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In neuromorphic hardware, peripheral circuits and memories based on heterogeneous devices are
generally physically separated. Thus, exploration of homogeneous devices for these components
is key for improving module integration and resistance matching. Inspired by the ferroelectric
proximity effect on two-dimensional (2D) materials, we present a tungsten diselenide–on–lithium
niobate cascaded architecture as a basic device that functions as a nonlinear transistor,
assisting the design of operational amplifiers for analog signal processing (ASP). This device
also functions as a nonvolatile memory cell, achieving memory operating (MO) functionality. On the
basis of this homogeneous architecture, we also investigated an ASP-MO integrated system for
binary classification and the design of ternary content-addressable memory for potential use
in neuromorphic hardware.

R
ecently proposeddiverseneuron-inspired
hardware based on various emerging
nanomaterials has effectively advanced
neural networks (1–6), especially for
two-dimensional (2D) materials. 2D

materials can provide a platform to develop
transistor architectures for memory operat-
ing (MO)—including field-effect transistors
(FETs), tunneling transistors, junction tran-
sistors, ferroelectric (FE) transistors, and fer-
romagnetic transistors—owing to their rich
electrostatic control capabilities (1, 7). 2D
materials–based FE FETs, FE bipolar junc-
tion transistors (BJTs), and FE tunneling tran-
sistors exhibit large on-off resistance ratios,
fast operation, low power consumption, non-
volatile electronic control, and weight updates
under reversible polarization (1) because of the
strong proximal coupling of FE materials with
2Dmaterials. Therefore, these 2Dmaterials–
based FE proximal coupled devices are being
intensively investigated for neuromorphic
computing (1, 4), in which they are used as
memories by dynamically modulating the
FE polarization to program the conductivity
of superjacent 2D channels (8, 9). Achieving
computing tasks requires these memories to
be integratedwith peripheral circuits, because
analog signal processing (ASP) is essential
before and after MO (2). However, peripheral

circuits are generally based on complementary
metal-oxide semiconductor (CMOS) transis-
tors, and thus the heterogeneous architectures
betweenmemory cells and peripheral circuits
lead to their physical separation, making it
necessary to consider module integration
compatibility issues for chip design (2). In
addition, an emerging challenge regards how
to achieve efficient resistance matching be-
tween heterogeneous device architectures as
device dimensions are scaling down, which
may hinder the pursuit of higher perform-
ance and energy efficiency (10). Therefore, it
is crucial to explore the integration between
ASP and MO.
Designing an ASP-MO integrated system

with a homogeneous device architecture for
peripheral circuits and memory cells offers
the potential to relieve the above-mentioned
issues, which can also be realized by themech-
anism of 2D-FE proximal coupling. On the
one hand, FE polarization proximity-induced
nonvolatile electronic gating in 2D materials
enables the design of nonlinear transistors,
including p-n diodes and BJTs (8, 11–16). On
the other hand, FE polarization canmodulate
the built-in potential in BJTs (17), enabling
nonvolatile memory functionalities with an
improved on-off resistance ratio. Moreover,
the reconfigurable FE polarization domains
can seamlessly manipulate arrayed doping
domains in 2D materials, showing potential
for the fabrication of massive cascaded de-
vices with enhanced compactness. There-
fore, a homogeneous, 2D material–based FE
proximal coupled BJT architecture is pro-
posed to design peripheral circuits for ASP,
as well as nonvolatile memory cells for MO,
enabling development of an ASP-MO inte-
grated system.
In this work, seamlessly arrayed periodically

polarized LiNbO3 (LNO) domains formed a

grating-like structure (fig. S1), which effec-
tively tailored the WSe2 channels into seam-
lessly arrayed junctions. ASP, MO, and their
corresponding cascade were investigated to
demonstrate the success of an integrated system
based on the same device architecture, which
included a WSe2 channel crossing three FE
domains. Our operational amplifier (OPAMP)
was designed for ASP (18), and memory cells
with encoded synapse weights were cascaded
with the OPAMP to demonstrate the applica-
bility in binary classification (19). Furthermore,
ternary content-addressablememory (TCAM)
with a two-transistor-two-resistor (2T2R) con-
figuration was designed with the homoge-
neous transistor-memory architecture, yielding
a ratio of 898.4 between the high-resistance
state (HRS) and the low-resistance state (LRS).
Such an integrated system architecture could
provide a feasible approach to solve the het-
erogeneous issue and improve neuromorphic
applications.
Few-layer WSe2 flakes were exfoliated and

transferred onto LNO to demonstrate the
reconfigurable electronic functionalities under
FE proximal coupling (WSe2 characterization
and optical images are shown in fig. S1). The
basic device functioned as a nonlinear tran-
sistor when the domain polarization state
was fixed under zero gate voltage (Vg) (Fig. 1A),
as the FE proximal coupling induces carrier
doping in the WSe2 (Fig. 1B). This doping
mechanism was indicated by the Kelvin probe
force microscopy (KPFM) mapping shown in
fig. S1C, where the higher (or lower) surface
potential induced by the polarization-down
(Pd) [or polarization-up (Pu)] domain was in
accordance with the p-doping (or n-doping)
nature (8). Transfer curves for the intrinsic
WSe2 and FE-dopedWSe2 FETs are shown in
fig. S1L. The neutral point shifts were 3.8 and
−6.2 V for the Pd and Pu domains, respectively,
corresponding to a hole doping density of
2.07 × 1012 cm−2 and an electron doping den-
sity of 3.37 × 1012 cm−2. This doping character
induced a built-in potential of ~0.43 eV and a
depletionwidth (w) of 48.25 nm (fig. S1M) (20).
For a basic n-p-n BJT on the Pu-Pd-Pu domains,
current amplifications weremeasured under
the base, collector, and emitter voltage control.
The common-base configuration in Fig. 1E
showed an average gain of a¼ Ic

Ie
¼ 0:979 (Ic,

collector current; Ie, emitter current) for the
active region, and the common-emitter con-
figuration in Fig. 1F showed a maximum gain
of b¼ Ic

Ib
¼ 11:2 (Ib, base current), offering the

capability to design analog circuits. More de-
tails about signal rectification, amplification,
and performance uniformity are shown in
figs. S2 to S5.
The basic device could also operate as a

nonvolatile memory (Fig. 1C), the mechanism
of which differs from those of conventional
FE-FET and MemFlash (1, 4, 21). The FE
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polarization state was fixed to be Pu for the
collector and emitter, and the HRS and LRS
were dominated by the built-in potential (17),
which was controlled by Vg for the base. In

the potentiation (or depression) process, a
positive Vg from 6 to 9 V (or a negative Vg

from −6 to −9 V) changed the FE polariza-
tion state for the base to Pu (or Pd), resulting in

a low built-in potential with enhanced chan-
nel conductance (or a high built-in potential
with reduced channel conductance) (Fig. 1D)
(21, 22). The mechanism was indicated from
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Fig. 1. Basic device and performance mechanism. (A) Schematic of the
basic device with a homogeneous transistor-memory architecture for nonlinear
transistor functionality. (B) Mechanism of FE proximity-induced doping in the basic
device. Ef, Fermi energy. (C) Schematic of the basic device with a homogeneous
transistor-memory architecture for the memory functionality. (D) Mechanism
of potentiation and depression in the basic device, in which the LRS and HRS were
controlled by changing the FE polarization state of the base under a positive
and negative gate voltage, respectively. (E and F) Transistor functionality with

common-base (E) and common-emitter (F) configuration. (G) Current rectification
for the potentiation process, for which Vg ranged from 6 to 9 V with a step of
0.5 V. (H) Current rectification for the depression process, for which Vg ranged
from −6 to −9 V with a step of 0.5 V. (I) Channel resistance for the FE polarization
state of Pu-Pd-Pu and Pu-Pu-Pu under the driving voltage of Vce = −3 V and Vbe = 0 V.
The inset shows a schematic of the measured current. (J) Conductance update
for the potentiation and depression with a Vg step of 0.1 V and a width of 1 s. The
drive voltages were Vce = 1 V and Vbe = 0 V.
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the modulated current rectifications under the
collector-emitter voltage (Vce) sweep for the po-
tentiation (Fig. 1G) and depression (Fig. 1H)
processes, respectively [base-emitter voltage
(Vbe) = 0 V; Vg step of 0.5 V]. This rectifica-
tion behavior can provide a high resistance
ratio between the HRS and LRS. In contrast
to the conventional FE-FET structure with the

WSe2 channel placed on a single FE domain
(fig. S6), the resistance for the FE polariza-
tion state of Pu-Pd-Pu and Pu-Pu-Pu showed an
average resistance ratio of ~106 under driving
voltages of Vce = −3 V, Vbe = 0 V, and Vg = 0 V
(Fig. 1I). Moreover, as an artificial synapse,
the conductance update for the potentiation
or depression process with a Vg step of 0.1 V

under Vce = 1 V and Vbe = 0 V (Fig. 1J) was
encoded as a synapse weight (fig. S7A), and
the on-off resistance ratio was ~103. The
stable memory performance is shown in fig.
S7 for measurements of multiple cycles, and
the memory performances were compared
with those from other studies of diverse mem-
ory architectures (table S1). The few-layerWSe2
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Fig. 2. OPAMP for ASP. (A and B) Experimental setup (A) and electric circuit
(B) of the OPAMP. T1 to T12, BJTs; D, cascaded diode; C, cascaded capacitance.
(C) Optical image of the OPAMP. Scale bar, 100 mm. (D to F) Analog signal
inputted at one port (D). Inverted (E) and noninverted (F) output of the OPAMP,
with the circuit schematics shown in the insets. (G) Analog input and output

signals for the addition operation. The inset shows the schematic of the addition
calculation. (H) Analog integral calculation for a square-shaped input signal
and the corresponding triangle-shaped output signal. (I) Analog integral calculation
for a triangle-shaped input signal and the approximately sinusoidal output signal.
The inset shows the schematic of the integral calculation.
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film grownby chemical vapor deposition was
then transferred and patterned on LNO to
fabricate an ASP-MO integrated system.
The OPAMP was designed by cascading

multiple basic devices for ASP (Fig. 2, A to C)
(18), with the input electrodes designated
X1 and X2. The dc driving voltages were col-

lector voltage (Vcc) = emitter voltage (Vee) = 6V,
the resistances were R1 = R2 = 10 megohms,
the capacitance (C) was 1 mF, and the input
bias current was varied between 30 and 50 nA
to adjust the performance. The OPAMP char-
acteristics were discussed and comparedwith
those of previously reported CMOS-based de-

vices (table S2). We applied an ac input sig-
nal Vi ¼ 0:2sin200p � t (t, time) (Fig. 2D)
at only one input port, and the other port was
grounded. The output signal V�

o was inverted
when the signal was input at port X1 (Fig. 2E),
the output Vþ

o was noninverted when the
signal was input at port X2 (Fig. 2F), and the
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Fig. 3. ASP-MO integration for binary classification. (A) Class 1 with letter patterns H, U, S, and T and class 0 with number patterns 2, 0, 2, and 1.
(B) Schematic of the classification with the sigmoid activation function. (C) Schematic of the circuit diagram, where the memory cells were integrated with
the TIA and VC. (D) Output character of the VC (solid red curve), which was similar to the sigmoid function (dashed blue curve). (E to G) Training dataset
label (E), predicted class in the simulation (F), and predicted class in the experiment (G). (H to J) Average Score(V) (H), accuracy (I), and cost (J) for
the training process in the simulation and experiment.
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voltage gain was related to the ratio Rf/R3. For
the addition operation, port X2 was grounded,
and both input signals were cascaded to port
X1, with a resistance (Rf) for negative feedback.
The two ac input signals V 1

i ¼ 0:2sin200p �
t and V 2

i ¼ 0:3sin200p � t and the output
signal Vo are shown in Fig. 2G. Under the con-
dition of Rf = R4 = R5 = 2 megohms, the output
signalwas�Vo ¼ V 1

i þ V 2
i .Whenacapacitance

was used for negative feedback, the OPAMP
achieved the integral calculation with a time
constant of t ¼ R6C ¼ 2 s (R6 = 2 megohms,
C = 1 mF). The square input signal Vi and the
corresponding integrated output signal Vo ¼
� Vi

RC t are shown in Fig. 2H. The triangle-
shaped input signal and the approximately
sine wave–shaped integrated output signal
are shown in Fig. 2I.

On the basis of the reconfigurable function-
alities, the ASP-MO integrated system was
used to demonstrate the proof of principle
for binary classification (23, 24). The input
three pixel–by–three pixel patterns for the
letters H, U, S, and T were labeled as class 1,
and those for the numbers 2, 0, and 1 were
labeled as class 0 (Fig. 3A shows eight ran-
domly selected patterns; and the entire training
dataset is shown in fig. S8). The calculation
schematic and circuit diagram are shown in
Fig. 3, B and C, respectively. The pixels were
coded into nine input voltages (Vce) to cal-
culate the weighted average current (Eq. 1) in
nine memory cells. The weighted average cur-
rent was converted into a voltage Score(V) in
the transimpedance amplifier (TIA) (19, 25),
with a resistance (R0) of 10megohms. The non-

linear output voltage (Eq. 2) was processed by
the voltage comparator (VC) with a reference
voltage (Vref) of 1.5 V, which was similar to the
sigmoid function (Fig. 3D)

Score Vð Þ ¼ w0 þ w1V
1
i þw2V

2
i þw3V

3
i

þ…þwjV
j
i ð1Þ

Vout ¼ Vcc; Score Vð Þ > Vref

Vee; Score Vð Þ < Vref

�
ð2Þ

The drive voltages were Vcc (6 V) andVee (0 V),
and the conductance was updated after cal-
culating the cross-entropy cost for each batch,
as summarized in fig. S9, C and D. The system
was trained for 30 epochs, after which the
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pattern label and predicted classes in the sim-
ulations and experiments were elucidated
(Fig. 3, E to G, respectively). Score(V) is
summarized in fig. S9, E and F; the average
Score(V) values of classes 0 and 1, which are
separated by Vref, are depicted in Fig. 3H.
The accuracy and cost are shown in Fig. 3, I
and J. The performance was mainly limited
by the output characteristics of the VC and
the non-negative weight in the hardware.
Analogous to conventional FE memristors,
this ASP-MO integrated system could be use-
ful for other neuromorphic algorithms, al-
though such investigation is beyond the scope
of this work.
TCAM is promising for the parallel search

of massive datasets in in-memory computing
(26, 27), and TCAM cells with a 2T2R con-
figuration can be constructed on the basis of
homogeneous transistor-memory architecture
(schematics of the mechanism are shown in
Fig. 4, A to F). In our design, the TCAM cell
included three WSe2 channels on nine sepa-
rated FE domains, with four terminalsmarked
as the emitter electrode (Xe), read electrode
(Xr), and base electrodes (Xb

1 and Xb
2). Three

central domains, designated D1 to D3, formed
twomemories, with memory R1 across D1 and
D2 and memory R2 across D2 and D3. The
polarization state of D2 was fixed at Pu; thus,
R1 (or R2) was in an HRS when the Vg of −9 V
changed D1 (or D3) to Pd and was in an LRS
when the Vg of 9 V changed D1 (or D3) to Pu.
Moreover, R1 and R2 were connected with
two BJT switches, which were switched on
(or off) at a base voltage of Vb

1 = Vb
2 = 3 V (or

Vb
1 = Vb

2 = −3 V) (Fig. 4, B, D, and F). Xe was
grounded, and Vr (5 V) was loaded at Xr for
the address search function.
The bit data 1 (or 0) in the TCAM cell was

defined when R1 was in the HRS and R2 was
in the LRS (or R1 in the LRS and R2 in the
HRS). The matched state exhibited a low con-
ductance for the address read at Xr and thus
bit data 1 was searched by switching on BJT1
and switching off BJT2 (Fig. 4, A and B). Bit
data 0 was searched by switching off BJT1
and switching on BJT2 (Fig. 4, C and D).
Otherwise, the TCAM cell was in the mis-
matched state with a high conductance. For
bit data 1, the average conductance was ~0.5 nS

(where 1 S = 1 A/V) for the matched state and
~449.5 nS for the mismatched state, with an
average conductance ratio rc ¼ Chigh

Clow
¼ 899

(Fig. 4H). The TCAM cell with an unknown bit
(designated bit X) was always in the matched
state, because both R1 and R2were in theHRS
(Fig. 4, E and F), with an average conductivity
of ~0.4 nS (Fig. 4I). The cumulative probability
was analyzed in fig. S10.
In addition to binary classification and

TCAM design, the basic device should be suit-
able for various applications, including digi-
tal computing (fig. S11) and artificial neural
systems with optical sensing abilities (fig.
S12) (28, 29). The basic device should also be
applicable for the design of analog-to-digital
converters, digital-to-analog converters, and
analog filters (2). The device size can be re-
duced by scaling down the polarization do-
main size, which will improve the current
gain and integration density. A lower coer-
cive voltage would be helpful for achieving
a lower power consumption, which can be
attained by reducing the LNO thickness or
using other FE materials. Finally, inspired
by conventional CMOS-based chips, we have
proposed a neuromorphic ASP-MO 3D stack-
ing system derived from 2D integration (fig.
S13). The main challenge lies in the growth of
wafer-scale, high-quality 2D materials, and
recent works have achieved promising break-
throughs to overcome this challenge (30).
Thus, this homogeneous transistor-memory
architecture will help to promote analogous
neuromorphic systems on-chip.

REFERENCES AND NOTES

1. C. Liu et al., Nat. Nanotechnol. 15, 545–557 (2020).

2. Q. Xia, J. J. Yang, Nat. Mater. 18, 309–323 (2019).

3. L. Danial et al., Nat. Electron. 2, 596–605 (2019).

4. D. Ielmini, H. P. Wong, Nat. Electron. 1, 333–343 (2018).

5. W. Zhang et al., Nat. Electron. 3, 371–382 (2020).

6. A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, E. Eleftheriou,
Nat. Nanotechnol. 15, 529–544 (2020).

7. M. I. B. Utama et al., Nat. Electron. 2, 60–65 (2019).

8. G. Wu et al., Nat. Electron. 3, 43–50 (2020).

9. X. Wang et al., Nat. Commun. 12, 1109 (2021).

10. P. Kapur, J. P. McVittie, K. C. Saraswat, IEEE Trans. Electron
Dev. 49, 590–597 (2002).

11. L. Lv et al., Nat. Commun. 10, 3331 (2019).

12. C. Baeumer et al., Nat. Commun. 6, 6136 (2015).

13. J.-W. Chen et al., Nat. Commun. 9, 3143 (2018).

14. H. Lu et al., Nat. Commun. 5, 5518 (2014).

15. N. Park et al., ACS Nano 9, 10729–10736 (2015).

16. H. Mulaosmanovic, E. T. Breyer, T. Mikolajick, S. Slesazeck,
Nat. Electron. 3, 391–397 (2020).

17. Z. Xiao, J. Song, D. K. Ferry, S. Ducharme, X. Hong, Phys. Rev.
Lett. 118, 236801 (2017).

18. D. K. Polyushkin et al., Nat. Electron. 3, 486–491
(2020).

19. L. Mennel et al., Nature 579, 62–66 (2020).

20. B. Wen et al., ACS Nano 13, 5335–5343 (2019).

21. M.-K. Kim, J.-S. Lee, Nano Lett. 19, 2044–2050
(2019).

22. S. Boyn et al., Nat. Commun. 8, 14736 (2017).

23. S. Ambrogio et al., Nature 558, 60–67 (2018).

24. S. Seo et al., Nat. Commun. 11, 3936 (2020).

25. C. Li et al., Nat. Electron. 1, 52–59 (2018).

26. K. Ni et al., Nat. Electron. 2, 521–529 (2019).

27. R. Yang et al., Nat. Electron. 2, 108–114 (2019).

28. L. Tong et al., Nat. Commun. 11, 2308 (2020).

29. C. Y. Wang et al., Sci. Adv. 6, eaba6173 (2020).

30. X. Xu et al., Science 372, 195–200 (2021).

31. L. Tong et al., 2D materials-based homogeneous
transistor-memory architecture for neuromorphic hardware,
version 1.0, Zenodo (2021); https://doi.org/10.5281/
zenodo.5163973.

ACKNOWLEDGMENTS

Funding: This work was supported by the National Natural Science
Foundation of China (grants 61974050, 51872257, 61927817,
61725505, 11734016, 61905266, 11991063, and 61774067),
the National Key Research and Development Plan of China (grants
2019YFB2205100 and 2019YFB2203102), the Priority Research
Program of Chinese Academy of Sciences (grants XDPB22 and
XD43010200), the Fund of Shanghai Natural Science Foundation
(grants 19XD1404100 and 19YF1454600), and the Natural Science
Foundation of Zhejiang Province (grant LZ20F040001). Author
contributions: L.T., X.M., W.H., and L.Y. conceived the idea
and designed the experiments. L.T., Z.P., and R.L. performed
device fabrication and characterization. Z.L., X.Hua., and Y.W.
conducted binary logic function measurements. K.-H.X. conducted
atomic force microscopy analysis. H.Xu and P.W. conducted the
optoelectronic measurements. F.L. conducted cumulative
probability analysis. H.Xia conducted the KPFM measurement.
M.X., W.X., J.X., and X.Z. helped with device fabrication. L.T.
carried out the data analysis. L.T., W.H., and L.Y. wrote the
manuscript. All authors provided critical comments and analyses.
Competing interests: The authors declare no conflicts of
interest. Data and materials availability: All data needed to
evaluate the conclusions in the paper are present in the paper
or the supplementary materials. All findings of this study are
archived on Zenodo (31).

SUPPLEMENTARY MATERIALS

https://science.org/doi/10.1126/science.abg3161
Materials and Methods
Supplementary Text
Figs. S1 to S13
Tables S1 and S2
References (32–54)

24 December 2020; resubmitted 5 June 2021
Accepted 6 August 2021
Published online 19 August 2021
10.1126/science.abg3161

Tong et al., Science 373, 1353–1358 (2021) 17 September 2021 6 of 6

RESEARCH | REPORT
D

ow
nloaded from

 https://w
w

w
.science.org on Septem

ber 27, 2021

https://doi.org/10.5281/zenodo.5163973
https://doi.org/10.5281/zenodo.5163973
https://science.org/doi/10.1126/science.abg3161


Use of think article is subject to the Terms of service

Science (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW, Washington, DC
20005. The title Science is a registered trademark of AAAS.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works

2D materials–based homogeneous transistor-memory architecture for
neuromorphic hardware
Lei TongZhuiri PengRunfeng LinZheng LiYilun WangXinyu HuangKan-Hao XueHangyu XuFeng LiuHui XiaPeng
WangMingsheng XuWei XiongWeida HuJianbin XuXinliang ZhangLei YeXiangshui Miao

Science, 373 (6561), • DOI: 10.1126/science.abg3161

Memory and logic in the same device
Future artificial intelligence applications and data-intensive computations require the development of neuromorphic
systems beyond traditional heterogeneous device architectures. Physical separation between a peripheral signal-
processing unit and a memory-operating unit is one of the main bottlenecks of heterogeneous architectures, blocking
further improvements in efficient resistance matching, energy consumption, and integration compatibility. Tong et al.
present a transistor-memory architecture based on a homogeneous tungsten selenide-on-lithium niobate device array
(see the Perspective by Rao and Tao). Analog peripheral signal preprocessing and nonvolatile memory were possible
within the same device structure, promising diverse neuromorphic functionalities and offering potential improvements in
neuromorphic systems on-chip. —YS
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