe
�

¼
XN�1

n¼0

an
sin½pðn� kÞ�
N sin

�
p n�k

dsNe
� exp

�
ipðn� kÞ 2vþN � 1

dsNe
�

¼
XN�1

n¼0

an sincd½dsNe; pðk � nÞ� exp
�
ipðn� kÞN � 1

N

�
,

(A2.3)

where

sincdðN; xÞ ¼ sin x
N sinðx∕NÞ (A2.4)

is the discrete sincd function.
For integers n and k,

sincd½pðn� kÞ, sN� ¼ d̄ðn� kÞ ¼
	
1, k ¼ N
0, k ≠ N:

(A2.5)

Therefore,

XN�1

n¼0

an sincd½N; pðn� kÞ� exp
�
ipðn� kÞN � 1

N

�
¼ ak: (A2.6)

The binary function d̄ð · Þ in Eq. (A2.5) is called the Kronecker delta. It is an
analog of the Dirac delta function, defined in Appendix A1 (Eq. (A1.35)).

The discrete sincd function is a discrete analog of the continuous sinc
function defined by Eq. (A1.38). Both functions are plotted for comparison in
Fig. A2.1. The figure shows that the continuous sinc function and discrete
sincd function are almost identical within the basic interval of N samples for
the discrete sinc function and its corresponding interval NDx for the
continuous sinc function. Within this interval, their relative difference does
not exceed 10–2; outside this interval, the difference is dramatic. While the sinc
function continues to decay, the sincd function sincdðN; pxÞ is a periodic
function with period N. The type of periodicity depends on whether N is an
odd or even number:

sincdðN; pðk þ gNÞÞ ¼ ð�1ÞgðN�1ÞsincdðN; pkÞ (A2.7)

for any integer number g.
This book uses the following expression as a reference for the discrete sinc

function:
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1
N

XN�1

r¼0

exp
�
i2p

kr
N

�

¼ expði2pkÞ � 1

exp
�
i2p kr

N

�
� 1

¼ 1
N

expðipkÞ � expð�ipkÞ
exp

�
ip k

N

�
� exp

�
�ip k

N

� exp
�
�ip

N � 1
N

k
�

¼ sinðpkÞ
N sinðpk∕NÞ exp

�
�ip

N � 1
N

k
�

¼ sincdðN; pkÞ exp
�
�ip

N � 1
N

k
�
:

(A2.8)

Figure A2.1 Discrete sinc (dashed line) and continuous sinc (solid line) functions for an
odd (upper plot) and even (bottom plot) number of samples N within the basic sampling
interval NDx .
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A2.2 Parseval’s Relation for the DFT

The invertibility of the DFT implies that it is an orthonormal transform, and
as such it satisfies the Parseval’s relation:

XN�1

k¼0

jakj2 ¼
XN�1

r¼0

jarj2: (A2.9)

Proof:

XN�1

k¼0

jakj2 ¼
XN�1

k¼0

aka�k ¼
XN�1

k¼0

�
1ffiffiffiffiffi
N

p
XN�1

r¼0

ar exp
�
�i2p

kr
N

��
a�k

¼
XN�1

r¼0

ar

�
1ffiffiffiffiffi
N

p
XN�1

k¼0

a�k exp
�
�i2p

kr
N

��
¼

XN�1

r¼0

arðarÞ� ¼
XN�1

r¼0

jarj2,

(A2.10)

where the asterisk denotes complex conjugacy.

A2.3 Cyclicity of the DFT

Based on the definitions of the direct and inverse DFT, it follows that for any
integer g

arþgN ¼ 1ffiffiffiffiffi
N

p
XN�1

k¼0

ak exp
�
i2pk

rþ gN
N

�
¼ 1ffiffiffiffiffi

N
p

XN�1

k¼0

ak exp
�
i2p

r
N

�
¼ aðrÞmodN

(A2.11)

and

akþgN ¼ 1ffiffiffiffiffi
N

p
XsN�1

r¼0

ar exp
�
�i2p

k þ gN
N

r
�

¼ 1ffiffiffiffiffi
N

p
XsN�1

r¼0

ar exp
�
�i2p

kr
N

�

¼ aðkÞmodN ,

(A2.12)

where ð · ÞmodN denotes residual from division of the variable by N.
Owing to the separability of the DFTs, the same cyclicity feature holds for

2D DFTs. The cyclicity is the main distinction of the DTF from the integral
Fourier transform it represents.

A2.4 Shift Theorem

The shift theorem for the DFT is analogous to that for the integral Fourier
transform: the absolute value of the signal ShDFT spectrum is invariant to the
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signal shift; signal shift causes only linear modulation of the phase of the
spectrum:

akþk0 ¼
1ffiffiffiffiffi
N

p
XN�1

r¼0

ar exp
�
�i2p

k þ k0
N

r
�

¼ 1ffiffiffiffiffi
N

p
XN�1

r¼0

	
ar exp

�
�i2p

k0r
N

�

exp

�
�i2p

kr
N

�
:

(A2.13)

Similarly, the shifted signal spectrum farþr0g corresponds to the phase-
modulated signal

arþr0 ¼
1ffiffiffiffiffi
N

p
XN�1

k¼0

ak exp
�
i2pk

rþ r0
N

�

¼ 1ffiffiffiffiffi
N

p
XN�1

k¼0

	
ak exp

�
i2p

kr0
N

�

exp

�
i2p

kr
N

�
:

(A2.14)

A2.5 Convolution Theorem

The convolution theorem for the DFT is an analog of the convolution
theorem for the integral Fourier transform (see Appendix A1): a product of
the DFT spectra of two signals is the DFT spectrum of the result of signal
convolution. An important difference is that the convolution computed
through the DFT is cyclic.

Let fakg and fbkg be two signals of N samples, and farg and fbrg are
their corresponding DFT spectra:

ar ¼
1ffiffiffiffiffi
N

p
XN�1

k¼0

an exp
�
i2p

nr
N

�
; br ¼

1ffiffiffiffiffi
N

p
XN�1

k¼0

bn exp
�
i2p

nr
N

�
: (A2.15)

Find signal fckg, whose spectrum is a product farbrg of spectra farg and
fbrg:

ck ¼
1ffiffiffiffiffi
N

p
XN�1

r¼0

arbr exp
�
�i2p

kr
N

�

¼ 1ffiffiffiffiffi
N

p
XN�1

r¼0

�
1ffiffiffiffiffi
N

p
XN�1

n¼0

an exp
�
i2p

nr
N

��
br exp

�
�i2p

kr
N

�

¼ 1ffiffiffiffiffi
N

p
XN�1

n¼0

an

�
1ffiffiffiffiffi
N

p
XN�1

r¼0

br exp
�
i2p

n� k
N

r
��

¼ 1ffiffiffiffiffi
N

p
XN�1

n¼0

anbn�k,

(A2.16)

which, by virtue of the cyclicity of signals, is a cyclic convolution
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ck ¼
1ffiffiffiffiffi
N

p
XN�1

n¼0

aðnÞmodbðn�kÞmodN : (A2.17)

This convolution theorem can be reformulated for image correlation: the
DFT spectrum of the cross-correlation between two images

ck ¼
1ffiffiffiffiffi
N

p
XN�1

n¼0

aðnÞmodbðk�nÞmodN (A2.18)

equals the product farb
�
rg of the DFT spectrum of the first image and the

complex conjugate to the DFT spectrum of the second image.

A2.6 Symmetry Properties

The definition of the direct and inverse canonic DFTs verifies that for signal
fakg and its DFT spectrum farg the following relationships hold:

faN�kg→
DFT

faN�rg; fa�kg→
DFT

fa�
N�rg, (A2.19)

fak ¼ aN�kg→
DFT

far ¼ aN�rg: (A2.20)

A reversal of the signal and its DFT spectrum indices corresponds to a
reversal of the sign of the signal coordinate and frequency for the integral
Fourier transform. However, this analogy is not complete: the signal and
its DFT spectrum samples a0 and a0 for even N (aN∕2 and aN∕2) are not
inverted, and index N∕2 (which for odd N is virtual) plays a role in the
symmetry center, as do points x ¼ 0 and f ¼ 0 for the integral Fourier
transform.

For real-valued signals:

fak ¼ a�kg→
DFT

far ¼ a�
N�rg; a0 ¼ a�

0: (A2.21)

For real-valued signals with an even number N of signal samples:

aN∕2 ¼ a�
N∕2, (A2.22)

fak ¼ a�k ¼ �aN�kg→
DFT

far ¼ �a�
N�r ¼ �aN�rg: (A2.23)

The shifted direct and inverse DFTs with semi-integer shift parameters
(u ¼ 1∕2, v ¼ 1∕2),
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a
ð1∕2,1∕2Þ
r ¼ 1ffiffiffiffiffi

N
p

XN�1

k¼0

ak exp
�
i2p

ðk þ 1∕2Þðrþ 1∕2Þ
N

�
(A2.24)

and

að1∕2,1∕2Þk ¼ 1ffiffiffiffiffi
N

p
XN�1

k¼0

a
ð1∕2,1∕2Þ
r exp

�
�i2p

ðk þ 1∕2Þðrþ 1∕2Þ
N

�
, (A2.25)

exhibit more perfect symmetry with no exceptions:

faN�1�kg →
ShDFTðu¼1∕2,v¼1∕2Þn

a
ð1∕2,1∕2Þ
N�1�r

o
, (A2.26)

fak ¼ �aN�1�kg →
ShDFTðu¼1∕2,v¼1∕2Þn

a
ð1∕2,1∕2Þ
r ¼ �a

ð1∕2,1∕2Þ
N�1�r

o
, (A2.27)

fak¼�a�k¼�aN�1�kg →
ShDFTðu¼1∕2,v¼1∕2Þn

a
ð1∕2,1∕2Þ
r ¼ ∓a

�ð1∕2,1∕2Þ
N�1�r

¼�a
ð1∕2,1∕2Þ
N�1�r

o
: (A2.28)

For the shifted DFT with shift parametrs (1∕2, 0), the following
properties are useful:

fa�kg →
SDFTðu,0Þn�a

�ð1∕2,0Þ
N�r

o
, (A2.29)

fak ¼ a�kg →
SDFTðu,0Þn

a
ð1∕2,0Þ
r ¼ �a

ð1∕2,0Þ
N�r

o
: (A2.30)

A2.7 SDFT Spectra of Sinusoidal Signals

Find the shifted DFT ðu, vÞ spectrum

a
ðu,vÞ
r ¼ 1ffiffiffiffiffi

N
p

XN�1

k¼0

ak exp
�
i2p

ðk þ uÞðrþ vÞ
N

�
(A2.31)

of a sinusoidal signal 	
ak ¼ cos

�
2p

vk
N

þ w

�

: (A2.32)

With r̃ ¼ rþ v, obtain
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a
ðu,vÞ
r ¼ 1ffiffiffiffiffi

N
p

XN�1

k¼0

cos
�
2p

vk
N

þw

�
exp

�
i2p

ðkþuÞðrþ vÞ
N

�

¼ 1

2
ffiffiffiffiffi
N

p
XN�1

k¼0

�
exp

�
i2p

vk
N

þ iw
�
þ exp

�
�i2p

vk
N

� iw
��

exp
�
i2p

ðkþuÞr̃
N

�

¼
exp

�
i2p ur̃

Nþ iw
�

2
ffiffiffiffiffi
N

p
XN�1

k¼0

exp
�
i2p

kðr̃þvÞ
N

�

þ
exp

�
i2p ur̃

N� iw
�

2
ffiffiffiffiffi
N

p
XN�1

k¼0

exp
�
i2p

kðr̃�vÞ
N

�
¼ðSÞ1þðSÞ2:

(A2.33)

First, compute the term ðSÞ1:

ðSÞ1¼
exp

�
i2p ur̃

Nþ iw
�

2
ffiffiffiffiffi
N

p
XN�1

k¼0

exp
�
i2p

kðr̃þvÞ
N

�

¼
exp

�
i2p ur̃

Nþ iw
�

2
ffiffiffiffiffi
N

p exp½i2pðr̃þvÞ��1

exp
h
i2p ðr̃þvÞ

N

i
�1

¼
exp

�
i2p ur̃

Nþ iw
�

2
ffiffiffiffiffi
N

p exp½ipðr̃þvÞ�� exp½�ipðr̃þvÞ�
exp

h
ip ðr̃þvÞ

N

i
� exp

h
ip ðr̃þvÞ

N

i exp
�
ip

ðN�1Þðr̃þvÞ
N

�

¼
ffiffiffiffiffi
N

p

2
exp

�
ip
�
2uþN�1

N
r̃þN�1

N
v

�
þ iw

�
sin½pðr̃þvÞ�
N sin

h
p ðr̃þvÞ

N

i :
(A2.34)

Correspondingly,

ðSÞ2 ¼
ffiffiffiffiffi
N

p

2
exp

�
ip
�
2uþN � 1

N
r̃� N � 1

N
v

�
� iw

�
sincd½N; pðrþ v� vÞ�,

(A2.35)

and therefore,
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a
ðu,vÞ
r ¼

ffiffiffiffiffi
N

p

2
exp

�
ip
�
2uþN � 1

N
r̃þN � 1

N
v

�
þ iw

�
sincd½N; pðrþ vþ vÞ�

þ
ffiffiffiffiffi
N

p

2
exp

�
ip
�
2uþN � 1

N
r̃�N � 1

N
v

�
� iw

�
sincd½N; pðrþ v� vÞ�:

(A2.36)

If the shift parameter u ¼ �ðN � 1Þ∕2 and v ¼ 0, then

a
ð0,vÞ
r ¼

ffiffiffiffiffi
N

p

2
exp

�
ip
�
N � 1
N

vþ w

p

��
sincd½pðrþ vÞ�

þ
ffiffiffiffiffi
N

p

2
exp

�
�ip

�
N � 1
N

vþ w

p

��
sincd½pðr� vÞ�:

(A2.37)

Equations (A2.36) and (A2.37) imply that the ShDFT specrum of the
sinusoidal signal has sharp maxima in the vicinity of samples with indices
r ¼ �v. This opens the possibility of determining the frequency of sinusoidal
signals with sub-sample accuracy (see Section A2.12).

For integer v and v ¼ 0, the discrete sincd functions in Eq. (A2.37) are
reduced to two Kronecker deltas:

a
ð0,0Þ
r ¼

ffiffiffiffiffi
N

p

2
exp

�
ip
�ðN � 1Þ

N
vþ w

p

��
d̄ðrþ vÞ

þ
ffiffiffiffiffi
N

p

2
exp

�
ip
�
� ðN � 1Þ

N
vþ w

p

��
dðr� vÞ,

(A2.38)

which is in complete agreement with the continuous Fourier spectrum.
Examples of the DFT spectra of sinusoidal signals with an integer and

non-integer frequency parameter v are presented in Fig. A2.2. Mutual
correspondence between the frequency indices frg and frequencies of
sinusoidal signals is discussed in Section A2.8.

A2.8 Mutual Correspondence between the Indices of ShDFT Spectral
Coefficients and Signal Frequencies

From the derivation of the ShDFTs in Section 10.1, it follows that the index
r̃ ¼ rþ v of the SDFT spectral coefficients is linked with the frequency f of
the signal Fourier spectra by the following relationship:

f ¼ r̃Df ¼ r̃∕NDx, (A2.39)

where Dx and Df are the sampling intervals of the signal and its spectra,
respectively.
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The canonic DFT spectral coefficient a
ð0,0Þ
0 corresponds to the zero-

frequency component of the integral Fourier transform. It is proportional to
the signal mean value, or its dc component:

a0 ¼
ffiffiffiffiffi
N

p �
1
N

XN�1

k¼0

ak

�
: (A2.40)

For even N, the coefficient DFT a
ð0,0Þ
N∕2

aN∕2 ¼
1ffiffiffiffiffi
N

p
XN�1

k¼0

ð�1Þkak (A2.41)

represents the highest-frequency signal component f max ¼ N
2 Df ¼ 1∕2Dx.

For odd N, coefficients aðN�1Þ∕2 ¼ a�
ðNþ1Þ∕2 (for signals with real values)

represent the highest signal frequency f ¼ N�1
2 Df ¼ ðN � 1Þ∕2NDx.

Figure A2.2 DFT spectra of sinusoidal signals with an (a) integer and (b) non-integer
frequency parameter v.
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In order to maintain mutual correspondence between the DFT spectrum
farg of a discrete signal fakg and Fourier spectrum aðf Þ, f ∈ [�`, `] of the
corresponding continuous signal aðxÞ, it is convenient to cyclically shift
the sequence farg to place the dc-component coefficient fa0g in the middle of
the sequence. For even and odd N, the shifts are N∕2 and ðN � 1Þ∕2,
respectively, and the spectral coefficients should be taken in the following
order: for even N, [aN∕2, aN∕2þ1, : : : , aN�1, a0, a1, : : : , aN∕2�1], and for odd
N, [aðNþ1Þ∕2, aðNþ1Þ∕2þ1, : : : , aN�1, a0, a1, : : : , aðN�1Þ∕2].

For 2D signals of N1 �N2 samples, these cyclical shifts should be
taken along corresponding two indices. In MATLAB, a special function
fftshift performs this centering cyclic shift. Figures A2.3 and A2.4 illustrate
spectral coefficient reordering for the DFT spectra of 1D and 2D sinusoidal
signals.

Figure A2.3 Spectrum of a sinusoidal signal shown in Fig. A2.2(a), reordered by the
MATLAB command fftshift for spectrum centering.

Figure A2.4 (a) A 2D sinusoidal signal, and its DFT spectrum represented as an image
(b) in the original index order and (c) in the fftshifted index order, which correspond to the
analog Fourier spectrum coordinate system centered at point ðf x ¼ 0; f y ¼ 0Þ. Two small
dark boxes in images (b) and (c) indicate the position of signal spectral components.
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A2.9 DFT Spectra of Sparse Signals and Spectral Zero-Padding

Let a discrete signal f⃛ang of LN samples (ñ ¼ 0, 1, : : : , LN � 1) be obtained
from signal fakg of N samples (k ¼ 0, 1, : : :N � 1) by placing between
its samples (L� 1) zero samples. Represent index n as a two-component
index:

ñ ¼ kLþ l, k ¼ 0, 1, : : : , N � 1, l ¼ 0, 1, : : : , L� 1. (A2.42)

The signal f⃛akg with sparse samples can then be represented as

⃛añ ¼ akd̄ðlÞ, (A2.43)

where d̄ð · Þ is the Kronecker delta. Compute the DFT of this signal

⃛ar̃ ¼
1ffiffiffiffiffiffiffiffi
LN

p
XLN�1

ñ¼0

⃛añ exp
�
i2p

ñ r̃
LN

�
¼ 1ffiffiffiffiffiffiffiffi

LN
p

XL�1

l¼0

XN�1

k¼0

akdðlÞ exp
�
i2p

kLþ l
LN

r̃
�

¼ 1ffiffiffiffiffiffiffiffi
LN

p
XN�1

k¼0

ak exp
�
i2p

kr̃
N

�
¼ 1ffiffiffiffi

L
p aðrÞmodN , r̃ ¼ 0, 1, : : : , LN � 1,

(A2.44)

where faðrÞmodNg is the DFT of signal fakg. Equation (A2.44) shows that
placing zeros between signal samples results in periodic replication of the
DFT spectrum with the number of replicas equal to the number of zeros plus
one. This property of DFT spectra is an analog of virtual spectrum replication
in sampling continuous signals discussed with the sampling theorem in
Chapter 2 (illustrated in Fig. A2.5).

Now zero all periods in the spectrum f⃛ar̃g but the initial one, as shown in
Fig. A2.6(a). This operation is called spectral zero-padding. Spectral symmetry
far̃ ¼ a�

LN�r̃g should be maintained for real-valued signals (Eq. (A2.21)).
Thus, the method used for the zero-padding depends on whether N is odd
or even.

For odd N, spectral coefficients with indices from r̃ ¼ ðN þ 1Þ∕2 to
r̃ ¼ LN � ðN þ 1Þ∕2 should be set to zero. In this case, the inverse DFT of the
zero-padded spectrum of LN samples produces a signal
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eak̃ ¼ 1ffiffiffiffiffiffiffiffi
LN

p
" XðN�1Þ∕2

r̃¼0

aðr̃ÞmodN exp
�
�i2p

k̃ r̃
LN

�

þ
XLN�1

r̃¼LN�ðN�1Þ∕2
aðr̃ÞmodN exp

�
�i2p

k̃ r̃
LN

�#

¼ 1ffiffiffiffiffiffiffiffi
LN

p
	 XðN�1Þ∕2

r̃¼0

�
1ffiffiffiffiffi
N

p
XN�1

n¼0

an exp
�
i2p

nr̃
N

��
exp

�
�i2p

k̃ r̃
LN

�

þ
XLN�1

r̃¼LN�ðN�1Þ∕2

�
1ffiffiffiffiffi
N

p
XN�1

n¼0

an exp
�
i2p

nr̃
N

��
exp

�
�i2p

k̃ r̃
LN

�


Figure A2.5 (a) A test signal; (b) its DFT spectrum; (c) a sparse signal obtained from signal
(a) by placing four zeros between its samples; and (d) the DFT spectrum of the obtained
sparse signal.
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¼ 1

N
ffiffiffiffi
L

p
(XN�1

n¼0

an

" XðN�1Þ∕2

r̃¼0

exp
�
�i2p

k̃ � Ln
LN

r̃
�

þ
XLN�1

r̃¼LN�ðN�1Þ∕2
exp

�
�i2p

k̃ � Ln
LN

r̃
�#)

¼ 1

N
ffiffiffiffi
L

p

0
B@XN�1

n¼0

an

8<
:
exp

h
�i2p ðk̃�LnÞðNþ1Þ

2LN

i
� 1

exp
�
�i2p k̃�Ln

LN

�
� 1

þ
exp

h
�i2p LNðk̃�LnÞ

LN

i
� exp

h
�i2p ðk̃�LnÞðLN�ðN�1Þ∕2Þ

LN

i
exp

�
�i2p k̃�Ln

LN

�
� 1

9=
;
1
CA

¼ 1

N
ffiffiffiffi
L

p
XN�1

n¼0

an
exp

h
�i2p ðk̃�LnÞðNþ1Þ

2LN

i
� exp

h
�i2p ðk̃�LnÞðN�1Þ

2LN

i
exp

�
�i2p k̃�Ln

LN

�
� 1

¼ 1ffiffiffiffi
L

p
XN�1

n¼0

an
sin

�
pN k̃�Ln

LN

�
N sin

�
p k̃�Ln

LN

� ¼ 1ffiffiffiffi
L

p
XN�1

n¼0

an sincd½N; pðk̃ � nLÞ∕L�:

(A2.45)

Figure A2.6 Zero-padded spectrum of the sparse signal after removing all its periodic
components but one (a) and sincd-interpolated signal reconstructed from the zero-padded
spectrum (b).
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Thus, for an odd number N of signal samples, spectrum padding with
ðL� 1ÞN zeros results in a signal

eaLkþl ¼
1ffiffiffiffi
L

p
XN�1

n¼0

ansincd
�
N; p

�
k � nþ l

L

��
,

k ¼ 0, 1, : : : , N � 1, l ¼ 0, 1, : : : , L� 1

(A2.46)

in which each Lnth sample equals 1∕
ffiffiffiffi
L

p
of the nth sample of the initial signal,

and the rest of the samples are discrete sinc interpolated from those initial
samples.

For even N, the N∕2th sample has no symmetrical counterpart in the
spectrum’s complex conjugated symmetry far̃ ¼ a�

LN�r̃g in spectral zero-
padding, and there are two options to maintain this symmertry:

– Case 0: zero components from r ¼ N∕2 to r ¼ LN �N∕2, which means
zeroing the highest-frequency component;

– Case 2: zero components from r ¼ N∕2þ 1 to r ¼ LN � 1�N∕2, which
means duplicating the highest-frequency component.

Derivations similar to that of Eq. (A2.45) can be used to obtain the first
case of a spectral-zero-padded signal reconstructed by the inverse DFT of the
zero-padded spectrum of signal fakg, defined by the equation

eað0ÞkLþl ¼
1ffiffiffiffi
L

p
XN�1

n¼0

ansincdd
�
N � 1; N; p

�
k � nþ l

L

��
, (A2.47)

and in the second case by

eað2ÞkLþl ¼
1ffiffiffiffi
L

p
XN�1

n1¼0

ansincdd
�
N þ 1; N; p

�
k � nþ l

L

��
, (A2.48)

where sincddðM; N; xÞ is the sincdd function defined as

sincdd½M; N; x� ¼ sinðMx∕NÞ
sinðx∕NÞ : (A2.49)

Equations (A2.46), (A2.47), and (A2.48) are discrete analogs of the
reconstruction of continuous signals from their samples, discussed in Chapter 2.

Of practical importance is an intermediate option: halving and duplicating
the halved highest-frequency N∕2th component. We will call this option
Case 1. In this case, the reconstructed signal is
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eað1ÞkLþl ¼
eað0ÞkLþl þ eað2ÞkLþl

2
¼ 1ffiffiffiffi

L
p

XN�1

n¼0

ansincdd
�
�1; N; p

�
k � nþ l

L

��
,

(A2.50)

where

sincdd½�1; N; x� ¼ fsincdd½N � 1; N; x� þ sincdd½N þ 1; N; x�g∕2

¼
sin

�
N�1
N x

�
þ sin

�
Nþ1
N x

�
2N sin

�
x
N

� ¼ sinðxÞ
N sinðx∕NÞ cosðx∕NÞ

¼ cosðx∕NÞsincd½N; x�
(A2.51)

Note that, generally, the length of the zero-padded spectrum and,
correspondingly, the size of its corresponding interpolated signal, should not
necessarily be multiple (LN0) the size of the spectrum baseband N0. In fact, it
can be arbitrary, and, therefore, the subsampling factor N∕N0 can be an
arbitrary rational number.

Consider, for instance, this arbitrary zero-padding of a signal with an odd
number of samples. Let fang be a signal of N0 samples, N0 be an odd number,
and

ar ¼
1ffiffiffiffiffiffi
N0

p
XN0�1

n¼0

an exp
�
i2p

nr
N0

�
(A2.52)

be the signal DFF spectrum. Pad this spectrum to length N with N �N0 zeros
in the following way:

ear ¼
8<
:

ar, r ¼ 0 : ðN0 � 1Þ∕2
0, r ¼ ðN0 þ 1Þ∕2 : N � ðN0 þ 1Þ∕2Þ
ar�NþN0

, r ¼ N � ðN0 � 1Þ∕2 : N � 1Þ
(A2.53)

and compute the inverse Fourier transform of this zero-padded spectrum:
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eak¼ 1ffiffiffiffiffi
N

p
XN�1

r¼0

earexp
�
�i2p

kr
N

�

¼ 1ffiffiffiffiffi
N

p
XðN0�1Þ∕2

r¼0

earexp
�
�i2p

kr
N

�
þ 1ffiffiffiffiffi

N
p

XN�1

r¼N�ðN0�1Þ∕2
earexp

�
�i2p

kr
N

�

¼ 1ffiffiffiffiffi
N

p
XðN0�1Þ∕2

r¼0

earexp
�
�i2p

kr
N

�
þ 1ffiffiffiffiffi

N
p

XN�1

r¼N�ðN0�1Þ∕2
ear�NþN0

exp
�
�i2p

kr
N

�

¼ 1ffiffiffiffiffi
N

p
XðN0�1Þ∕2

r¼0

arexp
�
�i2p

kr
N

�
þ 1ffiffiffiffiffi

N
p

XN0�1

r¼:ðN0þ1Þ∕2
arexp

�
�i2p

kðrþN�N0Þ
N

�
:

(A2.54)

Now replace the spectral coefficients farg in Eq. (A2.54) with their
expression through signal samples fang (Eq. (A2.52)) and change the order of
summation:

eak ¼ 1ffiffiffiffiffiffiffiffiffiffi
NN0

p
XðN0�1Þ∕2

r¼0

XN0�1

n¼0

an exp
�
i2p

nr
N0

�
exp

�
�i2p

kr
N

�

þ 1ffiffiffiffiffiffiffiffiffiffi
NN0

p
XN0�1

r¼:ðN0þ1Þ∕2

XN0�1

n¼0

an exp
�
i2p

nr
N0

�
exp

�
�i2p

kðr�N0Þ
N

�

¼ 1ffiffiffiffiffiffiffiffiffiffi
NN0

p
XN0�1

n¼0

an
XðN0�1Þ∕2

r¼0

exp
�
i2p

nr
N0

�
exp

�
�i2p

kr
N

�

þ 1ffiffiffiffiffiffiffiffiffiffi
NN0

p
XN0�1

n¼0

an
XN0�1

r¼:ðN0þ1Þ∕2
exp

�
i2p

nr
N0

�
exp

�
�i2p

kðr�N0Þ
N

�

¼ 1ffiffiffiffiffiffiffiffiffiffi
NN0

p
XN0�1

n¼0

an

	 XðN0�1Þ∕2

r¼0

exp
�
i2p

�
n
N0

� k
N

�
r
�

þ exp
�
i2p

kN0

N

� XN0�1

r¼:ðN0þ1Þ∕2
exp

�
i2p

�
n
N0

� k
N

�
r
�


¼ 1ffiffiffiffiffiffiffiffiffiffi
NN0

p
	
ðSÞ1 þ exp

�
i2p

kN0

N

�
ðSÞ2



:

(A2.55)

Compute the sums in figure brackets:
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ðSÞ1 ¼
XðN0�1Þ∕2

r¼0

exp
�
i2p

�
n
N0

� k
N

�
r
�
¼

exp
h
ip
�

n
N0

� k
N

�
ðN0 þ 1Þ

i
� 1

exp
h
i2p

�
n
N0

� k
N

�i
� 1

;

(A2.56)

exp
�
i2p

kN0

N

�
ðSÞ2 ¼ exp

�
i2p

kN0

N

� XN0�1

r¼:ðN0þ1Þ∕2
exp

�
i2p

�
n
N0

� k
N

�
r
�


¼ exp
�
i2p

kN0

N

� exp
h
i2p

�
n
N0

� k
N

�
N0

i
� exp

h
ip
�

n
N0

� k
N

�
ðN0 þ 1Þ

i
exp

h
i2p

�
n
N0

� k
N

�i
� 1

¼
1� exp

�
i2p kN0

N

�
exp

h
ip
�

n
N0

� k
N

�
ðN0 þ 1Þ

i
exp

h
i2p

�
n
N0

� k
N

�i
� 1

:

(A2.57)

After some identical transformations, obtain the product of two
exponential terms in Eq. (A2.57):

exp
�
i2p

kN0

N

�
exp

�
ip
�

n
N0

� k
N

�
ðN0 þ 1Þ

�

¼ exp
�
ip
�
kN0

N
þ nþ

�
n
N0

� k
N

���

¼ exp
�
ip
�
kN0

N
þ n� 2nþ

�
n
N0

� k
N

���

¼ exp
�
�ip

��
n
N0

� k
N

�
ðN0 � 1Þ

��
:

(A2.58)

Therefore,

exp
�
i2p

kN0

N

�
ðSÞ2 ¼

1� exp
�
�ip

h�
n
N0

� k
N

�
ðN0 � 1Þ

i�
exp

h
i2p

�
n
N0

� k
N

�i
� 1

, (A2.59)

and
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eak ¼ 1ffiffiffiffiffiffiffiffiffiffi
NN0

p
	
ðSÞ1 þ exp

�
i2p

kN0

N

�
ðSÞ2




¼ 1ffiffiffiffiffiffiffiffiffiffi
NN0

p
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�
ip
�

n
N0

� k
N

�
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�
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�
�ip
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� k
N

�
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�
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¼ 1ffiffiffiffiffiffiffiffiffiffi
NN0

p
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h
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n
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i
� exp

�
�ip

h�
n
N0

� k
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�
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i�
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h
p
�

n
N0

� k
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�i
� exp

h
�p

�
n
N0

� k
N

�i
¼ 1ffiffiffiffiffiffiffiffiffiffi

NN0
p sin½pðn� kN0∕NÞ�

sin½pðn� kN0∕NÞ∕N0�
:

(A2.60)

Hence,

eak ¼
ffiffiffiffiffiffiffi
N0

N

r XN0�1

n¼0

ansincdfN0; ½pðn� kN0∕NÞ�g: (A2.61)

For signals with an even number of samples, the same aforementioned
options of spectral zero-padding are possible: zeroing the highest-frequency
component (Case 0), halving the highest-frequency component and duplicat-
ing it (Case 1), and duplicating the highest-frequency component (Case 2).

A2.10 Invertibility of the Shifted DFT and Signal Resampling

Let us assume that the direct ShDFT of a signal with samples fakg is
computed with a signal and its spectral sampling shift parameters ðu, vÞ:

a
ðu,vÞ
r ¼ 1ffiffiffiffiffi

N
p

XN�1

k¼0

ak expði2p
k̃ur̃v
N

Þ; k̃u ¼ k þ u; r̃v ¼ rþ v; (A2.62)

and the inverse ShDFT is computed with other shift parameters ðp, qÞ:

aðu∕p;v∕qÞn ¼ 1ffiffiffiffiffi
N

p
XN�1

r¼0

a
ðu,vÞ
r exp

�
�i2p

ñpr̃q
N

�
; ñp ¼ nþ p; r̃q ¼ rþ q: (A2.63)

Replace the spectral coefficients a
ðu,vÞ
r in Eq. (A2.63) with their expression

through signal samples ak (Eq. (A2.64)):
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aðu∕p;v∕qÞn ¼ 1ffiffiffiffiffi
N

p
Xn�1

r¼0
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�
i2p

k̃uv
N

� exp
h
i2p

�
k̃u � ñp

�i
� 1

exp
�
i2p k̃u�ñp

N

�
� 1

¼ expð�i2pñpq∕NÞ
N

XN�1

k¼0

ak exp
�
i2p

k̃uv
N

�

�
exp

h
ip
�
k̃u � ñp

�i
� exp

h
�ip

�
k̃u � ñp

�i
exp

�
ip k̃u�ñp

N

�
� exp

�
�ip k̃u�ñp

N

� exp
�
ip

k̃u � ñp
N

ðN � 1Þ
�

¼ exp
�
�ip

2qþN � 1
N

ñp

�XN�1

k¼0

ak exp
�
ip

2vþN � 1
N

k̃u

� sin
h
p
�
k̃u � ñp

�i
N sin

�
p

k̃u�ñp
N

� :

(A2.64)

Finally, obtain

aðu∕p;v∕qÞn ¼ exp
�
�ip

2qþN � 1
N

ñp

�

�
XN�1

k¼0

ak exp
�
ip

2vþN � 1
N

k̃u

�
sincd½N; pðk � nþ u� pÞ�:

(A2.65)

When shift parameters in the frequency domain v and q are chosen as

v ¼ q ¼ �ðN � 1Þ∕2, (A2.66)

Eq. (A2.65) converts to

aðu∕p;v∕qÞn ¼
XN�1

k¼0

aksincd½N; pðn� k þ p� uÞ�, (A2.67)

which means that the inverse ShDFT with shift parameters
ðp, q ¼ �ðN � 1Þ∕2Þ applied to the result of the direct ShDFT with shift

188 Appendix 2

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



parameters ðu, v ¼ �ðN � 1Þ∕2Þ of signal with samples fakg reconstructs a

signal with samples faðu∕p;v∕qÞn g discrete sinc interpolated from samples fakg
and shifted with respect to them by interval (u� p). Chapter 5 showed that
discrete sinc interpolation is the gold standard for the numerical interpolation
of sampled data.

A2.11 DFT as a Spectrum Analyzer

One of the immediate applications of DFTs is signal Fourier spectrum
analysis. Spectral coefficients

ar ¼
1ffiffiffiffiffi
N

p
XN�1

k¼0

ak exp
�
i2p

k̃ r̃
N

�
; k̃ ¼ k þ u; r̃ ¼ rþ v (A2.68)

obtained by applying the direct shifted DFT with shift parameters ðu, vÞ to
samples fakg of a signal aðxÞ can be regarded as samples

ar ¼
Z̀
�`

aðf ÞPSF ðSAÞðrDf � f Þdf (A2.69)

of the Fourier spectrum

að f Þ ¼
Z̀
�`

aðxÞ expði2pf xÞdx (A2.70)

of this signal.
Find the PSF ðSAÞð · Þ of the DFT as a spectrum analyzer. Replace the

signal samples fakg of signal aðxÞ in Eq. (A2.68) with their expression

ak ¼
Z̀
�`

aðxÞPSF ðsÞðkDx � xÞdx (A2.71)

through the signal and PSF ðsÞð · Þ of the signal samplimg device to obtain

189Discrete Fourier Transforms and Their Properties

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



ar¼
1ffiffiffiffiffi
N

p
XN�1

k¼0

ak exp
�
i2p

k̃ r̃
N

�
¼ 1ffiffiffiffiffi

N
p

XN�1

k¼0

�Z̀
�`

aðxÞPSF ðsÞðkDx�xÞdx
�
exp

�
i2p

k̃ r̃
N

�

¼ 1ffiffiffiffiffi
N

p
XN�1

k¼0

�Z̀
�`

�Z̀
�`

aðf Þexpð�i2pf xÞdf
�
PSF ðsÞðkDx�xÞdx

�
exp

�
i2p

k̃ r̃
N

�

¼ 1ffiffiffiffiffi
N

p
Z̀
�`

aðf Þdf
XN�1

k¼0

�Z̀
�`

expð�i2pf xÞPSF ðsÞðk̃Dx�xÞdx
�
exp

�
i2p

k̃ r̃
N

�

¼ 1ffiffiffiffiffi
N

p
Z̀
�`

aðf Þdf
XN�1

k¼0

�Z̀
�`

exp
�
�i2pf ðk̃Dx�xÞ

�
PSF ðsÞðxÞdx

�
exp

�
i2p

k̃ r̃
N

�

¼ 1ffiffiffiffiffi
N

p
Z̀
�`

aðf Þdf
XN�1

k¼0

�Z̀
�`

expði2pf xÞPSF ðsÞðxÞdx
�
exp

�
i2p

�
k̃ r̃
N

� k̃fDx

��

¼ 1ffiffiffiffiffi
N

p
Z̀
�`

aðf ÞFRðsÞðf Þdf
XN�1

k¼0

exp
�
i2p

�
kþu
N

r̃�ðkþuÞfDx

��

¼ 1ffiffiffiffiffi
N

p
Z̀
�`

aðf ÞFRðxÞðf Þdf exp
�
i2p

r̃�f NDx

N
u
�XN�1

k¼0

exp
�
i2p

k
N
ðr̃�f NDxÞ

�

¼ 1ffiffiffiffiffi
N

p
Z̀
�`

aðf ÞFRðxÞðf Þdf exp
�
i2p

r̃�f NDx

N
u
�
expði2pðr̃�f NDxÞÞ�1

exp
�
i2p r̃�f NDx

N

�
�1

¼ 1ffiffiffiffiffi
N

p
Z̀
�`

aðf ÞFRðsÞðf Þdf exp
�
i2p

r̃�f NDx

N
u
�

�expðipðr̃�kNDxÞÞ�expð�ipðr̃�f NDxÞÞ
exp

�
ip r̃�kNDx

N

�
�exp

�
�ip r̃�f NDx

N

� exp
�
i2p

N�1
N

ðr̃�f NDxÞ
�

¼ 1ffiffiffiffiffi
N

p
Z̀
�`

aðf ÞFRðsÞðf Þdf exp
�
ip

2uþðN�1Þ
N

ðr̃�f NDxÞ
�
sin½pðr̃�f NDxÞ�
sin

�
p r̃�f NDx

N

� :

(A2.72)

Set u ¼ �ðN � 1Þ∕2 to obtain
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ar ¼
ffiffiffiffiffi
N

p Z̀
�`

aðf ÞFRðsÞðf Þsincd½N; pðr̃Df � f Þ∕Df �df , (A2.73)

where Df ¼ 1∕NDx is the spectral sampling interval. Equation (A2.73) implies
that, to the accuracy of a constant multiplier, the PSF of the DFT as a
spectrum analyzer

PSF ðSAÞðrDf � f Þ ¼ sincd½N; pðr̃Df � f Þ∕Df � (A2.74)

is the discrete sinc function. As much as the discrete sinc function
approximates, for sufficiently large N, a continuous sinc function DFT can
be considered as a perfect spectrum sampler.

A2.12 Quasi-continuous Spectral Analysis

Let fakg be samples of a signal, farg be samples of its DFT spectrum

ak ¼
1ffiffiffiffiffi
N

p
XN�1�

r¼0

ar exp
�
�i2p

kr
N

�
, (A2.75)

N be an odd number, and

l
ðdf Þ
k ¼

8>><
>>:

exp
�
i2p

vf k

N

�
, k ¼ 0, 1, : : : , N�1

2�
l
ðdf Þ
N�k

��
, k ¼ Nþ1

2 , : : : , N � 1

(A2.76)

be a signal modulating function of arbitrary (not necessarily an integer)
frequency vf , with an asterisk denoting complex conjugacy. Compute the
DFT of signal faklkg and establish its link with the signal DFT spectrum
farg:

eas ¼
1ffiffiffiffiffi
N

p
XN�1�

k¼0

akl
ðdf Þ
k expði2p ks

N
Þ

¼ 1ffiffiffiffiffi
N

p
XN�1

k¼0

l
ðdf Þ
k

�
1ffiffiffiffiffi
N

p
XN�1�

r¼0

ar exp
�
�i2p

kr
N

��
exp

�
i2p

ks
N

�

¼ 1
N

XN�1

r¼0

ar

XN�1�

k¼0

l
ðdf Þ
k exp

�
i2p

s� r
N

k
�
:

(A2.77)

The internal sum over farg in Eq. (A2.77) equals
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XN�1∕2�

k¼0

l
ðdf Þ
k exp

�
i2p

s� r
N

k
�
þ

XN�1�

k¼Nþ1∕2
l
ðdf Þ
k exp

�
i2p

s� r
N

k
�

¼
XðN�1Þ∕2�

k¼0

l
ðdf Þ
k exp

�
i2p

s� r
N

k
�
þ

XðN�1Þ∕2�

k¼1

l
ðdf Þ
N�k exp

�
i2p

ðs� rÞðN � kÞ
N

�

¼
XðN�1Þ∕2�

k¼0

exp
�
i2p

s� rþ df
N

k
�
þ

XðN�1Þ∕2�

k¼1

exp
�
�i2p

s� rþ df
N

k
�

¼
exp

h
ip ðs�rþvf ÞðNþ1Þ

N

i
� 1

exp
�
i2p s�rþvf

N

�
� 1

þ
exp

h
�ip ðs�rþdf ÞðNþ1Þ

N

i
� exp

�
�i2p s�rþdf

N

�
exp

�
�i2p s�rþdf

N

�
� 1

¼
exp

h
ipðs� rþ vf Þ ðNþ1Þ

N

i
� 1

exp
�
i2p s�rþvf

N

�
� 1

�
exp

h
�ipðs� rþ vf Þ ðN�1Þ

N

i
� 1

exp
�
i2p s�rþvf

N

�
� 1

¼
exp

h
ipðs� rþ vf Þ ðNþ1Þ

N

i
� exp

h
�ipðs� rþ vf Þ ðN�1Þ

N

i
exp

�
i2p s�rþvf

N

�
� 1

¼ exp½ipðs� rþ vf Þ� � exp½�ipðs� rþ vf Þ�
exp

�
ip s�rþvf

N

�
� exp

�
�ip s�rþvf

N

� ¼ sin½pðs� rþ vf Þ�
sin

�
p

s�rþvf

N

� :

(A2.78)

Insert this expression in Eq. (A2.77) and obtain the DFT spectrum of
signal faklkg modulated by function flkg with frequency vf is the vf -shifted
sincd-interpolated spectrum of the initial signal fakg

ear ¼
XN�1

r¼0

arsincd½N; pðs� rþ jf Þ�: (A2.79)

This result shows how one can perform quasi-continuous signal spectral
analysis with sub-sample resolution.

A2.13 Signal Resizing and Rotation Capability
of the Rotated Scaled DFT

Let far,sg be the shifted DFT spectrum of signal fam,ng:

ar,s ¼
1
N

XN�1

m¼0

XN�1

n¼0

am,n exp
�
i2p

�
m̃ r̃
N

þ ñ s̃
N

��
;

m̃ ¼ mþ um, ñ ¼ ñþ un, r̃ ¼ rþ v, s̃ ¼ sþ v,

(A2.80)
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where um, un, and v are shift parameters in the signal domain and Fourier
domain, respectively. Apply to this spectrum the inverse rotated scaled shifted
DFT with the scale and rotation angle parameters s and u and with shift
parameters fuk; ul; v; vg (Eq. (10.32)), assuming that the spectrum, which is
of size N �N, is padded with zeros in both coordinates to size dsNe � dsNe:

eak,l ¼ 1
dsNe

XN�1

r¼0

XN�1

s¼0

ar,s exp
�
�i2p

�
k̃ cosuþ l̃ sinu

dsNe r̃� k̃ sinu� l̃ cosu
dsNe s̃

��

¼ 1
dsNe

XN�1

r¼0

XN�1

s¼0

	
1
N

XN�1

m¼0

XN�1

n¼0

am,n exp
�
i2p

�
m̃ r̃
N

þ ñ s̃
N

��


� exp
�
�i2p

�
k̃ cosuþ l̃ sinu

dsNe r̃� k̃ sinu� l̃ cosu
dsNe s̃

��
¼ 1

dsNe
XN�1

m¼0

XN�1

n¼0

am,n

�
	XN�1

r¼0

XN�1

s¼0

exp
�
i2p

�
m̃�Nðk̃ cosuþ l̃ sinuÞ∕dsNe

N
r̃

þ ñþNðk̃ sinu� l̃ cosuÞ∕dsNe
N

s̃
��


,

(A2.81)

where k̃ ¼ k þ uk, l̃ ¼ l þ ul, r̃ ¼ rþ v, s̃ ¼ sþ v, and dsNe is the
integer closest to sN. Compute the 2D sum over r and s, using for the
sake of brevity the denotations Cmkl ¼ m̃�Nðk̃ cosuþ l̃ sinuÞ∕dsNe and
Cnkl ¼ ñþNðk̃ sinu� l̃ cosuÞ∕dsNe:

XN�1

r¼0

XN�1

s¼0

exp
�
i2p

�
m̃�Nðk̃cosuþ l̃ sinuÞ∕dsNe

N
r̃þ ñþNðk̃ sinu� l̃cosuÞ∕dsNe

N
s̃
��

¼
XN�1

r¼0

XN�1

s¼0

exp
�
i2p

�
rþv
N

Cmklþ
sþv
N

Cnkl

��

¼ exp
�
i2p

�
CmklþCnkl

N
v
��XN�1

r¼0

XN�1

s¼0

exp
�
i2p

�
Cmklr
N

þCnkls
N

��

¼ exp
�
i2p

�
CmklþCnkl

N
v
��

expði2pCmklÞ�1

exp
�
i2pCmkl

N

�
�1

expði2pCnklÞ�1

exp
�
i2pCnkl

N

�
�1

¼ exp
�
i2p

�
CmklþCnkl

N
v
��

expðipCmklÞ�expðipCmklÞ
exp

�
ipCmkl

N

�
�exp

�
�ipCmkl

N

�exp�ipN�1
N

Cmkl

�
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� expðipCnklÞ�expðipCnklÞ
exp

�
ipCnkl

N

�
�exp

�
�ipCnkl

N

�exp�ipN�1
N

Cnkl

�

¼ exp
	
ip
�
2vþN�1

N
ðCmklþCnklÞ

�

sinðpCmklÞ

sinðpCmkl∕NÞ
sinðpCnklÞ

sinðpCnkl∕NÞ :
(A2.82)

Choose a shift parameter in the spectral domain v ¼ �ðN � 1Þ∕2 and
insert the obtained expression (Eq. (A2.82)) in Eq. (A2.81) and obtain

eak,l ¼ N2

dsNe
XN�1

m¼0

XN�1

n¼0

am,n
sinðpCmklÞ

sinðpCmkl∕NÞ
sinðpCnklÞ

sinðpCnkl∕NÞ

¼ N2

dsNe
XN�1

m¼0

XN�1

n¼0

am,nsincd
n
N; pm̃�Nðk̃ cosuþ l̃ sinuÞ∕dsNe

o

� sincd
n
p½ñþNðk̃ sinu� l̃ cosuÞ∕dsNe�

o
,

(A2.83)

which means that the resulting image feak,lg is a discrete sinc interpolated
dsNe∕N-scaled copy of image fam,ng taken in u-angle rotated coordinates.

A2.14 Rotated and Scaled DFT as Digital Convolution

Consider the rotated scaled DFT defined by Eq. (10.33):

a
ðs,uÞ
r,s ¼ 1

dsNe
XN�1

k¼0

XN�1

l¼0

ak,l exp
�
i2p

�
k̃ cosuþ l̃ sinu

dsNe r̃� k̃ sinu� l̃ cosu
dsNe s̃

��

¼ 1
dsNe

XN�1�1

k¼0

XN�1

l¼0

ak,l exp
�
i2p

�
k̃ r̃þl̃ s̃
dsNe cosuþ l̃ r̃�k̃ s̃

dsNe sinu
��

,

(A2.84)

where k̃ ¼ k þ u; l̃ ¼ l þ u; r̃ ¼ rþ v; s̃ ¼ sþ v; u and v are the signal domain
and frequency domain shift parameters, respectively; s is a scale parameter;
dsNe is the integer number closest to sN; and u is the rotation angle. The
following identities are used

2ðk̃ r̃þl̃ s̃Þ ¼ r̃2 þ k̃2 þ s̃2 þ l̃2 � ðr̃� k̃Þ2 � ðs̃� l̃Þ2,
2ðl̃ r̃�k̃ s̃Þ ¼ r̃2 � k̃2 � s̃2 þ l̃2 � ðr̃� l̃Þ2 þ ðs̃� k̃Þ2

(A2.85)

to obtain

194 Appendix 2

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



a
ðs,uÞ
r,s ¼ 1

dsNe
XN�1

r¼0

XN�1

s¼0

ak,l exp
�
i2p

�
k̃ r̃þl̃ s̃
dsNe cosuþ l̃ r̃�k̃ s̃

dsNe sinu
��

¼ 1
dsNe

XN�1

k¼0

XN�1

l¼0

ak,l

	
exp

�
ip

r̃2 þ k̃2 þ s̃2 þ l̃2 � ðr̃� k̃Þ2 � ðs̃� l̃Þ2
dsNe cosu

�

� exp
�
ip

r̃2 � k̃2 � s̃2 þ l̃2 � ðr̃� l̃Þ2 þ ðs̃� k̃Þ2
dsNe sinu

�


¼
exp

h
ip
�
r̃2þs̃2
dsNe cosuþ r̃2�s̃2

dsNe sinu
�i

dsNe

�
XN�1

k¼0

XN�1

l¼0

	
ak,l exp

�
ip
�
k̃2 þ l̃2

dsNe cosu� k̃2 � l̃2

dsNe sinu
��


� exp
	
�ip

�ðr̃� k̃Þ2 � ðs̃� l̃Þ2
dsNe cosuþ ðr̃� l̃Þ2 � ðs̃� k̃Þ2

dsNe sinu
�


:

(A2.86)

The sum in this expression is the 2D digital convolution of a signal fak,lg
modulated by a chirp function fexp [ipðk̃2þl̃2

dsNe cosu� k̃2�l̃2

dsNe sinuÞ]g with a

convolution kernel, which is also a chirp function:

exp
	
�ip

�ðr̃� k̃Þ2 � ðs̃� l̃Þ2
dsNe cosuþ ðr̃� l̃Þ2 � ðs̃� k̃Þ2

dsNe sinu
�


:
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