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I ntroduction to the Series

Since its inception in 1989, the Tutorial Texts (TT) series has grown to cover
many diverse fields of science and engineering. The initial ideafor the series was
to make material presented in SPIE short courses available to those who could
not attend and to provide a reference text for those who could. Thus, many of the
textsin this series are generated by augmenting course notes with descriptive text
that further illuminates the subject. In this way, the TT becomes an excellent
stand-alone reference that finds a much wider audience than only short course
attendees.

Tutoria Texts have grown in popularity and in the scope of material covered
since 1989. They no longer necessarily stem from short courses; rather, they are
often generated independently by experts in the field. They are popular because
they provide a ready reference to those wishing to learn about emerging
technologies or the latest information within their field. The topics within the
series have grown from the initial areas of geometrical optics, optical detectors,
and image processing to include the emerging fields of nanotechnology,
biomedical optics, fiber optics, and laser technologies. Authors contributing to
the TT series are instructed to provide introductory material so that those new to
the field may use the book as a starting point to get a basic grasp of the material.
It is hoped that some readers may develop sufficient interest to take a short
course by the author or pursue further research in more advanced books to delve
deeper into the subject.

The books in this series are distinguished from other technical monographs
and textbooks in the way in which the materia is presented. In keeping with the
tutorial nature of the series, there is an emphasis on the use of graphical and
illustrative materia to better elucidate basic and advanced concepts. Thereis aso
heavy use of tabular reference data and numerous examples to further explain the
concepts presented. The publishing time for the books is kept to a minimum so
that the books will be as timely and up-to-date as possible. Furthermore, these
introductory books are competitively priced compared to more traditional books
on the same subject.

When a proposal for a text is received, each proposa is evaluated to
determine the relevance of the proposed topic. Thisinitia reviewing process has
been very helpful to authors in identifying, early in the writing process, the need
for additional material or other changes in approach that would serve to
strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure
that chapters communicate accurately the essential ingredients of the science and
technologies under discussion.

It is my goal to maintain the style and quality of books in the series and to
further expand the topic areas to include new emerging fields as they become of
interest to our reading audience.

James A. Harrington
Rutgers University
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FOREWORD TO THE FIRST EDITION

It is a distinct pleasure for me to write this short foreword to Dr. Virendra Mahajan's
tutorial text, Aberration Theory Made Simple. | write it not because | am particularly
knowledgeable about aberration theory—in fact, it may be because | am not particularly
knowledgeable that | was invited! Thisisa Tutorial Text, and as a lifelong educator | am
also alifelong learner and | should be able to learn from thistext; and | did.

This text is prepared in the ideal way for a tutorial. It comes as a direct result of
teaching this material to a wide range of audiences in awide range of locations; so it has
been tried and tested. The "student guinea pigs' have performed their invaluable service
so that those of us who come along later have the benefit of their and the author's labors.

Dr. Mahgjan has lived up to his title and made aberration theory simple. Of course, |
should caution the reader that simple is relative. Some topics do not yield easily to simple
yet accurate descriptions. Those readers who insist that "rays' are the most important
components of any analysis of optical systems, whether aberrant or not, will be very
satisfied with the first half of the book, but may wish to ignore the second half. They
should not. Those who are enamored with the wave approach (like me) will immediately
read the second half of this book and applaud, but not go back and read the first half.
They should! | did!

| am pleased that Dr. Mahgjan has provided a significant list of referencesin addition
to the bibliography at the end of the book. This will be of considerable value to the
reader. Not incidentally, SPIE Optical Engineering Press will also publish a Milestone
volume on Effects of Aberrations in Imaging Systems with Dr. Mahajan as the editor.
Thus, each of us will be able to have an authoritative companion volume that contains
reprints from the world's literature that will no doubt verify that this current Tutorial Text
isindeed Aberration Theory Made Smple.

Brian J. Thompson June 1991
Rochester, New Y ork
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PREFACE TO THE SECOND EDITION

I wrote Aberration Theory Made Simple some 20 years ago to provide a clear,
concise, and consistent exposition of what aberrations are, how they arise in optical
imaging systems, and how they affect the quality of optical images formed by them, both
in terms of geometrical and diffraction optics. Later, | expanded this Tutorial Text into a
textbook under the title Optical Imaging and Aberrations in two parts, one on Ray
Geometrical Optics and the other on Wave Diffraction Optics. Detailed mathematical
derivations missing in the Tutorial Text are given in this textbook, along with problems at
the end of each chapter.

In this second edition of Aberration Theory Made Simple, | have updated the sign
convention for Gaussian optics to the Cartesian sign convention, as used in advanced
books on geometrical optics and in the optical design software programs. The quantities
such as object and image distances that are numerically negative are indicated in figures
with a parenthetical negative sign (-). Thus a reader will find a change in the sign of
some parameters in equations in the part on geometrical optics when compared with those
in the first edition. In this new edition, | have deleted certain advanced details that are
available in the long textbook. Deletions include the plots of the optical transfer function
for primary aberrations. | have added some new material as well, such as the centroid and
standard deviation of ray aberrations, spot diagrams for primary aberrations, golden rule
of optical design about relying on such diagrams, update of 2D PSFs for primary
aberrations, aberration-free optical transfer function of systems with annular and
Gaussian pupils, Zernike polynomials for circular pupils and the corresponding
polynomials for annular and Gaussian pupils, effect of longitudinal image motion on an
image, lucky imaging in ground-based astronomy, and adaptive optics. | have also added
a brief summary at the end of each chapter, highlighting the essence of its content. It is
hoped that these additions will be helpful to the readers of this edition of Aberration
Theory Made Simple.

The second edition of Aberration Theory Made Simple has been translated into
Russian by Professor Irina Livshits of National Research University of Information
Technologies, Mechanics and Optics, Saint Petersburg, Russia. This Russian edition is
available from the university by contacting her at <ecenter-optical0@yandex.ru>.

Virendra N. Mahajan June 2011
El Segundo, California
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PREFACE TO THE FIRST EDITION

Aberration theory is a subject that is as old and fascinating as the field of optics. It is,
however, a cumbersome subject that many students of optics do not appreciate fully. The
purpose of this tutorial book isto provide a clear, concise, and consistent exposition of
what aberrations are, how they arise in optical imaging systems, and how they affect the
quality of images formed by them. Its emphasis is on physical insight, problem solving,
and numerical results. It isintended for engineers and scientists who have a need and/or a
desire for a deeper and better understanding of aberrations and their role in optical
imaging and wave propagation. Although some knowledge of Gaussian optics and an
appreciation for aberrations would be useful, they are not prerequisites. What is needed is
dedication and perseverance. A hovice trying to learn this subject without investing much
time will probably be disappointed in spite of the title of the book. The book is not
intended for teaching lens design or optical testing. However, it is hoped that those
working in these fields will benefit from it. It should be useful to students who may want
to learn aberration theory without having to go through any lengthy derivations.

These derivations are omitted out of necessity for brevity and in keeping with the
spirit of these tutorials. These tutorials have been adapted from my lectures for a graduate
course entitled “Advanced Geometrical Optics,” which | have been teaching in the
Electrical Engineering-Electrophysics Department of the University of Southern
California since 1984. They were originally developed for a short course on optical
imaging and aberrations, which | taught at The Aerospace Corporation to Aerospace and
Air Force personnel. They were then expanded for a short course | have been teaching at
the Optical Society of America and SPIE meetings. Generally speaking, only the primary
aberrations of optical systems are discussed here; they provide the first and a significant
step beyond Gaussian imaging. Although a knowledge of these aberrationsis very useful,
they may not sufficiently describe the imaging properties of a high-quality optical system.
Higher-order aberrations in such systems are often determined by ray tracing them.

This book is organized in two parts: Part | is on ray geometrical optics and Part Il is
on wave diffraction optics. The first chapter introduces the concepts of aperture stop and
entrance and exit pupils of an optical imaging system. The wave and ray aberrations are
defined and wavefront defocus and tilt aberrations are discussed. Various forms of the
primary aberration function of a rotationally symmetric system are given, and how this
function changes as the aperture stop of the system is moved from one position to another
is discussed. The aberration function for the simplest imaging system, namely, a single
spherical refracting surface, is given. Finally, a procedure by which the aberration
function of a multielement system may be calculated is described. This chapter provides a
foundation for the next six chapters.

Chapters 2-6 give the primary aberrations of simple systems, such as a thin lens,
plane-parallel plate, spherical mirror, Schmidt camera, and a conic mirror. Numerical
problems are discussed here and there to illustrate how to apply the formulas given in

Xvii
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these chapters. Part | of the book ends with chapter 7, where the aberrated images of a
point object based on geometrical optics are discussed. Thus the ray spot diagrams and, in
particular, the spot sizes for primary aberrations are discussed. The concept of aberration
balancing, based on geometrical optics to reduce the size of an image spot, is introduced.

In Part 11, chapters 8-11 discuss the effects of aberrations on the image of a point
object based on wave diffraction optics. Chapter 8 considers systems with circular exit
pupils. The aberration-free characteristics of such systems are described in terms of the
point-spread and optical transfer function. How the aberrations affect these functions is
discussed, and aberration tolerances are obtained for a given Strehl or a Hopkins ratio.
The concept of aberration balancing, based on wave diffraction optics, to maximize Strehl
or Hopkins ratios is discussed. Systems with annular and Gaussian pupils are considered
in chapter 9. The effect of obscuration on the point-spread function and on aberration
tolerance is discussed. Similarly, the effect of Gaussian amplitude at the exit pupil is
discussed. The content of this chapter provides a basis for assessing the effects of
aberrations on the optical performance of reflecting telescopes, such as Cassegrain and
Ritchey-Chrétien, and on the propagation of laser beams.

The line of sight of an aberrated system is discussed in chapter 10 in terms of the
centroid of its point-spread function. It is pointed out that only coma type aberrations
change the centroid. Random aberrations are considered in chapter 11, where the time
averaged point-spread and optical transfer functions for random image motion and
aberrations introduced by atmospheric turbulence are discussed. Part 11 of the book ends
with chapter 12, where a brief discussion is given on how the aberrations of a system may
be observed and recognized interferometrically.

Each chapter is written to be as independent of the others as possible, although some
are more so than others. For example, chapter 7 may be followed by chapter 1. Except for
the first few sections of chapter 1, it is not necessary to understand Part | in order to
understand Part I1. However, reading Part |1 without Part | would be like knowing half of
a story. Chapter 12 may be read at any time; however, the reason for using certain
specific values of defocus, for example, in the case of spherical aberration, may not be
understood unless the concepts of aberration balancing discussed in chapters 7 and 8 are
understood. On the matter of references to the literature on aberration theory, | have listed
under the bibliography those books that treat this subject to some or alarge extent. These
are the ones | have had the opportunity to read and benefit from. On the wave diffraction
optics, | have given references in the text either for historical reasons (such as the papers
by Airy and Lord Rayleigh) or because the work is relatively recent and has not appeared
in books. Additional references are given after the bibliography for further study on part
of the reader.

Finally, | would like to thank those who have helped me with the preparation of this
book. | have had many discussions with Dr. Bill Swantner on geometrical optics and Dr.
Richard Boucher on diffraction optics. Dr. Boucher also did computer simulations of the

Xviii

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



point-spread functions and interferograms and prepared the photographs for this book.
Prof. Don O'Shea provided critical and valuable comments when he reviewed this book.
Helpful comments were also provided by Prof. R. Shannon. The Sanskrit verse and its
tranglation on p. xxiii were provided by Dr. S. Sutherland, University of California at
Berkeley. The manuscript and its many revisions were typed by Iva Moore. The fina
version was produced by Betty Wenker and Candy Worshum. | thank The Aerospace
Corporation for providing help and facilities to prepare this book. | also thank Dr. Roy
Potter and Eric Pepper of the SPIE staff for suggesting and facilitating the preparation of
this book, which was carefully edited by Rick Hermann. | cannot thank my wife and
children enough for their patience during the course of this work and so | dedicate this
book to them.

VirendraN. Mahajan June 1991
El Segundo, California
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ARG I8 3 7 dhrafasiiy sraq |
UshT {3 QT oA fassd =g fepmfaarg: |

Anantaratnaprabhavasyayasya himam na saubhagyavilopi jatam |

Eko hi doso gUnasannipate nimajjatindoh kiranesvivankah |

The snow does not diminish the beauty of the Himalayan mountains
which are the source of countless gems. Indeed, one flaw is lost
among a host of virtues, as the moon’s dark spot is lost among its rays.

Kalidasa Kumarasambhava 1.3
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CHAPTER 1
Optical Aberrations

1.1 INTRODUCTION

This chapter starts with the concepts of aperture stop and entrance and exit pupils of
an optical imaging system. Certain special rays, such as the chief and the marginal, are
defined. The wave aberration associated with a ray is defined and its relationship to the
corresponding transverse ray aberration is given. Representations of wavefront defocus
and tilt aberrations are given. We introduce different forms of the primary aberration
function of arotationally symmetric system. How this function changes as the aperture
stop of the system is moved from one position to another is discussed. The primary
aberration function for the simplest imaging system, namely, a single spherical refracting
surface, is given for an arbitrary position of the aperture stop. Finally, we outline a
procedure by which the aberration function of a multielement system may be calculated.
This procedure is utilized in later chapters, for example, to calculate the aberration of a
thin lens (Chapter 2) and a plane-parallel plate (Chapter 3). This chapter forms the basis
of Part | on geometrical optics.

1.2 OPTICAL IMAGING

An optical imaging system consists of a series of refracting and/or reflecting
surfaces. The surfaces refract or reflect light rays from an object to form its image. The
image obtained according to geometrical optics in the Gaussian approximation, i.e.,
according to Snell's law in which the sines of the angles are replaced by the angles, is
called the Gaussian image. The Gaussian approximation and the Gaussian image are
often referred to as the paraxial approximation and the paraxial image, respectively. We
assume that the surfaces are rotationally symmetric about a common axis called the
optical axis (OA). Figure 1-1 illustrates the imaging of an on-axis point object P, and an
off-axis point object P, respectively, by an optical system consisting of two thin lenses.
(For definition of athin lens, see Section 2.2.) P” and Py are the corresponding Gaussian
image points. An object and its image are called conjugates of each other, i.e., if one of
the two conjugatesis an object, the other isitsimage.

An aperture in the system that physically limits the solid angle of the rays from a
point object the most is called the aperture stop (AS). For an extended (i.e., a nonpoint)
object, it is customary to consider the aperture stop as the limiting aperture for the axial
point object, and to determine vignetting, or blocking of some rays, by this stop for off-
axis object points. The object is assumed to be placed to the left of the system so that
initially light travels from left to right. The image of the stop by surfaces that precedeit in
the sense of light propagation, i.e., by surfaces that lie between it and the object, is called
the entrance pupil (EnP). When observed from the object side, the entrance pupil appears
to limit the rays entering the system to form the image of the object. Similarly, the image
of the aperture stop by surfaces that follow it, i.e., by surfaces that lie between it and the
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2 OPTICAL ABERRATIONS

(b)

Figure 1-1. (a) Imaging of an on-axis point object B, by an optical imaging system
consisting of two lenses L, and L, . OA isthe optical axis. The Gaussian image s at
P;. ASistheaperturestop; itsimageby L, isthe entrance pupil EnP, and itsimage
by L, istheexit pupil EXP. CR,istheaxial chief ray, and MR, isthe axial marginal
ray. (b) Imaging of an off-axis point object P. The Gaussian imageisat P’. CRisthe
off-axis chief ray, MRisthe off-axis marginal ray.

image, is called the exit pupil (ExP). The object rays reaching its image appear to be
limited by the exit pupil. Since the entrance and exit pupils are images of the stop by the
surfaces that precede and follow it, respectively, the two pupils are conjugates of each
other for the whole system; i.e., if one pupil is considered as the object, the other is its
image formed by the system.
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1.3 Wave and Ray Aberrations 3

An abject ray passing through the center of the aperture stop and appearing to pass
through the centers of the entrance and exit pupilsis called the chief (or the principal) ray
(CR). An object ray passing through the edge of the aperture stop is called amarginal ray
(MR). The rays lying between the center and the edge of the aperture, and, therefore,
appearing to lie between the center and edge of the entrance and exit pupils, are caled
zonal rays.

It is possible that the stop of a system may also be its entrance and/or exit pupil. For
example, a stop placed to the left of alensis also its entrance pupil. Similarly, a stop
placed to theright of alensisaso its exit pupil. Finally, a stop placed at asingle thin lens
is both its entrance and exit pupils.

1.3 WAVE AND RAY ABERRATIONS

In this section, we define the wave aberration associated with aray and relate it to its
transverse ray aberration in an image plane. The optical path length of aray in amedium
of refractive index nis equal to ntimes its geometrical path length. If rays from a point
object are traced through the system and up to the exit pupil such that each one travels an
optical path length equal to that of the chief ray, the surface passing through their end
points is called the system wavefront for the point object under consideration. If the
wavefront is spherical with its center of curvature at the Gaussian image point, we say
that the Gaussian image is perfect. If, however, the wavefront deviates from this
Gaussian spherical wavefront, we say that the Gaussian image is aberrated. The optical
deviation (i.e., geometrical deviations times the refractive index n of the image space) of
the wavefront along a certain ray from the Gaussian spherical wavefront is called the
wave aberration of that ray. It represents the difference between the optical path lengths
of the ray under consideration and the chief ray in traveling from the point object to the
reference sphere. Accordingly, the wave aberration associated with the chief ray is zero.
The wave aberration associated with aray is positive if it has to travel an extra optical
path length, compared to the chief ray, in order to reach the Gaussian spherical
wavefront. The Gaussian spherical wavefront is also called the Gaussian reference
sphere.

Figures 1-2a and 1-2b illustrate the reference sphere S and the aberrated wavefront W
for on- and off-axis point objects whose Gaussian images lieat Py and P’, respectively.
The coordinate system is also illustrated in these figures. We choose a right-hand
coordinate system such that the optical axis lies along the z axis. The object, entrance
pupil, exit pupil, and the Gaussian image lie in mutually parallel planes that are
perpendicular to this axis, with their origins lying along the axis. We assume that a point
object such as P lies along the x axis. The zx plane containing the point object and the
optical axisiscalled the tangential or the meridional plane. The Gaussian image P’ lying
in the Gaussian image plane along its x axis aso lies in the tangentia plane. This may be
seen by a consideration of atangential object ray and Snell's law according to which the
incident and refracted or reflected rays at a surface lie in the same plane. The chief ray
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OPTICAL ABERRATIONS
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Figure 1-2a. Aberrated wavefront for an on-axis point object F,;. The reference
sphere S of radius of curvature R is centered at the Gaussian image point P;. The
wavefront W and reference sphere pass through the center O of the exit pupil ExP.
A right-hand Cartesian coordinate system showing x, y, and z axes is illustrated,
where the 7 axis is along the optical axis of the imaging system. Angular rotations o,
B, and vy about the three axes are also indicated. CR, is the chief ray, and a general
ray GR, is shown intersecting the Gaussian image plane at F;’.
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Figure 1-2b. Aberrated wavefront for an off-axis point object P. The reference
sphere S of radius of curvature R is centered at the Gaussian image point P’. The
value of R in this figure is slightly larger than its value in Figure 1-2a. GR is a
general ray intersecting the Gaussian image plane at the point P”’. By definition,
the chief ray (not shown) passes through O, but it may or may not pass through P’.
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1.4 Defocus Aberration 5

always lies in the tangential plane. The plane normal to the tangential plane but
containing the chief ray is called the sagittal plane. As the chief ray bends when it is
refracted or reflected by an optical surface, so does the sagittal plane.

Consider an image ray such as GR in Figure 1-2b passing through a point Q with
coordinates (X, Yy, z) on the reference sphere of radius of curvature R centered at the image
point. We let W(x, y) represent its wave aberration nQQ, since z is related to x and y by
virtue of Q being on the reference sphere. It can be shown that the ray intersects the
Gaussian image plane at a point P”” whose coordinates with respect to the Gaussian
image point P’ are approximately given by

(1-1)

X Yi) = B(BW 8Wj

nl{ax oy

[Equation (1-1) has been derived by Mahajan, Born and Wolf, and Welford. However,
Welford uses asign convention for the wave aberration that is opposite to ours.)

The displacement P;P;” in Figure 1-2a (or P’P”’in Figure 1-2b) of aray from the
Gaussian image point is called its geometrical or transverse ray aberration, and its
coordinates (x;, y;) in the Gaussian image plane relative to the Gaussian image point are
called its ray aberration components. Since a ray is hormal to a wavefront, the ray
aberration depends on the shape of the wavefront and, therefore, on its geometrical path
difference from the reference sphere. The division of Wby nin Eq. (1-1) converts the
optical path length difference into geometrical path length difference. When an image is
formed in free space, as is often the case in practice, then n = 1. The angle 8 = P;P;7/R
between theideal ray QR; and the actual ray QR;” is called the angular ray aberration.

The distribution of rays from a point object in an image plane is called the ray spot.
(Such diagrams are discussed in Chapter 7.) When the wavefront is spherical with its
center of curvature at the Gaussian image point, then the wave and ray aberrations are
zero. In that case, al of the object rays transmitted by the system pass through the
Gaussian image point, and the image is perfect. We shall refer to W(x, y) as the wave at
aprojected point (x, y) in the plane of the exit pupil. If (r,8) represent the corresponding
polar coordinates, they are related to the rectangular coordinates according to

(x,y) = r(cos®, sing) . (1-2)

1.4 DEFOCUSABERRATION

We now discuss defocus wave aberration of a system and relate it to its longitudinal
defocus. Consider an imaging system for which the Gaussian image of a point object is
located at R. As indicated in Figure 1-3, let the wavefront for this point object be
spherical with a center of curvatureat P, (due to field curvature discussed in Section 1.6)
such that P, lies on the line OP, joining the center 0 of the exit pupil and the Gaussian
image point B. The aberration of the wavefront with respect to the Gaussian reference

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



6 OPTICAL ABERRATIONS
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Figure 1-3. Wavefront defocus. Defocused wavefront W is spherical with a radius of
curvature R centered at P,. The reference sphere S with a radius of curvature z is
centered at P;. Both W and S pass through the center O of the exit pupil ExP. The
ray @, P, is normal to the wavefront at Q,. OB represents the sag of Q,.

sphere is its optical deviation from it. This deviation is given by nQ,0,, where n is the
refractive index of the image space and Q,0, as indicated in the figure, is approximately
equal to the difference in the sags of the reference sphere and the wavefront at a height r.
(The sag of a surface at a certain point on it represents its deviation at that point along its
axis of symmetry from a plane surface that is tangent to it at its vertex). Thus, the defocus
wave aberration at a point Q, at a distance r from the optical axis is given by

W(r) = i(l ~ -l-]rz ; (1-3a)

z and R are the radii of curvature of the reference sphere S and the spherical wavefront
W centered at A and P, respectively, passing through the center O of the exit pupil, and
r is the distance of Q, from the optical axis. We note that the defocus wave aberration is
proportional to r?.If z= R, then Eq. (1-3a) may be written

W(r) = ———r" , (1-3b)

where A =z —R is called the longitudinal defocus. We note that the defocus wave
aberration and the longitudinal defocus have numerically opposite signs. The ray
aberrations corresponding to a defocus wave aberration are discussed in Chapter 7.

A defocus aberration is also introduced if the image is observed in a plane other than

the Gaussian image plane. Consider, for example, an imaging system forming an
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1.5 Wavefront Tilt 7

aberration-free image at the Gaussian image point P, (note that the Gaussian image is
now located at B,). Thus, the wavefront at the exit pupil is spherical passing through its
center Q with its center of curvature at P,. Let the image be observed in a defocused
plane passing through a point B, which lies on the line joining Q and B,. For the
observed image at B, to be aberration free, the wavefront at the exit pupil must be
spherical with its center of curvature at B,. Such awavefront forms the reference sphere
with respect to which the aberration of the actual wavefront must be defined. The
aberration of the wavefront at a point Q; on the reference sphere is given by Egs. (1-3a)
and (1-3b).

If the exit pupil iscircular with aradius a, then Eq. (1-3b) may be written
W(p) = Byp® , (1-30)

where p =r/a is the normalized distance of a point in the plane of the pupil from its
center and

By = —nA/8F?2 (1-3d)

represents the peak value of the defocus aberration with F = R/2a as the focal ratio or
the f-number of the image-forming light cone. Note that a positive value of By impliesa
negative value of A. Thus, an imaging system having a positive value of defocus
aberration A can be made defocus free if the image is observed in a plane lying farther
from the plane of the exit pupil, compared to the defocused image plane, by a distance
8B,4F2/n. Similarly, a positive defocus aberration of By = — nA/8F 2isintroduced into
the system if the image is observed in a plane lying closer to the plane of the exit pupil,
compared to the defocus-free image plane, by adistanceA.

1.5 WAVEFRONT TILT

Now we describe the relationship between a wavefront tilt and the corresponding tilt
aberration. Asindicated in Figure 1-4, consider a spherical wavefront centered at P, in
the Gaussian image plane passing through the Gaussian image point B. The wave
aberration of the wavefront at Q, isits optical deviation nQ,Q, from areference sphere
centered at R,. Itisevident that, for small values of the ray aberration RP,, the wavefront
and the reference sphere are tilted with respect to each other by an angle . The
wavefront tilt may be due to distortion discussed in Section 1.6 and/or due to an
inadvertently tilted element of the imaging system. The ray and the wave aberrations can

be written

X, = RB (1-9)
and

W(r,8) = nfrcosd |, (1-5q)
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8 OPTICAL ABERRATIONS
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Figure 1-4. Wavefront tilt. The spherical wavefront W is centered at P, while the
reference sphere S is centered at P,. Thus, for small values of RP,, the two
spherical surfaces aretilted with respect to each other by a small angle B = P,P,/R,
where R istheir radiusof curvature. Theray Q,P, isnormal to the wavefront at Q.

respectively, where PP, = x; and (r, ) are the polar coordinates of the point Q,. Both
the wave and ray aberrations are numerically positive in Figure 1-4.

Once again, for a system with a circular exit pupil of radius a, Eq. (1-5) may be

written

W (p,0) = naBpcosd (1-5b)
or

W(p,6) = B pcosb , (1-5¢)

where B, =naf is the peak value of the tilt aberration. Note that a positive value of B,
implies that the wavefront tilt angle B is also positive. Thus, if an aberration-free
wavefront is centered at P,, then an observation with respect to R, as the origin implies
that we have introduced atilt aberration of B, p cose.

1.6 ABERRATION FUNCTION OF A ROTATIONALLY SYMMETRIC
SYSTEM

The aberration function W(r,6; h’) of an optical imaging system with an axis of
rotational symmetry depends on the object height h or the image height h' from the
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1.6 Aberration Function of a Rotationally Symmetric System 9

optical axis, and pupil coordinates (r, 9] of a point in the plane of the exit pupil, through

three rotational invariants h’*, r*, and h’r cos®. The aberration terms of degree 4 in the

rectangular coordinates of the object and pupil points are called primary aberrations.

Thus, the primary aberration function consists of a sum of five terms, e.g.,
r. 3 5. ¥ 2

W(r.0:h') = qagr*+ ay,h'r’ cos® + yaxh">r? cos” @ (1-6)

2.2 3
+ 5a,,h""r" + ya,,h" ' cosO

where the subscripts of the aberration coefficients ;a ; represent the powers of h', r,and
cos 0, respectively. Note that there is no term in #’* since the aberration of the chief ray
(r = 0) must be zero. Since the wave aberration W has dimensions of length, the
dimensions of the coefficients ;a ;. are inverse length cubed. The order of an aberration
term is equal to the sum of the powers of h” and r, i.e.. it is equal to its degree in the
(.r, _}') coordinates of the object (or its image) and pupil points. Since the order of a
primary aberration is 4, they are called the fourth-order wave aberrations. They are also
called the Seidel aberrations. Since the ray aberrations are related to the wave aberrations
by a spatial derivative [see Eq. (1-1)], their degree is lower by one. Accordingly, the
primary aberrations are also called the third-order ray aberrations. The coefficients (a,q,
1031+ 2827, 205, and sap, represent the coefficients of spherical aberration, coma,
astigmatism, field curvature, and distortion, respectively.

From Eq. (1-6), we note that only spherical aberration is independent of the object or
image height. The field curvature, in its dependence on the pupil coordinates (r, 9), is like
the defocus aberration discussed in Section 1.4. However, the field curvature represents a
defocus aberration that depends on the field A°, thus requiring a curved image surface for
its elimination. On the other hand, pure defocus aberration, such as that produced by
observing the image in a plane other than the Gaussian image plane. is independent of the
field h’. Similarly, distortion depends on the pupil coordinates as a wavefront tilt.
However, distortion depends on the field as h’3, but the wavefront tilt produced by a
tilted element in the system would be independent of A”.

For simplicity, we will use the notation a,, a., a,, a, (d for defocus), and a, (1 for
tilt) to represent the coefficients of spherical aberration, coma, astigmatism, field
curvature, and distortion, respectively. For an optical system with a circular pupil of
radius a. we can use the normalized radial variable p=r/a. suppress the explicit
dependence on image height /', and write the primary aberration function in the form

W (p.0) = Ap* + A‘.p3 cosB + A(,p2 cos? 0 + Adp2 + A,pcos® (1-7)
where A; are the peak aberration coefficients given by
A, = aa*, A, = aWd® A, = aW?a* Ay = a;h’%a* A, = ahPa . (1-8)

5 § L&

It should be clear that, since 0<p<1 and 0<80 < 2x, a peak aberration coefficient A;,
as the name implies, represents the maximum value of the corresponding aberration. This
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OPTICAL ABERRATIONS

value occurs at a point on the edge of the pupil, i.e., for a marginal ray with 6 =0, With
the image height suppressed, the field curvature and distortion coefficients A, and A,
are similar to the corresponding defocus and tilt coefficients B, and B,, respectively,
considered in Sections 1.4 and 1.5.

1.7 EFFECT OF CHANGE IN APERTURE STOP POSITION ON THE
ABERRATION FUNCTION

Now we consider how the primary aberration function of a system changes due to a
change in the position of its aperture stop. We remind ourselves that the wave aberration
associated with a ray represents the difference between its optical path length and that of
the chief ray in traveling from a point object to the reference sphere. Moreover, the chief
ray is that object ray that passes through the center of the aperture stop. Hence, since the
chief ray changes as the position of the aperture stop is changed, the wave aberration of a
ray also changes.

Consider, as indicated in Figure 1-5, an optical imaging system forming an image P’
of an off-axis point object, at a height 4’ from the optical axis. Let the aperture stop of
the system be located at a position such that its exit pupil is located at ExF. Let the
primary aberration function of the system be given by Wy, (.r,.y,:h’) representing the
aberration of an image-forming ray passing through a point (x, v) in the plane of the exit
pupil with respect to the chief ray O;P’ passing through the center O, of the exit pupil.

Now, suppose we move the aperture stop to a new position along the optical axis
such that the corresponding new exit pupil is located at ExP, with its center at O,. A

ExP,

_T_ Q;(x4, ¥4) l

—
&
5 5

| Ly

%

Figure 1-5. Exit pupils ExP, and ExP, corresponding to two positions of the
aperture stop of an optical system forming a Gaussian image P’ of an off-axis point
object P (not shown). The chief rays CR, and CR, are for the pupils ExP, and
ExP, , respectively.
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1.7 Effect of Change in Aperture Stop Position on the Aberration Function 11

change in the stop position does not change the position of theimage P’. Let L, and L,
be the axial distances of the Gaussian image plane from the planes of the exit pupils ExR
and EXP,, respectively. The chief ray O,P” (or its extension) intersects the plane of exit
pupil ExP, at O; with rectangular coordinates (xO, 0), where from similar triangles
0,0,0; and O,R;P’ one finds that

hl

Xg = —
o7

(L-L) . (1-9)

Note that the y coordinate is zero because it lies on the chief ray, which in turn liesin the
tangential plane zx.

The aberration of aray QP’ with respect to the chief ray O,P’ represents the
aberration at apoint Q; with respect to the aberration at O, (which is zero by definition).
Itis also equal to the aberration of the ray QP” at Q, with respect to the aberration at
05, where Q, represents the point of intersection of the ray with the plane of the exit
pupil ExB. It is evident from the geometry of Figure 1-5 that

(X1:Y1) = II:_; (Xz —Xo Y2) , (1-10)

where (X,,Y,) are the coordinates of Q, with respect to O, as the origin. Thus, the
aberration at Q, with respect to its value at O; may be obtained by substituting Eq. (1-
10) into the expression for W, (X, 1), i.€.,

Wo, (X2, Vo) = WQl“_i (X2 = o, yz)} - (1-11))

Note that the aberration function referred to the new exit pupil is zero at (XO, 0). In order
that the aberration at the center O, of the new exit pupil be zero, we define a new
aberration function W (x,, y,; ) with respect to the new chief ray O,P” (not shown in
Figure 1-5), i.e.,

W (X27 Yo h,) = WQ2 (X27 y2) _WQZ (0’ O)

- WQ1|:|I:_2(X2 — Xo» YZ):| _ng(— XoLl/LZ, 0) . (1-12)

Let the primary aberration function at ExP, be given by
-y 2, ,2\2 , 2, .2 /2.2
W, (%, Yo 1) = agl(x1 + yl) +agh xl(x1 + y1)+ ayh’ 2 x;

+agh’?(x? + y2) + agh®x . (1-13)
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12 OPTICAL ABERRATIONS

Substituting Eq. (1-13) into Eg. (1-12) and noting from Figure 1-5 that the ratio of the
radii of the two exit pupilsis equal to the ratio of their distances from the Gaussian image
plane, we can show that the old and the new peak aberration coefficients are related to
each other according to

Ag = Ag (1-144)

A, = Aq—4bAg (1-14b)

A, = Ay —2bAg+4b%Ay (1-14c)

Az = An—bAq+2b°Ag (1-14d)
and

Ap = Aq—2b(Ay + Ag) + 30°Ay —4D%Ay (1-14e)
where

b=(L-L)h/alL, . (1-15)

In Eq. (1-15), & isthe radius of the exit pupil ExR . It is evident from Egs. (1-14) that,
because of a shift in the position of the aperture stop, an aberration of a certain order in
pupil coordinates introduces aberrations of all lower orders as well. For example, aterm
in spherical aberration not only gives spherical aberration, but also introduces coma,
astigmatism, field curvature, and distortion. From Eq. (1-144a), we note that the peak
spherical aberration of a system is independent of the position of its aperture stop.
Equation (1-14b) shows that if a system is free of spherical aberration, then the peak
value of its comais independent of the position of its aperture stop. It also shows that if
spherical aberration is not zero, its coma can be made zero by selecting an aperture stop
position corresponding to
aa

b=a o Lg% (1-16)
47y L, day

Similarly, Egs. (1-14c) and (1-14d) show that if a system is free of spherical aberration
and coma, then the peak values of its astigmatism and field curvature are independent of
the position of its aperture stop. Finally, Eqg. (1-14e) shows that the peak value of
distortion depends on the position of the aperture stop unless spherical aberration, coma,
and the sum of astigmatism and field curvature are each zero.

It should be noted that the optical path length of a ray, or its optical path length
difference with respect to another, does not change with a change in the position of the
aperture stop. However, since the chief ray does change, the new aberration function
merely describes the wave aberrations of rays with respect to the new chief ray. The
position of the aperture stop also affects which and how many of the object rays are
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1.8 Aberrations of a Spherical Refracting Surface 13

transmitted by the system. Indeed, for high-quality imaging systems, a lens designer
chooses the position of the aperture stop judicioudly so that rays with large aberrations are
blocked by it without a substantial loss in the amount of transmitted light.

An example of the utility of an appropriate position of the aperture stop is considered
in Chapter 4, where it is shown that a spherical mirror with aperture stop located at its
center of curvature suffers only from spherical aberration and field curvature. Coma,
astigmatism, and distortion, which may be present for any other position of the aperture
stop, areidentically zero for this specific location. Indeed, such alocation of the aperture
stop forms the basis of the Schmidt camera discussed in Chapter 5.

1.8 ABERRATIONSOF A SPHERICAL REFRACTING SURFACE

In this section, we discuss imaging by a spherical refracting surface. We give
equations for Gaussian imaging and expressions for its primary aberrations for an
arbitrary position of its aperture stop. The results given here form the cornerstone for
imaging results for a spherical mirror, which can be obtained immediately, asindicated in
Chapter 4. Asillustrated in Figure 1-6, consider a spherical refracting surface SSof radius
of curvature R separating media of refractive indices nand n'. The line joining its vertex
V;, and its center of curvature C is called the optical axis.

Consider a point object P at a distance Sfrom the vertex and at a height h from the
optical axis. Let P' be its Gaussian image at a distance S and a height h’. The
relationships between the distances and heights of the object and image points are given
by Gaussian optics according to

n n n—n
——— = 1-17
s s R (1-178)
n n’
- - - 1-17b
=T (1-17)
and
h’ S -R
M, = — = 1-18
t h S_R ( Q)
_ns (1-18b)
n’s

where f and f’ are the left and the right focal lengths of the refracting surface and M is
the transverse magnification of the image. Here f represents the object distance S such
that the image distance S’ isinfinity. Similarly, f’ representstheimagedistance S’ such
that the object distance Sis infinity. The height of an object or image below the optical
axisis considered numerically negative. (See the Appendix for sign convention.)
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14 OPTICAL ABERRATIONS

AS
ExP

| ©)s s I

Figure 1-6. Imaging by a spherical refracting surface SS of radius of curvature R
having its center of curvature at C, separating media of refractive indicesn and n’.
The Gaussian image planelies at a distance L from the aperture stop and, therefore,
its collocated exit pupil. The undeviated ray helps locate the image P’ of a point
object P.

In Figure 1-6, the aperture stop is also the exit pupil of the imaging system. The
image lies at adistance L from the exit pupil. Theray PBP’ passing through the center O
of the aperture stop, which is also the exit pupil, is called the chief ray for the point object
P. The aberration of aray PAP’ incident at a point A on the refracting surface and
passing through a point Q in the plane of the exit pupil with polar coordinates (r, 6) with
respect to the chief ray PBP’ isgiven by

W(A) = [PAP’]-[PBP’] ,

where the square brackets indicate an optical path length. It should be noted that the rays
PA and PB from the point object P incident at points A and B, respectively, on the
refracting surface, may not pass through the Gaussian image point P’ after refraction
unless the image at P is aberration free. It can be shown that, up to the fourth order in
pupil and object or image coordinates, the aberration W (A) =W/(Q) reducesto

W(r,6;h) = agr* +agh'r®cosd + a,h'?r? cos’6

(1-19)
+agh’?r?+ah’cosd
where
nin-n(1 1 ' on+n
ag = ————5—|=—-—=||=- , 1-20
T CH I (20
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1.8 Aberrations of a Spherical Refracting Surface 15

as = (S/L)*a, | (1-21a)

as = 4dag (1-21b)

a,, = 4d’ag (1-210)
n’(n”—n

ag = 2d’ag- 4(n RLZ) (1-21d)
n(n"-n)d

a, = 4d%ag (2n RLZ) (1-21€)

and
d = ﬂ ) (1-22)
S-R

Note that L is (approximately) the radius of curvature of the reference sphere passing
through the center of the exit pupil with its center of curvature at P’. Equation (1-19)
gives the wave aberration at a point (r, e) in the plane of the exit pupil for a point object
whose Gaussian image height is h’.

The second term on the right-hand side of Eq. (1-21d) may be called the coefficient
of Petzval curvature, and we denoteitby a,, i.e,

n'(n’ —n)
= —-—— . 1-23
P 4nRL? (1-23)
The corresponding wave aberration may be written
,2,.2
W, (r) = a,h™r® . (1-24)

This aberration reduces to zero if the image is observed at a (longitudinal) distance A,
from the Gaussian image, where A, is related to the aberration according to Eq.(1-3b),
i.e.,

Wy(r) = ——5r? = =W, (r) . (1-25)

If the image is observed on a spherical surface of radius of curvature R, passing through
the axial image point Pj, the longitudinal defocus A, for a Gaussian image at a height
h” isgiven by its sag
’2
A = h . (1-26)

2R,

Comparing the values of A, from Egs. (1-25) and (1-26), and utilizing Egs. (1-23) and
Eqg. (1-24), we obtain
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16 OPTICAL ABERRATIONS

R, = : (1-27)

We note that R, called the Petzval radius of curvature, is independent of the object
position. The image surface under consideration is called the Petzval image surface. From
Egs. (1-21c), (1-21d), and (1-27), we may write

’

n

P8 T R
p

(1-28)

We will utilize Eq. (1-28) in Section 7.7 where we relate the Petzval surface to the
sagittal and tangential image surfaces that result from astigmatism.

Letting h” =0 in Eq. (1-19), we note that the image P; of an axial point object R,
suffers from spherical aberration only. The amount of spherical aberration does not
change as we move from an on-axis to an off-axis point object. Note that when the
aperture stop and, therefore, the exit pupil are located at the refracting surface, then
L =S and Egs. (1-21a) and (1-22) reduceto ag=asand d = R/(S —R), respectively.

It is evident from Eg. (1-20) that a,=0 when S =(n+n’)R/n, which in turn
corresponds to S=(n+n)R/n’. Accordingly, ag, a., and a, are all zero. Two
conjugate points for which spherical aberration, coma, and astigmatism are zero are
called anastigmatic. Depending on whether Ris positive or negative, the object or the
image point is virtual for these anastigmatic points. We note that spherical aberration is
also zero when S'=R and S=R. However, in this case, coma is aso zero, but
astigmatism is not due to the d, factor on the right-hand side of Eq. (1-21c). Two
conjugates for which spherical aberration and coma are zero are caled aplanatic. Thus,
the points under consideration are aplanatic, and, once again, either the object or the
imageisvirtual.

1.9 ABERRATION FUNCTION OF A MULTIELEMENT SYSTEM

Consider an optical system made up of a series of coaxial refracting and/or reflecting
surfaces. Each surface produces primary aberrations with its own value of h” and L. The
image of a point object formed by the first surface acts as an object for the second
surface, and so on. The aberration is calculated surface by surface, and the aberration of
the system is obtained by adding the aberration contributions of al the surfaces. Since the
aberration of a surface is calculated at a point on its exit pupil, the coordinates of a pupil
point must be transformed using pupil magnification of a surface to obtain the aberration
contribution of a surface at a point on the exit pupil of the system. Similarly, image
magnification of a surface can be used to obtain the system aberration in terms of the
height of the image formed by the system.

For example, if W, (x,,y;; hy) represents the aberration at a point (X, Y1) in the plane
of the exit pupil of the first surface for an image of height hy/, it can be converted to an
aberration contribution at a point (X,,Y,) in the plane of the exit pupil of the second
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1.10 Summary 17

surface and image height h; by letting (x;,y5; 1Y) =(X,/ My, y,/My; /M), where m,
and M, represent the pupil and image magnifications, respectively, for the second surface.
Thus if Wa(Xy,Ys; hg) represents the aberration contribution of the second surface at a
point (X,,Y,) in the plane of its exit pupil corresponding to an image height of h;, the
total aberration for the two surfaces will be given by

’

- X2 Y. h e
Ws(xzy Yo hz) = Wl(szv HZZ M_sz +W,(X5,¥0:05) . (1-29)
This process can be continued to obtain the system aberration W(x, Y, h’) at apoint (X, y)
in the plane of the exit pupil of the system corresponding to aheight h” of the image of a
point object formed by the system. It is utilized, for example, to calculate the aberrations
of athin lensin Chapter 2 and a plane-parallel plate in Chapter 3.

Since the refractive index of a transparent substance varies with optical wavelength,
the angle of refraction of aray also varies with it. Hence, even the Gaussian image of a
multiwavelength point object formed by a refracting system is generally not a point. The
distance and height of the image vary with the wavelength. The axial and transverse
extents of the image are called longitudinal and transverse chromatic aberrations,
respectively. They describe the chromatic change in position and magnification of the
image, respectively. The monochromatic aberrations of arefracting system also vary with
the wavelength, but such avariation is small for a small change in the wavelength and is
usually negligible.

110 SUMMARY

The Gaussian image of a point object formed by an optical system is obtained by
using Gaussian optics. The images of the aperture stop of the system by the system
elements that precede and follow it are called its entrance and exit pupils, respectively.
Whereas the entrance pupil determines the amount of light entering the system, the exit
pupil determines how this light is distributed in the diffraction image. The optical
wavefront (i.e., a surface of constant phase) exiting from the exit pupil is determined by
tracing rays from the point object such that they all travel exactly the same optical path
length as a ray, called the chief ray, travels in reaching the center of the pupil. If the
wavefront is spherical with its center of curvature at the Gaussian image point, an
aberration-free or diffraction-limited image is formed. For acircular exit pupil, the image
is called the Airy pattern. Based on geometrical optics, the image formed is a point, as all
of the rays pass through the Gaussian image point.

If the wavefront is not spherical, then its deviations along the rays from a
corresponding spherical surface, called the Gaussian reference sphere, are called the wave
aberrations of the rays. The wave aberration associated with aray is numerically positive
if it travels alonger optical path length than the chief ray to reach the reference sphere.
An aberrated image is obtained in this case, the rays do not all pass through the Gaussian
image point, and their distribution in the image plane is called a spot diagram. The
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18 OPTICAL ABERRATIONS

distance of aray from the Gaussian image point is called the transverse ray aberration.
The actual light distribution is referred to as the diffraction image. The wave and ray
aberrations are related to each other according to Eq. (1-1). Whereas a wavefront tilt
aberration varies linearly with the coordinates of a pupil point (in the plane of the exit
pupil), a wavefront defocus aberration varies quadratically with the distance of the pupil
point from its center.

The optical path length of aray does not change when the location of the aperture
stop is changed, but, since the chief ray changes, their aberrations with respect to it also
change. The position of the aperture stop also affects which and how many of the rays are
transmitted by the system. The size of the aperture stop is adjusted so that the amount of
light from an axial point object remains unchanged. While the peak value of spherical
aberration does not change, the coefficients of the other aberrations can and do change.
Indeed, a lens designer chooses the position of the aperture stop judiciously so that the
rays with large aberrations are blocked by it, without a substantial loss in the amount of
transmitted light.

APPENDIX: SIGN CONVENTION

Although there is no universally accepted standard sign convention, we will use the
Cartesian sign convention. It has the advantage that there are no specia rules to
remember other than those of a right-handed Cartesian coordinate system. Our sign
convention is the same as that used by Mouroulis and Macdonald, but it is slightly
different in its implementation from those of Born and Wolf, Welford, and Schroeder. It
is different from the sign convention used, for example, by Jenkins and White, Klein and
Furtak, and Hecht and Zajac. The rules of our sign convention are listed below.

1. Lightisincident on asystem from left to right.

2. Distancesto the right of and above (left of and below) a reference point are positive
(negative).

3. The radius of curvature of a surface is treated as the distance of its center of
curvature from its vertex. Thus, it is positive (negative) when the center of curvature
liesto theright (left) of the vertex.

4. The acute angle of aray from the optical axis or from the surface normal is positive
(negative) if it is counterclockwise (clockwise).

5. When light travels from right to left, as when it is reflected by an odd number of
mirrors, then the refractive index and the spacing between two adjacent surfaces are
given anegative sign.

Throughout the book, any quantities that are numerically negative are indicated in the
figures by a parenthetical negative sign (-).
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CHAPTER 2
Thin Lens

2.1 INTRODUCTION

Among the simple optical imaging systems, a thin lens consisting of two spherical
surfaces is the most common as well as practical. By applying the results of Section 1.8
and the procedure of Section 1.9, we give the imaging equations and expressions for the
primary aberrations of athin lens with aperture stop located at the lens. Its aberrations for
other locations of the aperture stop may be obtained by applying the results of Section 1.7
to those given here. It is shown that when both an object and its image are real, the
spherical aberration of a thin lens cannot be zero (unless its surfaces are made
nonspherical). Weillustrate by a numerical example, however, that it is possible to design
atwo-lens combination such that its spherical aberration and coma are both zero. In such
a combination, these aberrations associated with one lens cancel the corresponding
aberrations of the other. This cancellation isillustrated with anumerical example.

2.2 GAUSSIAN IMAGING

Consider a thin lens of refractive index n and focal length f’ consisting of two
spherical surfaces of radii of curvature R, and R, asillustrated in Figure 2-1. A lensis
considered thin if its thickness is negligible compared to f’, R, and R,. Its optical axis
OA isthelinejoining the centers of curvature C, and C, of its surfaces. Since the lensis
thin, we neglect the spacing between its surfaces. We assume that its aperture stop ASis
located at the lens, so that its entrance and exit pupils EnP and ExP, respectively, are aso
located there. The lensislocated in air; therefore, the refractive index of the surrounding
mediumis 1.

Consider a point object P located at a distance Sfrom the lens and at a height h from
its axis. The first surface forms the image of P at P’ and the second surface forms the
image of P” at P”". Applying the results of Section 1.8 to imaging by the two surfaces of
thelens, where n=1and n’ = n for thefirst surfaceand n=n and n” =1 for the second
surface, we can show that the image distance S'and its height h” are given by the

relations
1 1 1 1
—-==Mm-)|=-= 2-1
575~ )(Rl sz e
-+ (2-1b)
f
and
h’ S
M=— ==, 2-2
h 3 (2-2)

19
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Figure 2-1. Imaging by a thin lens of refractive index n formed by two surfaces of

radii of curvature R; and R, with their centers of curvature at C; and C,. Whereas
R; isnumerically positive, R, is negative. PP’ isthe Gaussian image of the object
R,P formed by the first surface. ByP” is the image of the virtual object PjP’

formed by the second surface. The aperture stop AS, entrance pupil EnP, and the
exit pupil ExP areall located at thelens.

respectively, where M is the magnification of the image. Note that we are able to write
Eq. (2-1b) because, by definition, the focal length f’ is the image distance when the
object is at infinity.

2.3 PRIMARY ABERRATIONS

The aberration of an object ray PQP" passing through a point Q in the plane of the
exit pupil with polar coordinates (r,8) with respect to the chief ray POP" passing
through the center 0 of the exit pupil is given by

W(Q) = [PQP”] - [POP”]
Noting that the optical path lengths [P’Q] and [P’O] are numerically negative, since they

arevirtual, the aberration of the ray can be written in terms of the aberrations produced
by the two surfaces, i.e.,

W(@Q = {[PQP']-[POP']} +{[P'QP"] — [P'OP"]} .

By applying the results of Section 1.8 to the two surfaces of the thin lens and following
the procedure of Section 1.9, it can be shown that the primary aberration function of the
thin lensis given by

W(r,6;h") = ag® +ah'r®cosd +a,h?r?cos’0 + agh'?r> +ah’®rcos® ,  (2-3)
where
ag = — = n® +(3n+2)(n—1)p2+&2q2+4(n+1)pq (2-44)
s 2n(n-0f3| n-1 n-1 ‘
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2.4 Spherical Aberration and Coma 21

a, = —ﬁ[&nﬂ)m:—iq} : (2-4b)

. -
and

ay = % a, — Fls’z (2-4d)

Note that there is no distortion term in Eq. (2-3); i.e., athin lens with an aperture stop at
the lens does not produce any distortion. The quantities p and q are called the position
and shape factors of athin lens, respectively. They are given by

p=- 2; -1 (2-59)
2f
=1- 2-5b
5 (2:5b)
and
_ R, +R 26
q —RZ_Rl . (2-6)

Several examples of the position and shape factors are illustrated in Figures 2-2 and
2-3, respectively. Both positive and negative lenses (in the sense of the sign of their focal
length) are considered in these figures. The names associated with the different lens
shapes are also noted in Figure 2-3.

We note from Eqgs. (2-4c) and (2-4d) that astigmatism and field curvature coefficients
of athin lens do not depend on its position and shape factors. Moreover, the astigmatism
coefficient does not depend on the refractive index of the lens, and the field curvature
coefficient is smaller than the astigmatism coefficient by afactor of (n+1)/2n.

24 SPHERICAL ABERRATION AND COMA

From Egs. (2-4a) and (2-4b) we note that the spherical aberration and coma of athin
lens depend on its position and shape factors. For a given position factor, the value of the
shape factor that minimizes the spherical aberration is given by the condition

dag
— =0 . 2-7
daq 21

Thus, we obtain

n-1
n+2

Omin = —2P (2-8)
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S$>0,8<f" S=-o,8=f S=2f 8 =2f
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Figure 2-2. Position factor 1 < p < -1 of a thin lens. (a) Positive lens, i.e., f’ > 0. (b)
Negative lens, i.e., f' < 0. F and F’ are the object- and image-space focal points of a
lens of image-space focal length f. P, and F; represent an axial point object and
its point image, respectively. S and S’ are the object and image distances from the
center of the lens. Note that f =— f”.

(a)
Positive Plano- Equi- Plano- Positive
Meniscus convex convex convex Meniscus
Ry<0,Ry;<0 Ry=e= Ry>0,R,<0 R;>0 RAy>0,R,>0
|Rq|>| Ry Ry<0 Ry =|Ry| Ry=e Ri<Ry
(b)
Negative Plano- Equi- Plano- Negative
Meniscus concave concave concave Meniscus
R{>0,R>0 Ry==,R>0 Ri<0,R;>0 Ry<0 Ry=== R;<0,R;<0
R;>R; Ry =|Rz| [Ra|<| R
g<-1 o= | 0 1 >1

Figure 2-3. Shape factor 1 < g < -1 of a thin lens with spherical surfaces of radii of
curvature R, and R, . (a) Positive lens. (b) Negative lens.

Substituting Eq. (2-8) into Eq. (2-4a), we obtain the corresponding minimum spherical

aberration:

1 n o\ noo2
= - 2| . 2.9
e 32f" [n - i] n+2?’ Lt

Thus, following Eq. (2-4a), we note that, for a given value of p, a, as a function of ¢
follows a parabola with a vertex lying at [q,,,,-”.a_‘.m,-"]. For different values of p, the

parabolas have the same shape but different vertices. It is evident from Eqgs. (2-5a) and
(2-5b) that when both an object and its image are real,
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2.4 Spherical Aberration and Coma 23

-1<p<1 ., o pr<lo. (2-10)

As indicated in Figure 2-2, the case p=—1 corresponds to an object at infinity and
the image at the focal plane of the lens. Similarly, p = 1 corresponds to an object at the
focal plane and the image at infinity. The case p =0 corresponds to object and image
lying at distances of 2f and 2f’, respectively. For spherical aberration to be zero, Eq.
(2-9) yields

2
3 BEHD) (2-11)

(n—1)"

Hence, spherical aberration of a thin lens cannot be zero when both the object and its
image are real.

For a thin lens with a refractive index n = 1.5, Egs. (2-4a), (2-8), and (2-9) reduce to

1 2 2 .
a, = —W(6.75+3.25p +7q +10pq) ; (2-12a)

Guin = —(5/7)p . (2-12b)

and

—4 _3 —2 -1 0 - 2 3 4

Figure 2-4. Parabolic variation of spherical aberration of a thin lens with its shape
factor g for p = 0. How its minimum value varies with g is indicated by the lower
parabolic curve. Several values of p are indicated on this curve.
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24 THIN LENS

. = - ?1,3(9 _ g p2j , (2-120)
respectively. Figure 2-4 shows the parabolic variation of spherical aberration with q for
p=0. The minimum value of spherical aberration corresponds to q=0, i.e., an
equiconvex lens. As pointed out earlier, the variation of spherical aberration with q for
other values of p follows the same parabola except that the location of its vertex
(Glin» @smin) depends on p. The vertices of the parabolas follow the lower parabolic curve
in Figure 2-4, which represents aqmin @ a function of g, obtained by substituting Eq. (2-
12b) into Eg. (2-12c). The solid dots on this curve indicate various values of p. The
minimum value of spherical aberration approaches zero for | p| =4/21 .1t changesitssign
for larger valuesof |p|.

It follows from Eqg. (2-4b) that the coma of athin lensis zero if its position and shape
factors are related to each other according to

_ (2n+)(n-1)
q=--"—T"—0p . (2-13)

For n= 1.5, Egs. (2-4b) and (2-13) reduce to

a, = (4p+5q) (2-14)

1
6f'%S
and

q=-08p , (2-15)

respectively. For p=-1, the values of q giving minimum spherical aberration
(qmin = 0.71) and zero coma (q=—0.8) are approximately the same. Thus, a lens
designed for zero coma for parallel incident light will have practically the minimum
amount of spherical aberration. It is also possible to design and combine two thin lenses
such that the spherical aberration and coma of one cancel the corresponding aberrations
of the other, asillustrated by a numerical example in the next section.

2.5 NUMERICAL PROBLEMS
25.1 Thin LensFocusing a Parallel Beam of Light

Asanumerical example, we determine the radii of curvature of the surfaces of athin
lens of refractive index 1.5 focusing a parallel beam of light at a distance of 15 cm from it
with minimum spherical aberration. According to Eq. (2-5), p=—1 for a parallel beam.
Substituting in Eq. (2-12b), we obtain g, =57 for minimum spherical aberration.
Equation (2-6), therefore, gives

R, _ g+l

ﬁ = q—l = -6 . (2'16)
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2.5 Numerical Problems 25

Since f’=15 cm, Egs. (2-1a) and (2-1b) yield R, =8.75 cm and R, =-52.50 cm,
corresponding to a nearly plano-convex lens with its convex side facing the incident light.
For a lens of diameter 2 cm, the peak value of spherical aberration, according to Eqs. (2-
3) and (2-12c), is given by A; =—0.79 um. The other primary aberrations of the focused
beam can be obtained from Egs. (2-3) and (2-4). Thus, it can be shown, for example, that
the peak values of coma, astigmatism, and field curvature for a parallel beam incident on
the lens at an angle of 5° from its axis, corresponding to an image height of 1.31 c¢m, are
given by A, =028um, A, =-25um, and A, =-2.1um. A thin lens with aperture
stop located at the lens does not produce any distortion. It may be noted that if the lens is
turned around so that its (relatively) planar side faces the incident light, its focal length
does not change. However, its shape factor changes sign, thereby changing both its
spherical aberration as well as its coma.

2.5.2 Aplanatic Doublet Focusing a Parallel Beam of Light

Since spherical aberration of a thin lens varies as f’_'}, it is possible to make it zero
for a combination of lenses having focal lengths of different signs. A doublet designed to
correct for spherical aberration can at the same time be corrected for coma. For example,
we now show that two thin lenses of refractive index 1.5 focusing a parallel beam of light
with radii of curvature 9.2444 cm and —15.5197 c¢m for the first lens, and -9.5618 cm and
- 15.3120 cm for the second lens, give zero spherical aberration and coma with a focal
length of 15 em when placed in contact with each other. Substituting for the refractive
index and the radii of curvature of the lens surfaces into Egs. (2-1), we find that the focal
lengths of the two lenses are given by f = 11.5870 cm and f; = —50.9235 cm. Hence,
the focal length of the doublet given by f’~' ="'+ f;" is f’=15 cm. The shape
factors of the lenses are given by g, = 0.2534 and ¢, = 4.3257. For a parallel beam of
incident light, the position factor for the first lens is given by p, =—1. Substituting for n,
P> and g, into Eq. (2-12a), we find that the spherical aberration coefficient for the first
lens is a, =—-2.1201x 10~ em™. Since the second lens focuses the beam at a distance of
S5 = 15 cm, its position factor is given by p, =1=2f7/S5 or p, =7.7898. Substituting
forn, p,,and g, into Eq. (2-12a), we find that the spherical aberration coefficient for the
second lens is a,, =2.1201 x 10~ em™, which is equal in magnitude but opposite in sign
to the corresponding coefficient for the first lens. Hence, spherical aberration of the
doublet is zero.

Now we consider the coma aberrations produced by the two lenses and the lens
doublet. The first lens focuses the incident parallel beam at a distance S = f;. Equation
(2-14) yields the coma coefficient for the first lens, a,, =2.9281x 10~ cm™. Similarly,
for the second lens, a., =-2.2618x 10~ em™. Now, for a beam incident at an angle 3
from the axis of the thin-lens doublet, the first lens focuses it at a height of i =Bf,". The
second lens forms the image of this focus at a height k5 given by Eq. (2-2), i.e.,
h/hf ==58518, =S5/S/ = f"[f{=1.2946. If [r. [-)] represent the polar coordinates of a
point in the plane of the thin-lens doublet, the coma aberrations produced by the two
lenses are given by
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26 THIN LENS

W (r,8) = aghir® cose
= 2.2618x10 “hjr® cos® (2-17a)
and
W,(r,8) = ag,hsr® coso
= —2.2618x10 *hsr3coso . (2-17b)

The coma aberration of the lens doublet is given by
W,(r,8) = Wy(r,8)+Wy(r,8) =0 . (2-18)

Thus, both spherical aberration and coma of the doublet are zero. Such asystem is called
aplanatic.

Finally, we consider the astigmatism and field curvature aberrations of the lens
doublet. Substituting for the focal length and the image distance for the two lensesin Eq.
(2-4c), we obtain their astigmatism coefficients a, =-3.2141x10 “em 2 and
a,, = 4.3638x 10 °cm . Hence, astigmatism aberration of the doublet at a point (r,8)
inits plane may be written

W (1, 6; 1) = Wan(r, 6; hf) +Wao(r, 6; 1)

a,hy%r? cos? 0 + a,,h5%r? cos® 0

(0.5967a,, + a,,)hs°r* cos®

-1.4815x10 *h5’r?cos’0 . (2-19)

For a beam incident on the doublet at an angle of 5° from its axis, we obtain h; =1.31
cm. Hence, for a beam of diameter 2 cm, the peak value of astigmatism aberration is
approximately given by A, =-2.54 pm. Comparing Egs. (2-4c) and (2-4d), the
corresponding field curvature aberration may be obtained from A, by multiplying it by
(n+1)/2n. Thus, wefind that Ay =-2.12um.

26 SUMMARY

A thin lens generally consists of two spherical surfaces with negligible thickness.
The spherical aberration of such athin lens cannot be zero when an object and its image
are both real. However, since this aberration varies as the cube of the lensfocal length, it
can be made zero by combining two lenses of focal lengths with opposite signs. The
doublet, asit is called, can also be made coma free, and the system is then referred to as
being aplanatic.
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CHAPTER 3
Aberrations of a Plane-Parallel Plate

3.1 INTRODUCTION

In Chapter 2, we considered the imaging properties of a thin lens consisting of two
spherical surfaces. Now, we consider “imaging” by a plane-parallel plate, i.e., a plate
whose two surfaces are parallel to each other, and each with a radius of curvature of
infinity. Unlike alens, such a plate is not used for imaging per se, but it is often used in
imaging systems, for example, as a beam splitter or awindow. The imaging relations and
aberrations of a plane-parallel plate cannot be obtained from those for a thin lens in
Chapter 2 by letting the radii of curvature of its surfaces approach infinity, since we
neglected its thickness. However, as discussed below, they can be obtained by applying
the results of Section 1.8 to its two surfaces and combining the results obtained according
to the discussion of Section 1.9. It is shown that the distance between an object and its
image formed by the plate, called the image displacement, is independent of the object
position, and the aberration produced by it approaches zero as the object distance
approaches infinity. Thus, a plane-parallel plate placed in the path of a converging beam
not only displaces its focus by a certain amount but also introduces aberrations into it. In
the case of a collimated beam, it only shifts the beam without introducing any aberrations.

3.2 GAUSSIAN IMAGING

Consider, as indicated in Figure 3-1, a plane-parallel plate of thickness t and
refractive index n forming an image of a point object lying at a distance Sfrom its front
surface and at a height h from its axis. Let the aperture stop of the plate be of radius a
located at its front surface. First, we determine the location of the image formed by the
plate. Using Egs. (1-17) and (1-18) we determine the location and height of the image.
For the first surface, i, =1, nj =n and R, =+-. Accordingly, it forms the image of P at

P’ such that

S =nS =nS (3-1)
and

My = h/h =nS/ng =1, (3-2)

where h; = h. For the second surface, n, =n, n; =1, R, =, and S, =5 —t. Hence,
it formstheimage of P’ at P” such that

S =S/n=(§-1)n (33)
and

M, = hb/h = nSimS =1 . (3-4)
Substituting for § from Eg. (3-1) into Eq. (3-3) and noting that S, is numerically

27
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28 ABERRATIONS OF A PLANE-PARALLEL PLATE
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Figure 3-1. Imaging of a point object P by a plane-parallel plate of refractive index
n of P’ formed by the second surface of the plate. The aperture stop AS and,
therefore, the entrance pupil EnP of the plate are located at the first surface. A
negative sign in parentheses indicates a numerically negative quantity.

negative, the displacement PP’ of the final image from the object may be written
PP’ = -§ - (-§,-1)
=t(l-1/n) . (35

Thus, the image displacement is independent of the object distance S. It depends only on
the thickness and the refractive index of the plate.

Next, we determine the locations and magnifications of the pupils for the two
surfaces of the plate. Since the aperture stop is located at the first surface, the entrance
pupil EnP of the system is also located there. Moreover, the entrance and exit pupils
EnR, and EXR, for this surface are also located at the surface. The entrance pupil EnR,
for the second surfaceis ExR,. The exit pupil ExP, for this surface is the image of EnP,
formed by it. Thus, letting n, =n, n; =1, s, =-1t, and R, =<, we find from Egs. (1-
17) and (1-18) that EXP, islocated at a distance s, = —t/n from the second surface and
its magnification m, =1. Of course, ExP, is also the exit pupil ExP of the system. It is
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3.3 Primary Aberrations 29

evident that, for the first surface, the distance L, of theimage P’ from EXxP isequal to
its distance § from the surface. For the second surface, distance L, of the image P”
from ExP, isgiven by

L =S-5 . (3-69)
sincel,, S, and s, areadll numerically negative. Substituting for S, and s,, we find that

L, =S . (3-6b)
Now we use the results obtained above to determine the aberrations produced by the
plate.

3.3 PRIMARY ABERRATIONS

First, we determine the aberration W(r;,64;h{) contributed by the first surface at a
point (ry, 8;) inthe plane of ExR, . Letting n; =1, n{ =n, and R, = <o, Eq. (1-20) yields

850 (3-7)

a’Sl=

Moreover, Eq. (1-22) reduces to d, =—1, and since § =L,, Eq. (1-21a) reduces to
ay = ag. The Petzval contributions to field curvature and distortion represented by the
second term on the right-hand side of Egs. (1-21d) and (1-21€) are zero. Hence, for the
first surface, Eq. (1-19) may be written

W(r;,04;1) = asl(rl4 — 4hir’ cos®, + 4hyr” cos® 8 + 20?7 — ahr cose,) . (3--8)

Next, we determine the aberration W, (r,,0,;h5) contributed by the second surface at
apoint (r,,0,) in the plane of ExP,. Letting n, =n, n; =1, and R, =<, Eq. (1-20)
yields for this surface

n’-1

s &9

ap =

Once again, Eq. (1-22) reduces to d, =—1, and the Petzval contributions to field
curvature and distortion are zero. Hence, for the second surface, Eqg. (1-19) may be
written

Wo(r,,0,;05) = aﬁsz(rz4 — 4hyrS cos6, + 4hs%r? cos? 0, + 2hs2r? — 4hs’r, cosez) :
(3-10)

where

Asxp = (SE/LZ)4asz : (3-11)

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



30 ABERRATIONS OF A PLANE-PARALLEL PLATE

Finally, we combine the aberrations introduced by the two surfaces to aobtain the

aberration introduced by the plate. Since m, and M, are both unity, (r,,8,)=(r,,8,) and

5 =h =h, respectively. Hence, following Eq. (1-29), the aberration of the plane-
parallel plate at apoint (r, 6) in the plane of its exit pupil can be written

W(r,0;h) = W(r,6;h) + W,(r,8;h) . (3-12)

Substituting Egs. (3-8) and (3-10) into Eqg. (3-12), we may write the primary aberration

function
W(r,6;h) = as(r4 — 4hr3cosB + 4h’r? cos? 0 + 2h?r? — 4h’r cose) . (313
where
4
a = ag +(S/L) ap (3-14)
Substituting Egs. (3-1), (3-3), (3-6b), (3-7), and (3-9) into Eq. (3-14), we obtain
(n?-1)t 1
ag = —a—— -
*  8n%! (3-13)

Note that the aberration increases linearly with the plate thicknesst. Moreover, as
expected, the aberration reduces to zero for a collimated incident beam (S— — ). This
isindeed why alens designer places beam splitters and windows in an imaging system in
its collimated spaces wherever possible.

3.4 NUMERICAL PROBLEM

As anumerical example we determine the aberrations of a plane-paralel plate placed
in the path of a converging beam as shown in Figure 3-2. The plate has a refractive index
of 1.5. Itsthicknessis 1 cm and its diameter is 4 cm. In the absence of the plate, the beam
comes to afocus at P at a distance of 8 cm from its front surface at a height of 0.5 cm
from its axis. From Eq. (3-5), we find that the plate displaces the image from P to P’
which is at the same height as P but at a distance of 8.33 cm from its front surface.
Substituting for n, t, and S= 8 cm in Eq. (3-15), we obtain a;=1.13x10 *cm 2. Noting
that the maximum value of r is 2 cm, we obtain the peak values of the primary aberrations
introduced by the plate from Eq. (3-13); A;=1.81um, A, =-1.81pm, A, =0.45um,
Ay =0.23um, and A, =-0.11pm.

3.5 SUMMARY

A plane-parallel plate is often used in imaging systems as a beam splitter or a
window. It introduces no aberrations when placed in a collimated space. However, it
introduces aberrations when placed in a converging or a diverging beam of light. The
primary aberrations thus introduced are given by Eq. (3-13). They increase linearly with
the thickness of the plate.
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CHAPTER 4
Aberrationsof a Spherical Mirror

4.1 INTRODUCTION

So far, we have considered refracting imaging systems: a spherical refracting surface
in Chapter 1, athin lens in Chapter 2, and a plane-parallel plate in Chapter 3. Now we
consider the imaging properties of a spherical reflecting surface, i.e., a spherical mirror.
These properties can be obtained in a manner similar to that for a spherical refracting
surface. However, the geometry of the problem is different since now a ray incident on
the surface is reflected back into the same medium containing the incident ray, instead of
being refracted into another medium. Accordingly, it is instructive to draw object and
image rays and not blindly use the imaging and aberration relations appropriate for a
reflecting surface. In this chapter, we give the relations describing the primary aberrations
of a spherical mirror for an arbitrary position of the aperture stop. These relations are
applied to specific cases, one when the aperture stop is located at the mirror and the other
when it is located at its center of curvature. It is shown that, in the first case, field
curvature and distortion are zero. In the second case, coma, astigmatism, and distortion
are zero. A numerical problem illustrates these results.

4.2 PRIMARY ABERRATION FUNCTION

Consider an imaging system consisting of a spherical mirror of radius of curvature R
and focal length f’. Let the aperture stop and the corresponding exit pupil of the system
be located as indicated in Figure 4-1. The line joining the center of curvature C of the
mirror and the center of the aperture stop (and, therefore, the center O of the exit pupil)
defines the optical axis of the system. Consider an object lying at a distance S from the
vertex V, of the mirror. Let the height of an object point P from the optical axis be h. The
distance S" and the height h” of its Gaussian image P’ are given by

1,1_2_1 @)
s s R f
and
h S-R
M=—="—++— 4-2
h S-R (4-23)
=-S/S , (4-2b)

respectively, where M is the magnification of the image.

The aberration W(Q) of an object ray incident at a point A on the mirror passing
through a point Q in the plane of the exit pupil with polar coordinates (r, e) with respect
to the chief ray passing through the center O of the exit pupil is given by

W(Q) = [PAP’]-[PBP’]
33
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34 ABERRATIONS OF A SPHERICAL MIRROR
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Figure 4-1. Imaging by a spherical mirror of radius of curvature R. Thelinejoining
the center of the aperture stop AS and the center of curvature C of the mirror
defines the optical axis OA. The chief ray CR from a point object P passes through
the center of the aperture stop.

It can be shown that, up to the fourth order in pupil and object or image coordinates, the
aberration W(A) =W(Q) reducesto

W(r,6;h") = agr* + ah'r® cosd + a,h'r? cos?0 + agh’’r® + ah’>rcosd ,  (4-3)
where
2
n(l 1
% = ﬁ(ﬁ‘gj ’ (+43
1(1 1Y
= —|=-=] 4-4b
4R(R S') (4-4b)
as = (S/L)*a; (4-50)
a, = 4dag (4-5b)
a, = 4d%g (4-50)
ag = 2d%ag-— |, (4-50)
2RL?
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4.3 Aperture Stop at the Mirror 35

d
a. = 4d%a.-— , 4-5¢
1S SS RL2 ( )
d = R_—S,'H‘ , (4-6)
S-R

and L isthe distance of the Gaussian image plane from the plane of the exit pupil. Thus, it
isnumerically positive in Figure 4-1. We note from the equations given above that, unless
a, is zero, coma, astigmatism, and distortion of a spherical mirror are zero when d = 0.
As discussed in Section 4.4, this happens when the aperture stop of the mirror is located
at its center of curvature. As in the case of a spherical refracting surface, spherical
aberration and coma are zero when the object is located at the center of curvature of the
mirror, i.e.,, when S=-R

Comparing Egs. (4-1)—(4-6) with Egs. (1-17)—(1-22), we note that the results for a
reflecting surface can be obtained from those for arefracting surfaceif welet n=1 (since
themirror isin air), n” =-1 (minus sign representing reflection).

4.3 APERTURE STOP AT THE MIRROR

If the aperture stop islocated at the mirror asin Figure 4-2, then the entrance and exit
pupils are also located there. Accordingly, L=S and ai— a, and d —» R/(S -R).
The primary aberration function given by Eq. (4-3) becomes

1(1 1y, S-R 1
W(r,6; h) = E(E_g) r4+@h’r3cose+@h’2rzcosze . @47

It represents the optical path difference of aray such as PQP’ with respect to the chief
ray PVyP” in Figure 4-2 up to the fourth order in pupil and object (or image) coordinates.
Note that the field curvature and distortion coefficients are zero.

If the object islocated at infinity, asin astronomical observations, then

S =R2=f (4-8)

d=-2. (4-9)

If it liesat an angle B from the optical axis, then

h = —Bf’ . (4-10)

Substituting Egs. (4-8)—(4-10) into Eq. (4-7), we obtain the primary aberration function
for a spherical mirror for an object at infinity at an angle  from its optical axis:

1 4

—QF I+ 1 1
32f3 4f72

Ws(r,6;B) = o

B%r2cos’0 . (4-11)

Br 3 cosd +
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Figure 4-2. Same as Figure 4-1 except that the aperture stop islocated at the mirror
surface and axial imaging is also shown.

4.4 APERTURE STOP AT THE CENTER OF CURVATURE OF THE MIRROR

If the aperture stop is located at the center of curvature of the mirror as indicated in
Figure 4-3, then the entrance pupil is also located there. The exit pupil, which is the
image of the aperture stop by the mirror, is also located there, as may be seen by letting
S=R in Eqg. (4-1). The distance L of the image from the exit pupil is numerically
negative, sinceit liesto the right of the exit pupil. Accordingly,
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Figure 4-3. Same as Figure 4-1, except that the aperture stop islocated at the center
of curvature C of themirror.
L=S-R . (4-12)
and, therefore, Egs. (4-5a) and (4-6) become

S/2

4R} (S - R)? (413)

aSS=

d=0 . (4-14)

respectively. Letting d =0 in Egs. (4-5b)—(4-5€), and substituting the results obtained
into Eq. (4-3), we obtain the primary aberration function

812r4 h12r2
T 4R(S-R?Z  2R(S-R? (4-15)

Wq(r;h')

Thus, coma, astigmatism, and distortion of a spherical mirror with aperture stop at its
center of curvature are zero. A concave mirror has negative spherical aberration but
positive field curvature. If the image is observed on a spherical surface of radius of
curvature R/2 at adistance S’ from the mirror, then the second term on the right-hand
side of Eq. (4-15) representing the field curvature also vanishes. The spherical image
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38 ABERRATIONS OF A SPHERICAL MIRROR

surfaceis, of course, the Petzval image surface. It should be noted that, in going from Eq.
(4-7) to Eq. (4-15), the maximum value of r,i.e., the radius of the exit pupil, has been
multiplied by a factor of (S—R)/Sor —(S' —R)/S'. Hence, the peak value of spherical
aberration has not changed, as expected, owing to a change in the position of the aperture
stop.

For a point object at infinity

S =R/2 (4-16)
and, therefore,
L=-R/2 , (4-17)

and the spherical image surface of radius of curvature R/2 is concentric with the mirror.
The spherical aberration is given by

ag = 1/4R® = 1/32§73 ; (4-18)

i.e, it isthe same as for a mirror with aperture stop at its surface, as expected. It can be
eliminated by placing, at the center of curvature of the mirror, a glass plate whose
thickness varies as r*. Thisindeed is the principle of the Schmidt system, which will be
discussed in Chapter 5.

It is not difficult to see why all primary aberrations, except spherical, vanish when
the aperture stop is located at the center of curvature of a spherical mirror and the image
is observed on the Petzval surface. Since the exit pupil is also located at the center of
curvature, the chief ray corresponding to an off-axis point object passes through it.
Moreover, since the mirror is spherical, any line passing through its center of curvature
forms the optical axis. Hence, every point object is like an on-axis object; therefore, the
only aberration that arises (with respect to its Petzval image) is spherical aberration. The
Petzval curvature, corresponding to the second term on the right-hand side of Eqg. (4-5d),
is nonzero. It has the implication that an image aberrated by spherical aberration aloneis
formed on a spherical surface of radius of curvature R/2. This, of course, is the Petzval
image surface passing through the axial image point Py . It is concentric with the mirror
when the object is at infinity.

4.5 NUMERICAL PROBLEMS

Now we consider simple numerical problems in which a spherical mirror of diameter
4 cm and aradius of curvature 10 cm images an object 2 cm high located at a distance of
15 cm from it. We assume that the aperture stop islocated at the mirror and the object lies
below the optical axis. Table 4-1 gives the Gaussian as well as the aberration parameters
for this problem. Both concave and convex mirrors are considered in this table. The
concave mirror forms areal image, but the convex mirror forms avirtual image. We note
that whereas astigmatism is the dominant primary aberration in the case of the concave
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4.5 Numerical Problems 39

Table 4-1. Gaussian and aberration parameters for a spherical mirror of radius a
imaging an object lying at a finite distance from it. The aperture stop is located at

themirror.
Gaussian Parameters
Mirror R g h’ E d
(cm) (cm) (cm)
Concave -10 -75 1 7.54 -4
Convex 10 3.75 -05 3.75/4 -1.6
Aberration Parameters
Mirror ag As Ass Ass
(cm 2) (um) (um) (um)
Concave —2.78x10 ° —-4.4 35.56 711
Convex  6.94x10 4 111 178 71.1

S=-15cm,h=-2cm,a=2cm, S =-RY(2S-R)
F =|S|/2a, d=R/(S -R)

mirror, it is coma that dominates in the case of the convex mirror. Field curvature and
distortion are zero in both cases, since the aperture stop lies at the mirror surface.

Table 4-2 lists the Gaussian and aberration parameters for an object lying at infinity
at an angle of 1 milliradian from the optical axis of the mirror. The magnitude of a
primary aberration is independent of whether the mirror is concave or convex, but its sign
depends on its type. Spherical aberration is the dominant aberration in Table 4-2. Of
course, the field curvature and distortion are zero once again.

If the aperture stop of the mirror is moved to its center of curvature, the peak value
A, of its spherical aberration does not change. However, its coma and astigmatism reduce
to zero, but its field curvature becomes nonzero. The radius of the exit pupil a,, thefield
curvature coefficient ay, and the peak value of field curvature for the problems under
consideration are given in Table 4-3. The numbers without parentheses are for an object
at S= 15 cm, and those with parentheses are for an object at infinity at 1 milliradian from
the optical axis of the system. As areminder, we add that
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40 ABERRATIONS OF A SPHERICAL MIRROR

Table 4-2. Gaussian and aberration parameters for a spherical mirror imaging an
object lying at infinity at an angle of 1 milliradian from its optical axis. The aperture
stop islocated at the mirror.

Gaussian Parameters

Mirror R s h’ F d
(cm) (cm) (cm)

Concave -10 -5 5x10 3 1.25 -2

Convex 10 5 -5x10 2 1.25 -2

Aberration Parameters

Mirror As As Ass Ass
(em ®) (um) (um) (um)

Concave  -2.5x10 * —40 0.8 -4x10 3

Convex  —25x10* 40 0.8 4x10 3

Table 4-3. Radius of the exit pupil and field curvature parameters for a spherical
mirror when the aperture stop islocated at its center of curvature.*

Mirror e ay Ay
(cm) (em ?) (um)

Concave 2/3 8x10 3 35.6
) (2x10?) (2x10 2)

Convex 10/3 -1.28x10 3 -356
) (-2x10?) (-2x10 %)

* The numbers without parentheses are for an object at S = 15 cm and those with
parentheses are for an object at infinity at 1 milliradian from the optical axis of the
system.
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a, = al(S-R)/S| = al(s"-R)/S] . (4-19)

a; = —1/2R(S’-R)* , (4-20)
and

Ay =a;h%ar. (4-21)

where a = 2 cm is the radius of the mirror. The field curvature as an aberration disappears
when the image is observed on a spherical surface of radius of curvature -5 cm for the
concave mirror and 5 cm for the convex mirror, located at the image plane. When the
object is located at infinity, this surface is concentric with the mirror.

4.6 SUMMARY

The imaging properties of a spherical mirror can be obtained from those for a
corresponding spherical refracting surface by letting the refractive index of the object
space be | and that of the image space be —1 (representing reflection). It is worth
remembering that the spherical aberration of a spherical mirror is not zero. A paraboloidal
mirror, for example, gives zero spherical aberration for an axial point object at infinity.
An ellipsoidal mirror, however, is required for an aberration-free image of a point object
at a finite distance. As in the case of lenses, two mirrors are required for aplanatic

imaging.

How the aberrations of a system change as the position of its aperture stop is changed
is illustrated in this chapter by considering the images formed by a spherical mirror. Only
the field curvature and distortion are zero when the aperture stop lies at the mirror.
However, only spherical aberration and field curvature are nonzero when the stop lies at
the center of curvature of the mirror.
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CHAPTER S5
Schmidt Camera

5.1 INTRODUCTION

We have seen in Chapter 4 that a spherical mirror gives spherical aberration, which
we know from Section 1.7 to be independent of the location of its aperture stop. When the
aperture stop is located at the center of curvature of the mirror, it also produces field
curvature, although coma, astigmatism, and distortion are all zero. As we will discussin
Chapter 6, a paraboloidal mirror forms an aberration-free image of a point object only
when it lies on its axis at an infinite distance from it. In order to utilize the simplicity of
fabrication of a spherical mirror, we need a way to compensate its spherical aberration.
An optical system consisting of a spherical mirror and a transparent plate of nonuniform
thickness placed at its center of curvature to compensate for its spherical aberration is
called a Schmidt camera. The plate is appropriately called the Schmidt plate. With the
exception of field curvature, the image formed is free of primary aberrations.

As discussed in Section 4.4, the field curvature is such that an aberration-free image
isformed on a spherical surface of radius of curvature equal to half that of the mirror. For
an object at infinity, this surface is concentric with the mirror. In this chapter, we
determine the shape of the Schmidt plate and discuss the chromatic aberrati ons associated
with it. A numerical problem illustrates the results obtained.

52 SCHMIDT PLATE

Consider a spherical mirror with its aperture stop located at its center of curvature C,
as shown in Figure 5-1, imaging an object lying at infinity. From Eq. (4-18), the optical
path difference between aray of zone r and the chief ray from an axial point object is
given by

4

W(r) ) (5-1)

G

where f’isthe focal length of the mirror. It is negative, implying that the optical path
length of the ray under consideration to the focus F’ is shorter than that of the chief ray.
It also means that the ray intersects the axis after reflection at an axial point F’”, whichis
slightly closer to the mirror vertex than the paraxial focus F’. This may be seen
independently from the isosceles triangle CAF”” in which CF”” + AF” > CA = 2/ f’
or CF” >|f’|=CF’, since CF”” = AF”". In order that the path length of the ray be equal
to that of the chief ray, its path length must be increased.

If a plate of refractive index n and a thickness t(r) is placed at the center of
curvature with aflat surface normal to the axis of the mirror, the additional optical path
length introduced by the plateisgiven by (n—1)t(r). All object rays transmitted by the

43
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Figure 5-1. Imaging by a spherical mirror with aperture stop located at its center of
curvature. Rays of different zones from an axial object at infinity intersect the axis
of the mirror after reflection at different points, such as F” and F”’, thusforming
an image aberrated by spherical aberration. The ray shown intersecting the axis at
F’ hasa zone of «/§a/2, where aistheradius of the aperture stop.

system travel equal optical path lengths and converge to a common focus F’ if t(r) is
given by

W(r)+(n-Dt(r) = 0 . (5-2)

Substituting Eqg. (5-1), we find that the plate thicknessis given by

r4

- 32n-1f3 3

tr) =

It increases from avalue of zero at its center to values proportional to the fourth power of
the zonal radius. In practice, a plane-parallel plate of constant thickness t; would be
added to it so that it can be fabricated. The shape of the plate is shown in Figure 5-2,
where it is shown to dlightly tilt a nonaxial ray so that, after reflection by the mirror, it
passes through F’.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5.2 Schmidt Plate 45

AS

EnP
ExP -
\s

v
|
|
|
|
l
|
|

~J

\4
\4

OA C Fl P

T A

Figure 5-2. Imaging by a Schmidt camera consisting of a spherical mirror and a
transparent plate placed at its center of curvature C. The spherical aberration of the
mirror is precorrected by the plate so that the system forms an image free of
spherical aberration. Dashed lines indicate the path of a ray in the absence of a
Schmidt plate.

Although spherical aberration is corrected by the use of such a plate, it does
introduce chromatic aberration. Since the refractive index of the plate varies with the
wavelength of object radiation, the angular deviation of aray produced by the plate also
varies with it. Consider a ray corresponding to a refractive index n and passing through
the plate at azoner. Sincethe plate islocated in air and the wave aberration produced by
itis (n=1) t(r), following Eq. (1-1), the angular deviation of the ray produced by it is
given by

v=m-0 (5-4)

Substituting Eq. (5-3) into Eq. (5-4), we obtain

r3

= - — 5‘5
v YT (55
From Eq. (5-4), the angular dispersion of any ray is given by
dt
Ay = An— 5-6
v p (5-6a)
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46 SCHMIDT CAMERA

where An is the variation in the refractive index of the plate across the spectral
bandwidth of the object radiation. Substituting for dt/dr from Eq. (5-4) into Eq. (5-6a),
we obtain

Ay = —vy . (5-6b)

Thus, the angular dispersion Ay of aray produced by the plate is proportional to its
angular deviation . The value of y is maximum and equal to —a*/8f" for the
margina rays, i.e, for r = a, where a isthe radius of the plate.

To reduce the chromatic aberration, we must reduce the maximum value of y. To do
S0, we add to the plate a very thin plano-convex lens. Such a lens will reduce the focus
distance such that the rays are now focused at apoint F”’ instead of F’, asin Figure 5-3.

A plano-convex lens introduces thickness to the plate varying as r 2. Thus, the plate
thickness may be written
ré br2
3T
(n-1f n-1

) =to- : (5-7)

where b is a constant chosen to minimize the chromatic aberration. Comparing the
defocus aberration br 2 introduced by the plate with Eq. (1-3b), we find that the distance
between F’ and F”’ is given by 2bf’2. F’” lies on the right-hand side of F’, asin
Figure 5-3, if b is numerically negative. The thickness variations of plates with different
valuesof b are shown in Figure 5-4. We note that the depth of material removal, starting
with a plane-parallel plate, is minimum when b = a?/32f "3 (corresponding to ¢ = 1 in the
figure). However, we are interested in minimizing the maximum value of the angular
deviation of aray. As shown below, this requires that b be equal to 3a2/64f’3 (or ¢ =

15).
Substituting Eq. (5-7) into Eq. (5-4), we find that the angular deviation of aray is
now given by
r3
= ——=+2br . 5-8
V=53 (5-8)

Its maximum value in the range 0<r<a occurs either at its stationary point
r :(16f’3b/3)]/2 obtained by letting dy/dor =0 or at r =a. At the former its absolute
value is (4|b|/3)(16f’3b/3)j/2and at the latter it is (—a3/8f’3)+ 2ba. These two values
are both equal to a%/32f’3 if b=3a%/64f" (or ¢ = 1.5), thus reducing the angular
deviation aswell asthe chromatic aberration by afactor of 4 compared to their valuesiif
b=0.
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Figure 5-3. Schmidt camera with a plate introducing minimum chromatic

aberration. The dashed lines indicate the path of a ray in the absence of the Schmidt

plate. All rays passing through the plate and reflected by the mirror are focused at
F”’, where the ray passing through the neutral zone of the plate is focused by the

mirror.
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Figure 5-4. Thickness variation of a Schmidt plate for different values of b, where

c:32f’3b/a2 and p=r/a. The variation is minimum when b=a2/32f'3,

corresponding to ¢ =1.
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Figure 5-5. Dependence of angular dispersion on the value of b. It isminimum when
b =3a?/64f '3 correspondingto ¢ = 1.5.

Substituting this value of b into Eq. (5-7) we find that the plate thickness required for
eliminating spherical aberration introduced by the mirror and minimizing the chromatic
aberration introduced by the plate is given by

t(r) = to—az(Tll)f,s(r“—gazrz) . (5-9)
We note that dy/ar =0 for r =+/3a/2. Thisvalue of r is called the neutral zone of the
plate since aray incident normal to it passes through it undeviated as in Figure 5-3. As
may be seen from Figure 5-4, the thickness variation of the plate and the material removal
are maximum at this zone. This variation is more than twice the variation for a minimum-
thickness-variation plate; compare the numbers —0.5625 and —0.25 in the figure that occur
at zones of r =0.707a and r = 0.8664a, respectively.

The lens component of the Schmidt plate has a focal length of f, =—32%/3a2.
The vertex radius of curvature of the plate is equal to (1-n)f,. This, of course, is the
radius of curvature of the second surface of the lens. The angular dispersion of theraysis
now given by

An 3 3 2)
Ay = ——— = r>——a“r . 5-10
v 8(n—l)f’3( 4 (>-10)

Its maximum value occurs for rayswith r =a/2 and a. It isgiven by
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__An as
2(n-1) {3

[AY] e = (5-11)

The dependence of angular dispersion on the value of b isillustrated in Figure 5-5. We
shall seein Chapter 7 that the value of b giving minimum chromatic aberration also gives
the position of the defocused image plane in which the rays forming an image of a point
object aberrated by spherical aberration have a minimum spot radius (circle of least
confusion).

It has been shown in Section 4.4 that a spherical mirror with an aperture stop located
at its center of curvature gives only spherical aberration and field curvature. The Schmidt
plate compensates for the spherical aberration and, therefore, the image of an extended
object observed on a spherical surface concentric with the mirror is free of primary
aberrations. Strictly speaking, the lens component of the plate also introduces small
amounts of primary aberrations. The spherical aberration contributed by it can be made
zero by dlightly adjusting the value of the r* term in the plate thickness t(r). The mirror
also contributes some secondary or sixth-order spherical aberration. It can be made zero
by introducing an r® term in the plate thickness.

It should be noted that as the field angle B increases, the size of the focal surface
also increases, which, in turn, obscures the ray bundle incident on the mirror. For a field
of view of radius B, the linear obscuration of the on-axis beam incident on the mirror is
given by € = 28F, where F isthe focal ratio of the system.

53 NUMERICAL PROBLEMS

Asanumerical example, we consider a spherical mirror with aradiusa=5cmand a
focal length f’=—40 cm so that F = 4. According to Eq. (5-1), the peak value of
spherical aberration introduced by it for an object at infinity is equal to 3.05um. If a
Schmidt plate of refractive index n=1.5 is used to compensate for this spherical
aberration, the difference in its maximum and minimum thickensis 6.10 um according to
Eg. (5-3). Thus, starting with a plate of uniform thickness, as much as 6.1um deep
material must be removed at its center, reducing to a value of zero at its edge. Thiswould
be satisfactory for operation in monochromatic light for which the refractive index is 1.5.
The image is formed at a distance of 40 cm from the mirror. The image of an extended
object lying at infinity isfree of primary aberrations when observed on a spherical surface
of radius of curvature 40 cm concentric with the mirror passing through its focal point
F.

For white-light operation, the thickness variation of the plate for minimum chromatic
aberration is given by Eq. (5-9). Thus, the plate has a certain thickness at the center, and
its variation is maximum and equal to 3.43 um at its neutral zone of \@a/z =4.33 cm.
Itsvariation at its edge is 3.05 um. We note that the depth of material removal islessfor
this plate than that for the monochromatic operation. The image is now formed at a
distance that is 0.586 mm closer to the mirror than its focal plane. If An = 0.025 across
the spectral bandwidth of object radiation, then, according to Eq. (5-11), the minimum
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50 SCHMIDT CAMERA

radius of the chromatic image will be 1.22 um. In practice, the image will be larger than
this due to diffraction by, say, the diameter of the Airy disc (discussed in Chapter 8). For
visible light, the diameter of the Airy disc (neglecting the effect of obscuration due to the
focal surface) is approximately 6.83 um, where we have used a visible wavelength of 0.7

um.
54 SUMMARY

In a Schmidt camera, the spherical aberration of a spherical mirror is made zero by
placing a corrector plate (called the Schmidt plate) at its center of curvature. The aperture
stop and the entrance and exit pupils also lie at this location, yielding zero astigmatism
and coma, and thus providing an anastigmatic system. The plate thickness described by
Eq. (5-3) and illustrated in Figure 5-2 introduces dispersion, which is minimized by
modifying the plate thickness to that described by Eqg. (5-9) and shown in Figure 5-3.
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CHAPTER 6
Aberrations of a Conic Surface

6.1 INTRODUCTION

So far, we have considered the aberrations of spherical surfaces, which are conic
surfaces of zero eccentricity. In this chapter, we discuss the aberrations of a conic surface
with an arbitrary value of eccentricity. Our starting point isimaging by and aberrations of
a spherical surface discussed in Sections 1.8 and 4.2. It should be noted that the Gaussian
imaging equations for a conic surface of a certain vertex radius of curvature are the same
as those for a spherical surface of the same radius of curvature. Given the aberrations of a
spherical surface, we determine the additional aberrations introduced by a corresponding
conic surface. In particular, we show that if the aperture stop is located at the conic
surface, the only additional aberration is spherical aberration. The other (primary)
aberrations of the conic surface are identical to those of the spherical surface. The
aberrations of a conic surface are further generalized to obtain the aberrations of a
general aspherical (nonconic) surface. The aberrations of a paraboloidal mirror are
briefly discussed and compared with those of a spherical mirror. Finally, we outline a
procedure to determine the aberrations of a multimirror system.

6.2 CONIC SURFACE
A conic surface of eccentricity e and vertex radius of curvature Ris described by its

sag according to

Zc = /R 12 (6-1)
1+ [1- (1-€%)r2/R?]

where, asillustrated in Figure 6-1, (X, Y., Z) are the coordinates of a point on it and

o = (2+y2)"” (6-2)

is the distance of the point from the z axis. The origin of the coordinate system is at the
vertex of the conic, and the z axis is along its axis of rotational symmetry. The various
conic surfaces are described by their values of e according to

e =1 Paraboloid
<1 Ellipsoid
> 1 Hyperboloid

0 Sphere

If we neglect thetermsin r,. of an order higher than four, Eq. (6-1) becomes

2 4
r r 6-3
% = z_CR“L(l_eZ) 8Fce3 ' «?
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Figure 6-1. Sag of a conic surface. The origin of the coordinate system lies at the
vertex V, of the conic. The axis about which the conic isrotationally symmetricis
the z axis of the coordinate system. z.isthe sag of a point A on the conic.

Thus, up to the fourth order in r., the sag of aspherical (e=0) surfaceislarger than that
of aconic surface by €?r.!/8R>. Up to this order, the chord VA =r,.

6.3 CONIC REFRACTING SURFACE
6.3.1 On-Axis Point Object

Consider a conic surface separating media of refractive indices n and n'. Compared
to a spherical surface, a conic surface introduces an additional aberration for an axial
point object P,, which for a ray passing through a point A on the spherical surface in
Figure 6-2 is given by

AW, (Ay) = (W -n)AgA (6-48)
where
AA = eirl/sr® (6-4b)

is approximately equal to the sag difference between a sphere and a conic of the same
vertex radius of curvature. Since VA = r;, we may write

AW(Ag) = oVoA)' (6-59)
where
o = (M-n)e?/srR® . (6-5b)
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6.3 Conic Refracting Surface 53
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Figure 6-2. Imaging of an on-axis point object P, by a conic refracting surface CS
of vertex radius of curvature R and center of curvature C. The Gaussian image is
located at Py .

We note from (approximate) triangles V,A,P* and OQP; in the figure that
VpA/OQ = S/L. Hence, the aberration at a point Q in the plane of the exit pupil at a
distancer from the optical axisis given by

AW(Q) = o(s/L)'0Q" |
or
AW,(r) = o(S/L)*r* . (6-6)

6.3.2 Off-Axis Point Object

For an off-axis point object such as P in Figure 6-3, the optical path length of the
chief ray for a conic surface is also different from that for a spherical surface.
Accordingly, the conic contribution to the aberration of aray from the point object P and
passing through apoint A on the conic surface is given by

AW,(A) = (" -n)(AA-BB)

o(VoA* -VpB*) . (6-7)

Let (r,8) be the polar coordinates of a point Q, where the ray under consideration
intersects the plane of the exit pupil, with respect to O as the origin. From Figure 6-4,
which represents the projection of the exit pupil on the refracting surface, we note that

V,A> = AB? + V,B? - 2ABV,Bcosh . (6-8)
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Figure 6-3. Imaging of an off-axis point object P by a conic refracting surface of
vertex radius of curvature R and center of curvature C. The Gaussian image is
located at P’.
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Figure 6-4. Projection of the exit pupil on the refracting surface in Figure 6-3. Point
B, which lies on the chief ray, forms the center of the projected pupil.
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6.4 General Aspherical Refracting Surface 55

Also, from (approximate) triangles BAP’ and OQP’ in Figure 6-3, we note that

AB = (S'/L)r (6-9a)

Similarly, from (approximate) triangles OV,B and OP}P’,

V,B = gh’ . (6-9b)
where
S'—-L
= — 6-10
g L ( )

Substituting Egs. (6-9a), (6-9b), and (6-10) into Eq. (6-8), squaring the result, and then
substituting into Eq. (6-7), we obtain

AW,(Q) = o[(S7/L)*r* = 4(S"/L) gh'r* cos® + 4(S’/L)’ g*h"*r* cos® B

[

o+ 2(.5’/2‘.)2g2h’2r2 —4(8’/L)g’h"*rcos 8] . (6-11)

Adding Eqgs. (6-11) and (1-19), we obtain the primary aberrations of a conic surface. Note
that if the aperture stop is located at the conic surface so that L =" and, in turn, g =0,
then its aberrations differ from those of a spherical surface only in spherical aberration.
The other primary aberrations are identical for the two surfaces.

6.4 GENERAL ASPHERICAL REFRACTING SURFACE

Consider a general rotationally symmetric aspherical surface with a vertex radius of
curvature R and described by its sag according to

2 4

H1-e+s,) s (6-12)

‘g

v |,
S

where s, represents the fourth-order sag contribution over and above that of a conic
surface of the same vertex radius of curvature. Compared to a spherical surface of radius
of curvature R, the general aspherical surface contributes an additional optical path length
to a zonal ray from an axial point object given by

AW, (A) = o'V A" . (6-13a)
where
o' = (n'-n)(e*-s,)/8R* . (6-13b)

Comparing Egs. (6-5) and (6-13), we note that if we replace ¢ with ¢” in the results
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56 ABERRATIONS OF A CONIC SURFACE

obtained for a conic surface, we obtain the aberrations for a general aspherical surface.
This conclusion applies to the aberrations for off-axis point objects as well.

6.5 CONIC REFLECTING SURFACE

The additional primary aberrations introduced by a conic or a general aspherical
reflecting surface, compared to a spherical one (discussed in Chapter 4), can be obtained
from those for a corresponding refracting surface by letting n”=-n=1. Thus, for
example, the additional aberration of aconic mirror isgiven by Eq. (6-11), where

c = -€?/4R® | (6-14)

6.6 PARABOLOIDAL MIRROR

For a paraboloidal (e = 1) mirror, we note from Egs. (4-4) and (6-14) that for an
object at infinity,

a, = -0 = 1R® . (6-15)

Hence, following Egs. (4-3) and (4-11), we find that the spherical aberration of a
paraboloida mirror is zero when the object lies at infinity, i.e.,

ag = (S/L)*(ag+0) = 0 . (6-16)

If, in addition, the aperture stop islocated at the mirror, then L =S and, therefore, g = 0.
Hence, Eq. (6-11) shows that the other primary aberrations of a paraboloidal mirror are
identical with those for a spherical mirror. Accordingly, the image of an off-axis object at
infinity formed by a paraboloidal mirror with stop at the mirror surface suffers only from
coma and astigmatism given by the corresponding termsin Eq. (4-11). Thus, for example,
the image of an object lying at infinity at an angle of 1 milliradian from the axis of a
paraboloidal mirror of vertex radius of curvature of 10 cm suffers from coma aberration
with a peak value of 0.8 um but a negligible value of astigmatism. These values are the
same as those of the corresponding aberrationsin Table 4-2 where imaging by a spherical
mirror was considered. Thus, the difference between imaging by paraboloidal and
spherical mirrors lies in their spherical aberrations: zero in the case of a paraboloidal
mirror and —40 um peak aberration, for example, in the case of a concave spherical
mirror. Of course, the image of an axial object at infinity by a paraboloidal mirror is
aberration free.

6.7 MULTIMIRROR SYSTEMS

The aberrations of a multielement system can be calculated by determining the
aberrations of each element at its respective exit pupil and then combining them
according to the procedure described in Section 1.9. Thus, for example, we can show that
an afocal system consisting of two confocal paraboloidal mirrors acting as a beam
expander is anastigmatic, introducing only field curvature and distortion aberrations.
Similarly, we can investigate the aberrations of two-mirror systems such as the
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6.8 Summary 57

Cassegrain and Ritchey-Chrétien telescopes. Asis sometimes the casein practice, thisis
easier said than done.

6.8 SUMMARY

The Gaussian imaging eguations for a conic surface of a certain vertex radius of
curvature are the same as those for a spherical surface of the same radius of curvature.
The aberrations of a conic surface with its aperture stop located at the surface are the
same as those for a corresponding spherical surface, except for spherical aberration. The
aberrations of a general aspherical (nonconic) surface can be obtained from those of a
conic surface by simply modifying its sag contribution, asin Eq. (6-13b). The aberrations
of amultielement system can be obtained by the procedure described in Section 1.9. Asa
reminder, note that only the primary aberrations are discussed in this book, and the actual
aberrations of a system are obtained by tracing rays or by measurement.
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CHAPTER 7
Ray Spot Sizes and Diagrams

7.1 INTRODUCTION

In Chapters 2-6, we have determined the primary wave aberrations of simple optical
imaging systems. In this chapter, we use the relationship between the wave and ray
aberrations given in Section 1.2 to determine the ray distribution for a point object, called
the ray spot diagrams, in the Gaussian image plane. For each primary aberration, we
determine the extent or the size of the image spot in terms of its peak value and the focal
ratio of the image-forming light cone. In the case of spherical aberration and astigmatism,
we consider the ray distributions in defocused image planes as well, and we determine the
plane in which the spot size is minimum. These minimum-size spots are referred to as the
circles of least confusion and represent the best aberrated images based on geometrical
optics.

We define the centroid and the standard deviation of the ray distribution and
calculate them for the primary aberrations. In lens design, one often tries to minimize the
spot sigma rather than the spot radius. However, we will see in Chapter 8 that, in reality,
which is based on diffraction of light at the exit pupil of the system, an image distribution
is not given by the corresponding ray spot diagrams. For example, the aberration-free
image of a point object is a point according to geometrical optics, but its diffraction
image for a circular pupil consists of a bright spot surrounded by concentric dark and
bright rings. Even so, it is quite common practice in lens design to look at the spot
diagramsin the early stages of adesign, as discussed in Section 7.10.

7.2 WAVE AND RAY ABERRATIONS

Consider an optical system consisting of a series of rotationally symmetric coaxial
refracting and/or reflecting surfaces imaging a point object. We have discussed in
Chapter 1 that the primary aberration function representing the wave aberration at its exit
pupil can be written

W(r,6;h) = ag?+a.h'r3cosd +a,h'r’cos®0+ash’?r? +ah’3rcosd ,  (7-1)

where (r, e) are the polar coordinates of a point in the plane xy of the exit pupil of the
system, h’ is the height of the Gaussian image point P’, and a a, a,, a4, and a,
represent the coefficients of spherical aberration, coma, astigmatism, field curvature, and
distortion, respectively. The angle 6is equal to zero or wfor points lying in the tangential
or meridional plane (i.e., the zx plane containing the optical axis and the point object
and, therefore, its Gaussian image). The chief ray, which, by definition, passes through
the center of the exit pupil, always lies in this plane. The plane normal to the tangential
plane but containing the chief ray is called the sagittal plane. Asthe chief ray bends when
it isrefracted or reflected by a surface, so does the sagittal plane.

59
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60 RAY SPOT SIZES AND DIAGRAMS

For an optical system with a circular exit pupil, say, of radius a, it is convenient to
use normalized coordinates (p, 6) where p=r/a, 0<p<10<6<2n, suppress the
explicit dependence on h’, and write the aberration function in the form

W(p,0) = Ap* + Ap3cose + A,p®cos™® + Agp® + Apcosh (7-2)

where the new aberration coefficients A, representing the peak or maximum values of
the aberrations, are related to those used in Eq. (7-1) according to

A, = aa*, A, = aha®, A, = a,h’?a?, Ay = a4h’%a® A, = ah’®a .(7-3)

Although we will discuss the spot diagrams in terms of these peak aberration coefficients,
it is necessary to know their dependence on the image height h' when discussing images
of extended objects.

If (x,y) represent the rectangular coordinates of a pupil point, the corresponding
normalized coordinates (&,m) are given by

Q|

Em) = =(xy) (7-43)

= p(cos®,sing) (7-4b)

where —1<£<1, -1<n<1, and &? + n? = p2< 1. The aberration function defined in
the form of Eq. (7-2) has the advantage that the aberration coefficients A, have the
dimensions of length (i.e., dimensions of the wave aberration), and they represent the
peak or maximum values of the corresponding primary aberrations. For example, if
A,=1L, where A is the wavelength of the object radiation, we speak of one wave of
spherical aberration.

The distribution of rays in an image plane is called the ray spot diagram. Their
density (i.e., the number of rays per unit area) is called the geometrical point-spread
function (PSF). If the system is aberration free, then the wavefront is spherical and all the
object rays transmitted by the system converge to the Gaussian image point. When the
wavefront is aberrated, a ray passing through a point (r, ) in the plane of the exit pupil
intersects the Gaussian image plane at a point (x;,y; ) which, following Eq. (1-1), may be

written
oW oW
(x.y;) = 2F (@ W] (7-5a)
JW sin® oW oW  cosH oW
=2F|cos——-————, Sn0—+—— | , 7-5b
(co ap p 0o sn ap " p aej (7-50)

where F = R/2a isthefocal ratio or the f-number of the image-forming light cone. Here,
(xi , yi) represent the ray aberrations, i.e., the coordinates of the point of intersection of
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7.2 Wave and Ray Aberrations 61

the ray in the Gaussian image plane with respect to the Gaussian image point, and Risthe
radius of curvature of the Gaussian reference sphere with respect to which the aberration
W(p, 8) is defined. The reference sphere is centered at the Gaussian image point (0,0)
and, like the aberrated wavefront, passes through the center of the exit pupil. In Egs. (7-
5), we have assumed that the refractive index of the medium in which the image is
formed is unity sinceit is often the case in practice. Substituting Eq. (7-2) into Eq. (7-5b),
we find that, in the absence of distortion, the chief ray intersects the Gaussian image
plane at the Gaussian image point.

For aradialy symmetric aberration, i.e., one for which W (p,0) =W (p), we note
from Eq. (7-5b) that the PSF is also radially symmetric. The radial distance r, of aray
from the Gaussian image point in that case is given by

i = (Xi2+yi2)1/2
(7-6)

For a uniformly illuminated pupil, the location of the centroid of a PSF can be
obtained from the aberration function according to

(Xe:Ye) = (%)H@—Vg %—VT\]/) d&dn . (7-7)

The standard deviation of the ray aberrations or the spot sigmais given by

o0 = {04 -2+ -vo) (7-89)

25/ RS A

For a symmetric aberration such as astigmatism, the PSF is symmetric and the centroid
lies at the origin, i.e., (X, yc)=(0,0). The spot sigmain such cases is equal to the root
mean square (rms) radius. Substituting Eq. (7-6) for aradially symmetric aberration, Eq.
(7-8b) reducesto

2 y2
o, = Z\EFU@_V:) pdp} . (7-9)

Now we discuss the characteristics of an image aberrated by a primary aberration. To be
definite, we assume that each of the aberration coefficients A; is positive, unless stated
otherwise.
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62 RAY SPOT SIZES AND DIAGRAMS

7.3 SPHERICAL ABERRATION

Figure 7-1 illustrates the relationship between a wavefront aberrated by spherical
aberration

W) = A,p (7-10)

and the reference sphere centered at a Gaussian image point P;. Substituting Eq. (7-10)
into Eq. (7-6), we find that a ray of zone p intersects the Gaussian image plane at a
distance

r, = 8FA,p° (7-11)

from Pj. Thus, the rays lying on a circle of radius p in the exit pupil lie on a circle of
radius 7; given by Eq. (7-11) in the Gaussian image plane. The maximum value of r; is
8FA, and corresponds to rays with p=1; i.e., it corresponds to the marginal rays. We
shall refer to the maximum value of r. as the radius of the image spot. Note that since A,

ExP

Longitudinal
spherical

| aberration

Figure 7-1. Ray spot radii in various image planes for a wavefront W aberrated by
spherical aberration. P-paraxial, M-marginal, MW-midway, LC-least confusion. The
reference sphere S is centered at the Gaussian image point P;. The values of spot
radii indicated in the figure are in units of 8FA_, where F is the focal ratio of the
image-forming light cone and A, is the peak value of the spherical aberration.
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7.3 Spherical Aberration 63
isindependent of the height h of the point object from the optical axis, the ray distribution
owing to spherical aberration alone is aso independent of h.

Let us consider the ray distribution in a slightly defocused image plane by
introducing a defocus aberration By. The aberration with respect to a reference sphere
centered at a defocused point may be written

W(p) = Ap*+Byp® , (7-12)

The rays of zone p now liein the defocused image plane on acircle of radius

7-13
r, = 8FAJp%+(B,/2A)p)| (=49

For the marginal rays, correspondingto p=1, r; —» 0 if By =-2A,, Following Egs. (1-
3c) and (1-3d), we find that the marginal rays intersect the axis at adistance

A = —8F?By (7-143)

(7-15b)

16F 2A,

from By. This distance shown as P;M in Figure 7-1 is called the longitudinal spherical
aberration. A negative value of A impliesthat, compared to the old reference sphere, the
new reference sphere is centered at a point that is farther from the center of the exit pupil.
Hence, the point of intersection M of the marginal raysliesto theright of By asshownin
Figure 7-1. Thisis to be expected for positive values of A,. The points By and M are
called the Gaussian and the marginal image points. Substituting By = —2A, in Eq. (7-
10), we find that the maximum value of r; in the marginal image plane occurs for rays of
zone p =1/+/3. Thismaximum value r, .., is 2/3v3 (or 0.385) times the corresponding
value in the Gaussian image plane. Thus, the marginal spot radius is considerably
smaller than the paraxial spot radius .

The image plane lying midway between the paraxial and marginal planes
correspondsto By =— A,. The spot radiusin this plane is half of that in the paraxial plane
and corresponds to marginal rays. Comparing Eqg. (7-13) with Eq. (5-8), we find that the
spot radius is minimum in a plane corresponding to By =—3A,/2, i.e., a plane which is
3/4 of the way from the paraxial plane to the marginal plane. The spot radiusin this case
is 1/4 of the paraxial spot radius and corresponds to rays of zone p =1/2 and 1. This spot
is called the circle of least (spherical) confusion. The spot radii in various image planes
arelistedin Table 7-1.

The deliberate mixing of one aberration with one or more other aberrations is called
aberration balancing. Here, we have balanced spherical aberration with defocus in order
to minimize the spot radius or its sigma value. The amount of defocus that gives the
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64 RAY SPOT SIZES AND DIAGRAMS

Table7-1. Spot radiusand sigma for spherical aberration A,.

Image Plane Balancing Defocus  Spot Radius Spot Sigma
Ba/As Fimax / 8F As Os/8FA
Gaussian 0 1 0.5
Marginal -2 0.385 0.289
Midway -1 0.5 0.204
Minimum spot sigma —4/3 U3 0.167
Least confusion -3/2 0.25 0.177

smallest ray spot or sigma may be called the optimum defocus based on geometrical
optics. The balanced aberration giving the smallest ray spot is AJp* —(3/2) p?].
Similarly, the balanced aberration that gives the smallest spot sigmais As[p4 - (4/3)p2].
Based on diffraction, the optimum amount of defocus corresponds to the midway plane,
sincein that case it is used to reduce the variance of the aberration across the exit pupil,
i.e., the balanced aberration giving minimum variance is As(p4 —pz), similar to the
Zernike polynomia Z{(p) (see Table 8-2).

74 COMA
The comawave aberration is given by
W(p.0) = Agp’cosh = AE(E”+77) . (7-16)

Substituting Eq. (7-13) into Eq. (7-55), we obtain the corresponding ray aberrationsin the
Gaussian image plane with respect to the Gaussian image point. They are given by

2FAp?(2+ c0s28, sin26) (7-172)

(i, Yi)

2FA(p? + 222, 2%n) . (7-17b)

We note that the rays coming from a circle of radius p in the exit pupil lie on acircle of
radius 2FA.p? in the image plane, which is centered at (4FACp2, 0). The circle in the
image plane is traced out twice as 0 varies from 0 to 2 to complete a circle of raysin
the exit pupil. Figure 7-2 illustrates these circles in the image plane for p =1/2 and 1. For
p =1, the rays in the image plane lie on a circle of radius 2FA, centered at (4FA;,0)-
Accordingly, CB/CP’ =1/2 where P' is the Gaussian image point, so that the angle CP'B
is equal to 30°. Hence, al of the rays in the image plane are contained in a cone of
semiangle 30° bounded by acircle of radius 2FA, centered at (4FAb, O) corresponding to
the marginal rays. The vertex of the cone, of course, coincides with the Gaussian image
point P’. Since the spot diagram has the shape of a comet, the aberration is appropriately
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Figure 7-2. Ray spot diagram for coma. The tangential marginal rays MR, are
focused at the point T and the sagittal marginal rays MR; arefocused at the point S.
All rays in the image plane lie in a cone of semiangle 30° with its vertex at the
Gaussian image point P’ bounded by the upper arc of a circle of radius
2FA.centered at (4FA., 0). The coneangleis 30° because CB/CP’ =1/2.

called coma. Note that the two tangential marginal rays MR, (p =1, 6 =0, =) intersect
this plane at T at a distance 6FA, from P', and the two sagittal marginal rays
MR(p =1 6 =m/2, 3n/2) intersect the image plane a S at a distance 2FA, from P’.
Accordingly, the length 6FA, and half-width 2FA. of the coma pattern are called
tangential and sagittal coma, respectively.

Since the PSF is highly asymmetric about the Gaussian image point P’, its centroid

does not lie at it. Substituting Eqg. (7-16) into Eqg. (7-7), we obtain the location of the
centroid:
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66 RAY SPOT SIZES AND DIAGRAMS

(Xe:¥e) = (2FA;,0) . (7-18)

Thus, the centroid lies at the point S in Figure 7-2 where the sagittal marginal rays
intersect the image plane. Substituting Egs. (7-17) and (7-18) into Eq. (7-8a), we obtain
the ray spot sigma:

2 2 4. 2.0\P?
65 = 2FA, <[p (2+ cos20) — 1] " +p* sin 2e>

= 22/3FA, . (7-19)

Measuring the ray coordinates in the image plane with respect to a point other than
the Gaussian image point is equivalent to introducing a wavefront tilt aberration in the
aberration function. A tilt aberration with a peak value of A, is equivalent to measuring
the wave aberration with respect to a reference sphere centered at a point in the image
plane with coordinates (— 2FA,, 0). Hence, measuring the ray aberrations with respect to
the centroid is equivalent to aftilt aberration of —Ap cos® or A, =—A.. Accordingly, the
aberration function with respect to the centroid can be written

W(p,6) = A, (p®-p)cost . (7-20)

It should be evident that if the ray aberrations are measured with respect to any other
point in the image plane, including the Gaussian image point, the spot sigma will
increase. The aberration function given by Eq. (7-20) represents coma aberration
balanced optimally with tilt aberration to yield minimum sigma value or bring the
centroid at the Gaussian image point. However, the variance of the wave aberration is
minimum when A =—(2/3)A., i.e, if the balanced aberration is A\c[P3 - (2/3)p] cose,
similar to the Zernike polynomia Z3(p, 8).

It is worth mentioning that the centroid of a PSF is associated with the line of sight of
an imaging system, as discussed in Chapter 10. Moreover, the centroid of a geometrical
PSF isidentically the same as that of the diffraction PSF.

7.5 ASTIGMATISM

The astigmatism wave aberration is given by

W(p,0) = Ap®cos®® = AE® . (7-21)
The corresponding ray aberrations are given by

(xi,yi) = 4F (Ajpcosd, 0) = 4F (A5, 0) . (7-22)

The point of intersection of aray with the Gaussian image plane depends only on its &
coordinate in the exit pupil. Thus, as indicated in Figure 7-3, all the rays transmitted by
the exit pupil intersect the Gaussian image plane on aline along the x axis centered on the
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Figure 7-3. Astigmatic focal lines when only astigmatism is present. The tangential
marginal rays MR, are focused at a point on the tangential focal line T. Similarly,
the sagittal marginal rays MR, are focused at the Gaussian image point P’ on the
sagittal focal line S. The focal lines § and T lie in the tangential and sagittal planes,
respectively. The circle of least confusion C lies in a plane midway between the
planes of line images S and T.

Gaussian image point. Since —1< &< 1, the full width of this line is 8FA,. If we add a
small amount of defocus B, to the astigmatism given by Eq. (7-21) by observing the
image in a slightly defocused plane, the wave aberration becomes

W(p.8) = A,p’cos’0+B,p* = (A, +B,)E*+Bm* . (7-23)
The corresponding ray aberrations are given by
(x,—.y,—] = 4Fp [(Aa + B,) cosb, B, sinﬁ] (7-24a)

= 4F[(A, +B,)E.B,M] . (7-24b)
For a given value of p, the locus of the points of intersection of the rays in the defocused
image plane is given by

(“—JJ{‘—) - . (7-25)
A B

where

A = 4F(A, +B,)pand B = 4FB,p . (7-26)

Thus, the rays lying on a circle of radius p in the exit pupil, in general, lie in a defocused
image plane on an ellipse whose semiaxes are given by A and B, respectively. The largest
ellipse is obtained for the marginal rays. The relationship defocus wave aberration B,
and the corresponding longitudinal defocus is given by Eq. (1-3d).
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68 RAY SPOT SIZES AND DIAGRAMS

We notethat if By =0, the ellipse reduces to aline of full width of 8FA, aong the x
axis. Thus, as discussed above, the image in the Gaussian image plane is aline S aong
the x axis centered on the Gaussian image point. If, however, By =—A,, corresponding
to A =8F 2Aa, then the ellipse reduces to aline T along they axis. The full width of this
lineimage isthe same as that of the lineimage S. The lineimage along the x axisis called
the sagittal (or radial) image and lies in the tangential (or meridional) plane zx,
containing the point object (which lies along the x axis in the object plane) and the optical
axis. Similarly, the lineimage T along the y axis is called the tangential image and liesin
the sagittal plane yz. The distance 8F 2A,cl between the two line images is called
longitudinal astigmatism. The two line images are called the astigmatic focal lines.

If By =—A,/2, corresponding to A =4F?A,, the ellipse reduces to a circle of
maximum diameter of 4FA,,which is half the full width of the two line images. Since
thiscircleisthe smallest of al the possible images, Gaussian or defocused, it is called the
circle of least (astigmatic) confusion. The spot sigmais minimum and equal to \/EFAa in
this plane.

Since A, ~ h’?, the width of the lineimages of a point object increases quadratically
with the height h' of the Gaussian image point. Similarly, longitudinal astigmatism
8F2Aa increases as h’2 Thus, if we consider aline object, its sagittal image will also be
a line, which is slightly longer (by an amount 8FA,) than but coincident with its
Gaussian image. However, its tangential image will be parabolic with a vertex radius of
curvature of h'2/16F2A, or 1/4R%a,. Similarly, the sagittal image of a planar object
will be planar, but its tangential image will be paraboloidal. Note that longitudinal
astigmatism corresponding to a Gaussian image at a height h' represents the sag of the
tangential image surface at that height.

Figure 7-4 illustrates the effect of astigmatism and field curvature on the image of a
spoked wheel where the images formed on the sagittal and tangentia surfaces are shown.
A magnification of —1 isassumed in the figure. As discussed earlier, a point object P is
imaged as a sagittal or radial line P, on the sagittal surface and as atangential line R on
the tangential surface. Each point on the object is imaged in this manner, so that the
sagittal image consists of sharp radial lines and diffuse circles while the tangential image
consists of sharp circles and diffuse radial lines. If the object contains lines that are
neither radial nor tangential, they will not be sharply imaged on any surface.

It should be understood that the astigmatism discussed here is for a system that is
rotationally symmetric about its optical axis, and its value reduces to zero for an axial
point object. It is different from the astigmatism of the eye, which is caused by one or
more of its refracting surfaces, usualy the cornea, that is curved more in one plane than
another. The refracting surface that is normally spherical acquires a small cylindrical
component, i.e., it becomes toric. Such a surface forms aline image of a point object even
when it lies on its axis. Hence, a person afflicted with astigmatism sees points aslines. If
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h=1

(a) Object (b) Image on (c) Image on
sagittal tangential
surface surface

Figure 7-4. Astigmatic images of a spoked wheel. Gaussian magnification of the
image isassumed to be— 1. The sagittal and tangential images P$ and P{ of a point
object P are shown very much exaggerated. The dashed circles in (b) are the
Gaussian images of the object circles.

the object consists of vertical and horizontal lines as in the wires of a window screen,
such a person can focus (by accommodation) only on the vertical or the horizontal lines at
atime. Thisis analogous to the spoked wheel example where the rim is in focus in one
observation plane and the spokes are in focus in another.

7.6 FIELD CURVATURE

The wave aberration corresponding to field curvature is given by
W) = Ap® = Ag(E%+m?) . (7-27)

Since the wave aberration is radially symmetric, the distribution of rays in the Gaussian
image plane is also radially symmetric. For rays lying on acircle of radius p in the exit
pupil, the radius of the circle of corresponding rays in the image plane, following Eq. (7-
6), isgiven by

= 4FA4p . (7-28)

Its maximum value is 4FA; and corresponds to the marginal rays. The spot sigma value

is 242FA,.

From the discussion in Section 1.4, we note that a defocus aberration represented by
Eq. (7-21) implies that the wavefront is spherical, but it is not centered at the Gaussian
image point. Instead, it is centered at a distance

A =—8F?A, (7-29)
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70 RAY SPOT SIZES AND DIAGRAMS

from the Gaussian image point along the optical axis. (Strictly speaking, it is centered on
the line joining the center of the exit pupil and the Gaussian image point.) Since the
aberration coefficient A, ~ h’2, the sagittal image of aline object will be parabolic with
a vertex radius of curvature of h’2/16F2A,, or 1/4R%a, . Similarly, the image of a
planar object will be paraboloidal. The paraboloidal surface for a system with zero
astigmatism is called the Petzval image surface.

7.7 ASTIGMATISM AND FIELD CURVATURE

Now we consider the combined effect of astigmatism and field curvature. Thus, the
aberration with respect to the Gaussian image point is now given by

W(p,0) = Ap2cos™® + Agp? = (A, +Ag)E% + Agn® . (7-30)

Note that whereas in Eq. (7-23) the defocus coefficient was a variable, hereit isfixed for
agiven point object. Since both A, and Ay are proportional to h’2, we find, following
the discussion of Sections 7.5 and 7.6, that the sagittal and tangential images of a line
object are formed on parabolic curves with vertex radii of curvature given by

h'2/16F %A, = 1/4R%a, (7-31)

R

and
R = h'?/16F2(A, + Aq) = 1/4R%(a, +ay) , (7-32)

respectively. Similarly, the images of a planar object centered on the optical axis will be
the corresponding parabol oids symmetric about the optical axis.

Combining Egs. (7-31) and (7-32) with Eg. (1-28), for imaging by a spherical
refracting surface, where L isthe same as R here, we find that
3 1 2

LA 7.33
RR R, =

It has the consequence that the Petzval surface is three times as far from the tangential
surface as it is from the sagittal surface, as may be seen by comparing the sags of the
three surfaces. Moreover, the sagittal surface always lies between the tangential and the
Petzval surfaces. When astigmatism is zero, the sagittal and tangential surfaces coincide
with the Petzval surface. Although Eg. (7-33) and its consequences have been obtained
for asingle spherical refracting surface, they hold for any rotationally symmetric imaging
system.

7.8 DISTORTION

The distortion wave aberration is given by

W(p,6) = Apcosd = AE (7-34)
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where the aberration coefficient A, is proportional to h’?. The corresponding ray
aberrations are given by

x;,y;) = (2FA,,0) = (Ra,h’?,0) . (7-35)
(xiv:) = ( ) =

Since the ray aberrations are independent of the coordinates (p, 6) of a ray in the exit
pupil, all the rays converge at the image point (ZF'A,.O). which lies along the x axis at a
distance 2FA, from the Gaussian image point. Thus, a wavefront aberrated by distortion
is tilted with respect to the Gaussian reference sphere by an angle

B=A4/a . (7-36)

This angle is proportional to w3, Similarly, the distance 2FA, of the perfect image point
from the Gaussian image point is proportional to h’®. This gives rise to the familiar
pincushion- or barrel-distorted image of a square grid, shown in Figure 7-5, depending
on whether A, is positive or negative, respectively. Distortion is often measured as a
fraction of the image height. Thus, for example. the percent distortion is IOORa;h’:.

7.9 SPOT DIAGRAMS

If an optical system is aberration free, the wavefront at its exit pupil corresponding to
a certain point object is spherical, and all the object rays lying in the pupil plane converge
at the Gaussian image point. For an aberrated system, the wavefront is nonspherical and
the rays distributed in a spot diagram give a qualitative description of the effects of an
aberration. A lens designer generally starts with rays that are distributed in a certain grid
pattern in the plane of the entrance pupil of the system. Figure 7-6 shows the ray grid
patterns in the pupil plane that are commonly used in practice. In Figure 7-6a. the rays are

. ; Fo = 1
i | 1
l | ol
P | | i
7 P
i o [ | : 1
k | | |
| |
= E =

(a) Object (b) Pincushion (c) Barrel

distortion distortion
,Qt =0 Al <0

Figure 7-5. Images of a square grid in the presence of distortion. When the
distortion aberration coefficient A, is positive, we obtain pincushion distortion as in
(b). When A4, is negative, we obtain barrel distribution as in (¢). The dashed squares
represent the Gaussian image of the square object with a magnification of - 1.5.
Thus, whereas F; is the Gaussian image of an axial point object P, P, and P, are
the images of the off-axis point objects P, and P, displaced from their Gaussian
positions because of distortion.
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Figure 7-6. Ray grid pattern in the pupil plane normalized by the pupil radius. (a)
Square grid of uniformly spaced points. (b) Hexa-polar grid of concentricrings.

distributed in a uniformly spaced square array, while in Figure 7-6b they are distributed
in ahexa-polar array.

In the absence of any aberration, the spot diagram in a defocused image plane looks
exactly like the one in the pupil plane, except for its scale. The spot diagrams for
spherical aberration in various image planes considered above are shown in Figure 7-7. It
is evident that, instead of the expected radial symmetry of the PSFs, afour-fold symmetry
is obtained in the case of the square grid of rays in the pupil plane, and hexagonal
symmetry in the case of the hexa-polar grid. Thisis simply an artifact of the ray grid used
in the pupil plane. Asin the case of defocus, the PSF for astigmatism is also uniform.
Hence, the spot diagram for it also looks like the input array across an elliptical spot,
which reduces to a circle or a line depending on the amount of balancing defocus. The
spot diagrams for coma are shown in Figure 7-8. Only the chief ray passes through the
Gaussian image point, which is shown with coordinates (0, 0) in the figure. Note that the
two grids yield different results, as may be seen from near the top of the spot.

7.10 ABERRATION TOLERANCE AND A GOLDEN RULE OF OPTICAL
DESIGN

It is common practice in lens design to look at the spot diagrams in the early stages
of a design, in spite of the fact that they do not represent what is observed in reality.
Optical designers consider a system to be close to its diffraction limit if the ray spot
radiusis less than or equal to theradius 1.22AF of the Airy disc, discussed in Chapter 8.
We note, for example, that this holds for spherical aberration in the Gaussian image plane
if A,<0.15), athough a larger value of A, is obtained in the other image planes.
Considering that the long dimension of the coma spot is 6FA, and the line image for
astigmatism is 8FA, long, the aberration tolerance for the spot size to be smaller than the
Airy discis A, <04 L and A, < 0.3, respectively. The aberration tolerances based on
the spot size are summarized in Table 7-2. These tolerances are roughly consistent with
the Rayleigh’s A/4 (quarter-wave) rule (see Section 8.3.6) that the peak peak-to-valley
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Figure 7-7. Spot diagrams for spherical aberration A, in various image planes, as
indicated by the value of B, for square and hexa-polar grids in the pupil plane: (a)
Gaussian, (b) midway, (c) least confusion, and (d) marginal. The spot sizes are in
units of FA,. The PSFs are four- or six-fold symmetric, instead of being radially
symmetric, depending on the grid used.
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Figure 7-8. Spot diagrams for coma A, in units of FA, for (a) square and (b) hexa-
polar grid of rays in the pupil plane. Only the chief ray passes through the Gaussian
image point P’ indicated with coordinates (0, 0).

aberration be less than A/4. This yields a golden rule of optical design in that a designer
strives for a small spot until its size is nearly equal to that of the Airy disc, and then
analyzes the system by its aberration variance and diffraction characteristics such as the
PSF or the modulation transfer function.

The depth of focus (giving the tolerance on the location of the plane for observing the
image) can be determined from Eqs. (7-28) and (7-29). Thus, the defocus aberration
tolerance is B, < 0.3 A for a spot radius smaller than or equal to that of the Airy disc,
which, in turn, implies a depth of focus of 2.4AF*. Alternatively, the depth of field
(giving the tolerance on the object location for a fixed observation plane) can be
determined from the depth of focus by dividing by the longitudinal magnification.
Similarly, distortion tolerance for a certain amount of /ine-of-sight error can be obtained
from Eq. (7-36) .

Table 7-2. Aberration tolerance based on the ray spot size.

Aberration

Spot ‘radius’ in
Gaussian image plane

Tolerance for
near diffraction limit

Spherical A,
Coma A,
Astigmatism A,

Defocus B,

8FA,

3FA

<

4FA

a

4FB,

A, <0.151
A, <0.4L
A, <0.3)

a —

B, <0.3\
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7.11 Summary 75

711 SUMMARY

The aberration-free image of a point object based on geometrical opticsis a point. All
of the object rays transmitted by the system pass through the Gaussian image point. For
an aberrated system, the rays are distributed in the image plane in the vicinity of the
Gaussian image point as a spot diagram. The quality of the aberrated image is determined
by the size and the nature of the diagram, which, in turn, is described by its standard
deviation and centroid. In the case of spherical aberration and astigmatism, the spot size
can be reduced by introducing defocus, i.e., by observing the image in an appropriate
plane other than the Gaussian image plane. The minimum spot thus obtained is referred to
as the circle of least confusion, and reducing the spot size in this manner is called
aberration balancing. A lens designer looks at the spot diagrams in the early stages of a
design and considers diffraction images as the size of the spot approaches that of the Airy
disc (discussed in Chapter 8).
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CHAPTER 8
Systems With Circular Pupils

81 INTRODUCTION

In this chapter, we consider optical systems with circular exit pupils and discuss
imaging by them based on the diffraction of object radiation at the exit pupil. Our starting
point is an equation for the distribution of light in the image of a point object called the
diffraction point-spread function (PSF) of the system. This equation is equally suitable
for calculating the diffraction pattern of a circular aperture. Since, under certain
conditions, the diffraction image of an incoherent object is given by the convolution of its
Gaussian image (which is a scaled replica of the object) and the system PSF,1-3 the PSF
calculations are fundamental to the theory of optical imaging. To understand the effect of
aberrations on images, it is essential that we first understand the aberration-free PSF.
Accordingly, we give briefly the characteristics of the aberration-free image of a point
object.

Our discussion on aberrated images is built slowly. First, we discuss defocused
images and irradiance along the axis of the pupil. Next, approximate relationships
between the ratio of the PSF values at its center with and without aberration, called the
Srehl ratio, and the variance of the aberration across the pupil are developed. The
approximate results for primary aberrations are compared with the corresponding exact
results to determine the range of validity of the simple Strehl ratio formulas. The concept
of aberration balancing is introduced in which an aberration of a certain order in pupil
coordinates is mixed or balanced with one or more aberrations of lower order to minimize
its variance, and thereby maximize the Strehl ratio of the system. Aberration tolerances
based on a Strehl ratio of 0.8 are given for primary and balanced primary aberrations.
Rayleigh’s quarter-wave rule is briefly discussed, and balanced aberrations are identified
with Zernike circle polynomials. The aberrated PSFs for various amounts of primary
aberrations are given, and their symmetry properties in and about the Gaussian image
plane are illustrated.

Since the diffraction image of an incoherent isoplanatic object is given by the
convolution of its Gaussian image and the PSF of the system forming the image, the
spatial frequency spectrum of the diffraction image is given by the product of the
spectrum of the Gaussian image and the optical transfer function (OTF) of the system 13
Thus, the OTF of the system, which is equal to the Fourier transform of its PSF, is
equally fundamental to the theory of optical imaging. The OTF of an aberration-free
system with acircular pupil is given, and how it is affected by an aberration is discussed.
The concept of a Hopkins ratio, representing the ratio of the magnitudes of the OTFs at a
certain spatial frequency, with and without aberration is introduced. Aberration tolerances
based on a Hopkins ratio of 0.8 are given for primary aberrations. Finally, contrast
reversal of certain spatial frequencies in an object is illustrated by considering their
imaging by a defocused system.

77
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78 SYSTEMS WITH CIRCULAR PUPILS

8.2 POINT-SPREAD FUNCTION (PSF)

In this section we give a general equation for evaluating the aberrated PSF of a
system with a circular exit pupil. We give closed-form analytical solutions for the
aberration-free PSF and encircled power giving the fraction of total power in the image of
a point object in a circle of certain radius centered at the Gaussian image point.
Defocused PSFs and axial irradiance of the convergent image-forming beam are
considered next. It is shown, for example, that the irradiance distribution even for an
aberration-free system is not symmetric about the Gaussian image plane unless the
Fresnel number of the pupil (defined below) as observed from the Gaussian image point
isvery large. The content of this section forms the basis from which to study the effects
of aberrations on the images.

8.2.1 Aberrated PSF

Consider an aberrated optical system with acircular exit pupil of radius a imaging a
point object radiating at a wavelength A. Let R be the distance between the planes of the
exit pupil and the Gaussian image and let (D(p, e) be the phase aberration at a point
(p,8) inthe pupil plane, where p isin units of a. The phase aberration @ is related to the
wave aberration W (p, 8) considered in earlier chapters according to @ = (2r/A)W . The
diffraction PSF or the irradiance distribution of the image in a plane normal to its optical
or the z axis at adistance zfrom the plane of its exit pupil may be written!

1 2n 2

JJ exp[id)(p,e)]exp{—nigprcos(e—ei)}pdpde . (81

PS
1(r,0;;2) = szzz

where (r, ei) are the polar coordinates of the observation point with respect to the point
where the line joining the center of the exit pupil and the Gaussian image point intersects
the observation plane, r isin units of AF (F = R/2a being the focal ratio or the f-number
of the image-forming light cone), P is the total power in the exit pupil and, therefore, in
theimage, and S, = na? is the area of the exit pupil of the system. Strictly speaking, the
PSF of a system represents the irradiance distribution of the image of a point object per
total power in the image. Accordingly, whereas the irradiance is in units of W/m2, the
PSF is in units of m=2. The angles 6 and 6, are zero for pupil and observation points
lying in the tangential plane on the positive side of the x axis. Asin earlier chapters, we
assume that the point object lies along the x axis so that the zx plane represents the
tangential plane.

The function exp[i®(p, )] is called the pupil function of the system. A system
whose aberration function <D(p,9) is (approximately) the same for all points on an
extended object is called isoplanatic. The image of an incoherent object formed by such a
system is obtained by convolving its Gaussian image with the PSF of the system, i.e., by
adding the irradiance distributions of its image elements. Similarly, the complex
amplitude distribution of the image of a coherent object formed by such a system is
obtained by adding the complex amplitude distributions of itsimage elements.
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8.2 Point-Spread Function (PSF) 79

The PSF of a system depends on the optical wavelength A in several ways. Referring
to Eq. (8-1), first, the power P in the exit pupil at a certain wavelength (strictly speaking,
across a narrow spectral band with a certain mean wavelength) may be different from that
at another wavelength. This variation will depend on the spectral radiance distribution of
the object and the spectral transmission of the system. Second, there is an inverse-square-
law dependence on the wavelength. It affects the “brightness” of the PSF: the shorter the
wavelength, the brighter the PSF. Third, the wave aberration may depend on the
wavelength if the system has one or more dispersive elements. Even if the system is
nondispersive, the phase aberration isinversely proportional to it. Hence, the effect of an
aberration on the PSF is different at two different wavelengths. Fourth, the variable r is
normalized by the wavelength. It affects the “size” of the PSF. the shorter the
wavelength, the narrower the PSF. However, a shorter wavelength also means larger
phase aberration and, therefore, more spreading of the PSF due to the aberration. The
white light or polychromatic PSF may be determined by integrating the monochromatic
PSF across the spectral distribution of the image-forming radiation.

8.2.2 Aberration-Free PSF

It can be shown that the aberration-free irradiance distribution, obtained from Eq. (8-
1) by letting ®(p,08)=0 and z= R, isgiven by

PSp | 23y(r)

I(r;R) = —{—r : (8-2)

\2R? Tr

where J;(-) is the first-order Bessel function of the first kind. This distribution,
normalized by its central value PS, /A’R?, is shown in Figure 8-1a. It is called the Airy
pattern,* and it isillustrated in 2D in Figure 8-1b. It consists of a bright spot, called the
Airy disc, surrounded by dark and bright rings. The power contained in a circle of radius
r. (inunitsof AF) centered at the Gaussian image point r = 0 is given by

P(rc) =1- \]g(TC rc) - J12 (TU‘C) : (8'3)

The encircled-power distribution normalized by the total power P isalso shown in Figure
8-1a The location of the maxima and minima of the irradiance distribution, the values of
irradiance at these points, and the corresponding encircled powers are given in Table 8-1.
The minima and maxima correspond to the roots of Ji(nr)=0 and J,(nr)=0,
respectively, where J,(-) is the second-order Bessel function of the first kind. It should
be evident that the encircled power corresponding to minima is given by 1— Jg(nrm),
where r,, represents the value of r for aminimum. The central bright spot of radius 1.22
contains 83.8% of the total power. Note that the principal maximum of the irradiance
distribution lies at r = 0 where Huygens' spherical wavelets originating at the exit pupil
interfere constructively. The aberration-free image of an object is also called its
diffraction-limited image (since the quality of the image is limited only by diffraction of
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Figure 8-1. (a) Irradiance and encircled power distributions for an aberration-free
system with a circular pupil. (b) 2D PSF, called the Airy pattern.
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8.2 Point-Spread Function (PSF) 81

Table 8-1. Irradiance and encircled power corresponding to the maxima and
minima of the PSF. The irradiance is normalized by the central value
1,(0)=PS, /A’R?, and the encircled power is normalized by the total power P in
the exit pupil and, therefore, in theimage. r and r, arein unitsof AF.

Max/Min rre I(r) P(re)
Max 0 1 0
Min 122 0 0.838
Max 164 0.0175 0.867
Min 2.23 0 0.910
Max 2.68 0.0042 0.922
Min 3.24 0 0.938
Max 3.70 0.0016 0.944
Min 4.24 0 0.952
Max 471 0.0008 0.957

the object radiation at the exit pupil of the system). It should be noted that the radius of
the Airy disc increases linearly with the wavelength and the irradiance at its center
decreases quadratically with it.

8.2.3 Rotationally Symmetric PSF

For aradially symmetric aberration d)(p), carrying out the angular integration, Eq.
(8-1) reducesto

1 2

J exp[i®(p)|Jo(rrpR/Z)pdp| . (8-4)

4PS
I(r; Z) = kzzzp

It is clear from Eq. (8-4) that the irradiance distribution is rotationally symmetric about
the z axis. Hence, it is radially symmetric in any observation plane normal to it.
Moreover, it does not depend on the sign of d)(p) (as may be seen by changing i to —i).

8.2.4 Defocused PSF

If the imaging system is aberration free but the image is observed in aplane z# R
then the image suffers from defocus aberration given by (see Section 1.4)

@(p; z) = By(2)p® (8-5)
where
2
By(2) - - 1- 1) (&6
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82 SYSTEMS WITH CIRCULAR PUPILS

R
= nN(;— j , (8-6b)

is the peak defocus aberration. In Eq. (8-6b), N = a?/AR is the Fresnel number of the
exit pupil as observed from the center of the Gaussian image plane. Thus, the edge of the
exit pupil is farther than its center by approximately NA/2 from the center of the
Gaussian image plane so that N is the number of Fresnel’s half-wave zones in the exit

pupil.

From Eg. (8-1) we note that the irradiance distribution is asymmetric about the plane
z= R i.e, thedistributions in two planeslocated at z=R* A, where A isalongitudinal
defocus, are not identical, even if the system is otherwise aberration free. There are three
reasons for this asymmetry. First, the inverse-square law dependence on z increases the
irradiance for z < R and decreases it for z> R. Second, B, is asymmetric since the
defocus coefficients for these two planes are different, as may be seen from Eq. (8-6).
Third, the exponent in Eg. (8-1), which determines the scale of the image, depends on z

For systems with a small Fresnel number N < 5, z can be much different from R for
B, to achieve a significant value. Accordingly, al of the three factors mentioned above
contribute to the asymmetry of the irradiance distribution about the plane z= R. One
consequence of thisisthat the irradiance at points on and near the z axis can be higher for
z< Rthan for z= R. For example, a beam of diameter 25 cm and a wavelength of 10.6
um focused at a distance of 1.5 km correspondsto N = 1. A Strehl ratio [discussed in the
next section and whose exact value is given by the square of the quantity in parenthesisin
Eqg. (8-7)] of 0.8 is obtained at two z values: 1 km and 3 km. The principal maximum of
axia irradiance occurs at a distance of 0.6R = 0.9 km.

If the Fresnel number of a system is very large (N >> 10), By becomes large even
for very small differencesin zand R. For example, a photographic system witha=1 cm,
A =0.5um, and R =10 cm corresponds to N = 2000, and a Strehl ratio of 0.8 is obtained
for z= R+ 25 um. Accordingly, the defocus tolerance for such systems dictates that z be
practically equal to R. Hence, following Eg. (8-6a), we note that two observation planes z
= R * A correspond to defocus coefficients of By =+ nA/ 4MF? . Since these coefficients
are equal in magnitude but opposite in sign, letting <I>(p) =By p2 in Eq. (8-4), we find
that the irradiance distribution for an unaberrated system with a large Fresnel number is
symmetric about the Gaussian image planez=R.

8.2.5 Axial Irradiance

If welet r =0 in Eq. (8-1), we obtain the irradiance along the z axis (strictly
speaking, along the line joining the center of the exit pupil and the Gaussian image point).
For an aberration-free system, the axial irradiance is given by

PS, (s 2
1(02) = M—Z‘;[%;’Z/Zj . 87)
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Figure 8-2 shows how this irradiance varies with z for systems with N = 1, 10, and
100.5 We note that it is highly asymmetric about the Gaussian image point (z = R) when
N =1, but it becomes more and more symmetric as N increases. The axial irradiance for a
Gaussian pupil (with a truncation parameter of unity discussed in Chapter 9) is also
shown in this figure with a similar behavior. It should be noted that even though the
principal maximum of axial irradiance does not lie at the focus, unless N is very large,
maximum central irradiance on a target in a beam-focusing system always occurs when
the beam is focused on it.® It is evident from Figure 8-2 that the depth of focus decreases
as N increases.

8.3 STREHL RATIO

Now we consider an aberrated system and discuss how the value at the center of the
PSF is affected by the aberration in the system, thereby introducing the concept of the
Strehl ratio. We obtain simple but approximate expressions for the Strehl ratio in terms of
the variance of the aberration across the exit pupil of the system. We introduce the
concept of aberration balancing in which an aberration of a certain order in pupil
coordinates is balanced by one or more aberrations of lower order to minimize its
variance and thus maximize the Strehl ratio. We give aberration tolerances for primary
and balanced primary aberrations corresponding to a Strehl ratio of 0.8. A brief
discussion of Rayleigh’s quarter-wave rule is given, and balanced primary aberrations are

identified with the corresponding Zernike circle polynomials.

8.3.1 General Expressions

The Strehl irradiance ratio of an image or a system, defined as the ratio of the
irradiance values at the center of the image in a plane with and without the aberration,
according to Eq. (8-1) is given by

20 2.0 20 |
N=10 N =100
15| 15| | 15]— =
o
i
= 10— 1.0 1 10
0.5 g 05 05
0.0 - 0.0 o 0.0 - i
00 05 10 15 05 1.0 15 08 09 10 11 12
—»z/R —»z /R —»z /R

Figure 8-2. Axial irradiance of a circular beam focused at a distance R with a
Fresnel number N = 1, 10, and 100. The irradiance is in units of the focal-point
irradiance PSP/ZRz. The subscripts # and g refer to uniform and (truncated)
Gaussian beams, respectively. Gaussian beams are discussed in Chapter 9.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



84 SYSTEMS WITH CIRCULAR PUPILS

2

S=n?2 J J expi®(p,0)|p dp do (8-8)
= (ewli(@-(@)])’
= {cos(® - <<I>>)>2 +(sin(® —<d>))>2
> (cos((l)—(d)))>2 , (8-9)

where the angular brackets indicate an average across the pupil. Expanding the cosine
function in a power series and retaining the first two terms for small aberrations yields the
Maréchal resulté

sz (1-63/2) | (8-10)
where
oh = (@~ (@)’)
= (0%)- (@) (8-11)

isthe variance of the phase aberration across the pupil. Note that

1 2n

(@") = n 1J J ®"(p,0)pdp do . (8-12)

0 O

For small values of standard deviation G, three approximate expressions have been
used in the literature:

S = (1-03/2) . (8-13)

S =1-02 , (8-14)
and

S = exp(-05) . (8-15)

The first is the Maréchal formula, the second is the commonly used expression obtained
when the term in cfb in the first is neglected,” and the third is an empirica expression
giving a better fit to the actual numerical results for various aberrations.? We note that the
Strehl ratio for a small aberration does not depend on its type but only on its variance
across the pupil.
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8.3 Strehl Ratio 85

8.3.2 Primary Aberrations

Table 8-2 gives the form as well as the standard deviation G4 of a primary
aberration. Here, the aberration coefficient A; represents the peak value of an aberration.
(The balanced aberrations noted in the table are considered in the next section.)
Comparing it with the aberration coefficients a; considered in earlier chapters, we note,
for example, that A, = a_h’a®, where h’ is the height of the Gaussian image point from
the optical axis of the system. It also lists the tolerance for an aberration coefficient A,
for a Strehl ratio of 0.8. The optical tolerances listed in Table 8-2 are for the wave (as
opposed to phase) aberration coefficient, as is customary in optics. A Strehl ratio of 0.8
corresponds to an aberration with a standard deviation of o,y =A/14.

8.3.3 Balanced Primary Aberrations

In Chapter 7, where we discussed ray aberrations, we mixed one aberration with
another in order to minimize the size of the ray spot in an image plane. For example, in
the case of spherical aberration, the circle of least confusion was determined to be in a
plane 3/4 of the way from the Gaussian image plane to the marginal image plane. The
radius of the circle of least confusion was found to be 1/4 of the spot radius in the
Gaussian image plane. Similarly, in the case of astigmatism, it isin a plane lying midway
between the planes containing the sagittal (Gaussian) and tangential line images with a
diameter that is half the length of the line images.

Table 8-2. Primary aberrations, their standard deviations, and values of aberration
coefficients, peak aberrations, and peak-to-valley aberrations for a Strehl ratio of

0.8.
S=038
Aberration D(p, 6) 6o W, W,, A ]Wp| W,
Spherical Ap* 25 025 025 025
e As Ao . .
Balanced 4 _ 2 A A A
Alp” —p
spherical ( ) 6y5 4 4 1 025 025
A
Coma Acp3 cosO 22 A 2A, 021 021 042
2A,
Balanced 3 A A 2A
—2p /3| coso
o A(p®-2013) 62 3 3 063 021 042
Astigmati 2cos’0 et
igmatism  A,p“cos 4 A, A, 030 030 030
Balanced ~ Ap(c0s0-1/2) A Aa
037 018 037
astigmatism = (A, /2)p?cos20 26 2 Aa
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86 SYSTEMS WITH CIRCULAR PUPILS

For small aberrations, since the Strehl ratio is maximum when the aberration
variance is minimum, the best image plane is one that corresponds to minimum variance.
Thus, for example, we balance spherical aberration with defocus and write it as

(p) = Ap* +Byp® . (8-16)

We determine the amount of defocus By such that the variance o5, is minimized; i.e.,
we calculate 64 and let

dc2
R (8-17)
to determine By. Proceeding in this manner, we find that the optimum value is
By = — A,. The standard deviation of the optimally balanced aberration is A,/6\5,
which is afactor of 4 smaller than the standard deviation for By = 0. Since the standard
deviation has been reduced by a factor of 4 by balancing spherical aberration with
defocus, the optical tolerance has been increased by the same factor. Following Section
1.4, adefocus of By =— A, isintroduced by observing the image in a plane that is farther
from the exit pupil than the Gaussian image plane by 8F 2As. Moreover, since By =0
and By =— 2A, correspond to Gaussian and marginal image planes, respectively, we note
that, based on diffraction, the best image is obtained in a plane lying midway between
them. This is different from the plane containing the circle of least confusion that
correspondsto By =—-1.5A,.

Coma and astigmatism can be treated similarly. Table 8-2 lists the form of abalanced
primary aberration, its standard deviation, and its tolerance for a Strehl ratio of 0.8. We
note that in the case of coma, the balancing aberration is a wavefront tilt with a
coefficient that is minus two-thirds of the coma coefficient. Thus, maximum Strehl ratio
is obtained at a point that is displaced from the Gaussian image point by (4FA. /3, 0) but
lies in the Gaussian image plane. By balancing coma with an appropriate amount of tilt,
its standard deviation is reduced by a factor of 3. In the case of astigmatism, the best
Strehl ratio is obtained in a plane that is farther than the Gaussian image plane by
4F2A,. As discussed in Chapter 7, this is also the plane in which the circle of least
confusion is obtained. By balancing with defocus, the standard deviation of astigmatism
is reduced by a factor of 1.225. The point of observation with respect to which the
aberration variance is minimum and, therefore, the irradiance at that point is maximum, is
called the diffraction focus.

8.3.4 Comparison of Approximate and Exact Results

Figure 8-3 shows how the Strehl ratio of a primary aberration varies with its standard
deviation. Approximate as well as exact results are shown in this figure.® The exact
results are obtained by the use of Eq. 8-8. The curves for a given aberration and for the
corresponding balanced aberration can be distinguished from each other by their behavior
for large o, values (near 0.251). For example, coma is shown by the evenly dashed
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curves; the higher dashed curve is for coma and the lower is for balanced coma. The same
holds true for astigmatism. The curves for spherical and balanced spherical aberrations
are identical since the Strehl ratio for a given value of ¢, is the same for the two
aberrations. The following observations may be made from Figure 8-3:
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Figure 8-3. Strehl ratio for primary aberrations as a function of their standard
deviation ©,, in units of optical wavelength A. For large values of ©,, coma and
astigmatism give a higher Strehl ratio than the corresponding balanced aberration.
The Strehl ratios for spherical and balanced spherical aberrations for the same
value of o, are identical. 64 =(2m/A)o, . Spherical or balanced spherical....,
Coma- — — —, Astigmatism __.__._ ..
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88 SYSTEMS WITH CIRCULAR PUPILS

i. For small values of o,,, the Strehl ratio is independent of the type of aberration. It
depends only on its variance.

ii. The expressionsfor § and S, underestimate the true Strehl ratio S.

iii. The expression for S; underestimates the true Strehl ratio only for coma and
astigmatism; it overestimates for the other aberrations. Numerical analysis shows that the
error, defined as 100(1- S;/S), is< 10% for S>0.3.

iv. S; gives a better approximation for the true Strehl ratio than § and S,. Thereason is
that, for small valuesof ,,, itislarger than S by approximately 0?},/4. Of course, S is
larger than S, by o, /4.

v. The Strehl ratio depends strongly on the standard deviation of an aberration but weakly
on its detailed distribution over awide range of Strehl ratio values.

8.3.5 Strehl Ratio for Nonoptimally Balanced Aberrations

When a certain aberration is balanced with other aberrations to minimize its variance,
the balanced aberration does not necessarily yield a higher or the highest possible Strehl
ratio. For small aberrations, a maximum Strehl ratio should be obtained according to any
of the Egs. (8-13)—(8-15), when the variance is minimum. For large aberrations, however,
there is no simple relationship between the Strehl ratio and the aberration variance. For
example,® when A, = 3, the optimum amount of defocusis By = — 3\ but the Strehl
ratio is a minimum and equal to 0.12. The Strehl ratio is maximum and equal to 0.26 for
By=—-4A or —2A. For A, < 2.3\, the axial irradiance is maximum at a point with
respect to which the aberration variance is minimum. Similarly, in the case of coma, the
maximum irradiance in the image plane occurs at the point with respect to which the
aberration variance is minimum only if A, < 0.7A, which in turn corresponds to
S 2 0.76. For larger values of A., the distance of the point of maximum irradiance does
not increase linearly with its value and even fluctuates in some regions.’® Moreover, it is
found that for A, > 2.3\, the Seidel coma gives a larger Strehl ratio than the balanced
comg; i.e., the irradiance in the image plane at the origin is larger than at the point with
respect to which the aberration variance is minimum. Thus, only for large Strehl ratios,
the irradiance is maximum at the point associated with minimum aberration variance.

When secondary spherical aberration (varying as pe) and secondary coma (varying
as p° coso) are balanced with lower-order aberrations to minimize their variance, it is
found!! that a maximum of Strehl ratio is obtained only if its value comes out to be
greater than about 0.5. Otherwise, a mixture of aberrations yielding a larger-than-
minimum possible variance gives a higher Strehl ratio than the one provided by a
minimum variance mixture.

8.3.6 Rayleigh's A/4 Rule

Rayleigh!? showed that a quarter-wave of primary spherical aberration reduces the
irradiance at the Gaussian image point by 20%; i.e., the Strehl ratio for this aberration is

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



8.3 Strehl Ratio 89

0.8. This result has brought forth the Rayleigh’s A/4 rule, namely, that a Strehl ratio of
approximately 0.8 is obtained if the maximum absolute value of the aberration at any
point in the pupil is equal to A/4. A variant of this definition is that an aberrated
wavefront that lies between two concentric spheres spaced a quarter-wave apart will give
a Strehl ratio of approximately 0.8. Thus, instead of |Wp| =A/4, werequire W, , =A/4,
where |Wp| is the peak absolute value and W,  is the peak-to-valley value of the
aberration. From Table 8-2, we note that a Strehl ratio of 0.8 is obtained for
|Wp| =M4=W, , for spherical aberration only. For other primary aberrations, distinctly
different values of |Wp| and W, , give aStrehl ratio of 0.8. In Table 8-2, |Wp|and W,
are also given in terms of the aberration coefficient A . Thus, we see that it is
advantageous to use o, for estimating the Strehl ratio. A Strehl ratio of S = 0.8 is
obtained for ¢, < A/14.

8.3.7 Balanced Aberrationsand Zernike Circle Polynomials

The phase aberration function of a system with acircular exit pupil for a certain point
object can be expanded in terms of a complete set of Zernike circle polynomialst2
Z" (p,6) that are orthonormal over a unit circlein the form

n
Y ComZn'(00) , 0<p<1l , 0<o<2rn |, (8-18)

m=0

@ (p,6) =

n

It

where c,,,, are the orthonormal expansion coefficients that depend on the location of the
object, n and m are positive integers including zero, n—m=> 0 and even, and

Z(0,0) = [2An+1)/(1+80)] "R (p) cosmd . (8-19)

Here, §;; isaKronecker delta, and

(n m/2 (-D°(n-s)
m _ n 2s
R](p) - zo (n+m ) (n_m )P (8-20)
=Y 4 -s| —s
2 2
is a radial polynomial of degree nin p containing termsin p", p" 2, ..., and pm. The

radial circle polynomials RT'(p) are even or odd in p, depending on whether n (or m) is
even or odd. Also, R7(p)=p", RY'() =1, and R(0) =8, for even n/2 and — &, for
odd n/2. The polynomials RY'(p) obey the orthogonality relation

1

{) Ry (p) RY (p)pdp = Zevs)

S - (8-21)

The orthogonality of the angular functionsyields

2n
{) cosm cosm'8dd = m(1+80)8mm - (8-22)

Therefore, the polynomias Z;' (p,0) are orthonormal according to
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90 SYSTEMS WITH CIRCULAR PUPILS

11 2r ,
;.([) J(.) Z?(P:G)Zm (p*e)pdpde = 6nn’8mm’ . (8'23)

The orthonormal Zernike expansion coefficients are given by
11 2n m
- | ®(p,0)Z7'(p,6)pdpde (8-24)

as may be seen by substituting Eq. (8-18) and utilizing the orthonormality of the
polynomials.

The orthonormal Zernike polynomials and the names associated with some of them
when identified with aberrations are listed in Table 8-3 for n < 8. The polynomials
independent of 6 are the spherical aberrations, those varying as cos® are the coma
aberrations, and those varying as cos26 are the astigmatism aberrations. The number of
Zernike (or orthogonal) aberration terms in the expansion of an aberration function
through a certain order nis given by

2
N, = (g+1) forevenn , (8-25a)

= (n+1)(n+3)/4 foroddn . (8-25b)

Each orthonormal expansion coefficient, with the exception of cy,, represents the
standard deviation of the corresponding aberration term. The variance of the aberration
function is accordingly given by

o3 = (@2(p,0)) - (@(p,6))’

2 2
Crm —Coo

1
M8
7 M5

0 0

=}
Il

c2y . (8-26)
0

=}
Il
=

1
M8
7 Ms

Unless the mean value of the aberration (@®)=cpu=0, Og # Py, Where
D, = <CI>2> isthe rms value of the aberration.

Asindicated in Table 8-3, the balanced aberrations can be identified with the Zernike
circle polynomials. For example, ZZ2, Z3, and Z_ represent balanced astigmatism, coma,
and spherical aberration. For obvious reasons, a balanced aberration in this form may be
referred to as a Zernike or an orthogonal aberration. The constant term in Z makes its
mean value to be zero. It does not change the standard deviation of the balanced
aberration or the Strehl ratio corresponding to it. The circle polynomials are uniquein the
sense that they are the only polynomials that are orthogonal across a unit circle and
represent balanced aberrations.

In a system without an axis of rotational symmetry, as for example in the case of
fabrication errors, the aberration function will generally consist of terms not only in
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8.3 Strehl Ratio 91

Table 8-3. Orthonormal Zernike circle polynomials and balanced aberrations.

n m Orthonor TEJ Zernike Polynomial Aberration Name*
2An+l) Ry (p)cosme
1+ 00

0 0 1 Piston

1 1 2pcoso Distortion (tilt)

2 0 J3 (2p2 _ 1) Field curvature (defocus)

2 2 /6 p? c0s20 Primary astigmatism

3 1 /8 (3p? - 2p) coso Primary coma

3 3 V8 p®cos30

4 0 V5 (6p* - 6p” +1) Primary spherical
4 2 V10 (4p* - 3p2) cos20 Secondary astigmatism

4 4 V10 p* cos46

5 1 V12 (10p° —12p® + 3p) cos® Secondary coma

5 3 V12 (5p° - 4p?) cos30

5 3 V12 p® cos50

6 0 N7 (20p° - 30p* +12p” - 1) Secondary spherical
6 2 V14 (150° — 20p* + 6p°) cos26 Tertiary astigmatism
6 4 V14 (6p° - 5p*) cos46

6 6 14 p® cos60

7 1 ( " —60p° +30p° - 4p) cosH Tertiary coma

7 3 (2 —30p° +10p ) cos30

7 5 4(7p7 ) cos50

7 7 4p’ cos70

8 0 3(70p® - 140p° + 90p* - 20p° +1)  Tertiary spherical

*The words “orthonormal Zernike” are to be associated with these names, e.g.,
orthonormal Zernike primary astigmatism.
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92 SYSTEMS WITH CIRCULAR PUPILS

cosmeo but also in sinmP. The phase aberration function for such cases can be written in
terms of orthonormal Zernike circle polynomials Z;(p, 6) in the form

®(p,0) = jzﬂajzi(p,e) , 0<p<l , 0<e@<2n , (8-27)
Zowenj p 6 mRn cosme, m=0 (8-283)
Zogd p 6 mRn smme, m=0 (8-28b)

Zi(p.6) = yn+1RY(p), m=0 . (8-28¢)

The index j isa polynomial-ordering number that is a function of both the radial
degree n and the azimuthal frequency m. The polynomials are ordered such that an even |
corresponds to a symmetric polynomial varying as cosmo, and an odd j corresponds to
an antisymmetric polynomial varying as sinm@. A polynomial with alower value of nis
ordered first, and for a given value of n, a polynomial with alower value of mis ordered
first.

The polynomials are orthonormal according to

1 2rn 1 2n
£ J(;Zj(p,e)zj»(p,e)pdpde/{) {)pdpde =8 . (8-29)

The expansion coefficients are given by

} [ @@ (p.8)pdpde . (8-30)
0

N
a

The variance of the aberration function is given by

2 2 2
Cp = Zaj—al
="

= 3 af (8-31)
j=2

The number of polynomials through a certain order nis given by
N, = (n+)(n+2)/2 . (8-32)
Thefirst eleven such polynomias arelisted in Table 8-4.

8.4 2D PSFs

Now we show how the Airy pattern shown in Figure 8b, representing the 2D
aberration-free PSF, is affected by a primary aberration. Our emphasisis to illustrate the
structure of a PSF, i.e., on the distribution of its bright and dark regions, and not on the
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Table 8-4. Orthonormal Zernike circle polynomials Z;(p, 6).

j n m Zp,6) Aberration*

1 0 0 1 Piston

2 1 1 2pcos6 xtilt

3 1 1 2psind yilt

4 2 0 3(2p*-1 Defocus

5 2 2 6p2sin20 45° Primary astigmatism
6 2 2 6p2cos26 0° Primary astigmatism
7 3 1 48 (3p3 - 2p) sinod Primary y coma

8 3 1 .8 (3p3 - 2p) cosH Primary x coma

9 3 3 8p3sin3e
10 3 3 +/8p3cos36

1 4 0 V‘%(Gp“ — 6p% + 1) Primary spherical

*The words “orthonormal Zernike circle” are to be associated with these names, e.g.,
orthonormal Zernike circle 0° primary astigmatism.

guantitative irradiance distribution. For example, we have accentuated some regions of
very low irradiance to make their appearance visible. Some of the symmetry properties of
the PSFs are clearly evident in these figures.13 The PSFs for defocus (Figure 8-4) and
spherical aberration (Figures 8-5 and 8-6) are radialy symmetric like the Airy pattern.
The central value of a PSF for an integral number of waves of defocusis zero, as may be
seen from Eq. (8-7), yielding a dark center. The size of the central bright spot for
spherical aberration does not change with increasing amount of spherical aberration.1415
The PSFs for astigmatism, shown in Figure 8-7, are symmetric about two orthogonal
axes, one of them lying in the tangential plane. Asthe aberration increases, the diffraction
PSFs begin to resemble the ray spots; elliptical spot in general, and line spots in
particular. The PSFs in the minimum aberration-variance (circle of least confusion) plane
are four-fold symmetric, as shown in Figure 8-8. The PSFs for coma are symmetric about
the tangential plane, as shown in Figure 8-9. Thus, they have a line symmetry in any
observation plane, the line lying in the tangential plane. It should be evident that a
random mixture of various aberrations will yield a complex PSF.
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94 SYSTEMS WITH CIRCULAR PUPILS

By =0 By =05
Bd=2 Bd=3

Figure 8-4. Defocused PSFs. By represents the peak value of defocus wave
aberration in unitsof A. Thecentral value of the PSF iszerowhen By isequal to an
integral number of wavelengths.
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A =0.25 A, =05

2

&
I

A =3

Figure 8-6. PSFs for balanced spherical aberration [As(p"' —pz)]. Thus, a PSF is
observed in a defocused image plane corresponding to By =— A;. The aberration
coefficient A isin unitsof A.
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A,=1,B,=0 A,=1,B;=-05

A,=1,B;=-1 A,=1,B,=05

A,=3B,=0 A, =3B, =15

Figure 8-7. PSFs aberrated by astigmatism observed in various image planes.
By =0, —A,/2,and — A, represent the Gaussian or sagittal, minimum-variance or
circle-of-least (astigmatic)-confusion, and tangential image planes. The aberration
coefficient A, isin unitsof A.
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A, =025 A, =05

A =1 Ay=2

Ay =3
Figure 8-8. PSFs for balanced astigmatism Aa(pzcosze— p2/2). Thus, By=-A,/2,

and the PSFsare 4-fold symmetric. The aberration coefficient A, isin unitsof A.
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A, =0.25 A =05

A =3

Figure 8-9. PSFs aberrated by increasing amount of coma (Acpgcos(-)). They are
symmetric about the horizontal (x;) axis. The peak and the centroid of the PSFs do
not lie at the Gaussian image point. The aberration coefficient A, isin unitsof A.
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85 OPTICAL TRANSFER FUNCTION (OTF)

Since the diffraction image of an incoherent object is given by the convolution of its
Gaussian image and the system PSF, a Fourier transform of this relationship shows that
the spatial frequency spectrum of the diffraction image is given by the product of the
spectrum of the Gaussian image and the optical transfer function (OTF) of the system,
where the OTF is equal to the Fourier transform of the PSF.1-3 Because of the relationship
of Eq. (8-1) between the PSF and the pupil function of the system, the OTF is aso given
by the autocorrelation of the pupil function. Thus, the OTF of a system can be obtained
from its pupil function without having to calculate its PSF. In this section, we introduce
the concept of OTF and discuss its physical significance. We also discuss how it is
affected by aberrations and how it relates to the Strehl ratio. Also given is an expression
for the aberration-free OTF of a system with a circular pupil. Contrast reversal is also
illustrated, in which bright regions of certain bands of spatial frequencies in the object are
imaged as dark, and dark regions are imaged as bright.

8.5.1 OTF and ItsPhysical Significance

The OTF of an incoherent imaging system is given by the Fourier transform of its
PSF according to

1(V,) = [PSF(T) exp(2riV; - 7)) dT, (8-33)

where V; =(v;, 0) isa2D spatial frequency vector in the image plane, T, =(AFr,9;) is
the position vector of a point in this plane, and the PSF is given by Eq. (8-1) with P = 1.
In what follows, we assume that the Fresnel number of the system is large so that the
defocus tolerance dictates that z = R. However, if thisis not the case, then we simply
replace R by zin the following discussion. As mentioned above, because of Eq. (8-1)
relating the PSF and the pupil function, the OTF may also be written as the
autocorrelation of the pupil function, i.e.,

(V) = S,!] P(F,)P(F, -ARV,) dF, (8-34)
where
P(T,) = edio(r,)] . o<[f|<a (8-35)

= 0 , otherwise

isthe pupil function. Here, Fp = (ap, e) isthe position vector of a point in the plane of the
exit pupil. The integration in Eq. (8-34) is carried out across the region of overlap of two
pupils centered at 1, =0 and the other at 1, = ARV, . The asterisk in Eq. (8-34) indicates
acomplex conjugate.

The OTF depends on the wavelength in two ways. First, the dependence of the phase
aberration on it is evident. Second, it enters in the displacement of the pupil. It has the
implication that for alonger wavelength the displacement approaches the diameter of the
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pupil for a smaller frequency, thereby reducing the region of overlap of two pupils
displaced with respect to each other to zero. Consequently, the cutoff frequency is smaller
for a longer wavelength.

The physical significance of the OTF may be understood with the help of Figure 8-
10. If we consider a sinusoidal object of a spatial frequency v,, modulation or contrast m,
and phase 8, its Gaussian image is also sinusoidal with a spatial frequency v, =V, /M ,
where M is the magnification of the image. The modulation and phase of the Gaussian
image are the same as those of the object. Its diffraction image is also sinusoidal with a
spatial frequency v; . However, the modulation of the diffraction image is m ‘T(I?,)l and
its phase is 8 —¥(V;) where [1:[1",)| is the modulus of the OTF and ¥(V;) is its phase,
ie.,

(7)) = |2(7)|exp[i¥(7)] . (8-36)
The functions ”L’ (T,]l and ‘P[F‘-) are also called the modulation transfer function (MTF)
and the phase transfer function (PTF), respectively.

8.5.2 Aberration-Free OTF

It is evident from Eq. (8-34) that the aberration-free OTF represents the fractional
overlap area of two circles whose centers are separated by a distance ARv,, as illustrated
in Figure 8-11. The overlap area is equal to four times the difference between the area of

B,(1+ m)
' 1/ 1V, |
T B,(1-m) [—
0 — X,
lo(1+m) b
=
L(1-m) | —
0 —bxi
111V, |
s Iommh“i/\/\./-\fw\?\/\/\/\
T l{i1=-m |z [) (=
1/1v, |
e
0
— X

Figure §-10. Image of a sinusoidal object of radiance B shown along the x axis. (a)
Object, (b) Gaussian image of irradiance [ e and (c) Diffraction image of irradiance
I;. By and I, represent the average radiance and irradiance of the sinusoidal
object and images, respectively.
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a sector of radius a and cone angle B and the area of the triangle OAB. Thusthe OTF is
given by

t(v) = (ym)[2B ~sin2p)]

= (2/1:)[005 tv-v(1- Vz)yz] , 0sv<1 (8-37)
= 0, otherwise |,
where
v =cosB =V, /(JAF) (8-38)

is a normalized radial spatial frequency. The spatial frequency v=1 or v; =1/AF is
called the cutoff frequency of an incoherent imaging system, since the OTF for v>1 is
zero.

Figure 8-12 shows how the OTF given by Eq. (8-37) varieswith v. We note that the
OTF isradially symmetric; i.e.; its value depends on the magnitude of a spatial frequency
but not on its direction. A system with afocal ratio F = 10 imaging an object radiating at
awavelength A = 0.5um corresponds to a cutoff frequency of 200 cyclessmm. The cutoff
frequency decreases linearly with wavelength. The sinusoidal components of an object
with spatial frequencies v, > M/AF are not resolved by the system at all; i.e., their
images are of uniform irradiance. From Eq. (8-37), we find that

7(0) = {atail\/)l_o = —4/n (8-39)
and
} t(v)vav = 1/8 . (8-40)

AN

‘ )\.RVi ‘

Figure 8-11. Aberration-free OTF as the fractional area of overlap of two circles
whose centers are separated by a distance ARy,.
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Figure 8-12. Aberration-free OTF, where the spatial frequency v is normalized by
the cutoff frequency 1/AF .

Since the slope of the MTF or the real part of the OTF of a system evaluated at the origin
is independent of its aberration, it is equal to —4/n in the case of a circular pupil
regardless of its aberration.

The Strehl ratio of an optical imaging system, discussed in Section 8.3, represents the
ratio of its PSF (or the corresponding irradiance) values at the center r = 0 with and
without aberration. From Eqg. (8-33), we note that its PSF can be written as the inverse
Fourier transform of its OTF, i.e.,

PSF (7)) = [t(V;) exp(- 2ni ¥, -T,) dV; . (8-42)
Accordingly, the Strehl ratio may be written
S = (4/m)]x(V) dV, | (8-42)

where we have used Eq. (8-40) for theintegral involving the aberration-free OTF. Since S
isarea quantity, theintegral of the imaginary part of I(Vi) on the right-hand side of Eq.
(8-42) must be zero. Hence, we may write Eq. (8-42) as

S = (4/m)[Ret(V;)dV, (8-43)

where Re indicates areal part. Thus, the Strehl ratio of a system gives a measure of the
mean value of the real part of its OTF, averaged over al spatial frequencies.

8.5.3 Hopkins Ratio and Aberration Tolerance

In Section 8.3, we calculated aberration tolerances for a system with a Strehl ratio of
0.8. Such a system forms the image of an aobject with a quality that is only slightly
inferior to the corresponding quality for an aberration-free system, regardless of the
spatial frequencies (or the size of detail) of interest in the object. A Strehl ratio of 0.8 is
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104 SYSTEMS WITH CIRCULAR PUPILS

obtained when the standard deviation of the aberration of the system across its exit pupil
is approximately A/14, regardless of the type of aberration. However, systems that have
much larger aberrations form good-quality images of objects in which the size of the
detail is much coarser than the limiting resolution 1/AF of the system.

We now consider aberration tolerances based on a certain amount of reduction in the
MTF of the system corresponding to a certain spatial frequency. Following Hopkins,16 we
define a modulation ratio H(V;) as the ratio of the MTFs of a system at a spatial
frequency V, with and without aberration, i.e.,

HEV) = [1(%)]/7@) (8-44)

where t(V;) is the aberrated OTF, and t,,(V;) is the aberration-free or unaberrated OTF
given by Eq. (8-37) with v replaced by v; and 0<v; <1/AF. For obvious reasons, we
cal H(V,) the Hopkins modulation or contrast ratio. Its value is <1, since the aberrated
MTF is always less than its corresponding aberration-free value.

Based on numerical analysis for primary aberrations, Hopkins'é has shown that
H(v) 2 0.8 for v < 0.1, provided their coefficients obey the following conditions:

By < £A/20v (8-45)
A, < £)A/10vintheplaneBy = -A,/2 , (8-46)
0.071 . _
A, <+ X(T + 0.16) with¥(v) = ¥0.89+048vwhend = 0 ,  (8-47a)
< + x(0.123 + 0.19) with ¥(v) = Owhen¢ = n/2 (8-47b)
v
and
A, <+ x(% + 0.33) intheplane By = —(1.33-22v+28v2)A, .  (8-48)

Asin Eq. (1-7), By, A,, A., and A represent the peak coefficients of defocus,
astigmatism, coma, and spherical aberration. We note that the amount of balancing
defocus in the case of spherical aberration is different from its corresponding value given
in Table 8-2 for optimizing the Strehl ratio. Moreover, its value depends on the
magnitude of the spatial frequency at which the MTF is optimized. For spatial
frequencies v > 0.1, it is more appropriate to use the Strehl ratio as the criterion of image
quality and aberration balancing.

8.5.4 Contrast Reversal

Figure 8-13 shows how the OTF of a defocused system varies with the spatial
frequency. We note that it is real and radially symmetric; i.e., its value depends on the
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value of v but not on the value of ¢. For B; <0.64 A, the OTF is positive for all spatial
frequencies. However, for larger values of B, it becomes negative, corresponding to a
PTF of m, for certain bands of spatial frequencies. It becomes negative for smaller and
smaller spatial frequencies as the amount of defocus B, increases. The OTF is
independent of the sign of B, (when the Fresnel number of the system is large).

To illustrate the significance of the OTF and, in particular, the contrast reversal, we
consider, as shown in Figure 8-14a, a 2D object that is sinusoidal along the vertical axis
with a spatial frequency that increases linearly in the horizontal direction. The maximum
frequency in the object is chosen to equal the cutoff frequency of the aberration-free
system. This frequency is normalized to unity. The aberration-free or the diffraction-
limited image of the object is shown in Figure 8-14b. The monotonic reduction in
contrast with increasing spatial frequency is quite evident from this figure. A defocused
image corresponding to B; =2 A is shown in Figure 8-14c. It is clear that the contrast in
the image reduces with frequency rapidly to zero, reverses its sign back and forth as the
frequency increases, with practically zero values for frequencies v 2 0.3. As a
convenience, the aberration-free and defocused OTFs are shown in Figure 8-14d to
illustrate the regions of zero and near zero contrast as well as the regions of contrast
reversal.

The OTF for a symmetric aberration, such as spherical aberration or astigmatism, is
real. However, the OTF for coma is a complex function with real and imaginary parts, or
an MTF and a PTF. As stated in Section 8.4, the Strehl ratio is obtained by integrating the
real part of the OTF, and the integral of its imaginary part is zero. The spatial frequency
bands for which the contrast reversal takes place depends on the type and the magnitude
of an aberration.

1.00

Defocus
I N B, =0 W(p) = Byp?

0.75 L

0.50

—» 1
e —

025

0.00 t

~0.25 ' '
0.00 0.25 0.50 0.75 1.00

Figure 8-13. OTFs of a defocused system. B,; represents the peak defocus
aberration in units of A.
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(b)
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Figure 8-14. Aberration-free and defocused images of an object illustrating contrast
reversal. () Sinusoidal object along the vertical axis with a spatial frequency that
increaseslinearly in the horizontal direction. The Gaussian image isidentical, except
for any magnification. (b) Aberration-free image. (c) Defocused image with
By = 2A. (d) Aberration-free and defocused OTFs.
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8.6 SUMMARY

While the amount of light in the image of a point object is determined by the
entrance pupil of the system, its distribution is determined by the diffraction of that light
at the exit pupil. The aberration-free image of a point object formed by a system with a
circular exit pupil is called the Airy pattern, as described in Section 8.2.2. It consists of a
bright central disc surrounded by alternating dark and bright diffraction rings. The central
point of the disc is the brightest, coinciding with the center of curvature of the spherical
wavefront, because that is where the Huygens' secondary wavelets interfere
constructively.

When the wavefront is not spherical and, therefore, aberrations are present, the
Huygens' secondary wavelets are not in phase and interfere (partially) destructively to
yield a smaller irradiance at the center. The ratio of the irradiances at the center with and
without aberration is called the Strehl ratio. As should be evident, the Strehl ratio is
always less than or equal to one. For small aberrations, its value can be estimated from
the aberration variance according to Eq. (8-15). Since the smaller the variance, the higher
the Strehl ratio, we combine a given aberration with one or more lower-order aberrations
to minimize its variance and thereby maximize the Strehl ratio. Combining aberrationsin
this manner is called aberration balancing for improving image quality. Thus, for
example, spherical aberration or astigmatism is combined with defocus to improve the
Strehl ratio or increase the aberration tolerance.

The higher-order aberrations, e.g., secondary aberrations, can be balanced in a
similar manner to reduce their variance. The balanced aberrations thus obtained can be
identified with the corresponding Zernike circle polynomials. These polynomials are
unique in the sense that they are not only orthogonal across a unit circle, but also
represent balanced aberrations for a circular pupil. These polynomials are given in their
orthonormal form in this chapter so that when an aberration function is expanded in terms
of them, the expansion coefficients represent the standard deviation of the corresponding
aberration term.

The image of an incoherent object can be obtained by adding the irradiance images
of its object elements. This imaging can also be considered in the spatial frequency
domain. Thus the object is broken into its sinusoidal spatial frequency components, the
image of each component is determined, and they are all summed or combined to
determine the overall image of the object. The image of each sinusoidal object component
is also sinusoidal, except that its contrast is lower and its phase may be shifted. In
aberration-free imaging, the phase shifts are zero. Every system has a cutoff spatial
frequency (due to the finite size of its exit pupil) above which the contrast is zero.
Another way of saying this is that the spatial frequencies above a certain value are not
transmitted by the system, or are missing from the image, thus limiting the resolution of
the system. The aberrations reduce the contrast at every spatia frequency and introduce
phase shifts depending on the value of the frequency. Thus, while the image generally
resembles the object, it is not identical. Depending on the type and the magnitude of the
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108 SYSTEMS WITH CIRCULAR PUPILS

aberration, the phase shift for certain spatial frequency bands can be =, resulting in
contrast reversal of those frequency bands. The dark regions of an object are imaged as
bright and bright regions are imaged as dark, as illustrated in Figure 8-14. The ratio of
contrasts at a certain spatial frequency with and without aberration is called the Hopkins
ratio at that spatial frequency. The balanced aberrations obtained for maximizing the
Hopkinsratio are different from those for maximizing the Strehl ratio.
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CHAPTER 9

Systemswith Annular and Gaussian Pupils
9.1 INTRODUCTION

In Chapter 8 we have considered optical systems with circular exit pupils. Now we
consider systems with annular pupils, for example, a Cassegrain telescope in which its
secondary mirror obscures the central portion of its primary mirror. Asin the case of a
system with acircular pupil, we discuss the aberration-free PSF, axia irradiance, and the
Strehl ratio of a system with an annular pupil. We show that the radius of the central
bright spot of the PSF decreases, its principal or central maximum decreases in its value,
and the secondary maximaincrease in their values as the obscuration increases.

However, the tolerance for a given Strehl ratio increases or decreases depending on
the type of the aberration. The Zernike annular polynomials representing balanced
aberrations are also discussed, but the aberrated PSFs and OTFs are not. Optical systems
with circular pupils and Gaussian illumination across them are also considered along
similar lines. For these systems, it is shown that the tolerance for an aberration increases
compared to the corresponding tolerance for a system with a uniformly illuminated
circular pupil. Finaly, systems with weakly truncated Gaussian pupils, i.e., those having
avery wide pupil compared to the width or the radius of the Gaussian illumination, are
considered. In this case, a Gaussian beam propagates as a Gaussian, and the tolerance for
a primary aberration is obtained in terms of its peak value at the Gaussian radius rather
than at the edge of the pupil.

9.2 ANNULAR PUPILS

In this section, we discuss the imaging characteristics of systems with annular pupils.
The aberration-free PSF, encircled power, axial irradiance, and Strehl ratio are discussed
for increasing value of the obscuration of the pupil. The results obtained are compared
with the corresponding results for systems with circular pupils.

9.2.1 Aberration-Free PSF

Consider a system with an annular exit pupil having inner and outer radii of ea and
a, where e iscalled its obscuration ratio, as illustrated in Figure 9-1. The PSF of the
system, i.e., the irradiance distribution of the image of a point object formed by it, is
given by Eq. (8-1) except that now the lower limit in the radial integration is e instead of
zero. The aberration-free PSF thus obtained is given by

1 23, 20(mer)]?
I(r;e) = (1_62)2{ ;r — € ;cer } , (9-1)

where J(-) isthe first-order Bessel function of the first kind. It is normalized to unity at
the center r = O by the central irradiance PS, /7»2 R?, where P is the total power
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112 SYSTEMS WITH ANNULAR AND GAUSSIAN PUPILS

Defocused
image plane

ExP

Gaussian
image plane

Figure 9-1. Imaging by a system with an annular exit pupil of inner and outer radii
ea and a, respectively.

transmitted by the annular pupil, S, = naz(l— ez) isitsclear area, A isthe wavelength of
object radiation, and R is the distance between the pupil plane and the Gaussian image
plane.

Note that r isin units of AF, asin the case of acircular pupil, where F =R/2a is
the focal ratio or the f-number of the image-forming light cone. For a given total power
P, the value of the central maximum decreases as 1—€” as e increases due to the decrease
in the clear pupil area. However, if the irradiance of the pupil is held constant, then the
total power P also decreases as 1- €2 and, therefore, the central irradiance decreases as
(1— ez)z as e increases.

The minima of the distribution have a value of zero at r values given by

Ji(nr) = eJy(mer), r#0 . (9-29)
Its maxima occur at r values given by

Jo(rr) = d,(mer), r£0 (9-2b)

where J,(-) is a second-order Bessel function of the first kind. By integrating the
irradiance distribution across a circle of radius r,, we obtain the encircled power P(r.).
Both the irradiance and encircled-power distributions are shown in Figure 9-2 for several
values of e. We note that the radius of the central bright disc (first dark ring
corresponding to the first minimum) decreases as e increases. It can be shown that as
e—1, the irradiance distribution approaches Jg(nr). Its first zero occurs at 0.76
compared to a value of 1.22 [first zero of J;(nr) when e = 0]. The values of the
secondary maxima of adistribution relative to the value of its principal maximumat r =0
become higher as e increases. For example, when e = 0.5, the first secondary maximum
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Figure 9-2. Irradiance and encircled-power distributions for an annular pupil. € is
the obscuration ratio of the pupil. The example of a circular pupil is shown for
comparison.

has a value of 9.63% of the principal maximum compared to a value of 1.75% for a
circular pupil. The minima, maxima, and the corresponding irradiances and encircled
powers are given in Table 9-1 for € =0(0.1)0.9.

An interesting observation! comes about when the irradiance distribution is
considered for large values of r and large values of €. Figure 9-3a shows the distributions
for €=0, 0.5, 0.8, and e— 1. A corresponding picture of these distributions is shown in
Figure 9-3b. We note that, for a circular pupil, the distribution consists of maxima and
minima indicating a bright central disc surrounded by dark and bright rings. The
successive maxima decrease in value monotonically. However, for an annular pupil, the
distribution consists of not only the dark and bright rings but also of a periodic ring group
structure. The number of maxima in a period is given by n = 2/(1 = E). which is equal to
the ratio of the outer diameter and the width of the annulus, provided that n is an integer.
The distribution is divided into ring groups. The group minima are the lowest ring
maxima and correspond to ring numbers that are multiples of n, e.g.. 10, 20, 30, etc., for
€ = 0.8. The radius of a ring group is also a multiple of # (in units of AF) since the
spacing between two successive maxima or minima is approximately unity. The central
bright spot or the first dark ring of radius 1.22 contains 83.8% of the total power in the
image when € = 0. For € = 0.8, as may be seen from Table 9-1, the first dark ring has a
radius of 0.85 and contains only 17.2% of the total power. However, the central ring
group in this case has a radius of 10.10 and contains 90.3% of the total power.
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Table 9-1. Positions r of PSF maxima and minima for an annular pupil in units of

AF, and the corresponding irradiance and the encircled power.

€ 0.0 0.1 0.2 0.3 0.4

Max/

Min r,re Ir) P(ro) r,re I(r) P(rg) r,re I(r) P(rg) r,re I(r)  P(rg) rre I(r)  P(ro)
Max 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Min 122 0 0838 121 O 0818 117 O 0764 111 0 06.82 106 O 0.584
Max 1.63 0.0175 0.867 1.63 0.0206 0.853 1.63 0.0304 0.818 1.61 0.0475 0.766 158 0.0707 0.702
Min 223 O 0910 227 O 0906 236 O 0900 242 0 0899 239 0 0.885
Max 2.68 0.0042 0922 268 0.0031 0.914 269 0.0015 0.904 273 0.0011 0.902 2.77 0.0033 0.893
Min 324 0 0938 318 0 0925 3.09 O 0.908 310 O 0904 330 O 0.903
Max 3.70 0.0016 0.944 3.70 0.0024 0.936 368 0.0037 0.926 364 0.0028 0.916 3.66 0.0007 0.905
Min 424 0 0952 432 0 0949 437 0 0.947 422 0 0929 404 O 0.907
Max 4.71 0.0008 0.957 4.71 0.0004 0.951 4.74 0.0004 0.949 475 0.0016 0.938 4.66 0.0028 0.922
Min 524 0 0961 515 O 0953 516 0 0951 542 0 0949 531 0 0.939
Max 572 0.0004 0964 571 0.0008 0.959 569 0.0006 0.955 573 0.0001 0.950 5.79 0.0008 0.944
Min 624 0 0968 635 0 0965 6.23 0 0959 6.07 0 0950 643 0 0.950
Max 6.72 0.0003 0970 6.73 0.0001 0.966 6.74 0.0004 0.962 6.67 0.0006 0.955 6.72 0.0001 0.950
Min 725 0 0972 714 0 0967 735 0 0966 7.27 0 0961 7.03 0 0.950
Max 7.73 0.0002 0974 7.72 0.0003 0.970 7.72 0.0001 0.967 7.77 0.0003 0.963 7.65 0.0004 0.954
Min 825 0 0975 834 0 0974 811 O 0.967 838 0 0966 822 0 0.958
Max 873 0.0001 0.977 874 0.0001 0.975 872 0.0003 0.971 872 0.0000 0.966 8.77 0.0004 0.962
Min 925 0 0978 9.16 0 0975 938 0 0974 9.06 0 0967 946 0 0.966
Max 9.73 0.0001 0979 9.72 0.0001 0.977 9.75 0.0000 0.975 9.70 0.0002 0.970 9.78 0.0000 0.966
Min 1025 0 0.980 10.30 O 0979 10.16 0 0.975 1032 0 0973 1013 0 0.966

€ 0.5 0.6 0.7 0.8 0.9

Max/

Min r,re I(r) P(ro) r,re I(r) P(rg) r,r¢ I(r) P(rg) r,re I(r)  P(rg) r,r¢ I(r)  P(ro)
Max 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
Min 1.000 O 0479 095 0 0372 090 O 0269 085 0 0172 081 O 0.082
Max 154 0.0963 0.618 1.48 0.1203 0.512 1.41 0.1395 0.389 135 0.1527 0256 1.28 0.1600 0.124
Min 229 0 0829 217 0 0717 206 O 0560 195 0 0376 185 0 0.184
Max 276 0.0124 0.859 269 0.0306 0.784 258 0.0533 0.649 247 0.0734 0456 235 0.0861 0.229
Min 349 0 0901 339 0 0873 322 0 0.761 305 0 0554 290 0 0.284
Max 3.78 0.0004 0.902 384 0.0045 0.886 3.74 0.0192 0.808 357 0.0401 0.619 340 0.0566 0.328
Min 412 0 0903 452 0 0902 438 0 0865 416 0 0695 395 0 0.379
Max 450 0.0009 4.80 0.0001 0903 4.86 0.0050 0.880 4.68 0.0218 0.741 4.46 0.0404 0.421
Min 505 0 0910 511 O 0903 552 0 0899 527 0 0795 500 O 0.468
Max 5.66 0.0022 0.923 558 0.0004 0.905 591 0.0005 0.901 5.78 0.0110 0.824 551 0.0299 0.507
Min 630 O 0938 6.00 O 0906 6.47 0 0.903 637 0 0857 6.05 0 0.549
Max 681 0.0008 0.943 6.61 0.0016 0.916 6.72 0.000 0.903 6.87 0.0048 0.872 656 0.0224 0.584
Min 750 O 0950 7.19 0 0925 6.97 0 0903 747 0 0889 710 O 0.622
Max 7.79 0.0000 0.950 87.75 0.0013 0.943 7.53 0.0004 0.905 7.95 0.0016 0.894 6.61 0.0169 0.652
Min 812 0 0950 840 O 0944 798 0 0906 857 0 0901 816 O 0.685
Max 862 0.0001 0.951 887 0.0004 0.947 858 0.0010 0.913 898 0.0003 0.902 867 0.0127 0.711
Min 9.05 0 0952 953 0 0950 9.13 0 0919 958 0 0903 921 O 0.739
Max 9.68 0.0004 0.957 9.80 0.0000 0.950 9.69 0.0011 0.927 9.83 0.0000 0.903 9.72 0.0094 0.761
Min 1031 0 0962 10.11 O 0.950 1028 0 0.935 1010 O 0903 1026 O 0.784
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Figure 9-3a. Irradiance distribution for systems with circular (e =0) and annular

(e #0) pupils. The case € — 1 represents the limiting case of a totally obscured
pupil. In practice, it approximates the PSF for a system with a very thin annular or

a ring pupil.

When n is not an integer, then the distribution becomes complex. For example, for

€=0.7, n = 6.67, and the distribution has a double periodicity with the number of

maxima in the two periods equal to 6 and 7 (two integers closest to n).
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e=05

€e=08 e—>1
Figure 9-3b. 2D PSFsfor systemswith circular (e =0) and annular (e = 0) pupils,

9.2.2 Aberration-Free OTF

Asin the case of a system with a circular pupil, the aberration-free OTF of a system
with an annular pupil for a spatial frequency v; is aso given by the fractional overlap
area of two annuli whose centers are separated by adistance ARy, . Thus, it can be shown
that the OTF is given by

[r V) + €’1(v/e) rlz(v;e)], o<v<1, (9-3)

where t(v) given by Eq. (8-37) represents the OTF of the system if there were no
obscuration, v =v;/(I/AF) isanormalized radial spatial frequency, asin Eq. (8-38), and

(Ve = 28, <v<(1-¢)2 (9-4a)
= (2/n) (6, + €0, - 2vsing,), (1-¢/2< v < (1+4)/2 (9-4b)
= 0, otherwise . (9-4c)
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In Eq. (9-4b), 6, and 6, are given by

2 )
Cosel — M (9-4d)
4v
and
2 2
cosh, = woolre (9-4e)
4ev

respectively. It should be evident that the cutoff frequency v=1 or v, =1/AF, which
depends on the outer diameter of the annular pupil, is the same as that for a circular pupil.
Moreover, we note from Eq. (9-3) that at least for spatial frequencies,

1+ €
2

<v<l, t(v;e>1(v) (9-5)

by afactor of (1— ez) l. The overlap areain this frequency rangeisindependent of €, but
the fractional areaislarger owing to the smaller area of the obscured exit pupil. For athin
annular pupil, as e— 1, a sharp peak near the cutoff frequency is obtained. The peak
frequency represents the spatial frequency of fringes obtained in a 2D analog of a
Y oung' s double-dlit aperture.

How 1(v; ) varies with v is shown in Figure 9-4 for various values of e, including
zero. We note that an annular pupil gives a higher OTF at high frequencies but a lower
OTF at low frequencies, compared to the OTF for a corresponding circular (e = 0) pupil.
This is the frequency domain analog of smaller radius of the central bright ring and
higher secondary maxima of the PSF for an annular pupil compared to those for acircular

pupil.

As pointed out in Section 8.5.2, the slope of t(v) at the origin is equal to —4/xt.
From Eq. (9-3) we find that the slope of the OTF for an annular pupil at the origin is
given by

T(0e) = —4/n(l-¢) . (9-6)

This slope does not change when aberrations are introduced into the system. We note that

o—r

t(v,evdv = (1—62)/8 . (9-7)

9.2.3 Axial Irradiance

The axial irradiance of the image-forming beam for an aberration-free system with
an annular pupil may be obtained in the same manner as for a system with a circular
pupil. Thus, welet r = 0, ®(p; z) = By (2)p? [see Eq. (8-4)], and replace the lower limit of
radial integration from O to e in Eq. (8-1), thereby obtaining the result
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Figure 9-4. OTF of an aberration-free system with an annular pupil of obscuration
ratio e.

ps, [sr[es (1-€)/2]|

(029 = 37,2 By (1- )2

(9-8)

Equation (9-8) differs from the corresponding Eq. (8-7) for systems with circular pupils
in that the quantity By in the latter has been replaced by By (1— ez). It represents the
peak defocus phase aberration at the outer edge of the annular pupil relative to its value at
the inner edge. Accordingly, the defocus tolerance or depth of focus for a given Strehl
ratio for a system with an annular pupil islarger by afactor of (1— ez) ! compared to its
corresponding value if e were zero. The axial irradiance is minimum and equal to zero at
zvaues given by

Riz=1+20/N(1-€) , n=%1,%2.. , (9-9)

where N = a2/7LR is the Fresnel number of the pupil if e were zero. The maxima of axia
irradiance, obtained by equating the derivative of Eq. (9-8) with respect to z equa to zero,
are given by the solutions of

ten[By (1- €)/2] = (RI7)By (1-€%)/2 . z#R . (9-10)

Figure 9-5 shows how the axial irradiance of an annular beam with € = 0.5 variesfor N =
1, 10, and 100. Comparing it with Figure 8-2, we note that the effect of the obscuration is
to reduce the irradiance at the principal maximum but to increase it at the secondary
maxima. Also, the maxima and minima occur at smaller z values for an annular pupil. As
in the case of circular beams, the axial irradiance of annular beams also becomes
symmetric about the focal point z= R as N increases.
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Figure 9-5. Axial irradiance of an annular beam with € = 0.5 focused at a distance
R. The minima of irradiance occur at z/R=3/11, 3/19, 3/27, when N=1. The
irradiance isin units of the focal-point irradiance of a corresponding circular beam
with the same total power. Accordingly, the focal-point irradiance in thisfigureis
1- €2 =0.75. The axial irradiance becomes symmetric about the focal point as N
increases. The dashed curves are for a Gaussian beam with y=1, as discussed in
Section 9.3.3.

9.2.4 Strehl Ratio
The Strehl ratio is given by

1 2n

S = %JJ expli®(p,6; 9|pdpdo . (9-11)
Tc(l—e ) A

For small aberrations, the Strehl ratio of an aberrated image is till given by Egs. (8-13)—
(8-15), except that the variance cé of the aberration ®(p,6; €) is across the annular
region of the pupil. Thisin turn implies that the mean and the mean square values of the
aberration are given by

1 2n

N _ 1 n . _
<® > = —n(l—ez) JJ ) (p,e,e)pdpde , (9-12)

e O

with n=1and 2, respectively.

The form of a primary aberration and its standard deviation are listed in Table 9-2.
The balanced aberrations listed in the table represent balancing of an aberration with
another to minimize its variance across the annular pupil. It should be evident that the
diffraction focus for spherical aberration or coma lies at a larger distance from the
Gaussian image point than that for a circular pupil. However, it is independent of e for
astigmatism.

Figure 9-6 shows how the standard deviation of an aberration varies with the
obscuration ratio of the pupil. In Figures 9-6a and 9-6b, the amounts of defocus and tilt
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120 SYSTEMS WITH ANNULAR AND GAUSSIAN PUPILS

Table 9-2. Primary aberrations and their standard deviations for a system with a
uniformly illuminated annular pupil.

Aberration (p,0) Oo
Spherical Ap* (4-€*—6e* S +4c®) " A/3/5
Balanced
4 2\ .2 1 2
spherical As[p _(1+E)p ] 6@(1_62) As
Coma Ap® cos8 (1+ e2+et + 66)]/2 A j2+2
21+e?+¢€! (1_62)(1+4€2+€4)]/2
Balanced coma Ac[p3 _L2re e jcose 72
3 1+e€ 6\/5 (l+ e2)
Asigmatisn  Ap?cos?0 (L+e?)” A4
Balanced o o 1
_ y2
astigmatism Aqp?(cos”0 - 2) elre+e) A
Field curvature 2 >
1- 2
(defocus) AP ( € ) A/ 3
Distortion (tilt) ~ Apcosé (1+ 62)1/2 A2

required to minimize the variance of spherical aberration and coma, respectively, are also
shown. We observe from these figures that the standard deviation of spherical and
balanced spherical aberrations and defocus decreases as e increases. Correspondingly, the
tolerance in terms of their aberration coefficients A, and Ay, for a given Strehl ratio,
increases. The standard deviation of coma, astigmatism, balanced astigmatism, and tilt
increases as e increases. The standard deviation of balanced coma first slightly increases,
achieves its maximum value at € = 0.29, and then decreases rapidly as e increases. The
factor by which the standard deviation of an aberration is reduced by balancing it with
another aberration decreases in the case of spherical aberration and coma, but increasesin
the case of astigmatism, as e increases.

Figures 9-7a and 9-7b show how the Strehl ratio of a primary aberration varies with
its standard deviation for € = 0.5 and 0.75. Approximate as well as exact results are
shown in these figures.2 The curves for a given aberration and for the corresponding
balanced aberration can be distinguished from each other by their behavior for large oy,
values (near 0.251.). For example, comais shown by the evenly dashed curves; the higher
dashed curveisfor comaand the lower is for balanced coma.
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Figure 9-6. Variation of standard deviation of a primary and a balanced primary
aberration with obscuration ratio e. Variation of balancing defocus in the case of
spherical aberration and tilt in the case of coma are also shown. (a) Spherical
aberration, (b) coma, (¢) astigmatism, (d) defocus, and (e) tilt.
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Figure 9-7a. Strehl ratio for annular pupils with e=0.5 as a function of the
standard deviation o,, of an aberration in units of A. The Strehl ratio for a given
value of the standard deviation for classical coma is practically the same as that for
balanced coma. For large values of g, the Strehl ratio for classical astigmatism is
larger than that for balanced astigmatism. Spherical...., Coma----, Astigmatism—.—.

Asin the case of circular pupils, the expressionsfor § and S, underestimate the true
Strehl ratio. The expression for S; overestimates the true Strehl ratio for € > 0.5. It gives
the Strehl ratio with an error of less than 10% for S> 0.4. For smaller obscurations, the
error islessthan 10% for S> 0.3. The percent error is defined as 100(1- S;/S).

Using S to estimate the Strehl ratio, Figure 9-8 shows how the aberration coefficient
A of aprimary aberration for 10% error varies with the obscuration ratio.? It is evident
that this coefficient increases with obscuration in the case of spherical, balanced
spherical, and balanced coma, but decreases in the case of astigmatism, balanced
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Figure 9-7b. Strehl ratio for annular pupils with € =0.75 as a function of the
standard deviation o,, in units of A. For large values of &, the Strehl ratio for
balanced coma is higher than that for coma. The opposite is true for astigmatism.
Note that the curves for coma and astigmatism are practically identical.
Spherical...., Coma----, Astigmatism—.—.

astigmatism, and coma. When the aberration coefficient A; of an aberration is equal to a
guarter wave, the variation of the corresponding Strehl ratio with e is shown in Figure 9-
9. It is evident that a Strehl ratio of 0.8 is obtained in very few cases. Comparing this
figure with Figures 9-7a and 9-7b, we again conclude, as in the case of circular pupils,
that it is advantageous to use the standard deviation of an aberration instead of the
aberration coefficient to estimate the Strehl ratio. For example, a Strehl ratio of 0.8 is
obtained for any aberration with a standard deviation of 6, =A/14. On the other hand,
this value of Strehl ratio is obtained for different values of the aberration coefficient for
different aberrations.
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Figure 9-8. Variation of a primary aberration coefficient A; (in units of L) with €
for 10% error when S, is used to estimate the Strehl ratio.
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Figure 9-9. Strehl ratio for A; = A/4 as a function of €. S, Spherical; BS, balanced
spherical; C, coma; BC, balanced coma; A, astigmatism; and BA, balanced
astigmatism. The right-hand side vertical scale is only for coma.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



126 SYSTEMSWITH ANNULAR AND GAUSSIAN PUPILS

deviation of the corresponding polynomial term. The variance of the aberration function
isgiven by

o5 = (©%(p.6:9) ~(®(p.6: )"

oo n
=Y X Cr%m_cgo
n=0 m=0
) n 2
=2 2 Chm - (9-19)
n=1 m=0

The Zernike annular radial polynomialsfor n < 6 arelisted in Table 9-3. The number
of Zernike (or orthogonal) aberration terms in the expansion of an aberration function
through a certain order n is the same as in the case of circle polynomials. The balanced
aberrations given in Table 9-2 can be identified with the annular polynomials. Thus the
polynomials 73, Z%, and ZJ represent balanced astigmatism, coma, and spherical
aberration. From the form of the annular polynomial R(p; €)cos 26, it is evident that the
balancing defocus in the case of astigmatism is independent of the value of e. The
annular polynomials are unique in that they are the only polynomials that are orthogonal
across an annular pupil and represent balanced aberrations for such a pupil, just as the
circle polynomials discussed in Section 8.3.7 are unique for the circular pupils. Whereas
the aberration function for a rotationally symmetric system consists of polynomials
varying as cosm@, an aberration function representing fabrication errors will generally
consist of polynomials varying as sinm@ as well. The single-index annular polynomials
Z; (p, 0; e) can be constructed in the same manner as the corresponding single index circle
polynomials Z;(p,6) discussed in Section 8.3.7.

9.3 GAUSSIAN PUPILS

So far we have considered optical systems that have uniform amplitude across their
exit pupils. Now we consider systems with exit pupils having nonuniform amplitude
across them in the form of a Gaussian.?6 Such pupils are often referred to as Gaussian
pupils. The Gaussian amplitude may, for example, be obtained by placing a filter with
Gaussian transmission at the pupil. A system with a nonuniform amplitude across its
pupil is called an apodized system. The motivation for apodizing a system is to reduce the
values of the secondary maxima of its PSF relative to the value of the principal
maximum. The discussion given here applies equally well to the propagation of Gaussian
laser beams. For a Gaussian pupil transmitting the same total power as a circular pupil
with uniform transmission, the central value of the PSF is smaller and the tolerance for an
aberration is higher.

9.3.1 Aberration-Free PSF

The Gaussian amplitude may be written

Ap) = Agexp(-vp?) . (9-20)
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Table 9-3. Zernike annular radial polynomials.

nMmoRT(pe
00 1
11 p/(1+ 62)1/2
20 (sz—l—ez)/(l—ez)
2 2 pz/(1+ € +€4)y2
3(1+€)p® - 2(1+€ + €)p
31 12
— € + € +4€ + €

(1-&) |+ &) [+ ac + )]
33 ps/(1+ 62+e4+e6)1/2
40 [6p4—6(1+ ez)p2+1+ 4ez+e4]/(1— e2)2
. 4" - 3[(1— é)/(a- 66)]p2 ;

{(1— é) 1[16(1— %) -15(1- &) (1~ 66)] }
4 4 pA/(1+ €2+€4+€6+€8)J/2

10(1+4€ + €*)p° —12(1+ 4€” + 4 + €)p° + 3(1+ 4€” +10€* + 4> + €¥)p
0 (1-@f [[1+ 4 + &) (14 9¢ + 9 + )]

5 ~ &) /(1- 8)] o3

- 5p° - 4[(1-<°)/(1- )] .

{(1— é) l[25(1— é2) - 24(1- &) /(- 58)}}
55 ps/(1+€2+€4+€6+68+€10)1/2
6 0 [20p°-30(1+&)p* +12(1+3& + €)p? - (1+9€ + 9¢" + ee)]/(l— &)

15(1+ 4€> +10€" + 4¢® + €) p° — 20(1+ 4€” +10€* +10€° + 4¢® + €°) p*

. o +6(1+4€* +10€" + 20€° +10€° + 4€° + €2) p?

(1+ e2)2 [(1+ 4% +10€* + 46 + 68) (1+ 9¢? + 45€* + 65€° + 45¢% + 9€1° + 612)]1/2

6 _ —&2) /(1- &9)] p*

N o el oot

{(1— é) 1[36(1— é)-35(1- €2)° /(1- elo)}}
6 6 p6/(1+62+e4+66+68+610+612)]/2

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



128 SYSTEMS WITH ANNULAR AND GAUSSIAN PUPILS

where A, isaconstant and v is a parameter that defines truncation of the Gaussian by
the pupil. If we let o be the radial distance at which the amplitude drops to 1/e of its
value at the center, then y = (a/(x))2 where a isthe radius of the exit pupil. We refer to o
asthe Gaussian radius. In the limit y — 0, we obtain a uniformly illuminated pupil. The
total power transmitted by the pupil is obtained by integrating A%(p) across the pupil.

The PSF for a Gaussian pupil or the irradiance distribution of a focused Gaussian
beam may be obtained from Eq. (8-1) provided the Gaussian amplitude is inserted under
the integral in this equation. The irradiance and encircled power distributions thus
obtained for an aberration-free system are given by®

I(r;y) = 4“ J1p) Jo(nrp)pdp] . (9-21)

and

e

P(re:7) = (n°/2) j I(r;y)rdr (9-22)

respectively, where
I(p) = 2y exp(-27p?)/ [1 - exp(-27)] (9-23)
istheirradiance in units of power in the pupil per unit area.

Figure 9-10a shows the irradiance and encircled-power distributions for various
values of vy, including y = 0. For clarity, the irradiance distributions are also plotted on a
logarithmic scale in Figure 9-10b to highlight the differences between the secondary
maxima of uniform and Gaussian beams. It is evident that the Gaussian illumination
broadens the central disc but reduces the power in the secondary rings. As y increases,
the value at the center [obtained from Eq. (9-21) by letting r = 0] and the values of
secondary maxima decrease. For large values of vy, the diffracted beam is also Gaussian,
as discussed in Section 9.3.6.

The positions of maxima and minima and the corresponding irradiance and
encircled-power values are given in Table 9-4 for y =1. Comparing them with those in
Table 8-1 for auniform pupil, it is evident that the corresponding maxima and minima for
a Gaussian beam are located at larger values of r than those for a uniform beam.
Moreover, whereas the principal maximum for a Gaussian beam is only slightly lower
(0.924 compared with 1), the secondary maxima are lower by afactor > 3 compared with
the corresponding maxima for a uniform beam. Note that |, > 1 for r <0.42. For larger
vauesof r, Ig>1,, except in the secondary rings, where again 1, > I,. The encircled
power Py 2 Py for rc50.63. Of course, as r, >, R, > Ry —1.
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Figure 9-10. (a) PSF and encircled power for a Gaussian pupil with x? =0,1,2and
3, where the irradiance is in units of PSp/szz, encircled power isin units of P,
and r and r. arein units of AF. (b) Irradiance distribution normalized to unity at
the center shown on a log scale to highlight the differences between the secondary

maxima of uniform and Gaussian beams.
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130 SYSTEMS WITH ANNULAR AND GAUSSIAN PUPILS

Table 9-4. Maxima and minima of image-plane irradiance distribution and
corresponding encircled powers for a Gaussian pupil with y=1 compared with
those for a uniform (y = 0) pupil, which are given in parentheses.

Max/Min rre 1(r) P(ro)
Max 0 0.924 0
) @ )
Min 1.43 0 0.955
(1.22) (0) (0.838)
Max 1.79 0.0044 0.962
(1.64) (0.0175) (0.867)
Min 2.33 0 0.973
(2.23) (0) (0.910)
Max 2.76 0.0012 0.976
(2.68) (0.0042) (0.922)
Min 3.30 0 0.981
(3.24) (0) (0.938)
Max 3.76 0.0005 0.983
(3.70) (0.0016) (0.944)
Min 4.29 0 0.985
(4.24) (0) (0.952)
Max 4.75 0.0002 0.986
(4.71) (0.0008) (0.957)

9.3.2 Aberration-Free OTF
The OTF for an aberration-free Gaussian pupil is given by

Brexp(-2n%) f f o2

T(V; -2 + dp,0<sv<1 |, (924

(v;v) = ool 2] exp[-2y(p?+ ?)|dp (9-24)
0

where the coordinates of a pupil point are normalized by the pupil radius a and the

integration is over a quadrant of the overlap region of two pupils whose centers are

separated by adistance v along the p axis.

For large values of y (e.g., v = 4), the contribution to the integral in Eq. (9-24) is
negligible unless v =0, in which case it represents the Gaussian-weighted area of a
guadrant of the pupil, and the equation reduces to

t(v;y) = exp(—2w2) , 0<v<1 . (9-25)

Figure 9-11 shows how the OTF varies with v for several values of y. We note that
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compared to a uniform pupil (i.e., for ¥ =0), the OTF of a Gaussian pupil is higher for
low spatial frequencies, and lower for the high. Moreover, as 7y increases, the bandwidth
of low frequencies for which the OTF is higher decreases, and the OTF at high
frequencies becomes increasingly smaller. This is due to the fact that the Gaussian
weighting across the overlap region of two pupils whose centers are separated by small
values of v is higher than that for large values of v. If we consider an apodization such
that the amplitude increases from the center toward the edge of the pupil. then the OTF is
lower for low frequencies and higher for high frequencies. Thus, unlike aberrations,
which reduce the MTF of a system at all frequencies within its passband, the amplitude
variations can increase or decrease the MTF at any of those frequencies.

9.3.3 Axial Irradiance

The irradiance distribution in a defocused image plane at a distance z from the plane
of the exit pupil is given by’

211 2
2R Y .2
Inzy) = [TJ J JI(p) Bxp(b"xdp )J(,(:n:pr)p dp (9-26)
= 0
If we let r=0 in Eq. (9-26), we obtain the axial irradiance of the beam
10;z;y) = [f] ,27" . l (coshy — cosB,) . (9-27)
b4 By +y° )sinhy
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Figure 9-11. The OTF of a Gaussian pupil. A uniform pupil corresponds to y=0,
and a large value of y represents a weakly truncated pupil.
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It goes through a series of maxima and minima as a function of z because of the cosBy
term.

Figure 8-2 shows how the axial irradiance of a focused Gaussian beam with y =1
differs from that of afocused uniform beam when the Fresnel number N = 1, 10, and 100.
We note that the principal maximum is higher for the uniform beam compared with that
for the Gaussian beam. However, the secondary maxima are higher for the Gaussian
beam. Moreover, whereas the axial minima for the uniform beam have a value of zero,
the minimafor the Gaussian beam have non-zero values. We note that the curves become
symmetric about the focal point z= R as N increases. It should be noted that even though
the principal maximum of axial irradiance does not lie at the focus, unless N is very large,
the maximum central irradiance on atarget at a given distance from the pupil is obtained
when the beam is focused on it. (Similarly, for a weakly truncated Gaussian pupil
discussed later, minimum Gaussian radius is obtained on a target when the beam is
focused on it, even though a smaller radius occurs at a distance z< Rwhen N is small.)

9.3.4 Strehl Ratio

The Strehl ratio (representing the ratio of the central irradiances with and without
aberration) is given by8

S = jzf Alp) exp|i ®(p, 0)] pdp do /H T A(p)pdpde}

2n 2

j J exp(—yp®) expli®(p, 0)] p dp do (9-28)

Its approximate value can be obtained from Egs. (8-13)—(8-15), where the variance of the
aberration is now across the amplitude-weighted pupil. Thus, for a circular pupil, the
mean and the mean sguare values of the aberration are given by

2n 12n

1
>= [ [ Ap)[(p.6)]"pdpde / [ [ Alp)pdpde (9-29)
00 00

with n = 1 and 2, respectively. Following the same procedure as for a uniformly
illuminated circular pupil, we can obtain the balanced primary aberrations and their
standard deviations. Table 9-5 gives the aberrations and their standard deviations for
v=1,i.e, when a=wm.Comparing these results with those given in Table 9-2 for € =0,
it is evident that the standard deviation of an aberration for a Gaussian pupil is somewhat
smaller than the corresponding value for a uniform pupil. Accordingly, for a given small
amount of aberration A;, the Strehl ratio for a Gaussian pupil is somewhat higher than
that for a uniform pupil. Thus the depth of focus increases as 7y increases, or the beam
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9.3 Gaussian Pupils 133

Table 9-5. Primary aberrations and their standard deviations for optical systems
with Gaussian circular pupilswith y=1.

Aberration @(p,0) Co
h H a] 4 AS
Spheric AP 3.67
Balanced spherical Afp* - 0.933?) A

13.71
Coma Ap® cosh A
3.33
Balanced coma Ac(p3 - 0.608p) cosd e
8.80

A

At ati 2 2 a
igmatism A,p°cos 0 2.40

A

Balanced astigmati Ap?(cos®e — 12 a
anc igmatism 2P (cos 0-1 ) S 6l

B
Def Byp? T
ocus ) 355

B

Tilt 0 L
i B.p cos 519

becomes narrower. Similarly, for a given Strehl ratio, the aberration tolerance for a
Gaussian pupil is somewhat higher than that for a uniform pupil. Moreover, the balancing
defocus in the case of spherical aberration and the balancing tilt in the case of coma are
somewhat smaller for a Gaussian pupil, compared to their corresponding values for a
uniform pupil; i.e., the diffraction focus for these aberrations in the case of a Gaussian
pupil is dightly different from the corresponding focus for a uniform pupil. We aso note
that, although aberration balancing in the case of a uniform pupil reduces the standard
deviation of spherical aberration and coma by factors of 4 and 3, respectively, the
reduction in the case of astigmatism is only a factor of 1.22. For a Gaussian pupil, the
trend is similar but the reduction factors are smaller for spherical aberration and coma,
and larger for astigmatism. They are 3.74, 2.64, and 1.27, corresponding to spherical
aberration, coma, and astigmatism, respectively. (In Reference 5, the factor for
astigmatism isincorrectly stated as 1.16 in the text and 1.66 in Table 5.)

9.3.5 Balanced Aberrations and Zernike-Gauss Cir cle Polynomials

The Zernike-Gauss polynomials Z'(p,8; y) orthonormal over a circular Gaussian
pupil and representing balanced aberrations for such pupils can be obtained from the
polynomials Z;'(p,8) for uniform illumination by the Gram-Schmidt orthogonalization
process. The phase aberration function of a system with a circular exit pupil can be
expanded in terms of these polynomialsin the form>6

O(p,6;y) = i

ComZn' (@, 6;7) , 0<p<l1l , 0<e@<2m , (9-30)
n=0

0

7 Ms

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



134 SYSTEMS WITH ANNULAR AND GAUSSIAN PUPILS

where c,m are the orthonormal expansion coefficients, n and m are positive integers
including zero, n—m= 0 and even, and

12
ZVP.6:7) = [2n+D)/(1+80)] RY(p;v)cosme . (9-31)
The polynomials are orthonormal according to

1

2 ’
Z"(p,6;7)ZY (0,6; 7)Alp)pdp de / 2n[ Alp)pdp = 8B - (9-32)
0

£

o
a

Theradial polynomials obey the orthogonality relation

1 1
JR™Mp:4) R2(0: v) Alp) pip/ [ Alp) pap = S - (9-33)
0 0

n+1

The radial polynomial R7'(p;y) isapolynomial of degree nin p containing termsin p",
p" 2, ..., and p™, whose coefficients depend on the Gaussian amplitude through v; i.e., it

has the form

R'(p;y) = arp” +bYp" 2 +...+d7p™ (9-34)

where the coefficients a;', etc., depend on y.

The radial polynomials corresponding to balanced primary aberrations are listed in
Table 9-6. Asin the case of annular polynomials, the angular part cosmo of a Zernike-
Gauss polynomia Z['(p,6;y) is identically the same as that of a corresponding circle
polynomia Z;"(p, ) . From the form of the Zernike-Gauss polynomial Rzz(p; y) c0s20, it
is evident that the balancing defocus in the case of astigmatism is independent of the
value of v. The Zernike-Gauss polynomials are unique in the sense that they are the only
polynomials that are orthogonal across a Gaussian amplitude-weighted pupil and
represent balanced aberrations for such a pupil.

The number of Zernike (or orthogonal) aberration terms in the expansion of an
aberration function through a certain order n is the same asin the case of circle or annular
polynomials. The Zernike-Gauss expansion coefficients are given by

Cnm

o—r

T 1
{) @(p,6;7)Z7 (0. 6; Y)Alp)p dp dO / 2| Alp)pdp (9-35)
0

as may be seen by substituting Eq. (9-30) and utilizing the orthonormality Eq. (9-32) of
the polynomials. Each expansion coefficient, with the exception of c,, represents the
standard deviation of the corresponding polynomial term. The variance of the aberration
functionis given by

o = (0%p.6:7) - (@(p.6:7))" = =

7 Ms
Jol\)
3

(9-36)

>
=

where the coefficients ay)', etc., depend on .
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9.3 Gaussian Pupils 135

Table 9-6. Zernike-Gauss radial polynomials R (p; y) representing balanced
primary aberrations for uniform (y=0), Gaussian (y=1), and weakly truncated
Gaussian beams.

Aberration Radial Gaussian* Gaussian Uniform Weakly Truncated

Polynomial vy 1 Yy 0 Gaussian
Piston RS 1 1 1 1
Distortion (tilt) R alp 1.09367p p [yi2p
Field curvature R adp?+b? 2.04989p% — 0.85690 2p°-1 (*-1/43
(defocus)
Astigmatism R agp? 1.14541p° p° (v 16)p?
Coma R alp®+blp 3.11213° ~1.8915% 3p°-2p Iyi2 (l 5_ )

V2| 507 -p

Spherical aberration R a%p? +00p2+c  6.12902p* —5.71948p2 + 0.83368 6p* —6p°+1 (v3p* —4p? +2)1 25

_ _ _ 1
*at =(2p2) ™%, a3 =[3(py —PE)] % b2 = —p;a3, aF = (3pa) %, @3 =2 (Ps — PF/ P2), b3 == (Pa/ P)aS,

-12
ag :{5[% = 2K, pg + (K{ + 2K ) py = 2K K, + K%]} . b =—Kjag,cd =K,ag,
ps =<pS>=(1-expy)™ +(s/2y)ps_,, Sisan eveninteger,

Po =1 Ky =(Pg — P2Pa)/ (Pa = P3). Ko = (P, 06 — P3) / (Py — P3).

9.3.6 Weakly Truncated Pupils

For aweakly truncated Gaussian pupil, i.e., for large values of vy , the upper limit on
the radial variable in EQ. (9-20) and any associated equations may be changed from 1 to
o With negligible error. Numerical calculations show that for y>9 (or a= 3w), the
difference between the exact PSF and the approximate result thus obtained may be
neglected.> Moreover, in the limit of an untruncated beam, the ring structure of the
diffraction pattern disappears and an aberration-free Gaussian beam propagates as a
Gaussian. The beam radius and the irradiance distribution in a plane at a distance zfrom a
plane where its beam radiusis w, are given by

0?2 = (7»2/150))2 +o?l- Z/R)2 (9-37)
and
I(r;z) = (2P/1w)§) exp(— 2r2/w§) , (9-38)

respectively. In Eq. (9-38), r istheradial distance of a point in the observation plane from
the axis of the beam without any normalization. Since the PSF is Gaussian, its Fourier
transform representing the OTF is also Gaussian, as indicated earlier in Eq. (9-25). For a
weakly truncated beam, since the power in the pupil is concentrated in a small region near
its center, the effect of the aberration in its outer region is negligible. Accordingly, the
aberration tolerance in terms of the peak value of aprimary aberration at the edge (p = 1)
of the pupil is not very meaningful. It is more appropriate, for example, to consider the
tolerance in terms of the peak value at the Gaussian radius. If we define
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136 SYSTEMS WITH ANNULAR AND GAUSSIAN PUPILS

P =Avp (9-39)

then, p” =1 corresponds to the Gaussian radius. Correspondingly, we define the
aberration coefficients

A= AJYE A =AY A =AY By =By /1 B =BT (9-40)
which represent the peak values of aberrations at the Gaussian radius.

Table 9-7 lists the aberrations in terms of the radial variable p” and the aberration
coefficients A/. The standard deviations of these aberrations across the Gaussian pupil
are also given in this table. We note that the balancing of an aberration reduces its
standard deviation by a factor of V5, /3, and /2, in the case of spherical aberration,
coma, and astigmatism, respectively. The amount of a balancing aberration decreases as
v increases in the case of spherical aberration and coma but does not change in the case
of astigmatism. For example, in the case of spherical aberration, the amount of balancing
defocus for aweskly truncated Gaussian pupil is 4/y times the corresponding amount for
auniform pupil. Similarly, in the case of coma, the balancing tilt for a weakly truncated
Gaussian pupil is 3/y times the corresponding amount for a uniform pupil. Aberration
tolerances in terms of the aberration coefficients A/ for a Strehl ratio of 0.8 are given in
Table 9-7. The tolerances in terms of the coefficients A; may be obtained by use of Eq.
(9-14).

Table 9-7. Primary aberrations and their standard deviations for optical systems
with weakly (\§ > 3) truncated Gaussian circular pupils.

Aberration o(p’,0) Op A for S=0.8
Spherical At 25/ 2/63
Balanced spherical A (p* - 4p7?) 2A /28

Coma A p’® cose V3A, \/24
Balanced coma A, (p’3 - 2p’) cos A, A/14
Astigmatism A, p’? cos? © A2 2/10
Balanced astigmatism A p? (cos2 06— ],/2) A2 A7

Defocus B, p’ +/3B; \/24

Tilt B/ p’ cos6 38 A/20
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9.4 Summary 137

9.4 SUMMARY

Imaging by systems with an annular pupil is quite common, e.g., the Hubble
telescope. Compared to a circular pupil, a corresponding annular pupil reduces the
amount of light passing thorough it, yields a smaller central bright disc with a smaller
central irradiance but brighter diffraction rings. Correspondingly, the OTF of a system
with an annular pupil is lower at small spatial frequencies but higher at the high
frequencies. While the obscuration does not change the cutoff frequency, its effect on the
aberration tolerances for a certain Srehl ratio depends on the type of the aberration. As
may be seen from Figure 9-6, the depth of focus, for example, increases with obscuration,
but tolerance for astigmatism decreases. The balanced aberrations for annular pupils can
be identified with the corresponding Zernike annular polynomials. They are unique for
the annular pupils, just as the circle polynomials are unique for the circular pupils.

Pupils with Gaussian illumination across them are referred as Gaussian pupils. The
Gaussian illumination may be due to a Gaussian-transmittance filter placed at the pupil,
asin an apodized system, or the beam incident on the pupil may itself be Gaussian, asin
the case of alaser transmitter. Whereas pupil or beam obscuration reduces the size of the
central bright spot of the diffraction image or the pattern, the Gaussian illumination of the
pupil increases the size. For a given total power, the central value of the aberration-free
diffraction image for a Gaussian pupil is lower than that for a corresponding uniform

pupil.

As the Gaussian illumination becomes narrower, the diffraction pattern approaches a
Gaussian distribution. The image distribution can be approximated by a Gaussian when
the pupil radius is twice the Gaussian radius (at which the amplitude drops to 1/e of its
value at the center). The Strehl ratio for a small aberration depends on the aberration
variance calculated across the Gaussian amplitude-weighted pupil. The aberration
tolerance for a Gaussian pupil is higher than that for a uniformly illuminated pupil,
because the illumination decreases but the aberrations generally increase with the
distance from the center. The Gaussian approximation of the aberrated image distribution
isvalid when the pupil radius is three times the Gaussian radius.

The balanced aberrations for a Gaussian pupil can be identified with the
corresponding Zernike-Gauss polynomials. These polynomials are unique for the
Gaussian pupils, just as the Zernike circle or annular polynomials are unique for the
circular or annular pupils. We note that the form of balanced astigmatism for annular and
Gaussian pupilsisthe same as that for the circular pupils.
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CHAPTER 10
Line of Sight of an Aberrated System

10.1 INTRODUCTION

In this chapter we consider the line of sight (LOS) of an aberrated optical system.
The LOS is assumed here to coincide with the centroid of its diffraction point-spread
function (PSF). For an aberration-free system, it coincides with the center of the PSF. For
an aberrated system, it depends on the various orders of its coma aberrations. Thus, a
coma aberration not only reduces the central value of the PSF like any other aberration,
but it also shifts its centroid. We consider here PSFs aberrated by primary coma and give
numerical results on the location of their peaks and centroids.

10.2 THEORY

The LOS of an aberration-free optical system coincides with the center of its
diffraction PSF. For an aberrated system, let us define its LOS as the centroid of its
aberrated PSF. Thus, if 1(x,y) represents the irradiance distribution of the aberrated
image of a point object, its centroid <x, y) representing the LOS error of the system is
given by

(xy) = P [(xy)I(x y)dxdy , (10-1)

where P isthe total power in the image. It can be shown that the centroid thus obtained is
identical to that obtained from the geometrical PSF.1 Let the aberration function in terms
of the Zernike circle polynomials (see Section 8.3.7) for a system with a circular exit
pupil be given by

W(p.0) = ¥ 5 [Z(n+1)/(1+Smo)]]/anm(p)(cnmcosnﬁ+snmsjnme) , (102

n=0 m=0

where ¢, and s, are the Zernike aberration coefficients representing the standard
deviations of the corresponding aberration terms across the pupil (with the exception of
the piston term n = 0 = m, which has a standard deviation of zero). It can be shown that
the centroid of its aberrated PSF for a uniformly illuminated pupil is given by

oo

(xy) = 2F 3 "JaAn+1)(cn: Su) (10-3)

where F is the focal ratio or the f-number of the image-forming light cone and a prime
indicates a summation over odd integral values of n. We note that only those aberrations
contribute to the LOS errors that vary with 6 as cost and sinf. Aberrations varying as
cosd contribute to (x) and those varying as sin@ contribute to (y). For a given value of
Cy Or , an aberration of a higher order gives a larger LOS error because of
the/2(n+1) factor. Thus, two Zernike aberrations with m = 1 but different values of n
having the same standard deviation give different LOS errors, even though they give

139
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140 LINE OF SIGHT OF AN ABERRATED SYSTEM

(approximately) the same Strehl ratio. (See Section 8.3.1 for a relationship between the
Strehl ratio and the standard deviation of an aberration.)

If we consider an aberration in the form

W(p,8) = W, p*cosh |, (10-4)
where k is an odd integer, we find that

(x,y) = (2FW,,0) . (10-5)

Thus, the LOS error depends on the value of the peak aberration W, but not on k. We
note that for k = 3, the aberration is primary coma, and for k = 3 it is secondary coma, but
they both give the same LOS error if W5 =W;, even though the corresponding PSFs are
quite different. The reason for the same LOS error is that for a uniform circular pupil, the
centroid depends only on the aberration along the perimeter of the pupil, which depends
on W, but not on k.1

10.3 NUMERICAL RESULTS

Figure 10-1 shows a 2D PSF for 5A of primary coma, and the central profiles of the
PSFs for coma varying from 0 to 2\, normalized by the aberration-free central
irradiance. Note that A is the optical wavelength. The locations of the peak X, and
centroid <x> of the aberrated PSFs are given in Table 10-1. Theirradiances | , and | at
these points and 1 (0, 0) at the PSF center are also given in this table. For example, when
W, = 0.54, the Strehl ratio of the PSF is approximately equal to 0.32, but its pesk value
of 0.87 lies at the point (0.66, 0) compared to a value of unity at the center (0, 0) of the
corresponding aberration-free PSF. The centroid of the PSF lies at (1, 0). Thus, the
centroid of the PSF shifts by an amount approximately equal to the radius 1.22 (in units
of AF) of the Airy disc.

The point with respect to which the variance of coma aberration is minimized is
indicated by x,, (which from Section 8.3.3 is equal to 4FW,/3), and the irradiance at
this point is given by 1. We notethat x,and X,, are approximately equal to each other
only for small values of W, (< 0.71), showing that coma balanced with wavefront tilt to
give minimum aberration variance across the pupil (i.e., Zernike coma) yields a
maximum of irradiance only for small aberrations.

Figure 10-2 and Table 10-2 give similar information for secondary coma. Comparing
the figures and tables, we note that, although the PSFs for the same value of primary
coma W5 and secondary coma Wj are different, their centroids are the same.

104 COMMENTS

The results given here are applicable to both imaging systems, e.g., those used for
optical surveillance, as well as to laser transmitters used for active illumination of a
target. In both cases, the LOS of the optical system is extremely important. An LOS error
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10.4 Comments

—>|(x, 0)

Figure 10-1. (a) 2D PSF for 5A of primary coma W and (b) PSF profiles (x,0)

for several typical values of W; in units of A.
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142 LINE OF SIGHT OF AN ABERRATED SYSTEM

Table 10-1. Typical values of X, x,, and <x> and corresponding irradiances I,
I'p,and I for circular pupilsaberrated by primary coma.

W, Xm Xp <X> I'm I I 1(0)

0 0 0 0 1 1 1 1

0.5 0.67 0.66 1.00 08712 08712 06535 0.3175
1.0 133 1.30 2.00 05708 05717 0.1445 0.0791
15 2.00 1.80 3.00 02715 0.2844 0.0004 0.0618
20 2.67 157 4.00 0.0864 01978 0.0061  0.0341

Table 10-2. Typical valuesof x.,, X, and <x> and correspondingirradiances I,
I'p, and I for circular pupilsaberrated by secondary coma.

W Xm Xp <X> I'm I I 1(0)
0 0 0 0 1 1 1 1

0.5 0.50 0.49 1.00 0.8150 0.8153 0.4114  0.4955
10 1.00 0.83 2.00 0.4464 04664 0.0025 0.2332
15 1.50 0.81 3.00 0.1685 0.3237 0.0098 0.1873
20 2.00 111 4.00 0.0420 02523 0.0073  0.1389

of asurveillance system will produce an error in the location of the target. In the case of a
laser transmitter, a large LOS error may cause the laser beam to miss the target
altogether. Whereas for static aberrations we may be able to calibrate the LOS, for
dynamic aberrations it is the analysis given here that will determine the tolerances of
aberrations of the type pk cos6 and pk sin®. Although we have defined the LOS of an
optical system in terms of the centroid of its PSF, it could have been defined in terms of
the peak of the PSF (assuming that the aberrations are small enough so that the PSF has a
distinguishable peak). For an aberration-free PSF, its peak value and its centroid both lie
at its origin, regardless of the amplitude variations across its pupil. The two are not
coincident when cos6 and/or sin® dependent aberrations are present. The precise
definition of the LOS will perhaps depend on the nature of the application of the optical
system. Moreover, in practice, only afinite central portion of the PSF will be sampled to
measure its centroid, and the precision of this measurement will be limited by the noise
characteristics of the photodetector array.

For simplicity, we have limited our discussion here to optical systems with uniform
circular pupils. However, the analysis can be extended to obtain the LOS errors of
aberrated systems with annular and/or Gaussian pupils.t For example, for an annular
pupil with a central obscuration e, the right-hand side of Eq. (10-5) is multiplied by
1+ €2 for k = 3. Compared to a uniform pupil, the value of <x> for a Gaussian pupil is
smaller; i.e., the centroid for a Gaussian pupil is closer to the true (aberration-free) LOS.
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Figure 10-2. (a) 2D PSF for 5A of secondary coma W; and (b) PSF profiles I(x,(]]
for several typical values of W in units of A.
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144 LINE OF SIGHT OF AN ABERRATED SYSTEM

105 SUMMARY

The line of sight of a system is determined by the centroid of the image of a point
object. The centroid of an aberrated diffraction image is the same as that of the
corresponding spot diagram. For an aberration-free system, the centroid lies at the center
of the image due to its radial symmetry. Only the coma aberrations displace the centroid.
The displacement depends on the magnitude of a coma aberration, but not on its order.
Figures 10-1 and 10-2 illustrate this point for five waves of primary and secondary
comas. The location of the peak value, centroid, and the irradiance at these locations are
given in Tables 10-1 and 10-2 for the primary and secondary comas, respectively. The
Strehl ratio 1(0) isalso given in these tables.

References

1 V. N. Mahgjan, “Line of sight of an aberrated optical system,” J. Opt. Soc. Am. A
2, 833-846 (1985).

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



CHAPTER 11

Random Aberrations
11.1 INTRODUCTION

So far we have considered deterministic aberrations such as those that are inherent in
the design of an optical imaging system. These aberrations are deterministic in the sense
that they are known or can be calculated, for example, by ray tracing the system. Now we
consider the effects of aberrations that are random in nature on the quality of images. The
aberration is random in the sense that it varies randomly with time for a given system, or
it varies randomly from one sample of a system to another. An example of the first kind is
the aberration introduced by atmospheric turbulence when an optical wave propagates
through it, as in ground-based astronomical observations. An example of the second kind
is the aberration introduced due to polishing errors of the optical elements of the system.
The polishing errors of an element fabricated similarly in large quantities vary randomly
from one sample to another. In either case, we cannot obtain the exact image unless the
instantaneous aberration or the exact polishing errors are known. However, based on the
statistics of the aberrations, we can obtain the time- or ensemble-averaged image.

We discuss the effects of two types of random aberrations: random wavefront tilt or
defocus causing random image motion, and random aberrations introduced by
atmospheric turbulence. The time-averaged Strehl ratio, PSF, OTF, and encircled power
are discussed for the two types of aberrations. Although much of our discussion is on
systems with circular pupils, systems with annular pupils are also considered. A brief
discussion on the aberrations resulting from fabrication errorsis also given.

11.2 RANDOM IMAGE MOTION

In many optical imaging systems, especially those used in space, there is always
some image motion during an exposure interval. The source of image motion may, for
example, be vibration of optical elements and servo dither in the pointing system. The
image motion may be transverse or longitudinal, i.e., normal to or along the optical axis,
respectively. In the case of beam transmitting systems, the beam itself may have some
motion associated with it. We give expressions for the time-averaged PSF, Strehl ratio,
OTF, and encircled power for an imaging system with a circular or an annular exit pupil
undergoing Gaussian random motion. We show that the Strehl ratio is more sensitive to
obscuration in the case of transverse motion, but less sensitive in the case of longitudinal
motion.

11.2.1 Transverse Image Motion?!

The time-averaged PSF for a system with a circular pupil in the case of transverse
image motion characterized by Gaussian functions of zero mean and equal standard
deviation ¢ inunitsof AF aong the two orthogonal axes of the image planeis given by
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(I(r;0)) = 8} (1(v;0)) Jp(2nrv)vav (11-1)
0
where
(t(v;0)) = 1(v) exp(—2n202v2) (11-2)

is the time-averaged OTF. The motion-free OTF t(v) is given by Eq. (8-37). Letting
r =0 in Eqg. (11-1), we obtain the time-averaged Strehl ratio:

1

(S(o)) = 8] (x(v;0)) vav

0 (11-3)

The time-averaged encircled power in terms of the OTF is given by

(P(ri0)) = 2nrc}<r(v;c)> J(2rrv)dv . (11-4)

The corresponding equations for a system with an annular pupil with an obscuration ratio
eare

1

(1(r;e0)) = [8/(1—62)] [{t(v&0)) Jo(2mrv)vav | (11-5)

0

1

(S(go)) = [8/(1—e2)“ (t(vgo))vav (11-6)

0
(P(re;€0)) = 2nr ] t1(v;go) Jy(2mvr) dv (11-7)
and
<’E(V;e;6)> = ’I:(V;e) exp(—21t2(52v2) . (11-8)

The motion-free OTF (v €) isgiven by Eq. (9-3).

Figure 11-1 shows how the Strehl ratio varies with ¢ for €=0(0.25) 0.75. It
decreases monotonically as ¢ increases. We note that as e increases, the drop in Strehl
ratio due to image motion for a given value of ¢ increases. This occurs because the
motion-free PSF (normalized to unity at the origin) for alarger value of e is smaller for
small valuesof r for r <1.
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Figure 11-1. Time-averaged Strehl ratio as a function of the standard deviation o
of the transver seimage motion for several typical valuesof .

11.2.2 Longitudinal Image Motion?

In the case of transverse image motion, the aberration-free image is randomly
displaced in the image plane. However, in the case of longitudinal image motion, the
image is randomly defocused. If the random defocus varies very slowly with time and the
exposure time of an observation is small, then the defocused image at the time of an
observation is given by the defocused PSF. However, if the exposure time is long enough
that the image moves back and forth during that time, then we must average the
defocused images.

The defocused PSF of a system with an annular pupil is given by

2

2
I(r;Ase) = ( 2 ZJ J exp(— 2niAp2) Jo(nrp)pdp| (11-9)

€

where A is the longitudinal defocus in units of 8AF2. Thus, avalue of A =1 in these
units represents a defocus phase aberration of 2m or a wave aberration of one wave.
Letting r =0 in Eqg. (11-9), the corresponding Strehl ratio is given by

Sl n[nA(l —€ )]

Sle = "a(-) (11-10)
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The time-averaged PSF, Strehl ratio, and encircled power for longitudinal Gaussian
image motion characterized by zero mean and standard deviation ¢ in the same units as

A isgiven by
(I(r;c;¢)) = \/Zicj 1(r; A, exp(-4%/26°)dA (11-12)
T

sin[ra(1-€)] ’

1 2 2 _
(S d) = oo | | naf-d) exp(-A%/262)dA (11-12)
and
(P(rzic; ) = %(1_62)J (I(r;o;e))rdr . (11-13)

Figure 11-2 shows how the time-averaged Strehl ratio (S(o; €)) varies with the
standard deviation ¢ of the image motion. As expected, the Strehl ratio decreases as the
image motion increases. However, the decrease is smaller for a large value of the
obscuration ratio €, or the Strehl ratio for agiven value of ¢ islarger for alarge value of
e. Thisis a consequence of the fact that the depth of focusislarger for alarge value of e,
as discussed in Section 9.2.4. This effect is opposite to that of the transverse image
motion, where the drop in Strehl ratio with ¢ increases as e increases due to the
narrower PSF for an obscured pupil.

We note from Eq. (11-10) that the static Strehl ratio is zero for integral values of
A(l—ez). Thus, for a circular pupil, for example, it is zero when the defocus wave
aberration is one wave or the longitudinal defocus A (in units of 8AF2) is unity.
However, the time-averaged value of the dynamic Strehl ratio for o=1 is 0.3483.
Similarly, for an annular pupil with e=0.5, it is zero when A=4/3, but the time-
averaged dynamic Strehl ratio for ¢ = 4/3 is approximately 0.35.

11.3 IMAGING THROUGH ATMOSPHERIC TURBULENCE3
11.3.1 Introduction

The resolution of atelescope forming an aberration-free image is determined by the
diameter D of its pupil; the larger the diameter, the better the resolution. However, in
ground-based astronomy, the resolution is degraded considerably because of the
aberrations introduced by atmospheric turbulence. A plane wave of uniform amplitude
and phase representing the light from a star propagating through the atmosphere
undergoes both amplitude and phase variations due to the random inhomogeneities in its
refractive index. The amplitude variations, called scintillations, result in the twinkling of
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—<s(0)>

—0

Figure 11-2. Time-averaged Strehl ratio <S((s; e)> as a function of the standard
deviation o of the longitudinal Gaussian random image motion, where € is the
obscuration ratio of the annular pupil. ¢ isin units of 8\F2, and its numerical
valuerepresentsthe peak defocus wave aberration in units of wavelength.

stars. The purpose of a large ground-based telescope, such as the 5-m telescope at Mt.
Palomar, has generally not been better resolution but to collect more light so that dim
objects may be observed. Of course, with the advent of adaptive optics,*6 the resolution
can be improved by correcting the phase aberrations with a deformable mirror.

11.3.2 Long-Exposurelmage

For Kolmogorov turbulence, the time-averaged OTF for a distorted wavefront
representing a long-exposure (LE) imageis given by’

(t(v; D/rp)) = (v) exp[—3.44(vD/r0)5/ 3] , (11-14)

where D is the diameter of the telescope and r, is Fried's coherence length of
turbulence.8® The exponential factor in Eq. (11-14) represents the mutual coherence
function of the wave at the telescope.

Since exp(— 3.44) = 0.03, atmospheric turbulence reduces the overall system MTF
corresponding to a spatial frequency v=r,/D by afactor of 0.03. Similarly, the degree
of coherence of complex amplitudes at two points on awave separated by r, isonly 0.03,
or that the visibility of the fringes formed by the secondary waves from these points is
0.03. The value of r, on amountain site may vary from 5 to 10 cm in the visible region
of the spectrum and increases with wavelength as A9°.
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11.3.21 Imaging With Circular Pupils

Substituting Eq. (11-14) into the imaging eguations given in Section 11.2.1, we can
obtain the Strehl ratio, and the irradiance and encircled power distributions. Figure 11-3
shows how the Strehl ratio decreases monotonically as D/r, increases. Thus, for
example, for a given value of D, the Strehl ratio decreases rapidly as r, decreases. Even
when r, isaslarge as D, the Strehl ratio is only 0.445.

The phase aberration variance for Kolmogorov turbulenceis given by
62 = 1.03(D/ry)** . (11-15)
Substituting Eqg. (11-15) into Eq. (8-15), we obtain the approximate Strehl ratio:

(8.(0/10)) = exp{-10%D/10)*] (11-16)

Its variation with D/ry is aso shown in Figure 11-3. We note that it considerably
underestimates the true Strehl ratio {S). A much better approximation is given by

6/5

(8:(0/0)) = [2+(O/m)™] (11-17)

asisevident fromitsplot in Figure 11-3.

100

1 1 1 1 L L 1

—*DIry

Figure 11-3. Variation of time-averaged Strehl ratio with D/ry. The solid curve
represents the exact value (S), the dashed curve represents the approximate value
(S,), and the dotted curve represents the approximate value (S, ).
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From Section 8.2, the aberration-free central irradiance is given by PSP/?\.ERZ,
where P is the total power, §, :1(02/4] is the area of a circular pupil of diameter D,
and R is the distance between the planes of the exit pupil and the image. It is clear that,
for a fixed total power, this irradiance relative to its aberration-free value for a pupil of
diameter 7, increases as (D/ru)l. The corresponding aberrated central irradiance is given
by

n(D/ry) = (D/ry)(S) . (11-18)

Figure 11-4 shows a comparison of the aberration-free and aberrated central
irradiances as a function of D/ry;. We note that for small values of D, 1 increases as for
an aberration-free system, indicating a small effect of turbulence. As D increases, 1M
increases much more slowly, and the increase for D/r, > 5 is very small. As D/r, — oo,
N — 1. The two asymptotes of n(D..'-""rO) intersect at Dfr, = 1. Indeed Fried’ defined
in a way so as to yield this result. He called the quantity 1 the normalized resolution.

In astronomical observations, the power P increases as D increases. However, if the
observation is made against a uniform background, then the background irradiance in the
image also increases as D*. Hence, the detectability of a point object is limited by
turbulence to a value corresponding to a pupil of diameter r;, no matter how large the
actual diameter D is. In the case of a laser transmitter with a fixed value of laser power,
the central irradiance on a target is again limited to its aberration-free value for a beam of
diameter 1, no matter how large the actual transmitter diameter is.

10 - — -

: (Dlry)2 )

L e e

T - (Dirg)2 <S> =

0.1 —
o - | y

0.1 1 10

_bDJ"rg

Figure 11-4. Central irradiance 7 for a fixed total power as a function of D/fr,. Its
aberration-free value increases as (D/rﬂ]z, but its aberrated value approaches unity
as Dfry — 0.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 09 Feb 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



RANDOM ABERRATIONS

Figure 11-5 shows the irradiance distribution normalized to unity at the center for
several values of D/r, . The diffraction rings disappear even for small values of D/,
such as 1, and the PSFs become smooth and may be approximated by Gaussian functions.
The corresponding encircled power is also shown in this figure. As D/r, increases, a
given fraction of the total power is contained in an increasingly larger circle. As an
example, whereas 84% of the total power is contained in a circle of radius r, =1.22 when
there is no turbulence, it is contained in a circle of radius 1.9 when Dfn, =1.

11.3.2.2  Imaging With Annular Pupils

Similar results are obtained for systems with annular pupils.!® Figure 11-6 shows
how, for fixed total power, the aberrated central irradiance relative to its aberration-free
value for a circular pupil of diameter r,,

n(eD/ry) = (l - ez) (D/J"”)2 (S(E:D/!'“)) ; (11-19)

varies with D/r, . The aberration-free central irradiance varying as (1 - Ez)[D/!h]z is
illustrated by the straight lines for several values of €. For small values of D/ry, M
increases with D/r, , as does its aberration-free counterpart. However, for larger values of
Dfry, it increases slowly with a negligible increase beyond a certain value of D/r,,
depending on the value of €. The saturation effects of atmospheric turbulence occur at
larger and larger values of D/r, as e increases. Irrespective of the value of €,

n(eDfry) = 1Las Dy — o | (11-20)

1.0 |

— <l (1), <P(rc)>

—®> [T

Figure 11-5. Time-averaged irradiance and encircled-power distributions for
different values of D/r,.
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Figure 11-6. Variation of m(eD/ry) with D/r, for several values of e. Its
2

aberration-free value given by (l g (D/rt,]' is represented by the straight lines.

Its aberrated value approaches unity as D/r, — <, regardless of the value of e.
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Figure 11-7. Time-averaged PSF and encircled power for several typical values of
Djry, and € =0.5.
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11.3 Imaging through Atmospheric Turbulence 155

speckle decreases as D increases, but the image size is approximately constant. Thus, an
increase in D does not significantly improve the resolution of the system (as determined
by the total size of the image). For convenience, the PSFs in Figure 11-8b are shown
reduced by a factor of 1.5 compared to those in Figure 11-8a. Thus, for example, the
pictures corresponding to D/ry=10 in these two parts are otherwise similar. (The
aberration function used for this case and the corresponding interferogram are shown in
Figure 12-4.) The approximate expressions of Egs. (8-13)—8-15) are not suitable for
calculating the average Strehl ratios for random aberrations. For example, even for
D/rp,=1, Eq. (8-15) gives a Strehl ratio of 0.357, compared to a true value of 0.445. For
larger values of D/ry, Eq. (8-15) underestimates the average Strehl ratio by larger
factors.

D/ry =1 D/ry =3 D/ry =10

Figure 11-8a. Short-exposur e PSFs aberrated by atmospheric turbulence. D is kept
fixed and ry is varied. For example, D=1m and ry=1m, 33.3 cm, and 10 cm,
giving D/ry =1, 3, and 10. The value of D determines the size of a speckle, while rg
determinesthe overall size of theimage.

D/ry =1 D/r, =3 D/ry =10

Figure 11-8b. Short-exposure PSFsaberrated by atmospheric turbulence. r, iskept
fixed, and D is varied. For example, ry=10cm, and D=10cm, 30 cm, and 1 m,
giving D/ry =1, 3, and 10. The value of D determines the size of a speckle while r,
determinesthe size of the overall image. For convenience, the PSFs shown here have
been reduced by a factor of 1.5 compared to thosein Figure 11-8a.
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11.34 Lucky Imaging and Adaptive Optics

Since the aberrations introduced by turbulence are random in nature and since the
wavefront tilt represents a large portion of these aberrations, it is conceivable that at a
certain instant in time a short exposure (SE) image is practically aberration free. Thus an
observer can take a series of short-exposure images over a time period before the
turbulence characterized by r, changes significantly. The good-quality images are
selected based on their full width at half maximum or peak pixel value normalized by the
total illumination, centered on the peak pixel, and summed in a process called shift and
add. This approach has been referred to as lucky imaging.1314

Figure 11-9a shows a sample of a poor-quality SE star image, and 11-9b shows a
corresponding good-quality image. Figure 11-9c¢ shows an LE image obtained by adding
all of the 50,000 SE images taken at a rate of 40/sec over a period of about 21 minutes.

The image quality improves when the centroids of the SE images are aligned, asin
Figure 11-9d. This image is equivalent to an LE image where the tip and tilt of the
wavefront have been corrected in real time. Figures 11-9e through 11-9g illustrate images
of increasing quality as 50, 10, and 1 percent of the best selected images based on their
full width at half maximum are aligned on their peak value and added.

The image quality can also be improved by correcting the wavefront errors in (near)
real time with adaptive optics.#® In practice, a steering mirror with only three actuatorsis
used to correct the large tip and tilt of the wavefront. The residual aberration is corrected
by a deformable mirror, which is deformed by an array of actuators attached to it. The
signals for the actuators are determined either by sensing the wavefront errors with a
wavefront sensor in a closed loop to minimize the variance of the residual errors, or the
actuators are actuated to produce Zernike modes (e.g., focus, two modes of astigmatism,
two modes of coma, etc.) iteratively until the sharpness of the image is maximized.15-17
The signals are independent of the optical wavelength provided atmospheric dispersion is
negligible. The two approaches are referred to as zonal and modal approaches,
respectively. The zonal approach has the advantage that the rate of correction is limited
only by the rate at which the wavefront errors can be sensed and the actuators can be
actuated. However, the amount of light that is used by the wavefront sensor is lost from
the image. In practice, however, the image beam is split into two parts. The centroid of
the image of one part is measured with a quad cell, and the tilt indicated by it is corrected
with a steering mirror. The resulting tilt-corrected image of the other part with the
residual aberration is corrected with a deformable mirror in a closed-loop manner. In the
modal approach, there is no loss of light, but the rate or the bandwidth of correction can
be slow due to its iterative nature, especially when turbulence is severe and a large
number of modes must be corrected. Moreover, for imaging an extended object,
wavefront sensing requires a point source in its vicinity, but the modal approach is
applicable to the extended object itself. Adaptive optics has also been used in lucky
imaging to achieve diffraction-limited image quality.18
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(© (d)

(e )

(9)

Figure 11-9. Lucky imaging. (a) Poor-quality SE star image, (b) corresponding
good-quality image, (c) LE image obtained by adding all of the 50,000 SE images
taken at arate of 40/sec over a period of about 21 minutes, (d) L E image obtained by
aligning the centroids of the SE images, (€) 50% of the selected SE images aligned by
peak pixel value and added, (f) 10% of SE images added, and (g) 1% of SE images
added.
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Of course, adaptive optics can improve the image quality only if the object lies
within an isoplanatic angle of turbulence. In the case of a ground-to-space laser
illuminating a satellite, the angular travel (point-ahead angle) of the satellite during the
round-trip time of the beam to the satellite must be less than the isoplanatic angle of
turbulence.

11.4 FABRICATION ERRORSAND TOLERANCES

In Chapters 1-6, we have shown how to calculate the aberrations of various optical
imaging systems. Although it was not pointed out explicitly, it was understood that the
elements of a system had their prescribed shapes, i.e., the elements did not have any
fabrication errors. The aberrations of a system thus calculated are referred to as its design
aberrations. In practice, when the elements of a system are fabricated, their exact shapes
will deviate however slightly from their prescribed shapes. These fabrication or
manufacturing errors are generally referred to as their surface or figure errors. They are
typically random in nature in that if an element is fabricated in large quantities, its errors
will vary randomly from one sample to another. However, these errors have certain
statistical properties that depend on the fabrication process. For example, the width
(correlation length) of the polishing irregularities of an element depends on the size of
the tool used to polish it. The figure errors of an element of a system contribute to its
aberrations. For example, if 6 and 0" are the angles of incidence and refraction of aray
incident on arefracting surface separating media of refractive indicesnand n’, and if 6F
is the deviation of the surface at the point of incidence of the ray aong the surface normal
at that point from the prescribed shape, the change in its optical path length is given by

W = (ncosb-n’cos®’)sF . (11-22)

Thus, under normal incidence, a plane-parallel plate of refractive index n introduces
wavefront errors that are (n—1) times its corresponding figure errors. In the case of a
reflecting surfacein air, EQ. (11-22) reduces to

OW = 2cos6 oF . (11-23)

Thus, a conservative estimate of the wavefront errors in this case is equal to twice the
figure errors. The wavefront errors arising from thermal distortions of the elements and
their misalignments and spacing errors may aso be calculated by using Egs. (11-22) and
(11-23).

Because of the random nature of the figure errors, the total expected wavefront error
of the system can be obtained by a square root of the sum of the variances of the
wavefront errors contributed by its elements. Indeed thisis how optical tolerances on the
figure errors of the elements of a system are allocated. For example, if we are interested
in a system Strehl ratio of 0.8 so that the total budget for the standard deviation of the
wavefront errorsis A/14, the figure errors of the elements can be allocated equally or
preferentially among them such that the root sum square of the standard deviations of
their wavefront errorsis A/14.
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As a numerical example, consider a three-mirror system. For simplicity, let the
allowed standard deviation of the figure errors of each mirror be o with acorresponding
wavefront error of 26 . The total wavefront error contributed by the three mirrorsis

o3 = 3(20¢) . (11-24)

Accordingly, for a Strehl ratio of 0.8, the figure error toleranceis A/48.
11.5 SUMMARY

Previous chapters have considered systems with deterministic aberrations in the
sense that they are known either by calculation or by measurement. This chapter has
considered random aberrations in the sense that we know their statistics but not their
detailed distributions. Examples of such aberrations are random image motion, those due
to fabrication errors, and those introduced by atmospheric turbulence. Figures 11-1 and
11-2 show respectively the effect of a random transverse and longitudinal image motion
on the Strehl ratio of an image as a function of the standard deviation of the motion. In
the case of transverse image motion, the image moves up, down, and sideways in the
image plane. However, in the case of longitudinal image motion, the image is defocused
as it moves randomly along the optical axis. As expected, the Strehl ratio decreases
monotonically as the image motion increases. However, the decrease in the case of
transverse image motion is smaller for a larger value of the obscuration ratio due to its
larger depth of focus. This effect is opposite to that of the transverse image motion, where
the drop in Strehl ratio with increasing image motion increases as the obscuration
increases due to the narrower central disc of its PSF.

The aberrations introduced by atmospheric turbulence not only reduce the Strehl
ratio and broaden the image, but also break the image into speckles. Whereas the size of
the image is determined by the coherence length of atmospheric turbulence, that of a
speckle is determined by the pupil diameter. A large portion (87%) of the aberration is a
random wavefront tilt whose effect can be avoided by taking short-exposure images and
adding them with proper registration. This is done in lucky imaging by discarding bad
images. The image quality can also be improved by using a steering mirror to overcome
the wavefront tilt, and a deformable mirror to overcome the aberrations.
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CHAPTER 12

Observation of Aberrations
12.1 INTRODUCTION

In this chapter, we describe briefly how the primary aberrations of an optical system
can be observed. The emphasis of our discussion is on how to recognize a primary
aberration and not on how to measure it precisely. Since the optical frequencies are very
high (10'* — 10™® Hz), optical wavefronts, aberrated or not, cannot be observed directly;
optical detectors simply do not respond at these frequencies. We have seen in Chapter 8
that the image of a monochromatic point object formed by an aberrated system is
characteristically different for a different aberration. Another and more powerful way to
recognize an aberration is to form an interferogram by combining two parts of a light
beam, one of which has been transmitted through the system.

12.2 PRIMARY ABERRATIONS

Consider an optical imaging system with a circular exit pupil of radius a. Letting
(r , e) be the polar coordinates of a point in the plane of its exit pupil, the functional form
of the primary phase aberrations may be written

Ap* + Byp?, Spherical combined with defocus (12-1)
Ap3cosd + Bpcosd, Comacombined with tilt (12-2)
®(p,0) = {Ap°cos’® + Byp?, Astigmatism combined with defocus (12- 3)
Agp?, Field curvature (12-4)
Apcosd, Distortion, (12-5)

where A or B isapeak aberration coefficient representing the maximum value of the
corresponding aberration across the pupil, and p =r/a is a normalized radial variable.
When ®(p,0) = 0 for a certain point object, the wavefront passing through the center of
the exit pupil is spherical centered at its Gaussian image point. Let its radius of curvature
be R. For an aberrated system, ®(p,0) represents the optical deviation of the wavefront
at apoint (p,0) from being spherical.

In Eg. (12-1), when By = 0, the aberration is spherical. Nonzero By implies that the
aberration is combined with defocus; i.e., the aberration is not with respect to a reference
sphere centered at the Gaussian image point but with respect to another sphere centered at
a distance z from the plane of the exit pupil according to Eq. (8-6). As discussed in
Chapter 7, the reference sphere is centered at the marginal image point, center of the
circle of least confusion, and the point midway between the marginal and Gaussian image
points when B, /A, =-2, —1.5, and —1, respectively. The midway point corresponds to
minimum variance of the aberration and, therefore, to maximum Strehl ratio (for small
aberrations), as may be seen by comparing the aberration thus obtained with the Zernike
circle polynomia Z2(p).
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164 OBSERVATION OF ABERRATIONS

In Eq. (12-2), when B, =0, the aberration is coma. Nonzero B, implies that the
aberration is combined with tilt, or that it is with respect to a reference sphere centered at
a point (2FBt, O) in the image plane, where F is the focal ratio or the f-number of the
image-forming light cone. The variance of the aberration is minimum when
B,/A. = —2/3, asin the Zernike circle polynomia Z3(p,6).

In Eq. (12-3), when By =0, the aberration is astigmatism. Nonzero A, implies that
it is combined with defocus. The variance of the aberration is minimum when
By/A, =—1/2, asin the Zernike circle polynomial Z5(p,8). When By/A, =0 or —1,
we obtain the so-called tangential and sagittal images of a point object. Equations (12-4)
and (12-5) represent defocus or field curvature and tilt or distortion aberrations,
respectively. Figure 12-1 shows isometric plots of the various aberrations.

12.3 INTERFEROGRAMS

There are a variety of interferometers that are used for detecting and measuring
aberrations of optical systems.! Figure 12-2 illustrates schematically a Twyman-Green
interferometer in which a collimated laser beam is divided into two parts by a beam
splitter BS. One part, called the test beam, is incident on the system under test, indicated
by thelens L, and the other, called the reference beam, is incident on a plane mirror M.
The focus F of the lens system lies at the center of curvature C of a spherical mirror M.
As the angle of the incident light is changed to study the off-axis aberrations of the
system, the mirror is tilted so that its center of curvature lies at the current focus of the
beam. In this arrangement the mirror does not introduce any aberration sinceit isforming
the image of an object lying at its center of curvature (see Section 4.2).

The two reflected beams interfere in the region of their overlap. Lens L' is used to
observe the interference pattern on a screen S placed in a plane containing the image of L
formed by L' . A record of the interference pattern is called an interferogram. Note that
since the test beam goes through the lens system L twice, its aberration is twice that of the
system.

If the reference beam has a uniform phase and the test beam has a phase distribution
CD(x, y) , and if their amplitudes are equal to each other, the irradiance distribution of their
interference pattern is given by

1(x,y) = I0|1+ exp[id)(x, y)”2
= 2o{1+codo(x,y)]} . (12-6)

where |, istheirradiance when only one beam is present. The irradiance has a maximum
value equal to 4l at those points for which

®(x,y) = 2nn (12-74)

and a minimum value equal to zero wherever
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Figure 12-1. Isometric plot of primary aberrations representing the difference
between an ideal wavefront (typically, spherical) and an actual wavefront.
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Figure 12-2. Twyman-Green interferometer for testing a lens system L. F is the
image-space focal point of L, and C is the center of curvature of a spherical mirror
M,. The interfering beams are focused by a lens L', and the interference pattern is
observed on a screen S.

®(x,y) = 2n(n+1/2) . (12-7b)

where n is a positive or a negative integer, including zero. Each fringe in the interference
pattern represents a certain value of n, which in turn corresponds to the locus of (J.'. )‘]
points with phase aberration given by Eq. (12-7a) for a bright fringe and Eq. (12-7b) for a
dark fringe. If the test beam is aberration free [(D(.r, ,\'] = (}]_. then the interference pattern
has a uniform irradiance of 4/,.

Figure 12-3 shows the interferograms when the lens system L under test suffers from
3L of a primary aberration, corresponding to 61 of an aberration of the interfering test
beam. In our discussion, we give the value of an aberration coefficient in wavelength
units, rather than in radians, as is customary in optics. For defocus and spherical
aberration, the interference pattern consists of concentric circular interference fringes.
The fringe spacing depends on the type of the aberration. Figure 12-3a shows the
interferogram obtained when the system is aberration free but it is misfocused. i.e.. when
its focus F lies to the left or the right of the center of curvature C of the spherical mirror
M, by an amount corresponding to 34 of defocus aberration. [See Egs. (1-3a) and (1-
3b) for a relationship between the longitudinal defocus, i.e., the axial spacing between F
and C, and the peak defocus aberration B, which is 3\ in our example.] Figure 12-3b
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Figure 12-3. Interferograms of primary aberrations: (a) defocus, (b) spherical
combined with defocus, (c) coma combined with tilt, (d) astigmatism combined with
defocus. The aberrationsin theinterferograms are twice their corresponding values
in the system under test because the test beam goes thr ough the system twice.

shows the interferograms obtained when the system has 3\ of spherical aberration (i.e.,
A, =3\) and a certain amount of defocus. The case By =0 (i.e,, F and C coincident)
represents such a system with an image of a certain object being observed in its Gaussian
image plane. Similarly, the interferogram obtained for B, /A, =—2 represents the system
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168 OBSERVATION OF ABERRATIONS

when the image is observed in its marginal image plane. For a system with positive
spherical aberration, its marginal focus lies farther from its exit pupil than its paraxial
focus (see Figure 7-1). Hence, this interferogram is obtained when the points F and C are
separated from each other axially, according to Eq. (1-3d), by —48\F?, i.e., when F lies
to the left of C by 48\F2. The other two interferograms, By =— A, and By =—-15A,,
represent the system when the image is observed in the minimum-aberration-variance
plane (or maximum Strehl ratio for small values of A,) and the circle-of-least-confusion
plane, respectively.

Figure 12-3c shows the interferograms obtained when light is incident at a certain
angle from the axis of the system such that it suffersfrom 3\ of coma. The fringesin this
case are cubic curves. The case B, =0 corresponds to two parallel interfering beams (F
and C are coincident in this case). The case B, =-2A./3 represents the system
corresponding to minimum aberration variance. A tilt aberration with a peak value of B,
may be obtained by transversally displacing C from F by (- 2FB,, 0) so that C lies at the
diffraction focus of the comatic diffraction pattern of the system (see Section 8.3.3 for a
discussion of the diffraction focus). It may also be obtained by tilting the plane mirror M,
by an angle B,/a, where ais the radius of the test beam [see Eq. (1-5c¢) and note the
factors of 2 because of the reflection of the reference beam by mirror M, and doubling of
the system aberration in the test beam].

Figure 12-3d shows the interferograms obtained when the system suffers from 3\ of
astigmatism. When B; =0 or —A,, representing the system with an image being
observed in a plane containing one or the other astigmatic focal line, respectively, we
obtain an interferogram with straight line fringes, since the aberration depends on either x
or y (but not both). However, the fringe spacing is not uniform. When By =—-A, /2, the
fringe pattern consists of rectangular hyperbolas. If the system under test is aberration
free, but the two interfering beams are tilted with respect to each other, representing a
wavefront tilt error, we obtain straight line fringes that are uniformly spaced. The fringe
spacing isinversely proportional to thetilt angle.

So far we have discussed interferograms of primary aberrations when only one of
them is present. These interferograms are relatively simple and the aberration type may
be recognized from the shape of the fringes. It should be evident that a general aberration
consisting of a mixture of these aberrations and/or others will yield a much more complex
interferogram. As an example of a general aberration, Figure 12-4a shows a possible
aberration introduced by atmospheric turbulence, as in ground-based astronomical
observations. It correspondsto D/ry =10, asdiscussed in Section 11.3.3. On the average,
the standard deviation of the instantaneous aberration introduced is given by
[0.134 (D/r0)5/3]w, which is 2.5 radians or 0.4A for D/r, =10. The interferogram for
this aberration is shown in Figure 12-4b. When 25\ of tilt are added to the aberration, the
interferogram appears as in Figure 12-4c. Doubling of the aberration, as in a Twyman—
Green interferometer, is not considered in Figure 12-4.
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Figure 12-4. Aberration introduced by atmospheric turbulence corresponding to
D/ry =10. (a) Isometric plot of the aberration (b) Aberration interferogram. The
standard deviation of the tilt-free aberration introduced by turbulence is 0.4 A.
(c) Interferogram with 25 of tilt.

124 SUMMARY

Because of the high optical frequencies and the comparatively slow time response of
the photodetectors, the aberrations or phase errors of alight wave cannot be observed or
measured directly. They are determined by forming an interferogram, where two parts of
alight beam are combined after one part has passed through the system under test. In this
chapter, we have shown isometric plots of the primary aberrations (see Figure 12-1),
representing, for example, the shape of the surface of a deformable mirror for a certain
aberration, and the interferograms, as may be seen in optical testing (see Figure 12-3). An
interferogram for a random aberration is also shown (see Figure 12-4). The purpose is to
acquaint the reader with what may be seen in practice when working in alaboratory.
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