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Introduction to the Series 
 
Since its inception in 1989, the Tutorial Texts (TT) series has grown to cover 
many diverse fields of science and engineering. The initial idea for the series was 
to make material presented in SPIE short courses available to those who could 
not attend and to provide a reference text for those who could. Thus, many of the 
texts in this series are generated by augmenting course notes with descriptive text 
that further illuminates the subject. In this way, the TT becomes an excellent 
stand-alone reference that finds a much wider audience than only short course 
attendees. 

Tutorial Texts have grown in popularity and in the scope of material covered 
since 1989. They no longer necessarily stem from short courses; rather, they are 
often generated independently by experts in the field. They are popular because 
they provide a ready reference to those wishing to learn about emerging 
technologies or the latest information within their field. The topics within the 
series have grown from the initial areas of geometrical optics, optical detectors, 
and image processing to include the emerging fields of nanotechnology, 
biomedical optics, fiber optics, and laser technologies. Authors contributing to 
the TT series are instructed to provide introductory material so that those new to 
the field may use the book as a starting point to get a basic grasp of the material. 
It is hoped that some readers may develop sufficient interest to take a short 
course by the author or pursue further research in more advanced books to delve 
deeper into the subject. 

The books in this series are distinguished from other technical monographs 
and textbooks in the way in which the material is presented. In keeping with the 
tutorial nature of the series, there is an emphasis on the use of graphical and 
illustrative material to better elucidate basic and advanced concepts. There is also 
heavy use of tabular reference data and numerous examples to further explain the 
concepts presented. The publishing time for the books is kept to a minimum so 
that the books will be as timely and up-to-date as possible. Furthermore, these 
introductory books are competitively priced compared to more traditional books 
on the same subject.  

When a proposal for a text is received, each proposal is evaluated to 
determine the relevance of the proposed topic. This initial reviewing process has 
been very helpful to authors in identifying, early in the writing process, the need 
for additional material or other changes in approach that would serve to 
strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure 
that chapters communicate accurately the essential ingredients of the science and 
technologies under discussion.  

It is my goal to maintain the style and quality of books in the series and to 
further expand the topic areas to include new emerging fields as they become of 
interest to our reading audience. 
 

James A. Harrington 
Rutgers University 
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FOREWORD TO THE FIRST EDITION

It is a distinct pleasure for me to write this short foreword to Dr. Virendra Mahajan's

tutorial text, Aberration Theory Made Simple. I write it not because I am particularly

knowledgeable about aberration theory—in fact, it may be because I am not particularly

knowledgeable that I was invited! This is a Tutorial Text, and as a lifelong educator I am

also a lifelong learner and I should be able to learn from this text; and I did.

This text is prepared in the ideal way for a tutorial. It comes as a direct result of

teaching this material to a wide range of audiences in a wide range of locations; so it has

been tried and tested. The "student guinea pigs" have performed their invaluable service

so that those of us who come along later have the benefit of their and the author's labors.

Dr. Mahajan has lived up to his title and made aberration theory simple. Of course, I

should caution the reader that simple is relative. Some topics do not yield easily to simple

yet accurate descriptions. Those readers who insist that "rays" are the most important

components of any analysis of optical systems, whether aberrant or not, will be very

satisfied with the first half of the book, but may wish to ignore the second half. They

should not. Those who are enamored with the wave approach (like me) will immediately

read the second half of this book and applaud, but not go back and read the first half.

They should! I did!

I am pleased that Dr. Mahajan has provided a significant list of references in addition

to the bibliography at the end of the book. This will be of considerable value to the

reader. Not incidentally, SPIE Optical Engineering Press will also publish a Milestone

volume on Effects of Aberrations in Imaging Systems with Dr. Mahajan as the editor.

Thus, each of us will be able to have an authoritative companion volume that contains

reprints from the world's literature that will no doubt verify that this current Tutorial Text

is indeed Aberration Theory Made Simple.

Brian J. Thompson June 1991

Rochester, New York
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PREFACE TO THE SECOND EDITION

I wrote Aberration Theory Made Simple some 20 years ago to provide a clear,

concise, and consistent exposition of what aberrations are, how they arise in optical

imaging systems, and how they affect the quality of optical images formed by them, both

in terms of geometrical and diffraction optics. Later, I expanded this Tutorial Text into a

textbook under the title Optical Imaging and Aberrations in two parts, one on Ray

Geometrical Optics and the other on Wave Diffraction Optics. Detailed mathematical

derivations missing in the Tutorial Text are given in this textbook, along with problems at

the end of each chapter.

In this second edition of Aberration Theory Made Simple, I have updated the sign

convention for Gaussian optics to the Cartesian sign convention, as used in advanced

books on geometrical optics and in the optical design software programs. The quantities

such as object and image distances that are numerically negative are indicated in figures

with a parenthetical negative sign (–). Thus a reader will find a change in the sign of

some parameters in equations in the part on geometrical optics when compared with those

in the first edition. In this new edition, I have deleted certain advanced details that are

available in the long textbook. Deletions include the plots of the optical transfer function

for primary aberrations. I have added some new material as well, such as the centroid and

standard deviation of ray aberrations, spot diagrams for primary aberrations, golden rule

of optical design about relying on such diagrams, update of 2D PSFs for primary

aberrations, aberration-free optical transfer function of systems with annular and

Gaussian pupils, Zernike polynomials for circular pupils and the corresponding

polynomials for annular and Gaussian pupils, effect of longitudinal image motion on an

image, lucky imaging in ground-based astronomy, and adaptive optics. I have also added

a brief summary at the end of each chapter, highlighting the essence of its content. It is

hoped that these additions will be helpful to the readers of this edition of Aberration

Theory Made Simple.

The second edition of Aberration Theory Made Simple has been translated into

Russian by Professor Irina Livshits of National Research University of Information

Technologies,  Mechanics and  Optics, Saint Petersburg, Russia. This Russian edition is

available from the university by contacting her at <ecenter-optica10@yandex.ru>.

Virendra N. Mahajan June 2011

El Segundo, California
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PREFACE TO THE FIRST EDITION

Aberration theory is a subject that is as old and fascinating as the field of optics. It is,

however, a cumbersome subject that many students of optics do not appreciate fully. The

purpose of this tutorial book is to provide a clear, concise, and consistent exposition of

what aberrations are, how they arise in optical imaging systems, and how they affect the

quality of images formed by them. Its emphasis is on physical insight, problem solving,

and numerical results. It is intended for engineers and scientists who have a need and/or a

desire for a deeper and better understanding of aberrations and their role in optical

imaging and wave propagation. Although some knowledge of Gaussian optics and an

appreciation for aberrations would be useful, they are not prerequisites. What is needed is

dedication and perseverance. A novice trying to learn this subject without investing much

time will probably be disappointed in spite of the title of the book. The book is not

intended for teaching lens design or optical testing. However, it is hoped that those

working in these fields will benefit from it. It should be useful to students who may want

to learn aberration theory without having to go through any lengthy derivations.

These derivations are omitted out of necessity for brevity and in keeping with the

spirit of these tutorials. These tutorials have been adapted from my lectures for a graduate

course entitled “Advanced Geometrical Optics," which I have been teaching in the

Electrical Engineering-Electrophysics Department of the University of Southern

California since 1984. They were originally developed for a short course on optical

imaging and aberrations, which I taught at The Aerospace Corporation to Aerospace and

Air Force personnel. They were then expanded for a short course I have been teaching at

the Optical Society of America and SPIE meetings. Generally speaking, only the primary

aberrations of optical systems are discussed here; they provide the first and a significant

step beyond Gaussian imaging. Although a knowledge of these aberrations is very useful,

they may not sufficiently describe the imaging properties of a high-quality optical system.

Higher-order aberrations in such systems are often determined by ray tracing them.

This book is organized in two parts: Part I is on ray geometrical optics and Part II is

on wave diffraction optics. The first chapter introduces the concepts of aperture stop and

entrance and exit pupils of an optical imaging system. The wave and ray aberrations are

defined and wavefront defocus and tilt aberrations are discussed. Various forms of the

primary aberration function of a rotationally symmetric system are given, and how this

function changes as the aperture stop of the system is moved from one position to another

is discussed. The aberration function for the simplest imaging system, namely, a single

spherical refracting surface, is given. Finally, a procedure by which the aberration

function of a multielement system may be calculated is described. This chapter provides a

foundation for the next six chapters.

Chapters 2-6 give the primary aberrations of simple systems, such as a thin lens,

plane-parallel plate, spherical mirror, Schmidt camera, and a conic mirror. Numerical

problems are discussed here and there to illustrate how to apply the formulas given in

xvii
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these chapters. Part I of the book ends with chapter 7, where the aberrated images of a

point object based on geometrical optics are discussed. Thus the ray spot diagrams and, in

particular, the spot sizes for primary aberrations are discussed. The concept of aberration

balancing, based on geometrical optics to reduce the size of an image spot, is introduced.

In Part II, chapters 8-11 discuss the effects of aberrations on the image of a point

object based on wave diffraction optics. Chapter 8 considers systems with circular exit

pupils. The aberration-free characteristics of such systems are described in terms of the

point-spread and optical transfer function. How the aberrations affect these functions is

discussed, and aberration tolerances are obtained for a given Strehl or a Hopkins ratio.

The concept of aberration balancing, based on wave diffraction optics, to maximize Strehl

or Hopkins ratios is discussed. Systems with annular and Gaussian pupils are considered

in chapter 9. The effect of obscuration on the point-spread function and on aberration

tolerance is discussed. Similarly, the effect of Gaussian amplitude at the exit pupil is

discussed. The content of this chapter provides a basis for assessing the effects of

aberrations on the optical performance of reflecting telescopes, such as Cassegrain and

Ritchey-Chrétien, and on the propagation of laser beams.

The line of sight of an aberrated system is discussed in chapter 10 in terms of the

centroid of its point-spread function. It is pointed out that only coma type aberrations

change the centroid. Random aberrations are considered in chapter 11, where the time

averaged point-spread and optical transfer functions for random image motion and

aberrations introduced by atmospheric turbulence are discussed. Part II of the book ends

with chapter 12, where a brief discussion is given on how the aberrations of a system may

be observed and recognized interferometrically.

Each chapter is written to be as independent of the others as possible, although some

are more so than others. For example, chapter 7 may be followed by chapter 1. Except for

the first few sections of chapter 1, it is not necessary to understand Part I in order to

understand Part II. However, reading Part II without Part I would be like knowing half of

a story. Chapter 12 may be read at any time; however, the reason for using certain

specific values of defocus, for example, in the case of spherical aberration, may not be

understood unless the concepts of aberration balancing discussed in chapters 7 and 8 are

understood. On the matter of references to the literature on aberration theory, I have listed

under the bibliography those books that treat this subject to some or a large extent. These

are the ones I have had the opportunity to read and benefit from. On the wave diffraction

optics, I have given references in the text either for historical reasons (such as the papers

by Airy and Lord Rayleigh) or because the work is relatively recent and has not appeared

in books. Additional references are given after the bibliography for further study on part

of the reader.

Finally, I would like to thank those who have helped me with the preparation of this

book. I have had many discussions with Dr. Bill Swantner on geometrical optics and Dr.

Richard Boucher on diffraction optics. Dr. Boucher also did computer simulations of the

xviii
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point-spread functions and interferograms and prepared the photographs for this book.

Prof. Don O'Shea provided critical and valuable comments when he reviewed this book.

Helpful comments were also provided by Prof. R. Shannon. The Sanskrit verse and its

translation on p. xxiii were provided by Dr. S. Sutherland, University of California at

Berkeley. The manuscript and its many revisions were typed by Iva Moore. The final

version was produced by Betty Wenker and Candy Worshum. I thank The Aerospace

Corporation for providing help and facilities to prepare this book. I also thank Dr. Roy

Potter and Eric Pepper of the SPIE staff for suggesting and facilitating the preparation of

this book, which was carefully edited by Rick Hermann. I cannot thank my wife and

children enough for their patience during the course of this work and so I dedicate this

book to them.

Virendra N. Mahajan June 1991

El Segundo, California
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Anantaratnaprabhavasya yasya himam na saubhagyavilopi jatam.

Eko hi doso.  gunasannipate nimajjatindoh kiranesvivankah. . . .˙  

The snow does not diminish the beauty of the Himalayan  mountains

which are the source of countless gems. Indeed, one flaw is lost

among a host of virtues, as the moon’s dark spot is lost among its rays.

Kalidasa Kumarasambhava 1 3.
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CHAPTER 1
Optical Aberrations
1.1 INTRODUCTION

This chapter starts with the concepts of aperture stop and entrance and exit pupils of

an optical imaging system. Certain special rays, such as the chief and the marginal, are

defined. The wave aberration associated with a ray is defined and its relationship to the

corresponding transverse ray aberration is given. Representations of wavefront defocus

and tilt aberrations are given. We introduce different forms of the primary aberration

function of a rotationally symmetric system. How this function changes as the aperture

stop of the system is moved from one position to another is discussed. The primary

aberration function for the simplest imaging system, namely, a single spherical refracting

surface, is given for an arbitrary position of the aperture stop. Finally, we outline a

procedure by which the aberration function of a multielement system may be calculated.

This procedure is utilized in later chapters, for example, to calculate the aberration of a

thin lens (Chapter 2) and a plane-parallel plate (Chapter 3). This chapter forms the basis

of Part I on geometrical optics.

1.2 OPTICAL IMAGING

An optical imaging system consists of a series of refracting and/or reflecting

surfaces. The surfaces refract or reflect light rays from an object to form its image. The

image obtained according to geometrical optics in the Gaussian approximation, i.e.,

according to Snell's law in which the sines of the angles are replaced by the angles, is

called the Gaussian image. The Gaussian approximation and the Gaussian image are

often referred to as the paraxial approximation and the paraxial image, respectively. We

assume that the surfaces are rotationally symmetric about a common axis called the

optical axis (OA). Figure 1-1 illustrates the imaging of an on-axis point object P0 and an

off-axis point object P, respectively, by an optical system consisting of two thin lenses.

(For definition of a thin lens, see Section 2.2.) ¢P  and ¢P0  are the corresponding Gaussian

image points. An object and its image are called conjugates of each other, i.e., if one of

the two conjugates is an object, the other is its image.

An aperture in the system that physically limits the solid angle of the rays from a

point object the most is called the aperture stop (AS). For an extended (i.e., a nonpoint)

object, it is customary to consider the aperture stop as the limiting aperture for the axial

point object, and to determine vignetting, or blocking of some rays, by this stop for off-

axis object points. The object is assumed to be placed to the left of the system so that

initially light travels from left to right. The image of the stop by surfaces that precede it in

the sense of light propagation, i.e., by surfaces that lie between it and the object, is called

the entrance pupil (EnP). When observed from the object side, the entrance pupil appears

to limit the rays entering the system to form the image of the object. Similarly, the image

of the aperture stop by surfaces that follow it, i.e., by surfaces that lie between it and the

1
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Figure 1-1. (a) Imaging of an on-axis point object P0  by an optical imaging system
consisting of two lenses L1 and L2 .  OA is the optical axis. The Gaussian image is at

¢P0 .  AS is the aperture stop; its image by L1 is the entrance pupil EnP, and its image
by L2  is the exit pupil ExP. CR0  is the axial chief ray, and MR0  is the axial marginal
ray. (b) Imaging of an off-axis point object P. The Gaussian image is at ¢P .  CR is the
off-axis chief ray, MR is the off-axis marginal ray.

image, is called the exit pupil (ExP). The object rays reaching its image appear to be

limited by the exit pupil. Since the entrance and exit pupils are images of the stop by the

surfaces that precede and follow it, respectively, the two pupils are conjugates of each

other for the whole system; i.e., if one pupil is considered as the object, the other is its

image formed by the system.

2 OPTICAL ABERRATIONS
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An object ray passing through the center of the aperture stop and appearing to pass

through the centers of the entrance and exit pupils is called the chief (or the principal) ray

(CR). An object ray passing through the edge of the aperture stop is called a marginal ray

(MR). The rays lying between the center and the edge of the aperture, and, therefore,

appearing to lie between the center and edge of the entrance and exit pupils, are called

zonal rays.

It is possible that the stop of a system may also be its entrance and/or exit pupil. For

example, a stop placed to the left of a lens is also its entrance pupil. Similarly, a stop

placed to the right of a lens is also its exit pupil. Finally, a stop placed at a single thin lens

is both its entrance and exit pupils.

1.3 WAVE AND RAY ABERRATIONS

In this section, we define the wave aberration associated with a ray and relate it to its

transverse ray aberration in an image plane. The optical path length of a ray in a medium

of refractive index n is equal to n times its geometrical path length. If rays from a point

object are traced through the system and up to the exit pupil such that each one travels an

optical path length equal to that of the chief ray, the surface passing through their end

points is called the system wavefront for the point object under consideration. If the

wavefront is spherical with its center of curvature at the Gaussian image point, we say

that the Gaussian image is perfect. If, however, the wavefront deviates from this

Gaussian spherical wavefront, we say that the Gaussian image is aberrated. The optical

deviation (i.e., geometrical deviations times the refractive index n of the image space) of

the wavefront along a certain ray from the Gaussian spherical wavefront is called the

wave aberration of that ray. It represents the difference between the optical path lengths

of the ray under consideration and the chief ray in traveling from the point object to the

reference sphere. Accordingly, the wave aberration associated with the chief ray is zero.

The wave aberration associated with a ray is positive if it has to travel an extra optical

path length, compared to the chief ray, in order to reach the Gaussian spherical

wavefront. The Gaussian spherical wavefront is also called the Gaussian reference

sphere.

Figures 1-2a and 1-2b illustrate the reference sphere S and the aberrated wavefront W

for on- and off-axis point objects whose Gaussian images lie at ¢P0  and ¢P , respectively.

The coordinate system is also illustrated in these figures. We choose a right-hand

coordinate system such that the optical axis lies along the z axis. The object, entrance

pupil, exit pupil, and the Gaussian image lie in mutually parallel planes that are

perpendicular to this axis, with their origins lying along the axis. We assume that a point

object such as P lies along the x axis. The zx plane containing the point object and the

optical axis is called the tangential or the meridional plane. The Gaussian image ¢P  lying

in the Gaussian image plane along its x axis also lies in the tangential plane. This may be

seen by a consideration of a tangential object ray and Snell's law according to which the

incident and refracted or reflected rays at a surface lie in the same plane. The chief ray

1.3  Wave and Ray Aberrations 3
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always lies in the tangential plane. The plane normal to the tangential plane but

containing the chief ray is called the sagittal plane. As the chief ray bends when it is

refracted or reflected by an optical surface, so does the sagittal plane.

Consider an image ray such as GR in Figure 1-2b passing through a point Q with

coordinates (x, y, z) on the reference sphere of radius of curvature R centered at the image

point. We let W(x, y) represent its wave aberration nQQ , since z is related to x and y by

virtue of Q being on the reference sphere. It can be shown that the ray intersects the

Gaussian image plane at a point ¢¢P  whose coordinates with respect to the Gaussian

image point ¢P  are approximately given by

( , ) , .x y
R

n

W

x

W

yi i =
∂

∂
∂

∂
Ê
ËÁ

ˆ
¯̃

(1-1)

[Equation (1-1) has been derived by Mahajan, Born and Wolf, and Welford. However,

Welford uses a sign convention for the wave aberration that is opposite to ours.]

The displacement ¢ ¢¢P P0 0  in Figure 1-2a (or ¢ ¢¢P P in Figure 1-2b) of a ray from the

Gaussian image point is called its geometrical or transverse ray aberration,  and its

coordinates ( , )x yi i  in the Gaussian image plane relative to the Gaussian image point are

called its ray aberration components. Since a ray is normal to a wavefront, the ray

aberration depends on the shape of the wavefront and, therefore, on its geometrical path

difference from the reference sphere. The division of W by n in Eq. (1-1) converts the

optical path length difference into geometrical path length difference. When an image is

formed in free space, as is often the case in practice, then n = 1. The angle d ~ ¢ ¢¢P P R0 0

between the ideal ray QP¢0  and the actual ray QP¢¢0  is called the angular ray aberration.

The distribution of rays from a point object in an image plane is called the ray spot.

(Such diagrams are discussed in Chapter 7.) When the wavefront is spherical with its

center of curvature at the Gaussian image point, then the wave and ray aberrations are

zero. In that case, all of the object rays transmitted by the system pass through the

Gaussian image point, and the image is perfect. We shall refer to W x y,( )  as the wave at

a projected point x y,( )  in the plane of the exit pupil. If r, q( ) represent the corresponding

polar coordinates, they are related to the rectangular coordinates according to

x y r, cos ,  sin .( ) = ( )q q (1-2)

1.4 DEFOCUS ABERRATION

We now discuss defocus wave aberration of a system and relate it to its longitudinal

defocus. Consider an imaging system for which the Gaussian image of a point object is

located at P1. As indicated in Figure 1-3, let the wavefront for this point object be

spherical with a center of curvature at P2 (due to field curvature discussed in Section 1.6)

such that P2 lies on the line OP, joining the center 0 of the exit pupil and the Gaussian

image point ¢P1 . The aberration of the wavefront with respect to the Gaussian reference

1.4 Defocus Aberration 5
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1.5 Wavefront Tilt 7

aberration-free image at the Gaussian image point P2 (note that the Gaussian image is

now located at P2). Thus, the wavefront at the exit pupil is spherical passing through its

center Q with its center of curvature at P2. Let the image be observed in a defocused

plane passing through a point P1, which lies on the line joining Q  and P2. For the

observed image at P1 to be aberration free, the wavefront at the exit pupil must be

spherical with its center of curvature at P1. Such a wavefront forms the reference sphere

with respect to which the aberration of the actual wavefront must be defined. The

aberration of the wavefront at a point Q1  on the reference sphere is given by Eqs. (1-3a)

and (1-3b).

If the exit pupil is circular with a radius a, then Eq. (1-3b) may be written

W Bdr r( ) = 2 ,  (1-3c)

where r = r a is the normalized distance of a point in the plane of the pupil from its

center and

B n Fd ~ - D 8 2 (1-3d)

represents the peak value of the defocus aberration with F R a= 2  as the focal ratio or

the f-number of the image-forming light cone. Note that a positive value of Bd  implies a

negative value of D . Thus, an imaging system having a positive value of defocus

aberration D  can be made defocus free if the image is observed in a plane lying farther

from the plane of the exit pupil, compared to the defocused image plane, by a distance

8 2B F nd . Similarly, a positive defocus aberration of B n Fd ~ - D 8 2 is introduced into

the system if the image is observed in a plane lying closer to the plane of the exit pupil,

compared to the defocus-free image plane, by a distance D .

1.5 WAVEFRONT TILT

Now we describe the relationship between a wavefront tilt and the corresponding tilt

aberration. As indicated in Figure 1-4, consider a spherical wavefront centered at P2 in

the Gaussian image plane passing through the Gaussian image point P1. The wave

aberration of the wavefront at Q1 is its optical deviation nQ Q2 1 from a reference sphere

centered at P1. It is evident that, for small values of the ray aberration P P1 2 , the wavefront

and the reference sphere are tilted with respect to each other by an angle b . The

wavefront tilt may be due to distortion discussed in Section 1.6 and/or due to an

inadvertently tilted element of the imaging system. The ray and the wave aberrations can

be written

  x Ri = � (1-4)

and

W r n r, cos ,q b q( ) = (1-5a)
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Figure 1-4. Wavefront tilt. The spherical wavefront W is centered at P2  while the
reference sphere S  is centered at P1 . Thus, for small values of P P1 2 , the two
spherical surfaces are tilted with respect to each other by a small angle   � = P P R1 2 ,
where R is their radius of curvature. The ray Q P2 2  is normal to the wavefront at Q2.

respectively, where P P xi1 2 =  and (r, q) are the polar coordinates of the point Q1. Both

the wave and ray aberrations are numerically positive in Figure 1-4.

Once again, for a system with a circular exit pupil of radius a, Eq. (1-5) may be

written

W na( , ) cos ,r q b r q= (1-5b)

or

W Bt( , ) cos ,r q r q= (1-5c)

where B nat = b  is the peak value of the tilt aberration. Note that a positive value of Bt

implies that the wavefront tilt angle � is also positive. Thus, if an aberration-free

wavefront is centered at P2 ,  then an observation with respect to P1 as the origin implies

that we have introduced a tilt aberration of Bt r qcos .

1.6 ABERRATION FUNCTION OF A ROTATIONALLY SYMMETRIC 
SYSTEM

The aberration function W r h, ;q ¢( )  of an optical imaging system with an axis of

rotational symmetry depends on the object height h or the image height h' from the
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change in the stop position does not change the position of the image ¢P . Let L1 and L2

be the axial distances of the Gaussian image plane from the planes of the exit pupils ExP1

and ExP2 , respectively. The chief ray O P1 ¢  (or its extension) intersects the plane of exit

pupil ExP2  at ¢O2  with rectangular coordinates x0 0,( ) , where from similar triangles

O O O1 2 2¢  and O P P1 0¢ ¢  one finds that

x
h

L
L L0

1
1 2= ¢ -( ) . (1-9)

Note that the y coordinate is zero because it lies on the chief ray, which in turn lies in the

tangential plane zx.

The aberration of a ray Q P1 ¢  with respect to the chief ray O P1 ¢  represents the

aberration at a point Q1 with respect to the aberration at O1 (which is zero by definition).

It is also equal to the aberration of the ray Q P1 ¢  at Q2  with respect to the aberration at

¢O2 , where Q2  represents the point of intersection of  the ray with the plane of the exit

pupil ExP2 .  It is evident from the geometry of Figure 1-5 that

x y
L

L
x x y1 1

1

2
2 0 2, , ,~( ) -( ) (1-10)

where x y2 2,( )  are the coordinates of Q2  with respect to O2  as the origin. Thus, the

aberration at Q2  with respect to its value at ¢O2  may be obtained by substituting Eq. (1-

10) into the expression for W x yQ1 1 1,( ), i.e.,

W x y W
L

L
x x yQ Q2 2 2 1

1

2
2 0 2, , .~( ) -( )È

Î
Í

˘

˚
˙ (1-11))

Note that the aberration function referred to the new exit pupil is zero at x0 0,( ) . In order

that the aberration at the center O2  of the new exit pupil be zero, we define a new

aberration function W x y h2 2, ; ¢( )  with respect to the new chief ray O P2 ¢  (not shown in

Figure 1-5), i.e.,

W x y h W x y WQ Q2 2 2 2 2 2
0 0, ; , ,¢( ) = ( ) - ( )

= -( )È

Î
Í

˘

˚
˙ - -( )W

L

L
x x y W x L LQ Q1

1

2
2 0 2 1 0 1 2 0, , . (1-12)

Let the primary aberration function at ExP1 be given by

W x y h a x y a h x x y a h xQ s c a1 1 1 1 1
2

1
2 2

1 1 1
2

1
2

1
2

1
2, ; ¢( ) = +( ) + ¢ +( ) + ¢

+ ¢ +( ) + ¢a h x y a h xd t1
2

1
2

1
2

1
3

1 . (1-13)

1.7  Effect of Change in Aperture Stop Position on the Aberration Function 11
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Substituting Eq. (1-13) into Eq. (1-12) and noting from Figure 1-5 that the ratio of the

radii of the two exit pupils is equal to the ratio of their distances from the Gaussian image

plane, we can show that the old and the new peak aberration coefficients are related to

each other according to

A As s2 1= , (1-14a)

A A bAc c s2 1 14= - , (1-14b)

A A b A b Aa a c s2 1 1
2

12 4= - + , (1-14c)

A A b A b Ad d c s2 1 1
2

12= - + , (1-14d)

and

A A b A A b A b At t a d c s2 1 1 1
2

1
3

12 3 4= - +( ) + - , (1-14e)

where

b L L h a L= -( ) ¢1 2 1 2 . (1-15)

In Eq. (1-15), a1  is the radius of the exit pupil ExP1. It is evident from Eqs. (1-14) that,

because of a shift in the position of the aperture stop, an aberration of a certain order in

pupil coordinates introduces aberrations of all lower orders as well. For example, a term

in spherical aberration not only gives spherical aberration, but also introduces coma,

astigmatism, field curvature, and distortion. From Eq. (1-14a), we note that the peak

spherical aberration of a system is independent of the position of its aperture stop.

Equation (1-14b) shows that if a system is free of spherical aberration, then the peak

value of its coma is independent of the position of its aperture stop. It also shows that if

spherical aberration is not zero, its coma can be made zero by selecting an aperture stop

position corresponding to

b
A

A
c

s

= 1

14
        or       

L

L

a

a
c

s

1

2

1

1
1

4
= + . (1-16)

Similarly, Eqs. (1-14c) and (1-14d) show that if a system is free of spherical aberration

and coma, then the peak values of its astigmatism and field curvature are independent of

the position of its aperture stop. Finally, Eq. (1-14e) shows that the peak value of

distortion depends on the position of the aperture stop unless spherical aberration, coma,

and the sum of astigmatism and field curvature are each zero.

It should be noted that the optical path length of a ray, or its optical path length

difference with respect to another, does not change with a change in the position of the

aperture stop. However, since the chief ray does change, the new aberration function

merely describes the wave aberrations of rays with respect to the new chief ray. The

position of the aperture stop also affects which and how many of the object rays are

12 OPTICAL ABERRATIONS
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transmitted by the system. Indeed, for high-quality imaging systems, a lens designer

chooses the position of the aperture stop judiciously so that rays with large aberrations are

blocked by it without a substantial loss in the amount of transmitted light.

An example of the utility of an appropriate position of the aperture stop is considered

in Chapter 4, where it is shown that a spherical mirror with aperture stop located at its

center of curvature suffers only from spherical aberration and field curvature. Coma,

astigmatism, and distortion, which may be present for any other position of the aperture

stop, are identically zero for this specific location. Indeed, such a location of the aperture

stop forms the basis of the Schmidt camera discussed in Chapter 5.

1.8 ABERRATIONS OF A SPHERICAL REFRACTING SURFACE

In this section, we discuss imaging by a spherical refracting surface. We give

equations for Gaussian imaging and expressions for its primary aberrations for an

arbitrary position of its aperture stop. The results given here form the cornerstone for

imaging results for a spherical mirror, which can be obtained immediately, as indicated in

Chapter 4. As illustrated in Figure 1-6, consider a spherical refracting surface SS of radius

of curvature R separating media of refractive indices n and n'. The line joining its vertex

V0  and its center of curvature C is called the optical axis.

Consider a point object P at a distance S from the vertex and at a height h from the

optical axis. Let P' be its Gaussian image at a distance ¢S  and a height ¢h . The

relationships between the distances and heights of the object and image points are given

by Gaussian optics according to

¢
¢

- =
¢ -n

S

n

S

n n

R
 (1-17a)

= - =
¢
¢

n

f

n

f
(1-17b)

and

M
h

h

S R

S Rt =
¢

=
¢ -

-
  

 
(1-18a)

=
¢

¢
n S

n S
, (1-18b)

where f and ¢f  are the left and the right focal lengths of the refracting surface and M is

the transverse magnification of the image. Here f represents the object distance S such

that the image distance ¢S  is infinity. Similarly, ¢f  represents the image distance ¢S  such

that the object distance S is infinity. The height of an object or image below the optical

axis is considered numerically negative. (See the Appendix for sign convention.)

1.8  Aberrations of a Spherical Refracting Surface 13
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Figure 1-6. Imaging by a spherical refracting surface SS of radius of curvature R
having its center of curvature at C, separating media of refractive indices n and ¢n .
The Gaussian image plane lies at a distance L from the aperture stop and, therefore,
its collocated exit pupil. The undeviated ray helps locate the image ¢P  of a point
object P.

In Figure 1-6,  the aperture stop is also the exit pupil of the imaging system. The

image lies at a distance L from the exit pupil. The ray PBP¢  passing through the center O

of the aperture stop, which is also the exit pupil, is called the chief ray for the point object

P. The aberration of a ray PAP¢  incident at a point A on the refracting surface and

passing through a point Q in the plane of the exit pupil with polar coordinates r, q( ) with

respect to the chief ray PBP¢  is given by

W A PAP PBP( ) = ¢[ ] - ¢[ ] ,

where the square brackets indicate an optical path length. It should be noted that the rays

PA and PB from the point object P incident at points A and B , respectively, on the

refracting surface, may not pass through the Gaussian image point ¢P  after refraction

unless the image at P is aberration free. It can be shown that, up to the fourth order in

pupil and object or image coordinates, the aberration W A W Q( ) ∫ ( ) reduces to

W r h a r a h r a h r

a h r a h

s ss cs as

ds ts

, ; cos cos

cos ,

q q q

q

¢( ) = + ¢ + ¢

+ ¢ + ¢

4 3 2 2 2

2 2 3
(1-19)

where

a
n n n

n R S

n

R

n n

Ss = -
¢ ¢ -

-
¢

Ê
ËÁ

ˆ
¯̃

¢
-

+ ¢
¢

Ê
ËÁ

ˆ
¯̃

( )
,

8

1 1
2

2

(1-20)
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a S L ass s= ¢( )4 , (1-21a)

a dacs ss= 4 , (1-21b)

a d aas ss= 4 2 , (1-21c)

a d a
n n n

n RLds ss= -
¢ ¢ -( )

2
4

2
2 , (1-21d)

a d a
n n n d

n RLts ss= -
¢ ¢ -( )

4
2

3
2 , (1-21e)

and

d
R S L

S R
= - ¢ +

¢ -
. (1-22)

Note that L is (approximately) the radius of curvature of the reference sphere passing

through the center of the exit pupil with its center of curvature at ¢P . Equation (1-19)

gives the wave aberration at a point r, q( ) in the plane of the exit pupil for a point object

whose Gaussian image height is ¢h .

The second term on the right-hand side of Eq. (1-21d) may be called the coefficient

of Petzval curvature, and we denote it by a p , i.e.,

a
n n n

n RLp = -
¢ ¢ -( )
4 2 . (1-23)

The corresponding wave aberration may be written

W r a h rp p( ) = ¢ 2 2 . (1-24)

This aberration reduces to zero if the image is observed at a (longitudinal) distance D L

from the Gaussian image, where D L  is related to the aberration according to Eq.(1-3b),

i.e.,

W r
n

L
r W rd

L
p( ) =

¢
= - ( )

2 2
2D

. (1-25)

If the image is observed on a spherical surface of radius of curvature R p  passing through

the axial image point ¢P0 , the longitudinal defocus D L  for a Gaussian image at a height

¢h  is given by its sag

D L
p

h

R
=

¢ 2

2
. (1-26)

Comparing the values of D L  from Eqs. (1-25) and (1-26), and utilizing Eqs. (1-23) and

Eq. (1-24), we obtain

1.8  Aberrations of a Spherical Refracting Surface 15
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R
nR

n np =
- ¢

. (1-27)

We note that R p , called the Petzval radius of curvature, is independent of the object

position. The image surface under consideration is called the Petzval image surface. From

Eqs. (1-21c), (1-21d), and (1-27), we may write

2
2 2a a

n

R Lds as
p

- =
¢

. (1-28)

We will utilize Eq. (1-28) in Section 7.7 where we relate the Petzval surface to the

sagittal and tangential image surfaces that result from astigmatism.

Letting ¢ =h 0  in Eq. (1-19), we note that the image ¢P0  of an axial point object P0

suffers from spherical aberration only. The amount of spherical aberration does not

change as we move from an on-axis to an off-axis point object. Note that when the

aperture stop and, therefore, the exit pupil are located at the refracting surface, then

L S= ¢  and Eqs. (1-21a) and (1-22) reduce to a ass s=  and d R S R= ¢ -( ) , respectively.

It is evident from Eq. (1-20) that as = 0  when S n n R n¢ = + ¢( ) , which in turn

corresponds to S n n R n= + ¢( ) ¢ . Accordingly, ass , acs, and aas  are all zero. Two

conjugate points for which spherical aberration, coma, and astigmatism are zero are

called anastigmatic. Depending on whether R is positive or negative, the object or the

image point is virtual for these anastigmatic points. We note that spherical aberration is

also zero when ¢ =S R and S R= . However, in this case, coma is also zero, but

astigmatism is not due to the d2 factor on the right-hand side of Eq. (1-21c). Two

conjugates for which spherical aberration and coma are zero are called aplanatic. Thus,

the points under consideration are aplanatic, and, once again, either the object or the

image is virtual.

1.9 ABERRATION FUNCTION OF A MULTIELEMENT SYSTEM

Consider an optical system made up of a series of coaxial refracting and/or reflecting

surfaces. Each surface produces primary aberrations with its own value of ¢h  and L. The

image of a point object formed by the first surface acts as an object for the second

surface, and so on. The aberration is calculated surface by surface, and the aberration of

the system is obtained by adding the aberration contributions of all the surfaces. Since the

aberration of a surface is calculated at a point on its exit pupil, the coordinates of a pupil

point must be transformed using pupil magnification of a surface to obtain the aberration

contribution of a surface at a point on the exit pupil of the system. Similarly, image

magnification of a surface can be used to obtain the system aberration in terms of the

height of the image formed by the system.

For example, if W x y h1 1 1 1( , ; )¢  represents the aberration at a point ( , )x y1 1  in the plane

of the exit pupil of the first surface for an image of height ¢h1 , it can be converted to an

aberration contribution at a point ( , )x y2 2  in the plane of the exit pupil of the second

16 OPTICAL ABERRATIONS
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surface and image height ¢h2  by letting x y h x m y m h M1 1 1 2 2 2 2 2 2, ; , ;¢( ) = ¢( ), where m2

and M2 represent the pupil and image magnifications, respectively, for the second surface.

Thus if W x y h2 2 2 2, ; ¢( )  represents the aberration contribution of the second surface at a

point ( , )x y2 2  in the plane of its exit pupil corresponding to an image height of ¢h2 , the

total aberration for the two surfaces will be given by

W x y h W
x

m

y

m

h

M
W x y hs 2 2 2 1

2

2

2

2

2

2
2 2 2 2, ; ,  ;  ( , ; ) .¢( ) =

¢Ê
ËÁ

ˆ
¯̃

+ ¢ (1-29)

This process can be continued to obtain the system aberration W x y h, , ¢( ) at a point (x, y)

in the plane of the exit pupil of the system corresponding to a height ¢h  of the image of a

point object formed by the system. It is utilized, for example, to calculate the aberrations

of a thin lens in Chapter 2 and a plane-parallel plate in Chapter 3.

Since the refractive index of a transparent substance varies with optical wavelength,

the angle of refraction of a ray also varies with it. Hence, even the Gaussian image of a

multiwavelength point object formed by a refracting system is generally not a point. The

distance and height of the image vary with the wavelength. The axial and transverse

extents of the image are called longitudinal and transverse chromatic aberrations,

respectively. They describe the chromatic change in position and magnification of the

image, respectively. The monochromatic aberrations of a refracting system also vary with

the wavelength, but such a variation is small for a small change in the wavelength and is

usually negligible.

1.10   SUMMARY

The Gaussian image of a point object formed by an optical system is obtained by

using Gaussian optics. The images of the aperture stop of the system by the system

elements that precede and follow it are called its entrance and exit pupils, respectively.

Whereas the entrance pupil determines the amount of light entering the system, the exit

pupil determines how this light is distributed in the diffraction image. The optical

wavefront (i.e., a surface of constant phase) exiting from the exit pupil is determined by

tracing rays from the point object such that they all travel exactly the same optical path

length as a ray, called the chief ray, travels in reaching the center of the pupil. If the

wavefront is spherical with its center of curvature at the Gaussian image point, an

aberration-free or diffraction-limited image is formed. For a circular exit pupil, the image

is called the Airy pattern. Based on geometrical optics, the image formed is a point, as all

of the rays pass through the Gaussian image point.

If the wavefront is not spherical, then its deviations along the rays from a

corresponding spherical surface, called the Gaussian reference sphere, are called the wave

aberrations of the rays. The wave aberration associated with a ray is numerically positive

if it travels a longer optical path length than the chief ray to reach the reference sphere.

An aberrated image is obtained in this case, the rays do not all pass through the Gaussian

image point, and their distribution in the image plane is called a spot diagram. The

1.10  Summary 17

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



distance of a ray from the Gaussian image point is called the transverse ray aberration.

The actual light distribution is referred to as the diffraction image. The wave and ray

aberrations are related to each other according to Eq. (1-1). Whereas a wavefront tilt

aberration varies linearly with the coordinates of a pupil point (in the plane of the exit

pupil), a wavefront defocus aberration varies quadratically with the distance of the pupil

point from its center.

The optical path length of a ray does not change when the location of the aperture

stop is changed, but, since the chief ray changes, their aberrations with respect to it also

change. The position of the aperture stop also affects which and how many of the rays are

transmitted by the system. The size of the aperture stop is adjusted so that the amount of

light from an axial point object remains unchanged. While the peak value of spherical

aberration does not change, the coefficients of the other aberrations can and do change.

Indeed, a lens designer chooses the position of the aperture stop judiciously so that the

rays with large aberrations are blocked by it, without a substantial loss in the amount of

transmitted light.

APPENDIX: SIGN CONVENTION

Although there is no universally accepted standard sign convention, we will use the

Cartesian sign convention. It has the advantage that there are no special rules to

remember other than those of a right-handed Cartesian coordinate system. Our sign

convention is the same as that used by Mouroulis and Macdonald, but it is slightly

different in its implementation from those of Born and Wolf, Welford, and Schroeder. It

is different from the sign convention used, for example, by Jenkins and White, Klein and

Furtak, and Hecht and Zajac. The rules of our sign convention are listed below.

1. Light is incident on a system from left to right.

2. Distances to the right of and above (left of and below) a reference point are positive

(negative).

3. The radius of curvature of a surface is treated as the distance of its center of

curvature from its vertex. Thus, it is positive (negative) when the center of curvature

lies to the right (left) of the vertex.

4. The acute angle of a ray from the optical axis or from the surface normal is positive

(negative) if it is counterclockwise (clockwise).

5. When light travels from right to left, as when it is reflected by an odd number of

mirrors, then the refractive index and the spacing between two adjacent surfaces are

given a negative sign.

Throughout the book, any quantities that are numerically negative are indicated in the

figures by a parenthetical negative sign -( ).
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CHAPTER 2
Thin Lens
2.1 INTRODUCTION

Among the simple optical imaging systems, a thin lens consisting of two spherical

surfaces is the most common as well as practical. By applying the results of Section 1.8

and the procedure of Section 1.9, we give the imaging equations and expressions for the

primary aberrations of a thin lens with aperture stop located at the lens. Its aberrations for

other locations of the aperture stop may be obtained by applying the results of Section 1.7

to those given here. It is shown that when both an object and its image are real, the

spherical aberration of a thin lens cannot be zero (unless its surfaces are made

nonspherical). We illustrate by a numerical example, however, that it is possible to design

a two-lens combination such that its spherical aberration and coma are both zero. In such

a combination, these aberrations associated with one lens cancel the corresponding

aberrations of the other. This cancellation is illustrated with a numerical example.

2.2 GAUSSIAN IMAGING

Consider a thin lens of refractive index n and focal length ¢f  consisting of two

spherical surfaces of radii of curvature R1 and R2  as illustrated in Figure 2-1. A lens is

considered thin if its thickness is negligible compared to ¢f , R1, and R2 . Its optical axis

OA is the line joining the centers of curvature C1 and C2 of its surfaces. Since the lens is

thin, we neglect the spacing between its surfaces. We assume that its aperture stop AS is

located at the lens, so that its entrance and exit pupils EnP and ExP, respectively, are also

located there. The lens is located in air; therefore, the refractive index of the  surrounding

medium is 1.

Consider a point object P located at a distance S from the lens and at a height h from

its axis. The first surface forms the image of P at ¢P  and the second surface forms the

image of ¢P  at ¢¢P . Applying the results of Section 1.8 to imaging by the two surfaces of

the lens, where n = 1 and ¢ =n n for the first surface and n n=  and ¢ =n 1 for the second

surface, we can show that the image distance ¢S and its height ¢h  are given by the

relations

1 1
1

1 1

1 2¢
- = -( ) -

Ê
ËÁ

ˆ
¯̃S S

n
R R

(2-1a)

=
¢

1

f
(2-1b)

and

M
h

h
=

¢
=

¢S

S
, (2-2)
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P0

C1

CR

AS
EnP
ExP

P¢0

C2

Q(r,q)

(–)h1  h

P

OA

n

O

P¢

R1(–)R2

h1 = h2¢

h2  h¢ ¢

S2  S¢ ¢

(–)S1  S S1 = S2¢

P ¢¢

¢¢P
0

Figure 2-1. Imaging by a thin lens of refractive index n formed by two surfaces of

radii of curvature R1 and R2 with their centers of curvature at C1 and C2. Whereas

R1 is numerically positive, R2 is negative. ¢ ¢P P0  is the Gaussian image of the object

P P0  formed by the first surface. ¢¢ ¢¢P P0  is the image of the virtual object ¢ ¢P P0

formed by the second surface. The aperture stop AS, entrance pupil EnP, and the

exit pupil ExP are all located at the lens.

respectively, where M is the magnification of the image. Note that we are able to write

Eq. (2-1b) because, by definition, the focal length ¢f  is the image distance when the

object is at infinity.

2.3 PRIMARY ABERRATIONS

The aberration of an object ray PQP" passing through a point Q in the plane of the

exit pupil with polar coordinates r, q( ) with respect to the chief ray POP" passing

through the center 0 of the exit pupil is given by

W Q PQP POP( ) = ¢¢ - ¢¢[ ] [ ] .

Noting that the optical path lengths ¢[ ]P Q  and ¢[ ]P O  are numerically negative, since they

are virtual, the aberration of the ray can be written in terms of the aberrations produced

by the two surfaces, i.e.,

W Q PQP POP P QP P OP( ) =  [ ] [ ] + [ ]  [ ]¢ - ¢{ } ¢ ¢¢ - ¢ ¢¢{ } .

By applying the results of Section 1.8 to the two surfaces of the thin lens and following

the procedure of Section 1.9, it can be shown that the primary aberration function of the

thin lens is given by

W r h a r a h r a h r a h r a h rs c a d t, ; cos cos cos ,q q q q¢( ) = + ¢ + ¢ + ¢ + ¢4 3 2 2 2 2 2 3 (2-3)

where

a
n n f

n

n
n n p

n

n
q n pqs = -

- ¢ -
+ + - +

+
-

+ +
È

Î
Í

˘

˚
˙

1

32 1 1
3 2 1

2

1
4 13

3
2 2

( )
( )( ) ( ) , (2-4a)
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a
n f S

n p
n

n
qc = -

¢ ¢
+( ) +

+
-

È
ÎÍ

˘
˚̇

1

4
2 1

1

12 , (2-4b)

a
f Sa = -

¢ ¢
1

2 2 . (2-4c)

and

a a
nf Sd a= -

¢ ¢
1

2

1

4 2 . (2-4d)

Note that there is no distortion term in Eq. (2-3); i.e., a thin lens with an aperture stop at

the lens does not produce any distortion. The quantities p and q are called the position

and shape factors of a thin lens, respectively. They are given by

p
f

S
= -

¢
-

2
1

1
(2-5a)

= -
¢

¢
1

2

2

f

S
(2-5b)

and

 q
R R

R R
=

+
-

2 1

2 1
. (2-6)

Several examples of the position and shape factors are illustrated in Figures 2-2 and

2-3, respectively. Both positive and negative lenses (in the sense of the sign of their focal

length) are considered in these figures. The names associated with the different lens

shapes are also noted in Figure 2-3.

We note from Eqs. (2-4c) and (2-4d) that astigmatism and field curvature coefficients

of a thin lens do not depend on its position and shape factors. Moreover, the astigmatism

coefficient does not depend on the refractive index of the lens, and the field curvature

coefficient is smaller than the astigmatism coefficient by a factor of n n+( )1 2 .

2.4 SPHERICAL ABERRATION AND COMA

From Eqs. (2-4a) and (2-4b) we note that the spherical aberration and coma of a thin

lens depend on its position and shape factors. For a given position factor, the value of the

shape factor that minimizes the spherical aberration is given by the condition

∂
∂
a

q
s = 0 . (2-7)

Thus, we obtain

q p
n

nmin = - -
+

2
1

2

2

. (2-8)
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a
f

psmin = -
¢

-Ê
Ë

ˆ
¯

1

32
9

3

73
2 , (2-12c)

respectively. Figure 2-4 shows the parabolic variation of spherical aberration with q for

p = 0. The minimum value of spherical aberration corresponds to q = 0, i.e., an

equiconvex lens. As pointed out earlier, the variation of spherical aberration with q for

other values of p follows the same parabola except that the location of its vertex

q amin smin,( ) depends on p. The vertices of the parabolas follow the lower parabolic curve

in Figure 2-4, which represents asmin as a function of q, obtained by substituting Eq. (2-

12b) into Eq. (2-12c). The solid dots on this curve indicate various values of p. The

minimum value of spherical aberration approaches zero for p = 21  . It changes its sign

for larger values of p .

It follows from Eq. (2-4b) that the coma of a thin lens is zero if its position and shape

factors are related to each other according to

q
n n

n
p= -

+( ) -( )
+

2 1 1

1
. (2-13)

For n = 1.5, Eqs. (2-4b) and (2-13) reduce to

a
f S

p qc = -
¢ ¢

+( )1

6
4 52 (2-14)

and

q p= - 0 8. , (2-15)

respectively. For p = - 1, the values of q  giving minimum spherical aberration

qmin =( )0 71.  and zero coma q = -( )0 8.  are approximately the same. Thus, a lens

designed for zero coma for parallel incident light will have practically the minimum

amount of spherical aberration. It is also possible to design and combine two thin lenses

such that the spherical aberration and coma of one cancel the corresponding aberrations

of the other, as illustrated by a numerical example in the next section.

2.5 NUMERICAL PROBLEMS

2.5.1 Thin Lens Focusing a Parallel Beam of Light

As a numerical example, we determine the radii of curvature of the surfaces of a thin

lens of refractive index 1.5 focusing a parallel beam of light at a distance of 15 cm from it

with minimum spherical aberration. According to Eq. (2-5), p = - 1 for a parallel beam.

Substituting in Eq. (2-12b), we obtain qmin = 5 7 for minimum spherical aberration.

Equation (2-6), therefore, gives

R

R

q

q
2

1

1

1
6=

+
-

= - . (2-16)
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W r a h rc c1 1 1
3, cosq q( ) = ¢

= ¥ ¢2 2618 10 4
2

3. cosh r q (2-17a)

and

W r a h rc c2 2 2
3, cosq q( ) = ¢

= - ¥ ¢2 2618 10 4
2

3. cos .h r q (2-17b)

The coma aberration of the lens doublet is given by

W r W r W rc c c, , ,q q q( ) = ( ) + ( )1 1 = 0 . (2-18)

Thus, both spherical aberration and coma of the doublet are zero. Such a system is called

aplanatic.

Finally, we consider the astigmatism and field curvature aberrations of the lens

doublet. Substituting for the focal length and the image distance for the two lenses in Eq.

(2-4c), we obtain their astigmatism coefficients aa1
43 2141 10= - ¥. cm 3  and

aa2
54 3638 10= ¥. cm 3 . Hence, astigmatism aberration of the doublet at a point r, q( )

in its plane may be written

W r h W r h W r ha a a, ; , ; , ;q q q¢( ) = ¢( ) + ¢( )2 1 1 2 2

= ¢ + ¢a h r a h ra a1 1
2 2 2

2 2
2 2 2cos cosq q

= +( ) ¢0 5967 1 2 2
2 2 2. cosa a h ra a q

= - ¥ ¢1 4815 10 4
2

2 2 2. cos .h r q (2-19)

For a beam incident on the doublet at an angle of 5° from its axis, we obtain ¢ =h2 1 31.

cm. Hence, for a beam of diameter 2 cm, the peak value of astigmatism aberration is

approximately given by Aa = -2 54.  m m. Comparing Eqs. (2-4c) and (2-4d), the

corresponding field curvature aberration may be obtained from Aa  by multiplying it by

n n+( )1 2 . Thus, we find that Ad = -2 12. mm.

 2.6   SUMMARY

A thin lens generally consists of two spherical surfaces with negligible thickness.

The spherical aberration of such a thin lens cannot be zero when an object and its image

are both real. However, since this aberration varies as the cube of the lens focal length, it

can be made zero by combining two lenses of focal lengths with opposite signs. The

doublet, as it is called, can also be made coma free, and the system is then referred to as

being aplanatic.
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CHAPTER 3
Aberrations of a Plane-Parallel Plate
3.1 INTRODUCTION

In Chapter 2, we considered the imaging properties of a thin lens consisting of two

spherical surfaces. Now, we consider “imaging” by a plane-parallel plate, i.e., a plate

whose two surfaces are parallel to each other, and each with a radius of curvature of

infinity. Unlike a lens, such a plate is not used for imaging per se, but it is often used in

imaging systems, for example, as a beam splitter or a window. The imaging relations and

aberrations of a plane-parallel plate cannot be obtained from those for a thin lens in

Chapter 2 by letting the radii of curvature of its surfaces approach infinity, since we

neglected its thickness. However, as discussed below, they can be obtained by applying

the results of Section 1.8 to its two surfaces and combining the results obtained according

to the discussion of Section 1.9. It is shown that the distance between an object and its

image formed by the plate, called the image displacement, is independent of the object

position, and the aberration produced by it approaches zero as the object distance

approaches infinity. Thus, a plane-parallel plate placed in the path of a converging beam

not only displaces its focus by a certain amount but also introduces aberrations into it. In

the case of a collimated beam, it only shifts the beam without introducing any aberrations.

3.2 GAUSSIAN IMAGING

Consider, as indicated in Figure 3-1, a plane-parallel plate of thickness t and

refractive index n forming an image of a point object lying at a distance S from its front

surface and at a height h from its axis. Let the aperture stop of the plate be of radius a

located at its front surface. First, we determine the location of the image formed by the

plate. Using Eqs. (1-17) and (1-18) we determine the location and height of the image.

For the first surface, n n n1 11= ¢ =,  and R1 = • . Accordingly, it forms the image of P at

¢P  such that

¢ = ∫S nS nS1 1 (3-1)

and

M h h n S n S1 1 1 1 1 1 1 1= ¢ = ¢ ¢ =/ , (3-2)

where h h1 ∫ . For the second surface, n n n2 2 1= ¢ =, ,  R2 = • , and S S t2 1= ¢ - . Hence,

it forms the image of ¢ ¢¢P Pat  such that

¢ = = ¢ -( )S S n S t n2 2 1 (3-3)

and

M h h n S n S2 2 1 2 2 2 2 1= ¢ ¢ = ¢ ¢ =/ . (3-4)

Substituting  for ¢S1   from  Eq.  (3-1)  into  Eq.  (3-3)  and  noting  that ¢S2   is  numerically
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Figure 3-1. Imaging of a point object P by a plane-parallel plate of refractive index
n of ¢P  formed by the second surface of the plate. The aperture stop AS and,
therefore, the entrance pupil EnP of the plate are located at the first surface. A
negative sign in parentheses indicates a numerically negative quantity.

negative, the displacement PP¢¢ of the final image from the object may be written

PP S S t¢¢ = - - - ¢ -1 2( )

= -( )t n1 1 . (3-5)

Thus, the image displacement is independent of the object distance S. It depends only on

the thickness and the refractive index of the plate.

Next, we determine the locations and magnifications of the pupils for the two

surfaces of the plate. Since the aperture stop is located at the first surface, the entrance

pupil EnP of the system is also located there. Moreover, the entrance and exit pupils

EnP1 and ExP1  for this surface are also located at the surface. The entrance pupil EnP2

for the second surface is ExP1.  The exit pupil ExP2  for this surface is the image of EnP2

formed by it. Thus, letting n n n s t2 2 21= ¢ = = -, , ,  and R2 = • , we find from Eqs. (1-

17) and (1-18) that ExP2  is located at a distance ¢ = -s t n2  from the second surface and

its magnification m2 1= . Of course, ExP2  is also the exit pupil ExP of the system. It is
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evident that, for the first surface, the distance L1 of the image ¢P  from ExP1 is equal to

its distance ¢S1  from the surface. For the second surface, distance L2  of the image ¢¢P

from ExP2  is given by

L S s2 2 2= ¢ - ¢ , (3-6a)

since L2, ¢S2, and ¢s2  are all numerically negative. Substituting for ¢S2 and ¢s2 , we find that

L S2 = . (3-6b)

Now we use the results obtained above to determine the aberrations produced by the

plate.

3.3 PRIMARY ABERRATIONS

First, we determine the aberration W r h1 1 1 1, ;q ¢( ) contributed by the first surface at a

point r1 1, q( ) in the plane of ExP1 . Letting n n n1 11= ¢ =, ,  and R1 = • , Eq. (1-20) yields

a
n n

Ss1

2

1
3

1

8
=

-( )
¢

. (3-7)

Moreover, Eq. (1-22) reduces to d1 1= - , and since ¢ =S L1 1, Eq. (1-21a) reduces to

a ass s1 1= . The Petzval contributions to field curvature and distortion represented by the

second term on the right-hand side of Eqs. (1-21d) and (1-21e) are zero. Hence, for the

first surface, Eq. (1-19) may be written

W r h a r h r h r h r h rs1 1 1 1 1 1
4

1 1
3

1 1 1
2 2

1 1
2

1
2

1
3

1 14 4 2 4, ; cos cos cos .q q q q¢( ) = - ¢ + ¢( + ¢ - ¢ ) (3--8)

Next, we determine the aberration W r h2 2 2 2, ;q ¢( )  contributed by the second surface at

a point r2 2, q( )  in the plane of ExP2 . Letting n n n2 2 1= ¢ =, ,  and R2 = • , Eq. (1-20)

yields for this surface

a
n

n Ss2

2

2
2

3

1

8
= - -

¢
. (3-9)

Once again, Eq. (1-22) reduces to d2 1= - , and the Petzval contributions to field

curvature and distortion are zero. Hence, for the second surface, Eq. (1-19) may be

written

W r h a r h r h r h r h rss2 2 2 2 2 2
4

2 2
3

2 2
2

2
2 2

2 2
2

2
2

2
3

2 24 4 2 4, ; cos cos cos ,q q q q¢( ) = - ¢ + ¢( + ¢ - ¢ )
(3-10)

where

a S L ass s2 2 2

4

2= ¢( ) . (3-11)
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Finally, we combine the aberrations introduced by the two surfaces to obtain the

aberration introduced by the plate.  Since m2 and M2 are both unity, r r1 1 2 2, ,q q( ) = ( )  and

¢ = ¢ =h h h2 1 , respectively. Hence, following Eq. (1-29), the aberration of the plane-

parallel plate at a point r, q( ) in the plane of its exit pupil can be written

W r h W r h W r h, ; , ; , ; .q q q( ) = ( ) + ( )1 2 (3-12)

Substituting Eqs. (3-8) and (3-10) into Eq. (3-12), we may write the primary aberration

function

W r h a r hr h r h r h rs, ; cos cos cos  ,q q q q( ) = - + + -( )4 3 2 2 2 2 2 34 4 2 4 (3-13)

where

a a S L as s s= + ¢( )1 2 2
4

2 . (3-14)

Substituting Eqs. (3-1), (3-3), (3-6b), (3-7), and (3-9) into Eq. (3-14), we obtain

a
n t

n Ss =
-( )2

3 4

1

8
. (3-15)

Note that the aberration increases linearly with the plate thickness t. Moreover, as

expected, the aberration reduces to zero for a collimated incident beam ( )S Æ - • . This

is indeed why a lens designer places beam splitters and windows in an imaging system in

its collimated spaces wherever possible.

3.4 NUMERICAL PROBLEM

As a numerical example we determine the aberrations of a plane-parallel plate placed

in the path of a converging beam as shown in Figure 3-2. The plate has a refractive index

of 1.5. Its thickness is 1 cm and its diameter is 4 cm. In the absence of the plate, the beam

comes to a focus at P at a distance of 8 cm from its front surface at a height of 0.5 cm

from its axis. From Eq. (3-5), we find that the plate displaces the image from P to ¢P

which is at the same height as P but at a distance of 8.33 cm from its front surface.

Substituting for n, t, and S = 8 cm in Eq. (3-15), we obtain as = ¥1 13 10 5 3. cm . Noting

that the maximum value of r is 2 cm, we obtain the peak values of the primary aberrations

introduced by the plate from Eq. (3-13); As = 1 81. mm, Ac = -1 81. mm, Aa = 0 45. mm,

Ad = 0 23. mm, and At = -0 11. mm.

3.5 SUMMARY

A plane-parallel plate is often used in imaging systems as a beam splitter or a

window. It introduces no aberrations when placed in a collimated space. However, it

introduces aberrations when placed in a converging or a diverging beam of light. The

primary aberrations thus introduced are given by Eq. (3-13). They increase linearly with

the thickness of the plate.
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CHAPTER 4
Aberrations of a Spherical Mirror
4.1 INTRODUCTION

So far, we have considered refracting imaging systems: a spherical refracting surface

in Chapter 1, a thin lens in Chapter 2, and a plane-parallel plate in Chapter 3. Now we

consider the imaging properties of a spherical reflecting surface, i.e., a spherical mirror.

These properties can be obtained in a manner similar to that for a spherical refracting

surface. However, the geometry of the problem is different since now a ray incident on

the surface is reflected back into the same medium containing the incident ray, instead of

being refracted into another medium. Accordingly, it is instructive to draw object and

image rays and not blindly use the imaging and aberration relations appropriate for a

reflecting surface. In this chapter, we give the relations describing the primary aberrations

of a spherical mirror for an arbitrary position of the aperture stop. These relations are

applied to specific cases, one when the aperture stop is located at the mirror and the other

when it is located at its center of curvature. It is shown that, in the first case, field

curvature and distortion are zero. In the second case, coma, astigmatism, and distortion

are zero. A numerical problem illustrates these results.

4.2 PRIMARY ABERRATION FUNCTION

Consider an imaging system consisting of a spherical mirror of radius of curvature R

and focal length ¢f . Let the aperture stop and the corresponding exit pupil of the system

be located as indicated in Figure 4-1. The line joining the center of curvature C of the

mirror and the center of the aperture stop (and, therefore, the center O of the exit pupil)

defines the optical axis of the system. Consider an object lying at a distance S from the

vertex V0  of the mirror. Let the height of an object point P from the optical axis be h. The

distance ¢S  and the height ¢h  of its Gaussian image ¢P  are given by

1 1 2 1

¢
+ = =

¢S S R f
, (4-1)

and

M
h

h

S R

S R
=

¢
=

¢ -
-

(4-2a)

= - ¢S S/ , (4-2b)

respectively, where M is the magnification of the image.

The aberration W Q( ) of an object ray incident at a point A on the mirror passing

through a point Q in the plane of the exit pupil with polar coordinates r, q( ) with respect

to the chief ray passing through the center O of the exit pupil is given by

W Q PAP PBP( ) = ¢[ ] - ¢[ ] .

33
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Figure 4-1. Imaging by a spherical mirror of radius of curvature R. The line joining
the center of the aperture stop AS and the center of curvature C of the mirror
defines the optical axis OA. The chief ray CR from a point object P passes through
the center of the aperture stop.

It can be shown that, up to the fourth order in pupil and object or image coordinates, the

aberration W A W Q( ) ∫ ( ) reduces to

W r h a r a h r a h r a h r a h rs ss cs as ds ts( , ; ) cos cos cos ,q q q q¢ = + ¢ + ¢ + ¢ + ¢4 3 2 2 2 2 32 (4-3)

where

a
n

R R Ss = -
¢

Ê
ËÁ

ˆ
¯̃4

1 1 2

, (4-4a)

= -
¢

Ê
ËÁ

ˆ
¯̃

1

4

1 1 2

R R S
, (4-4b)

a S L ass s= ¢( ) ,4 (4-5a)

a dacs ss= 4 , (4-5b)

a d aas ss= 4 2 , (4-5c)

a d a
n

RLds ss= -2
2

2
2 , (4-5d)
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a d a
d

RLts ss= -4 3
2 , (4-5e)

d
R S L

S R
= - ¢ +

¢ -
, (4-6)

and L is the distance of the Gaussian image plane from the plane of the exit pupil. Thus, it

is numerically positive in Figure 4-1. We note from the equations given above that, unless

as  is zero, coma, astigmatism, and distortion of a spherical mirror are zero when d = 0.

As discussed in Section 4.4, this happens when the aperture stop of the mirror is located

at its center of curvature. As in the case of a spherical refracting surface, spherical

aberration and coma are zero when the object is located at the center of curvature of the

mirror, i.e., when S R= -

Comparing Eqs. (4-1)–(4-6) with Eqs. (1-17)–(1-22), we note that the results for a

reflecting surface can be obtained from those for a refracting surface if we let n = 1 (since

the mirror is in air), ¢ = -n 1 (minus sign representing reflection).

4.3 APERTURE STOP AT THE MIRROR

If the aperture stop is located at the mirror as in Figure 4-2, then the entrance and exit

pupils are also located there. Accordingly, L S= ¢  and a ass sÆ  and d R S RÆ ¢ -( ) .

The primary aberration function given by Eq. (4-3) becomes

W r h
R R S

r
S R

R S
h r

RS
h rs ( , ; ) cos cos .q q q¢ = -

¢
Ê
ËÁ

ˆ
¯̃ +

¢ -
¢

¢ +
¢

¢
1

4

1 1 12
4

2 2
3

2
2 2 2 (4-7)

It represents the optical path difference of a ray such as PQP¢  with respect to the chief

ray PV P0 ¢  in Figure 4-2 up to the fourth order in pupil and object (or image) coordinates.

Note that the field curvature and distortion coefficients are zero.

If the object is located at infinity, as in astronomical observations, then

¢ = = ¢S R f2 (4-8)

and

d = - 2 . (4-9)

If it lies at an angle b  from the optical axis, then

¢ = - ¢h fb . (4-10)

Substituting Eqs. (4-8)–(4-10) into Eq. (4-7), we obtain the primary aberration function

for a spherical mirror for an object at infinity at an angle b  from its optical axis:

W r
f

r
f

r
f

rs ( , ; ) cos cos .q b b b=
¢

+
¢

+
¢

1

32

1

4

1

23
4

2
3 2 2 2q q (4-11)
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Figure 4-2. Same as Figure 4-1 except that the aperture stop is located at the mirror
surface and axial imaging is also shown.

4.4 APERTURE STOP AT THE CENTER OF CURVATURE OF THE MIRROR

If the aperture stop is located at the center of curvature of the mirror as indicated in

Figure 4-3, then the entrance pupil is also located there. The exit pupil, which is the

image of the aperture stop by the mirror, is also located there, as may be seen by letting

S R=  in Eq. (4-1). The distance L  of the image from the exit pupil is numerically

negative, since it lies to the right of the exit pupil. Accordingly,
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Figure 4-3. Same as Figure 4-1, except that the aperture stop is located at the center
of curvature C of the mirror.

L S R= ¢ - . (4-12)

and, therefore, Eqs. (4-5a) and (4-6) become

a
S

R S Rss = ¢
¢ -

2

3 24 ( )
. (4-13)

and

d = 0 . (4-14)

respectively. Letting d = 0 in Eqs. (4-5b)–(4-5e), and substituting the results obtained

into Eq. (4-3), we obtain the primary aberration function

W r h
S r

R S R

h r

R S Rs ( ; )
( ) ( )

.¢ =
¢

¢ -
-

¢
¢ -

2 4

3 2

2 2

24 2 (4-15)

Thus, coma, astigmatism, and distortion of a spherical mirror with aperture stop at its

center of curvature are zero. A concave mirror has negative spherical aberration but

positive field curvature. If the image is observed on a spherical surface of radius of

curvature R 2 at a distance ¢S  from the mirror, then the second term on the right-hand

side of Eq. (4-15) representing the field curvature also vanishes. The spherical image

4.4  Aperture Stop at the Center of Curvature of the Mirror 37
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surface is, of course, the Petzval image surface. It should be noted that, in going from Eq.

(4-7) to Eq. (4-15), the maximum value of r, i.e., the radius of the exit pupil, has been

multiplied by a factor of S R S-( )  or - ¢ -( ) ¢S R S . Hence, the peak value of spherical

aberration has not changed, as expected, owing to a change in the position of the aperture

stop.

For a point object at infinity

¢ =S R 2  (4-16)

and, therefore,

L R= - / ,2 (4-17)

and the spherical image surface of radius of curvature R 2 is concentric with the mirror.

The spherical aberration is given by

a R fss = = ¢1 4 1 323 3 ; (4-18)

i.e., it is the same as for a mirror with aperture stop at its surface, as expected. It can be

eliminated by placing, at the center of curvature of the mirror, a glass plate whose

thickness varies as r 4 . This indeed is the principle of the Schmidt system, which will be

discussed in Chapter 5.

It is not difficult to see why all primary aberrations, except spherical, vanish when

the aperture stop is located at the center of curvature of a spherical mirror and the image

is observed on the Petzval surface. Since the exit pupil is also located at the center of

curvature, the chief ray corresponding to an off-axis point object passes through it.

Moreover, since the mirror is spherical, any line passing through its center of curvature

forms the optical axis. Hence, every point object is like an on-axis object; therefore, the

only aberration that arises (with respect to its Petzval image) is spherical aberration. The

Petzval curvature, corresponding to the second term on the right-hand side of Eq. (4-5d),

is nonzero. It has the implication that an image aberrated by spherical aberration alone is

formed on a spherical surface of radius of curvature R 2. This, of course, is the Petzval

image surface passing through the axial image point ¢P0 . It is concentric with the mirror

when the object is at infinity.

4.5 NUMERICAL PROBLEMS

Now we consider simple numerical problems in which a spherical mirror of diameter

4 cm and a radius of curvature 10 cm images an object 2 cm high located at a distance of

15 cm from it. We assume that the aperture stop is located at the mirror and the object lies

below the optical axis. Table 4-1 gives the Gaussian as well as the aberration parameters

for this problem. Both concave and convex mirrors are considered in this table. The

concave mirror forms a real image, but the convex mirror forms a virtual image. We note

that whereas astigmatism is  the dominant  primary aberration in the  case of  the  concave
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Table 4-1. Gaussian and aberration parameters for a spherical mirror of radius a
imaging an object lying at a finite distance from it. The aperture stop is located at
the mirror.

Gaussian Parameters

Mirror R
(cm)

¢S
(cm)

¢h
(cm)

F d

Concave –10 –7.5 1 7 5 4. –4

Convex 10 3.75 - 0 5. 3.75/4 –1.6

Aberration Parameters

Mirror ass

cm 3( )
Ass

mm( )
Acs

mm( )
Aas

mm( )

Concave - ¥2 78 10 5. - 4 4. 35.56 –71.1

Convex 6 94 10 4. ¥ 111 178 71.1

S = –15 cm, h = –2 cm, a = 2 cm, ¢ = - -( )S RS S R2

F S a= ¢ 2 , d R S R= ¢ -( )

mirror, it is coma that dominates in the case of the convex mirror. Field curvature and

distortion are zero in both cases, since the aperture stop lies at the mirror surface.

Table 4-2 lists the Gaussian and aberration parameters for an object lying at infinity

at an angle of 1 milliradian from the optical axis of the mirror. The magnitude of a

primary aberration is independent of whether the mirror is concave or convex, but its sign

depends on its type. Spherical aberration is the dominant aberration in Table 4-2. Of

course, the field curvature and distortion are zero once again.

If the aperture stop of the mirror is moved to its center of curvature, the peak value

As of its spherical aberration does not change. However, its coma and astigmatism reduce

to zero, but its field curvature becomes nonzero. The radius of the exit pupil aex , the field

curvature coefficient ad , and the peak value of field curvature for the problems under

consideration are given in Table 4-3. The numbers without parentheses are for an object

at S = 15 cm, and those with parentheses are for an object at infinity at 1 milliradian from

the optical axis of the system. As a reminder, we add that

4.5  Numerical Problems 39
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40 ABERRATIONS OF A SPHERICAL MIRROR

Table 4-2. Gaussian and aberration parameters for a spherical mirror imaging an
object lying at infinity at an angle of 1 milliradian from its optical axis. The aperture
stop is located at the mirror.

Gaussian Parameters

Mirror R
(cm)

¢S
(cm)

¢h
(cm)

F d

Concave –10 –5 5 10 3¥ 1.25 –2

Convex 10 5 - ¥5 10 3 1.25 –2

Aberration Parameters

Mirror ass

cm 3( )
Ass

mm( )
Acs

mm( )
Aas

mm( )

Concave - ¥2 5 10 4. - 40 0.8 - ¥4 10 3

Convex - ¥2 5 10 4. 40 0.8 4 10 3¥

Table 4-3. Radius of the exit pupil and field curvature parameters for a spherical
mirror when the aperture stop is located at its center of curvature.*

Mirror aex

(cm)

ad

cm 3( )
Ad

mm( )

Concave 2 3

(2)

8 10 3¥

2 10 3¥( )
35.6

2 10 3¥( )
Convex 10 3

(2)

- ¥1 28 10 3.

- ¥( )2 10 3

–35.6

- ¥( )2 10 3

* The numbers without parentheses are for an object at S = 15 cm and those with

parentheses are for an object at infinity at 1 milliradian from the optical axis of the

system.
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CHAPTER 5
Schmidt Camera
5.1 INTRODUCTION

We have seen in Chapter 4 that a spherical mirror gives spherical aberration, which

we know from Section 1.7 to be independent of the location of its aperture stop. When the

aperture stop is located at the center of curvature of the mirror, it also produces field

curvature, although coma, astigmatism, and distortion are all zero. As we will discuss in

Chapter 6, a paraboloidal mirror forms an aberration-free image of a point object only

when it lies on its axis at an infinite distance from it. In order to utilize the simplicity of

fabrication of a spherical mirror, we need a way to compensate its spherical aberration.

An optical system consisting of a spherical mirror and a transparent plate of nonuniform

thickness placed at its center of curvature to compensate for its spherical aberration is

called a Schmidt camera. The plate is appropriately called the Schmidt plate. With the

exception of field curvature, the image formed is free of primary aberrations.

As discussed in Section 4.4, the field curvature is such that an aberration-free image

is formed on a spherical surface of radius of curvature equal to half that of the mirror. For

an object at infinity, this surface is concentric with the mirror. In this chapter, we

determine the shape of the Schmidt plate and discuss the chromatic aberrations associated

with it. A numerical problem illustrates the results obtained.

5.2 SCHMIDT PLATE

Consider a spherical mirror with its aperture stop located at its center of curvature C,

as shown in Figure 5-1, imaging an object lying at infinity. From Eq. (4-18), the optical

path difference between a ray of zone r and the chief ray from an axial point object is

given by

W r
r

f
( ) =

¢

4

332
, (5-1)

where ¢f is the focal length of the mirror. It is negative, implying that the optical path

length of the ray under consideration to the focus ¢F  is shorter than that of the chief ray.

It also means that the ray intersects the axis after reflection at an axial point ¢¢F , which is

slightly closer to the mirror vertex than the paraxial focus ¢F . This may be seen

independently from the isosceles triangle CAF ¢¢  in which CF AF CA f¢¢ + ¢¢ > = ¢2

or CF f CF¢¢ > ¢ = ¢ , since CF AF¢¢ = ¢¢ . In order that the path length of the ray be equal

to that of the chief ray, its path length must be increased.

If a plate of refractive index n and a thickness t r( ) is placed at the center of

curvature with a flat surface normal to the axis of the mirror, the additional optical path

length  introduced  by the plate is given by n t r-( ) ( )1 . All object rays transmitted by the
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Figure 5-1. Imaging by a spherical mirror with aperture stop located at its center of
curvature. Rays of different zones from an axial object at infinity intersect the axis
of the mirror after reflection at different points, such as ¢F  and ¢¢F , thus forming
an image aberrated by spherical aberration. The ray shown intersecting the axis at

¢¢F  has a zone of 3 2a , where a is the radius of the aperture stop.

system travel equal optical path lengths and converge to a common focus ¢F  if t r( ) is

given by

W r n t r( ) ( ) ( ) .+ - =1 0 (5-2)

Substituting Eq. (5-1), we find that the plate thickness is given by

t r
r

n f
( )

( )
.= -

- ¢

4

332 1
(5-3)

It increases from a value of zero at its center to values proportional to the fourth power of

the zonal radius. In practice, a plane-parallel plate of constant thickness t0  would be

added to it so that it can be fabricated. The shape of the plate is shown in Figure 5-2,

where it is shown to slightly tilt a nonaxial ray so that, after reflection by the mirror, it

passes through ¢F .
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Figure 5-2. Imaging by a Schmidt camera consisting of a spherical mirror and a
transparent plate placed at its center of curvature C. The spherical aberration of the
mirror is precorrected by the plate so that the system forms an image free of
spherical aberration. Dashed lines indicate the path of a ray in the absence of a
Schmidt plate.

Although spherical aberration is corrected by the use of such a plate, it does

introduce chromatic aberration. Since the refractive index of the plate varies with the

wavelength of object radiation, the angular deviation of a ray produced by the plate also

varies with it. Consider a ray corresponding to a refractive index n and passing through

the plate at a zone r. Since the plate is located in air and the wave aberration produced by

it is n t r-( ) ( )1 , following Eq. (1-1), the angular deviation of the ray produced by it is

given by

y = -( ) .n
dt

dr
1 (5-4)

Substituting Eq. (5-3) into Eq. (5-4), we obtain

y = -
¢

r

f

3

38
.  (5-5)

From Eq. (5-4), the angular dispersion of any ray is given by

� �y = n
dt

dr
,  (5-6a)
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where Dn  is the variation in the refractive index of the plate across the spectral

bandwidth of the object radiation. Substituting for dt dr  from Eq. (5-4) into Eq. (5-6a),

we obtain

D
D

y y=
-
n

n 1
.  (5-6b)

Thus, the angular dispersion Dy  of a ray produced by the plate is proportional to its

angular deviation y . The value of y  is maximum and equal to - ¢a f3 38  for the

marginal rays, i.e., for r = a, where a is the radius of the plate.

To reduce the chromatic aberration, we must reduce the maximum value of y . To do

so, we add to the plate a very thin plano-convex lens. Such a lens will reduce the focus

distance such that the rays are now focused at a point ¢¢F  instead of ¢F , as in Figure 5-3.

A plano-convex lens introduces thickness to the plate varying as r 2 . Thus, the plate

thickness may be written

t r t
r

n f

br

n
( )

( )
,= -

- ¢
+

-0

4

3

2

32 1 1
(5-7)

where b is a constant chosen to minimize the chromatic aberration. Comparing the

defocus aberration br 2
 introduced by the plate with Eq. (1-3b), we find that the distance

between ¢F  and ¢¢F  is given by 2 2bf ¢ . ¢¢F  lies on the right-hand side of ¢F , as in

Figure 5-3, if b is numerically negative. The thickness variations of plates with different

values of b  are shown in Figure 5-4. We note that the depth of material removal, starting

with a plane-parallel plate, is minimum when b a f= ¢2 332  (corresponding to c = 1 in the

figure). However, we are interested in minimizing the maximum value of the angular

deviation of a ray. As shown below, this requires that b be equal to 3 642 3a f ¢  (or c =

1.5).

Substituting Eq. (5-7) into Eq. (5-4), we find that the angular deviation of a ray is

now given by

y =
¢

+
r

f
br

3

38
2 . (5-8)

Its maximum value in the range 0 £ £r a  occurs either at its stationary point

r f b= ¢( )16 33 1 2
  obtained by letting ∂ ∂ =y r 0 or at r a= . At the former its absolute

value is 4 3 16 33 1 2
b f b( ) ¢( ) and at the latter it is - ¢( ) +a f ba3 38 2 . These two values

are both equal to a f3 332 ¢  if b a f= ¢3 642 3  (or c  = 1.5), thus reducing the angular

deviation as well as the  chromatic  aberration by a factor of 4  compared to their values if 
b = 0.
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Figure 5-5. Dependence of angular dispersion on the value of b. It is minimum when
b a f= ¢3 642 3

  corresponding to c = 1.5.

Substituting this value of b into Eq. (5-7) we find that the plate thickness required for

eliminating spherical aberration introduced by the mirror and minimizing the chromatic

aberration introduced by the plate is given by

t r t
n f

r a r( )
( )

.= -
- ¢

-Ê
ËÁ

ˆ
¯̃0 3

4 2 21

32 1

3

2
(5-9)

We note that ∂ ∂ =y r 0 for r a= 3 2 . This value of r is called the neutral zone of the

plate since a ray incident normal to it passes through it undeviated as in Figure 5-3. As

may be seen from Figure 5-4, the thickness variation of the plate and the material removal

are maximum at this zone. This variation is more than twice the variation for a minimum-

thickness-variation plate; compare the numbers –0.5625 and –0.25 in the figure that occur

at zones of r = 0.707a and r = 0.866a, respectively.

The lens component of the Schmidt plate has a focal length of f f al = - ¢32 33 2 .

The vertex radius of curvature of the plate is equal to 1 -( )n fl . This, of course, is the

radius of curvature of the second surface of the lens. The angular dispersion of the rays is

now given by

D
D

y = -
- ¢

-Ê
ËÁ

ˆ
¯̃

n

n f
r a r

8 1

3

43
3 2

( )
. (5-10)

Its maximum value occurs for rays with r a= 2 and a. It is given by
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D[ ] = -
- ¢

y max
Dn

n

a

f32 1

3

3( )
. (5-11)

The dependence of angular dispersion on the value of b is illustrated in Figure 5-5. We

shall see in Chapter 7 that the value of b giving minimum chromatic aberration also gives

the position of the defocused image plane in which the rays forming an image of a point

object aberrated by spherical aberration have a minimum spot radius (circle of least

confusion).

It has been shown in Section 4.4 that a spherical mirror with an aperture stop located

at its center of curvature gives only spherical aberration and field curvature. The Schmidt

plate compensates for the spherical aberration and, therefore, the image of an extended

object observed on a spherical surface concentric with the mirror is free of primary

aberrations. Strictly speaking, the lens component of the plate also introduces small

amounts of primary aberrations. The spherical aberration contributed by it can be made

zero by slightly adjusting the value of the r 4
 term in the plate thickness t(r). The mirror

also contributes some secondary or sixth-order spherical aberration. It can be made zero

by introducing an r 6 term in the plate thickness.

It should be noted that as the field angle b  increases, the size of the focal surface

also increases, which, in turn, obscures the ray bundle incident on the mirror. For a field

of view of radius b , the linear obscuration of the on-axis beam incident on the mirror is

given by   � �= 2 F , where F is the focal ratio of the system.

5.3    NUMERICAL PROBLEMS

As a numerical example, we consider a spherical mirror with a radius a = 5 cm and a

focal length ¢ = -f 40 cm so that F  = 4. According to Eq. (5-1), the peak value of

spherical aberration introduced by it for an object at infinity is equal to 3.05 mm. If a

Schmidt plate of refractive index n = 1 5.  is used to compensate for this spherical

aberration, the difference in its maximum and minimum thickens is 6.10 mm according to

Eq. (5-3). Thus, starting with a plate of uniform thickness, as much as 6.1 mm deep

material must be removed at its center, reducing to a value of zero at its edge. This would

be satisfactory for operation in monochromatic light for which the refractive index is 1.5.

The image is formed at a distance of 40 cm from the mirror. The image of an extended

object lying at infinity is free of primary aberrations when observed on a spherical surface

of radius of curvature 40 cm concentric with the mirror passing through its focal point

¢F .

For white-light operation, the thickness variation of the plate for minimum chromatic

aberration is given by Eq. (5-9). Thus, the plate has a certain thickness at the center, and

its variation is maximum and equal to 3.43 mm at its neutral zone of 3 2a  = 4.33 cm.

Its variation at its edge is 3.05 mm. We note that the depth of material removal is less for

this plate than that for the monochromatic operation. The image is now formed at a

distance that is 0.586 mm closer to the mirror than its focal plane. If Dn  = 0.025 across

the spectral bandwidth of object radiation, then, according to Eq. (5-11), the minimum
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radius of the chromatic image will be 1.22 mm. In practice, the image will be larger than

this due to diffraction by, say, the diameter of the Airy disc (discussed in Chapter 8). For

visible light, the diameter of the Airy disc (neglecting the effect of obscuration due to the

focal surface) is approximately 6.83 mm, where we have used a visible wavelength of 0.7

mm.

5.4 SUMMARY

In a Schmidt camera, the spherical aberration of a spherical mirror is made zero by

placing a corrector plate (called the Schmidt plate) at its center of curvature. The aperture

stop and the entrance and exit pupils also lie at this location, yielding zero astigmatism

and coma, and thus providing an anastigmatic system. The plate thickness described by

Eq. (5-3) and illustrated in Figure 5-2 introduces dispersion, which is minimized by

modifying the plate thickness to that described by Eq. (5-9) and shown in Figure 5-3.
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CHAPTER 6
Aberrations of a Conic Surface
6.1 INTRODUCTION

So far, we have considered the aberrations of spherical surfaces, which are conic

surfaces of zero eccentricity. In this chapter, we discuss the aberrations of a conic surface

with an arbitrary value of eccentricity. Our starting point is imaging by and aberrations of

a spherical surface discussed in Sections 1.8 and 4.2. It should be noted that the Gaussian

imaging equations for a conic surface of a certain vertex radius of curvature are the same

as those for a spherical surface of the same radius of curvature. Given the aberrations of a

spherical surface, we determine the additional aberrations introduced by a corresponding

conic surface. In particular, we show that if the aperture stop is located at the conic

surface, the only additional aberration is spherical aberration. The other (primary)

aberrations of the conic surface are identical to those of the spherical surface. The

aberrations of a conic surface are further generalized to obtain the aberrations of a

general aspherical (nonconic) surface. The aberrations of a paraboloidal mirror are

briefly discussed and compared with those of a spherical mirror. Finally, we outline a

procedure to determine the aberrations of a multimirror system.

6.2 CONIC SURFACE

A conic surface of eccentricity e and vertex radius of curvature R is described by its

sag according to

z
r R

e r R
c

c

c

=
+ - -( )[ ]

 
/

    /
 ,/

2

2 2 2 1 2
1 1 1

(6-1)

where, as illustrated in Figure 6-1, x y zc c c, ,( )  are the coordinates of a point on it and

r x yc c c= +( )2 2 1 2/
(6-2)

is the distance of the point from the z axis. The origin of the coordinate system is at the

vertex of the conic, and the z axis is along its axis of rotational symmetry. The various

conic surfaces are described by their values of e according to

e = 1 Paraboloid

< 1 Ellipsoid

> 1 Hyperboloid

= 0   Sphere     . 

If we neglect the terms in rc  of an order higher than four, Eq. (6-1) becomes

z
r

R
e

r

Rc
c c= + -( )
2

2
4

32
1

8
. (6-3)
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rc

B

A(xc, yc, zc)

Figure 6-1. Sag of a conic surface. The origin of the coordinate system lies at the
vertex  V0  of the conic. The axis about which the conic is rotationally symmetric is
the z axis of the coordinate system. zc is the sag of a point A on the conic.

Thus, up to the fourth order in rc , the sag of a spherical e =( )0  surface is larger than that

of a conic surface by e r Rc
2 4 38/ . Up to this order, the chord V A rc0 ~ .

6.3 CONIC REFRACTING SURFACE

6.3.1 On-Axis Point Object

Consider a conic surface separating media of refractive indices n and n'. Compared

to a spherical surface, a conic surface introduces an additional aberration for an axial

point object P0, which for a ray passing through a point A on the spherical surface in

Figure 6-2 is given by

DW A n n A Ac 0 0( ) ¢ -( )  ,~ (6-4a)

where

A A e r Rc0
2 4 38~ (6-4b)

is approximately equal to the sag difference between a sphere and a conic of the same

vertex radius of curvature. Since V A rc0 ~ , we may write

DW A V Ac 0 0 0
4( ) = s , (6-5a)

where

s = ¢ -( )n n e R2 38 . (6-5b)
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Figure 6-2. Imaging of an on-axis point object P0 by a conic refracting surface CS
of vertex radius of curvature R and center of curvature C. The Gaussian image is
located at ¢P0 .

We note from (approximate) triangles V A P0 0 ¢  and OQP¢0  in the figure that

V A OQ S L0 = ¢ . Hence, the aberration at a point Q in the plane of the exit pupil at a

distance r from the optical axis is given by

DW Q S L OQc ( ) = ¢( )s 4 4 ,

or

DW r S L rc ( ) = ¢( )s 4 4 . (6-6)

6.3.2 Off-Axis Point Object

For an off-axis point object such as P in Figure 6-3, the optical path length of the

chief ray for a conic surface is also different from that for a spherical surface.

Accordingly, the conic contribution to the aberration of a ray from the point object P and

passing through a point A  on the conic surface is given by

DW A n n AA BB

V A V B

c ( ) ¢ -( ) -( )
= -( )
~  

.s 0
4

0
4

(6-7)

Let r, q( ) be the polar coordinates of a point Q, where the ray under consideration

intersects the plane of the exit pupil, with respect to O as the origin. From Figure 6-4,

which represents the projection of the exit pupil on the refracting surface, we note that

V A A B V B A B V B0
2 2

0
2

02      cos  .= + - q (6-8)
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obtained for a conic surface, we obtain the aberrations for a general aspherical surface.

This conclusion applies to the aberrations for off-axis point objects as well.

6.5 CONIC REFLECTING SURFACE

The additional primary aberrations introduced by a conic or a general aspherical

reflecting surface, compared to a spherical one (discussed in Chapter 4), can be obtained

from those for a corresponding refracting surface by letting ¢ = - =n n 1. Thus, for

example, the additional aberration of a conic mirror is given by Eq. (6-11), where

s = - e R2 34 . (6-14)

6.6 PARABOLOIDAL MIRROR

For a paraboloidal (e = 1) mirror, we note from Eqs. (4-4) and (6-14) that for an

object at infinity,

a Rs = - =s 1 3 . (6-15)

Hence, following Eqs. (4-3) and (4-11), we find that the spherical aberration of a

paraboloidal mirror is zero when the object lies at infinity, i.e.,

a S L asc s= ¢ + =( ) ( ) .4 0s (6-16)

If, in addition, the aperture stop is located at the mirror, then L S= ¢  and, therefore, g = 0.

Hence, Eq. (6-11) shows that the other primary aberrations of a paraboloidal mirror are

identical with those for a spherical mirror. Accordingly, the image of an off-axis object at

infinity formed by a paraboloidal mirror with stop at the mirror surface suffers only from

coma and astigmatism given by the corresponding terms in Eq. (4-11). Thus, for example,

the image of an object lying at infinity at an angle of 1 milliradian from the axis of a

paraboloidal mirror of vertex radius of curvature of 10 cm suffers from coma aberration

with a peak value of 0.8 mm but a negligible value of astigmatism. These values are the

same as those of the corresponding aberrations in Table 4-2 where imaging by a spherical

mirror was considered. Thus, the difference between imaging by paraboloidal and

spherical mirrors lies in their spherical aberrations: zero in the case of a paraboloidal

mirror and - 40 mm peak aberration, for example, in the case of a concave spherical

mirror. Of course, the image of an axial object at infinity by a paraboloidal mirror is

aberration free.

6.7 MULTIMIRROR SYSTEMS

The aberrations of a multielement system can be calculated by determining the

aberrations of each element at its respective exit pupil and then combining them

according to the procedure described in Section 1.9. Thus, for example, we can show that

an afocal system consisting of two confocal paraboloidal mirrors acting as a beam

expander is anastigmatic, introducing only field curvature and distortion aberrations.

Similarly, we can investigate the aberrations of two-mirror systems such as the
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Cassegrain and Ritchey-Chrétien  telescopes. As is sometimes the case in practice, this is

easier said than done.

6.8 SUMMARY

The Gaussian imaging equations for a conic surface of a certain vertex radius of

curvature are the same as those for a spherical surface of the same radius of curvature.

The aberrations of a conic surface with its aperture stop located at the surface are the

same as those for a corresponding spherical surface, except for spherical aberration. The

aberrations of a general aspherical (nonconic) surface can be obtained from those of a

conic surface by simply modifying its sag contribution, as in Eq. (6-13b). The aberrations

of a multielement system can be obtained by the procedure described in Section 1.9. As a

reminder, note that only the primary aberrations are discussed in this book, and the actual

aberrations of a system are obtained by tracing rays or by measurement.
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CHAPTER 7
Ray Spot Sizes and Diagrams
7.1 INTRODUCTION

In Chapters 2–6, we have determined the primary wave aberrations of simple optical

imaging systems. In this chapter, we use the relationship between the wave and ray

aberrations given in Section 1.2 to determine the ray distribution for a point object, called

the ray spot diagrams, in the Gaussian image plane. For each primary aberration, we

determine the extent or the size of the image spot in terms of its peak value and the focal

ratio of the image-forming light cone. In the case of spherical aberration and astigmatism,

we consider the ray distributions in defocused image planes as well, and we determine the

plane in which the spot size is minimum. These minimum-size spots are referred to as the

circles of least confusion and represent the best aberrated images based on geometrical

optics.

We define the centroid and the standard deviation of the ray distribution and

calculate them for the primary aberrations. In lens design, one often tries to minimize the

spot sigma rather than the spot radius. However, we will see in Chapter 8 that, in reality,

which is based on diffraction of light at the exit pupil of the system, an image distribution

is not given by the corresponding ray spot diagrams. For example, the aberration-free

image of a point object is a point according to geometrical optics, but its diffraction

image for a circular pupil consists of a bright spot surrounded by concentric dark and

bright rings. Even so, it is quite common practice in lens design to look at the spot

diagrams in the early stages of a design, as discussed in Section 7.10.

7.2 WAVE AND RAY ABERRATIONS

Consider an optical system consisting of a series of rotationally symmetric coaxial

refracting and/or reflecting surfaces imaging a point object. We have discussed in

Chapter 1 that the primary aberration function representing the wave aberration at its exit

pupil can be written

W r h a r a h r a h r a h r a h rs c a d t, ; ,q q q q¢( ) = + ¢ + ¢ + ¢ + ¢4 3 2 2 2 2 2 3cos cos cos (7-1)

where r, q( ) are the polar coordinates of a point in the plane xy of the exit pupil of the

system, ¢h  is the height of the Gaussian image point ¢P ,  and as, ac, aa, ad , and at

represent the coefficients of spherical aberration, coma, astigmatism, field curvature, and

distortion, respectively. The angle q is equal to zero or p for points lying in the tangential

or meridional plane (i.e., the zx  plane containing the optical axis and the point object

and, therefore, its Gaussian image). The chief ray, which, by definition, passes through

the center of the exit pupil, always lies in this plane. The plane normal to the tangential

plane but containing the chief ray is called the sagittal plane. As the chief ray bends when

it is refracted or reflected by a surface, so does the sagittal plane.
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For an optical system with a circular exit pupil, say, of radius a, it is convenient to

use normalized coordinates r q,( )  where r r q p= £ £ £ £r a, ,0 1 0 2 , suppress the

explicit dependence on ¢h ,  and write the aberration function in the form

W A A A A As c a d tr, ,q r r q r q r r q( ) = + + + +4 3 2 2 2cos cos cos (7-2)

where the new aberration coefficients Ai , representing the peak or maximum values of

the aberrations, are related to those used in Eq. (7-1) according to

A a a A a h a A a h a A a h a  A a h a .s s
4

c c
3

a a
2 2

d d
2 2

t t
3= = ¢ = ¢ = ¢ = ¢, , , , (7-3)

Although we will discuss the spot diagrams in terms of these peak aberration coefficients,

it is necessary to know their dependence on the image height h' when discussing images

of extended objects.

If x y,( ) represent the rectangular coordinates of a pupil point, the corresponding

normalized coordinates x h,( )  are given by

 x h,   ,( ) = ( )1

a
x y (7-4a)

= ( )r cos , sin ,q q (7-4b)

where - £ £ - £ £ + = £1 1 1 1 12 2 2x h x h r, ,   .and  The aberration function defined in

the form of Eq. (7-2) has the advantage that the aberration coefficients Ai  have the

dimensions of length (i.e., dimensions of the wave aberration), and they represent the

peak or maximum values of the corresponding primary aberrations. For example, if

As = 1 l , where l  is the wavelength of the object radiation, we speak of one wave of

spherical aberration.

The distribution of rays in an image plane is called the ray spot diagram. Their

density (i.e., the number of rays per unit area) is called the geometrical point-spread

function (PSF). If the system is aberration free, then the wavefront is spherical and all the

object rays transmitted by the system converge to the Gaussian image point. When the

wavefront is aberrated, a ray passing through a point (r, q) in the plane of the exit pupil

intersects the Gaussian image plane at a point x yi i,( ) which, following Eq. (1-1), may be

written

x y F
W

i i, ,  ( ) =
∂

∂
∂

∂
Ê
ËÁ

ˆ
¯̃

2
W

x h
(7-5a)

=
∂

∂
∂

∂
∂

∂
+

∂
∂

Ê
ËÁ

ˆ
¯̃

2F
W W W W

cos
sin

sin
cos

q
q

q
q

q
qr r r r

– ,  , (7-5b)

where F R a= 2  is the focal ratio or the f-number of the image-forming light cone. Here,

x yi i,( ) represent the ray aberrations, i.e., the coordinates of the point of intersection of
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the ray in the Gaussian image plane with respect to the Gaussian image point, and R is the

radius of curvature of the Gaussian reference sphere with respect to which the aberration

W r q,( ) is defined. The reference sphere is centered at the Gaussian image point (0,0)

and, like the aberrated wavefront, passes through the center of the exit pupil. In Eqs. (7-

5), we have assumed that the refractive index of the medium in which the image is

formed is unity since it is often the case in practice. Substituting Eq. (7-2) into Eq. (7-5b),

we find that, in the absence of distortion, the chief ray intersects the Gaussian image

plane at the Gaussian image point.

For a radially symmetric aberration, i.e., one for which W Wr q r, ,( ) = ( )  we note

from Eq. (7-5b) that the PSF is also radially symmetric. The radial distance ri  of a ray

from the Gaussian image point in that case is given by

r x yi i i= +( )2 2 1 2/

=
∂

∂
2F

W ( )
.

r
r

(7-6)

For a uniformly illuminated pupil, the location of the centroid of a PSF can be

obtained from the aberration function according to

x y
F W W

d dc c, , .( ) = Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ÚÚ2

p
∂

∂x
∂

∂h
x h (7-7)

The standard deviation of the ray aberrations or the spot sigma is given by

s s i c i cx x y y= -( ) + -( )2 2 1 2
(7-8a)

= -
Ê
ËÁ

ˆ
¯̃

+ -
Ê
ËÁ

ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂ÚÚ2
1

2 2
1 2

F
W

x
W

y d dc cp
∂

∂x
∂

∂h
x h . (7-8b)

For a symmetric aberration such as astigmatism, the PSF is symmetric and the centroid

lies at the origin, i.e., x yc c, ,( ) = ( )0 0 .  The spot sigma in such cases is equal to the root

mean square (rms) radius. Substituting Eq. (7-6) for a radially symmetric aberration, Eq.

(7-8b) reduces to

  s
∂

∂r
r rs F

W
d=

Ê
ËÁ

ˆ
¯̃

Û

ı
Ù

È

Î
Í
Í

˘

˚
˙
˙

2 2
2 1 2

. (7-9)

Now we discuss the characteristics of an image aberrated by a primary aberration. To be

definite, we assume that each of the aberration coefficients Ai  is positive, unless stated

otherwise.
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is independent of the height h of the point object from the optical axis, the ray distribution

owing to spherical aberration alone is also independent of h.

Let us consider the ray distribution in a slightly defocused image plane by

introducing a defocus aberration Bd .  The aberration with respect to a reference sphere

centered at a defocused point may be written

W A Bs dr r r( ) = +4 2 , (7-12)

The rays of zone r  now lie in the defocused image plane on a circle of radius

r FA B Ai s d s= + ( )8 23r r .
(7-13)

For the marginal rays, corresponding to r = 1, ri Æ 0  if B Ad s= - 2 ,  Following Eqs. (1-

3c) and (1-3d), we find that the marginal rays intersect the axis at a distance

D = - 8 2F Bd (7-14a)

     = 16 2F As
(7-15b)

from ¢P0 . This distance shown as ¢P M0  in Figure 7-1 is called the longitudinal spherical

aberration. A negative value of D  implies that, compared to the old reference sphere, the

new reference sphere is centered at a point that is farther from the center of the exit pupil.

Hence, the point of intersection M of the marginal rays lies to the right of ¢P0  as shown in

Figure 7-1. This is to be expected for positive values of As . The points ¢P0  and M are

called the Gaussian and the marginal image points. Substituting B Ad s= - 2  in Eq. (7-

10), we find that the maximum value of ri in the marginal image plane occurs for rays of

zone � = 1 3 . This maximum value ri max  is 2 3 3  (or 0.385) times the corresponding

value in the Gaussian image plane. Thus, the marginal spot radius is considerably

smaller than the paraxial spot radius .

The image plane lying midway between the paraxial and marginal planes

corresponds to B Ad s= - . The spot radius in this plane is half of that in the paraxial plane

and corresponds to marginal rays. Comparing Eq. (7-13) with Eq. (5-8), we find that the

spot radius is minimum in a plane corresponding to B Ad s= - 3 2, i.e., a plane which is

3/4 of the way from the paraxial plane to the marginal plane. The spot radius in this case

is 1/4 of the paraxial spot radius and corresponds to rays of zone r = 1 2 and 1. This spot

is called the circle of least (spherical) confusion. The spot radii in various image planes

are listed in Table 7-1.

The deliberate mixing of one aberration with one or more other aberrations is called

aberration balancing. Here, we have balanced spherical aberration with defocus in order

to minimize the spot radius or its sigma value. The amount of defocus that gives the
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Table 7-1.  Spot radius and sigma for spherical aberration As .

     Image Plane Balancing Defocus

B Ad s

Spot Radius

r FAimax s8

Spot Sigma

s s sFA8

Gaussian 0 1 0.5

Marginal – 2 0.385 0.289

Midway – 1 0.5 0.204

Minimum spot sigma – 4/3 1/3 0.167

Least confusion – 3/2 0.25 0.177

smallest ray spot or sigma may be called the optimum defocus based on geometrical

optics. The balanced aberration giving the smallest ray spot is As[ ( / ) ]r r4 23 2- .

Similarly, the balanced aberration that gives the smallest spot sigma is As[ ( / ) ]r r4 24 3- .

Based on diffraction, the optimum amount of defocus corresponds to the midway plane,

since in that case it is used to reduce the variance of the aberration across the exit pupil,

i.e., the balanced aberration giving minimum variance is As r r4 2-( ) , similar to the

Zernike polynomial Z4
0 r( ) (see Table 8-2).

7.4    COMA

The coma wave aberration is given by

 W A Ac cr q r q x x h,   .( ) = = +( )3 2 2cos (7-16)

Substituting Eq. (7-13) into Eq. (7-55), we obtain the corresponding ray aberrations in the

Gaussian image plane with respect to the Gaussian image point. They are given by

x y FAi i c, ,( ) = +( )2 2 2 22r q qcos sin (7-17a)

 , .= +( )2 2 22 2FAc r x xh (7-17b)

We note that the rays coming from a circle of radius r  in the exit pupil lie on a circle of

radius 2 2FAc r  in the image plane, which is centered at 4 02FAc r ,( ). The circle in the

image plane is traced out twice as 0 varies from 0 to 2p  to complete a circle of rays in

the exit pupil. Figure 7-2 illustrates these circles in the image plane for r = 1 2 and 1. For

r = 1, the rays in the image plane lie on a circle of radius 2FAc centered at 4 0FAc ,( ) .

Accordingly, CB CP¢ = 1 2 where P' is the Gaussian image point, so that the angle CP'B

is equal to 30°. Hence, all of the rays in the image plane are contained in a cone of

semiangle 30° bounded by a circle of radius 2FAc  centered at 4 0FAc ,( )  corresponding to

the marginal rays. The vertex of the cone, of course, coincides with the Gaussian image

point ¢P . Since the spot diagram has the shape of a comet, the aberration is appropriately
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Figure 7-2. Ray spot diagram for coma. The tangential marginal rays MRt  are
focused at the point T and the sagittal marginal rays MRs  are focused at the point S.
All rays in the image plane lie in a cone of semiangle 30° with its vertex at the
Gaussian image point ¢P  bounded by the upper arc of a circle of radius
2 FAc centered at 4 0FA ,c( ). The cone angle is 30° because CB CP¢ = 1 2 .

called coma. Note that the two tangential marginal rays MRt r q p= =( )1 0, ,  intersect

this plane at T at a distance 6FAc from P', and the two sagittal marginal rays

MRs r q p p= =( )1 2 3 2, ,  intersect the image plane at S at a distance 2FAc from ¢P .

Accordingly, the length 6FAc and half-width 2FAc of the coma pattern are called

tangential and sagittal coma, respectively.

Since the PSF is highly asymmetric about the Gaussian image point ¢P , its centroid

does not lie at it. Substituting Eq. (7-16) into Eq. (7-7), we obtain the location of the

centroid:
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x y FAc c c, , .( ) = ( )2 0 (7-18)

Thus, the centroid lies at the point S in Figure 7-2 where the sagittal marginal rays

intersect the image plane. Substituting Eqs. (7-17) and (7-18) into Eq. (7-8a), we obtain

the ray spot sigma:

s r q r qs cFA= +( ) -[ ] +2 2 2 1 22 2 4 2
1 2

cos sin

 = 2 2 3FAc . (7-19)

Measuring the ray coordinates in the image plane with respect to a point other than

the Gaussian image point is equivalent to introducing a wavefront tilt aberration in the

aberration function. A tilt aberration with a peak value of At  is equivalent to measuring

the wave aberration with respect to a reference sphere centered at a point in the image

plane with coordinates -( )2 0FAt , .  Hence, measuring  the ray aberrations with respect to

the centroid is equivalent to a tilt aberration of -Acr qcos  or A At c= - . Accordingly, the

aberration function with respect to the centroid can be written

W Acr q r r q, cos .( ) = -( )3 (7-20)

It should be evident that if the ray aberrations are measured with respect to any other

point in the image plane, including the Gaussian image point, the spot sigma will

increase. The aberration function given by Eq. (7-20) represents coma aberration

balanced optimally with tilt aberration to yield minimum sigma value or bring the

centroid at the Gaussian image point. However, the variance of the wave aberration is

minimum when A At c= - ( )2 3 , i.e., if the balanced aberration is Ac r r q3 2 3-[ ]( / ) cos ,

similar to the Zernike polynomial Z3
1 r q,( ) .

It is worth mentioning that the centroid of a PSF is associated with the line of sight of

an imaging system, as discussed in Chapter 10. Moreover, the centroid of a geometrical

PSF is identically the same as that of the diffraction PSF.

7.5 ASTIGMATISM

The astigmatism wave aberration is given by

W A Aa ar q r q x, .( ) = =2 2 2cos (7-21)

The corresponding ray aberrations are given by

x y F A F Ai i a a, , , .( ) = ( ) = ( )4 0 4 0r q xcos (7-22)

The point of intersection of a ray with the Gaussian image plane depends only on its x
coordinate in the exit pupil. Thus, as indicated in Figure 7-3, all the rays transmitted by

the exit pupil intersect the Gaussian image plane on a line along the x axis centered on the
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We note that if Bd = 0, the ellipse reduces to a line of full width of 8FAa  along the x

axis. Thus, as discussed above, the image in the Gaussian image plane is a line S along

the x axis centered on the Gaussian image point. If, however, B Ad a= - , corresponding

to D = 8 2F Aa , then the ellipse reduces to a line T along the y axis. The full width of this

line image is the same as that of the line image S. The line image along the x axis is called

the sagittal (or radial) image and lies in the tangential (or meridional) plane zx,

containing the point object (which lies along the x axis in the object plane) and the optical

axis. Similarly, the line image T along the y axis is called the tangential image and lies in

the sagittal plane yz. The distance 8 2F Aa  between the two line images is called

longitudinal astigmatism. The two line images are called the astigmatic focal lines.

If B Ad a= - 2 , corresponding to D = 4 2F Aa , the ellipse reduces to a circle of

maximum diameter of 4FAa ,which is half the full width of the two line images. Since

this circle is the smallest of all the possible images, Gaussian or defocused, it is called the

circle of least (astigmatic) confusion. The spot sigma is minimum and equal to 2FAa  in

this plane.

Since A ha ~ ¢ 2, the width of the line images of a point object increases quadratically

with the height h' of the Gaussian image point. Similarly, longitudinal astigmatism

8 2F Aa  increases as ¢h 2 Thus, if we consider a line object, its sagittal image will also be

a line, which is slightly longer (by an amount 8FAa ) than but coincident with its

Gaussian image. However, its tangential image will be parabolic with a vertex radius of

curvature of ¢h F Aa
2 216  or 1 4 2R aa . Similarly, the sagittal image of a planar object

will be planar, but its tangential image will be paraboloidal. Note that longitudinal

astigmatism corresponding to a Gaussian image at a height h' represents the sag of the

tangential image surface at that height.

Figure 7-4 illustrates the effect of astigmatism and field curvature on the image of a

spoked wheel where the images formed on the sagittal and tangential surfaces are shown.

A magnification of - 1 is assumed in the figure. As discussed earlier, a point object P is

imaged as a sagittal or radial line ¢Ps  on the sagittal surface and as a tangential line ¢Pt  on

the tangential surface. Each point on the object is imaged in this manner, so that the

sagittal image consists of sharp radial lines and diffuse circles while the tangential image

consists of sharp circles and diffuse radial lines. If the object contains lines that are

neither radial nor tangential, they will not be sharply imaged on any surface.

It should be understood that the astigmatism discussed here is for a system that is

rotationally symmetric about its optical axis, and its value reduces to zero for an axial

point object. It is different from the astigmatism of the eye, which is caused by one or

more of its refracting surfaces, usually the cornea, that is curved more in one plane than

another. The refracting surface that is normally spherical acquires a small cylindrical

component, i.e., it becomes toric. Such a surface forms a line image of a point object even

when it lies on its axis. Hence, a person afflicted with astigmatism sees points as lines. If
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Figure 7-4. Astigmatic images of a spoked wheel. Gaussian magnification of the
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object P are shown very much exaggerated. The dashed circles in (b) are the
Gaussian images of the object circles.

the object consists of vertical and horizontal lines as in the wires of a window screen,

such a person can focus (by accommodation) only on the vertical or the horizontal lines at

a time. This is analogous to the spoked wheel example where the rim is in focus in one

observation plane and the spokes are in focus in another.

7.6 FIELD CURVATURE

The wave aberration corresponding to field curvature is given by

W A Ad d( ) .r r x h= = +( )2 2 2 (7-27)

Since the wave aberration is radially symmetric, the distribution of rays in the Gaussian

image plane is also radially symmetric. For rays lying on a circle of radius r  in the exit

pupil, the radius of the circle of corresponding rays in the image plane, following Eq. (7-

6), is given by

r FAi d= 4 r . (7-28)

Its maximum value is 4FAd  and corresponds to the marginal rays. The spot sigma value

is 2 2FAd .

From the discussion in Section 1.4, we note that a defocus aberration represented by

Eq. (7-21) implies that the wavefront is spherical, but it is not centered at the Gaussian

image point. Instead, it is centered at a distance

D = - 8 2F Ad (7-29)
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from the Gaussian image point along the optical axis. (Strictly speaking, it is centered on

the line joining the center of the exit pupil and the Gaussian image point.) Since the

aberration coefficient A ha ~ ¢ 2, the sagittal image of a line object will be parabolic with

a vertex radius of curvature of ¢h F Ad
2 216 , or 1 4 2R ad . Similarly, the image of a

planar object will be paraboloidal. The paraboloidal surface for a system with zero

astigmatism is called the Petzval image surface.

7.7 ASTIGMATISM AND FIELD CURVATURE

Now we consider the combined effect of astigmatism and field curvature. Thus, the

aberration with respect to the Gaussian image point is now given by

W A A A A Aa d a d dr q r q r x h, .( ) = + = +( ) +2 2 2 2 2cos (7-30)

Note that whereas in Eq. (7-23) the defocus coefficient was a variable, here it is fixed for

a given point object. Since both Aa  and Ad  are proportional to ¢h 2, we find, following

the discussion of Sections 7.5 and 7.6, that the sagittal and tangential images of a line

object are formed on parabolic curves with vertex radii of curvature given by

R h F A R as d d= ¢ =2 2 216 1 4 (7-31)

and

R h F A A R a at a d a d= ¢ +( ) = +( )2 2 216 1 4 , (7-32)

respectively. Similarly, the images of a planar object centered on the optical axis will be

the corresponding paraboloids symmetric about the optical axis.

Combining Eqs. (7-31) and (7-32) with Eq. (1-28), for imaging by a spherical

refracting surface, where L is the same as R here, we find that

3 1 2

R R Rs t p

- = . (7-33)

It has the consequence that the Petzval surface is three times as far from the tangential

surface as it is from the sagittal surface, as may be seen by comparing the sags of the

three surfaces. Moreover, the sagittal surface always lies between the tangential and the

Petzval surfaces. When astigmatism is zero, the sagittal and tangential surfaces coincide

with the Petzval surface. Although Eq. (7-33) and its consequences have been obtained

for a single spherical refracting surface, they hold for any rotationally symmetric imaging

system.

7.8 DISTORTION

The distortion wave aberration is given by

W A At tr q r q x, ,( ) = =cos (7-34)
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Figure 7-6. Ray grid pattern in the pupil plane normalized by the pupil radius. (a)
Square grid of uniformly spaced points. (b) Hexa-polar grid of concentric rings.

distributed in a uniformly spaced square array, while in Figure 7-6b they are distributed

in a hexa-polar array.

In the absence of any aberration, the spot diagram in a defocused image plane looks

exactly like the one in the pupil plane, except for its scale. The spot diagrams for

spherical aberration in various image planes considered above are shown in Figure 7-7. It

is evident that, instead of the expected radial symmetry of the PSFs, a four-fold symmetry

is obtained in the case of the square grid of rays in the pupil plane, and hexagonal

symmetry in the case of the hexa-polar grid. This is simply an artifact of the ray grid used

in the pupil plane. As in the case of defocus, the PSF for astigmatism is also uniform.

Hence, the spot diagram for it also looks like the input array across an elliptical spot,

which reduces to a circle or a line depending on the amount of balancing defocus. The

spot diagrams for coma are shown in Figure 7-8. Only the chief ray passes through the

Gaussian image point, which is shown with coordinates (0, 0) in the figure. Note that the

two grids yield different results, as may be seen from near the top of the spot.

7.10   ABERRATION TOLERANCE AND A GOLDEN RULE OF OPTICAL 
   DESIGN

It is common practice in lens design to look at the spot diagrams in the early stages

of a design, in spite of the fact that they do not represent what is observed in reality.

Optical designers consider a system to be close to its diffraction limit if the ray spot

radius is less than or equal to the radius 1 22. l F  of the Airy disc, discussed in Chapter 8.

We note, for example, that this holds for spherical aberration in the Gaussian image plane

if As £ 0 15. l , although a larger value of As  is obtained in the other image planes.

Considering that the long dimension of the coma spot is 6FAc  and the line image for

astigmatism is 8FAa  long, the aberration tolerance for the spot size to be smaller than the

Airy disc is Ac < 0 4. l  and Aa < 0 3. l , respectively. The aberration tolerances based on

the spot size are summarized in Table 7-2. These tolerances are roughly consistent with

the Rayleigh’s l 4  (quarter-wave) rule (see Section 8.3.6) that the peak peak-to-valley
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7.11   SUMMARY

The aberration-free image of a point object based on geometrical optics is a point. All

of the object rays transmitted by the system pass through the Gaussian image point. For

an aberrated system, the rays are distributed in the image plane in the vicinity of the

Gaussian image point as a spot diagram. The quality of the aberrated image is determined

by the size and the nature of the diagram, which, in turn, is described by its standard

deviation and centroid. In the case of spherical aberration and astigmatism, the spot size

can be reduced by introducing defocus, i.e., by observing the image in an appropriate

plane other than the Gaussian image plane. The minimum spot thus obtained is referred to

as the circle of least confusion, and reducing the spot size in this manner is called

aberration balancing. A lens designer looks at the spot diagrams in the early stages of a

design and considers diffraction images as the size of the spot approaches that of the Airy

disc (discussed in Chapter 8).
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CHAPTER 8

Systems With Circular Pupils
8.1 INTRODUCTION

In this chapter, we consider optical systems with circular exit pupils and discuss

imaging by them based on the diffraction of object radiation at the exit pupil. Our starting

point is an equation for the distribution of light in the image of a point object called the

diffraction point-spread function (PSF) of the system. This equation is equally suitable

for calculating the diffraction pattern of a circular aperture. Since, under certain

conditions, the diffraction image of an incoherent object is given by the convolution of its

Gaussian image (which is a scaled replica of the object) and the system PSF,1-3 the PSF

calculations are fundamental to the theory of optical imaging. To understand the effect of

aberrations on images, it is essential that we first understand the aberration-free PSF.

Accordingly, we give briefly the characteristics of the aberration-free image of a point

object.

Our discussion on aberrated images is built slowly. First, we discuss defocused

images and irradiance along the axis of the pupil. Next, approximate relationships

between the ratio of the PSF values at its center with and without aberration, called the

Strehl ratio, and the variance of the aberration across the pupil are developed. The

approximate results for primary aberrations are compared with the corresponding exact

results to determine the range of validity of the simple Strehl ratio formulas. The concept

of aberration balancing is introduced in which an aberration of a certain order in pupil

coordinates is mixed or balanced with one or more aberrations of lower order to minimize

its variance, and thereby maximize the Strehl ratio of the system. Aberration tolerances

based on a Strehl ratio of 0.8 are given for primary and balanced primary aberrations.

Rayleigh’s quarter-wave rule is briefly discussed, and balanced aberrations are identified

with Zernike circle polynomials. The aberrated PSFs for various amounts of primary

aberrations are given, and their symmetry properties in and about the Gaussian image

plane are illustrated.

Since the diffraction image of an incoherent isoplanatic object is given by the

convolution of its Gaussian image and the PSF of the system forming the image, the

spatial frequency spectrum of the diffraction image is given by the product of the

spectrum of the Gaussian image and the optical transfer function (OTF) of the system.1-3

Thus, the OTF of the system, which is equal to the Fourier transform of its PSF, is

equally fundamental to the theory of optical imaging. The OTF of an aberration-free

system with a circular pupil is given, and how it is affected by an aberration is discussed.

The concept of a Hopkins ratio, representing the ratio of the magnitudes of the OTFs at a

certain spatial frequency, with and without aberration is introduced. Aberration tolerances

based on a Hopkins ratio of 0.8 are given for primary aberrations. Finally, contrast

reversal of certain spatial frequencies in an object is illustrated by considering their

imaging by a defocused system.
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8.2 POINT-SPREAD FUNCTION (PSF)

In this section we give a general equation for evaluating the aberrated PSF of a

system with a circular exit pupil. We give closed-form analytical solutions for the

aberration-free PSF and encircled power giving the fraction of total power in the image of

a point object in a circle of certain radius centered at the Gaussian image point.

Defocused PSFs and axial irradiance of the convergent image-forming beam are

considered next. It is shown, for example, that the irradiance distribution even for an

aberration-free system is not symmetric about the Gaussian image plane unless the

Fresnel number of the pupil (defined below) as observed from the Gaussian image point

is very large. The content of this section forms the basis from which to study the effects

of aberrations on the images.

8.2.1 Aberrated PSF

Consider an aberrated optical system with a circular exit pupil of radius a imaging a

point object radiating at a wavelength l . Let R be the distance between the planes of the

exit pupil and the Gaussian image and let F r q,( )  be the phase aberration at a point

r q,( )  in the pupil plane, where r  is in units of a. The phase aberration F  is related to the

wave aberration W r q,( )  considered in earlier chapters according to F = ( )2p l W . The

diffraction PSF or the irradiance distribution of the image in a plane normal to its optical

or the z axis at a distance z from the plane of its exit pupil may be written1

I r z
PS

z
i i

R

z
r d di

p
i, ; exp , exp cos ,q

p l
r q p r q q r r q

p

( ) =
Û
ıÙ

Û
ıÙ

( )[ ] - -( )È
ÎÍ

˘
˚̇2 2 2

0

1

0

2 2

F (8-1)

where r i, q( )  are the polar coordinates of the observation point with respect to the point

where the line joining the center of the exit pupil and the Gaussian image point intersects

the observation plane, r is in units of l F ( F R a= 2  being the focal ratio or the f-number

of the image-forming light cone), P is the total power in the exit pupil and, therefore, in

the image, and S ap = p 2 is the area of the exit pupil of the system. Strictly speaking, the

PSF of a system represents the irradiance distribution of the image of a point object per

total power in the image. Accordingly, whereas the irradiance is in units of W/m2, the

PSF is in units of m–2. The angles q  and q i are zero for pupil and observation points

lying in the tangential plane on the positive side of the x axis. As in earlier chapters, we

assume that the point object lies along the x axis so that the zx plane represents the

tangential plane.

The function exp ,iF r q( )[ ] is called the pupil function of the system. A system

whose aberration function F r q,( )  is (approximately) the same for all points on an

extended object is called isoplanatic. The image of an incoherent object formed by such a

system is obtained by convolving its Gaussian image with the PSF of the system, i.e., by

adding the irradiance distributions of its image elements. Similarly, the complex

amplitude distribution of the image of a coherent object formed by such a system is

obtained by adding the complex amplitude distributions of its image elements.
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The PSF of a system depends on the optical wavelength l  in several ways. Referring

to Eq. (8-1), first, the power P in the exit pupil at a certain wavelength (strictly speaking,

across a narrow spectral band with a certain mean wavelength) may be different from that

at another wavelength. This variation will depend on the spectral radiance distribution of

the object and the spectral transmission of the system. Second, there is an inverse-square-

law dependence on the wavelength. It affects the “brightness” of the PSF: the shorter the

wavelength, the brighter the PSF. Third, the wave aberration may depend on the

wavelength if the system has one or more dispersive elements. Even if the system is

nondispersive, the phase aberration is inversely proportional to it. Hence, the effect of an

aberration on the PSF is different at two different wavelengths. Fourth, the variable r is

normalized by the wavelength. It affects the “size” of the PSF: the shorter the

wavelength, the narrower the PSF. However, a shorter wavelength also means larger

phase aberration and, therefore, more spreading of the PSF due to the aberration. The

white light or polychromatic PSF may be determined by integrating the monochromatic

PSF across the spectral distribution of the image-forming radiation.

8.2.2 Aberration-Free PSF

It can be shown that the aberration-free irradiance distribution, obtained from Eq. (8-

1) by letting F r q,( ) = 0 and z = R, is given by

I r R
PS

R

J r

r
p

; ,( ) =
( )È

Î
Í

˘

˚
˙l

p
p2 2
1

2
2

(8-2)

where J1 ◊( )  is the first-order Bessel function of the first kind. This distribution,

normalized by its central value PS Rp l2 2 , is shown in Figure 8-1a. It is called the Airy

pattern,4  and it is illustrated in 2D in Figure 8-1b. It consists of a bright spot, called the

Airy disc, surrounded by dark and bright rings. The power contained in a circle of radius

rc  (in units of l F ) centered at the Gaussian image point r = 0 is given by

P r J r J rc c c( ) = - ( ) - ( )1 0
2

1
2p p . (8-3)

The encircled-power distribution normalized by the total power P  is also shown in Figure

8-1a. The location of the maxima and minima of the irradiance distribution, the values of

irradiance at these points, and the corresponding encircled powers are given in Table 8-1.

The minima and maxima correspond to the roots of J r1 0p( ) =  and J r2 0p( ) = ,

respectively, where J2 ◊( )  is the second-order Bessel function of the first kind. It should

be evident that the encircled power corresponding to minima is given by 1 0
2- ( )J rmp ,

where rm  represents the value of r for a minimum. The central bright spot of radius 1.22

contains 83.8% of the total power. Note that the principal maximum of the irradiance

distribution lies at r = 0 where Huygens' spherical wavelets originating at the exit pupil

interfere constructively. The aberration-free image of an object is also called its

diffraction-limited image (since the quality of the image is limited only by diffraction of
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Figure 8-1. (a) Irradiance and encircled power distributions for an aberration-free
system with a circular pupil. (b) 2D PSF, called the Airy pattern.
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Table 8-1. Irradiance and encircled power corresponding to the maxima and
minima of the PSF. The irradiance is normalized by the central value
I PS Ri p0 2 2( ) = ll , and the encircled power is normalized by the total power P in
the exit pupil and, therefore, in the image. r and rc  are in units of lF .

Max/Min r, rc I r( ) P rc( )
Max 0 1 0

Min 1.22 0 0.838

Max 1.64 0.0175 0.867

Min 2.23 0 0.910

Max 2.68 0.0042 0.922

Min 3.24 0 0.938

Max 3.70 0.0016 0.944

Min 4.24 0 0.952

Max 4.71 0.0008 0.957

the object radiation at the exit pupil of the system). It should be noted that the radius of

the Airy disc increases linearly with the wavelength and the irradiance at its center

decreases quadratically with it.

8.2.3 Rotationally Symmetric PSF

For a radially symmetric aberration F r( ), carrying out the angular integration, Eq.

(8-1) reduces to

I r z
PS

z
i J r R z d

p
; exp .( ) =

Û
ıÙ

( )[ ] ( )4
2 2

0

1

0

2

l
r p r r rF (8-4)

It is clear from Eq. (8-4) that the irradiance distribution is rotationally symmetric about

the z axis. Hence, it is radially symmetric in any observation plane normal to it.

Moreover, it does not depend on the sign of F r( ) (as may be seen by changing i to –i).

8.2.4 Defocused PSF

If the imaging system is aberration free but the image is observed in a plane z Rπ
then the image suffers from defocus aberration given by (see Section 1.4)

F r r; ,z B zd( ) = ( ) 2 (8-5)

where

B z
a

z Rd ( ) = -Ê
ËÁ

ˆ
¯̃

p
l

2 1 1
(8-6a)
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= -Ê
ËÁ

ˆ
¯̃p N

R

z
1 , (8-6b)

is the peak defocus aberration. In Eq. (8-6b), N a R= 2 l  is the Fresnel number of the

exit pupil as observed from the center of the Gaussian image plane. Thus, the edge of the

exit pupil is farther than its center by approximately Nl 2  from the center of the

Gaussian image plane so that N is the number of Fresnel’s half-wave zones in the exit

pupil.

From Eq. (8-1) we note that the irradiance distribution is asymmetric about the plane

z = R; i.e., the distributions in two planes located at z R= ± D , where D  is a longitudinal

defocus, are not identical, even if the system is otherwise aberration free. There are three

reasons for this asymmetry. First, the inverse-square law dependence on z increases the

irradiance for z < R and decreases it for z > R.  Second, Bd  is asymmetric since the

defocus coefficients for these two planes are different, as may be seen from Eq. (8-6).

Third, the exponent in Eq. (8-1), which determines the scale of the image, depends on z.

For systems with a small Fresnel number N ~< 5, z can be much different from R for

Bd  to achieve a significant value. Accordingly, all of the three factors mentioned above

contribute to the asymmetry of the irradiance distribution about the plane z = R. One

consequence of this is that the irradiance at points on and near the z axis can be higher for

z < R than for z = R. For example, a beam of diameter 25 cm and a wavelength of 10.6

mm focused at a distance of 1.5 km corresponds to N = 1. A Strehl ratio [discussed in the

next section and whose exact value is given by the square of the quantity in parenthesis in

Eq. (8-7)] of 0.8 is obtained at two z values: 1 km and 3 km. The principal maximum of

axial irradiance occurs at a distance of 0.6R = 0.9 km.

If the Fresnel number of a system is very large (N >> 10), Bd  becomes large even

for very small differences in z and R. For example, a photographic system with a = 1 cm,

l  = 0.5 mm, and R = 10 cm corresponds to N = 2000, and a Strehl ratio of 0.8 is obtained

for z = R ± 25 mm. Accordingly, the defocus tolerance for such systems dictates that z be

practically equal to R. Hence, following Eq. (8-6a), we note that two observation planes z

= R ± D correspond to defocus coefficients of   B Fd = m p lD 4 2 . Since these coefficients

are equal in magnitude but opposite in sign, letting F r r( ) = Bd
2  in Eq. (8-4), we find

that the irradiance distribution for an unaberrated system with a large Fresnel number is

symmetric about the Gaussian image plane z = R.

8.2.5 Axial Irradiance

If we let r = 0 in Eq. (8-1), we obtain the irradiance along the z axis (strictly

speaking, along the line joining the center of the exit pupil and the Gaussian image point).

For an aberration-free system, the axial irradiance is given by

I z
PS

z

B

B
p d

d

0
2

22 2

2

;
sin

.( ) =
Ê
ËÁ

ˆ
¯̃l

(8-7)

82 SYSTEMS WITH CIRCULAR PUPILS

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



8.3  Strehl Ratio 83

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



S i d d=
Û
ıÙ

Û
ıÙ

( )[ ]p r q r r q

p

2

0

1

0

2 2

exp ,F (8-8)

= -( )[ ]exp i F F
2

= -( ) + -( )cos sinF F F F
2 2

≥ -( )cos ,F F
2

(8-9)

where the angular brackets indicate an average across the pupil. Expanding the cosine

function in a power series and retaining the first two terms for small aberrations yields the

Maréchal result6

S > -( )~ ,1 22 2
s F (8-10)

where

s F F F2 2= -( )

= -F F2 2 (8-11)

is the variance of the phase aberration across the pupil. Note that

F Fn n d d=
Û
ıÙ

Û
ıÙ

( )p r q r r q

p

1

0

1

0

2

, . (8-12)

For small values of standard deviation sF, three approximate expressions have been

used in the literature:

S1
2 2

1 2~ ,-( )s F (8-13)

S2
21~ ,- s F (8-14)

and

S3
2~ exp .-( )s F (8-15)

The first is the Maréchal formula, the second is the commonly used expression obtained

when the term in s F
4  in the first is neglected,7  and the third is an empirical expression

giving a better fit to the actual numerical results for various aberrations.8 We note that the

Strehl ratio for a small aberration does not depend on its type but only on its variance

across the pupil.
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8.3.2 Primary Aberrations

Table 8-2 gives the form as well as the standard deviation sF of a primary

aberration. Here, the aberration coefficient Ai  represents the peak value of an aberration.

(The balanced aberrations noted in the table are considered in the next section.)

Comparing it with the aberration coefficients a j  considered in earlier chapters, we note,

for example, that A a h ac c= ¢ 3 , where ¢h  is the height of the Gaussian image point from

the optical axis of the system. It also lists the tolerance for an aberration coefficient Ai

for a Strehl ratio of 0.8. The optical tolerances listed in Table 8-2 are for the wave (as

opposed to phase) aberration coefficient, as is customary in optics. A Strehl ratio of 0.8

corresponds to an aberration with a standard deviation of s lW = 14.

8.3.3 Balanced Primary Aberrations

In Chapter 7, where we discussed ray aberrations, we mixed one aberration with

another in order to minimize the size of the ray spot in an image plane. For example, in

the case of spherical aberration, the circle of least confusion was determined to be in a

plane 3/4 of the way from the Gaussian image plane to the marginal image plane. The

radius of the circle of least confusion was found to be 1/4 of the spot radius in the

Gaussian image plane. Similarly, in the case of astigmatism, it is in a plane lying midway

between the planes containing the sagittal (Gaussian) and tangential line images with a

diameter that is half the length of the line images.

Table 8-2. Primary aberrations, their standard deviations, and values of aberration
coefficients, peak aberrations, and peak-to-valley aberrations for a Strehl ratio of
0.8.

S = 0.8

Aberration F((rr, q)) ss F Wp Wp– v Ai
Wp Wp v

Spherical  As r4 2

3 5

As As As 0.25 0.25 0.25

Balanced

spherical
As r r4 2–( ) As

6 5

As

4

As

4 1 0.25 0.25

Coma Acr q3 cos
Ac

2 2 Ac 2Ac 0.21 0.21 0.42

Balanced

coma
Ac r r q3 2 3– / cos( ) Ac

6 2

Ac

3

2

3

Ac

0.63 0.21 0.42

Astigmatism Aar q2 2cos
Aa

4 Aa Aa 0.30 0.30 0.30

Balanced

astigmatism

 Aar q2 1 2(cos )2 - /

= ( ) cos2Aa / 2 2r q

Aa

2 6

Aa

2  Aa 0.37 0.18 0.37
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For small aberrations, since the Strehl ratio is maximum when the aberration

variance is minimum, the best image plane is one that corresponds to minimum variance.

Thus, for example, we balance spherical aberration with defocus and write it as

F r r r( ) = +A Bs d
4 2 . (8-16)

We determine the amount of defocus Bd  such that the variance sF
2 , is minimized; i.e.,

we calculate sF and let

∂ s
∂

F
2

0
Bd

= , (8-17)

to determine Bd . Proceeding in this manner, we find that the optimum value is

B Ad s= - . The standard deviation of the optimally balanced aberration is As 6 5 ,

which is a factor of 4 smaller than the standard deviation for Bd = 0 . Since the standard

deviation has been reduced by a factor of 4 by balancing spherical aberration with

defocus, the optical tolerance has been increased by the same factor. Following Section

1.4, a defocus of B Ad s= -  is introduced by observing the image in a plane that is farther

from the exit pupil than the Gaussian image plane by 8 2F As . Moreover, since Bd = 0

and B Ad s= - 2  correspond to Gaussian and marginal image planes, respectively, we note

that, based on diffraction, the best image is obtained in a plane lying midway between

them. This is different from the plane containing the circle of least confusion that

corresponds to B Ad s= -1 5. .

Coma and astigmatism can be treated similarly. Table 8-2 lists the form of a balanced

primary aberration, its standard deviation, and its tolerance for a Strehl ratio of 0.8. We

note that in the case of coma, the balancing aberration is a wavefront tilt with a

coefficient that is minus two-thirds of the coma coefficient. Thus, maximum Strehl ratio

is obtained at a point that is displaced from the Gaussian image point by 4 3 0FAc ,( ) but

lies in the Gaussian image plane. By balancing coma with an appropriate amount of tilt,

its standard deviation is reduced by a factor of 3. In the case of astigmatism, the best

Strehl ratio is obtained in a plane that is farther than the Gaussian image plane by

4 2F Aa . As discussed in Chapter 7, this is also the plane in which the circle of least

confusion is obtained. By balancing with defocus, the standard deviation of astigmatism

is reduced by a factor of 1.225. The point of observation with respect to which the

aberration variance is minimum and, therefore, the irradiance at that point is maximum, is

called the diffraction focus.

8.3.4 Comparison of Approximate and Exact Results

Figure 8-3 shows how the Strehl ratio of a primary aberration varies with its standard

deviation. Approximate as well as exact results are shown in this figure.8 The exact

results are obtained by the use of Eq. 8-8. The curves for a given aberration and for the

corresponding balanced aberration can be distinguished from each other by their behavior

for large s w  values (near 0.25 l ). For example, coma is shown by the evenly dashed
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i. For small values of s w ,  the Strehl ratio is independent of the type of aberration. It

depends only on its variance.

ii. The expressions for S1 and S2 underestimate the true Strehl ratio S.

iii. The expression for S3  underestimates the true Strehl ratio only for coma and

astigmatism; it overestimates for the other aberrations. Numerical analysis shows that the

error, defined as 100 1 3-( )S S ,  is < 10% for S > 0.3.

iv. S3  gives a better approximation for the true Strehl ratio than S1 and S2. The reason is

that, for small values of s w , it is larger than S1 by approximately s F
4 4 . Of course, S1 is

larger than S2 by s F
4 4 .

v. The Strehl ratio depends strongly on the standard deviation of an aberration but weakly

on its detailed distribution over a wide range of Strehl ratio values.

8.3.5 Strehl Ratio for Nonoptimally Balanced Aberrations

When a certain aberration is balanced with other aberrations to minimize its variance,

the balanced aberration does not necessarily yield a higher or the highest possible Strehl

ratio. For small aberrations, a maximum Strehl ratio should be obtained according to any

of the Eqs. (8-13)–(8-15), when the variance is minimum. For large aberrations, however,

there is no simple relationship between the Strehl ratio and the aberration variance. For

example,9 when As = 3l , the optimum amount of defocus is Bd = - 3l  but the Strehl

ratio is a minimum and equal to 0.12. The Strehl ratio is maximum and equal to 0.26 for

Bd ~ - 4l  or - 2l . For As ~< 2 3. ,l  the axial irradiance is maximum at a point with

respect to which the aberration variance is minimum. Similarly, in the case of coma, the

maximum irradiance in the image plane occurs at the point with respect to which the

aberration variance is minimum only if Ac ~< 0 7. ,l  which in turn corresponds to

S ~> 0 76. . For larger values of Ac ,  the distance of the point of maximum irradiance does

not increase linearly with its value and even fluctuates in some regions.10 Moreover, it is

found that for Ac > 2 3. ,l  the Seidel coma gives a larger Strehl ratio than the balanced

coma; i.e., the irradiance in the image plane at the origin is larger than at the point with

respect to which the aberration variance is minimum. Thus, only for large Strehl ratios,

the irradiance is maximum at the point associated with minimum aberration variance.

When secondary spherical aberration (varying as r6) and secondary coma (varying

as r q5 cos ) are balanced with lower-order aberrations to minimize their variance, it is

found11 that a maximum of Strehl ratio is obtained only if its value comes out to be

greater than about 0.5. Otherwise, a mixture of aberrations yielding a larger-than-

minimum possible variance gives a higher Strehl ratio than the one provided by a

minimum variance mixture.

8.3.6 Rayleigh's l 4  Rule

Rayleigh12 showed that a quarter-wave of primary spherical aberration reduces the

irradiance at the Gaussian image point by 20%; i.e., the Strehl ratio for this aberration is
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0.8. This result has brought forth the Rayleigh’s l 4  rule, namely, that a Strehl ratio of

approximately 0.8 is obtained if the maximum absolute value of the aberration at any

point in the pupil is equal to l 4.  A variant of this definition is that an aberrated

wavefront that lies between two concentric spheres spaced a quarter-wave apart will give

a Strehl ratio of approximately 0.8. Thus, instead of Wp = l 4,  we require Wp v = l 4,

where Wp  is the peak absolute value and Wp v  is the peak-to-valley value of the

aberration. From Table 8-2, we note that a Strehl ratio of 0.8 is obtained for

W Wp p v= =l 4  for spherical aberration only. For other primary aberrations, distinctly

different values of  Wp  and Wp v  give a Strehl ratio of 0.8. In Table 8-2, Wp and Wp v

are also given in terms of the aberration coefficient Ai . Thus, we see that it is

advantageous to use s w  for estimating the Strehl ratio. A Strehl ratio of S ~> 0 8.  is

obtained for s lw ~< 14.

8.3.7 Balanced Aberrations and Zernike Circle Polynomials

The phase aberration function of a system with a circular exit pupil for a certain point
object can be expanded in terms of a complete set of Zernike circle polynomials1,2

Zn
m ( , )r q  that are orthonormal over a unit circle in the form

F( , ) ( , ) ,r q r q= ÂÂ
==

•
c Znm n

m

m

n

n 00
0 1£ £r , 0 2£ £q p , (8-18)

where cnm  are the orthonormal expansion coefficients that depend on the location of the

object, n and m are positive integers including zero, n – m ≥ 0 and even, and

Z n R mn
m

m n
m( , ) ( ) cos .

/
r q d r q= +( ) +( )[ ]2 1 1 0

1 2
(8-19)

Here, dij  is a Kronecker delta, and

R
n s

s
n m

s
n m

s
n
m

s
n s

s

n m

( ) 
!

! !  !

( ) /

r r=
-( ) -( )

+ -Ê
Ë

ˆ
¯

- -Ê
Ë

ˆ
¯

=
Â

1

2 2

2

0

2

(8-20)

is a radial polynomial of degree n in r containing terms in r rn n, , ,2 K  and rm. The

radial circle polynomials Rn
m (r) are even or odd in r, depending on whether n (or m) is

even or odd. Also, Rn
n nr r( ) = , Rn

m 1 1( ) = , and Rn
m

m0 0( ) = d  for even n 2  and - d m0  for

odd n 2 . The polynomials Rn
m r( )  obey the orthogonality relation

0

1 1

2 1
Ú ( ) ( ) =

+( )¢ ¢R R d
nn

m
n
m

nnr r r r d . (8-21)

The orthogonality of the angular functions yields

0

2

01
p

q q q p d dÚ ¢ = +( ) ¢cos cosm m d m mm . (8-22)

Therefore, the polynomials Zn
m ( , )r q  are orthonormal according to
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1

0

1

0

2

p
r q r q r r q d d

p
Ú Ú ( ) ( ) =¢

¢
¢ ¢Z Z d dn

m
n
m

nn mm, , . (8-23)

The orthonormal Zernike expansion coefficients are given by

c Z d dnm n
m= Ú Ú ( ) ( )1

0

1

0

2

p
r q r q r r q

p
F , , , (8-24)

as may be seen by substituting Eq. (8-18) and utilizing the orthonormality of the

polynomials.

The orthonormal Zernike polynomials and the names associated with some of them

when identified with aberrations are listed in Table 8-3 for n £ 8. The polynomials

independent of q  are the spherical aberrations, those varying as cos q  are the coma

aberrations, and those varying as cos 2q  are the astigmatism aberrations. The number of

Zernike (or orthogonal) aberration terms in the expansion of an aberration function

through a certain order n is given by

N
n

n = +Ê
Ë

ˆ
¯2

1
2

for even n , (8-25a)

= +( ) +( )n n1 3 4 for odd n . (8-25b)

Each orthonormal expansion coefficient, with the exception of c00, represents the
standard deviation of the corresponding aberration term. The variance of the aberration
function is accordingly given by

s r q r qF F F2 2 2
= ( ) - ( ), ,

= Â Â -
=

•

=n m

n

nmc c
0 0

2
00
2

= Â Â
=

•

=n m

n

nmc
1 0

2 . (8-26)

Unless the mean value of the aberration F = =c00 0 , s F Fπ rms , where

F Frms = 2 1 2/
 is the rms value of the aberration.

As indicated in Table 8-3, the balanced aberrations can be identified with the Zernike
circle polynomials. For example, Z2

2, Z3
1 , and Z4

0 represent balanced astigmatism, coma,
and spherical aberration. For obvious reasons, a balanced aberration in this form may be
referred to as a Zernike or an orthogonal aberration. The constant term in Z4

0 makes its
mean value to be zero. It does not change the standard deviation of the balanced
aberration or the Strehl ratio corresponding to it. The circle polynomials are unique in the
sense that they are the only polynomials that are orthogonal across a unit circle and
represent balanced aberrations.

In a system without an axis of rotational symmetry, as for example in the case of
fabrication errors, the aberration function will generally consist of terms not only in
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Table 8-3.  Orthonormal Zernike circle polynomials and balanced aberrations.

n m Orthonormal Zernike Polynomial

2 1
1

cos
0

1 2
n

R m
m

n
m+( )

+
È

Î
Í

˘

˚
˙ ( )

d
r qq

Aberration Name*

0 0 1 Piston

1 1 2r qcos Distortion (tilt)

2 0 3 2 12r -( ) Field curvature (defocus)

2 2 6 22r qcos Primary astigmatism

3 1 8 3 23r r q-( ) cos Primary coma

3 3 8 r q3 3cos

4 0 5 6 6 14 2r r- +( ) Primary spherical

4 2 10 4 3 24 2r r q-( ) cos Secondary astigmatism

4 4 10 r q4 4cos

5 1 12 10 12 35 3r r r q- +( ) cos Secondary coma

5 3 12 5 4 35 3r r q-( ) cos

5 3 12 r q5 5cos

6 0 7 20 30 12 16 4 2r r r- + -( ) Secondary spherical

6 2 14 15 20 6 26 4 2r r r q- +( ) cos Tertiary astigmatism

6 4 14 6 5 46 4r r q-( ) cos

6 6 14 r q6 6cos

7 1 4 35 60 30 47 5 3r r r r q- + -( ) cos Tertiary coma

7 3 4 21 30 10 37 5 3r r r q- +( ) cos

7 5 4 7 6 57 5r r q-( ) cos

7 7 4 77r qcos

8 0 3 70 140 90 20 18 6 4 2r r r r- + - +( ) Tertiary spherical

*The words “orthonormal Zernike” are to be associated with these names, e.g.,
orthonormal Zernike primary astigmatism.
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cosmq but also in sinmq. The phase aberration function for such cases can be written in

terms of orthonormal Zernike circle polynomials Z j r q,( ) in the form

F r q r q r q p, , , , ,( ) = ( )Â £ £ £ £
=

a Zj j
j 1

0 1 0 2 (8-27)

Z n R m meven j n
mr q r q, cos , ,( ) = +( ) ( ) π2 1 0 (8-28a)

Z n R m modd j n
mr q r q, sin , ,( ) = +( ) ( ) π2 1 0 (8-28b)

Z n R mj nr q r, , .( ) = + ( ) =1 00 (8-28c)

The index j is a polynomial-ordering number that is a function of both the radial
degree n and the azimuthal frequency m. The polynomials are ordered such that an even j
corresponds to a symmetric polynomial varying as cos mq , and an odd j corresponds to
an antisymmetric polynomial varying as sin mq . A polynomial with a lower value of n is
ordered first, and for a given value of n, a polynomial with a lower value of m is ordered
first.

The polynomials are orthonormal according to

0

1

0

2

0

1

0

2

Ú ( ) ( )Ú Ú =Ú¢

p

¢

p
Z Z d d d dj j jjr q r q r r q r r q d, , . (8-29)

The expansion coefficients are given by

a Z d dj j= Ú ( ) ( )Ú ¢

p
p r q r q r r q1

0

1

0

2

F , , . (8-30)

The variance of the aberration function is given by

s F
2 2

1
1
2= Â -

=
a aj

j

= Â
=

a j
j

2

2
(8-31)

The number of polynomials through a certain order n is given by

N n nn = +( ) +( )1 2 2 . (8-32)

The first eleven such polynomials are listed in Table 8-4.

8.4 2D PSFs

Now we show how the Airy pattern shown in Figure 8b, representing the 2D

aberration-free PSF, is affected by a primary aberration. Our emphasis is to illustrate the

structure of a PSF, i.e., on the distribution of its bright and dark regions, and not on the
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Table 8-4.  Orthonormal Zernike circle polynomials Zj r,, q( ).

j n m Zj r,, q( ) Aberration*

1 0 0 1 Piston

2 1 1 2 r qcos x tilt

3 1 1 2 r qsin y tilt

4 2 0 3 2 12r -( ) Defocus

5 2 2 6 22r qsin 45∞ Primary astigmatism

6 2 2 6 22r qcos 0∞  Primary astigmatism

7 3 1 8 3 23r r q-( )sin Primary y coma

8 3 1 8 3 23r r q-( ) cos Primary x coma

9 3 3 8 33r qsin

10 3 3 8 33r qcos

11 4 0 5 6 6 14 2r r- +( ) Primary spherical

*The words “orthonormal Zernike circle” are to be associated with these names, e.g.,

orthonormal Zernike circle 0∞  primary astigmatism.

quantitative irradiance distribution. For example, we have accentuated some regions of

very low irradiance to make their appearance visible. Some of the symmetry properties of

the PSFs are clearly evident in these figures.13  The PSFs for defocus (Figure 8-4) and

spherical aberration (Figures 8-5 and 8-6) are radially symmetric like the Airy pattern.

The central value of a PSF for an integral number of waves of defocus is zero, as may be

seen from Eq. (8-7), yielding a dark center. The size of the central bright spot for

spherical aberration does not change with increasing amount of spherical aberration.14,15

The PSFs for astigmatism, shown in Figure 8-7, are symmetric about two orthogonal

axes, one of them lying in the tangential plane. As the aberration increases, the diffraction

PSFs begin to resemble the ray spots; elliptical spot in general, and line spots in

particular. The PSFs in the minimum aberration-variance (circle of least confusion) plane

are four-fold symmetric, as shown in Figure 8-8. The PSFs for coma are symmetric about

the tangential plane, as shown in Figure 8-9. Thus, they have a line symmetry in any

observation plane, the line lying in the tangential plane. It should be evident that a

random mixture of various aberrations will yield a complex PSF.
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Bd = 0 Bd = 0.5

Bd = 1 Bd = 1.5

Bd = 2 Bd = 3

Figure 8-4. Defocused PSFs. Bd  represents the peak value of defocus wave
aberration in units of l . The central value of the PSF is zero when Bd  is equal to an
integral number of wavelengths.

94 SYSTEMS WITH CIRCULAR PUPILS

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



8.4  2D PSFs 95

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



As = 0.25 As = 0.5

As = 1 As = 2

As = 3

Figure 8-6. PSFs for balanced spherical aberration As r r4 2-( )[ ]. Thus, a PSF is
observed in a defocused image plane corresponding to B Ad s= - . The aberration
coefficient As  is in units of l .
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A Ba d= =1, 0 A Ba d= = -1, 0.5

A Ba d= = -1, 1 A Ba d= =1, 0.5

A Ba d= =3, 0 A Ba d= =3, 1 5.

Figure 8-7. PSFs aberrated by astigmatism observed in various image planes.
Bd = 0, - Aa 2, and - Aa  represent the Gaussian or sagittal, minimum-variance or
circle-of-least (astigmatic)-confusion, and tangential image planes. The aberration
coefficient Aa  is in units of l .
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Aa = 0.25 Aa = 0.5

Aa = 1 Aa = 2

Aa = 3

Figure 8-8. PSFs for balanced astigmatism Aa r qq r2 2cos 2-( )2 . Thus, B Ad a= - 2,
and the PSFs are 4-fold symmetric. The aberration coefficient Aa  is in units of l .
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Ac = 0.25 Ac = 0.5

Ac = 1 Ac = 2

Ac = 3

Figure 8-9. PSFs aberrated by increasing amount of coma Acrr qq3cos( ) . They are
symmetric about the horizontal ( xi ) axis. The peak and the centroid of the PSFs do
not lie at the Gaussian image point. The aberration coefficient Ac  is in units of l .
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8.5 OPTICAL TRANSFER FUNCTION (OTF)

Since the diffraction image of an incoherent object is given by the convolution of its

Gaussian image and the system PSF, a Fourier transform of this relationship shows that

the spatial frequency spectrum of the diffraction image is given by the product of the

spectrum of the Gaussian image and the optical transfer function (OTF) of the system,

where the OTF is equal to the Fourier transform of the PSF.1-3 Because of the relationship

of Eq. (8-1) between the PSF and the pupil function of the system, the OTF is also given

by the autocorrelation of the pupil function. Thus, the OTF of a system can be obtained

from its pupil function without having to calculate its PSF. In this section, we introduce

the concept of OTF and discuss its physical significance. We also discuss how it is

affected by aberrations and how it relates to the Strehl ratio. Also given is an expression

for the aberration-free OTF of a system with a circular pupil. Contrast reversal is also

illustrated, in which bright regions of certain bands of spatial frequencies in the object are

imaged as dark, and dark regions are imaged as bright.

8.5.1 OTF and Its Physical Significance

The OTF of an incoherent imaging system is given by the Fourier transform of its

PSF according to

t
r r r r r
v PSF r i v r d ri i i i i( ) = ( ) p( )Ú ◊exp 2 (8-33)

where   
r
v vi i= ( ), f  is a 2D spatial frequency vector in the image plane,   

r
r Fri i= ( )l q,  is

the position vector of a point in this plane, and the PSF is given by Eq. (8-1) with P = 1.

In what follows, we assume that the Fresnel number of the system is large so that the

defocus tolerance dictates that z ~  R. However, if this is not the case, then we simply

replace R  by z in the following discussion. As mentioned above, because of Eq. (8-1)

relating the PSF and the pupil function, the OTF may also be written as the

autocorrelation of the pupil function, i.e.,

t l
r r r r r
v S P r P r R v d ri p p p i p( ) = ( ) * -( )Ú1 , (8-34)

where

  
P r i r r ap p p

r r r( ) = ( )[ ] £ £exp ,F 0 (8-35)

= 0 , otherwise

is the pupil function. Here, 
r
r ap = ( )r q,  is the position vector of a point in the plane of the

exit pupil. The integration in Eq. (8-34) is carried out across the region of overlap of two

pupils centered at   
r
rp = 0  and the other at  

r r
r Rvp i= l . The asterisk in Eq. (8-34) indicates

a complex conjugate.

The OTF depends on the wavelength in two ways. First, the dependence of the phase

aberration on it is evident. Second, it enters in the displacement of the pupil. It has the

implication that for a longer wavelength the displacement approaches the diameter of the
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a sector of radius a and cone angle b  and the area of the triangle OAB. Thus the OTF is

given by

t p b bv( ) = ( ) -[ ]1 2 2sin

= ( ) - -( )È
ÎÍ

˘
˚̇ £ £2 1 0 11 2 1 2

p cos , ,v v v v (8-37)

= 0 , ,otherwise

where

v v Fi= = ( )cos b l1 (8-38)

is a normalized radial spatial frequency. The spatial frequency v = 1 or v Fi = 1 l  is

called the cutoff frequency of an incoherent imaging system, since the OTF for v ≥ 1 is

zero.

Figure 8-12 shows how the OTF given by Eq. (8-37) varies with v . We note that the

OTF is radially symmetric; i.e.; its value depends on the magnitude of a spatial frequency

but not on its direction. A system with a focal ratio F = 10 imaging an object radiating at

a wavelength l m= 0 5. m corresponds to a cutoff frequency of 200 cycles/mm. The cutoff

frequency decreases linearly with wavelength. The sinusoidal components of an object

with spatial frequencies v M Fo ≥ l  are not resolved by the system at all; i.e., their

images are of uniform irradiance. From Eq. (8-37), we find that

¢( ) =
∂ ( )

∂
È
ÎÍ

˘
˚̇

= -
=

t
t

p0 4
0

v

v v

(8-39)

and

0

1
1 8Ú ( )t v v dv = . (8-40)

O

lRni

B

a

b

AO O¢

Figure 8-11. Aberration-free OTF as the fractional area of overlap of two circles
whose centers are separated by a distance lRvi .
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Figure 8-12. Aberration-free OTF, where the spatial frequency v  is normalized by
the cutoff frequency 1 llF .

Since the slope of the MTF or the real part of the OTF of a system evaluated at the origin

is independent of its aberration, it is equal to - 4 p  in the case of a circular pupil

regardless of its aberration.

The Strehl ratio of an optical imaging system, discussed in Section 8.3, represents the

ratio of its PSF (or the corresponding irradiance) values at the center r = 0 with and

without aberration. From Eq. (8-33), we note that its PSF can be written as the inverse

Fourier transform of its OTF, i.e.,

  PSF r v i v r d vi i i i i
r r r r r( ) = ( ) - p( )Ú ◊t exp .2 (8-41)

Accordingly, the Strehl ratio may be written

  S v d vi i= ( ) ( )Ú4 p t
r r

, (8-42)

where we have used Eq. (8-40) for the integral involving the aberration-free OTF. Since S

is a real quantity, the integral of the imaginary part of   t
r
vi( ) on the right-hand side of Eq.

(8-42) must be zero. Hence, we may write Eq. (8-42) as

S v d vi i= ( ) ( )Ú4 p tRe ,
r r

(8-43)

where Re indicates a real part. Thus, the Strehl ratio of a system gives a measure of the

mean value of the real part of its OTF, averaged over all spatial frequencies.

8.5.3 Hopkins Ratio and Aberration Tolerance

In Section 8.3, we calculated aberration tolerances for a system with a Strehl ratio of

0.8. Such a system forms the image of an object with a quality that is only slightly

inferior to  the corresponding quality for an aberration-free system, regardless of the

spatial frequencies (or the size of detail) of interest in the object. A Strehl ratio of 0.8 is
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obtained when the standard deviation of the aberration of the system across its exit pupil

is approximately l 14 , regardless of the type of aberration. However, systems that have

much larger aberrations form good-quality images of objects in which the size of the

detail is much coarser than the limiting resolution 1 l F  of the system.

We now consider aberration tolerances based on a certain amount of reduction in the

MTF of the system corresponding to a certain spatial frequency. Following Hopkins,16 we

define a modulation ratio H vi
r( ) as the ratio of the MTFs of a system at a spatial

frequency   
r
vi  with and without aberration, i.e.,

  H v v vi i u i
r r r( ) = ( ) ( ) ,t t (8-44)

where   t
r
vi( ) is the aberrated OTF, and   tu iv

r( )  is the aberration-free or unaberrated OTF

given by Eq. (8-37) with v  replaced by vi  and 0 1£ £v Fi l . For obvious reasons, we

call   H vi
r( ) the Hopkins modulation or contrast ratio. Its value is £ 1, since the aberrated

MTF is always less than its corresponding aberration-free value.

Based on numerical analysis for primary aberrations, Hopkins16 has shown that

H v( ) >~ 0 8.  for v ~< 0 1. , provided their coefficients obey the following conditions:

B vd ~< ± l 20 , (8-45)

A v B Aa d a~< ± = -l 10 2in the plane , (8-46)

A
v

vc ~< ± +Ê
ËÁ

ˆ
¯̃

( )l
0 071

0 16
.

. with Y  = + =m 0 89 0 48 0. . ,v when f (8-47a)

 
.

. ,~< ± +Ê
Ë

ˆ
¯ ( ) = = pl f0 123

0 19 0 2
v

vwith whenY (8-47b)

and

A
v

B v v As d s~< ± +Ê
ËÁ

ˆ
¯̃ = - - +( )l

0 106
0 33 1 33 2 2 2 8 2.

. . . . .in the plane (8-48)

As in Eq. (1-7), Bd , Aa , Ac , and As represent the peak coefficients of defocus,

astigmatism, coma, and spherical aberration. We note that the amount of balancing

defocus in the case of spherical aberration is different from its corresponding value given

in Table 8-2 for optimizing the Strehl ratio. Moreover, its value depends on the

magnitude of the spatial frequency at which the MTF is optimized. For spatial

frequencies v > 0 1. , it is more appropriate to use the Strehl ratio as the criterion of image

quality and aberration balancing.

8.5.4 Contrast Reversal

Figure 8-13 shows how the OTF of a defocused system varies with the spatial

frequency. We note that it is real and radially symmetric; i.e., its value depends on the

104 SYSTEMS WITH CIRCULAR PUPILS

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



8.5  Optical Transfer Function (OTF) 105

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



(a)

(b)

(c)

Bd = 0

Bd = 2l

1.0

– 0.2

0.0

0.2

0.4

0.6

0.8

n

t

0.0 0.40.2 0.6 0.8 1.0

(d)

Figure 8-14. Aberration-free and defocused images of an object illustrating contrast
reversal. (a) Sinusoidal object along the vertical axis with a spatial frequency that
increases linearly in the horizontal direction. The Gaussian image is identical, except
for any magnification. (b) Aberration-free image. (c) Defocused image with
B =d 2 l .. (d) Aberration-free and defocused OTFs.
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8.6 SUMMARY

 While the amount of light in the image of a point object is determined by the

entrance pupil of the system, its distribution is determined by the diffraction of that light

at the exit pupil. The aberration-free image of a point object formed by a system with a

circular exit pupil is called the Airy pattern, as described in Section 8.2.2. It consists of a

bright central disc surrounded by alternating dark and bright diffraction rings. The central

point of the disc is the brightest, coinciding with the center of curvature of the spherical

wavefront, because that is where the Huygens’ secondary wavelets interfere

constructively.

When the wavefront is not spherical and, therefore, aberrations are present, the

Huygens’ secondary wavelets are not in phase and interfere (partially) destructively to

yield a smaller irradiance at the center. The ratio of the irradiances at the center with and

without aberration is called the Strehl ratio. As should be evident, the Strehl ratio is

always less than or equal to one. For small aberrations, its value can be estimated from

the aberration variance according to Eq. (8-15). Since the smaller the variance, the higher

the Strehl ratio, we combine a given aberration with one or more lower-order aberrations

to minimize its variance and thereby maximize the Strehl ratio. Combining aberrations in

this manner is called aberration balancing for improving image quality. Thus, for

example, spherical aberration or astigmatism is combined with defocus to improve the

Strehl ratio or increase the aberration tolerance.

The higher-order aberrations, e.g., secondary aberrations, can be balanced in a

similar manner to reduce their variance. The balanced aberrations thus obtained can be

identified with the corresponding Zernike circle polynomials. These polynomials are

unique in the sense that they are not only orthogonal across a unit circle, but also

represent balanced aberrations for a circular pupil. These polynomials are given in their

orthonormal form in this chapter so that when an aberration function is expanded in terms

of them, the expansion coefficients represent the standard deviation of the corresponding

aberration term.

The image of an  incoherent object can be obtained by adding the irradiance images

of its object elements. This imaging can also be considered in the spatial frequency

domain. Thus the object is broken into its sinusoidal spatial frequency components, the

image of each component is determined, and they are all summed or combined to

determine the overall image of the object. The image of each sinusoidal object component

is also sinusoidal, except that its contrast is lower and its phase may be shifted. In

aberration-free imaging, the phase shifts are zero. Every system has a cutoff spatial

frequency (due to the finite size of its exit pupil) above which the contrast is zero.

Another way of saying this is that the spatial frequencies above a certain value are not

transmitted by the system, or are missing from the image, thus limiting the resolution of

the system. The aberrations reduce the contrast at every spatial frequency and introduce

phase shifts depending on the value of the frequency. Thus, while the image generally

resembles the object, it is not identical. Depending on the type and the magnitude of the
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aberration, the phase shift for certain spatial frequency bands can be p , resulting in

contrast reversal of those frequency bands. The dark regions of an object are imaged as

bright and bright regions are imaged as dark, as illustrated in Figure 8-14. The ratio of

contrasts at a certain spatial frequency with and without aberration is called the Hopkins

ratio at that spatial frequency. The balanced aberrations obtained for maximizing the

Hopkins ratio are different from those for maximizing the Strehl ratio.
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CHAPTER 9

Systems with Annular and Gaussian Pupils
9.1 INTRODUCTION

In Chapter 8 we have considered optical systems with circular exit pupils. Now we

consider systems with annular pupils, for example, a Cassegrain telescope in which its

secondary mirror obscures the central portion of its primary mirror. As in the case of a

system with a circular pupil, we discuss the aberration-free PSF, axial irradiance, and the

Strehl ratio of a system with an annular pupil. We show that the radius of the central

bright spot of the PSF decreases, its principal or central maximum decreases in its value,

and the secondary maxima increase in their values as the obscuration increases.

However, the tolerance for a given Strehl ratio increases or decreases depending on

the type of the aberration. The Zernike annular polynomials representing balanced

aberrations are also discussed, but the aberrated PSFs and OTFs are not. Optical systems

with circular pupils and Gaussian illumination across them are also considered along

similar lines. For these systems, it is shown that the tolerance for an aberration increases

compared to the corresponding tolerance for a system with a uniformly illuminated

circular pupil. Finally, systems with weakly truncated Gaussian pupils, i.e., those having

a very wide pupil compared to the width or the radius of the Gaussian illumination, are

considered. In this case, a Gaussian beam propagates as a Gaussian, and the tolerance for

a primary aberration is obtained in terms of its peak value at the Gaussian radius rather

than at the edge of the pupil.

9.2 ANNULAR PUPILS

In this section, we discuss the imaging characteristics of systems with annular pupils.

The aberration-free PSF, encircled power, axial irradiance, and Strehl ratio are discussed

for increasing value of the obscuration of the pupil. The results obtained are compared

with the corresponding results for systems with circular pupils.

9.2.1 Aberration-Free PSF

Consider a system with an annular exit pupil having inner and outer radii of   �a and

a, where � is called its obscuration ratio, as illustrated in Figure 9-1. The PSF of the

system, i.e., the irradiance distribution of the image of a point object formed by it, is

given by Eq. (8-1) except that now the lower limit in the radial integration is   � instead of

zero. The aberration-free PSF thus obtained is given by

I r
J r

r

J r

r
; ,�

�
�

�

�
( ) =

-( )
p( )

p
-

p( )
p

È
ÎÍ

˘
˚̇

1

1

2 2
2 2

1 2 1
2

(9-1)

where J1 ◊( )  is the first-order Bessel function of the first kind. It is normalized to unity at

the center r = 0 by the central irradiance PS Rp l2 2 , where P is the total power
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Figure 9-1.  Imaging by a system with an annular exit pupil of inner and outer radii
� a  and a, respectively.

transmitted by the annular pupil, S ap = -( )p 2 21 �  is its clear area, l  is the wavelength of

object radiation, and R is the distance between the pupil plane and the Gaussian image

plane.

Note that r is in units of l F , as in the case of a circular pupil, where F R a= 2  is

the focal ratio or the f-number of the image-forming light cone. For a given total power

P, the value of the central maximum decreases as 1–  �
2 as   � increases due to the decrease

in the clear pupil area. However, if the irradiance of the pupil is held constant, then the

total power P also decreases as 1– �2 and, therefore, the central irradiance decreases as

  
1 2 2

-( )�  as   � increases.

The minima of the distribution have a value of zero at r values given by

J r J r r1 1 0p( ) = p( ) π� � , . (9-2a)

Its maxima occur at r values given by

  J r J r r2
2

2 0p( ) = p( ) π� � , ,  (9-2b)

where J2 ◊( )  is a second-order Bessel function of the first kind. By integrating the

irradiance distribution across a circle of radius rc , we obtain the encircled power P rc( ).

Both the irradiance and encircled-power distributions are shown in Figure 9-2 for several

values of   �. We note that the radius of the central bright disc (first dark ring

corresponding to the first minimum) decreases as � increases. It can be shown that as

  � Æ 1, the irradiance distribution approaches J r0
2 p( ) . Its first zero occurs at 0.76

compared to a value of 1.22 [first zero of J r1 p( )  when   � = 0]. The values of the

secondary maxima of a distribution relative to the value of its principal maximum at r = 0

become higher as � increases. For example, when � = 0.5, the first secondary maximum
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Table 9-1. Positions r of PSF maxima and minima for an annular pupil in units of
lF , and the corresponding irradiance and the encircled power.

                                                                                                                                                                                                             

  � 0.0 0.1 0.2 0.3 0.4

Max/
Min r, rc I(r) P(rc) r, rc I(r) P(rc) r, rc I(r) P(rc) r, rc I(r) P(rc) r, rc I(r) P(rc)
                                                                                                                                                                                                             

Max 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Min 1.22 0 0.838 1.21 0 0.818 1.17 0 0.764 1.11 0 06.82 1.06 0 0.584

Max 1.63 0.0175 0.867 1.63 0.0206 0.853 1.63 0.0304 0.818 1.61 0.0475 0.766 1.58 0.0707 0.702
Min 2.23 0. 0.910 2.27 0 0.906 2.36 0 0.900 2.42 0 0.899 2.39 0 0.885

Max 2.68 0.0042 0.922 2.68 0.0031 0.914 2.69 0.0015 0.904 2.73 0.0011 0.902 2.77 0.0033 0.893
Min 3.24 0 0.938 3.18 0 0.925 3.09 0 0.908 3.10 0 0.904 3.30 0 0.903

Max 3.70 0.0016 0.944 3.70 0.0024 0.936 3.68 0.0037 0.926 3.64 0.0028 0.916 3.66 0.0007 0.905
Min 4.24 0 0.952 4.32 0 0.949 4.37 0 0.947 4.22 0 0.929 4.04 0 0.907

Max 4.71 0.0008 0.957 4.71 0.0004 0.951 4.74 0.0004 0.949 4.75 0.0016 0.938 4.66 0.0028 0.922
Min 5.24 0 0.961 5.15 0 0.953 5.16 0 0.951 5.42 0 0.949 5.31 0 0.939

Max 5.72 0.0004 0.964 5.71 0.0008 0.959 5.69 0.0006 0.955 5.73 0.0001 0.950 5.79 0.0008 0.944
Min 6.24 0 0.968 6.35 0 0.965 6.23 0 0.959 6.07 0 0.950 6.43 0 0.950

Max 6.72 0.0003 0.970 6.73 0.0001 0.966 6.74 0.0004 0.962 6.67 0.0006 0.955 6.72 0.0001 0.950
Min 7.25 0 0.972 7.14 0 0.967 7.35 0 0.966 7.27 0 0.961 7.03 0 0.950

Max 7.73 0.0002 0.974 7.72 0.0003 0.970 7.72 0.0001 0.967 7.77 0.0003 0.963 7.65 0.0004 0.954
Min 8.25 0 0.975 8.34 0 0.974 8.11 0 0.967 8.38 0 0.966 8.22 0 0.958

Max 8.73 0.0001 0.977 8.74 0.0001 0.975 8.72 0.0003 0.971 8.72 0.0000 0.966 8.77 0.0004 0.962
Min 9.25 0 0.978 9.16 0 0.975 9.38 0 0.974 9.06 0 0.967 9.46 0 0.966

Max 9.73 0.0001 0.979 9.72 0.0001 0.977 9.75 0.0000 0.975 9.70 0.0002 0.970 9.78 0.0000 0.966
Min 10.25 0 0.980 10.30 0 0.979 10.16 0 0.975 10.32 0 0.973 10.13 0 0.966
                                                                                                                                                                                                             

                                                                                                                                                                                                             

� 0.5 0.6 0.7 0.8 0.9

Max/
Min r, rc I(r) P(rc) r, rc I(r) P(rc) r, rc I(r) P(rc) r, rc I(r) P(rc) r, rc I(r) P(rc)
                                                                                                                                                                                                             

Max 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Min 1.000 0 0.479 0.95 0 0.372 0.90 0 0.269 0.85 0 0.172 0.81 0 0.082

Max 1.54 0.0963 0.618 1.48 0.1203 0.512 1.41 0.1395 0.389 1.35 0.1527 0.256 1.28 0.1600 0.124
Min 2.29 0 0.829 2.17 0 0.717 2.06 0 0.560 1.95 0 0.376 1.85 0 0.184

Max 2.76 0.0124 0.859 2.69 0.0306 0.784 2.58 0.0533 0.649 2.47 0.0734 0.456 2.35 0.0861 0.229
Min 3.49 0 0.901 3.39 0 0.873 3.22 0 0.761 3.05 0 0.554 2.90 0 0.284

Max 3.78 0.0004 0.902 3.84 0.0045 0.886 3.74 0.0192 0.808 3.57 0.0401 0.619 3.40 0.0566 0.328
Min 4.12 0 0.903 4.52 0 0.902 4.38 0 0.865 4.16 0 0.695 3.95 0 0.379

Max 4.50 0.0009 4.80 0.0001 0.903 4.86 0.0050 0.880 4.68 0.0218 0.741 4.46 0.0404 0.421
Min 5.05 0 0.910 5.11 0 0.903 5.52 0 0.899 5.27 0 0.795 5.00 0 0.468

Max 5.66 0.0022 0.923 5.58 0.0004 0.905 5.91 0.0005 0.901 5.78 0.0110 0.824 5.51 0.0299 0.507
Min 6.30 0 0.938 6.00 0 0.906 6.47 0 0.903 6.37 0 0.857 6.05 0 0.549

Max 6.81 0.0008 0.943 6.61 0.0016 0.916 6.72 0.000 0.903 6.87 0.0048 0.872 6.56 0.0224 0.584
Min 7.50 0 0.950 7.19 0 0.925 6.97 0 0.903 7.47 0 0.889 7.10 0 0.622

Max 7.79 0.0000 0.950 87.75 0.0013 0.943 7.53 0.0004 0.905 7.95 0.0016 0.894 6.61 0.0169 0.652
Min 8.12 0 0.950 8.40 0 0.944 7.98 0 0.906 8.57 0 0.901 8.16 0 0.685

Max 8.62 0.0001 0.951 8.87 0.0004 0.947 8.58 0.0010 0.913 8.98 0.0003 0.902 8.67 0.0127 0.711
Min 9.05 0 0.952 9.53 0 0.950 9.13 0 0.919 9.58 0 0.903 9.21 0 0.739

Max 9.68 0.0004 0.957 9.80 0.0000 0.950 9.69 0.0011 0.927 9.83 0.0000 0.903 9.72 0.0094 0.761
Min 10.31 0 0.962 10.11 0 0.950 10.28 0 0.935 10.10 0 0.903 10.26 0 0.784
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� = 0 � = 0.5

� = 0.8 � Æ 1

Figure 9-3b. 2D PSFs for systems with circular 
  
� =( )0  and annular 

  
� π( )0  pupils.

9.2.2 Aberration-Free OTF

As in the case of a system with a circular pupil, the aberration-free OTF of a system

with an annular pupil for a spatial frequency vi  is also given by the fractional overlap

area of two annuli whose centers are separated by a distance l Rvi . Thus, it can be shown

that the OTF is given by

  
t t t tv v v v v; ; , ,�

�
� � �( ) =

-
( ) + ( ) - ( )[ ] £ £

1

1
0 12

2
12 (9-3)

where t v( )  given by Eq. (8-37) represents the OTF of the system if there were no

obscuration, v v Fi= ( )1 l  is a normalized radial spatial frequency, as in Eq. (8-38), and

t12
22 1 2v v; ,� � �( ) = £ £ -( ) (9-4a)

  
= p( ) + -( ) -( ) £ £ +( )2 2 1 2 1 22

2 1q q q1 � � �v vsin , (9-4b)

= 0, otherwise . (9-4c)
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In Eq. (9-4b), q1 and q2  are given by

cos q1

2 24 1

4
= + -v

v

�
(9-4d)

and

  
cos ,q2

2 24 1

4
= - +v

v

�

�
(9-4e)

respectively. It should be evident that the cutoff frequency v = 1 or v Fi = 1 l ,  which

depends on the outer diameter of the annular pupil, is the same as that for a circular pupil.

Moreover, we note from Eq. (9-3) that at least for spatial frequencies,

  

1

2
1

+
< < ( ) > ( )�

�v v v, t t; (9-5)

by a factor of 
  
1 2 1

-( )� . The overlap area in this frequency range is independent of �, but

the fractional area is larger owing to the smaller area of the obscured exit pupil. For a thin

annular pupil, as   � Æ 1, a sharp peak near the cutoff frequency is obtained. The peak

frequency represents the spatial frequency of fringes obtained in a 2D analog of a

Young’s double-slit aperture.

How   t v; �( )  varies with v is shown in Figure 9-4 for various values of   � , including

zero. We note that an annular pupil gives a higher OTF at high frequencies but a lower

OTF at low frequencies, compared to the OTF for a corresponding circular 
  
� =( )0  pupil.

This is the frequency domain analog of smaller radius of the central bright ring and

higher secondary maxima of the PSF for an annular pupil compared to those for a circular

pupil.

As pointed out in Section 8.5.2, the slope of t v( )  at the origin is equal to - p4 .

From Eq. (9-3) we find that the slope of the OTF for an annular pupil at the origin is

given by

  ¢( ) = - -( )t p0 4 1;� � . (9-6)

This slope does not change when aberrations are introduced into the system. We note that

0

1
21 8Ú ( ) = -( )t v vdv;� � . (9-7)

9.2.3 Axial Irradiance

The axial irradiance of the image-forming beam for an aberration-free system with

an annular pupil may be obtained in the same manner as for a system with a circular

pupil. Thus, we let r = 0, F r r; z B zd( ) = ( ) 2  [see Eq. (8-4)], and replace the lower limit of

radial integration from 0 to  � in Eq. (8-1), thereby obtaining the result
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Figure 9-4. OTF of an aberration-free system with an annular pupil of obscuration
ratio �.
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(9-8)

Equation (9-8) differs from the corresponding Eq. (8-7) for systems with circular pupils

in that the quantity Bd  in the latter has been replaced by 
  
Bd 1 2-( )� . It represents the

peak defocus phase aberration at the outer edge of the annular pupil relative to its value at

the inner edge. Accordingly, the defocus tolerance or depth of focus for a given Strehl

ratio for a system with an annular pupil is larger by a factor of 
  
1 2 1

-( )�  compared to its

corresponding value if � were zero. The axial irradiance is minimum and equal to zero at

z values given by

    
R z n N n= + -( ) = ± ±1 2 1 1 22� , , , ,K (9-9)

where N a R= 2 l  is the Fresnel number of the pupil if   � were zero. The maxima of axial

irradiance, obtained by equating the derivative of Eq. (9-8) with respect to z equal to zero,

are given by the solutions of

  
tan , .B R z B z Rd d1 2 1 22 2-( )[ ] = ( ) -( ) π� � (9-10)

Figure 9-5 shows how the axial irradiance of an annular beam with  � = 0.5 varies for N =

1, 10, and 100. Comparing it with Figure 8-2, we note that the effect of the obscuration is

to reduce the irradiance at the principal maximum but to increase it at the secondary

maxima. Also, the maxima and minima occur at smaller z values for an annular pupil. As

in the case of circular beams, the axial irradiance of annular beams also becomes

symmetric about the focal point z = R as N increases.
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Figure 9-5. Axial irradiance of an annular beam with   � = 0.5  focused at a distance
R. The minima of irradiance occur at z R = 3 11, 3/19, 3/27, when N = 1. The
irradiance is in units of the focal-point irradiance of a corresponding circular beam
with the same total power. Accordingly, the focal-point irradiance in this figure is
1 0.752- =� . The axial irradiance becomes symmetric about the focal point as N
increases. The dashed curves are for a Gaussian beam with g = 1, as discussed in
Section 9.3.3.

9.2.4 Strehl Ratio

The Strehl ratio is given by

  

S i d d=
-( )

Û
ıÙ

Û
ıÙ

[ ]1

1 2

1

0

2

p
r q r r q

p

�
�

�

exp ( , ; ) .F (9-11)

For small aberrations, the Strehl ratio of an aberrated image is still given by Eqs. (8-13)–

(8-15), except that the variance sF
2  of the aberration  F( , ; )r q �  is across the annular

region of the pupil. This in turn implies that the mean and the mean square values of the

aberration are given by

  

< > =
p -( )

Û
ıÙ

Û
ıÙ

( )F Fn n d d
1

1 2

1

0

2

�
�

�

p

r q r r q, ; , (9-12)

with n = 1 and 2, respectively.

The form of a primary aberration and its standard deviation are listed in Table 9-2.

The balanced aberrations listed in the table represent balancing of an aberration with

another to minimize its variance across the annular pupil. It should be evident that the

diffraction focus for spherical aberration or coma lies at a larger distance from the

Gaussian image point than that for a circular pupil. However, it is independent of  � for

astigmatism.

Figure 9-6 shows how the standard deviation of an aberration varies with the

obscuration ratio of the pupil. In Figures 9-6a and 9-6b, the amounts of defocus and tilt
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Table 9-2. Primary aberrations and their standard deviations for a system with a
uniformly illuminated annular pupil.

Aberration F r,, q( ) sFF

Spherical Asr4

 
4 6 4 3 52 4 6 8 1 2

- - - +( )� � � � As

Balanced

spherical  
As r r4 2 21- +( )[ ]�

 

1

6 5
1 2 2

-( )� As

Coma Acr q3 cos
 
1 2 22 4 6 1 2

+ + +( )� � � Ac

Balanced coma
 

Ac r r q3
2 4

2

2

3

1

1
- + +

+
Ê
ËÁ

ˆ
¯̃

� �

�
cos

1 1 4

6 2 1

2 2 4 1 2

2 1 2

-( ) + +( )
+( )

� � �

�
Ac

Astigmatism Aar q2 2cos
 
1 42 1 2

+( )� Aa

Balanced

astigmatism
Aar q2 2 1 2cos -( ) 1

2 6
1 2 4 1 2

+ +( )� � Aa

Field curvature

(defocus)
Adr2

 
1 2 32-( )� Ad

Distortion (tilt) Atr qcos 1 22 1 2
+( )� At

required to minimize the variance of spherical aberration and coma, respectively, are also

shown. We observe from these figures that the standard deviation of spherical and

balanced spherical aberrations and defocus decreases as   � increases. Correspondingly, the

tolerance in terms of their aberration coefficients As and Ad , for a given Strehl ratio,

increases. The standard deviation of coma, astigmatism, balanced astigmatism, and tilt

increases as   � increases. The standard deviation of balanced coma first slightly increases,

achieves its maximum value at � = 0.29, and then decreases rapidly as � increases. The

factor by which the standard deviation of an aberration is reduced by balancing it with

another aberration decreases in the case of spherical aberration and coma, but increases in

the case of astigmatism, as � increases.

Figures 9-7a and 9-7b show how the Strehl ratio of a primary aberration varies with

its standard deviation for   � = 0.5 and 0.75. Approximate as well as exact results are

shown in these figures.2 The curves for a given aberration and for the corresponding

balanced aberration can be distinguished from each other by their behavior for large sW

values (near 0.25 l ). For example, coma is shown by the evenly dashed curves; the higher

dashed curve is for coma and the lower is for balanced coma.
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Figure 9-7a. Strehl ratio for annular pupils with � = 0.5  as a function of the
standard deviation sw     of an aberration in units of l. The Strehl ratio for a given
value of the standard deviation for classical coma is practically the same as that for
balanced coma. For large values of sw , the Strehl ratio for classical astigmatism is
larger than that for balanced astigmatism. Spherical...., Coma----, Astigmatism–.–.

As in the case of circular pupils, the expressions for S1 and S2  underestimate the true

Strehl ratio. The expression for S3  overestimates the true Strehl ratio for   � ≥ 0 5. . It gives

the Strehl ratio with an error of less than 10% for S ≥ 0 4. . For smaller obscurations, the

error is less than 10% for S ≥ 0 3. . The percent error is defined as 100 1 3-( )S S .

Using S1 to estimate the Strehl ratio, Figure 9-8 shows how the aberration coefficient

Ai  of a primary aberration for 10% error varies with the obscuration ratio.3 It is evident

that this coefficient increases with obscuration in the case of spherical, balanced

spherical, and balanced coma, but decreases in the case of astigmatism, balanced
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Figure 9-7b. Strehl ratio for annular pupils with   � = 0.75  as a function of the
standard deviation sw     in units of ll . For large values of sw , the Strehl ratio for
balanced coma is higher than that for coma. The opposite is true for astigmatism.
Note that the curves for coma and astigmatism are practically identical.
Spherical...., Coma----, Astigmatism–.–.

astigmatism, and coma. When the aberration coefficient Ai  of an aberration is equal to a

quarter wave, the variation of the corresponding Strehl ratio with � is shown in Figure 9-

9. It is evident that a Strehl ratio of 0.8 is obtained in very few cases. Comparing this

figure with Figures 9-7a and 9-7b, we again conclude, as in the case of circular pupils,

that it is advantageous to use the standard deviation of an aberration instead of the

aberration coefficient to estimate the Strehl ratio. For example, a Strehl ratio of 0.8 is

obtained for any aberration with a standard deviation of s lW = 14. On the other hand,

this value of Strehl ratio is obtained for different values of the aberration coefficient for

different aberrations.
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126 SYSTEMS WITH ANNULAR AND GAUSSIAN PUPILS

deviation of the corresponding polynomial term. The variance of the aberration function

is given by

  
s r q r qF F F2 2 2

= ( ) - ( ), ; , ;� �

= Â Â -
=

•

=n m

n

nmc c
0 0

2
00
2

= Â Â
=

•

=n m

n

nmc
1 0

2 . (9-19)

The Zernike annular radial polynomials for n £ 6 are listed in Table 9-3. The number

of Zernike (or orthogonal) aberration terms in the expansion of an aberration function

through a certain order n is the same as in the case of circle polynomials. The balanced

aberrations given in Table 9-2 can be identified with the annular polynomials. Thus the

polynomials Z2
2, Z3

1 , and Z4
0 represent balanced astigmatism, coma, and spherical

aberration. From the form of the annular polynomial   R2
2 2r q; cos�( ) , it is evident that the

balancing defocus in the case of astigmatism is independent of the value of �. The

annular polynomials are unique in that they are the only polynomials that are orthogonal

across an annular pupil and represent balanced aberrations for such a pupil, just as the

circle polynomials discussed in Section 8.3.7 are unique for the circular pupils. Whereas

the aberration function for a rotationally symmetric system consists of polynomials

varying as cos mq , an aberration function representing fabrication errors will generally

consist of polynomials varying as sin mq  as well. The single-index annular polynomials

  
Z j r q, ; �( ) can be constructed in the same manner as the corresponding single index circle

polynomials Z j r q,( ) discussed in Section 8.3.7.

9.3 GAUSSIAN PUPILS

So far we have considered optical systems that have uniform amplitude across their

exit pupils. Now we consider systems with exit pupils having nonuniform amplitude

across them in the form of a Gaussian.5,6 Such pupils are often referred to as Gaussian

pupils. The Gaussian amplitude may, for example, be obtained by placing a filter with

Gaussian transmission at the pupil. A system with a nonuniform amplitude across its

pupil is called an apodized system. The motivation for apodizing a system is to reduce the

values of the secondary maxima of its PSF relative to the value of the principal

maximum. The discussion given here applies equally well to the propagation of Gaussian

laser beams. For a Gaussian pupil transmitting the same total power as a circular pupil

with uniform transmission, the central value of the PSF is smaller and the tolerance for an

aberration is higher.

9.3.1 Aberration-Free PSF

The Gaussian amplitude may be written

A Ar g r( ) = -( )0
2exp , (9-20)
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Table 9-3. Zernike annular radial polynomials.
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where A0 is a constant and g  is a parameter that defines truncation of the Gaussian by

the pupil. If we let w  be the radial distance at which the amplitude drops to 1/e of its

value at the center, then g w= ( )a
2
 where a is the radius of the exit pupil. We refer to w

as the Gaussian radius. In the limit g Æ 0, we obtain a uniformly illuminated pupil. The

total power transmitted by the pupil is obtained by integrating A2 r( )  across the pupil.

The PSF for a Gaussian pupil or the irradiance distribution of a focused Gaussian

beam may be obtained from Eq. (8-1) provided the Gaussian amplitude is inserted under

the integral in this equation. The irradiance and encircled power distributions thus

obtained for an aberration-free system are given by6

I r I J r d; .g r r r r( ) = ( ) p( )
È

Î
Í
Í

˘

˚
˙
˙Ú4 0

0

1 2

(9-21)

and

P r I r rdrc

rc

; ; ,g g( ) = p( ) ( )Ú2

0

2 (9-22)

respectively, where

I r g g r g( ) = -( ) - -( )[ ]2 2 1 22exp exp (9-23)

is the irradiance in units of power in the pupil per unit area.

Figure 9-10a shows the irradiance and encircled-power distributions for various

values of g , including g = 0. For clarity, the irradiance distributions are also plotted on a

logarithmic scale in Figure 9-10b to highlight the differences between the secondary

maxima of uniform and Gaussian beams. It is evident that the Gaussian illumination

broadens the central disc but reduces the power in the secondary rings. As g  increases,

the value at the center [obtained from Eq. (9-21) by letting r = 0] and the values of

secondary maxima decrease. For large values of g , the diffracted beam is also Gaussian,

as discussed in Section 9.3.6.

The positions of maxima and minima and the corresponding irradiance and

encircled-power values are given in Table 9-4 for g = 1. Comparing them with those in

Table 8-1 for a uniform pupil, it is evident that the corresponding maxima and minima for

a Gaussian beam are located at larger values of r than those for a uniform beam.

Moreover, whereas the principal maximum for a Gaussian beam is only slightly lower

(0.924 compared with 1), the secondary maxima are lower by a factor > 3 compared with

the corresponding maxima for a uniform beam. Note that I Iu g>  for r < 0 42. . For larger

values of r I Ig u, ,>  except in the secondary rings, where again I Iu g> .  The encircled

power P Pu g<>  for rc >< 0 63. . Of course, as rc Æ • ,  P Pu gÆ Æ 1.
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            (b)
Figure 9-10. (a) PSF and encircled power for a Gaussian pupil with γ = 0 , 1, 2 and
3, where the irradiance is in units of PS Rp λ2 2 , encircled power is in units of P,
and r and rc  are in units of λF. (b) Irradiance distribution normalized to unity at
the center shown on a log scale to highlight the differences between the secondary
maxima of uniform and Gaussian beams.
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Table 9-4. Maxima and minima of image-plane irradiance distribution and
corresponding encircled powers for a Gaussian pupil with g = 1 compared with
those for a uniform gg =( )0  pupil, which are given in parentheses.

Max/Min r, rc I(r) P(rc)

Max

Min

Max

Min

Max

Min

Max

Min

Max

0

(0)

1.43

(1.22)

1.79

(1.64)

2.33

(2.23)

2.76

(2.68)

3.30

(3.24)

3.76

(3.70)

4.29

(4.24)

4.75

(4.71)

0.924

(1)

0

(0)

0.0044

(0.0175)

0

(0)

0.0012

(0.0042)

0

(0)

0.0005

(0.0016)

0

(0)

0.0002

(0.0008)

0

(0)

0.955

(0.838)

0.962

(0.867)

0.973

(0.910)

0.976

(0.922)

0.981

(0.938)

0.983

(0.944)

0.985

(0.952)

0.986

(0.957)

9.3.2 Aberration-Free OTF

The OTF for an aberration-free Gaussian pupil is given by

t g
g g

p g
gv

v
dq p q dp v

v q v

;
exp

exp
exp , ,( ) =

-( )
- -( )[ ]

Û
ıÙ

Û
ıÙ

- +( )[ ] £ £
8 2

1 2
2 0 1

2

0

1 2

0

1 2

2 2 (9-24)

where the coordinates of a pupil point are normalized by the pupil radius a and the

integration is over a quadrant of the overlap region of two pupils whose centers are

separated by a distance v  along the p axis. 

For large values of g  (e.g., g ≥ 4 ), the contribution to the integral in Eq. (9-24) is

negligible unless v = 0 , in which case it represents the Gaussian-weighted area of a

quadrant of the pupil, and the equation reduces to

t g gv v v; exp , .( ) = -( ) £ £2 0 12 (9-25)

Figure 9-11 shows how the OTF varies with v  for several values of g . We note that

130 SYSTEMS WITH ANNULAR AND GAUSSIAN PUPILS

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



It goes through a series of maxima and minima as a function of z because of the cos Bd

term.

Figure 8-2 shows how the axial irradiance of a focused Gaussian beam with g  = 1

differs from that of a focused uniform beam when the Fresnel number N = 1, 10, and 100.

We note that the principal maximum is higher for the uniform beam compared with that

for the Gaussian beam. However, the secondary maxima are higher for the Gaussian

beam. Moreover, whereas the axial minima for the uniform beam have a value of zero,

the minima for the Gaussian beam have non-zero values. We note that the curves become

symmetric about the focal point z = R as N increases. It should be noted that even though

the principal maximum of axial irradiance does not lie at the focus, unless N is very large,

the maximum central irradiance on a target at a given distance from the pupil is obtained

when the beam is focused on it. (Similarly, for a weakly truncated Gaussian pupil

discussed later, minimum Gaussian radius is obtained on a target when the beam is

focused on it, even though a smaller radius occurs at a distance z < R when N is small.)

9.3.4 Strehl Ratio

The Strehl ratio (representing the ratio of the central irradiances with and without

aberration) is given by8

S A i d d A d d= ( ) ( )[ ] ( )
È

Î
Í
Í

˘

˚
˙
˙

p p

ÚÚ ÚÚr r q r r q r r r qexp ,F
0

2

0

1 2

0

2

0

1 2

=
p - -( )[ ]

Ï
Ì
Ô

ÓÔ

¸
˝
Ô
Ǫ̂

-( ) ( )[ ]
p

ÚÚg
g

g r r q r r q
1

2

2

0

2

0

1
2

exp
exp exp , .

 
i d dF (9-28)

Its approximate value can be obtained from Eqs. (8-13)–(8-15), where the variance of the

aberration is now across the amplitude-weighted pupil. Thus, for a circular pupil, the

mean and the mean square values of the aberration are given by

< > = ( ) ( )[ ] ( )
p p

ÚÚ ÚÚF Fn n
A d d A d dr r q r r q r r r q,

0

2

0

1

0

2

0

1

(9-29)

with n = 1 and 2, respectively. Following the same procedure as for a uniformly

illuminated circular pupil, we can obtain the balanced primary aberrations and their

standard deviations. Table 9-5 gives the aberrations and their standard deviations for

g = 1, i.e., when a = w . Comparing these results with those given in Table 9-2 for   � = 0,

it is evident that the standard deviation of an aberration for a Gaussian pupil is somewhat

smaller than the corresponding value for a uniform pupil. Accordingly, for a given small

amount of aberration Ai , the Strehl ratio for a Gaussian pupil is somewhat higher than

that for a uniform pupil. Thus the depth of focus increases as g  increases, or the beam
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Table 9-5. Primary aberrations and their standard deviations for optical systems
with Gaussian circular pupils with gg 11= .

Aberration F r qq,( ) s F

Spherical Asr4 As

3 67.

Balanced spherical As r r4 20 933-( ).
As

13 71.

Coma Acr q3 cos
Ac

3 33.

Balanced coma Ac r r q3 0 608-( ). cos
Ac

8 80.

Astigmatism Aar q2 2cos
Aa

4 40.

Balanced astigmatism Aar q2 2 1 2cos -( ) Aa

5 61.

Defocus Bdr2 Bd

3 55.

Tilt Btr qcos
Bt

2 19.

becomes narrower. Similarly, for a given Strehl ratio, the aberration tolerance for a

Gaussian pupil is somewhat higher than that for a uniform pupil. Moreover, the balancing

defocus in the case of spherical aberration and the balancing tilt in the case of coma are

somewhat smaller for a Gaussian pupil, compared to their corresponding values for a

uniform pupil; i.e., the diffraction focus for these aberrations in the case of a Gaussian

pupil is slightly different from the corresponding focus for a uniform pupil. We also note

that, although aberration balancing in the case of a uniform pupil reduces the standard

deviation of spherical aberration and coma by factors of 4 and 3, respectively, the

reduction in the case of astigmatism is only a factor of 1.22. For a Gaussian pupil, the

trend is similar but the reduction factors are smaller for spherical aberration and coma,

and larger for astigmatism. They are 3.74, 2.64, and 1.27, corresponding to spherical

aberration, coma, and astigmatism, respectively. (In Reference 5, the factor for

astigmatism is incorrectly stated as 1.16 in the text and 1.66 in Table 5.)

9.3.5 Balanced Aberrations and Zernike-Gauss Circle Polynomials

The Zernike-Gauss polynomials Zn
m ( , ; )r q g  orthonormal over a circular Gaussian

pupil and representing balanced aberrations for such pupils can be obtained from the

polynomials Zn
m ( , )r q  for uniform illumination by the Gram-Schmidt orthogonalization

process. The phase aberration function of a system with a circular exit pupil can be

expanded in terms of these polynomials in the form5,6

F( , ; ) ( , ; ) ,r q g r q g= ÂÂ
==

•
c Znm n

m

m

n

n 00
0 1£ £r , 0 2£ £q p , (9-30)
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where cnm are the orthonormal expansion coefficients, n and m are positive integers

including zero, n m- ≥ 0 and even, and

Z n R mn
m

m n
m( , ; ) ( ; ) cos .

/
r q g d r g q= +( ) +( )[ ]2 1 1 0

1 2
(9-31)

The polynomials are orthonormal according to

0

1

0

2

0

1

2Ú Ú ( ) ( )Ú =¢
¢

¢ ¢

p
r q g r q g r r r q p r r r d dZ Z A d d A dn

m
n
m

nn mm( , ; ) ( , ; ) . (9-32)

The radial polynomials obey the orthogonality relation

R R A d A d
nn

m
n
m

nnr g r g r r r r r r d; ; .( ) ( ) ( ) ( ) =
+¢ ¢ÚÚ 1

1
0

1

0

1

(9-33)

The radial polynomial Rn
m r g;( )  is a polynomial of degree n in r containing terms in rn ,

rn 2 , ..., and rm , whose coefficients depend on the Gaussian amplitude through g; i.e., it

has the form

R a b dn
m

n
m n

n
m n

n
m mr g r r r; ,( ) = + + +2 K (9-34)

where the coefficients an
m , etc., depend on g.

The radial polynomials corresponding to balanced primary aberrations are listed in

Table 9-6. As in the case of annular polynomials, the angular part cos mq  of a Zernike-

Gauss polynomial Zn
m ( , ; )r q g  is identically the same as that of a corresponding circle

polynomial Zn
m ( , )r q . From the form of the Zernike-Gauss polynomial R2

2 2r g q; cos( ) , it

is evident that the balancing defocus in the case of astigmatism is independent of the

value of g . The Zernike-Gauss polynomials are unique in the sense that they are the only

polynomials that are orthogonal across a Gaussian amplitude-weighted pupil and

represent balanced aberrations for such a pupil.

The number of Zernike (or orthogonal) aberration terms in the expansion of an

aberration function through a certain order n is the same as in the case of circle or annular

polynomials. The Zernike-Gauss expansion coefficients are given by

c Z A d d A dnm n
m= Ú Ú ( ) ( ) ( )Ú

0

1

0

2

0

1

2
p

r q g r q g r r r q p r r rF , ; ( , ; ) , (9-35)

as may be seen by substituting Eq. (9-30) and utilizing the orthonormality Eq. (9-32) of

the polynomials. Each expansion coefficient, with the exception of c00, represents the

standard deviation of the corresponding polynomial term. The variance of the aberration

function is given by

s r q g r q gF F F2 2 2

1 0

2= ( ) - ( ) = Â Â
=

•

=
, ; , ; ,

n m

n

nmc (9-36)

where the coefficients an
m , etc., depend on g .
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Table 9-6. Zernike-Gauss radial polynomials Rn
m ( ; )r g  representing balanced

primary aberrations for uniform ( g = 0), Gaussian ( g = 1), and weakly truncated
Gaussian beams.

Aberration Radial
Polynomial

Gaussian* Gaussian
g 1

Uniform
g 0

Weakly Truncated
Gaussian

Piston R0
0 1 1 1 1

Distortion (tilt) R1
1 a1

1r 1 09367. r r g r/ 2

Field curvature

(defocus)

R2
0 a b2

0 2
2
0r + 2 04989 0 856902. – .r 2 12r – ( – ) /gr2 1 3

Astigmatism R2
2 a2

2 2r 1 14541 2. r r2
( / )g r6 2

Coma R3
1 a b3

1 3
3
1r r+ 3 11213 1 891523. – .r r 3 23r r– g

g
r r/ –2

2
3Ê

ËÁ
ˆ
¯̃

Spherical aberration R4
0 a b c4

0 4
4
0 2

4
0r r+ + 6 12902 5 71948 0 833684 2. – . .r r + 6 6 14 2r r– + ( – ) /g r gr2 4 24 2 2 5+

* ( ) , [ ( – )] , – , ( ) , ( – / ), – ( / ) ,– / – / – /a p a p p b p a a p a p p p b p p a1
1

2
1 2

2
0

4 2
2 1 2

2
0

2 2
0

2
2

4
1 2

3
1

6 4
2

2 3
1

4 2 3
12 3 3

1

2
= = = = = =

a p K p K K p K K p K b K a c K a4
0

8 1 6 1
2

2 4 1 2 2 2
2

1 2

4
0

1 4
0

4
0

2 4
05 2 2 2= + + +{ } = =[ – ( ) – ] , – , ,

– /

p s p ss
s

s= < > = +r g g( exp ) ( ) is an even integer1 21
2– / , ,–

–

p K p p p p p K p p p p p0 1 6 2 4 4 2
2

2 2 6 4
2

4 2
21= = =, – / – , – / – .( ) ( ) ( ) ( )

9.3.6 Weakly Truncated Pupils

For a weakly truncated Gaussian pupil, i.e., for large values of g  , the upper limit on

the radial variable in Eq. (9-20) and any associated equations may be changed from 1 to

•  with negligible error. Numerical calculations show that for g ≥ 9 (or a ≥ 3w ), the

difference between the exact PSF and the approximate result thus obtained may be

neglected.5 Moreover, in the limit of an untruncated beam, the ring structure of the

diffraction pattern disappears and an aberration-free Gaussian beam propagates as a

Gaussian. The beam radius and the irradiance distribution in a plane at a distance z from a

plane where its beam radius is w z  are given by

w l w wz z z R2 2 2 21= p( ) + -( ) (9-37)

and

I r z P rz z; exp ,( ) = p( ) -( )2 22 2 2w w (9-38)

respectively. In Eq. (9-38), r is the radial distance of a point in the observation plane from

the axis of the beam without any normalization. Since the PSF is Gaussian, its Fourier

transform representing the OTF is also Gaussian, as indicated earlier in Eq. (9-25). For a

weakly truncated beam, since the power in the pupil is concentrated in a small region near

its center, the effect of the aberration in its outer region is negligible. Accordingly, the

aberration tolerance in terms of the peak value of a primary aberration at the edge ( r  = 1)

of the pupil is not very meaningful. It is more appropriate, for example, to consider the

tolerance in terms of the peak value at the Gaussian radius. If we define
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¢ =r g r , (9-39)

then, ¢ =r 1 corresponds to the Gaussian radius. Correspondingly, we define the

aberration coefficients

¢ = ¢ = ¢ = ¢ = ¢ =A A A A A A B B B Bs s c c a a d d t tg g g g g2 3 2, , , , , (9-40)

which represent the peak values of aberrations at the Gaussian radius.

Table 9-7 lists the aberrations in terms of the radial variable ¢r  and the aberration

coefficients ¢Ai . The standard deviations of these aberrations across the Gaussian pupil

are also given in this table. We note that the balancing of an aberration reduces its

standard deviation by a factor of 5 , 3 , and 2 , in the case of spherical aberration,

coma, and astigmatism, respectively. The amount of a balancing aberration decreases as

g  increases in the case of spherical aberration and coma but does not change in the case

of astigmatism. For example, in the case of spherical aberration, the amount of balancing

defocus for a weakly truncated Gaussian pupil is 4 g  times the corresponding amount for

a uniform pupil. Similarly, in the case of coma, the balancing tilt for a weakly truncated

Gaussian pupil is 3 g  times the corresponding amount for a uniform pupil. Aberration

tolerances in terms of the aberration coefficients ¢Ai  for a Strehl ratio of 0.8 are given in

Table 9-7. The tolerances in terms of the coefficients Ai  may be obtained by use of Eq.

(9-14).

Table 9-7. Primary aberrations and their standard deviations for optical systems

with weakly gg ≥ 3( )  truncated Gaussian circular pupils.

Aberration F r¢¢ qq,( ) sFF ¢ =A Si for 0.8

Spherical ¢ ¢As r 4 2 5 ¢As l 63

Balanced spherical ¢ ¢ - ¢( )As r r4 24 2 ¢As l 28

Coma ¢ ¢Ac r q3 cos 3 ¢Ac l 24

Balanced coma ¢ ¢ - ¢( )Ac r r q3 2 cos ¢Ac l 14

Astigmatism ¢ ¢Aa r q2 2cos ¢Aa 2 l 10

Balanced astigmatism ¢ ¢ -( )Aa r q2 2 1 2cos ¢Aa 2 l 7

Defocus ¢ ¢Bd r 2 3 ¢Bd l 24

Tilt ¢ ¢Bt r qcos 3 ¢Bt l 20
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9.4 SUMMARY

Imaging by systems with an annular pupil is quite common, e.g., the Hubble

telescope.  Compared to a circular pupil, a corresponding annular pupil reduces the

amount of light passing thorough it, yields a smaller central bright disc with a smaller

central irradiance but brighter diffraction rings. Correspondingly, the OTF of a system

with an annular pupil is lower at small spatial frequencies but higher at the high

frequencies. While the obscuration does not change the cutoff frequency, its effect on the

aberration tolerances for a certain Srehl ratio depends on the type of the aberration. As

may be seen from Figure 9-6, the depth of focus, for example, increases with obscuration,

but tolerance for astigmatism decreases. The balanced aberrations for annular pupils can

be identified with the corresponding Zernike annular polynomials. They are unique for

the annular pupils, just as the circle polynomials are unique for the circular pupils.

Pupils with Gaussian illumination across them are referred as Gaussian pupils. The

Gaussian illumination may be due to a Gaussian-transmittance filter placed at the pupil,

as in an apodized system, or the beam incident on the pupil may itself be Gaussian, as in

the case of a laser transmitter. Whereas pupil or beam obscuration reduces the size of the

central bright spot of the diffraction image or the pattern, the Gaussian illumination of the

pupil increases the size. For a given total power, the central value of the aberration-free

diffraction image for a Gaussian pupil is lower than that for a corresponding uniform

pupil.

As the Gaussian illumination becomes narrower, the diffraction pattern approaches a

Gaussian distribution. The image distribution can be approximated by a Gaussian when

the pupil radius is twice the Gaussian radius (at which the amplitude drops to 1/e of its

value at the center). The Strehl ratio for a small aberration depends on the aberration

variance calculated across the Gaussian amplitude-weighted pupil. The aberration

tolerance for a Gaussian pupil is higher than that for a uniformly illuminated pupil,

because the illumination decreases but the aberrations generally increase with the

distance from the center. The Gaussian approximation of the aberrated image distribution

is valid when the pupil radius is three times the Gaussian radius.

The balanced aberrations for a Gaussian pupil can be identified with the

corresponding Zernike-Gauss polynomials. These polynomials are unique for the

Gaussian pupils, just as the Zernike circle or annular polynomials are unique for the

circular or annular pupils. We note that the form of balanced astigmatism for annular and

Gaussian pupils is the same as that for the circular pupils.
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CHAPTER 10
Line of Sight of an Aberrated System
10.1   INTRODUCTION

In this chapter we consider the line of sight (LOS) of an aberrated optical system.

The LOS is assumed here to coincide with the centroid of its diffraction point-spread

function (PSF). For an aberration-free system, it coincides with the center of the PSF. For

an aberrated system, it depends on the various orders of its coma aberrations. Thus, a

coma aberration not only reduces the central value of the PSF like any other aberration,

but it also shifts its centroid. We consider here PSFs aberrated by primary coma and give

numerical results on the location of their peaks and centroids.

10.2   THEORY

The LOS of an aberration-free optical system coincides with the center of its

diffraction PSF. For an aberrated system, let us define its LOS as the centroid of its

aberrated PSF. Thus, if I x y,( )  represents the irradiance distribution of the aberrated

image of a point object, its centroid x y,  representing the LOS error of the system is

given by

x y P x y I x y dx dy, , , ,= ( ) ( )ÚÚ1 (10-1)

where P is the total power in the image. It can be shown that the centroid thus obtained is

identical to that obtained from the geometrical PSF.1 Let the aberration function in terms

of the Zernike circle polynomials (see Section 8.3.7) for a system with a circular exit

pupil be given by

W n R c m s mm
m

n

n
n
m

nm nmr q d r q q, ,( ) = +( ) +( )[ ]ÂÂ ( ) +( )
==

•
2 1 1 0

00

1 2

cos sin (10-2)

where cnm  and snm  are the Zernike aberration coefficients representing the standard

deviations of the corresponding aberration terms across the pupil (with the exception of

the piston term n = 0 = m, which has a standard deviation of zero). It can be shown that

the centroid of its aberrated PSF for a uniformly illuminated pupil is given by

x y F n c s
n

n n, , ,  = Â +( )( )¢
=

•
2 2 1

1
1 1 (10-3)

where F is the focal ratio or the f-number of the image-forming light cone and a prime

indicates a summation over odd integral values of n. We note that only those aberrations

contribute to the LOS errors that vary with q as cosq and sinq. Aberrations varying as

cosq contribute to x  and those varying as sinq contribute to y . For a given value of

cn1  or sn1, an aberration of a higher order gives a larger LOS error because of

the 2 1n +( )  factor. Thus, two Zernike aberrations with m = 1 but different values of n

having the same standard deviation give different LOS errors, even though they give
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(approximately) the same Strehl ratio. (See Section 8.3.1 for a relationship between the

Strehl ratio and the standard deviation of an aberration.)

If we consider an aberration in the form

W Wk
kr q r q, cos ,( ) = (10-4)

where k is an odd integer, we find that

x y FWk, , . = ( )2 0 (10-5)

Thus, the LOS error depends on the value of the peak aberration Wk  but not on k. We

note that for k = 3, the aberration is primary coma, and for k = 3 it is secondary coma, but

they both give the same LOS error if W W3 5= , even though the corresponding PSFs are

quite different. The reason for the same LOS error is that for a uniform circular pupil, the

centroid depends only on the aberration along the perimeter of the pupil, which depends

on Wk but not on k.1

10.3   NUMERICAL RESULTS

Figure 10-1 shows a 2D PSF for 5l  of primary coma, and the central profiles of the

PSFs for coma varying from 0 to 2 l , normalized by the aberration-free central

irradiance. Note that l  is the optical wavelength. The locations of the peak x p  and

centroid <x> of the aberrated PSFs are given in Table 10-1. The irradiances I p  and Ic  at

these points and I(0, 0) at the PSF center are also given in this table. For example, when

W3 0 5= . l , the Strehl ratio of the PSF is approximately equal to 0.32, but its peak value

of 0.87 lies at the point (0.66, 0) compared to a value of unity at the center (0, 0) of the

corresponding aberration-free PSF. The centroid of the PSF lies at (1, 0). Thus, the

centroid of the PSF shifts by an amount approximately equal to the radius 1.22 (in units

of l F ) of the Airy disc.

The point with respect to which the variance of coma aberration is minimized is

indicated by xm  (which from Section 8.3.3 is equal to 4 33FW ), and the irradiance at

this point is given by Im . We note that xm and x p  are approximately equal to each other

only for small values of W3 0 7<( ). l , showing that coma balanced with wavefront tilt to

give minimum aberration variance across the pupil (i.e., Zernike coma) yields a

maximum of irradiance only for small aberrations.

Figure 10-2 and Table 10-2 give similar information for secondary coma. Comparing

the figures and tables, we note that, although the PSFs for the same value of primary

coma W3 and secondary coma W5 are different, their centroids are the same.

10.4   COMMENTS

The results given here are applicable to both imaging systems, e.g., those used for

optical surveillance, as well as to laser transmitters used for active illumination of a

target. In both cases, the LOS of the optical system is extremely important. An LOS error
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Table 10-1. Typical values of xn , xp , and < >x  and corresponding irradiances Im ,
Ip , and Ic  for circular pupils aberrated by primary coma.

W3 xm xp < >x Im Ip Ic I(0)

0

0.5

1.0

1.5

2.0

0

0.67

1.33

2.00

2.67

0

0.66

1.30

1.80

1.57

0

1.00

2.00

3.00

4.00

1

0.8712

0.5708

0.2715

0.0864

1

0.8712

0.5717

0.2844

0.1978

1

0.6535

0.1445

0.0004

0.0061

1

0.3175

0.0791

0.0618

0.0341

Table 10-2. Typical values of xm ,  xp , and < >x  and corresponding irradiances Im ,
Ip , and Ic  for circular pupils aberrated by secondary coma.

W5 xm xp < >x Im Ip Ic I(0)

0

0.5

1.0

1.5

2.0

0

0.50

1.00

1.50

2.00

0

0.49

0.83

0.81

1.11

0

1.00

2.00

3.00

4.00

1

0.8150

0.4464

0.1685

0.0420

1

0.8153

0.4664

0.3237

0.2523

1

0.4114

0.0025

0.0098

0.0073

1

0.4955

0.2332

0.1873

0.1389

of a surveillance system will produce an error in the location of the target. In the case of a

laser transmitter, a large LOS error may cause the laser beam to miss the target

altogether. Whereas for static aberrations we may be able to calibrate the LOS, for

dynamic aberrations it is the analysis given here that will determine the tolerances of

aberrations of the type r qk cos  and r qk sin . Although we have defined the LOS of an

optical system in terms of the centroid of its PSF, it could have been defined in terms of

the peak of the PSF (assuming that the aberrations are small enough so that the PSF has a

distinguishable peak). For an aberration-free PSF, its peak value and its centroid both lie

at its origin, regardless of the amplitude variations across its pupil. The two are not

coincident when cos q  and/or sin q  dependent aberrations are present. The precise

definition of the LOS will perhaps depend on the nature of the application of the optical

system. Moreover, in practice, only a finite central portion of the PSF will be sampled to

measure its centroid, and the precision of this measurement will be limited by the noise

characteristics of the photodetector array.

For simplicity, we have limited our discussion here to optical systems with uniform

circular pupils. However, the analysis can be extended to obtain the LOS errors of

aberrated systems with annular and/or Gaussian pupils.1 For example, for an annular

pupil with a central obscuration   �, the right-hand side of Eq. (10-5) is multiplied by

1 2+ �  for k = 3. Compared to a uniform pupil, the value of <x> for a Gaussian pupil is

smaller; i.e., the centroid for a Gaussian pupil is closer to the true (aberration-free) LOS.
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10.5   SUMMARY

The line of sight of a system is determined by the centroid of the image of a point

object. The centroid of an aberrated diffraction image is the same as that of the

corresponding spot diagram. For an aberration-free system, the centroid lies at the center

of the image due to its radial symmetry. Only the coma aberrations displace the centroid.

The displacement depends on the magnitude of a coma aberration, but not on its order.

Figures 10-1 and 10-2 illustrate this point for five waves of primary and secondary

comas.  The location of the peak value, centroid, and the irradiance at these locations are

given in Tables 10-1 and 10-2 for the primary and secondary comas, respectively. The

Strehl ratio I 0( )  is also given in these tables.
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CHAPTER 11

Random Aberrations
11.1   INTRODUCTION

So far we have considered deterministic aberrations such as those that are inherent in

the design of an optical imaging system. These aberrations are deterministic in the sense

that they are known or can be calculated, for example, by ray tracing the system. Now we

consider the effects of aberrations that are random in nature on the quality of images. The

aberration is random in the sense that it varies randomly with time for a given system, or

it varies randomly from one sample of a system to another. An example of the first kind is

the aberration introduced by atmospheric turbulence when an optical wave propagates

through it, as in ground-based astronomical observations. An example of the second kind

is the aberration introduced due to polishing errors of the optical elements of the system.

The polishing errors of an element fabricated similarly in large quantities vary randomly

from one sample to another. In either case, we cannot obtain the exact image unless the

instantaneous aberration or the exact polishing errors are known. However, based on the

statistics of the aberrations, we can obtain the time- or ensemble-averaged image.

We discuss the effects of two types of random aberrations: random wavefront tilt or

defocus causing random image motion,  and random aberrations introduced by

atmospheric turbulence. The time-averaged Strehl ratio, PSF, OTF, and encircled power

are discussed for the two types of aberrations. Although much of our discussion is on

systems with circular pupils, systems with annular pupils are also considered. A brief

discussion on the aberrations resulting from fabrication errors is also given.

11.2   RANDOM IMAGE MOTION

In many optical imaging systems, especially those used in space, there is always

some image motion during an exposure interval. The source of image motion may, for

example, be vibration of optical elements and servo dither in the pointing system. The

image motion may be transverse or longitudinal, i.e., normal to or along the optical axis,

respectively. In the case of beam transmitting systems, the beam itself may have some

motion associated with it. We give expressions for the time-averaged PSF, Strehl ratio,

OTF, and encircled power for an imaging system with a circular or an annular exit pupil

undergoing Gaussian random motion.  We show that the Strehl ratio is more sensitive to

obscuration in the case of transverse motion, but less sensitive in the case of longitudinal

motion.

11.2.1 Transverse Image Motion1

The time-averaged PSF for a system with a circular pupil in the case of transverse

image motion characterized by Gaussian functions of zero mean and equal standard

deviation s  in units of l F  along the two orthogonal axes of the image plane is given by
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I r v J rv v dv; ; ,s t s( ) = ( ) p( )Ú8 20
0

1

(11-1)

where

t s t sv v v; exp( ) = ( ) - p( )2 2 2 2
(11-2)

is the time-averaged OTF. The motion-free OTF t v( )  is given by Eq. (8-37). Letting

r = 0 in Eq. (11-1), we obtain the time-averaged Strehl ratio:

S v v dvs t s( ) = ( )Ú8
0

1

; .
(11-3)

The time-averaged encircled power in terms of the OTF is given by

P r r v J r v dvc c c; ; .s t s( ) = p ( ) p( )Ú2 21
0

1

(11-4)

The corresponding equations for a system with an annular pupil with an obscuration ratio

  � are:

I r v J rv v dv; ; ; ; ,� � �s t s( ) = -( )[ ] ( ) p( )Ú8 1 22
0

0

1

(11-5)

  

S v v dv� � �; ; ; ,s t s( ) = -( )[ ] ( )Ú8 1 2

0

1

(11-6)

  
P r r v J vr dvc c c; ; ; ; ,� �s t s( ) = p ( ) p( )Ú2 21 (11-7)

and

t s t sv v v; ; ; exp .� �( ) = ( ) - p( )2 2 2 2
(11-8)

The motion-free OTF 
  
t v; �( )  is given by Eq. (9-3).

Figure 11-1 shows how the Strehl ratio varies with s  for � = ( )0 0 25 0 75. . . It

decreases monotonically as s  increases.  We note that as  �  increases, the drop in Strehl

ratio due to image motion for a given value of s  increases. This occurs because the

motion-free PSF (normalized to unity at the origin) for a larger value of �  is smaller for

small values of r for r £ 1.
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Figure 11-1. Time-averaged Strehl ratio as a function of the standard deviation  s
of the transverse image motion for several typical values of   � .

11.2.2 Longitudinal Image Motion2

In the case of transverse image motion, the aberration-free image is randomly

displaced in the image plane. However, in the case of longitudinal image motion, the

image is randomly defocused. If the random defocus varies very slowly with time and the

exposure time of an observation is small, then the defocused image at the time of an

observation is given by the defocused PSF. However, if the exposure time is long enough

that the image moves back and forth during that time, then we must average the

defocused images.

The defocused PSF of a system with an annular pupil is given by

  

I r i J r d; ; exp ,D D�
�

�

( ) =
-

Ê
ËÁ

ˆ
¯̃

Û
ıÙ

-( ) p( )2

1
22

2 1

2
0

2

p r r r r (11-9)

where D  is the longitudinal defocus in units of 8 2lF . Thus, a value of D = 1 in these

units represents a defocus phase aberration of 2p  or a wave aberration of one wave.

Letting r = 0 in Eq. (11-9), the corresponding Strehl ratio is given by

  

S �
�

�
( ) =

-( )[ ]
-( )

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

sin
.

p

p

D

D

1

1

2

2

2

(11-10)
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The time-averaged PSF, Strehl ratio, and encircled power for longitudinal Gaussian

image motion characterized by zero mean and standard deviation s  in the same units as

D  is given by

  

I r I r d; ; ; ; exp ,s
p s

s� �( ) =
Û
ıÙ

( ) -( )
•

•
1

2
22 2D D D (11-11)

S ds
p s

p

p
s;

sin
exp ,�

�

�
( ) =

-( )[ ]
-( )

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂
-( )

Û

ı

Ù
Ù

•

•

1

2

1

1
2

2

2

2

2 2
D

D
D D (11-12)

and

P r I r r drc

rc

; ; ; ; .s
p

s� � �( ) = -( )Û
ıÙ

( )
2

2

0
2

1 (11-13)

Figure 11-2 shows how the time-averaged Strehl ratio 
 
S s; �( )  varies with the

standard deviation s  of the image motion. As expected, the Strehl ratio decreases as the

image motion increases. However, the decrease is smaller for a large value of the

obscuration ratio   �, or the Strehl ratio for a given value of s  is larger for a large value of

  �. This is a consequence of the fact that the depth of focus is larger for a large value of  �,

as discussed in Section 9.2.4. This effect is opposite to that of the transverse image

motion, where the drop in Strehl ratio with s  increases as  � increases due to the

narrower PSF for an obscured pupil.

We note from Eq. (11-10) that the static Strehl ratio is zero for integral values of

D 1 2-( )� . Thus, for a circular pupil, for example, it is zero when the defocus wave

aberration is one wave or the longitudinal defocus D  (in units of 8 2lF ) is unity.

However, the time-averaged value of the dynamic Strehl ratio for s = 1 is 0.3483.

Similarly, for an annular pupil with  � = 0 5. , it is zero when D = 4 3, but the time-

averaged dynamic Strehl ratio for s = 4 3 is approximately 0.35.

11.3 IMAGING THROUGH ATMOSPHERIC TURBULENCE3

11.3.1 Introduction

The resolution of a telescope forming an aberration-free image is determined by the

diameter D of its pupil; the larger the diameter, the better the resolution. However, in

ground-based astronomy, the resolution is degraded considerably because of the

aberrations introduced by atmospheric turbulence. A plane wave of uniform amplitude

and phase representing the light from a star propagating through the atmosphere

undergoes both amplitude and phase variations due to the random inhomogeneities in its

refractive  index. The  amplitude variations, called scintillations, result in the twinkling of
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Figure 11-2. Time-averaged Strehl ratio S ss; �( )  as a function of the standard
deviation s  of the longitudinal Gaussian random image motion, where  � is the
obscuration ratio of the annular pupil. s  is in units of 8 2l F , and its numerical
value represents the peak defocus wave aberration in units of wavelength.

stars. The purpose of a large ground-based telescope, such as the 5-m telescope at Mt.

Palomar, has generally not been better resolution but to collect more light so that dim

objects may be observed. Of course, with the advent of adaptive optics,4-6 the resolution

can be improved by correcting the phase aberrations with a deformable mirror.

11.3.2 Long-Exposure Image

For Kolmogorov turbulence, the time-averaged OTF for a distorted wavefront

representing a long-exposure (LE) image is given by7

t tv D r v vD r; exp . ,0 0
5 3

3 44( ) = ( ) - ( )[ ] (11-14)

where D  is the diameter of the telescope and r0  is Fried’s coherence length of

turbulence.8,9 The exponential  factor in Eq. (11-14) represents the mutual coherence

function of the wave at the telescope.

Since exp . .~-( )3 44 0 03 , atmospheric turbulence reduces the overall system MTF

corresponding to a spatial frequency v r D= 0  by a factor of 0.03. Similarly, the degree

of coherence of complex amplitudes at two points on a wave separated by r0  is only 0.03,

or that the visibility of the fringes formed by the secondary waves from these points is

0.03. The value of r0  on a mountain site may vary from 5 to 10 cm in the visible region

of the spectrum and increases with wavelength as l6 5.
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11.3.2.1     Imaging With Circular Pupils

Substituting Eq. (11-14) into the imaging equations given in Section 11.2.1, we can

obtain the Strehl ratio, and the irradiance and encircled power distributions. Figure 11-3

shows how the Strehl ratio decreases monotonically as D r0  increases. Thus, for

example, for a given value of D, the Strehl ratio decreases rapidly as r0  decreases. Even

when r0  is as large as D, the Strehl ratio is only 0.445.

The phase aberration variance for Kolmogorov turbulence is given by

sF
2

0
5 3

1 03= ( ). .D r (11-15)

Substituting Eq. (11-15) into Eq. (8-15), we obtain the approximate Strehl ratio:

S D r D r1 0 0
5 3

1 03( ) - ( )[ ]~ exp . . (11-16)

Its variation with D r0  is also shown in Figure 11-3. We note that it considerably

underestimates the true Strehl ratio S . A much better approximation is given by

S D r D r2 0 0
5 3 6 5

1( ) + ( )[ ]~ , (11-17)

as is evident from its plot in Figure 11-3.

100

2 10

<
S

>

< S1 > < S2 >

< S >

10–1

10–2
4 6 8

D/r0

Figure 11-3. Variation of time-averaged Strehl ratio with D r0 . The solid curve
represents the exact value S , the dashed curve represents the approximate value

S1 , and the dotted curve represents the approximate value S2 .
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speckle decreases as D increases, but the image size is approximately constant. Thus, an

increase in D does not significantly improve the resolution of the system (as determined

by the total size of the image). For convenience, the PSFs in Figure 11-8b are shown

reduced by a factor of 1.5 compared to those in Figure 11-8a. Thus, for example, the

pictures corresponding to D r0 =10 in these two parts are otherwise similar. (The

aberration function used for this case and the corresponding interferogram are shown in

Figure 12-4.) The approximate expressions of Eqs. (8-13)–(8-15) are not suitable for

calculating the average Strehl ratios for random aberrations. For example, even for

D r0 =1, Eq. (8-15) gives a Strehl ratio of 0.357, compared to a true value of 0.445. For

larger values of D r0 , Eq. (8-15) underestimates the average Strehl ratio by larger

factors.

                  

                      D r0 1=                                D r0 3=                            D r0 10=

Figure 11-8a. Short-exposure PSFs aberrated by atmospheric turbulence. D is kept
fixed and r0  is varied. For example, D = 1 m and r0 1 m= , 33.3 cm, and 10 cm,
giving D r0 1= , 3, and 10. The value of D determines the size of a speckle, while r0

determines the overall size of the image.

                  

               D r0 1=                                 D r0 3=                            D r0 10=

Figure 11-8b.  Short-exposure PSFs aberrated by atmospheric turbulence. r0  is kept
fixed, and D  is varied. For example, r0 10 cm= , and D = 10 cm, 30 cm, and 1 m,
giving D r0 1= , 3, and 10. The value of D determines the size of a speckle while r0

determines the size of the overall image. For convenience, the PSFs shown here have
been reduced by a factor of 1.5 compared to those in Figure 11-8a.
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11.3.4 Lucky Imaging and Adaptive Optics

Since the aberrations introduced by turbulence are random in nature and since the

wavefront tilt represents a large portion of these aberrations, it is conceivable that at a

certain instant in time a short exposure (SE) image is practically aberration free. Thus an

observer can take a series of short-exposure images over a time period before the

turbulence characterized by r0  changes significantly. The good-quality images are

selected based on their full width at half maximum or peak pixel value normalized by the

total illumination, centered on the peak pixel, and summed in a process called shift and

add. This approach has been referred to as lucky imaging.13,14

Figure 11-9a shows a sample of a poor-quality SE star image, and 11-9b shows a

corresponding good-quality image. Figure 11-9c shows an LE image obtained by adding

all of the 50,000 SE images taken at a rate of 40/sec over a period of about 21 minutes.

 The image quality improves when the centroids of the SE images are aligned, as in

Figure 11-9d. This image is equivalent to an LE image where the tip and tilt of the

wavefront have been corrected in real time. Figures 11-9e through 11-9g illustrate images

of increasing quality as 50, 10, and 1 percent of the best selected images based on their

full width at half maximum are aligned on their peak value and added.

The image quality can also be improved by correcting the wavefront errors in (near)

real time with adaptive optics.4-6 In practice, a steering mirror with only three actuators is

used to correct the large tip and tilt of the wavefront. The residual aberration is corrected

by a deformable mirror, which is deformed by an array of actuators attached to it. The

signals for the actuators are determined either by sensing the wavefront errors with a

wavefront sensor in a closed loop to minimize the variance of the residual errors, or the

actuators are actuated to produce Zernike modes (e.g., focus, two modes of astigmatism,

two modes of coma, etc.) iteratively until the sharpness of the image is maximized.15-17

The signals are independent of the optical wavelength provided atmospheric dispersion is

negligible. The two approaches are referred to as zonal  and modal approaches,

respectively. The zonal approach has the advantage that the rate of correction is limited

only by the rate at which the wavefront errors can be sensed and the actuators can be

actuated. However, the amount of light that is used by the wavefront sensor is lost from

the image. In practice, however, the image beam is split into two parts. The centroid of

the image of one part is measured with a quad cell, and the tilt indicated by it is corrected

with a steering mirror. The resulting tilt-corrected image of the other part with the

residual aberration is corrected with a deformable mirror in a closed-loop manner. In the

modal approach, there is no loss of light, but the rate or the bandwidth of correction can

be slow due to its iterative nature, especially when turbulence is severe and a large

number of modes must be corrected. Moreover, for imaging an extended object,

wavefront sensing requires a point source in its vicinity, but the modal approach is

applicable to the extended object itself. Adaptive optics has also been used in lucky

imaging  to achieve diffraction-limited image quality.18
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           (a)                 (b)

           (c)           (d)

          (e)           (f)

           (g)

Figure 11-9. Lucky imaging. (a) Poor-quality SE star image, (b) corresponding
good-quality image, (c) LE image obtained by adding all of the 50,000 SE images
taken at a rate of 40/sec over a period of about 21 minutes, (d) LE image obtained by
aligning the centroids of the SE images, (e) 50% of the selected SE images aligned by
peak pixel value and added, (f) 10% of SE images added, and (g) 1% of SE images
added.
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Of course, adaptive optics can improve the image quality only if the object lies

within an isoplanatic angle of turbulence. In the case of a ground-to-space laser

illuminating a satellite, the angular travel (point-ahead angle) of the satellite during the

round-trip time of the beam to the satellite must be less than the isoplanatic angle of

turbulence.

11.4   FABRICATION ERRORS AND TOLERANCES

In Chapters 1–6, we have shown how to calculate the aberrations of various optical

imaging systems. Although it was not pointed out explicitly, it was understood that the

elements of a system had their prescribed shapes, i.e., the elements did not have any

fabrication errors. The aberrations of a system thus calculated are referred to as its design

aberrations. In practice, when the elements of a system are fabricated, their exact shapes

will deviate however slightly from their prescribed shapes. These fabrication or

manufacturing errors are generally referred to as their surface or figure errors. They are

typically random in nature in that if an element is fabricated in large quantities, its errors

will vary randomly from one sample to another. However, these errors have certain

statistical properties that depend on the fabrication process. For example, the width

(correlation length) of the polishing irregularities of an element depends on the size of

the tool used to polish it. The figure errors of an element of a system contribute to its

aberrations. For example, if q  and ¢q  are the angles of incidence and refraction of a ray

incident on a refracting surface separating media of refractive indices n and ¢n , and if dF

is the deviation of the surface at the point of incidence of the ray along the surface normal

at that point from the prescribed shape, the change in its optical path length is given by

d q q dW n n F= - ¢ ¢( )cos cos .  (11-22)

Thus, under normal incidence, a plane-parallel plate of refractive index n introduces

wavefront errors that are n -( )1  times its corresponding figure errors. In the case of a

reflecting surface in air, Eq. (11-22) reduces to

d q dW F= 2 cos . (11-23)

Thus, a conservative estimate of the wavefront errors in this case is equal to twice the

figure errors. The wavefront errors arising from thermal distortions of the elements and

their misalignments and spacing errors may also be calculated by using Eqs. (11-22) and

(11-23).

Because of the random nature of the figure errors, the total expected wavefront error

of the system can be obtained by a square root of the sum of the variances of the

wavefront errors contributed by its elements. Indeed this is how optical tolerances on the

figure errors of the elements of a system are allocated. For example, if we are interested

in a system Strehl ratio of 0.8 so that the total budget for the standard deviation of the

wavefront errors is l 14 , the figure errors of the elements can be allocated equally or

preferentially among them such that the root sum square of the standard deviations of

their wavefront errors is l 14 .
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As a numerical example, consider a three-mirror system. For simplicity, let the

allowed standard deviation of the figure errors of each mirror be s F  with a corresponding

wavefront error of 2s F . The total wavefront error contributed by the three mirrors is

s sW F
2 2

3 2= ( ) . (11-24)

Accordingly, for a Strehl ratio of 0.8, the figure error tolerance is l 48.

11. 5   SUMMARY

Previous chapters have considered systems with deterministic aberrations in the

sense that they are known either by calculation or by measurement. This chapter has

considered random aberrations in the sense that we know their statistics but not their

detailed distributions. Examples of such aberrations are random image motion, those due

to fabrication errors, and those introduced by atmospheric turbulence. Figures 11-1 and

11-2 show respectively the effect of a random transverse and longitudinal image motion

on the Strehl ratio of an image as a function of the standard deviation of the motion. In

the case of transverse image motion, the image moves up, down, and sideways in the

image plane. However, in the case of longitudinal image motion, the image is defocused

as it moves randomly along the optical axis. As expected, the Strehl ratio decreases

monotonically as the image motion increases. However, the decrease in the case of

transverse image motion is smaller for a larger value of the obscuration ratio due to its

larger depth of focus. This effect is opposite to that of the transverse image motion, where

the drop in Strehl ratio with increasing image motion increases as the obscuration

increases due to the narrower central disc of its PSF.

The aberrations introduced by atmospheric turbulence not only reduce the Strehl

ratio and broaden the image, but also break the image into speckles. Whereas the size of

the image is determined by the coherence length of atmospheric turbulence, that of a

speckle is determined by the pupil diameter. A large portion (87%) of the aberration is a

random wavefront tilt whose effect can be avoided by taking short-exposure images and

adding them with proper registration. This is done in lucky imaging by discarding bad

images. The image quality can also be improved by using a steering mirror to overcome

the wavefront tilt, and a deformable mirror to overcome the aberrations.

11.5  Summary 159

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



References

1. V. N. Mahajan, “Degradation of an image due to Gaussian image motion,” Appl.

Opt. 17, 3329–3334 (1978).

2. V. N. Mahajan, “Degradation of an image due to Gaussian longitudinal motion,”

Appl. Opt. 46, 3700–3705 (2007).

3. V. N. Mahajan and G.-M. Dai, “Imaging through atmospheric turbulence,” in

Handbook of Optics, 3rd ed., M. Bass, Ed., Chapter 4, Vol. V (McGraw-Hill, New

York, 2009).

4. R. Fugate, “Adaptive optics,” in Handbook of Optics, 3rd ed., M. Bass, Ed.,

Chapter 5, Vol. V (McGraw-Hill, New York, 2009)

5. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford, New York,

1998).

6. R. K. Tyson, Introduction to Adaptive Optics (SPIE Press, Bellingham, WA,

1999).

7. D. Fried, “Optical resolution through a randomly inhomogeneous medium for

very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966).

8. D. Fried, “Evaluation of r0  for propagation down through the atmosphere,” Appl.

Opt. 13, 2620–2622 (1974); errata 1, Appl. Opt. 14, 2567 (1975); errata 2, Appl.

Opt. 16, 549 (1977).

9. D. L. Walters and L. W. Bradford, “Measurement of r0  and q 0 : two decades and

18 sites,” Appl. Opt. 36, 7876–7886 (1997).

10. V. N. Mahajan and B. K. C. Lum, “Imaging through atmospheric turbulence with

annular pupils,” Appl. Opt. 20, 3233–3237 (1981).

11. G.-m Dai and V. N. Mahajan, “Zernike annular polynomials and atmospheric

turbulence,” J. Opt. Soc. Am. A  24, 139–155 (2007).

12. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am.

66, 207–211 (1976).

13. N. M. Law, C. D. Mackay, and J. E. Baldwin, “Lucky imaging: high angular

resolution imaging in the visible from the ground,” Astron. & Astrophys. 446,

739–745 (2006).

14. C. Mackay, J. Baldwin, N. Law, and P. Warner, “High resolution imaging in the

visible from ground without adaptive optics: New techniques and results,” Proc.

SPIE 5492, 128–135 (2004) [doi: 10.1117/12.550443].

160 RANDOM ABERRATIONS

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



15. R. A. Miller and Buffington, “Real-time wavefront correction of atmospherically

degraded telescopic images through image sharpening,” J. Opt. Soc. Am. 61,

1200–1210 (1974).

16. A. Buffington, F. S. Crawford, R. A. Miller, A. J. Schwemin, and R. G. Smits,

“Correction of atmospheric distortion with an image-sharpening telescope,” J.

Opt. Soc. Am. 67, 298–305 (1977).

17. V. N. Mahajan, J. Govignon, and R. J. Morgan, “Adaptive optics without

wavefront sensors,” Proc. SPIE 228, 63–69 (1980).

18. C. Mackay, N. Law, and T. D. Stayley, “Diffraction limited imaging in the visible

from large ground-based telescopes: New methods for future instruments and

telescopes,” Proc. SPIE 7014, 7014C– 7014C-7 (2010) [doi: 10.1117/12.787439].

References 161

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



CHAPTER 12
Observation of Aberrations
12.1   INTRODUCTION

In this chapter, we describe briefly how the primary aberrations of an optical system

can be observed. The emphasis of our discussion is on how to recognize a primary

aberration and not on how to measure it precisely. Since the optical frequencies are very

high (1014 – 1015 Hz), optical wavefronts, aberrated or not, cannot be observed directly;

optical detectors simply do not respond at these frequencies. We have seen in Chapter 8

that the image of a monochromatic point object formed by an aberrated system is

characteristically different for a different aberration. Another and more powerful way to

recognize an aberration is to form an interferogram by combining two parts of a light

beam, one of which has been transmitted through the system.

12.2   PRIMARY ABERRATIONS

Consider an optical imaging system with a circular exit pupil of radius a. Letting

r, q( ) be the polar coordinates of a point in the plane of its exit pupil, the functional form

of the primary phase aberrations may be written
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where Ai  or Bi  is a peak aberration coefficient representing the maximum value of the

corresponding aberration across the pupil, and r = r a  is a normalized radial variable.

When F( , )r q  = 0 for a certain point object, the wavefront passing through the center of

the exit pupil is spherical centered at its Gaussian image point. Let its radius of curvature

be R. For an aberrated system, F( , )r q  represents the optical deviation of the wavefront

at a point ( , )r q  from being spherical.

In Eq. (12-1), when Bd  = 0, the aberration is spherical. Nonzero Bd  implies that the

aberration is combined with defocus; i.e., the aberration is not with respect to a reference

sphere centered at the Gaussian image point but with respect to another sphere centered at

a distance z from the plane of the exit pupil according to Eq. (8-6). As discussed in

Chapter 7, the reference sphere is centered at the marginal image point, center of the

circle of least confusion, and the point midway between the marginal and Gaussian image

points when B Ad s = - 2,  –1.5, and –1, respectively. The midway point corresponds to

minimum variance of the aberration and, therefore, to maximum Strehl ratio (for small

aberrations), as may be seen by comparing the aberration thus obtained with the Zernike

circle polynomial Z4
0 r( ).
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In Eq. (12-2), when Bt = 0,  the aberration is coma. Nonzero Bt  implies that the

aberration is combined with tilt, or that it is with respect to a reference sphere centered at

a point 2 0FBt ,( ) in the image plane, where F is the focal ratio or the f-number of the

image-forming light cone. The variance of the aberration is minimum when

B At c = - 2 3, as in the Zernike circle polynomial Z3
1 ( , )r q .

In Eq. (12-3), when Bd = 0, the aberration is astigmatism. Nonzero Ad  implies that

it is combined with defocus. The variance of the aberration is minimum when

B Ad a = - 1 2 , as in the Zernike circle polynomial Z2
2 ( , )r q .  When B Ad a = 0  or - 1,

we obtain the so-called tangential and sagittal images of a point object. Equations (12-4)

and (12-5) represent defocus or field curvature and tilt or distortion aberrations,

respectively. Figure 12-1 shows isometric plots of the various aberrations.

12.3 INTERFEROGRAMS

There are a variety of interferometers that are used for detecting and measuring

aberrations of optical systems.1 Figure 12-2 illustrates schematically a Twyman-Green

interferometer in which a collimated laser beam is divided into two parts by a beam

splitter BS. One part, called the test beam, is incident on the system under test, indicated

by the lens L, and the other, called the reference beam, is incident on a plane mirror M1.

The focus F of the lens system lies at the center of curvature C of a spherical mirror M 2.
As the angle of the incident light is changed to study the off-axis aberrations of the

system, the mirror is tilted so that its center of curvature lies at the current focus of the

beam. In this arrangement the mirror does not introduce any aberration since it is forming

the image of an object lying at its center of curvature (see Section 4.2).

The two reflected beams interfere in the region of their overlap. Lens L' is used to

observe the interference pattern on a screen S placed in a plane containing the image of L

formed by L' . A record of the interference pattern is called an interferogram. Note that

since the test beam goes through the lens system L twice, its aberration is twice that of the

system.

If the reference beam has a uniform phase and the test beam has a phase distribution

F x y,( ) , and if their amplitudes are equal to each other, the irradiance distribution of their

interference pattern is given by

I x y I i x y, exp ,( ) = + ( )[ ]0
21 F

= + ( )[ ]{ }2 10I x ycos , ,F (12-6)

where I0  is the irradiance when only one beam is present. The irradiance has a maximum

value equal to 4 0I  at those points for which

F x y n,( ) = 2p (12-7a)

and a minimum value equal to zero wherever
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Figure 12-1. Isometric plot of primary aberrations representing the difference
between an ideal wavefront (typically, spherical) and an actual wavefront.
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Figure 12-3. Interferograms of primary aberrations: (a) defocus, (b) spherical
combined with defocus, (c) coma combined with tilt, (d) astigmatism combined with
defocus. The aberrations in the interferograms are twice their corresponding values
in the system under test because the test beam goes through the system twice.

shows the interferograms obtained when the system has 3l  of spherical aberration (i.e.,

As = 3l ) and a certain amount of defocus. The case Bd = 0 (i.e., F  and C  coincident)

represents such a system with an image of a certain object being observed in its Gaussian

image plane. Similarly, the interferogram obtained for B Ad s = - 2  represents the system
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when the image is observed in its marginal image plane. For a system with positive

spherical aberration, its marginal focus lies farther from its exit pupil than its paraxial

focus (see Figure 7-1). Hence, this interferogram is obtained when the points F and C are

separated from each other axially, according to Eq. (1-3d), by -48 2lF , i.e., when F lies

to the left of C by 48 2lF . The other two interferograms, B Ad s= -  and B Ad s= - 1 5. ,

represent the system when the image is observed in the minimum-aberration-variance

plane (or maximum Strehl ratio for small values of As) and the circle-of-least-confusion

plane, respectively.

Figure 12-3c shows the interferograms obtained when light is incident at a certain

angle from the axis of the system such that it suffers from 3l  of coma. The fringes in this

case are cubic curves. The case Bt = 0 corresponds to two parallel interfering beams (F

and C  are coincident in this case). The case B At c= - 2 3  represents the system

corresponding to minimum aberration variance. A tilt aberration with a peak value of Bt

may be obtained by transversally displacing C from F by -( )2 0FBt ,  so that C lies at the

diffraction focus of the comatic diffraction pattern of the system (see Section 8.3.3 for a

discussion of the diffraction focus). It may also be obtained by tilting the plane mirror M1

by an angle B at ,  where a is the radius of the test beam [see Eq. (1-5c) and note the

factors of 2 because of the reflection of the reference beam by mirror M1 and doubling of

the system aberration in the test beam].

Figure 12-3d shows the interferograms obtained when the system suffers from 3l  of

astigmatism. When Bd = 0 or - Aa , representing the system with an image being

observed in a plane containing one or the other astigmatic focal line, respectively, we

obtain an interferogram with straight line fringes, since the aberration depends on either x

or y (but not both). However, the fringe spacing is not uniform. When B Ad a= - 2 , the

fringe pattern consists of rectangular hyperbolas. If the system under test is aberration

free, but the two interfering beams are tilted with respect to each other, representing a

wavefront tilt error, we obtain straight line fringes that are uniformly spaced. The fringe

spacing is inversely proportional to the tilt angle.

So far we have discussed interferograms of primary aberrations when only one of

them is present. These interferograms are relatively simple and the aberration type may

be recognized from the shape of the fringes. It should be evident that a general aberration

consisting of a mixture of these aberrations and/or others will yield a much more complex

interferogram. As an example of a general aberration, Figure 12-4a shows a possible

aberration introduced by atmospheric turbulence, as in ground-based astronomical

observations. It corresponds to D r0 10= ,  as discussed in Section 11.3.3. On the average,

the standard deviation of the instantaneous aberration introduced is given by

[ . ( / ) ]0 134 0
5 3 1 2

D r , which is 2.5 radians or 0 4. l  for D r0 10= . The interferogram for

this aberration is shown in Figure 12-4b. When 25l  of tilt are added to the aberration, the

interferogram appears as in Figure 12-4c. Doubling of the aberration, as in a Twyman–

Green interferometer, is not considered in Figure 12-4.
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D r0 = 10

ws = 0.4l
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/

(a)

No tilt 25l tilt
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Figure 12-4. Aberration introduced by atmospheric turbulence corresponding to
D r0 10 .=  (a) Isometric plot of the aberration (b) Aberration interferogram. The
standard deviation of the tilt-free aberration introduced by turbulence is 0.4 l .
(c) Interferogram with 25 l  of tilt.

12.4   SUMMARY

Because of the high optical frequencies and the comparatively slow time response of

the photodetectors, the aberrations or phase errors of a light wave cannot be observed or

measured directly. They are determined by forming an interferogram, where two parts of

a light beam are combined after one part has passed through the system under test. In this

chapter, we have shown isometric plots of the primary aberrations (see Figure 12-1),

representing, for example, the shape of the surface of a deformable mirror for a certain

aberration, and the interferograms, as may be seen in optical testing (see Figure 12-3). An

interferogram for a random aberration is also shown (see Figure 12-4). The purpose is to

acquaint the reader with what may be seen in practice when working in a laboratory.
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