
10.1098/rsta.2001.0979

Exuberant interference: rainbows,
tides, edges, (de)coherence. . .

By M. V. Berry

H. H. Wills Physics Laboratory, Royal Fort, Tyndall Avenue, Bristol BS8 1TL, UK

Published online 28 March 2002

Young’s pioneering studies of interference have led to fundamental developments in
wave physics. Supernumerary rainbows were the ­ rst example of di¬raction associ-
ated with caustics. Cotidal lines (connecting places where the tide is high at a given
time) were the ­ rst example of wavefronts in the modern sense (pattern of phase
contours (arg Á1 + Á2) of the superposition of waves Á1 and Á2, rather than the
superposed patterns of the separate phases arg Á1 and arg Á2), and led to the dis-
covery of phase singularities. Edge-di¬racted waves extend the range of asymptotic
methods applied to waves and continue to ­ nd diverse and unexpected applications.
Young’s understanding of the conditions for observing interference are now part of
decoherence theory, which explains, for example, the emergence of the classical world
from the quantum world.
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1. Introduction

The principle of interference, namely the addition (superposition) of wave ampli-
tudes, was known long before Thomas Young; for example, Newton was aware of
it for mechanical waves. Young’s originality lay in his insistence that the princi-
ple applies to light and provides a comprehensive framework for explaining a great
variety of optical phenomena.

The discovery of interference was a complicated episode, and I will not pretend to
apply a historian’s perspective (for an instructive account, see Kipnis (1991)). Rather,
my purpose here is to describe several of Young’s many examples of interference, and
show how they still resonate with our scienti­ c preoccupations today, attesting to
the continuing fertility of the great scientist’s ideas.

As has often been pointed out, Young’s term `interference’ is not the happiest way
to refer to the process of inert addition, in which waves emerge from an encounter
unaltered, without having interfered in the common-language sense. If we were rein-
venting terminology today, it would be more appropriate to reserve interference for
the genuine interactions among nonlinear waves. Nevertheless, the term is so well
established for the addition of linear waves that it would be perverse not to use it.

One contribution of 15 to a special Theme Issue Ìnterference 200 years after Thomas Young’ s
discoveries’ .
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Figure 1. From a raindrop, two distinct rays (illustrated by thick lines a and b)
emerge in each direction within the bow (i.e. D > Dm in ).

2. Supernumerary rainbows

Under appropriate meteorological conditions (essentially showers where the raindrops
are similar in size) several alternations of colour can be seen just inside the rainbow’s
main arc (Greenler 1980; Tricker 1970; Minnaert 1993). These are the supernumerary
bows, not to be confused with the secondary rainbow, whose origin is quite di¬erent.
It seems that although Newton was a very careful observer, and paid particular
attention to phenomena that resisted his attempts to explain them, he never noticed
supernumerary bows. They began to be mentioned in the literature only several
decades after his death (Boyer 1959). And indeed it is impossible to understand
supernumerary bows solely on the Newtonian picture of light rays.

Before Newton, Descartes (1637) (see also Boyer 1959; Lee & Fraser 2001) had
explained the geometrical bow as an angular caustic, that is in terms of directional
focusing of light rays de®ected by a raindrop: the bow occurs where the de®ection
angle D, as a function of impact parameter, takes its minimum value Dm in (close to
138¯).

Young appreciated that supernumerary rainbows are interference fringes. For each
colour, and in each direction inside the geometrical bow, two distinct rays emerge
(­ gure 1). Young (1804) calculated the path di¬erence P between the rays in each
pair, in terms of the radius a of the drop, and estimated the angular positions of the
maxima from the condition that P is an integer number of wavelengths ¶ . Operating
the theory in reverse, he was able to estimate the sizes of raindrops in a distant
shower. From a modern perspective, Young’s insight is signi­ cant as the ­ rst example
of wave interference associated with a geometrical caustic. Since caustics are the
singularities of geometrical optics, this is a fundamental aspect of the physics of
light.

Although Young was correct in interpreting supernumeraries in terms of inter-
ference, his theory was wrong in three respects. First, it predicted that the wave
intensity would be in­ nite on the caustic, that is at the geometrical rainbow angle.
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Figure 2. The Airy intensity Ai2 (u) across a rainbow (thick curve), and
Young’ s approximation cos2 f(2=3)(¡u)3= 2 g=º

p
¡u (thin curve).

Second, it predicted zero intensity on the dark side. Third, the rainbow maxima
occur not when P = n¶ but close to P = (n ¡ 1=4) ¶ .

Several decades later, the ­ rst two defects were remedied by Airy (1838). Using
di¬raction theory, Airy showed that the wave intensity near Dm in is well approxi-
mated by

I(D) /
µ

a

¶

¶213

Ai2
µ

(Dm in ¡ D)

µ
2 º a

3 ¶

¶2=3
(n2 ¡ 1)1=2

(4 ¡ n2)1=6

¶
; (2.1)

where Ai denotes the eponymous Airy function,

Ai(u) =
1

2º

Z 1

¡ 1
dt expfi(1

3
t3 + ut)g; (2.2)

n is the refractive index (close to 4/3 for water), and Descartes’ de®ection angle is

Dm in = º + 2 sin¡1

µr
4 ¡ n2

3

¶
¡ 4 sin¡1

µ
1

n

r
4 ¡ n2

3

¶
: (2.3)

On the bright inside of the geometrical bow, D > Dm in , so the argument u of Ai is
negative, and the oscillations of Ai describe the supernumerary bows, that is, Young’s
interference fringes (­ gure 2). On the dark outside, u > 0 and Ai decays faster than
exponentially, re®ecting the absence of geometrical rays in this region of the sky. On
the caustic, Ai(0) is ­ nite, and Ai attains its maximum value just inside the caustic.

The third defect was remedied by Stokes (1847), who applied asymptotic analy-
sis to Airy’s integral and derived the extra ¡ ¶ =4 term in the condition for the
supernumerary oscillations. ¶ /4 corresponds to a phase advance of º =2, and Stokes’s
discovery was the precursor of many similar phases, for example, the Gouy phase
associated with passage of light through a focus (Born & Wolf 1959; Siegman 1986),
the extra `1/2’ in the quantization condition for particles in a potential well (Berry
& Mount 1972), and geometric phases (Shapere & Wilczek 1989).

The formula (2.1) applies only close to Dm in . However, a more sophisticated asymp-
totic approximation (Chester et al . 1957) enables the argument of Ai to be deformed
to provide an accurate representation of the wave over a much wider angular range
(Nussenzveig 1992). The same technique works not only for optical rainbows but
also for angular caustics in the potential scattering of quantum particles (Ford &
Wheeler 1959; Berry 1966).
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(a) (b)

Figure 3. Waves Á+ and Á ¡ from two point sources. (a) Superposition of wavefronts from Á+

and Á ¡ separately; (b) wavefronts of the superposition, that is contours of phase arg(Á+ + Á ¡ ),
at intervals of º /4.

The rainbow is an example of the simplest caustic, across which the number of
geometrical rays changes by two. In the 1970s there emerged a complete mathemat-
ical description|catastrophe theory (Poston & Stewart 1978)|describing caustics
involving more than two rays. Corresponding to each type of caustic is a wave pat-
tern, generalizing Airy’s integral. These `di¬raction catastrophes’ have many applica-
tions in optics and throughout wave physics (Berry & Upstill 1980), and constitute
a new class of mathematical special functions (Berry 2001c) with rich properties,
forming part of the forthcoming Digital Library of Mathematical Functions (see
http://dlmf.nist.gov).

3. Tides and wavefronts

Consistent with his all-embracing view of wave phenomena, Young regarded the tides
as a wave encircling the Earth, of 12 h period and driven by the Moon and Sun.
Before Young, Newton and Laplace had applied mechanical theory to the world’s
oceans, and had understood how tidal and astronomical periodicities are related
(Cartwright 1999). Young’s contribution was to seek to understand how the tides
at di¬erent places are related, in the words of Whewell (1833), `to account for their
varieties and seeming anomalies’. To this end, he introduced the central concept of
cotidal lines (it seems (Cartwright 1999) that the term was coined later, by Whewell).
These are lines connecting places where the tide is high at a given time. In modern
terminology, Young’s cotidal lines are the wavefronts of the tide wave. To appreciate
Young’s originality, it is important to understand that there are two quite di¬erent
sets of lines (or surfaces in three dimensions) that are commonly called wavefronts.

To illustrate these, consider two sources of circular waves. From each, rays radiate,
and the circular normals to the rays are wavefronts of the ­ rst type. In regions
reached by waves from both sources, the patterns of wavefronts overlap (­ gure 3a).
The wavefronts of the second type are the contours of constant phase of the total
wave, which look very di¬erent (­ gure 3b); in particular, they do not overlap. In
mathematical terms, the phase pattern of Á1 + Á2 is not related in any simple way
to the phase patterns of Á1 and Á2 separately: the wavefronts of the superposition
are not the superposed wavefronts.
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Figure 4. Amphidromic point (phase singularity) in the North Sea,
where cotidal lines (labelled by time) meet (after Whewell 1836).

Young’s cotidal lines capture the complexity of the patterns of the tides across the
world. Their forms are determined by interference and di¬raction of the tide wave
by the boundaries of land masses. In modern terminology, Young’s construction of
cotidal lines amounts to regarding the tide height h(r; t) at any place r = (x; y) and
time t as the real part of a complex wave, as follows. Let

h(r; t) = Re[Á(r) exp( ¡ i!t)]; (3.1)

in which the complex function Á(r) has modulus » and phase À , that is

Á(r) = » (r) exp(i À (r)): (3.2)

Then the cotidal lines for time t are given by

À (r) = !t(mod 2 º ): (3.3)

It might seem perverse to think of the height of the tide, which is an essentially
real wave, in terms of a complex function, but it is not perverse, for two reasons.
First, because the contours of phase À (r) give the pattern of cotidal lines; second,
because the form (3.1) emphasizes that although the tide is a stationary wave, in
the sense that the pattern of cotidal lines is ­ xed on the Earth’s surface, it is not
a standing wave, because the cotidal lines move: their labels change with time. In a
standing wave (for example, the vibration of a membrane) the function Á would be
real, and the r and t dependences of the wave would separate. The complex position
dependence in this description of the tides has the same origin as complex wave
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functions in quantum mechanics, namely the breaking of time-reversal symmetry:
relative to the Earth, the Moon and Sun rotate in one direction (east to west), not
the other.

Young did not possess the data necessary to draw the cotidal lines whose impor-
tance he identi­ ed. Thirty years later, Whewell (1833, 1836) made the ­ rst attempts,
and immediately discovered a phenomenon that is now of central importance in wave
physics: patterns of wavefronts can (and usually do) possess singularities. These are
singularities of phase, from which wavefronts radiate like spokes of a wheel and
where the modulus » vanishes. In the tides, Whewell called these phase singularities
`amphidromic points’ ; they are places where the tide is high at all times, that is, places
of no tide. Whewell identi­ ed several amphidromic points in the North Sea; ­ gure 4
shows one of them. The acceptance of Whewell’s discovery was hindered by Airy’s
denial of the possibility of points of phase singularity (Airy 1845; Cartwright 1999),
apparently based on a mathematical misunderstanding, but amphidromic points are
now routinely observed (rather than being theoretically predicted) in all the world’s
oceans (Defant 1961).

Nowadays, phase singularities are being extensively studied experimentally and
theoretically in optics (Soskin 1998; Soskin & Vasnetsov 2001; Vasnetsov & Stali-
unas 1999). They are places of perfect blackness, formed by complete destructive
interference, and constituting the mathematically stable generalization of the dark
interference fringe. In three dimensions, phase singularities are lines that can be
curved (Nye & Berry 1974), and knotted and linked (Berry & Dennis 2001a; b). In
quantum waves, phase singularities have been identi­ ed in scattering (Hirschfelder et
al . 1974a; b; Hirschfelder & Tang 1976a; b), in the Aharonov{Bohm e¬ect (Berry et
al . 1980), and as vortices in super®uids and quantized ®ux lines in superconductors.

4. Edge di® raction

In attempting to understand Grimaldi’s observation (Born & Wolf 1959; Kipnis 1991)
that light hitting a sharp edge is deviated into the geometrical shadow, Newton
(1730), interpreting the phenomenon in terms of rays, conjectured that an edge
might de®ect rays passing close to it, by exerting a force. To account for Grimaldi’s
observation of what we now know to be di¬raction fringes, Newton further conjec-
tured: `Are not the rays of Light, in passing by the edges and sides of Bodies, bent
several times backwards and forwards, with a motion like that of an Eel? And do not
the three Fringes of Colour’d Light above-mentioned arise from three such bendings?’
(There is nothing special about the number three; Grimaldi’s experiments were with
white light, so the higher-order fringes were blurred by decoherence (see x 5).)

Young, who (perhaps out of reverence for Newton) often presented his own ideas
as natural developments of Newton’s (Young 1802, 1804; Kipnis 1991), modi­ ed
Newton’s picture by regarding an edge as a secondary source of waves (`light. . .
in®ected. . . from. . . outlines of the object’), which then interfere with the primary
incident and geometrically re®ected waves to produce the patterns observed by
Grimaldi. Surprisingly, both Newton and Young are correct, though it has taken
three centuries to appreciate this completely.

Our present understanding rests on the exact solution by Sommerfeld (1896) of
Maxwell’s equations for electromagnetic waves incident on a half-plane. For appro-
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priate scalar components of the vector electric ­ eld, Sommerfeld’s wave is

Á(r) = exp( 1
4
i º )[exp(ix)F (u¡(r)) + ¬ exp(¡ ix)F (u + (r))]

( ¬ = 1) (Neumann); (¬ = ¡ 1) (Dirichlet); ( ¬ = 0) (black); (4.1)

where distances are measured in units of ¶ =2 º , ¬ describes the physical nature of
the screen, F denotes the Fresnel integral,

F (u) =

Z 1

u

dt exp(i º t2); (4.2)

and the arguments u§ (r) are given in polar coordinates r, ¿ by

u¡(r) = ¡
r

2r

º
sin 1

2
¿ ; u + (r) =

r
2r

º
cos 1

2
¿ : (4.3)

Here the wave is incident from x = ¡ 1, and the screen extends from (0; 0) to
(0; ¡ 1), with its two sides at ¿ = ¡ º =2 and ¿ = 3º =2.

One way to interpret Sommerfeld’s solution in terms of edge waves is based on
writing (4.2) in the form

F (u) = exp( 1
4
i º ) £ ( ¡ u) + sgn(u)

Z 1

juj
dt exp(i º t2): (4.4)

The ­ rst term comes from the stationary point at t = 0, and represents the contri-
bution from the geometrical-optics rays, discontinuous across the shadow boundary
u = 0. The second term is associated with the endpoint t = juj, and represents the
edge waves; far from the shadow boundary, this contribution can be expressed as
an asymptotic series in powers of 1=juj. More generally, di¬raction from screens of
arbitrary shape can be expressed as a sum of geometric and edge-wave contributions
(Born & Wolf 1959), vindicating Young’s insight.

A very accurate asymptotic theory of edge waves has been given by Lewis &
Boersma (1969). Edge waves and the associated rays have been incorporated into
a more general asymptotic (short-wave) theory of di¬raction, also including waves
scattered from corners and creeping along smooth surfaces (Keller 1962).

To vindicate Newton’s insight, it is necessary to depict Sommerfeld’s wave solution
in a way that most closely corresponds to the rays of geometrical optics. This was
done by Braunbek & Laukien (1952), who plotted the streamlines corresponding to
Á, namely, the current (energy ®ow) vector ­ eld,

j(r) = Im Á ¤ rÁ = » 2r À : (4.5)

Streamlines are the normals to Young’s wavefronts (that is, not the wavefronts
of geometrical optics). The undulations of Newton’s eel are clearly visible (­ g-
ure 5a), justifying his interpretation of Grimaldi’s observation. The associated inten-
sity fringes are shown in ­ gure 5b.

Newton was also correct in postulating a force to cause the undulations. This force
was discovered by Madelung (1926), in the context of the `hydrodynamic’ formulation
of quantum mechanics, though the ideas apply throughout wave physics. If wave
equations are written in terms of » and j rather than Á, the streamlines are in®uenced
non-locally by a `quantum potential’ in addition to the Newtonian force. (Recently,
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Figure 5. (a) Newton’ s eel: lines of current j (equation (4.5)) for Sommerfeld’ s edge-di® racted
wave (4.1){(4.3), for Dirichlet boundary conditions; the incident wave comes from the left.
(b) Intensity jÁj2 corresponding to (a), calculated from equation (4.1), showing interference
fringes; white corresponds to high intensity, black to zero intensity. Each image is two wave-
lengths square.

Madelung’s formalism has become popular under the name `Bohmian mechanics’
(Holland 1993).)

Newton seems not to have anticipated what is clear from ­ gure 5a, that the forces
could be strong enough to cause the streamlines to close into loops, forming vor-
tices in the current. Only the ­ rst two vortices are visible in ­ gure 5a; there are
in­ nitely many of them, caused by interference between the incident, re®ected, and
edge-di¬racted waves. The vortices are alternative representations of the phase sin-
gularities discussed previously, and indeed their manifestations in light are often
referred to as optical vortices.

There have been many applications of edge waves. An unexpected recent one is to
give a new representation of the Aharonov{Bohm wavefunction in quantum mechan-
ics (Aharonov & Bohm 1959). The single line of magnetic ®ux can be generated as
the curl of a vector potential corresponding to a phase-changing half-plane, and the
`Cheshire cat’ di¬raction from this `edge without a screen’ reproduces the original
Aharonov{Bohm wavefunction to high accuracy (Berry & Shelankov 1999). Another
unexpected application gives a very accurate representation of the irregular (indeed,
fractal) modes of unstable laser cavities as a sum over waves di¬racted from the
edges of the mirrors (Berry et al . 2001b; Berry 2001b).

5. Decoherence

Central to wave physics is the fact that the equation 1 + 1 = 2 does not apply
to intensities. Instead, we have addition of amplitudes, giving, for two waves with
phases ¿ and ¡ ¿ , the intensity addition law

j exp(i ¿ ) + exp( ¡ i ¿ )j2 = 4 cos2 ¿ ; (5.1)

which can take any value between 0 and 4, depending on ¿ . The aim of Young’s careful
experiments was to provide convincing evidence that light was a wave phenomenon in
this sense. The evidence consisted of interference fringes. It was necessary for Young
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to explain why, if his interpretation in terms of interference was correct, fringes are
not evident in every optical observation.

The problem was an urgent one, since in many of Young’s experiments the light
sources were candle ®ames. Alternatively stated, Young had to address what we
nowadays call the problem of coherence, or, in a phrase attributed to Rayleigh, why
two candles are twice as bright as one. Replying to a critic, Young wrote:

The reviewer has cursorily observed that. . . every surface opposed to the
light of two candles would appear to be covered with fringes of colours.
Let us suppose this assertion true|what will be the consequence? In all
common cases the fringes will demonstrably be invisible; since, if we
calculate the length and breadth of each fringe, we shall ­ nd that a
hundred such fringes would not cover the point of a needle.

This is true, but misses the point that a more powerful reason for the unobservabil-
ity of the fringes is their rapid motion, arising from their origin in independently
vibrating atoms.

Nevertheless, there is evidence (Kipnis 1991) that

Young possessed a considerable understanding of the concept of coher-
ence, and. . . applied it correctly. Unfortunately, Young did not pass his
knowledge of coherence on to his readers, since his presentation of this
concept was neither lucid nor complete.

It was Fresnel who stated the conditions for interference clearly, and began the
mathematization of the idea, later greatly extended by Rayleigh.

At the heart of the explanation of the loss of coherence|decoherence, as it is now
called|is the observation that random and rapidly changing disturbances to the
phases § ¿ in (5.1), from any of a variety of causes, will reduce the contrast of the
fringes. The assumption of a Gaussian distribution of the disturbances (justi­ ed by
the central-limit theorem in the common situation where the disturbances are the
sum of many independent contributions), causing a phase uncertainty ¢ , leads to
the fundamental decoherence equation:

h4 cos2 ¿ i ¢ =
1

¢
p

º

Z 1

¡ 1
d ¬ 4 cos2( ¿ ¡ ¬ ) exp

µ
¡ ¬ 2

2 ¢ 2

¶

= 2[1 + cos(2 ¿ ) exp( ¡ 2 ¢ 2)] ! 2 as ¢ ! 1: (5.2)

Decoherence is very e¬ective; if ¢ = º =2, the fringe contrast is reduced by a factor
exp( ¡ 2 ¢ 2) = 0:007, and if ¢ = º the factor is 2:7 £ 10¡9. An implication of (5.2) is
that 1 + 1 = 2 can be viewed as a geometrical-optics limit, induced by decoherence.

Interference fringes formed with white light are blurred by decoherence, for the
obvious reason that the maxima for di¬erent spectral components occur at di¬erent
places, so the fringes overlap. This can have unexpected consequences. For example,
in the di¬raction pattern associated with a cusped caustic (Pearcey 1946) the fringes
parallel and perpendicular to the symmetry axis scale according to di¬erent powers
of the wavelength (Berry & Upstill 1980), so the blurring e¬ect of decoherence is
much stronger in one direction than the other. In white-light cusp di¬raction this
causes a striking e¬ect (Berry & Klein 1996a): the pattern is striated with long thin
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lines that are not present in any of the patterns corresponding to the individual
spectral components.

In recent years, decoherence has moved to centre stage in physics, with the real-
ization (Omnes 1997; Zurek & Paz 1994, 1995; Zurek 1998) that it is crucial to
understanding the emergence of the classical world from the quantum world. The
decoherence equation (5.2) might seem too humble to merit such a grandiose claim.
Its non-triviality emerges as the classical limit is approached. When Planck’s con-
stant, ~, is small in comparison to classical quantities with the dimensions of action,
interference fringes are very delicate (just as in the geometrical-optics limit of small
wavelength), and become pathologically sensitive to decoherence.

One application is to the emergence of chaos. As originally conceived (Schuster
1988), chaos is a classical phenomenon (sensitive dependence on initial conditions).
Its quantum counterpart is problematic, because in the bound systems where chaos
might be expected the quantum spectrum governing the evolution of any observable
(position, for example) is discrete. This is the quantum suppression of classical chaos.
It is true that the time required for quantum mechanics to exert its in®uence increases
as ~ decreases (as a consequence of the correspondence principle), but this occurs too
slowly to explain the existence of classical chaos. The true reason why chaos emerges
is that no system can be truly isolated (if it were, we could never know about it), and
tiny uncontrolled in®uences from the environment destroy the delicate conspiracy of
phases on which quantum mechanics depends (Berry 2001a). In other words, the
quantum suppression of classical chaos is itself suppressed by decoherence.

An extreme example illustrating the e¬ectiveness of decoherence is the chaotic
tumbling of Saturn’s satellite Hyperion under the joint in®uence of Saturn and its
large moon Titan. Regarding Hyperion as a quantum rotator with about 1060 quanta
of angular momentum ~, R. Fox (unpublished work) estimated the time it would take
for quantum e¬ects to suppress the chaos, if Hyperion were isolated. The answer is
about 40 years. This surprisingly short time (a consequence of exponential stretching
of classical phase space) bears no relation to reality, because Hyperion is not isolated,
and a rough estimate (Berry 2001a) of the decoherence associated with the uncon-
trolled `patter of photons’ arriving from the Sun, which we use to observe Hyperion,
leads to classicalization in a time of order 10¡50 s. This time is far shorter than the
time for chaos to emerge (about 100 days in the case of Hyperion), consistent with
other arguments (Braun et al . 2001) demonstrating that decoherence is a universal
route facilitating classical behaviour in large systems, irrespective of whether they
are chaotic.

6. Coherence

Systems protected against decoherence|for example, by employing monochromatic
collimated light, for which ¢ ½ 1 in (5.2)|can exhibit interference. Here are some
extreme examples.

The ­ rst concerns di¬raction gratings, or striated surfaces as Young called them.
Although there is evidence (Kipnis 1991) that Young derived the elementary formula
for the angles at which di¬racted light emerges, the beginnings of the theory in its
modern form, incorporating interference of waves from in­ nitely many sources, were
given by Fraunhofer several decades later. These studies, appropriate to most of the
practical applications of gratings (e.g. in spectroscopy), concern the far ­ eld. Only
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Re S

Im S

(a) (b)

(c) (d )

Figure 6. Extreme coherence: curlicues generated in the complex S-plane by N = 10 000 terms
of the incomplete irrational Gauss sums (6.1), representing the superposition of waves di® racted
from N slits, for the indicated values of ½ . (a) ½ =

p
101 ¡ 10; (b) ½ = (

p
5 ¡ 1)=2; (c) ½ = 1=º ;

(d) ½ = 2¡ 1= 3 .

recently have we begun to understand the much greater richness of structure in the
near ­ eld.

In the simplest case, consider light with wavelength ¶ incident on a grating con-
structed from N narrow slits with spacing a. At a point P at a distance z from the
grating, the amplitude of the light depends (in the paraxial approximation), on the
sum

S(N; ½ ) =

NX

n = 1

exp(i º ½ n2); (6.1)

where ½ = a2=( ¶ z). The sum of unit vectors is a superposition, embodying the
coherent interference of waves from all the slits. As N increases for ­ xed ½ , S forms
intricate patterns of curlicues in the plane Re S, Im S (according to the Oxford
English Dictionary, a curlicue is `a fantastic curl or twist’). As ­ gure 6 illustrates,
the patterns sensitively re®ect the arithmetic nature of ½ , as described for example
by the continued fraction of ½ . A comprehensive renormalization scheme (Berry &
Goldberg 1988) relates the patterns for di¬erent ½ and on di¬erent scales.

More easily observed are the di¬raction patterns from a Ronchi grating (equal
opaque and transparent bars), as a function of position rather than N . In the parax-
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Figure 7. Intensity jÁj2 beyond a Ronchi grating with slit spacing a, coherently illuminated
with monochromatic light of wavelength ¶ . The pattern is fractal both transversely (x) and
longitudinally (z) (Berry & Klein 1996b; Berry et al . 2001a).

ial approximation, these patterns are periodic perpendicular to the grating as well as
across it, with longitudinal period a2=¶ ; this e¬ect was discovered by Talbot (1836),
an early disciple of Young. Within the (greatly elongated) unit cell, graphs of inten-
sity are fractal curves (Berry & Klein 1996b), with di¬erent fractal dimensions in
di¬erent directions (­ gure 7). The same mathematics governs the evolution, accord-
ing to the Schr�odinger equation, of waves describing the quantum state of a particle
in a box, if the initial state possesses a discontinuity (Berry 1996), and the peri-
odicity in time gives rise to quantum revivals (Averbukh & Perelman 1989; Yeazell
& Stroud 1991; Nowak et al . 1997). In two dimensions, the Talbot and quantum
patterns generate rich fractal `carpets’ (Berry et al . 2001a). These intricate wave
structures, re®ecting extreme coherence, are the physical embodiments of the Gauss
sums of number theory (cf. (6.1)) (Apostol 1976).

Young generalized the concept of interference from mechanical waves (sound, tides)
to light. Now interference has been observed not only for photons but for massive
elementary particles (photons, electrons, neutrons, protons, etc.), and also for com-
posite objects such as atoms and molecules. The most complicated structures for
which interference has been created, in recent virtuoso experiments by Nairz et al .
(2000), are fullerene molecules.

A natural next step would be the demonstration of interference in a beam of liv-
ing creatures, or almost-alive entities such as viruses. This would be of interest from
a fundamental standpoint, because coherence involves isolation from the environ-
ment, whereas life essentially involves the exchange of energy and information with
an environment, and hence decoherence, provided the interaction could enable the
interfering paths to be distinguished. One is tempted to envisage a complementarity
between being alive and displaying quantum interference, in which a creature could
suspend the interaction it needs to live (hold its breath, as it were) long enough for
interference fringes to form with detectable contrast: partly alive, and partly quan-
tum. However, Professor Anton Zeilinger has pointed out that the living creatures

Phil. Trans. R. Soc. Lond. A (2002)

 on February 23, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


Exuberant interference 1035

(e.g. bacteria), together with a supply of nutrients, etc., could be enclosed in sealed
containers, and there seems no fundamental obstacle to achieving interference with
a beam of such `test tubes’ of arbitrary size.

I am grateful for the hospitality of the Physics Department of the Technion, Israel, where this
paper was written.
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