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Preface

This is a set of lecture notes prepared for Physics 607, a course on Atomic
Physics for second-year graduate students, given at Notre Dame during the
spring semester of 1994. My aim in this course was to provide opportunities for
“hands-on” practice in the calculation of atomic wave functions and energies.

The lectures started with a review of angular momentum theory including
the formal rules for manipulating angular momentum operators, a discussion
of orbital and spin angular momentum, Clebsch-Gordan coefficients and three-j
symbols. This material should have been familiar to the students from first-year
Quantum Mechanics. More advanced material on angular momentum needed in
atomic structure calculations followed, including an introduction to graphical
methods, irreducible tensor operators, spherical spinors and vector spherical
harmonics.

The lectures on angular momentum were followed by an extended discus-
sion of the central-field Schrödinger equation. The Schrödinger equation was
reduced to a radial differential equation and analytical solutions for Coulomb
wave functions were obtained. Again, this reduction should have been familiar
from first-year Quantum Mechanics. This preliminary material was followed
by an introduction to the finite difference methods used to solve the radial
Schrödinger equation. A subroutine to find eigenfunctions and eigenvalues of the
Schrödinger equation was developed. This routine was used together with para-
metric potentials to obtain wave functions and energies for alkali atoms. The
Thomas-Fermi theory was introduced and used to obtain approximate electron
screening potentials. Next, the Dirac equation was considered. The bound-state
Dirac equation was reduced to radial form and Dirac-Coulomb wave functions
were determined analytically. Numerical solutions to the radial Dirac equation
were considered and a subroutine to obtain the eigenvalues and eigenfunctions
of the radial Dirac equation was developed.

In the third part of the course, many electron wave functions were considered
and the ground-state of a two-electron atom was determined variationally. This
was followed by a discussion of Slater-determinant wave functions and a deriva-
tion of the Hartree-Fock equations for closed-shell atoms. Numerical methods
for solving the HF equations were described. The HF equations for atoms with
one-electron beyond closed shells were derived and a code was developed to solve
the HF equations for the closed-shell case and for the case of a single valence
electron. Finally, the Dirac-Fock equations were derived and discussed.

xi



xii PREFACE

The final section of the material began with a discussion of second-
quantization. This approach was used to study a number of structure prob-
lems in first-order perturbation theory, including excited states of two-electron
atoms, excited states of atoms with one or two electrons beyond closed shells
and particle-hole states. Relativistic fine-structure effects were considered using
the “no-pair” Hamiltonian. A rather complete discussion of the magnetic-dipole
and electric quadrupole hyperfine structure from the relativistic point of view
was given, and nonrelativistic limiting forms were worked out in the Pauli ap-
proximation.

Fortran subroutines to solve the radial Schródinger equation and the
Hartree-Fock equations were handed out to be used in connection with weekly
homework assignments. Some of these assigned exercises required the student
to write or use fortran codes to determine atomic energy levels or wave func-
tions. Other exercises required the student to write maple routines to generate
formulas for wave functions or matrix elements. Additionally, more standard
“pencil and paper” exercises on Atomic Physics were assigned.

I was disappointed in not being able to cover more material in the course.
At the beginning of the semester, I had envisioned being able to cover second-
and higher-order MBPT methods and CI calculations and to discuss radiative
transitions as well. Perhaps next year!

Finally, I owe a debt of gratitude to the students in this class for their
patience and understanding while this material was being assembled, and for
helping read through and point out mistakes in the text.

South Bend, May, 1994

The second time that this course was taught, the material in Chap. 5 on
electromagnetic transitions was included and Chap. 6 on many-body methods
was started. Again, I was dissapointed at the slow pace of the course.

South Bend, May, 1995

The third time through, additional sections of Chap. 6 were added.

South Bend, December, 2000

The fourth time that this course was taught, the section in Chap. 4 on hyper-
fine structure was moved to a separate chapter, Chap. 5. Material on the isotope
shift was also included in Chap. 5. The material on electromagnetic transitions
(now Chap. 6) remains unchanged. The chapter on many-body methods (now
Chap. 7) was considerably extended and Chap. 8 on many-body methods for
matrix elements was added. In order to squeeze all of this material into a one
semester three credit hour course, it was necessary to skip most of the material
on numerical methods. However, I am confident that the entire book could be
covered in a four credit hour course.

South Bend, December, 2005



Chapter 1

Angular Momentum

Understanding the quantum mechanics of angular momentum is fundamental in
theoretical studies of atomic structure and atomic transitions. Atomic energy
levels are classified according to angular momentum and selection rules for ra-
diative transitions between levels are governed by angular-momentum addition
rules. Therefore, in this first chapter, we review angular-momentum commu-
tation relations, angular-momentum eigenstates, and the rules for combining
two angular-momentum eigenstates to find a third. We make use of angular-
momentum diagrams as useful mnemonic aids in practical atomic structure cal-
culations. A more detailed version of much of the material in this chapter can
be found in Edmonds (1974).

1.1 Orbital Angular Momentum - Spherical
Harmonics

Classically, the angular momentum of a particle is the cross product of its po-
sition vector r = (x, y, z) and its momentum vector p = (px, py, pz):

L = r× p.

The quantum mechanical orbital angular momentum operator is defined in the
same way with p replaced by the momentum operator p → −ih̄∇. Thus, the
Cartesian components of L are

Lx = h̄
i

(

y ∂
∂z − z ∂

∂y

)

, Ly = h̄
i

(

z ∂
∂x − x ∂

∂z

)

, Lz =
h̄
i

(

x ∂
∂y − y ∂

∂x

)

. (1.1)

With the aid of the commutation relations between p and r:

[px, x] = −ih̄, [py, y] = −ih̄, [pz, z] = −ih̄, (1.2)

1
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one easily establishes the following commutation relations for the Cartesian
components of the quantum mechanical angular momentum operator:

LxLy − LyLx = ih̄Lz, LyLz − LzLy = ih̄Lx, LzLx − LxLz = ih̄Ly.
(1.3)

Since the components of L do not commute with each other, it is not possible to
find simultaneous eigenstates of any two of these three operators. The operator
L2 = L2

x+L2
y +L2

z, however, commutes with each component of L. It is, there-
fore, possible to find a simultaneous eigenstate of L2 and any one component of
L. It is conventional to seek eigenstates of L2 and Lz.

1.1.1 Quantum Mechanics of Angular Momentum

Many of the important quantum mechanical properties of the angular momen-
tum operator are consequences of the commutation relations (1.3) alone. To
study these properties, we introduce three abstract operators Jx, Jy, and Jz
satisfying the commutation relations,

JxJy − JyJx = iJz , JyJz − JzJy = iJx , JzJx − JxJz = iJy . (1.4)

The unit of angular momentum in Eq.(1.4) is chosen to be h̄, so the factor of
h̄ on the right-hand side of Eq.(1.3) does not appear in Eq.(1.4). The sum of
the squares of the three operators J2 = J2x +J2y +J2z can be shown to commute
with each of the three components. In particular,

[J2, Jz] = 0 . (1.5)

The operators J+ = Jx+ iJy and J− = Jx− iJy also commute with the angular
momentum squared:

[J2, J±] = 0 . (1.6)

Moreover, J+ and J− satisfy the following commutation relations with Jz:

[Jz, J±] = ±J± . (1.7)

One can express J2 in terms of J+, J− and Jz through the relations

J2 = J+J− + J2z − Jz , (1.8)

J2 = J−J+ + J2z + Jz . (1.9)

We introduce simultaneous eigenstates |λ,m〉 of the two commuting opera-
tors J2 and Jz:

J2|λ,m〉 = λ |λ,m〉 , (1.10)

Jz|λ,m〉 = m |λ,m〉 , (1.11)

and we note that the states J±|λ,m〉 are also eigenstates of J2 with eigenvalue
λ. Moreover, with the aid of Eq.(1.7), one can establish that J+|λ,m〉 and
J−|λ,m〉 are eigenstates of Jz with eigenvalues m± 1, respectively:

JzJ+|λ,m〉 = (m+ 1) J+|λ,m〉, (1.12)

JzJ−|λ,m〉 = (m− 1) J−|λ,m〉. (1.13)
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Since J+ raises the eigenvalue m by one unit, and J− lowers it by one unit,
these operators are referred to as raising and lowering operators, respectively.
Furthermore, since J2x + J2y is a positive definite hermitian operator, it follows
that

λ ≥ m2.

By repeated application of J− to eigenstates of Jz, one can obtain states of ar-
bitrarily small eigenvalue m, violating this bound, unless for some state |λ,m1〉,

J−|λ,m1〉 = 0.

Similarly, repeated application of J+ leads to arbitrarily large values ofm, unless
for some state |λ,m2〉

J+|λ,m2〉 = 0.

Sincem2 is bounded, we infer the existence of the two states |λ,m1〉 and |λ,m2〉.
Starting from the state |λ,m1〉 and applying the operator J+ repeatedly, one
must eventually reach the state |λ,m2〉; otherwise the value of m would increase
indefinitely. It follows that

m2 −m1 = k, (1.14)

where k ≥ 0 is the number of times that J+ must be applied to the state |λ,m1〉
in order to reach the state |λ,m2〉. One finds from Eqs.(1.8,1.9) that

λ|λ,m1〉 = (m2
1 −m1)|λ,m1〉,

λ|λ,m2〉 = (m2
2 +m2)|λ,m2〉,

leading to the identities

λ = m2
1 −m1 = m2

2 +m2, (1.15)

which can be rewritten

(m2 −m1 + 1)(m2 +m1) = 0. (1.16)

Since the first term on the left of Eq.(1.16) is positive definite, it follows that
m1 = −m2. The upper bound m2 can be rewritten in terms of the integer k in
Eq.(1.14) as

m2 = k/2 = j.

The value of j is either integer or half integer, depending on whether k is even
or odd:

j = 0,
1

2
, 1,

3

2
, · · · .

It follows from Eq.(1.15) that the eigenvalue of J2 is

λ = j(j + 1). (1.17)

The number of possible m eigenvalues for a given value of j is k + 1 = 2j + 1.
The possible values of m are

m = j, j − 1, j − 2, · · · ,−j.
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x

y

z

rθ

φ

Figure 1.1: Transformation from rectangular to spherical coordinates.

Since J− = J†+, it follows that

J+|λ,m〉 = η|λ,m+ 1〉, 〈λ,m|J− = η∗〈λ,m+ 1|.

Evaluating the expectation of J2 = J−J++J2z +Jz in the state |λ,m〉, one finds

|η|2 = j(j + 1)−m(m+ 1).

Choosing the phase of η to be real and positive, leads to the relations

J+|λ,m〉 =
√

(j +m+ 1)(j −m) |λ,m+ 1〉, (1.18)

J−|λ,m〉 =
√

(j −m+ 1)(j +m) |λ,m− 1〉. (1.19)

1.1.2 Spherical Coordinates - Spherical Harmonics

Let us apply the general results derived in Section 1.1.1 to the orbital angular
momentum operator L. For this purpose, it is most convenient to transform
Eqs.(1.1) to spherical coordinates (Fig. 1.1):

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

r =
√

x2 + y2 + z2, θ = arccos z/r, φ = arctan y/x.

In spherical coordinates, the components of L are

Lx = ih̄

(

sinφ
∂

∂θ
+ cosφ cot θ

∂

∂φ

)

, (1.20)

Ly = ih̄

(

− cosφ
∂

∂θ
+ sinφ cot θ

∂

∂φ

)

, (1.21)

Lz = −ih̄ ∂

∂φ
, (1.22)
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and the square of the angular momentum is

L2 = −h̄2
(

1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

. (1.23)

Combining the equations for Lx and Ly, we obtain the following expressions for
the orbital angular momentum raising and lowering operators:

L± = h̄e±iφ
(

± ∂

∂θ
+ i cot θ

∂

∂φ

)

. (1.24)

The simultaneous eigenfunctions of L2 and Lz are called spherical harmonics.
They are designated by Ylm(θ, φ). We decompose Ylm(θ, φ) into a product of a
function of θ and a function of φ:

Ylm(θ, φ) = Θl,m(θ)Φm(φ) .

The eigenvalue equation LzYl,m(θ, φ) = h̄mYl,m(θ, φ) leads to the equation

−idΦm(φ)

dφ
= mΦm(φ) , (1.25)

for Φm(φ). The single valued solution to this equation, normalized so that

∫ 2π

0

|Φm(φ)|2dφ = 1 , (1.26)

is

Φm(φ) =
1√
2π
eimφ, (1.27)

where m is an integer. The eigenvalue equation L2Yl,m(θ, φ) = h̄2l(l +
1)Yl,m(θ, φ) leads to the differential equation

(

1

sin θ

d

dθ
sin θ

d

dθ
− m2

sin2 θ
+ l(l + 1)

)

Θl,m(θ) = 0 , (1.28)

for the function Θl,m(θ). The orbital angular momentum quantum number l
must be an integer since m is an integer.

One can generate solutions to Eq.(1.28) by recurrence, starting with the
solution for m = −l and stepping forward in m using the raising operator L+,
or starting with the solution form = l and stepping backward using the lowering
operator L−. The function Θl,−l(θ) satisfies the differential equation

L+Θl,−l(θ)Φ−l(φ) = h̄Φ−l+1(φ)

(

− d

dθ
+ l cot θ

)

Θl,−l(θ) = 0 ,

which can be easily solved to give Θl,−l(θ) = c sinl θ, where c is an arbitrary
constant. Normalizing this solution so that

∫ π

0

|Θl,−l(θ)|2 sin θdθ = 1, (1.29)
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one obtains

Θl,−l(θ) =
1

2ll!

√

(2l + 1)!

2
sinl θ . (1.30)

Applying Ll+m+ to Yl,−l(θ, φ), leads to the result

Θl,m(θ) =
(−1)l+m

2ll!

√

(2l + 1)(l −m)!

2(l +m)!
sinm θ

dl+m

d cos θl+m
sin2l θ . (1.31)

For m = 0, this equation reduces to

Θl,0(θ) =
(−1)l
2ll!

√

2l + 1

2

dl

d cos θl
sin2l θ . (1.32)

This equation may be conveniently written in terms of Legendre polynomials
Pl(cos θ) as

Θl,0(θ) =

√

2l + 1

2
Pl(cos θ) . (1.33)

Here the Legendre polynomial Pl(x) is defined by Rodrigues’ formula

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l . (1.34)

For m = l, Eq.(1.31) gives

Θl,l(θ) =
(−1)l
2ll!

√

(2l + 1)!

2
sinl θ . (1.35)

Starting with this equation and stepping backward l − m times leads to an
alternate expression for Θl,m(θ):

Θl,m(θ) =
(−1)l
2ll!

√

(2l + 1)(l +m)!

2(l −m)!
sin−m θ

dl−m

d cos θl−m
sin2l θ . (1.36)

Comparing Eq.(1.36) with Eq.(1.31), one finds

Θl,−m(θ) = (−1)mΘl,m(θ) . (1.37)

We can restrict our attention to Θl,m(θ) with m ≥ 0 and use (1.37) to obtain
Θl,m(θ) for m < 0. For positive values of m, Eq.(1.31) can be written

Θl,m(θ) = (−1)m
√

(2l + 1)(l −m)!

2(l +m)!
Pm
l (cos θ) , (1.38)

where Pm
l (x) is an associated Legendre functions of the first kind, given in

Abramowitz and Stegun (1964, chap. 8), with a different sign convention, defined
by

Pm
l (x) = (1− x2)m/2 d

m

dxm
Pl(x) . (1.39)
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The general orthonormality relations 〈l,m|l′,m′〉 = δll′δmm′ for angular mo-
mentum eigenstates takes the specific form

∫ π

0

∫ 2π

0

sin θdθdφY ∗l,m(θ, φ)Yl′,m′(θ, φ) = δll′δmm′ , (1.40)

for spherical harmonics. Comparing Eq.(1.31) and Eq.(1.36) leads to the relation

Yl,−m(θ, φ) = (−1)mY ∗l,m(θ, φ) . (1.41)

The first few spherical harmonics are:

Y00 =
√

1
4π

Y10 =
√

3
4π cos θ Y1,±1 = ∓

√

3
8π sin θ e±iφ

Y20 =
√

5
16π (3 cos2 θ − 1) Y2,±1 = ∓

√

15
8π sin θ cos θ e±iφ

Y2,±2 =
√

15
32π sin2 θ e±2iφ

Y30 =
√

7
16π cos θ (5 cos2 θ − 3) Y3,±1 = ∓

√

21
64π sin θ (5 cos2 θ − 1) e±iφ

Y3,±2 =
√

105
32π cos θ sin2 θ e±2iφ Y3,±3 = ∓

√

35
64π sin3 θ e±3iφ

1.2 Spin Angular Momentum

1.2.1 Spin 1/2 and Spinors

The internal angular momentum of a particle in quantum mechanics is called
spin angular momentum and designated by S. Cartesian components of S satisfy
angular momentum commutation rules (1.4). The eigenvalue of S2 is h̄2s(s+1)
and the 2s + 1 eigenvalues of Sz are h̄m with m = −s,−s + 1, · · · , s. Let us
consider the case s = 1/2 which describes the spin of the electron. We designate
the eigenstates of S2 and Sz by two-component vectors χµ, µ = ±1/2:

χ1/2 =

(

1
0

)

, χ−1/2 =

(

0
1

)

. (1.42)

These two-component spin eigenfunctions are called spinors. The spinors χµ
satisfy the orthonormality relations

χ†µχν = δµν . (1.43)

The eigenvalue equations for S2 and Sz are

S2χµ = 3
4 h̄

2χµ, Szχµ = µh̄χµ.
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We represent the operators S2 and Sz as 2 × 2 matrices acting in the space
spanned by χµ:

S2 = 3
4 h̄

2

(

1 0
0 1

)

, Sz =
1
2 h̄

(

1 0
0 −1

)

.

One can use Eqs.(1.18,1.19) to work out the elements of the matrices represent-
ing the spin raising and lowering operators S±:

S+ = h̄

(

0 1
0 0

)

, S− = h̄

(

0 0
1 0

)

.

These matrices can be combined to give matrices representing Sx = (S++S−)/2
and Sy = (S+ − S−)/2i. The matrices representing the components of S are
commonly written in terms of the Pauli matrices σ = (σx, σy, σz), which are
given by

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

, (1.44)

through the relation

S =
1

2
h̄σ . (1.45)

The Pauli matrices are both hermitian and unitary. Therefore,

σ2x = I, σ2y = I, σ2z = I, (1.46)

where I is the 2×2 identity matrix. Moreover, the Pauli matrices anticommute:

σyσx = −σxσy , σzσy = −σyσz , σxσz = −σzσx . (1.47)

The Pauli matrices also satisfy commutation relations that follow from the gen-
eral angular momentum commutation relations (1.4):

σxσy − σyσx = 2iσz , σyσz − σzσy = 2iσx , σzσx − σxσz = 2iσy . (1.48)

The anticommutation relations (1.47) and commutation relations (1.48) can be
combined to give

σxσy = iσz , σyσz = iσx , σzσx = iσy . (1.49)

From the above equations for the Pauli matrices, one can show

σ · aσ · b = a · b+ iσ · [a× b], (1.50)

for any two vectors a and b.
In subsequent studies we will require simultaneous eigenfunctions of L2, Lz,

S2, and Sz. These eigenfunctions are given by Ylm(θ, φ)χµ.
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1.2.2 Infinitesimal Rotations of Vector Fields

Let us consider a rotation about the z axis by a small angle δφ. Under such a
rotation, the components of a vector r = (x, y, z) are transformed to

x′ = x+ δφ y,

y′ = −δφ x+ y,

z′ = z,

neglecting terms of second and higher order in δφ. The difference δψ(x, y, z) =
ψ(x′, y′, z′) − ψ(x, y, z) between the values of a scalar function ψ evaluated in
the rotated and unrotated coordinate systems is (to lowest order in δφ),

δψ(x, y, z) = −δφ
(

x
∂

∂y
− y ∂

∂x

)

ψ(x, y, z) = −iδφLz ψ(x, y, z).

The operator Lz, in the sense of this equation, generates an infinitesimal rotation
about the z axis. Similarly, Lx and Ly generate infinitesimal rotations about the
x and y axes. Generally, an infinitesimal rotation about an axis in the direction
n is generated by L · n.

Now, let us consider how a vector function

A(x, y, z) = [Ax(x, y, z), Ay(x, y, z), Az(x, y, z)]

transforms under an infinitesimal rotation. The vector A is attached to a point
in the coordinate system; it rotates with the coordinate axes on transforming
from a coordinate system (x, y, z) to a coordinate system (x′, y′, z′). An in-
finitesimal rotation δφ about the z axis induces the following changes in the
components of A:

δAx = Ax(x
′, y′, z′)− δφAy(x′, y′, z′)−Ax(x, y, z)

= −iδφ [Lz Ax(x, y, z)− iAy(x, y, z)] ,
δAy = Ay(x

′, y′, z′) + δφAx(x
′, y′, z′)−Ay(x, y, z)

= −iδφ [Lz Ay(x, y, z) + iAx(x, y, z)] ,

δAz = Az(x
′, y′, z′)−Az(x, y, z)

= −iδφLz Az(x, y, z) .

Let us introduce the 3× 3 matrix sz defined by

sz =





0 −i 0
i 0 0
0 0 0



 .

With the aid of this matrix, one can rewrite the equations for δA in the form
δA(x, y, z) = −iδφ JzA(x, y, z), where Jz = Lz + sz. If we define angular
momentum to be the generator of infinitesimal rotations, then the z component



10 CHAPTER 1. ANGULAR MOMENTUM

of the angular momentum of a vector field is Jz = Lz+sz. Infinitesimal rotations
about the x and y axes are generated by Jx = Lx+ sx and Jz = Ly + sy, where

sx =





0 0 0
0 0 −i
0 i 0



 , sy =





0 0 i
0 0 0
−i 0 0



 .

The matrices s = (sx, sy, sz) are referred to as the spin matrices. In the following
paragraphs, we show that these matrices are associated with angular momentum
quantum number s = 1.

1.2.3 Spin 1 and Vectors

The eigenstates of S2 and Sz for particles with spin s = 1 are represented by
three-component vectors ξµ, with µ = −1, 0, 1. The counterparts of the three
Pauli matrices for s = 1 are the 3× 3 matrices s = (sx, sy, sz) introduced in
the previous section. The corresponding spin angular momentum operator is
S = h̄s where

sx =





0 0 0
0 0 −i
0 i 0



 , sy =





0 0 i
0 0 0
−i 0 0



 , sz =





0 −i 0
i 0 0
0 0 0



 .

(1.51)
The matrix s2 = s2x + s2y + s2z is

s2 =





2 0 0
0 2 0
0 0 2



 . (1.52)

The three matrices sx, sy, and sz satisfy the commutation relations

sxsy − sysx = isz , sysz − szsy = isx , szsx − sxsz = isy . (1.53)

It follows that S = h̄s satisfies the angular momentum commutation relations
(1.4).

Eigenfunctions of S2 and Sz satisfy the matrix equations s2ξµ = 2ξµ and
szξµ = µξµ. The first of these equations is satisfied by an arbitrary three-
component vector. Solutions to the second are found by solving the correspond-
ing 3× 3 eigenvalue problem,





0 −i 0
i 0 0
0 0 0









a
b
c



 = µ





a
b
c



 . (1.54)

The three eigenvalues of this equation are µ = −1, 0, 1 and the associated eigen-
vectors are

ξ1 = − 1√
2





1
i
0



 , ξ0 =





0
0
1



 , ξ−1 = 1√
2





1
−i
0



 . (1.55)
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The phases of the three eigenvectors are chosen in accordance with Eq.(1.18),
which may be rewritten s+ξµ =

√
2ξµ+1. The vectors ξµ are called spherical

basis vectors. They satisfy the orthogonality relations

ξ†µξν = δµν .

It is, of course, possible to expand an arbitrary three-component vector v =
(vx, vy, vz) in terms of spherical basis vectors:

v =

1
∑

µ=−1
vµξµ, where

vµ = ξ†µv .

Using these relations, one may show, for example, that the unit vector r̂ ex-
pressed in the spherical basis is

r̂ =

√

4π

3

1
∑

µ=−1
Y ∗1,µ(θ, φ)ξµ . (1.56)

1.3 Clebsch-Gordan Coefficients

One common problem encountered in atomic physics calculations is finding
eigenstates of the sum of two angular momenta in terms of products of the
individual angular momentum eigenstates. For example, as mentioned in sec-
tion (1.2.1), the products Yl,m(θ, φ)χµ are eigenstates of L2, and Lz, as well as
S2, and Sz. The question addressed in this section is how to combine product
states such as these to find eigenstates of J2 and Jz, where J = L+ S.

Generally, let us suppose that we have two commuting angular momentum
vectors J1 and J2. Let |j1,m1〉 be an eigenstate of J21 and J1z with eigenvalues
(in units of h̄) j1(j1 + 1), and m1, respectively. Similarly, let |j2,m2〉 be an
eigenstate of J22 and J2z with eigenvalues j2(j2+1) and m2. We set J = J1 + J2

and attempt to construct eigenstates of J2 and Jz as linear combinations of the
product states |j1,m1〉 |j2,m2〉:

|j,m〉 =
∑

m1,m2

C(j1, j2, j;m1,m2,m)|j1,m1〉|j2,m2〉 . (1.57)

The expansion coefficients C(j1, j2, j;m1,m2,m), called Clebsch-Gordan coeffi-
cients, are discussed in many standard quantum mechanics textbooks (for ex-
ample, Messiah, 1961, chap. 10). One sometimes encounters notation such as
〈j1,m1, j2,m2|j,m〉 for the Clebsch-Gordan coefficient C(j1, j2, j;m1,m2,m).

Since Jz = J1z + J2z, it follows from Eq.(1.57) that

m|j,m〉 =
∑

m1,m2

(m1 +m2)C(j1, j2, j;m1,m2,m)|j1,m1〉 |j2,m2〉 . (1.58)
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Since the states |j1,m1〉 |j2,m2〉 are linearly independent, one concludes from
Eq.(1.58) that

(m1 +m2 −m)C(j1, j2, j;m1,m2,m) = 0 . (1.59)

It follows that the only nonvanishing Clebsch-Gordan coefficients are those for
whichm1+m2 = m. The sum in Eq.(1.57) can be expressed, therefore, as a sum
over m2 only, the value of m1 being determined by m1 = m−m2. Consequently,
we rewrite Eq.(1.57) as

|j,m〉 =
∑

m2

C(j1, j2, j;m−m2,m2,m)|j1,m−m2〉 |j2,m2〉 . (1.60)

If we demand that all of the states in Eq.(1.60) be normalized, then it follows
from the relation

〈j′,m′|j,m〉 = δj′jδm′m ,

that
∑

m′
2,m2

C(j1, j2, j
′;m′ −m′2,m′2,m′)C(j1, j2, j;m−m2,m2,m)×

〈j1,m′ −m′2|j1,m−m2〉 〈j2,m′2|j2,m2〉 = δj′jδm′m.

From this equation, one obtains the orthogonality relation:
∑

m1,m2

C(j1, j2, j
′;m1,m2,m

′)C(j1, j2, j;m1,m2,m) = δj′jδm′m . (1.61)

One can make use of this equation to invert Eq.(1.60). Indeed, one finds

|j1,m−m2〉|j2,m2〉 =
∑

j

C(j1, j2, j;m−m2,m2,m)|j,m〉 . (1.62)

From Eq.(1.62), a second orthogonality condition can be deduced:
∑

j,m

C(j1, j2, j;m
′
1,m

′
2,m)C(j1, j2, j;m1,m2,m) = δm′

1m1
δm′

2m2
. (1.63)

The state of largest m is the “extended state” |j1, j1〉 |j2, j2〉. With the aid
of the decomposition, J2 = J21 + J22 + 2J1zJ2z + J1+J2− + J1−J2+, one may
establish that this state is an eigenstate of J2 with eigenvalue j = j1 + j2; it
is also, obviously, an eigenstate of Jz with eigenvalue m = j1 + j2. The state
J−|j1, j1〉 |j2, j2〉 is also an eigenstate of J2 with eigenvalue j = j1 + j2. It is
an eigenstate of Jz but with eigenvalue m = j1 + j2 − 1. The corresponding
normalized eigenstate is

|j1 + j2, j1 + j2 − 1〉 =
√

j1
j1 + j2

|j1, j1 − 1〉|j2, j2〉

+

√

j2
j1 + j2

|j1, j1〉|j2, j2 − 1〉 . (1.64)
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Table 1.1: C(l, 1/2, j;m−ms,ms,m)

ms = 1/2 ms = −1/2

j = l + 1/2
√

l+m+1/2
2l+1

√

l−m+1/2
2l+1

j = l − 1/2 −
√

l−m+1/2
2l+1

√

l+m+1/2
2l+1

By repeated application of J− to the state |j1, j1〉|j2, j2〉, one generates, in this
way, each of the 2j +1 eigenstates of Jz with eigenvalues m = j1 + j2, j1 + j2 −
1, · · · ,−j1 − j2. The state

|j1 + j2 − 1, j1 + j2 − 1〉 = −
√

j2
j1 + j2

|j1, j1 − 1〉|j2, j2〉

+

√

j1
j1 + j2

|j1, j1〉|j2, j2 − 1〉 , (1.65)

is an eigenstate of Jz with eigenvalue j1+j2−1, constructed to be orthogonal to
(1.64). One easily establishes that this state is an eigenstate of J 2 corresponding
to eigenvalue j = j1 + j2 − 1. By repeated application of J− to this state, one
generates the 2j + 1 eigenstates of Jz corresponding to j = j1 + j2 − 1. We
continue this procedure by constructing the state orthogonal to the two states
|j1+j2, j1+j2−2〉 and |j1+j2−1, j1+j2−2〉, and then applying J− successively
to generate all possible m states for j = j1 + j2 − 2. Continuing in this way, we
construct states with j = j1+ j2, j1+ j2−1, j1+ j2−2, · · · , jmin. The algorithm
terminates when we have exhausted all of the (2j1+1)(2j2+1) possible linearly
independent states that can be made up from products of |j1,m1〉 and |j2,m2〉.
The limiting value jmin is determined by the relation

j1+j2
∑

j=jmin

(2j + 1) = (j1 + j2 + 2)(j1 + j2)− j2min + 1 = (2j1 + 1)(2j2 + 1) , (1.66)

which leads to the jmin = |j1−j2|. The possible eigenvalues of J2 are, therefore,
given by j(j + 1), with j = j1 + j2, j1 + j2 − 1, · · · , |j1 − j2|.

Values of the Clebsch-Gordan coefficients can be determined from the con-
struction described above; however, it is often easier to proceed in a slightly
different way. Let us illustrate the alternative for the case J = L+ S, with
s = 1/2. In this case, the possible values j are j = l + 1/2 and j = l − 1/2.
Eigenstates of J2 and Jz constructed by the Clebsch-Gordan expansion are also
eigenstates of

Λ = 2L · S = 2LzSz + L+S− + L−S+ .



14 CHAPTER 1. ANGULAR MOMENTUM

Table 1.2: C(l, 1, j;m−ms,ms,m)

ms = 1 ms = 0 ms = −1

j = l + 1
√

(l+m)(l+m+1)
(2l+1)(2l+2)

√

(l−m+1)(l+m+1)
(2l+1)(l+1)

√

(l−m)(l−m+1)
(2l+1)(2l+2)

j = l −
√

(l+m)(l−m+1)
2l(l+1)

m√
l(l+1)

√

(l−m)(l+m+1)
2l(l+1)

j = l − 1
√

(l−m)(l−m+1)
2l(2l+1) −

√

(l−m)(l+m)
l(2l+1)

√

(l+m+1)(l+m)
2l(2l+1)

The eigenvalues of Λ are λ = j(j + 1)− l(l+ 1)− 3/4. Thus for j = l+ 1/2, we
find λ = l; for j = l − 1/2, we find λ = −l − 1. The eigenvalue equation for Λ,

Λ|j,m〉 = λ|j,m〉

may be rewritten as a set of two homogeneous equations in two unknowns:
x = C(l, 1/2, j;m− 1/2, 1/2,m) and y = C(l, 1/2, j;m+ 1/2,−1/2,m):

λx = (m− 1/2)x+
√

(l −m+ 1/2)(l +m+ 1/2) y

λ y =
√

(l −m+ 1/2)(l +m+ 1/2)x− (m+ 1/2) y .

The solutions to this equation are:

y/x =







√

l+m+1/2
l−m+1/2 for λ = l,

−
√

l−m+1/2
l+m+1/2 for λ = −l − 1.

(1.67)

We normalize these solutions so that x2+ y2 = 1. The ambiguity in phase is re-
solved by the requirement that y > 0. The resulting Clebsch-Gordan coefficients
are listed in Table 1.1.

This same technique can be applied in the general case. One chooses j1 and
j2 so that j2 < j1. The eigenvalue equation for Λ reduces to a set of 2j2 + 1
equations for 2j2 + 1 unknowns xk, the Clebsch-Gordan coefficients for fixed j
and m expressed in terms of m2 = j2 + 1− k. The 2j2 + 1 eigenvalues of Λ can
be determined from the 2j2 + 1 possible values of j by λ = j(j + 1) − j1(j1 +
1) − j2(j2 + 1). One solves the resulting equations, normalizes the solutions
to
∑

k x
2
k = 1 and settles the phase ambiguity by requiring that the Clebsch-

Gordan coefficient for m2 = −j2 is positive; e.g., x2j2+1 > 0. As a second
example of this method, we give in Table 1.2 the Clebsch-Gordan coefficients
for J = L+ S, with s = 1.

A general formula for the Clebsch-Gordan coefficients is given in Wigner
(1931). Another equivalent, but more convenient one, was obtained later by
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Racah (1942):

C(j1, j2, j;m1,m2,m) = δm1+m2,m

√

(j1+j2−j)!(j+j1−j2)!(j+j2−j1)!(2j+1)
(j+j1+j2+1)!

∑

k

(−1)k
√

(j1+m1)!(j1−m1)!(j2+m2)!(j2−m2)!(j+m)!(j−m)!

k!(j1+j2−j−k)!(j1−m1−k)!(j2+m2−k)!(j−j2+m1+k)!(j−j1−m2+k)!
.

With the aid of this formula, the following symmetry relations between Clebsch-
Gordan coefficients (see Rose, 1957, chap. 3) may be established:

C(j1, j2, j;−m1,−m2,−m) = (−1)j1+j2−jC(j1, j2, j;m1,m2,m) , (1.69)

C(j2, j1, j;m2,m1,m) = (−1)j1+j2−jC(j1, j2, j;m1,m2,m) , (1.70)

C(j1, j, j2;m1,−m,−m2) =

(−1)j1−m1

√

2j2 + 1

2j + 1
C(j1, j2, j;m1,m2,m) . (1.71)

Expressions for other permutations of the arguments can be inferred from these
basic three. As an application of these symmetry relations, we combine the
easily derived equation

C(j1, 0, j;m1, 0,m) = δj1jδm1m , (1.72)

with Eq.(1.71) to give

C(j1, j, 0;m1,−m, 0) =
(−1)j1−m1

√
2j + 1

δj1jδm1m . (1.73)

Several other useful formulas may also be derived directly from Eq. (1.68):

C(j1, j2, j1 + j2; m1, m2, m1 + m2) =
√

(2j1)!(2j2)!(j1 + j2 + m1 + m2)!(j1 + j2 −m1 −m2)!

(2j1 + 2j2)!(j1 −m1)!(j1 + m1)!(j2 −m2)!(j2 + m2)!
, (1.74)

C(j1, j2, j; j1, m− j1, m) =
√

(2j + 1)(2j1)!(j2 − j1 + j)!(j1 + j2 −m)!(j + m)!

(j1 + j2 − j)!(j1 − j2 + j)!(j1 + j2 + j + 1)!(j2 − j1 + m)!(j −m)!
. (1.75)

1.3.1 Three-j symbols

The symmetry relations between the Clebsch-Gordan coefficients are made more
transparent by introducing the Wigner three-j symbols defined by:

(

j1 j2 j3
m1 m2 m3

)

=
(−1)j1−j2−m3

√
2j3 + 1

C(j1, j2, j3;m1,m2,−m3) . (1.76)

The three-j symbol vanishes unless

m1 +m2 +m3 = 0 . (1.77)
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The three-j symbols have a high degree of symmetry under interchange of
columns; they are symmetric under even permutations of the indices (1, 2, 3):

(

j3 j1 j2
m3 m1 m2

)

=

(

j2 j3 j1
m2 m3 m1

)

=

(

j1 j2 j3
m1 m2 m3

)

, (1.78)

and they change by a phase under odd permutations of (1, 2, 3), e.g.:
(

j2 j1 j3
m2 m1 m3

)

= (−1)j1+j2+j3
(

j1 j2 j3
m1 m2 m3

)

. (1.79)

On changing the sign ofm1,m2 andm3, the three-j symbols transform according
to

(

j1 j2 j3
−m1 −m2 −m3

)

= (−1)j1+j2+j3
(

j1 j2 j3
m1 m2 m3

)

. (1.80)

The orthogonality relation (1.61) may be rewritten in terms of three-j sym-
bols as

∑

m1,m2

(

j1 j2 j′3
m1 m2 m′3

)(

j1 j2 j3
m1 m2 m3

)

=
1

2j3 + 1
δj′3j3δm′

3m3
, (1.81)

and the orthogonality relation (1.63) can be rewritten

∑

j3,m3

(2j3 + 1)

(

j1 j2 j3
m1 m2 m3

)(

j1 j2 j3
m′1 m′2 m3

)

= δm1m′
1
δm2m′

2
. (1.82)

We refer to these equations as “orthogonality relations for three-j symbols”.
The following specific results for three-j symbols are easily obtained from

Eqs. (1.73-1.75) of the previous subsection:
(

j j 0
m −m 0

)

=
(−1)j−m

√
2j + 1

, (1.83)

(

j1 j2 j1 + j2
m1 m2 −m1 −m2

)

= (−1)j1−j2+m1+m2 ×
√

(2j1)!(2j2)!(j1 + j2 + m1 + m2)!(j1 + j2 −m1 −m2)!

(2j + 1 + 2j2 + 1)!(j1 −m1)!(j1 + m1)!(j2 −m2)!(j2 + m2)!
, (1.84)

(

j1 j2 j3
m1 −j1 −m3 m3

)

= (−1)−j2+j3+m3 ×
√

(2j1)!(j2 − j1 + j3)!(j1 + j2 + m3)!(j3 −m3)!

(j1 + j2 + j3 + 1)!(j1 − j2 + j3)!(j1 + j2 − j3)!(j2 − j1 −m3)!(j3 + m3)!
.

(1.85)

From the symmetry relation (1.80), it follows that
(

j1 j2 j3
0 0 0

)

= 0,
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unless J = j1 + j2 + j3 is even. In that case, we may write

(

j1 j2 j3
0 0 0

)

= (−1)J/2
√

(J − 2j1)!(J − 2j2)!(J − 2j3)!

(J + 1)!

(J/2)!

(J/2− j1)!(J/2− j2)!(J/2− j3)!
. (1.86)

Two maple programs, based on Eq. (1.68), to evaluate Clebsch-Gordan coeffi-
cients (cgc.map) and three-j symbols (threej.map), are provided as part of
the course material.

1.3.2 Irreducible Tensor Operators

A family of 2k + 1 operators T kq , with q = −k,−k + 1, · · · , k, satisfying the
commutation relations

[Jz, T
k
q ] = qT kq , (1.87)

[J±, T
k
q ] =

√

(k ± q + 1)(k ∓ q)T kq±1 , (1.88)

with the angular momentum operators Jz and J± = Jx ± iJy, are called ir-
reducible tensor operators of rank k. The spherical harmonics Ylm(θ, φ) are,
according to this definition, irreducible tensor operators of rank l. The opera-
tors Jµ defined by

Jµ =







− 1√
2
(Jx + iJy), µ = +1,

Jz, µ = 0,
1√
2
(Jx − iJy), µ = −1,

(1.89)

are also irreducible tensor operators; in this case of rank 1.
Matrix elements of irreducible tensor operators between angular momentum

states are evaluated using the Wigner-Eckart theorem (Wigner, 1931; Eckart,
1930):

〈j1,m1|T kq |j2,m2〉 = (−1)j1−m1

(

j1 k j2
−m1 q m2

)

〈j1||T k||j2〉 . (1.90)

In this equation, the quantity 〈j1||T k||j2〉, called the reduced matrix element of
the tensor operator T k, is independent of the magnetic quantum numbers m1,
m2 and q.

To prove the Wigner-Eckart theorem, we note that the matrix elements
〈j1m1|T kq |j2m2〉 satisfies the recurrence relations

√

(j1 ∓m1 + 1)(j1 ±m1) 〈j1m1 ∓ 1|T kq |j2m2〉 =
√

(j2 ±m2 + 1)(j2 ∓m2) 〈j1m1|T kq |j2m2 ± 1〉
+
√

(k ± q + 1)(k ∓ q) 〈j1m1|T kq±1|j2m2〉 . (1.91)
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They are, therefore, proportional to the Clebsch-Gordan coefficients
C(j2, k, j1;m2, q,m1), which satisfy precisely the same recurrence relations.
Since

C(j2, k, j1;m2, q,m1) =
√

2j1 + 1 (−1)j1−m1

(

j1 k j2
−m1 q m2

)

, (1.92)

the proportionality in Eq.(1.90) is established.
As a first application of the Wigner-Eckart theorem, consider the matrix

element of the irreducible tensor operator Jµ:

〈j1,m1|Jµ|j2,m2〉 = (−1)j1−m1

(

j1 1 j2
−m1 µ m2

)

〈j1||J ||j2〉 . (1.93)

The reduced matrix element 〈j1||J ||j2〉 can be determined by evaluating both
sides of Eq.(1.93) in the special case µ = 0. We find

〈j1||J ||j2〉 =
√

j1(j1 + 1)(2j1 + 1) δj1j2 , (1.94)

where we have made use of the fact that
(

j1 1 j1
−m1 0 m1

)

= (−1)j1−m1
m1

√

j1(j1 + 1)(2j1 + 1)
. (1.95)

As a second application, we consider matrix elements of the irreducible tensor
operator

Ck
q =

√

4π

2k + 1
Ykq(θ, φ) ,

between orbital angular momentum eigenstates:

〈l1m1|Ck
q |l2m2〉 = (−1)l1−m1

(

l1 k l2
−m1 q m2

)

〈l1||Ck||l2〉 . (1.96)

The left-hand side of Eq.(1.96) is (up to a factor) the integral of three spherical
harmonics. It follows that

Ykq(Ω)Yl2m2
(Ω) =

∑

l1

√

2k + 1

4π
×

(−1)l1−m1

(

l1 k l2
−m1 q m2

)

〈l1||Ck||l2〉Yl1m1
(Ω) , (1.97)

where we use the symbol Ω to designate the angles θ and φ. With the aid of
the orthogonality relation (1.81) for the three-j symbols, we invert Eq.(1.97) to
find

∑

m2q

(

l1 k l2
−m1 q m2

)

Ykq(Ω) Yl2m2
(Ω) =

√

2k + 1

4π

(−1)l1−m1

2l1 + 1
〈l1||Ck||l2〉Yl1m1

(Ω) . (1.98)
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Evaluating both sides of this equation at θ = 0, we obtain

〈l1||Ck||l2〉 = (−1)l1
√

(2l1 + 1)(2l2 + 1)

(

l1 k l2
0 0 0

)

. (1.99)

1.4 Graphical Representation - Basic rules

In subsequent chapters we will be required to carry out sums of products of
three-j symbols over magnetic quantum numbers mj . Such sums can be for-
mulated in terms of a set of graphical rules, that allow one to carry out the
required calculations efficiently. There are several ways of introducing graph-
ical rules for angular momentum summations (Judd, 1963; Jucys et al., 1964;
Varshalovich et al., 1988). Here, we follow those introduced by Lindgren and
Morrison (1985).

The basic graphical element is a line segment labeled at each end by a pair
of angular momentum indices jm. The segment with j1m1 at one end and j2m2

at the other end is the graphical representation of δj1j2δm1m2
; thus

j1m1 j2m2 = δj1j2 δm1m2
. (1.100)

A directed line segment, which is depicted by attaching an arrow to a line
segment, is a second important graphical element. An arrow pointing from
j1m1 to j2m2 represents the identity:

-j1m1 j2m2 = ¾j2m2 j1m1 = (−1)j2−m2δj1j2 δ−m1m2
. (1.101)

Reversing the direction of the arrow leads to

¾j1m1 j2m2 = (−1)j2+m2δj1j2 δ−m1m2
. (1.102)

Connecting together two line segments at ends carrying identical values of
jm is the graphical representation of a sum over the magnetic quantum number
m. Therefore,

∑

m2

j1m1 j2m2 j2m2 j3m3 = δj3j2
j1m1 j3m3 . (1.103)

It follows that two arrows directed in the same direction give an overall phase,

¾¾j1m1 j2m2 = --j1m1 j2m2 = (−1)2j2δj1j2δm1m2
, (1.104)

and that two arrows pointing in opposite directions cancel,

¾-j1m1 j2m2
= ¾-j1m1 j2m2

= δj1j2δm1m2
. (1.105)

Another important graphical element is the three-j symbol, which is repre-
sented as

(

j1 j2 j3
m1 m2 m3

)

= + j2m2

j3m3

j1m1

. (1.106)
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The + sign designates that the lines associated with j1m1, j2m2, and j3m3 are
oriented in such a way that a counter-clockwise rotation leads from j1m1 to
j2m2 to j3m3. We use a − sign to designate that a clockwise rotation leads
from j1m1 to j2m2 to j3m3. Thus, we can rewrite Eq.(1.106) as

(

j1 j2 j3
m1 m2 m3

)

= − j2m2

j1m1

j3m3

. (1.107)

The symmetry relation of Eq.(1.78) is represented by the graphical identity:

+ j2m2

j3m3

j1m1

= + j1m1

j2m2

j3m3

= + j3m3

j1m1

j2m2

. (1.108)

The symmetry relation (1.79) leads to the graphical relation:

− j2m2

j3m3

j1m1

= (−1)j1+j2+j3 + j2m2

j3m3

j1m1

. (1.109)

One can attach directed lines and three-j symbols to form combinations such
as

6
+ j3m3

j1m1

j2m2

= (−1)j1−m1

(

j1 j2 j3
−m1 m2 m3

)

. (1.110)

Using this, the Wigner-Eckart theorem can be written

〈j1,m1|T kq |j2,m2〉 = 6− kq

j1m1

j2m2

〈j1||T k||j2〉 . (1.111)

Furthermore, with this convention, we can write

C(j1, j2, j3;m1,m2,m3) =
√

2j3 + 1

?

?
− j3m3

j1m1

j2m2

. (1.112)

Factors of
√
2j + 1 are represented by thickening part of the corresponding line

segment. Thus, we have the following representation for a Clebsch-Gordan
coefficient:

C(j1, j2, j3;m1,m2,m3) =

?

?
− j3m3

j1m1

j2m2

. (1.113)
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The orthogonality relation for three-j symbols (1.81) can be written in graph-
ical terms as

∑

m1m2

−j′3m
′
3

j1m1

j2m2

+ j3m3

j1m1

j2m2

def
=

j′3m
′
3

−¹¸
º·j1

j2

+

j3m3 =
1

2j3 + 1
δj3j′3δm3m′

3
.

(1.114)
Another very useful graphical identity is

J
+

j2m2

j1m1

−
6 ¹¸
º·

j3

?= δj1j2 δm1m2
δJ0

√

2j3 + 1

2j1 + 1
(1.115)

1.5 Spinor and Vector Spherical Harmonics

1.5.1 Spherical Spinors

We combine spherical harmonics, which are eigenstates of L2 and Lz, and
spinors, which are eigenstates of S2 and Sz to form eigenstates of J2 and Jz,
referred to as spherical spinors. Spherical spinors are denoted by Ωjlm(θ, φ) and
are defined by the equation

Ωjlm(θ, φ) =
∑

µ

C(l, 1/2, j;m− µ, µ,m)Yl,m−µ(θ, φ)χµ . (1.116)

From Table 1.1, we obtain the following explicit formulas for spherical spinors
having the two possible values, j = l ± 1/2:

Ωl+1/2,l,m(θ, φ) =





√

l+m+1/2
2l+1 Yl,m−1/2(θ, φ)

√

l−m+1/2
2l+1 Yl,m+1/2(θ, φ)



 , (1.117)

Ωl−1/2,l,m(θ, φ) =





−
√

l−m+1/2
2l+1 Yl,m−1/2(θ, φ)

√

l+m+1/2
2l+1 Yl,m+1/2(θ, φ)



 . (1.118)

Spherical spinors are eigenfunctions of σ ·L and, therefore, of the operator

K = −1− σ ·L.

The eigenvalue equation for K is

KΩjlm(θ, φ) = κΩjlm(θ, φ) , (1.119)

where the (integer) eigenvalues are κ = −l − 1 for j = l + 1/2, and κ = l for
j = l− 1/2. These values can be summarized as κ = ∓(j+1/2) for j = l± 1/2.
The value of κ determines both j and l. Consequently, the more compact
notation, Ωκm ≡ Ωjlm can be used.
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Spherical spinors satisfy the orthogonality relations

∫ π

0

sin θdθ

∫ 2π

0

dφΩ†κ′m′(θ, φ)Ωκm(θ, φ) = δκ′κδm′m . (1.120)

The parity operator P maps r→ −r. In spherical coordinates, the operator
P transforms φ→ φ+ π and θ → π − θ. Under a parity transformation,

PYlm(θ, φ) = Ylm(π − θ, φ+ π) = (−1)lYlm(θ, φ) . (1.121)

It follows that the spherical spinors are eigenfunctions of P having eigenvalues
p = (−1)l. The two spinors Ωκm(θ, φ) and Ω−κm(θ, φ), corresponding to the
same value of j, have values of l differing by one unit and, therefore, have
opposite parity.

It is interesting to examine the behavior of spherical spinors under the op-
erator σ·r̂, where r̂ = r/r. This operator satisfies the identity

σ·r̂ σ·r̂ = 1 , (1.122)

which follows from the commutation relations for the Pauli matrices. Further-
more, the operator σ·r̂ commutes with J and, therefore, leaves the value of j
unchanged. The parity operation changes the sign of σ·r̂. Since the value of j
remains unchanged, and since the sign of σ·r̂ changes under the parity transfor-
mation, it follows that

σ·r̂Ωκm(θ, φ) = aΩ−κm(θ, φ) , (1.123)

where a is a constant. Evaluating both sides of Eq.(1.123) in a coordinate
system where θ = 0, one easily establishes a = −1. Therefore,

σ·r̂Ωκm(θ, φ) = −Ω−κm(θ, φ) . (1.124)

Now, let us consider the operator σ ·p. Using Eq.(1.122), it follows that

σ·p = σ·r̂ σ·r̂ σ·p = −iσ·r̂
(

ir̂· p− σ·[r× p]

r

)

. (1.125)

In deriving this equation, we have made use of the identity in Eq.(1.50).

From Eq.(1.125), it follows that

σ·pf(r)Ωκm(θ, φ) = i

(

df

dr
+
κ+ 1

r
f

)

Ω−κm(θ, φ) . (1.126)

This identities (1.124) and (1.126) are important in the reduction of the central-
field Dirac equation to radial form.
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1.5.2 Vector Spherical Harmonics

Following the procedure used to construct spherical spinors, one combines spher-
ical harmonics with spherical basis vectors to form vector spherical harmonics
YJLM (θ, φ):

YJLM (θ, φ) =
∑

σ

C(L, 1, J ;M − σ, σ,M)YLM−σ(θ, φ)ξσ . (1.127)

The vector spherical harmonics are eigenfunctions of J2 and Jz. The eigenvalues
of J2 are J(J+1), where J is an integer. For J > 0, there are three correspond-
ing values of L: L = J ± 1 and L = J . For J = 0, the only possible values of
L are L = 0 and L = 1. Explicit forms for the vector spherical harmonics can
be constructed with the aid of Table 1.2. Vector spherical harmonics satisfy the
orthogonality relations

∫ 2π

0

dφ

∫ π

0

sin θdθ Y †J ′L′M ′(θ, φ)YJLM (θ, φ) = δJ ′JδL′LδM ′M . (1.128)

Vector functions, such as the electromagnetic vector potential, can be ex-
panded in terms of vector spherical harmonics. As an example of such an
expansion, let us consider

r̂Ylm(θ, φ) =
∑

JLM

aJLMYJLM (θ, φ) . (1.129)

With the aid of the orthogonality relation, this equation can be inverted to give

aJLM =

∫ 2π

0

dφ

∫ π

0

sin θdθY†JLM r̂Ylm(θ, φ).

This equation can be rewritten with the aid of (1.56) as

aJLM =
∑

µν

C(L, 1, J ;M − µ, µ,M)ξ†µξν〈l,m|C1
ν |L,M − ν〉 . (1.130)

Using the known expression for the matrix element of the C1
ν tensor operator

from Eqs.(1.96,1.99), one obtains

aJLM =

√

2L+ 1

2l + 1
C(L, 1, l; 0, 0, 0) δJlδMm (1.131)

=

(

√

l

2l + 1
δLl−1 −

√

l + 1

2l + 1
δLl+1

)

δJlδMm . (1.132)

Therefore, one may write

r̂YJM (θ, φ) =

√

J

2J + 1
YJJ−1M (θ, φ)−

√

J + 1

2J + 1
YJJ+1M (θ, φ) . (1.133)
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This vector is in the direction r̂ and is, therefore, referred to as a longitudinal
vector spherical harmonic. Following the notation of Akhiezer and Berestet-

skii (1953), we introduce Y
(−1)
JM (θ, φ) = r̂YJM (θ, φ). The vector YJJM (θ, φ) is

orthogonal to Y
(−1)
JM (θ, φ), and is,therefore, transverse. The combination

√

J + 1

2J + 1
YJJ−1M (θ, φ) +

√

J

2J + 1
YJJ+1M (θ, φ).

is also orthogonal to Y
(−1)
JM (θ, φ) and gives a second transverse spherical vector.

It is easily shown that the three vector spherical harmonics

Y
(−1)
JM (θ, φ) =

√

J

2J + 1
YJJ−1M (θ, φ)−

√

J + 1

2J + 1
YJJ+1M (θ, φ) (1.134)

Y
(0)
JM (θ, φ) = YJJM (θ, φ) (1.135)

Y
(1)
JM (θ, φ) =

√

J + 1

2J + 1
YJJ−1M (θ, φ) +

√

J

2J + 1
YJJ+1M (θ, φ) (1.136)

satisfy the orthonormality relation:

∫

dΩY
(λ)†
JM (Ω)Y

(λ′)
J ′M ′(Ω) = δJJ ′δMM ′δλλ′ . (1.137)

Inverting the Eqs. (1.134-1.136), one finds

YJJ−1M (θ, φ) =

√

J

2J + 1
Y

(−1)
JM (θ, φ) +

√

J + 1

2J + 1
Y

(1)
JM (θ, φ) (1.138)

YJJM (θ, φ) = Y
(0)
JM (θ, φ) (1.139)

YJJ+1M (θ, φ) = −
√

J + 1

2J + 1
Y

(−1)
JM (θ, φ) +

√

J

2J + 1
Y

(1)
JM (θ, φ) (1.140)

The following three relations may be also be proven without difficulty:

Y
(−1)
JM (θ, φ) = r̂YJM (θ, φ), (1.141)

Y
(0)
JM (θ, φ) =

1
√

J(J + 1)
LYJM (θ, φ), (1.142)

Y
(1)
JM (θ, φ) =

r
√

J(J + 1)
∇ YJM (θ, φ) . (1.143)

The first of these is just a definition; we leave the proof of the other two as
exercises.



Chapter 2

Central-Field Schrödinger
Equation

We begin the present discussion with a review of the Schrödinger equation for a
single electron in a central potential V (r). First, we decompose the Schrödinger
wave function in spherical coordinates and set up the equation governing the
radial wave function. Following this, we consider analytical solutions to the
radial Schrödinger equation for the special case of a Coulomb potential. The
analytical solutions provide a guide for our later numerical analysis. This review
of basic quantum mechanics is followed by a discussion of the numerical solution
to the radial Schrödinger equation.

The single-electron Schrödinger equation is used to describe the electronic
states of an atom in the independent-particle approximation, a simple approx-
imation for a many-particle system in which each electron is assumed to move
independently in a potential that accounts for the nuclear field and the field of
the remaining electrons. There are various methods for determining an approx-
imate potential. Among these are the Thomas-Fermi theory and the Hartree-
Fock theory, both of which will be taken up later. In the following section, we
assume that an appropriate central potential has been given and we concentrate
on solving the resulting single-particle Schrödinger equation.

2.1 Radial Schrödinger Equation

First, we review the separation in spherical coordinates of the Schrödinger
equation for an electron moving in a central potential V (r). We assume that
V (r) = Vnuc(r) + U(r) is the sum of a nuclear potential

Vnuc(r) = −
Ze2

4πε0

1

r
,

and an average potential U(r) approximating the electron-electron interaction.

25
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We let ψ(r) designate the single-particle wave function. In the sequel, we
refer to this wave function as an orbital to distinguish it from a many-particle
wave function. The orbital ψ(r) satisfies the Schrödinger equation

hψ = Eψ , (2.1)

where the Hamiltonian h is given by

h =
p2

2m
+ V (r) . (2.2)

In Eq.(2.2), p = −ih̄∇ is the momentum operator and m is the electron’s mass.
The Schrödinger equation, when expressed in spherical coordinates, (r, θ, φ),
becomes

1

r2
∂

∂r

(

r2
∂ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

r2sin2θ

∂2ψ

∂φ2
+

2m

h̄2
(E − V (r))ψ = 0 . (2.3)

We seek a solution ψ(r, θ, φ) that can be expressed as a product of a function
P of r only, and a function Y of the angles θ and φ:

ψ(r) =
1

r
P (r) Y (θ, φ) . (2.4)

Substituting this ansatz into Eq.(2.3), we obtain the following pair of equations
for the functions P and Y

1

sin θ

∂

∂θ

(

sin θ
∂Y

∂θ

)

+
1

sin2θ

∂2Y

∂φ2
+ λY = 0 , (2.5)

d2P

dr2
+

2m

h̄2

(

E − V (r)− λh̄2

2mr2

)

P = 0 , (2.6)

where λ is an arbitrary separation constant.
If we set λ = `(`+1), where ` = 0, 1, 2, · · · is an integer, then the solutions

to Eq.(2.5) that are finite and single valued for all angles are the spherical
harmonics Y`m(θ, φ).

The normalization condition for the wave function ψ(r) is

∫

d3rψ†(r)ψ(r) = 1 , (2.7)

which leads to normalization condition
∫ ∞

0

dr P 2(r) = 1 , (2.8)

for the radial function P (r).
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The expectation value 〈O〉 of an operator O in the state ψ is given by

〈O〉 =
∫

d3rψ†(r)Oψ(r) . (2.9)

In the state described by ψ(r) = P (r)
r Y`m(θ, φ), we have

〈L2〉 = `(`+ 1)h̄2 , (2.10)

〈Lz〉 = mh̄ . (2.11)

2.2 Coulomb Wave Functions

The basic equation for our subsequent numerical studies is the radial Schrödinger
equation (2.6) with the separation constant λ = `(`+ 1):

d2P

dr2
+

2m

h̄2

(

E − V (r)− `(`+ 1)h̄2

2mr2

)

P = 0 . (2.12)

We start our discussion of this equation by considering the special case V (r) =
Vnuc(r).

Atomic Units: Before we start our analysis, it is convenient to introduce
atomic units in order to rid the equation of unnecessary physical constants.
Atomic units are defined by requiring that the electron’s mass m, the electron’s
charge |e|/√4πε0, and Planck’s constant h̄, all have the value 1. The atomic unit
of length is the Bohr radius, a0 = 4πε0h̄

2/me2 = 0.529177 . . . Å, and the atomic
unit of energy is me4/(4πε0h̄)

2 = 27.2114 . . . eV. Units for other quantities can
be readily worked out from these basic few. For example, the atomic unit of
velocity is cα, where c is the speed of light and α is Sommerfeld’s fine structure
constant: α = e2/4πε0h̄c = 1/137.0359895 . . . .

In atomic units, Eq.(2.12) becomes

d2P

dr2
+ 2

(

E +
Z

r
− `(`+ 1)

2r2

)

P = 0 . (2.13)

We seek solutions to the radial Schrödinger equation (2.13) that satisfy the
normalization condition (2.8). Such solutions exist only for certain discrete
values of the energy, E = En`, the energy eigenvalues. Our problem is to
determine these energy eigenvalues and the associated eigenfunctions, Pn`(r).
If we have two eigenfunctions, Pn`(r) and Pm`(r), belonging to the same angular
momentum quantum number ` but to distinct eigenvalues, Em` 6= En`, then it
follows from Eq.(2.13) that

∫ ∞

0

drPn`(r)Pm`(r) = 0 . (2.14)
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Near r = 0, solutions to Eq.(2.13) take on one of the following limiting forms:

P (r)→
{

r`+1 regular at the origin, or
r−` irregular at the origin

. (2.15)

Since we seek normalizable solutions, we must require that our solutions be
of the first type, regular at the origin. The desired solution grows as r`+1 as r
moves outward from the origin while the complementary solution decreases as
r−` as r increases.

Since the potential vanishes as r →∞, it follows that

P (r)→
{

e−λr regular at infinity, or
eλr irregular at infinity

, (2.16)

where λ =
√
−2E. Again, the normalizability constraint (2.8) forces us to seek

solutions of the first type, regular at infinity. Substituting

P (r) = r`+1e−λrF (r) (2.17)

into Eq.(2.13), we find that F (x) satisfies Kummer’s equation

x
d2F

dx2
+ (b− x)dF

dx
− aF = 0 , (2.18)

where x = 2λr, a = `+1−Z/λ, and b = 2(`+1). The solutions to Eq.(2.18) that
are regular at the origin are the Confluent Hypergeometric functions (Magnus
and Oberhettinger, 1949, chap. VI):

F (a, b, x) = 1 +
a

b
x+

a(a+ 1)

b(b+ 1)

x2

2!
+
a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)

x3

3!
+ · · ·

+
a(a+ 1) · · · (a+ k − 1)

b(b+ 1) · · · (b+ k − 1)

xk

k!
+ · · · . (2.19)

This series has the asymptotic behavior

F (a, b, x)→ Γ(b)

Γ(a)
exxa−b[1 +O(|x|−1)] , (2.20)

for large |x|. The resulting radial wave function, therefore, grows exponentially
unless the coefficient of the exponential in Eq.(2.20) vanishes. Since Γ(b) 6= 0,
we must require Γ(a) = ∞ to obtain normalizable solutions. The function
Γ(a) =∞ when a vanishes or when a is a negative integer. Thus, normalizable
wave functions are only possible when a = −nr with nr = 0, 1, 2, · · · . The
quantity nr is called the radial quantum number. With a = −nr, the Confluent
Hypergeometric function in Eq.(2.19) reduces to a polynomial of degree nr. The
integer nr equals the number of nodes (zeros) of the radial wave function for
r > 0. From a = `+ 1− Z/λ, it follows that

λ = λn =
Z

nr + `+ 1
=
Z

n
,
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with n = nr + ` + 1. The positive integer n is called the principal quantum
number. The relation λ =

√
−2E leads immediately to the energy eigenvalue

equation

E = En = −λ
2
n

2
= − Z2

2n2
. (2.21)

There are n distinct radial wave functions corresponding to En. These are the
functions Pn`(r) with ` = 0, 1, · · · , n−1. The radial function is, therefore, given
by

Pn`(r) = Nn` (2Zr/n)
`+1e−Zr/nF (−n+ `+ 1, 2`+ 2, 2Zr/n) , (2.22)

where Nn` is a normalization constant. This constant is determined by requiring

N2
n`

∫ ∞

0

dr (2Zr/n)2`+2e−2Zr/nF 2(−n+ `+ 1, 2`+ 2, 2Zr/n) = 1 . (2.23)

This integral can be evaluated analytically to give

Nn` =
1

n(2`+ 1)!

√

Z(n+ `)!

(n− `− 1)!
. (2.24)

The radial functions Pn`(r) for the lowest few states are found to be:

P10(r) = 2Z3/2 re−Zr , (2.25)

P20(r) =
1√
2
Z3/2 re−Zr/2

(

1− 1

2
Zr

)

, (2.26)

P21(r) =
1

2
√
6
Z5/2 r2e−Zr/2 , (2.27)

P30(r) =
2

3
√
3
Z3/2 re−Zr/3

(

1− 2

3
Zr +

2

27
Z2r2

)

, (2.28)

P31(r) =
8

27
√
6
Z5/2 r2e−Zr/3

(

1− 1

6
Zr

)

, (2.29)

P32(r) =
4

81
√
30
Z7/2 r3e−Zr/3. (2.30)

In Fig. 2.1, we plot the Coulomb wave functions for the n = 1, 2 and 3 states
of hydrogen, Z = 1. In this figure, the angular momentum states are labeled
using spectroscopic notation: states with l = 0, 1, 2, 3, 4, · · · are given the labels
s, p, d, f, g, · · · , respectively. It should be noted that the radial functions with
the lowest value of l for a given n, have no nodes for r > 0, corresponding to
the fact that nr = 0 for such states. The number of nodes is seen to increase
in direct proportion to n for a fixed value of l. The outermost maximum of
each wave function is seen to occur at increasing distances from the origin as n
increases.

The expectation values of powers of r, given by

〈rν〉n` = N2
n`

( n

2Z

)ν+1
∫ ∞

0

dx x2`+2+νe−xF 2(−n+ `+ 1, 2`+ 2, x) , (2.31)
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0 10 20 30
r(a.u.)

-0.5

0.0

0.5

1.0

3d

-0.5

0.0

0.5

1.0
2p

3p

-0.5

0.0

0.5

1.0
1s

3s

2s

Figure 2.1: Hydrogenic Coulomb wave functions for states with n = 1, 2 and 3.

can be evaluated analytically. One finds:

〈r2〉n` =
n2

2Z2
[5n2 + 1− 3`(`+ 1)] , (2.32)

〈r〉n` =
1

2Z
[3n2 − `(`+ 1)] , (2.33)

〈

1

r

〉

n`

=
Z

n2
, (2.34)

〈

1

r2

〉

n`

=
Z2

n3(`+ 1/2)
, (2.35)

〈

1

r3

〉

n`

=
Z3

n3(`+ 1)(`+ 1/2)`
, ` > 0 , (2.36)

〈

1

r4

〉

n`

=
Z4[3n2 − `(`+ 1)]

2n5(`+ 3/2)(`+ 1)(`+ 1/2)`(`− 1/2)
, ` > 0 . (2.37)

These formulas follow from the expression for the expectation value of a power
of r given by Bethe and Salpeter (1957):

〈rν〉 =
( n

2Z

)ν J
(ν+1)
n+l,2l+1

J
(1)
n+l,2l+1

, (2.38)
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where, for σ ≥ 0,

J
(σ)
λ,µ = (−1)σ λ!σ!

(λ− µ)!
σ
∑

β=0

(−1)β
(

σ
β

)(

λ+ β
σ

)(

λ+ β − µ
σ

)

, (2.39)

and for σ = −(s+ 1) ≤ −1,

J
(σ)
λ,µ =

λ!

(λ− µ)! (s+ 1)!

s
∑

γ=0

(−1)s−γ

(

s
γ

)(

λ− µ+ γ
s

)

(

µ+ s− γ
s+ 1

) . (2.40)

In Eqs. (2.39-2.40),
(

a
b

)

=
a! (b− a)!

b!
(2.41)

designates the binomial coefficient.

2.3 Numerical Solution to the Radial Equation

Since analytical solutions to the radial Schrödinger equation are known for only a
few central potentials, such as the Coulomb potential or the harmonic oscillator
potential, it is necessary to resort to numerical methods to obtain solutions in
practical cases.

We use finite difference techniques to find numerical solutions to the radial
equation on a finite grid covering the region r = 0 to a practical infinity, a∞, a
point determined by requiring that P (r) be negligible for r > a∞.

Near the origin, there are two solutions to the radial Schrödinger equation,
the desired solution which behaves as r`+1, and an irregular solution, referred
to as the complementary solution, which diverges as r−` as r → 0. Numerical
errors near r = 0 introduce small admixtures of the complementary solution into
the solution being sought. Integrating outward from the origin keeps such errors
under control, since the complementary solution decreases in magnitude as r in-
creases. In a similar way, in the asymptotic region, we integrate inward from a∞
toward r = 0 to insure that errors from small admixtures of the complementary
solution, which behaves as eλr for large r, decrease as the integration proceeds
from point to point. In summary, one expects the point-by-point numerical
integration outward from r = 0 and inward from r =∞ to yield solutions that
are stable against small numerical errors.

The general procedure used to solve Eq.(2.13) is to integrate outward from
the origin, using an appropriate point-by-point scheme, starting with solutions
that are regular at the origin. The integration is continued to the outer classical
turning point, the point beyond which classical motion in the potential V (r) +
`(`+ 1)/2r2 is impossible. In the region beyond the classical turning point, the
equation is integrated inward, again using a point-by-point integration scheme,
starting from r = a∞ with an approximate solution obtained from an asymptotic
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series. Typically, we choose a∞ so that the dimensionless quantity λr ≈ 40
for the first few steps of the inward integration. With this choice, P (r) is
roughly 10−12 of its maximum value near a∞. The solutions from the inward
and outward integrations are matched at the classical turning point. The energy
is then adjusted until the derivative of P (r) is continuous at the matching point.

The resulting function P (r) is an eigenfunction and the corresponding energy
E is its eigenvalue. To find a particular eigenfunction, we make use of the fact
that different eigenfunctions have different numbers of nodes for r > 0. For a
given value of `, the lowest energy eigenfunction has no node, the next higher
energy eigenfunction has one node, and so on. We first make a preliminary
adjustment of the energy to obtain the desired number of nodes and then make
a final fine adjustment to match the slope of the wave function at the classical
turning point.

The radial wave function increases rapidly at small values of r then oscil-
lates in the classically allowed region and gradually decreases beyond the clas-
sical turning point. To accommodate this behavior, it is convenient to adopt
a nonuniform integration grid, more finely spaced at small r than at large r.
Although there are many possible choices of grid, one that has proven to be
both convenient and flexible is

r[i] = r0 (e
t[i] − 1) , where

t[i] = (i− 1)h , i = 1, 2, . . . , N .
(2.42)

We typically choose r0 = 0.0005 a.u., h = 0.02 − 0.03, and extend the grid to
N = 500 points. These choices permit the radial Schrödinger equation to be
integrated with high accuracy (parts in 1012) for energies as low as 0.01 a.u..

We rewrite the radial Schrödinger equation as the equivalent pair of first
order radial differential equations:

dP

dr
= Q(r), (2.43)

dQ

dr
= −2

(

E − V (r)− `(`+ 1)

2r2

)

P (r) . (2.44)

On the uniformly-spaced t-grid, this pair of equations can be expressed as a
single, two-component equation

dy

dt
= f(y, t) , (2.45)

where y is the array,

y(t) =

[

P (r(t))
Q(r(t))

]

. (2.46)

The two components of f(y, t) are given by

f(y, t) = dr
dt





Q(r(t))

−2
(

E − V (r)− `(`+ 1)
2r2

)

P (r(t))



 . (2.47)
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We can formally integrate Eq.(2.45) from one grid point, t[n], to the next,
t[n+ 1], giving

y[n+ 1] = y[n] +

∫ t[n+1]

t[n]

f(y(t), t) dt . (2.48)

2.3.1 Adams Method (adams)

To derive the formula used in practice to carry out the numerical integration
in Eq.(2.48), we introduce some notation from finite difference theory. More
complete discussions of the calculus of difference operators can be found in
textbooks on numerical methods such as Dahlberg and Björck (1974, chap. 7).
Let the function f(x) be given on a uniform grid and let f [n] = f(x[n]) be
the value of f(x) at the nth grid point. We designate the backward difference
operator by ∇:

∇f [n] = f [n]− f [n− 1] . (2.49)

Using this notation, (1 − ∇)f[n] = f [n − 1]. Inverting this equation, we may
write,

f [n+ 1] = (1−∇)−1f [n],
f [n+ 2] = (1−∇)−2f [n],

...

(2.50)

or more generally,

f [n+ x] = (1−∇)−xf [n]. (2.51)

In these expressions, it is understood that the operators in parentheses are to
be expanded in a power series in ∇, and that Eq.(2.49) is to be used iteratively
to determine ∇k .

Equation(2.51) is a general interpolation formula for equally spaced points.
Expanding out a few terms, we obtain from Eq.(2.51)

f [n+ x] =

(

1 +
x

1!
∇+

x(x+ 1)

2!
∇2 +

x(x+ 1)(x+ 2)

3!
∇3 + · · ·

)

f [n] ,

=

(

1 + x+
x(x+ 1)

2!
+
x(x+ 1)(x+ 2)

3!
+ · · ·

)

f [n]

−
(

x+
2x(x+ 1)

2!
+

3x(x+ 1)(x+ 2)

3!
+ · · ·

)

f [n− 1]

+

(

x(x+ 1)

2!
+

3x(x+ 1)(x+ 2)

3!
+ · · ·

)

f [n− 2]

−
(

x(x+ 1)(x+ 2)

3!
+ · · ·

)

f [n− 3] + · · · . (2.52)

Truncating this formula at the kth term leads to a polynomial of degree k in x
that passes through the points f [n], f [n − 1], · · · , f [n − k] , as x takes on the
values 0,−1,−2, · · · ,−k, respectively. We may use the interpolation formula
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(2.51) to carry out the integration in Eq.(2.48), analytically leading to the result:
(Adams-Bashforth)

y[n+ 1] = y[n]− h∇
(1−∇) log(1−∇)f [n] ,

= y[n] + h(1 +
1

2
∇+

5

12
∇2 +

9

24
∇3 + · · · )f [n] . (2.53)

This equation may be rewritten, using the identity (1−∇)−1f [n] = f [n+1], as
an interpolation formula: (Adams-Moulton)

y[n+ 1] = y[n]− h∇
log(1−∇)f [n+ 1] ,

= y[n] + h(1− 1

2
∇− 1

12
∇2 − 1

24
∇3 + · · · )f [n+ 1] . (2.54)

Keeping terms only to third-order and using Eqs.(2.53-2.54), we obtain the
four-point (fifth-order) predict-correct formulas

y[n+ 1] = y[n] +
h

24
(55f [n]− 59f [n− 1] + 37f [n− 2]− 9f [n− 3])

+
251

720
h5y(5)[n] , (2.55)

y[n+ 1] = y[n] +
h

24
(9f [n+ 1] + 19f [n]− 5f [n− 1] + f [n− 2])

− 19

720
h5y(5)[n] . (2.56)

The error terms in Eqs.(2.55-2.56) are obtained by evaluating the first neglected
term in Eqs.(2.53-2.54) using the approximation

∇kf [n] ≈ hk
(

dkf

dtk

)

[n] = hk
(

dk+1y

dtk+1

)

[n] . (2.57)

The magnitude of the error in Eq.(2.56) is smaller (by an order of magnitude)
than that in Eq.(2.55), since interpolation is used in Eq.(2.56), while extrapola-
tion is used in Eq.(2.55). Often, the less accurate extrapolation formula (2.55)
is used to advance from point t[n] (where y[n], f [n], f [n − 1], f [n − 2], and
f [n− 3] are known) to the point t[n+1] . Using the predicted value of y[n+1],
one evaluates f [n+ 1] . The resulting value of f [n+ 1] can then be used in the
interpolation formula (2.56) to give a more accurate value for y[n+ 1].

In our application of Adams method, we make use of the linearity of the
differential equations (2.45) to avoid the extrapolation step altogether. To show
how this is done, we first write the k + 1 point Adams-Moulton interpolation
formula from Eq.(2.54) in the form,

y[n+ 1] = y[n] +
h

D

k+1
∑

j=1

a[j] f [n− k + j] . (2.58)
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Table 2.1: Adams-Moulton integration coefficients

a[1] a[2] a[3] a[4] a[5] a[6] D error
1 1 2 -1/12
-1 8 5 12 -1/24
1 -5 19 9 24 -19/720

-19 106 -264 646 251 720 -3/160
27 -173 482 -798 1427 475 1440 -863/60480

The coefficients a[j] for 2-point to 7-point Adams-Moulton integration formulas
are given in Table 2.1, along with the divisors D used in Eq.(2.58), and the
coefficient of hk+2y(k+2)[n] in the expression for the truncation error.

Setting f(y, t) = G(t)y, where G is a 2 × 2 matrix, we can take the k + 1
term from the sum to the left-hand side of Eq.(2.58) to give

(

1− ha[k + 1]

D
G[n+ 1]

)

y[n+ 1] = y[n] +
h

D

k
∑

j=1

a[j] f [n− k + j] . (2.59)

From Eq.(2.47), it follows that G is an off-diagonal matrix of the form

G =

(

0 b
c 0

)

, (2.60)

for the special case of the radial Schrödinger equation. The coefficients b(t) and
c(t) can be read from Eq.(2.47):

b(t) = dr
dt c(t) = −2drdt

(

E − V (r)− `(`+1)
2r2

)

. (2.61)

The matrix

M [n+ 1] = 1− ha[k + 1]

D
G[n+ 1]

on the left-hand side of Eq.(2.59) is readily inverted to give

M−1[n+ 1] =
1

∆[n+ 1]

(

1 λb[n+ 1]
λc[n+ 1] 1

)

, (2.63)

where

∆[n+ 1] = 1− λ2b[n+ 1]c[n+ 1] ,

λ =
ha[k + 1]

D
.

Equation(2.59) is solved to give

y[n+ 1] =M−1[n+ 1]



y[n] +
h

D

k
∑

j=1

a[j] f [n− k + j]



 . (2.64)
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This is the basic algorithm used to advance the solution to the radial Schrödinger
equation from one point to the next. Using this equation, we achieve the ac-
curacy of the predict-correct method without the necessity of separate predict
and correct steps. To start the integration using Eq.(2.64), we must give initial
values of the two-component function f(t) at the points 1, 2, · · · , k. The sub-
routine adams is designed to implement Eq.(2.64) for values of k ranging from
0 to 8.

2.3.2 Starting the Outward Integration (outsch)

The k initial values of y[j] required to start the outward integration using the
k+1 point Adams method are obtained using a scheme based on Lagrangian dif-
ferentiation formulas. These formulas are easily obtained from the basic finite
difference expression for interpolation, Eq.(2.51). Differentiating this expres-
sion, we find

(

dy

dx

)

[n− j] = − log(1−∇) (1−∇)j y[n] . (2.65)

If Eq.(2.65) is expanded to k terms in a power series in ∇, and evaluated at the
k + 1 points, j = 0, 1, 2, · · · , k, we obtain the k + 1 point Lagrangian differenti-
ation formulas. For example, with k = 3 and n = 3 we obtain the formulas:

(

dy

dt

)

[0] =
1

6h
(−11y[0] + 18y[1]− 9y[2] + 2y[3])− 1

4
h3y(4) (2.66)

(

dy

dt

)

[1] =
1

6h
(−2y[0]− 3y[1] + 6y[2]− y[3]) + 1

12
h3y(4) (2.67)

(

dy

dt

)

[2] =
1

6h
(y[0]− 6y[1] + 3y[2] + 2y[3])− 1

12
h3y(4) (2.68)

(

dy

dt

)

[3] =
1

6h
(−2y[0] + 9y[1]− 18y[2] + 11y[3]) +

1

4
h3y(4) . (2.69)

The error terms in Eqs.(2.66-2.69) are found by retaining the next higher-order
differences in the expansion of Eq.(2.65) and using the approximation (2.57).
Ignoring the error terms, we write the general k + 1 point Lagrangian differen-
tiation formula as

(

dy

dt

)

[i] =

k
∑

j=0

m[ij] y[j] , (2.70)

where i = 0, 1, · · · , k, and where the coefficients m[ij] are determined from
Eq.(2.65).

To find the values of y[j] at the first few points along the radial grid, first
we use the differentiation formulas (2.70) to eliminate the derivative terms from
the differential equations at the points j = 1, · · · , k, then we solve the resulting
linear algebraic equations using standard methods.

Factoring r`+1 from the radial wave function P (r) ,

P (r) = r`+1 p(r) , (2.71)
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we may write the radial Schrödinger equation as

dp

dt
=

dr

dt
q(t) , (2.72)

dq

dt
= −2dr

dt

[

(E − V (r))p(t) +

(

`+ 1

r

)

q(t)

]

. (2.73)

Substituting for the derivatives from Eq.(2.70), we obtain the 2k × 2k system
of linear equations

k
∑

j=1

m[ij] p[j]− b[i] q[i] = −m[i0] p[0] , (2.74)

k
∑

j=1

m[ij] q[j]− c[i] p[i]− d[i] q[i] = −m[i0] q[0] , (2.75)

where

b(t) =
dr

dt
,

c(t) = −2dr
dt

[E − V (r)] ,

d(t) = −2dr
dt

(

`+ 1

r

)

, (2.76)

and where p[0] and q[0] are the initial values of p(t) and q(t) , respectively. If we
assume that as r → 0, the potential V (r) is dominated by the nuclear Coulomb
potential,

V (r)→ −Z
r
, (2.77)

then from Eq.(2.73) it follows that the initial values must be in the ratio

q[0]

p[0]
= − Z

`+ 1
. (2.78)

We choose p[0] = 1 arbitrarily and determine q[0] from Eq.(2.78).
The 2k×2k system of linear equations (2.74-2.75) are solved using standard

methods to give p[i] and q[i] at the points j = 1, · · · , k along the radial grid.
From these values we obtain

P [i] = r`+1[i] p[i] (2.79)

Q[i] = r`+1[i]

(

q[i] +
`+ 1

r[i]
p[i]

)

. (2.80)

These are the k initial values required to start the outward integration of the
radial Schrödinger equation using the k + 1 point Adams method. The routine
outsch implements the method described here to start the outward integration.
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There are other ways to determine solutions to the second-order differential
equations at the first k grid points. One obvious possibility is to use a power
series representation for the radial wave function at small r. This method is not
used since we must consider cases where the potential at small r is very different
from the Coulomb potential and has no simple analytical structure. Such cases
occur when we treat self-consistent fields or nuclear finite-size effects.

Another possibility is to start the outward integration using Runge-Kutta
methods. Such methods require evaluation of the potential between the grid
points. To obtain such values, for cases where the potential is not known analyt-
ically, requires additional interpolation. The present scheme is simple, accurate,
and avoids such unnecessary interpolation.

2.3.3 Starting the Inward Integration (insch)

To start the inward integration using the k+1 point Adams method, we need k
values of P [i] and Q[i] in the asymptotic region just preceding the practical infin-
ity. We determine these values using an asymptotic expansion of the Schrödinger
wave function. Let us suppose that the potential V (r) in the asymptotic region,
r ≈ a∞, takes the limiting form,

V (r)→ −ζ
r
, (2.81)

where ζ is the charge of the ion formed when one electron is removed. The
radial Schrödinger equation in this region then becomes

dP

dr
= Q(r), (2.82)

dQ

dr
= −2

(

E +
ζ

r
− `(`+ 1)

2r2

)

P (r) . (2.83)

We seek an asymptotic expansion of P (r) and Q(r) of the form :

P (r) = rσe−λr
{

a0 +
a1
r

+ · · ·+ ak
rk

+ · · ·
}

, (2.84)

Q(r) = rσe−λr
{

b0 +
b1
r

+ · · ·+ bk
rk

+ · · ·
}

. (2.85)

Substituting the expansions (2.84-2.85) into the radial equations (2.82-2.83)
and matching the coefficients of the two leading terms, we find that such an
expansion is possible only if

λ =
√
−2E ,

σ =
ζ

λ
. (2.86)
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Using these values for λ and σ, the following recurrence relations for ak and bk
are obtained by matching the coefficients of r−k in Eqs.(2.82-2.83) :

ak =
`(`+ 1)− (σ − k)(σ − k + 1)

2kλ
ak−1 , (2.87)

bk =
(σ + k)(σ − k + 1)− `(`+ 1)

2k
ak−1 . (2.88)

We set a0 = 1 arbitrarily, b0 = −λ, and use Eqs.(2.87-2.88) to generate the
coefficients of higher-order terms in the series. Near the practical infinity, the
expansion parameter 2λr is large (≈ 80), so relatively few terms in the expansion
suffice to give highly accurate wave functions in this region. The asymptotic
expansion is used to evaluate Pi and Qi at the final k points on the radial grid.
These values are used in turn to start a point-by-point inward integration to
the classical turning point using the k+1 point Adams method. In the routine
insch, the asymptotic series is used to obtain the values of P (r) and Q(r) at
large r to start the inward integration using Adams method.

2.3.4 Eigenvalue Problem (master)

To solve the eigenvalue problem, we:

1. Guess the energy E.

2. Use the routine outsch to obtain values of the radial wave function at
the first k grid points, and continue the integration to the outer classical
turning point (ac) using the routine adams.

3. Use the routine insch to obtain the values of the wave function at the
last k points on the grid, and continue the inward solution to ac using the
routine adams.

4. Multiply the wave function and its derivative obtained in step 3 by a scale
factor chosen to make the wave function for r < ac from step 2, and that
for r > ac from step 3, continuous at r = ac.

If the energy guessed in step 1 happened to be an energy eigenvalue, then not
only the solution, but also its derivative, would be continuous at r = ac. If it
were the desired eigenvalue, then the wave function would also have the correct
number of radial nodes, nr = n− `− 1.

Generally the energy E in step 1 is just an estimate of the eigenvalue, so
the numerical values determined by following steps 2 to 4 above give a wave
function having an incorrect number of nodes and a discontinuous derivative at
ac. This is illustrated in Fig. 2.2. In the example shown there, we are seeking
the 4p wave function in a Coulomb potential with Z = 2. The corresponding
radial wave function should have nr = n − l − 1 = 2 nodes. We start with the
guess E = −0.100 a.u. for the energy and carry out steps 2 to 4 above. The
resulting function, which is represented by the thin solid curve in the figure, has
three nodes instead of two and has a discontinuous derivative at ac ≈ 19 a.u..
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Figure 2.2: The radial wave function for a Coulomb potential with Z = 2 is
shown at several steps in the iteration procedure leading to the 4p eigenstate.

The number of nodes increases with increasing energy. To reduce the number
of nodes, we must, therefore, lower the energy. We do this by multiplying E
(which is of course negative) by a factor of 1.1. Repeating steps 2 - 4 with
E = −0.110 a.u., leads to the curve shown in the dot-dashed curve in the
figure. The number of nodes remains nr = 3, so we repeat the steps again with
E = 1.1(−0.110) = −0.121 a.u.. At this energy, the number of nodes nr = 2
is correct, as shown in the dashed curve in Fig. 2.2; however, the derivative of
the wave function is still discontinuous at ac. To achieve a wave function with
a continuous derivative, we make further corrections to E using a perturbative
approach.

If we let P1(r) and Q1(r) represent the radial wave function and its derivative
at E1, respectively, and let P2(r) and Q2(r) represent the same two quantities
at E2, then it follows from the radial Schrödinger equation that

d

dr
(Q2P1 − P2Q1) = 2(E1 − E2)P1P2 . (2.89)

From this equation, we find that

2(E1 − E2)

∫ ∞

ac

P1 P2 dr = −(Q2P1 − P2Q1)
+, (2.90)

2(E1 − E2)

∫ ac

0

P1 P2 dr = (Q2P1 − P2Q1)
−, (2.91)
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where the superscripts ± indicate that the quantities in parentheses are to be
evaluated just above or just below ac. These equations are combined to give

E1 − E2 =
(Q+

1 −Q−1 )P2(ac) + (Q−2 −Q+
2 )P1(ac)

2
∫∞
0
P1 P2 dr

. (2.92)

Suppose that the derivative Q1 is discontinuous at ac. If we demand that Q2 be
continuous at ac, then the term Q−2 −Q+

2 in the numerator of (2.92) vanishes.
Approximating P2 by P1 in this equation, we obtain

E2 ≈ E1 +
(Q−1 −Q+

1 )P1(ac)

2
∫∞
0
P 2
1 dr

, (2.93)

as an approximation for the eigenenergy. We use this approximation iteratively
until the discontinuity in Q(r) at r = ac is reduced to an insignificant level.

The program master is designed to determine the wave function and the
corresponding energy eigenvalue for specified values of n and ` by iteration. In
this program, we construct an energy trap that reduces E (by a factor of 1.1)
when there are too many nodes at a given step of the iteration, or increases
E (by a factor of 0.9) when there are too few nodes. When the number of
nodes is correct, the iteration is continued using Eq.(2.93) iteratively until the
discontinuity in Q(r) at r = ac is reduced to a negligible level. In the routine, we
keep track of the least upper bound on the energy Eu (too many nodes) and the
greatest lower bound El (too few nodes) as the iteration proceeds. If increasing
the energy at a particular step of the iteration would lead to E > Eu, then we
simply replace E by (E+Eu)/2, rather than following the above rules. Similarly,
if decreasing E would lead to E < El, then we replace E by (E + El)/2.

For the example shown in the Fig. 2.2, it required 8 iterations to obtain
the energy E4p = −1/8 a.u. to 10 significant figures starting from the estimate
E = −.100 a.u.. The resulting wave function is shown in the heavy solid line in
the figure.

It is only necessary to normalize P (r) and Q(r) to obtain the desired radial
wave function and its derivative. The normalization integral,

N−2 =

∫ ∞

0

P 2(r)dr ,

is evaluated using the routine rint; a routine based on the trapezoidal rule with
endpoint corrections that will be discussed in the following section. As a final
step in the routine master, the wave function and its derivative are multiplied
by N to give a properly normalized numerical solution to the radial Schrödinger
equation.

2.4 Quadrature Rules (rint)

As described earlier, our radial grid is defined by a nonlinear function r(t), where
t is uniformly distributed according to t = ih, i = 0 · · ·n. We require r(0) = 0
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and choose n so large that r(nh) is much larger than the atomic radius. We
convert radial integrals over r into integrals over the uniform grid t.

∫ R

0

F (r)dr =

∫ mh

0

F [r(t)]
dr

dt
dt

where R = r(mh).
There are many methods to evaluate integrals on a uniform grid numerically,

including the trapezoidal rule, Simpson’s rule, and the various open-form and
closed-form Newton-Cotes formulas. The trapezoidal rule

∫ mh

0

f(x)dx = h

(

1

2
f0 + f1 + · · ·+ fm−1 +

1

2
fm

)

− h3m

12
f (2)(ξ), (2.94)

has the virtue of simplicity. In the above formula, we designate f(kh) by fk. The
term proportional to f (2)(ξ) is an estimate of the error involved in approximating
the integral by the integration rule. The argument ξ of the second-derivative is
some point on the interval [0, mh]. The trapezoidal rule is very efficient; with
the exception of the two endpoints, only a summation is required. The principal
drawback of this rule is its relatively low accuracy.

Simpson’s rule

∫ 2mh

0

f(x)dx =
h

3

(

f0 + 4 (f1 + f3 · · ·+ f2m−1)

+2 (f2 + f4 + · · · f2m−2) + f2m

)

− h5m

90
f (4)(ξ) (2.95)

is more accurate than the trapezoidal rule but is less efficient and requires
that the number of integration intervals be even. Rules based on higher-order
Newton-Cotes formulas, Abramowitz and Stegun (1964), are both more accurate
and more complex than the trapezoidal rule or Simpson’s rule.

For our purposes, we choose a trapezoidal rule modified by endpoint correc-
tions. This type of quadrature formula maintains the simplicity of the trape-
zoidal rule, but can be made systematically more accurate. The structure of
the modified trapezoidal rule is

∫ mh

0

f(x)dx = h
(

a1(f0 + fm) + a2(f1 + fm−1)+

· · ·+ ak(fk−1 + fm−k+1) + fk + fk+1 · · ·+ fm−k
)

+ εk(ξ), (2.96)

where εk(ξ) is an error function evaluated at some point x = ξ on the integration
interval. The endpoint coefficients a1, a2, · · · ak, are chosen to insure that the
integration is exact for polynomials of degree (0, 1, · · · , k − 1). The modified
trapezoidal rule is also exact for polynomials of degree k, for odd values of k
only. There is, consequently, no gain in accuracy for a rule based on an even
value of k compared with one based on the next lower odd value. We therefore
concentrate on rules of form (2.96) with odd values of k.
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It is relatively simple to determine the weights ai. To this end we examine
the difference ∆l between the value given by the integration rule for a polynomial
f(x) = xl and the exact value of the integral (mh)l+1/(l + 1). Let us consider
the example k = 3.

∆0 = h (2a1 + 2a2 + 2a3 − 5)

∆1 = h2
(

a1 + a2 + a3 −
5

2

)

m

∆2 = h3
[

2a2 + 8a3 − 10 +

(

−2a2 − 4a3 +
37

6

)

m+

(

a1 + a2 + a3 −
5

2

)

m2

]

∆3 = h4
[

(3a2 + 12a3 − 15)m+

(

−3a2 − 6a3 +
37

4

)

m2

+

(

a1 + a2 + a3 −
5

2

)

m3

]

(2.97)

It can be seen that ∆l is a polynomial of degree ml; the lowest power of m in
∆l is m for odd l and 1 for even l. The coefficient of mi in ∆l is proportional
to the coefficient of mi−1 in ∆l−1. Therefore, if ∆k−1 vanishes, then all ∆l, l =
0 · · · k − 2 automatically vanish. Thus, for odd values of k we simply require
that the k coefficients of ml, l = 0 · · · k − 1 in the expression for ∆k−1 vanish.
This leads to a system of k equations in k unknowns. For our example k = 3
we have on requiring coefficients of ml in ∆2 to vanish

a1 + a2 + a3 =
5

2

2a2 + 4a3 =
37

6
2a2 + 8a3 = 10

The solution to these equations is

(a2, a2, a3) =

(

9

24
,
28

24
,
23

24

)

It should ne noted that if ∆k−1 vanishes, ∆k will also vanish! Values of al,
l = 1 · · · k represented as ratios al = cl/d with a common denominator, are
tabulated for k = 1, 3, 5, 7 in Table 2.2. It should be noted that k = 1 leads
precisely to the trapezoidal rule.

The integration error can be estimated by expanding f(x) in a power series
about some point ξ in the interval [0, mh]. The function f(x) is represented by
a Taylor polynomial of degree k with a remainder

R(x) =
(x− ξ)k+1

(k + 1)!
f (k+1)(ξ)

The integration error is estimated as the difference between the integral of R(x)
and the estimate of the integral provided by the integration rule. The error can
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Table 2.2: Weights ai = ci/d and error ek coefficients for trapezoidal rule with
endpoint corrections.

k c1 c2 c3 c4 c5 c6 c7 d ek

1 1 2 -0.083
3 9 28 23 24 -0.026
5 475 1902 1104 1586 1413 1440 -0.014
7 36799 176648 54851 177984 89437 130936 119585 120960 -0.009

be expressed as

εk(ξ) = ekmh
k+2f (k+1)(ξ), (2.98)

where the the coefficients ek are tabulated in the last column of the Table 2.2.
One finds that the error estimate for the case k = 3 is of the same order as that
for Simpson’s rule and that for higher values of k is proportional to mhk+2.

We emphasize that the trapezoidal rule with endpoint corrections has the
virtue of high accuracy together with great simplicity, or equivalently, high
efficiency.

2.5 Potential Models

The potential experienced by a bound atomic electron near r = 0 is dominated
by the nuclear Coulomb potential, so we expect

V (r) ≈ −Z
r
,

for small r. At large r, on the other hand, an electron experiences a potential
that is the sum of the attractive nuclear Coulomb potential and the sum of the
repulsive potentials of the remaining electrons, so we expect

lim
r→∞

V (r) = −ζ
r
,

with ζ = Z−N+1 for an N electron atom with nuclear charge Z. The transition
from a nuclear potential to an ionic potential is predicted by the Thomas-Fermi
model, for example. However, it is possible to simply approximate the poten-
tial in the intermediate region by a smooth function of r depending on several
parameters that interpolates between the two extremes. One adjusts the param-
eters in this potential to fit the observed energy spectrum as well as possible.
We examine this approach in the following section.
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Table 2.3: Comparison of n = 3 and n = 4 levels (a.u.) of sodium calculated
using parametric potentials with experiment.

State Va Vb Exp.
3s -0.1919 -0.1881 -0.1889
3p -0.1072 -0.1124 -0.1106
4s -0.0720 -0.0717 -0.0716
3d -0.0575 -0.0557 -0.0559

2.5.1 Parametric Potentials

It is a simple matter to devise potentials that interpolate between the nuclear
and ionic potentials. Two simple one-parameter potentials are:

Va(r) = −Z
r
+

(Z − ζ) r
a2 + r2

, (2.99)

Vb(r) = −Z
r
+
Z − ζ
r

(1− e−r/b). (2.100)

The second term in each of these potentials approximates the electron-electron
interaction. As an exercise, let us determine the values of the parameters a and
b in Eqs.(2.99) and (2.100) that best represent the four lowest states (3s, 3p, 4s
and 3d) in the sodium atom. For this purpose, we assume that the sodium
spectrum can be approximated by that of a single valence electron moving in
one of the above parametric potentials. We choose values of the parameters to
minimize the sum of the squares of the differences between the observed levels
and the corresponding numerical eigenvalues of the radial Schrödinger equation.
To solve the radial Schrödinger equation, we use the routine master described
above. To carry out the minimization, we use the subroutine golden from the
NUMERICAL RECIPES library. This routine uses the golden mean technique
to find the minimum of a function of a single variable, taken to be the sum of
the squares of the energy differences considered as a function of the parameter
in the potential.

We find that the value a = 0.2683 a.u. minimizes the sum of the squares of
the differences between the calculated and observed terms using the potential Va
from Eq.(2.99). Similarly, b = 0.4072 a.u. is the optimal value of the parameter
in Eq.(2.100). In Table 2.3, we compare the observed sodium energy level with
values calculated using the two potentials. It is seen that the calculated and
observed levels agree to within a few percent for both potentials, although Vb
leads to better agreement.

The electron-electron interaction potential for the two cases is shown in
Fig. 2.3. These two potentials are completely different for r < 1 a.u., but agree
closely for r > 1 a.u., where the n = 3 and n = 4 wave functions have their
maxima.
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Figure 2.3: Electron interaction potentials from Eqs.(2.99) and (2.100) with
parameters a = 0.2683 and b = 0.4072 chosen to fit the first four sodium energy
levels.

Since the two potentials are quite different for small r, it is possible to decide
which of the two is more reasonable by comparing predictions of levels that
have their maximum amplitudes at small r with experiment. Therefore, we are
led to compare the 1s energy from the two potentials with the experimentally
measured 1s binding energy Eexp

1s = −39.4 a.u. We find upon solving the radial
Schrödinger equation that

E1s =

{

−47.47a.u. for Va,
−40.14a.u. for Vb.

It is seen that potential Vb(r) predicts an energy that is within 2% of the ex-
perimental value, while Va leads to a value of the 1s energy that disagrees with
experiment by about 18%. As we will see later, theoretically determined poten-
tials are closer to case b than to case a, as one might expect from the comparison
here.

One can easily devise multi-parameter model potentials, with parameters
adjusted to fit a number of levels precisely, and use the resulting wave functions
to predict atomic properties. Such a procedure is a useful first step in examining
the structure of an atom, but because of the ad hoc nature of the potentials
being considered, it is difficult to assess errors in predictions made using such
potentials.

2.5.2 Thomas-Fermi Potential

A simple approximation to the atomic potential was derived from a statistical
model of the atom by L.H Thomas and independently by E. Fermi in 1927. This
potential is known as the Thomas-Fermi potential. Although there has been a
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revival of research interest in the Thomas-Fermi method in recent years, we will
consider only the most elementary version of the theory here to illustrate an
ab-initio calculation of an atomic potential.

We suppose that bound electrons in an atom behave in the same way as free
electrons confined to a box of volume V . For electrons in a box, the number of
states d3N available in a momentum range d3p is given by

d3N = 2
V

(2π)3
d3p, (2.101)

where the factor 2 accounts for the two possible electron spin states. Assuming
the box to be spherically symmetric, and assuming that all states up to momen-
tum pf (the Fermi momentum) are filled, it follows that the particle density ρ
is

ρ =
N

V
=

1

π2

∫ pf

0

p2dp =
1

3π2
p3f . (2.102)

Similarly, the kinetic energy density is given by

εk =
Ek
V

=
1

π2

∫ pf

0

p2

2
p2dp =

1

10π2
p5f . (2.103)

Using Eq.(2.102), we can express the kinetic energy density in terms of the
particle density through the relation

εk =
3

10
(3π2)2/3ρ5/3 . (2.104)

In the Thomas-Fermi theory, it is assumed that this relation between the kinetic-
energy density and the particle density holds not only for particles moving freely
in a box, but also for bound electrons in the nonuniform field of an atom. In the
atomic case, we assume that each electron experiences a spherically symmetric
field and, therefore, that ρ = ρ(r) is independent of direction.

The electron density ρ(r) is assumed to vanish for r ≥ R, where R is deter-
mined by requiring

∫ R

0

4πr′2ρ(r′)dr′ = N, (2.105)

where N is the number of bound electrons in the atom.
In the Thomas-Fermi theory, the electronic potential is given by the classical

potential of a spherically symmetric charge distribution:

Ve(r) =

∫ R

0

1

r>
4πr′2ρ(r′)dr′ , (2.106)

where r> = max (r, r′). The total energy of the atom in the Thomas-Fermi the-
ory is obtained by combining Eq.(2.104) for the kinetic energy density with the
classical expressions for the electron-nucleus potential energy and the electron-
electron potential energy to give the following semi-classical expression for the
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energy of the atom:

E =

∫ R

0

{

3

10
(3π2)2/3ρ2/3 − Z

r
+

1

2

∫ R

0

1

r>
4πr′2ρ(r′)dr′

}

4πr2ρ(r)dr . (2.107)

The density is determined from a variational principle; the energy is required
to be a minimum with respect to variations of the density, with the constraint
that the number of electrons is N. Introducing a Lagrange multiplier λ, the
variational principal δ(E − λN) = 0 can be written

∫ R

0

{

1

2
(3π2)2/3ρ2/3 − Z

r
+

∫ R

0

1

r>
4πr′2ρ(r′)dr′ − λ

}

4πr2δρ(r)dr = 0.

(2.108)
Requiring that this condition be satisfied for arbitrary variations δρ(r) leads to
the following integral equation for ρ(r):

1

2
(3π2)2/3ρ2/3 − Z

r
+

∫ R

0

1

r>
4πr′2ρ(r′)dr′ = λ . (2.109)

Evaluating this equation at the point r = R, where ρ(R) = 0, we obtain

λ = −Z
R

+
1

R

∫ R

0

4πr′2ρ(r′)dr′ = −Z −N
R

= V (R) , (2.110)

where V (r) is the sum of the nuclear and atomic potentials at r. Combining
(2.110) and (2.109) leads to the relation between the density and potential,

1

2
(3π2)2/3ρ2/3 = V (R)− V (r) . (2.111)

Since V (r) is a spherically symmetric potential obtained from purely classical
arguments, it satisfies the radial Laplace equation,

1

r

d2

dr2
rV (r) = −4πρ(r) , (2.112)

which can be rewritten

1

r

d2

dr2
r[V (R)− V (r)] = 4πρ(r) . (2.113)

Substituting for ρ(r) from (2.111) leads to

d2

dr2
r[V (R)− V (r)] =

8
√
2

3π

(r[V (R)− V (r)])3/2

r1/2
. (2.114)

It is convenient to change variables to φ and x, where

φ(r) =
r[V (R)− V (r)]

Z
, (2.115)
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and
x = r/ξ , (2.116)

with

ξ =

(

9π2

128Z

)1/3

. (2.117)

With the aid of this transformation, we can rewrite the Thomas-Fermi equation
(2.114) in dimensionless form:

d2φ

dx2
=
φ3/2

x1/2
. (2.118)

Since limr→0 r[V (r)− V (R)] = −Z, the desired solution to (2.118) satisfies the
boundary condition φ(0) = 1. From ρ(R) = 0, it follows that φ(X) = 0 at
X = R/ξ.

By choosing the initial slope appropriately, we can find solutions to the
Thomas-Fermi equation that satisfy the two boundary conditions for a wide
range of values X. The correct value of X is found by requiring that the
normalization condition (2.105) is satisfied. To determine the point X, we write
Eq.(2.113) as

r
d2φ

dr2
=

1

Z
4πr2ρ(r) . (2.119)

From this equation, it follows that N(r), the number of electrons inside a sphere
of radius r, is given by

N(r)

Z
=

∫ r

0

r
d2φ(r)

dr2
dr (2.120)

=

(

r
dφ

dr
− φ

)r

0

(2.121)

= r
dφ

dr
− φ(r) + 1 . (2.122)

Evaluating this expression at r = R, we obtain the normalization condition

X

(

dφ

dx

)

X

= −Z −N
Z

. (2.123)

An iterative scheme is set up to solve the Thomas-Fermi differential equa-
tion. First, two initial values of X are guessed: X = Xa and X = Xb. The
Thomas-Fermi equation (2.118) is integrated inward to r = 0 twice: the first
time starting at x = Xa, using initial conditions φ(Xa) = 0, dφ/dx(Xa) =
−(Z − N)/XaZ, and the second time starting at x = Xb, using initial condi-
tions φ(Xb) = 0, dφ/dx(Xb) = −(Z − N)/XbZ. We examine the quantities
φ(0) − 1 in the two cases. Let us designate this quantity by f ; thus, fa is
the value of φ(0) − 1 for the first case, where initial conditions are imposed at
x = Xa, and fb is the value of φ(0) − 1 in the second case. If the product
fafb > 0, we choose two new points and repeat the above steps until fafb < 0.
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Figure 2.4: Thomas-Fermi functions for the sodium ion, Z = 11, N = 10.
Upper panel: the Thomas-Fermi function φ(r). Center panel: N(r), the num-
ber of electrons inside a sphere of radius r. Lower panel: U(r), the electron
contribution to the potential.

If fafb < 0, then it follows that the correct value of X is somewhere in the
interval between Xa and Xb. Assuming that we have located such an interval,
we continue the iteration by interval halving: choose X = (Xa + Xb)/2 and
integrate inward, test the sign of ffa and ffb to determine which subinterval
contains X and repeat the above averaging procedure. This interval halving is
continued until |f | < ε, where ε is a tolerance parameter. The value chosen for
ε determines how well the boundary condition at x = 0 is to be satisfied.

In the routine thomas, we use the fifth-order Runge-Kutta integration
scheme given in Abramowitz and Stegun (1964) to solve the Thomas-Fermi equa-
tion. We illustrate the solution obtained for the sodium ion, Z = 11, N = 10
in Fig. 2.4. The value of R obtained on convergence was R = 2.914 a.u.. In
the top panel, we show φ(r) in the interval 0 - R. In the second panel, we
show the corresponding value of N(r), the number of electrons inside a sphere
of radius r. In the bottom panel, we give the electron contribution to the poten-
tial. Comparing with Fig. 2.3, we see that the electron-electron potential U(r)
from the Thomas-Fermi potential has the same general shape as the electron-
interaction contribution to the parametric potential Vb(r). This is consistent
with the previous observation that Vb(r) led to an accurate inner-shell energy
for sodium.
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2.6 Separation of Variables for Dirac Equation

To describe the fine structure of atomic states from first principles, it is necessary
to treat the bound electrons relativistically. In the independent particle picture,
this is done by replacing the one-electron Schrödinger orbital ψ(r) by the corre-
sponding Dirac orbital ϕ(r). The orbital ϕ(r) satisfies the single-particle Dirac
equation

hDϕ = Eϕ, (2.124)

where hD is the Dirac Hamiltonian. In atomic units, hD is given by

hD = cα · p+ βc2 + V (r) . (2.125)

The constant c is the speed of light; in atomic units, c = 137.0359895 . . .. The
quantities α and β in Eq.(2.125) are 4× 4 Dirac matrices:

α =

(

0 σ

σ 0

)

, β =

(

1 0
0 −1

)

. (2.126)

The 2× 2 matrix σ is the Pauli spin matrix, discussed in Sec. 1.2.1.
The total angular momentum is given by J = L+ S, where L is the orbital

angular momentum, and S is the 4× 4 spin angular momentum matrix,

S =
1

2

(

σ 0
0 σ

)

. (2.127)

It is not difficult to show that J commutes with the Dirac Hamiltonian. We
may, therefore, classify the eigenstates of hD according to the eigenvalues of
energy, J2 and Jz .The eigenstates of J

2 and Jz are easily constructed using the
two-component representation of S. They are the spherical spinors Ωκm(r̂).

If we seek a solution to the Dirac equation (2.125) having the form

ϕκ(r) =
1

r

(

iPκ(r) Ωκm(r̂)
Qκ(r) Ω−κm(r̂)

)

, (2.128)

then we find, with the help of the identities (1.124,1.126), that the radial func-
tions Pκ(r) and Qκ(r) satisfy the coupled first-order differential equations:

(V + c2)Pκ + c

(

d

dr
− κ

r

)

Qκ = EPκ (2.129)

−c
(

d

dr
+
κ

r

)

Pκ + (V − c2)Qκ = EQκ (2.130)

where V (r) = Vnuc(r)+U(r). The normalization condition for the orbital ϕκ(r),
∫

ϕ†κ(r)ϕκ(r)d
3r = 1, (2.131)

can be written
∫ ∞

0

[ P 2
κ (r) +Q2

κ(r) ]dr = 1, (2.132)
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when expressed in terms of the radial functions Pκ(r) and Qκ(r). The radial
eigenfunctions and their associated eigenvalues, E, can be determined analyti-
cally for a Coulomb potential. In practical cases, however, the eigenvalue prob-
lem must be solved numerically.

2.7 Radial Dirac Equation for a Coulomb Field

In this section, we seek analytical solutions to the radial Dirac equations (2.129)
and (2.130) for the special case V (r) = −Z/r. As a first step in our analysis, we
examine these equations at large values of r. Retaining only dominant terms as
r →∞, we find

c
dQκ

dr
= (E − c2)Pκ , (2.133)

c
dPκ
dr

= −(E + c2)Qκ . (2.134)

This pair of equations can be converted into the second-order equation

c2
d2Pκ
dr2

+ (E2 − c4)Pκ = 0, (2.135)

which has two linearly independent solutions, e±λr, with λ =
√

c2 − E2/c2.
The physically acceptable solution is

Pκ(r) = e−λr . (2.136)

The corresponding solution Qκ is given by

Qκ(r) =

√

c2 − E
c2 + E

e−λr. (2.137)

Factoring the asymptotic behavior, we express the radial functions in the form

Pκ =
√

1 + E/c2e−λr(F1 + F2) , (2.138)

Qκ =
√

1− E/c2e−λr(F1 − F2) . (2.139)

Substituting this ansatz into (2.129) and (2.130), we find that the functions F1

and F2 satisfy the coupled equations

dF1
dx

=
EZ

c2λx
F1 +

(

Z

λx
− κ

x

)

F2 , (2.140)

dF2
dx

= −
(

Z

λx
+
κ

x

)

F1 +

(

1− EZ

c2λx

)

F2 , (2.141)

where x = 2λr.
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We seek solutions to Eqs.(2.140,2.141) that have the limiting forms F1 =
a1x

γ and F2 = a2x
γ as x→ 0. Substituting these expressions into (2.140) and

(2.141) and retaining only the most singular terms, we find:

a2
a1

=
γ − EZ/c2λ
−κ+ Z/λ

=
−κ− Z/λ
γ + EZ/c2λ

. (2.142)

Clearing fractions in the right-hand equality, leads to the result γ2 = κ2 −
Z2/c2 = κ2 − α2Z2. Here, we have used the fact that c = 1/α in atomic
units. The physically acceptable value of γ is given by the positive square root,
γ =
√
κ2 − α2Z2. Next, we use Eq.(2.140) to express F2 in terms of F1,

F2 =
1

−κ+ Z/λ

[

x
dF1
dx
− EZ

c2λ
F1

]

. (2.143)

This equation, in turn, can be used to eliminate F2 from Eq.(2.141), leading to

x
d2F1
dx2

+ (1− x)dF1
dx
−
(

γ2

x2
− EZ

c2λ

)

F1 = 0 . (2.144)

Finally, we write
F1(x) = xγF (x) , (2.145)

and find that the function F (x) satisfies the Kummer’s equation,

x
d2F

dx2
+ (b− x)dF

dx
− aF = 0 , (2.146)

where a = γ −EZ/c2λ, and b = 2γ + 1. This equation is identical to Eq.(2.18)
except for the values of the parameters a and b. The solutions to Eq.(2.146) that
are regular at the origin are the Confluent Hypergeometric functions written out
in Eq.(2.19). Therefore,

F1(x) = xγ F (a, b, x) . (2.147)

The function F2(x) can also be expressed in terms of Confluent Hypergeometric
functions. Using Eq.(2.143), we find

F2(x) =
xγ

(−κ+ Z/λ)

(

x
dF

dx
+ aF

)

=
(γ − EZ/c2λ)
(−κ+ Z/λ)

xγF (a+ 1, b, x) . (2.148)

Combining these results, we obtain the following expressions for the radial Dirac
functions:

Pκ(r) =
√

1 +E/c2e−x/2xγ [(−κ+ Z/λ)F (a, b, x)

+(γ − EZ/c2λ)F (a+ 1, b, x)
]

, (2.149)

Qκ(r) =
√

1−E/c2 e−x/2xγ [(−κ+ Z/λ)F (a, b, x)

−(γ − EZ/c2λ)F (a+ 1, b, x)
]

. (2.150)

These solutions have yet to be normalized.
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We now turn to the eigenvalue problem. First, we examine the behavior of
the radial functions at large r. We find:

F (a, b, x) → Γ(b)

Γ(a)
exxa−b[1 +O(|x|−1)] , (2.151)

aF (a+ 1, b, x) → Γ(b)

Γ(a)
exxa+1−b[1 +O(|x|−1)] . (2.152)

From these equations, it follows that the radial wave functions are normalizable
if, and only if, the coefficients of the exponentials in Eqs.(2.151) and (2.152)
vanish. As in the nonrelativistic case, this occurs when a = −nr, where nr =
0,−1,−2, · · · . We define the principal quantum number n through the relation,
n = k + nr, where k = |κ| = j + 1/2. The eigenvalue equation, therefore, can
be written

EZ/c2λ = γ + n− k .
The case a = −nr = 0 requires special attention. In this case, one can solve the
eigenvalue equation to find k = Z/λ. From this, it follows that the two factors
−κ+Z/λ and γ−EZ/c2λ in Eqs.(2.149) and (2.150) vanish for κ = k > 0. States
with nr = 0 occur only for κ < 0. Therefore, for a given value of n > 0 there
are 2n − 1 possible eigenfunctions: n eigenfunctions with κ = −1,−2, · · · − n,
and n− 1 eigenfunctions with κ = 1, 2, · · ·n− 1.

Solving the eigenvalue equation for E, we obtain

Enκ =
c2

√

1 + α2Z2

(γ+n−k)2
. (2.153)

It is interesting to note that the Dirac energy levels depend only on k = |κ|.
Those levels having the same values of n and j, but different values of ` are
degenerate. Thus, for example, the 2s1/2 and 2p1/2 levels in hydrogenlike ions
are degenerate. By contrast, levels with the same value of n and ` but different
values of j, such as the 2p1/2 and 2p3/2 levels, have different energies. The
separation between two such levels is called the fine-structure interval.

Expanding (2.153) in powers of αZ, we find

Enκ = c2 − Z2

2n2
− α2Z4

2n3

(

1

k
− 3

4n

)

+ · · · . (2.154)

The first term in this expansion is just the electron’s rest energy (mc2) expressed
in atomic units. The second term is precisely the nonrelativistic Coulomb-field
binding energy. The third term is the leading fine-structure correction. The
fine-structure energy difference between the 2p3/2 and 2p1/2 levels in hydrogen
is predicted by this formula to be

∆E2p =
α2

32
a.u. = 0.3652 cm−1 ,

in close agreement with the measured separation. The separation of the 2s1/2
and 2p1/2 levels in hydrogen is measured to be 0.0354 cm−1. The degeneracy
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between these two levels predicted by the Dirac equation is lifted by the Lamb-
shift!

Let us introduce the (noninteger) parameter N = Z/λ = (γ + n − k)c2/E.
From (2.153), we find N =

√

n2 − 2(n− k)(k − γ). Thus, N = n when
n = k. With this definition, the coefficients of the hypergeometric functions
in Eqs.(2.149) and (2.150) can be written

(−κ+ Z/λ) = (N − κ) , (2.155)

(γ − EZ/c2λ) = −(n− k) . (2.156)

Introducing the normalization factor

Nnκ =
1

N Γ(2γ + 1)

√

Z Γ(2γ + 1 + n− k)
2 (n− k)! (N − κ) , (2.157)

we can write the radial Dirac Coulomb wave functions as

Pnκ(r) =
√

1 + Enκ/c2Nnκe
−x/2xγ [(N−κ)F (−n+ k, 2γ + 1, x)

−(n−k)F (−n+ k + 1, 2γ + 1, x)] , (2.158)

Qnκ(r) =
√

1− Enκ/c2Nnκe
−x/2xγ [(N−κ)F (−n+ k, 2γ + 1, x)

+(n−k)F (−n+ k + 1, 2γ + 1, x)] . (2.159)

These functions satisfy the normalization condition (2.132). It should
be noticed that the ratio of the scale factors in (2.158) and (2.159) is
√

(1− Enκ/c2)/(1 + Enκ/c2) ≈ αZ/2n. Thus, Qnκ(r) is several orders of mag-
nitude smaller than Pnκ(r) for Z = 1. For this reason, Pnκ and Qnκ are referred
to as the large and small components of the radial Dirac wave function, respec-
tively.

As a specific example, let us consider the 1s1/2 ground state of an electron
in a hydrogenlike ion with nuclear charge Z. For this state, n = 1, κ = −1,
k = 1, γ =

√
1− α2Z2, Enκ/c

2 = γ, N = 1, λ = Z and x = 2Zr. Therefore,

P1−1(r) =

√

1 + γ

2

√

2Z

Γ(2γ + 1)
(2Zr)γe−Zr ,

Q1−1(r) =

√

1− γ
2

√

2Z

Γ(2γ + 1)
(2Zr)γe−Zr .

In Fig. 2.5, we plot the n = 2 Coulomb wave functions for nuclear charge
Z = 2. The small components Q2κ(r) in the figure are scaled up by a factor of
1/αZ to make them comparable in size to the large components P2κ(r). The
large components are seen to be very similar to the corresponding nonrelativistic
Coulomb wave functions Pn`(r), illustrated in Fig. 2.1. The number of nodes
in the Pnκ(r) is n − ` − 1. The number of nodes in Qnκ(r) is also n − ` − 1
for κ < 0, but is n − ` for κ > 0. These rules for the nodes will be useful in
designing a numerical eigenvalue routine for the Dirac equation. It should be
noticed that, except for sign, the large components of the 2p1/2 and 2p3/2 radial
wave functions are virtually indistinguishable.
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Figure 2.5: Radial Dirac Coulomb wave functions for the n = 2 states of hydro-
genlike helium, Z = 2. The solid lines represent the large components P2κ(r)
and the dashed lines represent the scaled small components, Q2κ(r)/αZ.
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2.8 Numerical Solution to Dirac Equation

The numerical treatment of the radial Dirac equation closely parallels that used
previously to solve the radial Schrödinger equation. The basic point-by-point in-
tegration of the radial equations is performed using the Adams-Moulton scheme
(adams). We obtain the values of the radial functions near the origin necessary
to start the outward integration using an algorithm based on Lagrangian differ-
entiation (outdir). The corresponding values of the radial functions near the
practical infinity, needed to start the inward integration, are obtained from an
asymptotic expansion of the radial functions (indir). A scheme following the
pattern of the nonrelativistic routine master is then used to solve the eigen-
value problem. In the paragraphs below we describe the modifications of the
nonrelativistic routines that are needed in the Dirac case.

To make comparison with nonrelativistic calculations easier, we subtract the
rest energy c2 a.u. from Eκ in our numerical calculations. In the sequel, we use
Wκ = Eκ − c2 instead of E as the value of the energy in the relativistic case.

The choice of radial grid is identical to that used in the nonrelativistic case;
r(t) gives the value of the distance coordinate on the uniformly-spaced t grid.
The radial Dirac equations on the t grid take the form

dy

dt
= f(y, t) , (2.160)

where y(t) and f(y, t) are the two-component arrays:

y =

(

Pκ
Qκ

)

, (2.161)

f(y, t) = r′
(

−(κ/r)Pκ(r)− α[Wκ − V (r) + 2α−2]Qκ(r)
(κ/r)Qκ(r) + α[Wκ − V (r)]Pκ(r)

)

, (2.162)

where, r′(t) = dr
dt .

2.8.1 Outward and Inward Integrations (adams, outdir,

indir)

adams: We integrate Eqs.(2.161) and(2.162) forward using the Adams-
Moulton algorithm given in Eq.(2.58):

y[n+ 1] = y[n] +
h

D

k+1
∑

j=1

a[j] f [n− k + j] . (2.163)

The coefficients a[j] and D for this integration formula are given in Table 2.1.
Writing f(y, t) = G(t) y, equation (2.163) can be put in the form (2.59),

(

1− ha[k + 1]

D
G[n+ 1]

)

y[n+ 1] = y[n] +
h

D

k
∑

j=1

a[j] f [n− k + j] , (2.164)
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where G is the 2× 2 matrix

G(t) =

(

a(t) b(t)
c(t) d(t)

)

, (2.165)

with

a(t) = −r′ (κ/r) , b(t) = −α r′ (Wκ − V (r) + 2α−2) ,
c(t) = α r′ (Wκ − V (r)) , d(t) = r′ (κ/r) .

(2.166)

The matrix M [n+ 1] = 1− ha[k+1]
D G[n+ 1] on the left-hand side of Eq.(2.165)

can be inverted to give

M−1[n+ 1] =
1

∆[n+ 1]

(

1− λd[n+ 1] λb[n+ 1]
λc[n+ 1] 1− λa[n+ 1]

)

, (2.167)

where

∆[n+ 1] = 1− λ2(b[n+ 1]c[n+ 1]− a[n+ 1]d[n+ 1]) ,

λ =
ha[k + 1]

D
.

With these definitions, the radial Dirac equation can be written in precisely the
same form as the radial Schrödinger equation (2.64)

y[n+ 1] =M−1[n+ 1]



y[n] +
h

D

k
∑

j=1

a[j] f [n− k + j]



 . (2.168)

This formula is used in the relativistic version of the routine adams to carry
out the step-by-step integration of the Dirac equation.

As in the nonrelativistic case, we must supply values of yn at the first k
grid points. This is done by adapting the procedure used to start the outward
integration of the Schrödinger equation to the Dirac case.

outdir: The values of yn at the first k grid points, needed to start the outward
integration using (2.168), are obtained using Lagrangian integration formulas.
As a preliminary step, we factor rγ from the radial functions Pκ(r) and Qκ(r),
where γ =

√

k2 − (αZ)2. We write:

Pκ(r) = rγu(r(t)), (2.169)

Qκ(r) = rγv(r(t)), (2.170)

and find,

du/dt = a(t)u(t) + b(t)v(t), (2.171)

dv/dt = c(t)u(t) + d(t)v(t), (2.172)
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where,

a(t) = −(γ + κ)r′/r, (2.173)

b(t) = −α(W − V (r) + 2α−2)r′, (2.174)

c(t) = α(W − V (r))r′, (2.175)

d(t) = −(γ − κ)r′/r. (2.176)

We normalize our solution so that, at the origin, u0 = u(0) = 1. It follows that
v0 = v(0) takes the value

v0 = −(κ+ γ)/αZ, for κ > 0, (2.177)

= αZ/(γ − κ), for κ < 0, (2.178)

provided the potential satisfies

V (r)→ −Z
r
,

as r → 0. The two equations (2.177) and (2.178) lead to identical results
mathematically; however, (2.177) is used for κ > 0 and (2.178) for κ < 0 to avoid
unnecessary loss of significant figures by cancelation for small values of αZ. One
can express du/dt and dv/dt at the points t[i], i = 0, 1, · · · , k in terms of u[i] =
u(t[i]) and v[i] = v(t[i]) using the Lagrangian differentiation formulas written
down in Eq.(2.70). The differential equations thereby become inhomogeneous
matrix equations giving the vectors (u[1], u[2], · · · , u[k]) and (v[1], v[2], · · · , v[k])
in terms of initial values u[0] and v[0]:

k
∑

j=1

m[ij] u[j]− a[i] u[i]− b[i] v[i] = −m[i0] u[0], (2.179)

k
∑

j=1

m[ij] v[j]− c[i] u[i]− d[i] v[i] = −m[i0] v[0]. (2.180)

This system of 2k×2k inhomogeneous linear equations can be solved by standard
routines to give u[i] and v[i] at the points i = 1, 2, · · · , k. The corresponding
values of Pκ and Qκ are given by

Pκ(r[i]) = r[i]γ u[i], (2.181)

Qκ(r[i]) = r[i]γ v[i]. (2.182)

These equations are used in the routine outdir to give the k values required
to start the outward integration using a k + 1-point Adams-Moulton scheme.

indir: The inward integration is started using an asymptotic expansion of the
radial Dirac functions. The expansion is carried out for r so large that the
potential V (r) takes on its asymptotic form

V (r) = −ζ
r
,
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where ζ = Z − N + 1 is the ionic charge of the atom. We assume that the
asymptotic expansion of the radial Dirac functions takes the form

Pκ(r) = rσe−λr

{
√

c2 + E

2c2

[

1 +
a1
r

+
a2
r

+ · · ·
]

+

√

c2 − E
2c2

[

b1
r

+
b2
r

+ · · ·
]

}

, (2.183)

Qκ(r) = rσe−λr

{
√

c2 + E

2c2

[

1 +
a1
r

+
a2
r

+ · · ·
]

−
√

c2 − E
2c2

[

b1
r

+
b2
r

+ · · ·
]

}

, (2.184)

where λ =
√

c2 − E2/c2. The radial Dirac equations admit such a solution only
if σ = Eζ/c2λ. The expansion coefficients can be shown to satisfy the following
recursion relations:

b1 =
1

2c

(

κ+
ζ

λ

)

, (2.185)

bn+1 =
1

2nλ

(

κ2 − (n− σ)2 − ζ2

c2

)

bn , n = 1, 2, · · · , (2.186)

an =
c

nλ

(

κ+ (n− σ)E
c2
− ζλ

c2

)

bn , n = 1, 2, · · · . (2.187)

In the routine indir, Eqs.(2.183) and (2.184) are used to generate the k values
of Pκ(r) and Qκ(r) needed to start the inward integration.

2.8.2 Eigenvalue Problem for Dirac Equation (master)

The method that we use to determine the eigenfunctions and eigenvalues of the
radial Dirac equation is a modification of that used in the nonrelativistic routine
master to solve the eigenvalue problem for the Schrödinger equation. We guess
an energy, integrate the equation outward to the outer classical turning point ac
using outdir, integrate inward from the practical infinity a∞ to ac using indir

and, finally, scale the solution in the region r > ac so that the large component
P (r) is continuous at ac. A preliminary adjustment of the energy is made to
obtain the correct number of nodes (= n − l − 1) for P (r) by adjusting the
energy upward or downward as necessary. At this point we have a continuous
large component function P (r) with the correct number of radial nodes; however,
the small component Q(r) is discontinuous at r = ac. A fine adjustment of the
energy is made using perturbation theory to remove this discontinuity.

If we let P1(r) and Q1(r) be solutions to the radial Dirac equation corre-
sponding to energy W1 and let P2(r) and Q2(r) be solutions corresponding to
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energy W2, then it follows from the radial Dirac equations that

d

dr
(P1Q2 − P2Q1) =

1

c
(W2 −W1)(P1P2 +Q1Q2) . (2.188)

Integrating both sides of this equation from 0 to ac and adding the corresponding
integral of both sides from ac to infinity, we obtain the identity

P1(ac)(Q
−
2 −Q+

2 ) + P2(ac)(Q
+
1 −Q−1 ) =

1

c
(W2 −W1)

∫ ∞

0

(P1P2 +Q1Q2)dr ,

(2.189)
where Q+

1 and Q+
2 are the values of the small components at ac obtained from

inward integration, and Q−1 and Q−2 are the values at ac obtained from outward
integration. If we suppose that Q1 is discontinuous at ac and if we require that
Q2 be continuous, then we obtain from (2.189) on approximating P2(r) and
Q2(r) by P1(r) and Q1(r),

W2 ≈W1 +
cP1(ac)(Q

+
1 −Q−1 )

∫∞
0

(P 2
1 +Q2

1)dr
. (2.190)

The approximation (2.190) is used iteratively to reduce the discontinuity in
Q(r) at r = ac to insignificance. The Dirac eigenvalue routine dmaster is
written following the pattern of the nonrelativistic eigenvalue routine master,
incorporating the routines outdir and indir to carry out the point-by-point
integration of the radial equations and using the approximation (2.190) to refine
the solution.

2.8.3 Examples using Parametric Potentials

As in the nonrelativistic case, it is possible to devise parametric potentials to
approximate the effects of the electron-electron interaction. Two potentials that
have been used with some success to describe properties of large atoms having
one valence electron are the Tietz potential, Tietz (1954),

V (r) = −1

r

[

1 +
(Z − 1)e−γr

(1 + tr)2

]

, (2.191)

and the Green potential, Green et al. (1969),

V (r) = −1

r

[

1 +
Z − 1

H(er/d − 1) + 1

]

. (2.192)

Each of these potentials contain two parameters that can be adjusted to fit ex-
perimentally measured energy levels. In Table 2.4, we list values of the param-
eters for rubidium (Z=37), cesium (Z=55), gold (Z=79) and thallium (Z=81).
Energies of low-lying states of these atoms obtained by solving the Dirac equa-
tion in the two potentials are listed in Table 2.5. Wave functions obtained by
solving the Dirac equation in parametric potentials have been successfully em-
ployed to predict properties of heavy atoms (such as hyperfine constants) and
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Table 2.4: Parameters for the Tietz and Green potentials.

Tietz Green
Element t γ H d

Rb 1.9530 0.2700 3.4811 0.7855
Cs 2.0453 0.2445 4.4691 0.8967
Au 2.4310 0.3500 4.4560 0.7160
Tl 2.3537 0.3895 4.4530 0.7234

Table 2.5: Energies obtained using the Tietz and Green potentials.

State Tietz Green Exp. State Tietz Green Exp.

Rubidium Z = 37 Cesium Z = 55
5s1/2 -0.15414 -0.15348 -0.15351 6s1/2 -0.14343 -0.14312 -0.14310
5p1/2 -0.09557 -0.09615 -0.09619 6p1/2 -0.09247 -0.09224 -0.09217
5p3/2 -0.09398 -0.09480 -0.09511 6p3/2 -0.08892 -0.08916 -0.08964
6s1/2 -0.06140 -0.06215 -0.06177 7s1/2 -0.05827 -0.05902 -0.05865
6p1/2 -0.04505 -0.04570 -0.04545 7p1/2 -0.04379 -0.04424 -0.04393
6p3/2 -0.04456 -0.04526 -0.04510 7p3/2 -0.04270 -0.04323 -0.04310
7s1/2 -0.03345 -0.03382 -0.03362 8s1/2 -0.03213 -0.03251 -0.03230
Gold Z = 79 Thallium Z = 81
6s1/2 -0.37106 -0.37006 -0.33904 6p1/2 -0.22456 -0.22453 -0.22446
6p1/2 -0.18709 -0.17134 -0.16882 6p3/2 -0.18320 -0.17644 -0.18896
6p3/2 -0.15907 -0.14423 -0.15143 7s1/2 -0.10195 -0.10183 -0.10382
7s1/2 -0.09386 -0.09270 -0.09079 7p1/2 -0.06933 -0.06958 -0.06882
7p1/2 -0.06441 -0.06313 -0.06551 7p3/2 -0.06391 -0.06374 -0.06426
7p3/2 -0.05990 -0.05834 -0.06234 8s1/2 -0.04756 -0.04771 -0.04792
8s1/2 -0.04499 -0.04476 -0.04405 8p1/2 -0.03626 -0.03639 -0.03598

to describe the interaction of atoms with electromagnetic fields. The obvious
disadvantage of treating atoms using parametric potentials is that there is no a
priori reason to believe that properties, other than those used as input data in
the fitting procedure, will be predicted accurately. In the next chapter, we take
up the Hartree-Fock theory, which provides an ab-initio method for calculating
electronic potentials, atomic energy levels and wave functions.



Chapter 3

Self-Consistent Fields

In this chapter, we consider the problem of determining an approximate wave
function for an N -electron atom. We assume that each electron in the atom
moves independently in the nuclear Coulomb field and the average field of the
remaining electrons. We approximate the electron-electron interaction by a
central potential U(r), and we construct an N -electron wave function for the
atomic ground state as an antisymmetric product of one-electron orbitals. Next,
we evaluate the energy of the atom in its ground state using this wave func-
tion. We invoke the variational principle, requiring that the energy be sta-
tionary with respect to small changes in the orbitals with the constraint that
the wave function remain normalized, to determine the orbitals. This leads to
the Hartree-Fock (HF) equations. Solving the HF equations, we determine the
one-electron orbitals, the one-electron energies, and the central potential U(r)
self-consistently.

3.1 Two-Electron Systems

Let us start our discussion of many-electron atoms by considering a two-electron
(heliumlike) ion with nuclear charge Z. The two-electron Hamiltonian may be
written

H(r1, r2) = h0(r1) + h0(r2) +
1

r12
, (3.1)

with

h0(r) = −
1

2
∇2 − Z

r
. (3.2)

The term 1/r12 in Eq.(3.1) is the Coulomb repulsion between the two electrons.
The two-electron wave function Ψ(r1, r2) satisfies the Schrödinger equation

H(r1, r2)Ψ(r1, r2) = EΨ(r1, r2). (3.3)

We seek bound-state solutions to this equation.

63



64 CHAPTER 3. SELF-CONSISTENT FIELDS

The two-electron Hamiltonian is symmetric with respect to the interchange
of the coordinates r1 and r2. It follows that Ψ(r2, r1) is an eigenfunction of H
having the same eigenvalue as Ψ(r1, r2). Moreover, the symmetric and antisym-
metric combinations,

Ψ(r1, r2)±Ψ(r2, r1), (3.4)

are also eigenfunctions, energy degenerate with Ψ(r1, r2). The symmetric com-
bination in Eq.(3.4) gives the two-particle wave function appropriate to a system
of two interacting bosons; for example, an atom consisting of two π− mesons
in a nuclear Coulomb field repelling one another by the Coulomb force. For
electrons and other fermions, the antisymmetric combination in Eq.(3.4) is the
appropriate choice.

As an approximation to the two-electron Hamiltonian in Eq.(3.1), let us
consider the Independent-Particle Hamiltonian

H0(r1, r2) = h(r1) + h(r2), (3.5)

where

h(r) = h0(r) + U(r) = −1

2
∇2 + V (r) . (3.6)

The Hamiltonian H0 describes the independent motion of two particles in a
potential V (r) = −Z/r + U(r). The potential U(r) is chosen to approximate
the effect of the Coulomb repulsion 1/r12. The full Hamiltonian H is then given
by H = H0 + V (r1, r2), where

V (r1, r2) =
1

r12
− U(r1)− U(r2) . (3.7)

If we let the orbital ψa(r) represent a solution to the one-electron Schrödinger
equation,

h(r)ψa(r) = εaψa(r), (3.8)

belonging to eigenvalue εa, then the product wave function Ψab(r1, r2) =
ψa(r1)ψb(r2) is a solution to the two-electron problem,

H0Ψab(r1, r2) = EabΨab(r1, r2), (3.9)

belonging to energy E
(0)
ab = εa + εb.

The lowest energy two-electron eigenstate of H0 is a product of the two
lowest energy one-electron orbitals. For atomic potentials, these are the 1s
orbitals corresponding to the two possible orientations of spin, ψ1sµ(r) =
(P1s(r)/r)Y00(r̂)χµ, with µ = ±1/2. The corresponding antisymmetric product
state is

Ψ1s,1s(r1, r2) =
1

4π

1

r1
P1s(r1)

1

r2
P1s(r2)

1√
2
(χ1/2(1)χ−1/2(2)− χ−1/2(1)χ1/2(2)). (3.10)
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The factor 1/
√
2 is introduced here to insure that 〈Ψ1s1s|Ψ1s1s〉 = 1. The wave

function in Eq.(3.10) is an approximation to the ground-state wave function for
a two-electron ion.

The orbital angular momentum vector L = L1 + L2 and the spin angular
momentum S = 1

2σ1 +
1
2σ2 commute with H as well as H0. It follows that the

eigenstates of H and H0 can also be chosen as eigenstates of L2, Lz, S
2 and Sz.

The combination of spin functions in Eq.(3.10),

1√
2
(χ1/2(1)χ−1/2(2)− χ−1/2(1)χ1/2(2)), (3.11)

is an eigenstate of S2 and Sz with eigenvalues 0 and 0, respectively. Similarly,
the product of spherical harmonics Y00(r̂1)Y00(r̂2) is an eigenstate of L2 and Lz
with eigenvalues 0 and 0, respectively.

Let us approximate the electron interaction by simply replacing the charge Z
in the Coulomb potential by an effective charge ζ = Z−σ. This corresponds to
choosing the electron-electron potential U(r) = (Z − ζ)/r. The potential V (r)
in the single-particle Hamiltonian is V (r) = −ζ/r. The one-electron solutions
to Eq.(3.8) are then known analytically; they are

P1s(r) = 2ζ3/2 re−ζr. (3.12)

The corresponding two-electron energy eigenvalue is E
(0)
1s1s = −ζ2 a.u. We can

easily obtain the first-order correction to this energy by applying first-order
perturbation theory:

E
(1)
1s1s = 〈Ψ1s1s|

1

r12
− U(r1)− U(r2)|Ψ1s1s〉 . (3.13)

The first term in (3.13) can be written

〈Ψ1s1s|
1

r12
|Ψ1s1s〉 =

1

(4π)2

∫

dr1dΩ1

∫

dr2dΩ2 P
2
1s(r1)P

2
1s(r2)

1

r12
. (3.14)

The Coulomb interaction in this equation can be expanded in terms of Legendre
polynomials to give

1

r12
=

1

|r1 − r2|
=

∞
∑

l=0

rl<
rl+1
>

Pl(cos θ), (3.15)

where r< = min (r1, r2) and r> = max (r1, r2), and where θ is the angle between
the vectors r1 and r2. With the aid of this expansion, the angular integrals can
be carried out to give

〈Ψ1s1s|
1

r12
|Ψ1s1s〉 =

∫ ∞

0

dr1P
2
1s(r1)

∫ ∞

0

dr2 P
2
1s(r2)

1

r>
. (3.16)

It should be noted that after the angular integrations, only the monopole con-
tribution from (3.15) survives. The function

v0(1s, r1) =

∫ ∞

0

dr2 P
2
1s(r2)

1

r>
(3.17)
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is just the potential at r1 of a spherically symmetric charge distribution having
radial density P 2

1s(r). In terms of this function, we may write

〈Ψ1s1s|
1

r12
|Ψ1s1s〉 =

∫ ∞

0

P 2
1s(r) v0(1s, r) dr. (3.18)

The two remaining integrals in Eq.(3.13) are easily evaluated. We find

〈Ψ1s1s|U(r1)|Ψ1s1s〉 = 〈Ψ1s1s|U(r2)|Ψ1s1s〉 =
∫ ∞

0

P 2
1s(r)U(r) dr . (3.19)

Combining (3.18) and (3.19), we obtain the following expression for the first-
order energy:

E
(1)
1s1s =

∫ ∞

0

P 2
1s(r) (v0(1s, r)− 2U(r)) dr . (3.20)

Using the specific form of the 1s radial wave function given in Eq.(3.12), we can
evaluate v0(1s, r) analytically using Eq.(3.17) to obtain

v0(1s, r) = (1− e−2ζr)/r − ζe−2ζr . (3.21)

Using this result, we find

∫ ∞

0

P 2
1s(r) v0(1s, r) dr =

5

8
ζ . (3.22)

The integral of U(r) = (Z − ζ)/r in Eq.(3.20) can be evaluated using the fact
that 〈1s|1/r|1s〉 = ζ. Altogether, we find

E
(1)
1s1s =

5

8
ζ − 2(Z − ζ)ζ . (3.23)

Combining this result with the expression for the lowest-order energy, we obtain

E1s1s = E
(0)
1s1s + E

(1)
1s1s = −ζ2 +

5

8
ζ − 2(Z − ζ)ζ. (3.24)

The specific value of ζ in this equation is determined with the aid of the vari-
ational principle, which requires that the parameters in the approximate wave
function be chosen to minimize the energy. The value of ζ which minimizes the
energy in Eq.(3.24) is found to be ζ = Z−5/16. The corresponding value of the
energy is E1s1s = −(Z − 5/16)2. For helium, Z = 2, this leads to a prediction
for the ground-state energy of E1s1s = −2.848 a.u., which is within 2% of the
experimentally measured energy Eexp

1s1s = −2.903 a.u..
Generally, in the independent-particle approximation, the energy can be

expressed in terms of the radial wave function as

E1s1s = 〈Ψ1s1s|h0(r1) + h0(r2) +
1

r12
|Ψ1s1s〉 . (3.25)
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The expectation values of the single-particle operators h0(r1) and h0(r2) are
identical. The first term in (3.25) can be reduced to

〈Ψ1s1s|h0(r1)|Ψ1s1s〉 =
∫ ∞

0

dr

(

−1

2
P1s(r)

d2P1s
dr2

− Z

r
P 2
1s(r)

)

. (3.26)

Integrating by parts, and making use of the previously derived expression for
the Coulomb interaction in (3.18), we obtain

E1s1s =

∫ ∞

0

dr

[

(

dP1s
dr

)2

− 2
Z

r
P 2
1s(r) + v0(1s, r)P

2
1s(r)

]

. (3.27)

The requirement that the two-particle wave function be normalized,
〈Ψ1s1s|Ψ1s1s〉 = 1, leads to the constraint on the single electron orbital

N1s =

∫ ∞

0

P1s(r)
2dr = 1. (3.28)

We now invoke the variational principle to determine the radial wave functions.
We require that the energy be stationary with respect to variations of the radial
function subject to the normalization constraint. Introducing the Lagrange
multiplier λ, the variational principle may be written

δ(E1s1s − λN1s) = 0 . (3.29)

We designate the variation in the function P1s(r) by δP1s(r), and we require
δP1s(0) = δP1s(∞) = 0. Further, we note the identity

δ
dP1s
dr

=
d

dr
δP1s. (3.30)

With the aid of (3.30) we obtain

δ(E1s1s − λN1s) = 2

∫ ∞

0

(

−d
2P1s
dr2

− 2
Z

r
P1s(r)

+2v0(1s, r)P1s(r)− λP1s(r)
)

δP1s(r) . (3.31)

Requiring that this expression vanish for arbitrary variations δP1s(r) satisfying
the boundary conditions leads to the Hartree-Fock equation

−1

2

d2P1s
dr2

− Z

r
P1s(r) + v0(1s, r)P1s(r) = ε1sP1s(r), (3.32)

where we have defined ε1s = λ/2. The HF equation is just the radial Schrödinger
equation for a particle with orbital angular momentum 0 moving in the potential

V (r) = −Z
r
+ v0(1s, r) . (3.33)
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Figure 3.1: Relative change in energy (E(n)−E(n−1))/E(n) as a function of the
iteration step number n in the iterative solution of the HF equation for helium,
Z = 2.

The HF equation is solved iteratively. We start the iterative solution by ap-
proximating the radial HF function P1s(r) with a screened 1s Coulomb function
having effective charge ζ = Z − 5/16. We use this wave function to evaluate
v0(1s, r). We then solve (3.32) using the approximate potential v0(1s, r). The
resulting radial function P1s(r) is used to construct a second approximation to
v0(1s, r), and the iteration is continued until self-consistent values of P1s(r) and
v0(1s, r) are obtained. The pattern of convergence for this iteration procedure is
illustrated in Fig. 3.1 where we plot the relative change in the single-particle en-
ergy as a function of the iteration step. After 18 steps, the energy has converged
to 10 figures.

The resulting value of single-particle energy is found to be εa = −.9179 . . .
a.u.. The total energy of the two-electron system can be written

E1s1s = 〈1s|2h0 + v0(1s, r)|1s〉 = 2ε1s − 〈1s|v0(1s, r)|1s〉 . (3.34)

From this, we find E1s,1s = −2.861 . . . a.u., only a slight improvement over the
value obtained previously using a screened Coulomb field to approximate the
electron-electron interaction. The HF energy is the most accurate that can be
obtained within the framework of the independent-particle model. To achieve
greater accuracy, we must go beyond the independent-particle model and treat
the correlated motion of the two electrons.

In Fig. 3.2, we plot the functions P1s(r) and v0(1s, r) found by solving the
HF equation for neutral helium, Z = 2. The potential v0(1s, r) has the following
limiting values:

lim
r→0

v0(1s, r) = 〈1s|1
r
|1s〉, (3.35)

lim
r→∞

v0(1s, r) =
1

r
. (3.36)
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Figure 3.2: Solutions to the HF equation for helium, Z = 2. The radial HF
wave function P1s(r) is plotted in the solid curve and electron potential v0(1s, r)
is plotted in the dashed curve.

3.2 HF Equations for Closed-Shell Atoms

For a system of N -electrons, the Hamiltonian is

H(r1, r2, · · · , rN ) =

N
∑

i=1

h0(ri) +
1

2

∑

i6=j

1

rij
, (3.37)

where h0 is the single-particle operator for the sum of the kinetic energy and the
electron-nucleus interaction given in Eq.(3.2), and where 1/rij is the Coulomb
interaction energy between the ith and jth electrons. We seek approximate
solutions to the N -electron Schrödinger equation

H(r1, r2, · · · , rN )Ψ(r1, r2, · · · , rN ) = EΨ(r1, r2, · · · , rN ). (3.38)

The solutions corresponding to electrons (and other fermions) are completely
antisymmetric with respect to the interchange of any two coordinates

Ψ(r1, · · · , ri, · · · , rj , · · · , rN ) = −Ψ(r1, · · · , rj , · · · , ri, · · · , rN ) . (3.39)

It is perhaps worthwhile repeating here an observation by Hartree (1957, p.
16) concerning “exact” solutions to Eq.(3.38) in the many-electron case. If we
consider, for example, the 26 electron iron atom, the function Ψ(r1, r2, · · · , rN )
depends on 3 × 26 = 78 variables. Using a course grid of only 10 points for
each variable, it would require 1078 numbers to tabulate the wave function for
iron. Since this number exceeds the estimated number of particles in the solar
system, it is difficult to understand how the wave function would be stored
even if it could be calculated! Of more practical interest are approximations
to “exact” solutions and methods for systematically improving the accuracy of
such approximations.
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Again, we start with the independent-particle approximation. We write
H = H0 + V , with

H0(r1, r2, · · · , rN ) =

N
∑

i=1

h(ri) , (3.40)

V (r1, r2, · · · , rN ) =
1

2

∑

i6=j

1

rij
−

N
∑

i=1

U(ri) , (3.41)

where, as in the previous section, U(r) is an appropriately chosen approximation
to the electron interaction potential and where h(r) = h0+U(r). If we let ψa(r)
be an eigenfunction of h having eigenvalue εa, then

ψa(r1)ψb(r2) · · ·ψn(rN ) (3.42)

is an eigenfunction of H0 with eigenvalue

E
(0)
ab···n = εa + εb + · · ·+ εn .

Moreover, each of the N ! product functions obtained by permuting the indices
r1, r2, · · · , rN in the wave function (3.42), is degenerate in energy with that
wave function. A completely antisymmetric product wave function is given by
the Slater determinant

Ψab···n(r1, r2, · · · , rN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψa(r1) ψb(r1) · · · ψn(r1)
ψa(r2) ψb(r2) · · · ψn(r2)

...
ψa(rN ) ψb(rN ) · · · ψn(rN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.43)

The antisymmetric two-particle wave function Ψ1s1s(r1, r2) used in the previous
section is a special case of a Slater-determinant wave function with na = 1, la =
0,ma = 0, µa = 1/2 and nb = 1, lb = 0,mb = 0, µb = −1/2. Here, we specify the
orbitals by their quantum numbers; for example, a = (na, la,ma, µa). Since the
determinant vanishes if two columns are identical, it follows that the quantum
numbers a, b, · · · , n must be distinct. The fact that the quantum numbers of
the orbitals in an antisymmetric product wave function are distinct is called the
Pauli exclusion principle.

In the following paragraphs, we will need to evaluate diagonal and
off-diagonal matrix elements of many-particle operators between Slater-
determinant wave functions. Many-particle operators F of the form

F =

N
∑

i=1

f(ri) , (3.44)

such as H0 itself, are called one-particle operators. Operators G of the form

G =
1

2

∑

i6=j
g(rij) , (3.45)
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such as the Coulomb interaction energy, are called two-particle operators. The
following rules will help us evaluate matrix elements of one- and two-particle
operators:

Rule 1
〈Ψa′b′···n′ |F |Ψab···n〉 = 0,

if the indices {a′, b′, · · · , n′} and {a, b, · · · , n} differ in more than one place.

Rule 2
〈Ψab···k′···n|F |Ψab···k···n〉 = fk′k ,

if only the two indices k and k′ differ.

Rule 3

〈Ψab···n|F |Ψab···n〉 =
n
∑

i=a

fii ,

if the indices in the two sets are identical.

Rule 4
〈Ψa′b′···n′ |G|Ψab···n〉 = 0,

if the indices {a′, b′, · · · , n′} and {a, b, · · · , n} differ in more than two places.

Rule 5
〈Ψab···k′···l′···n|G|Ψab···k···l···n〉 = gk′l′kl − gk′l′lk ,

if only the pairs k, l and k′, l′ in the two sets differ.

Rule 6

〈Ψab···k′···n|G|Ψab···k···n〉 =
n
∑

i=a

(gk′iki − gk′iik) ,

if only the indices k and k′ in the two sets differ.

Rule 7

〈Ψab···n|G|Ψab···n〉 =
1

2

∑

i,j

(gijij − gijji) ,

if the two sets are identical, where both sums extend over all of the indices
{a, b, · · · , n}

In the above rules, we have introduced the notation:

fab = 〈a|f |b〉 =
∫

d3rψ†a(r)f(r)ψb(r) , (3.46)

gabcd = 〈ab|g|cd〉 =
∫

d3r1

∫

d3r2 ψ
†
a(r1)ψ

†
b(r2)g(r12)ψc(r1)ψd(r2) . (3.47)



72 CHAPTER 3. SELF-CONSISTENT FIELDS

With the aid of these rules, we easily work out the expectation value of the
H0 and H, using a Slater determinant wave function:

E
(0)
ab···n =

∑

a

(h0)aa +
∑

a

Uaa , (3.48)

E
(1)
ab···n =

1

2

∑

ab

(gabab − gabba)−
∑

a

Uaa , (3.49)

Eab···n =
∑

a

(h0)aa +
1

2

∑

ab

(gabab − gabba) , (3.50)

where the sums extend over all one-electron orbital quantum numbers in the set
{a, b, · · · , n}. The terms gabab and gabba are matrix elements of the Coulomb
interaction g(r12) = 1/r12. The term gabab is called the direct matrix element
of the operator g(r12) and gabba is called the exchange matrix element.

The lowest-energy eigenstate of H0 for an N -electron atom is a product of
the N lowest-energy one-electron orbitals. For two-electron atoms, these are the
two 1s orbitals with different spin projections. In atomic model potentials, such
as those discussed in the previous chapter, the lowest few orbital eigenvalues are
ordered in the sequence ε1s < ε2s < ε2p < ε3s < ε3p. (The ordering beyond this
point depends on the potential to some extent and will be considered later.)

For three- or four-electron atoms (lithium and beryllium), the ground state-
wave function is taken to be a Slater determinant made up of two 1s orbitals,
and one or two 2s orbitals. The radial probability density functions for these
atoms have two distinct maxima, one corresponding to the 1s electrons near 1/Z
a.u., and a second corresponding to the 2s electron near 1 a.u.. This variation
of the density is referred to as the atomic shell structure. Electronic orbitals
having the same principal quantum number n belong to the same shell; their
contribution to the radial density is localized. Orbitals having the same principal
quantum number, but different angular quantum numbers, belong to different
subshells. They contribute fine structure to the radial density function of the
atom. The 2s subshell is complete after including the two 2s orbitals with
different spin projections. We continue through the first row of the periodic
table, adding successive 2p electrons with different values of m and µ until the
n = 2 shell is complete at neon, Z = 10. This building up scheme can be
continued throughout the periodic system.

Slater-determinant wave functions for atoms with closed subshells can be
shown to be eigenstates of L2, Lz, S

2 and Sz. The eigenvalues of all four of
these operators are 0. Similarly, Slater-determinant wave function for atoms
with one electron beyond closed subshells, or for atoms with a single hole in an
otherwise filled subshell, are also angular momentum eigenstates. To construct
angular momentum eigenstates for other open-shell atoms, linear combinations
of Slater determinants, coupled together with Clebsch-Gordan coefficients, are
used. We defer further discussion of open-shell atoms until the next chapter
and concentrate here on the case of atoms with closed subshells.

We define the configuration of an atomic state to be the number and type of
one-electron orbitals present in the Slater-determinant wave function represent-
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ing that state. A configuration having k orbitals with principal quantum number
n and angular quantum number l is designated by (nl)k. The configurations of
the ground states of the closed-shell atoms being considered are: helium (1s)2;
beryllium (1s)2(2s)2; neon (1s)2(2s)2(2p)6; magnesium (1s)2(2s)2(2p)6(3s)2; ar-
gon (1s)2(2s)2(2p)6(3s)2(3p)6, calcium (1s)2(2s)2(2p)6(3s)2(3p)6(4s)2; and so
forth.

The orbitals ψa(r) are decomposed into radial, angular, and spin components
as ψa(ri) = (Pnala(ri)/ri)Ylama

(r̂i)χµa(i), and the terms in the expression for
the energy (3.50) are worked out. First, we evaluate (h0)aa to obtain:

(h0)aa =

∫ ∞

0

drPnala

(

−1

2

d2Pnala
dr2

+
la(la + 1)

2r2
Pnala −

Z

r
Pnala

)

. (3.51)

We note that this term has the same value for each of the 2(2la + 1) orbitals in
the nala subshell. The integral on the right-hand side of this equation is often
denoted by I(nala). On integrating by parts, we can rewrite Eq. (3.51) as

I(nala) =

∫ ∞

0

dr

[

1

2

(

dPnala
dr

)2

+
la(la + 1)

2r2
P 2
nala −

Z

r
P 2
nala

]

. (3.52)

We will need this term later in this section.
Next, we examine the direct Coulomb matrix element gabab. To evaluate

this quantity, we make use of the decomposition of 1/r12 given in Eq.(3.15).
Further, we use the well-known identity

Pl(cos θ) =

l
∑

m=−l
(−1)mCl

−m(r̂1)C
l
m(r̂2) , (3.53)

to express the Legendre polynomial of cos θ, where θ is the angle between the
two vectors r1 and r2, in terms of the angular coordinates of the two vectors
in an arbitrary coordinate system. Here, as in Chapter 1, the quantities C l

m(r̂)
are tensor operators, defined in terms of spherical harmonics by:

Cl
m(r̂) =

√

4π

2l + 1
Ylm(r̂) .

With the aid of the above decomposition, we find:

gabab =
∞
∑

l=0

l
∑

m=−l
(−1)m

∫ ∞

0

dr1P
2
nala(r1)

∫

dΩ1Y
∗
lama

(r̂1)C
l
−m(r̂1)Ylama

(r̂1)

∫ ∞

0

dr2P
2
nblb

(r2)

(

rl<
rl+1
>

)∫

dΩ2Y
∗
lbmb

(r̂2)C
l
m(r̂2)Ylbmb

(r̂2). (3.54)

The angular integrals can be expressed in terms of reduced matrix elements of
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the tensor operator C l
m using the Wigner-Eckart theorem. We find

gabab =

∞
∑

l=0

6− l0

lama

lama

6− l0

lbmb

lbmb

〈la||Cl||la〉〈lb||Cl||lb〉Rl(nala, nblb, nala, nblb) ,

(3.55)
where

Rl(a, b, c, d) =

∫ ∞

0

dr1Pa(r1)Pc(r1)

∫ ∞

0

dr2Pb(r2)Pd(r2)

(

rl<
rl+1
>

)

. (3.56)

These integrals of products of four radial orbitals are called Slater integrals.
The Slater integrals can be written in terms of multipole potentials. We define
the potentials vl(a, b, r) by

vl(a, b, r1) =

∫ ∞

0

dr2Pa(r2)Pb(r2)

(

rl<
rl+1
>

)

. (3.57)

We may then write

Rl(a, b, c, d) =

∫ ∞

0

drPa(r)Pc(r)vl(b, d, r) (3.58)

=

∫ ∞

0

drPb(r)Pd(r)vl(a, c, r) . (3.59)

The potentials vl(a, b, r) are often expressed in the form vl(a, b, r) = Yl(a, b, r)/r.
The functions Yl(a, b, r) are called Hartree screening functions. Later, we will
designate the functions vl(a, a, r) using the slightly simpler notation vl(a, r).
The function v0(a, r) is the potential at r due to a spherically symmetric charge
distribution with radial density Pa(r)

2. The functions vl(b, r) have the following
limiting forms which will be used later:

lim
r→0

vl(a, r) = rl 〈a| 1

rl+1
|a〉 , (3.60)

lim
r→∞

vl(a, r) =
1

rl+1
〈a|rl|a〉 . (3.61)

Following the outline of the calculation for the direct integral gabab, we may
write the exchange integral gabba as

gabba =

∞
∑

l=0

l
∑

m=−l
δµaµb

6− lm

lbmb

lama

6− lm

lbmb

lama

〈lb||Cl||la〉2Rl(nala, nblb, nblb, nala) .

(3.62)
Let us carry out the sum over the magnetic quantum numbers mb and µb in

Eq.(3.55). We make use of the identity

¹¸
º·¾lb

−
l0

= δl0
√

2lb + 1 (3.63)
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to obtain

∑

mbµb

gabab = 2

√

2lb + 1

2la + 1
〈la||C0||la〉〈lb||C0||lb〉R0(nala, nblb, nala, nblb)

= 2(2lb + 1)R0(nala, nblb, nala, nblb) . (3.64)

To carry out the sum over the magnetic quantum numbers mb and µb and
m in Eq.(3.62), we use the identity

lama

−¹¸
º·lb

l

+

lama =
1

2la + 1
(3.65)

and find
∑

mbµb

gabba =
∑

l

〈lb||Cl||la〉2
2la + 1

Rl(nala, nblb, nblb, nala) . (3.66)

The sum over l extends over all values permitted by the angular momentum
and parity selection rules contained in 〈lb||Cl||la〉, namely, |la− lb| ≤ l ≤ la+ lb,
with the constraint that the sum la + lb + l is an even integer.

We are now in a position to evaluate the expression for the energy given in
Eq.(3.50). We find

Eab···n =
∑

nala

2(2la + 1)

{

I(nala) +
∑

nblb

(2lb + 1)

(

R0(nala, nblb, nala, nblb)

−
∑

l

ΛlallbRl(nala, nblb, nblb, nala)

)}

, (3.67)

with

Λlallb =
〈la||Cl||lb〉2

2(2la + 1)(2lb + 1)
=

1

2

(

la l lb
0 0 0

)2

. (3.68)

The coefficients Λlallb are symmetric with respect to an arbitrary interchange
of indices. Values of Λlallb for 0 ≤ la ≤ lb ≤ 4 are given in Table 3.1.

To maintain normalization of the many-electron wave function, we must re-
quire that the radial functions corresponding to a fixed value of l be orthonormal.
Therefore,

Nnala,nbla =

∫ ∞

0

drPnala(r)Pnbla(r) = δnanb . (3.69)

Introducing Lagrange multipliers to accommodate the constraints in
Eq.(3.69), we can express the variational principle as:

δ(Eab···n −
∑

nanbla

λnala,nblaNnala,nbla) = 0 , (3.70)

and we demand λnala,nbla = λnbla,nala .
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Table 3.1: Coefficients of the exchange Slater integrals in the nonrelativistic
Hartree-Fock equations: Λlallb . These coefficients are symmetric with respect
to any permutation of the three indices.

la l lb Λlallb la l lb Λlallb la l lb Λlallb
0 0 0 1/2 2 0 2 1/10 3 1 4 2/63
0 1 1 1/6 2 2 2 1/35 3 3 4 1/77
0 2 2 1/10 2 4 2 1/35 3 5 4 10/1001
0 3 3 1/14 2 1 3 3/70 3 7 4 35/2574
0 4 4 1/18 2 3 3 2/105

2 5 3 5/231 4 0 4 1/18
1 0 1 1/6 2 2 4 1/35 4 2 4 10/693
1 2 1 1/15 2 4 4 10/693 4 4 4 9/1001
1 1 2 1/15 2 6 4 5/286 4 6 4 10/1287
1 3 2 3/70 4 8 4 245/21879
1 2 3 3/70 3 0 3 1/14
1 4 3 2/63 3 2 3 2/105
1 3 4 2/63 3 4 3 1/77
1 5 4 5/198 3 6 3 50/300

The equation obtained by requiring that this expression be stationary with
respect to variations δPnala(r) is found to be

−1

2

d2Pnala
dr2

+
la(la + 1)

2r2
Pnala(r)−

Z

r
Pnala(r)+

∑

nblb

(4lb + 2)

(

v0(nblb, r)Pnala(r)−
∑

l

Λlallbvl(nblb, nala, r)Pnblb(r)

)

= εnalaPnala(r) +
∑

nb 6=na

εnala,nblaPnbla(r), (3.71)

where εnala,nbla = λnala,nbla/(4la + 2) and εnala = λnala,nala/(4la + 2).

For orientation, let us examine several special cases. Let us first consider the
case of helium for which there is a single 1s orbital and a single HF equation.
The only nonvanishing angular coefficient in the second line of Eq.(3.71) is
Λ000 = 1/2. The entire second row of the equation reduces to

2

(

v0(1s, r)P1s(r)−
1

2
v0(1s, r)P1s(r)

)

= v0(1s, r)P1s(r) .

The HF equation, Eq.(3.71), reduces to Eq.(3.32) derived in the previous section.

For the case of beryllium, there are two distinct radial orbitals for the 1s
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and 2s shells, respectively. The second line of Eq.(3.71) takes the form

(

v0(1s, r) + 2v0(2s, r)

)

P1s − v0(2s, 1s, r)P2s(r), for nala = 1s,

(

2v0(1s, r) + v0(2s, r)

)

P2s − v0(1s, 2s, r)P1s(r), for nala = 2s.

The two HF equations for beryllium become

−1

2

d2P1s
dr2

+

(

−Z
r
+ v0(1s, r) + 2v0(2s, r)

)

P1s − v0(2s, 1s, r)P2s(r)

= ε1sP1s(r) + ε1s,2sP2s(r), (3.72)

−1

2

d2P2s
dr2

+

(

−Z
r
+ 2v0(1s, r) + v0(2s, r)

)

P2s − v0(1s, 2s, r)P1s(r)

= ε1s,2sP1s(r) + ε2sP2s(r). (3.73)

The off-diagonal Lagrange multiplier ε1s,2s is chosen so as to insure the orthog-
onality of the 1s and 2s radial orbitals. Multiplying Eq.(3.72) by P2s(r) and
Eq.(3.73) by P1s(r), subtracting the resulting equations, and integrating from
0 to ∞, we obtain the identity

(ε1s − ε2s)
∫ ∞

0

drP1s(r)P2s(r) = −
1

2

(

P2s
dP1s
dr
− P1s

dP2s
dr

)∞

0

. (3.74)

For solutions regular at 0 and ∞, the right-hand side of this equation van-
ishes. Since ε2s 6= ε1s, the solutions to Eqs.(3.72) and (3.73) are orthogonal
for arbitrary values of the off-diagonal Lagrange multiplier. We make the sim-
plest choice here, namely, ε1s,2s = 0. The HF equations then reduce to a
pair of radial Schrödinger equations coupled together by the potential function
v0(1s, 2s, r) = v0(2s, 1s, r).

As in the example of beryllium, it is easily shown for a general closed-shell
atom that the orbitals associated with a specific value of l and different values of
n are orthogonal no matter what value is chosen for the off-diagonal Lagrange
multipliers. We take advantage of this fact to simplify the HF equations by
choosing εnala,nbla = 0 for all values of na, nb and la.

Generally, we define the Hartree-Fock potential VHF by specifying its action
on a arbitrary radial orbital P∗(r). Writing VHF P∗(r) = Vdir P∗(r) + Vexc P∗(r)
we find,

Vdir P∗(r) =
∑

b

(4lb + 2) v0(b, r)P∗(r) , (3.75)

Vexc P∗(r) =
∑

b

(4lb + 2)
∑

l

Λlbll∗vl(b, ∗, r)Pb(r) . (3.76)

In the above equations, the sum over b is understood to mean a sum over nb and
lb. The direct potential Vdir is a multiplicative operator. It is just the potential
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due to the spherically averaged charge distribution of all atomic electrons. The
exchange potential Vexc is, by contrast, a nonlocal operator defined by means of
an integral. The direct part of the HF potential has the following limits

lim
r→0

Vdir(r) =
∑

b

(4lb + 2)〈b|1
r
|b〉 , (3.77)

lim
r→∞

Vdir(r) =
N

r
, (3.78)

where N =
∑

b(4lb + 2) = number of electrons in the atom. For neutral atoms,
the direct part of the HF potential precisely cancels the nuclear potential at
large r. The asymptotic potential for a neutral atom is, therefore, dominated
by the monopole parts of the exchange potential at large r. Using the fact that
Λlb0la = δlbla/(4la + 2), and the fact that the limiting value of v0(nbla, nala, r)
is

lim
r→∞

v0(nbla, nala, r) =
1

r

∫ ∞

0

drPnbla(r)Pnala(r) =
δnbna
r

, (3.79)

we find that

lim
r→∞

VexcPa(r) = −
1

r
Pa(r) . (3.80)

The sum of the nuclear potential and the HF potential, therefore, approaches
the ionic potential (N − 1)/r for large r. With the above definitions, we may
write the HF equation for an atom with closed subshells as

−1

2

d2Pa
dr2

+

(

VHF −
Z

r
+
la(la + 1)

2r2

)

Pa(r) = εaPa(r) , (3.81)

where the index a ranges over the occupied subshells (nala). The HF equations
are a set of radial Schrödinger equations for electrons moving in a common
central potential V (r) = −Z/r + U(r). By comparison with Eq.(2.12), the
“best” value for the average central potential U(r) is seen to be the nonlocal
HF potential VHF.

Once the HF equations have been solved, the energy can be determined from
Eq.(3.50), which may be written in terms of radial orbitals as

Eab···n =
∑

a

εa −
∑

a

(VHF)aa +
1

2

∑

ab

(gabab − gabba) (3.82)

=
∑

a

εa −
1

2

∑

ab

(gabab − gabba) . (3.83)

Here, we have made use of the fact that (VHF)aa =
∑

b (gabab − gabba). Express-
ing the energy in terms of Slater integrals, we find

Eab···n =
∑

a

2[la]

[

εa −
∑

b

[lb]

(

R0(a, b, a, b)−
∑

l

ΛlallbRl(a, b, b, a)

)]

, (3.84)

with [la]
def
= 2la + 1.
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The HF energy eigenvalue εc is related to the energy required to remove an
electron from the subshell c. If we calculate the energy of an ion with closed
subshells except for a vacancy in subshell c, using a Slater determinant wave
function, then we obtain

Eion =
∑

a

〈a|h0|a〉− 〈c|h0|c〉+
1

2

∑

ab

(gabab− gabba)−
∑

a

(gacac− gcaac) . (3.85)

Let us use the orbitals from the closed-shell HF approximation for the atom to
evaluate this expression. We then obtain

Eion−Eatom = −〈c|h0|c〉−
∑

a

(gacac− gcaac) = −〈c|h0+VHF|c〉 = −εc . (3.86)

Thus we find that the removal energy, calculated using HF wave functions for
the atom, is the negative of the corresponding HF eigenvalue. This result is
called Koopmans’ theorem.

In Section 3.1, we have discussed the numerical solution to the HF equation
for the 1s orbital in helium. In Section 3.3, we discuss the numerical solution to
the coupled system of HF equations that arise for other closed-subshell atoms
and ions.

3.3 Numerical Solution to the HF Equations

As in the case of helium, the Hartree-Fock equations (3.81) for a general closed-
shell atom are solved iteratively. We approximate the HF orbitals by unscreened
Coulomb field orbitals initially. This is a fair approximation for the innermost
1s orbitals, but a very poor approximation for the outer orbitals. To create a
more realistic starting potential, we do a preliminary self-consistent calculation
of the direct part of the HF potential scaled to give the correct ionic charge.
The Coulomb orbitals are gradually modified until self-consistency at the level
is achieved at a level of 1 part in 103. The resulting potential is a good local
approximation to HF potential and the resulting orbitals are good approxima-
tions to the final HF orbitals for outer as well as inner shells. Moreover, orbitals
with the same value of l but different values of n are orthogonal. These screened
orbitals are used to start the iterative solution of the HF equations. The iter-
ation of the HF equations, including both direct and exchange terms, is then
performed until self-consistency is achieved at a level of 1 part in 109.

3.3.1 Starting Approximation (hart)

As outlined above, we carry out a self-consistent calculation of single-particle
orbitals in a model potential U(r) as a preliminary step in the solution to the
HF equations. The model potential is obtained by scaling the direct part of the
HF potential to give a potential with the proper asymptotic behavior.

We choose U(r) = 0, initially, and use the routine master to solve the radial
Schrödinger equation in the unscreened nuclear Coulomb field V (r) = −Z/r for
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Table 3.2: Energy eigenvalues for neon. The initial Coulomb energy eigenvalues
are reduced to give model potential values shown under U(r). These values are
used as initial approximations to the HF eigenvalues shown under VHF.

State Coulomb U(r) VHF
1s -50.00000 -29.27338 -32.77244
2s -12.50000 -1.42929 -1.93039
2p -12.50000 -0.65093 -0.85041

each occupied orbital Pa(r). We accumulate the radial charge density ρ(r) =
∑

a(4la+2)Pa(r)
2. The direct part of the HF potential is given in terms of ρ(r)

by

Vdir(r) =

∫ ∞

0

dr′
ρ(r′)

r>
. (3.87)

Asymptotically, limr→∞ Vdir(r) = N/r, where N is the number of atomic elec-
trons. To create a model potential with the correct asymptotic behavior, we mul-
tiply Vdir by the factor (N−1)/N . We use the potential U(r) = (1−1/N)Vdir(r),
calculated self-consistently, as our starting approximation. We add U(r) to the
nuclear potential and solve the radial equations once again to obtain a second
approximation. This second approximation is used to obtain new values of ρ(r)
and U(r). These values are used to obtain a third approximation. This itera-
tion procedure is continued until the potential is stable to some desired level of
accuracy.

Since this potential is only used as an initial approximation in solving the HF
equations, it is not necessary to carry out the self-consistent iteration accurately.
We terminate the iterative solution to the equations when the relative change
in the eigenvalue for each orbital, from loop to loop in the iteration, is less than
1 part in 103.

The iteration procedure described above does not converge in general, but
oscillates from loop to loop with increasing amplitude. To eliminate such os-
cillations, we change the initial Coulomb interaction gradually. If we designate
the value of U(r) from the nth iteration loop as U (n)(r), then at the (n + 1)st

loop we use the combination

U(r) = ηU (n+1)(r) + (1− η)U (n)(r)

rather than U (n+1)(r) to continue the iteration. Choosing η in the range 0.375−
0.5 leads to convergence in all cases.

The subroutine hart is designed to carry out the iteration. For the case of
neon, it required 13 iterations to obtain the model potential U(r) self-consistent
to 1 part in 103 using η = 0.5. The resulting eigenvalues are compared with the
initial Coulomb eigenvalues and the final HF eigenvalues in Table 3.2.
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A comment should be made in connection with the use of the subroutine
master. As discussed previously, the routine master itself uses an iterative
procedure to determine the radial wave functions. master requires only a few
iterations if an accurate estimate of the eigenvalue is provided initially. To
produce such an estimate, we use perturbation theory to determine the change
in the eigenvalues induced by changing the potential. A small loop is introduced
after U(r) is changed at the end of an iteration step to calculate the first-order
change in each of the energy eigenvalues. Perturbation theory gives

δεa =

∫ ∞

0

dr [U (n+1)(r)− U (n)(r)]P 2
a (r) . (3.88)

This correction to the energy at the end of the nth iteration is added to the
output energy εa from master and used as the input energy for the (n + 1)st

loop.
After the iteration in the routine hart is completed, we have a model po-

tential U(r) and a set of orbitals Pa(r) and energies εa that provide a suitable
starting point for the iterative solution to the HF equations.

3.3.2 Refining the Solution (nrhf)

The HF equation for orbital Pa is written as a pair of inhomogeneous differential
equations

dPa
dr
−Qa = 0 , (3.89)

dQa

dr
+ faPa = 2(VHF − U)Pa , (3.90)

where

fa(r) = 2

(

εa −
la(la + 1)

2r2
+
Z

r
− U(r)

)

. (3.91)

These equations are to be solved iteratively. We start with functions P
(0)
a (r) and

ε
(0)
a obtained from the routine hart described in the previous section. To solve
the HF equations, we set up an iteration scheme in which Pa(r) is replaced by

P
(n−1)
a (r) on the right-hand side of Eq.(3.90) in the nth approximation. Thus

we write,

dP
(n)
a

dr
−Q(n)

a = 0 , (3.92)

dQ
(n)
a

dr
+ f (n)a P (n)

a = 2(V
(n−1)
HF − U)P (n−1)

a , (3.93)

where f
(n)
a is given by Eq.(3.91) with εa replaced by ε

(n)
a . The functions P

(0)
a (r)

and Q
(0)
a (r) satisfy the homogeneous equations obtained from Eqs.(3.89-3.90)
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by dropping the right-hand side and replacing fa by f (0). From Eqs.(3.92-3.93),
we readily obtain the relation

ε(n)a = ε(0)a +

∫∞
0
drP

(0)
a (r)

(

V
(n−1)
HF − U(r)

)

P
(n−1)
a (r)

∫∞
0
drP

(0)
a (r)P

(n)
a (r)

. (3.94)

We use this equation, with P
(n)
a (r) replaced by P

(n−1)
a (r) in the denominator,

to obtain an approximate value of ε
(n)
a to use in the function f

(n)
a (r). This

approximate value of ε
(n)
a will be readjusted later in the iteration step to give a

properly normalized orbital. The equations (3.92-3.93) are solved by using the
method of variation of parameters.

Solving the inhomogeneous equations: Consider the pair of inhomoge-
neous differential equations

dP (r)

dr
−Q(r) = 0 , (3.95)

dQ(r)

dr
+ f(r)P (r) = R(r) . (3.96)

We can obtain solutions to the homogeneous equations (obtained by setting
R(r) = 0) that are regular at the origin using the routine outsch described in
Chapter 2. We designate these solutions by P0 and Q0. Similarly, we can obtain
solutions to the homogeneous equations that are regular at infinity by inward
integration using the routine insch. We designate these solutions by P∞ and
Q∞. We seek a solution to the inhomogeneous equations (3.95-3.96) in the form

P (r) = A(r)P0(r) +B(r)P∞(r) , (3.97)

Q(r) = A(r)Q0(r) +B(r)Q∞(r) , (3.98)

where A(r) and B(r) are functions that are to be determined. Substituting into
Eqs.(3.95-3.96), we find that the functions A(r) and B(r) satisfy the differential
equations

dA

dr
= − 1

W
P∞(r)R(r) , (3.99)

dB

dr
=

1

W
P0(r)R(r) , (3.100)

where W = P0(r)Q∞(r)−Q0(r)P∞(r) is a constant (independent of r) known
as the Wronskian of the two solutions. Integrating Eqs.(3.99-3.100), we obtain
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a solution to Eqs.(3.95-3.96) regular at the origin and infinity:

P (r) =
1

W

(

P∞(r)

∫ r

0

dr′P0(r
′)R(r′)

+P0(r)

∫ ∞

r

dr′P∞(r′)R(r′)

)

, (3.101)

Q(r) =
1

W

(

Q∞(r)

∫ r

0

dr′P0(r
′)R(r′)

+Q0(r)

∫ ∞

r

dr′P∞(r′)R(r′)

)

. (3.102)

This method of solving a linear inhomogeneous set of equations is known as
the method of variation of parameters. We use the resulting formulas to obtain
numerical solutions to Eqs.(3.92-3.93) at each stage of iteration.

Normalizing the orbitals: The orbitals obtained using Eqs.(3.101-3.102) are
regular at the origin and infinity, however, they are not properly normalized. To
obtain normalized orbitals at the nth step of iteration, it is necessary to adjust

the eigenvalue ε
(n)
a from the approximate value given in (3.94). Let us suppose

that the norm of the solution to the inhomogeneous equations is
∫ ∞

0

drP 2(r) = N 6= 1 . (3.103)

We modify the energy eigenvalue by a small amount δε. This induces small
changes δP and δQ in the radial functions P (r) and Q(r). These small changes
in the solution satisfy the pair of inhomogeneous equations

dδP

dr
− δQ(r) = 0 , (3.104)

dδQ

dr
+ f(r) δP (r) = −2δε P (r) . (3.105)

The solution to this equation, found by variation of parameters, is

δP (r) = −2δε P̂ (r) , (3.106)

δQ(r) = −2δε Q̂(r) , (3.107)

with

P̂ (r) =
1

W

(

P∞(r)

∫ r

0

dr′P0(r
′)P (r′)

+P0(r)

∫ ∞

r

dr′P∞(r′)P (r′)

)

, (3.108)

Q̂(r) =
1

W

(

Q∞(r)

∫ r

0

dr′P0(r
′)P (r′)

+Q0(r)

∫ ∞

r

dr′P∞(r′)P (r′)

)

. (3.109)
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We must choose δε to insure that the orbital P + δP is properly normalized.
Thus, we require (neglecting terms of order δP 2) that

∫ ∞

0

drP (r)2 + 2

∫ ∞

0

drP (r)δP (r) = 1 . (3.110)

This equation can be rewritten as

δε =
N − 1

4
∫∞
0
drP (r)P̂ (r)

. (3.111)

Equation (3.111) is itself used iteratively to obtain a properly normalized orbital.
Usually a single iteration is sufficient to obtain functions normalized to parts in
1012, although occasionally two iterations are required to obtain this accuracy.

Once starting orbitals have been obtained from the routine hart, first-order
and second-order corrections are made to each orbital. A selection scheme is
then set up in which the orbitals with the largest values of the relative change
in energy are treated in order. For example, if we are considering the Be atom
which has 2 orbitals, we iterate the 1s orbital twice then we iterate the 2s
orbital twice. At this point, we chose the orbital with the largest value of

|ε(2)a − ε(1)a |/|ε(2)a | and iterate this orbital until the relative change in energy is no
longer the larger of the two. We then iterate the other orbital until the relative
change in energy is no longer the larger. The selection procedure continues until
the changes in relative energies of both orbitals are less than one part in 109.

Once the iteration has converged to this level of accuracy, we calculate the
total energy, check the orthogonality and normalization of the orbitals, and
write the radial functions to an output data file for use in other applications.

In Table 3.3, we list the HF eigenvalues and total energies for the noble
gases helium, neon, argon, krypton and xenon. In this table, we also give the
average values of r and 1/r for each individual subshell. It should be noticed
that 〈nl|r|nl〉 and 〈nl|1/r|nl〉 depend strongly on the principal quantum num-
ber n but only weakly on the angular momentum quantum number l within a
shell. For comparison, we also give the negative of the removal energy (-Bnl) for
an electron in the shell nl which, according to Koopmans’ theorem, is approxi-
mately the HF eigenvalue εnl. The experimental binding energies presented in
this table are averages over the fine-structure components.

In Fig. 3.3, we show the radial wave functions for the occupied orbitals in
neon and argon. The 1s orbitals peak at about 1/Z a.u. whereas the outer
orbitals peak at about 1 a.u. and become insignificant beyond 4 a.u. for both
elements. In Fig. 3.4, we plot the radial densities for the elements beryllium,
neon, argon and krypton. The shell structure of these elements is evident in the
figure.

3.4 Atoms with One Valence Electron

Let us consider the alkali-metal atoms lithium, sodium, potassium, rubidium
and cesium, all of which have one valence electron outside of closed shells. We



3.4. ATOMS WITH ONE VALENCE ELECTRON 85

10
−3

10
−2

10
−1

10
0

10
1

r (a.u.)

−2

0

2

4
10

−3
10

−2
10

−1
10

0
10

1−2

0

2

4

1s 2p

2s

1s
2s

2p 3s

3p

Neon

Argon

Figure 3.3: Radial HF wave functions for neon and argon.

10
−3

10
−2

10
−1

10
0

10
1

r (a.u.)

0
8

16
24

10
−3

10
−2

10
−1

10
0

10
1

r (a.u.)

0
20
40
60

10
−3

10
−2

10
−1

10
0

10
10

2

4

10
−3

10
−2

10
−1

10
0

10
10

4
8

12

Be Ne

Ar Kr

Figure 3.4: Radial HF densities for beryllium, neon, argon and krypton.
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Table 3.3: HF eigenvalues εnl , average values of r and 1/r for noble gas atoms.
The negative of the experimental removal energies -Bexp from Bearden and
Burr (1967, for inner shells) and Moore (1957, for outer shell) is also listed for
comparison.

Atom nl εnl 〈r〉 〈1/r〉 -Bexp

Helium
1s -.917956 .92727 1.68728 -0.903
Etot -2.861680

Neon
1s -32.772443 .15763 9.61805 -31.86
2s -1.930391 .89211 1.63255 -1.68
2p -.850410 .96527 1.43535 -0.792
Etot -128.547098

Argon
1s -118.610350 .08610 17.55323 -117.70
2s -12.322153 .41228 3.55532 -12.00
2p -9.571466 .37533 3.44999 -9.10
3s -1.277353 1.42217 .96199 -0.93
3p -.591017 1.66296 .81407 -0.579
Etot -526.817512

Krypton
1s -520.165468 .04244 35.49815 -526.47
2s -69.903082 .18726 7.91883 -70.60
2p -63.009785 .16188 7.86843 -62.50
3s -10.849467 .53780 2.63756 · · ·
3p -8.331501 .54263 2.52277 -8.00
3d -3.825234 .55088 2.27694 -3.26
4s -1.152935 1.62939 .80419 -0.88
4p -.524187 1.95161 .66922 -0.514
Etot -2752.054983

Xenon
1s -1224.397777 .02814 53.46928 -1270.14
2s -189.340123 .12087 12.30992 -200.39
2p -177.782449 .10308 12.29169 -181.65
3s -40.175663 .31870 4.44451 -36.72
3p -35.221662 .30943 4.52729 -34.44
3d -26.118869 .28033 4.30438 -24.71
4s -7.856302 .74527 1.84254 · · ·
4p -6.008338 .77702 1.74149 · · ·
4d -2.777881 .87045 1.50874 · · ·
5s -.944414 1.98096 .64789 · · ·
5p -.457290 2.33798 .54715 -0.446
Etot -7232.138370
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take the wave function of an alkali-metal atom to be a Slater determinant com-
posed of orbitals from the closed shells and a single valence orbital ψv. The
energy is given by the expression

Eab···nv =
∑

a

〈a|h0|a〉+ 〈v|h0|v〉+
1

2

∑

ab

(gbaba − gabba) +
∑

a

(gavav − gvaav) ,

(3.112)
where the sums over a and b extend over all closed subshells. We can use
the results from the previous section to carry out the sums over the magnetic
substates of the closed shells to obtain

Eab···nv = Eab···n + I(nvlv) +
∑

nala

2[la]

(

R0(avav)−
∑

k

ΛlaklvRk(vaav)

)

,

(3.113)
where Eab···n is the energy of the closed core given in Eq.(3.67). Let us assume
that the orbitals for the closed shells have been determined from a HF calculation
for the closed ionic core. The core energy in Eq.(3.113) is then fixed. The
valence orbital in Eq.(3.113) is determined variationally. The requirement that
the energy be stationary under variations of the valence electron radial function
Pv(r), subject to the constraint that the valence orbital remain normalized,
leads to the differential equation

−1

2

d2Pv
dr2

+

(

VHF −
Z

r
+
lv(lv + 1)

2r2

)

Pv = εvPv , (3.114)

where VHF is the core HF potential written down in Eqs.(3.75-3.76). This ho-
mogeneous equation can be solved using the variation of parameters scheme
described in the previous section, once the core orbitals are known. Since the
equation is homogeneous, the solution can be trivially normalized. The poten-
tial in Eq.(3.113) is the HF potential of the N − 1 electron ion; it is referred to
as the V N−1

HF potential.
Since the valence electron and those core electrons that have the same orbital

angular momentum as the valence electron move in precisely the same potential,
it follows that the corresponding radial functions are orthogonal. Thus,

∫ ∞

0

drPv(r)Pa(r) = 0 for la = lv . (3.115)

The total energy of the atom can be expressed in terms of the HF eigenvalue εv
as

Eab···nv = Eab···n + εv, (3.116)

where, again, Eab···n is the energy of the ionic core. It follows that the binding
energy of the valence electron is just the negative of the corresponding eigenvalue
Bv = Eion − Eatom = −εv.

Eigenvalues of the low-lying states of the alkali-metal atoms are presented in
Table 3.4. These values agree with measured binding energies at the level of a
few percent for lithium. This difference between HF eigenvalues and experiment
grows to approximately 10% for cesium.
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Table 3.4: Energies of low-lying states of alkali-metal atoms as determined in a
V N−1
HF Hartree-Fock calculation.

Lithium Sodium Potassium Rubidium Cesium
nl εnl nl εnl nl εnl nl εnl nl εnl

2s -.196304 3s -.181801 4s -.146954 5s -.137201 6s -.123013
3s -.073797 4s -.070106 5s -.060945 6s -.058139 7s -.053966
4s -.038474 5s -.037039 6s -.033377 7s -.032208 8s -.030439
5s -.023570 6s -.022871 7s -.021055 8s -.020461 9s -.019551

2p -.128637 3p -.109438 4p -.095553 5p -.090135 6p -.084056
3p -.056771 4p -.050321 5p -.045563 6p -.043652 7p -.041463
4p -.031781 5p -.028932 6p -.026773 7p -.025887 8p -.024858
5p -.020276 6p -.018783 7p -.017628 8p -.017147 9p -.016584

3d -.055562 3d -.055667 3d -.058117 4d -.060066 5d -.066771
4d -.031254 4d -.031315 4d -.032863 5d -.033972 6d -.037148
5d -.020002 5d -.020038 5d -.020960 6d -.021570 7d -.023129

3.5 Dirac-Fock Equations

The Hartree-Fock theory is easily extended to include relativistic effects. We
start with a many-body Hamiltonian patterned after its nonrelativistic counter-
part:

H(r1, r2, · · · , rN ) =
N
∑

i=1

h0(ri) +
1

2

∑

i6=j

1

rij
. (3.117)

In the relativistic case, the one-electron Hamiltonian h0(r) is taken to be the
Dirac Hamiltonian

h0(r) = cα · p+ βc2 − Z/r . (3.118)

The resulting many-body Hamiltonian is called the Dirac-Coulomb Hamilto-
nian. It provides a useful starting point for discussions of relativistic effects
in atoms. The Dirac-Coulomb Hamiltonian must be supplemented by the Breit
interaction to understand fine-structure corrections precisely. We will ignore the
Breit interaction initially, and return to it after we have derived the Dirac-Fock
equations.

The reader must be cautioned that there are difficulties associated with ap-
plications of the Dirac-Coulomb Hamiltonian (with or without the Breit Inter-
action) in higher-order perturbation theory calculations. These difficulties can
only be resolved by recourse to Quantum Electrodynamics. We will discuss these
difficulties and their solution when we take up relativistic many-body perturba-
tion theory. For doing calculations at the Hartree-Fock level of approximation,
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the Dirac-Coulomb Hamiltonian is the appropriate point of departure.
As in the nonrelativistic case, we introduce an average central potential U(r)

and the corresponding one-electron Hamiltonian h(r):

h(r) = cα · p+ βc2 + V (r) , (3.119)

with V (r) = −Z/r+U(r). The Dirac-Coulomb Hamiltonian can then be written
as H = H0 + V with

H0 =
∑

i

h(ri) (3.120)

V =
1

2

∑

i6=j

1

rij
−

N
∑

i=1

U(ri) . (3.121)

If ϕa(r) is an eigenfunction of the one-electron Dirac Hamiltonian h(r) with
eigenvalue εa, then the product wave function

ϕa(r1)ϕb(r2) · · ·ϕn(rN ) (3.122)

is an eigenfunction of H0 with eigenvalue

E
(0)
ab···n = εa + εb + · · ·+ εn .

A properly antisymmetrized product wave function is given by the Slater deter-
minant:

Ψab···n(r1, r2, · · · , rN ) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕa(r1) ϕb(r1) · · · ϕn(r1)
ϕa(r2) ϕb(r2) · · · ϕn(r2)

...
ϕa(rN ) ϕb(rN ) · · · ϕn(rN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.123)

We take the wave function for the ground-state of a closed-shell atom to be a
Slater determinant formed from the N lowest-energy single-particle orbitals and
evaluate the expectation value of the energy. We find that

Eab···n =
∑

a

〈a|h0|a〉+
1

2

∑

ab

(gabab − gabba) . (3.124)

This is just the expression obtained previously in the nonrelativistic case. Here,
however, the Coulomb matrix elements gabcd are to be evaluated using Dirac
orbitals rather than nonrelativistic orbitals. As in Chapter 2, we write the
one-electron Dirac orbital ϕa(r) in terms of spherical spinors as

ϕa(r) =
1

r

(

iPa(r)Ωκama
(r̂)

Qa(r)Ω−κama
(r̂)

)

. (3.125)

Before we can carry out the sums over magnetic quantum numbers, it is
necessary to do an angular momentum decomposition of the Coulomb integrals
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gabcd. In making this decomposition, we use the fact that

ϕ†a(r)ϕc(r) =

1

r2
[Pa(r)Pc(r)Ω

†
κama

(r̂)Ωκcmc
(r̂) +Qa(r)Qc(r)Ω

†
−κama

(r̂)Ω−κcmc
(r̂)]

=
1

r2
[Pa(r)Pc(r) +Qa(r)Qc(r)] Ω

†
κama

(r̂)Ωκcmc
(r̂) . (3.126)

Introducing the expansion

1

r12
=
∑

kq

rk<
rk+1
>

(−1)qCk
−q(r̂1)C

k
q (r̂2) , (3.127)

the Coulomb integral gabcd can be written

gabcd =
∑

kq

(−1)q〈κama|Ck
−q|κcmc〉〈κbmb|Ck

q |κdmd〉Rk(abcd) , (3.128)

where Rk(abcd) is the (relativistic) Slater integral defined by

Rk(abcd) =

∫ ∞

0

dr1[Pa(r1)Pc(r1) +Qa(r1)Qc(r1)]×
∫ ∞

0

dr2
rk<
rk+1
>

[Pb(r2)Pd(r2) +Qb(r2)Qd(r2)]. (3.129)

The angular matrix elements in Eq.(3.128) are given by

〈κama|Ck
q |κbmb〉 =

∫

dΩΩ†κama
(r̂)Ck

q (r̂)Ωκbmb
(r̂) . (3.130)

Since the spherical spinors are angular momentum eigenstates and since the
functions Ck

q (r̂) are spherical tensor operators, the Wigner-Eckart theorem may
be used to infer the dependence on the magnetic quantum numbers. We obtain,

〈κama|Ck
q |κbmb〉 = 6− kq

jama

jbmb

〈κa||Ck||κb〉 . (3.131)

The reduced matrix element 〈κa||Ck||κb〉 is found to be

〈κa||Ck||κb〉 = (−1)ja+1/2
√

[ja][jb]

(

ja jb k
−1/2 1/2 0

)

Π(la+ k+ lb) , (3.132)

where

Π(l) =

{

1, if l is even
0, if l is odd

. (3.133)

With these definitions, we may write

gabcd =
∑

k

-6 6− +
k

jama

jcmc

jbmb

jdmd

Xk(abcd) , (3.134)



3.5. DIRAC-FOCK EQUATIONS 91

where

Xk(abcd) = (−1)k〈κa||Ck||κc〉〈κb||Ck||κd〉Rk(abcd) . (3.135)

Let us carry out the sum overmb of the direct and exchange Coulomb matrix
elements in Eq.(3.124). To this end, we make use of the easily verified identities

-6−
k

jama

jama

¹¸
º·-jb

+ =

√

[jb]

[ja]
δk0 , (3.136)

and

jama

−
¾¹¸
º·
¾

-k

jb

−
jama = (−1)ja−jb+k 1

[ja]
. (3.137)

With the aid of the first of these identities, we find

∑

mb

gabab =

√

[jb]

[ja]
X0(abab)

= [jb]R0(abab) , (3.138)

where we have used the fact that

〈κa||C0||κa〉 =
√

[ja] . (3.139)

Using the second graphical identity above, we find that

∑

mb

gabba =
∑

k

(−1)ja−jb+k 1

[ja]
Xk(abba) (3.140)

= [jb]
∑

k

Λκakκb Rk(abba) , (3.141)

with

Λκakκb =
〈κa||Ck||κb〉2

[ja][jb]
=

(

ja jb k
−1/2 1/2 0

)2

Π(la + k + lb) . (3.142)

It is now a simple matter to carry out the double sum over magnetic quantum
numbers in the expression for the Coulomb energy in Eq.(3.124). We obtain

1

2

∑

mamb

(gabab − gabba) =
1

2
[ja][jb]

(

R0(abab)−
∑

k

Λκakκb Rk(abba)

)

. (3.143)

The terms 〈a|h0|a〉 in Eq.(3.124) are independent of ma. They are given by the
radial integral

Ia = 〈a|h0|a〉 =
∫ ∞

0

dr

{

Pa

(

−Z
r
+ c2

)

Pa + cPa

(

d

dr
− κ

r

)

Qa

−cQa

(

d

dr
+
κ

r

)

Pa +Qa

(

−Z
r
− c2

)

Qa

}

. (3.144)
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The energy can therefore be expressed as

Eab···n =
∑

a

[ja]

{

Ia +
1

2

∑

b

[jb]

[

R0(abab)−
∑

k

ΛκakκbRk(abba)

]}

, (3.145)

where the indices a and b refer to (naκa) and (nbκb), respectively.
Again, as in the nonrelativistic case, we require that Eab···n be stationary

with the constraint that the radial functions having the same angular quan-
tum number κ but different principal quantum numbers n be orthogonal. This
requirement is combined with the normalization condition in the equation

Nnaκa,nbκa =

∫ ∞

0

dr[Pnaκa(r)Pnbκa(r) +Qnaκa(r)Qnbκa(r)] = δnanb . (3.146)

Introducing Lagrange multipliers λnaκa,nbκa (assumed to be symmetric with
respect to na and nb), the variational condition is

δ(Eab···n −
∑

ab

δκaκbλnaκa,nbκaNnaκa,nbκb) = 0 , (3.147)

with respect to variations in the radial functions Pa and Qa. The variations
δPa(r) and δQa(r) are required to vanish at the origin and infinity. After an
integration by parts, the variational condition immediately leads to the “Dirac-
Fock” differential equations

(

VHF −
Z

r
+ c2

)

Pa + c

(

d

dr
− κ

r

)

Qa =

εaPa +
∑

nb 6=na

εnaκa, nbκaPnbκa (3.148)

−c
(

d

dr
+
κ

r

)

Pa +

(

VHF −
Z

r
− c2

)

Qa =

εaQa +
∑

nb 6=na

εnaκa, nbκaQnbκa . (3.149)

Here, the HF potential VHF is defined by its action on a radial orbital. Thus, if
Ra(r) represents either the large component radial function Pa(r) or the small
component function Qa(r), then

VHFRa(r) =
∑

b

[jb]

(

v0(b, b, r)Ra(r)−
∑

k

Λκakκbvk(b, a, r)Rb(r)

)

. (3.150)

The (relativistic) screening potentials in this equation are given by

vk(a, b, r) =

∫ ∞

0

dr′
rk<
rk+1
>

[Pa(r
′)Pb(r

′) +Qa(r
′)Qb(r

′)] . (3.151)

In Eqs.(3.148, 3.149), we have introduced the notation εa = λnaκa,naκa/[ja] and
εnaκa, nbκa = λnaκa,nbκa/[ja].
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Just as in the nonrelativistic case, the radial orbitals belonging to a partic-
ular value of the angular quantum number κ but different values of the princi-
pal quantum number n are orthogonal for arbitrary values of the off-diagonal
Lagrange multiplier εnaκa, nbκa . We make the simplest choice here, namely,
εnaκa, nbκa = 0. With this choice, the Dirac-Fock equations become a set of
coupled, non-linear eigenvalue equations. These equations are to be solved self-
consistently to obtain the occupied orbitals and the associated energy eigenval-
ues.

The total energy of the atom may be easily calculated, once the Dirac-Fock
equations have been solved using Eq.(3.145). Alternatively, it can be written in
terms of the Dirac-Fock eigenvalues as

Eab···n =
∑

a

[ja]εa −
1

2

∑

ab

[ja][jb]

(

R0(abab)−
∑

k

ΛκakκbRk(abba)

)

. (3.152)

As in the nonrelativistic case, Koopman’s theorem leads to the interpretation
of the energy eigenvalue εa as the negative of the removal energy of an electron
from subshell a (−Ba).

Numerical Considerations: The numerical techniques used to solve the
Dirac-Fock equations are similar to those used in the nonrelativistic case. Start-
ing from Coulomb wave functions, a model potential U(r), taken to be the direct
part of the HF potential scaled to give the correct asymptotic behavior, is ob-
tained iteratively using the Dirac routine master. The Dirac-Fock equations
are rewritten as inhomogeneous equations, in a form suitable for iteration start-
ing from the model-potential orbitals:

(

U − Z

r
+ c2 − ε(n)a

)

P (n)
a + c

(

d

dr
− κ

r

)

Q(n)
a =

−
(

V
(n−1)
HF − U

)

P (n−1)
a (3.153)

−c
(

d

dr
+
κ

r

)

P (n)
a +

(

U − Z

r
− c2 − ε(n)a

)

Q(n)
a =

−
(

V
(n−1)
HF − U

)

Q(n−1)
a . (3.154)

These equations are solved at each stage of iteration and the energy adjusted
using a variation of parameters scheme similar to that used in the nonrelativistic
case. We leave it to the reader to write out the detailed formulas for solving
the inhomogeneous equations. The iteration procedure is continued until the
relative change in energy for each orbital is less than one part in 109. At
this point the total energy is calculated, the orthogonality of the orbitals is
checked and the wave functions are written to an external file for use in other
applications.

As an example, we present the eigenvalues obtained from a Dirac-Fock calcu-
lation of the closed-shell mercury atom (Z=80) in Table 3.5. These eigenvalues
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Table 3.5: Dirac-Fock eigenvalues (a.u.) for mercury, Z = 80. Etot =
−19648.8585 a.u.. For the inner shells, we also list the experimental binding
energies from Bearden and Burr (1967) for comparison.

nlj εnlj −Bnlj nlj εnlj −Bnlj
1s1/2 -3074.2259 -3054.03
2s1/2 -550.2508 -545.35
3s1/2 -133.1130 -125.86
4s1/2 -30.6482 -27.88
5s1/2 -5.1030 -3.96
6s1/2 -0.3280 -0.384
2p1/2 -526.8546 -522.17 2p3/2 -455.1566 -451.44
3p1/2 -122.6388 -120.48 3p3/2 -106.5451 -104.63
4p1/2 -26.1240 -24.88 4p3/2 -22.1886 -20.98
5p1/2 -3.5379 -2.64 5p3/2 -2.8420 -2.12

3d3/2 -89.4368 3d5/2 -86.0201
4d3/2 -14.7967 4d5/2 -14.0526
5d3/2 -0.6501 5d5/2 -0.5746

4f5/2 -4.4729 4f7/2 -4.3117

are also compared with experimental removal energies in the table. The ground-
state configuration consists of 22 subshells: (1s1/s)

2 · · · (5d3/2)4(5d5/2)6(6s1/s)2.
The fine-structure splitting between levels having the same n and l but different
j is evident in both the theoretical and experimental energies. The differences
between the experimental and theoretical energies is partly due to the approx-
imation involved in interpreting energy eigenvalues as binding energies (Koop-
man’s theorem) and partly to the neglect of the Breit interaction and QED
corrections. When these effects are considered, the agreement between theory
and experiment improves to one part in 105 the inner electrons.

Nuclear Finite Size: In this example, we have included the effects of nuclear
finite size by replacing the nuclear Coulomb potential −Z/r with the potential
of a finite charge distribution. We assume that the nucleus is described by a
uniform ball of charge of radius R. Under this assumption, the nuclear potential
can be written

Vnuc(r) =

{

−Z/R
(

3/2− r2/2R2
)

r < R
−Z/r r ≥ R (3.155)

The root-mean-square radius of a uniform charge distribution Rrms is related to
its radius R through

R =
√

5/3Rrms . (3.156)
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Table 3.6: Dirac-Fock eigenvalues ε of valence electrons in Cs (Z = 55) and theo-
retical fine-structure intervals ∆ are compared with measured energies (Moore).
∆nl = εnlj=l+1/2 − εnlj=l−1/2

nlj ε ∆nl −Bexp ∆exp

6s1/2 -.1273680 -0.143100
6p1/2 -.0856159 -0.092168
6p3/2 -.0837855 0.001830 -0.089643 0.002525
5d3/2 -.0644195 -0.077035
5d5/2 -.0645296 -0.000110 -0.076590 0.000445
7s1/2 -.0551873 -0.058646
7p1/2 -.0420214 -0.043928
7p3/2 -.0413681 0.000653 -0.043103 0.000825
6d3/2 -.0360870 -0.040177
6d5/2 -.0360899 -0.000029 -0.039981 0.000196
8s1/2 -.0309524 -0.032302
4f5/2 -.0312727 -0.031596
4f7/2 -.0312737 0.000000 -0.031595 -0.000001

High-energy electron-nucleus scattering experiments and measurements of en-
ergies of muonic xrays allow one to determine Rrms for many nuclei reliably. A
tabulation of R and Rrms throughout the periodic table by analysis of such ex-
periments is given by Johnson and Soff (1985). The radii of nucleii for which no
direct measurements are available can be estimated using the empirical formula

Rrms = 0.836A1/3 + 0.570 fm A > 9, (3.157)

which fits the available data to ±0.05 fm.

Atoms with One-Valence Electron: Again, in parallel with the nonrela-
tivistic theory, we can obtain wave functions for atoms with one-electron beyond
closed shells by solving the valence orbital Dirac-Fock equations in the fixed
V N−1
HF potential of the closed shell ion. As an example, we show the Dirac-Fock

eigenvalues for the 13 lowest states in Cs (Z = 55) in Table 3.6. For this atom,
theoretical eigenvalues and experimental removal energies agree to about 10%.
The theoretical fine-structure splitting for np levels (∆np = εnp3/2 − εnp1/2)
agrees with experiment only in order of magnitude, whereas, the fine-structure
interval for nd levels disagrees with experiment even in sign. To understand
these differences, we must consider correlation effects as well as the Breit inter-
action. In the following chapter, we introduce perturbation theoretic methods
for treating correlation corrections.
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Chapter 4

Atomic Multiplets

In this chapter, we extend the study of atomic structure from atoms with one
valence electron to those with two or more valence electrons. As illustrated in
the two previous chapters, excited states of one valence electron atoms having
a given angular momentum and parity can be described in the independent-
particle model using a single Slater determinant. For atoms with two or more
electrons, a linear combination of two or more Slater determinants are typically
needed to describe a particular state. In addition to the state of interest, this
linear combination describes one or more closely related states; the collection of
states given by the linear combination of Slater determinants is referred to as
a multiplet. To study multiplets, it is convenient to replace the description of
states using Slater determinants by the equivalent second-quantization descrip-
tion of the following section. The rules of second-quantization rules are familiar
from studies of the harmonic oscillator in quantum mechanics. A more complete
discussion may be found in Lindgren and Morrison (1985).

4.1 Second-Quantization

We start our discussion of second quantization by examining the description of
one- and two-electron states. As in the previous chapters, we let a single index
k designate the set of one-particle quantum numbers (nklkmkµk). The one-
electron state |k〉, describe by its wave function ψk(r) previously, is represented

in second quantization by an operator a†k acting on the vacuum state |0〉

|k〉 = a†k|0〉 . (4.1)

The vacuum state is the state in which there are no electrons; it is assumed to
be normalized

〈0|0〉 = 1 . (4.2)

The adjoint to the state |k〉 is given by

〈k| = 〈0|ak . (4.3)

97
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We assume that ak operating on the vacuum state vanishes; therefore,

ak|0〉 = 0 and 〈0|a†k = 0 . (4.4)

The operators a†k and ak are called creation and annihilation operators, re-
spectively. The creation and annihilation operators are assumed to satisfy the
following anticommutation relations:

{a†j , a†k} = a†j a
†
k + a†k a

†
j = 0 , (4.5)

{aj , ak} = aj ak + ak aj = 0 , (4.6)

{aj , a†k} = aja
†
k + a†kaj = δjk . (4.7)

The third of these relations (4.7) can be used to prove the orthonormality of
the one-electron states |j〉 and |k〉:

〈j|k〉 = 〈0|aja†k|0〉 = 〈0|δjk − a
†
kaj |0〉 = δjk〈0|0〉 = δjk . (4.8)

The antisymmetric two-electron state, represented previously by a Slater
determinant Ψjk(r1, r2), is represented in second quantization by

|jk〉 = a†ja
†
k|0〉 . (4.9)

The anticommutation relations (4.5) insure the antisymmetry of the state |jk〉.
Similarly, the antisymmetry of the adjoint state follows from the relation (4.6).
The normalization condition for a two-electron state |jk〉 can be written:

〈jk|jk〉 = 〈0|akaja†ja†k|0〉
= 〈0|aka†k − aka

†
jaja

†
k|0〉

= 〈0|1− a†kak − a
†
jaj + a†ja

†
kakaj |0〉 = 1 . (4.10)

If we define the number operator for a state |k〉 by Nk = a†kak, then, by
virtue of the anticommutation relations, we obtain

N 2
k = a†kaka

†
kak = a†kak − a

†
ka
†
kakak = a†kak = Nk . (4.11)

Therefore, the number operator satisfies the identity N 2
k −Nk = 0. If nk is an

eigenvalue of Nk, then nk satisfies the same equation, n2k−nk = 0. From this, it
follows that the possible eigenvalues of Nk are 0 and 1. The one-electron state
|k〉 is an eigenstate of Nk with eigenvalue 1,

Nk|k〉 = a†kaka
†
k|0〉 = (a†k − a

†
ka
†
kak)|0〉 = a†k|0〉 = |k〉 . (4.12)

A general N-particle state described by a Slater determinant wave function
formed from a product of the orbitals ψa ψb · · ·ψn is represented in second quan-
tization as

|ab · · ·n〉 = a†aa
†
b · · · a†n|0〉 . (4.13)
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This state is antisymmetric with respect to the interchange of any two indices;
moreover, it is normalized to 1. Defining the number operator N by

N =
∑

k

Nk =
∑

k

a†kak , (4.14)

where the sum extends over all single-particle quantum numbers, it can easily be
shown that |ab · · ·n〉 is an eigenstate of N with eigenvalue N . In a similar way,
we see that the state |ab · · ·n〉 is an eigenstate of the unperturbed Hamiltonian
operator H0 defined by

H0 =
∑

k

εka
†
kak , (4.15)

with eigenvalue
E(0) = εa + εb + · · ·+ εn . (4.16)

Here εk is the eigenvalue of the one-electron Hamiltonian h(r) belonging to the
eigenfunction ψk(r):

hψk(r) = εkψk(r) .

Equation (4.15) gives the representation of the unperturbed Hamiltonian H0 in
second quantization. This equation can be rewritten

H0 =
∑

k

〈k|h|k〉 a†kak . (4.17)

A general single-particle operator F =
∑N

i=1 f(ri) is represented in second quan-
tization as

F =
∑

kl

〈k|f |l〉 a†kal . (4.18)

This operator acting on the state |ab · · ·n〉 gives

F |ab · · ·n〉 =
∑

kc

〈k|f |c〉 |ab · · · c→ k · · ·n〉 , (4.19)

where |ab · · · c→ k · · ·n〉 is identical to the state |ab · · ·n〉 with the operator a†c
replaced by a†k. In this expression, c is a state occupied in |ab · · ·n〉 and the sum
extends over all such states. The state k is either identical to c or is a state not
occupied in |ab · · ·n〉. The matrix element of F between a state |a′b′ · · ·n′〉 and
|ab · · ·n〉 is nonvanishing only if the sets {ab · · ·n} and {a′b′ · · ·n′} differ in at
most one place. Thus

〈ab · · · c′ · · ·n|F |ab · · · c · · ·n〉 = 〈c′|f |c〉 . (4.20)

Furthermore,

〈ab · · ·n|F |ab · · ·n〉 =
∑

c

〈c|f |c〉 . (4.21)

These rules are precisely the same as those developed in Chapter 2 to calculate
matrix-elements of single-particle operators between Slater determinant wave
functions.
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The two-particle operator,

G =
1

2

∑

i6=j
g(rij) ,

is represented in second quantization by:

G =
1

2

∑

ijkl

gijkl a
†
ia
†
jalak , (4.22)

where, as before,

gijkl =

∫

d3r1d
3r2ψ

†
i (r1)ψ

†
j (r2)g(r12)ψk(r1)ψl(r2) .

Again, it is simple to verify that matrix elements of G satisfy precisely the rules
written down in the previous chapter for calculating matrix elements of two-
particle operators between determinant wave functions. As an example, let us
consider the expectation value of G in the two-particle state |ab〉. We have

〈ab|G|ab〉 = 1

2

∑

ijkl

gijkl〈0|abaaa†ia†jalaka†aa†b|0〉 . (4.23)

With the aid of the anticommutation relations, the product abaaa
†
ia
†
j on the left

in Eq.(4.23) can be rearranged to give

abaaa
†
ia
†
j = δiaδjb − δibδja

−δiaa†jab + δiba
†
jaa − δjba†iaa + δjaa

†
iab + a†ia

†
jabaa. (4.24)

Since 〈0|a†j = 0, only the first two terms on the right-hand side of this equation

contribute in (4.23). Similarly, the product of operators alaka
†
aa
†
b can be written

alaka
†
aa
†
b = δkaδlb − δlaδkb

−δkaa†bal + δkba
†
aal + δlaa

†
bak − δlba†aak + a†aa

†
balak . (4.25)

Only the first two terms in this expression contribute to (4.23) since ak|0〉 = 0.
Therefore,

〈ab|G|ab〉 = 1

2

∑

ijkl

gijkl〈0|(δiaδjb − δibδja)(δkaδlb − δlaδkb)|0〉 = gabab − gabba .

(4.26)
This is precisely the result that we obtain in configuration space using a Slater
determinant wave function.
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Schrödinger Hamiltonian: With the aid of the second quantization expres-
sions for one- and two-body operators, we write the expression for the Hamil-
tonian in second quantization as H = H0 + V , where

H0 =
∑

k

εk a
†
kak , (4.27)

V =
1

2

∑

ijkl

gijkl a
†
ia
†
jalak −

∑

ik

Uik a
†
iak . (4.28)

Here, εk is the eigenvalue of the one-electron Schrödinger equation in a potential
−Z/r+U(r), the quantity gijkl is a two-electron matrix element of the Coulomb
potential g(r12) = 1/r12 and Uik is the one-electron matrix element of the
background potential U(r):

Uik =

∫

d3r ψ†i (r)U(r)ψk(r) . (4.29)

No-Pair Hamiltonian: The Dirac-Coulomb Hamiltonian of the previous
chapter can also be cast in second-quantized form. Again, H = H0 + V , where
H0 and V are given by the formulas (4.27-4.28). For the Dirac case, εk in
(4.27) is an eigenvalue of the one-electron Dirac Hamiltonian in a potential
−Z/r+U(r), and gijkl is a two-electron Coulomb integral evaluated with Dirac
orbitals. In the expression for the Hamiltonian, the operators are restricted to
be creation and annihilation operators for positive-energy solutions to the Dirac
equation. These are the solutions associated with electron states. Contribu-
tions from negative-energy (positron) states are omitted from the Hamiltonian
entirely. The resulting Hamiltonian is called the no-pair Hamiltonian. Since
positron states are not present in the no-pair Hamiltonian, effects of virtual
electron-positron pairs on atomic structure are omitted. To account for these
small effects, we must carry out a separate QED calculation. The no-pair Hamil-
tonian is free from the problems mentioned in the previous chapter in connection
with the Dirac-Coulomb Hamiltonian; it can be used in higher-order perturba-
tion theory calculations. The no-pair Hamiltonian was introduced in a slightly
different form by Brown and Ravenhall (1951) and has been discussed in great
detail by Mittleman (1971, 1972, 1981) and Sucher (1980).

4.2 6-j Symbols

Before continuing our discussion of many-body techniques, it is necessary to
make a short digression into angular momentum theory to describe various ways
of combining more than two angular momentum eigenstates to form a product
state that is also an angular momentum eigenstate. The Wigner 6-j symbols
arise when we consider coupling three states to give a state of definite angular
momentum. It is clear that we can couple three states with angular momenta
j1, j2 and j3 to a total angular momentum J in various ways. For example, we
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can first couple j1 and j2 to an intermediate angular momentum J12, and then
couple J12 and j3 to J and M , leading to the state

|(j1j2)J12j3 , JM〉 =
∑

m1m2m3
M12

?

?
− J12M12

j1m1

j2m2

?

?
− JM

J12M12

j3m3

|j1m1〉|j2m2〉|j3m3〉 .

(4.30)
Alternatively, we can couple j2 and j3 to J23, and then couple j1 to J23 to give
the resulting value of J and M . This order of coupling leads to the state

|j1(j2j3)J23 , JM〉 =
∑

m1m2m3
M23

?

?
− J23M23

j2m2

j3m3

?

?
− JM

j1m1

J23M23

|j1m1〉|j2m2〉|j3m3〉 .

(4.31)
States obtained from either of these two coupling schemes can be expressed
as linear combinations of states obtained using the other scheme. Thus, for
example, we may write

|j1(j2j3)J23 , JM〉 =
∑

J12

|(j1j2)J12j3 , JM〉 〈(j1j2)J12j3 , JM |j1(j2j3)J23 , JM〉 .

(4.32)
The resulting recoupling coefficient 〈(j1j2)J12j3 , JM |j1(j2j3)J23 , JM〉 is inde-
pendent ofM . We evaluate this coefficient by connecting the lines corresponding
to j1, j2 and j3 in the graphs from (4.30) and (4.31) above. The resulting graph
has two free ends, both labeled by JM . Since the recoupling coefficient is inde-
pendent of M , we may obtain the coefficient by averaging over M . This is done
by connecting the free ends and dividing by [J ]. The resulting coefficient can
be expressed as

〈(j1j2)J12j3 , JM |j1(j2j3)J23 , JM〉 =

(−1)j1+j2+j3+J [J12][J23]
{

j1 j2 J12
j3 J J23

}

, (4.33)

where the expression in curly brackets can be brought into the graphical form

{

j1 j2 J12
j3 J J23

}

= ¡
¡
¡
¡

@
@
@
@

6

@
@R
@
@
¡

¡ª
¡

¡

+ +

−

−

j1

j2

J

j3

J23
J12 . (4.34)

The quantity
{

j1 j2 J12
j3 J J23

}
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is a 6-j symbol. This quantity vanishes unless angular momentum triangle in-
equalities are satisfied by the triples j1j2J12, j3JJ12, j3j2J23 and j1JJ23. More-
over, the 6-j symbols satisfy the symmetry relations

{

ja jb jc
la lb lc

}

=

{

jb ja jc
lb la lc

}

=

{

jb jc ja
lb lc la

}

. (4.35)

In other words, the 6-j symbol is invariant with respect to a permutation (even
or odd) of columns. Further, the 6-j symbol satisfies the symmetry relations

{

ja jb jc
la lb lc

}

=

{

ja lb lc
la jb jc

}

=

{

la jb lc
ja lb jc

}

; (4.36)

i.e, the 6-j symbol is invariant under inversion of the arguments in any two
columns.

The graphical representation of the 6-j symbol leads to its analytical expres-
sion in terms of 3-j symbols

{

ja jb jc
jd je jf

}

=
∑

m′s

(−1)K×
(

ja jb jc
−ma −mb −mc

)(

ja je jf
ma −me mf

)

×
(

jb jf jd
mb −mf md

)(

jc jd je
mc −md me

)

, (4.37)

with

K = ja −ma + jb −mb + jc −mc + jd −md + je −me + jf −mf

A useful formula (Edmonds, 1974) for calculating 6-j symbols is
{

ja jb jc
jd je jf

}

= ∆(jajbjc)∆(jajejf )∆(jdjbjf )∆(jdjejc)×
∑

k

[

(−1)k(k + 1)!

(k − ja − jb − jc)! (k − ja − je − jf )!
×

1

(k − jd − jb − jf )! (k − ld − je − jc)! (ja + jb + jd + je − k)!
×

1

(jb + jc + je + jf − k)! (jc + ja + jf + jd − k)!

]

, (4.38)

where

∆(jajbjc) =

√

(ja + jb − jc)! (ja − jb + jc)! (−ja + jb + jc)!

(ja + jb + jc + 1)!
. (4.39)

The 6-j symbols satisfy the following orthogonality relation

∑

jf

[jc][jf ]

{

ja jb jc
jd je jf

}{

ja jb j′c
jd je jf

}

= δjcj′c . (4.40)
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Additionally, they satisfy the following two sum rules: (Racah)

∑

jf

(−1)jc+j+jf [jf ]
{

ja jb jc
jd je jf

}{

ja jd j
jb je jf

}

=

{

ja jb jc
je jd j

}

,

(4.41)
and (Biedenharn, 1953; Elliott, 1953)

∑

k

(−1)S+k[k]
{

l1 j2 l3
l′3 l′2 k

}{

j2 j3 j1
l′1 l′3 k

}{

l1 j3 l2
l′1 l′2 k

}

=

{

j1 j2 j3
l1 l2 l3

}{

l3 j1 l2
l′1 l′2 l′3

}

, (4.42)

where S = j1 + j2 + j3 + l1 + l2 + l3 + l′1 + l′2 + l′3. The following special case is
often useful

{

j1 j2 j3
l1 l2 0

}

= δj1l2δj2l1
(−1)j1+j2+j3
√

[j1][j2]
. (4.43)

4.3 Two-Electron Atoms

In this Section, we use second quantization to study the excited states of two-
electron atoms and ions. We start our discussion by considering a two-electron

state |ab〉. This is an eigenstate of H0, with eigenvalue E
(0)
ab = εa + εb:

H0 |ab〉 = (εa + εb) |ab〉 . (4.44)

The state |ab〉 is 2[la] × 2[lb]-fold degenerate. It is not necessarily an angular
momentum eigenstate. We make use of the degeneracy to construct eigenstates
of L2, Lz, S

2 and Sz from |ab〉. To this end, we first couple la and lb to
give an eigenstate of L2 and Lz, then we couple sa (sa = 1/2) and sb (sb =
1/2) to give an eigenstate of S2 and Sz. The possible eigenvalues of S2 are
S(S + 1), where S = 0 or 1. States with S = 0 are referred to as singlet
states, since there is only one such state with MS = 0. States with S = 1
are called triplet states. The resulting eigenstates of L2, Lz, S

2 and Sz are
called LS-coupled states. Singlet states are also eigenstates of J (J = L + S)
with J = L. Triplet states can be further combined to give eigenstates of J
having eigenvalues L − 1, L, L + 1. Nonrelativistically, the triplet states with
different values of J are degenerate. This degeneracy is lifted in relativistic
calculations. The observed spectrum of helium consists of singlets and triplets
of various angular symmetries S, P , . . . corresponding to L = 0, 1, . . .. The
triplets are slightly split by relativistic effects. LS-coupled states with orbital
angular momentum L, spin angular momentum S, and total angular momentum
J are designated by the spectroscopic notation 2S+1LJ . In Fig. 4.1, we show the
approximate ordering of the low-lying singlet and triplet levels of helium in an
energy level (or Grotrian) diagram.
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(1s3d) (1s3d)

1S 3S 1P 3P 1D 3D

Figure 4.1: Energy level diagram for helium

To form the LS-coupled states, we combine the degenerate states according
to

|ab, LML, SMS〉 = η
∑

mambµaµb

?

?
− LML

lama

lbmb

?

?
− SMS

1/2µa

1/2µb

a†aa
†
b|0〉 . (4.45)

Here, η is a normalization factor. The norm of this coupled state is easily shown
to be

〈ab, LML, SMs|ab, LML, SMs〉 = η2(1 + (−1)S+Lδnbnaδlalb) . (4.46)

For states with nb 6= na or lb 6= la, we obtain a normalized state by choosing
η = 1. For states formed from identical orbitals (nb = na and lb = la), the
sum L + S must be even in order to have a normalizable state. To normalize
such a state, we choose η = 1/

√
2. An example of a state formed from identical

orbitals is the (1s)2 ground state. This state has L = 0 and S = 0; it is a 1S0
state.

The first-order correction to the energy of an LS-coupled state is given by

E
(1)
ab,LS = 〈ab, LML, SMS |V |ab, LML, SMS〉 . (4.47)

This result can be written

E
(1)
ab,LS = η2

∑

m′sµ′s

?

?
− LML

lama

lbmb

?

?
− SMS

1/2µa

1/2µb

?

?
− LML

l′am
′
a

l′bm
′
b

?

?
− SMS

1/2µ′a

1/2µ′b

[

ga′b′abδµ′aµaδµ′bµb − ga′b′baδµ′aµbδµ′bµa − (δa′aδb′b − δa′bδb′a)(Uaa + Ubb)
]

.

We make use of the identity

gabcd =
∑

k

-6 6− +
k

lama

lcmc

lbmb

ldmd

Xk(abcd) , (4.48)
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where
Xk(abcd) = (−1)k〈la||Ck||lc〉〈lb||Ck||ld〉Rk(abcd) . (4.49)

Substituting this into the expression for the first-order energy, we find

E
(1)
ab,LS = η2

∑

k

[

(−1)L+k+la+lb
{

la lb L
lb la k

}

Xk(abab)

+(−1)S+k+la+lb
{

la lb L
la lb k

}

Xk(abba)

]

− Uaa − Ubb . (4.50)

Let us consider the special case where a is a 1s state and b is an nl excited state.
Such states are single-particle excitations of the helium ground state. All of the
bound levels of helium are of this type; doubly-excited states of helium are not
bound! We, therefore, set la = 0 and lb = l in Eq.(4.50). In the first term, k = 0
so the sum reduces to

R0(1s, nl, 1s, nl) .

Here, we have made use of Eq.(4.43) and the fact that 〈s||Ck||s〉 = δk0 and
〈l||C0||l〉 =

√

[l]. In the second term, we find from Eq.(4.43) that k = L = l.
Furthermore, 〈l||C l||s〉 = 1, and 〈s||C l||l〉 = (−1)l. Therefore, the second term
reduces to

(−1)S 1

[l]
Rl(1s, nl, nl, 1s)δLl .

Combining these results, we obtain for (1snl) states

E
(1)
1snl,LS =

[

η2
(

R0(1s, nl, 1s, nl) + (−1)S 1

[l]
Rl(1s, nl, nl, 1s)

)

−U1s1s − Unlnl
]

δLl. (4.51)

First, let us consider the case nl = 1s. In this case, as discussed above, S = 0
and η = 1/

√
2, leading to the result

E
(1)
1s1s,00 = R0(1s, 1s, 1s, 1s)− 2U1s1s . (4.52)

This is precisely the expression obtained in the previous section for the first-
order correction to the ground-state energy of a heliumlike ion. For states with
nl 6= 1s, η = 1 and we find

E
(1)
1snl,LS =

(

R0(1s, nl, 1s, nl) + (−1)S 1

[l]
Rl(1s, nl, nl, 1s)

−U1s1s − Unlnl
)

δLl. (4.53)

The lowest-order energy of these states, ε1s + εnl, is independent of S. The
separation between the singlet and triplet states is, therefore, given by

∆E = E1snl,S=0 − E1snl,S=1 =
2

[l]
Rl(1s, nl, nl, 1s) .
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Table 4.1: Energies of (1snl) singlet and triplet states of helium (a.u.). Com-
parison of a model-potential calculation with experiment (Moore, 1957).

Singlet Triplet ∆E
nl Theory Exp. Theory Exp. Theory Exp.
2s -.153734 -.145954 -.172019 -.175212 .018285 .029258
3s -.063228 -.061264 -.068014 -.068682 .004785 .007418
4s -.034363 -.033582 -.036265 -.036508 .001902 .002925
5s -.021562 -.021174 -.022502 -.022616 .000940 .001442

2p -.121827 -.123823 -.130465 -.133154 .008638 .009331
3p -.054552 -.055126 -.057337 -.058075 .002785 .002939
4p -.030820 -.031065 -.032022 -.032321 .001202 .001258
5p -.019779 -.019903 -.020400 -.020549 .000621 .000645

3d -.055546 -.055614 -.055572 -.055629 .000026 .000015
4d -.031244 -.031276 -.031260 -.031285 .000015 .000008
5d -.019997 -.020014 -.020006 -.020018 .000009 .000005

4f -.031250 -.031246 -.031250 -.031249 .000000 .000003
5f -.020000 -.020005 -.020000 -.019999 .000000 -.000007

In Table 4.1, we compare a first-order perturbation theory calculation of
the energies of the singlet and triplet S, P , D, and F states of helium with
experiment. For the purposes of this calculation, we assume that the 1s elec-
tron moves in the unscreened potential of the nucleus, but that the excited nl
electrons move in the field of the nucleus screened by the monopole potential
v0(1s, r) of the 1s electron. This somewhat exotic potential can be formally
described in terms of projection operators. We let P = |1s〉〈1s| be the pro-
jection operator onto the 1s state, and Q be the projection operator onto the
complement to the 1s state:

Q =
∑

nl 6=1s

|nl〉〈nl| .

It follows that P +Q = 1. We represent the screening potential by

U = Qv0Q = v0 − P v0 − v0 P + P v0 P . (4.54)

Note that

U |1s〉 = v0|1s〉 − |1s〉〈1s|v0|1s〉 − v0 |1s〉+ |1s〉〈1s|v0 |1s〉 = 0 , (4.55)

while for nl 6= 1s we find,

U |nl〉 = v0|nl〉 − |1s〉〈1s|v0|nl〉 . (4.56)
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For states with l 6= 0, the second term in the above expression vanishes and
U = v0(1s, r). For states with l = 0, the second term insures that the resulting
radial wave function is orthogonal to the 1s wave function. Notice that U1s1s = 0
for this potential, and that Unlnl = R0(1s, nl, 1s, nl). For comparison with
experiment, we evaluate the energy relative to that of the hydrogenlike ion
formed when the nl electron is removed. The energy of the hydrogenic ion is
precisely ε1s. The energy relative to the ion in this model potential is, therefore,
given by

E1snl,LS − Eion = εnl + (−1)S 1

[l]
Rl(1s, nl, nl, 1s) . (4.57)

Values obtained from this formula are tabulated in Table 4.1. As seen from this
Table, this simple model potential suffices to predict the multiplet structure in
helium at the few-percent level of accuracy.

4.4 Atoms with One or Two Valence Electrons

In this section, we study states of atoms that have one or two valence electrons
beyond closed shells. For atoms with one valence electron, the present section
is an extension of our previous discussion using the V N−1

HF potential. For atoms
with two valence electrons, the material here is an extension of the discussion
of excited states of helium given in the previous section.

We let |0c〉 represent the ionic core, which is assumed to consists of filled
subshells,

|0c〉 = a†aa
†
b · · · |0〉 . (4.58)

The states of interest can then be described as

|v〉 = a†v|0c〉 , (4.59)

|vw〉 = a†va
†
w|0c〉 , (4.60)

where the indices v and w designate orbitals that are different from any of those
occupied in the core. Here and later, we adopt the notation that letters at the
beginning of the alphabet a, b, · · · , designate core orbitals, letters in the middle
of the alphabet i, j, · · · , designate either core or excited (outside of the core)
orbitals, lettersm, n, · · · , represent excited orbitals, and letters at the end of the
alphabet v, w, · · · , represent valence orbitals. Valence orbitals are, of course,
special cases of excited orbitals.

It is useful to introduce the normal product of operators here. The normal
product of two operators is defined as the product rearranged so that core
creation operators are always put to the right of core annihilation operators
and excited state annihilation operators are always put to the right of excited
state creation operators. In carrying out that rearrangement, a sign change
is made for each operator transposition. Normal products are designated by
enclosing the operators between pairs of colons; thus : a†aan : represents the
normal product of the operators a†a and an. Normal products of two creation
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operators or two annihilation operators are just the product of the two operators.
Moreover,

: a†man : = a†man ,

: ana
†
m : = −a†man ,

: a†aab : = −aba†a ,
: aba

†
a : = aba

†
a .

This definition can be extended to arbitrary products of operators. The normal
product of N operators is the product of the N operators rearranged so that
core creation operators are to the right of core annihilation operators and excited
state annihilation operators are to the right of excited state creation operators
with a sign change for each transposition of two operators. With this definition,
it follows that the expectation value of the normal product of two operators
calculated in the core state vanishes:

〈0c| : oioj · · · ol : |0c〉 = 0 . (4.61)

Here oi designates either a creation operator a†i or an annihilation operator ai.
The Hamiltonian H can be expressed in terms of normal products by

H = H0 + V , (4.62)

H0 = E0 +
∑

k

εk : a†kak : , (4.63)

V =
1

2

∑

ijkl

gijkl : a
†
ia
†
jalak : +

∑

ij

(VHF − U)ij : a
†
iaj :

+V0 . (4.64)

Here
E0 =

∑

a

εa ,

and

V0 =
∑

a

[

1

2
(VHF)aa − Uaa

]

.

In the above equations we have used the notation

(VHF)ij =
∑

b

(gibjb − gibbj) . (4.65)

The quantity VHF is just the Hartree-Fock potential of the closed core. We
should notice that

Ecore = 〈0c|H|0c〉 = E0 + V0 =
∑

a

εa +
1

2

∑

ab

(gabab − gabba)−
∑

a

Uaa . (4.66)

This result was derived previously by manipulating Slater determinants.
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One valence electron: Let us first consider an atom with one valence elec-
tron in a state v. To help evaluate the expectation value of H0, we make use of
the easily established identity

av : a†kak : a†v =: ava
†
kaka

†
v :

+δkv : aka
†
v : +δkv : ava

†
k : + : a†kak : +δkv. (4.67)

From this identity, it follows that

〈v| : a†kak : |v〉 = 〈0c|av : a†kak : a†v|0c〉 = δkv . (4.68)

Therefore, from Eq.(4.63) it follows that,

E(0)
v = 〈v|H0|v〉 = E0 + εv . (4.69)

To evaluate the first-order energy, we make use of the identities

〈0c|av : a†ia
†
jalak : a†v|0c〉 = 0 , (4.70)

〈0c|av : a†iaj : a
†
v|0c〉 = δivδjv . (4.71)

Combining these relations with the expression for V given in Eq.(4.64), we find

E(1)
v = 〈v|V |v〉 = V0 + (VHF − U)vv . (4.72)

To first order, we therefore have

Ev = Ecore + εv + (VHF − U)vv . (4.73)

If we let U be the Hartree-Fock potential of the core, then the valence orbital is
just the V N−1

HF orbital discussed in the previous section. As we found previously,
εv is the difference between the energy of the atom and ion. This rule will, of
course, be modified when we consider corrections from higher-order perturbation
theory. For atoms with one valence electron, the second-quantization approach
leads easily to results obtained previously by evaluating matrix elements using
Slater determinants.

Two valence electrons: Now, let us turn to atoms having two valence elec-
trons. As an aid to evaluating the energy for such atoms, we make use of the
identities

〈0c|awav : a†ia
†
jalak : a†va

†
w|0c〉 = (δivδjw − δjvδiw)×

(δkvδlw − δlvδkw) , (4.74)

〈0c|awav : a†iaj : a
†
va
†
w|0c〉 = δivδjv + δiwδjw . (4.75)

From these identities, we find for the lowest-order energy,

E(0)
vw = 〈vw|H0|vw〉 = E0 + εv + εw , (4.76)
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and for the first-order energy,

E(1)
vw = 〈vw|V |vw〉

= V0 + (VHF − U)vv + (VHF − U)ww + gvwvw − gvwwv . (4.77)

Combining, we find to first order

Evw = Ecore + εv + εw + (VHF − U)vv + (VHF − U)ww + gvwvw − gvwwv . (4.78)

For the purpose of illustration, we assume that U = VHF in Eq.(4.78), and

we measure energies relative to the closed core. We then have E
(0)
vw = εv + εw

and E
(1)
vw = gvwvw−gwvvw. As in the case of helium, the degenerate states v and

w can be combined to form eigenstates of L2, Lz, S
2 and Sz. The expression

for E(1) in an LS basis is found from (4.50) to be:

E
(1)
vw,LS = η2

∑

k

[

(−1)L+k+lv+lw
{

lv lw L
lw lv k

}

Xk(vwvw)

+(−1)S+k+lv+lw
{

lv lw L
lv lw k

}

Xk(vwwv)

]

. (4.79)

Here η = 1/
√
2 for the case of identical particles (nv = nw and lv = lw), and

η = 1 otherwise. For the identical-particle case, the sum L+S must be an even
integer.

As specific examples, let us consider the atoms such as beryllium or magne-
sium which, in the ground state, have two s electrons outside closed shells. In
the ground state, beryllium (Z = 4) has two 2s electrons outside a heliumlike
core and magnesium (Z = 12) has two 3s electrons outside of a neonlike core.
Other such atoms are calcium, zinc, mercury and radium. The low-lying excited
states of these atoms are (2snl) singlet or triplet states for beryllium, (3snl) sin-
glet or triplet states for magnesium, etc.. For such states, the expression for the
first-order energy simplifies to a form similar to that obtained for helium:

E
(1)
ksnl,LS = η2

(

R0(ks, nl, ks, nl) + (−1)S 1

[l]
Rl(ks, nl, nl, ks)

)

δLl . (4.80)

Combining this with the lowest-order energy, we find for the (ks)2 ground-state
energy,

Eksks,00 = 2εks +R0(ks, ks, ks, ks) , (4.81)

and for (ksnl) excited states,

Eksnl,LS = εks + εnl +

(

R0(ks, nl, ks, nl) + (−1)S 1

[l]
Rl(ks, nl, nl, ks)

)

δLl .

(4.82)
For beryllium, magnesium and calcium, doubly excited |(2p)2, LS〉, |(3p)2, LS〉
and |(4p)2, LS〉 states, respectively, are also observed in the bound state spec-
trum. Furthermore, doubly-excited |3d4p, LS〉 states are observed in the spec-
trum of calcium.
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For (kp)2 configurations, the sum L+S must be even. Therefore, the possible
states are 1S, 3P and 1D. The first-order energy for these states is given by

E
(1)
kpkp,00 = R0(kp, kp, kp, kp) +

2

5
R2(kp, kp, kp, kp), (4.83)

E
(1)
kpkp,11 = R0(kp, kp, kp, kp)−

1

5
R2(kp, kp, kp, kp), (4.84)

E
(1)
kpkp,20 = R0(kp, kp, kp, kp) +

1

25
R2(kp, kp, kp, kp). (4.85)

From this, it is predicted in first-order that the 3P state has the lowest energy
and that the 1S state has the highest energy.

Both carbon (Z = 6) and silicon (Z = 14) have two kp electrons beyond
closed (ks)2 shells in their ground states. We therefore expect the ground states
of these atoms to be 3P state and we expect the next two excited states to be 1D
and 1S states, respectively. The collection of states from the (kp)2 configuration
is called the ground-state multiplet.

The lowest state in the observed spectrum of both carbon and silicon is a 3P
state as predicted, and the next two states are 1D and 1S states, as expected.
From Eqs.(4.83-4.85), we predict that

R =
E(kpkp, 00)− E(kpkp, 20)

E(kpkp, 00)− E(kpkp, 11)
=

3

5
.

For carbon the observed ratio is R = 0.529, while for silicon R = 0.591.
Another interesting example is titanium (Z = 24) which has a ground-state

configuration (3d)2. For this case, the ground-state multiplet consists of the 1S,
3P , 1D, 3F and 1G states. The first-order energy is given by

E
(1)
3d3d,00 = R0 +

2

7
R2 +

2

7
R4, (4.86)

E
(1)
3d3d,11 = R0 +

1

7
R2 −

4

21
R4, (4.87)

E
(1)
3d3d,20 = R0 −

3

49
R2 +

4

49
R4, (4.88)

E
(1)
3d3d,31 = R0 −

8

49
R2 −

1

49
R4, (4.89)

E
(1)
3d3d,40 = R0 +

4

49
R2 +

1

441
R4, (4.90)

where Rk ≡ Rk(3d, 3d, 3d, 3d). From Eqs.(4.86-4.90), we expect the order of the
levels in the ground-state multiplet of titanium to be (from lowest to highest):
3F , 1D, 3P , 1G and 1S. This ordering of levels is indeed observed in the ground-
state multiplet.

4.5 Particle-Hole Excited States

The low-lying excited states of noble gas atoms are those in which an outer-
shell electron is promoted to a single-particle state outside of the core, leaving



4.5. PARTICLE-HOLE EXCITED STATES 113

a vacancy (or hole) in the closed shell. The particle-hole state in which a core
electron with quantum numbers a is excited to a state with quantum numbers
v is represented by the state vector |va〉:

|va〉 = a†vaa|0c〉 (4.91)

This state is an eigenstate of H0 with eigenvalue

E(0)
va = E0 + εv − εa .

The state is 2[lv]× 2[la]-fold degenerate. Again, we make use of the degeneracy
to form LS-coupled angular momentum states. Here, some caution is required.
A state with a hole in substate · · ·ma, µa, has angular momentum properties of
a particle with angular momemtum components · · ·−ma,−µa. Moreover, if the
state |0c〉 is formed by applying creation operators to the vacuum in descending
order; namely,

|0c〉 = · · · a†nala,la,1/2a
†
nala,la,−1/2a

†
nala,la−1,1/2a

†
nala,la−1,−1/2

· · · a†nala,−la,1/2a
†
nala,−la,−1/2|0〉 ,

then an extra factor of
(−1)la−ma × (−1)1/2−µa

is obtained in transposing the operator aa to the position to the left of a†a in
the wave function, where we can replace the product aaa

†
a by 1. Thus, the state

vector corresponding to a particle with angular momentum lv,mv, µv and hole
with angular momentum la,−ma,−µa is

(−1)la−ma(−1)1/2−µaa†vaa|0c〉 .
States of this type can be combined to form an LS state. We find,

|va, LS〉 =
∑

mvma
µvµa

(−1)la−ma

?

?
− LML

lvmv

la,−ma

(−1)1/2−µa
?

?
− SMS

1/2µv

1/2,−µa

a†vaa|0c〉

=
∑

mvma
µvµa

6− LML

lvmv

lama

6− SMS

1/2µv

1/2µa

a†vaa|0c〉 . (4.92)

These states are properly normalized:

〈va|va〉 = 1 .

The first-order energy for the state |va, LS〉 is evaluated using the relations

〈0c|a†caw : a†iaj : a
†
vaa|0c〉 = δjvδiwδac − δjcδiaδvw , (4.93)

〈0c|a†caw : a†ia
†
jalak : a†vaa|0c〉 = (δlvδkc − δkvδlc)

×(δjaδiw − δiaδjw). (4.94)
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Table 4.2: Comparison of V N−1
HF energies of (3s2p) and (3p2p) particle-hole

excited states of neon and neonlike ions with measurements.

Ion V N−1
HF Exp. V N−1

HF Exp. V N−1
HF Exp. V N−1

HF Exp.

(3s2p) 3P (3s2p) 1P (3p2p) 3S (3p2p) 1S
Mg2+ 1.9942 1.9424 2.0234 1.9662 2.1778 2.1296 2.4162 2.2073
Na+ 1.2602 1.2089 1.2814 1.2246 1.3840 1.3360 1.5416 1.4073
Ne 0.6638 0.6118 0.6757 0.6192 0.7263 0.6755 0.7927 0.6970

(3p2p) 3P (3p2p) 1P (3p2p) 3D (3p2p) 1D
Mg2+ 2.2300 2.1830 2.2300 2.1797 2.2091 2.1622 2.2275 2.1754
Na+ 1.4178 1.3681 1.4178 1.3664 1.4043 1.3558 1.4160 1.3632
Ne 0.7404 0.6877 0.7404 0.6870 0.7348 0.6826 0.7394 0.6849

From these relations, we conclude that the matrix element of V between uncou-
pled particle-hole states is

〈wc|V |va〉 = gwacv − gwavc + (VHF − U)wvδac − (VHF − U)acδwv . (4.95)

For coupled states, we obtain

E
(1)
va,LS =

∑

mvµvmwµw
maµamcµc

6− LML

lvmv

lama

6− SMS

1/2µv

1/2µa

6− LML

lwmw

lcmc

6− SMS

1/2µw

1/2µc

[gwacv − gwavc + (VHF − U)wvδac − (VHF − U)acδwv] , (4.96)

where (nw, lw) = (nv, lv) and (nc, lc) = (na, la). Carrying out the sums over
magnetic substates, we obtain

E
(1)
va,LS = (−1)lv+la+l

(

2

[L]
δS0XL(vaav)−

∑

k

{

lv la L
la lv k

}

Xk(vava)

)

+ (VHF − U)vv − (VHF − U)aa . (4.97)

This expression is simplified by choosing the potential U to be the V N−1
HF

potential, defined for closed shells as

V N−1
HF

def
= VHF +Q∆V Q . (4.98)

The term Q∆V Q subtracts the contribution of one core electron (assumed to
have quantum numbers h) from the HF potential, when it acts on an excited-
state orbital:

∆V Pn = −v0(h, r)Pn +
∑

k

Λlhklnvk(h, n, r)Ph . (4.99)
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In Eq.(4.98), Q = 1− P is the projection operator onto excited states:

P =
∑

a

|a〉〈a| , (4.100)

Q =
∑

n

|n〉〈n| . (4.101)

Setting U = V N−1
HF , we obtain

UPa = VHFPa , (4.102)

UPn = (VHF +∆V ) Pn −
∑

a

〈a|∆V |n〉Pa . (4.103)

It follows that (VHF − U)aa = 0 and (VHF − U)vv = −(∆V )vv.
As an example, let us consider the excited states of Ne (Z=10) and the

neonlike ions Na+ (Z=11) and Mg2+ (Z=12). The low-lying states of these
systems are the odd parity (va) = (3s2p), 3P and 1P states. Just above these
states are the even parity (3p2p) 3S, 3D, 1D, 3P , 1P and 1S states. In Table 4.2,
we show the results of calculations of the energies of these states using Eq.(4.97)
with a V N−1

HF potential. This model for the excited states of closed-shell systems
leads to energies that agree with observation at the 10% level of accuracy. To
improve the agreement, it is necessary to consider corrections from higher-order
perturbation theory.

4.6 9-j Symbols

Let us consider the problem of coupling spin and orbital angular momenta of two
electrons to total angular momentum J . This problem requires us to consider
ways of coupling four angular momentum vectors, which can be done in several
ways. For example, we may couple the orbital angular momenta l1 and l2 of
the electrons to L, the spin angular momenta s1 and s2 to S, then couple the
resulting L and S to a final J . This method of coupling the angular momenta of
two electrons is referred to as LS coupling. The angular part of the two-electron
wave function for an LS-coupled state is

|[(l1l2)L] [(s1s2)S] JM〉 =

∑

m1m2µ1µ2
MLMS

?

?
− LML

l1m1

l2m2

?

?
− SMS

s1µ1

s2µ2

?

?
− JM

LML

SMS

|l1m1〉|l2m2〉|s1µ1〉|s2µ2〉.(4.104)

As an alternative to LS coupling, we can first couple l1 and s1 to j1, then couple
l2 and s2 to j2, and finally couple the resulting j1 and j2 to J . This is referred to
as the jj coupling scheme. The angular parts of the one-electron wave function
that results from coupling li and si to ji are just the spherical spinors Ωκimi

.
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The angular part of the two-electron wave function in the jj coupling scheme is

|[(l1s1)j1] [(l2s2)j2] JM〉 =

∑

m1m2µ1µ2
M1M2

?

?
− j1M1

l1m1

s1µ1

?

?
− j12M2

l2m2

s2µ2

?

?
− JM

j1M1

j2M2

|l1m1〉|l2m2〉|s1µ1〉|s2µ2〉.(4.105)

Either scheme can be used to describe possible two-electron wave functions; the
LS scheme is a more convenient starting point for describing states in atoms
with low nuclear charge where relativistic (spin-orbit) effects are negligible, while
the jj scheme is more convenient for atoms with high nuclear charge where
relativistic effects are important. The natural starting point for relativistic
calculations of two electron systems, where single-particle orbitals are taken
from the Dirac equation, is the jj-scheme.

We may write each jj coupled wave functions as a linear combinations of
LS wave functions:

|[(l1s1)j1] [(l2s2)j2] JM〉 =
∑

LS

〈LS J | j1 j2 J〉 |[(l1l2)L] [(s1s2)S] JM〉, (4.106)

where the orthogonal matrix 〈LS J | j1 j2 J〉 is given diagrammatically by

〈LS J | j1 j2 J〉 = (−1)R
√

[L][S][j1][j2] ¢
¢L l2

A
A

S s1

l1

A
A
A
A

s2
¢
¢
¢
¢

j2

A
A
j1

¢
¢

J

+ +

+ +

+ + . (4.107)

The phase factor R = l1 + l2 + s1 + s2 + j1 + j2 + L + S + J is the sum of all
9 angular momentum quantum numbers. The hexagonal diagram above serves
to define the 9-j symbol:







a b c
d e f
g h j







= ¢
¢a d

A
A

b h

g

A
A
A
A

e
¢
¢
¢
¢

f

A
A
j

¢
¢

c

+ +

+ +

+ + . (4.108)

The 9-j symbol can be expressed conveniently as a product of 3-j symbols:







a b c
d e f
g h j







=
∑

x

(−1)2x[x]
{

a b c
f j x

}{

d e f
b x h

}{

g h j
x a d

}

.

(4.109)
The 9-j symbol is invariant under an even permutation of rows or columns. An
odd permutation of rows or columns gives rise to a phase factor (−1)R, where
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R is the previously defined sum of nine angular momenta. The 9-j symbol is
also symmetric with respect to a transposition of rows and columns. Thus, for
example






a b c
d e f
g h j







=







d e f
g h j
a b c







= (−1)R






d e f
a b c
g h j







=







a d g
b e h
c f j







(4.110)
With the aid of the symmetry relations, we may write the transformation matrix
from the LS to jj scheme as

〈LS J | j1 j2 J〉 =
√

[L][S][j1][j2]







L S J
l1 s1 j1
l2 s2 j2







. (4.111)

A useful special case to bear in mind is that in which one angular momentum
is zero. In that case, one finds:







a b c
d e f
g h 0







= δcfδgh
(−1)b+d+c+g
√

[c][g]

{

a b c
e d g

}

. (4.112)

The transformation from LS to jj coupling leads us into a discussion of
relativistic effects in atoms.

4.7 Relativity and Fine Structure

In the preceding (nonrelativistic) discussion of excited-state energy levels, we
found that on transforming to LS-coupled states, the interaction Hamiltonian V
became diagonal. Each of the resulting LS states is still [L]×[S]-fold degenerate.
We can, of course, combine these degenerate LS states into eigenstates of J 2

and Jz, but the degeneracy of the resulting |LS, JMJ 〉 states (designated by
the spectroscopic notation 2S+1LJ) remains. In the case of one-electron atoms,
where the eigenstates of orbital angular momentum split into eigenstates of J 2

with j = l ± 1/2, the 2[l] fold degeneracy of the orbital angular momentum
eigenstates is removed. The splitting between the states with a given value of
l but different values of j is referred to as the “fine-structure” splitting. In
a similar way, nonrelativistic many-particle LS states split into fine-structure
components having different J values when relativistic effects are introduced.

4.7.1 He-like ions

Let us consider the relativistic two-particle state |ab〉 = a†aa
†
b|0〉, where the

single-particle indices a = (naκama) and b = (nbκbmb) refer to quantum num-
bers of Dirac orbitals. This state is an eigenstate of the unperturbed part, H0,
of the no-pair Hamiltonian with eigenvalue E(0) = εa + εb:

H0|ab〉 = (εa + εb)|ab〉 . (4.113)
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The states |ab〉 are [ja] × [jb]-fold degenerate. They can be combined to form
eigenstates of J2 and Jz (|ab, JMJ 〉) using Clebsch-Gordan coefficients. The
resulting states are referred to as jj-coupled states. We have

|ab, JMJ 〉 = η
∑

mamb

?

?
− JMJ

jama

jbmb

a†aa
†
b|0〉 . (4.114)

These states are also eigenstates of parity with eigenvalue P = (−1)la+lb . The
norm of the jj state in Eq.(4.114) is

〈ab, JMJ |ab, JMJ 〉 = 1 + (−1)Jδab . (4.115)

Thus, identical-particle states (nb = na and κb = κa) couple to even values of
J only. It follows that we must introduce a normalization factor η = 1/

√
2 for

identical-particle states, and η = 1 for other states. With this normalization,
we obtain the following expression for the first-order energy:

E
(1)
ab,J = η2

∑

k

[

(−1)J+k+ja+jb
{

ja jb J
jb ja k

}

Xk(abab)

+(−1)k+ja+jb
{

ja jb J
ja jb k

}

Xk(abba)

]

− Uaa − Ubb, (4.116)

where the quantities Xk(abcd) are given by the Dirac counterpart of Eq.(4.49),

Xk(abcd) = (−1)k〈κa||Ck||κc〉〈κb||Ck||κd〉Rk(abcd) . (4.117)

For heliumlike ions, the ground state is a (1s1s)J=0. Although it is possible
to couple two j = 1/2 states to form a J = 1 state, the above rule (J is even
for identical-particle states) prohibits J = 1 in the (1s)2 configuration. The
lowest excited state nonrelativistically is the (1s2s) 3S1 state. Relativistically,
this is the (1s2s)J=1 state. The (1s2s) 1S0 state has the (1s2s)J=0 state as its
relativistic counterpart. The relativistic (1s2p1/2)J=0 and (1s2p3/2)J=2 states
correspond to the nonrelativistic 3P0 and 3P2, respectively. The correspondence
between nonrelativistic and relativistic (1s2p) states is ambiguous for the case
J = 1. Relativistically, we have two such states (1s2p1/2)1 and (1s2p3/2)1,
while in the nonrelativistic case, we have the two states 3P1 and 1P1. On general
grounds, we expect to be able to express the relativistic states that have 3P1 and
1P1 states as their nonrelativistic limits as linear combinations of the (1s2p1/2)1
and (1s2p3/2)1 states. Thus, we are led to consider the linear combination of
relativistic states

|1s2p, 1〉 = c1|1s2p1/2, 1〉+ c2|1s2p3/2, 1〉 , (4.118)

with c21 + c22 = 1. The lowest-order energy in this state is given by

E
(0)
1s2p = c21 ε2p1/2 + c22 ε2p3/2 , (4.119)
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and the corresponding interaction energy is given by

E
(1)
1s2p,1 = c21 (〈1s2p1/2, 1|V |1s2p1/2, 1〉 − U2p1/2,2p1/2)

+ 2c1c2 〈1s2p3/2, 1|V |1s2p1/2, 1〉
+ c22 (〈1s2p3/2, 1|V |1s2p3/2, 1〉 − U2p3/2,2p3/2) . (4.120)

In the first of these two equations we have dropped a term ε1s which is inde-
pendent of the expansion coefficients c1 and c2, and, in the second equation, we
have dropped a similar c-independent term −U1s,1s. Diagonalizing the energy

E
(0)
1s2p,1 + E

(1)
1s2p,1 leads to the 2× 2 eigenvalue equation:

(

ε2p1/2 + V1/2,1/2 − U1/2,1/2 V1/2,3/2
V3/2,1/2 ε2p3/2 + V3/2,3/2 − U3/2,3/2

)(

c1
c2

)

= E

(

c1
c2

)

, (4.121)

where

Uj,j′ = U2pj ,2pj′ δjj′ , (4.122)

Vj,j′ = 〈1s2pj , 1|V |1s2pj′ , 1〉 = R0(1s, 2pj , 1s, 2pj′)δjj′

− 2

{

1/2 j 1
1/2 j′ 1

}(

j 1/2 1
−1/2 1/2 0

)(

j′ 1/2 1
−1/2 1/2 0

)

× R1(1s, 2pj , 2pj′ , 1s) . (4.123)

We must add ε1s−U1s1s to the eigenvalues of Eq. (4.121) to obtain the energies
of the two relativistic J = 1 states. This additive term is, of course, just the
energy of the one-electron ion formed when the two-electron system is ionized
and is omitted when energies are calculated relative to the ionization threshold.

It is instructive to consider the nonrelativistic limit of the energies of the
four |1s2pj , J〉 states. For the J = 0 and J = 2 states, we find

E1s2p1/2,0 = ε2p +R0(1s, 2p, 1s, 2p)−
1

3
R1(1s, 2p, 2p, 1s)− U2p,2p (4.124)

E1s2p3/2,2 = ε2p +R0(1s, 2p, 1s, 2p)−
1

3
R1(1s, 2p, 2p, 1s)− U2p,2p. (4.125)

Since we are considering the nonrelativistic limit, we do not distinguish between
2p1/2 and 2p3/2. These two levels are degenerate in the nonrelativistic limit and
have precisely the energy obtained in Eq. (4.53) for a nonrelativistic 3P state.
The 2×2 eigenvalue problem for the J = 1 case simplifies to

(E − ε2p −R0(1s2s1s2p) + U2p,2p)

(

c1
c2

)

= R1(1s, 2p, 2p, 1s)

(

−1/9
√
8/9√

8/9 1/9

)(

c1
c2

)

. (4.126)
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Table 4.3: First-order relativistic calculations of the (1s2s) and (1s2p) states of
heliumlike neon (Z = 10), illustrating the fine-structure of the 3P multiplet.

Term 3S1
1S0

3P0
3P1

3P2
1P1

E(0) -12.5209 -12.5209 -12.5209 -12.5125 -12.5042 -12.5125
E(1) 1.8834 2.3247 2.2641 2.2596 2.2592 2.6049
Etot -10.6375 -10.1962 -10.2568 -10.2529 -10.2450 -9.9076

The eigenvalues of the small matrix on the right-hand side of this equation are
±1/3. From this, it follows that the energies of the J = 1 states are

E1s 2p1/2, 1 = ε2p +R0(1s, 2p, 1s, 2p)∓
1

3
R1(1s, 2p, 2p, 1s)− U2p,2p. (4.127)

The energy associated with the − sign agrees with the energies of the
|s1/2 p1/2, 0〉 and |s1/2 p3/2, 2〉 states given in Eq. (4.125) while the energy as-
sociated with the + sign agrees with the energy of the nonrelativistic 1P state
given in Eq (4.53). Thus, the energies predicted for the |1s 2pj , 1〉 states re-
duce to nonrelativistic values obtained previously. Furthermore, the orthogonal
matrix that diagonalizes the small matrix in Eq. (4.126) is

(
√

1/3
√

2/3
√

2/3 −
√

1/3

)

.

This is precisely the matrix, obtained in a more direct way in Sec. 4.6, that
transforms the jj coupled states

[

(s1/2 p1/2)1
(s1/2 p3/2)1

]

to the LS coupled states
[

(sp) 1P1
(sp) 3P1

]

.

We leave it as an exercise to verify this assertion.
The degeneracy of LS multiplets is lifted in relativistic calculations, giv-

ing to a J-dependent fine-structure of 2S+1L states. As a specific example, let
us consider heliumlike neon (Z = 10). For simplicity, we choose U = 0, and
calculate the energies of the two (1s2s) states and the four (1s2p) states. In Ta-
ble 4.3, we show the lowest-order and first-order energies E(0) and E(1) together
with the resulting sum. These energies are all given relative to the one-electron
ion. The energies of the 3P1 and 1P1 states were obtained by solving the 2 × 2
eigenvalue problem in Eq.(4.121). The three 3PJ states have slightly different
energies in this relativistic calculation; the J-dependent fine structure of the 3P
state obvious from the table.
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Figure 4.2: Variation with nuclear charge of the energies of 1s2p states in heli-
umlike ions. At low Z the states are LS-coupled states, while at high Z, they
become jj-coupled states. Solid circles 1P1; Hollow circles 3P0; Hollow squares
3P1; Hollow diamonds 3P2.

In Fig. 4.2, we illustrate the transition from LS to jj coupling as Z increases
along the helium isoelectronic sequence by presenting the results of a series of
calculations of the energies of (1s2p) states for two electron ions with nuclear
charges ranging from Z = 4 to Z = 90. We plot the ratio of the energy of
each of the four substates to the average energy of the states. For low values
of Z, near the nonrelativistic limit, the states divide into a singlet state and
a triplet state. As Z increases the triplet state splits apart into J dependent
fine-structure components. For large Z, the states come together again to form
the two jj states (1s1/22p1/2) and (1s1/22p3/2).

4.7.2 Atoms with Two Valence Electrons

The fine-structure of atoms with two valence electrons beyond closed shells can
be treated in much the same way as the fine structure of heliumlike ions. Let
us consider the nonrelativistic LS-coupled state 2S+1L (with S = 0 or S =
1) made up from the configurations (nvlvnwlw). A single nonrelativistic two-
electron configuration (nvlvnwlw) corresponds to four relativistic configurations
(nvlvnwlw) with jv = lv ± 1/2 and jw = lw ± 1/2. A jj-coupled state having
the state 2S+1LJ as its nonrelativistic limit is generally made up as a linear
combination

|JM〉 =
∑

vw

cvw|vw, J〉 . (4.128)

Here |vw, J〉 are normalized jj-coupled and cvw are expansion coefficients sat-
isfying

∑

vw

c2vw = 1 . (4.129)
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As a specific example, let us consider the even-parity 3D2 state obtained
nonrelativistically from the configuration (2p3p). There are three relativistic
configurations contributing to this state; (2p1/23p3/2)J=2, (2p3/23p1/2)J=2 and
(2p3/23p3/2)J=2. The configuration (2p1/23p1/2) can not contribute since two
single-particle states with j = 1/2 cannot couple to J = 2!

The lowest-order energy for the state |JM〉 in Eq.(4.128) is

E
(0)
J =

∑

vw

c2vw(εv + εw) . (4.130)

The first-order energy is given by the quadratic form

E
(1)
J =

∑

vw,xy

cvwcxyVvw,xy +
∑

vw

c2vw[(VHF − U)vv + (VHF − U)ww] . (4.131)

The interaction potential Vvw,xy in Eq.(4.131) is given by

Vvw,xy = ηvwηxy
∑

k

[

(−1)jw+jx+J+k
{

jv jw J
jy jx k

}

Xk(vwxy)

+(−1)jw+jx+k
{

jv jw J
jx jy k

}

Xk(vwyx)

]

, (4.132)

where, as usual, the normalization factor ηvw = 1/
√
2 for identical particle

configurations (nw = nv and κw = κv) and ηvw = 1 otherwise. It can be easily
seen that Vvw,xy = Vxy,vw

As in the mixed-configuration case described previously for heliumlike ions,
diagonalizing the quadratic form in Eq.(4.131) leads to the algebraic eigenvalue
equation for the energy:

∑

xy

(

[εx + (VHF − U)xx + εy + (VHF − U)yy] δvw,xy + Vvw,xy

)

cxy = E cvw .

(4.133)

4.7.3 Particle-Hole States

Because of the relatively large separation between energies of subshells with a
given value of l and different values of j in closed shell atoms (even an atom as
light as neon), the fine-structure splitting of particle-hole states is particularly
important. The arguments in the preceding paragraphs apply with obvious
modifications to the particle-hole states as well.

First, we construct an angular momentum eigenstate as a linear combination
of those relativistic particle-hole configurations (nvlvnala) with jv = lv ± 1/2
and ja = la ± 1/2 that couple to a given value of J :

|JM〉 =
∑

va

cva|va, JM〉 , (4.134)
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where the expansion coefficients satisfy the normalization constraint
∑

va c
2
va =

1. Again, the first-order energy is a quadratic form in the expansion coefficients.
Diagonalizing this quadratic form leads to an algebraic eigenvalue problem for
the energy and the expansion coefficients. In the particle-hole case, the eigen-
value problem takes the form

∑

va

(

[εv + (VHF − U)vv − εa − (VHF − U)aa] δvwδab + Vwb,va

)

cva = E cwb ,

(4.135)
where the (symmetric) interaction matrix is given by

Vwb,va = (−1)J+jw−jb 1

[J ]
XJ(wabv)

+
∑

k

(−1)J+jw−jb
{

jw jb J
ja jv k

}

Xk(wavb). (4.136)
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Chapter 5

Hyperfine Interaction &
Isotope Shift

In this Chapter, we apply methods developed earlier in the text to investigate
two small corrections to atomic energy levels: the hyperfine interaction, which
is caused by interaction of atomic electrons with the electric and magnetic mul-
tipole moments of the nucleus, and the isotope shift, which results from the
motion of the nucleus relative to the atomic center of mass. The hyperfine in-
teraction leads to further splitting the atomic fine-structure levels, whereas the
isotope shift leads to a dependence of energy levels on the nuclear mass.

5.1 Hyperfine Structure

The electric and magnetic multipole moments of a nucleus with angular mo-
mentum I, which are proportional to nuclear matrix elements of electric and
magnetic multipole fields, are limited by angular momentum and parity selection
rules.

Angular momentum selection rules limit the multipolarity k of the moments
to k ≤ 2I. Parity selection rules further limit the moments to even-order electric
moments and odd-order magnetic moments. Thus a nucleus with spin I = 0
can have only an electric monopole moment; the nuclear charge |e|Z. A nucleus
with angular momentum I = 1/2 can also have a magnetic dipole moment,
while a nucleus with I = 1 can have a magnetic dipole moment and an elec-
tric quadrupole moment in addition to its charge. Low-order nuclear moments
give the most significant contributions to the hyperfine interaction. Here, we
concentrate on the dominant interactions, those of the magnetic dipole and elec-
tric quadrupole moments. The present analysis follows that given by Schwartz
(1955).

The hyperfine interaction of a (relativistic) electron with the nucleus is just
the electromagnetic interaction with the scalar and vector potentials generated

125
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by the nuclear moments

hhfs(r) = eφ(r)− ecα ·A(r) . (5.1)

Nonrelativistic limits can be worked out as needed.
If we let µ designate the nuclear magnetic moment, then the corresponding

magnetic vector potential is given by

A(r) =
µ0
4π

[µ× r]

r3
.

It is convenient to express the interaction −ecα ·A(r) in a spherical basis. For
this purpose, we rewrite

α · [µ× r] = [r×α] · µ =
∑

λ

(−1)λ[r×α]λ µ−λ .

For an arbitrary vector v, one may show,

[r× v]λ = −i
√
2 rC

(0)
1λ (r̂) · v ,

where C
(0)
1λ (r̂) is a normalized vector spherical harmonic defined by

C
(0)
kq (r̂) =

√

4π

2k + 1
Y

(0)
kq (r̂) .

Using this relation, we can write the magnetic hyperfine interaction as:

e

4πε0

∑

λ

(−1)λ i
√
2 [α ·C(0)

1λ (r̂)]

cr2
µ−λ .

The quantity [α ·C(0)
1λ (r̂)] is an irreducible tensor operator of rank 1 acting in

the space of electron coordinates and spin. Quantum mechanically, µλ is an
irreducible tensor operator of rank 1 acting in the space of nuclear coordinates
and spin. The c-number magnetic moment µ is the expectation value of the
operator µ0 in the “extended” state of the nucleus, MI = I:

µ
def
= 〈II|µ0|II〉 . (5.2)

The nuclear magnetic moment µ is measured in units of the nuclear magneton
µN :

µN =
|e|h̄
2Mp

,

where Mp is the mass of the proton. We write µ in terms of the angular mo-
mentum quantum number I as:

µ = gI I µN . (5.3)
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The dimensionless factor gI is called the gyromagnetic ratio. For the proton,
the gyromagnetic ratio has the numerical value gI = 5.5856948(1).

If we let Qij represent the nuclear quadrupole moment tensor, then the scalar
potential is given by

φ(r) =
1

4πε0

∑

ij

xixj
2r5

Qij .

The quadrupole tensor Qij is a traceless symmetric tensor of rank 2; it therefore
has 5 independent components. For a classical charge distribution ρ(r) the
Cartesian components of the quadrupole tensor are given by

Qij =

∫

d3r (3xixj − r2δij)ρ(r) .

The components of this tensor can be transformed to a spherical basis and
expressed in terms of the five components of the second-rank spherical tensor
Qλ defined by,

Qλ =

∫

d3r r2C2
λ(r̂)ρ(r) ,

where C2
λ(r̂) is a normalized spherical tensor of rank 2. In particular, Q33 = 2Q0.

The potential due to the quadrupole, expressed in a spherical basis, is

φ(r) =
1

4πε0

∑

λ

(−1)λC
2
λ(r̂)

r3
Q−λ .

Here, Qλ is an irreducible tensor operator of rank 2 acting in the space of nucleon
coordinates and spins. The c-number quadrupole moment of the nucleus Q is
given in terms of the expectation value of the operator Q0 in the extended state:

Q
def
= 2〈II|Q0|II〉 . (5.4)

The nuclear quadrupole moment Q is dimensionally a charge times a length
squared. It is commonly written in units of |e| × barn.

The hyperfine interaction Hamiltonian for a relativistic electron with the
nuclear magnetic dipole and electric quadrupole moments becomes

hhfs(r) =
e

4πε0

{

∑

λ

(−1)λ i
√
2 [α ·C(0)

1λ (r̂)]

cr2
µ−λ +

∑

λ

(−1)λC
2
λ(r̂)

r3
Q−λ

}

.

(5.5)
Both the electric and magnetic interactions are thereby expressed in terms of
tensor operators and the hyperfine interaction Hamiltonian takes the form

hhfs(r) =
∑

kλ

(−1)λ tkλ(r̂)T k−λ ,

where tkq (r) is an irreducible tensor operator of rank k that acts on electron

coordinates and spin, and T kq is a rank k irreducible tensor operator that acts
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on nuclear coordinates and spin. Here, k = 1 for the magnetic dipole interaction
and k = 2 for the electric quadrupole interaction. Specifically,

t1λ(r) = − |e|
4πε0

i
√
2 [α ·C(0)

1λ (r̂)]

cr2
, (5.6)

t2λ(r) = − |e|
4πε0

C2
λ(r̂)

r3
, (5.7)

and

T 1
λ = µλ , (5.8)

T 2
λ = Qλ . (5.9)

For a collection of N electrons hhfs(r) is replaced by the single-particle operator

Hhfs =

N
∑

i=1

hhfs(ri) =
∑

λ

(−1)λT kλ T k−λ , (5.10)

with

T kλ =







∑N
i=1 t

k
λ(ri) in first quantization ,

∑

ij〈i|tkλ|j〉a
†
iaj in second quantization .

(5.11)

Let us consider an atomic angular momentum eigenstate |J,MJ 〉 and a nu-
clear angular momentum eigenstate |I,MI〉. These states are coupled to give a
eigenstate of total angular momentum F = I+ J,

|(IJ), FMF 〉 =
∑

MIMJ

?

?
− FMF

IMI

JMJ

|I,MI〉 |J,MJ 〉.

The first-order correction to the energy in this state is just the expectation value
of Hhfs, which is easily shown to be

WF = 〈(IJ), FMF |Hhfs|(IJ), FMF 〉

=
∑

k

(−1)I+J+F
{

I J F
J I k

}

〈J ||T k||J〉〈I||T k||I〉. (5.12)

We can write this equation in a somewhat more convenient way by introducing

(−1)I+J+F
{

I J F
J I k

}

=
(2I)! (2J)!

√

(2I − k)!(2I + k + 1)!(2J − k)!(2J + k + 1)!
M(IJ, Fk),
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where

M(IJ, Fk) =







K
2IJ , for k = 1 ,

6K(K+1)−8J(J+1)I(I+1)
2I(2I−1)2J(2J−1) , for k = 2 ,

with K = F (F + 1)− I(I + 1)− J(J + 1). With the aid of the identity
(

J k J
−J 0 J

)

=
(2J)!

√

(2J − k)! (2J + k + 1)!
, (5.13)

it follows that

〈JJ |T k0 |JJ〉 =
(2J)!

√

(2J − k)! (2J + k + 1)!
〈J ||T k||J〉 . (5.14)

Combining Eqs.(5.12) and (5.14), we obtain for the energy the expression

WF =
∑

k

M(IJ, Fk)〈JJ |T k0 |JJ〉〈II|T k0 |II〉 . (5.15)

The two terms in this sum can be written out explicitly as

WF =
1

2
Ka+

1

2

3K(K + 1)− 4J(J + 1)I(I + 1)

2I(2I − 1)2J(2J − 1)
b , (5.16)

where

a =
1

IJ
〈JJ |T 1

0 |JJ〉〈II|T 1
0 |II〉 =

µ

IJ
〈JJ |T 1

0 |JJ〉 , (5.17)

b = 4〈JJ |T 2
0 |JJ〉〈II|T 2

0 |II〉 = 2Q 〈JJ |T 2
0 |JJ〉 . (5.18)

The problem of evaluating the energy shift due to the atomic hyperfine interac-
tion is now reduced to that of determining the expectation values of the tensor
operators T k0 in atomic states.

Let us suppose that b = 0. The interaction energy then reduces to WF =
Ka/2, with K = F (F + 1) − I(I + 1) − J(J + 1). This is precisely the energy
that would have been obtained from an effective Hamiltonian of the form

Heff = a I · J .
We find that an eigenstate of J breaks up into 2J + 1 sublevels for the case
I ≥ J or 2I + 1 sublevels for J < I. Let us consider the case I ≥ J = 1/2. In
this case, an eigenstate of J breaks up into 2 sublevels,

WF =

{

Ia/2 for F = I + 1/2 ,
−(I + 1)a/2 for F = I − 1/2 .

The splitting between the two sublevels is ∆W = (I + 1/2)a. For I ≥ J = 1,
an eigenstate of J splits into three components separated by (I + 1)a and Ia,
respectively. Generally, for the case I ≥ J , the hyperfine pattern has 2J + 1
components; the splitting between two adjacent sublevels being WF+1 −WF =
Fa. By counting the hyperfine components in the case J > I we can determine
the nuclear angular momentum I, while measurements of the separation between
sublevels permits us to evaluate the nuclear gyromagnetic ratio gI .
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Units: Dimensionally, the magnetic hyperfine interaction energy is given by

[Wm.d.] =
|e|
4πε0

|e|h̄
2Mp

1

ca20

=
1

2Mpc
= 1.987131× 10−6 a.u.

= 0.4361249 cm−1

= 13074.69MHz .

Similarly, the electric quadrupole hyperfine interaction energy is, dimensionally,

[W e.q.] =
|e|
4πε0

|e| × barn
1

a30

= 3.571064× 10−8 a.u.

= 7.837580× 10−3 cm−1

= 234.965MHz .

In the following, we express the nuclear magnetic moment in units of µN , the
quadrupole moment in terms of |e|× barn, and omit the constants e/4πε0 and
c in expressions given previously for the interaction. The results will then be in
terms of the units given in this paragraph.

5.2 Atoms with One Valence Electron

We now turn to the problem of determining WF for an atom having a single
valence electron in the state v = (nvκvmv),

|v〉 = a†v|Oc〉 .

The atomic angular momentum components J and MJ are given by J = jv and
MJ = mv for this state, and the many-body expectation value of the tensor
operator T kλ is given by

〈v|T kλ |v〉 = 〈v|tkλ(r)|v〉+
∑

a

〈a|tkλ(r)|a〉 ,

where the sum over a extends over all core states. The core sum is easily shown
to vanish:

∑

a

〈a|tkλ(r)|a〉 =
∑

a

6− kλ

jama

jama

〈a||tk||a〉 =
∑

naκa ¹¸
º·¾ja

−
kλ 〈a||tk||a〉

=
∑

naκa

δk0δλ0
√

[ja] 〈a||tk||a〉 = 0 .
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The expectation value of T kλ , therefore reduces to the valence electron expecta-
tion value of tkλ(r). For a one valence electron atom, we therefore have,

a =
gI
jv
〈nvκvmv = jv|t10|nvκvmv = jv〉 × 13074.7MHz , (5.19)

b = 2Q〈nvκvmv = jv|t20|nvκvmv = jv〉 × 234.965MHz . (5.20)

In the magnetic case, k = 1, we obtain from Eq.(5.6)

〈w|t1λ(r)|v〉 = −i
√
2

∫

dr

r2

(

−iPnwκw(r)Qnvκv (r) 〈κwmw|σ ·C(0)
10 (r̂)| − κvmv〉

+iQnwκw(r)Pnvκv (r) 〈−κwmw|σ ·C(0)
10 (r̂)|κvmv〉

)

, (5.21)

where, for example,

〈κwmw|σ ·C(0)
kq | − κvmv〉 =

∫

dΩΩ†κwmw
(r̂)σ ·C(0)

kq (r̂)Ω−κvmv
(r̂) .

Often in relativistic calculations, one encounters angular matrix elements, such
as those in the above equation, of σ times a normalized vector spherical har-

monic C
(ν)
kq . Such matrix elements are easily reduced to matrix elements of

normalized spherical harmonics. We find:

〈κbmb|σ ·C(−1)
kq |κama〉 = −〈−κbmb|Ck

q |κama〉 , (5.22)

〈κbmb|σ ·C(0)
kq |κama〉 =

κa − κb
√

k(k + 1)
〈κbmb|Ck

q |κama〉 , (5.23)

〈κbmb|σ ·C(1)
kq |κama〉 =

κa + κb
√

k(k + 1)
〈−κbmb|Ck

q |κama〉 . (5.24)

With the aid of Eq.(5.23), we obtain

〈w|t1λ(r)|v〉 = (κv + κw) 〈−κwmw|C1
λ|κvmv〉

(

1

r2

)

wv

, (5.25)

where
(

1

r2

)

wv

=

∫ ∞

0

dr

r2
(Pnwκw(r)Qnvκv (r) +Qnwκw(r)Pnvκv (r)) . (5.26)

Here we have used the symmetry relation

〈−κwmw|C1
λ|κvmv〉 = 〈κwmw|C1

λ| − κvmv〉 . (5.27)

Therefore, we have in the case k = 1,

〈nvκvjv|t10|nvκvjv〉 = 2κv〈−κvjv|C1
0 |κvjv〉

(

1

r2

)

vv

. (5.28)
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A similar, but simpler calculation for k = 2 gives

〈nvκvjv|t20|nvκvjv〉 = −〈κvjv|C2
0 |κvjv〉

〈

1

r3

〉

vv

, (5.29)

where
〈

1

r3

〉

wv

=

∫ ∞

0

dr

r3
(Pnwκw(r)Pnvκv (r) +Qnwκw(r)Qnvκv (r)) . (5.30)

The angular matrix elements in Eqs.(5.28) and (5.29) are evaluated to give

〈−κvjv|C1
0 |κvjv〉 = −

1

2jv + 2
,

〈κvjv|C2
0 |κvjv〉 = −

2jv − 1

4jv + 4
,

from which it follows that

a = − gI κv
jv(jv + 1)

(

1

r2

)

vv

× 13074.7MHz , (5.31)

b = Q
2jv − 1

2jv + 2

〈

1

r3

〉

vv

× 234.965MHz . (5.32)

5.2.1 Pauli Approximation

To obtain the nonrelativistic limit of the expression for the dipole hyperfine con-
stant a in Eq.(5.31), we consider an approximation to the radial Dirac equation
referred to as the Pauli approximation. We set Wnκ = Enκ − c2 and write the
radial Dirac equations as

c

(

d

dr
− κ

r

)

Qnκ = (Wnκ − V )Pnκ , (5.33)

(2c2 +Wnκ − V )Qnκ = −c
(

d

dr
+
κ

r

)

Pnκ . (5.34)

The Pauli approximation consists of neglecting Wnκ − V compared to 2c2 in
Eq.(5.34), leading to the relation

Qnκ ≈ −
1

2c

(

d

dr
+
κ

r

)

Pnκ . (5.35)

Substituting this approximation into Eq.(5.34), gives the differential equation

1

2

d2Pnκ
dr2

+

(

Wnκ − V −
κ(κ+ 1)

2r2

)

Pnκ = 0 , (5.36)

for the large component radial function Pnκ. This is just the radial Schrödinger
equation for orbital angular momentum l, since κ(κ+ 1) = l(l + 1) for the two
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possible κ values associated with a given value of l (κ = l and κ = −l − 1).
Therefore, in the Pauli approximation, the large component radial function Pnκ
goes over to the corresponding nonrelativistic radial function Pnl. The small
component radial function in the Pauli approximation is found from Eq.(5.35)
with Pnκ replaced by Pnl. With the aid of the Pauli approximation, we therefore
obtain
(

1

r2

)

vw

= − 1

2c

∫ ∞

0

dr

r2

[

Pnvlv

(

d

dr
+
κw
r

)

Pnwlw + Pnwlw

(

d

dr
+
κv
r

)

Pnvlv

]

= − 1

2c

∫ ∞

0

dr

[

d

dr

(

PnvlvPnwlw
r2

)

+
κv + κw + 2

r3
PnvlvPnwlw

]

=
1

2c

(

PnvlvPnwlw
r2

)

r=0

− κv + κw + 2

2c

〈

1

r3

〉

vw

, (5.37)

where the radial matrix element of 1/r3 on the last line is to be evaluated using
nonrelativistic wave functions. The first term on the last line of Eq.(5.37) con-
tributes if, and only if, both states v and w are s states, since the nonrelativistic
radial wave functions Pnl(r) are proportional to rl+1. Indeed, if we let

lim
r→0

(

Pnvlv (r)

r

)

= Nvδlv0 ,

then we obtain the following nonrelativistic limiting values for the dipole hyper-
fine constant:

aNR =
2

3
gIN

2
v × 95.4016MHz, for lv = 0, (5.38)

aNR =
lv(lv + 1)

jv(jv + 1)
gI

〈

1

r3

〉

vv

× 95.4016MHz, for lv 6= 0. (5.39)

The overall scale here is set by the constant 13074.69 × α = 95.4106MHz. For
the ground state of hydrogen, N1s = 2, and Eq.(5.38) leads to the result

aNR =
2

3
× 5.5856948× 22 × 95.4016MHz = 1421.16MHz. (5.40)

This number is to be compared with the experimental value aExp. =
1420.406MHz. The difference between these values arises from radiative,
reduced-mass and relativistic corrections. These corrections are discussed, for
example, in Bethe and Salpeter (1957).

In Table 5.1, we compare results of HF calculations of the hyperfine constants
for the ground states of alkali-metal atoms with measurements. These values
are seen to be in only qualitative agreement with experiment. The agreement
between theory and experiment can be improved to the level of 5% or better by
including corrections from first-order and second-order perturbation theory. For
the heavier alkali atoms, a significant part of the difference between calculation
and measurement is due to the use of the nonrelativistic approximation. For
example, if we use the relativistic expression Eq.(5.31) rather than Eq.(5.38)
to evaluate a for rubidium, we obtain a = 643.9MHz instead of the value a =
542.0MHz given in the table.
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Table 5.1: Nonrelativistic HF calculations of the magnetic dipole hyperfine con-
stants a (MHz) for ground states of alkali-metal atoms compared with measure-
ments.

Atom Z A I State gI aNR aExp.
Li 3 7 3/2 2s1/2 2.17065 284.2 401.752
Na 11 23 3/2 3s1/2 1.47749 615.9 885.813
K 19 39 3/2 4s1/2 0.26064 140.8 230.860
Rb 37 85 5/2 5s1/2 0.54121 542.0 1011.911

5.3 Isotope Shift

All of the previous calculations were carried out assuming that the nuclear mass
is infinite. In this section, we consider corrections associated with finite nuclear
mass. These corrections lead to isotope shifts of atomic energy levels. We eval-
uate isotope shifts using many-body methods, following earlier pioneering work
by Mårtensson and Salomonson (1982). We first discuss the various contribu-
tions to the isotope shift, then go on to several specific examples.

Consider a nonrelativistic atom with N electrons of mass m at (r1, r2, · · · )
and a nucleus of mass MA at r0. The Hamiltonian for the N + 1 particle atom
may be written

H(r0, r1, r2, · · · ,p0,p1,p2, · · · ) =
p20

2MA
+
∑

i

p2i
2m

+
∑

i

Ve−N (ri − r0) +
1

2

∑

i6=j
Ve−e(ri − rj) . (5.41)

Let us transform to relative coordinates:

ρi = ri − r0 (5.42)

R =
MA r0 +m

∑

i ri

MT
, (5.43)

where MT =MA +N m. The generalized momenta conjugate to ρi and R are:

πi =
1

i
∇ρi (5.44)

P =
1

i
∇R (5.45)

We find using the four previous equations:

pi = πi +
m

MT
P (5.46)

p0 = −
∑

i

πi +
MA

MT
P (5.47)
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The kinetic energy term in the original Hamiltonian can be rewritten

K. E. =
1

2m

[

∑

i

π2i + 2
m

MT

∑

i

πi · P +
Nm2

M2
T

P 2

]

+
1

2MA





(

∑

i

πi

)2

− 2
MA

MT

∑

i

πi · P +
M2

A

M2
T

P 2





=
m+MA

2mMA

∑

i

π2i +
1

2MA

∑

i6=j
πi · πj +

1

2MT
P 2 (5.48)

The wave function for the atom is therefore factorizable into a product of plane
wave describing the center of mass motion and an N -electron wave function
describing the motion relative to the nucleus. The Hamiltonian for the relative
motion is

H(ρ1,ρ2, · · · ,π1,π2, · · · ) =
∑

i

π2i
2µ

+
∑

i

Ve−N (ρi) +
1

2

∑

i6=j
Ve−e(ρi − ρj)

+
1

2MA

∑

i6=j
πi · πj . (5.49)

where the reduced mass µ is given by

µ =
MAm

MA +m
. (5.50)

5.3.1 Normal and Specific Mass Shifts

We write the Hamiltonian as a sum

H(ρ1,ρ2, · · · ,π1,π2, · · · ) = Hµ +∆H (5.51)

Hµ(ρ1,ρ2, · · · ,π1,π2, · · · ) =
∑

i

π2i
2µ

+
∑

i

Ve−N (ρi)

+
1

2

∑

i6=j
Ve−e(ρi − ρj) (5.52)

∆H(π1,π2, · · · ) =
1

2MA

∑

i6=j
πi · πj . (5.53)

Normal Mass Shift The effect of the finite nuclear mass on the first term in
∆H is to scale the infinite mass energies by the ratio µ/m = MA/(MA +m).
(The infinite mass energy levels are commonly measured in units of the Rydberg
constant R∞ which has the value 1/2 (a.u.) = 109737.31 cm−1.) The shift of
the energy from the infinite-mass value is is referred to as the normal mass shift.
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The value of the normal mass shift is

δENMS = Eµ − Em =

(

MA

MA +m
− 1

)

Em = − m

MA +m
Em ≡ −

m

MA
Eµ .

(5.54)
Here Em is the value of the energy in atomic units calculated with the infinite-
mass Rydberg constant. We may use the above expression with Eµ replaced by
the experimental energy to evaluate the normal mass shift to obtain an accurate
approximation to the normal mass shift.

Specific Mass Shift The correction to the energy from ∆H is referred to as
the specific mass shift. The value of the specific mass shift is

δESMS =
1

2MA

〈

∑

i6=j
πi · πj

〉

. (5.55)

The energy is proportional to the mass (µ for Hµ) or (m for Hm) in the denom-
inator of the kinetic energy. It follows that lengths vary inversely with mass
and that kinetic energy varies directly as mass. The scaling of kinetic energy
implies that momentum is proportional to mass. With the aid of these scaling
relations, one may rewrite

δESMS =
MA

2(MA +m)2

〈

∑

i6=j
pi · pj

〉

, (5.56)

in the center of mass system. This scaling is required since we evaluate the SMS
matrix element using infinite nuclear mass wave functions. The prescription is
as follows:

(a) Express all answers in terms of the R∞, the infinite mass Rydberg con-
stant.

(b) Multiply the total energy by −m/(MA+m) to obtain the the normal mass
shift.

(c) Multiply the matrix element of
∑

pi · pj by MA/2(MA +m)2 to find the
specific mass shift.

Alternatively, we may use experimental energies for Eµ and evaluate the normal
mass shift as

δENMS = − m

MA
Eexpt . (5.57)

5.4 Calculations of the SMS

Whereas values the NMS can be obtained directly from the energy, determining
the SMS represents a non-trivial many-body problem. Ignoring the coefficient
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MA/(Ma +m)2 for the moment, the specific mass shift operator

T =
1

2

∑

i6=j
pi · pj

can be expressed in second quantization as

1

2

∑

ijkl

tijkla
†
ia
†
jalak ,

where
tijkl = 〈ij|p1 · p2 |kl〉 . (5.58)

5.4.1 Angular Decomposition

The two-particle operator tijkl may be decomposed in an angular-momentum
basis as

tijkl =
∑

λ

(−1)λ〈i| pλ |k〉〈j| p−λ |l〉 , (5.59)

which, in turn, can be expressed diagrammatically as

tijkl = -6 6− +
1

i

k

j

l

T1(ijkl) , (5.60)

where
T1(ijkl) = −〈i||C1||k〉 〈j||C1||l〉P (ac)P (bd) . (5.61)

In Eq. (5.61), the quantities P (ik) are radial matrix elements of the momen-
tum operator. We give explicit forms for these reduced matrix elements in the
following subsection.

Nonrelativistic case

We write p = 1
i ∇ and note that in the nonrelativistic case

〈b|∇|a〉 =

∫

d3r
1

r
Pb(r)Y

?
lbmb
∇

(

1

r
Pa(r)Ylama

)

=

∫ ∞

0

dr Pb(r)
(dPa
dr
− 1

r
Pa(r)

)

∫

dΩ Y ?
lbmb

r̂ Ylama

+

∫ ∞

0

dr Pb(r)Pa(r)

∫

dΩ Y ?
lbmb
∇Ylama

(5.62)

We can rewrite the operators on spherical harmonics in terms of vector
spherical harmonics as

r̂Ylm(r̂) = Y
(−1)
lm (r̂) (5.63)

∇Ylm(r̂) =

√

l(l + 1)

r
Y

(1)
lm (r̂) (5.64)
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Using the expansion of vector spherical harmonics in terms of YJLM (r̂), we
easily establish that

〈lbmb|∇|lama〉 =
{

(la + 1)〈lbmb|r̂|lama〉 for lb = la − 1,
−la〈lbmb|r̂|lama〉 for lb = la + 1 .

(5.65)

With the aid of this expression, We find

〈b|∇|a〉 = 〈lbmb|r̂|lama〉
∫ ∞

0

drPb(r)

(

dPa
dr

+
la
r
Pa

)

, lb = la − 1, (5.66)

and

〈b|∇|a〉 = 〈lbmb|r̂|lama〉
∫ ∞

0

drPb(r)

(

dPa
dr
− la + 1

r
Pa

)

, lb = la + 1. (5.67)

We may therefore write, as in Eq. (5.61),

〈b|pλ|a〉 = 〈lbmb|C1
λ |lama〉 P (ba),

where the radial matrix element P (ab) is

P (ba) =
1

i

∫ ∞

0

drPb(r)

(

dPa
dr

+
la
r
Pa

)

, lb = la − 1,

=
1

i

∫ ∞

0

drPb(r)

(

dPa
dr
− la + 1

r
Pa

)

, lb = la + 1. (5.68)

Relativistic case:

It is simple to generalize the previous nonrelativistic matrix element to the
relativistic case. We may write

〈b|pλ|a〉 = 〈κbmb|C1
λ |κama〉 P (ba),

where the relativistic radial matrix elements P (ab) is

P (ba) =
1

i

∫ ∞

0

dr

[

Pb(r)

(

dPa
dr

+
ηa
r
Pa

)

+Qb(r)

(

dQa

dr
+
ζa
r
Qa

)]

, (5.69)

with ηa = la or −la−1, for lb = la−1 or lb = la+1, respectively; and ζa = l′a or
−l′a − 1 for l′b = l′a − 1 or l′b = l′a + 1, respectively. Here l′ = l(−κ). This is the
proper form for the matrix element of the momentum operator. Actually, this
can be written in a somewhat more convenient form by noting that only the
values κb = −κa or κb = κa ± 1 are permitted by angular momentum selection
rules. We find:

κb ηa ζa
κa − 1 −κa −κb
−κa κb κa
κa + 1 κb κa

One should note that P (ab) = P (ba)∗.
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Table 5.2: Lowest-order matrix elements of the specific-mass-shift operator T
for valence states of Li and Na.

Lithium Z = 3 Sodium Z = 3
State EHF 〈v|T |v〉 State EHF 〈v|T |v〉
2s -0.19632 0.00000 3s -0.18203 -0.06150

2p1/2 -0.12864 -0.04162 3p1/2 -0.10949 -0.03201
2p3/2 -0.12864 -0.04162 3p3/2 -0.10942 -0.03199

5.4.2 Application to One-Electron Atom

Consider an atom with a single valence electron and assume that the many-
electron wave function is given in the frozen-core HF approximation. The lowest-
order matrix element of T in a state v is then given by

〈v|T |v〉 =
∑

a

[tvava − tvaav]

Since only angular momentum l = 1 contributes to matrix elements Pab, one
easily establishes that the “direct” term

∑

a tvava vanishes. The exchange term
is given by

−
∑

a

tvaav = −
∑

a

-6 6− +
1

v

a

a

v

T1(vaav) .

We can carry out the sum over magnetic substates using standard graphical
rules to find:

〈v|T |v〉 = −
∑

a

1

[v]
|〈v||C1||a〉|2 |P (va)|2 . (5.70)

where we have used the fact that

P (ba) = P (ab)? .

Results of HF calculations of 〈v|T |v〉 using Eq.(5.70) for low-lying states in
Li and Na are given in Table 5.2. For Li, the 2s contribution vanishes because
of parity selection rules. Only the 2p level contributes to the SMS of the 2p−2s
spectral line in the HF approximation. The frequency difference of the 2p− 2s
line between isotopes 7Li and 6Li predicted in the HF approximation is 3563
MHz. [Note that the conversion factor from atomic units (a.u.) to GHz is 3609.49
with MA expressed in atomic mass units (u).] The corresponding NMS is 5813
MHz, and the resulting sum is 9376 MHz. This theoretical value is within about
10% of the measured isotope shift 10533 MHz. The difference is accounted for
primarily by correlation corrections to the 2s SMS, which increases the 2p− 2s
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value by 1100 MHz and leads to a theoretical value 10487 MHz for the isotope
shift, in excellent agreement with measurement.

HF calculations of the SMS for Na and heavier elements are unreliable. For
example, correlation corrections change the sign of the 3s matrix element given
in Table 5.2 and reduce the 3p value by a factor of 3. We return to the analysis
of the IS in Na in Chap. 8.

5.5 Field Shift

In addition to the normal and specific mass shifts, we also have a shift arising
from the change in nuclear radius from one isotope to the next. This shift is
referred to as the field shift and is parameterized as

δE = −Fδ
〈

r2
〉

, (5.71)

where δ
〈

r2
〉

is the change in the root-mean-square radius of the nucleus. An
empirical formula for the r.m.s. radius is given in Eq. (3.157).

Assuming that the nucleus can be described as a uniformly charged ball of
radius R, the nuclear potential is

V (r,R) =

{

−(Z/2R)
[

3− r2/R2
]

, r < R

−Z/r , r ≥ R
(5.72)

For a uniform charge distribution, the mean square radius
〈

r2
〉

is related to R2

by
〈

r2
〉

=
3

5
R2.

The change in V (r,R) induced by a change δR in the radius is

δV =
3Z

2R2

[

1− r2

R2

]

δR, r ≤ R .

Expressing this result in terms of δ
〈

r2
〉

, we find

δV =
5Z

4R3

[

1− r2

R2

]

δ
〈

r2
〉

, r ≤ R . (5.73)

With this result in mind, we can introduce the single-particle operator F (r)

F (r) = − 5Z

4R3

[

1− r2

R2

]

, r ≤ R

= 0, r > R

and determine the field-shift parameter F from the equation

F = 〈F (r)〉 . (5.74)
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In atomic structure calculations, the above assumption of a uniform nuclear
charge density is often replaced by the more realistic assumption of a nuclear
charge density given by a Fermi distribution function:

ρnuc(r) =
ρ0

1 + exp[(r − c)/a] .

In this formula, c is the 50% fall-off radius of the density, and a is related to
the 90%–10% fall-off distance t by t = 4 ln(3) a. (Nuclear models predict that
a ≈ 0.5 fm.) The corresponding nuclear potential is

Vnuc(r) =















− Z

N c

[(

3

2
− r2

2 c2
+
π2 a2

2 c2
+

3 a2

c2
P2

)

+
6 a3

c2r
(S3 − P3)

]

, for r ≤ c,

− Z

N r

[

1 +
π2 a2

c2
+

6 a3

c3
(S3 − P3)−

3 ra2

c3
P2

]

, for r > c,

(5.75)
where

Sk =
∞
∑

n=1

(−1)n−1
kn

exp [−n c/a],

Pk =
∞
∑

n=1

(−1)n−1
kn

exp [−n (r − c)/a].

Here,

N = 1 +
π2 a2

c2
+

6 a3

c3
S3.

The root-mean-square radius of the nuclear charge distribution is related to the
50% fall off radius C by

Rrms = c

√

3

5

(M
N

)

,

with

M = 1 +
10π2 a2

3 c2
+

7π4a4

3 c4
+

120 a5

c5
S5.

In Fig. 5.1, we compare the potential V (r) and the field-shift distribution
function F (r) for a uniform distribution with corresponding values for a Fermi
distribution. It can be seen that the field-shift parameter is insensitive to details
of the nuclear charge distribution.

Owing to the fact that F (r) is independent of angle, calculations of atomic
matrix elements in the HF approximation are very simple. Thus, for an atom
with a single valence electron,

〈v|F |v〉 = fvv +
∑

a

[ja]faa (5.76)
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Figure 5.1: Comparison of the nuclear potential |V (r)| and field-shift factor F (r)
calculated assuming a uniform distribution (given by solid lines) with values
calculated assuming a Fermi distribution (dashed lines).

Where

fbb =

∫ ∞

0

drPb(r)
2F (r) nonrelativistic

=

∫ ∞

0

dr
(

Pb(r)
2 +Qb(r)

2
)

F (r) relativistic

It should be noted that core orbitals give non-vanishing contributions to matrix
elements of F in contrast to the hyperfine case studies earlier, where only the
valence electron contributed.

As was found earlier for the SMS, HF calculations of the FS for heavier
atoms are substantially modified by correlation corrections. Thus, for example,
the HF value of F for the 6s state of cesium F = −1270 MHz/fm2 becomes
-1894 MHz/fm2, after correlation corrections are included in the calculation.



Chapter 6

Radiative Transitions

In this chapter, we study the absorption and emission of radiation by atoms. We
start with a brief review of Maxwell’s equations for the radiation field and plane-
wave solutions to these equations. We introduce the quantized electromagnetic
field, and expand the atom-field interaction Hamiltonian in terms of photon
creation and annihilation operators. The interaction between the atom and field
is described using the perturbation expansion of the S-matrix. Spontaneous
and induced emission are explained, and expressions for the Einstein A and
B coefficients are derived. We give the multipole decomposition of the fields
and discuss selection rules and intensity ratios. Detailed studies are made of
transitions in one- and two-electron atoms.

6.1 Review of Classical Electromagnetism

The electric field E(r, t) and magnetic fieldB(r, t) (magnetic flux density vector)
generated by a charge density ρ(r, t) and a current density J(r, t) are governed
by Maxwell’s equations, which (in S.I. units) are

∇·E = 1
ε0 ρ,

∇×B = µ0 J+ 1

c2
∂E
∂t
,

∇·B = 0,

∇×E = −∂B
∂t
.

(6.1)

These fields couple to the atomic electrons through the scalar and vector poten-
tials, so let us start with a review of these potentials.

143
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6.1.1 Electromagnetic Potentials

The fields E(r, t) and B(r, t) are represented in terms of a scalar potential φ(r, t)
and a vector potential A(r, t) through the differential relations

E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t
, (6.2)

B(r, t) = ∇×A(r, t). (6.3)

The homogeneous Maxwell equations are satisfied identically by these relations
and the inhomogeneous Maxwell equations can be written

∇2φ− 1

c2
∂2φ

∂t2
= − 1

ε0
ρ(r, t), (6.4)

∇2A− 1

c2
∂2A

∂t2
= −µ0 J(r, t), (6.5)

provided the potentials satisfy the Lorentz condition,

∇·A+
1

c2
∂φ

∂t
= 0. (6.6)

The electric and magnetic fields remain unchanged when the potentials are
subjected to a gauge transformation,

A(r, t) → A′(r, t) = A(r, t) +∇χ(r, t), (6.7)

φ(r, t) → φ′(r, t) = φ(r, t)− ∂χ(r, t)

∂t
. (6.8)

From the Lorentz condition, it follows that the gauge function χ(r, t) satisfies
the wave equation,

∇2χ(r, t)− 1

c2
∂2χ(r, t)

∂t2
= 0. (6.9)

Let us consider harmonic electromagnetic fields with time dependence
exp (∓iωt). The corresponding potentials are written

A(r, t) = A±(r, ω) e
∓iωt,

φ(r, t) = φ±(r, ω) e
∓iωt.

For such waves, the Lorentz condition becomes

c∇·A±(r, ω)∓ ik φ±(r, ω) = 0, (6.10)

where k = ω/c. Equations (6.7) and (6.8) describing a gauge transformation
become

A±(r, ω) → A′±(r, ω) = A±(r, ω) +∇χ±(r, ω), (6.11)

φ±(r, ω) → φ′±(r, ω) = φ±(r, ω)± iω χ±(r, ω), (6.12)
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and the wave equation (6.9) reduces to the Helmholtz equation

∇2χ±(r, ω) + k2χ±(r, ω) = 0. (6.13)

Gauge transformations can be used to bring potentials into various conve-
nient forms. One particularly important form, referred to as the transverse
gauge, is defined by the condition

∇·A±(r, ω) = 0. (6.14)

It follows from the Lorentz condition that, in the transverse gauge, the scalar
potential vanishes:

φ±(r, ω) = 0. (6.15)

Any given set of potentials (A±(r, ω), φ±(r, ω)) satisfying the Lorentz condition
can, of course, be transformed into the transverse gauge by a suitably chosen
gauge transformation. In the transverse gauge, the electric and magnetic fields
are given by

E±(r, ω) = ±iωA±(r, ω), (6.16)

B±(r, ω) = ∇×A±(r, ω). (6.17)

6.1.2 Electromagnetic Plane Waves

Let us consider plane-wave solutions to the source-free Maxwell equations. If
we suppose that these plane waves are propagating in the direction k̂, then the
transverse-gauge vector potential is

A±(r, ω) = ε̂ e±ik·r. (6.18)

The vector k = kk̂ is called the propagation vector, and the unit vector ε̂ is called
the polarization vector. From the relation (6.14) it follows that the polarization
vector is orthogonal to the propagation vector. The two-dimensional space
perpendicular to k̂ is spanned by two orthogonal polarization vectors. If, for
example, we suppose k̂ is along the z axis, then the unit vector along the x axis,
ı̂, and the unit vector along the y axis, ̂, span the two-dimensional space of
polarization vectors. Fields described by these unit vectors are linearly polarized
along the x axis and y axis, respectively. From Eqs.(6.16,6.17), it follows that
for plane waves linearly polarized along direction ı̂, the electric field E is along
ı̂ and the magnetic field B is along ̂ = [k̂ × ı̂].

A real linear combination, ε̂ = cosϕ ı̂+sinϕ ̂ describes a wave that is linearly
polarized at angle ϕ to the x axis. Moreover, the combinations

ε̂± =
1√
2
(̂ı± i̂)

describe left- and right-circularly polarized waves, respectively. For circularly-
polarized waves, the electric field vector at a fixed point in space rotates in a
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circle in the plane perpendicular to k̂, the sense of rotation being positive or
negative for left- or right-circularly polarized waves, respectively. Generally, we
let ε̂λ (with λ = ±1) represent two orthogonal unit vectors, spanning the space
of polarization vectors. We take these vectors to be either two real vectors
describing linear polarization or the two complex vectors describing circular
polarization. In either case we have

ε̂∗1 · ε̂1 = 1, ε̂∗−1 · ε̂−1 = 1, ε̂∗1 · ε̂−1 = 0,

k̂ · ε̂1 = 0, k̂ · ε̂−1 = 0, k̂ · k̂ = 1.

A plane-wave solution is, therefore, characterized by frequency ω, propagation
direction k̂, and polarization vector ε̂λ. To simplify our notation somewhat,
we use a single index i to refer to the entire set of parameters i = (ω, k̂, ε̂λ)
describing the wave.

The general solution to the time-dependent wave equation in the transverse
gauge can be written as a superposition of plane wave solutions

A(r, t) =
∑

i

Ai(r, t), (6.19)

where

Ai(r, t) = ci ε̂λ e
ik·r−iωt + c∗i ε̂

∗
λ e
−ik·r+iωt. (6.20)

The constants ci and c
∗
i are Fourier expansion coefficients. From Eq.(6.20), it

follows that the vector potential is real.

6.2 Quantized Electromagnetic Field

We carry out the quantization of the electromagnetic field in a box of volume V .
The vector k in Eq.(6.20) then takes on discrete values depending on boundary
conditions at the surface of the box, with the number of distinct vectors in the
interval d3k given by d3n = V d3k/(2π)3. To quantize the field, we interpret the
expansion coefficients ci and c

∗
i in Eq.(6.20) as quantum mechanical operators.

In this way we obtain the operatorAi(r, t) representing a photon with frequency

ω, propagation direction k̂, and polarization vector ε̂λ:

Ai(r, t) =

√

h̄

2ε0ωV

[

ci ε̂λ e
ik·r−iωt + c†i ε̂

∗
λ e
−ik·r+iωt

]

. (6.21)

In this equation, ci and c
†
i are photon annihilation and creation operators, re-

spectively. These operators satisfy the commutation relations

[ci, cj ] = 0, [c†i , c
†
j ] = 0, [ci, c

†
j ] = δij . (6.22)

The coefficient
√

h̄/2ε0ωV is chosen in such a way that the expression for the
energy has an obvious interpretation in terms of photons.
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The general expression for the quantized vector potential is a superposition
of the photon potentials, as in Eq.(6.19),

A(r, t) =
∑

i

Ai(r, t).

The corresponding electric and magnetic fields are given by

E(r, t) = i
∑

i

√

h̄ω

2ε0V

[

ci ε̂λ e
ik·r−iωt − c†i ε̂∗λ e−ik·r+iωt

]

,

B(r, t) =
i

c

∑

i

√

h̄ω

2ε0V

[

ci [k̂ × ε̂λ] eik·r−iωt − c†i [k̂ × ε̂∗λ] e−ik·r+iωt
]

.

The Hamiltonian governing the electromagnetic field is

HEM =
ε0
2

∫

d3rE(r, t) ·E(r, t) + 1

2µ0

∫

d3rB(r, t) ·B(r, t)

=
1

4

∑

i

h̄ω
(

ε̂∗λ · ε̂λ + [k̂ × ε̂λ] · [k̂ × ε̂∗λ]
) (

cic
†
i + c†i ci

)

(6.23)

=
∑

i

h̄ω

(

Ni +
1

2

)

,

where Ni = c†i ci is the photon number operator.

6.2.1 Eigenstates of Ni

Let us say a few words about eigenstates of the number operator Ni, which are
also eigenstates of the electromagnetic Hamiltonian. For simplicity, we drop the
subscript i and consider an eigenstate of the generic operator N = c†c. If we
let |ν〉 be an eigenstate of N

N|ν〉 = ν|ν〉, (6.24)

then it follows from the commutation relation [c, c†] = 1 that c |n〉 is an eigen-
state with eigenvalue ν − 1 and c†|ν〉 is an eigenstate with eigenvalue ν + 1.
By applying c repeatedly to the state |ν〉, we generate a sequence of states
with eigenvalues ν − 1, ν − 2, · · · . If we require that the eigenvalues of N (and
therefore the energy) be nonnegative, then it follows that this sequence must
terminate after a finite number of steps n. This will happen only if ν = n.
Thus, the eigenvalues of the number operator are integers.

We write

c |n〉 = α |n− 1〉,
c†|n〉 = β |n+ 1〉.

It is simple to evaluate the constants α and β. For this purpose, we consider

n = 〈n|c†c|n〉 = α2〈n− 1|n− 1〉 = α2, (6.25)

= 〈n|(−1 + cc†)|n〉 = −〈n|n〉+ β2〈n+ 1|n+ 1〉 = −1 + β2, (6.26)
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From Eq.(6.25), it follows that α =
√
n and from Eq.(6.26) β =

√
n+ 1. We

therefore have

c|n〉 =
√
n |n− 1〉, (6.27)

c†|n〉 =
√
n+ 1 |n+ 1〉. (6.28)

The electromagnetic vacuum state |0〉 is the state for which Ni|0〉 = 0 for
all i. The vacuum state is an eigenstate of HEM having energy

E0 =
1

2

∑

i

h̄ωi.

This is the (infinite) zero-point energy of the electromagnetic field. Since the
zero-point energy is not measurable, it is convenient to subtract it from the
electromagnetic Hamiltonian. This is accomplished by replacing the operator
products in Eq.(6.23) by normal products. The modified electromagnetic Hamil-
tonian is

HEM =
∑

i

h̄ωNi

An eigenstate of the HEM corresponding to a photon in state i with frequency
ω, propagation direction k̂ and polarization vector ε̂λ is |1i〉 = c†i |0〉. The
corresponding eigenvalue is h̄ω. Generally, the state |ni〉 is an eigenstate of
HEM with eigenvalue nih̄ω.

6.2.2 Interaction Hamiltonian

The interaction of an electron with this external field is described by the Hamil-
tonian

hI(r, t) = −ecα ·A(r, t)

=
∑

i

[

hI(r, ω) ci e
−iωt + h†I(r, ω) c

†
ie
iωt
]

, (6.29)

where

hI(r, ω) = −ec
√

h̄

2ε0ωV
α · ε̂λ eik·r. (6.30)

The corresponding many-electron interaction Hamiltonian in the Heisenberg
representation is given by

HI(t) =
∑

k

[

HI(ω) ck e
−iωt +H†I (ω) c

†
k e

iωt
]

, (6.31)

where HI(ω) is a sum of one-electron terms,

HI(ω) =
N
∑

i=1

hI(ri, ω). (6.32)

The interaction Hamiltonian in the Schrödinger representation is just the inter-
action Hamiltonian in the Heisenberg representation evaluated at t = 0.
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6.2.3 Time-Dependent Perturbation Theory

Let us now consider the effect of adding the interaction Hamiltonian HI to
the sum of the many-electron Hamiltonian H0 + VI and the electromagnetic
Hamiltonian HEM,

H = H0 + VI +HEM. (6.33)

We let Ψk represent an eigenfunction of H0 + VI belonging to eigenvalue Ek,

(H0 + VI)Ψk = EkΨk, (6.34)

and we let |nk〉 be an nk photon eigenstate of HEM with eigenvalue nkh̄ω,

HEM|nk〉 = nkh̄ω |nk〉.
An eigenstate of H corresponding to a many-electron atom in the state Ψk and
nk photons is the product state

Φk
def
= Ψk |nk〉.

This is an eigenstate of H with eigenvalue Ek + nkh̄ω. We are interested in
transitions between such stationary states induced by the interaction HI .

In the interaction representation, the Schrödinger equation for a state Φ(t)
is written

ih̄
∂Φ(t)

∂t
= ĤI(t)Φ(t) , (6.35)

where ĤI(t) is the time-dependent interaction Hamiltonian

ĤI(t) = eiHt/h̄HIe
−iHt/h̄. (6.36)

Let us introduce the unitary operator U(t, t0) describing the evolution of sta-
tionary states Φk prepared at t = t0,

Φk(t) = U(t, t0)Φk.

It follows from Eq.(6.35) that U(t, t0) satisfies

ih̄
∂U(t, t0)

∂t
= ĤIU(t, t0)

U(t0, t0) = I , (6.37)

where I is the identity operator. These equations can be rewritten as an equiv-
alent integral equation

U(t, t0) = I − i

h̄

∫ t

t0

dt1ĤI(t1)U(t1, t0) . (6.38)

The iteration solution to Eq.(6.38) is

U(t, t0) = I − i

h̄

∫ t

t0

dt1 ĤI(t1) +
(−i)2
h̄2

∫ t

t0

dt1 ĤI(t1)

∫ t1

t0

dt2 ĤI(t2)U(t2, t0)

=

∞
∑

n=0

(−i)n
h̄n

∫ t

t0

dt1 ĤI(t1)

∫ t1

t0

dt2 ĤI(t2) · · ·
∫ tn−1

t0

dtn ĤI(tn) . (6.39)
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The S operator is the unitary operator that transforms states prepared at times
in the remote past (t = −∞), when the interaction HI(t) is assumed to vanish,
into states in the remote future (t =∞), when HI(t) is also assumed to vanish.
Thus

S = U(∞,−∞).

Expanding S in powers of HI , we have

S = I +

∞
∑

n=1

S(n),

where

S(n) =
(−i)n
h̄n

∫ ∞

−∞
dt1 ĤI(t1)

∫ t1

−∞
dt2 ĤI(t2) · · ·

∫ tn−1

−∞
dtn ĤI(tn) .

To first order in HI we have

S ≈ I − i

h̄

∫ ∞

−∞
dt ĤI(t). (6.40)

The first-order transition amplitude for a state Φi prepared in the remote past
to evolve into a state Φf in the remote future is

S
(1)
fi = 〈Φf |S(1)|Φi〉 = −

i

h̄

∫ ∞

−∞
dt 〈Φ†f |eiHt/h̄HIe

−iHt/h̄|Φi〉 . (6.41)

6.2.4 Transition Matrix Elements

Let us consider an atom in an initial state Ψi interacting with ni photons. The
initial state is

Φi = Ψi |ni〉.
The operator ci in HI(t) will cause transitions to states with ni − 1 photons,

while the operator c†i will lead to states with ni + 1 photons. Thus, we must
consider two possibilities:

1. photon absorption, leading to a final state

Φf = Ψf |ni − 1〉, and

2. photon emission, leading to a final state

Φf = Ψf |ni + 1〉.

For the case of photon absorption, using the fact that

〈ni − 1|ci|ni〉 =
√
ni,



6.2. QUANTIZED ELECTROMAGNETIC FIELD 151

we may write

S
(1)
fi = − i

h̄

√
ni

∫ ∞

−∞
dt ei(Ef−Ei−h̄ω)t/h̄〈Ψf |HI |Ψi〉

= −2πiδ(Ef − Ei − h̄ω)
√
ni 〈Ψf |HI |Ψi〉. (6.42)

Similarly, for the case of photon emission, we find

S
(1)
fi = − i

h̄

√
ni + 1

∫ ∞

−∞
dt ei(Ef−Ei+h̄ω)t/h̄〈Ψf |H†I |Ψi〉

= −2πiδ(Ef − Ei + h̄ω)
√
ni + 1 〈Ψf |H†I |Ψi〉. (6.43)

We introduce the transition amplitude

Tfi =

{ 〈Ψf |HI |Ψi〉, for absorption of radiation,

〈Ψf |H†I |Ψi〉, for emission of radiation.

We treat the two cases simultaneously using

Sfi = −2πδ(Ef − Ei ∓ h̄ω)Tfi
( √

ni√
ni + 1

)

, (6.45)

where the upper contribution refers to absorption and the lower refers to emis-
sion. The probability of a transition from state Ψi to state Ψf is just the square

of S
(1)
fi . In evaluating the square, we replace one factor of 2πδ(Ef − Ei ∓ h̄ω)

by T/h̄, where T is the total interaction time. Thus, we find that the transition
probability per unit time Wfi is given by

Wfi =
2π

h̄
δ(Ef − Ei ∓ h̄ω) |Tfi|2

(

ni
ni + 1

)

. (6.46)

In an interval of wave numbers d3k, there are

d3ni =
V

(2π)3
d3k =

V

(2πc)3
ω2dωdΩk (6.47)

photon states of a given polarization. The corresponding number of transitions
per second d3wfi is thus given by

d3wfi =Wfi d
3ni =

V

(2π)2c3h̄
δ(Ef − Ei ∓ h̄ω)ω2dωdΩk|Tfi|2

(

ni
ni + 1

)

.

Integrating over ω, we obtain

d2wfi =
V

(2πh̄)2c3
ω2dΩk|Tfi|2

(

ni
ni + 1

)

,

where ni is now the number of photons with energy h̄ω = Ef−Ei for absorption
and h̄ω = Ei −Ef for emission. Factoring −ec

√

h̄/2ε0ωV from the interaction
Hamiltonian, we obtain

d2wfi =
α

2π
ω dΩk|Tfi|2

(

ni
ni + 1

)

, (6.48)
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where the single-particle interaction Hamiltonian is now replaced by

hI(r, ω)→ α · ε̂λ eik·r. (6.49)

Let us assume that we have a collection of atoms in equilibrium with a
radiation field. Further, let us assume that the photons of frequency ω in the
radiation field are distributed isotropically and that the number of photons in
each of the two polarization states is equal. In this case, the photon number
n can be related to the spectral density function ρ(ω) which is defined as the
photon energy per unit volume in the frequency interval dω. One finds from
(6.47) that

ρ(ω) = 2× nh̄ω × 4πω2

(2πc)3
=

h̄ω3

π2c3
n . (6.50)

For isotropic, unpolarized radiation, we can integrate Eq.(6.23) over angles Ωk

and sum over polarization states ε̂λ, treating n as a multiplicative factor. The
resulting absorption probability per second, wb→a, leading from an initial (lower
energy) state a to final (higher energy) state b in presence of n photons of energy
h̄ω is given in terms of the spectral density function ρ(ω) as

wab
a→b =

π2c3

h̄ω3
ρ(ω)

α

2π
ω
∑

λ

∫

dΩk|Tba|2. (6.51)

Similarly, the emission probability per second leading from state b to state a in
the presence of n photons of energy h̄ω is given in terms of ρ(ω) by

wem
b→a =

(

1 +
π2c3

h̄ω3
ρ(ω)

)

α

2π
ω
∑

λ

∫

dΩk|Tab|2. (6.52)

The emission probability consists of two parts, a spontaneous emission contribu-
tion, wsp

b→a, that is independent of ρ(ω), and an induced or stimulated emission
contribution, wie

b→a that is proportional to ρ(ω).
Let the state a be a member of a g-fold degenerate group of levels γ, and

b be a member of a g′-fold degenerate group of levels γ′. If we assume that
the atom can be in any of the degenerate initial levels with equal probability,
then the average transition probability from γ → γ ′ is found by summing over
sublevels a and b and dividing by g, whereas the average transition probability
from γ′ → γ is given by the sum over a and b divided by γ ′. The Einstein A-
and B-coefficients are defined in terms of average transition probabilities per
second between degenerate levels through the relations

Bγγ′ρ(ω) = wab
γγ′ =

1

g

∑

ab

wab
a→b, (6.53)

Aγ′γ = wsp
γ′γ =

1

g′

∑

ab

wsp
b→a, (6.54)

Bγ′γρ(ω) = wie
γ′γ =

1

g′

∑

ab

wie
b→a. (6.55)
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Nγ′ ∝ g′e−Eγ′/kT

Nγ ∝ ge−Eγ/kT

6

NγBγγ′ρ(ω)

?

Nγ′ [Bγ′γρ(ω) +Aγ′γ ]

Figure 6.1: Detailed balance for radiative transitions between two levels.

It follows from Eqs.(6.51-6.52), that the three Einstein coefficients are related
by equations

g′Bγ′γ = gBγγ′ , (6.56)

Aγ′γ′ =
h̄ω3

π2c3
Bγ′γ . (6.57)

If we suppose that there are Nγ atoms in the lower level γ, and Nγ′ atoms in
the upper level γ′, then, on average, there will beNγBγγ′ρ(ω) upward transitions
to level γ′ per second, and Nγ′ [Bγ′γρ(ω) +Aγ′γ ] downward transitions from γ′

to γ per second. The principle of detailed balance requires that, in equilibrium,
the number of upward transitions per second between the two levels equals the
number of downward transitions per second. This, in turn, leads to the relation

Nγ′

Nγ
=

Bγγ′ρ(ω)

Aγ′γ +Bγ′γρ(ω)
. (6.58)

Assuming that the number of atomic states of energy Eγ in the equilibrium dis-
tribution at temperature T is proportional to exp(−Eγ/kT ), where k is Boltz-
mann’s constant, we have

Nγ′

Nγ
=
g′e−Eγ′/kT

ge−Eγ/kT
=
g′

g
e−h̄ω/kT .

Substituting this relation into (6.58), and making use of the symmetry relations
between the Einstein coefficients, (6.56-6.57), leads to Planck’s formula for the
spectral energy density,

ρ(ω) =
1

π2c3
h̄ω3

eh̄ω/kT − 1
. (6.59)

In the low-energy limit, this reduces to the classical Rayleigh-Jeans formula

lim
ω→0

ρ(ω) =
ω2

π2c3
kT.

The Planck formula is a direct consequence of the fact that the photon creation
and annihilation operators satisfy the commutation relations (6.22). Conversely,
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the fact that radiation in equilibrium with matter is found to satisfy the Planck
formula experimentally is strong evidence for the quantum mechanical nature
of the electromagnetic field.

6.2.5 Gauge Invariance

Let us consider the interaction of an electron with a field described by potentials

A(r, ω)e−iωt and φ(r, ω)e−iωt,

such as those associated with absorption of a photon with frequency ω. The
corresponding interaction Hamiltonian can be written

h(r, t) = h(r, ω)e−iωt,

with

hI(r, ω) = e {−cα·A(r, ω) + φ(r, ω)} . (6.60)

A gauge transformation induces the following change in hI(r, ω):

∆hI(r, ω) = e {−cα · ∇χ(r, ω) + iωχ(r, ω)} . (6.61)

This equation can be rewritten in terms of the momentum operator p in the
form

∆hI = e
{

−i c
h̄
α · pχ+ iωχ

}

. (6.62)

The first term in braces can be reexpressed in terms of the commutator of the
single-particle Dirac Hamiltonian,

h0 = cα · p+ βmc2 + Vnuc(r) + U(r), (6.63)

with the gauge function χ(r, ω), leading to

∆hI = −i
e

h̄
{[h0, χ]− h̄ωχ} . (6.64)

It is important to note that the expressions(6.62) and (6.64) for ∆hI are equiv-
alent for local potentials but not for the non-local Hartree-Fock potential.

The transition amplitude from an initial state |a〉 to a final state |b〉, both
assumed to be eigenstates of h0, is proportional to the matrix element 〈b|hI |a〉.
The change in this matrix element induced by a gauge transformation is given
by

〈b|∆hI |a〉 = −i
e

h̄
〈b|[h0, χ]− h̄ωχ|a〉 = −i

e

h̄
(εb − εa − h̄ω) 〈b|χ|a〉 . (6.65)

It follows that, for states |a〉 and |b〉 that satisfy h̄ω = εb − εa, transition am-
plitudes calculated using single-particle orbitals in a local potential are gauge
invariant.
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Later, we will encounter the expression

〈

b

∣

∣

∣

∣

d∆hI
dω

∣

∣

∣

∣

a

〉

.

This can be rewritten with the aid of the above identities as
〈

b

∣

∣

∣

∣

d∆hI
dω

∣

∣

∣

∣

a

〉

= −i e
h̄

〈

b

∣

∣

∣

∣

[h0,
dχ

dω
]− h̄ω dχ

dω
− h̄χ

∣

∣

∣

∣

a

〉

= ie 〈b|χ|a〉 , (6.66)

where the identity on the right-hand side is valid only for states satisfying h̄ω =
εb − εa.

6.2.6 Electric Dipole Transitions

Let us consider a one-electron atom and examine the transition amplitude

Tba =

∫

d3r ψ†b(r)α· ε̂ e
ik·r ψa(r). (6.67)

The values of r for which there are significant contributions to this integral are
those less than a few atomic radii, which, for an ion with charge Z, is of order
1/Z a.u.. The photon energy for transitions between states having different
principal quantum numbers in such an ion is of order Z2 a.u.. For transitions
between states with the same principal quantum number, the photon energy is
of order Z a.u.. Using the fact that k = ω/c, the factor kr in the exponent
is, therefore, of order αZ for transitions between states with different principal
quantum numbers and of order α for transitions between states having the same
principal quantum number. In either case, for neutral atoms or ions with small
ionic charge Z, the quantity |k · r| ≤ kr ¿ 1, so one can accurately approximate
the exponential factor in Eq.(6.67) by 1. In this approximation, the transition
amplitude Tba is just the matrix element of α· ε̂.

We will first examine the transition amplitude in the nonrelativistic limit.
To obtain a nonrelativistic expression for the transition amplitude, we turn to
the Pauli approximation. We write the Dirac wave function ψa(r) in terms of
two-component functions φa(r) and χa(r),

ψa(r) ≈
(

φa(r)
χa(r)

)

. (6.68)

In the Pauli approximation, the large-component φa is the nonrelativistic wave
function,

(

p2

2m
+ V (r)

)

φa(r) =Waφa(r), (6.69)

and the small component χa(r) is given in terms of φa(r) by

χa(r) =
σ · p

2mc
φa(r). (6.70)
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The transition amplitude reduces to

Tba =
1

2mc

∫

d3r φ†b(r) [σ · p σ· ε̂+ σ· ε̂ σ · p] φa(r) (6.71)

=
1

mc

∫

d3r φ†b(r)p· ε̂ φa(r) =
1

c
〈b|v|a〉 · ε̂. (6.72)

This is known as the velocity-form of the transition matrix element. Now, the
commutator of the single-particle Schrödinger Hamiltonian hnr = p2/2m+V (r)
with the vector r can be written

[hnr, r] = −i
h̄

m
p = −ih̄v, (6.73)

so one can rewrite matrix elements of v in terms of matrix elements of the vector
r. Using the commutator relation, we find

〈b|v|a〉 = iωba〈b|r|a〉, (6.74)

where ωba = (Wb −Wa)/h̄. This allows us to express the transition amplitude
in length-form as

Tba = ikba〈b|r|a〉 · ε̂. (6.75)

where kba = ωab/c.
The electric dipole operator is d = er so the transition amplitude in length

form is proportional to the matrix element of the electric dipole operator. The
amplitudes are therefore referred to as electric dipole transition amplitudes. In
a spherical basis, the electric dipole operator is an odd-parity irreducible tensor
operator of rank one. It follows that Tba is nonvanishing only between states a
and b that have different parity and that satisfy the angular momentum triangle
relations |la − 1| ≤ lb ≤ la + 1. From parity considerations, it follows that only
states satisfying lb = la±1 contribute nonvanishing matrix elements. Transitions
forbidden by the dipole selection rules can give finite but small contributions to
Tba when higher-order terms are included in the expansion of the exponential in
Eq.(6.67). These higher-order multipole contributions will be discussed further
in the following section.

Let us now consider a transition from a particular atomic substate a to a
substate b by spontaneous emission. The spontaneous emission probability is

wsp
ba =

α

2π
ω
∑

λ

∫

dΩk|〈a|v|b〉 · ε̂∗λ|2. (6.76)

We first examine the dependence of this expression on the photon polariza-
tion vector ελ. For this purpose, consider the quantity Iλ = (ε̂∗λ ·A) (ε̂λ ·A∗),
where A = 〈a|v|b〉. To carry out the sum over polarization states, we must sum

Iλ over both states of polarization. Taking k̂ to be along the z axis, this leads
to

I1 + I−1 = AxA
∗
x +AyA

∗
y = A ·A∗ −A· k̂A∗· k̂ = |A|2 sin2 θ. (6.77)
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Here, θ is the angle between the emitted photon and the vector A.
The integration over photon angles is carried out next. Choosing A as an

axis, we have
∫

dΩk sin
2 θ = 2π

∫ 1

−1
dµ(1− µ2) = 8π

3
.

Thus, after summing over photon polarization states and integrating over pho-
ton emission angles, we obtain the spontaneous emission probability per second,

wsp
ba =

4α

3

ω

c2
|〈a|v|b〉|2 =

4α

3

ω3

c2
|〈a|r|b〉|2. (6.78)

We write the components of r in a spherical basis as rν and find

〈a|rν |b〉 = 6− 1ν

lama

lbmb

〈a||r||b〉δσbσa , (6.79)

where σa and σb are spin projections, and where the reduced matrix element of
r is given by

〈a||r||b〉 = 〈la||C1||lb〉
∫ ∞

0

r Pa(r)Pb(r) dr.

The velocity-form of this reduced matrix element is obtained with the aid of
Eq.(6.74),

〈b|r|a〉 = − i

mωba
〈b|p|a〉 = − h̄

mωba
〈b|∇|a〉,

together with the expression for the reduced matrix element of ∇,

〈a||∇||b〉 = 〈la||C1||lb〉
{ ∫∞

0
drPb

(

d
dr +

la
r

)

Pa, for lb = la − 1,
∫∞
0
drPb

(

d
dr − la+1

r

)

Pa, for lb = la + 1.
(6.80)

In evaluating the reduced matrix elements, the formula

〈la||C1||lb〉 =
{

−
√
la for lb = la − 1,√

la + 1 for lb = la + 1,
(6.81)

is useful.
Summing wsp

ba over the magnetic substates mb and σb of the final state,
and ma and σa of the initial state, we obtain the Einstein A-coefficient for
spontaneous emission:

Aab =
1

2[la]

∑

maσa
mbσb

wsp
ba

=
4α

3

ω3

c2
1

[la]

∑

mambν

(−1)ν 6− 1ν

lama

lbmb

6− 1−ν

lbmb

lama

〈a||r||b〉 〈b||r||a〉

=
4α

3

ω3

c2
1

[la]
|〈a||r||b〉|2. (6.82)
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The Einstein A-coefficient is often expressed in terms of the line strength
SE1 which is defined as

SE1 = |〈a||r||b〉|2.
We can write

Aab =
4α

3

ω3

c2
SE1
[la]

=
16π

3
k3
SE1
[la]

R∞c =
2.02613× 1018

λ3
SE1
[la]

s−1. (6.83)

In the third term, R∞ is the Rydberg constant, and in the last term, the wave-
length λ is expressed in Å. The line strength in the above equation is in atomic
units. In these equations, we have used the fact that the atomic unit of frequency
is 4πR∞c, where R∞c = 3.28984× 1015 s−1.

The oscillator strength fkn for a transition k → n is defined by

fkn =
2mωnk
3h̄

|〈k|r|n〉|2, (6.84)

where ωnk = (Wn −Wk)/h̄. If the transition is from a lower state to an up-
per state (absorption), then the oscillator strength is positive. The oscillator
strength is a dimensionless quantity. Oscillator strengths satisfies the following
important identity, known as the Thomas-Reiche-Kuhn (TRK) sum rule

∑

n

fkn = N, (6.85)

where N is the total number of atomic electrons. In this equation, n ranges
over all states permitted by the dipole selection rules. To prove the TRK sum
rule for a one electron atom, we recall that

ωkn〈k|r|n〉 =
1

im
〈k|p|n〉,

and write

fkn =
m

3h̄

{

i

m
〈k|p|n〉·〈n|r|k〉 − i

m
〈k|r|n〉·〈n|p|k〉

}

.

Summing over n, we obtain

∑

n

fkn =
i

3h̄
〈k| [px, x] + [py, y] + [pz, z] |k〉 = 1. (6.86)

The reduced oscillator strength for a transition between degenerate levels is
defined as the average over initial substates and the sum over final substates of
the oscillator strength. For spontaneous emission in a one-electron atom, this
gives

f̄ab = −2m

3h̄

ω

2[la]

∑

maσa
mbσb

|〈a|r|b〉|2

= −2m

3h̄

ω

[la]
SE1

= −303.756

[la]λ
SE1. (6.87)
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Table 6.1: Reduced oscillator strengths for transitions in hydrogen

n 1s→ np 2s→ np 2p→ ns 2p→ nd 3s→ np 3p→ ns 3p→ nd
1 · · · · · · -0.1387 · · · · · · -0.0264 · · ·
2 0.4162 · · · · · · · · · -0.0408 -0.1450 · · ·
3 0.0791 0.4349 0.0136 0.6958 · · · · · · · · ·
4 0.0290 0.1028 0.0030 0.1218 0.4847 0.0322 0.6183
5 0.0139 0.0419 0.0012 0.0444 0.1210 0.0074 0.1392
6 0.0078 0.0216 0.0006 0.0216 0.0514 0.0030 0.0561
7 0.0048 0.0127 0.0004 0.0123 0.0274 0.0016 0.0290
8 0.0032 0.0082 0.0002 0.0078 0.0165 0.0009 0.0172
9 0.0022 0.0056 0.0002 0.0052 0.0109 0.0006 0.0112
10 0.0016 0.0040 0.0001 0.0037 0.0076 0.0004 0.0077
11 0.0012 0.0030 0.0001 0.0027 0.0055 0.0003 0.0055
12 0.0009 0.0022 0.0001 0.0021 0.0041 0.0002 0.0041

13-∞ 0.0050 0.0120 0.0003 0.0108 0.0212 0.0012 0.0210
Discrete 0.5650 0.6489 -0.1189 0.9282 0.7095 -0.1233 0.9094
Cont. 0.4350 0.3511 0.0078 0.1829 0.2905 0.0122 0.2017
Total 1.0000 1.0000 -0.1111 1.1111 1.0000 -0.1111 1.1111

The wavelength λ on the last line is expressed in Å.
Reduced oscillator strengths for transitions between levels in helium are

given in Table 6.1. For transitions from s states, the only possible final states
are np states. The sum of reduced oscillator strengths over all p states saturates
the TRK sum rule

∑

n

f̄ks→np = 1.

This sum includes an infinite sum over discrete states and an integral over the
p-wave continuum. For the s→ p transitions shown in the table, 30-40% of the
oscillator strength is in the continuum. For states of angular momentum l 6= 0,
the selection rules permit transitions to either n l− 1 or n l+1 final states. The
reduced oscillator strengths for such transitions satisfy the following partial sum
rules

∑

n

f̄kl→nl−1 = − l(2l − 1)

3(2l + 1)
,

∑

n

f̄kl→nl+1 =
(l + 1)(2l + 3)

3(2l + 1)
.

The sum of the two partial contributions is 1, as expected from the TRK sum
rule. These l 6= 0 transitions are tabulated for 2p → ns, nd and 3p → ns, nd
transitions in Table 6.1. Again, these oscillator strengths are seen to have
substantial contributions from the continuum.
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Table 6.2: Hartree-Fock calculations of transition rates Aif [s
−1] and lifetimes

τ [s] for levels in lithium. Numbers in parentheses represent powers of ten.

Transition Aif [s
−1] Transition Aif [s

−1] Transition Aif [s
−1]

5s→ 4p 2.22(6) 5p→ 5s 2.41(5) 5d→ 5p 2.08(2)
5s→ 3p 2.76(6) 5p→ 4s 6.10(3) 5d→ 4p 1.39(6)
5s→ 2p 4.59(6) 5p→ 3s 2.82(4) 5d→ 3p 3.45(6)
5s→ all 9.58(6) 5p→ 2s 7.15(5) 5d→ 2p 1.04(7)

5p→ 4d 2.57(5) 5d→ 4f 5.07(4)
5p→ 3d 2.10(5) 5d→ all 1.53(7)
5p→ all 1.46(6)

τ5s [s] 1.04(-7) τ5p [s] 6.86(-7) τ5d [s] 6.52(-8)

4s→ 3p 7.34(6) 4p→ 4s 7.96(5) 4d→ 4p 5.46(2)
4s→ 2p 1.01(7) 4p→ 3s 1.73(2) 4d→ 3p 6.85(6)
4s→ all 1.74(7) 4p→ 2s 1.02(6) 4d→ 2p 2.25(7)

4p→ 3d 4.91(5) 4d→ all 2.93(7)
4p→ all 2.30(6)

τ4s [s] 5.73(-8) τ4p [s] 4.34(-7) τ4d [s] 3.41(-8)

3s→ 2p 3.28(7) 3p→ 3s 3.82(6) 3d→ 3p 1.56(3)
3p→ 2s 7.02(5) 3d→ 2p 6.73(7)
3p→ all 4.52(6) 3d→ all 6.73(7)

τ3s [s] 3.05(-8) τ3p [s] 2.21(-7) τ3d [s] 1.48(-8)

2p→ 2s 3.76(7)

τ2p [s] 2.66(-8)
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In Table 6.2, we present the results of Hartree-Fock calculations for transi-
tions in lithium. We consider spontaneous transitions from all s, p, and d levels
with n ≤ 5. Both branches l → l ± 1 are considered, and the A coefficients for
all allowed lower states are evaluated. The reciprocal of the resulting sum is the
mean lifetime of the state,

τa =
1

∑

b≤aAab
. (6.88)

The 2p lifetime in lithium, for example, is calculated to be τ theory2p = 26.6 ns
compared to the measured lifetime τ exp2p = 27.2 ns. Similarly, a Hartree-Fock

calculation for sodium gives a value τ theory3p = 18.0 ns compared with the exper-
imental value τ exp3p = 16.9 ns.

6.2.7 Magnetic Dipole and Electric Quadrupole Transi-
tions

Including higher-order terms in the expansion of the exponential factor
exp (ik · r) in the theory presented above leads to higher-order multipole con-
tributions to the transition amplitude. In this section, we consider the con-
tributions obtained by retaining only the first-order terms in the expansion of
the exponential exp (ik · r) ≈ 1 + ik · r. Using the Pauli approximation, the
transition amplitude becomes

Tba =
1

2mc

∫

d3rφ†b(r) [2p·ε̂ (1 + ik · r) + h̄σ·kσ· ε̂ ]φa(r). (6.89)

We write Tba = T
(0)
ba +T

(1)
ba , where T

(0)
ba is the electric dipole amplitude discussed

previously, and where the contributions of interest here are given by

T
(1)
ba =

ik

2mc

∫

d3rφ†b(r)
(

2k̂ ·r p·ε̂+ h̄σ· [k̂ × ε̂]
)

φa(r). (6.90)

Let us assume that k̂ is directed along z and that ε̂ is in the xy plane. It follows
that

2k̂ ·r p·ε̂ = 2zpxεx + 2zpyεy.

We write
2zpx = (zpx − xpz) + (zpx + xpz),

and use the fact that

(zpx + xpz) =
im

h̄
[h, zx],

to obtain

2zpxεx =

(

Ly +
im

h̄
[h, zx]

)

εx.

Similarly, we find

2zpyεy =

(

−Lx +
im

h̄
[h, zy]

)

εy.
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These terms can be recombined in vector form to give

2k̂ ·r p·ε̂ = L· [k̂ × ε̂] + im

3h̄

∑

ij

k̂iε̂j [h,Qij ], (6.91)

where Qij = 3xixj − r2δij is the quadrupole-moment operator. Using the iden-
tity (6.91), we find

T
(1)
ba = ik 〈b|M |a〉 · [k̂ × ε̂]− kωba

6c

∑

ij

〈b|Qij |a〉 k̂iε̂j , (6.92)

where M is (up to a factor e) the magnetic moment operator

M =
1

2m
[L+ 2S] , (6.93)

with S = 1
2σ. As in the definition of the electric dipole moment, we have

factored the electric charge e in our definition of the magnetic dipole moment.
It follows that our magnetic moment has the dimension of a length. Indeed, the
coefficient h̄/mc = αa0 in (6.93) is the electron Compton wavelength.

The first of the contributions in (6.92) is referred to as the magnetic dipole
amplitude and the second as the electric quadrupole amplitude. As we will prove
later, in the general discussion of multipole radiation, these two amplitudes
contribute to the decay rate incoherently. That is to say, we may square each
amplitude independently, sum over the photon polarization and integrate over
photon angles to determine the corresponding contribution to the transition
rate, without concern for possible interference terms.

Magnetic Dipole

Let us consider first the spontaneous magnetic-dipole decay

wsp
a→b =

α

2π
ω
k2

c2

∑

λ

∫

dΩk |〈b|M |a〉 · [k̂ × ε̂λ]|2.

The sum over photon polarization states can easily be carried out to give
∑

λ

|〈b|M |a〉 · [k̂ × ε̂λ]|2 = |〈b|M |a〉|2 sin2 θ,

where θ is the angle between k̂ and the vector matrix element. Integrating
sin2 θ over angles gives a factor of 8π/3. We therefore obtain for the Einstein
A-coefficient

Aab =
4

3

ω3

c5
1

ga

∑

m

|〈b|M |a〉|2, (6.94)

where ga is the degeneracy of the initial state and where the sum is over all
magnetic substates of a and b. The sums can be carried out just as in the
electric dipole case. Defining a magnetic dipole line strength as

SM1 = |〈b||L+ 2S||a〉|2,
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we obtain

Aab =
1

3

ω3

c5
SM1

ga
=

2.69735× 1013

λ3
SM1

ga
s−1, (6.95)

where the wavelength λ is expressed in Å units and SM1 is dimensionless.
The magnetic-dipole selection rules require that jb = ja or jb = ja ± 1 and

that the parity of the initial and final states be the same. For nonrelativistic
single-electron states, this implies that lb = la. Magnetic dipole transitions of
the type nala → nblb, with lb = la between states with nb 6= na, however, vanish
because radial wave functions with the same value of l but different principal
quantum numbers are orthogonal. It should be mentioned that the amplitudes
for such transitions is nonvanishing (but small) in a relativistic calculation.

Fine-structure transitions: As a first example, let us consider transitions
between fine-structure components of an nl state The reduced matrix element of
L+2S between coupled single electron states (κa = ∓(ja+1/2) for ja = la±1/2,
and κb = ∓(jb + 1/2) for jb = lb ± 1/2, with la = lb = l) is given by

〈κb||L+ 2S||κa〉 = (−1)ja+l−1/2
{

ja jb 1
l l 1/2

}

√

l(l + 1)(2l + 1)

+ (−1)jb+l−1/2
{

ja jb 1
1/2 1/2 l

}√
6

For the M1 transition np3/2 → np1/2 between the fine-structure components of
an np-state, the reduced matrix element becomes

〈jb = 1/2, κb = 1||L+ 2S||ja = 3/2, κa = −2〉 = 2√
3

The degeneracy of the initial np3/2 state is ga = 4, so the ratio SM1/ga = 1/3,
leading to

AM1
np3/s→np1/2

=
1

3

2.69735× 1013

λ3
s−1 (6.96)

As a specific example, the wavelength of the 2p3/2−2p1/2 transition in boronlike

argon (13-fold ionized argon) is 4412.56 Å. The lifetime predicted by Eq. (6.96) is
9.56 ms, compared to the measured lifetime 9.573 ms. The excellent agreement
found here is a consequence of the fact that the line strength SM1 is independent
of the radial wave function.

Lifetime of the metastable F = 1 hyperfine component of the hydrogen
1s state: Let us consider next the magnetic dipole transition between the
two ground-state hyperfine levels in hydrogen. The initial and final states are
obtained by coupling the s = 1/2 electron to the s = 1/2 proton to form states
with, Fa = 1 and Fb = 0, respectively. Since both initial and final states have
l = 0, the magnetic-dipole matrix element becomes

〈a|Lν + 2Sν |b〉 = 〈1/2, 1/2, Fa|2Sν |1/2, 1/2, Fb〉.
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The corresponding reduced matrix element is easily found to be

〈a||2S||b〉 = (−1)Fb
√

[Fa][Fb]

{

Fa Fb 1
1/2 1/2 1/2

}

〈1/2||σ||1/2〉.

The one-electron reduced matrix element of σ is 〈1/2||σ||1/2〉 =
√
6, and the

six-j symbol above has the value 1/
√
6, from which it follows

〈a||2Sν ||b〉 =
√

[Fa] =
√
3.

Since the initial state degeneracy is ga = 3, it follows that

Aab =
2.69735× 1013

(2.1106)3 × 1027
= 2.87× 10−15 s−1.

Here, we have used the fact that the wavelength of the hyperfine transition is
21.106 cm. The mean lifetime of the F = 1 state is τ = 11× 106 years!

Electric Quadrupole

From Eq.(6.92), the electric quadrupole transition amplitude is

T
(1)
ba = −k

2

6

∑

ij

〈b|Qij |a〉 k̂iε̂j , (6.97)

where we assume ωba = ω > 0 and set k = ω/c. This amplitude must be
squared, summed over photon polarization states, and integrated over photon
angles. The sum over polarization states of the squared amplitude is easy to
evaluate in a coordinate system with k along the z′ axis and ελ in the x′y′ plane.
In this coordinate system, one obtains

∑

λ

|
∑

ij

〈b|Qij |a〉 k̂iε̂j |2 = |〈b|Qz′x′ |a〉|2 + |〈b|Qz′y′ |a〉|2,

where ε̂j is the jth component of ε̂λ. To carry out the integral over photon
angles, we transform this expression to a fixed coordinate system. This is done
with the aid of Euler angles. We suppose that the z′ axis is at an angle θ
with the fixed z axis and that the x′ axis is along the intersection of the plane
perpendicular to z′ and the xy plane. The variable x′ axis, makes an angle φ
with the fixed x axis. The two coordinate systems are shown in Fig. 6.2. The
transformation equations from (x, y, z) to (x′, y′, z′) are





x′

y′

z′



 =





cosφ sinφ 0
− cos θ sinφ cos θ cosφ sin θ
sin θ sinφ − sin θ cosφ cos θ









x
y
z



 . (6.98)
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Figure 6.2: The propagation vector k̂ is along the z′ axis, ε̂1 is along the x′ axis
and ε̂2 is along the y′ axis. The photon angular integration variables are φ and
θ.

It follows that

Qz′x′ = sin θ sin 2φ (Qxx −Qyy)/2− sin θ cos 2φQxy

+cos θ cosφQzx + cos θ sinφQzy,

Qz′y′ = − sin θ cos θ(1− cos 2φ)Qxx/2− sin θ cos θ(1 + cos 2φ)Qyy/2

+ sin θ cos θ sin 2φQxy + (1− 2 cos2 θ) sinφQxz

−(1− 2 cos2 θ) cosφQyz + cos θ sin θ Qzz.

Here, we use Qxy as shorthand for 〈b|Qxy|a〉. Squaring and integrating over φ,
we obtain
∫ 2π

0

dφ|Qz′x′ |2 = π
[

sin2 θ |Qxx −Qyy|2/4 + sin2 θ |Qxy|2 + cos2 θ |Qzx|2 + cos2 θ |Qzy|2
]

,

∫ 2π

0

dφ|Qz′y′ |2 = π
[

sin2 θ cos2 θ |Qxx +Qyy − 2Qzz|2/2 + sin2 θ cos2 θ |Qxx −Qyy|2/4

+ sin2 θ cos2 θ |Qxy|2 + (1− 2 cos2 θ)2 |Qxz|2 + (1− 2 cos2 θ)2 |Qyz|2
]

.

Integrating the sum of the two terms above over θ gives
∫

[

|Qz′x′ |2 + |Qz′y′ |2
]

dΩ =
8π

5

[

|Qxx|2 + |Qyy|2 + |Qxy|2 + |Qxz|2 + |Qyz|2 + <(QxxQ
∗
yy)
]

.

The terms in square brackets on the right hand side of this expression can be

rewritten in terms of the spherical components of the quadrupole tensor Q
(2)
ν as

[· · · ] = 3
∑

ν

|Q(2)
ν |2.
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To prove this relation, we use the fact that the components of the quadrupole
moment tensor in a spherical basis are

Q(2)
ν = r2 C(2)

ν (r̂). (6.99)

From the definition, we infer the following relations between rectangular and
spherical components:

Q
(2)
0 =

1

2
Qzz

Q
(2)
±1 = ∓ 1√

6
(Qxz ± iQyz)

Q
(2)
±2 =

1√
24

(Qxx −Qyy ± 2iQxy) ,

and conversely

Qxx =
√

3
2

(

Q
(2)
2 +Q

(2)
−2

)

−Q(2)
0 Qxy = −i

√

3
2

(

Q
(2)
2 −Q

(2)
−2

)

Qyy = −
√

3
2

(

Q
(2)
2 +Q

(2)
−2

)

−Q(2)
0 Qyz = i

√

3
2

(

Q
(2)
1 +Q

(2)
−1

)

Qzz = 2Q
(2)
0 Qzx = −

√

3
2

(

Q
(2)
1 −Q

(2)
−1

)

.

Summing |〈a|Q(2)
ν |b〉|2 over ν and magnetic substates of a and b leads to the

expression for the Einstein A-coefficient for quadrupole radiation,

Aab =
24π

5

α

2π
ω
k4

36

1

ga
|〈a||Q(2)||b〉|2 =

1

15
k5
SE2
ga

=
1.1198× 1018

λ5
SE2
ga

s−1,

(6.100)
where the quadrupole line strength, which is is given by

SE2 = |〈a||Q(2)||b〉|2,

is expressed in atomic units and λ is in Å.
For a one-electron atom, the quadrupole reduced matrix element can be

written

〈a||Q(2)||b〉 =
√
2 〈la||C(2)||lb〉

∫ ∞

0

Pa(r) r
2 Pb(r) dr. (6.101)

The factor of
√
2 here arises from consideration of the electron spin. It can

be omitted from the reduced matrix element, in which case the initial state
degeneracy ga must be replaced by ga → [la]. The quadrupole selection rules
require that |ja−2| ≤ jb ≤ ja+2 and that the parity of initial and final states be
the same. For the nonrelativistic single-electron case, the selection rules imply
that lb = la ± 2, la.

Electric quadrupole transitions are important in ions such as Ca+, which
has a 4s ground state and a 3d first excited state. Since the angular momentum
of the excited state differs from that of the ground state by 2, the excited state
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cannot decay to the ground state by electric or magnetic dipole radiation. The
decay is permitted, however, by the electric quadrupole selection rules. The
angular reduced matrix element in (6.101) with la = 2 and lb = 0 has the value

〈2||C(2)||0〉 = 1.

The radial integral in Eq.(6.101) can be evaluated numerically. We obtain for
Ca+ (and the analogous case Sr+) from Hartree-Fock calculations the values

∫∞
0
dr P4s(r) r

2 P3d(r) = −10.8304, for Ca+,
∫∞
0
dr P5s(r) r

2 P4d(r) = −14.2773, for Sr+.

The decay rate for the 3d state of Ca+ is

A(3d) =
1.1198× 1018 × (10.8304)2

(7310)5 × 5
= 1.259 s−1,

and the corresponding decay rate for the 4d state of Sr+ is

A(4d) =
1.1198× 1018 × (14.2773)2

(6805)5 × 5
= 3.128 s−1,

The lifetime of the 4d state in Sr+ has been measured experimentally and found
to be 0.40± 0.04 sec for the 4d3/2 state and 0.34± 0.03 sec for the 4d5/2 state,
in fair agreement with the value τ = 0.320 sec predicted by the HF calculation.

6.2.8 Nonrelativistic Many-Body Amplitudes

The nonrelativistic theory of electric-dipole transitions can be generalized to
many-electron atoms by simply replacing the single-particle transition operator
t = 1

cv·ε̂ by its many-electron counterpart, T =
∑

i ti. In velocity form, we
write

T =
1

c
V · ε̂,

where,

V =
∑N

i=1 vi, first quantization,

=
∑

ij〈i|v|j〉a
†
iaj , second quantization.

It is elementary to prove that

V =
i

h̄
[H,R],

where R =
∑

i ri and where H = H0 + VI is the nonrelativistic many-body
Hamiltonian. This relation is used to show that the equivalent length-form of
the transition operator is obtained through the substitution

〈F |V |I〉 → iωFI〈F |R|I〉,
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with ωFI = (EF −EI)/h̄. It should be carefully noted that the length - velocity
equivalence in the many-body case is true for exact many-body wave functions,
but is not, in general, valid for approximate wave functions. Indeed, one can
use the difference in length-form and velocity-form amplitudes, in certain cases,
as a measure of the quality of the many-body wave functions ΨI and ΨF .

It follows from the analysis given earlier in this section that the Einstein
A-coefficient is

AIF =
4

3
α
ω3

c2
SE1
gI

, (6.102)

where gI is the initial state degeneracy and where SE1 = |〈F ||R||I〉|2 is the line
strength. The line strength can be evaluated in velocity-form by making the
replacement

〈F ||R||I〉 → − h̄

mωFI
〈F ||∇||I〉.

Let us apply this formalism to study transitions in two-electron atoms. We
proceed in two steps. First, we evaluate the matrix element of the dipole oper-
ator between two uncoupled states,

|I〉 = a†aa
†
b|0〉, (6.103)

|F 〉 = a†ca
†
d|0〉. (6.104)

We easily find

〈F |Rν |I〉 = (rν)caδdb − (rν)daδcb − (rν)cbδda + (rν)dbδca.

Next, we couple the atomic states in the LS scheme and find

〈L′M ′
LS

′M ′
S |Rν |LMLSMS〉 =

ηη′
∑

m′s µ′s

?

?
− L′M ′

L

lcmc

ldmd

?

?
− S′M ′

S

1/2µc

1/2µd

?

?
− LML

lama

lbmb

?

?
− SMS

1/2µa

1/2µb

×











6− 1ν

lcmc

lama

〈c||r||a〉δdb − 6− 1ν

ldmd

lama

〈d||r||a〉δcb

− 6− 1ν

lcmc

lbmb

〈c||r||b〉δda + 6− 1ν

ldmd

lbmb

〈d||r||b〉δca











. (6.105)

The spin sums in this equation can be easily carried out leading to a factor of
δS′SδM ′

SMS
in the two direct terms and a factor of (−1)S+1δS′SδM ′

SMS
in the two

exchange terms. The orbital angular momentum sums are a bit more difficult.
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From the Wigner-Eckart theorem, it follows that each of the four terms in the
sum must be proportional to

6− 1ν

L′M ′
L

LML

× 6− 00

S′M ′
S

SMS

,

where the proportionality constant is the corresponding contribution to the
reduced matrix element. Carrying out the sums over magnetic substates, we
obtain

〈L′S′||R||LS〉 = η′η
√

[S][L′][L]

[

(−1)L+lc+ld+1

{

L′ L 1
la lc lb

}

〈c||r||a〉δdb

+ (−1)L′+L+S+1

{

L′ L 1
la ld lb

}

〈d||r||a〉δcb

+ (−1)S+lb+lc+1

{

L′ L 1
lb lc la

}

〈c||r||b〉δda

+(−1)L′+la+lb+1

{

L′ L 1
lb ld la

}

〈d||r||b〉δca
]

, (6.106)

where we have used the fact that

6− 00

S′M ′
S

SMS

=
1

√

[S]
δS′SδM ′

SMS
.

Let us consider, as specific examples, transitions from excited (nl1s) states
to either the (1s)2 1S ground state or to a (2s1s) 1,3S excited state. Since L′ = 0
for the final states, the dipole selection rules lead to L = 1 for the initial states.
There are the three possible cases:

1. (np1s) 1P → (1s)2 1S. In this case S = 0, η = 1, η′ = 1/
√
2, a = np and

b = c = d = 1s. The reduced matrix element in Eq.(6.106) becomes

〈2 1S||R||n 1P 〉 =
√
2 〈1s||r||np〉.

2. (np1s) 1P → (2s1s) 1S. Here, S = 0, η = η′ = 1, a = np, c = 2s and
b = d = 1s. The reduced matrix element is

〈2 1S||R||n 1P 〉 = 〈2s||r||np〉.

3. (np1s) 3P → (2s1s) 3S. This case is the same as the previous except S = 1.
The reduced matrix element is

〈2 3S||R||n 3P 〉 =
√
3 〈2s||r||np〉.
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Table 6.3: Wavelengths and oscillator strengths for transitions in heliumlike
ions calculated in a central potential v0(1s, r). Wavelengths are determined
using first-order energies.

Z λ(Å) f λ(Å) f λ(Å) f

2 1P − 1 1S 3 1P − 1 1S 4 1P − 1 1S

2 570.5 0.335 527.3 0.086 513.5 0.035
3 197.4 0.528 177.0 0.121 170.7 0.047
4 99.8 0.615 88.1 0.134 84.6 0.051
5 60.1 0.664 52.6 0.140 50.4 0.053
6 40.2 0.695 34.9 0.144 33.4 0.054
7 28.8 0.717 24.9 0.147 23.8 0.055
8 21.6 0.732 18.6 0.148 17.8 0.055
9 16.8 0.744 14.5 0.150 13.8 0.056
10 13.4 0.754 11.6 0.151 11.0 0.056

2 1P − 2 1S 3 1P − 2 1S 4 1P − 2 1S

2 27744.0 0.248 3731.2 0.121 3072.5 0.042
3 10651.8 0.176 1473.7 0.194 1128.0 0.058
4 6483.9 0.133 673.7 0.255 511.3 0.071
5 4646.6 0.106 385.3 0.292 291.0 0.078
6 3617.4 0.088 249.3 0.316 187.6 0.083
7 2960.5 0.075 174.4 0.334 131.0 0.086
8 2505.1 0.065 128.9 0.347 96.6 0.088
9 2170.9 0.058 99.1 0.357 74.2 0.090
10 1915.3 0.052 78.6 0.365 58.8 0.092

2 3P − 2 3S 3 3P − 2 3S 4 3P − 2 3S

2 10039.4 0.685 5568.2 0.081 4332.4 0.030
3 5292.1 0.355 1179.9 0.242 932.1 0.070
4 3642.8 0.236 577.6 0.297 448.1 0.081
5 2786.5 0.176 342.5 0.328 263.1 0.087
6 2258.9 0.140 226.6 0.348 172.9 0.090
7 1900.2 0.116 161.0 0.362 122.3 0.092
8 1640.3 0.100 120.3 0.372 91.1 0.094
9 1443.2 0.087 93.3 0.379 70.4 0.095
10 1288.4 0.077 74.4 0.385 56.1 0.096
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The evaluation of the two-particle reduced matrix element thus reduces to
the evaluation of a single-particle matrix element between “active” electrons.
We describe the helium ground-state in the Hartree-Fock approximation. The
ground-state HF potential v0(1s, r) is then used as a screening potential [U(r) =
v0(1s, r)] in calculating excited-state orbitals. We find that the lowest-order
2 1P − 1 1S energy difference is h̄ω0 = 0.7905, and the first-order energy dif-
ference is h̄ω1 = 0.0081, leading to a predicted wavelength λ = 570.51 Å for
the transition, in reasonably good agreement with the measured wavelength
λexp = 584.33 Å. The calculated matrix elements in length- and velocity-
form are identical if the lowest-order energy is used in the calculation, but
differ if the more accurate energy h̄(ω0 + ω1) = 0.7986 is used. We find that
〈1s||r||2p〉l = 0.561 compared with 〈1s||r||2p〉v = 0.555. The calculated line
strength is SE1 = 0.629 compared to the exact value Sexact

E1 = 0.5313, while the
oscillator strength is f = .335 compared to the exact result f exact = 0.2762.
Finally, the value of the Einstein A-coefficient from the approximate calculation
is A = 22.9 × 108 s−1 compared to the exact value Aexact = 17.99 × 108 s−1.
The exact values given here are from a recent relativistic all-order calculation
by Plante. Generally, a simpler nonrelativistic calculation suffices to give an un-
derstanding of the transition probabilities in two-electron systems at the level
of 10-20%. In Table 6.3, we give results of calculations of wavelengths and os-
cillator strengths for transitions from n 1,3P states to the 1 1S ground state and
the 2 1,3S excited states in two-electron ions with Z ranging from 2 to 10. The
calculations are of the type described above. The accuracy of the approximate
calculations gradually improves along the isoelectronic sequence. At Z = 10
the tabulated values are accurate at the 1-2% level. The oscillator strengths are
plotted against Z in Fig 6.3.

6.3 Theory of Multipole Transitions

In the following paragraphs, we extend and systematize the decomposition
of the transition amplitude into electric dipole, magnetic dipole and electric
quadrupole components started the previous sections. The transition ampli-
tude for a one-electron atom is

Tba =

∫

d3rψ†bα·A(r, ω)ψa, (6.107)

where A(r, ω) is the transverse-gauge vector potential

A(r, ω) = ε̂ eik·r .

As a first step in the multipole decomposition, we expand the vector potential
A(r, ω) in a series of vector spherical harmonics

A(r, ω) =
∑

JLM

AJLMYJLM (r̂). (6.108)
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Figure 6.3: Oscillator strengths for transitions in heliumlike ions.

The expansion coefficients are, of course, given by

AJLM =

∫

dΩ(YJLM (r̂) · ε̂) eik·r. (6.109)

In this equation and below, vector operators on the left-hand side are understood
to be adjoint operators. Using the well-known expansion of a plane-wave in
terms of spherical Bessel functions jl(kr),

eik·r = 4π
∑

lm

iljl(kr)Y
∗
lm(k̂)Ylm(r̂),

and carrying out the angular integration in Eq.(6.109), we can rewrite the ex-
pansion of the vector potential (6.108) in the form

A(r, ω) = 4π
∑

JLM

iL(YJLM (k̂) · ε̂)aJLM (r), (6.110)

where

aJLM (r) = jL(kr)YJLM (r̂). (6.111)

It is more convenient to express this expansion in terms of the vector spherical

harmonics Y
(λ)
JM (r̂) rather than YJLM (r̂). This can be accomplished with the
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aid of the relations

YJJ−1M (r̂) =

√

J

2J + 1
Y

(−1)
JM (r̂) +

√

J + 1

2J + 1
Y

(1)
JM (r̂), (6.112)

YJJM (r̂) = Y
(0)
JM (r̂), (6.113)

YJJ+1M (r̂) = −
√

J + 1

2J + 1
Y

(−1)
JM (r̂) +

√

J

2J + 1
Y

(1)
JM (r̂). (6.114)

This transformation leads immediately to the multipole expansion of the vector
potential,

A(r, ω) = 4π
∑

JMλ

iJ−λ(Y
(λ)
JM (k̂) · ε̂)a(λ)JM (r). (6.115)

The vector functions a
(λ)
JM (r) are referred to as multipole potentials. They are

given by

a
(0)
JM (r) = aJJM (r), (6.116)

a
(1)
JM (r) =

√

J + 1

2J + 1
aJJ−1M (r)−

√

J

2J + 1
aJJ+1M (r). (6.117)

Only terms with λ = 0 and λ = 1 contribute to the multipole expansion (6.115),

since Y
(−1)
JM (k̂) = k̂YJM (k̂) is orthogonal to ε̂. The multipole potentials satisfy

the Helmholtz equation

∇2a
(λ)
JM + k2a

(λ)
JM = 0, (6.118)

and the transversality condition

∇·a
(λ)
JM = 0. (6.119)

The multipole potentials with λ = 0 are the magnetic multipole potentials and

those with λ = 1 are the electric multipole potentials. The interaction α·a
(λ)
JM is

an irreducible tensor operator of rank J . The parity of the multipole potential

a
(λ)
JM (r) is (−1)J+1−λ. It should be noted that in the multipole expansion, all

information concerning the photon’s polarization and its propagation direction
is contained in the expansion coefficient.

With the aid of Eqs.(6.112-6.114), and the following well-known identities
among spherical Bessel functions,

jn−1(z) =
n+ 1

z
jn(z) + j′n(z), (6.120)

jn+1(z) =
n

z
jn(z)− j′n(z), (6.121)

where

j′n(z) =
d

dz
jn(z),
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the multipole potentials a
(λ)
JM (r) can be put in the form

a
(0)
JM (r) = jJ(kr)Y

(0)
JM (r̂), (6.122)

a
(1)
JM (r) =

[

j′J(kr) +
jJ(kr)

kr

]

Y
(1)
JM (r̂)

+
√

J(J + 1)
jJ(kr)

kr
Y

(−1)
JM (r̂) . (6.123)

Let us examine the small k limit in Eqs.(6.122,6.123) for the special case
J = 1. We find on expanding j1(kr) ≈ kr/3,

lim
k→0

a
(0)
1m(r) =

kr

3
Y

(0)
1m(r̂) = −i

√

3

8π

k

3
[r×ξm]

lim
k→0

a
(1)
1m(r) =

2

3
Y

(1)
1m(r̂) +

√
2

3
Y

(−1)
1m (r̂) =

√

3

8π

2

3
ξm ,

where ξm are the three unit spherical basis vectors. With the aid of the Pauli
approximation, we can easily show that nonrelativistically the J = 1 transition
operators take the limiting forms

α·a
(0)
1m(r) → 2

3

√

3

8π

ik

2mc
([L+ 2S] ·ξm)

α·a
(1)
1m(r) → 2

3

√

3

8π

1

c
(v · ξm) .

Thus, the J = 1 components of relativistic multipole operators introduced here
are, up to a factor, the velocity form of the magnetic and electric dipole op-
erators. We therefore refer to the transverse-gauge operators as velocity-form
operators. Later, we will show how to recover the corresponding length-form
operators.

The multipole expansion of the vector potential (6.115) leads to a corre-
sponding multipole expansion of the transition operator

Tba = 4π
∑

JMλ

iJ−λ[Y
(λ)
JM (k̂) · ε̂] [T (λ)

JM ]ba, (6.124)

where

[T
(λ)
JM ]ba =

∫

d3rψ†b α·a
(λ)
JM (r)ψa. (6.125)

To obtain the transition probability, we must square the amplitude, sum over
polarization states, and integrate over photon directions. On squaring the am-
plitude, we encounter terms of the form

[Y
(λ)
JM (k̂) · ε̂ν ] [ε̂ν ·Y(λ′)

J ′M ′(k̂)] , (6.126)

to be summed over polarization directions ε̂ν . Using the fact that the vector
spherical harmonics with λ = 0, 1 are orthogonal to k̂, the polarization sum
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becomes

∑

ν

[Y
(λ)
JM (k̂) · ε̂ν ] [ε̂ν ·Y(λ′)

J ′M ′(k̂)] = [Y
(λ)
JM (k̂) ·Y(λ′)

J ′M ′(k̂)] . (6.127)

This expression is easily integrated over photon directions leading to

∫

dΩk [Y
(λ)
JM (k̂) ·Y(λ′)

J ′M ′(k̂)] = δJJ ′δMM ′δλλ′ . (6.128)

We therefore obtain for the transition rate

wba =
α

2π
ω
∑

ν

∫

dΩk|Tba|2 = 8παω
∑

JMλ

∣

∣

∣
[T

(λ)
JM ]ba

∣

∣

∣

2

. (6.129)

We see that the rate is an incoherent sum of all possible multipoles. Angular
momentum selection rules, of course, limit the type and number of multipoles
that contribute to the sum.

As shown previously in Sec. 6.2.5, a gauge transformation leaves single-
particle amplitudes invariant, provided the energy difference between the initial
and final states equals the energy carried off by the photon. The transformed
multipole potential can be written

a
(λ)
JM (r) → a

(λ)
JM (r) +∇χJM (r),

φJM (r) → iω χJM (r),

where the gauge function χJM (r) is a solution to the Helmholtz equation. We
choose the gauge function to be

χJM (r) = −1

k

√

J + 1

J
jJ(kr)YJM (r̂) ,

to cancel the lowest-order (in powers of kr) contribution to the interaction.
The resulting transformation has no effect on the magnetic multipoles, but
transforms electric multipole potentials to the form

a
(1)
JM (r) = −jJ+1(kr)

[

Y
(1)
JM (r̂)−

√

J + 1

J
Y

(−1)
JM (r̂)

]

,

φ
(1)
JM (kr) = −ic

√

J + 1

J
jJ(kr)YJM (r̂) . (6.130)

The resulting potentials reduce to the length-form multipole potentials in the
nonrelativistic limit. We refer to this choice of gauge as the length-gauge in the
sequel. Let us examine the nonrelativistic limit of the length-gauge transition
operator

α·a
(1)
JM (r)− 1

c
φJM (r).
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Since the vector potential contribution is smaller than the scalar potential by
terms of order kr, the interaction can be approximated for small values of kr
by

lim
k→0

[

α·a
(1)
JM (r)− 1

c
φJM (r)

]

= i

√

(2J + 1)(J + 1)

4πJ

kJ

(2J + 1)!!
QJM (r),

where
QJM (r) = rJ CJM (r̂)

is the electric J-pole moment operator in a spherical basis.
In either gauge, the multipole-interaction can be written in terms of a di-

mensionless multipole-transition operator t
(λ)
JM (r) defined by

[

α·a
(λ)
JM (r)− 1

c
φJM (r)

]

= i

√

(2J + 1)(J + 1)

4πJ
t
(λ)
JM (r) . (6.131)

The one-electron reduced matrix elements 〈i||t(λ)J ||j〉 are given by
Transverse Gauge:

〈κi||t(0)J ||κj〉 = 〈−κi||CJ ||κj〉
∫ ∞

0

dr
κi + κj
J + 1

jJ(kr)[Pi(r)Qj(r) +Qi(r)Pj(r)] ,

〈κi||t(1)J ||κj〉 = 〈κi||CJ ||κj〉
∫ ∞

0

dr

{

−κi − κj
J + 1

[

j′J (kr) +
jJ(kr)

kr

]

×

[Pi(r)Qj(r) +Qi(r)Pj(r)] + J
jJ(kr)

kr
[Pi(r)Qj(r)−Qi(r)Pj(r)]

}

,

and
Length Gauge:

〈κi||t(1)J ||κj〉 = 〈κi||CJ ||κj〉
∫ ∞

0

dr

{

jJ(kr)[Pi(r)Pj(r) +Qi(r)Qj(r)]+

jJ+1(kr)

[

κi − κj
J + 1

[Pi(r)Qj(r) +Qi(r)Pj(r)] + [Pi(r)Qj(r)−Qi(r)Pj(r)]

]}

.

The functions Pi(r) and Qi(r) in the above equations are the large and small
components, respectively, of the radial Dirac wave functions for the orbital with
quantum numbers (ni, κi).

The multipole-transition operators t
(λ)
J (r) are related to the frequency-

dependent multipole-moment operators q
(λ)
J (r, ω) by

q
(λ)
J (r, ω) =

(2J + 1)!!

kJ
t
(λ)
J (r). (6.132)

Both the transition operators and the multipole-moment operators are irre-
ducible tensor operators. For a many-body system, the multipole-transition
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operators are given by

T
(λ)
JM =

∑

ij

(t
(λ)
JM )ij a

†
iaj , (6.133)

Q
(λ)
JM =

∑

ij

(q
(λ)
JM )ij a

†
iaj , (6.134)

where (t
(λ)
JM )ij = 〈i|t(λ)JM (r)|j〉 and (q

(λ)
JM )ij = 〈i|q(λ)JM (r, ω)|j〉.

The Einstein A-coefficient, giving the probability per unit time for emission
of a photon with multipolarity (Jλ) from a state I with angular momentum JI ,
to a state F with angular momentum JF , is

A
(λ)
J = 2αω

[J ]

[JI ]

J + 1

J
|〈F ||T (λ)

J ||I〉|2 =
(2J + 2)(2J + 1) k2J+1

J [(2J + 1)!!]2
|〈F ||Q(λ)

J ||I〉|2
[JI ]

,

(6.135)
where [JI ] = 2JI + 1. This equation leads to the familiar expressions

A
(1)
1 =

4k3

3

|〈F ||Q1||I〉|2
[JI ]

,

A
(2)
2 =

k5

15

|〈F ||Q2||I〉|2
[JI ]

,

for electric dipole and quadrupole transitions, where

QJM = Q
(1)
JM .

For magnetic multipole transitions, we factor an additional α/2 from the

frequency-dependent multipole moment operator Q
(0)
J and define

MJM = 2cQ
(0)
JM ,

to facilitate comparison with the previous nonrelativistic theory. The Einstein
A-coefficient for magnetic-dipole radiation may thus be written

A
(0)
1 =

k3

3c2
|〈F ||M1||I〉|2

[JI ]
. (6.136)
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Chapter 7

Introduction to MBPT

In this chapter, we take a step beyond the independent-particle approximation
and study the effects of electron correlation in atoms. One of the simplest and
most direct methods for treating correlation is many-body perturbation theory
(MBPT). In this chapter, we consider first-order MBPT corrections to many-
body wave functions and second-order corrections to the energies, where the
terms first-order and second-order refer to powers of the interaction potential.
Additionally, we give some results from third-order MBPT.

We retain the notation of Chap. 4 and write the many-electron Hamiltonian
H = H0 + VI in normally-ordered form,

H0 =
∑

i

εi a
†
iai , (7.1)

VI = V0 + V1 + V2 , (7.2)

V0 =
∑

a

(

1

2
VHF − U

)

aa

, (7.3)

V1 =
∑

ij

(∆V )ij :a†iaj : , (7.4)

V2 =
1

2

∑

ijkl

gijkl :a†ia
†
jalak : , (7.5)

where (∆V )ij = (VHF − U)ij with (VHF)ij =
∑

b (gibjb − gibbj) . The normal
ordering here is with respect to a suitably chosen closed-shell reference state
|Oc〉 = a†aa

†
b · · · a†n|0〉. If we are considering correlation corrections to a closed-

shell atom, then the reference state is chosen to be the ground-state of the atom.
Similarly, if we are treating correlation corrections to states in atoms with one-
or two-electrons beyond a closed-shell ion, the reference state is chosen to be
the ionic ground-state.

We let Ψ be an exact eigenstate of the many-body Hamiltonian H and let
E be the corresponding eigenvalue. We decompose Ψ into an unperturbed wave

179
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function Ψ0 satisfying

H0Ψ0 = E0Ψ0 , (7.6)

and a perturbation ∆Ψ. For the examples considered in this chapter, the state
Ψ0 is nondegenerate. The wave function Ψ is normalized using the intermediate
normalization condition 〈Ψ0|Ψ〉 = 1. Setting Ψ = Ψ0 +∆Ψ and E = E0 +∆E,
we may rewrite the Schrödinger equation in the form

(H0 − E0)∆Ψ = (∆E − VI)Ψ. (7.7)

From this equation, it follows (with the aid of the intermediate normalization
condition) that

∆E = 〈Ψ0|VI |Ψ〉. (7.8)

It is often convenient to work with operators that map the unperturbed wave
function Ψ0 onto Ψ or ∆Ψ rather than the wave functions Ψ or ∆Ψ themselves.
The wave operator Ω is the operator that maps the unperturbed wave function
onto the exact wave function

Ψ = ΩΨ0 , (7.9)

and the correlation operator χ = Ω− 1 is the operator that maps Ψ0 onto ∆Ψ,

∆Ψ = χΨ0. (7.10)

It follows from (7.8) that

∆E = 〈Ψ0|VIΩ|Ψ0〉 = 〈Ψ0|VI |Ψ0〉+ 〈Ψ0|VIχ|Ψ0〉 . (7.11)

The operator Veff = VIΩ is an effective potential, in the sense that

∆E = 〈Ψ0|Veff |Ψ0〉. (7.12)

We expand both ∆Ψ and ∆E in powers of VI ,

∆Ψ = Ψ(1) +Ψ(2) + · · · , (7.13)

∆E = E(1) + E(2) + · · · . (7.14)

The Schrödinger equation (7.7) then leads to an hierarchy of inhomogeneous
equations

(H0 − E0)Ψ
(1) = (E(1) − VI)Ψ0, (7.15)

(H0 − E0)Ψ
(2) = (E(1) − VI)Ψ(1) + E(1)Ψ0, (7.16)

(H0 − E0)Ψ
(3) = (E(1) − VI)Ψ(2) + E(2)Ψ(1) + E(3)Ψ0, · · · (7.17)

We consider the solution to these equations for several simple cases in the fol-
lowing sections.
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7.1 Closed-Shell Atoms

In this section, we work out the lowest-order correlation corrections to the wave
function and energy for a closed-shell atom. We take the lowest-order wave
function Ψ0 to be the reference wave function |Oc〉. The lowest-order energy is
then E0 =

∑

a εa, where the sum extends over all occupied core states. For a
closed-shell atom, the reference state is the unique solution to Eq.(7.6).

Equation (7.15) has a non-trivial solution only if the right-hand side is or-
thogonal to the solution to the homogeneous equation. This implies that

E(1) = 〈Ψ0|VI |Ψ0〉 = 〈Oc|VI |Oc〉 = V0 . (7.18)

Thus, the solvability condition leads to the previously derived expression for the
sum of the lowest- and first-order energy,

E0 + E(1) =
∑

a

(

εa +
1

2
(VHF)aa − Uaa

)

=
∑

a

Ia +
1

2

∑

ab

(gabab − gabba) ,

(7.19)
where Ia = 〈a|h0|a〉 is the one-particle matrix element of the sum of single-
particle kinetic energy and the electron-nucleus potential energy. We see that
the sum of the lowest- and first-order energies is just the expectation value of the
many-body Hamiltonian evaluated using the independent-particle many-body
wave function. Indeed, to obtain Hartree-Fock wave functions in Chapter 3, we
minimized this sum treated as a functional of single-particle orbitals φa(r).

Since E(1) = V0, the right-hand side of Eq.(7.15) can be simplified, leading
to

(H0 − E0)Ψ
(1) = −V1Ψ0 − V2Ψ0

=

[

−
∑

na

(∆V )na a
†
naa −

1

2

∑

mnab

gmnab a
†
ma

†
nabaa

]

|Oc〉 . (7.20)

Here we have taken advantage of the normal ordering in V1 and V2 and retained
only the nonvanishing core (aa or ab) annihilation operators and excited state
(a†n or a†m) creation operators in the sums. (As in previous chapters, we denote
core orbitals by subscripts a, b, . . . at the beginning of the alphabet and desig-
nate excited orbitals by letters m, n, . . . in the middle of the alphabet.) The
general solution to Eq.(7.15) is the sum of a particular solution to the inhomo-
geneous equation and the general solution to the homogeneous equation. The
intermediate normalization condition implies that the perturbed wave function
Ψ(1) is orthogonal to Ψ0. We therefore seek a solution to (7.15) that is orthog-
onal to Ψ0. From an examination of the right-hand side of the inhomogeneous
equation, we are led to write Ψ(1) = χ(1)Ψ0, where the first-order correlation
operator χ(1) is a linear combination of one-particle–one-hole operators a†naa
and two-particle–two-hole operators a†ma

†
nabaa,

χ(1) =
∑

an

χ(1)naa
†
naa +

1

2

∑

mnab

χ
(1)
mnaba

†
ma

†
nabaa . (7.21)
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The first-order wave function is, in other words, constructed as a linear combi-
nation of particle-hole excited states and two-particle–two-hole excited states.
Substituting this ansatz into Eq.(7.20), we obtain

[

∑

an

(εn − εa)χ(1)na a
†
naa +

1

2

∑

mnab

(εm + εn − εa − εb)χ(1)mnab a
†
ma

†
nabaa

]

|Oc〉

=

[

−
∑

na

(∆V )na a
†
naa −

1

2

∑

mnab

gmnab a
†
ma

†
nabaa

]

|Oc〉 . (7.22)

Identifying coefficients of the particle-hole and two-particle–two-hole operators
on the left and right of this equation, we find

χ(1)na = − (∆V )na
εn − εa

, (7.23)

χ
(1)
mnab = − gmnab

εm + εn − εa − εb
. (7.24)

Using these expansion coefficients, we can reconstruct the first-order correlation
operator χ(1) from Eq.(7.21). Then, using Ψ(1) = χ(1)Ψ0, we have the first-order
wave function.

According to Eq.(7.8), the second-order energy is

E(2) = 〈Ψ0|VI |Ψ(1)〉 = 〈Ψ0|VIχ(1)|Ψ0〉. (7.25)

Substituting the expansion for χ(1), we find

E(2) = 〈Oc|



V0 +
∑

ij

(∆V )ij :a†iaj : +
1

2

∑

ijkl

gijkl :a†ia
†
jalak :



×

[

∑

na

χ(1)naa
†
naa +

1

2

∑

nmab

χ
(1)
nmaba

†
na
†
mabaa

]

|Oc〉. (7.26)

Using Wick’s theorem to evaluate the matrix elements of products of creation
and annihilation operators, we obtain

E(2) =
∑

na

(∆V )anχ
(1)
na +

1

2

∑

mnab

g̃abmnχ
(1)
mnab

= −
∑

na

(∆V )an(∆V )na
εn − εa

− 1

2

∑

mnab

g̃abmngmnab
εm + εn − εa − εb

. (7.27)

To evaluate the second-order correction to the energy, it is first necessary to
carry out the sum over magnetic substates and then to evaluate the remaining
multiple sums over the remaining quantum numbers numerically.
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Closed-Shell: Third-Order Energy

Derivation of the expression for the third-order energy follows the pattern out-
lined above but is considerably more involved. For a closed-shell atom, the
result is (Blundell et al., 1987)

E(3) =
∑

abcmnr

g̃acnr g̃nmbag̃rbmc
(εn + εm − εa − εb)(εr + εn − εa − εc)

+
1

2

∑

abcdmn

g̃cdmngnmbagbadc
(εn + εm − εa − εb)(εn + εm − εc − εd)

+
1

2

∑

abmnrs

g̃absrgnmbagrsnm
(εn + εm − εa − εb)(εr + εs − εa − εb)

, (7.28)

where we have assumed, for simplicity, that U = VHF.

7.1.1 Angular Momentum Reduction

The sum over magnetic quantum numbers for the one-particle–one-hole con-
tribution to the second-order correlation energy is elementary. Since ∆V in
Eq. (7.27) is a scalar, it follows that ln = la, mn = ma, and σn = σa. The
sum over magnetic substates can be carried out leaving a sum over all occupied
subshells a = (na, la) and those excited orbitals n = (nn, ln) having ln = la,

E(2)
a = −

∑

na
ln=la

2[la]
(∆V )an(∆V )na

εn − εa
, (7.29)

with

(∆V )an =
∑

b

2[lb]

[

R0(a, b, n, b)−
∑

k

ΛlaklbRk(a, b, b, n)

]

− Uan.

The corresponding formulas in the relativistic case are the same with 2[la] re-
placed by [ja] and Λlaklb replaced by Λκakκb .

The sum over magnetic substates is more difficult for the gabmng̃mnab term.
As a first step, we separate out the dependence on magnetic quantum numbers
of the Coulomb matrix element using

gmnab =
∑

k

-6 6− +
k

lmmm

lama

lnmn

lbmb

δσaσmδσbσn Xk(mnab) , (7.30)

where

Xk(mnab) = (−1)k〈lm||Ck||la〉〈ln||Ck||lb〉Rk(mnab) . (7.31)
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The indices σi in Eq.(7.30) designate spin quantum numbers. Next, we consider
the sum over magnetic quantum numbers of the product,

∑

m′s

-6 6− +
k

lama

lmmm

lbmb

lnmn

× -6 6− +
k′

lmmm

lama

lnmn

lbmb

= (−1)lm−la+ln−lb 1

[k]
δk′k , (7.32)

and the sum of the exchange product,

∑

m′s

-6 6− +
k

lama

lnmn

lbmb

lmmm

× -6 6− +
k′

lmmm

lama

lnmn

lbmb

= (−1)lm−la+ln−lb
{

la lm k
lb ln k′

}

. (7.33)

These two terms are combined to give an expression for the two-particle–two-
hole contribution to the correlation energy,

E
(2)
b = −

∑

k

2

[k]

∑

abmn

Zk(mnab)Xk(mnab)

εm + εn − εb − εa
, (7.34)

where

Zk(mnab) = Xk(mnab)−
1

2

∑

k′

[k]

{

la lm k
lb ln k′

}

Xk′(mnba) . (7.35)

In summary, the nonrelativistic second-order correlation energy for a closed-
shell atom or ion is

E(2) = E(2)
a + E

(2)
b

=−
∑

na
ln=la

2[la]
(∆V )an(∆V )na

εn − εa

−
∑

k

2

[k]

∑

abmn

Zk(mnab)Xk(mnab)

εm + εn − εb − εa
. (7.36)

If we assume that our basic orbitals φm are obtained in the HF potential of the
core, then (∆V )aa = (VHF−U)aa = 0, and the first term in Eq. (7.36) vanishes.
This is an example of a general rule: formulas of MBPT take their simplest
form starting from a HF potential.

Closed Shell Atoms: Relativistic Case

Formula (7.27) gives the second-order Coulomb contribution to the correlation
energy in the the relativistic case as well. In the relativistic case, the sums
over m and n run over positive energies only as discussed earlier. The angular
reduction in the relativistic case is somewhat simpler than in the nonrelativistic
case since the magnetic sums are over a single magnetic quantum number mj

rather than two ml and σ.
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Again, we write

gmnab =
∑

k

-6 6− +
k

jmmm

jama

jnmn

jbmb

Xk(mnab) , (7.37)

where in the relativistic case

Xk(mnab) = (−1)k〈κm||Ck||κa〉〈κn||Ck||κb〉Rk(mnab) . (7.38)

Here, one is reminded, κi = ∓(ji + 1) for ji = li ± 1. The relativistic reduced
matrix elements 〈κm||Ck||κa〉 contain both angular momentum and parity selec-
tion rules. The Slater integrals Rk(mnab) are of course evaluated using radial
Dirac wave functions. We must now carry out the sum over magnetic quantum
numbers in Eq.(7.27):

∑

m′s

-6 6− +
k

jama

jmmm

jbmb

jnmn

× -6 6− +
k′

jmmm

jama

jnmn

jbmb

= (−1)jm+ja+jn+jb
1

[k]
δk′k , (7.39)

and in the exchange term

∑

m′s

-6 6− +
k

jama

jnmn

jbmb

jmmm

× -6 6− +
k′

jmmm

jama

jnmn

jbmb

= −(−1)jm+ja+jn+jb

{

ja jm k
jb jn k′

}

. (7.40)

These two terms are combined in the relativistic case (with the additional as-
sumption U = VHF) to give

E(2) = −1

2

∑

k

1

[k]

∑

abmn

Zk(mnab)Xk(mnab)

εm + εn − εb − εa
, (7.41)

where

Zk(mnab) = Xk(mnab) +
∑

k′

[k]

{

ja jm k
jb jn k′

}

Xk′(mnba) . (7.42)

A similar analysis can be applied to the relativistic third-order energy. After
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angular reduction, one obtains

E(3) =
∑

L

1

[L]2

∑

abcmnr

(−1)ja+jb+jc+jm+jn+jr+L+1

× ZL(acnr)ZL(mnba)ZL(rbcm)

(εm + εn − εa − εb)(εr + εn − εa − εc)

+
1

2

∑

abcdmn
L1L2L3

(−1)ja+jb+jc+jd
{

L1 L2 L3

jb jd jn

}{

L1 L2 L3

ja jc jm

}

× ZL1
(dcnm)XL2

(nmba)XL3
(badc)

(εn + εm − εa − εb)(εn + εm − εc − εd)

+
1

2

∑

abmnrs
L1L2L3

(−1)ja+jb+jm+jn

{

L1 L2 L3

jn jr jb

}{

L1 L2 L3

jm js ja

}

× ZL1
(basr)XL2

(nmba)XL3
(rsnm)

(εn + εm − εa − εb)(εr + εs − εa − εb)
. (7.43)

7.1.2 Example: 2nd-order Energy in Helium

As a simple example, let us evaluate the ground-state correlation energy for
helium, starting from the Hartree-Fock approximation. Since the core orbitals
a and b are both 1s orbitals, one easily shows that the quantities Xk(abmn)
vanish unless lm = ln = k. Furthermore, using the fact that 〈l||Cl||0〉 = 1, we
find,

Xl(1s, 1s, nl,ml) = (−1)lRl(1s, 1s, nl, nl).
Moreover,

{

0 l k
0 l k′

}

=
1

[l]
δklδk′l .

With the aid of these relations, we rewrite the nonrelativistic equation for the
second-order correlation energy (7.36) as

E(2) = −
∞
∑

l=0

1

[l]

∑

mn

[Rl(1s, 1s, nl,ml)]
2

εnl + εml − 2ε1s
. (7.44)

We are, therefore, faced with the problem of evaluating an infinite sum over
angular momentum states l of terms that are represented here as double sums
over principal quantum numbers m and n of squares of Slater integrals divided
by energy differences. The formalism is a bit misleading in the sense that, except
for the 1s state, there are no bound states in the HF potential for helium. The
double sums in this case represent double integrals over the continuum. In the
following two subsection, we describe a method for evaluating expressions such
as this numerically. We will return to this example later in the chapter.
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7.2 B-Spline Basis Sets

As an aid to evaluating MBPT expressions for the correlation energy, we intro-
duce discrete basis sets and, thereby, reduce the infinite sums and integrals over
the real spectrum to finite sums over a pseudospectrum.

Since correlation corrections in atoms have finite range, we restrict our at-
tention to a finite (but large) cavity of radius R. To study the ground-state
or low-lying excited states of ions, the radius of this cavity is chosen to be
R ≈ 40/Zion a.u., where Zion is the ionic charge. For large cavities, the results
of correlation calculations are independent of the cavity radius. We require that
the radial wave functions vanish at the origin and at the cavity boundary. The
spectrum in the cavity is discrete but infinite.

Next, we expand the solutions to the radial Schrödinger equation in a finite
basis. This basis is chosen to be a set of n B-splines of order k. Following
deBoor (1978), we divide the interval [0, R] into segments. The endpoints of
these segments are given by the knot sequence {ti}, i = 1, 2, · · · , n + k. The
B-splines of order k, Bi,k(r), on this knot sequence are defined recursively by
the relations,

Bi,1(r) =

{

1, ti ≤ r < ti+1,
0, otherwise,

(7.45)

and

Bi,k(r) =
r − ti

ti+k−1 − ti
Bi,k−1(r) +

ti+k − r
ti+k − ti+1

Bi+1,k−1(r) . (7.46)

The function Bi,k(r) is a piecewise polynomial of degree k−1 inside the interval
ti ≤ r < ti+k and Bi,k(r) vanishes outside this interval. The knots defining our
grid have k-fold multiplicity at the endpoints 0 and R; i.e. t1 = t2 = · · · =
tk = 0 and tn+1 = tn+2 = · · · = tn+k = R. In applications to atomic physics
calculations, the knots tk+1, tk+2, · · · , tn are distributed on an exponential scale
between 0 and R. In Fig. 7.1, we show 30 B-splines of order k covering the
interval r = 0 − 40 a.u. This set of B-splines could be used as a basis set for
expanding radial wave functions.

The set of B-splines of order k on the knot sequence {ti} forms a complete
basis for piecewise polynomials of degree k − 1 on the interval spanned by the
knot sequence. We represent the solution to the radial Schrödinger equation as
a linear combination of these B-splines and we work with the B-spline represen-
tation of the wave functions rather than the wave functions themselves.

The radial Schrödinger wave function Pl(r) satisfies the variational equation
δS = 0, where

S =

∫ R

0

{

1

2

(

dPl
dr

)2

+

(

V (r) +
l(l + 1)

2r2

)

Pl(r)
2

}

− ε
∫ R

0

Pl(r)
2dr . (7.47)

The parameter ε is a Lagrange multiplier introduced to insure that the normal-
ization constraint

∫ R

0

Pl(r)
2dr = 1 , (7.48)
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Figure 7.1: We show the n = 30 B-splines of order k = 6 used to cover the
interval 0 to 40 on an “atomic” grid. Note that the splines sum to 1 at each
point.

is satisfied. The variational principle δS = 0, together with the constraints
δPκ(0) = 0 and δPκ(R) = 0, leads to the radial Schrödinger equation for Pl(r).

We expand Pl(r) in terms of B-splines of order k as

Pl(r) =
n
∑

i=1

piBi(r) , (7.49)

where the subscript k has been omitted from Bi,k(r) for notational simplicity.
The action S becomes a quadratic function of the expansion coefficients pi when
the expansions are substituted into the action integral. The variational principle
then leads to a system of linear equations for the expansion coefficients,

∂S

∂pi
= 0, i = 1, · · · , n . (7.50)

The resulting equations can be written in the form of an n × n symmetric
generalized eigenvalue equation,

Av = εBv , (7.51)

where v is the vector of expansion coefficients,

v = (p1, p2, · · · , pn) . (7.52)
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Table 7.1: Eigenvalues of the generalized eigenvalue problem for the B-spline
approximation of the radial Schrödinger equation with l = 0 in a Coulomb
potential with Z = 2. Cavity radius is R = 30 a.u. We use 40 splines with
k = 7.

n εn n εn n εn
1 -2.0000000 11 0.5470886 · · ·
2 -0.5000000 12 0.7951813 · · ·
3 -0.2222222 13 1.2210506 · · ·
4 -0.1249925 14 2.5121874 34 300779.9846480
5 -0.0783858 15 4.9347168 35 616576.9524036
6 -0.0379157 16 9.3411933 36 1414036.2030934
7 0.0161116 17 17.2134844 37 4074016.5630432
8 0.0843807 18 31.1163253 38 20369175.6484520
9 0.1754002 19 55.4833327

10 0.2673078 20 97.9745446

The matrices A and B are given by

Aij =

∫ R

0

{

dBi
dr

dBj
dr

+ 2Bi(r)

(

V (r) +
l(l + 1)

2r2

)

Bj(r)

}

dr, (7.53)

Bij =

∫ R

0

Bi(r)Bj(r)dr. (7.54)

It should be mentioned that the matrices A and B are diagonally dominant
banded matrices. The solution to the eigenvalue problem for such matrices is
numerically stable. Routines from the lapack library (Anderson et al., 1999)
can be used to obtain the eigenvalues and eigenvectors numerically.

Solving the generalized eigenvalue equation, one obtains n real eigenvalues
ελ and n eigenvectors vλ. The eigenvectors satisfy the orthogonality relations,

∑

i,j

vλi Bijv
µ
j = δλµ , (7.55)

which leads to the orthogonality relations

∫ R

0

Pλ
l (r)P

µ
l (r)dr = δλµ, (7.56)

for the corresponding radial wave functions.
The first few eigenvalues and eigenvectors in the cavity agree precisely with

the first few bound-state eigenvalues and eigenvectors obtained by numerically
integrating the radial Schrödinger equations; but, as the principal quantum
number increases, the cavity spectrum departs more and more from the real
spectrum. This is illustrated in Table 7.1, where we list the eigenvalues obtained
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Figure 7.2: B-spline components of the 2s state in a Coulomb field with Z = 2
obtained using n = 30 B-splines of order k = 6. The dashed curve is the
resulting 2s wave function.

for l = 0 states in a Coulomb potential with Z = 2. In this example we use
n = 40 splines with k = 7. In Fig. 7.2, we show the B-spline components of the
2s state in a Coulomb potential with Z = 2 obtained using n = 30 splines of
order k = 6.

The cavity spectrum is complete in the space of piecewise polynomials of
degree k − 1 and, therefore, can be used instead of the real spectrum to evalu-
ate correlation corrections to states confined to the cavity. The quality of the
numerically generated B-spline spectrum can be tested by using it to evaluate
various energy-weighted sum rules, such as the Thomas-Reiche-Kuhn sum rule.
It is found (Johnson et al., 1988a) that the generalized TRK sum rule is satisfied
to parts in 107 using 40 splines of order 7 for a given l and to parts in 109 using
50 splines of order 9.

7.2.1 Hartree-Fock Equation and B-splines

While it is useful to have a finite basis set for the Schrödinger equation in a local
potential, it is even more useful to have a basis set for the Hartree-Fock(HF)
potential, since in MBPT takes its simplest form when expressed in terms of
HF orbitals. One supposes that the HF equations for the occupied orbitals of a
closed-shell system have been solved and uses the resulting orbitals to construct
the HF potential. Once this potential has been determined, a complete set of
single particle orbitals can be constructed. To determine these orbitals using
B-splines, it is necessary to modify the potential term in the action integral S
and the matrix A in the generalized eigenvalue problem. If we let VHF represent
the HF potential, then its contribution to the action integral S for an orbital a
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will be

∫ R

0

Pa(r)VHFPa(r)dr =
∑

b

2[lb]

(

R0(abab)−
∑

k

ΛlaklbRk(abba)

)

, (7.57)

where the sum is over all occupied shells. This contribution to S leads to the
following modification of the potential contribution in the matrix element Aij ,

∫ R

0

drBi(r)VHFBj(r)

=

∫ R

0

drBi(r)
∑

b

2[lb]

{

v0(b, b, r)Bj(r)dr

−
∑

k

Λlaklbvk(b,Bj , r)Pb(r)

}

, (7.58)

where vl(a, b, r) is the usual Hartree screening potential.

To solve the generalized eigenvalue problem in the HF case, we do a pre-
liminary numerical solution of the nonlinear HF equations to determine the
occupied orbitals Pb(r). With the aid of these orbitals, we construct the matrix
A using the above formula. The linear eigenvalue problem can then be solved to
give the complete spectrum (occupied and unoccupied) of HF states. With this
procedure, the states Pb(r) are both input to and output from the routine to
solve the eigenvalue equation. By comparing the the eigenfunctions of occupied
levels obtained as output with the corresponding input levels, one can monitor
the accuracy of the solutions to the eigenvalue problem. It should be noted that
this consistency check will work only if the cavity radius is large enough so that
boundary effects do not influence the occupied levels in the spline spectrum at
the desired level of accuracy.

In Table 7.2, we compare low-lying levels for the sodium atom (Z = 11)
obtained by solving the generalized eigenvalue problem with values obtained by
solving the HF equations numerically. The potential used in this calculation is
the HF potential of the closed Na+ core. It is seen that the B-spline eigenvalues
of the occupied 1s, 2s and 2p levels agree precisely with the corresponding
numerical eigenvalues. The B-spline eigenvalues of higher levels depart from
the numerical eigenvalues because of cavity boundary effects.

7.2.2 B-spline Basis for the Dirac Equation

Application of B-splines to obtain a finite basis set for the radial Dirac Equa-
tion is described by Johnson et al. (1988a) and follows very closely the pattern
described above for the radial Schrödinger equation. Several difference between
the relativistic and nonrelativistic expansions should be noted. Firstly, in the
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Table 7.2: Comparison of the HF eigenvalues from numerical integration of the
HF equations (HF) with those found by solving the HF eigenvalue equation in
a cavity using B-splines (spline). Sodium, Z = 11, in a cavity of radius R = 40
a.u..

nl HF spline nl HF spline nl HF spline
1s -40.759750 -40.759750
2s -3.073688 -3.073688 2p -1.797192 -1.797192
3s -0.181801 -0.181801 3p -0.109438 -0.109438 3d -0.055667 -0.055667
4s -0.070106 -0.070106 4p -0.050321 -0.050318 4d -0.031315 -0.031021
5s -0.037039 -0.036876 5p -0.028932 -0.027955 5d -0.020038 -0.014308
6s -0.022871 -0.017983 6p -0.018783 -0.008656 6d -0.013912 0.008226

4f -0.031250 -0.031157
5f -0.020000 -0.016573 5g -0.020000 -0.018710
6f -0.013889 0.002628 6g -0.013889 -0.003477 6h -0.013889 -0.009268

relativistic case we expand both P (r) and Q(r) in terms of B-splines

P (r) =
n
∑

i=1

piBi(r)

Q(r) =

n
∑

i=1

qiBi(r)

leading to a 2n × 2n generalized eigenvalue problem for the vector v =
(p1, p2, · · · pn, q1, q2, · · · qn). The Dirac energy spectrum obtained by solving
the eigenvalue problem breaks up into n electron bound and continuum states
and n negative-energy states representing positrons. As noted previously, these
negative-energy states are omitted in the sums over virtual states in expres-
sions for the correlation energy. Secondly, in the relativistic case, we replace
the boundary condition P (R) = 0 by the MIT bag-model boundary conditions
P (R) = Q(R) (Chodos et al., 1974). This is done to avoid problems associated
with the “Klein paradox” (Sakuri, 1967) that arise when one attempts to confine
a particle to a cavity using an infinite potential barrier.

7.2.3 Application: Helium Correlation Energy

Let us now return to our discussion of the correlation energy of helium. We
introduce a cavity of radiusR = 40 a.u. and evaluate the B-spline basis functions
for l = 1, 10. For each value of l, we use n = 40 splines of order k = 6 and
obtain 38 basis functions. These basis functions can be used to replace the
exact spectrum to a high degree of accuracy. We evaluate the partial-wave
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Table 7.3: Contributions to the second-order correlation energy for helium.

l El l El
0 -0.013498 5 -0.000168
1 -0.018980 6 -0.000088
2 -0.003194 7 -0.000050
3 -0.000933 8 -0.000031
4 -0.000362 9 -0.000020

10-∞ -0.000053
Total -0.037376

contributions to the correlation energy,

E
(2)
l = − 1

[l]

∑

mn

[Rl(1s, 1s, nl,ml)]
2

εnl + εml − 2ε1s
, (7.59)

in Eq.(7.44) by summing over the 38×38 possible basis functions. The resulting
contributions to the correlation energy are tabulated for l = 0 to 9 in Table 7.3.
As l→∞, the partial-wave contributions are known to fall off as

E
(2)
l → − a

(l + 1/2)4
.

We use this known asymptotic behavior to estimate the remainder from l =
10 to ∞. The resulting second-order correlation energy for helium is E(2) =
−0.03738 a.u.. Adding this value to the HF energy EHF = −2.86168 a.u., we
obtain E0 + E(1) + E(2) = −2.89906 a.u.. The theoretical ionization energy,
which is obtained by subtracting the energy of the one-electron helium-like ion,
is 0.89906 a.u. compared with the experimental value Eexp = 0.90357 a.u., the
difference being less than 0.5%. Including the third-order energy -0.00368 a.u.
leads to a theoretical value of 0.90275 a.u., within 0.08% of the measured value.

7.3 Atoms with One Valence Electron

Let us now turn to the problem of determining the second-order correlation
energy for an atom with one valence electron. For simplicity, we start with a
“frozen-core” Hartree-Fock formulation. The unperturbed state of the atom is
Ψ0 = a†v|0c〉, where |0c〉 is the HF core state and the corresponding unperturbed
energy is E0 =

∑

a εa + εv.

Since V1 =
∑

ij(∆V )ij :a
†
iaj := 0 for a HF potential, it follows that the first-

order correction to the energy is E(1) = V0. Thus, E0+E
(1) = (E0+V0)core+εv.

In other words, there is no first-order correction to the valence removal energy.
This result, of course, depends on the fact that the calculation starts from a
frozen-core HF potential. In any other potential, there will be a first-order
correction to the energy.
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7.3.1 Second-Order Energy

Again, since V1 = 0, the first-order wave function will contain only double
excitations! There are two possibilities, either two core electrons are excited
or one core electron and the valence electron are excited. We correspondingly
decompose the first-order correlation operator as

χ(1) =
1

2

∑

abmn

χ
(1)
mnaba

†
ma

†
nab aa +

∑

bmn

χ
(1)
mnvba

†
ma

†
nab av. (7.60)

Substituting into Eq. (7.15) and matching terms, we find

χ
(1)
mnab = −

gmnab
εm + εn − εa − εb

(7.61)

χ
(1)
mnvb = −

gmnvb
εm + εn − εv − εb

. (7.62)

The second-order energy is obtained from

E(2) = 〈Ψ0|V2χ(1)|Ψ0〉 = 〈0c|av V2χ(1) a†v|0c〉

=
1

4

∑

ijkl

gijkl χ
(1)
mnab 〈0c|av :a†ia

†
jal ak : :a

†
ma

†
nab aa : a

†
v|0c〉

+
1

2

∑

ijkl

gijkl χ
(1)
mnvb 〈0c|av :a†ia

†
jal ak : :a

†
ma

†
nab : |0c〉. (7.63)

With the aid of Wick’s theorem, this reduces to

E(2) =
1

2

∑

mnab

g̃abmn χ
(1)
mnab −

∑

nab

g̃abvn χ
(1)
vnab +

∑

mnb

g̃vbmn χ
(1)
mnvb.

The first term in this equation is just the second-order correction to the core

energy E
(2)
core, which is the same for all valence states, and which reduces to

E(2)
core = −

1

2

∑

mnab

g̃abmn gmnab
εm + εn − εa − εb

. (7.64)

This term can be evaluated using the methods given the previous section. The

remaining two terms in second-order correlation energy E
(2)
v vary from state to

state and represent the correlation correction to the energy relative to the core
(the negative of the valence-electron removal energy). The valence correlation
energy reduces to

E(2)
v =

∑

nab

g̃abvn gvnab
εv + εn − εa − εb

−
∑

mnb

g̃vbmn gmnvb
εm + εn − εv − εb

. (7.65)

This equation is also valid relativistically, with the proviso that negative-energy
states be omitted from the sum over excited states.
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7.3.2 Angular Momentum Decomposition

To aid in the angular momentum decomposition, we start with an easily proved
graphical identity:

¾6 6− +
k

jama

jnmn

jbmb

jmmm

= ±
∑

l

[l]

{

ja jm l
jb jn k

}

¾6 6− +
l

jama

jmmm

jbmb

jnmn

,

where the + sign pertains to the nonrelativistic case where ji takes on integer
values, and the − sign pertains to the relativistic case where ji takes on half-
integer values. From this identity, it follows that the anti-symmetrized Coulomb
matrix element can be written in the nonrelativistic case as:

g̃abmn =
∑

l

¾6 6− +
l

lama

lmmm

lbmb

lnmn

[

Xl(abmn) δσmσaδσnσb

−
∑

k

[l]

{

la lm l
lb ln k

}

Xk(abnm) δσmσbδσnσa

]

. (7.66)

With the aid of this identity, the sum over magnetic quantum numbers in the
first term of Eq. (7.65) can be easily carried out giving:

∑

mambmn
σaσbσn

g̃abvngvnab =
∑

k

2

[k][v]
Zk(abvn)Xk(abvn), (7.67)

where Zk(abcd) is given by Eq.(7.35).

The second term in Eq. (7.65) can be treated similarly leading to the follow-
ing expression for the nonrelativistic second-order energy:

E(2)
v =

∑

k

2

[k][v]

∑

abn

Zk(vnab)Xk(vnab)

εv + εn − εa − εb

−
∑

k

2

[k][v]

∑

bmn

Zk(mnvb)Xk(mnvb)

εm + εn − εv − εb
. (7.68)

In Table 7.4, we list the nonrelativistic Hartree-Fock eigenvalues and the cor-
responding second-order corrections obtained from Eq. (7.68) for a few low lying
states in light mono-valent atoms. It is seen in every case that the second-order
correlation corrections substantially improve the agreement with experiment.
For light atoms, second-order MBPT under estimates the correlation correc-
tions. This trend is reversed for heavy alkali-metal atoms such as cesium, where
second-order MBPT substantially overestimates the correlation energy.
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Table 7.4: Hartree-Fock eigenvalues εv with second-order energy corrections

E
(2)
v are compared with experimental binding energies for a few low-lying states

in atoms with one valence electron.

Atom State εv E
(2)
v Sum Expt.

Li 2s -0.19630 -0.00165 -0.19795 -0.19814
2p -0.12864 -0.00138 -0.13001 -0.13024

Na 3s -0.18180 -0.00586 -0.18766 -0.18886
3p -0.10944 -0.00178 -0.11122 -0.11155
3d -0.05567 -0.00023 -0.05589 -0.05594

K 4s -0.14695 -0.01233 -0.15928 -0.15952
4p -0.09555 -0.00459 -0.10014 -0.10018
3d -0.05812 -0.00282 -0.06093 -0.06139

Cu 4s -0.23285 -0.03310 -0.26595 -0.28394
4p -0.12286 -0.01154 -0.13441 -0.14406
4d -0.05508 -0.00070 -0.05578 -0.05640

Rb 5s -0.13720 -0.01454 -0.15174 -0.15351
5p -0.09013 -0.00533 -0.09546 -0.09547
4d -0.06007 -0.00515 -0.06522 -0.06532

One Valence Electron: Relativistic Case

The relativistic expression for the second-order valence energy in a one-electron
atom in state v is

E(2)
v =

∑

k

1

[k][v]

∑

abn

Zk(vnab)Xk(vnab)

εv + εn − εa − εb

−
∑

k

1

[k][v]

∑

bmn

Zk(mnvb)Xk(mnvb)

εm + εn − εv − εb
, (7.69)

Where the functions Xk(mnvb) and Zk(mnvb) are defined in Eqs.(7.38) and
(7.42), respectively. Examples of second-order calculations are given later fol-
lowing our discussion of the Breit Interaction.

7.3.3 Quasi-Particle Equation and Brueckner-Orbitals

As mentioned earlier, there is no first-order correction to the valence-electron en-
ergy εv. There are, however, second- and higher-order corrections. The second-

order correction E
(2)
v can be written, according to Eq. (7.65), as the diagonal

matrix element of a non-local operator Σ(2)(εv), whose matrix elements are given
by

[

Σ(2)(εv)
]

ij
=
∑

nab

g̃abjn ginab
ε+ εn − εa − εb

−
∑

mnb

g̃jbmn gmnib
εm + εn − ε− εb

. (7.70)
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The operator Σ(ε) is referred to as the self-energy operator; the operator Σ(2)(ε)
is its second-order approximation. The sum of the zeroth- and second-order
energy is the diagonal matrix element of h0+VHF+Σ(2)(εv). We are, therefore,
led to consider the generalization of the valence-electron Hartree-Fock equation

[

h0 + VHF +Σ(2)(ε)
]

ψ = εψ. (7.71)

This equation is referred to as the quasi-particle equation and its solutions are
referred to as (second-order) Brueckner orbitals. The quasi-particle equation
describes how the valence orbital is modified by correlation corrections.

One can develop an approximation for Σ(2)(ε) in the coordinate represen-
tation valid for states that have small overlap with the core. The dominant
contribution to the operator for such states arises from the “direct” integral in
the second term of Eq. (7.70). The largest contributions are from states m with
energies near εv. Thus,

Σ(2)(ε, r, r′) ≈ −
∑

mnb

1

εn − εb

∫

d3r1
φ†m(r) (φ†n(r1)φb(r1))

|r − r1|
×

∫

d3r2
(φ†b(r2)φn(r2)) φm(r′)

|r′ − r2|

= −
∑

nb

1

εn − εb

∫

d3r1d
3r2

(φ†n(r1)φb(r1)) (φ
†
b(r2)φn(r2))

|r − r1||r − r2|
δ(r − r′),

where we have made use of the completeness of orbitals φm. This expression
can be expanded for large r to give

Σ(2)(ε, r, r′)→ −1

2

αc
r4

δ(r − r′), (7.72)

where

αc =
2

3

∑

bn

〈b| r |n〉 · 〈n| r |b〉
εn − εb

(7.73)

is the core polarizability. The interpretation of this equation is simple: the
valence electron induces a dipole moment in the core and interacts with this
induced moment; thus the name self-energy. As an alternative to MBPT, it is
possible to describe the effects of the self-energy approximately by adding a phe-
nomenological potential −αc/2r4 to the HF potential and solving the modified
Schrödinger equation. It is worth mentioning that the approximate interaction
given in Eq. (7.73) is singular for ns states, so it is necessary to return to the
more exact formulation for such states.

Let us now solve Eq. (7.71) perturbatively; neglecting Σ in lowest order.
We write ψ = φv + δφv and ε = εv + δεv, where φv and εv are the HF orbital
and eigenvalue for state v. We find that the perturbation δφv satisfies the
inhomogeneous equation

(h0 + VHF − εv) δφv =
(

δεv − Σ(2)(εv)
)

φv. (7.74)



198 CHAPTER 7. INTRODUCTION TO MBPT

10
−2

10
−1

10
0

10
1

r (a.u.)

−0.1

0

0.1

0.2

0.3

0.4

ra
di

al
 d

en
si

ty ρv

10xδρv

Figure 7.3: The radial charge density ρv for the 3s state in sodium is shown
together with 10×δρv, where δρv is the second-order Brueckner correction to
ρv.

Since εv is an eigenvalue of the homogeneous equation, the inhomogeneous equa-
tion has a solution if, and only if, the right-hand side is orthogonal φv. The
solvability condition can be written

δεv =
〈

φv

∣

∣

∣Σ(2)(εv)
∣

∣

∣φv

〉

=
[

Σ(2)(εv)
]

vv
,

which is just the condition that δεv be the second-order correlation energy. The
solution to (7.74) is then given by

δφv(r) = −
∑

i6=v
δlilv

[

Σ(2)(εv)
]

iv

εi − εv
φi(r).

If we let Pv(r) and δPv(r) be radial functions associated with φv and δφv, respec-
tively, then the radial probability density is ρv(r) = P 2

v (r) and the perturbed
radial probability density is δρv(r) = 2Pv(r) δPv(r). We illustrate these radial
densities for the 3s state of sodium in Fig. 7.3. One sees from this figure that
the Brueckner correction draws the valence wave function in toward the atomic
core, in harmony with the attractive nature of Σ(2).

7.3.4 Monovalent Negative Ions

One interesting application of the quasi-particle equation is the study of negative
ions. Consider, for example, a neutral closed-shell atom. The HF potential for
such an atom has no bound states other than the occupied core states. Excited
states see the neutral potential of the completely shielded nucleus. It is known
experimentally, however, that various neutral closed-shell atoms support bound
states; the electron binds to the closed core to form a one-electron negative ion.
The binding force is provided by the polarization potential of the core −αc/2r4.

There is an obvious difficulty in describing such an atom within the frame-
work of MBPT; the bound state does not exist in the HF approximation. In-
deed, the force responsible for binding shows up first in second-order MBPT.
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Table 7.5: Expansion coefficients cn, n = 1 · ·20 of the 5s state of Pd− in a basis
of HF orbitals for neutral Pd confined to a cavity of radius R = 50 a.u..

n cn n cn n cn n cn
1 0.000001 6 0.556972 11 -0.163415 16 -0.009651
2 0.000028 7 0.461970 12 -0.132544 17 -0.002016
3 -0.000294 8 0.344215 13 -0.031214 18 0.000242
4 -0.003225 9 -0.254265 14 -0.074083 19 -0.000009
5 0.458841 10 -0.175688 15 -0.031380 20 -0.000000

One approach that can be used in this case is to solve the quasi-particle equation
exactly, without recourse to perturbation theory. To this end, we expand the
Brueckner orbital ψ as a linear combination of HF basis orbitals φk,

ψ(r) =
∑

k

ckφk(r).

Substituting into Eq. (7.71), we find that the expansion coefficients satisfy the
eigenvalue equation

ε ci =
∑

j

[

εiδij +
[

Σ(2)(ε)
]

ij

]

cj . (7.75)

For neutral atoms, this equation has solutions that corresponds HF core orbitals
modified by the self-energy operator. Other solutions with ε < 0 also exist in
some cases; the new bound-state solutions being associated with the negative
ion. To obtain the solution corresponding to a loosely-bound electron, it is
usually sufficient to set ε = 0 in the expression for Σ(2)(ε).

As a specific example, we consider the case of palladium (Pd), Z=46. This
atom has closed n = 1, 2, and 3 shells and closed 4s, 4p, and 4d subshells. The
Pd negative ion is found experimentally (Scheer et al., 1998) to have a 5s bound
state with binding energy, (or affinity) 562.13 meV. The expansion coefficients
ci in Eq. (7.75) for the 5s eigenstate are given in Table 7.5. The 5s eigen energy
is found to be ε5s = −0.01957 a.u., corresponding to an electron affinity of 532.5
meV. The radial density of neutral Pd is shown in the lower panel of Fig. 7.4
and the 5s Brueckner orbital of Pd− is shown in the upper panel.

7.4 Relativistic Calculations

Relativistic MBPT calculations closely follow the nonrelativistic pattern de-
scribed in the paragraphs above with several modifications and caveats. Among
the modifications is the replacement of two-component nonrelativistic orbitals
φn(r) that are products of radial functions Pnl(r), spherical harmonics Ylm(θ, φ)
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Figure 7.4: Lower panel: radial density of neutral Pd (Z=46). The peaks
corresponding to closed n = 1, 2, · · · shells are labeled. Upper panel: radial
density of the 5s ground-state orbital of Pd−. The 5s orbital is obtained by
solving the quasi-particle equation.
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and two-component spinors χσ by four-component relativistic orbitals that are
products of radial functions (Pnl(r), Qnl(r)) and spherical spinors Ωκm(θ, φ).
In both nonrelativistic and relativistic cases, the many-body theory takes a par-
ticularly simple form when the starting potential U(r) is the frozen-core HF
potential VHF.

In the relativistic case, the Coulomb interaction between electrons is re-
placed by the sum of the Coulomb and Breit interactions. This later results
from transverse photon exchange between electrons. The Breit interaction is
relatively smaller (by order α2Z2) than the Coulomb interaction, so it follows
that higher-order MBPT expressions can, to good accuracy, be linearized in the
Breit interaction. Thus, for example, the Breit correction to the expressions for
the third-order energy consist of products of two Coulomb matrix elements and
one Breit matrix element.

An important caveat in relativistic calculations of energy levels is that con-
tributions from negative-energy states in the spectrum of the Dirac equation
(εi ≤ −mc2) must be omitted from MBPT sums (Brown and Ravenhall, 1951).

Relativistic theory has the distinct advantage that it automatically accounts
for the energy separation of nl levels into fine-structure sublevels nlj with j =
l±1/2. For light atoms this separation is often unimportant and nonrelativistic
theory suffices. However, for heavy atoms or highly-charged few-electron ions,
where the fine-structure separation is large, a relativistic treatment is essential.

7.4.1 Breit Interaction

The Breit interaction is the contribution to the electron-electron interaction
mediated by exchange of transverse photons. The lowest-order energy shift
associated with the exchange of a transverse photon between two electrons in
states a and b is (Bethe and Salpeter, 1957, p. 170)

B(1) = − 1

2π2

∫

d3r1

∫

d3r2
∑

ij

∫

d3k eik·(r1−r2)
(

δij − kikj/|k|2
)

×
[

1

k2
φ†a(r1)αiφa(r1)φ

†
b(r2)αjφb(r2)

− 1

k2 − k20
φ†a(r1)αiφb(r1)φ

†
b(r2)αjφa(r2)

]

, (7.76)

where k0 = |εa − εb|/c. The integral over d3k above can be carried out leading
to B(1) = babab − babba, the difference between direct babab and exchange babba
two-particle matrix elements of the “frequency-dependent” Breit operator

b12(k0) = −
α1 ·α2

r12
cos (k0 r12) +α1 ·∇1 α2 ·∇2

[

cos (k0 r12)− 1

k20 r12

]

. (7.77)
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In the direct matrix element babab, where k0 = 0, the frequency-dependent Breit
interaction reduces to its limiting static form:

b12 = − α1 ·α2

r12
+
α1 ·α2 − (α1 · r̂12) (α2 · r̂12)

2r12

= −α1 ·α2 + (α1 · r̂12) (α2 · r̂12)
2r12

(7.78)

The first term on the right-hand side on the first line of Eq. (7.78) is referred
to as the Gaunt interaction after Gaunt (1929) who introduced this term to ac-
count for the fine-structure in He. The second term on the right-hand side on the
first line of Eq. (7.78) (which can be derived, alternatively, in a QED Feynman
gauge calculation as the retardation correction to the charge-charge interaction)
is referred to as the “retardation” correction. The retardation correction was in-
troduced by Breit (1929, 1930, 1932) who used the entire expression in Eq.(7.78)
to study helium fine structure. Below, we separate the two-particle Breit matrix
elements bijkl into a part mijkl from the Gaunt interaction and a part rijkl from
retardation. Such a separation is particularly convenient when we consider the
angular momentum decomposition of the two-particle Breit matrix element.

To summarize, direct matrix elements of the frequency-dependent Breit in-
teraction babab are evaluated using the static limit, whereas exchange matrix
elements babba are evaluated using Eq. (7.77) with k0 = |εa − εb|/c. It was
shown by Mittleman (1981) that the form of the “frequency-dependent” Breit
operator appropriate for evaluating off-diagonal matrix elements babcd is

b12(k0)→
1

2
b12(|εa − εc|/c) +

1

2
b12(|εb − εd|/c) . (7.79)

Differences between the frequency-dependent Breit interaction and its static
limit given in Eq. (7.78) are of relative order α2Z2 and therefore important
primarily for highly-charged ions. In the following sections, we use the static
version unless otherwise noted.

7.4.2 Angular Reduction of the Breit Interaction

As an aid to the angular decomposition of the two-particle matrix element bijkl
we separate it into two parts bijkl = mijkl + rijkl, where mijkl is the part
associated with the Gaunt interaction in Eq.(7.78)

mijkl = −
∫ ∫

d3r1d
3r2

|r1 − r2|
φ†i (r1)αφk(r1) · φ†j(r2)αφl(r2), (7.80)

and rijkl is the associated with the retardation correction.

rijkl =
1

2

∫ ∫

d3r1d
3r2

|r1 − r2|
φ†i (r1)α · r̂12φk(r1) φ†j(r2)α · r̂12φl(r2), (7.81)

The method used in the decomposition of mijkl is to expand φ†i (r)αφk(r)

and φ†j(r)αφl(r) into vector spherical harmonics and then make use of the
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orthonormality properties of the vector spherical harmonics to carry out the
angular integrations. Details of the reduction can be found in Johnson et al.
(1988b) and Mann and Johnson (1971). One obtains

mijkl =
∑

L

J(ijkl) [ML(ijkl) +NL(ijkl)] , (7.82)

where

JL(ijkl) = -6 6− +
L

jimi

jkmk

jjmj

jlml

The radial matrix elements ML(ijkl) and NL(ijkl) are

ML(ijkl) = (−1)L〈κi‖CL‖κk〉〈κj‖CL‖κl〉
[

L+ 1

2L+ 3

∫ ∞

0

dr1

∫ ∞

0

dr2
rL+1
<

rL+2
>

Qik(r1)Qjl(r2)

+
L

2L− 1

∫ ∞

0

dr1

∫ ∞

0

dr2
rL−1<

rL>
Pik(r1)Pjl(r2)

]

(7.83)

and

NL(ijkl) = (−1)L+1〈−κi‖CL‖κk〉〈−κj‖CL‖κl〉
(κi + κk)(κj + κl)

L(L+ 1)

∫ ∞

0

dr1

∫ ∞

0

dr2
rL<
rL+1
>

Vik(r1)Vjl(r2), (7.84)

where

Pik(r) = Uik(r) +
κk − κi
L

Vik(r), (7.85)

Qik(r) = −Uik(r) +
κk − κi
L+ 1

Vik(r), (7.86)

Uik(r) = Pi(r)Qk(r)−Qi(r)Pk(r), (7.87)

Vik(r) = Pi(r)Qk(r) +Qi(r)Pk(r). (7.88)

The values of the reduced matrix elements 〈κi‖CL‖κj〉 and 〈−κi‖CL‖κj〉 in
Eqs. (7.83-7.84) depend only on the |κi| , not on the sign. However, the selection
rules do depend on the sign. Thus, for example, if κi = κj = −1, (both s1/2
states) then 〈κi‖CL‖κj〉 is nonzero only for L = 0 whereas 〈−κi‖CL‖κj〉 is
nonzero only for L = 1.

The matrix element of the retardation part of the Breit interaction takes a
similar form, the details being given in Mann and Johnson (1971). One obtains

rijkl =
∑

L

JL(ijkl)OL(ijkl), (7.89)
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with

OL(ijkl) = (−1)L+1〈κi‖CL‖κk〉〈κj‖CL‖κl〉
[

(L+ 1)2

(2L+ 1)(2L+ 3)

∫ ∞

0

dr1

∫ ∞

0

dr2
rL+1
<

rL+2
>

Qik(r1)Qjl(r2)

+
L2

(2L+ 1)(2L− 1)

∫ ∞

0

dr1

∫ ∞

0

dr2
rL−1<

rL>
Pik(r1)Pjl(r2)

+
L(L+ 1)

2(2L+ 1)

∫ ∞

0

dr1

∫ r1

0

dr2

(

rL−1<

rL>
− rL+1

<

rL+2
>

)

Qik(r1)Pjl(r2)

+
L(L+ 1)

2(2L+ 1)

∫ ∞

0

dr1

∫ ∞

r1

dr2

(

rL−1<

rL>
− rL+1

<

rL+2
>

)

Pik(r1)Qjl(r2)

]

. (7.90)

Putting this all together, we may write

bijkl =
∑

L

-6 6− +
L

jimi

jkmk

jjmj

jlml

BL(ijkl), (7.91)

with
BL(ijkl) =ML(ijkl) +NL(ijkl) +OL(ijkl). (7.92)

Matrix elements of the frequency-dependent Breit interaction b12(k0) are
somewhat more complicated; they can be evaluated using the formulas given
above with the following substitutions:

(a) In Eqs. (7.83), (7.84) and in the first two lines of Eq. (7.90) replace ex-
pressions of the form

rK<
rK+1
>

→ −k0 (2K + 1) jK(k0r<) yK(k0r>),

where jK(x) and yK(x) are spherical Bessel and Hankel functions, respec-
tively, and

(b) replace the last two lines of Eq. (7.90) by

L(L+ 1)

(2L+ 1)

∫ ∞

0

dr1

∫ r1

0

dr2

{

− 2

[

k0jL−1(k0 r2) yL+1(k0 r1) +
2L+ 1

k20

rL−12

rL+2
1

]

×Qik(r1)Pjl(r2)− 2 k0jL+1(k0 r2) yL−1(k0 r1)Pik(r1)Qjl(r2)

}

.

In the following sections, we need sums of the form

∑

ma

biaja =

√

[ja]

[ji]
δjijjδmimj

B0(iaja)
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over magnetic substates ma of the state a. Since Paa = Qaa = 0, it follows from
Eqs.(7.83) and (7.90) that M0(iaja) = 0 and O0(iaja) = 0. Moreover, since
〈−κa‖C0‖κa〉 = 0, it follows that N0(iaja) = 0 also. Therefore,

∑

ma
biaja = 0.

7.4.3 Coulomb-Breit Many-Electron Hamiltonian

Replacing the electron-electron Coulomb interaction by the sum of the Coulomb
and Breit interaction,

1

r12
→ 1

r12
+ b12

leads to a modified many-electron interaction potential

VI =
∑

ijkl

[gijkl + bijkl] a
†
ia
†
jalak. (7.93)

Arranging VI in normal order with respect to the closed core leads to

VI = V2 + V1 + V0

V2 =
1

2

∑

ijkl

[gijkl + bijkl] :a
†
ia
†
jalak : (7.94)

V1 =
∑

ij

(VHF +BHF − U)ij :a
†
iab : (7.95)

V0 =
1

2

∑

a

(VHF +BHF)aa, (7.96)

where

(BHF)ij =
∑

b

[bibjb − bibbj ] .

The first term on the right hand side of the above equation vanishes, as shown
in the previous section.

7.4.4 Closed-Shell Energies

If we choose U = VHF then we find for a closed-shell atom,

E = E0 + E(1) +B(1) + E(2) +B(2) + E(3) + · · ·

with E0 =
∑

a εa and 〈0c|VI |0c〉 = V0 = E(1) + B(1) = 1
2

∑

a(VHF + BHF)aa.

Therefore, E0 + V0 = EHF +B(1) with

B(1) =
1

2

∑

a

(BHF)aa. (7.97)
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The expression for the second-order energy can be inferred from Eq.(7.27):

E(2) +B(2) = −
∑

na

(BHF)an(BHF)na
εn − εa

− 1

2

∑

mnab

(g̃abmn + b̃abmn)(gmnab + bmnab)

εm + εn − εa − εb
.

Linearizing this expression in powers of bijkl, we may write this in the form

E(2) = −1

2

∑

mnab

g̃abmngmnab
εm + εn − εa − εb

(7.98)

B(2) = −
∑

mnab

g̃abmnbmnab
εm + εn − εa − εb

. (7.99)

Continuing in this way, we can write the perturbation expansion for the energy
as a sum of Coulomb energies E(n) and linearized Breit energies B(n).

The relativistic expression for E(2) after angular reduction is given in
Eq.(7.41); the corresponding expression for B(2) is

B
(2)
2 = −

∑

k

1

[k]

∑

abmn

Zk(mnab)Bk(mnab)

εm + εn − εb − εa
, (7.100)

where Zk(mnab) and Bk(mnab) are defined in Eqs.(7.42) and Eq.(7.91), respec-
tively.

In Table 7.6 and Fig. 7.5, we list values of the above contributions to the
ground-state energies of heliumlike ions with nuclear charges Z ranging from 2
to 90. Notice that E(2) is roughly constant and that E(3) falls off approximately
as 1/Z. By contrast, B(1) and B(2) grow as Z3 and Z2, respectively. From the
table, it is obvious that contributions from B(1) and B(2) are almost negligible
for neutral He. However, for Z > 5, B(1) is larger than |E(3)| and for Z > 17,
B(1) is larger than |E(2)|. Indeed, beyond Z = 70, we even find |B(2)| > |E(2)|.
Thus, while the Breit interaction is a relatively small perturbation for low Z
atoms and ions, it is the dominant correction to the HF energy at high Z.

7.4.5 One Valence Electron

As in the nonrelativistic case the energy of an atom with one valence electron
separates into a core contribution that is independent of the valence state and
a valence contribution Ev, The valence energy may be written,

Ev = εv + E(1)
v +B(1)

v + E(2)
v +B(2)

v + E(3)
v + · · ·

Expressions for the Coulomb contributions E
(n)
v , before angular momentum

reduction are formally identical to the nonrelativistic expression given earlier.
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Table 7.6: Contributions to the ground-state energy for He-like ions.

Z EHF B(1) E(2) B(2) E(3)

2 -2.861813 0.000064 -0.037372 -0.000039 -0.003676
3 -7.237205 0.000258 -0.040205 -0.000105 -0.002828
4 -13.614001 0.000666 -0.041709 -0.000203 -0.002285
5 -21.993148 0.001369 -0.042638 -0.000332 -0.001915
6 -32.375986 0.002447 -0.043265 -0.000491 -0.001648
7 -44.764194 0.003979 -0.043716 -0.000680 -0.001447
8 -59.159780 0.006047 -0.044053 -0.000899 -0.001290
9 -75.565080 0.008730 -0.044314 -0.001145 -0.001164

10 -93.982757 0.012110 -0.044452 -0.001419 -0.001061
20 -389.665729 0.102175 -0.045331 -0.005518 -0.000574
30 -892.068062 0.353243 -0.045667 -0.011670 -0.000407
40 -1609.867974 0.853878 -0.046086 -0.019439 -0.000324
50 -2556.310771 1.701941 -0.046808 -0.028586 -0.000277
60 -3750.522563 3.009818 -0.048005 -0.039046 -0.000248
70 -5219.635258 4.912097 -0.049878 -0.050925 -0.000231
80 -7002.866062 7.579638 -0.052738 -0.064570 -0.000223
90 -9155.494233 11.232438 -0.057080 -0.080621 -0.000223
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Figure 7.5: MBPT contributions for He-lile ions.
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Table 7.7: MBPT Coulomb (E(n)), Breit (B(n)) and reduced mass – mass polar-
ization (RM/MP) contributions to the energies of 2s and 2p states of lithiumlike
Ne (Johnson et al., 1988b).

Term 2s1/2 2p1/2 2p3/2
EHF -8.78258 -8.19384 -8.18557
B(1) 0.00090 0.00160 0.00074
E(2) -0.00542 -0.01012 -0.01003
B(2) -0.00011 -0.00014 -0.00012
E(3) -0.00013 -0.00028 -0.00028

RM/MP 0.00024 0.00010 0.00010
Total -8.78709 -8.20267 -8.19516
NIST -8.78672 -8.20282 -8.19530
∆ 0.00037 -0.00015 -0.00014

One easily establishes the following formulas for the low order linearized Breit
corrections:

B(1) = (BHF)vv (7.101)

B(2) = 2
∑

nab

g̃abvn bvnab
εv + εn − εa − εb

− 2
∑

mnb

g̃vbmn bmnvb
εm + εn − εv − εb

−
∑

am

(BHF)amg̃vmva
εm − εa

−
∑

am

g̃vavm(BHF)ma
εm − εa

(7.102)

The second-order Breit energy after angular reduction is given by

B(2)
v =

∑

k

2

[k][v]

∑

abn

Zk(vnab)Bk(vnab)

εv + εn − εa − εb
−
∑

k

2

[k][v]

∑

bmn

Zk(mnvb)Bk(mnvb)

εm + εn − εv − εb

+
∑

am

δκaκm
(BHF)amZ0(vmva)

εm − εa
+
∑

am

δκaκm
Z0(vavm)(BHF)ma

εm − εa
. (7.103)

In Table 7.7, we list the contributions to the energies of 2s1/2, 2p1/2, and
2p3/2 levels of lithiumlike Ne VIII from Coulomb and Breit terms from John-
son et al. (1988b). The table also include reduced mass and mass polarization
corrections. The Breit interaction, which is relatively small for this low-Z ion,
influences the third digit of the energy. Since the resulting theoretical energies
differ from measured energies in the fifth digit, it necessary to include contribu-
tions from the Breit interaction to understand energies to this level of precision.
It should be mentioned that the residual differences between measurement and
theory in this case arise primarily from the Lamb shift.
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7.5 CI Calculations

An alternative to MBPT that has some advantages for simple atomic systems is
the configuration-interaction (CI) method, which we here describe for the case
of helium.

As a first step, we introduce the configuration state function

Φkl(LS) = ηkl
∑

mkml
µkµl

?

?
− LML

lkmk

llml

?

?
− SMS

1/2µk

1/2µl

a†ka
†
l |0〉, (7.104)

where ηkl is a symmetry factor defined by

ηkl =

{

1/
√
2, for k = l,

1, for k 6= l.

For the identical particle case k = l, the sum L+S must be even. This function
is an LS eigenstate of H0 with energy E0 = εk + εl. An LS eigenstate of the
exact Hamiltonian H0 + V (the CI wave function) may be expressed as a linear
combination of such configuration-state functions

Ψ(LS) =
∑

k≤l
Ckl Φkl(LS), (7.105)

where the expansion coefficients Ckl are to be determined. The normalization
condition

〈Ψ(LS)|Ψ(LS)〉 = 1

reduces to
∑

k≤l
C2
kl = 1.

We designate the interaction matrix 〈Φvw(LS)|V |Φxy(LS)〉 by Vvw,xy and find

Vvw,xy = ηvwηxy
∑

k

[

(−1)L+k+lw+lx
{

lv lw L
ly lx k

}

Xk(vwxy)

+(−1)S+k+lw+lx
{

lv lw L
lx ly k

}

Xk(vwyx)

]

. (7.106)

The expectation value of the Hamiltonian obtained using the CI wave function
becomes a quadratic function of the expansion coefficients

〈Ψ(LS)|H|Ψ(LS)〉 =
∑

v≤w, x≤y

[

(εv + εw) δxvδyw + Vvw,xy

]

CxyCvw.

To obtain the expansion coefficients, we minimize the expectation of the Hamil-
tonian subject to the normalization condition. This leads to the eigenvalue
equation

∑

x≤y

[

(εv + εw) δxvδyw + Vvw,xy

]

Cxy = E Cvw. (7.107)
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Table 7.8: Contribution δEl of (nlml) configurations to the CI energy of the
helium ground state. The dominant contributions are from the l = 0 nsms
configurations. Contributions of configurations with l ≥ 7 are estimated by
extrapolation.

l mlnl δEl El
0 msns -2.8790278 -2.8790278
1 mpnp -0.0214861 -2.9005139
2 mdnd -0.0022505 -2.9027644
3 mfnf -0.0005538 -2.9033182
4 mgng -0.0001879 -2.9035061
5 mhnh -0.0000811 -2.9035872
6 mjnj -0.0000403 -2.9036275

7 · · · ∞ -0.0000692 -2.9036967
Expt. -2.9036778

Let us consider as a specific example the 1S0 ground state of helium. Angular
momentum selection rules limit the possible configurations (vw) to those with
lv = lw. Thus, we have contributions from states of the form (msns), (mpnp),
(mdnd), · · · . In a basis with N basis functions, there are N(N + 1)/2 pairs
(mlnl) with m ≤ n. If we include, for example, 20 basis orbitals of type nl in
our expansion, then we would have 210 expansion coefficients for each l.

In table Table 7.8, we show the results of a sequence of CI calculations of
the helium ground-state energy including configurations with successively larger
values of the orbital angular momentum. The major contributions are from
(msns) configurations, and contributions from higher-partial waves are seen to
converge rapidly. The final extrapolated value of the CI energy differs from
the experimental energy by 1 part in 106; the difference being due to omitted
reduced-mass, relativistic and quantum-electrodynamic corrections.

7.5.1 Relativistic CI Calculations

To extend the CI calculations of two-electron ions to the relativistic case, we
introduce the configuration state function

Φkl(JM) = ηkl
∑

mkml

?

?
− JM

jkmk

jlml

a†ka
†
l |0〉, (7.108)

where, as in the nonrelativistic case, ηkl is a symmetry factor defined by

ηkl =

{

1/
√
2, for k = l,

1, for k 6= l.
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For the identical particle case, k = l, the the total angular momentum J must
be even. The parity of Φkl(JM) is P = (−1)lk+ll . In the relativistic case, k
and l are restricted to electron states only; k and l must not be negative-energy
states.

The configuration state function is an eigenstate of H0 with energy E0 =
εk + εl. The relativistic CI wave function is expressed as a linear combination
(of specific parity P ) of configuration-state functions

Ψ(JM) =
∑

k≤l
Ckl Φkl(JM). (7.109)

As in the nonrelativistic case, we designate the interaction matrix
〈Φvw(JM)|V |Φxy(JM)〉 by Vvw,xy and find

Vvw,xy = ηvwηxy
∑

k

[

(−1)J+k+jw+jx
{

jv jw J
jy jx k

}

Tk(vwxy)

+(−1)k+jw+jx
{

jv jw J
jx jy k

}

Tk(vwyx)

]

. (7.110)

In the relativistic case, Tk(vwxy) = Xk(vwxy) + Bk(vwxy) is the sum of
Coulomb (7.38) and Breit (7.92) interaction matrix elements.

The expectation value of the Hamiltonian obtained using the CI wave func-
tion is a quadratic function of the expansion coefficients

〈Ψ(LS)|H|Ψ(LS)〉 =
∑

v≤w, x≤y

[

(εv + εw) δxvδyw + Vvw,xy

]

CxyCvw.

Minimizing the expectation of the Hamiltonian subject to the normalization
condition leads to the eigenvalue equation

∑

x≤y

[

(εv + εw) δxvδyw + Vvw,xy

]

Cxy = E Cvw. (7.111)

In Table 7.9, we list energies of low-lying S, P, and D states of heliumlike iron
obtained from a relativistic CI calculation. The Breit interaction is included
in these calculations but SMS and QED corrections are omitted. The omitted
QED corrections are primarily responsible for the differences between theory
and observation seen in the table.
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Table 7.9: Energies (a.u.) of S, P, and D states of heliumlike iron (FeXXV)
obtained from a relativistic CI calculation compared with observed values (Obs.)
from the NIST website.

Singlet States
State CI Obs. State CI Obs. State CI Obs.
11S0 -324.566 -324.425
21S0 -79.403 -79.379 21P1 -78.195 -78.189
31S0 -35.159 -35.148 31P1 -34.802 -34.798 31D2 -34.753 -34.749
41S0 -19.727 -19.720 41P1 -19.577 -19.571 41D2 -19.555 -19.551
51S0 -12.604 -12.598 51P1 -12.527 -12.522 51D2 -12.515
61S0 -8.740 61P1 -8.696 61D2 -8.690

Triplet States
State CI Obs. State CI Obs. State CI Obs.
23S1 -80.558 -80.534
33S1 -35.464 -35.454
43S1 -19.850 -19.848
53S1 -12.666 -12.663
63S1 -8.776

23P0 -79.474 -79.470 23P1 -79.400 -79.396 23P2 -78.859 -78.854
33P0 -35.165 -35.161 33P1 -35.144 -35.140 33P2 -34.982 -34.978
43P0 -19.727 -19.725 43P1 -19.718 -19.716 43P2 -19.650 -19.647
53P0 -12.603 -12.602 53P1 -12.599 -12.596 53P2 -12.564 -12.560
63P0 -8.740 63P1 -8.738 63P2 -8.718

33D1 -34.822 -34.821 33D2 -34.825 -34.818 33D3 -34.764 -34.759
43D1 -19.584 -19.581 43D2 -19.585 -19.580 43D3 -19.560 -19.555
53D1 -12.531 53D2 -12.531 53D3 -12.518
63D1 -8.699 63D2 -8.699 63D3 -8.692



Chapter 8

MBPT for Matrix Elements

In Chapters 5 and 6, we carried out calculations of hyperfine constants, spe-
cific mass shift corrections, and transition matrix elements in the independent-
particle approximation. We found that lowest-order calculations of such matrix
elements were often in serious disagreement with experiment, especially for hy-
perfine constants and the specific mass shift. To understand and account for
the disagreements, we consider second- and third-order correlation corrections
to matrix elements in the present chapter.

8.1 Second-Order Corrections

Consider a general one-particle irreducible tensor operator

T =
∑

ij

tija
†
iaj =

∑

ij

tij :a
†
iaj : +

∑

a

taa (8.1)

If T is an operator of rank k > 0, then the second term on the right above
vanishes and the operator is normally ordered. For the special case of a scalar
operator (k = 0), we must add the c-number T0 =

∑

a taa to the normally
ordered operator.

Let us digress for a bit to discuss transition operators in greater detail. The
electric dipole transition rate in an atom is determined by either the rank 1
“length-form” operator

Rλ =
∑

ij

〈i|rλ|j〉 :a†iaj :

or by the equivalent “velocity-form” operator

Vλ =
∑

ij

〈i|vλ|j〉 :a†iaj : .

Matrix elements of these two operators are related by

〈F |Vλ|I〉 = iω〈F |Rλ|I〉 (8.2)

213
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Table 8.1: First-order reduced matrix elements of the electric dipole operator
in lithium and sodium in length L and velocity V forms.

Element Transition L(1) V (1)/ω
Li 2p1/2 → 2s1/2 3.3644 3.4301

2p3/2 → 2s1/2 4.7580 4.8510

Na 3p1/2 → 3s1/2 3.6906 3.6516
3p3/2 → 3s1/2 5.2188 5.1632

where ω = EF −EI . In lowest-order calculations starting from a local potential,
Eq.(8.2) is satisfied identically. However, for lowest-order calculations starting
from the frozen-core HF potential, length-form and velocity-form matrix ele-
ments can differ substantially. This is an unfortunate circumstance, since, as
pointed out in Chap. 6 length and velocity matrix elements are related by a
gauge transformation; consequently, lowest-order calculations starting from a
HF potential are gauge dependent! As correlation corrections to the matrix
elements are included order by order, the difference between length-form and
velocity-form matrix elements decreases. In exact calculations as well as certain
approximate calculations, the difference vanishes completely. Keep in mind:
gauge-independence is a necessary, but not sufficient, condition for accurate
transition matrix elements, We will return to this point later when we consider
the random-phase approximation (RPA).

The perturbation expansion for wave functions, leads automatically to a
perturbation expansion for matrix elements. Thus, the matrix element of a
operator T between states v and w in a one-electron atom may be expanded

Twv = T (1)
wv + T (2)

wv + T (3)
wv + · · · ,

where

T (1)
wv =

〈

ψ(0)
w |T |ψ(0)

v

〉

T (2)
wv =

〈

ψ(0)
w |T |ψ(1)

v

〉

+
〈

ψ(1)
w |T |ψ(0)

v

〉

T (3)
wv =

〈

ψ(0)
w |T |ψ(2)

v

〉

+
〈

ψ(1)
w |T |ψ(1)

v

〉

+
〈

ψ(2)
w |T |ψ(0)

v

〉

.

First Order In first order, we find

T (1)
wv = 〈Ψ(0)

w |T |Ψ(0)
w 〉 = 〈0c|awTa†v|0c〉 = 〈w|t|v〉. (8.3)

First-order reduced matrix elements of the electric-dipole transition operator in
length L and velocity V forms are listed in Table 8.1 for 2p− 2s transitions in
Li and 3p− 3s transitions in Na. The L− V differences in lowest order are, as
discussed above, a consequence of the HF starting potential.
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Second Order To bring the second-order matrix element T
(2)
wv into tractable

form, we express the first-order wave function Ψ
(1)
v in terms of the first-order

correlation operator χ
(1)
v and find

T (2)
wv = 〈0c| awT χ(1)v a†v|0c〉+ 〈0c| awχ†wT a†v|0c〉. (8.4)

We note that only the second term in χ(1) in Eq.(7.62) leads to nonvanishing
contributions to T (2). With the aid of Wick’s theorem, we find

T (2)
wv =

∑

am

tamg̃wmva
εa − εm − ω

+
∑

am

g̃wavmtma
εa − εm + ω

(8.5)

where ω = εw − εv. The sum over i in (8.5) runs over core and virtual states.
In cases where the background potential is different from th HF potential, addi-
tional terms proportional to (VHF−U) appear in the expression for the second-
order matrix element.

8.1.1 Angular Reduction

Let’s consider an irreducible tensor operator of rank k and examine the first-
order matrix element from Eq.(8.3)

(

T kq
)(1)

= 〈wmw|tkq |vmv〉(1) =
6

− kq

wmw

vmv

× 〈w‖tk‖v〉 .

The second-order matrix element from Eq.(8.5) may be written in the precisely
the same form:

(

T kq
)(2)

=

6

− kq

wmw

vmv

× 〈w‖t(J)‖v〉(2) .

with

〈w‖tk‖v〉(2) =
∑

bn

(−1)b−n+k
[k]

〈b‖tk‖n〉Zk(wnvb)
εb − εn − ω

+
∑

bn

(−1)b−n+k
[k]

Zk(wbvn)〈n‖tk‖b〉
εb − εn + ω

. (8.6)

In the above equation, which is appropriate for relativistic calculations, the
function Zk(abcd) is the anti-symmetrized Coulomb radial matrix element given
in Eq.(7.42).

In Table 8.2, we give second-order reduced matrix elements of the dipole
transition matrix in length and velocity forms determined from Eq.(8.6) for
the transitions listed in Table 8.1. It can be seen by comparing the results
in Table 8.2 with those in Table 8.1 that the length-velocity differences are
substantially reduced when second-order corrections are included.
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Table 8.2: Second-order reduced matrix elements and sums of first- and second-
order reduced matrix elements for E1 transitions in lithium and sodium in length
and velocity forms. RPA values given in the last column are identical in length
and velocity form.

Element Transition L(2) V (2)/ω L(1+2) V (1+2)/ω LRPA ≡ V RPA

Li 2p1/2 → 2s1/2 -0.0116 -0.0588 3.3528 3.3714 3.3505
2p3/2 → 2s1/2 -0.0164 -0.0831 4.7416 4.7679 4.7383

Na 3p1/2 → 3s1/2 -0.0385 -0.0024 3.6521 3.6492 3.6474
3p3/2 → 3s1/2 -0.0544 -0.0029 5.1645 5.1603 5.1578

8.2 Random-Phase Approximation

We have established that the electric dipole matrix element to second order is
given by the expression

t(1+2)
wv = twv +

∑

ma

tamg̃wmva
εa − εm − ω

+
∑

ma

g̃wavmtma
εa − εm + ω

, (8.7)

assuming that we start our calculation in a HF potential. The matrix elements
tam and tma appearing in the numerators of the sums describe transitions be-
tween a closed-shell atom and a particle-hole excited state. Using the same
analysis that led to Eq.(8.7) the first + second order particle-hole matrix ele-
ments are found to be

t(1+2)
am = tam +

∑

bn

tbng̃anmb
εb − εn − ω

+
∑

bn

g̃abmntnb
εb − εn + ω

,

t(1+2)
ma = tma +

∑

bn

tbng̃mnab
εb − εn − ω

+
∑

bn

g̃mbantnb
εb − εn + ω

.

Replacing the lowest-order matrix elements tbn and tnb in the sums on the

right hand sides of the above by the corrected values t
(1+2)
bn and t

(1+2)
nb , then

relabeling the corrected matrix elements, we obtain the well-known equations
of the random-phase approximation (RPA)

tRPAam = tam +
∑

bn

tRPAbn g̃anmb
εb − εn − ω

+
∑

bn

g̃abmnt
RPA
nb

εb − εn + ω
, (8.8)

tRPAma = tma +
∑

bn

tRPAbn g̃mnab
εb − εn − ω

+
∑

bn

g̃mbant
RPA
nb

εb − εn + ω
. (8.9)

Iterating these equations leads to the the first- and second-order matrix elements
together with a subset of third-, fourth-, and higher-order corrections. The RPA
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was originally introduced to treat Coulomb interactions in a degenerate electron
gas by Bohm and Pines (1953) and has subsequently become an important
mathematical tool in almost every branch of physics. Substituting the RPA
matrix elements tRPAma and tRPAam into the sums on the right hand side of Eq.(8.7)
leads to the random-phase approximation to the matrix element tvw.

tRPAwv = twv +
∑

ma

tRPAam g̃wmva
εa − εm − ω

+
∑

ma

g̃wavmt
RPA
ma

εa − εm + ω
. (8.10)

The RPA matrix element tRPAwv is evaluated by solving Eqs.(8.8-8.9) then sub-
stituting into Eq. (8.10). The resulting dipole matrix element is gauge inde-
pendent. As will be shown below, L and V forms of the dipole matrix element
are identical in the RPA. For this to be true in relativistic calculations, the
virtual-orbital index m in the RPA equations must range over both positive-
and negative-energy states. A discussion of the role of negative energy states
in transition amplitudes for highly-charged ions can be found in Johnson et al.
(1995), where it is shown that the length-form amplitudes for highly-charged
ions are insensitive to negative-energy states.

The particle-hole RPA equations can be expressed in terms of reduced matrix
elements through the equations

〈a||tRPA||m〉 = 〈a||t||m〉+
∑

bn

(−1)b−n+k 1

[k]

〈b||tRPA||n〉Zk(anmb)
εb − εn − ω

+
∑

bn

(−1)b−n+k 1

[k]

Zk(abmn)〈n||tRPA||b〉
εb − εn + ω

, (8.11)

〈m||tRPA||a〉 = 〈m||t||a〉+
∑

bn

(−1)b−m+k 1

[k]

〈b||tRPA||m〉Zk(mnab)
εb − εn − ω

+
∑

bn

(−1)b−n+k 1

[k]

Zk(mban)〈n||tRPA||b〉
εb − εn + ω

, (8.12)

where k = 1 for the E1 case.

Numerical results for RPA reduced electric dipole matrix elements in Li
and Na, which are identical in length and velocity form, are given in the last
column of Table 8.2. Although we expect gauge invariance in exact many-body,
the fact that RPA matrix element are independent of gauge certainly does not
imply that there are no further higher-order corrections. Indeed, the third-order
Brueckner corrections (discussed later) are in many cases larger than the RPA
corrections. Nevertheless, since RPA is so similar to second-order perturbation
theory, leads to gauge-independent transition matrix elements, and includes a
class of many-body corrections to all orders, we will adopt RPA as a replacement
for second-order perturbation theory in the sequel.
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8.2.1 Gauge Independence of RPA

As discussed in Sec. 6.2.5, the change in the transition operator

t(r, ω) = −cα ·A(r, ω) + φ(r, ω), (8.13)

induced by the gauge transformation

A(r, ω)→ A(r, ω) +∇χ(r, ω) (8.14)

φ(r, ω)→ φ(r, ω) + iωχ(r, ω), (8.15)

is given by
∆t = −cα∇χ(r, ω) + iωχ(r, ω). (8.16)

The unretarded velocity-form of the dipole operator is obtained by choosing
Av = −ε̂/c and φv = 0, where ε̂ is the photon polarization vector. The cor-
responding length-form transition operator is obtained from potentials Al = 0
and φl = ik ε̂ · r, with k = ω/c. The gauge function χ = −ε̂ · r/c transforms the
length-form dipole operator to velocity-form. The generalization to arbitrary
multipoles including retardation was given in Sec. 6.3. Single-particle matrix
elements of ∆t can be expressed in terms of the gauge function χ(r, ω) as

∆tij(ω) = 〈i |∆t| j〉 = −i(εi − εj − ω)χij (local potential), (8.17)

provided the single-particle orbitals for states i and j are obtained in a local
potential. For energy-conserving transitions (ω = εi − εj), the change in tij
induced by a gauge transformation vanishes, explaining why lowest-order matrix
elements in a local potential are gauge independent. The identity (8.17) is
the fundamental relation used by Savukov and Johnson (2000a) to establish
the gauge-independence of second- and third-order MBPT calculations starting
from a local-potential.

If transition matrix elements are calculated using DHF orbitals for states i
and j, then the change induced by a gauge transformation is

∆tij(ω) = −i(εi − εj − ω)χij − i
∑

ak

[giaak χkj − χik gkaaj ] (DHF potential),

(8.18)
where gijkl are two-particle matrix elements of the electron-electron Coulomb
interaction. The sum over a on the right hand side of Eq. (8.18) extends over
occupied core orbitals and the sum over k extends over all possible (positive-
and negative-energy) orbitals. The sum in Eq. (8.18) arises from the non-local
exchange term in the DHF potential. It follows from Eq.(8.18) that DHF matrix
elements are gauge-dependent even for energy-conserving transitions.

Now, let us verify that RPA amplitudes satisfy

∆tRPAij = −i(εj − εi − ω)χij , (8.19)

and consequently that RPA amplitudes are gauge independent for energy-
conserving transitions. To establish this, we must show that Eq.(8.18) and
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Eq.(8.19) satisfy the RPA equation identically. Substitute into the expression
defining the RPA amplitude for a transition between states i and j, we find

(∆tRPA)ij = (∆t)ij +
∑

na

(∆tRPA)an g̃inja
εa − εn − ω

+
∑

na

g̃iajn (∆t
RPA)na

εa − εn + ω
(8.20)

With the aid of Eqs.(8.18) and (8.19), it is simple to verify that this expression
reduces to

0 =
∑

ak

[giaak χkj − χik gkaaj ] +
∑

na

[χanginja −χanginaj − giajnχna + gianjχna].

The sum over n can be extended to a sum over all states k by adding a sum
over core states c

∑

ca

[χacgicja − χacgicaj − giajcχca + giacjχca].

On interchanging indices a and c in the last two terms above this additional
term is easily seen to vanish. Thus, Eq.(8.20) becomes

0 =
∑

ak

[giaak χkj − χik gkaaj + χakgikja − χakgikaj − giajkχka + giakjχka] .

Carrying out the sum over k, one finds that the first and fourth, second and
sixth, third and fifth terms on the right hand side of this expression cancel, veri-
fying the identity and establishing the gauge independence of the RPA transition
amplitude. The gauge independence of the RPA amplitude is crucial in estab-
lishing the gauge independence of third-order MBPT corrections that start from
a HF potential (Savukov and Johnson, 2000b).

8.2.2 RPA for hyperfine constants

Before turning to higher-order calculations, it is of interest to compare RPA
matrix elements of other tensor operators with their lowest-order values. As
was pointed out in Chap. 5, Hartree-Fock calculations of hyperfine constants
are in very poor agreement with experiment. It is, therefore, of more than
passing interest to examine RPA corrections to hyperfine matrix elements.

The lowest-order expression for the hyperfine constant Av of a state v in an
atom with one valence electron given in Eq. (5.19) may be expressed in terms
of a reduced matrix element of the dipole hyperfine operator t1λ by

Av =
µI
I

√

2jv + 1

jv(jv + 1)
〈v‖t1‖v〉 × 13074.7MHz . (8.21)

The reduced matrix element, in turn, is given by

〈w‖t1‖v〉 = (κv + κw) 〈−κw‖C1‖κv〉
(

1

r2

)

wv

, (8.22)
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Table 8.3: Comparison of HF and RPA calculations of hyperfine constants
A(MHz) for states in Na (µI = 2.2176, I = 3/2) with experimental data.

Term 3s 3p1/2 3p3/2 4s 4p1/2 3p3/2
AHF 623.64 63.43 12.60 150.48 20.99 4.17
∆A 143.60 18.90 5.41 34.21 6.25 1.76
ARPA 767.24 82.33 18.01 184.70 27.24 5.93
Expt. 885.81 94.44 18.53 202 30.6 6.01

where (1/r2)wv denotes the radial integral
(

1

r2

)

wv

=

∫ ∞

0

dr

r2
(Pnwκw(r)Qnvκv (r) +Qnwκw(r)Pnvκv (r)) . (8.23)

To evaluate Av in the random-phase approximation, we simply replace
〈v‖t1‖v〉 by the RPA matrix element in Eq.(8.12) with ω = 0. Moreover, to
determine the RPA matrix elements tRPAbn and tRPAnb on the RHS of Eq.(8.12),
we must solve Eqs.(8.8) and (8.9) with ω = 0.

In Table 8.3, we list lowest-order HF calculations of hyperfine constants for
n = 3 and n = 4 states in Na, together with corrections ∆A obtained in the
random-phase approximation and the resulting RPA values. (The value of AHF

for the 3s state differs from that in Table 5.1 because the later was evaluated
in the nonrelativistic limit.) We see from this tabulation that RPA accounts
for a sizable fraction of the difference between theory and experiment. It is
also evident from the table that correlation corrections beyond the RPA are
necessary for an understanding of hyperfine constants at the few percent level
of accuracy.

8.3 Third-Order Matrix Elements

Explicit formulas for the third-order matrix elements are written out by Blundell
et al. (1987) and evaluated for transitions in alkali-metal atoms and alkali-
like ions by Johnson et al. (1996). The third-order matrix elements may be
subdivided into classes according to

T (3) = TBO + T SR + TNorm (8.24)

There is, in addition, a third-order RPA term, which is omitted here since it
can easily be included with the second-order matrix element as discussed in the
previous section.

For matrix elements of transition operators such as the length-form dipole
operator iωε̂ · r, it is also necessary to include a “derivative” term

T deriv =
dT (1)

dω
δω(2). (8.25)
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to account for the fact that there is a second-order correction to transition
energies in calculations that start from a HF potential. (For calculations start-
ing from a local potential, derivative terms are also required in calculations of
second-order matrix elements). To achieve gauge independence for transition
matrix elements, it is necessary to replace all single-particle matrix elements
tij in the expressions for the third-order terms by RPA amplitudes tRPAij . With
these replacements, the Brueckner-orbital (BO) correction, which accounts for
core polarization, becomes

TBO =
∑

abmi

[

gabmv t
RPA
wi g̃miba

(εi − εv)(εv + εm − εa − εb)
+ c.c.

]

(8.26)

+
∑

amni

[

g̃aimn t
RPA
wi gmnav

(εi − εv)(εn + εm − εa − εv)
+ c.c.

]

. (8.27)

The structural-radiation (SR) correction, which accounts for radiation from vir-
tual states, becomes

T SR =
∑

abcn

[

gbavc t
RPA
cn g̃wnba

(εn − εc + εw − εv)(εn + εw − εa − εb)
+ c.c.

]

(8.28)

+
∑

abmn

[

g̃nwab t
RPA
bm g̃amvn

(εm − εb + εw − εv)(εn + εw − εa − εb)
+ c.c.

]

(8.29)

+
∑

amnr

[

gwrnm t
RPA
ar g̃mnav

(εr − εa + εw − εv)(εn + εm − εa − εv)
+ c.c.

]

(8.30)

+
∑

abmn

[

g̃mnav t
RPA
bm g̃awnb

(εm − εb + εw − εv)(εn + εm − εa − εv)
+ c.c.

]

(8.31)

+
∑

abmn

gabvn t
RPA
nm g̃mwab

(εn + εv − εa − εb)(εm + εw − εa − εb)
(8.32)

+
∑

abcn

g̃wnab t
RPA
ac g̃bcnv

(εn + εv − εb − εc)(εn + εw − εa − εb)
(8.33)

+
∑

abmn

gmnav t
RPA
ab g̃bwnm

(εn + εm − εb − εw)(εn + εm − εa − εv)
(8.34)

+
∑

amnr

g̃wanr t
RPA
rm g̃mnav

(εn + εm − εa − εv)(εr + εn − εa − εw)
. (8.35)

The normalization correction, which accounts for wave-function normalization
and for “folded” diagrams (Lindgren and Morrison, 1985), becomes

TNorm =
1

2
tRPAwv

{

∑

amn

g̃vamngmnav
(εm + εn − εa − εv)2

+
∑

abn

g̃abnvgnvba
(εv + εn − εa − εb)2

+ c.c.

}

. (8.36)
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Table 8.4: Contributions to the reduced matrix element of the electric dipole
transition operator ωr in length-form and in velocity form for the 3s − 3p1/2
transition in Na. Individual contributions to T (3) from Brueckner orbital (B.O.),
structural radiation (S.R.), normalization (Norm.) and derivative terms (Deriv.)
are given. (ω0 = 0.072542 a.u. and ω(2) = 0.004077 a.u.)

Term L-form V-form

T (1) -0.2677 -0.2649

TRPA -0.2646 -0.2646

B.O. 0.0075 -0.0072
S.R. -0.0002 -0.0006
Norm. 0.0004 0.0004
Deriv. -0.0150 0.0000

T (3) -0.0074 -0.0074

T (1..3) -0.2720 -0.2720

|T (1..3)/ω| 3.550 3.550
Expt. 3.525(2)

In Eqs. (8.26–8.36), the notation “c.c.” designates complex conjugation together
with interchange of indices v and w. No replacement is required in the deriva-
tive term, given by Eq. (8.25). Gauge-independence of the third-order matrix
elements modified by replacing single-particle matrix elements tij by their RPA
counterparts tRPAij was established by Savukov and Johnson (2000a,b).

A detailed breakdown of contributions to the third-order matrix element
of the dipole transition matrix element for the 3s − 3p1/2 transition in Na is
given in Table 8.4. The first- plus second-order matrix element is replaced
by the RPA matrix element TRPA. The importance of the derivative term
in obtaining a gauge independent third-order contribution is obvious; in length
form, it is a factor of two larger than the sum of the remaining contributions and
of opposite sign. The resulting dipole matrix element differs from the precisely
known experimental value by less than 1%.

In Table 8.5, we give the third-order corrections to the hyperfine constants
for the n = 3 and n = 4 levels of Na. Comparing these third-order calcula-
tions with the second-order values given in Table 8.3, one sees that the agree-
ment between theory and experiment improves dramatically. As in the case of
transition matrix elements, the second-order hyperfine matrix elements are re-
placed by RPA matrix elements and the third-order corrections are dominated
by Bruckner-orbital corrections.
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Table 8.5: Third-Order MBPT calculation of hyperfine constants A(MHz) for
states in Na (µI = 2.2176, I = 3/2) compared with experimental data.

Term 3s 3p1/2 3p3/2 4s 4p1/2 3p3/2
A(1) 623.64 63.43 12.60 150.48 20.99 4.17
A(2) 143.60 18.90 5.41 34.21 6.25 1.76
A(3) 100.04 10.19 0.75 17.21 2.84 0.12
Atot 867.28 92.52 18.76 201.90 30.08 6.05
Expt. 885.81 94.44 18.53 202 30.6 6.01

8.4 Matrix Elements of Two-particle Operators

The perturbation expansion for off-diagonal matrix elements of two-particle op-
erators follows the pattern discussed earlier for one-particle operators. Diagonal
matrix elements are of greatest interest for operators such as the specific mass-
shift operator p1 · p2 or the Breit operator b12. For diagonal matrix elements,
one can make use of the existing perturbation expansion of the energy to obtain
a perturbation expansion of the diagonal matrix element 〈Ψ|T |Ψ〉. Let us write
the two-particle operator in its standard second-quantized form

T =
1

2

∑

ijkl

tijkla
†
ia
†
jalak =

1

2

∑

ijkl

tijkl :a
†
ia
†
jala : +

∑

ij

tij : a
†
iaj : +

1

2

∑

a

taa

where, for example, tijkl = 〈ij|p1 · p2|kl〉 and tij =
∑

b(tibjb − tibbj) in the SMS
case. Replacing gijkl by gijkl + tijkl in Eq.(7.2), we find

E(T ) = 〈Ψ|H0|Ψ〉+ 〈Ψ|VI |Ψ〉+ 〈Ψ|T |Ψ〉

Using the previously developed perturbation expansion for the energy and lin-
earizing the result in powers of tijkl, we easily obtain the perturbation expansion
for 〈Ψ|T |Ψ〉.

8.4.1 Two-Particle Operators: Closed-Shell Atoms

We suppose that the atom described in lowest-order in the HF approximation.
The perturbation expansion for the energy then leads to

〈0|T |0〉(1) =
1

2

∑

a

taa (8.37)

〈0|T |0〉(2) =
∑

abmn

g̃abmntmnab
εa + εb − εm − εn

, (8.38)

up to second order. As seen from Eq.(8.38), there is no contribution to the
second-order matrix element from tij . Contributions from this term do occur,
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Figure 8.1: First- and second-order Breit corrections to the ground-stste energies
of neonlike ions shown along with the second-order correlation energy. The first-
order Breit energy B(1) grows roughly as Z3, B(2) grows roughly as Z2 and the
second-order Coulomb energy E(2) is nearly constant.

however, in third- and higher order. Application of the above formulas to de-
termine first- and second-order Breit corrections to the ground-state energies of
Ne-like ions are shown in Fig. 8.1.

8.4.2 Two-Particle Operators: One Valence Electron
Atoms

The diagonal matrix element of a two-particle operator T in the state v of a
one-electron atom is, once again, easily obtained from the energy expansion.
One finds,

〈v|T |v〉(1) = tvv (8.39)

〈v|T |v〉(2) = −
∑

bmn

g̃vbmntmnvb
εm + εn − εv − εb

+
∑

abn

g̃abvntvnab
εv + εn − εa − εb

+
∑

am

tamg̃vavm
εa − εm

+
∑

am

g̃vmvatma
εa − εm

(8.40)

Terms on the second line of Eq.(8.40) are second-order corrections to the “ef-

fective” one-particle operator
∑

ij tij : a†iaj :. This term often dominates the
second-order correlation corrections. In such cases, one replaces the term by its
RPA counterpart.

Breit interaction in Cu

As an example, we present a breakdown of the Breit corrections to energies

of 4s and 4p states of copper in Table 8.6. The terms B
(2)
s and B

(2)
d refer to
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Table 8.6: Matrix elements of two-particle operators Breit operator for 4s and
4p states in copper (Z=29) Numbers in brackets represent powers of 10; a[−b] ≡
a× 10−b

Term 4s 4p1/2 4p3/2
B(1) 1.880[-04] 7.015[-05] 5.140[-05]
B(2)
s 4.288[-06] 1.623[-06] 1.431[-06]

B(2)

d -1.250[-05] -3.675[-06] -3.518[-06]
B(2)
e -4.290[-04] -1.222[-04] -1.167[-04]

BRPA -6.993[-04] -2.020[-04] -1.310[-04]
B(3) 6.400[-05] 3.212[-05] 2.319[-05]
Btot -4.555[-04] -1.018[-04] -5.853[-05]

the sums over single and double excited states, respectively, on the first line
of Eq.(8.40). These terms are seen to be relatively small corrections to the

lowest-order Breit interaction B(1). The term B
(2)
e is the contribution from

the effective single-particle operator on second line of Eq.(8.40). This term is
the dominant second-order correction; indeed, it is larger than the first-order
correction and has opposite sign. Iterating this term leads to the term BRPA.

The RPA correction is seen to be substantially different from B
(2)
e for each of the

three states listed in the table. We replace B
(2)
e by BRPA in the sum Btot. The

relatively small term B(3) is the Brueckner-orbital correction associated with
the effective single-particle operator and is expected to dominate the residual
third-order corrections. The extreme example given in Table 8.6 illustrates the
importance of correlation corrections to two-particle operators; the correlated
matrix elements are larger in magnitude and differ in sign from the lowest-order
values!

Isotope Shift in Na

As a further example, let us consider correlation corrections to the isotope shift
in sodium. As discussed in Chap. 5, the isotope shift consists or three parts,
the normal mass shift NMS, the specific mass shift SMS and the field shift F.
We separate the SMS matrix element for states of Na, designated by P , into
two-parts, P = S+T ; S being the contribution from the effective single-particle
operator and T being the normally-ordered two-particle contribution. Second-
and third-order correlation corrections S(2) and S(3) are calculated following
the procedure discussed earlier for the hyperfine operator. The second-order
two-particle contribution T (2) is obtained from the first line of Eq.(8.40) while
T (3) is obtained by linearizing the expression for the third-order energy. A
complete discussion of the evaluation of T (3), which is an imposing task, is
given by Safronova and Johnson (2001). The relative importance of the third-
order contributions to SMS constants is illustrated in Table 8.7. It follows from
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Table 8.7: Contributions to specific-mass isotope shift constants (GHz amu) for
3s and 3p states of Na.

Term 3s 3p1/2 3p3/2
P (1) -222.00 -115.55 -115.46

S(2) 167.93 48.35 48.28
S(3) 28.11 1.20 1.20
S(2) + S(3) 196.04 49.55 49.48
T (2) 95.04 28.16 28.11
T (3) -24.37 -7.54 -7.52
T (2) + T (3) 70.68 20.62 20.59

Ptot 44.72 -45.38 -45.39

Table 8.8: Contributions to field-shifts constants F (MHz/fm2) for 3s and 3p
states in Na.

Term ns np1/2 np3/2
F (1) -29.70 -0.01 0.00
F (2) -1.88 1.65 1.65
F (3) -5.25 -0.04 -0.04
Ftot -36.83 1.60 1.60

the table that the correlation correction is largest for the 3s state; the lowest-
order value P (1) for the 3s state has the same order of magnitude as S(2) but
has an opposite sign. The contribution S(3) for the 3s state is 17% of S(2). Two-
particle contributions T (2)+T (3) are two to three times smaller than one-particle
contributions S(2) + S(3) for the three states listed.

Values of the MBPT contributions to the field shift operator F for 3s and
3p states in Na are given in Table 8.8. Since the field-shift operator is a single-
particle operator, we follow the procedure discussed previously for hyperfine
constants to evaluate the first-, second- and third-order contributions.

Finally, Table 8.9, we compare values for the isotope shifts δν22,23 of n=3
states in Na with experimental data Huber et al. (1978) The sum of the third-
order MBPT values for the SMS and the NMS are listed in the second column
of the table. In converting the calculated field shift constants to MHz units, we
use the value δ〈r2〉22,23=-0.205(3) fm2 obtained from Eq. (3.157). Our data for
the isotope shift for 3p− 3s transitions agrees with experiment at the 5% level.
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Table 8.9: Isotope shifts δν22,23 (MHz) for 3s and 3p states of Na.

NMS+SMS(3) FS Total IS Expt.
3s 1430.6 -7.5 1423.1
3p1/2 704.0 0.3 704.3
3p3/2 703.4 0.3 703.7
3p3/2 − 3s -727.2 7.8 -719.4 -757(2)

8.5 CI Calculations for Two-Electron Atoms

As pointed out in Chapter 7, configuration interaction calculations lead to pre-
cise theoretical energies for two electron atoms and ions. Precise theoretical
values for matrix elements between two-electron states may also be calculated
using CI wave functions.

To this end, consider the matrix element of an irreducible tensor operator
T kq between an initial state

|I〉 =
∑

u≤v
ηuvCuv

?

?
− JIMI

jvmv

jwmw

a†va
†
w |0〉

and a final state

|F 〉 =
∑

x≤y
ηxyCxy

?

?
− JFMF

jxmx

jymy

a†xa
†
y |0〉.

The matrix element 〈F |T kq |I〉 is given by

〈F |T kq |I〉 =
∑

v≤w x≤y
ηvwηxyCvwCxy

?

?
− JFMF

jxmx

jymy

?

?
− JIMI

jvmv

jwmw

[

〈x|tkq |v〉δyw − 〈x|tkq |w〉δyv − 〈y|tkq |v〉δxw + 〈y|tkq |w〉δxv
]

(8.41)

Carrying out the sums over (mv, mw, mx, my) the matrix element can be
rewritten as

〈F |T kq |I〉 =
6

− kq

JFMF

JIMI

× 〈F‖T k‖I〉,

where the reduced matrix element 〈F‖T k‖I〉 is given in terms of single-particle
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reduced matrix elements 〈x‖tk‖v〉 between final-state orbitals φx and initial-
state orbitals φv as

〈F‖T k‖I〉 = (−1)k
√

[JI ][JF ]
∑

v≤w x≤y
ηvwηxyCvwCxy

[

(−1)jw+jx+JI
{

JF JI k
jv jx jw

}

〈x‖tk‖v〉δyw

+ (−1)jw+jx
{

JF JI k
jw jx jv

}

〈x‖tk‖w〉δyv

+ (−1)JI+JF+1

{

JF JI k
jv jy jw

}

〈y‖tk‖v〉δxw

+(−1)jw+jv+JF
{

JF JI k
jw jy jv

}

〈y‖tk‖v〉δxv
]

. (8.42)

8.5.1 E1 Transitions in He

As a specific example, let us consider electric dipole transitions between the
2P states and 2S states in helium. Wavelengths and oscillator strengths for
transitions between nP and mS states for heliumlike ions were evaluated in the
nonrelativistic independent-particle model and tabulated in Section 6.2.8.

Recall that the spontaneous decay rate A(s−1) in the relativistic case is given
by

A =
2.02613× 1018

λ3
S

[JI ]
s−1, (8.43)

where the line strength S = |〈F‖Q(1)
1 ‖I〉|2. The operator Q

(1)
JM above is the

relativistic electric dipole operator defined in Eq. (6.134). In Table 8.10, we list
wavelengths λ, transition rates A, oscillator strengths f , and line strengths S
for singlet-singlet, triplet-triplet and intercombination transitions between 2P
and 2S states in helium.

Several comments should be made concerning these transitions: Firstly, the
relativistic CI calculations automatically account for the splitting of the 23P
level into fine-structure components J = 0, 1, 2. Secondly, the theoretical wave-
lengths predicted by the relativistic CI calculations are in precise agreement
with observed energies; the largest difference in Table 8.10 is 0.02%. By con-
trast the differences between theoretical and experimental wavelengths in the
nonrelativistic CI calculations range from 2% to 25%. Since oscillator strengths
are proportional to the square of the respective transition energies, we find sub-
stantial differences between nonrelativistic independent-particle predictions and
relativistic CI predictions. Thirdly, since the dipole transition operator is spin
independent, E1 transitions between singlet and triplet states (intercombina-
tion transitions) are forbidden nonrelativistically. Such transitions, however,
have nonvanishing rates in the relativistic theory. The 23P1 - 11S0 transition is
the only possible E1 transition from the triplet state. The 23P0 - 1

1S0 transition
is strictly forbidden by angular momentum conservation, while the 23P2 - 11S0
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Table 8.10: Relativistic CI calculations of wavelengths λ(Å), transition rates
A(s−1), oscillator strengths f , and line strengths S(a.u.) for 2P → 1S & 2S
states in helium. Numbers in brackets represent powers of 10.

λ(Å) A(s−1) f S(a.u.)
21P1 - 11S0 584.25 1.799[9] 0.2761 0.5311
21P1 - 21S0 20584. 1.976[9] 0.1255 25.52

23P0 - 23S1 10831. 1.022[7] 0.0599 6.408
23P1 - 23S1 10832. 1.022[7] 0.1797 19.22
23P2 - 23S1 10832. 1.022[7] 0.2995 32.04

21P1 - 23S1 8864.8 1.552[0] 1.828[-8] 1.601[-6]
23P1 - 11S0 591.33 1.787[2] 2.810[-8] 5.470[-8]

transition is an allowed M2 transition with transition rate A = 0.3271(s−1).
A complete study of 2-1 and 2-2 transitions in heliumlike ions is presented in
Johnson et al. (1995).
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Appendix A

Exercises

A.1 Chapter 1

1. Derive the relations

J2 = J+J− + J2z − Jz ,
J2 = J−J+ + J2z + Jz .

2. Show that the normalization factor c in the equation Θl,−l(θ) = c sinl θ is

c =
1

2ll!

√

(2l + 1)!

2
,

and thereby verify that Eq. (1.30) is correct.

3. Write a maple or mathematica program to obtain the first 10 Legendre
polynomials using Rodrigues’ formula.

4. Legendre polynomials satisfy the recurrence relation

lPl(x) = (2l − 1)xPl−1(x)− (l − 1)Pl−2(x).

Write a maple or
mathematica program to determine P2(x), P3(x), · · · , P10(x) (starting
with P0(x) = 1 and P1(x) = x) using the above recurrence relation.

5. Write a maple or mathematica program to generate the associated
Legendre functions and Pm

l (x). Determine all Pm
l (x) with l ≤ 4 and

1 ≤ m ≤ l.
6. The first two spherical Bessel functions are

j0(x) =
sinx

x

j1(x) =
sinx

x2
− cosx

x
.

231



232 APPENDIX A. EXERCISES

Spherical Bessel functions satisfy the recurrence relation

jn+1(x) + jn−1(x) =
(2n+ 1)

x
jn(x).

Use maple or mathematica to obtain an expression for j6(x).

7. Show by direct calculation, using Eqs.(1.20-1.24), that

L+L− + L2
z − Lz = L2

L−L+ + L2
z + Lz = L2

Hint: To avoid excessive pain in carrying out the differentiations, use
mathematica or maple and print out the maple worksheet or mathe-

matica notebook.

8. Write a maple or mathematica routine to obtain formulas for Θl,m(θ)
for l = 4 and m ≤ l using Eq.(1.36). With the aid of your results, give
explicit formulas for Y4,m(θ, φ), m = −4 · · · 4. Verify by direct calculation
that Y4,m(θ, φ) are properly normalized.

9. Use the maple routine cgc.map or built in mathematica routine to
evaluate C(1, 3/2, J ;m1,m2,M) for all possible values of (m1, m2, J, M).
Show that the resulting values satisfy the two orthogonality relations.

10. Determine numerical values of C(j1 j2 J ; m1m2M) for

j1 = 2 j2 = 1/2 J = 3/2

and all possible values of m1, m2, and M .

11. Prove
〈l1||Ck||l2〉 = (−1)l1−l2〈l2||Ck||l1〉,

where Ck
q is the tensor operator

Ck
q

def
=

√

4π

2k + 1
Ykq(θ, φ).

12. Prove
[J2,σ · r] = 0 ,

[Jz,σ · r] = 0 ,

where J = L+ 1

2
σ

13. Prove

YJJM (r̂) =
L

√

J(J + 1)
YJM (r̂)

14. Show that the spherical harmonics Ykq(θ, φ), q = −k, −k + 1, · · · , k are
components of a spherical tensor operator of rank k.
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15. Prove [Varshalovich, Sec. 5.9.1, Eq.(5)]

∫ 2π

0

dφ

∫ π

0

dθ sin θ Yl1,m1
(θ, φ)Yl2m2

(θ, φ)Yl3m3
(θ, φ)

=

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(

l1 l2 l3
0 0 0

)(

l1 l2 l3
m1 m2 m3

)

16. Derive the identity

+ j2m2

j3m3

j1m1

=
-6
?

+ j2m2

j3m3

j1m1

17. Derive the graphical identity

J
+

j2m2

j1m1

−
6 ¹¸
º·

j3

?= δj1j2 δm1m2
δJ0

√

2j3 + 1

2j1 + 1

A.2 Chapter 2

1. Write a maple or mathematica procedure to generate the formula for
the radial Coulomb wave function Pnl(r).

(a) Plot the radial functions Pnl(r) for n = 4 and all possible values of l.

(b) Show by direct calculation that the l = 1 radial functions Pnl(r)
satisfy

∫ ∞

0

drPnl(r)Pn′l(r) = δnn′

for 2 ≤ n, n′ ≤ 4.

2. Use maple or mathematica to obtain an expression for the expectation
value

〈

1

r2

〉

in the 3d state of a hydrogenlike ion with nuclear charge Z. What is the
numerical value of this quantity for a hydrogenlike lithium (Z = 3)?

3. The Coulomb field of the nucleus is modified at short distances by the
finite size of the nuclear charge distribution.

(a) Assuming that the nuclear charge density is constant, show that the
potential inside the nucleus is

V = −Z
R

[

3

2
− 1

2

( r

R

)2
]

, r ≤ R
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(b) Show by explicit calculation for n from 2 to 5 that the leading term
in powers of R of the finite size shift in energy is

∆En,0 =
2Z2

15n3
(ZR)2 for l = 0

∆En,1 =
2(n2 − 1)Z2

105n5
(ZR)4 for l = 1

4. Find the shift in energy of the 1s state of a hydrogenlike ion assuming
that the charge of the nucleus is distributed uniformly over the surface of
a sphere of radius R << a0/Z. Estimate the order of magnitude of the
shift for hydrogen. Use your answer to show that the 1s Lamb shift in
hydrogen (≈ 8000 MHz) is not caused by nuclear finite size.

5. The ground state of hydrogen is a 1s state (orbital angular momentum
eigenvalue l = 0). The total angular momentum (orbital + spin) of this
state is j = 1/2 with two degenerate substates m = ±1/2. The angular
wave functions of the two degenerate states are

|j,m〉 = Y00(θ, φ) χm ≡
√

1

4π
χm.

Determine the values of total angular momentum of a 2p state (orbital
angular momentum l = 1) of hydrogen and write out the angular wave
functions for each of the 6 possible substates.

6. Use the fortran program mod pot.f to determine the value of b in the
parametric potential

V (r) = −Z
r
+
Z − 1

r
(1− e−br),

that gives the best least-squares fit to the 4s, 5s, 6s, 4p, 5p, 3d and 4d levels
in potassium. Use the resulting potential to predict the value of the 1s
binding energy in potassium. How does your prediction compare with
experiment? The data for the energy levels are found in C.E. Moore,
NSRDS-NBS 35, Vol. 1. You should average over the fine structure of the
p and d levels.

• The routine golden from the numerical recipes library is used
to minimize the sum of squares of energy differences.

• The linear algebra routines used in outsch.f are to from the lin-

pack library.

7. The lowest eight states of the sodiumlike ion Al+2 (Z = 13) are
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n l Enl(cm
−1)

3 0 0.0
3 1 53800
3 2 115956
4 0 126163
4 1 143672
4 2 165786
4 3 167612
5 0 170636

The ionization threshold is 229454 cm−1. Determine the parameter p in
the potential

V (r, p) = −Z
r
+ (Z − 3)

1

p+ r

that gives a best least-squares fit to these levels.

(Answer: p ≈ 0.088)

8. Use the fortran program thomas.f to determine the Thomas-Fermi
potential for potassium, Z=19.

(a) Find the K+ core radius R.

(b) Plot the effective charge Zeff(r), defined by the relation:

V (r) = −Zeff(r)

r
= −Z −N

R
− Zφ(r)

r

9. Sodium atom with a TF core.

(a) Download and compile the routines thomas.f and nrelMP.f

(b) Use the routine thomas to determine φ(r), N(r), and Zeff(r) for Na
(Z=11). Submit a plot of the data.

(c) Edit the output data set “thomas.dat” from the above step to make
a two column file: r vs. zeff. Name the resulting data set “zeff.dat”.
This data set will be used as input to nrelMP.

(d) Create an input file “mod.in” (standard input unit 5) in the form:

Z
n1 l1 e1
n2 l2 e2
n3 l3 e3
etc.

where Z=11 for Na, where n1, l1 are quantum numbers of energy
levels of Na and e1 is an estimate of the energy. For example, the
row
(3, 0, -0.2)
would correspond to a 3s state with a guess of -0.2 au for the energy.
Use the routine nrelMP to evaluate energies of the seven lowest levels
of Na.
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(e) Compare your calculated energy levels with spectroscopic data. this
data is available from http://physics.nist.gov under the heading
Physical Reference Data, subheading Atomic Spectroscopy Database
[Version 3.0] The energies in this database are relative to the atomic
ground state. The theoretical energies are relative to the ionization
limit. To compare the measured energies with calculations, you must
subtract the ionization limit from the measured values and convert
to atomic units!

10. Prove that J = L+ S commutes with the Dirac Hamiltonian.

11. Show that Eqs. (2.129-2.130) reduce to Eqs. (2.140-2.141) in a Coulomb
potential.

12. Let φa(~r) and φb(~r) be solutions to the Dirac equation. Prove that

c〈φb| ~α |φa〉 = iω 〈φb|~r |φa〉,
where ω = (Eb − Ea)/h̄.

13. What is the Pauli approximation? Use the Pauli approximation to eval-
uate the integral Inκ =

∫∞
0
Pnκ(r)Qnκ(r)rdr. Compare your answer with

the exact value of the integral for the 1s state of a hydrogenic ion with
charge Z.

14. Write out specific formulas for the radial Dirac functions Pnκ(r) and
Qnκ(r) of the n = 2 states of a hydrogenlike ion with nuclear charge
Z. You may use maple if you wish, however, you may find it simpler to
expand the hypergeometric functions by hand.

15. Verify that the n = 2 radial functions determined in the previous problem
are properly normalized for each of the three states.

16. Plot the radial density function Pnκ(r)
2 + Qnκ(r)

2 for each of the n = 2
states assuming Z = 20.

17. Give formulas for 〈r〉 and 〈1/r〉 for each state in (c) above. Verify that
the relativistic formulas approach the proper nonrelativistic limits.

18. Suppose the nucleus is represented by a uniformly charged ball of radius
R:

(a) Show that the nuclear potential (in atomic units) is given by

Vnuc(r) =

{

−Z
R

(

3
2 − r2

2R2

)

, r < R,

−Z
r , r ≥ R.

(b) Determine the nuclear finite-size correction to the n = 1 and n = 2
Dirac energy levels using first-order perturbation theory. How large
are these corrections for hydrogen? (Assume R = 1.04 fm for H
and give your answer in cm−1.) How large are they for hydrogenlike
uranium? (Assume R = 7.25 fm for U and give your answer in eV.)
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A.3 Chapter 3

1. Consider the 12-fold degenerate set of product wave functions:

ψ2p,m,σ(r1)ψ1s,µ(r2) =
1

r1r2
P2p(r1)P1s(r2)Y1m(r̂1)Y00(r̂2)χσ(1)χµ(2).

(a) Combine these wave functions to give eigenstates of L2, Lz, S
2, Sz,

where L = L1 +L2 and S = S1 + S2.

(b) With the aid of the above result, write down all possible antisymmet-
ric angular momentum eigenstates describing 1s2p levels of helium.
What is the number of such states?

2. Write out explicitly the radial Hartree-Fock equations for neon.

3. Show that the ionization energy of an atom with one valence electron is
−εv in the “frozen-core” Hartree-Fock approximation. (Here, εv is the
eigenvalue of the valence electron Hartree-Fock equation.)

A.4 Chapter 4

1. Which of the following products are normally ordered?

(a) a†maa (d) a†maaa
†
nab

(b) aaa
†
m (e) a†ca

†
daaab

(c) aaa
†
b (f) a†caba

†
dac

Determine the expectation of each of the above products in the core state.

2. Prove that all doubly-excited states of helium are in the continuum above
the first ionization threshold.

3. Low-lying states of Mg are linear combinations of product states formed
from 3s, 3p and 3d orbitals. In jj coupling the orbitals (nlj n

′l′j′) are
coupled to form states of angular momentum J such as (3s1/23p3/2)[1]
while in LS coupling, the orbitals (nlσ n′l′σ′) are coupled to form states
such as (3p)2 3P . Give the spectroscopic designation of all possible low-
lying even parity states in the jj and LS coupling schemes. Show that
the total number of jj and LS states (including magnetic substates) is
identical.

4. Low energy states of B are linear combinations of product states formed
from 2s and 2p orbitals. In the LS scheme, orbitals 2s and 2p can be cou-
pled to form states such as (2s2s2p) 2P or (2p)3 4P , while in the jj scheme,
these orbitals can be coupled to form states such as (2s1/22p1/22p1/2)[1/2].
Give the spectroscopic designation of all possible even parity states in B ob-
tained by coupling 2s and 2p orbitals in both jj and LS coupling schemes.
Show that the total number of magnetic substates is identical in the two
coupling schemes.
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5. Show that the exchange contribution to the interaction energy for the
state |ab, LS〉 is

η2
∑

k

(−1)la+lb+S+k
{

la lb L
la lb k

}

Xk(abba) .

6. Show in detail that Eq.(4.50) follows from Eq.(4.47).

7. LS to jj transformation matrix:

(a) Each nonrelativistic LS-coupled state belonging to a given J ,

| [(l1l2)L, (s1s2)S]J〉 ,

can be expanded as a linear combination of the nonrelativistic jj-
coupled states

| [(l1s1)j1, (l2s2)j2]J〉 ,
belonging to the same J . Write the matrix of expansion coefficients
in terms of six-j symbols. (The expansion coefficients are related to
9-j symbols.)

(b) Prove that this transformation matrix is symmetric.

(c) Give numerical values for the elements of the 2× 2 matrix that gives
the two (sp) states 1P1 and 3P1 in terms of the two states (s1/2p1/2)1
and (s1/2p3/2)1.

(d) Give numerical values for the elements of the 3× 3 matrix that gives
the three (pd) states 1P1,

3P1 and 3D1 in terms of the three states
(p1/2d3/2)1, (p3/2d3/2)1 and (p3/2d5/2)1.

8. For an atom with two valence electrons above a closed core, determine
the number of states in the configuration (nsn′l) and give LS and jj
designations of the states. Determine the number of states in an (nd)2

configuration and give LS and jj designations of the states.

9. In the Auger process, an initial state |I〉 = aa|Oc〉 with a hole in state a
makes a transition to a final state |F 〉 with holes in states b and c and an
excited electron in state m. The transition probability is proportional to
the square of the matrix element 〈F |VI |I〉. Express this matrix element
in terms of the two-particle Coulomb integrals gijkl.

10. In the relativistic case, show that the energy in the relativistic particle-hole
state obtained by coupling states |(−1)ja−maa†vaa|Oc〉 to angular momen-
tum JM is

E(1)((jvja)J) =

(−1)J+jv−ja
[J ]

[

XJ (vaav) + [J ]
∑

k

{

jv ja J
ja jv k

}

Xk(vava)

]
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provided the orbitals are evaluated in a V N−1 HF potential. Express
this matrix element in terms of Slater integrals for the case: a = 2p1/2,
v = 3s1/2, and J = 0. What is the LS designation of this state?

A.5 Chapter 5

1. Let |(ls)j〉 be a state formed by coupling orbital angular momentum l and
spin angular momentum s = 1/2 to total angular momentum j. Given that
the tensor operator T kν is independent of spin, express 〈(las)ja||T k||(lbs)jb〉
in terms of 〈la||T k||lb〉.

2. Hyperfine Structure:

(a) Determine the number of ground-state hyperfine levels of the
hydrogen-like ion 209Bi+82. Find the eigenvalue f of total angular
momentum F = I + J for each level and give its degeneracy. Look
up the nuclear spin of 209Bi on the web.

(b) Calculate the energy separation between hyperfine levels using a rel-
ativistic 1s wave functions for the atomic state.

(c) Compare your theoretical calculations with experiment.

3. The nuclear spin of 7Li is I = 3/2 and gI = 3.256. Approximate the 2s
wave function using a 2s hydrogenic wave function with Zeff = 1.5 and
calculate the 2s hyperfine splitting δν. How does your value compare with
the observed splitting δν = 803.5 MHz?

4. Zeeman effect: The vector potential for a uniform magnetic B can be
written

A =
1

2
[B × r]

(a) Show that the interaction Hamiltonian of an electron with this field
is

hint(r) =
iec

2
B
√
2 r
(

α ·C(0)
10

)

,

assuming that the field is oriented along the z axis.

(b) Show that the expectation value of the many-electron Hamiltonian
Hint =

∑

i hint(ri) for a one-valence electron atom in state v reduces
to

〈vmv|Hint|vmv〉 = −ecBκ 〈−κvmm|C1
0 |κvmv〉 (r)vv

in the independent-particle approximation. Here,

(r)vv = 2

∫ ∞

0

dr r Pv(r)Qv(r)
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(c) Evaluate (r)vv in the Pauli approximation and show that the inter-
action energy can be written

W = −µBBgvmv

where the Landé g-factor is given by

gv =
κv(κv − 1/2)

jv(jv + 1)
.

This factor has the value 2, 2/3, 4/3, 4/5, 6/5, for s1/2, p1/2, p3/2,
d3/2, d5/2 states, respectively. In the above, µB = e/2m is the Bohr
magneton. Its value is e/2 in atomic units.

5. Isotope Shift in Li

(a) Using experimental energies from the NIST data base, evaluate the
normal mass shift correction to energies of the 2s and 2p states of
the isotopes 6Li and 7Li.

(b) Assuming that the 1s wave function of Li is a Coulomb wave function
in a field with Z = 3 − 5/16 and that the 2s and 2p wave functions
are Coulomb wave functions in a field Z = 1 + 1/8, determine the
specific mass shift for 2s and 2p states of 6Li and 7Li.

(c) Combine the above calculations to determine the difference between
2s energies in the two isotopes. Repeat the calculation for 2p levels.
What shift (cm−1) is expected in the 2s−2p transition energy? What
shift (MHz) is expected in the transition frequency? What shift (Å)
is expected in the transition wavelength?

A.6 Chapter 6

1. Verify the relation:

〈b||∇||a〉 = 〈lb||C1||la〉
{ ∫∞

0
drPb

(

d
dr +

la
r

)

Pa, for lb = la − 1,
∫∞
0
drPb

(

d
dr − la+1

r

)

Pa, for lb = la + 1.

Hint: Use vector spherical harmonics. at the first step.

2. Verify
∑

n

f̄ks→np = 1

and

∑

n

f̄kl→nl−1 = − l(2l − 1)

3(2l + 1)
,

∑

n

f̄kl→nl+1 =
(l + 1)(2l + 3)

3(2l + 1)
.
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Hint: Use the completeness relation for radial functions Pnl(r) and for-
mulas for the radial matrix elements of r and v.

3. Determine the lifetime of the 3p3/2 excited state in Al. Hint: This state
decays to the ground state by an M1 transition. The transition energy is
found in the spectroscopic tables.

4. Heliumlike Ne (Z = 10)

(a) Determine the wavelength (Å) of the transition (1s3p) 3P → (1s2s) 3S
in heliumlike Ne (Z = 10). Assume that the 1s orbital is described
by a Coulomb wave function in the unscreened nuclear field Z and
that the excited 2s and 2p orbitals are described by Coulomb wave
functions in a screened Coulomb field Z − 1. Compare your result
with the NIST database.

(b) Calculate the spontaneous decay rate (s−1) for the (1s3p) 3P →
(1s2s) 3S transition.

5. Heliumlike boron (Z = 5)

(a) Evaluate the excitation energies of the (1s2p)1P and (1s2p)3P states
of heliumlike boron (Z = 5). Assume that the 1s and 2p states are
described by Coulomb wave functions with Zeff = (Z − 5/16) and
Z − 1, respectively. Compare your calculated energies with values
from the NIST website.

(b) Determine the lifetime of the (1s2p)1P state of heliumlike boron and
NIST wavelengths (Experimental lifetime: 2.69× 10−12 s.)

6. Determine the dominant decay mode (E1, M1, E2), the decay channels
(I → F ), and the wavelengths in Å of transitions from each of the follow-
ing initial states I.

7. The lowest 4 states of sodium are

State Energy cm−1

3s 0
3p 16964
4s 25740
3d 29173

(a) Determine the lifetime of the 3p state of sodium. The experimental
3p− 3s wavelength is λ ≈ 5895Å.

(b) The 3p state is actually a doublet. The 3p3/2 state is higher in

energy and has a transition wavelength λ3/2 = 5891.58 Å, while the

lower energy 3p1/2 state and has a wavelength λ1/2 = 5897.55 Å.
Find the line strength and initial state degeneracy for each of the two
transitions and compare the individual transition rates to the ground
state.
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(c) Determine the reduced oscillator strength for each of the two transi-
tions in the example above.

(d) The 4s state can decay to the 3p state by an E1 transition or to the
3s state by an M1 transition. Determine the corresponding decay
rates.

(e) Describe all possible radiative decay channels for the 3d state and
calculate the decay rate for each channel. What is the lifetime of the
3d state?

Use the NRHF program to obtain the radial wave functions, and evaluate
the necessary radial integrals numerically using the subroutine rint.

8. Energies (cm−1) of the five lowest levels in one-valence-electron ion La+2

are given in the little table below. Determine the multipolarity (E1, M1,
. . .) of the dominant one-photon decay mode for each of the four excited
levels and give the corresponding photon wavelength.

5d3/2 0.00
5d5/2 1603.23
4f5/2 7195.14
4f7/2 8695.41
6s1/2 13591.14

9. Determine the single-photon decay modes permitted by angular mo-
mentum and parity selection rules for the each of the three sublevels
J = (0, 1, 2) of the (2s2p) 3P level in Be. Use your analysis to prove
that the (2s2p) 3P level is stable against single-photon decay nonrelativis-
tically.

(a) H 3p state

(b) Al2+ 3p (Na-like) state

(c) Al 3p3/2 state

(d) Ba+ 5d3/2 state

You can determine wavelengths from the NIST database or from the tables
Atomic Energy Levels NSRDS-NBS 35.

10. Prove that following states are stable against single-photon decay in
the non-relativistic approximation: H 2s state, He (1s2s) 1S0 state, He
(1s2s) 3S1 state.
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A.7 Chapter 7

1. Prove:

(a)
〈

0c

∣

∣

∣

∣

∣

∣

∑

ij

(∆V )ij :a
†
iaj ::a

†
maa :

∣

∣

∣

∣

∣

∣

0c

〉

= (∆V )am

(b)
〈

0c

∣

∣

∣

∣

∣

∣

1

2

∑

ijkl

gijkl :a
†
ia
†
jalak ::a

†
ma

†
nabaa :

∣

∣

∣

∣

∣

∣

0c

〉

= g̃abmn

2. Prove:

(a)

∑

mambmmmn
σaσbσmσn

gabnm gmnab = 2
∑

l,k

{

la lm l
lb ln k

}

Xk(nmab)Xl(mnab)

(b)
∑

mambmmmn
σaσbσmσn

gabmn gmnab = 4
∑

l

1

[l]
Xl(mnab)Xl(mnab)

3. The right-hand side of the equation (H0 − E0)Ψ
(1) = (E(1) − VI)Ψ0 is

−
[

∑

na

(∆V )naa
†
naa +

1

2

∑

mnab

gmnaba
†
ma

†
nabaa

]

Ψ0

for a closed-shell atom. What is the corresponding expression for an atom
with one electron beyond closed shells?

4. In a classical picture, the valence electron in Li induces a dipole moment
p = αE in the heliumlike core, whereE is the electric field produced by the
valence electron at the origin, and α is the core polarizability (α = 0.189a30
for Li+).

(a) Show that the classical interaction energy of the valence electron with
the induced dipole field is

δW = −1

2

α

r4

(b) Determine numerically the energy correction 〈v|δW |v〉 for 3d and 4f
states of Li using wave functions in a screened Coulomb potential
(Z1s = 3 − 5/16 and Z3d,4f = 1). Compare your answers with the
following results from second-order MBPT:

E
(2)
3d = −4.07× 10−5a.u. E

(2)
4f = −2.93× 10−6a.u.
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5. Suppose we choose to describe an atom in lowest order using a potential
U(r) other than the HF potential.

(a) Show that the correction to the first-order energy from the single-
particle part of the potential (V1) for a one electron atom in a state
v is

E(1)
v = ∆vv,

where ∆ = VHF − U .

(b) Show that the following additional terms appear in the second-order
valence energy:

E(2)
v = −

∑

na

∆nag̃avnv + g̃avnv∆an

εn − εa
−
∑

i6=v

∆vi∆iv

εi − εv
.

Here, i runs over all states.

6. Breit Interaction:

(a) Show that for a heliumlike ion

B(1) =
8

3

∫ ∞

0

dr1P1s(r1)Q1s(r1)

∫ ∞

0

dr2
r<
r2>

P1s(r2)Q1s(r2),

where P1s(r) and and Q1s(r) are radial Dirac wave functions.

(b) Set Z = 10 and assume that the 1s wave functions for a heliumlike ion
can be approximated by Dirac Coulomb wave functions with Z →
Z − 5/16. Evaluate B(1) numerically and compare with the value
given in the notes.

A.8 Chapter 8

1. The r.m.s. radius of an atom is Rrms =
√

〈R2〉 where

R =
∑

i

ri.

(a) Write out the expression forR2 in second quantized form. (Take care!
This operator is a combination of one- and two-particle operators.)

(b) Express each part of the R2 operator in normal order with respect
to a closed core.

(c) Write down explicit formulas for the first-order matrix element of
〈

v|R2|v
〉

in an atom with one valence electron. (Keep in mind the
fact that R2 is an irreducible tensor operator of rank 0.)

(d) Evaluate Rrms to first-order for the 2p state of Li using screened
Coulomb wave functions for the core and valence electrons: Z1s =
3− 5/16 and Z2p = 1.25.
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2. Consider an atom with one valence electron that is described in lowest
order by a local potential U(r) 6= VHF.

(a) Write out the expressions for first- and second-order matrix elements
〈Ψw|T |Ψv〉 of the dipole transition operator T (ω), being careful to
account for ∆ = VHF−U and to include terms arising from the energy
dependence of T .

(b) Show that both first- and second-order matrix elements of T are
gauge-independent.
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