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A novel method for shape sensing based on strain data and the use of the Kalman state estimator is presented and
studied experimentally. Several recent studies proposed different methods in which strain data, measured in optical
fibers, can be used to estimate the deformed shape of a flexible wing. Fiber optic sensors typically provide accurate,
high resolution, strain data, yielding detailed prediction of a wing’s deformed shape. However, in real lift applications
there could be moments in which the strain data is imperfect (for example, due to saturation), or altogether missing. The
current study proposed to use a Kalman state estimator that weighs in strain-data and simulation output of an aeroelastic
plant model to estimate the wing deformations. The method is demonstrated with a flexible wing model that is excited
by prescribed control surfaces deflection in a wind-tunnel test. Strains over the front and rear wing spars are measured
by Fiber Bragg Grating sensors, embedded in two optical fibers, and used to estimate the wing deformations. The latter
are compared to wing deformations measured by a motion recovery camera system. Results show the advantageous of
the use of the Kalman state estimator when the strain data is corrupted. Additionally, with this approach, wing’s modal
velocities are estimated together with the wing deformations, resulting in smooth and accurate modal velocities that are
readily usable by the vehicle’s control system.

I. Introduction
New aircraft designs are more flexible than ever before, making them susceptible to adverse aeroelastic phenomena

such as large dynamic response to atmospheric turbulence and flutter instability. On the other hand, some studies
suggest that wing elasticity can be exploited to achieve optimal performance. To either control aeroelastic responses or
leverage them for performance requires information on wing deformations.

Wing elastic deformation is typically measured and expressed in terms of wingtip displacement [1], or modal
deformation [2, 3]. The former can be obtained from accelerometer measurements using time integration. However, this
information is local and typically limited to a few points. Recent studies have shown that a detailed deformed shape of a
structure could be obtained from strain data measured in optical fibers (e.g., [4–6].)

Fiber-optic sensing has seen an increased acceptance, as well as widespread use, in civil engineering, aerospace,
marine, and oil and gas. A prominent use of fiber-optic sensors (FOS) in the aerospace industry is for structural health
monitoring of complex aero-structures. Their inherent capabilities, including strain accuracy comparable with that
of standard electrical strain-gauges [7], high sensitivity and wide strain dynamic range, high sampling rate (kHz for
point sensing), multiplexed operation (one fiber can support many sensors), insensitivity to electromagnetic radiation,
small size and light weight, make FOS highly suitable for aerospace systems. For the same reasons, FOS are also very
attractive for aeroelastic applications that require shape-sensing.

Currently, there are three methods used to translate measured strains to deformations. Based on the Euler Bernoulli
beam theory, Ko’s method [8] double integrates strains measured along a line (e.g., a line over a wing’s span) to compute
the deformation. The drawbacks of Ko’s method are mainly the numerical integration, which accumulates errors, and
the need for information on the distance between the measurement point and the neutral axis, which is not readily
available in complex structures. The inverse finite-element method (IFEM) [9] is based on a discretized finite-element
representation of a structure and formulation of the strain field in terms of nodal displacements. The latter are found by
minimizing the difference between the computed and measured strains. The IFEM was successfully used in different
applications. [5, 10] Its disadvantages are that it requires an additional, dedicated finite-element (FE) model, and a
significantly large set of strain data for accurate displacement prediction.

A modal method, first suggested by Foss and Huagse [11], represents the measured strains as a combination of strain
modes, and a least-squares (LS) technique is used to compute the modal participation coefficients (modal amplitudes).
The same modal amplitudes, when multiplying the deformation modes, provide the deformed shape. The strain and
displacement modes can be determined from a FE model free-vibration analysis or extracted from a ground vibration
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test (GVT). Recently, Freydin et al. [6] demonstrated the successful use of the method for measuring the static and
dynamic deformed shape of a flexible wing in a wind-tunnel test. It was shown that when high-quality strain data is
available, as is typically the case with FOS, a very accurate reconstruction of the displacements can be achieved. In
realistic flight applications, however, the accuracy of the displacements prediction can deteriorate if the strain data is
inexact (for example, due to temperature effects or sensor saturation), or missing, or if the modal model used for the
strain-to-displacement mapping is inaccurate.

In the current study, we propose a new approach to wing shape-sensing that is based on an approximate model of
the system, including displacement and strain modes, measured strain-data, and the use of the Kalman state-estimator
(KSE). The KSE estimates the system’s states, some of which are the modal amplitudes. From the latter, and with the
displacement- and strain-modes available, future values of the strains and displacements can be predicted. The KSE
minimizes the LSQ error of state estimation by accounting for the system’s predicted state and measurements and while
considering possible errors in the model and data through the covariance of process and measurement noises. [12] The
advantages of using the KSE for strain-to-displacement mapping are that 1) It does not require an accurate model of the
system; 2) It is insensitive to measurement errors, noise, or temporarily missing data (e.g., due to sensor saturation); 3)
It provides the state velocities (i.e., modal velocities) without the need for numerical derivation of the deformations, and
3) It can provide the deformation information in real-time.

For a flexible structure, without the presence of airloads, the required state-space model can be derived from a
finite-element model. This was successfully demonstrated by Palanisamya et al. [13] in estimation of strains in various
locations along a beam based on a finite-element model and limited strain measurements, acceleration and tilt data. For
an aircraft in flight, or a wind-tunnel model, an aeroelastic state-space model can be derived by using rational function
approximations for the unsteady aerodynamics. [14] Such a model is dependent on the flight conditions and varies with
them.

In the current study, the proposed method is demonstrated experimentally in a wind-tunnel test of a flexible wing
model with four control surfaces. The modal and physical deformations in response to initial conditions and forced
excitation (via the control surfaces) are computed using a KSE from FOS-recorded strain data and an aeroelastic model
of the wing. The estimated deformations are compared with those measured by an Infra-red (IR) Motion Recovery
System (MRS). The study examines the performance of the prediction system in a nominal case and in cases where 1)
the strain data is effected by saturation 2) the aeroelastic model is inaccurate (computed for an airspeed different than
the test airspeed. The study also examines the accuracy of the predicted deformations when using modes from a FE
model versus modes extracted experimentally in a GVT.

II. Mathematical Model
Following [14], the state-space model of the aeroelastic plant, subject to control-surface excitation input and

accounting for noise, can be written as

¤x = Gx + Hu + w (1)
y = Ix + v,

where x = [/, ¤/, ^a, %, ¤%, ¥%] is the state vector, in which / and ¤/ are the vectors of =< generalized displacements and
their time derivatives, ^a is the vector of =0 augmented aerodynamic states, and %, ¤%, and ¥% are the vectors of =2B
control-surface deflections and their time derivatives. u holds the =2B control-surface deflection commands u = %2><,
and w and v are the process and measurement noise vectors. The aeroelastic plant’s matrices G and H are derived
in [14]. The output vector y holds the =B strains, 9, which are related to the generalized displacements through the
strain-mode matrix 	, as

9 = 	/ . (2)

The output matrix I is therefor
I =

[
	=B ,=< 0=B , (=<+=0+3×=2B)

]
. (3)

As noted in the introduction, a common approach to extracting modal displacements from strain data is based on a
LSQ process that seeks the combination of (pre-known) strain modes, according to Equation (2), that best captures the
measured strain data [6, 11, 15]. When high quality strain-data is available, the modal displacements / can be estimated
as:

/ = [	)	]−1	) 9, (4)
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from which the physical displacements, z can be computed as

z = �/, (5)

where � is the matrix of displacement modes. Matrices � and 	 can be computed from a FE model free-vibration
analysis or computationally extracted from a GVT. For cases in which the strain data is imperfect, the KSE can be used
to estimate the generalized and physical displacements based on a weighted combination of the data and the model.

The discrete-time form of the system in Eq. 1, for any data point k is:

xk = G̃xk−1 + H̃uk−1 + wk−1 (6)
yk = Ixk + vk ,

where G̃ and H̃ can be computed from eq. (1):
G̃ = GΔC + O (7)

H̃ = HΔC. (8)

The KSE predictor equation computes the predicted : + 1 state vector based on all previous k data points, as

x̂k+1 |k = G̃x̂k |k + H̃uk . (9)

The corrector equation uses the k+1 measurement, 9k+1, and the KSE Gain matrix, Qk+1, to compute xk+1 |k+1, the
estimated state vector x at time k+1 according to

x̂k+1 |k+1 = x̂k+1 |k + Qk+1 (9k+1 − Ix̂k+1 |k ). (10)

The KSE gain, Qk+1, can be expressed as:

Qk+1 =
[
Vk+1 |kI

Z [IVk+1 |kI
Z + X]−1

]
(11)

where X is the measurement noise covariance matrix and V is the steady-state error covariance matrix. The latter is
obtained by solving the algebraic Riccati equation that uses the process noise covariance W [13].

Vk+1 |k = [ G̃Vk |k G̃
Z + W] (12)

Vk+1 |k+1 = (O − Qk+1I)Vk+1 |k (13)

We next show that when the measured strain data is perfect, that is, when X −→ 0, predicting the modal displacements
using the KSE is equivalent to using a LSQ procedure (Eq. 4). From Equation (11), for any time point k:

Qk = [IZI]−1IZ (14)

However,

IZI =

[
	Z	 0

0 0

]
(15)

is a singular matrix that cannot be inverted. We divide matrix Qk into two parts,

Qk =

[
Q1nm,ns

Q2

]
(16)

where Q1 holds the first =< lines of Qk , and Q2 are the rest of Qk lines. From eq. (16) and eq. (14)

Q1 = [	Z	]−1	Z . (17)

Assigning Q (Equation (16)) and I (Equation (3)) to Equation (10) we get

x̂k+1 |k+1 = x̂k+1 |k +
[
Q1

Q2

]
9k+1 −

[
Q1

Q2

] [
	 0

]
x̂k+1 |k , (18)
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from which
/̂k+1 |k+1 = /̂k+1 |k + Q19k+1 − Q1	/̂k+1 |k . (19)

Assigning Q1 from Equation (17) we get the LSQ solution.
Using the KSE for displacements prediction has several advantages:
1) In times of missing or faulty measurements, for example, as a result of sensor saturation, the KSE can rely on the

aeroelastic model to provide continuous modal displacement and velocities estimates. The weighting between
model and measurement is done at each time step by updating the KSE parameters W and X, as shown in the test
case.

2) The KSE relies on the system’s dynamic model (matrices G and H), which is dependent on the flight dynamic
pressure. Since the KSE also relies on measured data, the model does not have to be accurate to yield good
displacement estimates.

3) When using the LSQ procedure, the modal displacements at each time step are computed from the same
time’s measurements, independent of the dynamics and past values of the displacements (Equation (4)). Modal
velocities, ¤/, can be computed by time derivation of the modal displacements time history. However, this makes
the modal velocities highly sensitive to measurement noise. The KSE computes the modal displacements and
velocities simultaneously, thus avoiding the noisy modal velocities associated with the LSQ approach. This
makes the KSE method especially useful for control systems that rely on modal velocities data.

Both the KSE and the LSQ methods rely on a known set of strain modes of the system (Eqs. 3 and 4). The strain
modes can be computed from a FE model of the system, in a free-vibration analysis, or extracted from a GVT in which
strains are measured. The advantage of the latter is that the process is data-based, avoiding modeling errors. To estimate
the displacements in physical DOFs, a set of displacement modes is also required, from either a FE model or GVT. We
examine the effect of using FE or GVT modes on the modal and physical displacement estimates.

In a GVT, the displacement and mode shapes are extracted from the time histories of displacement and strain
responses to initial conditions. In the current study, this is done by Spectral Proper Orthogonal Decomposition
(SPOD) [16]. The displacement and strain modes are extracted jointly, such that their scaling is uniform. They are
compared to modes from FE analysis for validation.

III. Test Case
The proposed shape-sensing method was studied in a wind tunnel test of the flexible wing shown in Figure 1. The

100 mm chord, 600 mm span, NACA 0012 airfoil wing is 3D-printed from Nylon-12 material. It has four trailing edge
flaps, controlled with micro-servo actuators, which in the current study are used for excitation input. At the wingtip, a
300mm long and 10mm diameter rod is used for attaching weights to modify the wing’s dynamic properties. The wing
was tested in the subsonic wind tunnel at the Faculty of Aerospace Engineering, Technion. The wind tunnel has section
of 1m by 1m and can run at airspeeds up to 100 m/s. The wing was connected directly to the wind tunnel floor, as
showed in Figure 1(b).

For strain measurement, two optical fibers were embedded in cavities in the front and rear spars, on one side of the
wing. Fiber Bragg Grating (FBG) sensors were used to measure strains in 15 equally spaced locations on each spar
(Table 1). Figure 2 shows the glowing FOS on the front and rear spars, indicating their locations. In the current study,
only the strains from sensors number 1,4,7, and 10 on each spar were used for shape sensing, while the other strain
measurements were used for validation.

The reference wing shape was measured with the MRS, by 30 IR reflectors placed on the spars and the trailing-edge.
Two additional reflectors were located at the wingtip rod ends, 605 mm from the wing root. The IR reflectors are shown
in Figure 1 and their locations are provided in Table 2.

The wing structure was modeled in NX NASTRAN FE software [17]. The model was calibrated to match the natural
frequencies as measured in a GVT. Table 3 provides the structural frequencies from the calibrated FE model compared
with the GVT data. Figures 3 and 4 show the first four low-frequency strain and displacement modes, comparing the
computational (FE) and experimental (GVT) shapes. The experimental mode shapes were extracted from the response
to initial conditions (strain / displacement response for the strain / displacement modes, respectively) by SPOD [16]
analysis. All mode shapes were normalized to a unit max strain. Figures 3 and 4 show an overall similarity between the
computational and experimental mode shapes, with some localized discrepancies mostly at the displacement modes that
could be possibly attributed to tracking errors of the MRS.

The aerodynamic model was realized in ZAERO using the ZONA6 panel method [18]. The aeroelastic plant
state-space matrices, G and H in Equation (1), were computed by ZAERO for the nominal test airspeed of 20 m/s.
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(a) (b)

Fig. 1 Wing model outside (a) and inside the wind tunnel (b)

Table 1 Strain sensor locations along the main and rear spars. Distances measured from the wing root

FOS Position 1 2 3 4 5 6 7 8 9 10 11 12
Main Spar (mm) 20 55 90 125 160 195 230 265 300 335 370 405
Rear Spar (mm) 20 55 90 125 160 195 230 265 300 335 370 405

FBG Position 13 14 15
Main Spar (mm) 440 475 510
Rear Spar (mm) 440 475 510

Table 2 MRS reflector locations along the main and rear spars and the trailing edge. Distances measured from
the wing root

Reflector Position 1 2 3 4 5 6 7 8 9 10
Main Spar (mm) 33 86 154 223 282 367 440 504 564 605
Rear Spar (mm) 33 86 154 223 282 367 440 504 564 605
Trailing Edge (mm) 140 200 262 322 382 440 504 564
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(a) Front Spar (b) Rear Spar

Fig. 2 Glowing FOS showing the sensor locations on the front (a) and rear (b) spars

Table 3 Structural frequencies from the FE model and GVT.

Mode Description FE model (Hz) GVT (Hz)
1 1st bending 4.47 4.48
2 1st torsion 18.7 18.0
3 1st lateral bending 22.4 22.0
4 2nd bending 29.6 29.7

(a) Main Spar (b) Rear Spar

Fig. 3 Strain modes from FE free-vibration analysis and from GVT
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(a) Main Spar (b) Rear Spar

Fig. 4 Displacement modes from FE free-vibration analysis and from GVT
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A. Kalman State-Estimator (KSE) Parameters
X and W in the KSE gain ( Equations (11) and (12)) are the measurement- and process-noise covariance matrices,

respectively. They are initially set to unit matrices for equal weighing of the computational model and measurements.
At times of poor strain measurements, or when there is a mismatch between the airspeed and the nominal airspeed (for
which the aeroelastic model was generated), the terms of matrices X or W are increased, respectively, to express the
reduced level of confidence in the measurements or model.

Poor readings in the strain sensors could be due to saturation or due to sensor failure. As noted, in the current study,
only strain measurements from sensors 1,4,7, and 10 on each spar (see their locations in Table 1) are used to estimate
the modal displacements. The KSE algorithm is set to switch the faulty sensor’s noise covariance term, Xi,i , to a value
of 100 in case the sensor constantly outputs the maximum measurable value (i.e., it is saturated) or a value of zero (i.e.,
the sensor failed).

When the airspeed is different from the nominal, for which the aeroelastic plant state-space equations were derived,
&11 and &44, associated with the first and second bending modes, are set to

&8,8 = 500
|+=>< −+ |

+=><

, (20)

where +=>< and + are the nominal and true airspeeds, respectively, and 8 equaLSQ 1 and 4.
As the KSE gain is recomputed at each time step, the X and W values can be updated at each time. The values

used here are only suggested values that highlight the usefulness of the KSE in displacement estimation in cases of
measurement or process noise. They can be optimized per case, or be set according to a more elaborate switching
algorithm.

IV. Results

A. Structural Response to Initial Conditions
As a first test of the KSE-based method, a response to a hammer hit (impulse) at the wingtip was recorded

simultaneously with the FOS and MRS. The strain data measured in sensors 1, 4, 7, and 10 on each spar were used to
compute the modal displacements, which were compared to those from the LSQ approach. The modal displacements
were transformed to physical displacements and compared to displacements detected with the MRS.

Figures 5 and 6 show the modal displacements of the first four modes (b1 - b4) and their time derivatives ( ¤b1 - ¤b4), as
computed from strain-data by LSQ and the KSE. Both are based on the experimental strain modes (Figure 3). Since all
strain modes were normalized similarly, to a maximum strain of one, the modal displacements reflect the relative mode’s
contribution to the total strain. For the larger contributors, b1 and b2, Figure 5 shows a very good match between LSQ
and KSE computed modal displacements. There are somewhat more significant differences in the lateral and second
out-of-plane bending modal displacements, b3 and b4, whose contributions are an order of magnitude smaller, mainly
when these responses decay to small values. The differences in the torsion mode response in the first ≈ 0.2 seconds are
due the fact that the hammer hit was not a strict bending impulse. It also induced a torsional motion, captured by the
strain data and, therefore, by the LS. The KSE, which weighs the model and data, required ≈ 0.2 seconds to acquire the
correct response. Finally, we note that the KSE modal displacements closely follow the decaying response even though
the structural model does not account for damping. Figure 6 shows the advantage of the KSE that predicts smooth
modal velocity responses compared to the noisy responses obtained from time derivation of the modal displacements
computed by LSQ.
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Fig. 5 Modal displacements estimate

Fig. 6 Modal velocities estimate
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Figure 7 shows the estimated and measured strains at sensors #2 on the main and rear spars. These sensors are
close to the root but did not participate in the modal displacement estimate (which was based on sensors 1, 4, 7, and 10
on each spar). Figure 8 shows a snapshot of the strain distribution over the wing’s main and rear spars at time 1 (s).
Figures 7 and 8 show that the LSQ and KSE processes can accurately estimate strain values at unmeasured locations.
Mapping of the strains to the whole wing is based on the experimental strain modes. It has the advantage that the strain
reconstruction captures local strains, as seen in the rear spar near 100 mm span station.

Fig. 7 Estimated strains at unmeasured locations

Figure 9 shows the estimated and measured (via MRS) wingtip displacements at the main- and rear-spar in time
and Figure 10 shows the deformed main- and rear-spars at time 1 second. The modal displacements were computed
based on the experimental strain modes but the transformation from modal to physical displacements (Equation (5))
uses the FE displacement modes. We assume that the FOS are embedded in the structure, thus experimental strain
modes can be obtained from GVT. On the other hand, the displacement modes are not necessarily available from GVT,
thus the computational modes are used. For this case, the process results in good match between the estimated (both via
LSQ and the KSE) and measured wingtip displacements. We note that the reference wingtip displacements, measured
by the MRS, are also subject to errors (such as tracking errors due to reflections from the transparent wing skin), which
are not quantified here.
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Fig. 8 Estimated spanwise strain distribution at t=1(s)

Fig. 9 Estimated wingtip displacements based on experimental strain modes and computational displacement
modes
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Fig. 10 Estimated wing shape at t=1(s) based on experimental strain modes and computational displacement
modes

12

D
ow

nl
oa

de
d 

by
 N

at
io

na
l S

ci
en

ce
 L

ib
ra

ry
 (

C
A

S)
 o

n 
Ja

nu
ar

y 
10

, 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

24
20

 

https://arc.aiaa.org/action/showImage?doi=10.2514/6.2022-2420&iName=master.img-015.jpg&w=280&h=228


B. Aeroelastic Response
The wing was placed in the wind tunnel at the nominal airspeed of 20 (</B) and zero degrees angle of attack, and

was excited by all four control surfaces, simultaneously. Each control surface was moved harmonically, amplitude 08 ,
according to

X8 2>< = 08 sin(0.5cC), (21)

where
0 = [0.02, 0.03, 0.07, 0.075], (22)

and where 8 is the control-surface index, from root to tip. Strains and displacements were measured with the FOS and
MRS setups presented in section III. The results show the reconstruction of the wing modal displacements, physical
displacements, and strains based on the measured strain-data and the computational (from FE) displacement and strain
modes. These are compared to measured quantities. Results are shown for the nominal case and also for cases in which
1) the strain sensors are saturated 2) the airspeed of the aeroelastic model is different than the test airspeed, and 3) both
the strains are saturated there are differences in the airspeed between the model and test.

Figures 11 and 12 show the first four modal displacements in time as computed by the aeroelastic simulation and as
estimated based on strain data via LSQ and the KSE. Figure 11 shows the whole time response and Figure 12 focuses on
the two last cycles of excited response and the decay that follows (the time period in which there is no excitation but the
airloads still drive the wing). For this nominal case, the X and W matrices in the KSE gain are set as unit matrices.
Figure 11 shows that the KSE tracks the modal displacement almost immediately.

The dominant modes in the response are the bending modes (first and second bending, b1, and b2). For these modes,
there is an agreement between the simulation and LSQ responses, and therefor the KSE also yields similar modal
responses. The torsion and lateral bending modal displacements, b2 and b3 are different between the simulation and
LSQ, and the KSE weighs the two. We note that in the test, the bending motion has more dominant response in the first
bending frequency, which the simulation does not predict. This is well captured by the measured strains and hence in
the KSE and LSQ modal displacement estimates.

Fig. 11 Modal displacements estimation at nominal airspeed of 20 m/s

Figure 13 shows the strain in sensor #2 on the main and rear spars, comparing the simulation and the LSQ and
KSE estimates to the experimentally measured data. We recall that the LSQ and KSE are based on measurements at
sensors 1,4,7, and 10 only. The excellent agreement between the LSQ and measured strains indicates that when the
strain data are good (i.e, no saturation or misreadings), the LSQ process completely recovers the strains. The simulation
over-predicts the strain values. The KSE is in very good agreement with the measurement, with maximal errors of 95
`Y and 62 `Y for the two shown strains. Figure 13 also indicates that four modes are sufficient for strain reconstruction.
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Fig. 12 Modal displacements estimation at nominal airspeed of 20 m/s (last two periods and decay)

Figure Figure 14 shows the wingtip displacements on the front and rear spars. Overall, there is a very good agreement
between all results. The experimental data exhibits oscillations at the structural bending frequency, which are well
captured by the KSE and LSQ, based on measured strains, but does not show in the simulation. We note that the MRS
itself has tracking errors that are not quantified or accounted for here. This can explain the discrepancies between the
measured displacements and the LSQ estimate. The results in this case show that when good strain data are available,
the wing’s response can be recovered via either LSQ or the KSE with high accuracy. The following example examines a
realistic case of strain saturation or missing data.
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Fig. 13 Estimated wing’s root strain at nominal airspeed of 20 m/s

Fig. 14 Estimated wingtip displacements at nominal airspeed of 20 m/s

15

D
ow

nl
oa

de
d 

by
 N

at
io

na
l S

ci
en

ce
 L

ib
ra

ry
 (

C
A

S)
 o

n 
Ja

nu
ar

y 
10

, 2
02

2 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
2-

24
20

 

https://arc.aiaa.org/action/showImage?doi=10.2514/6.2022-2420&iName=master.img-018.jpg&w=280&h=228
https://arc.aiaa.org/action/showImage?doi=10.2514/6.2022-2420&iName=master.img-019.jpg&w=280&h=228


To examine the effect of strain-data saturation, we have artificially defined strain measurements saturation at ±500`B,
for all sensors. The recovery of the modal displacements, physical displacements, and strains was repeated with
the saturated data. The KSE measurement-noise covariance matrix X values were updated during the simulation as
described in section Section III.A.

Figure 15 shows the four modal displacements, comparing the simulation, LSQ, and KSE results. The strain-
saturation does not affect the recovery of the first, dominant, bending mode significantly. However, it does affect the
second bending mode, b4. In this case, there is a large discrepancy between the LSQ and the simulation at saturation
times and the KSE is correlated with the simulation (thanks to the adjustment of X). Figure 16 shows the measured,

Fig. 15 Modal displacements estimation at nominal airspeed with measurement saturation

measured and artificially saturated, simulated, and LSQ and KFE recovered strains at strain sensor #1, closest to the root.
This is one of the strain sensors that were used for the modal displacement estimate. Figure 16 shows how the KSE
accurately recovers the measured strain even at times of saturated measurement. On the rear spar, the strains are only
saturated at the negative values and for short periods of time. Some oscillations in the KSE responses occur at times of
KSE parameters adjustments. Figure 17 shows displacement recovery. Here, the KSE recovers the displacement trends
much better than the LSQ process that is directly affected by the strain saturation.
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Fig. 16 Estimated wing’s root strain at nominal airspeed with measurement saturation

Fig. 17 Estimated wingtip displacements at nominal airspeed with measurement saturation
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We have demonstrated that when good, continuous strain data is available, it can be used to accurately estimate the
displacements. In times of damaged or missing data, the KSE, supported by the computational model, can compensate
for data loss and still provide a good estimate of the displacements. The KSE relies on an aeroelastic model, which
varies with the airspeed. Several models, for different airspeeds, can be used and switched between according to the
actual flight speed. However, it is likely that the actual flight speed will not coincide with one of the airspeeds for which
an aeroelastic model was generated. In such a case, we use the KSE with the process noise covariance matrix W as
in Eq. 20. Figure 18 shows displacements at 20/</B from LSQ and from KSE, based on an aeroelastic model for
23/</B, using the nominal and modified W matrix. Good estimate of the displacements is achieved by the KSE with the
adjustment of the process noise covariance.

Fig. 18 Estimatedwingtip displacements at airspeed of 20m/s fromLSQ and fromKSE based on an aeroelastic
model at 23 m/s

V. Summary
The paper presented a new method for shape sensing of a flexible wing that is based on strain data and makes use of

the Kalman state estimator (KSE). The method was tested experimentally on a test case of a flexible wing, equipped
with four control surfaces. Strain data was collected at 30 locations over the wing’s front and rear spars by Fiber Bragg
Grating sensors embedded in two optical fibers. Reference wing deformation data was collected by a motion recovery
camera system (MRS). Two cases were studied, of recovering the wing’s dynamic deformations in 1) Structural response
to a hammer hit and 2) Aeroelastic response to excitation by the control surfaces in the wind tunnel, at airspeed of 20
m/s. The collected strain data were used to extract the modal and physical deformations and strain values at unmeasured
locations. The estimates by the were compared to those from a modal-based least-squares (LSQ) method.

For the structural response case, it was shown that the KSE closely follows the deformations and provides an accurate
estimate of the strain at unmeasured locations. Compared with the LSQ procedure, it has the advantage that the modal
velocities are estimated together with the modal displacements. Thus, the KSE also provides a smooth prediction of
the modal velocities, which can be used for control. In the wind-tunnel test, modal and physical deformations were
computed by the KSE and compared to those from aeroelastic simulation, from the LSQ method, and to the reference
deformations as measured by the MRS. It was shown that when the strain data from the optical fibers is fully available,
it is of high quality and thus the LSQ method accurately computed the deformations. In such cases, the KSE can be
adjusted to yield the exact same results as the LSQ, by setting the noise covariance matrix in the KSE gain to zero. When
the strain data is corrupt (e.g., due to sensor saturation) or is temporarily unavailable, the KSE can still provide good
deformation estimates by relying heavier on the model. The KSE was shown to provide good deformation estimates
even when the underlying aeroelastic model was generated for an airspeed different than that in the test. Overall, the
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KSE, weighing together an aeroelastic model and measurements, provides a reliable approach to flexible wing shape
sensing in the wind tunnel or flight. It can be adjusted in real-time to account for gaps or errors in the measurements
(strain data) and provide a good estimate of the modal displacements and velocities for flight control.
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