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Preface

Scaling (power-law) relationships have wide application in science and
engineering. Well-known examples of scaling relations are the following
(we will discuss them later in detail):

G.I. Taylor's scaling law for the shock-wave radius r$ after a nuclear
explosion.

rf =

the scaling law for the velocity distribution u near a wall in a turbulent
shear flow,

u = Ayn;

the scaling law for the breathing rate R of animals.

and many others.
A very common view is that these scaling or power-law relations are

nothing more than the simplest approximations to the available exper-
imental data, having no special advantages over other approximations.
It is not so. Scaling laws give evidence of a very deep property of the
phenomena under consideration - their self-similarity: such phenom-
ena reproduce themselves, so to speak, in time and space. Self-similar

E explosion energy; t, time after explosion; pQ, air density.
y distance from the wall; A, n, constants.
W body mass of an animal; A, n constants.
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xii Preface

phenomena entered mathematical physics rather early, perhaps with the
famous memoir of Fourier (1822) on the analytical theory of heat con-
duction. In this he arrived at a 'source-type' solution'

/ ( 0 e-«9/4, A = Const

to the heat conduction equation

dte = d2
xxe.

Subsequently the phenomena under consideration, and the equations en-
tering their mathematical models, became more and more complicated
and very often nonlinear. Obtaining self-similar solutions was consid-
ered as a success, particularly in the pre-computer era. Indeed, the
construction of such solutions always reduces to solving the boundary-
value problems for ordinary, not partial, differential equations, which
was considered as a substantial simplification. Moreover, in 'self-similar'
coordinates 0>/t, x/y/i (and analogous coordinates in other problems),
self-similar phenomena become time independent. This gives important
evidence of a certain type of stabilization. Thus very often obtaining
a self-similar solution was the only way to understand the qualitative
features of the phenomena.

The exponents of the independent variables x, t in self-similar vari-
ables such as 6y/t, x/\/i in the heat conduction problem mentioned
above were obtained at the outset in some simple way giving no spe-
cial trouble to the researcher, often dimensional analysis. Dimensional
analysis is merely a simple sequence of rules based on the fundamen-
tal covariance principle of physics: all physical laws can be represented
in a form equally valid for all observers. Such classical self-similarities
were discussed and summarized in a book by Sedov (1959) and in a
monographic review by Germain (1973), in which a general approach to
problems leading to such solutions was also discussed.

In fact, the situation changed drastically after the paper by Guderley
(1942), in which a solution to the problem of a very intense implosion
(a converging spherical or cylindrical shock wave) was obtained, and the
papers by von Weizsacker (1954) and Zeldovich (1956) treating the plane
analogue of the implosion wave problem, the problem of an impulsive

Here 0, cc, t are the temperature, the spatial coordinate, and time. This solution is
remarkable for two reasons. Firstly, the temperature 0, a function of two variables
x, t, is represented via a function of one variable x/y/t. Furthermore, according to
this solution the temperature distributions at various times can be obtained one
from another by a similarity transformation: the solution remains similar to itself.
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Preface xiii

loading. In these problems a delicate analytical procedure, qualitative
investigation of the portrait in a phase plane, was needed to obtain the
power n in which the time enters the self-similar variable x/tn. These
powers appeared generally speaking to be certain transcendental num-
bers rather than simple fractions as for classical self-similarities. In
fact solutions with such 'anomalous' dimensions had appeared for dif-
ferent variables even earlier. I am referring to the fundamental papers
by Kolmogorov, Petrovsky, and Piskunov (1937), and by Fisher (1937),
devoted to the propagation of an advantageous gene, and by Zeldovich
and Frank-Kamenetsky (1938a, b), dealing with flame propagation in
gases. In these papers the wave-type solutions 8(x — Xt) of the nonlinear
parabolic equation

dto = d2
xxo + f(e)

were considered, and the wave phase speed A has been calculated by
a complicated analytical procedure: phase-plane portrait investigation.
Transforming the variables x = In £, t — In r one arrives at the same
problem of determining the exponent of r in the self-similar variable

An important question arose: what is the real nature of such a dif-
ference in self-similar solutions? To understand that, in the papers of
Barenblatt and Sivashinsky (1969, 1970) two special problems were con-
sidered, containing a parameter that entered to the problem's formula-
tion naturally. For a single value of this parameter a classical self-similar
solution appeared, in which all powers were obtained from dimensional
considerations. However, for all other values of the parameter anoma-
lous dimensions appeared as continuous functions of the parameter; they
are obtained from the solution to a nonlinear eigenvalue problem. These
results allowed one to understand the fundamental nature of the dif-
ference between the two types of self-similar solution mentioned above.
Indeed, self-similar solutions are always 'intermediate asymptotics' to
the solutions of more general problems, valid for times, and distances
from boundaries, large enough for the influence of the fine details of the
initial and/or boundary conditions to disappear, but small enough that
the system is far from the ultimate equilibrium state. So, the reason
for the difference is the character of these intermediate asymptotics. If
an asymptotics is represented by a function that tends to a finite limit
when approaching the self-similar state, self-similarity of the first kind
appears. If, however, a finite (different from zero) limit does not exist,
but the asymptotics is a power-type (scaling) one, with the exponents de-
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xiv Preface

pending on the fine details of the analytical properties of pre-self-similar
behaviour, self-similarity of the second kind occurs. So, it became clear
how anomalous, transcendental dimensions appear in self-similar solu-
tions. It is also the case that only a power-type asymptotics preserves
self-similarity.

Independently but later an activity started in theoretical physics,
basically in quantum field theory and in the theory of phase transi-
tions in statistical physics, related to the scaling and renormalization
group. Anomalous dimensions entered the language of physicists. The
names and works of Stiickelberg and Peterman (1953), Gell-Mann and
Low (1954), Bogolyubov and Shirkov (1955), Kadanoff (1966; see also
Kadanoff et a/, 1967), Patashinsky and Pokrovsky (1966), and Wilson
(1971), as well as the books by Bogolubov and Shirkov (1959), Ma
(1976), Amit (1989), and Goldenfeld (1992) should be mentioned. It
is essential to emphasize, however, that in contrast with the researchers
in applied mechanics mentioned above, researchers in theoretical physics
considered problems where rigorous mathematical formulations such as
initial and/or boundary value problems for partial differential equations
were lacking.

Rather early it became clear that the concepts of intermediate asymp-
totics developed in applied mechanics and the concepts of scaling and
renormalization group developed in theoretical physics are closely re-
lated. This relationship was emphasized in the author's first book con-
cerning this subject (Barenblatt, 1979), the Foreword to which, by Acad.
Ya.B. Zeldovich, follows this Preface; in that book, theoretical physicists
were invited to look at how the approach of intermediate asymptotics can
work in problems previously considered by the renormalization group
approach.

In a remarkable series of works by N. Goldenfeld, Y. Oono, O. Martin,
and their students (see the book by Goldenfeld, 1992) several problems
in continuum mechanics (filtration, elasticity, turbulence, etc.) which
had been solved previously by the method of intermediate asymptotics
were solved by the traditional renormalization group method. Moreover,
on the one hand using the singular expansion method widely applied in
theoretical physics (e-expansion) Goldenfeld, Oono and their colleagues
were able to obtain some instructive and useful approximate solutions
to these problems. On the other hand, they obtained by the method of
intermediate asymptotics the solutions to several problems of statistical
physics, solved previously by the renormalization group approach.

These important works helped to represent in final form the renor-
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malization group approach from the viewpoint of intermediate asymp-
totics. In particular it appeared useful to give a proper definition of the
renormalization group using the concept of intermediate asymptotics.
Ultimately the works by Goldenfeld and his colleagues were among the
basic stimuli for me to write this book. Of course, in this writing I have
used essential materials from my previous books devoted to this subject
(Barenblatt, 1979, 1987), so the continuity is completely preserved.

I want to express in conclusion my deep gratitude to the memory of my
great mentors, A.N. Kolmogorov and Ya.B. Zeldovich whose approach
in particular to self-similarities and intermediate asymptotics greatly
influenced my views.

I want to thank Professor D.G. Crighton, FRS, for his kind offer to
publish this book in the series under his editorship at Cambridge Uni-
versity Press. I am pleased to express my deep gratitude to him, to
Professor G.K. Batchelor, FRS, and to Professor H.K. Moffatt, FRS, for
the honour and pleasure of writing this book here at the Department
of Applied Mathematics and Theoretical Physics in Cambridge. I am
grateful to Professor M.D. van Dyke for his valuable advice. I thank
Miss Sarah Kirkup for her help in preparing the manuscript.
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Foreword

Professor Grigorii Isaakovich Barenblatt has written an outstanding
book that contains an attempt to answer the very important question
of how to understand complex physical processes and how to interpret
results obtained by numerical calculations.

Progress in numerical calculation brings not only great good but also
notoriously awkward questions about the role of the human mind. The
human partner in the interaction of a man and a computer often turns
out to be the weak spot in the relationship. The problem of formu-
lating rules and extracting ideas from vast masses of computational or
experimental results remains a matter for our brains, our minds.

This problem is closely connected with the recognition of patterns.lt is
not just a coincidence that in both the Russian and English languages the
word 'obvious' has two meanings - not only something easily and clearly
understood, but also something immediately evident to our eyes. The
identification of forms and the search for invariant relations constitute
the foundation of pattern recognition; thus, we identify the similarity of
large and small triangles, and so on.

Let us assume now that we are studying a certain process, for example
a chemical reaction in which heat is released and whose rate depends
on temperature. For a wide range of parameters and initial conditions,
a completely definite type of solution is obtained - flame propagation.
The chemical reaction occurs in a relatively narrow region separating
the cold combustible substance from the hot combustion products; this
region moves relative to the combustible substance with a velocity that
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xviii Foreword

is independent of the initial conditions. (Of course, the very occurrence
of combustion depends on the initial conditions.)

This result can be obtained by direct numerical integration of the
partial differential equations that describe the heat transfer, diffusion,
chemical reaction, and (in some cases) hydrodynamics. Such a com-
putational approach is difficult; the result is obtained in the form of a
listing of quantities such as temperature and concentration as functions
of temporal and spatial coordinates. To make manifest the flame prop-
agation, i.e., to extract from the mass of numerical material the regime
of uniform temperature propagation, T(x — ut), is a difficult problem!
It is necessary to know the type of the solution in advance in order to
find it; anyone who has made a practical attempt to apply mathematics
to the study of nature knows this truth.

The term 'self-similarity' was coined and is by now widespread: a so-
lution T(x, t\) at a certain moment t\ is similar to the solution T(x,to)
at a certain earlier moment. In the case of uniform propagation con-
sidered above, similarity is replaced by simple translation. Similarity is
connected with a change of scales:

or

In geometry, this type of transformation is called an affine transforma-
tion. The existence of a function \I> that does not change with time
allows us to find a similarity of the distributions at different moments.

Barenblatt's book contains many examples of analytic solutions of
various problems. The list includes heat propagation from a source in the
linear case (for constant thermal conductivity) and in the nonlinear case,
and also in the presence of heat loss. The problem of the hydrodynamic
propagation of energy from a localized explosion is also considered. In
both cases, the problem in its ordinary formulation - without loss -
was solved many years ago; in these problems the dimensions of the
constants that characterize the medium (its density, equations of state,
and thermal conductivity) and the dimensions of energy uniquely dictate
the exponents of self-similar solutions.

However, with properly introduced losses the problems turn out to
be essentially different. If dE/dt = -aE3/2/Rs/2,dR/dt = (5El/2/Rzl2

(E being the total energy referred to the initial density of the gas, R
the radius of the perturbed domain and t the time) so that dE/dR =
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—^E/R, then the conservation of energy does not hold:

E ~ RT1, E = E0R^R~7 ^ const;

however, self-similarity remains.
The dimensionless numbers a, /?, and 7 depend on the functions de-

scribing the solution, but the equations that determine these solutions
contain indeterminate exponents. Mathematically we have to deal with
the determination, from nonlinear ordinary differential equations and
their boundary conditions, of certain numbers that can be called eigen-
values.

The new exponents in the problem are not necessarily integers or
rational fractions; as a rule they are transcendental numbers that depend
continuously on the parameters of the problem, including the parameters
of energy loss. Thus arises a new type of self-similar solution, which we
shall call the second type, reserving the title of first type for the case
where naive dimensional analysis succeeds.

An important point arises here. The solution does not describe the
point source asymptotically: if Ro (the value of R at t = 0) is taken to
be equal to zero, then it must necessarily be that Eo = 00 for t = 0,
which is physically inconsistent. Hence the new solution is considered as
an intermediate asymptotics. We assume that up to a certain finite time
t0 there is no loss. At this moment, when the radius of the perturbed
domain reaches the finite value Ro, we switch on the loss. Or, to be
more general, we can start with a finite energy E created by some other
means, that has already spread out to the finite radius Ro. It is assumed
that asymptotically, for sufficiently large time, the solution assumes a
self-similar form corresponding to the given loss.

We want to emphasize the asymptotic character of the self-similar
solution for t^> to- In nonlinear problems, exact special solutions some-
times appear to be useless: since there is no principle of superposition,
one cannot immediately find a solution of the problem for arbitrary ini-
tial conditions.

Here asymptotic behaviour is the key that partially plays the role of
the lost principle of superposition. However, for arbitrarily given initial
conditions this asymptotic behaviour must be proved. The problem is
difficult, and in many cases numerical computations give only a substi-
tute for rigorous analytic proof.

The preceding arguments may seem unusual in a Foreword: but I
wanted, using the simplest examples, to introduce the reader as quickly
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xx Foreword

as possible to the advantages and difficulties of the new world of solutions
of the second kind.

There are also other types of solutions, among which convergent spher-
ical shock waves are the most important. In this case there is no exter-
nal loss, but the region in which self-similarity holds is contracting; it it
therefore impossible to assume that the entire energy is always concen-
trated in the shrinking region, and this energy in fact decreases according
to a power law, since part of the energy remains in the exterior regions
of the gas. Again it is necessary to find the exponents as eigenvalues of
a nonlinear operator.

The specific character of this class of equations is connected with the
finiteness of the speed of sound; the point where the phase velocity of
propagation of a self-similar variable is equal to the velocity of sound
plays a decisive role in the construction of the solution.

Barenblatt also discusses in his book another problem of analogous
type: the problem of a strong impulsive load in a half-space filled with
gas. This problem abounds in paradoxes. In particular, why do the
laws of conservation of energy and momentum not make it possible to
determine the exponents? The answer to this question is contained
in chapter 4, and it would be against the rules to give it here in the
Foreword.

Problems involving the nonlinear propagation of waves on the surface
of a heavy fluid, described by the Korteweg-de Vries equation, give a
remarkable example. Here there are long-established and well-known
solutions describing solitary waves (called 'solitons'), propagating with
a velocity dependent on the amplitude. This example is remarkable in
that there exist theorems proving the stability of solitons even after their
collisions, and theorems determining the asymptotic behaviour of initial
distributions of general type, which are transformed into a sequence of
solitons. At first suggested by numerical computations, these properties
are now rigorously proved by analytic methods of extraordinary beauty.
In these solutions all the properties of ideal self-similar solutions of the
second kind appear.

In some sense the problems of turbulence, considered at the end of
the book, differ from those mentioned above. These are farther from my
interests and I will not dwell on them here. A complete outline of all
that is contained in the book can be found in the Table of Contents and
should not be sought in the Foreword.

We shall now return to the nature of the book as a whole; we shall
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not hesitate to repeat for the general situation some considerations that
have already been presented above in connection with simple examples.

The problems are chosen carefully. Each of them taken separately
is a pearl, important and cleverly presented. In the solution of many
of the problems the role of the author was essential, and this gives to
the presentation the flavour of something lived. But I must emphasize
that the importance of this book far exceeds its value as a collection of
interesting special examples; from the special problems considered, very
general ideas develop.

Most of the problems are nonlinear. What is the use of special so-
lutions if there is no principle of superposition? The fact is that as a
rule these special solutions represent the asymptotics of a wide class of
other more general solutions that correspond to various initial condi-
tions. Under these circumstances the value of exact special solutions
increases immensely. This aspect of the question is reflected in the title
of the book in the words 'intermediate asymptotics'. The value of so-
lutions as asymptotics depends on their stability. The questions of the
stability of a solution and of its behavior under small perturbations are
also considered in this book; in particular, there is presented a rather
general approach to the stability of invariant solutions developed in a
paper by Barenblatt and myself.

The very idea of self-similarity is connected with the group of trans-
formations of solutions. As a rule, these groups are already represented
in the differential (or integro-differential) equations of the process. The
groups of transformations of equations are determined by the dimensions
of the variables appearing in them; the transformations of the units of
time, length, mass, etc. are the simplest examples. This type of self-
similarity is characterized by power laws with exponents that are simple
fractions defined in an elementary way from dimensional considerations.

Such a course of argument has led to results of immense and perma-
nent importance. It is sufficient to recall the theory of turbulence and
the Reynolds number, of linear and nonlinear heat propagation from a
point source, and of a point explosion. Nevertheless, we shall see that
dimensional analysis determines only a part of the problem, the tip of
the iceberg; we shall call the corresponding solutions solutions of the first
kind, as mentioned above. We shall reserve the name solutions of the
second kind, for the large and ever growing class of solutions for which
the exponents are found in the process of solving the problem, anal-
ogously to the determination of eigenvalues for linear equations. For
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xxii Foreword

this case, conservation laws and dimensional considerations prove to be
insufficient.

The establishment of an intrinsic connection between nonlinear prop-
agation problems with solutions of the type f(x — ut) and self-similar
problems with solutions of the form tnf(x/tm) has turned out to be a
very important step. The general procedures for determining the speed
parameter u and the powers n, m have, as it turns out, many points of
contact. By the same token, self-similarity touches on a new stream of
problems arising from the theory of combustion and from applications to
chemical technology. Barenblatt's book contains concrete, detailed con-
sideration of certain problems, giving a wealth of information. It also
contains brilliant generalizations, foresights touching on developments
of the future, and hints about discoveries not yet made.

You can read this book and study it, but you can also use it as a
source of inspiration. Possibly this is the best compliment for a book
with a title that sounds so special.

Ya. B. Zeldovich
Member, Academy of Sciences

of the USSR
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— 0 —

Introduction

0.1 Dimensional analysis and physical similarity

The starting point of this book is dimensional analysis and it is used
throughout. Like unhappy families, every unfortunate scientific idea is
unfortunate in its own way. Many of those who have taught dimensional
analysis (or have merely thought about how it should be taught) have
realized that it has suffered an unfortunate fate.

In fact, the idea on which dimensional analysis is based is very sim-
ple, and can be understood by everybody: physical laws do not depend
on arbitrarly chosen basic units of measurement. An important conclu-
sion can be drawn from this simple idea, using a simple argument: the
functions that express physical laws must possess a certain fundamen-
tal property, which in mathematics is called generalized homogeneity
or symmetry. This property allows the number of arguments in these
functions to be reduced, thereby making it simpler to obtain them (by
calculating them or determining them experimentally). This is, in fact,
the entire content of dimensional analysis - there is nothing more to it.

Nevertheless, using dimensional analysis, researchers have been able
to obtain remarkably deep results that have sometimes changed entire
branches of science. The mathematical techniques required to derive
these results turn out to be simple and accessible to all. The list of great
names involved runs from Newton and Fourier to Maxwell, Rayleigh and
Kolmogorov. Among recent developments, it is sufficient to recall the
triumph of the Kolmogorov-Obukhov theory in turbulence.
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2 0. Introduction

Everyone would like to score a classical triumph. Many people there-
fore attacked what one would think were almost identical problems using
the same simple dimensional analysis approach. Alas, they almost al-
ways failed. Dimensional analysis was cursed and reproached for being
untrustworthy and unfounded, even mystical. Paradoxically, the reason
for this lack of success was that only a few people understood the content
and real abilities of dimensional analysis.

It was like the old Deanna Durbin film: a girl with a small suitcase
arrives in New York and, in no time, charms the son of a millionaire.
Films like this are pleasant to watch. However, if they are treated as a
guide to what provincial girls should do, disillusionment is inevitable.

Let us describe here what dimensional analysis is using several simple
examples.

Prom elementary physics, the reader knows that the period 0 for small
oscillations of a simple pendulum of length / (Figure 0.1) is

- « 6 . 2 8 W - , (0.1)
9 V 9

where g is the gravitational acceleration.

Figure 0.1. A pendulum performs small oscillations. Experiment shows
that the period of the small oscillations is independent of the maximum
deviation of the pendulum.

Equation (0.1) is usually obtained by deriving and solving a differen-
tial equation for the oscillations of the pendulum. We shall now obtain
it from completely different considerations without any use of calculus.
First of all, we ask ourselves; on what can the period of oscillation of the
pendulum depend? It is clear that in principle, it can depend only on (a)
the length of the pendulum, (b) the mass of the bob, and (c) the grav-
itational acceleration - if there were no gravitational force (i.e., under
weightless conditions), the pendulum would not oscillate. The length of
the pendulum, mass of the bob, period of oscillation, and gravitational
acceleration can be written in terms of the numbers /, m, 0, and g,
which are obtained in the following way. Definite objects representing
units of length, mass, and time are chosen; these are agreed standards,
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0.1 Dimensional analysis and physical similarity 3

which are either carefully preserved or reproducible. Then, the number
/ is obtained by measuring the length of the pendulum, i.e., comparing
the length of the pendulum with the unit of length. The number m
is obtained by comparing the mass of the bob with the unit of mass,
and the number 0 is obtained by comparing the period of oscillation
with the unit of time. The situation is slightly more complicated for the
gravitational acceleration:

First, we recall that velocity by its very definition is the ratio of the
distance travelled in an infinitesimal time interval to the magnitude of
that time interval. We therefore adopt the velocity of uniform motion
in which one unit of length is traversed per unit of time as the unit for
velocity. Analogously, the acceleration is the variation in velocity over
an infinitesimal time interval divided by the magnitude of that time
interval. We therefore adopt the acceleration of uniformly accelerated
motion in which the velocity increases by one velocity unit per unit time
as the unit for acceleration.

Let us now decrease the unit of length by a factor L, the unit of mass
by a factor M, and the unit of time by a factor T. We are justified in
doing so, and in selecting the abstract positive numbers L, M, and T as
we like: the choice of units for mass, length, and time - the fundamental
units - is arbitrary. In doing so, since the units have been decreased in
magnitude, the numerical values of all lengths increase by a factor L, all
masses increase by a factor M, and all times increase by a factor T. The
velocity increases by a factor LT~l with respect to its original magni-
tude under this transformation. Indeed, in uniform motion at a velocity
assumed to be equal to the new unit of velocity, the new unit of length
(which is a factor L smaller than the original unit) is now traversed in
one new unit of time (which is a factor T smaller than the original unit).
Because of this, the numerical values of all velocities increase by a fac-
tor LT~l. Analogously, the unit of acceleration decreases by a factor
LT~2 under this transformation of fundamental units. Thus, the nu-
merical values of all accelerations (and, in particular, the gravitational
acceleration) increase by a factor LT~2.

Therefore, in general, when the magnitudes of the fundamental units
- those in which length, mass, and time are measured - are changed, the
numerical value of a physical quantity also changes. The factor which
gives the magnitude of this change is determined by the dimension of
the quantity in question. For example, if the unit of length is decreased
by a factor L, the numerical values of all lengths are increased by a
factor L. We say that length has dimension L. Analogously, mass has
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4 0. Introduction

dimension M, time has dimension T, velocity has dimension LT"1, and
acceleration has dimension LT~2. We emphasize once again: L, M, and
T are nothing more than abstract positive numbers. As is evident from
these examples, the dimensions of velocity and acceleration are functions
of these numbers, in fact very special functions of these numbers, power-
law monomials. (In chapter 1 the reason why is explained in detail.)

Consider the quantity l/g. This quantity is a ratio of two numbers
that depend on the units defined for length and acceleration. If the unit
of length is decreased by a factor L, and the unit of time by a factor
T, the numerical value of the length in the numerator increases by a
factor L, and the numerical value of the acceleration in the denominator
increases by a factor LT~2. Consequently, the ratio l/g increases by a
factor T2, and the quantity (l/g)1/2 increases by a factor T, i.e., exactly
the same factor by which the period of oscillation 8 increases in this
case. Therefore, the ratio

n ... '

is invariant under a change of fundamental units. Quantities like II,
which do not change when the fundamental units of measurement are
changed, are called dimensionless: their dimensions are equal to unity.
All other physical quantities are called dimensional. A correspondence
is set up between each dimensional physical quantity and its dimension,
which differs from unity and indicates the factor by which the numerical
value of this quantity increases for a given decrease in the magnitude of
the fundamental units of measurement.

We shall now proceed from the fact that, just like the period of oscilla-
tion 0, the quantity II may, in principle, depend on these same quantities
/, m and g\ thus, II = II(/,m,^). Once again we recall that /, m, and
g are numbers that hold for one particular system of fundamental units
of measurement. We now decrease the unit of mass by some factor M,
and leave all the other units unchanged. In this case, the number m
increases by an arbitrary factor M, but the numbers II, Z, and g re-
main unchanged. But this means that the function II(/,m,p) remains
unchanged for any change in the argument m while the other two argu-
ments I and g remain unchanged, i.e., that this function is independent of
m. Next, we decrease the unit of time by some factor T, leaving the unit
of length unchanged. Then, in accordance with the above, the numeri-
cal value of g increases by a factor T~2. (The dimension of acceleration
is actually LT~2, but L is equal to unity in this case.) The quantities
II and I remain unchanged (recall that n is dimensionless). But this
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0.1 Dimensional analysis and physical similarity 5

means that the function II(/,ra, #) is also independent of g. Finally, we
decrease the unit of length by some factor L. The numerical value of the
last remaining argument / then increases by a factor L, and the dimen-
sionless quantity II once again remains unchanged. This means that II
is also independent of Z, and is therefore completely independent of all
the parameters. Therefore, it is in fact a constant:

n

= const, (0.2)n = =
Vl/9

from which we obtain
6 = const W- , (0.3)

V ̂
which is the same as (0.1) up to a constant. The constant in (0.3) can
be determined fairly accurately from a single experiment that the reader
may carry out him- or herself by measuring the period of oscillation
of a weight hung on a thread. With this step, the derivation of the
relation (0.1) for the period of oscillation of a pendulum is complete. The
example just presented (which is due to the French mathematician P.
Appell) is instructive. It would seem that we have succeeded in obtaining
an answer to an interesting problem from nothing - or, more precisely,
only from a list of the quantities on which the period of oscillation of the
pendulum is expected to depend, and a comparison (analysis) of their
dimensions.

The following example concerns the steady uniform motion of a body
in a gas at high velocity. To be specific, we shall discuss the simplest
such case: the motion of a sphere (Figure 0.2(a)). At high velocities, it
intuitively seems possible to neglect the internal friction in the gas (the
viscosity), since the resistance to the motion of the body is mainly due
to the inertia of the gas as it is pushed apart by the body. Therefore,
the drag force that the gas exerts against the motion of the sphere in
it depends on the static gas density p, the static gas pressure p, the
velocity with which the body moves, £/, and the diameter of the sphere,
D. Let us now determine the dimensions of density, force, and pressure,
since we already know the dimensions of the remaining quantities.

Density is by definition the ratio of a mass to the volume occupied by
that mass. Consequently, the density of a homogeneous body in which a
unit mass occupies a unit volume can be adopted as the unit for density.
In decreasing the unit of mass by a factor M and the unit of length by a
factor L, we decrease the unit of density by a factor ML"3. Therefore,
all the density values increase by this same factor. This means that
density has dimension ML~3.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.003
https://www.cambridge.org/core
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U- +JL c

(a) (b)
Figure 0.2. (a) A sphere moving in a gas at high velocity, (b) A plate
moving in a fluid at high velocity.

Force is related to mass and acceleration via Newton's second law,
force equals mass times acceleration. Now it must be true that the
dimensions of both sides of any equation having physical sense must
be identical. Otherwise, the equation would no longer hold under a
change of fundamental units of measurement'. Thus, the dimension
of force must be identical to the dimension of the product of mass and
acceleration. When the unit of mass is decreased by a factor M, the unit
of length is decreased by a factor £,, and the unit of time is decreased by
a factor T, the value of the product of mass and acceleration increases by
a factor of MLT~2. Force therefore has dimension MLT~2. Pressure
is normal force per unit area; area has dimension L2, so pressure has
dimension ML~lT~2.

We shall now turn to the quantity p/p. From the above discussion,
when the fundamental units of measurement are decreased by factors
M, L, and T, respectively, the numerator of this quantity increases by a
factor ML~XT~2, and the denominator increases by a factor ML~3, so
that the quantity p/p increases by a factor L2T~2, i.e., as the velocity
squared. The quantity {p/p)1/2 therefore has the same dimension as
velocity. Indeed, this is not surprising, since the quantity c = (7p/p)1/^2,
where 7 is a dimensionless constant that is a characteristic property of
a given gas, is the speed of sound in the gas. Thus, it may be assumed
that the drag force against the motion of the sphere, / , depends on the
density of the gas p, the velocity of the sphere [/, the diameter of the

Such equations which hold only in one system of fundamental units do exist and
may be very useful. For instance, my colleague Professor A. Yu. Ishlinsky proposed
a formula for the time taken to drive a given distance in Moscow: the time (in
minutes) is equal to the distance (in kilometres) plus the number of traffic lights.
Of course, the formula

time = distance + number of traffic lights
does not work in other units.
7 is the ratio of the specific heat at constant pressure to the specific heat at
constant volume (7 = 1.4 for air at room temperature).
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0.1 Dimensional analysis and physical similarity 7

sphere D, and the speed of sound in the gas at rest, c, which may be
conveniently introduced in place of the static gas pressure:

f = f(p,U,D,c). (0.4)

We now form the combination f/p U2D2. The reader may easily verify
that it is dimensionless. Equation (0.4) may obviously be rewritten in
the form

J (0-5)

where 111 = U/c is also a dimensionless quantity - the ratio of the
velocity of the body to the sound speed. This quantity is called the Mach
number, in honour of the Austrian scientist who performed pioneering
experiments with shock waves in a gas. We now decrease the unit of
mass by an arbitrary factor M, and leave all other units unchanged.
The numerical value of the density then increases by a factor M, while
the numerical values of the dimensional quantities U and D and the
dimensionless quantities II and IIi remain unchanged. But this means
that the quantity II is independent of the density p. Further, upon
changing the unit of time alone by an arbitrary factor, we find that the
numerical value of the velocity U changes by the same arbitrary factor,
while the quantities D, II, and IIi remain unchanged. This means that
II is also independent of the velocity. Finally, upon changing the unit of
length, we find that U is independent of D as well, so that

II = II(IIi). (0.6)

However, further simplification is now impossible! The quantity IIi
is dimensionless, and does not change when the fundamental units are
changed. But even without further simplification, the result is impres-
sive: restoring dimensional variables in (0.6), we find that

/ = /(p, U, D,c) = p U2D2T1 (-) ; (0.7)

thus, the problem has been reduced to determining a function of one (!)
variable instead of a function of four variables.

In order to complete the analysis, the function of one variable, II(C//c),
must be determined either experimentally or by calculation. For exam-
ple, it can be obtained from experiments on a small model in a wind
tunnel (Figure 0.3). A graph of the function U(U/c) obtained in this
way is shown in Figure 0.4.

The above examples illustrate a complete recipe for applying dimen-
sional analysis. Outwardly, it appears very simple.
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0. Introduction

Figure 0.3. A nylon sphere moves in air at Mach number 7.6. A detached
shock wave is visible ahead of the sphere. (Prom van Dyke (1982)).

2 4 6 Hi
Figure 0.4. The dimensionless drag on a sphere, cx = (2/7r)Il, as a
function of the dimensionless governing parameter II i = U/c (the Mach
number) (Chernyi, 1961). The quantity II approaches a constant for large
values of IIi.
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0.2 Assumptions underlying dimensional analysis 9

(1) The parameters on which the quantity to be determined depends
are ascertained;

(2) Those parameters whose dimensions are independent (so that their
numerical values can change independently of one another when
the fundamental units of measurement are changed) are selected;
and then

(3) The relations being studied are transformed into relations between
dimensionless quantities.

The advantage of using dimensional analysis is that the number of
dimensionless quantities is smaller than the total number of dimensional
quantities between which we are searching for a relationship. Once again,
we find that the difference between the total number of dimensional
parameters and the number of dimensionless parameters is equal to the
number of dimensional parameters with independent dimensions.

0.2 Assumptions underlying dimensional analysis

However, the apparent simplicity of the above procedure is illusory. In
fact, it is most effective when the problem is in the end reduced to de-
termining a constant or a function of one dimensionless variable. This is
why it is important to restrict oneself to the minimum necessary number
of parameters when finding out on which of them the quantity to be de-
termined depends. Moreover, none of the essential parameters may be
left out. How should we proceed here, especially in those cases where we
do not have a mathematical formulation for the problem for instance, in
turbulence?

We shall now illustrate the real conceptual difficulties that arise in
doing this, using the following apparently very similar example. Namely,
consider the steady uniform motion of a thin plate in a fluid (Figure
0.2(6)). In this case the effects of compressibility can be neglected for
small enough values of the Mach number whereas viscosity effects are
essential. Then the drag force / (per unit width) will depend on the
velocity U with which the plate moves, the plate length /, and the fluid's
properties, its density p and its kinematic viscosity v\ so

f = f(p,U,l,v). (0.8)

Repeating the discussion from the preceding example, this relation can
also be reduced to the form (0.6), where now

n ^ n
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10 0. Introduction

Thus, the problem has again been reduced to one of determining the
function of one variable II(IIi). If the dependence on kinematic viscos-
ity were not essential, the problem would be reduced to one of deter-
mining a single constant, as in the first example: a clear gain. How
can one determine that a certain governing parameter is not essential?
The reasoning very often (it could even be said, usually) goes like this.
If the dimensionless parameter III corresponding to some dimensional
parameter is either very small or very large compared to unity, it may
be assumed to be not essential, and the function n(IIi) can be assumed
to be a constant (or, in general, when there are several dimensionless
parameters IIi, n2 , ..., a function of one fewer arguments).

A very strong assumption, which is usually not mentioned, and which
is satisfied in some cases and not in others, is in fact being made when
reasoning along these lines. Namely, the function n(IIi) is assumed to
approach a finite, non-zero limit at either large or small III (i.e., as IIi
goes to either zero or infinity): 11(0) = C o r II(oo) = C. If it is in fact
the case and the parameter 111 is sufficiently large or sufficiently small,
the equation II = II(IIi) can, to the required accuracy, be written as a
simpler relation similar to (0.2):

n = c. (o.io)
This is precisely the situation that obtains in the motion of a sphere at
high velocity (see Figure 0.4): to sufficient accuracy, the function Ti(U/c)
is constant for ratios U/c greater than four, and so for large velocities
f = Cp U2D2.

However, it is obvious that this is far from always the case. If, for
example, for a certain process

II(IIi) = lnIIi orll(IIi) =s inn x (0.11)

(which obviously cannot be excluded in a general discussion), it is not
permissible to replace the function by a constant, no matter how large
or small the parameter IIi is. That is, no matter how large or small
the parameter IIi, the assumption that a particular dimensional param-
eter may be neglected is a strong hypothesis that must be supported by
experiment, numerical calculation, or (at least) the intuition of the inves-
tigator. However, since dimensional analysis is normally used only when
we cannot obtain a more complete solution to the problem, this means
that we can rarely answer in advance the subtle question of whether
the function II(IIi) has a non-zero limit as IIi goes to zero or infinity.
Moreover, there is yet another, rather insidious situation that may arise
here. It is illustrated by the example of plate motion considered above.
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0.2 Assumptions underlying dimensional analysis 11

Let us make the same assumption of a finite non-zero limit at large II i,
i.e. at large velocities or small viscosities. We then obtain a limiting
relation in the form (0.10), i.e.

/ = const pU2l. (0.12)

In fact, however (see chapter 6), the function n(IIi) in this case ap-
proaches zero at large III, according to

11 = c o n s t / y ^ , (0.13)

so, for large III, the relation (0.8) can be represented in the form

n* = C, where II* = f / pU^2{lv)1'2 (0.14)

whence

/ = const pUV2{lv)lt2. (0.15)

So, we have obtained scaling laws identical in form to (0.2) and (0.10).
However, although the relation for II* has in principle the same mono-
mial form as II, it differs from II in two important respects. First,
the powers in (0.14) cannot be determined from simple considerations,
that is, an analysis of the dimensions of the quantities in the problem.
Second, in contrast with the sound velocity c in the first example, the
parameter v remains in (0.14) and (0.15). Thus the simplification that
has occurred here is no longer due to dimensional analysis alone but to
a special property of the problem being studied: the existence of the
power-law representation (0.13) of the function II for large EEi.

We shall now give one more example (this time, geometric) of this
type of situation. Consider two continuous curves. One of them (Figure
0.5) is a normal circle. We inscribe a regular n-gon with side length 77 in
it. The perimeter of this inscribed polygon, Ln obviously depends only
on the diameter of the circle d and side length 7?:

Lv = f(d,ri). (0.16)

Proceeding in much the same way as in the previous examples, we trans-
form this relation, using dimensional analysis, to the form (0.6),

where this time II = Lv/d, IIi = 77/d, whence

Lv = dU{V/d).

Let the number of sides of the polygon, n, approach infinity, i.e., let
the side length 7? approach zero. From elementary geometry, it is known
that the perimeter of the inscribed polygon approaches the finite limit
Lo = nd (which is, in fact, adopted as the circumference of a circle).
Thus, as 7)1 d —• 0, the function H(rj/d) approaches a finite limit equal
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12 0. Introduction

Figure 0.5. A circle with inscribed regular polygons. As the number of
sides in the polygon approaches infinity, and the side length approaches
zero, the perimeter of the polygon approaches a finite limit.

(a)

(c)

(b)

Figure 0.6. A fractal curve - the Koch triad, (a) The original triangle,
(6) the elementary operation, and (c) the broken line that approximates
the fractal curve for a large number of sides. As the number of sides
increases, the perimeter of the broken line approaches infinity according
to a power law.

to 7T. Therefore, for sufficiently small 77/d, it is possible to neglect the
influence of the parameter 77 and to assume that the following relation
is satisfied to the required accuracy for polygons with a large number of
sides:

II = const = n, (0.18)

i.e., Ln = nd.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.003
https://www.cambridge.org/core


0.2 Assumptions underlying dimensional analysis 13

The second curve is obtained in the following way' (Figure 0.6). An
equilateral triangle of side d is taken, and each of its three sides is sub-
jected to the following elementary operation: the side is divided into
three sections, and the middle section is replaced by two sides of an
equilateral triangle constructed using it as a base. The sides of the poly-
gon obtained are once again subjected to the same elementary operation,
and so on to infinity. Obviously, the side length of this polygon at the
nth stage, r\ is equal to d/3n, and the perimeter of the entire polygon,
Lrj, is equal to 3d(4/3)n. Equations (0.16) and (0.17) clearly also hold
in this case. However, it can easily be shown that (since it is obvious
that n = log(d/77)/log3)

Lv = 3<2[10n(log4-log3)] = 3d[10aIogW^] = Zd(d/ri)a , (0.19)

where

a = ( Iog4-log3)/ log3~0.26. . . .

Comparing (0.19) and (0.17), we find that

U(V/d) = 3(V/d)-a (0.20)

(i.e., the length of the curve LQ is infinite in this case, so that only the
empty relation II = oo is obtained in going to the limit rj/d —> 0). Thus,
if one is interested in the perimeter of the polygon for large n, it is
not possible to pass to the limit and use a limiting relationship such as
(0.18). At the same time, equation (0.19) can be rewritten in the form
II* = C, setting

The parameter II* is (like II) a power-law combination of the parame-
ters that determine it. However, the structure of (0.21) is not determined
by dimensional considerations alone; we do not know the number a be-
forehand as we did in the case of a circle. Furthermore, unlike the case
of a circle (equation (0.18)), the parameter rj remains in the resulting
equation no matter how small rj/d is. Therefore, the length of the in-
scribed broken line, L^ — 3dl+a/rja, turns out to be proportional to

Curves and, in general, geometric objects of this type are called fractals, as sug-
gested by Mandelbrot (1975). They were intensively studied by mathematicians
at the beginning of this century. Mandelbrot in his papers, and especially in his
illuminating collections of essays (Mandelbrot, 1975, 1977, 1982) has revived inter-
est in such geometric objects by showing that they provide adequate descriptions
of important objects in nature. The curve shown in Figure 0.6 was constructed by
von Koch (1904) and is called the Koch triad. We will discuss such objects and
the whole concept at some length in chapter 12.
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14 0. Introduction

dl+a rather than d, and the length of a segment of this broken line, 7?
remains in the constant of proportionality.

The discussion presented above shows that, for a given quantity of
interest, correctly choosing the parameters on which it depends and cor-
rectly evaluating the nature of this dependence are what really come
first, rather than the formal procedure behind dimensional analysis. We
should not assume that too many of the parameters are essential, since
dimensional analysis then becomes ineffective. However, only with ex-
treme caution should one discard particular parameters as nonessential
merely because corresponding dimensionless parameters are either large
or small.

Dimensional analysis and the general concepts of dynamical similarity
are presented in chapter 1. Our exposition is essentially different from
those available in the literature, although it follows in its general ideas
the excellent book of P.W. Bridgman (1931), undeservedly forgotten in
recent years.

0.3 Self-similar phenomena

A time-developing phenomenon is called self-similar if the spatial dis-
tributions of its properties at various different moments of time can
be obtained from one another by a similarity transformation.' Estab-
lishing self-similarity has always represented progress for a researcher:
self-similarity has simplified computations and the representation of the
properties of phenomena under investigation. In handling experimen-
tal data, self-similarity has reduced what would seem to be a random
cloud of empirical points so as to lie on a single curve or surface, con-
structed using self-similar variables chosen in some special way. The
self-similarity of the solutions of partial differential equations has allowed
their reduction to ordinary differential equations, which often simplifies
the investigation. Therefore, with the help of self-similar solutions re-
searchers have attempted to envisage the characteristic properties of
new phenomena. Self-similar solutions have also served as standards in
evaluating approximate methods for solving more complicated problems.

The appearance of computers changed the general attitude toward
self-similar solutions but did not decrease the interest in them. Previ-
ously it had been considered that the reduction of partial to ordinary

The fact that we identify one of the independent variables with time is of no
significance.
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0.3 Self-similar phenomena 15

differential equations simplified matters, and hence self-similar solutions
had attracted attention, first of all, because of the simplicity of obtaining
and analyzing them. Gradually, however, the situation grew more com-
plicated, and in many cases it turned out that the simplest method of
numerically solving boundary-value problems for the systems of ordinary
equations that resulted from the construction of self-similar solutions was
computation by the method of stabilization of the solutions of the origi-
nal partial differential equations. Nevertheless, self-similarity continued
as before to attract attention as a profound physical fact indicating the
presence of a certain type of stabilization of the processes under investi-
gation, valid for a rather wide range of conditions. Moreover, self-similar
solutions were used as a first step in starting numerical calculations on
computers. For all these reasons the search for self-similarity was un-
dertaken at the outset, as soon as a new domain of investigation was
opened up.

Instructive examples of self-similarities are given by several highly ide-
alized problems in the mathematical theory of filtration - slow ground-
water motion in porous media.

Suppose that, in a porous stratum over an underlying horizontal im-
permeable bed, at an initial instant t = 0 a finite volume of water V
is supplied instantaneously by a well of very small, let us say infinitesi-
mally small, radius (Figure 0.7). Then at time t the local height h of the
ground water mound formed in such a way will be given (Barenblatt,
1952, see the details below in chapter 12) by

"I

\ { 0 - 2 2 )

for r < 77 = v^CQ^)1/4, and by h = 0 for r > 77. Here

K = M , Q=V (0.23)

where fc, m are the permeability and porosity (the relative volume occu-
pied by the pores) of the stratum which are statistical geometric prop-
erties of the porous medium; p and \i are the water density and dynamic
viscosity, g is the gravitational acceleration, and r is the distance from
the well of the point at which the observation is made.

The form of the relation (0.22) is instructive: there exist a mound
height scale ho(t) and a linear scale ro(£), both depending on time,

(0-24)

such that the spatial distribution of the ground-water mound height,
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Porous
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t -(a)
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i— initial
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Impermeable bed

Part of water
- retained by capillary
i forces

Figure 0.7. (a) A ground-water mound is formed rapidly through a well
of small radius, (b) If capillary forces are negligible the mound volume
stays constant as the mound height decreases, (c) When part of the water
is retained by capillary forces the mound volume decreases with time.

ho(t) \ro(t).

(8 - £2)/16 for £ < f, =
0 for £ > (t

(0.25)

when expressed in these scales, ceases to depend on time:

h

where

and

The example just considered is typical. Suppose that we are faced with
a mathematical physics problem in two independent variables r and t,
requiring the solution of a system of partial differential equations. In this
problem, self-similarity means that we can choose variable scales Uo(t)
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0.3 Self-similar phenomena 17

and 7*0 (£) such that in the new scales the properties of the phenomenon
can be expressed by functions of one variable:

u = iio(t)U(0, f = r/ro(*). (0.26)

The solution of the problem thus reduces to the solution of a system of
ordinary differential equations for the vector-function U(£).

It was natural to attempt to clarify the nature of self-similarity. Here
at a certain stage the attraction of dimensional analysis played an es-
sential role. Indeed, let us apply dimensional analysis to the idealized
ground-water motion problem considered above. The total ground-water
mound head u = pgh satisfies the Boussinesq equation (Polubarinova-
Kochina, 1962, see also further discussion, in chapter 12),

dtu = a-dr (rdru
2) a = — = — , (0.27)

r v ; 2ra/x pg
under the initial condition that the groundwater is concentrated initially
in a well of infinitesimally small radius

u( r ,0 )=0 ( r ^ O ) ; u(oo,*) = 0,
(0.28)

2-Kvn I ru(r,0)dr = pgV
Jo

Of course, such an initial ground-water head distribution u(r, 0) is actu-
ally given by a generalized function. It is evident from the mathematical
statement of the problem, (0.27), (0.28), that the total head u depends
on the time £, on the quantities a and pgV/27rm, and on the distance r
of the observation point from the well. All these quantities are dimen-
sional and their numerical values depend on the choice of units of mass,
length, and time. Dimensional analysis gives us as before the relation
(0.6), where this time

u(aty . W
" (PQQ)1'2 Q1'2 '

(PQQ)1'2 Q1'2 ' (pgQaty/* {
Q = V/2nm and K — apg, and from this we get the relation (0.25), i.e.,

Thus, we have in this case succeeded in establishing the self-similarity
of the solution, and in determining the scales ho(t) and ro(t) using only
dimensional analysis.

When we substitute the relations (0.30) into the partial differential
equation (0.27) we obtain for the function <1> an ordinary differential
equation
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18 0. Introduction

Furthermore, from (0.28) at £ = oo we have

11(00, t) = pgQl/2(nt)-l/H(oo) = 0,

whence $(00) = 0. It is easy to find a bounded solution to (0.31) under
the condition <3>(oo) = 0 to within a constant:

U t (032)
The constant £/ is determined as follows. The solution (0.30) to the
problem considered must satisfy the law of conservation in time of the
total volume of water:

Q1/2[Q1/2(Kt)1/2]27rm

= const V
where, according to (0.32),

const =jTe*(OdC = ^ . (0.34)

However, the constant must be equal to unity, because the initial amount
of water was equal to V. Therefore we obtain £f = \/8, and this com-
pletes the solution to the problem.

The analysis of the idealized problem presented here is typical. In
many other cases too, considerations of dimensional analysis turn out to
be quite sufficient for proving the self-similarity of the solution starting
from the formulation of the mathematical problem, and for obtaining
expressions for the scales and the self-similar variables. We shall see
later, however, that self-similar solutions for which dimensional analysis
is sufficient to establish the self-similarity are relatively rare; as a rule
the situation is more complicated.

0.4 Self-similar solutions as intermediate asymptotics.
The solutions of the first and second kind.

Renormalization group.

Self-similarities, even as understood from the point of view of dimen-
sional analysis, have been regarded by the majority of researchers merely
as isolated exact solutions of special problems - elegant, sometimes
rather useful, but all the same limited in their significance as proper-
ties of physical theories. It has only gradually been realized that the
significance of these solutions is much broader. In fact they do not
merely describe the behaviour of physical systems under certain special
conditions. They also describe the 'intermediate-asymptotic' behaviour
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0.4 Self-similar solutions as intermediate asymptotics 19

of solutions of wider classes of problem in the range where these solutions
no longer depend on the details of the initial and/or boundary condi-
tions, yet the system is still far from being in an ultimate equilibrium
state.

The concept of intermediate asymptotics has an important general
significance, and not only in mathematical physics. For instance, this
concept is always used in our perception of visual art. We have to look
at paintings at distances great enough not to see the brush-strokes, but
at the same time small enough to enjoy not only the painting as a whole
but also its important details; think of van Gogh's work, for example.
(Remember also Gulliver's Travels by Jonathan Swift (1992). Gulliver's
impressions of the fine details of the skin of a giant Brobdingnag beauty,
who had the custom of putting him upon her breast, are especially in-
structive from this viewpoint. It is clear from his description that her
admirers restricted themselves to an intermediate-asymptotic perception
of her!) As far as I know the concept of intermediate asymptotics was
formally introduced into mathematical physics by Ya.B. Zeldovich and
myself (Barenblatt and Zeldovich, 1971, 1972; see also Barenblatt, 1959b
and Zeldovich and Raizer, 1966, 1967), although it was used implicitly
long before this.

It is precisely the consideration of self-similar solutions as interme-
diate asymptotics that allows one to understand properly the role of
dimensional analysis in establishing self-similarity and determining self-
similar variables. As it turns out, dimensional considerations are far
from always sufficient to establish self-similarity. What is more, one can
even assert that as a rule they are not.

Zeldovich (1956) first explicitly distinguished a particular class of self-
similar solutions for which dimensional analysis is insufficient for estab-
lishing self-similarity and determining self-similar variables. He called
these self-similar solutions of the second kind. He had in mind also the
solutions considered by Guderley (1942), Landau and Staniukovich (see
Staniukovich, 1960), and von Weizsacker (1954). In the book of Zel-
dovich and Raizer (1967) , and also in the important paper by Brushlin-
sky and Kazhdan (1963), a detailed analysis was given of the solutions
of this type known at that time.

To understand what constitutes the intrinsic nature of the classifica-
tion of self-similarities in this, the simplest, case, one can modify some-
what the problem of ground-water motion considered above. Thus, we

The term 'self-similarity of the second kind' was used by Ya.B. Zeldovich in his
earlier papers and in Zeldovich and Raizer (1967) in a narrower sense than that
in which we use it here. Zeldovich himself agreed with such an extension of the
definition; see Barenblatt and Zeldovich (1971, 1972).
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20 0. Introduction

assume that as the mound spreads from the initially occupied space some
fixed part of the groundwater remains there. (The solution to this prob-
lem discussed below and in chapter 12, is given in Kochina, Mikhailov,
and Filinov (1983); the work was performed under the author's super-
vision.)

In this case the following equation for the mound head u = pgh is
obtained instead of (0.27):

dtu = ai-dr(rdru
2) (dtu < 0),

r (0.35)
dtu = a-dr(rdru

2) (dtu > 0)
T

where
K h Ki k

pg 2m fi pg 2ra(l — (Jo)/i
and do is the fraction of the porous volume assumed to remain water-
filled, by assumption this fraction is constant. At first sight it appears
that on applying dimensional analysis one can construct a solution to
equation (0.35) for an instantaneous line-concentrated source with fti ^
ft in virtually the same way as for the classical Boussinesq equation
(0.27) with K\ = ft. In fact, to the parameters £, ft, Q ,r governing the
solution of (0.27) there is added in this case only an additional constant
parameter fti of the same dimension as ft. Hence it seems at first glance
that the solution can be represented in the same form as (0.30) and that
the additional constant dimensionless parameter fti/ft does not change
the situation. The reader will see in chapter 12, however, that for ni ^ ft
such a solution simply does not exist!

The resolution of this apparent paradox from a general viewpoint is
also instructive, and we shall present this a little further on in the text;
a detailed treatment can be found in chapter 12. We are actually not
interested in the solution of the idealized prolem of a line-concentrated
instantaneous water source, but rather in the asymptotic behaviour for
large times of the solution corresponding to the discharge of a quantity
of water at the initial instant in a cylinder of small but finite radius r*.
The problem then involves this new parameter r*, having the dimension
of length, and a new dimensionless parameter

n2 =
The parameter r* immediately spoils the self-similarity of the solution,
since the solution can no longer be expressed as a function of one vari-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.003
https://www.cambridge.org/core


0.4 Self-similar solutions as intermediate asymptotics 21

able, but has the form

tt = " ( | ^ * ( * • *£) • (0-37)
Just as for K\ = K, we are interested in the behaviour of the solution

for small 77. However, for K\ / K it is impossible simply to pass to the
limiting form of the solution corresponding to 77 = 0 in (0.37). The
reason for this is trivial: it turns out that for small 77 the function $
does not tend to a finite non-zero limit; instead, we have

where tp is a finite quantity and a is a constant that depends only on
K,I/K; it is non-zero for K\ ^ tt, but equal to zero for K\ = K. If one
tries to pass to the limit 77 —> 0 with «i ^ «, then on the right-hand
side of (0.37) and (0.38) one gets either zero or infinity depending on
the sign of a, i.e., one gets an empty relation. However, we do not in
fact need the limit, so, without passing to the limit, we substitute the
asymptotics (0.38) into the general representation (0.37) of the solution,
while regarding 77 as small, i.e., the time as large or r* as small. Thus
we obtain a self-similar asymptotic representation of the solution of the
original non-self-similar problem, valid for large t or small r*r

A r

-_* (0.39)
, B~>/A.

Equation (0.39) shows that the representation for large times is given
not by a solution of linear-source type but by another self-similar solu-
tion. Indeed, let us now decrease the size r* of the region of the initial
water discharge. It is evident that the solution is such that we cannot
preserve the magnitude of Q as was the case for GQ = 0, K\ = K. On
the contrary, we must vary the output Q of the source in such a way
that the product Qr*a ~ preserves its magnitude. Physically it is
clear: when reducing r* we have to leave some water in the pores when
reaching the previous size of the initial discharge region.

If we now substitute the relation (0.39) for the solution into equation
(0.35) we obtain for the function (p an ordinary differential equation
containing a as a parameter. It turns out that for arbitrary a this
equation has no solution with the necessary properties. However, for
each value of the parameter K\/K there exists one value of a for which
the required solution of the ordinary differential equation does exist.
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22 0. Introduction

Thus, to determine cp and the parameter a one obtains a nonlinear
eigenvalue problem. Under such a direct construction of the self-similar
intermediate asymptotics the constant A remains undetermined. It is
impossible to find it from an integral conservation law when ACI ^ AC
since in this case the equation for bulk water balance assumes the non-
integrable form

~ [°° ru{r, t)dr = («i - K)[rdru
2]r=ro , (0.40)

dt Jo

ro(t) being the coordinate of the point at which, at the given moment,
the derivative dfU vanishes.

Thus, the behaviour of the solution for large t turns out to be self-
similar also for «i ^ «, but the self-similarity here is not the same
as for K\ = K. First of all, the parameter r* with the dimension of
length, which spoils the self-similarity of the original problem, does not
disappear from the limiting solution. Further, dimensional analysis does
not in this case allow us, starting from the mathematical formulation of
the problem to find the self-similar variables or to establish the self-
similarity of the limiting solution; the fact is that the dimension of the
constant A is unknown in advance and must be found in the course of
the solution. At the end, the constant A turns out to be undefined. To
find it one must 'match' the constructed solution with the solution to
the original non-self-similar problem, for example by means of numerical
computation.

A peculiar situation arises also with similarity laws. Dimensional anal-
ysis allows one to obtain to within a constant factor the law of attenua-
tion of the ground-water mound's maximum height in the classical case
K\ = K. In fact the height at the centre depends only on the quanti-
ties pgQ, AC, and t, from which one can construct only one combination
with the dimension of height, QlI2{nt)~1/2. It is impossible to form a
dimensionless combination from these quantities, since their dimensions
are independent. It is therefore clear that

Q 1 / 2

* W x = p g h m & x = c o n s t p g / 2 . (0.41)

According to the solution given above, the constant here equals 1/2. A
naive application of dimensional analysis, i.e., the assumption of water
discharge at a line, would lead to the same similarity law also for K\ ^ AC,
although in this case, as (0.39) shows, such similarity law does not hold.
In fact,

Q(2-a)/4ra
Umax = fKt)(2+a)/4
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0.4 Self-similar solutions as intermediate asymptotics 23

so that although the law of attenuation is also a power law, one cannot
now obtain the exponent by dimensional analysis. Besides, the radius of
the initial discharge region, r*, remains in the resulting relation (0.42).
The situation is that until a non-self-similar problem has been solved
in its entirety, it is impossible, generally speaking, to say in advance,
whether one can use dimensional analysis to analyse the similarity laws.

It is now easy to understand what happens in the general case. Con-
sider a physical relationship

a = /(ai , . . . ,a f c ,6i ,62) . (0.43)

Here the arguments a i , . . . a^, have independent dimensions. That means
that by properly choosing the fundamental units it is possible to vary
arbitrarily and independently the values of ai, . . . , a& so that

a'x=Aiai, . . . , a'k = Akak. (0.44)

Here A\, . . . , Ak are arbitrary positive numbers. At the same time the
dimensions of a, &i, 62 can be represented as power monomials in the
dimensions of 01, . . . , ak:

[6,]= [a1r.. .[af cp,
, (0.45)

(We have restricted ourselves to two arguments with dependent dimen-
sions, 61, 62? to show the main idea.) The relations (0.45) mean that,
after the transformation (0.44), the values of a, 61, 62 will transform as

(0.46)

a' = A\...Ar
ka.

The transformations (0.44), (0.46) form a group of continuous trans-
formations, and the positive numbers A\, . . . , Ak are the parameters of
this group. The fundamental physical covariance principle claims that
all physical laws can be represented in a form equally valid for all ob-
servers. This principle is valid for observers using different magnitudes
of basic units. Therefore the relationship (0.43) can be represented as a
relation between the invariants of the group (0.44), (0.46):

n = $ (n i ,n 2 ) (0.47)

where the dimensionless invariants n, IIi, n 2 are

ni = ̂ r^pr.n2 = 7 r ^ ? 7 , n = ^ f . (0.48)
al ak al ak al ak

Returning in (0.47) to dimensional variables we obtain that the func-
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tion / in (0.43) possesses the fundamental property of 'generalized ho-
mogeneity':

= a?
Self-similar solutions always correspond to idealized problems in which

the parameters of the problem that have the dimensions of the indepen-
dent variables (a characteristic length, a characteristic time, etc.) are
equal to zero or infinity. In the non-idealized case, the arguments would
include the ratios of the independent variables to these parameters, and
there would be no self-similarity. This means that upon passage from
the non-idealized problem statement, corresponding to finite values of
the parameters, to the idealized one, the dimensionless parameter II2
can tend to zero (or infinity). But what will occur if the dimension-
less parameter II2, corresponding to the dimensional parameter 62, is
small but finite (or large but finite)? This question is important, not
only for self-similar solutions but in every physical investigation, be-
cause in mathematical models we always drop certain factors considered
as inessential.

In principle three possibilities are available.

(1) As II2 —* 0 the function $ tends to a finite limit different from
zero.

(2) As n 2 —> 0 such a finite non-zero limit of the function $ does
not exist; however the function $ has a power-law asymptotics
possessing the property of generalized homogeneity:

(^). (0.50)

(3) Neither (1) nor (2) holds: as II2 —* 0 the function <3> has no finite
limit different from zero and no power-type asymptotics.

In case (1), for sufficiently large (or small) II2 one can simply replace
the function $ by its limiting expression, corresponding to II2 equal to
zero (or infinity). Here the number of its arguments is diminished, and
the values of the corresponding dimensional parameters (for example,
the size r* of the domain of the initial discharge of water for K\ — K)
turn out to be immaterial and drop out of consideration. This case is
called complete similarity or similarity of the first kind in the parameter

n2.
In case (2) the relation (0.47) can for small (or large) II2 be rewritten

using (0.50) in the form
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where

2 &i 1 ' ' ' ^k- 1 1 ^2*

1 Ft?2
 nPi-&2P2 nri-a2r2t.a2

Thus in this case too the number of arguments in (0.47) is reduced. The
parameters II*, n | are completely analogous in their structure to com-
mon similarity parameters, being dimensionless combinations of pow-
ers. The difference, however, consists in two facts: first, the quantities
II*, rij retain the dimensional parameter that originally spoiled the self-
similarity, and second, they cannot be obtained by dimensional analysis.
In such cases one speaks of incomplete similarity or similarity of the sec-
ond kind in the parameter II2.

Finally, in case (3) the parameter II2 remains essential no matter how
large or small it is and no similarity in it ensues. The nature of the
classification of self-similar solutions becomes transparent now. If the
passage from the solution of the non-self-similar original problem to a
self-similar intermediate asymptotics corresponds to complete similarity
in a dimensionless parameter that spoils self-similarity in the original
problem, the self-similar solution is a solution of the first kind. If the
passage corresponds to incomplete similarity, the self-similar solution is a
solution of the second kind. The real difficulty is that similarity methods
usually apply when the solution of the complete non-self-similar problem
is unknown. Hence, a priori it is impossible to say which type of self-
similarity we are dealing with.

Complete similarity in the parameter II2 means that in addition to
the transformation group (0.44), (0.46) that forms the basis of the di-
mensional analysis, the mathematical model possesses at small II2 an
additional property of invariance with respect to the additional group

a[ = ai , . . . , ak=ak; b[ = bx, b2 = Bb2 , a
f = a (0.52)

where 0 < B < 1 is the group parameter. Incomplete similarity (case
(2)) is equivalent to the statement that at small II2 the mathemati-
cal model possesses an additional invariance with respect to the more
complicated group

a^ = a\, . . . , ak = ak , o^ = B c?i, o2 — r>b2 , a = t> xa (U.oo)

which is a simple example of the renormalization group. Indeed, the
quantities 61, a do not remain invariable as in (0.52); they are renormal-
ized.

In a previous book by the author (Barenblatt, 1979) the identity of the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.003
https://www.cambridge.org/core
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concepts of scaling, widely used by physicists in quantum-field theory
and the theory of phase transitions, and of self-similarity of the second
kind (incomplete similarity) was noted. In a series of remarkable papers
by N. Goldenfeld, O. Martin and Y. Oono and their students (Golden-
feld, Martin, and Oono, 1989, 1991; Goldenfeld, Martin, Oono and Liu,
1990; Chen, Goldenfeld, and Oono, 1991; Chen and Goldenfeld 1992),
summarized in a book by Goldenfeld (1992), the connection between the
two different approaches to scaling, that is, the renormalisation group
used by physicists and the approach using intermediate asymptotics was
traced. Some basic problems solved previously by the intermediate-
asymptotic approach were solved by the renormalization group tech-
nique and vice versa. The renormalization group technique is presented
in chapter 6 both from the viewpoint of intermediate asymptotics, de-
veloped in this book, and from the more traditional viewpoint.

0.5 Self-similarities and travelling waves

Clarification of the nature of self-similarity of the second kind was aided
by the establishment of a close connection between the classification of
self-similarities and of nonlinear travelling waves (Barenblatt and Zel-
dovich, 1971, 1972). Travelling waves are solutions of the form

ti = /(C - AT + c) (0.54)

(£ being the spatial and r the temporal variable, A the constant speed of
propagation of the wave, and c a constant), for which the distributions of
properties at different moments of time are obtained from one another
by means of a simple translation. It is well known (see, e.g., Sedov
1971) that travelling waves are divided into two types. For waves of the
first type the speed of propagation A is found from the conservation laws
alone and is independent of the internal structure of the wave. Examples
of such waves are shock waves in gas dynamics and detonation waves.
For waves of the other type the speed of propagation A is found from the
condition for the existence of a global solution describing the internal
structure of the wave, and is completely determined by that structure.
An example of a wave of this type is a flame wave or the propagation
wave of a gene having an advantage in the struggle for existence. It
should be noted that consideration of the problem of the propagation of
an advantageous gene in the classical papers by Kolmogorov, Petrovsky,
and Piskunov (1937) and by Fisher (1937) was in fact the first example
of analysis of the intermediate asymptotics of nonlinear problems.

We now set £ = lnx, r = lnt and c — —\VLA, in (0.54). Then this
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relation is transformed into a self-similar form:

By this transformation the classification of self-similar solutions into so-
lutions of the first and second kind is put into one-to-one correspondence
with the classification of travelling waves mentioned above.

Self-similarity is connected with a generally nonlinear eigenvalue prob-
lem, the existence of a solution of which guarantees the existence of a
global self-similar intermediate asymptotics. A non-trivial question ap-
pears concerning the set of eigenvalues in this problem - the spectrum
determined by the possible values of the exponents in the self-similar
variables. Everything is simple if the spectrum consists of one point,
as in the ground-water mound problem considered above. But if the
spectrum consists of more than one point, in particular if it is continu-
ous, the exponents in the self-similar variables can depend on the initial
conditions of the original non-self-similar problem. A remarkable exam-
ple here is provided by the self-similar interpretation of the well-known
Korteweg-de Vries equation (for details see chapter 7).

Recently, ideas connected with the concepts of incomplete self-similar-
ity and self-similar solutions of the second kind have been used to solve
many important problems, which are of independent, non-illustrative
interest. Some of these problems are considered below in chapters 9-
12. Of notable importance is the analysis of incomplete self-similarity
in the theory of turbulence and geophysical fluid dynamics, where a
complete mathematical formulation of the problem is lacking at present
and the comparison of similarity laws with experimental data is therefore
of decisive importance in estimating the character of the self-similarity.
For the convenience of readers we sometimes present a brief discussion
of the basic models involved. Also, the book has many entries: after
reading this Introduction the reader may turn immediately to specialized
chapters.

We have outlined here the underlying ideas in this book; in what
follows the reader is invited to step further into the fascinating world of
self-similarities and intermediate asymptotics.
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Dimensions, Dimensional
Analysis and Similarity

1.1 Dimensions

1.1.1 Measurement of physical quantities, units of measurement
Systems of units

We say without thinking that the mass of water in a glass is 200 grams,
the length of a ruler is 0.25 metres, the half-life of radium is 1 600
years, the speed of a car is 60 miles per hour. In general, we express all
physical quantities in terms of numbers; these numbers are obtained by
measuring the physical quantities. Measurement is the direct or indirect
comparison of a certain quantity with an appropriate standard, or, to
put it another way, with an appropriate unit of measurement. Thus, in
the examples discussed above, the mass of the water is compared with
a standard - a unit for the measurement of mass - the gram; the length
of the ruler is compared with a unit for the measurement of length
- the metre; the half-life of radium is compared with a unit for the
measurement of time - the year; and the velocity of the car is compared
with a unit for the measurement of velocity - the velocity of uniform
motion in which a distance of one mile is traversed in a time equal to
one hour.

The units for measuring physical quantities are divided into two cate-
gories: fundamental units and derived units. This means the following.

A class of phenomena (for example, mechanics, i.e., the motion and
equilibrium of bodies) is singled out for study. Certain quantities are
listed, and standard reference values for these quantities - either nat-
ural or artificial - are adopted as fundamental units; there is a certain
amount of arbitrariness here. For example, when describing mechanical
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phenomena, we may adopt mass, length, and time standards as the fun-
damental units, though it is also possible to adopt force, length, and time
standards. However, these standards are insufficient for the description
of, for example, heat transfer. Additional standards also become neces-
sary when studying electromagnetic phenomena, economic phenomena'
etc.

Once the fundamental units have been decided upon, derived units are
obtained from the fundamental units using the definitions of the physical
quantities involved. These definitions always involve describing at least
a conceptual method for measuring the physical quantity in question.
For example, velocity is by definition the ratio of the distance traversed
during some interval of time to the size of that time interval. Therefore,
the velocity of uniform motion in which one unit of length is traversed
in one unit of time can be adopted as a unit of velocity. In exactly the
same way, density is by definition the ratio of some mass to the volume
occupied by that mass. Thus, the density of a homogeneous body that
contains one unit of mass per unit of volume - a cube with a side equal
to one unit of length - can be adopted as a unit of density, and so on.
We see that it is precisely the class of phenomena under discussion, i.e.,
the complete set of physical quantities in which we are interested that
ultimately determines whether or not a given set of fundamental units
is sufficient for its measurement. For example, it is impossible to define
a unit for the measurement of density using only the fundamental units
of length and time. It becomes possible to define such a unit by adding
a unit of mass.

A set of fundamental units that is sufficient for measuring the prop-
erties of the class of phenomena under consideration is called a system
of units. Until recently, the cgs (centimetre-gram-second) system, in
which units for mass, length, and time are used as the basic units, and

t 8
one gram (g) is adopted as the unit of mass, one centimetre8 (cm) is

Recently the analysis of economic and, especially, financial phenomena using the
traditional approaches of applied mathematics has attracted serious attention. For
such applications the correct measurement of the quantities involved is of prime
importance.
The gram is one-thousandth of the mass of a specially fabricated standard mass
which is carefully preserved at the Bureau of Weights and Measures in Paris.
The centimeter is one-hundredth of the length of a specially fabricated, carefully
preserved standard length - the metre. There is another, more precise definition
of this standard based on a natural process: 1 650 736.73 wavelengths in vacuo of
the radiation corresponding to the transition between the 2p10 and 5d5 levels of
the krypton 86 atom.
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30 1. Dimensions, Dimensional Analysis and Similarity

**
adopted as the unit of length, and one second (s) is adopted as the
unit of time, has customarily been used.

The unit of velocity in the system is the velocity of uniform motion in
which a distance of one centimetre is traversed in one second. This unit
is written in the following way: cm/s. The unit of density in the system
is the density of a homogeneous body in which one cubic centimetre
contains a mass of one gram. This unit is written in the following way:
g/cm3. This method of writing units is, to a certain extent, a matter
of convention: for example, the ratio cm/s cannot be thought of as a
quotient of the length standard - the centimetre - and the time stan-
dard - the second. Such a quotient would be totally meaningless: one
may divide one number by another, but not an interval of length by an
interval of time!

A system of units consisting of two units (a unit for the measure-
ment of length and a unit for the measurement of time, for example
the centimetre and the second) is sufficient for measuring the properties
of kinematic phenomena, while a system of units consisting of only one
length unit (for example, the centimetre) is sufficient for measuring the
properties of geometric objects.

On the other hand, in order to be able to measure the properties of heat
transfer in a flowing liquid or gas, the system of units for the measure-
ment of mechanical quantities must be supplemented by an independent
standard (the degree Kelvin (kelvin), a temperature standard, is conve-
nient for this purpose). We would require an additional standard, for
example, a unit for the measurement of current (the ampere) in order
to be able to measure electromagnetic phenomena, and so forth.

However, a system of units need not be minimal. For example, one
can use a system of units in which the unit of length is 1 cm, the unit of
time is 1 s, and the unit of velocity is 1 knot (approximately 50 cm/s).
However, in this case, the velocity will not be numerically equal to the
ratio of the distance traversed to the magnitude of the time interval in
which the distance was traversed. We shall discuss this important point
in greater detail below.

1.1.2 Classes of systems of units

Let us now consider, in addition to the cgs system, a second system, in

**
The second is, by definition, 1/86 400 of a mean solar day. A more precise def-
inition of the second is 9 192 621 770 periods of the radiation corresponding to
the transition between two hyperfine levels in the ground state of the caesium-133
atom.
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1.1 Dimensions 31

which 1 kilometre (= 105 cm) is used as the unit of length, 1 metric tonne
(= 106 g) is used as the unit of mass, and 1 hour (= 3600 s) is used as the
unit of time. These two systems of units have the following property in
common: standard quantities of the same physical nature (mass, length
and time) are used as the fundamental units. Consequently, we say that
these systems belong to the same class. To generalize, a set of systems of
units that differ only in the magnitude (but not in the physical nature)
of the fundamental units is called a class of systems of units. The system
just mentioned and the cgs system are members of the class in which
standard lengths, masses and times are used as the fundamental units.
The corresponding units for an arbitrary system in this class are as
follows:

unit of length = cm/L,

unit of mass = g/M, (1-1)

unit of time = s/T,
where L, M and T are abstract positive numbers that indicate the factors
by which the fundamental units of length, mass and time decrease in
passing from the original system (in this case, the cgs system) to another
system in the same class. This class is called the LMT class . The SI
system has recently come into widespread use. This system, in which
one metre (= 100 cm), is adopted as the unit of length, one kilogram
(= 1000 g) is adopted as the unit of mass, and one second is adopted
as the unit of time, also belongs to the LMT class. Thus, when passing
from the original system to the SI system, M = 0.001, L = 0.01, and
T= 1.

Systems in the LFT class, where units for length, force, and time are
chosen as the fundamental units are also frequently used; the fundamen-
tal units for this class are as follows:

unit of length = cm/L,
unit of force = kgf/F, (1.2)

unit of time = s/T.
The unit of force in the original system, the kilogram-force (kgf), is
the force that imparts an acceleration of 9.80665 m/s2 to a mass equal
to that of the standard kilogram. We emphasize that a change in the

The designation of a class of systems of units is obtained by writing down, in
consecutive order, the symbols for the quantities whose units are adopted as the
fundamental units. These symbols simultaneously denote the factor by which the
corresponding fundamental unit decreases upon passage from the original system
to another system in the same class.
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32 1. Dimensions, Dimensional Analysis and Similarity

magnitudes of the fundamental units in the original system of units does
not change the class of systems of units. For example, the class where
the units of length, mass and time are given by

m kg hr

TJ M' T"
is the same as that defined in (1.1), LMT. The only difference is that
the numbers L, M and T for a given system of units (for example, the
SI system) will be different in the two representations of the LMT class:
in the second representation, we obviously have L = 1, M — 1 and
T = 3600.

1.1,3 Dimensions

As we mentioned in the Introduction, if the unit of length is decreased
by a factor L, and the unit of time is decreased by a factor T, the new
unit of velocity is a factor LT~l smaller than the original unit, so that
the numerical values of all velocities are increased by a factor LT~l.
Upon decreasing the unit of mass by a factor M and the unit of length
by a factor L, we find that the new unit of density is a factor ML~3

smaller than the original unit, so that the numerical values of all densities
are thus increased by a factor ML~3. Other quantities may be treated
similarly. The changes in the numerical values of physical quantities
upon passage from one system of units to another system within the same
class are determined by their dimensions. The function that determines
the factor by which the numerical value of a physical quantity changes
upon passage from the original system of units to another system within
a given class is called the dimension function, or dimension*, of that
quantity. It is customary (following a suggestion of Maxwell) to denote
the dimension of a quantity 4> by [<f>]. We emphasize that the dimension
of a given physical quantity is different in different classes of systems
of units. For example, the dimension of density p in the LMT class is
[p] = ML~3\ in the LFT class, it is [p] = L~4FT2. Quantities whose
numerical values are identical in all systems of units within a given class
are called dimensionless; clearly, the dimension function is equal to unity
for a dimensionless quantity. All other quantities are called dimensional.

The following definition can also be found in the literature: the rela-
tion that describes a derived unit for a certain quantity in terms of the
fundamental units is called the dimension of that quantity. The defi-
nition introduced above is more precise, and removes certain teaching

Our use of the singular should be noted.
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1.1 Dimensions 33

difficulties which arise when using it. For example, according to this
definition, the dimension of work in the kgf-m-s system is kgf m. The
natural question of the precise meaning of the product of a force stan-
dard (the kilogram force) and a length standard (the metre) arises in
the student's mind. However, according to the definition in the previous
paragraph, the dimension of work W in the LFT class is given by the
function [W] — LF, where L and F, the arguments of the dimension
function, are abstract positive numbers whose multiplication and divi-
sion raise no doubts. The question of the definition of the dimension
of a quantity was precisely what made it necessary to first define the
concept of a class of systems of units.

Furthermore, if the relations for the derived units mentioned above
were actually to make sense as products or quotients of the fundamental
units, they would have to be independent of what we mean when carrying
out the multiplication or division. For example, according to the above
definition, kgf m is the derived unit for the moment of a force as well as
for work; m2/s is the derived unit for the stream function as well as the
kinematic viscosity, etc. But it is not implied that the stream function is
measured in multiples of a basic amount of kinematic viscosity or that
the moment of a force is measured in multiples of a basic amount of
work! In contrast, using our definition, the fact that the dimensions of
two physical quantities of different nature are identical does not seem
unnatural.

We shall now cite a few additional examples. If (in the LMT class) the
unit of length is decreased by a factor L, the unit of mass is decreased
by a factor M, and the unit of time is decreased by a factor T, the
numerical values of all forces are increased by a factor of MLT~2, since,
according to Newton's second law, the force / is the product of the mass
m and the acceleration a:

f = ma.

For the decreases in the fundamental units mentioned above, the numer-
ical values of all masses are increased by a factor M, and the numerical
values of all accelerations are increased by a factor LT~2. We have al-
ready mentioned that the dimensions of both sides of any equation with
physical sense must be identical: otherwise, an equation in one system
of units would become an inequality in another system, and this is not
permissible for equations with physical sense. Thus, we find that the
dimension of force in the LMT class is

[/] = [m][a] = MLT~2. (1.3)

Analogously, the dimension of mass in the LMT class is M, while it
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34 1. Dimensions, Dimensional Analysis and Similarity

is [M] = L~lFT2 in the LFT class; the dimension of energy, [E], is
L2MT~2 in the LMT class and LF in the LFT class. In the LMT
class, the ratio of the velocity of uniform motion to the distance divided
by the time required to traverse it is dimensionless. However, if we use
the LMTV class, in which the unit of velocity (knot/F) is independent,
this ratio has a dimension different from unity: L~lTV.

Dimension functions possess two important properties that we shall
now discuss.

1.1.4 The dimension function is always a power-law monomial

We have seen that the dimension function is a power-law monomial in
all the cases discussed above. This brings up the following question:
are there physical quantities for which this is not so, and for which
the dimensions in the LMT class are given, for example, by dimension
functions of the form MeL or sin M log T? In fact, there are no such
physical quantities, and the dimension function for any physical quantity
is always a power-law monomial. This follows from a simple, naturally
formulated (but actually very deep) principle: all systems within a given
class are equivalent, i.e., there are no distinguished, somehow preferred,
systems among them.

We shall show this using the LMT class of systems; the reader may
easily make the generalization to the general case. By virtue of the fact
that the systems within a given class are equivalent, the dimension of
any mechanical quantity a depends only on the quantities L, M and T:

[a]=0(L,M,T). (1.4)

If there existed some distinguished system within the LMT class, it
would be necessary to include the relationship between the system of
units we were working in and the distinguished system. In this case,
the dimension function (ft would depend on three additional arguments:
lo/ld, mo/md, and to/td, the ratios of the units of length, mass, and time
/o> ^o, and to, in the original system of a given class to the corresponding
units, Zd, rrid and £<£, in the distinguished system. According to the
principle formulated above, this is not so, and the dimension function (/>
depends on the arguments L, M and T in the LMT class, independently
of which system is adopted as the original system.

We shall now choose two systems of units within the LMT class,
system 1, which is obtained from the original system by decreasing the
fundamental units by factors of Iq, M\ and 7\, and system 2, which is
obtained from the original system by decreasing the fundamental units
by factors of L2, M2 and T2.
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1.1 Dimensions 35

By the definition of the dimension function, the numerical value of
the quantity under discussion (equal to a in the original system) is
a\ = a0(Li,Mi,Ti) in the first system, and a2 = a<f)(L2,M2,T2) in
the second system. Thus, we have

02

We now note that by virtue of the equivalence of systems within a
given class, we may assume that system 1 is the original system of the
class, without altering the class of the systems of units. In this case,
system 2 can be obtained from the new original system (system 1) by de-
creasing the fundamental units by factors of L2/L\, M2/M1 and T2/T1,
respectively. Consequently, the numerical value a2 of the quantity un-
der discussion in the second system of units, is, by the definition of the
dimension function,

a2 = a1(f>(L2/LuM2/MuT2/Tl).

We emphasize that ai, the numerical value of the quantity a in system 1,
remains unchanged under the change in the original system made above.
Thus, a2/a\ — 4>(L2/Li,M2/Mi,T2/Ti). Setting this expression equal
to that in (1.5), we obtain the following equation for the dimension
function (p:

^§^\ (1.6)
Equations of this type are called functional equations. We shall now

show that only power-law monomials satisfy this equation.
To solve (1.6), we differentiate' both sides of this equation with respect

to L2, and then set L2 = Lx = L, M2 = Mx = M, and T2 = Tx = T.
We find that

dL<l>(L,M,T) 1 a
4>(L,M,T) = Z ^ ( 1 . 1 ' 1 ) = Z' (L7)

where the quantity a = C?L</>(1, 1,1) is a constant independent of L, M
and T. Integrating (1.7), we find that

<KL,M,T) = Lad(M,T). (1.8)

Substituting this expression into (1.6), we obtain an equation for the
function C\ of the same form as (1.6), but with one fewer argument:

(1.9)

Once again, we proceed in the same way: we differentiate both sides of

It is natural to assume that the dimension function is smooth.
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36 1. Dimensions, Dimensional Analysis and Similarity

(1.9) with respect to M2 and set M2 = Mi = M and T2 = T\ = T:

from which

Ci=M*C 2 (T) , (1.10)

where /? = # M C I ( 1 , 1 ) is a constant similar to a. Following the same
line of reasoning again, we find that

C2(T) = C3T7,

so that

<j) = C3L
aMf3T*<. (1.11)

The constant C3 is obviously equal to unity, since L = M = T = 1
means that the fundamental units remain unchanged, so that the value
of the quantity a remains unchanged, and 0(1,1,1) = 1.

And so, we have shown that the solution to the functional equation
(1.6) is the power-law monomial LFM^T1, where a, {3 and 7 are con-
stants, so that the dimensions of any physical quantity can be expressed
in terms of a power-law monomial.

If there existed a distinguished system of units within a given class,
(1.6) would have been of the form

2, M2, T2,
, Mi, Ti, lo/ldi mo/mdi to/td)

Ml ll

Indeed, we decreased the fundamental units of mass, length and time by
factors of Li, Mi and T\ in passing to the new original system of units
(system 1), so that the ratios of the fundamental units in the original and
distinguished systems were also changed. It thus turns out (if we return
to the line of reasoning just presented above) that the quantities a, f3
and 7 are no longer constants, but depend on L, M and T. For example,
a turns out to be equal to 8L</> (1,1,1, lp/Lld, mo/Mmd, tp/Ttd). Thus,
if we give up the principle that all systems of units within a given class
are equivalent, the main result - that dimension functions are power-law
monomials - does not hold.

The following statement can be found in the literature:
The fact that the dimensions of all physical quantities are power-law

monomials is a result of the following physical condition: the ratio of
two numerical values (denoted by a and 4̂) of any derived quantity must
be independent of the scales chosen for the fundamental units.

This statement is incorrect, and this condition is not sufficient. In
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actual fact, as was just shown, if there exists a distinguished system of
units within a given class, the dimension is not required to be a power-
law monomial. However, even in this case, the numerical values of the
derived quantity will be equal to a and A multiplied by the identical fac-
tors (f) (L, M, T, lo/ld, mo/md, to/dd), so that the ratio of the numerical
values of the derived quantity remains unchanged.

It should be noted that systems of units convenient for use with some
special classes of problem have frequently been proposed. For example,
Kapitza (1966), has proposed a natural system of units for classical elec-
trodynamics. Kapitza's system uses the classical radius of the electron
as the unit of length, the rest-mass energy of the electron as the unit
of energy, and the mass of the electron as the unit of mass. This sys-
tem is convenient in classical electrodynamics problems, since it allows
one to avoid very large or very small numerical values for all quantities
of practical interest. It is important to note that this system is not
'distinguished' in the sense described above: the dimensions of physical
quantities in the LEM class (E is the symbol for energy) do not de-
pend on the ratios of the units of length, energy and mass in an original
system for the class to the units in this natural system.

1.1.5 Quantities with independent dimensions

The quantities a\,..., a& are said to have independent dimensions if none
of these quantities has a dimension function that can be represented
in terms of a product of powers of the dimensions of the remaining
quantities.

For example, density ([p] = ML"3), velocity ([[/] = LT"1), and force
([/] = MLT~2) have independent dimensions. Indeed, let us assume
the converse. Then, since the dimension functions for both density and
force contain M, and the dimension function for velocity does not, there
must exist numbers x and y such that [/] = [pj^t/]^. Substituting the
expressions for the dimensions [/], [p] and [U] in terms of L, M and T
into this relation, we find that

LMT~2 = {ML-*)x(LT-l)y . (1.12)

Equating the exponents of L, M and T on the two sides of the equation,
we obtain a system of three equations for the two unknowns x and y:

-3x + y = l, x = l, y = 2, (1.13)

which obviously has no solution: x = 1 and y = 2, do not satisfy the
first equation.

On the other hand, it is easy to show that the dimensions of den-
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38 1. Dimensions, Dimensional Analysis and Similarity

sity, velocity and pressure are dependent: the dimension of pressure,
L~lMT~2, is equal to the product of the dimension of density and the
square of the dimension of velocity. Furthermore, it is clear that none
of the quantities ai, . . . , ak having independent dimensions may be di-
mensionless: the dimension of a dimensionless quantity (which is equal
to unity) is equal to the product of the dimensions of the remaining
quantities (whatever they are) raised to the power zero.

Another fact which will be important below is that it is always possible
to pass from the original system to some system within the same class
such that any quantity, say a\, in the set of quantities with independent
dimensions a\, ..., ak changes its numerical value by an arbitrary factor
A, and while other quantities remain unchanged.

In fact, within the adopted class of systems of units P, Q, . . . (P and
Q denote the symbols L, M and T, as well as other similar quantities),
the dimensions of the quantities ai, . . . , ak are given by

[ai] = P^Q^ . . . , . . . , [a,] = P^Q^ . . . , (1.14)

where at least one of the quantities am, /3m, . . . is non-zero for every
m, I < m < k. Therefore, according to the definition of the dimension
function, the numbers P, Q , . . . must satisfy the following relations when
passing from the original system of units to the desired system of units:

PaiQ^ . . . = A, P^QV*... = 1, . . . , P^QPx... = 1. (1.15)

Taking the logarithm of the equations in (1.15), we obtain a system of
linear algebraic equations for the logarithms of the unknown transfor-
mation coefficients, lnP, lnQ, .. •; this system always has at least one
solution:

a i l n P + PilnQ + . . . = ln.4,
a 2 l n P + /?2lnQ + . . . = 0,

ak\nP + /JfclnQ + . . . = 0.
In fact, if the number of unknowns lnP, lnQ, . . . is greater than

the number of equations, system (1.16) has infinitely many solutions.
Indeed, it is clear that this system is only insoluble if the left-hand side
of the first equation is a linear combination of the left-hand sides of the
remaining equations:

ai lnP 4- Pi lnQ + . . . = N2{ot2 lnP + /32 lnQ + ...) + . . .

+ Nk{ak\xLP + pk\xiQ + . . . ) ,

where 7V2, . . . , Nk are certain constants. However, if we return from the
logarithms to the exponents, this implies that

N P*.. .fk . (1.18)
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This would mean that the dimension of ai was equal to the product of
powers of the dimensions of <Z2, ..., a&, which contradicts the assumption
that the dimensions of the quantities ai, ..., ak are independent.

If the number of unknowns is equal to the number of equations in
system (1.16), its determinant must be non-zero, so that system (1.16)
has a solution. In fact, if the determinant were zero, the left-hand side of
any one of the equations in system (1.16) would be a linear combination
of the others, so that (cf. the argument above), the dimension of any one
of the quantities a i , . . . a& could be written as a product of the powers of
the dimensions of the others, and this would contradict the assumption.
Finally, the number of unknowns in system (1.16) cannot be less than the
number of equations k. Indeed, if the number of unknowns m were less
than the number of equations, i.e., the number of quantities ai, ..., a&,
it would be possible to take the portion of system (1.16) corresponding
to the quantities ai, ..., am, and obtain a system where the number of
equations is equal to the number of unknowns. Its determinant cannot
be equal to zero; otherwise, the dimensions of the quantities fli,..., am

would not be independent (see above). Thus, the partial system has a
solution. But it is then possible to express the quantities P, Q, . . . as
a product of powers of the dimensions of ai, ..., am. Substituting this
expression into, for example, the last equation in (1.14), we find that
the dimension of the quantity ak can be expressed as a product of the
powers of the dimensions of the first m quantities, which contradicts
the assumption we made above that the dimensions of the quantities
01»• • • ,am were independent.

Thus, we have proved the statement made above. The properties
derived above for the dimension function will now be used to construct
the theory of dimensional analysis.

1.2 Dimensional Analysis

1.2.1 Governing parameters

In any concrete physical study (theoretical or experimental), we attempt
to obtain relationships among the quantities that characterize the phe-
nomenon being studied. Thus, the problem always reduces to determin-
ing (one or several) relationships of the form

a = f(au..., ak, h,... bm), (1.19)

where a is the quantity being determined in the study, and the ai, ...,
Ofe, &i, ..., bm are quantities that are assumed to be given; they are called
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40 1. Dimensions, Dimensional Analysis and Similarity

governing parameters. The governing parameters in (1.19) are divided
up in such a way that parameters ai, ..., a& have independent dimen-
sions, while the dimensions of parameters &i, ..., bm can be expressed
as products of powers of the dimensions of the parameters m, . . . , a&:

= [axp . . . [ak]
r* , (1.20)

Such a division may always be made. In some special cases, we may
have m = 0 (if the dimensions of all of the governing parameters are in-
dependent) or k = 0 (if all the governing parameters are dimensionless).
In general k > 0, m > 0.

For example, in the flow of a fluid through a long cylindrical pipe,
the pressure drop per unit length of pipe (assumed constant over the
length of the pipe) dp/dx, which corresponds to the quantity a in (1.19),
is completely determined by the mean fluid velocity (averaged over the
cross-section of the pipe) J7, the diameter of the pipe D, the fluid density
p, and the fluid viscosity /i:

As may easily be shown, the dimensions of all involved quantities can
be written in the following form:

[dp/dx] = ML~2T~2,

[U]=LT-\

[D]=L,

Thus &-fm = n = 4in the case at hand. The dimensions of the first
three governing parameters J7, D, p are obviously independent, since
the dimension function for the first parameter U contains T, while the
other two do not and the dimension function for the third parameter p
contains M, while the other two do not. The dimension of the fourth
parameter /i can be obviously expressed in terms of the dimensions of
the first three:

Thus, k = 3, m = 1.
The dimension of the quantity a to be determined must be expressible
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in terms of the dimensions of the governing parameters in the first group
a i , . . . , dk'>

[a] = {CL\]P . . . [ak]r - (1-21)

If this were not so, the dimensions of the quantities a, ai, . . . , a^ would
be independent. Then, by the property proved in Section 1.5, it would
be possible to change the value of the quantity a by an arbitrary factor
(via a change in the system of units within the class in question) and
leave the quantities ai, . . . , a^ unchanged. In doing so, the quantities 6i,
. . . , bm (whose dimensions can be expressed in terms of the dimensions
of the quantities d\, . . . , a^) would likewise remain unchanged. Thus,
the quantity to be determined, a, can be changed by any amount, with
the values of all the governing parameters remaining unchanged; this is
impossible as long as the list of governing parameters is complete. Thus,
there always exist numbers p, . . . , r such that (1.21) holds.

In the example discussed above (the flow of a fluid in a pipe), we find
(as is not difficult to verify) that

[dp/dx] = [U]2[D]~1[p).

1.2.2 Transformation to dimensionless parameters

We shall now introduce the parameters

bi

«!•••<** ( L 2 2 )

where the exponents of the governing parameters with independent di-
mensions are chosen such that all the parameters II, III, . . . , IIm are
dimensionless. Relation (1.19) may be rewritten, replacing the parame-
ters a, &i, . . . , bm (whose dimensions depend on those of the parameters
ai, . . . , dk) via the dimensionless quantities II, Eti, . . . , IIm defined in
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42 1. Dimensions, Dimensional Analysis and Similarity

(1.22) and the parameters ai, ..., a^. We find that

...ai,

Thus, we find that

n = r(au..., afc, n i , . . . , n m ) , (1.23)

where J7 is a certain function.
Now, the most important point to be discussed here is as follows.
It was shown in the previous chapter that it is always possible to pass

to a system of units within the class in question such that any one of the
parameters with independent dimensions a\, ..., a& (for example, a\)
can be changed by an arbitrary factor, with all of the the remaining pa-
rameters ai, ..., ak remaining unchanged. Obviously, the dimensionless
arguments I I i , . . . , Ilm of the function T and the value of the function,
II, also remain unchanged under such a transformation. However, it
follows from this that the function T is in fact independent of the ar-
gument a\. In exactly the same way, it can be shown that it is also
independent of the arguments <22, ..., a^, so that T = 3>(IIi,..., IIm).
Equation (1.23) can therefore in fact be written in terms of a function
of m rather than n = k 4- m arguments:

n = * ( n i , . . . , n m ) . (1.24)

However, since II = f/a\...a'k, it follows that any function / that
defines some physical relationship possesses the property of generalized
homogeneity or symmetry, i.e., it can be written in terms of a function
of a smaller number of variables, and is of the following special form:

f(al,...,ak,b1,...,bm)=ap
1...a

r
k$( * , . . . , m

\ a i -"ak ai "-ak

(1.25)
These results lead to the central theorem in dimensional analysis, the

so-called n-theorem: A physical relationship between some dimensional
(generally speaking) quantity and several dimensional governing param-
eters can be rewritten as a relationship between some dimensionless pa-
rameter and several dimensionless products of the governing parameters;
the number of dimensionless products is equal to the total number of
governing parameters minus the number of governing parameters with
independent dimensions. The term 'physical relationship' is used to em-
phasize that it should obey the covariance principle. In the example
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discussed above (fluid flow in a pipe), (1.25) obviously takes the form

, (1-26)

i.e., a function of four variables has been expressed in terms of a function
of one variable.

Note that the II-theorem is, in fact, completely obvious at an intu-
itive level. Indeed, it is clear that physical laws should not depend on
the choice of units. They must therefore be expressed using relation-
ships between quantities that do not depend on this arbitrary chance,
i.e., dimensionless combinations of the variables. This was realized long
ago, and concepts from dimensional analysis were in use long before
the II-theorem had been explicitly recognized, formulated and proved
formally. The outstanding names that should be mentioned here are
Galileo, Newton, Fourier, Maxwell, Reynolds and Rayleigh.

Dimensional analysis may be successfully applied (see below) in theo-
retical studies where a mathematical model of the problem is available,
in the processing of experimental data, and also in the preliminary anal-
ysis of physical phenomena. The point that we are trying to make here
is the following.

In order to determine the functional dependence of some quantity a
on each of the governing parameters, it is necessary to either measure
or calculate the function / for, let us say, 10 values of each governing
parameter. Of course, the number 10 is somewhat arbitrary; a smaller
number of measurements or calculations may suffice for some smooth
functions, while even a hundred measurements are insufficient for other
functions. Thus, it is necessary to carry out a total of 10fc+m measure-
ments or calculations. After applying dimensional analysis, the problem
is reduced to one of determining a function $ of m dimensionless argu-
ments III, • • •, n m , and only 10m (i.e., a factor of 10fc fewer) experiments
or calculations are required to determine this function. As a result, we
reach the following important conclusion: the amount of work required
to determine the desired function is reduced by as many orders of mag-
nitude as there are governing parameters with independent dimensions.

For the example of flow in a pipe discussed above, the amount of
work required is decreased by a factor of a thousand! Indeed, at the end
of the last century, when the great English hydrodynamicist Reynolds
examined the experimental data on flow in pipes available at the time
and derived the relationship between the dimensionless quantity

dp/dx
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44 1. Dimensions, Dimensional Analysis and Similarity

and the dimensionless quantity p UD/fj, which was later named in his
honour, he found that, to quite high accuracy, the experimental data lay
on a single curve (see Figure 1.1, where this relationship is illustrated
using more recent data).

n
0.028

0.024

0.020

0.016

0.012

0.008

0.004

I I
•4JIS7V**..

fj .•
• •:
:\:
:

.... TltC*. „
• * -

2X103 2X104

pUD
1X105 2X105

Figure 1.1. The dimensionless pressure drop (per unit length of pipe)
of fluid flowing through a pipe as a function of Reynolds number Re =
pUD/fj,. With the exception of the transition region between laminar
and turbulent flow, the data from different experiments all lie on a single
curve. The complicated nature of the curve indicates that the flow regime
changes as a function of Re which is the only parameter that determines
the global structure of the flow.

The following question naturally arises. If such substantial advantages
are obtained for n = A:, m = 0, why not make a transformation to a
system of units in which the dimensions of all the quantities ai, . . . a/e,
&i, ..., bm would be independent?

Actually, nothing is gained in general by transforming to such a sys-
tem. We shall show this using as an example a problem where quantities
with dimensions of length /, time r and velocity v are included among
the governing parameters. We then change to the LTV class of systems,
where the unit of velocity is independent. However, the formula v = s/t
(where s is the distance travelled, and t is the time of travel) is not valid
in this class, and must be replaced by the formula v = As/t, where A
is a constant having dimension L~lTV (see subsection 1.1.4). In gen-
eral, therefore, the quantity A must be included among the governing
parameters, thereby increasing the number of governing parameters by
one. And, in general, the difference m = n — k between the total number
of governing parameters and the number of governing parameters with
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1.2 Dimensional Analysis 45

independent dimensions remains unchanged; thus, generally speaking,
there is no advantage in transforming to a new class of systems of units.
However, in some special cases, it may turn out that the additional pa-
rameters (like A) happen to be non-essential. In such cases, transforming
to a new class increases the number of parameters with independent di-
mensions, and is useful. We shall see this later in some of the examples
given.

1.2.3 Examples

We shall now present several illustrative examples.
1. At the beginning of this century - already many years after the

work of Reynolds mentioned above - the physico-chemists E. Bose, D.
Rauert and M. Bose published a series of experimental studies of the
internal turbulent friction in various fluids (Bose and Rauert, 1909; Bose
and Bose, 1911). The experiments were carried out in the following way
(Figure 1.2).

Figure 1.2. A schematic diagram showing the experiments of Bose,
Rauert and Bose. The time r required to fill a vessel of volume Q and
the pressure drop between the ends of the pipe P were measured for the
steady flow of various fluids through the pipe.

Various fluids (water, chloroform, bromoform, mercury, ethyl alcohol,
etc.) were allowed to flow through a pipe in a regime of steady turbu-
lence. The time r required to fill a vessel with a certain fixed volume Q
and the pressure drop P between the ends of the pipe were measured.
As was customary, the results of the measurements were represented in
the form of a series of tables and curves (similar to those in Figure 1.3)
showing the pressure drop P as a function of the filling time r.

At this time, the work of Bose and Rauert attracted the attention of
T. von Karman, at the time a young researcher, who later became one
of the greatest men of the century in applied mechanics. He subjected
their results to a processing procedure using (in modern terminology)
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logP
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Figure 1.3. The experimental results of Bose, Rauert and Bose in their
original form: o, water; •, chloroform; -f, bromoform; A, mercury (P
in kgf/cm2, and r in seconds). The curves are different for the different
fluids. From von Karman (1957).

dimensional analysis. Von Karman's analysis can be presented in the
following way. The pressure drop between the ends of the pipe, P ,
depends on the time r required for the vessel to be filled and its volume
Q, as well as on the properties of the fluid, its viscosity /x and density
p. Obviously, n = fc + ra = 4 i n the present case. It is instructive
that von Karman retained the none-too-promising original parameters
Q and r chosen by the experimenters. The dimensions of the quantities
in question (for definiteness, in the LMT class) are given by the following
expressions:

As may be seen, the three governing parameters r , <2, and // have
independent dimensions. Indeed, the dimensional formula for /J, contains
the mass, while those for the other two governing parameters do not.
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1.2 Dimensional Analysis 47

The dimension of viscosity therefore may not appear in the dimensions
of the other governing parameters with any exponent other than zero.
Furthermore, the dimensional formula for Q contains L alone, and the
dimensional formula for r contains T alone. It is therefore impossible
to obtain the dimension of any one of these quantities in terms of the
dimensions of the other two. On the other hand, the dimension of the
governing parameter p can be expressed as a product of the dimensions
of r, Q, and // raised to various powers:

The dimension of the determined parameter P can also be expressed
in terms of the dimensions of the governing parameters r, Q and /i:

[P] = [r]-1[Q]>]. (1-28)
Thus k = 3, so that m = n — k = 1. Dimensional analysis yields

where

n = ^ > (1.30a)

and

^ a - d.30b)

Thus, according to (1.29), the search for the desired relationship be-
tween the pressure drop and the four parameters that govern it, P =
/(r, Q, //, p), reduces to determining a single function $ of one composite
parameter - the function $(IIi), since equation (1.29) can be written in
the form

This means that all the experimental points should lie along a single
curve in the coordinates p//rr(3~2//3, P/fir~1. Von Karman's processing
of the measured data of E. Bose, Rauert and M. Bose confirmed this
(Figure 1.4). It is clear that if dimensional analysis had been carried out
beforehand, the amount of experimental work required of the physico-
chemists would have been reduced by a large factor.
2. The following example is famous. In an atomic explosion, a rapid
(one might say, instantaneous) release of a significant amount of energy
E occurs within a small region (one might say, at a point). A strong
spherical shock wave (Figure 1.5) develops at the point of detonation; in
the early stages, the pressure behind the wave front is several thousand
times the initial air pressure, whose influence may be neglected in the
early stages of the explosion. Thus, the radius of the shock wave front,
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log(Pr//»)

10.0 -

9.0 -

0.5 1.0 1.5
\OQ(P&%T)

Figure 1.4. The experimental results of Bose, Rauert and Bose as rep-
resented by von Karman (1911), who used dimensional analysis. All the
experimental points lie on a single curve. From von Karman (1957).

-gro^d

Figure 1.5. A photograph of a fireball 15 ms after an atomic explosion
on the ground illustrates the spherical symmetry of the phenomenon and
the sharp boundary of the perturbed region (Taylor, 1950a, b, 1963).

r^, at an interval of time t after the explosion depends on the quantities
E and t, and on the initial air density p0; thus, n = 3. The dimensions
of the governing parameters in the LMT class are

[E] = ML2T~2, [t] = T, [po] = ML~* , (1.32)

respectively. It may easily be shown that the dimensions of all three
governing parameters are independent, so that k is also equal to three,
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and m = n — k = 0. Therefore, in this case, the function $ in (1.24) has
no arguments, i.e., it is simply a constant: $ = const. Furthermore, the
dimension of the quantity to be determined 77 can be written in terms
of the dimensions of the governing parameters raised to various powers:
as may easily be shown,

Therefore,

from which we find that

n = const, 77 = const E1/bt2/bp~l/b . (1.34)

The equation just obtained shows that if one measures the radius
of the shock wave at various instants of time, the experimental points
should lie on a straight line with a slope of unity if the logarithmic
coordinates log£, (5/2) log 77 are used:

- log 77 = - log(const) 4- - log — + log t. (1.35)
Z Z Z pQ

The discussion presented above is due to Taylor (1941, 1950a,b), who
processed data from a series of the high-speed photographs of the ex-
pansion of a fireball taken during an American nuclear test by J. Mack
(Figure 1.6). The solution to the appropriate problem in gas dynamics
(Taylor, 1941, 1950a; von Neumann, 1941, 1963; Sedov, 1946) showed
that the constant has a value close to unity. Knowing this, it was pos-
sible to determine the energy of the explosion from the experimental
dependence of the radius of the front on the time elapsed, i.e., from the
^/-intercept of the straight line constructed from the experimental points
(Figure 1.6). At the time, Taylor's publication of this value (which
turned out to be approximately 1021 erg) caused, in his words, 'much
embarrassment' in American government circles: this figure was consid-
ered top secret, even though Mack's film was not classified.

3. We shall now present one more example (this time, rather amusing)
of the application of dimensional analysis: we shall 'prove' Pythagoras'
theorem using it'. The area of a right triangle, 5C, is completely deter-
mined by its hypotenuse c and, for definiteness, the smaller of its acute

This example is also discussed in Migdal's book (1977). The word 'prove' has been
placed in quotation marks for the following reason: this proof is based on similarity,
which is presented after Pythagoras' theorem in rigorous geometry courses. In any
case, the author does not recommend that this proof replace those used in geometry
classes.
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Figure 1.6. The experimental points determined by Taylor from Mack's
movie film lay on a single straight line with slope unity in the coordinates
logt, (5/2) log rf. Taylor was thus able to determine the energy of the
explosion from Mack's series of photographs (Taylor, 1950,a,b).

angles </>. Thus, Sc = /(c, 0), and n = 2. Clearly, k = 1, since </> is
dimensionless. Dimensional analysis yields

n = Sc/c
2 = *(IIi), III = 0, Sc = c2$(0). (1.36)

The altitude perpendicular to the hypotenuse of this triangle divides
it into two similar right triangles (Figure 1.7) with hypotenuses equal
to the sides a and b of the larger triangle. Equation (1.36) yields the
following result for the areas of these triangles:

5 a =a 2 #(0 ) , Sb = b2$(cj>), (1.37)

where $(</>) is the same function as for the larger triangle.
But the sum of the areas of the two smaller triangles, Sa and Sb, is

equal to the area of the larger triangle, Sc:

Sc = Sa + Sb, cH{(j)) = a2${(t>) + b2${<j)). (1.38)

Cancelling out $(</>) in the latter equation, we find that

which is the desired result.
Note that the theorem essentially rests on the Euclidean nature of

the geometry. In the Riemann and Lobachevskii geometries, there is an
intrinsic parameter A with dimension of length. This means that the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.004
https://www.cambridge.org/core
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Figure 1.7. A proof of Pythagoras' theorem using dimensional analysis.

function 3> depends on not one, but two dimensionless parameters: the
angle </> and the ratio of the length of the hypotenuse to this intrinsic
parameter. The second argument is equal to c/X for the basic triangle
and to a/A and b/X for the first and second auxiliary triangles, respec-
tively, so that it is impossible to cancel out $ in (1.38), and the proof
presented above no longer holds.

The examples just discussed support what we said earlier about the
use of dimensional analysis. They demonstrate that the seemingly trivial
concepts of dimensional analysis are capable of producing results with a
great deal of content, especially when the difference between the num-
ber of governing parameters with independent dimensions and the total
number of governing parameters is not large. Thus, correctly choosing
the set of governing parameters becomes the most important factor: it
is not only important to take all essential variables into account, but
also not to include superfluous ones! The set of governing parameters
may be determined relatively easily if a mathematical formulation of
the problem is available. This must include the governing variables and
constant parameters of the problem, which appear in the equations,
boundary conditions, initial conditions, and so forth, and which deter-
mine the unique solution to the problem. Correctly choosing the set of
governing parameters for problems that do not have an explicit mathe-
matical formulation depends primarily on the intuition of the researcher.
In such problems, success in applying dimensional analysis involves a
correct understanding of which governing parameters are essential and
which may be neglected. Remember that each governing parameter in

t As we shall see later, there are many subtle points even here.
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52 1. Dimensions, Dimensional Analysis and Similarity

the problem that can be neglected reduces the amount of work involved
in investigating the problem by roughly an order of magnitude!

1.3 Similarity

1.3.1 Similar phenomena

Before a large, expensive object (for example, a ship or aeroplane) is
built, experimentation on models - modelling - is used to determine the
best properties under future operating conditions. Many different kinds
of measurement are carried out on models: for example, the lift and
drag of an aeroplane model as air flows past it can be measured in a
wind tunnel, as can the aerodynamic loading that causes a model of a
television tower to collapse, etc. Clearly, one must know how to scale the
results of the experiment carried out on the model up to the full-scale
object being modelled. If one does not know how to do this, modelling
is a useless pursuit. The concept of physically similar phenomena is
central to correct modelling.

The concept of physical similarity is a natural generalization of the
concept of similarity in geometry. For example, two triangles are similar
if they differ only in the numerical values of the dimensional parameters,
i.e. the lengths of the sides, while the dimensionless parameters, the
angles at the vertices, are identical for the two triangles. Analogously,
physical phenomena are called similar if they differ only in respect of
numerical values of the dimensional governing parameters; the values of
the corresponding dimensionless parameters IIi, . . . , IIm being identical.

In accordance with the definition that we have adopted for similar
phenomena, the quantities III, . . . , IIm are called similarity parameters.

We shall now imagine that we propose to model a certain phenomenon;
we shall call this the prototype. We require that the model that we wish
to use to determine the desired properties of the prototype be a phe-
nomenon similar to the prototype. Therefore, we have the following
relationship between the parameter a to be determined and the govern-
ing parameters au ..., ak, bu ..., bm:

a = / (a1 , . . . ,a f c ,61 , . . . ,6m) (1.39)

The function / is the same for both phenomena because they are
similar, even though the numerical values of the governing parameters
ai, . . . , c^, &i, . . . , bm and the determined parameter a may differ. Thus,
relationship (1.39) for the prototype takes the form

) (1-40)
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The superscript P will hereinafter be used to refer to the properties
of the prototype. Relation (1.39) for the model is similar in form, but
the numerical values of the governing and determined parameters are
different:

aM=f(a[M\...,alM)AM\...,bM) . (1.41)
The superscript M will hereinafter be used to refer to the properties

of the model. Via dimensional analysis, we obtain

(L42a)

(1.426)

where the function <£ is the same in both cases, since (see the preceding
chapter) it can be expressed in terms of the function / in the same way
in each case; U^p\ UM\ Il\P\ R.t

M are dimensionless parameters.

1.3.2 The rule for scaling the results on a
similar model up to the prototype

Since the model and prototype are similar, the following conditions
must be satisfied, according to the definition of similar phenomena given
above:

n[M) = n[p\ .... i e > = i 4 p ) . (1.43)
Conditions (1.43) are sometimes called the similarity criteria.

Hence, as stated above,

and, in accordance with (1.42), the dimensionless parameters to be de-
termined for the model and for the prototype are equal:

U(P) =

Returning to the dimensional parameters a, Oi, . . . , Ofc using (1.22),
we find that

a(P) _ a(M) [ ^ i _ I ( ^ - I n 45)

which is a simple rule for scaling the results of measurements on a similar
model up to the prototype. It was precisely in order to be able to use
this relation that it was necessary to require that the model be similar
to the prototype.

1.3.3 Choosing the governing parameters in the model

The model parameters a\ \ . . . , o}k ' may be selected arbitrarily, keep-
ing in mind maximum simplicity and convenience in modelling. The
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conditions for similarity between the model and prototype - equality of
the similarity parameters III, ..., IIm for both model and prototype,
(1.43) - show how the remaining governing model parameters b\ , ...,
bm must be chosen in order to ensure similarity between model and
prototype. These conditions are as follows.

(1.46)

(M) _

The simple definitions and statements presented above describe the
entire content of the theory of similarity: we emphasize that there is
nothing more to this theory. The simple examples below will demon-
strate how to use the theory. Along the way, the reader will become
familiar with the most important classical similarity parameters.

1.3.4 Examples

1. The steady motion of a body in a fluid that fills a very large vessel
(we shall assume that it is infinite). The velocity of the body is assumed
to be small relative to the velocity of sound, so that the compressibil-
ity of the fluid may be neglected, and its density p is assumed to be
constant. The model's body must be geometrically similar to the pro-
totype's body, and the direction of the velocity vector with respect to
the principal axes of the body must be identical in both the model's and
prototype's motion. Furthermore, the dimensional governing parame-
ters of the motion are the characteristic length scale of the body, for
example the maximum cross-sectional diameter D, the magnitude U of
the body's velocity, the density p of the fluid, and its viscosity fi. The
dimensions of the governing parameters in the LMT class are as follows:

[£>]=L, [U]=LT-\ [p] = ML-\ [/x] = ML^T"1. (1.47)

Clearly, n — 4, m = 1 and k = 3, so that there is only one dynamical
similarity parameter in addition to the geometric similarity parameters
(expressing the similarity of the model's and prototype's body) and the
kinematic similarity parameters (expressing the identical orientation of
the velocity with respect to the principal axes of the model and of the
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prototype)'; this parameter can be written in the following form:

n , - ^ . (1.48,

As proposed by A. Sommerfeld, this parameter (as we saw, an anal-
ogous parameter is obtained for the flow of fluids in pipes) is called
the Reynolds number or Reynolds parameter (the conventional symbol
for this parameter is Re) in honour of the English scientist Osborne
Reynolds who was one of the first to apply the ideas of similarity to
hydrodynamics, with remarkable success. The dimensionless drag force
on the body can be naturally defined in the following way:

Tl = F/±pU2S, (1.49)

where T is the drag force on the body, S ~ D2 is the cross-sectional
area of the body, and the factor of 1/2 is introduced by tradition.

n
10°

10-
10"1 10° 101 102 103 104 105

Re

Figure 1.8. Dimensionless drag force on a sphere as a function of Reynolds
number. The data from the various experiments shown here turn out to
lie on a single curve. The complicated nature of the curve indicates that
the flow regime changes with Reynolds number, and that the Reynolds
number is the only parameter that governs the global structure of the
flow.

The function II(Re) for the flow past a sphere is shown in Figure 1.8; to
high accuracy, the data from a large number of experiments lie on a single
curve. This curve appears to be very complicated: regions in which
II(Re) varies smoothly alternate with sharp decreases and increases, and

t This follows from the identity of the corresponding geometric and kinematic sim-
ilarity parameters for the model and prototype.
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there are regions where II is almost independent of Re. This all indicates
that the flow regimes vary with Reynolds number (which is the only
parameter that governs the structure of the flow as a whole as the fluid
flows past the sphere).

The motion of a model is usually implemented in the same fluid as that
in which the prototype moves. The similarity condition that parameter
(1.48) be the same for the model and prototype motions indicates that
in this case, the product UD must be identical for model and prototype;
from this, we see that the velocity at which a dynamically similar model
moves is inversely proportional to the size of the model compared with
that of the prototype. From this, it follows that the drag forces are
identical for the model and the prototype, so that the scaling coefficient
for the drag force is equal to unity in this case.

2. The motion of a streamlined surface ship at high speeds. Here, we
shall discuss the idealized case where the contribution from viscous drag
can, to a rough first approximation, be assumed to be small for a stream-
lined ship: the main contribution to the drag on a ship in rapid motion
is that due to the surface waves created by the ship. The governing
parameters in the case at hand will be as follows: a characteristic length
for the ship, /, the gravitational acceleration g, the density of the fluid
/?, and the speed of the ship U. The parameter g is essential since the
gravitational force is one of the factors that controls the waves created
by the ship. The governing parameters have the following dimensions in
the LMT class:

[t\ = L, \g] = LT-\ [p] = ML"3, [U) = LT~\ (1.50)

so that n = 4, A; = 3, ra = 1, and the only dynamical similarity param-
eter (in addition to the geometric and kinematic similarity parameters,
see above) is of the form

This parameter is called the Froude number or Froude parameter (the
conventional symbol is Pr) after the famous English engineer and ship-
builder Wm. Proude.

Furthermore, the dimension of the drag force T in the same class LMT
is [J=] = LMT'2, so that \T\ = [p)\g)[l\*. Thus, since the parameter g
can be varied only with a great deal of effort by means of some subtle
tricks, which are not normally used, the law for scaling the drag force
from the model up to the prototype in the same fluid is of the form

8 ' ( L 5 2 )
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so that the drag force is proportional to the cube of the modelling scale.
Relation (1.51) indicates that in order to ensure dynamical similarity, the
ratio of the model velocity to the prototype velocity must be proportional
to the square root of the modelling scale:

//(M)\

If one does not neglect the role of viscosity, a second dynamical pa-
rameter appears - the Reynolds number Re, which is equal to pUl/fi.
Modelling in which both similarity parameters - the Froude number and
Reynolds number - are taken into account turns out to be impossible
in the same fluid. Indeed, to do this, the products Ul (see example (1)
above) and U2 /I would have to be identical for both model and proto-
type; this is only possible when modelling to full scale, which makes no
sense. This is precisely why, for illustration, we have restricted ourselves
to the case where the viscous drag is small compared with the wave drag.
As a matter of fact, in ship-building practice, the viscous drag contribu-
tion is modelled separately from the wave drag using specially developed
techniques.
3. Rowing (McMahon, 1971) provides us with our next example of
similarity analysis. The boats accommodating various numbers N of
oarsmen; one, two, four and eight, are compared, and the following
assumptions are made.

(1) There is a geometric similarity between boats.
(2) the volume of a loaded boat per oarsman G is a constant, charac-

teristic for boats of all classes; this follows from assuming that the bulk
weight of the boat per oarsman, including the oarsman's own weight, is
constant. This means that the oarsmen are considered as indistinguish-
able in weight.

(3) The power per oarsman A is a constant, characteristic for all
classes, so the oarsmen are considered as indistinguishable also in power.

The principal force that hinders the motion of the boat through the
water is, unlike the previous example, skin friction drag. Indeed, full-
scale rowing-tank tests have shown that the resistance due to leeway and
wave-making constitute together only a tiny part of total drag. In the
range of Reynolds numbers characteristic for racing the drag coefficient
A can be considered as a constant. Therefore the bulk power supporting
the motion is

P = Xpv3l2 (1.54)

where p is the water density, v is the velocity of the motion, assumed to
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1 2 4 8
N, number of oarsmen

Figure 1.9. The -1/9 power-law dependence of rowing time on the number
of oarsmen (solid line) compared with racing times for 2000 m, all at calm
or near calm conditions. A, 1964 Olympics, Tokyo; •, 1968 Olympics,
Mexico City; x, 1970 World Rowing Championships, Ontario; o, 1970
Lucerne International Championships. After McMahon (1971).

be steady, and I is the characteristic length scale of the wetted surface.
Obviously P = AN.

Thus, the velocity of the motion v is a function of the governing pa-
rameters N, A, G and p. The dimensions of the parameters in the class
RVLN (R is the dimension of density, V is the dimension of velocity,
L is the dimension of length, and N is the dimension of the number of
oarsmen; these four can be considered as independent dimensions) are

[p} = R, [N\ = N. (1.55)

So, obviously, m = 0 and k = n = 4. According to dimensional analysis
we obtain

and the final result for the velocity of the boat is
/il/3

The time for a fixed distance, say 2 000 m should be, according to
(1.57) inversely proportional to iV"1/9'. The validity of this result is well
illustrated by Figure 1.9.
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4. Thermal convection in a horizontal fluid layer bounded by smooth,
rigid, isothermal surfaces. A temperature that exceeds the temperature
To maintained on the upper surface by an amount 6T is maintained on
the lower surface. As is well known, the phenomenon of convection is
due to the fact that the density of a fluid decreases as it is heated; if
this decrease is large enough, the less dense fluid floats from bottom to
top. For small changes in temperature, the temperature dependence of
the fluid density can be assumed to be linear: p = po[l + a(To — T)],
where p0 is the fluid density at temperature To, and a is the coefficient
of volume expansion. The variation in the density of the fluid as it is
heated is small, so that we only need take the density variation into
account where it is combined with the action of the gravitational force.
This approximation was suggested by the French scientist J. Boussi-
nesq, and carries his name. The Boussinesq approximation is related
to the assumption that all of the accelerations in convective flow are
small compared with the gravitational acceleration. This is not so in
strongly developed convection; here the Boussinesq approximation is no
longer valid. If we adopt the Boussinesq approximation, the coefficient
of volume expansion of the fluid, a, and the gravitational acceleration
g obviously do not enter into consideration separately, but only as a
product. The product ag is called the buoyancy parameter.

We shall now consider the governing parameters for the phenomenon
of thermal convection in a layer. The properties of the phenomenon
clearly must depend on the buoyancy parameter ag, on the thickness
of the layer H, on the dynamical properties of the fluid: its viscosity fi
and density po at temperature To, on its specific heat capacity of c and
thermal conductivity A, and on the excess temperature of the lower layer
6T. We shall neglect the variations with temperature in the viscosity,
specific heat capacity, and thermal conductivity of the fluid, since we
only intend to model the process of convection in a basic way.

In principle, the contribution of viscous energy dissipation to the ther-
mal balance of the fluid should also be taken into account. To do this,
one additional parameter must be included; the mechanical equivalent
of heat J.

We now consider the dimensions of the governing parameters. The
specific heat capacity c is, by definition, the quantity of heat necessary to
increase the temperature of a unit mass of the fluid by one temperature
unit. Thus, the dimension of heat capacity is

lcJ ~ M e '
where Q stands for the independent dimension of heat, and 0 stands for
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60 1. Dimensions, Dimensional Analysis and Similarity

the independent dimension of temperature. The thermal conductivity of
the fluid, A, is, by the fundamental law of heat conduction (the Fourier
law), the coefficient of proportionality in the expression for the heat flow
in a quiescent fluid as a function of the temperature drop 6T and the
thickness of the layer H:

6T

Now, the heat flux is, by definition, the amount of heat that passes
through a unit area of the plane layer boundary per unit time, so that
[q] = QL~2T~X. Prom this result and the preceding equation, we find
that

The dimension of the mechanical equivalent of heat is obviously equal
to the dimension of mechanical energy divided by the independent di-
mension of thermal energy:

So, the dimensions of the governing parameters in the LMTQQ class
are as follows:

^ ru-i r r i M r , M

[ d - - « - [6T] = G [A] = - « - f j l ^ !1 J ~ M O ' l J ' l J LT9 ' l J " T2Q '
Clearly, n = 8,ra = 3 and k = 5. Applying dimensional analysis, we
obtain the following three similarity parameters:

n i = 7—wITT-l—2> n 2 = —, n 3 = - ^ r . (1.59)
(ag)~1H~6fjb2p~2 fxc agH

In what follows, we shall discuss convective motion in thin layers,
where the parameter II3 is large (II3 » 1), so that the effect of this
parameter on the similarity conditions may be neglected. It is useful to
estimate the value of the characteristic length A = Jc/ag in order to
get an idea of how the extent to which this condition is restrictive. We
have J = 4.2 x 107 erg/cal, c = 1 cal/g°C and a = 2 x 10~4 for water,
and g = 103 cm/s2, from which we find that A ~ 2 x 108 cm = 2000 km.
Thus, when modelling convection in layers, even a layer one kilometre
thick can be assumed to be thin. On the other hand, when modelling

We shall see below that neglecting the effect of a certain parameter is always a
strong assumption, no matter how large or small this parameter may be.
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convection in the Earth's mantle, the parameter II3 is of order unity,
and can not be neglected.

We should also note one significant fact that follows from equations
(1.59) for the similarity parameters: if the contribution from the dissi-
pation of the energy in the convective motion to the thermal balance is
neglected, it turns out that the quantities A and c enter into the discus-
sion as a ratio rather than separately.

The parameter IIi is called the Grasshof number, and the following
combinations of the parameters in (1.59) are frequently used in the lit-
erature:

Ml = « ! = R a , ' - ^ - P r . (1.60)

The parameter Ra, the Rayleigh number, is named after the great
English physicist who was the first to study the onset of convection in a
horizontal layer theoretically. When the critical value of this parameter,

Ra = Racr ~657, (1.61)

which does not depend on the second parameter , the Prandtl number
Pr, is reached, the state with the fluid at rest in a horizontal layer be-
comes unstable, and the so-called regime of buoyancy-driven convection
rolls sets in. In this regime, the layer breaks up into fluid rolls that
rotate in opposite directions (Figure 1.10). Until the Rayleigh number
reaches its critical value, the equilibrium state for a quiescent fluid layer
is stable. The later changes in the convection regime in the horizontal
layer are associated with the passage of the Rayleigh number through
other critical values.

Figure 1.10. Uniformly heating from below a fluid in a vessel shaped like
a rectangular parallelepiped with sides in the ratio of 10:4:1 produces flow
with rotating rolls parallel to one of the sides. From van Dyke (1982).

The similarity parameters (1.59) indicate that if the modelling is car-
ried out in the same fluid and same gravitational field as the prototype
motion the following condition on the model's temperature difference

The critical value given here is calculated under the assumption that the tangential
stresses vanish at the boundaries of the layer.
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62 1. Dimensions, Dimensional Analysis and Similarity

^) must be satisfied:

; (1.62)

this condition ensures that the model's convective motion is similar to
that of the prototype. Furthermore, as may easily be shown, the dimen-
sionless parameter for the heat flux q is of the form

11 = ( L 6 3 )

Thus, the rule for scaling the heat flux when modelling in a layer of the
same fluid as the prototype motion, takes the following form:

a(P) - AM) (H(M)\ (1 6 4 )

so that the ratio of the heat fluxes in the prototype and in the model is
inversely proportional to the fourth power of the modelling scale.

As was mentioned above, the influence of the similarity parameter II3
becomes appreciable for thick layers. Since this parameter is the ratio
of the characteristic length scale of the fluid, A = Jc/ag, to the layer
thickness, it is, strictly speaking, impossible to model the phenomenon
in a layer of the same fluid under identical conditions (compare this
result with the second example).

The present example shows that one must be careful when determining
the similarity parameters. For example, if we assume that the dimen-
sions of mechanical energy and thermal energy are independent without
having taken the governing parameter for the mechanical equivalent of
heat into consideration, we will not notice the restrictions on the thick-
ness of the model layer. Meanwhile, the phenomena for thick and thin
layers are substantially different; they are not similar, and it is in general
not possible to scale the heat fluxes using the simple relation in (1.64).

Furthermore, it is obvious that if the thermal and mechanical en-
ergy were measured in the same units, i.e., if we were to pass from
the LMTGQ class to the LMTQ class, the conclusions reached above
would not be affected in any respect. Indeed, the difference between
the total number of governing parameters and the number of governing
parameters with independent dimensions would remain constant, even
though the mechanical equivalent of heat had been removed from con-
sideration. The fact that the contribution of viscous dissipation to the
thermal balance is negligible would then be interpreted to mean that
the phenomenon is not governed by the heat capacity c and thermal
conductivity A separately. The governing parameter would be their ra-
tio, which appears in the so-called thermometric conductivity K = X/pc.
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1.3 Similarity 63

This would lead to a decrease in the number of governing parameters,
and the disappearance of the similarity parameter II3.

The examples presented show that dimensional considerations play a
decisive role in establishing rules for modelling and criteria for similarity.
The crucial step in modelling, as in any application of dimensional anal-
ysis to cases where an exact mathematical formulation of the problem is
missing, lies in the proper choice of a system of governing parameters.
Often the procedure is as follows. One takes as governing parameters
all quantities that could possibly, in the investigator's opinion, have an
influence on the phenomena, no matter how hypothetical. As governing
parameters with independent dimensions one takes those governing pa-
rameters that are definitely known to be essential, and with respect to
the remaining ones, one looks at the numerical values of the correspond-
ing similarity parameters 11 .̂ If these values are very small or very large,
the corresponding dimensional parameter bi is considered inessential and
is discarded.

In many cases one can actually proceed in this way. It is important
to note, however, that in general this is not so, and one must be very
careful about arguments such as the above. One should see in them
not a proof of the possibility of disregarding one parameter or another,
but a strong conjecture. This last assertion is essentially obvious: it is
not necessarily true that a function II = $(II i , . . . , 11$,...,IIm) tends
to a definite and moreover finite limit for small or large values of the
argument II;. Only the existence of such a limit (and in fact even a
sufficiently rapid convergence to it) can justify neglecting a governing
parameter when the corresponding similarity parameter is very large or
very small. Subsequent discussion will show us that such crudeness of
analysis can lead to serious mistakes.

Very instructive also are similarity considerations for the atmospheres of planets
(Golitsyn, 1973).
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The construction of
intermediate- asymptotic

solutions using dimensional
analysis. Self-similar solutions

2.1 Heat propagation from a concentrated
instantaneous source

2.1.1 The equation of heat conduction. Initial and boundary conditions

We shall demonstrate the basic ideas in the application of dimensional
analysis to problems in mathematical physics by discussing heat con-
duction in a long bar (Figure 2.1), the properties of the material (what
these are will be mentioned below) and the cross-sectional area remain-
ing constant along the bar. The sides of the bar are thermally isolated,
so that inflow or outflow of heat through the sides of the bar may be
neglected, and the temperature distribution across the bar is assumed to
be uniform. Thus, the temperature 6 depends only on the longitudinal
coordinate of the cross section, x, and the time, t, and is independent
of the transverse coordinates of the points in the cross section. For the
reader's convenience we will briefly recall the derivation of the basic heat
conduction equation.

Consider a section of the bar between adjacent cross sections with
coordinates x and x 4- dx. The volume of the section is Sdx, where
S is the constant (by assumption) cross-sectional area of the bar. The
change in the quantity of heat contained in the section corresponding to
a change in temperature dO is (up to small, higher-order terms, whose
contribution is negligibly small for dx —> 0) equal to pcdQSdx, where p is
the (constant) density of the bar material and c is the heat capacity per
unit mass, which is also a constant property of the bar material. The
change in the quantity of heat, if it occurs over a small time interval dt,
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2.1 Heat propagation from a concentrated instantaneous source 65

ff
x0 x x + dx

Figure 2.1. Derivation of the heat conduction equation.

where d6 — dt6dt, is given by (also up to small, higher-order quantities)

pcSdt6dxdt .

Since heat is neither created nor annihilated within the bar, and it
does not flow out through the sides, this change can only be produced
by a difference between the heat flux into the section under consideration
through cross section x and the heat flux out through cross section x-f dx.
But, within the time interval dt, a quantity of heat Sqdt (where q is the
heat flux, i.e., the quantity of heat flowing normally through unit cross-
sectional area in unit time) flows into the section at x and, a quantity
of heat S(q 4- dxqdx)dt flows out of the section at x 4- dx. Therefore, in
time dt a quantity of heat

-Sdxqdxdt

accumulates in the section. Equating the two expressions for the change
in the quantity of heat contained in the section and dividing by Sdxdt,
we find that

pcdt0 + dxq = 0. (2.1)

The Fourier law, according to which the heat flux q is proportional to
the temperature gradient and directed opposite to it,

q = -\dx0, (2.2)

is adopted as the basic law in the mathematical theory of heat conduc-
tion. In this equation, A is the thermal conductivity (a property of the
bar material), a quantity that is, by assumption, constant, as are the
area 5, the density p, and specific heat capacity c. Substituting (2.2)
into (2.1), we obtain a differential equation for the conduction of heat:

dte = nd2
xxe. (2.3)

The constant K = X/pc is, as proposed by Maxwell, called the ther-
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66 2. The construction of intermediate-asymptotic solutions

mometric conductivity of the material, or as proposed by Kelvin, the
thermal diffusivity.

Equation (2.3) must be supplemented by an initial condition that
specifies how the temperature is distributed along the bar at the initial
time,

0{x,0) = 00{x), (2.4)

and by boundary conditions at its ends. Let the ends of the bar be
located at the cross sections x = 0 and x = I, where / is the length
of the bar. For definiteness, we shall assume that the temperature at
the ends of the bar is kept constant at zero. The boundary conditions
expressing this are

0(0,*) =0(M) = 0 . (2.5)

2.1.2 Concentrated instantaneous heat source.
The first self-similar intermediate stage

We shall now discuss an important special case, in which all the heat is
concentrated at the initial time within a small region of length h around
the cross section x = XQ (Figure 2.1), and the initial temperature at the
remaining sections is equal to the temperature at which the ends are
kept, i.e., zero. Thus, it is assumed that the size of the region where
the heat is originally released, ft, is much smaller than the distance from
the left-hand end of the bar, xo, and the distance from the right-hand
end of the bar, Z — xo, so that ft <C #o and ft <C I — XQ. Of course,
it is possible to obtain a numerical solution to this problem for any
initial temperature distribution: modern numerical methods allow one
to do this rather easily on a small-size computer. The results of such a
numerical investigation - the temperature distribution along the bar at
various times - are shown for a typical case in Figure 2.2. The results of
these numerical calculations reflect all the special features of the initial
distribution.

We now proceed as follows.
We do not concern ourselves about the precise details of the initial

temperature distribution in the region where the heat is released. They
are only important during a small time interval at the beginning of the
process, when the heated region, where the temperature is substantially
different from zero, has a length that is still of order the size of the
region where the heat was originally released. We shall only consider
times when size of the heated region is much greater than ft. For such
times, it seems plausible that it may be assumed that all the heat was
initially concentrated at the cross section x = XQ, i.e., that ft = 0.
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1 r-

. - * • «

0.5

Figure 2.2. Temperature distributions obtained by numerical calculation
of the conduction of heat from a narrow region, closer to the left-hand
end of the bar which was initially heated to a temperature #o- It is
apparent that neither end of the bar has any influence on the temperature
distribution during the first intermediate stage, so that the bar may be
assumed to be infinite.

Furthermore, it is clear that until the boundaries of the region where
the temperature has changed substantially reach at least one of the ends
of the bar, the bar may be assumed to be infinite. Indeed, the fact that
the bar is finite and that the ends are maintained at zero temperature
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68 2. The construction of intermediate-asymptotic solutions

is of little significance during this time. This is readily apparent in the
graphs of the numerical solution shown in Figure 2.2.

Thus, in this intermediate stage, the problem reduces to a highly ideal-
ized one - the propagation of heat in an infinite bar from an instantaneous
heat source concentrated at one of its cross sections. Heat is neither cre-
ated nor annihilated in the bar; therefore the total amount of heat in
the infinite bar at any instant of time is equal to the initial amount of
heat E, from which we have that

f 6dx = E. (2.6)pcS / Qdx = E.

— oo

Thus, the temperature 9 at time t at cross section x is determined
by the following quantities: the time t, the parameters K and Q =
E/pcS, and the distance of the cross section from the source, x — XQ\
the parameters E, /?, c and S do not appear in the problem separately,
and only their combination Q is a governing parameter. We thus have

6 = f{t,K,Q,x-xQ). (2.7)

Obviously, n = 4. We shall now give the dimensions of all the quanti-
ties involved in the problem in the LTQ class of systems of units, where
0 stands for the dimension of temperature, which is independent of L
andT:

[*] = e , [*] = r , [K] = L2T~\ [Q] = O L , [X-X0] = L. (2.8)

The dimensions of K and Q are obtained from the obvious condition
that the left- and right-hand sides of equations (2.3) and (2.6) have the
same dimensions. The first three governing parameters, £, K and Q have
independent dimensions. The dimension of the governing parameter
x — xo can be expressed in terms of the dimensions of the first three
governing parameters using the following relation:

the reader may easily verify this using (2.8). Thus, k = 3. Furthermore,

[*] = [Q]M-1/2[t]-1/2.
Thus, from dimensional analysis, we find that

Hence, we find that

We shall now introduce the time-dependent temperature scale 6o(t) =
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2.1 Heat propagation from a concentrated instantaneous source 69

Q{Kt)~1/2 and length scale lo(t) = (tt£)1//2; the temperature distribution
(2.10) may then be written in the form

0 =
lo(t)

(2.11)

so that if this distribution is plotted in the transformed ('self-similar')
coordinates 0/0o(t) = 9(Kt)l/2/Q,(x — xo)/lo(t) = £, it is an identical
curve at all instants of time (Figure 2.3).

- 4

Figure 2.3. The temperature distributions during the first self-similar
intermediate stage can be represented by a single curve in the reduced
variables.

Thus, we have found that the solution to the idealized problem un-
der consideration possesses the fundamental property of self-similarity:
the temperature distributions along the bar at various instants of time
can be obtained from one another by a similarity transformation (Fig-
ure 2.4). We emphasize once again that in the case under discussion,
the self-similar nature of the phenomenon of heat propagation from an
instantaneous concentrated source and the form of the self-similar vari-
ables were established using dimensional analysis alone.

Therefore, by virtue of equation (2.10), which was derived from an
idealized formulation of the problem using dimensional analysis, obtain-
ing the appropriate solution to a partial differential equation (2.3) with
two independent variables, x and t, has been reduced to determining a
function $ of a single variable, £ = (x — xo)/(«t)1//2, composed of the
independent variables x — x0 and t. This makes it possible easily to
obtain the solution analytically. Indeed, we obtain the following from
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70 2. The construction of intermediate-asymptotic solutions

Figure 2.4. The temperature distributions at various instants of time
during the first self-similar intermediate stage axe similar.

equation (2.10) by differentiation:

Q

7^VS7 nj. /.^J.M/2^ rlt '

(2.12)

Substituting these expressions into partial differential equation (2.3),
and dividing by Q/(i^t)1^2, we obtain the following differential equation
for the function <&:

0+!f+!=o- (2i3)

This is an ordinary differential equation, since it contains only one in-
dependent variable, £. For the idealized problem under discussion, the
propagation of heat in an infinite bar, we have the following condition:
the temperature 0 at infinity is equal to zero for all times. By virtue of
(2.10), the function $ therefore also satisfies the condition

$ (±oo)=0 . (2.14)

Then, substituting solution (2.10) into condition (2.6), we find that

y/rt )
dx

—oo

oo
(2.15)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.005
https://www.cambridge.org/core


2.1 Heat propagation from a concentrated instantaneous source 71

from which we obtain a second condition on the function

= 1. (2.16)

Equation (2.13) is an equation in total differentials, so it may easily be
solved. Integrating (2.13) once, we find that

f + ?=const-
Setting £ = 0, and using the obvious fact that the solution is symmetric,
so that d$/d£ = 0 for £ = 0, we find that const = 0. Integrating once
again, we find that a solution of the following form satisfies condition
(2.14):

<3> = i4exp(—£2/4), (2-17)

where A is some constant to be determined. If we substitute (2.17) into
the second condition imposed on the function $(£)> equation (2.16), we
find that

oo

A f e-^^dt, = 2A f e~*adz = 2Ayfr = 1, (2.18)
— oo —oo

where we have used the well-known integral
oo

I e~z dz =

Hence, we find that A = 1/(2TT1/2) and, finally,

n _ Q ^-(x-xn)2/4Kt

Once again, we recall that this solution describes the temperature dis-
tribution in the region where it varies substantially only over some inter-
mediate time interval. During this time interval the size of the heated
region is much larger than that of the region in which the heat was
initially released, but is still less than the distance to the ends of the
bar.

We will have to reconsider later the above derivation of (2.19). While
it is typical and seems entirely transparent, this derivation in fact con-
tains underwater reefs that become apparent after a seemingly small and
insignificant modification of the problem (see the following chapter).

2.1.3 Concentrated instantaneous heat source.
The second self-similar intermediate stage

As is evident from (2.19), the temperature distribution obtained above
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falls off extremely rapidly with distance x — XQ from the initially heated
cross section, even though the temperature turns out to be formally non-
zero at any distance from the source at an arbitrarily small time after
the beginning of the process. Using tables of the exponential function, it
may easily be shown that the temperature increase at a distance XQ from
the source only becomes appreciable after a time of order one hundredth
to one tenth of XQ/K. For example, the temperature at a distance of xo
becomes of order one-hundredth of the maximum temperature at the
source cross section x = zo, this is given by

$ & ( 2 ' 2 0 )

at a time ~ O.IXQ/^ from the beginning of the process. After this time,
the influence of the end of the bar at x = 0 becomes appreciable (see
Figure 2.2), and solution (2.19) is no longer valid. It is instructive to
examine the case where the distance from the source to the right-hand
end of the bar (at x = I) is at least one or one-and-a-half orders of
magnitude greater than the distance to the left-hand end of the bar
(x = 0), so that, for example, I - xo = 3Orco. In this case, the temperature
increase at the end x = I will be small, less than one-hundredth of the
maximum temperature, until a time ~ 100XQ/K. Thus, even though the
bar may not be assumed to be infinite during the time interval O.IXQ//^ <
t < 100XQ/«, it can be assumed to be semi-infinite, for 0 < x < oo; the
temperature is equal to zero at the left-hand end of the bar x = 0 and
at x — oo:

0(0, i) = 0, 0(oo,£) = 0.

We multiply both sides of (2.3) by x and integrate from x = 0 to
x = oo:

oo oo oo

dt6xdx = Y[ 6xdx = K

0 0 0

Integrating by parts and using the boundary conditions 0(0, t) =
0(oo, t) = 0 at the ends of the semi-infinite bar, we find that

oo oo oo

/ xdlx0dx = xdx6 - I dx0dx = 0(0, t) - 0(oo, t) = 0.

o o o
From this relation and (2.21), it follows that the quantity

6xdx = M (2.22)

oo
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2.1 Heat propagation from a concentrated instantaneous source 73

is independent of time. As may easily be determined from the initial
conditions, M = QXQ.

We shall now discuss times of order XQ/K; now the size of the heated
region is much greater than the distance from the source to the nearer
end, #o, but still much smaller than the distance from the far end, l — Xo.
For x much greater than XQ, the influence of the fine features in the
temperature distribution formed when the heated region reached the
near end of the bar (x = 0) must disappear, so that the temperature
depends only on the quantities t — t$,K,M and x:

0 = f(t-to,K,M,x), (2.23)

where to ls some effective initial time for the second stage in the process;
we shall determine the value of this constant later. Equation (2.22)
indicates that [M] = 0L2 , so that, applying dimensional analysis in
much the same way as we did in obtaining the previous result, equation
(2.10), we find that

T\/f T
e = ^T^T^1^ t= rn—n' (2*24)

(The reader may easily carry out the appropriate calculations for him-
/herself).

Substituting (2.24) into (2.3), we find that the function $i(£) satisfies
the ordinary differential equation

Furthermore, the function <I>i obviously satisfies the following conditions
at £ = 0 and £ = oo:

$ i (0 )=0 , $ i (oo)=0 . (2.26)

Condition (2.22) allows us to obtain, in much the same way that (2.16)
was obtained, an integral relation that the function $i must satisfy:

= 1. (2.27)

o
Note that (as may easily be verified) the derivative d$/d£ of function
(2.17) satisfies both equation (2.25) and conditions (2.26), so that the
solution to equation (2.25) that satisfies conditions (2.26) can be written
in the following form:

$x = B&-S2/4 , (2.28)

where B is a constant. In order to determine this constant, we make use
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of (2.27), so that we have
oo oo

/ £2e-«2/4d£ = SB I z2e~z2dz = 2B^ = i , (2.29)
OO

B

0 0

where we have once again used a well-known integral:

oo

/
o

FYom this result and (2.28), we obtain the final relation for the solution
describing the second intermediate stage:

0 = Ml -*2/<Mt-to)

The effective initial time for the beginning of the second stage, to,
which was left undetermined, may be found in the following way.

For t >̂ to, solution (2.30) may be expanded in a series in the small
parameter to/t and written in the following form:

We now note that in the time interval under consideration, the tem-
perature distribution must correspond to that for an instantaneous heat
source Q concentrated at the cross section x = x$ in a semi-infinite bar.
This solution may easily be obtained using the solution to the problem
of an instantaneous source in an infinite bar discussed in the previous
section. Namely, we construct the solution for an infinite bar with an
instantaneous source of intensity Q at the cross section x = XQ and one
of intensity — Q at x = — x$\

6 =

It is easily seen that the condition 0(0, t) = 0 is satisfied for this solution.
Expanding solution (2.32) in a series in the small parameter XQ/X to the
same accuracy as (2.31), we find that

2VSF(**)3/2 80F(/tf)5/2 ' l ^
Comparing the second terms in (2.31) and (2.33), we find that

The solution obtained above (2.30) is sometimes called the thermal
dipole solution, and it obviously also possesses the property of self-
similarity. It is not difficult to find the cross section x — x*{t) where the
temperature from solution (2.30) reaches its maximum value. Setting
dx0 equal to zero, we find that £ = \/2 at this cross section, so that
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2.1 Heat propagation from a concentrated instantaneous source 75

x = x*(t) = [2n(t - to)]1/2. Substituting this expression into (2.30), we
obtain the value of the maximum temperature:

(2.34)
- t0) K(t ~ t0)

6K(t-t0)

1 X/[K(t-

Figure 2.5. The temperature distributions for the second self-similar
intermediate stage can be represented by a single curve in the reduced
variables.

The solution we have constructed is shown in Figure 2.5. It is ap-
propriate for describing the phenomenon at times greater than X\JK,
but less than times of order 0.1 (Z — xo)2/ft, when the heat has begun to
affect the far end. The results obtained are instructive: for times much
greater than O.lh2/^ but less than O.IXO/K, the distribution approaches
the self-similar distribution given by (2.19):

n ^ Q -(x-xo)
2/4Kt

(2.35)

< 0.1x1/K.

During the time interval from # o / t t t o ~ 0.1(1 —xo)2/K — IOOXQ/K, the
temperature distribution approaches the self-similar distribution (2.30):

Mx
o-x

2/4K(t-t0)

(2.36)

X\JK < t <
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In the intermediate interval O.IXQ/K; < * < %o/K ̂ e solution is not self-
similar. It corresponds to an intermediate stage between two different
self-similar regimes.

Thus, the exact self-similar solutions to special, highly idealized and
extremely schematicized problems are approximate representations of
the solution to a more general problem, and may be applied to high
accuracy on certain fairly broad (two orders of magnitude) time intervals.

2.2 Phenomena at the initial stage of a nuclear explosion

2.2.1 Very intensive thermal waves

As we have seen in the example in the previous section, dimensional
analysis allows one to obtain, by means of a completely standard method,
exact special solutions to problems of mathematical physics that reduce
to initial, boundary, or mixed problems for partial differential equations
or systems of such equations. These special solutions are expressed in
terms of solutions of boundary-value problems for ordinary differential
equations.

Another indication of the general method of applying dimensional
analysis to obtain exact special solutions is provided by the example of
the thermal and gas-dynamic phenomena arising at the initial stages
of an atomic explosion in a gas . We shall discuss the corresponding
solutions here for two reasons. Firstly, the application of dimensional
analysis to essentially nonlinear problems is well demonstrated by these
solutions. Secondly, and this is more important for us, we shall indi-
cate explicitly here as we did in the previous section some assumptions
that are not ordinarily mentioned and which are, as a matter of fact
very strong hypotheses made in formulating the corresponding problems.
These hypotheses turn out to be valid for the problems considered in the
present chapter. However, as we shall see later, apparently small com-
plications of the problems that at first glance leave the considerations
of dimensional analysis unaltered make these hypotheses inapplicable,
and we encounter a paradox whose resolutions will lead us to self-similar
solutions of a new type.

Thus, at the very first stage of an atomic explosion, immediately fol-

A more detailed consideration of the physics of gas-dynamic phenomena in very
intense explosions can be found in the monograph of Zeldovich and Raizer (1966,
1967). For similar phenomena arising from the action of a focussed laser impulse
on matter, see the monograph of Raizer (1977).
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2.2 Phenomena in the initial stage of a nuclear explosion 77

lowing the release of energy, the hot gas is still at rest. Strong thermal
waves propagate through the motionless gas. The radiative transfer
of energy takes place with a speed many times exceeding the speed of
sound; hence at this stage the hydrodynamic transfer of matter can be
neglected, and the thermal conductivity of the gas is determined ba-
sically by radiation. The coefficient of thermal conductivity A can be
considered as a power function of the temperature 9:

A = X09
n . (2.37)

The value of n is roughly 5. The dependence of the specific heat c on
temperature is substantially weaker, and to a first approximation can be
neglected. We write the equation for the conservation of energy in the
form

cdt9 + divq = 0,

where q = — A grad 9 is the heat flux and t is the time. We have

divq = — divA grad# = — Ao div#n grad#

n +
In the case of interest, spherically symmetric wave propagation, we have,
by virtue of the symmetry of the problem, A(0n+1) = r~2 drr

2 dr9
n+l (r

being the distance from the centre), and the equation of heat propagation
finally assumes the form

dt6 = Kr-2dr(r
2dr6

n+l). (2.38)

Here K = Ao/(n 4- l)c is a constant.
We consider a solution to this equation under the following initial

conditions and condition at infinity:
oo

0(r, 0) = 0 (r ^ 0); 4?rc f 0(r, 0)r2dr = E,
7 (2.39)

9(oo,t)=0 (t>0).

These conditions correspond to the instantaneous release, at the initial
moment and at the point that is the centre of the explosion, of a defi-
nite finite amount of heat JB, with the initial temperature equal to zero
everywhere except at the centre of the explosion .

For the solution 9 the governing parameters will obviously be the
independent variables r and t and the constant parameters K, and Q =
Ejc (because the parameters E and c enter the problem statement not

The asymptotic meaning of the solution under such initial conditions will be con-
sidered in detail below.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.005
https://www.cambridge.org/core


78 2. The construction of intermediate-asymptotic solutions

separately but only as this ratio) that appear in the equation and the
initial conditions:

6 = f(t,K,Q,r). (2.40)

The dimensions of the governing parameters are as follows:

[t) = T, [K} = L2T-1e-n, \Q) = QL\ [r] = L, (2.41)

where 0 is a symbol for the temperature dimension.
We now apply dimensional analysis. It is evident that in this case

n = 4, m = 1 and k = 3. Choosing as governing parameters with
independent dimensions £, K and Q, we obtain by dimensional analysis

n = ^(nx), (2.42)

where
0 r

11 n ^

Hence we find

0 = [Q2(«0~3]1/(3n+2)$(0 . (2.43)

Calculating the required derivatives of 0 with respect to t and r with
the help of (2.43), and substituting into (2.38), we obtain for the function
$(£) the ordinary differential equation

— + *" £— ^ * = ° • (2.44)

Equation (2.43) shows that for any t,
oo oo

4nc / 0(r,t)r2dr = AnE / £2$(£)d£ = const.

o o
Prom this and (2.39) we get the conditions

CO

I $(£)£2d£ = V47r> *(<*>) = ° • (2-45)
0

To this we also add the requirement of continuity of the function $ and
of the derivative d$n + 1/d^ ~ $nd$/d£. This follows from the continuity
at any instant of time t > 0 of the temperature, which is proportional
to $, and of the heat flux q = -Agrad0 = -[A0/(n+ l)]grad0n+1, which
is proportional to d$n+i/d£. The last requirement is nontrivial - it
shows that for $ ^ 0 the derivative dQ/d^ must be continuous; at the
same time, at points where $ vanishes, the derivative d$/d£ can suffer
a finite or even infinite discontinuity, provided only that d$n + 1/d^ be
continuous.

Integration of (2.44) gives a solution satisfying the second condition
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of (2.45) in the form

e ) 1 / n , ( £ < £ / ) ; * = o « > * , ) , (2.46)
where if = [n/2(n+l)(3n-f2)]1//n. To determine the remaining constant
£/ we use the first condition of (2.45). We have

- C ) /nC2dC = l/47r, (2.47)

0 0

whence, and using the expression of the integral in terms of beta func-
tions (Abramowitz and Stegun, 1970), we find

£/ = [2nKB(3/2, (n -f l)/n)]-n/(3n+2>, (2.48)

Here B is the symbol for Euler's beta function.
Thus the temperature distribution finally assumes the form

r E2 ] 1 / ( 3 n + 2 ) / 2 r2

for r < rf(t) = f/(n)[(£;/c)n/ct]1/(3n+2), and 0 = 0 for r > r/(t).
Prom (2.49) follows the simple relation

61(0,0 \ rj) ' ^ - r / ^ ' (2.50)

0 = 0, (r>rf).
This function is shown in Figure 2.6 for n = 5. It is of essential impor-
tance that for n > 0, in contrast with the linear case, one has a finite
speed of heat propagation; the perturbation zone is bounded, Tf{t) < oo
for any finite t. Passing to the limit n —> 0 we recover the known solu-
tion of the linear equation of heat conduction for an instantaneous point
source. In this case rf(t) = oo for any t > 0. The solution discussed
above was obtained by Zeldovich and Kompaneets (1950) and by Baren-
blatt (1952). The latter paper considered the mathematically equivalent
problem of gas or ground-water filtration. Later the solution (2.50) was
obtained by Pattle (1959). In the paper by Barenblatt and Zeldovich
(1957a) a solution to the very intense thermal-wave problem, similar to
the dipole-type solution considered in section 1.3, was obtained.

The solution (2.50) is in fact not a classical solution to the differential
equation (2.38). Indeed, equation (2.38) contains space derivatives of
the second order; meanwhile even the first space derivative of the solu-
tion (2.50) has a discontinuity. Therefore an important mathematical
question appeared when the solution (2.50) was obtained: in what sense
is (2.50) a solution to (2.38) and is it unique? These questions were an-
swered in the fundamental paper by Oleynik, Kalashnikov and Chzhou
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e(r,t) j
0(0,0

0 1 rlrdt)
Figure 2.6. Distribution of temperature behind a very intense thermal
wave in the reduced variables 0(r, £)/0(O, £), r/rf(t).

Yui-lin (1958). They introduced the natural class of weak (generalized)
solutions of the equation (2.38), and proved the existence and unique-
ness of such solutions. The peculiar property of the solution (2.50) is as
was mentioned the finite speed of heat propagation. In rigorous math-
ematical language this property means that if at some time instant to
a weak solution u(x,t) has 'compact support', i.e., is represented by a
finite function, then the solution will have a compact support at any
t > to. This property was rigorously proved in the paper by Oleynik,
Kalashnikov and Chzhou Yui-lin (1958). (Note also an earlier paper,
Barenblatt and Vishik (1956).) Later, the investigation of the solu-
tions to equation (2.38), known in mathematical literature as the porous
medium equation (PME), and its generalizations became the subject of
many investigations by mathematicians. The fundamental review by
Kalashnikov (1987) is highly recommended in this respect.

2.2.2 Very intense blast waves

The solution obtained in subsection 2.2.1 describes the phenomenon of a
very intense explosion only at the initial thermal stage. As time passes,
the speed of radiative transfer of energy decreases and quickly becomes
small compared with the speed of sound. There arises in the heated gas
an intense shock wave, which outstrips the thermal wave and initiates
the transition to the subsequent gas-dynamic stage. At this stage it is
necessary to consider the motion of the gas, which can be considered
adiabatic. We recall the well-known equations (see Kochin, Kibel' and
Roze, 1964; Batchelor, 1967; Germain, 1986b; Landau and Liftschitz,
1987) for adiabatic motion of a gas in the case of spherical symmetry in
which we are interested. The first equation, Newton's law written for a
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unit volume of gas, is

— = dtv + vdrv = --drp.
at p

Here v is the radial component of velocity, p the pressure, p the density
of the gas, r the radial coordinate measured from the centre of the
explosion, and t the time. The only force acting is the pressure drop
in the radial direction, and the mass of a unit volume is equal to the
density of the gas. Further, the conservation law for the mass of the gas
is satisfied:

dtp + divpv = 0.

In the case of spherical symmetry, when the radial velocity v is the only
non-zero velocity component, divpv = r~2dr(r

2pv) = (2/r)pv -f dr(pv).
Finally, by virtue of the adiabaticity of the motion, one has the equation
of conservation of entropy in a fluid particle:

ds
— = dts + vdrs = 0.
at

Here s is the entropy of a unit mass, which in the case considered of a
thermodynamically and calorifically ideal gas is equal to s = cv ln(p//97);
cv is the specific heat of the gas at constant volume, and 7 is the ratio of
the specific heats at constant pressure and constant volume. Thus the
basic equations of motion for the gas can be written as

dtv 4- vdrv + drp/p — 0,

dtp + dr(pv) 4- 2pv/r = 0, (2.51)

We consider here an exact solution to the idealized problem of the gas
motion arising from the instantaneous release at the centre of the explo-
sion of a finite amount of energy E. The gas is assumed to be initially
at rest, its pressure equal to zero, and the initial density of the gas equal
to po everywhere except at the centre of the explosion . A classical,
i.e., smooth, solution of this problem does not exist, and we shall seek
a piecewise-smooth solution: the perturbed domain, inside which the
solution varies continuously and is described by (2.51), is bounded by a
shock wave, which is a sphere of radius r/(t) on which the properties of
the motion - the pressure, density and velocity change discontinuously.
Outside this sphere the state of rest of the gas is preserved, and the
initial pressure of the gas is also equal to zero by assumption. Thus the
conditions of conservation (continuity of flux) of mass, momentum and

The asymptotic meaning of this solution will also be considered below.
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energy at the front of the shock wave are written in the following form
(where the index / denotes the value of a quantity immediately behind
the shock wave, i.e., for r = 77 — 0):

pf(vf-D) = -p0D,

pf(vf-D)2+pf=p0D
2

1

7 Pf (vf-D

Here D == drf/dt is the speed of propagation of the shock wave through
the ambient gas. (We recall that the energy flux is equal to the product
of the mass flux and the sum of the kinetic energy per unit mass and the
enthalpy per unit mass.) The last two relations are conveniently written
in the form

Pf vj]
y +PfVf=0.Pf{vf - D)vf + pf = 0, pf{vf -D) ^ _

Solving the continuity equations for the flux of mass, momentum and
energy, we find convenient relations for the density, pressure and velocity
behind the shock wave expressed in terms of the initial density and shock
wave speed:

D2
 2 ± |

Further, the energy of a unit volume of gas is equal to p(v2/2 -f cvT) =
p[v2/2 4- p/(7 — l)p] (T being the absolute temperature). Hence the
initial conditions at t = 0 for the problem of a point explosion can be
written in the form

p(r, 0) = p0, p(r, 0) = 0, v{r, 0) = 0 (r ̂  0),

°° ~ ~ " " 2 ^ „ (2-53)

o
Here E is the energy released at the centre at the initial moment. Finally,
we have an obvious condition: the absence of influx of matter and energy
at the central point after the instantaneous explosion for t > 0:

v(0 , t )=0 . (2.54)

Analysis of equations (2.51) and the conditions (2.52), (2.53) and
(2.54) shows that the properties p, p and v of the gas motion depend on
the governing parameters

*, E, po, r, 7, (2.55)

whose dimensions in the class of systems of units of measurement MLT
are respectively

T, ML2T~2, ML'3, L, 1. (2.56)
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The radius of the shock front depends on the same parameters (2.55)
with the exception of r. Thus n = 5, m = 2 and k = 3, and taking the
first three as the governing parameters with independent dimensions
we obtain relations for the similarity parameters of the problem under
consideration:

IIi = r(Et2/p0)-
l/b = £, n2 = 7 • (2.57)

Prom this and dimensional analysis it follows that *

(2.58)

r/ = tf(-r)(Et2/po)1/5, D = ^f(Et-3/p0)
1/5 .

Substituting (2.58) into (2.51), we obtain for the functions, P, V and R
the following system of ordinary differential equations

dV
dln£~

d

Substitution of the representation (2.58) of the solution into the bound-
ary conditions (2.52) on the shock wave gives the initial conditions for
the system (2.59) of ordinary differential equations:

2±i ' '
Further, relations (2.58) imply that the bulk energy of gas in the per-
turbed region is constant in time, i.e., is an integral of the motion:

47r f p [£ + jJL-] r*dr = 4, 1 p [
7 L2 ( l ) j J 12o L2 (7 -

/
o
/ fl(5) [ ^ + ^ f f e ] ? 4 d { " c o n s t

Here, following tradition, we have deviated somewhat from the formal rule for
applying dimensional analysis. For example, for the pressure we should write

The notation of (2.58) is obtained if we write $ = IIJP, and analogously for the
velocity.
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(outside the shock wave the integrand is equal to zero). By virtue of
the last initial condition in (2.53), the constant on the right-hand side
of (2.61) is equal to E, whence

(2.62)

The solution of (2.59) under the conditions (2.60) is experienced, as
in the problem of very intense thermal waves, in the following explicit
form:

(2.63)

Here

c*= i<r 1)
5(7 + 1)

7-7

5(7+1)

7+1
7-1

12

7-7

5(7 - 1)
(37- l ) (27 + l ) '

1372 - 7 7 + 12

7 - 1
2

3
27TT

(2.64)

"5 = - ;
1

( 2 - 7 ) ( 3 7 - l ) ( 2 7 + l ) ' ' " 2 - 7
It is easy to verify that the solution (2.63) satisfies the condition (2.54).

The dependence of the remaining constant £/ on 7 is determined by
substituting (2.63) into (2.62), in principle completely analogously to
the way this was done in the previous problem. Calculation shows, for
example, that for 7 = 1.4, £/ = 1.033, i.e., it is close to unity.

The solution obtained also has the property of self-similarity: instan-
taneous 'photographs' of it are always identical: only the length scale
as well as the scales of pressure and velocity change. In particular, con-
sider the pressure p as a function of the distance r from the centre of
the explosion; this is shown schematically for various instants of time
by the curves in Figure 2.7. These curves are similar to one another.
If we introduce a time-dependent scale for the distance from the centre
of the explosion (for example, the radius of the wave front 77) and a
time-dependent scale for the pressure (for example, the pressure at the
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Figure 2.7. Air pressure as a function of radius at various instants of
time for the motion of air following an atomic explosion. The pressure
distributions at various instants of time are similar to one another.

wave front p/), all the curves in Figure 2.7 will lie on a single curve in
the reduced variables r/rj(t), p/pf(t) (Figure 2.8). Analogous curves
for density and velocity distributions in the reduced variables are given
in Figure 2.9.

The solution discussed in this section was obtained by Taylor (1941,
1950a,b, 1963) and von Neumann (1941, 1963) practically simultane-
ously: Taylor presented his manuscript on Friday, 27 June 1941 and von
Neumann apparently wanted to check his calculations over the weekend
and presented his paper on Monday 30 June 1941. Moreover, Taylor
solved the system of ordinary differential equations (2.59) numerically;
von Neumann noticed an integral of the system (2.59): the energy con-
servation law for an arbitrary sphere bounded by the variable radius
r = const rf, where const < 1. This integral allowed him to obtain the
solution in the explicit form (2.63). Later this solution was obtained by
Sedov (1946); it is therefore sometimes called the Taylor-von Neumann-
Sedov solution.
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0 1 r/rf

Figure 2.8. The same function as in Figure 2.7, represented as a single
curve in the reduced (self-similar) variables r/rf(t), p/p/(t) (rf is the
radius of the front, and pf is the pressure at the front).

Figure 2.9. Distributions of the gas density, pressure and the velocity
behind a very intense blast wave in the self-similar variables p/p/, v/vf,
r/rf.

2.3 Self-similarity. Intermediate asymptotics

2.3.1 Self-similarity

The solutions to the problems of an instantaneous heat source, a ther-
mal dipole, very intense thermal waves, and very intense blast waves,
considered earlier in this chapter, have the very important feature of
self-similarity. A time dependent phenomenon is called self-similar if
the spatial distributions of its properties at different times can be ob-
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tained from one another by a similarity transformation. Thus, if we
choose time-dependent scales ro{t) for the spatial variable and uo{t) for
any property u of the phenomenon (u can be a vector quantity), then
the distribution of u at various instants can be expressed in the form

( 2 - 6 5 )

Hence it follows that if we describe this distribution in self-similar co-
ordinates u/uo(t), r/ro(t), then the distributions for any value of time
in the range considered is represented by a single curve. Thus, in the
instantaneous heat source problem,

ro(t) = (K£)1/2, uo(t) = 60(t) = Q/{Kt)1/2 , (2.66)

for a thermal dipole,

ro(t) = [n(t - to)]1 /2, uo(t) = 90(t) = M/n{t - t0); (2.67)

for very intense thermal waves
2 -.l/(3n+2)

ro(t)=\(^) Kt\ , uo( t )= ( - ) (/it)"3 (2.68)

(here uo(£) is the temperature scale); for very intense blast waves

ro(t) = (£*2M>)1/5,
= Po (for density),

Uo(t) = p3
0
/5E2/6t~6/5 (for pressure),

tio(t) = (Et-3/p0)
l/5 (for velocity).

As already mentioned in the Introduction, self-similar solutions are
encountered in many branches of mathematical physics. Obtaining a
self-similar solution has always been regarded as a success by researchers.
The point is that, in many cases, self-similarity allows one to reduce a
problem in mathematical physics involving partial differential equations
(which are frequently nonlinear, so that this is especially important)
to one involving ordinary differential equations. According to the hi-
erarchy of difficulties that existed in the pre-computer era, this made
certain studies easier to carry out. Moreover, self-similar solutions have
been widely used as standards for evaluating all kinds of approximation
methods, irrespective of the immediate urgency of the problems. The
appearance of computers changed the attitude towards self-similar so-
lutions, but did not reduce the need for them: self-similarity continues
to attract even more attention than before, but now as a deep physical
property of a process, which indicates that it stabilizes itself in a certain
way. The statement that a phenomenon has stabilized or is entering a
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88 2. The construction of intermediate-asymptotic solutions

steady-state regime is, clearly, highly informative. The statement that a
phenomenon is entering a self-similar regime is every bit as informative.

Self-similar solutions are always solutions to limiting, 'idealized', prob-
lems where the parameters in the problem with the same dimensions as
the independent variables are equal to either zero or infinity. Thus, in
the idealized way of formulating the problem described above, the bar
undergoing heat conduction was assumed to be either infinite or semi-
infinite. The region in which the heat was initially released was assumed
to be infinitely small, and the release of heat was assumed to be instan-
taneous. If this had not been the case, self-similarity would not have
existed. Therefore for a long time self-similar solutions were treated by
most researchers as though they were merely isolated 'exact' solutions
to special problems: elegant, sometimes useful, but extremely limited
in significance. It was only gradually realized that these solutions were
actually of much broader significance. In fact, as we saw in the discus-
sion of the theory of heat conduction, self-similar solutions turn out not
only to describe the behaviour of physical systems under some special
conditions, but also to describe the 'intermediate-asymptotic' behaviour
of solutions to broader classes of problem in the regions where these
solutions have ceased to depend on the details of the initial conditions
or boundary conditions but where the system is still far from its final
equilibrium state. This situation is common, and greatly increases the
significance of self-similar solutions.

2.3.2 Intermediate asymptotics

It is again essential for us to emphasize that self-similar solutions are of
basic value not only and not mainly as exact solutions of isolated, albeit
urgent, specific problems but above all as intermediate-asymptotic rep-
resentations of the solutions of much wider classes of problem. We have
seen this above for the instantaneous heat source and thermal dipole
problems. Now consider this point for the very intense thermal wave
problem. Of course the release of energy in a nuclear explosion does not
actually take place at a point but in a finite domain of some radius r*, it
is not spherically symmetric, and the initial temperature To is not equal
to zero. Hence, the governing parameters in (2.40) should also include
the parameters r* and To and the polar angles (p and ij). It follows im-
mediately that in addition to the parameter III the function $ in (2.42)
will be determined by the four other dimensionless parameters

n 4 = <p, n 5 =
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2.3 Self-similarity. Intermediate asymptotics 89

It is intuitively clear, however, and well confirmed by numerical compu-
tations, that the asymmetry of the region of initial release is important
only in the very first moments, when the thermal wave has spread only to
a distance of the order of the size of the initial region of heat release. At
these distances the various details of the initial heat discharge influence
the solution; these are different from case to case, are never recorded
and are of no particular interest. We shall abandon their considera-
tion, i.e., we shall be interested in the propagation of strong thermal
waves only at the stage when the wave has travelled a distance r/(t),
large compared with the size of the initial region of heat discharge. This
means that rf{t) > r#, and from this, and the fact that rj(t) is of order
[{E/c^Kt}1/^^ it follows that we must here have t > r3n+2 / K(E / c)n.
But for such t the parameter II2 is much smaller than unity. One or-
dinarily assumes that if some similarity parameter has a value much
smaller or much larger than unity then the dependence on that parame-
ter, and consequently also on the corresponding dimensional parameter,
can be neglected. In this special case this turns out to be correct, so
that for r >̂ r* and t > r 3 n + 2 / K ( E / c ) n the dependence of the solution
on the parameters II2, II4, IT5 is unimportant.

Further, since the explosion is very intense, the temperature in the
region traversed by the thermal wave is at first very high, much greater
than the initial temperature To. But the temperature near the cen-
tre of the wave is of order [(£/c)2(/^)~3]1/3n+2, whence it follows that
for t < (£c)2/3/*T0

(3n+2) /3 = T2 the parameter II3 < 1, and the
initial temperature is unimportant. Keeping in mind that for such t,
77 «C (E/cTo)1/3, we find that for a sufficiently intense and sufficiently
concentrated explosion (large E and small r*) the characteristic upper
and lower time scales of the problem,

Ti = r 3 n + 2 / /<£/c) n , T2 = (E/C^/KT^ . (2.71)

and the spatial scales of the problem,

£ i = r * , L2 = (E/cT0)
1'3, (2.72)

are strongly separated from each other, i.e., are such that Xi<c< T2

and Li«C< L2} The self-similar solution we have obtained describes
the phenomenon of a strong and concentrated explosion well at times
and distances from the centre large enough to make the influence of the

As a matter of fact, the scales T2 and L2 are bounded also by the beginning of
the gas motion; at the outset the gas is at rest.
The symbol a<m: b means that there exists a range of values of a quantity x such
that x > a, but x < b.
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90 2. The construction of intermediate-asymptotic solutions

asymmetry of the initial conditions and the size of the domain of original
heat release disappear, and at the same time small enough so as to make
the original temperature negligible:

r3 n + 2

K(E/C)» ^ ^ KT0
(3n+2)/3 ' (2.73)

r * < r < ( £ / c T 0 ) 1 / 3 .
We therefore say that the self-similar solution is an intermediate asymp-
totics of the phenomenon described. By intermediate asymptotics in gen-
eral one means the following. Suppose in the problem there are two con-
stant governing quantities X\ and X\ having the dimensions of a cer-
tain independent variable xi. An intermediate asymptotics is an asymp-
totic representation of the property as Xi/X\1' —• 0 while Xi/X\2' —> oo.

The situation is quite analogous in the problem of describing the gas-
dynamic stage of a very intense explosion. In this case we must take into
consideration that the energy release occurs not at a point but in a sphere
of radius ro (ro corresponding to the time when the intense shock wave
outstrips the thermal wave), and that outside this sphere the ambient
gas of density po is under a pressure that is not zero but has some
finite value p0. The solution discussed above represents an intermediate
asymptotics describing the gas-dynamic stage of the explosion for

V 7 V Po / (2.74)
fE\1/3

Li = r0 < r < — = L2 ,\PJ J
i.e., for times, and at distances from the centre of the explosion, suffi-
ciently large that the influence of the size of the region of initial energy
discharge vanishes and at the same time sufficiently small that the in-
fluence of the counter-pressure po is not yet felt. We shall give some
figures. Under the conditions of the first American atomic explosion at
Alamogordo, po ~ 10~3 g/cm3, E ~ 1021 ergs, po ~ 106 dynes/cm2, and
ro ~ 103 cm = 10 m, whence for the temporal and spatial bounds on
the domain of applicability of the self-similar intermediate asymptotics
we find Ti ~ 10"4 s, T2 ~ 1 s, Lx ~ 103 cm, and L2 ~ 105 cm. (One
should note that as a matter of fact the upper bound on the applicability
of the self-similar intermediate asymptotics is actually lower, because of
the influence of viscous erosion of the front).

The situation is just the same in the general case. Self-similar solutions
are always solutions of idealized problems in which constant parameters
that have the dimensions of the independent variables appearing in the
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2.3 Self-similarity. Intermediate asymptotics 91

problem assume zero or infinite values; consequently, self-similar solu-
tions correspond to singular initial or boundary conditions, as we see in
the examples considered in this chapter. Hence self-similar solutions are
always intermediate-asymptotic solutions of non-idealized problems.

The idea has been widespread that obtaining self-similar solutions
is always connected with dimensional analysis, so that by applying di-
mensional analysis to the formulation of an idealized problem that has
some self-similar solutions, one can always obtain the form of the so-
lution, i.e., relations for the self-similar variables; then after obtaining
the exact solution it is easy to find the class of non-idealized problems
for which the self-similar solution considered is an intermediate asymp-
totics. This is actually the situation for some self-similar solutions. The
examples considered in the present chapter have demonstrated this, and
have indicated a general approach that is applicable in similar cases. It
is an essential point, however, that the cases in which the construction
of self-similar solutions is exhausted by dimensional analysis constitute,
as is sometimes said, only the visible tip of the iceberg. As a rule,
the situation is different: there exist extensive classes of problems for
which, although a self-similar intermediate asymptotics exists, it cannot
be obtained from the original formulation of the problem by applying di-
mensional considerations. The form of the self-similar variables in these
cases is obtained from the solution of nonlinear eigenvalue problems,
and sometimes even from some additional considerations. We empha-
size again that it is not a question here of exceptions but rather of the
rule; the set of self-similar solutions that cannot be obtained from sim-
ilarity considerations is considerably richer than the set of self-similar
solutions whose form is completely determined by dimensional considera-
tions. Subsequent examination wiirdarify the situation here: modifying
the problems considered in this chapter apparently slightly, and more-
over in such a way that at first glance all similarity considerations used,
and hence also everything deduced from them, must remain valid, we
will arrive at a contradiction. Resolving the contradiction will lead us
to a new class of self-similar solutions.

One final note concerns the very meaning of intermediate asymptotics
and, in particular, self-similar solutions. Sometimes we can listen to or
read the opinion that now, in the computer era all this matter is of lesser
importance because the solutions of all these problems can be obtained
numerically for all conceivable initial and boundary conditions. Please,

More precisely, stable self-similar solutions (see chapter 8).
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92 2. The construction of intermediate-asymptotic solutions

it is often said, formulate the problem whose solution you need and you
will obtain without special effort a set of tables of all the numerical
values you need with the desired (and, of course, paid for) accuracy. To
understand this point properly we have to recall that the crucial step
in any field of research is to establish what is the minimum amount
of information that we actually require about the phenomenon being
studied. All else should be put aside in the study. This is precisely
the path taken by the natural sciences since Newton. Features that are
not repeated from case to case and cannot be experimentally recorded
are always deliberately thrown out. Thus, the researcher is actually not
so much interested in a table of values of the function / describing the
way in which the property a being studied depends on the governing
parameters ai, ..., a^, &i, ..., 6m,

a = / ( 0 1 , . . . , a * , { > i , . . . , i > m ) ,

as in the principal physical laws that determine the major features of
this relationship. These principal laws, the basic features of phenom-
ena can often be seen and understood when analysing the intermediate
asymptotics.

The general idea of intermediate asymptotics is well expressed by the
Russian poet Alexander Blok in his poem 'Bo3Me3,zjHe' ('The retribu-
tion'):

CoTpn cjiy^awHbie MepTbi,
Pi TLI yBHOTiiib - MHp npeKpaceH.

(Obliterate the accidental features, and you will see: the world is splen-
did.) We shall use also an example from the field of graphic arts to
illustrate this idea: at a sufficiently large (but not too large) distance,
everyone will recognise Leonardo's Mona Lisa in Figure 2.10. If one
examines this picture close up, it becomes clear that it is composed of
560 monochromatic squares distributed in a particular order (Harmon,
1973). Specialists in the printing trades have a numbering system for
colours such that all of the colours (even the fine tints) in Figure 2.10
have unique numbers'.

Thus, a table approximately like Table 2, with 560 entries, would be
an 'exact' representation of Figure 2.10: an analogue of the set of tables
with the results of numerical calculations. Here, exactly, is your Mona
Lisal Obviously, this kind of 'exactness' does not increase our under-
standing of the phenomenon (in the present case, our artistic perception

The author is grateful to the Swedish architect Mrs. E. Bark for supplying him
with the Swedish standard for colour determination.
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2.3 Self-similarity. Intermediate asymptotics 93

Figure 2.10. Leonardo's Mona Lisa is an example of intermediate asymp-
totics! Indeed, at some intermediate distance from this figure, everyone
will recognize the Mona Lisa. Up close, however, the image disappears
- it turns out to consist of 560 monochromatic squares distributed in a
particular way. On the other hand, at large distances from this figure the
image naturally disappears again.
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Table 2.1

Square
number

1
2

560

Row
number

1
1

28

Column
number

1
2

20

Number for the
colour of the square

2040-G 20Y
4050-G 20Y

2040-G 20Y

of the picture) - it kills it! And it is the same in any scientific study.
Thus, the primary thing in which the investigator is interested is the de-
velopment of the phenomenon for intermediate times and distances away
from the boundaries such that the effects of random initial features or
fine details in the spatial structure of the boundaries have disappeared
but the system is still far from its final equilibrium state. This is pre-
cisely where the underlying laws governing the phenomenon (which are
what we are in fact primarily interested in) appear most clearly. There-
fore intermediate asymptotics are of primary interest in every scientific
study.

The concept of intermediate asymptotics was formally introduced into
mathematical physics by Ya.B. Zeldovich and the author (see Barenblatt
and Zeldovich 1971, 1972, Barenblatt 1959b, Zeldovich and Raizer 1966,
1967) although it was used implicitly long before.
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Self-similarities of the
second kind: first examples

3.1 Flow of an ideal fluid past a wedge

3.1.1 The problem statement and a direct
application of dimensional analysis

In the heat conduction and gas dynamic problems discussed in the
preceding chapter, we were able to establish that the intermediate-
asymptotic solutions were self-similar and to determine the self-similar
variables using dimensional analysis alone. However, this is very fre-
quently not the case. It often turns out that a problem has a self-similar
intermediate-asymptotic solution, but that dimensional analysis alone
is insufficient to obtain it. We shall presently see this for a simple ex-
ample - the flow of an ideal fluid (one having no internal friction) past
a wedge. Even this simple example will help us to find out why di-
mensional analysis on its own is sufficient for constructing self-similar
solutions in some cases but not in others. Further examples will demon-
strate other, more complicated situations. Thus, in this section, we shall
consider the steady symmetric flow of an ideal fluid of constant density
past a wedge-shaped body with uniform velocity U at infinity perpen-
dicular to the leading edge of the wedge (Figure 3.1). We select a system
of rectangular coordinates as shown in Figure 3.1 (a), with the x-axis in
the plane of symmetry of the wedge, parallel to the flow velocity, the
z-axis along the leading edge of the wedge, and the t/-axis perpendicular
to these two axes. It may be assumed that the motion is identical in
all planes perpendicular to the leading edge of the wedge. Thus, the
^-component of the velocity, uz, can be set equal to zero, while the Ion-
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96 3. Self-similarities of the second kind

gitudinal and transverse components of the velocity, ux and uy, depend
only on the coordinates x and y. The region in which the fluid moves
is very large; we shall assume that it is infinite. It is also an important
assumption; however, for the present case it is not critical.

U U

U

(c)

Figure 3.1. Flow of an ideal incompressible fluid past a wedge: (a) original
formulation of the problem; (b) initial schematization - an infinite sharp
wedge; and (c) a sharp wedge of finite size.

We shall now briefly recall for the reader's convenience the derivation
of a well-known hydrodynamical relation, the equation of continuity.
This equation reflects the fact that the fluid is neither created nor anni-
hilated in the flow. Consider the fluid balance in a rectangular volume
element with sides dx and dy along the x and y axes, and unit thick-
ness along the z-axis (Figure 3.2). In a unit time, a quantity of fluid
uxdy flows into the volume element through the left-hand boundary,
and a quantity of fluid (ux + dxuxdx)dy flows out through the right-
hand boundary; an amount of fluid uydx flows in through the lower
boundary, and an amount (uy + dyuydy)dx flows out through the upper
boundary. (We have neglected small, higher-order quantities that arise
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3.1 Flow of an ideal fluid past a wedge 97

owing to the fact that the velocity is not constant along the boundaries:
their relative contribution goes to zero as the size of the element is de-
creased.) Thus, the difference between the volumes of inflowing fluid
and outflowing fluid is {dxux + dyuy)dxdy. However, fluid is neither
created nor annihilated within the element, and the fluid density is con-
stant. Therefore, the total difference must be equal to zero; from this
condition, we obtain the equation of continuity:

dxux + dyUy = 0. (3.1)

Furthermore, it is known from hydrodynamics that a flow of this type,
uniform at infinity, past a body involving a fluid with no internal friction
is a potential flow. This means that both components of the flow velocity
are given by the appropriate derivatives of a single function - the velocity
potential (j>:

ux = dx(j), uy = dy(j). (3.2)

x+ dx,y+ dy

ux+dxuxdx

x+dx,y

Figure 3.2. Derivation of the equation of continuity.

Substituting equations (3.2) into the equation of continuity (3.1), we
obtain Laplace's equation for the potential </>:

d2
xx<t> + dy

l
y<f> = 0. (3.3)

We now transform to the polar coordinates r and 6 (Figure 3.1 (a)),
which are convenient for the present problem, using the formulae x =
rcos# and y = rsin#. The relations for the radial and tangential com-
ponents of the velocity, ur and u#, in terms of the velocity potential are
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98 3. Self-similarities of the second kind

of the form

(3.4)

and Laplace's equation (3.3) takes the form

O + (l/r)3r0 + (l/r2HV = 0. (3.5)
We shall now derive the boundary conditions for the problem at hand.

They should reflect the fact that the velocity component perpendicular
to the wedge surface vanishes at the surface and the fact that the flow
is unperturbed far from the wedge. Recall that in the flow of an ideal
fluid past a body at rest, only the velocity component perpendicular to
the surface of the body vanishes at its surface. The velocity component
tangential to the surface is generally speaking non-vanishing: the flow
of an ideal fluid does not satisfy the non-slip condition. The boundary
conditions for the present problem are therefore of the form dn<j) = 0
at the wedge surface and dx<t> = U and dy(j) = 0 far from the wedge,
i.e., at infinity, where dn(j) is the derivative of the potential along the
normal to the wedge surface. However, we shall not be interested in the
velocity distribution everywhere, but only at distances r from the tip of
the wedge O much greater than the radius to which the edge has been
blunted, TQ (Figure 3.1 (a)), on the one hand, and much smaller than the
length of the wedge, L, on the other:

ro<^r<^L. (3.6)

We now try to proceed in exactly the same way as we did for the heat
conduction problem in the previous chapter. Recall that in the beginning
we were interested in the heat distribution in the bar for time scales for
which the current size of the heated region was much greater than that of
the initially heated region. We therefore assumed, in effect, that the size
of the region in which the heat was initially released was equal to zero.
We shall proceed in exactly the same way here: since we are interested
in distances from the tip of the wedge much greater than the radius
to which it has been blunted, ro, we shall neglect the fact that the tip
of the wedge has been blunted, and assume that the wedge is sharp.
Furthermore, in the preceding chapter we were interested in the heat
distribution in the bar for time scales such that the size of the heated
region was still smaller than the distances to the ends of the bar, and
the bar could be thus assumed to be infinite in this intermediate stage.
We shall proceed in exactly the same way here: since we are interested
in distances from the tip of the wedge much less than the length of the
wedge L, we shall assume that the wedge is infinite in the x-direction.
This idealized version of the body past which the fluid is flowing (an
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3.1 Flow of an ideal fluid past a wedge 99

infinite sharp wedge) is indicated by the dashed line in Figure 3.1 (a).
The angle 9 is constant along the boundaries of this wedge, so that the
normal component of the velocity, UQ = ( l / r ) ^ 0 , must go to zero there.

The boundary condition for the potential along the boundaries there-
fore takes the form

dO(f> = O for 9 = a and 9 = 2TT - a. (3.7)

Following the same reasoning, the velocity of the flow should remain
unperturbed far from the wedge; thus, the relations

<t> = Ux, dx<f) = U, dy(f> = 0 (3.8)

must be satisfied at x,y = oo outside the wedge. In the special case
a — 0 the wedge becomes an infinitely thin plate parallel to the flow
direction. Such plate does not perturb the ideal flow, so for this case
the potential remains equal to Ux.

The potential </> for the flow past an infinite sharp wedge with non-zero
opening angle (Figure 3.1(6)) may depend on the following governing
parameters (i.e., quantities that appear in Laplace's equation (3.5) and
in the boundary conditions (3.7) and (3.8)): the velocity of the incident
flow [/, the radius r, the polar angle 0, and the opening angle of the
wedge 2a; thus

<t> = f(U,r,e,a). (3.9)

The dimensions of the governing parameters are, obviously,

[U] = LT~\ [r]=L, [9] = 1, [a] = 1. (3.10)

It follows from relations (3.2) that <\> has the dimension L2T~l - a
product of the dimensions of velocity and length:

Thus, n — 4, m = 2 and k = 2, and, by the general rule, dimensional
analysis yields

4> = Ur${0,a). (3.11)

Differentiating relation (3.11) for the potential, we obtain

0 = 0, c>r0 = £/$(#, a ) , d2
ee<t> = Ur(d2<f>/d62).

Substituting these equations into Laplace's equation (3.5), we find
that the function $ must satisfy the simple differential equation

^ • = 0. (3.12)

The solution to this equation is well known: $ = A cos 6 + B sin 6,
where A and B are arbitrary constants. Thus, using equation (3.11),
we find that 0 = AUr cos 9 + BUr sin 9 = AUx 4- BUy. Differentiating,
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we obtain ux = AU and uy = BU, i.e., the velocity distribution in
the uniform flow. Condition (3.8) implies that the flow must remain
unperturbed at infinity, so that A = 1 and B = 0. Thus, (j> — Ux. We
have arrived at a paradoxical conclusion: the presence of the wedge of
a finite opening angle does not change the uniform flow! But for the
non-zero opening angle a the unperturbed uniform flow (with potential
<p = Ur cos 6 — Ux) obviously does not satisfy condition (3.7) which
states that the flow does not cross the surface of the wedge. Thus, no
solution exists for the infinite-wedge problem with finite opening angle.
We repeat once again that if such a solution existed, it would have to
be determined by the parameters t/,r, 6 and a alone. However, the
only such solution is the potential for a uniform flow, which does not
satisfy the boundary conditions along the faces of the wedge for non-zero
opening angle of the wedge.

3.1.2 Resolution of the paradox

What kind of paradox has arisen here? It would seem that we have
proceeded in exactly the same way as in the preceding chapter. We were
interested in the velocity field for 'intermediate' distances from the tip
of the wedge - i.e., much larger than the radius to which the wedge was
blunted, but much smaller than the length of the wedge. Thus, just as we
reduced the problem in the previous chapter to discussing the conduction
of heat from a concentrated, instantaneous source in an infinite bar, we
reduced this problem to one of determining the flow past an infinite
sharp wedge. However, even though we were completely successful in
the heat-conduction problem, we have reached a contradiction in the
problem of flow past a wedge. In order to resolve this paradox, let us
examine the solution to the somewhat more complicated problem of the
flow past a sharp wedge with finite length L (Figure 3.1(c)).

The solution to this problem is well-known in hydrodynamics. It is of
the form

<f> = Real part of U£, (3.13)

where £ = F(z) is an analytic function of the complex variable z = x+iy
that carries out a conformal mapping of the exterior of the triangle (the
cross section of the wedge in the flow) onto the exterior of the segment
0 < x < a of the a>axis such that dQ/dz —> 1 as z goes to infinity. We
emphasize that the size of the segment, a, is not specified beforehand,
but is determined by the parameters of the triangle: its altitude L and
the angle at its apex, 2a. From the theory of functions of a complex
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variable it is known (the Christoffel-Schwartz formula), that

C

z =

0

where

a — F(L) = const., b — F(L 4- i i t a n a ) = const.

We now substitute (3.14) into (3.13), keeping in mind the fact that we
are interested in values of the radius r such that r <^ L. Setting a = L8,
b — L[i and t = Lr (where \r\ <C 1) and expanding the integrand in
(3.14), we obtain

\LJ \n — a

— Lrlr^a l,~{Tr-a) pe
l\n-a~ n-a) ?

so that

<t> = Ur cos[(A + 1)9 + l]P{r/L)x , (3.15)

where
a na

X n-a ' n-a'
and (3 is a dimensionless constant.

It may easily be verified that the expression in (3.15) satisfies Laplace's
equation (3.5) and boundary condition (3.7) at the faces of the wedge,
although it does not satisfy the condition (3.8) at infinity for a > 0.
Passing to the limit L —• oo in the solution (3.13)-(3.14) with U = const
merely yields </> = 0, i.e., fluid at rest. As equation (3.15) indicates, to
obtain the correct limiting solution (i.e., one that exhibits the desired
asymptotic behaviour), the velocity of the incident flow, U, must also
tend to infinity as the wedge grows longer (i.e., as L —> oo) in such a
way that the product

B = UL~X (3.16)

remains constant.
It now becomes clear what has happened. The problem of flow past

a wedge with finite length (for which a solution exists) has another
governing parameter in addition to those for the problem of flow past
an infinite wedge (for which, as it turned out, no solution exists): the
length of the wedge L. Thus, in place of (3.9) and (3.11), respectively,
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102 3. Self-similarities of the second kind

we have

c/> = f(U,r,0,a,L) = Ur$ Ua, j ) . (3.17)

Since we were interested in distances from the sharp tip of the wedge
r <C L for which the dimensionless parameter L/r is large, we simply set
the latter equal to infinity, and attempted to determine the limiting flow,
having identified this limiting flow with the solution to the problem of
flow past an infinite wedge by a uniform stream with velocity U. In doing
so, we tacitly assumed that such a solution, the limit of solutions (3.17)
for L/r —» oo, existed, was finite, and non-zero. This last assumption
was in fact the one that turned out to be false.

3.1.3 Self-similar solutions of the first and second kind

We shall now discuss expression (3.15) for the flow potential in more
detail. We saw in the previous chapter that the self-similar solution for
an instantaneous concentrated heat source in an infinite bar can be used
to represent the non-self-similar solution to the equation of heat conduc-
tion for the propagation of heat in a finite bar on some intermediate time
interval. Analogously, relation (3.15) is an approximate representation
of the velocity potential for the flow past a finite wedge for intermediate
distances from the leading edge of the wedge.

As may easily be seen, potential distribution (3.15) is self-similar: the
distributions at various distances from the leading edge of the wedge
can be obtained from one another by a similarity transformation. Fur-
thermore, as noted above, (3.15) is a solution to Laplace's equation that
satisfies boundary conditions (3.7) on the faces of the wedge. However,
if we write solution (3.15) in self-similar form,

4> = /?(i7L-A)rA+1^>i(i9, Q) , (3.18)

we see that this solution for a > 0, A > 0 does not have the form
for the flow past an infinite wedge that we would have expected from
dimensional considerations (see (3.11)).

Note that once we have specified the form of the self-similar solution
(3.18) the exponent A can be determined by solving an eigenvalue prob-
lem. Namely, by substituting (3.18) into Laplace's equation (3.5), we can
obtain an ordinary differential equation for the function <3>i, following
much the same procedure used to obtain (3.12):

^ +(A+ 1 ) ^ = 0 , (3.19)

from which we obtain $i = /3cos[(A + 1)0 + 7], where /? and 7 are
arbitrary constants. But the normal velocity UQ = (l/r)d0</> must vanish
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3.1 Flow of an ideal fluid past a wedge 103

along the line of symmetry and the faces of the wedge. We therefore
require that d$i/dO vanishes along the rays 6 = a, 6 = n and 0 = 2TT — a,
and only along these rays within the region of motion. We find that

A = — — , 7 = ^ - 4 - r a T r , (3.20)
7T — a 7T — a

where m is an arbitrary integer that is positive, negative, or zero. Sub-
stituting these relations into equation (3.18) for the self-similar solution,
we recover solution (3.15), which we had obtained earlier as an asymp-
totic representation of the solution to the more complicated problem of
the flow past a wedge of finite length.

Thus, the self-similar solution obtained above, which describes the
flow near the leading edge of the wedge, departs in a fundamental way
from the self-similar solution to the problem discussed in the previous
chapter, involving an instantaneous heat source. There are several dif-
ferences, and they are instructive. First, the exponent A cannot now
be determined using dimensional analysis; it is necessary to solve an
eigenvalue problem in order to determine it. Strictly speaking, (3.17) is
all that dimensional analysis is capable of providing; the fact that the
dimensional parameter L/r appears in the expression for the solution as
a factor raised to some power does not follow from dimensional analysis.
Furthermore, unlike the size h of the region of initial heat release and the
distance to the ends of the bar xo and / — xo which did not appear in the
solution for the instantaneous heat source, the dimensional parameter
L, the length of the wedge, explicitly appears in solution (3.18). Fi-
nally, the constant (5 remains undetermined in the final solution: there
is no integral conservation law from which it could be determined in
the problem of flow past a wedge, as there was in the heat conduction
problem.

Self-similar solutions of this type began to appear in various physics
and mechanics problems long ago, following the work of Guderley (1942).
Zeldovich (1956) suggested that they be identified as a special class. In
contrast to self-similar solutions like those that we encountered in solving
the instantaneous heat source problem and the very intense thermal and
blast wave problems, in which dimensional analysis turned out to be
sufficient to construct the complete solution, solutions like that for flow
past a wedge are called self-similar solutions of the second kind. The
name self-similar solutions of the first kind is reserved for self-similar
solutions that can be constructed using dimensional analysis alone. We
would like to shed some light on the nature of these differences, and thus
understand why everything can be obtained simply, using dimensional
analysis alone, in some cases, while in other cases dimensional analysis is
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104 3. Self-similarities of the second kind

not sufficient to determine the exponents and it is necessary to solve an
eigenvalue problem. This will be done in chapter 5 after some additional
examples of similar solutions of the second kind have been considered.

3.2 Filtration in an elasto-plastic porous medium:
the modified instantaneous heat source problem

3.2.1 The problem statement

The modification of the instantaneous heat source problem that we shall
consider consists in changing the equation for the temperature 6 in those
regions where the body is cooling: instead of. the classical equation of
heat conduction (2.3), 6 is now taken to satisfy an equation with a
discontinuous coefficient of thermal diffusivity:

' ' (3.21)
; 0),

where K\ is a constant that is in general different from «, so that the co-
efficient of thermal diffusivity depends upon whether the body is heating
or cooling at a given point. It is essential that the steplike behaviour of
the coefficient of thermal diffusivity is connected with the difference in
the specific heat for heating and cooling, and that the thermal conduc-
tivity does not depend on the direction of the change in temperature.
Therefore the variable thermal diffusivity is put outside the space deriva-
tive, and the condition of continuity of heat flux requires the continuity
of the derivative dx6.

Thus we are interested in a solution of (3.21) that is continuous with
continuous derivatives with respect to both independent variables. As
was proved by Kamenomostskaya (Kamin) (1957), a solution to the
initial-value problem for (3.21) with an arbitrary sufficiently smooth
function 0(x,O), that decreases monotonically, and sufficiently rapidly,
with increasing \x\ exists, is unique, and has a continuous derivative with
respect to t and two continuous derivatives with respect to x.

Equation (3.21) occurs in the theory of the filtration of an elastic
fluid in an elasto-plastic porous medium. A short derivation of it is
given below; the reader who is not interested in the actual physical
meaning of the modified problem can skip this section without damage
to his understanding of what follows. The equation (3.21) also describes
diffusion in two-component media where the second component consists
of particles admitting osmotic diffusion, so that the first substance can
diffuse into the particles but not out of them (see Ginsburg, Entov and
Theodorovich, 1992).
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3.2 Filtration in an elasto-plastic porous medium 105

The equation for the conservation of fluid mass in the filtration (slow
motion) of fluids in porous media has the form

dt{mp) + divpv = 0.

Here m is the porosity of the medium, that is, the relative volume occu-
pied in the medium by the pores; p is the density of the fluid; v is the
velocity of filtration, equal in magnitude to the mass flux of the fluid
passing through a section of unit area of the porous medium normal to
the flow, divided by the fluid density; and t is the time. This equation
can be derived in the same way as the equation of heat balance in chap-
ter 2. The velocity of filtration is proportional to the pressure gradient;
this constitutes Darcy's law, which is the basis for the theory of filtra-
tion (and is analogous in its formulation to Fourier's law in the theory
of heat conduction):

k Av = —gradp.

Here k is the so-called coefficient of permeability, determining the resis-
tance of the porous medium to the fluid leaking through it, and /x is the
coefficient of viscosity of the fluid. The fluid is assumed to be weakly
compressible, so that its density grows linearly with increasing pressure:

p/po = l + / ? / ( p - p o ) ,

where 0f is the coefficient of compressibility of the fluid, and po and po
are the reference pressure and density of the fluid. The porous medium
is also considered to be weakly compressible. Its porosity m can, as
experiments show, be considered to a first approximation to depend
only on cr, the first invariant of the stress tensor* (equal to one-third of
the sum of the principal stresses) acting on the skeleton of the porous
medium: m = m(a). If the porous medium is linearly elastic, then

ra/m0 = 1 - Pr{a - a0),

where (3r is the coefficient of compressibility of the porous medium, GQ
is the reference value of a (for increasing stress the medium compresses,
Pr > 0), and mo is the corresponding value of the porosity. Under the
conditions in a deep-lying porous stratum the total stress state of the
fluid-porous-medium system is fixed, since the fluid and the porous
skeleton together restrain the burden of higher-lying strata. Hence
a + p = cro 4- po, whence a — <JO = — (p — Po)- Substituting these re-
lations into the equation for the conservation of fluid and discarding
higher-order terms in (3(p — po), we find (for details see Shchelkachev,

Here it is convenient to assume a compressive stress as positive.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.006
https://www.cambridge.org/core


106 3. Self-similarities of the second kind

1959; Collins, 1961; Barenblatt, Entov and Ryzhik, 1990) that for the
filtration of an elastic fluid in an elastic porous medium under the con-
ditions in a deep-lying porous stratum the pressure of the fluid p(r, t)
satisfies the classical linear equation of heat conduction,

dtp = «Ap. (3.22)

Here K is the so-called 'coefficient of piezoconductivity', analogous to

the coefficient of thermal diffusivity and equal to fc//i(rao/3/ + /?r).
Now, as often happens in practice, let the porous medium be irre-

versibly deformable. Then (for details see Barenblatt and Krylov, 1955;
Barenblatt, Entov and Ryzhik, 1990)

for increasing a (decreasing fluid pressure, because the total stress state

of the fluid-porous-medium system remains unchanged, a + p =

<7o -f po> dtcr = —dtp) and

dtiri = —mopridtc = rriQpridtp

for decreasing a (increasing fluid pressure), where /3ri is not equal to
/3r. Hence, the equation for the excess fluid pressure, i.e., the difference
between the initial and instantaneous pressures 0(r, t) = po — p(r,t),
assumes the form

dt0 = K(dt6)A6, (3.23)

where K(dt6) is a step function: K(dt6) — K for dt6 > 0 and n{dt9) =. K\
for dt0 < 0. The coefficients K and K\ are determined by the properties
of the fluid and the deformation properties of the medium. They are
different for loading of the stratum by the burden of the higher-lying
strata (a drop in fluid pressure), and for unloading of the stratum (a
subsequent increase in fluid pressure) :

k k

Thus the analogue of thermal conductivity, the quantity &//i, is identical
for loading and unloading, whereas the analogue of specific heat, the
quantity mo/3/ -f /?r, is different for loading and unloading.

In particular, for the one-dimensional problem of rectilinear parallel
fluid motion (filtration to a drainage gallery or from it), (3.23) assumes
the form of the basic equation (3.21).

It is assumed that at each point in the porous medium the processes of loading and
unloading take place only once. One can also consider more complicated processes,
but we shall not do so here.
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3.2 Filtration in an elasto-plastic porous medium 107

We shall now try to find the solution to the problem of the instan-
taneous removal of a finite mass of a fluid from a small region of an
elasto-plastic porous stratum. It would seem that obtaining this solu-
tion reduces, in view of the linear dependence of the fluid density on
pressure, to constructing the solution to (3.21) for a problem of instan-
taneous point-source type. We shall try to construct such a solution with
the help of dimensional analysis; but later discussion will show that the
matter is actually more complicated.

Thus a solution of (3.21) is sought, satisfying an initial condition and
a condition at infinity similar to those in section 2.2

CO

0(z,O) = O (z^O), f 9(x,0)dx = Q, 0(±oo,t)=O. (3.24)

3.2.2 Direct application of dimensional analysis to the
modified instantaneous heat source problem

As already mentioned above, for the case K\ = K (the classical equation
for heat conduction or for filtration in an elastic porous medium) such a
solution exists, is self-similar, and takes the form (2.19). It would seem
that for K\ ^ K dimensional considerations would proceed exactly the
same as for the case K\ = «, because the list of governing parameters in
the modified problem has been increased, compared with the classical
instantaneous heat source problem, only by the dimensionless constant
parameter e = ( « I /K) - 1. Hence it would seem at first glance that the
desired solution must be expressed in the form

£U 4 (3-25)
where the function <3> is continuous, with a continuous derivative with
respect to £, and even: $(—£, e) = $(£,c). Further, the loading domain
(dtO > 0) must correspond by virtue of the self-similarity of the problem
to

\x\ > xo(t) = £o%/*•£,

where £o is a constant depending on e; and for the unloading domain
(dt0 < 0),

0 < \x\ < xo(t).

However, for K\ ^ K there does not exist a solution of (3.21), in the
form (3.25), which is continuous and has a continuous derivative with
respect to x (continuity of the fluid flux), which satisfies the natural
conditions of symmetry, and which vanishes at infinity. In order to see
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108 3. Self-similarities of the second kind

this, we substitute (3.25) into (3.21) and obtain for $ the following or-
dinary differential equation with discontinuous coefficient at the highest
derivative:

* • Id ( 3 2 6 )

where the point £ = £o corresponds to the vanishing of the quantity
d(£$)/d£ which, as is easily seen from (3.25), is proportional to the
derivative dt9. Integrating, we have

d<I> £<!>
(l+e)—+ i -=

1 A < 3 2 7 )

oo).

By virtue of symmetry and the absence of influx at x = 0 for times
t > 0, d<3>/d£ = 0 for £ = 0 and, as £ —• oo the function £$ tends to zero
(the total amount of removed fluid is finite at each instant and $ must
be integrable). Hence c\ = c<i = 0. Integrating the preceding equations
we obtain

I -~- 1 ,= c4exp I - ~ - 1 , (£o < £ < oo),

where C3 and C4 are new constants. The condition of continuity of the
function 0(x, t) and its derivative with respect to x reduces to the re-
quirement of continuity of $ and d$/df; at £ = Co? and from this and
the previous equation we get a linear system of homogeneous algebraic
equations for determining C3 and C4:

For e^O, i.e., «i 7̂  «, this system evidently has no nontrivial solution
for any finite £o> since its determinant is different from zero. Thus, it is
proved that there exists no nontrivial solution in the form of (3.25) of
the problem posed. Meanwhile, the trivial solution obviously does not
satisfy the initial condition (3.24).

3.2.3 Numerical experiment. Self-similar intermediate asymptotics

In order to resolve the paradox that has arisen, let us appeal to the
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Figure 3.3. The decay of the maximum of the function 0(x,t) rapidly
follows a scaling law.

results of a numerical experiment.* The equation (3.21) was integrated
at various initial conditions for various values of the parameter e =
(K\/K) — 1. The initial conditions (3.24) are represented by a generalized
function, so they could not be introduced to the computer program
directly. Therefore they were simulated by various initial distributions
0(x, 0) 'concentrated' in a small but finite region near x = 0, for example

0(z,O) = 10 (-0.1 < z < 0 . 1 ) ,

0(z,O) = 0 (0.1 < \x\ <oo).
The results of the numerical experiment appeared to be instructive.

First of all it was obtained that the decay of the quantity 0(0, £), the
maximum of the function 0(x,t), rapidly approaches a scaling, power
law type of behaviour (Figure 3.3). More exactly, some time after the
beginning of computation the following relation holds:

0 ( O , * ) = J 4 ( K * ) " ( 1 + O ) / 2

where A and a are certain constants. Numerical calculations showed
that, under varying initial conditions, only the constant A varied, the
constant a being a function of the parameter e = {K\/K) — 1 only.

The quantity 0o(t) = A(nt)~^a^2 can be considered as a natural

t The numerical experiment was performed by V.M. Uroev, while at Moscow Uni-
versity.
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110 3. Self-similarities of the second kind

time-dependent scale for the variable 6(x,t). Let us take as a linear
scale the quantity lo(t) = (/st)1/2 and let us consider (Figure 3.4) the
dependence of the quantity

0(x,t) _ 6(
eo(t) " A

on the reduced variable f = x/lo(t) = x(Kt)~x^2, for various times. It is
seen that the curves corresponding to increasing times rapidly tend to
coincidence, so their dependence on time disappears.

d(xtt)(Ktf+a)/2

Figure 3.4. Transition to self-similar intermediate asymptotics of the so-
lution to the non-self-similar problem (3.21) with c = 1 and initial data
u(xyO) = 10 (0 < x < 0.1), u(x,0) = 0 (x > 0.1). Curves 1-6 correspond
respectively to t = 0.001,0.002,0.003,0.015,0.040, and finally 0.225 and
all greater values. The open circles axe the values of the function deter-
mined by solving the nonlinear eigenvalue problem.

Thus, this numerical experiment showed that the solution to the
Cauchy problem for equation (3.21) rapidly converges to the self-similar
intermediate asymptotics

*(*>*) = / .wiLwa* ("7= >e) (3'3°)
where the exponent a depends on the parameter e = K,I/K — 1 i.e. on
the ratio of coefficients in the equation (3.21) only, whereas the other
parameter A depends also on the initial conditions.

3.2.4 Self-similar limiting solution

Let us now try to understand why the asymptotics of the solution to the
Cauchy problem (3.30), although also self-similar, differs from the form
(3.25) predicted by dimensional analysis.

As we mentioned before, the initial condition (3.24) that led us to a
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3.2 Filtration in an elasto-plastic porous medium 111

solution in the form (3.25) has a limiting character, is described by a
generalized function, and cannot be put directly into a numerical com-
putation.

d(x,0)k

Figure 3.5. To resolve the paradox of the non-existence of the required so-
lution of (3.21), a non-self-similar problem with non-concentrated initial
data is considered, whose solution certainly exists.

In fact in a numerical experiment a solution was calculated that sat-
isfied an initial condition (Figure 3.5)

V(X,\J) = —UQ ( — J , (3.31)

where I is some length scale characterizing the size of the region from
which fluid was removed at the initial instant and where

Q
oo

= J 0(x,0)dx,

uo(C) being an even dimensionless function that is finite (becoming iden-
tically equal to zero for sufficiently large absolute values of its argu-
ment). For such an initial condition one can be certain that a solution
to the Cauchy problem exists, is unique, and has continuous derivatives
with respect to x up to the second order and a continuous derivative
with respect to t\ this follows from the general theorems proved by Ka-
menomostskaya (Kamin) (1957). However, a new dimensional governing
parameter I has appeared in this problem, and the solution is no longer
self-similar. In fact, the standard procedure, based on dimensional anal-
ysis and demonstrated above in several cases, gives here

Q „ , . I0 = (3.32)

The self-similar special solution of instantaneous source type for the
case K\ = K (e = 0) considered above corresponds to the singular initial
condition obtained from (3.31) for / = 0. But a solution of instantaneous
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112 3. Self-similarities of the second kind

source type is broader than a simple exact special solution to a single
problem. In fact (3.32) is valid also for e = 0. We see that rj —> 0 as
t —• oo. Choosing x appropriately, we can carry out this passage to
the limit so that £ = x/(nt)1/2 remains constant; so, asymptotically we
obtain the well-known self-similar solution indicated above. Thus, as
has already been remarked, a self-similar solution to the problem with
singular initial data is, for K = «i, an asymptotics for large times of
a wider class of solutions of initial-value problems. The non-existence
of a solution to the problem with singular initial data means that for
K ^=- K\ the function F(£, 77, e) has no finite and non-zero limit as 77 —>
0. Nevertheless, as was shown by the numerical computations, there
exists a self-similar asymptotics of the solution (3.32), although in the
form (3.30), not (3.25). The availability of the self-similar intermediate
asymptotics (3.30) at t —» 00 suggests that, at 77 —> 0 for the function
F(£, 77, e) an asymptotic representation' is valid:

F(^V^) = vam^)+o(r)a). (3.33)
Therefore as t —• 00 the asymptotic form of the solution of the problem
considered cannot be expressed in the form (3.25), but has the form

where the function /(£, e) is finite and different from zero.
We now observe that we can also make 77 tend to zero for finite £ by

passage to the limit as / —* 0 with fixed x and t. As is well known, in the
classical case with KI = K, e = 0, such a passage to the limit again yields
a solution of instantaneous-source type. Equation (3.34) shows that if
this passage to the limit is carried out leaving Q fixed, then for a ^ 0 the
limit of the solution will be equal to either zero or infinity, depending
on whether a is positive or negative. For a ^ 0, in order to obtain,
in the limit / —* 0 with x and t fixed, the same limiting expression to
the solution of the problem that is obtained for finite I and t —• 00 it is
necessary to proceed to the limit / —• 0 with Q simultaneously tending
either to infinity or zero, depending on the sign of a, and moreover with
the product Qla remaining finite. The self-similar solution obtained by
such a passage to the limit does not have the form (3.25) but can be
expressed in the form

9 = (/tt)(f+a)/2*(£'*)' A = $ gS 3 p ; *oW = &V^t. (3.35)

The symbol O(x) denotes, as usual, a quantity of order x\ the symbol o(x) denotes
a quantity small compared with x.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.006
https://www.cambridge.org/core


3.2 Filtration in an elasto-plastic porous medium 113

Here (3 is a dimensionless constant that depends on the normalization of
the function <£(£, e), and the parameter a is the 'trace' of the parameters
Q and / after the limiting process. The parameter a can be determined
by carrying out, for example by means of numerical calculation, the lim-
iting passage from a solution of the non-self-similar problem to the self-
similar asymptotics. In the direct construction of a self-similar solution
by substitution of (3.35) into the basic equation and initial conditions,
the parameter a is unknown and subject to determination. Thus, the
determination of the parameter a appears explicitly in the statement of
the problem, constituting a part of the determination of the self-similar
solution.

We now note that for the solution (3.35) the 'moment'

/
\x\a6{x,t)dx (3.36)

is finite, different from zero, and invariant in time if the integral

)de (3.37)

—oo

is finite and non-zero. The solution (3.35) itself corresponds to singular
initial data; however, this singularity is no longer the classical delta
function, as in the case 6 = 0.

3.2.5 The nonlinear eigenvalue problem

The function <£(£, e) is conveniently normalized by the relation

*(0,c) = l . (3.38)

Substituting (3.35) into (3.21), we obtain for the function $(£, e) an ordi-
nary differential equation with a discontinuous coefficient at the highest
derivative

Here £o is the point at which d2$/d£2 vanishes, or, what is by virtue of
(3.39) the same, at which the relation

d$
£ — + ( l + a ) $ = 0 (3.40)

is satisfied, where the quantity on the left-hand side is proportional to
dtu. The function $(£, e) is even by virtue of the natural symmetry of
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114 3. Self similarities of the second kind

the solution. Because of the absence of influx at x = 0 for times t > 0,
it satisfies the boundary condition

Moreover, <£(£, e) along with its first derivative with respect to £, must
be continuous everywhere, and in particular for £ = £o- (We recall that
this follows from the fact that the fluid pressure and flux are continuous.)
A solution to equation (3.39) can be expressed simply in terms of well-
known special functions: the so-called confluent hypergeometric func-
tions or the parabolic cylinder functions related to them (Abramowitz
and Stegun, 1970). For 0 < £ < £0, a solution of (3.39) satisfying (3.41)
has the form

V 8(1 + e ) j j= C \ exp D-{-aF77i)+D*i"
(3.42)

where C is a constant and Da is the symbol for the parabolic cylinder
function. From (3.38) we obtain

1 =r((l-q)/2)
2Da(0) 21+<*/2yft '

here F is the symbol for the F-function.
For ^ > ^ o a solution of (3.39) for which the integral of (3.37) converges

can be expressed in the form
/ c2\ / t \

(3.43)

where F is a constant; a second linearly independent solution decays as
£~~a~1 at infinity, and the integral (3.37) diverges*. Requiring that the
condition

£ h (1 4- a )$ = 0 (£ = £0 ± 0)

be satisfied, and using the recursion relations for the derivatives of the
parabolic cylinder functions and the expressions for parabolic cylinder
functions in terms of confluent hypergeometric functions (Abramowitz
and Stegun, 1970), we obtain

= 0, (3.44)

where M(a, 6, z) is the symbol for the confluent hypergeometric function.

Like the solution of the initial-value problem for the classical equation of heat
conduction, the solution of the present problem must decrease at infinity faster
than any power of x so that the integral (3.37) will converge.
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3.2 Filtration in an elasto-plastic porous medium 115

These equations must determine the dependence on e of the parameter a
and the quantity £o- Further, the condition of continuity of the function
$ for £ = £o determines the constant F:

F = c\Da

•HM,.. . , . ,„
r((l-a)/2)r • x

:*(*)]
By virtue of (3.40) the requirement of continuity of the derivative d$/d£
is satisfied automatically.

Thus, assuming the existence of a self-similar intermediate asymp-
totics to the solution of the original non-self-similar initial-value prob-
lem in the form (3.35), we have arrived at the classical situation of a
nonlinear eigenvalue problem (nonlinear because the coordinate £o of
the point of discontinuity of the coefficient at the highest derivative in
(3.39) is unknown in advance and must be found in the course of solving
the problem). For arbitrary a the basic equation (3.39) does not have
a solution of the required smoothness. However, if the system (3.44) is
solvable, then for an a satisfying (3.44) the solution (3.35) satisfies all
the requirements.

To complete our investigation of the solution, it remains to elucidate
the solvability of the system of transcendental equations (3.44) that
determine a and £o- Solving the first equation with respect to fo/21^2, we
obtain the monotonically increasing function of a represented in Figure
3.6(a) by curve I. Solving the second equation with respect to

we get the monotonically decreasing function of a represented in Fig-
ure 3.6(a) by curve II. For any given e the corresponding dependence of
^(j/21/2 on a is obtained by simple expansion or contraction of curve II
along the vertical axis. For e = 0, i.e. K\ = AS, curves I and II intersect at
a = 0, in accord with the known results for the classical case, giving the
ordinate of the point of inflection of the function <3>(£, 0) = exp(—£2/4),
as £o = 21/2. For e / 0, the point of intersection of curves I and II is
unique, and the corresponding variation of a with e is shown in Figure
3.6(6). The function a(e) obtained from the solution of the nonlinear
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116 3. Self-similarities of the second kind

eigenvalue problem practically coincides with the function obtained nu-
merically by solving the non-self-similar Cauchy problem. It is evident
that the quantity a is positive for e > 0 and negative for e < 0.

|o , So
V2 [2(1 + e)]1/2

2

0
-1 0 1 2 a

Figure 3.6(a). Investigation of the solvability of the system of transcen-
dental equations (3.44). The dependence of £o/2 o n <*> determined
from the first equation (curve I) and the dependence of £o/[2(l + e)]1'2

on a, determined from the second equation (curve II). Curve I is mono-
tonically increasing, curve II is monotonically decreasing; the intersection
point of the curves exists and is unique.

6 8 1 +e

Figure 3.6(6). Dependence of the eigenvalue a on e = KI/K — 1. For
e < 0, a is negative; for e > 0, a is positive. For € = 0 (the classical
linear equation of heat conduction), a = 0.

In figure 3.4 the open circles are the values of the function $(£, e)
obtained by solving the nonlinear eigenvalue problem. These open points
fall nicely on the curve of 0(x1t)(KtYl~^a^2/A that corresponds to t —>
oo. This gives a numerical confirmation that the self-similar solution
(3.35) is indeed an asymptotic representation of the solution to the non-
self-similar Cauchy problem.
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3.2 Filtration in an elasto-plastic porous medium 117

Thus, the construction of a limiting self-similar solution - an asymp-
totic representation of the solution to the Cauchy problem (3.31) for
equation (3.21) - reduces to the solution of a nonlinear eigenvalue prob-
lem. The solution to this last problem determines the self-similar asymp-
totics only up to the constant A = /3Qla or, what is the same, up to the
dimensionless constant /?. In the classical case e = 0, when a = 0 this
constant is found from the integral conservation law

00 oo

1 0(z, i)dx = I 0(x, 0)dx = Q, (3.46)
—oo —oo

which is valid also for non-self-similar motions. This conservation law
does not hold for ^i ^ K (e ^ 0); it is then replaced by the nonintegrable
relation

oo

j t j 0(x, t)dx = 2(/c, - K)(dxe)x=xo(t) £ 0, (3.47)
— OO

which is easy to obtain if one integrates (3.21) with respect to x from
x = -oo to a: = oo and takes into account the fact that K suffers a
discontinuity at x = ± xo{t). Hence one cannot define the constant A
from the initial conditions using the integral conservation law; A is a
more complicated functional of the initial pressure distribution, i.e., the
function 6(x,0). We note that if in place of 0(x,Q) one takes as initial
distribution the function 6{x,t\) corresponding to any moment of time
t = t\ > 0, then the constant A is unchanged, so in this sense A is an
'integral' of (3.21).

An important step was performed by Kamin, Peletier and Vasquez
(1991). They rigorously proved analytically the existence of the self-
similar solution (3.35) and showed that for every initial condition of
the considered class there exists a value A such that this solution is
an asymptotics of the solution to the non-self-similar Cauchy problem.
They proved also that a(e) is a monotonically increasing function. Nu-
merical computations are unable to reveal weak terms in the asymp-
totics, such as logarithmic ones, therefore a rigorous result was of special
value.

The self-similar asymptotics that was obtained is no longer a solution
to the instantaneous point source problem. In fact, the amount of fluid
Q that must be removed at the initial instant from a region with char-
acteristic length I must change as this length decreases if one wants to
obtain one and the same limiting representation of the solution for large
t; Q increases for e > 0 and decreases for e < 0, in such a way that the
product Qla is constant.
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118 3. Self-similarities of the second kind

We have to make a comment concerning the similarity rules. The
solution obtained gives for the coordinate of the point of discontinuity
of the thermal difFusivity the scaling law

*o(0=£o>/^ , (3.48)

and for the variation in the value of 6 at the maximum point the scaling
law

The first of these relations is obtained easily from 'naive' considerations
of similarity, i.e., by applying dimensional analysis proceeding from the
concept of an instantaneous point source. For the second relation, this
is impossible to do in principle, despite the fact that the similarity rule
(3.49) has a power-type, scaling form and is completely determined by
the dimensions of the quantity A. The point is that the dimensions of
the quantity A are unknown in advance, and to determine them it is
necessary to solve the nonlinear eigenvalue problem formulated above.

The problem presented above was formulated and solved in the paper
by Barenblatt and Sivashinsky (1969).
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Self-similarities of the second
kind: further examples

4.1 Modified very intense explosion problem

4-1.1 Statement of the modified problem

The self-similar solutions and intermediate asymptotics of the type con-
sidered in the previous chapter were the simplest self-similarities of the
second kind. To illustrate more complicated possibilities we shall con-
sider in this chapter two instructive problems in gas dynamics. First,
we shall make what seems an insignificant modification in the very in-
tense explosion problem considered in chapter 2. We assume that at the
front of the shock wave there occurs for some reason a loss of energy
(for example, due to radiation), or an influx of energy (for example, due
to chemical reaction). In this case the flux of energy at the shock front
is not preserved, and the equation of energy balance at the shock front
assumes the modified form

where q is the intensity of loss (q < 0) or deposition (q > 0) of energy
in unit time in a unit mass of gas passing through the front. Here, as
before, p is the pressure, p the density, v the speed of the gas, and D
the speed of propagation of the shock wave, and subscript / denotes
quantities just behind the wave front, i.e., for r = 77 - 0 where 77 as
before is the radius of the shock wave. We also assume as before that
ahead of the wave the gas is at rest at zero pressure and has density po-

Performing the same transformations as were used in chapter 2 in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.007
https://www.cambridge.org/core


120 4- Self-similarities of the second kind

considering the classical very intense explosion problem, we write the
equation of energy balance across the front in the form

Pf(vf - D) Pf * ]i f J + PfVf " Pf{Vf -(7 -
In the model problem considered below it is assumed that the intensity

of energy loss or deposition per unit mass is proportional to the internal
energy or the temperature at the shock front:

q = kTf= Cpf/pf,

where k and C are constants. This is necessary in order that the asymp-
totics obtained be self-similar. We emphasize that our concern here is
more with a qualitative mathematical model of a very intense explo-
sion wave with variable energy flux at the front than with a completely
adequate analysis of a physical phenomenon.

It is convenient to introduce the new notation
Ti ~~ T

C 7 =

For 71 = 1 we have C = — oo, which means that all the thermal energy of
the gas particles is absorbed at the front. For 71 increasing from unity
to 7 the constant C grows from —00 to zero, and the fraction of lost
energy decreases. The case 71 = 7 corresponds to the absence of energy
loss or deposition at the front - the classical very intense explosion. For
71 > 7 there is a deposition of energy at the wave front.

Using the relation assumed for q and the new notation we can rewrite
(4.1) in the form

i.e., in the same form as for the classical very intense explosion problem,
but with a different adiabatic exponent: in place of exponent 7 in (4.2)
we have 71, the effective adiabatic exponent at the front, which takes into
account the loss or deposition of energy. The conditions of continuity of
mass and of momentum flux at the wave front, just as for the classical
problem, assume the form

pfiyf -D) = -p0D, pf(vf - D)vf + pf = 0, (4.3)

and these conditions do not contain the adiabatic exponent 7. As in the
classical problem of a very intensive explosion (chapter 2), the conditions
at the front (4.2), (4.3) can be reduced to the form

^2 D £
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4.1 Modified very intense explosion problem 121

The equations of gas motion in the region of continuous motion remain
unchanged:

d + d + d 0

(4.5)

The condition of no influx of matter or energy at the centre of the
explosion for t > 0 also preserves its form:

v(0 , t )=0. (4.6)

Thus we have obtained seemingly almost the same problem as be-
fore, the only one difference being that the adiabatic exponent in the
conditions at the shock front is different from that entering the energy
equation for the motion of the gas in the region of continuous motion.

4-1.2 Direct application of dimensional analysis

We now attempt, just as before, to construct a self-similar solution to
an ideal problem, corresponding to the instantaneous release of a finite
amount of energy E at a point - the centre of the explosion. It would
seem that nothing in our arguments has to change. In fact, the only new
governing parameter in the problem we are considering compared with
the classical very intense point explosion problem is the constant dimen-
sionless parameter 71, so that the dimensional considerations remain as
before, and at first glance it would seem that the desired solution must,
for the same reason as in chapter 2, be representable in the form

r2 r
p =po-£2-P(£,7»7i)i P = Po#(f,7>7i)> v = j

1 / 5 ( 4 ' 7 )

p ) , rf(t)= & ( 7 , 7 1 ) ( )
V Po ) \ Po )

The functions P, V, R must satisfy the same system of ordinary dif-
ferential equations as in the classical problem, (2.59), because the gas-
dynamic equations in the region of continuous motion have not changed
and the form of self-similar solution being sought remains essentially the
same.

Furthermore, due to (4.7), the speed of the shock wave D = drj/dt =
2rf/5t. Substituting into (4.4) the remaining relations in (4.7), we ob-
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122 4- Self-similarities of the second kind

tain

'«»•"•>=25s!W ««*™>-8rrft (48)

The only difference between these relations for the boundary values of
the functions P, V, R at the front £ = £o and those for the classical very
intense explosion problem is that instead of the adiabatic exponent 7 we
have 71.

However, a solution to the modified ideal point explosion problem in
the form (4.7), for 71 =̂  7, in a reasonable class of functions does not
exist. To demonstrate this, we simply note that if the solution had the
form (4.7), the bulk energy of the gas in the perturbed region would be
constant. This can be proved in the same way as before (see relation
(2.61)). However, for 71 7̂  7 the bulk energy of gas in the perturbed
region £ would vary owing to the loss or influx of energy at the wave
front:

d£ 2

4 } ( - D)q = -
So, only the trivial solution, for which the energy is equal to zero can
satisfy both requirements. The trivial solution, however, obviously does
not satisfy the initial condition. The contradiction obtained demon-
strates the non-existence of a solution to the problem having the form
(4.7) for 71 ^ 7, i.e., the non-existence of a solution to ideal point source
problem.

4.1.S Numerical experiment Self-similar intermediate asymptotics

In order to resolve the contradiction discussed above , we will again,
as in the analogous situation described in the previous chapter, depart
from the exact statement of the ideal point source problem. We recall
that the solution corresponding to a point explosion makes sense only
if it is an asymptotics for a solution corresponding to the initial release
of energy in a small but finite domain. Hence we turn to consideration
of the problem in which the energy at time t = 0 is released not at a
point, but within a sphere of a certain finite radius ro; in other respects
the problems coincide.

Thus in a numerical experiment the following problem was solved.
There is an unbounded space filled with gas. At the initial instant,
outside a sphere of radius ro the density of the gas is constant and
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Figure 4.1. The dependences of lnry(t) and \n\d£/dt\ on lnt obtained
by numerical solution of the non-self-similar problem rapidly approach
straight lines corresponding to self-similar intermediate asymptotics.

equal to po and the pressure is equal to zero. Inside the sphere the
distributions of the flow properties, i.e., the pressure p, velocity v and
density p of the gas, correspond to the solution of the classical problem
of a very intense explosion for the same energy E and the same values of
the other parameters at some instant t = to > 0 such that rf(to) = ^Q.
Thus we assume that for —to <t<0 there occurs the same gas motion
as in a very intense explosion without radiation or release of energy and
that at t = 0, when 77 = ro, the radiation or energy release at the front is
switched on. For the subsequent evolution of the motion the properties
of the flow in the region of continuous motion are described by the system
(4.5) of equations for the adiabatic motion of a gas. At the front of the
shock wave the conditions have the form (4.4), the same conditions as for
the classical problem of a very intense explosion; but we emphasize again
that the effective adiabatic exponent 71 in the conditions at the shock
front differs from the adiabatic exponent 7 that enters the equation of
entropy conservation in the region of continuous motion. Furthermore,
the condition (4.6) of no influx of matter or energy at the centre of the
explosion for t > 0 is to be satisfied.

The results of the numerical calculation are presented in Figures 4.1-
4.3 and in Table 4.1.

The calculations were performed for two values of 7, one of them close
to 1, 7 = 1.1, and the other close to 2, 7 = 1.9. In each case calculations
were done for various values of 71 in the interval 1 < 71 < 27 -f 1. Along
with the quantities p, p, v and 77 the quantity £, the total energy of the
gas in the perturbed domain, was calculated. The basic result is that
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t= 0.0188 (0.219)
t= 0.00081

t= 0.000069
t= 0.000089 \

Figure 4.2. The dependences of p/pf on r/rf for increasing times t,
obtained by numerical solution of the non-self-similar problem, approach
the self-similar intermediate asymptotics. (a) 7 = 1.9, 71 = 1.1; (b)
7 = 1.1,71 = 1.9.
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0.74

3y
1 1.1
(n = r)

Figure 4.3. Dependence of the time exponent a in the relation rj ~ ta

obtained by numerical solution of the non-self-similar problem (solid
lines), and as an eigenvalue of the nonlinear eigenvalue problem (4.18),
(4.22), (4.23) (open dots), on the effective adiabatic exponent 71 at the
wave front, for 7 = 1.1. For 71 < 7, a < 2/5; for 71 = 7 (an adiabatic
very intense explosion), a = 2/5; for 71 = 2 7 + 1 (detonation with vari-
able speed of propagation of the detonation wave; the Chapman-Jouguet
condition is satisfied) a = (37 4- 3)/(57 -f 3).

Table

7

1.1
1.9

4.1

71

1.9
1.1

Time exponent, a

non-self-similar problem

0.54
0.29

eigenvalue problem

0.54
0.28

the solution rapidly approaches a self-similar asymptotics of the form

(2.10)

where A and a are constants. Here the constant a turns out to depend
only on 7 and 71 (the graph of the function 01(71) for 7 = 1.1, obtained
from numerical calculations is shown in Figure 4.3) and not on the initial
conditions (i.e., a is independent of to, E and /?o). The constant A,
however, does turn out to depend also on the initial conditions. The
approach to the self-similar regime is seen in the dependence of In r/ (t)
on lnt, which rapidly approaches the straight line lnr/(£) ~ alnt , and
in the dependence of \n\d£/dt\ on lnt, which rapidly approaches the
straight line \n\dS/dt\ ~ (5a - 3) hit (for 7 = 1.9,71 = 1.1 see Figure
4.1). It is also seen in the dependences of the quantity p/pf on r/77 for
different instants of time (Figures 4.2(o) and 4.2(6)).
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126 4- Self-similarities of the second kind

Figure 4.4. A phase portrait: the integral curves of the first-order equa-
tion (4.18) for 1 < 7i < 27 -f 1. The number 1 denotes the curve
z = — ̂ fV(V — a) and 2 and 3 denote the curves z = (V — a)2 and
z = V(V-l)(V-a)(3V-K) - 1

4-1-4 Self-similar limiting solution

Let us now clarify how this seemingly unexpected self-similar interme-
diate asymptotics (4.10) has appeared in the numerical experiment.

In addition to the governing parameters for the classical very intense
point explosion problem (see conditions (2.53)), we must include, for
the problem solved in the numerical experiment, the initial radius of
the shock wave, r*o, so that there appear not one but two dimensionless
independent variables,

J (4.11)

and according to dimensional analysis the velocity, density and pressure
of the gas are then expressed in the form

r r2

v = -V(£, *7,7> 7i) > P = Po-R(& *7> 7> 7i) > P = Po^pPfa V, 7» 7i) •
(4.12)

For 7 = 71 the solution to the very intense point explosion problem is on
the one hand a solution of an ideal singular limiting problem correspond-
ing to ro = 0 at t = -to and on the other hand the limit of the solution
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4-1 Modified very intense explosion problem 127

(4.12) as t —> oo. For 71 ^ 7, as we have just explained, there exists no
non-trivial solution of the problem corresponding to 7*0 = 0. However,
as we have emphasized repeatedly, we are interested not in a solution
of the ideal limiting problem, but in an asymptotic representation for
large t of the solution to the non-self-similar problem with 7*0 ^ 0. For
increasing t and fixed r, both £ and 77 tend to zero. The appearance of
the self-similar intermediate asymptotics (4.10) can be explained by the
fact that as £, 77 —• 0 the leading terms in the asymptotic representations
of the functions P, V and R have the form

where j3 is a positive number depending on 7 and 71. Therefore the
limiting solution is self-similar, because

r]0 Bta

where

(E\W* 2(1-/3)
B = r0 — , a =,PoJ 5

The class of self-similar solutions of the gas-dynamic equations to
which the limiting solution (4.13) of this problem belongs was indicated
by Bechert (1941) and Guderley (1942), and later considered by Sedov
(1945) and others. It will be called the Bechert-Guderley class.

For later analysis it is convenient to renormalize the self-similar inde-
pendent variable and take it in the form

4 = r (—= const 4 = r (— ) , A = aEr5//{l-0), (4.14)

where the constant parameter a is chosen so that at the front of the
shock wave the value of the new self-similar variable £ will be equal to
unity. Then the asymptotic law of propagation of the shock wave can
be written in the form

rf=(-) ^ 1 - » / B . (4.15)
\PoJ

The variables £ and 7/ can be made to tend to zero in another way also.
For fixed r and t, E tends to infinity or zero, and ro to zero; however, in
order to obtain the same asymptotics as for our non-self-similar solution
at large times, the product Er0 '^ must remain constant:

Erlmi~m = const. (4.16)

Thus it is obtained that for 71 7̂  7 the self-similar limiting solution
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corresponds not to a point explosion, i.e., not to the release of a finite
amount of energy at the initial instant at the centre of the explosion,
but to the release within a finite region of radius ro of an amount of
energy E that, according to (4.16), tends to zero or infinity, depending
on the sign of /?, as ro —• 0.

For given 7 and 71, we can determine the parameter /? or, what is
the same thing, a, in either of two ways. In the first, we follow, for
example numerically as we did previously, the evolution of the non-
self-similar solution of the original problem up to its transition to a
self-similar asymptotics. In the second, we use the fact that the self-
similar asymptotics is itself a solution of the gas-dynamic equations that
satisfies certain conditions, and attempt to construct that solution and
simultaneously to determine the exponent a.

We will follow now the second way. Thus we seek the desired limiting
solution in the form

r2

p = po-2 P(C,7>7i) > P = Po-R(C>7>7i),

Po) ' Q~rs-

We substitute this solution into (4.5) and then obtain, using a common
technique (Guderley, 1942; see also Sedov, 1959), the first-order equation

^2* f [2(V ~ 1) + 3(7 ~ 1)V)[(V -a)2-z]
\ [ ( a ) } 7£ = f

dV V-a\ [{3V-K)Z-V(V- /

(4.18)
where

2(1 - a) _ T P
K~ 7 ' Z~ R '

and two other first-order equations,
z-(V-a)2

dV V(V - 1)(V - a) + (n - 3V)z
and

(4.19)

Thus if the necessary solution of the first-order equation (4.18) has been
constructed, the solution of (4.19) and (4.20) is then obtained in quadra-
tures.

It is essential here that the desired solution of the first-order equation
(4.18) must pass through two points: the image of the shock-wave front
and the image of the centre of symmetry. Substituting (4.17) into the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.007
https://www.cambridge.org/core


4.1 Modified very intense explosion problem 129

conditions (4.4) at the shock-front wave, we find

Hence the image of the front in the Vz plane will be the point

(4.21)

2a 2a27(7i - 1)
V = 7T' z = i ix2 • 4 - 2 2

7i + 1 (7i + I)2

The image of the centre of symmetry ( = 0 in the Vz plane will be a
singular point of equation (4.18) of saddle type,

v-«£Z. z = 0O. (4.23)
Here we use the condition of no influx of matter or energy at the

centre of the explosion for t > 0. Furthermore the self-similar variable (
must increase monotonically from zero to unity in the course of moving
from the image of the centre of symmetry to the image of the front. In
general it is impossible to satisfy these conditions for arbitrary a; we
cannot pass a solution of a first-order equation through two arbitrary
points. We shall see, however, that there exists one exceptional value of
a for which this is possible. Thus we have again arrived at a nonlinear
eigenvalue problem, namely to construct a solution of the first-order
equation (4.18) passing through the two points (4.22) and (4.23) and to
determine the value of the parameter a for which such a solution exists
- that is, the eigenvalue of the problem.

4.L5 Qualitative investigation of the nonlinear eigenvalue problem

We consider the phase portrait - the picture of the integral curves in the
first quadrant - which is the part of the Vz plane of interest to us. In
the case 7 < 2 , 1 < 71 < 27 + 1, the phase portrait is shown in Figure
4.4, where the curves numbered 1, 2 and 3 correspond respectively to
the equations

z = --yV(V - a) (4.24)

(which is the locus of points of the shock front),

z = (V- a)2, z = V{V - l)(V - a)(3V - z^)-1, (4.25)

The points of intersection of the two curves (4.25) are singular points
of equation (4.18). For 71 < 27 + 1 all these singular points are situated
below the curve (4.24). One can show, using a standard technique in the
qualitative theory of differential equations (which will be demonstrated
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in chapter 7 in a different example), that for such 71 we can find one
value of a, and moreover for each pair 7, 71 only one, such that point M,
which is the image of the shock front, and point JV, which is the image
of the centre of symmetry, lie on the same integral curve. This curve
is the separatrix of two families of integral curves, - the single curve
passing through the image of the centre of symmetry, the latter being a
singular point of saddle type for (4.18). The graph of the function a(7i)
is shown for 7 = 1.1 in Figure 4.3; it is a monotonically increasing curve
passing through the points

2 2 37 + 3
a = 3 7 T 2 ' 7 l = 1 ; a = = 5 ' 7 l = 7 ; a : = a * = 5 ^ 1 ' 7 l = 7 + 1'

(4.26)
For 71 > 27 + 1 the singular point (of nodal type) is located above the
curve (4.24), as shown in Figure 4.5, and one consequently has a range
of possible values of a. It will be shown that for such 71 the solution of
the original non-self-similar problem also becomes non-unique. Hence,
to select a unique solution 71 > 27 -f 1 requires an additional condition
for the non-self-similar problem too.

N

Figure 4.5. A phase portrait: the integral curves of (4.18) for 71 > 27 +1.
A singular point of nodal type is located above curve 1.

The points (4.26) are of special interest. The first of them corresponds
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4.1 Modified very intense explosion problem 131

to motion with complete loss of thermal energy at the front of the wave;
the compression at the front (the ratio of the density just behind the
front to the original density of the gas) obtained in this case is infinite,
and the relative speed of the gas and the front is equal to zero. The
second point corresponds to the classical very intense explosion. The
third point is very curious; it corresponds to an influx of energy at the
front and satisfaction of the so-called Chapman-Jouguet condition: the
gas speed relative to the front is equal to the local speed of sound. The
speed of sound at the front is in fact equal to

-Wf/pf = Dy/2y(^ - l)/(7 i + 1),
where D is, as before, the speed of the front. Now the speed of the gas
relative to the front is given by \vf — D\ — (71 — 1).0/(71 + 1). For
71 = 27 + 1 these two speeds coincide, and, since a = a*, the image of
the front in the Vz plane coincides with a singular point of nodal type,
lying for this 71 on the curve (4.24), so that the integral curve sought in
this case joins two singular points of (4.18), a saddle point that is the
image of the centre of symmetry, and a nodal point that is the image of
the front.

Thus, for energy loss at the front (71 < 7) and small energy release
at the front (7 < 71 < 27 + 1) the solution under investigation differs
only slightly in its characteristics from the solution corresponding to
the classical very intense explosion (71 = 7): a singular point of nodal
type is situated under the locus of points of the front, the motion in the
perturbed domain is everywhere subsonic, etc. For ji = 27 -f 1, a = a*,
the solution constructed represents a motion of detonation type, but
with variable speed of propagation of the front

the speed of sound is achieved at the front of the wave, a node being
the image of the front. Here the influx of energy at the front and the
temperature at the front turn out to depend on time. It is remarkable
that for 71 = 27 + 1 the solution obtained is not uniquely determined,
so the classical solution to the problem of a spherical detonation wave
(Zeldovich, 1942; Zeldovich and Kompaneets, 1960), corresponding to
a = 1, i.e., to constant speed of propagation of the wave, constant
influx of energy at the front, and constant temperature at the front, also
satisfies all the conditions of the problem posed. The family of solutions
with intermediate a, i.e., (37 + 3)/(57 + 3) < a < 1 also exists. Indeed,
for 71 = 2 7 + 1 and such a the singular point of nodal type does not
coincide any more with the image of the front and is found above the
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132 4- Self-similarities of the second kind

curve (4.24). The image of the front is on the intersection of the curve
(4.24) and the first curve of (4.25). There exists an integral curve going
from the image of the front to the singular point of nodal type and after
it to the singular point of saddle type.

It is interesting to note that among the solutions corresponding to
OL* < OL < 1 only the solution corresponding to a = a* gives a finite
acceleration at the front. For solutions with other values of a this ac-
celeration is infinite.

Thus, for 1 < 71 < 27-hi a self-similar solution is constructed that can
be an intermediate asymptotics of the solution to the original non-self-
similar problem. Only the constant A remains undetermined or, what is
the same, the dimensionless constant a. In the case 71 = 7 the quantity
A = oE and the constant a are found from the law of conservation of
total energy,

£ = 4?r / p— -h r r dr = const,
i L 2 (7-l)J

which is also valid for the non-self-similar stage of the motion. For 71 ^ 7
there is no such conservation law; the equation for the conservation of
energy assumes, as was already noted, the non-integrable form

The only method of determining the constant a is to follow the evo-
lution of the solution of the non-self-similar problem to a self-similar
intermediate asymptotics as was done before.

For comparison a numerical solution was also evaluated for the non-
linear eigenvalue problem formulated above for a system of ordinary
equations. Namely, the system of ordinary equations (4.18)-(4.20) was
solved numerically for the initial conditions (4.21), the exponent a be-
ing calculated by a trial-and-error method so as to satisfy the condition
of no influx of matter or energy at the centre for t > 0. Calculation
was stopped when the quantity P£2 = Rz(^2/j near £ = 0 had become
constant to within an accuracy of 1%. The results of a comparison of
the values of a obtained by numerical calculation the solution to the
non-self-similar problem for the system of partial differential equations
and by direct computation of the nonlinear eigenvalue problem are given
in Table 4.1.

A comparison of the eigenfunctions from the nonlinear eigenvalue
problem with the limiting distributions obtained after the stabilization
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4-2 The von Weizsacker-Zeldovich problem 133

of the solution to the non-self-similar problem also indicates good agree-
ment.

Thus, numerical integration for the initial conditions we have taken
before confirms that the asymptotics of the solution to the original non-
self-similar problem is indeed the self-similar solution constructed in
this and previous subsections. Like the self-similar solutions consid-
ered in chapter 3 this self-similar asymptotic solution is distinguished
by two properties. First, the exponent a of time in the relation for
the self-similar variable cannot be found from similarity considerations,
but requires for its determination the solution of a nonlinear eigenvalue
problem, i.e., it is found from the condition for the existence of a global
self-similar solution. Furthermore, the solution is determined here to
within a constant appearing in the self-similar variable, which can be
found only by matching the self-similar intermediate asymptotics to a
non-self-similar solution of the original problem; here there is no integral
conservation law whose use directly determines the value of this constant
from the initial data of the original non-self-similar problem.

The self-similar solution considered here was obtained by Barenblatt
and Sivashinskii (1970) (see also Barenblatt and Zeldovich, 1971, 1972;
Barenblatt, Guirguis, Kamel, Kuhl, Oppenheim and Zeldovich, 1980).
Numerical calculations were carried out by Andrushchenko, Barenblatt
and Chudov (1975). Ia.G. Sapunkov and A.K. Oppenheim and coau-
thors obtained by another approach a self-similar solution of the problem
considered in this section for the special case, 71 = 27 + 1 , satisfying the
Chapman-Jouguet condition (Sapunkov, 1967; Oppenheim, Kuhl, and
Kamel, 1972; Oppenheim, Kuhl, Lundstrom and Kamel, 1971; Oppen-
heim, Lundstrom, Kuhl and Kamel, 1972).

4.2 The von Weizsacker-Zeldovich problem:
an impulsive loading

4^2.1 Statement of the impulsive loading problem

A problem of the same type as above that has for our purposes very
instructive peculiarities is that of an impulsive loading, studied in the
papers of C.F. von Weizsacker, Ya.B. Zeldovich and their associates
(von Weizsacker, 1954; Hain and Horner, 1954; Hafele, 1955; Meyer,
1955; Zeldovich, 1956; Adamsky, 1956; Zhukov and Kazhdan, 1956). To
illustrate those peculiarities we briefly present the problem here; a more
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134 4- Self-similarities of the second kind

detailed account is given in the monograph by Zeldovich and Raizer
(1967).

We suppose that space is divided initially into two halves by an im-
penetrable plane wall at x = 0 (x being the coordinate normal to the
wall). The half-space x > 0 is occupied by a quiescent ideal gas of den-
sity po at zero pressure; in the half-space x < 0 there is a vacuum. At
the initial instant t = 0 a pressure p = po is created on the right-hand
side of the wall (by, for example, an explosion) and varies according to
a certain law p = Pof(t/r) up to some time t = r, after which the wall
disappears instantaneously. The problem consists in investigating the
motion arising for t > r, which obviously develops as follows. A plane
shock wave x = Xf(t) propagates to the right in the quiescent gas. In
some region behind the shock wave the compressed gas continues to ad-
vance to the right. At a certain plane x = xo(t) the instantaneous speed
of the gas particles becomes equal to zero, and all gas particles situated
to the left of this plane move to the left; there occurs an expansion into
the vacuum of the gas compressed by the shock wave.

The solution to this problem reduces to the solution to the same sys-
tem of gas-dynamic equations as in the previous problem, but now for
the rectilinear case:

dtv + vdxv + -dxp = 0,
P

01 (4.28)

*(*)••*(£)-•
The boundary conditions at the shock wave x = Xf(t) are the same as
in the very intense explosion problem:

Pf(vf-D) = -poD,

Pf(vf-D)vf+pf=O, (4.29)

where D = dxf/dt. The initial conditions at time t — r correspond
for x < 0 to a vacuum and for x > 0 to the state of motion that has
developed at time t = r in the half-space filled with quiescent gas of
density po at zero pressure owing to the maintenance on the boundary
during the time interval r of a pressure varying according to the law
p(O,t)=pof(t/T).

It is evident that the density, pressure, and speed of the gas depend
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4.2 The von Weizsdcker-Zeldovich problem 135

on the dimensional quantities:

t, Po, Po, T, x, (4.30)

and that the coordinate of the shock front depends on all these quan-
tities except the last. Applying the standard procedure of dimensional
analysis, we obtain

Xf(t) = VPO/PO T^/(ni), (4.31)

np = $p(ni,n2), up = %{uuu2), uv = $v(iii,n2). (4.32)
Here

n

Po Po VPo/Po
As is evident, the solution to the problem posed turns out to be non-

self-similar. This results from the fact that the problem contains a char-
acteristic time r and a characteristic length scale

4.2.2 Numerical experiment Self-similar asymptotics

Numerical calculations reveal, however, that the solution to the formu-
lated problem has an instructive property. Namely, the dependence of
the coordinate of the wavefront on time rapidly (i.e., after some time in-
terval of order r after the start of expansion into the vacuum) approaches
a scaling, power-law asymptotics, so that

0(11!) = £o(7)II? , (4.34)

where $0(7) is some function of 7 and the exponent a also depends on
7. Furthermore, the density at the front rapidly approaches a constant
value, and the pressure and speed of the gas at the front rapidly approach
the scaling laws

P l ^ « ) ^ i ( 1 - a ) . (4.35)
Po VP0/P0

Finally, it turns out that if one constructs the distributions of density,
pressure, and speed in reduced coordinates, taking Xf as the scale of
length and p / , p / , and v/ as scales for the flow properties, then those
distributions just as rapidly become independent of time (see Figure
4.6). In other words, it turns out that the solution of the problem
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(a)

-0.5 0 0.5 1 xf

Figure 4.6. Dependence of (a) p/pf, (b) p/pf, and (c) v/vf on x/xf,
obtained by numerical solution of the non-self-similar problem of an im-
pulsive load for 7 = 1.4, which rapidly approach the dependence cor-
responding to a self-similar intermediate asymptotics (curve 4). From
Zhukov and Kazhdan (1956). (1) t = 1.6, (2) t = 5.0, (3) t = 15.0, (4)
Self-similar intermediate asymptotics

rapidly approaches the self-similar asymptotics

- i r a ( 1 - a )
(4.36)

We note that the approach of the solution to the self-similar asymp-
totics does not occur uniformly in the whole region of motion — 00 <
x < Xf(t) but only close to the front £/(£), in a region that increases
with time since the start of the expansion. Further, numerical calcula-
tion (Zhukov and Kazhdan, 1956) showed that the solution approaches
a self-similar asymptotics of the form (4.36) with one and the same ex-
ponent a independently of whether the pressure at the wall in the time
interval r is constant or changes according to various laws.

4-2.3 Self-similar limiting solution

It is natural to try to construct the limiting self-similar solution directly.
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Again we seek it in the Bechert-Guderley class of solutions:

( 4 3 7 )

Xf = Ata , £ = x /
Here 4̂ and a are constants. For the functions P, V and i? we obtain a
system of ordinary differential equations, which reduce to one first-order
equation

±{[2(V l) + (l)V](V )2^ = ±{[2(V -l) + (1-l)V](V -a)

_ ( 7 _ i)V{V _ i)(y _ a ) _ [2(1/ _ i) + K ( 7 _ i)]z} , (4-38)

A = (V - a)[V(V - 1)(V - a) + (K - V>] ,

with

and to two other first-order equations,

z-(V~a)2

dV V(V - 1)(V - a)

and

(4.40)

d£ (V-aJ^-^-a)2] V-a'
Thus if the desired solution of (4.38) is known, the solution of (4.40),
(4.41) can be found by quadratures.

The desired solution of (4.38) must pass through two singular points:
the image of the shock front

_2a_ 2 a 2
7 ( 7 - l ) ( 4 4 2 )

7 + 1 ' (7 + 1)2 { '
and the image of the free boundary, a singular point of saddle type

V = K, 2 = 00. (4.43)

Here the variable £ must increase monotonically upon moving from the
singular point (4.43) to the image of the shock front (4.42). Thus the
mathematical problem turns out in this case to be close to the modi-
fied very intense explosion problem considered at the beginning of this
chapter . We have again arrived at the necessity of obtaining an inte-
gral curve of a first-order equation, of the same type as before, passing
through two points, one of which is a saddle-type singular point. This

We recall that the problem of an impulsive loading was first solved significantly
before the modified very intense explosion problem.
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is impossible in general but, as in the previous problem, one can show
that for each 7 there exists a value of a, an eigenvalue of the problem,
for which the integral curve of (4.38) passing through the image of the
shock front also goes through the saddle, the image of the free boundary.
Values of a corresponding to various values of 7 over its complete range,
1 < 7 < 00, are given in Table 4.2. It is seen that for all 7 in the interval
1 < 7 < 00 we have the inequality

Table 4.2

7 1.0 1.1 7/5 5/3 2.8 00
a 1/2 0.569 3/5 0.611 0.627 0.64

As in the previous problem, it turns out here that values of the exponent
a determined by direct construction of a limiting self-similar solution
of the impulsive loading problem agree well with values obtained by
numerical calculation of an asymptotic solution of the non-self-similar
problem.

Evidently the limiting self-similar solution (4.37) is determined by
direct construction only to within a constant A; comparison of (4.37)
and (4.34) gives

A = Wr)VPo/poT1-*. (4.44)

Thus if we want to obtain the same asymptotics while reducing the
duration r of the impulse acting on the gas, we must correspondingly
increase the pressure according to the law

po = const r -
2 ( 1 ~ a ) . (4.45)

4-2.4 Laws of conservation of energy and momentum in the
impulsive loading problem

The mass of gas involved at each moment in the flow through unit area
of the boundary is finite. Hence conservation laws of momentum and
energy apply; these are valid also at the non-self-similar stage of the
motion. Therefore, the idea naturally occurs of using these laws to
determine the exponent a and the constant A of the limiting self-similar
solution, as was done in chapter 2 for the self-similar solutions of the
first kind considered there.
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4.2 The von Weizsacker-Zeldovich problem 139

The gas is initially quiescent and at zero pressure, so its momentum
and energy are zero. The total momentum J of the gas involved in the
motion is equal at any instant to the impulse of the pressure load:

1

J = (3P0T, p=ff(X)d\. (4.46)

o
Hence we obtain the momentum conservation law in the form

xf

= / pvdx. (4.47)

As time increases the solution tends to a self-similar one. Hence, it
seems that passing to the limit under the integral sign, we can substitute
into (4.47) the expressions for the density and speed from the self-similar
solution (4.37) and obtain the relation

l

(4.48)J
Since the integral on the right-hand side is obviously independent of
time it is necessary, in order for the left-hand side to be independent of
time also, to have the relation a = 1/2, after which it would appear that
one could find the constant A from (4.48).

However, we also have the energy conservation law. According to it
the work per unit area performed by the loading of gas is equal to

r

f
o

f p{0,t)v(0,t)dt = 6p3
o
/2p-1/2T, (4.49)

o
where 6 is a numerical constant. But the energy of the gas about to
enter the motion is zero because its speed and pressure are equal to
zero. Hence the energy of the gas actually involved in the motion is at
any instant equal to the work performed by the impulsive loading:

(4.50)

Again it seems that passing to the limit under the integral sign and
substituting the expressions for speed, density and pressure from the
limiting self-similar solution, we obtain

J R ^ - + - ^ ] ?dt. (4.51)
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At first glance it follows from this that a — 2/3 and that (4.51)
allows one to determine the constant A also. Thus a paradox arises,
consisting in the fact that the exponents a in the self-similar variable
determined from the laws of conservation of momentum (a = 1/2) and
of energy (a = 2/3) do not agree with each other or with the exponent
a (1/2 < a < 2/3) determined by direct construction of a limiting self-
similar solution, or by its numerical calculation.

The resolution of this paradox is trivial, and at the same time instruc-
tive. The fact is that the integral in the momentum equation (4.48) is
equal to zero, and the integral in the energy equation (4.51) is equal
to infinity, so that from these relations it is impossible to determine ei-
ther the exponent or the constant A. The transition to the limit under
the integral sign in the conservation laws (4.47) and (4.50) was itself
inadmissible, because the convergence of the integrands to the limit is
non-uniform over the domain of integration. Usually we leave such fine
points as uniform convergence under the integral sign to pure mathe-
maticians assuming that everything will be in order. Here it is not so,
and that is the essence of the problem!

In fact the limiting self-similar motion is obtained by transition to the
limit over the entire domain — oo < x < Xf with the duration r of the
impulse tending to zero and the pressure on the boundary tending to
infinity according to the law po = const r~2^l~a\ Here the total mo-
mentum fipoT tends to zero as const T2CC~1 and the energy 8pQ' PQ r
to infinity as const r3a~2 , so that (we recall that a lies between 1/2 and
2/3) the self-similar limiting motion has zero momentum and infinite en-
ergy. Further, the self-similar solution is limiting to the solution of the
original non-self-similar problem with finite po and r, and t tending to
infinity. However, as has already been mentioned, the convergence to the
limiting solution is non-uniform in the domain —oo < x < Xf. The mo-
mentum of the region of compression xo(t) < x < Xf(t) grows infinitely
with time. The momentum of the region of expansion —oo < x < xo(t)
has a negative sign and its absolute value also grows infinitely with time.
Their algebraic sum, equal to /3por1 becomes ever smaller compared with
the momentum of each of the regions mentioned; it is different from zero
only because of the departure of the motion from self-similarity.

We now consider the energy S of any region x\(t) — ^\Ata <x< x/(t)
in which the motion becomes close to self-similar starting from some
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4-2 The von Weizsdcker-Zeldovich problem 141

instant of time:

(4.52)

It is evident that the energy £ tends to zero with increasing t, so that
the contribution of the self-similar region to the bulk energy becomes
ever less in time, and the basic contribution to the energy is determined
by the motion close to the free boundary, where it always remains non-
self-similar no matter how much time has passed since the start of the
motion.

4>2.5 Explosion at a plane interface - transition from
one self-similar intermediate asymptotics to another

The statement of the problem considered in this subsection differs from
that for the impulsive loading problem only in that the half-space to the
left of the impermeable wall contains not a vacuum but the same gas as
the half-space to the right. Assume that the gas density p\ in the left
half-space, x < 0, is constant at the beginning and much less than the
gas density on the right. The gas pressure is assumed to be negligibly
small both in the left and right half-spaces.

Obviously the asymptotics for sufficiently large times of the solution to
this problem should be the solution to the problem of an instantaneous
concentrated explosion at the plane boundary of two half-spaces filled
initially by the same gas but at different densities under zero pressure.
The latter solution is a self-similar solution of the first kind, it was
constructed by Nigmatulin (1965) as a combination of two symmetric
* plane' very intense explosion solutions, obtained by Sedov (1946, 1959).
These solutions correspond to initial gas densities po and p\ and to
certain energies E\ and E2 to be determined in the course of solution.

Indeed, let the initial energy of the explosion per unit area of the
interface be equal to E. The dimension of the quantity E is equal to
MT~2. It is convenient in this case to write the self-similar solution in
the form

x
v = Vf2f(Ci 7)» P = Pf29{Ci 7)» P ~ Pf2h{Ci 7)» C ~ > (4.53)

where v/2, P/2, P/2 are the velocity, density and pressure just behind
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the 'right-hand' shock wave x = x/2, which is propagating in the high-
density gas (in the positive ^-direction). Furthermore, according to di-
mensional analysis,

l/3

(4.54)

where £o is a constant that depends on 7 only. For the 'left-hand' shock
wave propagating in the low-density gas in the negative x-direction we
obtain from the dimensional analysis

x/i = <iz/2 , (4.55)

so that the left-hand shock-wave front corresponds to a certain constant
value C = Ci < 0- Prom the conditions applying at a very intense shock
wave front, going from the plane of explosion to the left or to the right
we obtain respectively

2 2
D

where Di and D2 are the velocities of the propagation of the left-hand
and right-hand shock waves:

2 / zr\ 1/3

"•
The motion established in each of the half-spaces x^O corresponds to a

symmetric very intense explosion with densities p\ and po- However, for
a symmetric explosion the pressure p(0, t) at the plane x = 0 is a certain
fixed part of the pressure at the front, depending on 7 only and not on
the time. This follows from dimensional analysis in an elementary way.
Therefore, from pressure continuity at x = 0 it follows that p/i = p/2,
and we obtain, using relations (4.56), (4.57),

A simple calculation shows that E2/E1 = \/pi7po- Therefore for a
concentrated explosion in the limit pi/po —• 0 we obtain that the whole
energy goes instantaneously into the vacuum.

It is evident, however, that the asymptotics that corresponds to a
concentrated explosion at the boundary of the half-spaces does not settle
down instantaneously. Indeed, we have assumed, as in subsection 4.2.1,
that at the moment t = r the whole energy is concentrated in a layer of
finite width of the more dense gas. For small pi/po, in the initial period
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when the velocity of propagation of the left-hand wave, travelling over
less dense gas, is much larger than the characteristic velocity \/Po/po> it
is natural to expect that the motion near to the right-hand wave front
will resemble the gas motion after impulsive loading considered in the
preceding subsections. It was shown above that this motion settles down
to a self-similar asymptotics during a time interval of order r after the
beginning. This is demonstrated additionally by numerical solution of
the non-self-similar problem with initial conditions

u = 0; p = pi = 0.1; p = 0 (x < 0);

u = 0; p = po = l ; P = l ( 0 < x < l ) ; (4.59)

u = 0; p = pi = 1; p = 0 (x > 0).

x/x,2 0.2 0.4 0.6 0.8

Figure 4.7. The solution to the problem of an explosion at an interface
settles down to an intermediate asymptotics, at first that of an impulsive
loading (/), and later that of a concentrated very intense explosion (//)•
The crosses correspond to t = 100.

The results of numerical computations are shown in Figure 4.7. There
the pressure distribution in the reduced coordinates p/p/2, C — x/xf2
is presented for various times t. The curves / and / / correspond to the
self-similar asymptotics for an impulsive loading and for a concentrated
very intense explosion. It is seen that there exists a certain time interval
£i < t < £2 (for the example under calculation t\ = 2.5, £2 = 40) large
enough for the motion to become self-similar with sufficient accuracy,
and, at the same time, small enough for the influence of the finite gas
density at the left-hand side to be negligible. In this time interval, for
a range of substantial pressure variation near the right-hand wave the
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self-similar asymptotics of an impulsive loading is valid. At t > £3 (for
the example considered £3 = 100) over the range of essential pressure
variation the self-similar asymptotics of a very intense explosion is valid
until the initial pressure of the undisturbed gas (cf. chapter 2) starts to
become important.

The analysis of intermediate asymptotics for the problem of an explo-
sion near an interface presented above, and the numerical experiments,
were performed by O.S. Ryzhov and his associates (Vlasov, Derzhav-
ina and Ryzhov, 1974). Parkhomenko, Popov and Ryzhov (1977a, b)
performed an analysis of the corresponding problems having cylindri-
cal and spherical symmetry. Instead of the impulsive loading solution,
which does not exist for such symmetries, in these problems different
intermediate asymptotics appear - self-similar solutions of the second
kind corresponding to flows with sources or sinks of variable intensity at
the axis or at the centre of symmetry.
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Classification of similarity
rules and self-similar

solutions. A recipe for the
application of similarity analysis

5.1 Complete and incomplete similarity

In chapters 2-4 several instructive and fundamentally different self-
similar problems were considered. In the problem of an instantaneous
concentrated heat source and the problems of the propagation of very
intense thermal and blast waves the situation turned out to be relatively
simple. Namely, for them there exists some completely schematized
idealized statement of the problem (energy release at a point, initial
temperature and pressure equal to zero). Considering this statement
of the idealized problem and applying the procedures of dimensional
analysis to it in the standard way, we can reveal the self-similarity of
the solution, construct the self-similar variables, and obtain the solution
in finite form owing to the existence of certain integrals.

Deeper consideration shows, however, that this simplicity is illusory
and that, for example, in making the assumption of pointwise release
of energy we have, as it is said, gone to the brink of an abyss. In fact,
by changing the formulation of the problem, apparently only slightly, in
such a way that it would seem that all similarity considerations must
preserve their validity, we arrived at a contradiction; it turned out that in
the modified problems the required solutions simply do not exist. More
detailed analysis showed that in trying to find solutions of the modified
problems by the same standard procedure, and starting from the for-
mulation of an idealized problem, it turned out that the very statement
of the question was improper. What we actually needed was not exact
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solutions of the simply formulated idealized, degenerate problem, cor-
responding to the instantaneous removal at a plane of a finite mass of
fluid or the instantaneous release at a point of a finite amount of energy.
We were interested, rather, in the asymptotics of solutions of the corre-
sponding non-idealized problems, the existence and uniqueness of whose
solutions are either strictly proved or evoke no doubt; the non-idealized
problems naturally turned out to be non-self-similar. The passage to the
limit as the supplementary parameter that made the problem non-self-
similar tended to zero, led to a seemingly empty result: in one case the
limit is equal to zero or infinity, depending on the other constraints in the
problem; in the other case a limit simply does not exist. Nevertheless,
in both cases meaningful intermediate asymptotics exist, and moreover
they are self-similar. It was revealed that these asymptotics and not the
limits are precisely what we actually need. It turns out that the removal
of a fluid mass in the problem of filtration in an elasto-plastic porous
medium and the release of energy by a very intense explosion with loss
or deposition of energy at the front cannot be considered pointwise or
concentrated at a plane. On the contrary, when reducing the size of
the region within which the initial energy release or removal of fluid
mass occurs we must, in order to obtain a proper asymptotics of the
solution to the original non-idealized problem for large times, increase
or decrease the amount of mass removed or energy released in such a
way that a certain 'moment' of the initial distribution of mass or energy
remains constant. It is an essential point that the power to which the
length appears in the expression for this moment cannot be given in
advance and that in principle it is impossible to determine it from di-
mensional considerations; it must be found in the course of determining
the self-similar asymptotics.

Thus, we have encountered the existence of self-similar solutions of
two types. It might seem that their difference is connected with the
availability or absence in the problem under consideration of an integral
conservation law that is valid also in the non-self-similar stage. However,
the impulsive loading problem considered in chapter 4 shows that this is
not so; the reason, rather, lies in the character of the transition from the
non-self-similar solution to the self-similar asymptotics. It is especially
clear for this example that the transition is non-uniform over the region
and that this non-uniformity prevents our using conservation laws.

We now give a formal classification of similarity rules, and of self-
similar solutions to problems of mathematical physics. We recall (see
chapter 1) that, according to dimensional analysis, any relationship
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5.1 Complete and incomplete similarity 147

among dimensional quantities of the form

...,ajfe,&i,...,6m) (5.1)

can be represented in the form

n = * ( I I i , . . . , n m ) (5.2)

where the dimensionless parameters II, III, . . . , IIm are defined by the
relations

FT - a rr - bl
 TT - bm

 (K Q\
al'"ak al ' ' ' ak al • • • ak

Prom (5.2) and (5.3) it follows that the function / has the property of
generalized homogeneity:

° ak•••ak J

(5.4)
It is assumed here that the governing parameters ai, . . . , a^ have inde-
pendent dimensions and that the dimensions of the remaining governing
parameters &i, . . . , bm as well as the dimension of a can be expressed in
terms of the dimensions of the parameters oi, . . . , a^.

Consider now one of the governing parameters, for example, bm. In
traditional discussions 'on a physical level' such a parameter is con-
sidered as essential, i.e., as actually governing the phenomenon under
consideration, if the value of the corresponding dimensionless govern-
ing parameter IIm is not too large and not too small; let us say, to be
specific, that it lies between 1/10 and 10.

If a dimensionless governing parameter, in this case IIm, is small or
large it is conventionally assumed that the influence of this parameter
and of the corresponding dimensional parameter 6m can be neglected.

This argument is actually valid if there exists a finite non-zero limit of
the function $ in (5.2), as the parameter IIm tends to zero or infinity with
the other similarity parameters remaining constant, which is certainly
not necessarily the case in general. In fact, even more is required: the
function $ must converge sufficiently rapidly to a limit as IIm tends to
zero or infinity, that for n m < 0.1 or n m > 10 it will assume values
sufficiently close to that limit. If these conditions are actually satisfied,
then for sufficiently small or sufficiently large IIm the function $ in
(5.2) can, to the required accuracy, be replaced by a function of one less
argument:

n = * i ( n i , . . . , n m _ i ) (5.5)

m— 1 arguments

where $i(II i , . . . , IIm_i) is the limit of the function $(IIi , . . . , n m ) as
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148 5. Classification of similarity rules

IIm tends to zero (or infinity). In such cases we speak of complete simi-
larity, or similarity of the first kind, of the phenomenon in the parameter

n m .
However, it is clear, and moreover trivial, that, generally speaking, if a

similarity parameter Ilm tends to zero or infinity the function $ does not
need to tend to a limit, let alone a finite and non-zero one. Therefore, in
general the parameter bm could remain essential no matter how small or
large the value of the corresponding dimensionless parameter Um may
be.

Suppose, for example, that as Um —> 0 or IIm —• oo the function $
tends to zero or infinity. It is clear that in this case the quantity Hm

remains essential, no matter how small or large it becomes: replacing
the function $ in (5.2) by its limiting values as IIm —• 0 or oo leads to
the empty relation II = 0 or II = oo. Hence, in this case it is in gen-
eral impossible simply to delete Um from the governing dimensionless
parameters and to replace the functions / and $ in (5.1) and (5.2) by
functions with one less argument; one does not have complete similarity
in the parameter Hm. Nevertheless, here too there exists an important
exceptional situation where one can decrease the number of arguments
and obtain a relation of the form (5.5). Namely, suppose at first that as
n m tends to zero or infinity the function $ has the power-type asymp-
totic representation

$ = n«$1(n1,...,nm_1) + 0(n-) (5.6)
where a is a constant, the function $1 again depends on m—1 arguments,
and the second summand is arbitrarily small compared with the first for
sufficiently small (or large) Um. In this case for sufficiently small or
sufficiently large Um we have with the required accuracy, a relation of
the form (5.5),

n* = $1(n1,...,nm_1)
where

n* = JL = °L (K 7\
Llrn Q>\ '"ak °m

Thus in this case the relation (5.1) can again be written in terms
of a function of a lesser number of arguments, just as in the case of
complete similarity. However, firstly, the number a and consequently
the form of the dimensionless parameter II* can no longer be obtained
from considerations of dimensional analysis alone, and, secondly, the
argument bm appears in it and hence does not cease to influence the
phenomenon.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.008
https://www.cambridge.org/core


5.1 Complete and incomplete similarity 149

However, the power-type asymptotics of the type (5.6) is a special
case only. A more general case of a power-type asymptotics is

— nm_
i - r a i » • • • » T-rOtm

\llra llm

where a i , c*2, . . . , a m are certain constants (naturally, some of them
could be equal to zero) and the last summand is arbitrarily small com-
pared with the first for sufficiently small (or large) n m . In this case, for
sufficiently small (or large) Ilm we arrive again at a relation of the form
(5.5),

n*=$1(n*1,...,n*m_1) (5.9)
where as before II* is defined by the relation (5.7) (with am instead of
a), and the II* are defined by the relations

Q>1 • ' ' ak ®m

It is evident that in this case, again as in the case of complete simi-
larity, the basic relation (5.1) can be described by a function of a lesser
number of arguments; now, however, the forms of the dimensionless
parameters II*, II^, . . . , I I ^ . x can no longer be obtained from consider-
ations of dimensional analysis alone because these considerations cannot
in principle give the quantities a i , . . . , am. Moreover, the argument bm

appears in II* and along with 6i, . . . , 6m_i, in II*,. . . , n^a_1, so these
parameters bi do not cease to be essential. The most general exceptional
case for power-type asymptotics occurs when several parameters II/+i,
. . . , IIm are small or large, and the function $ has for small or large
II/+i, . . . , IIm the same property of generalized homogeneity:

n n
which is of exactly the same form as the function / in the relation (5.4).
There is, however, one essential difference: the generalized homogeneity
of the function / in (5.4) followed from the general physical covariance
principle, and the constants p, . . . , rm were obtained by simple rules of
dimensional analysis, whereas the generalized homogeneity of the func-
tion $ in (5.11) is a special property of the problem under consideration,
and the numbers cfy+i, . . . Si cannot be obtained from general principles.
Thus in such exceptional cases, despite the fact that there is no complete
similarity in the similarity parameters and that all governing parameters
fri? • • •> bm remain essential no matter how small or large the similarity
parameters, there is a decrease in the number of arguments of the func-
tion $ that defines the relationship in which we are interested, and we
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150 5. Classification of similarity rules

get a relation of the form (5.5) just as in the case of complete similar-
ity. We speak in such cases of incomplete similarity or similarity of the
second kind of a phenomenon in the relevant parameter (or parameters).

The conclusion at which we have arrived is entirely natural: if the
values of certain dimensionless parameters II* are small or large, then
there are three possibilities:

(1) The limits of the corresponding functions $ as the 11* tend to
zero or infinity exist and are finite and non-zero. The correspond-
ing governing parameters, the dimensional 6* or dimensionless 11̂ ,
can be excluded from consideration, and the number of arguments
of the functions $ decreases. All the similarity parameters can
be determined by means of the regular procedures of dimensional
analysis. This case corresponds to complete similarity of the phe-
nomenon in the similarity parameters 11*.

(2) No finite limits exist for the functions $ as the 11* tend to zero or
infinity, but one of the exceptional cases indicated above holds . If
so, the number of arguments of the functions $ can be decreased,
but not all the parameters II, 11* can be obtained from dimensional
analysis; and the governing parameters 6* remain essential no mat-
ter how small (or large) the corresponding similarity parameters.
This case corresponds to incomplete similarity in the parameters

n*.
(3) No finite limits exist for the functions $ as the 11* —* 0 or oo,

and the indicated exceptions do not hold. This case corresponds
to lack of similarity of the phenomenon in the parameters 11*. It
has already been remarked that no matter how large (or small)
the values of the parameters II*, in this case we cannot obtain a
relation of the form (5.5) between power-type combinations of the
governing and determined parameters that has a smaller number
of arguments for the functions <3>.

The question can arise of why one regards as exceptional only asymptotic represen-
tations of the power-type forms (5.6), (5.8) and (5.11); is it impossible to factorize
the function <$> by another function of II*, for example, log II*? In fact, in this
case one no longer gets relations among power-type combinations of dimensional
parameters, yet only products of their powers give upon multiplication power-type
combinations of the same form. As was proved in chapter 1, dimensions are always
power-type monomials. It can be obtained, by exactly the same argument, that a
power-type asymptotics follows from the lack of characteristic distinguished values
of the parameters 6/+i, . . . , &m-
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5.1 Complete and incomplete similarity 151

The difficulty is that a priori, until we obtain a non-self-similar so-
lution of the complete non-idealized problem , we do not know with
which of these three cases we are dealing, irrespective of whether or not
we have an explicit mathematical formulation of the problem. Hence
one can only recommend assuming in succession each of these possible
situations for small (or large) similarity parameters - complete similar-
ity, incomplete similarity, lack of similarity - and then comparing the
relations obtained under each assumption with data from numerical cal-
culations, experiments, or the results of analytic investigations.

5.1.1 Self-similar solutions of the first and second kind

We now consider some problem in mathematical physics that describes
a certain phenomenon; let the quantity a be an unknown in this problem
and let the quantities ai, ..., a*;, &i, ..., bm be the independent variables
and parameters appearing in the equations and in the boundary, initial,
and other conditions that determine solutions.

Self-similar solutions are always solutions of idealized (degenerate)
problems, which are obtained if certain parameters bi and the dimen-
sionless parameters 11̂  corresponding to them assume zero or infinite
values. They are simultaneously exact solutions of degenerate problems
and asymptotic (generally intermediate-asymptotic) representations of
solutions of wider classes of non-idealized non-self-similar problems as
the parameters bi tend to zero or infinity.

It is clear that if an asymptotics is self-similar, and if the self-similar
variables are power-law monomials, then one of the first two cases listed
the last subsection must hold; correspondingly, self-similar solutions are
divided into solutions of the first and second kind.

Self-similar solutions of the first kind are obtained when in the passage
to the limit from the non-self-similar non-idealized problem to the self-
similar idealized problem there is complete similarity in the parameters
that make the problem non-idealized and its solution non-self-similar.
Expressions for all the self-similar variables, independent as well as de-
pendent, can be obtained here by applying dimensional analysis.

Self-similar solutions of the second kind are obtained in the case where
the idealization of the original problem is such that there is incomplete
similarity in the similarity parameters. Then expressions for the self-

If the complete solution of the problem were known, there would be no need to
apply the methods of dimensional analysis.
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similar variables cannot in general be obtained from dimensional con-
siderations. The parameters that make the problem non-idealized, and
its solution non-self-similar, remain in the expressions for the self-similar
variables.

In the direct construction of self-similar solutions of the second kind,
determination of the exponents of the self-similar variables leads to a
nonlinear eigenvalue problem. The constant multiplier appearing in the
self-similar variables is left undetermined in the direct construction of
self-similar solutions of the second kind. This constant can be found
by following, for example by means of numerical calculations, the entire
process of evolution of a solution of the non-idealized problem into a
self-similar asymptotics.

If the constant can be found from integral conservation laws, this
means that for an appropriate choice of governing parameters the prob-
lem can be reformulated and reduced to a problem of the first kind. For
example, the classical problems of a heat source, a thermal dipole, and a
very intense explosion can be represented as self-similar solutions of the
second kind if one chooses the governing parameters of the non-idealized
pre-self-similar problem inappropriately. The possibility of obtaining
solutions to these problems as self-similar solutions of the first kind is
connected with the choice, as governing parameters, of the energy of the
explosion, the bulk heat, or the dipole moment, which by virtue of the
corresponding integral conservation laws do not vary with time .

Self-similar solutions of non-power-type are also possible. For such
solutions the self-similar variables are no longer represented by power
monomials. Instructive examples of such solutions will be considered in
chapter 6, where a general idea of their origin will also be given.

On the contrary, an integral conservation law valid also for the pre-self-similar
stage is not a neccessary property of the self-similar solution of the first kind. An
elegant example illustrating this point was given by Entov (1994). The self-similar
asymptotics to the solution to the equation of heat conduction with absorption,

dt6 = Kdlx0 - aOn ,

where n > 3 is a constant, describing the decay of an amount of heat concentrated
initially in a finite domain, is, as previously, the point-source self-similar solution
of the first kind

For this distribution obviously the integral M(t) = J_ 0(x,t)dx — MQ is pre-
served in time. However, it is not preserved at the pre-self-similar stage, so that
MQ cannot be obtained from initial data.
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5.1 Complete and incomplete similarity 153

Examples of self-similar solutions of the first kind are given by the
solutions considered in chapter 2 to the problem of an instantaneous heat
source and to the problems of the propagation of very intense thermal
waves and of very intense blast waves. In fact, we shall return first
to the solution of the instantaneous heat source problem, which is the
self-similar solution of the equation

dt6 = ndlx6 (5.12)

under the conditions
oo

0(z,O) = O, z ^ O ; I 9{x,0)dx = Q; 0(±oo,*)=O. (5.13)
— oo

If we pass from the idealized degenerate conditions (5.13), correspond-
ing to the concentration at the initial instant of a finite amount of heat
at a plane, to the conditions

oo

y l; 9(±oo,t) = 0 (5.14)

(tio(0 being an even function that decreases rapidly and monotonically
with increasing absolute value of the argument) corresponding to the
concentration at the initial instant of the same amount of heat in a
region of finite size J, then the solution 6 will cease to be self-similar.
Dimensional analysis gives

e = /(*,«, Q,Z,O, n = *(n!,n2), (5.15)

where

III = x/y/nii, n 2 = l/y/Kt, U = eVttf/Q .

For II2 tending to zero, i.e., t tending to infinity or, what is the same
thing, the region of initial concentration of heat contracting to a plane,
the function $ converges to a finite limit. In fact, by reducing to dimen-
sionless form relations known from the theory of heat conduction (see
Carslaw and Jaeger, 1960; Petrovskii, 1967; Carrier and Pearson, 1976)
it is easy to prove that

— oo

As n 2 —> 0 the function $ converges to

Hence the self-similarity is complete with respect to the parameter II2
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that makes the problem non-idealized and for sufficiently small II2 one
can, with any accuracy, replace the function $ in (5.15) by $(IIi,0) =
^i(IIi). But the function $1 corresponds to the solution of an idealized,
degenerate problem, which is already self-similar.

Complete self-similarity makes it possible to obtain expressions not
only for the self-similar variables, as was demonstrated in chapter 2, but
also for the meaningful similarity rules. Suppose we want to determine
the decay law for the maximum temperature. The latter is obviously
achieved at x = 0, so that for the idealized problem (in which the heat
at the initial instant is concentrated at the plane x — 0) we find

= f(t, K, Q), n m a x = g m a ^ = const,

whence

«max = const - £ = . (5.16)
y/Kt

Such an argument is valid in the present case because, for the non-
idealized problem,

0max = /(*, *, Q, /), nm a x = $max(n2) = $(o, n 2 ) , (5.17)

and as U2 —> 0 the function $m a x converges to a finite limit equal to
1/27^/2.

The situation is entirely analogous for both very intense thermal waves
and very intense explosion waves. Thus, in the case of very intense
explosion waves, passing from the idealized formulation of the problem,
corresponding to the release of energy at a point, to the non-idealized
formulation of the problem, corresponding to the release of energy in a
sphere of finite radius ro, we obtain for the pressure, density and radius
of the shock wave,

/ Ft2\ ~1/'5

n2 = r0( — ) , p

V Po ) \ Po J
For II2 tending to zero, i.e. the region of initial release of energy

contracting to a point, all the functions $p, $p, $ r , $ / tend to finite
non-zero limits. (This fact has not been proved analytically, but it is
verified by numerical calculations and there is no reason to doubt it.)
Thus similarity is complete with respect to the parameter II2 that makes
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the problem non-idealized, and for sufficiently small II2 we can, to any
required accuracy, replace the functions 4 p , 4 p , 4V in (5.18) by

4,(11!,o) = * p i ( i i i ) , *p(iii ,o) = *P 1 (ni) , *v(iii ,o) = * v i ( n o ,

respectively, and the function 4/(112) by the constant C = 4/(0). But
the functions 4 P l , 4 P l , 4Vl and the constant of proportionality C in the
formula for the radius of the shock wave correspond to the self-similar
solution of the idealized problem (see chapter 2).

Complete self-similarity, in this case also, allows one to obtain mean-
ingful similarity rules, for example for the properties of the motion at
the shock front:

pf = consti

Vf = const2

rf = constQ

( ] , (5-19)
\ Po J
(Et*\1/b

I I

V J
I I
V Po J

Examples of self-similar solutions of the second kind are the solutions
for the modified problems of an instantaneous heat source and of a very
intense explosion, and the problem of an impulsive loading, that were
considered in chapters 3 and 4.

The solution for the modified instantaneous heat source problem is a
self-similar asymptotic solution for large t of the problem with the same
initial conditions, (5.14), but with the modified equation

(dte>o),
{dte < 0), l ' ;

which is a nonlinear heat conduction equation for K\ ^ K. For this
solution dimensional analysis gives

o = f(t,Qj,K,KUx), n = 4 ( n ! , n 2 , n 3 ) , (5.21)

where

IIi = x/y/Kt, n2 = Ify/id, n 3 = «i /« , II = Oy/nt/Q .
The general case with K\ ^ K and II3 ^ 1 differs from the classical

case with K\—K and II3 = 1 in that for II3 ^ 1 and Efe —• 0 the function
4 in (5.21) no longer tends to a finite non-zero limit, but converges to
zero or infinity, depending on whether the similarity parameter II3 is
larger or smaller than unity. Here we have the first type of incomplete
similarity with respect to a parameter: as II2 —» 0,
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where a is some number depending on II3 and equal to zero for II3 = 1,
positive for II3 > 1, and negative for II3 < 1.

In accordance with what was said above, the relation (5.21) can be
written for small II2 in the self-similar form

, (5.22)

but now the dependent self-similar variable II* can no longer be found
by dimensional considerations; the constant a is found by solving a
nonlinear eigenvalue problem, and the full solution is found to within a
multiplicative constant. Moreover the length I that makes the original
problem non-self-similar appears explicitly in this self-similar variable.
Prom (5.22) we get in particular the decay law for the maximum of the
quantity 6:

^ . (5.23)

It is an essential point that although this law also is of power form, it is
impossible to obtain it by applying dimensional analysis. The situation is
that the decay law for the quantity 6mSiX is determined by the dimension
of the constant Qla. This is unknown in advance, and is determined after
the construction of a global self-similar solution, i.e., from the solution
of a nonlinear eigenvalue problem. However, since we are dealing in the
present case with incomplete similarity of the first type, the independent
self-similar variable, in this case III, is found from dimensional analysis.
Hence, in particular, for the law of propagation of the boundary between
the regions with different K, one obtains the similarity law

x o ( t ) = & ( n 3 ) v ^ , (5.24)
which can be established from dimensional considerations.

We turn to the modified very intense blast wave problem. The desired
self-similar solution is a self-similar asymptotics for large t of the solution
to the equations of adiabatic motion of a gas with adiabatic exponent 7
under conditions on the very intense shock wave in which the effective
adiabatic exponent 71 7̂  7 enters, and initial conditions corresponding
to the release at the initial instant of energy E within a sphere of radius

The application of dimensional analysis to this non-idealized problem
again leads us to (5.18) where it is understood that among the arguments
of the functions 4>p, $p, $v and <£/, the constant parameters n3 = 7 and
II4 = 71 also appear.

However, in the case 71 7̂  7 there is no complete similarity, as U2 —> 0

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.008
https://www.cambridge.org/core


5.1 Complete and incomplete similarity 157

in the similarity parameter II2 that makes the problem non-idealized;
the functions $p ,$p, $v , and <&/ do not tend to finite nonzero limits
as Eb —> 0; they converge to zero or infinity as depending on whether
71 is smaller or larger than 7, and the function <f>p in general does not
converge to any limit. Actually, we have here incomplete similarity of
the second type: as II1 —> 0 and II2 —» 0

(5.25)

- I . <$ f — const IIo .

Hence, in accordance with what was said above, for small Hi and n2,
(5.18) can again be written in the self-similar form

n* = $p2(ni), n* = $P2{u\), n* = $v2(iii), u*f = const,
(5.26)

where
n* = P = E i

n* - i - i
1 '" -1 1 r5 . ' (5.27)

However, now neither the dependent self-similar variables II*, II*, nor
the independent self-similar variable IIJ can be determined from dimen-
sional considerations, since the constant /3 is unknown in advance and is
found by solving a nonlinear eigenvalue problem. Moreover, the radius
ro of the sphere within which the release of energy takes place at the
initial moment appears explicitly in all the self-similar variables. Prom
(5.27) we get scaling laws for the pressure and velocity at the front of
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the shock wave and for the radius of the shock wave:
T F2(l-(3) J3-2/3) "I1 / 5

p , = constx I ^ ^ I ro
p ,

\ E t ] 0 (5>28)
vf = const2 ^ ^ ?o , v ;

L Po J
r / = const3 I rft ,

\ Po /
As is evident, despite the fact that these laws have a scaling, power-
law form, it is impossible to derive them by dimensional analysis. The
situation is that the dimensions of the constant A = aEr0 ' that
determines these laws can be found only after solving a nonlinear eigen-
value problem, to which the construction of a global self-similar solution
reduces.

The examples considered are instructive ones. When we turn to the
solution of a certain problem, and in particular to the search for its
self-similar solutions, we do not know in advance to which type the solu-
tions of the idealized formulation of the problems belong. Comparison of
the original and modified formulations of the problems considered above
shows that the situation can be rather deceiving: from the point of view
of whether it is possible to apply dimensional analysis these problems
do not differ from one another superficially. Hence, for example, it is ex-
tremely tempting to begin by obtaining similarity laws without recourse
to solution of the equations. Arguing in the usual fashion, we might
assume for the modified problems that, since the initial removal of mass
or release of energy occurs in a small region, the size of that region is
inessential, i.e., we might assume complete similarity in the similarity
parameter that corresponds to the initial length. Prom this would follow
automatically the scaling laws (5.16) and (5.19) corresponding to com-
plete similarity. But as a matter of fact, as we have seen, the scaling
laws here are quite different. Therefore it is necessary to keep in mind
that it is a very strong hypothesis to assume the unimportance of cer-
tain parameters that make the problem non-idealized (in the examples
considered, the lengths I and ro). These governing parameters may be
essential and yet self-similarity may nevertheless hold. Distinguishing
between possible cases of self-similarity requires, in fact, a sufficiently
deep mathematical investigation, which is unattainable in seriously non-
linear problems. Therefore in obtaining self-similar solutions or similar-
ity laws on the basis of dimensional analysis one should take care to
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verify, if only by means of numerical calculations, that the solutions or
similarity laws found actually reflect the required asymptotic behaviour
of the analytical solutions to the problem considered. The situation is
much more complicated if a mathematical formulation of the problem is
lacking; in this case, to verify the basic assumptions one must turn to
experiment. The examples considered in the following chapters confirm
the necessity of such precautions.

5.1.2 Recipe for similarity analysis

We have discussed above the fundamentals of dimensional analysis, sim-
ilarity theory and the theory of self-similar phenomena, and have con-
sidered numerous illustrative examples. This discussion now allows us
to provide a recipe for similarity analysis, i.e., for applying dimensional
analysis and dealing with self-similarities. Suppose that we are inter-
ested in a property a of some phenomenon (a may be a vector, i.e. there
may be several such properties). We proceed in the following way.

(1) We specify a system of governing parameters a\, ..., a^, b\, . . . ,
bm such that a relation of the form

can be assumed to hold. If the problem has an explicit mathemati-
cal formulation, the independent variables in the problem and the
constant parameters that appear in the equations, boundary con-
ditions and initial conditions, etc., are adopted as the governing
parameters. If an explicit mathematical formulation of the prob-
lem is unknown, the governing parameters are chosen on the basis
of a qualitative model of the phenomenon, which each investigator
constructs using his/her own experience and intuition, as well as
an analysis of previous studies.

(2) We choose an appropriate class of systems of units and determine
the dimensions of the quanitites under investigation, and of the
governing parameters, in this class. We choose a system of gov-
erning parameters with independent dimensions: it is preferable
to select those parameters whose importance to the phenomenon
being studied is most firmly established.

(3) We express the dimensions of the quantities under investigation,
and of the governing parameters with dependent dimensions as
products of powers of the dimensions of the governing parameters
with independent dimensions. We determine the similarity param-
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eters and put the function under study into a dimensionless form,
the similarity law

(4) We estimate the numerical values of the governing similarity pa-
rameters. We select those that are large or small. In some cases,
it turns out to be convenient at this stage to choose new similar-
ity parameters - products of powers of the similarity parameters
obtained in the previous step: this sometimes makes it easier to
perform these estimates.

(5) We try to formulate limiting similarity laws under the assumption
of complete similarity in any large (or small) similarity parame-
ters. This means simply discarding these dimensionless governing
parameters and the corresponding dimensional parameters. Then,
we compare the limiting similarity laws obtained against the avail-
able experimental data and/or numerical calculations. If discrep-
ancies are observed,

(6) We try to formulate limiting similarity laws under the assumption
of incomplete similarity in the large (or small) similarity parame-
ters. This means that we assume a generalized-homogeneity rep-
resentation of the function $(II i , . . . , IIm) in terms of the small (or
large) similarity parameters. Once again, we compare the similar-
ity laws obtained against the available experimental data, numer-
ical calculations, etc. If discrepancies are again observed, we then
conclude that the phenomenon is not self-similar in the small (or
large) similarity parameters. So,

(7) Finally, we formulate similarity laws using as few similarity pa-
rameters as possible.

The use of this recipe will be demonstrated below on numerous exam-
ples from various fields.
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Scaling and transformation
groups. Renormalization group

6.1 Dimensional analysis and transformation groups

6.1.1 General concepts

Dimensional analysis, as already mentioned, has a transparent group-
theoretical nature. Group considerations can turn out to be useful also in
those cases where dimensional analysis becomes insufficient to establish
the self-similarity of a solution and determine self-similar variables. A
special place belongs here to the renormalization group, a concept now
very popular in theoretical physics.

We recall, first of all, the definition of a transformation group. Sup-
pose we have a set of transformations with k parameters,

K = Mxu...,xn\Au...,Ak) (̂  = 1, . . . ,n) (6.1)

where the fu are smooth functions of their variables in some domain.
We say that this set forms a fc-parameter group of transformations if the
following conditions are satisfied:

(1) Among the transformations (6.1) there exists the identity trans-
formation.

(2) For each transformation of (6.1) there exists an inverse transfor-
mation that also belongs to the set (6.1).

(3) For each pair of transformations of the set (6.1), i.e., a transfor-
mation A with parameters A\, . . . , Ak and a transformation B
with parameters £?i, . . . , B^, a transformation C with parameters
C i , . . . , Cfc, which also belongs to the set (6.1), exists, and is uni-
quely determined such that successive realization of the transfer-
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mations A and B is equivalent to the transformation C. The trans-
formation C is called the product of transformations A and B.

Dimensional analysis, which was considered in detail in chapter 1 is
based on the II-theorem. This theorem allows one to express a function
of n = k + m variables in a relationship between dimensional quantities,

a = / ( o i , . . . , ak, bu . . . , bm), (6.2)

in terms of a function of m variables (fc being the number of governing
parameters with independent dimensions) that represents the relation-
ship (6.2) in the form of a relation among dimensionless quantities:

where

F T -
 a u - bl rr - bm

al...ak ax ...ak ax ...ak

so that the function / in (6.2) possesses the property of generalized
homogeneity:

r ^ , . . . ,
'"ak a i '"ak

We note now that for any positive Ai, . . . , Ak the similarity transfor-
mation of the governing parameters with independent dimensions

a i = A i a i , a'2 = A2a2, . . . , a'k = Akak, (6.3)

can be obtained by changing from the original system of units of mea-
surement to some other system of units of measurement belonging to
the same class of systems of units. At the same time the values of
the remaining parameters a, &i, . . . , bm vary in accordance with their
dimensions in the following way:

a' = A',...A'ha,

*-A?... AS*.

Direct verification shows easily that the transformations (6.3), (6.4)
form a fc-parameter group. The quantities II, IIi, . . . , IIm remain un-
changed for all transformations of the group (6.3), (6.4), i.e., they are
invariants of this group. Thus, the II-theorem is a simple consequence
of the covariance principle: relations with a physical meaning among di-
mensional quantities of the form (6.2) are invariant with respect to the
group of similarity transformations of the governing parameters with
independent dimensions (6.3), (6.4), corresponding to transition to a
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different system of units (within a given class). The number of indepen-
dent invariants of the group is obviously less than the total number of
governing parameters by the number k of parameters of the group.

The invariance of the statement, and hence of the solution, of any
physically meaningful problem with respect to the group of transfor-
mations (6.3), (6.4) is thus necessary according to the general physical
covariance principle. It can turn out, however, that there exists a richer
group with respect to which the formulation of the problem considered
is invariant. Then the number of arguments of the function $ in the
universal (invariant) relation obtained after applying the Il-theorem in
its own right should be reduced by the number of parameters of the
supplementary group. Here the solution can turn out to be self-similar
and the self-similar variables can be determined as a result of using the
invariance with respect to the supplementary group, although this self-
similarity is not implied by dimensional analysis (which exploits invari-
ance with respect to the group of similarity transformations of quantities
with independent dimensions). We consider below some instructive ex-
amples that will clarify this idea.

6.1.2 Example: the boundary layer on a flat plate

The boundary-layer problem for high-Reynolds-number flow past a semi-
infinite thin plate placed along a uniform stream (the Prandtl-Blasius
problem) leads to the system of equations (Kochin, Kibel' and Roze,
1964; Batchelor, 1967; Germain, 1986b; Landau and Lifschitz, 1987;
Schlichting, 1968)

udxu + vdyU = vdyyu} dxu 4- dyv = 0 (6.5)

(x and y being the longitudinal and transverse coordinates, u and v the
corresponding velocity components, and v the kinematic coefficient of
viscosity) under the boundary conditions (x > 0, y > 0)

u(0, y) = U, u(z, oo) = U, u(x, 0) = v(x, 0) = 0 (6.6)

(U being the constant speed of the exterior flow). By comparison, at
arbitrary Reynolds number the problem of viscous flow past a semi-
infinite thin plate placed along a uniform stream leads to the full Navier-
Stokes equations and equation of continuity:

udxu 4- vdvu = —dxp 4- v(d\ja 4- d*u),
9 yy

udxv 4- vdyV = —dyp 4- i/(dxxv 4- d?.vv).
p

dxu 4- dyu = 0,
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under the conditions (—00 < x < 00, —00 < y < 00),

u(x,0) = v(x,0) = 0 ( z > 0 ) ,

u(x,y) —> £/, v(x,y) —> 0, for any a: with y2 —> 00, and for any
?/ with a; —» —00. Among the governing parameters v, x, U and y
in the boundary-layer problem, only two have independent dimensions:
[1/] = L2T~l, [x] = L, [17] = LT'1, [y] = L. Hence a direct application
of dimensional analysis gives

(D.7)

2 = <n = uy/v.
Thus (6.5), (6.6) reduce to the form

* i ,

(6.8)
) = 0 ,

so that this direct application of dimensional analysis does not give any
simplification of the problem. Now let $1(^,77), $2(€,v) be a solution
of (6.8), which exists and is unique. Simple verification shows that for
any positive a the functions $i(a2^,ar/), a4>2(o:2£, arf) also satisfy the
equations and all the conditions of the boundary-layer problem, although
not all those of the full Navier-Stokes problem. Thus the formulation of
the boundary-layer problem has turned out to be invariant with respect
to the one-parameter group of transformations

so that substituting these relations into (6.8) we obtain the same prob-
lem, but now in the variables $^, $2> £'> rf f°r arbitrary positive a. In
view of the uniqueness, the solution too must be invariant with respect
to the same group of transformations, i.e. for any a the functions $1
and $2 must satisfy the relations

*i(&*?) = $i(c*2£,a77), *2(£,?y) = a$2(a2£,a7?). (6.9)

Since in (6.9) a can be taken equal to any positive number, we obtain,
setting a = £

ux/U
(6.10)

Thus, the self-similarity of the solution to the problem is established and
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expressions for the self-similar variables are obtained: however, this has
been achieved as a result of not only dimensional considerations but also
invariance of the problem statement with respect to a group of transfor-
mations that is broader than the group of similarity transformations of
the quantities with independent dimensions.

The example just considered is instructive in that the application of
more general groups of transformations can here be given the form of
a use of dimensional analysis, and this device turns out to be useful
in many cases. Namely, we shall use different units to measure length
in the x-direction and length in the y-direction, i.e., we introduce two
dimensions of length, Lx and Ly. This is possible for the boundary-
layer equations, in contrast with the full Navier-Stokes equations. (In
the latter the term vd^yu appears in sum with the term vd\xu, and if
we measure x and y in different units these terms will have different
dimensions.) Here, then, it is necessary to take

[u] = [U\ = LxT-\ M=L2
yT~\

\v] = LyT-\ [x] = Lx, [y} = Ly,
so that both in the boundary-layer equations and in the boundary con-
ditions of the problem all terms will have identical dimensions. Thus
among the governing parameters no longer two but rather three have
independent dimensions, and the single independent dimensionless sim-
ilarity parameter will be

U ' ^ — y ^ C , (6.12)
//U

whence follows also the self-similarity of the solution to the problem:

Introducing the new function <p(Q = /0 /i(C)̂ C> w e easily obtain,
from (6.5) and (6.6),

y/(0) = 0, ¥>'(<») = 1.
i.e., a nonlinear boundary-value problem for a third-order ordinary dif-
ferential equation. For the drag F on a section of unit width and length
/ of the flat plate in a uniform stream of velocity U we obtain from
the previous relations, using the results of numerical calculation of the
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function tp,

/7T37
= 4W—

Here (crX2/)2/=o is the shear stress on the plate. For more details see
Kochin, KibeP and Roze (1964), Batchelor (1967), Germain (1986b),
Landau and Lifschitz (1987) or Schlichting (1968).

Introducing the dimensionless parameter II = F/pU2l corresponding
to F, we get

We note in passing that one can also look at this well-known relation
as incomplete similarity in the Reynolds number. In fact, the drag F
is determined by the following quantities: the length I of the plate, the
viscosity v and density p of the fluid, and the velocity U of the stream.
Application of the standard procedure of dimensional analysis gives

n = $(Re).
For the high Reynolds numbers characteristic of the boundary layer

there is no complete similarity with respect to Reynolds number, since
there does not exist a non-zero limit of the function 3> = 1.328Re-1'2

as Re —> oo. Hence the relations

n = const, F — const pU2l

that would have to hold in the case of complete similarity in the Reynolds
number must not be expected to be true, no matter how high the
Reynolds number. Nevertheless, one has the relation

F
II* = — ; = const = 1.328,

corresponding to incomplete self-similarity: the parameter n* cannot
be obtained from conventional dimensional analysis and contains the
dimensional parameter v whose explicit introduction into the problem
violates self-similarity. Using the generalized dimensional analysis (6.11)
the reader can easily obtain for the boundary-layer flow the scaling law

F — const pVU3lv

from dimensional considerations.
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6.1.3 Example: limiting self-similar solutions

So-called limiting self-similar solutions*, i.e., solutions of the form
eat f(xe0t), in which both the length scale and the scale of the quantity
to be determined depend exponentially on the time, give other inter-
esting examples of the use of more general group considerations. We
consider such solutions for the equation of nonlinear heat conduction,

dtu = KdZxu
n+\ (n>0) . (6.13)

An appropriate idealized problem is considered in the semi-infinite do-
main x > 0 for t > — oo. We seek a solution of (6.13) that satisfies the
conditions

u(z,-oo) = 0, u(O,t) = uoe
at. (6.14)

The application of dimensional analysis gives, as is easy to prove using
the standard procedure,

u = uo$[x/(K(j-lu%)l/2, at]. (6.15)

We now observe that the problem formulated is invariant also with
respect to the group of transformations of translation in time. This
means that if u(x,£,uo,0") is a solution of (6.13), (6.14), then u(x,t —
r, u$e(JT ,<J) is also a solution of the same equations for any real r. In
fact, substituting t' = t+r in (6.13) and (6.14), we get the same problem
for the determination of u as a function of the variables x and £', but in
place of UQ will appear u'o = u§ear. Hence, from the uniqueness of the
solution and from (6.15) it follows that for any r,

u(x, t) = uoQix/iKa-1^)1/2, at] = u(x, t')

= uoeaT$[x/{K(j-lu%en(JT)1!'2, at - ar].

But this means that the function $ satisfies the invariance relation

$(£, r,) = e"T$(£e-™r/2, T, - ar) (6.16)

for any r. Setting r = 77/cr we obtain

*(£, r?) = e"3>(£e-nr>/2,0) = cV«c""nt? /2), (6.17)

from which now follows the self-similarity of the solution of (6.13), (6.14):

u - uoe^flx/iKa^uZe™1)1/2]. (6.18)

The designation of these solutions as limiting self-similar is explained
in the following way. Equation (6.13) has a family of self-similar so-
lutions of ordinary power-law form satisfying the boundary and initial

Sometimes these solutions are called limiting to self-similar, which is unfortunate
in our view, since they themselves are also self-similar.
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conditions

u(x, t0) = 0, u(0, t) = n(t - to)
a (t > t0). (6.19)

It is easy to show, using the standard procedure of dimensional analysis,
that these solutions can be expressed in the form

u = n(t- to)
afa{x/[Knn(t - to)

an+1(a + I)]1/2} (6.20)

(the factor (a +1) having been introduced in the self-similar variable for
convenience), where the function fa is a solution of the equation

& + . 0 .
a£z 2 a£ a +1

which satisfies the conditions /a(0) = 1, /a(oo) = 0 and is continuous,
has a continuous derivative df£/d£, and is in fact identically equal to
zero for £ greater than some £o(&) < oo. We now choose to = —OL/G,

where a is a constant having the dimensions of inverse time, and let a
tend to infinity while keeping fj,(a/a)a constant and equal to uo- It is
easy to see that the factor (t — to)a = (a/a)a(l + at/a)a here tends to
an exponential, and the solution (6.20) tends to the solution (6.18) as
its limit.

Solutions of the form eatf(xe^t) have appeared in various problems
of fluid mechanics, starting with the paper of Goldstein (1939) devoted
to the theory of the boundary layer. The group analysis of the solu-
tions given above and also the explanation of their limiting character for
boundary layer theory is given in Barenblatt (1954).

6.1.4 Example: rotation of fluid in a cylindrical container

An instructive example of a self-similar solution for which considerations
of dimensional analysis are insufficient for establishing the self-similarity
is provided by the remarkable Sobolev problem of small perturbations of
a rotating fluid in a cylindrical container (Sobolev, 1954). The equation
for pressure perturbation in this problem has, as Sobolev showed, the
form

d2 Ap + u2d2
zzp = 0. (6.22)

Here t is the time, z is the coordinate measured along the axis of rotation,
A = dpP + {\/p)dp + d\z is the Laplace operator, p = (x2 4-2/2)1/2, x and
y are rectangular coordinates in the plane perpendicular to the axis of
rotation, and u is the angular velocity of the rotation.

By the first fundamental solution of (6.22) is meant the solution sat-
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isfying the initial conditions

p(x, y, z, 0) = - , dtp(x, j / , z, 0) = 0, (6.23)

where Q is a constant and r = (p2+z2)1/2. The desired solution depends
on the governing parameters p, Q, z,u and t, whose dimensions are

[Q] = [p]L, [p] = [z] = L, [w] = T " 1 , [t]=T. (6.24)

Furthermore, dimensional analysis gives, as is easy to show,

V— — $(£>*?)> C = ""> ri — ujt. (6.25)

Substituting (6.25) into (6.22) and (6.23) and integrating, taking into
account the regularity of the solution at the axis of rotation , we reduce
these relations to the form

(6.26)

7 , „ ( £ , ) = 0.
1 -f

Since the combination £ = £/(l + C2)1^2 appears on the right-hand side
of one of the conditions, it is convenient to take it as an independent
variable (it would appear automatically if we introduced r instead of z
as the governing parameter), and to denote $(£,77) by ^(£,77). Then
(6.26) assumes the form

c * + 8&[<0<(*/C)]=o

If ^(£,77) is a solution of the problem then, as is easily verified,
a " 1 ^ ( a ( , a~l>q) also satisfies the equation and all the conditions of the
problem for arbitrary positive a. By virtue of the uniqueness of the solu-
tion, it follows from this that the function \P(£, rf) satisfies the invariance
relation

*(C,i7)=a-1*(aC,a-1T7) (6.28)

for any a > 0. We now set a = l/£ and obtain

*(C,»/)=C*(l,Cf7) = C3(C»7), (6-29)

i.e., the function \P(£, 77) can be represented by a function of one variable.

The requirement of regularity also includes the vanishing of #^$(0,77), the co-
efficient of the 'cylindrical' generalized function A(l/p), which is obtained when
(6.25) is substituted into (6.22). The solution (6.31) that we will obtain satisfies
this condition.
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Substituting (6.29) into (6.25) and returning to the original variables,
we obtain

so that the first fundamental solution of Sobolev's equation (6.22) actu-
ally turns out to be self-similar. The substitution of (6.30) into (6.22)
and (6.23) easily allows one to determine an expression for the function
3 in terms of Bessel functions of order zero:

The use of invariance with respect to a wider group for the proof of
self-similarity and the determination of self-similar variables can here too
be given the form of an application of dimensional analysis; the simple
approach that we shall now apply is also often useful. Namely, we write
(6.27) in the form

(^» + A^((W()]=0,
* ( C , O ) = M C , »„*«,<>) = O,

and temporarily forget that the quantities \I>, C,rj are dimensionless and
that A and JJL are equal to unity. On the contrary, we assume that £ has
dimension Z, 77 has dimension if, and * has dimension [\I>]. Then, in
order that all terms of (6.32) have identical dimensions, it is necessary
that the dimensions of A and ji be as follows:

[/x] = [tf]Z-\ [\} = ZH. (6.33)

The solutions \I>, as follows from (6.32), can depend only on £, 7?, A and
/i, whence we obtain, by means of the standard procedure of dimensional
analysis,

Setting ji = A = 1, we again get (6.29). The examples given above show
how establishing the invariance of a problem with respect to a certain
group of continuous transformations allows one to decrease the number
of arguments of the function, just as do considerations of dimensional
analysis, which are based on invariance with respect to a subgroup of the
group of similarity transformations. Therefore of fundamental value is
the idea developed by Birkhoff (1960) of generalized inspectional anal-
ysis of the equations of mathematical physics, i.e., the idea of looking

In Birkhoff's book (1960) a careful citation is given of his predecessors, in partic-
ular, T.A. Ehrenfest-Afanassjewa.
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for groups with respect to which the equations of some physical phe-
nomenon are invariant, and also for solutions that are invariant with
respect to those groups. There naturally arises the question of an al-
gorithm for seeking a maximally broad group of transformations with
respect to which a given system of differential equations is invariant. The
basic ideas here belong to S. Lie; in recent times a series of general re-
sults, and applications to particular systems of equations encountered in
various problems of mechanics and physics, have been obtained (see the
books by Birkhoff, 1960; Bluman and Cole, 1974; Ovsyannikov, 1978).
We refer to the books cited for an account of the general approach and
numerous examples. Our account, given above, had as its goal to demon-
strate by instructive examples the general idea of using wider groups in
the search for self-similar solutions, and to indicate the use, in a series
of cases, of formal application of the standard technique of dimensional
analysis in working with more general groups. It is clear that dimen-
sional analysis can be applied even without knowing the mathematical
formulation of the problem. It would appear that invariance with respect
to a more general group than the group of similarity transformations of
quantities with independent dimensions can be used only if one has a
mathematical formulation of the problem. As a matter of fact this is not
so, and invariance with respect to wider groups can also be suggested
by physical considerations.

In conclusion we note that the consideration of self-similar solutions as
intermediate-asymptotic representations is closely connected with singu-
lar perturbation methods, which have been widely developed and applied
in the last few decades (Van Dyke, 1975; Cole, 1968; Lagerstrom and
Casten, 1972; Kevorkian and Cole, 1980; Hinch, 1991). Namely, self-
similar solutions are inner or outer asymptotics of the solutions of the
complete problem, depending on which of the scales of the independent
variable is taken as the basis for analysis of the intermediate asymptotics.
Therefore the determination of the constants appearing in a self-similar
solution of the second kind can, in a number of cases, be achieved by
matching the self-similar solution with a supplementary asymptotics.

6.2 The renormalisation group and incomplete similarity

6.2.1 The renormalisation group and intermediate asymptotics

Among the additional groups to the groups of similarity transformations
of quantities with independent dimensions that lead to self-similarity, a
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172 6. Scaling and transformation groups

special and very important place belongs to the renormalization group.
The renormalization group approach, following the ideas of Stiickelberg
and Peterman (1953), Gell-Mann and Low (1954), Bogolyubov and
Shirkov (1955), Kadanoff (1966), Patashinsky and Pokrovsky (1964) and
Wilson (1971), has found extensive applications in modern theoretical
physics. Recently N. Goldenfeld, O. Martin and Y. Oono demonstrated
a deep relation between the renormalization group method as tradi-
tionally used by physicists and the intermediate asymptotics approach
developed independently and presented in this book. An important
step was that they solved, by the renormalization group method in the
form in which it is usually applied by physicists, some typical problems
whose solution was previously performed by the method of intermediate
asymptotics and, vice versa, they solved by the method of intermediate
asymptotics some classical problems in statistical physics solved earlier
by the renormalization group approach (Goldenfeld (1989); Goldenfeld,
Martin and Oono (1989, 1991); Goldenfeld et al..t (1990); Goldenfeld and
Oono (1991), Chen, Goldenfeld and Oono (1991); the book by Golden-
feld (1992) is especially recommended). Later, further applications of
their approach and its development were performed in the papers by
Ginzburg, Entov and Theodorovich (1992) and by Bricmont and Kupi-
ainen (1992).

In this section we present the renormalization group approach includ-
ing the very definition of a renormalization group from the viewpoint of
our intermediate-asymptotics technique, presented above in this book.
In the next section we will demonstrate the renormalization group ap-
proach in the form commonly used by physicists, following exactly the
presentation by Goldenfeld et al. (1991).

We now return to the alternative considered in chapter 5.
The basic relation in which we are interested,

o> = f{ai,... , ak , h , . . . , bm , e) (6.35)

can be written in dimensionless form:

n = *(n1,n2,...,iw). (6.36)
Here we have added an additional constant dimensionless parameter

e on which the phenomenon under consideration is assumed to depend.
Let the parameter IIm be small, and incomplete similarity asymptotics
be valid for the function $, so that for small IIm

TT _ nQ™

n-nmWe begin from a simpler case; the general case of incomplete similarity
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6.2 The renormalisation group and incomplete similarity 173

will be considered later. Generally speaking, the powers a\,... , am do
depend on the parameter e. Let, further, a\ = a2 = .. . = am = 0,
i.e., the complete similarity case for e = 0. In this case, for sufficiently
small n m the function $ in (6.36) can for e = 0 be replaced by its finite
limit $i(II i , . . . ,IIm_i,0). So, the dimensional parameter bm responsi-
ble for the dimensionless parameter IIm disappears from consideration,
i.e., from relation (6.35), as does the dimensionless parameter Ilm from
(6.36).

Therefore, we can say that at sufficiently small IIm nothing in the
quantitative description of the phenomenon is changed if the transfor-
mation group

&;=&!, 63 = 62, . . . , b'm = Bbm,
, , , (6-38)

a — a, a x = a i , . . . , ak=ak
is applied, where B, the group parameter, is an arbitrary positive num-
ber. Thus, asymptotically the problem statement is invariant with re-
spect to the transformation group (6.38).

For € > 0, the parameters ai , a2, ..., c*m
 a re generally speaking dif-

ferent from zero; therefore the parameter bm does not disappear from
the resulting relation even for arbitrarily small Um. However, the re-
sulting asymptotic form of the relation (6.37) is evidently invariant with
respect to the more general transformation group

. . . , bm B b m , a = B a ,
/ / / ( 6 - 3 9 )

&1 = Q>\i a2 = a2> • • • » ak = ak •

We have arrived at a special case of the renormalization group. The
term reflects the renormalization of the governing parameters with de-
pendent dimensions bi and of the quantity to be determined, a, entering
the basic relation (6.35).

It is essential to note that the statement of the asymptotic invariance
of a relation with respect to a renormalization group is equivalent to the
statement of incomplete similarity. Indeed, if there exists incomplete
similarity in IIm at small or large Ilm, the asymptotic invariance of
relation (6.36) with respect to the transformation group (6.39) is evident,
because

n' = B«mn, n; = sa i i i i , n^ = B^U2 , . . . , 14 = Bum.
(6.40)

and the function $ in (6.36) has the asymptotic form (6.37), which
remains invariant under the transformations (6.40).

Furthermore, without loss of generality relation (6.36) can be repre-
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sented in the form

or

^r = *(^r.-,^.iU,e). (6.42)
Urn \llm Urn /

Now we apply the transformation group (6.39) and obtain

(6-43)

because the quantities n^/II^, II/II^™ are invariants of the transfor-
mation group (6.39). Invariance with respect to the group (6.39) means
that relation (6.43) holds for arbitrary values of the group parameter B,
i.e. that the function \£ is independent of its argument IIm,

^ / I I x n m . i \ /JIi_ n m _! \

whence and from (6.41) follows the validity of the relation

(6.44)

at small IIm, i.e. incomplete similarity. In the more general case of
incomplete similarity, when several parameters H+i, ..., IIm are large
or small, and at small (for definiteness sake) II/+i, ..., IIm the function
$ in (6.36) has the same property of generalized homogeneity,

. n - ^ - ^ ^ , . . . , w ^ ) (6.45)

the renormalization group is more complicated:

b'm = Bmbbm

..., Bm are positive numbers, the parameters of the group).
Again, the property of incomplete similarity, (6.45), is equivalent to the
property for asymptotic invariance with respect to the renormalization
group (6.46).

6.2.2 Perturbation expansion
The next step, which, we emphasize, is an independent one, is a per-

turbation expansion for small e; generally speaking, this expansion is
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non-convergent . It enables us to determine the parameters of incom-
plete similarity a i , . . . , a m , which lead to 'anomalous dimensions', as
expansions in e, using some quantitative information concerning the
phenomenon, for instance, non-integrable conservation laws. The latter
point is crucial: if no further information concerning the phenomenon
under consideration is available, the parameters ct\,..., am entering the
renormalization group and incomplete similarity relation cannot be de-
termined.

As a first example, the Cauchy problem for the modified heat conduc-
tion equation considered in detail in chapter 3 will be presented here:
the equation

f l (dt6 > 0)
e)d*x6 (dte<o) {bA7)

where the parameter e is considered as small. The initial condition is
assumed in the form

where Q is, as before, the initial 'heat charge' and / is a certain length
scale. The solution to the problem (6.47), (6.48)

0 = f(t,Q,K,x,l,e) (6.49)

can be represented in the form (cf. chapter 3)

) (6.50)

n 2 ' (6.51)
/Kt

At e = 0 there exists complete similarity with respect to the parameter
n2 : the finite limit of the function $ at n 2 —> 0 is

$(n1)o,o) = -i=e-«2/4) 0= 0= x*/iKt ( 6 5 2 )
2y/7T 2y/TXKt

The coordinate of the inflection point, where dtU = 0 for e = 0, x =
±#o(£), is given by the relations

f = f0 = V^, xo(t) = V2M . (6.53)

At e > 0 there exists incomplete similarity with respect to n2 , at small

n2:

A — aQla , G — const.

However, in the first example considered below, the expansion does converge.
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Let us perform an e-expansion, and restrict ourselves to the first term
of this expansion:

(6.55)

The relation (3.47), a non-integrable conservation law, assumes the
form

oo

(6.56)
— oo

Using this law gives a convenient way for obtaining the relation for
a (Barenblatt, 1993b; Cole and Wagner, 1995). So, we substitute into
(6.56) the e-expansion (6.55). We obtain

oo ( r oo
d_ / • „ , . , , d \ A

dt

oo

jt J 6(x, t)dx =

OO

/*(*, t)dx = -

= -2«e

whence

a = O(e*), (6.57).

the result obtained by Goldenfeld, Martin, Oono and Liu (1990) by the
traditional renormalization group method, presented in the next section.

The higher approximations were obtained by Cole and Wagner (1995)
using the perturbation of the transformation group of the linear problem
corresonding to e = 0.

Another example, the modified very intense explosion problem consid-
ered in chapter 4, can be treated in the same way, as follows (Barenblatt,
1994).

The assumption of invariance with respect to the renormalization
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group gives the same self-similar representation for its solution,

= ( i v v e=11_7.
For e = 0 there exists complete similarity and the solution takes the

form presented in chapter 2:
2

1/5

where ^/ is a function of the adiabatic exponent 7.
Now we use the €-expansion for the functions P, V, R and the expo-

nent a:
P =P(C, 0) 4- O(e), R = R(C 0) + O{e), V = F(C, 0) + O(e)

9 (6.59)
O() ^ + O^2)) ( ) , ^ x ^ )

The non-integrable energy conservation law has the form (4.9):

dt } (7 - l)(7i - \)pf

where, according to (4.4),

D 2 A

(6.60)

are the values of the pressure, velocity and density behind the very
intense shock wave,

D = drf/dt = or fit

is the velocity of the shock wave, and
77

0
is the total energy in the region inside the shock wave. Substituting the
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last three relations into (6.60) we obtain

whence

because, according to (2.62),
l

O . 3 Traditional renormalisation group approach
Goldenfeld, Martin and Oono (1991) represent the renormalization

group approach for solving the problem (6.47), (6.48) as six steps, each
a direct counterpart of the conventional procedure followed in quantum
field theory or statistical physics. All necessary references are available
in this paper.

The first step is to construct a 'naive' perturbation expansion in the
small parameter e. For l2/2ftt —> 0, / being kept fixed, this expansion
has the form (see the details in Goldenfeld, Martin, Oono and Liu, 1990)

= -Q=e-
x2/4Kt [l - -jL= In ̂  + O(e2)] + regular terms.

(6.62)
The subscript B stands for 'bare', the term used by physicists for such
a perturbation expansion.

The second step is to 'cure' the logarithmic divergence of the pertur-
bation series by introducing the 'renormalized' solution

t) (6.63)

where A is an arbitrary length. According to the basic idea of this
approach the renormalized solution MR,(rr,t) should eventually be the
correct asymptotic solution of the problem (6.47), (6.48) rather than
u&{x,i), which is divergent. The function Z(l/A) is referred to as the
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6.2 The renormalisation group and incomplete similarity 179

renormalization constant. The quantity Q, the 'initial charge', cannot
be obtained from knowledge of u(x,t) at large times, therefore Q is
considered to be 'unobservable' at large times in the same way that
the 'bare' electric charge is unobservable at long distances according to
quantum electrodynamics. The renormalization constant depends on /,
so that as / —> 0 the divergence in UB(X, t) should be absorbed into Z to
yield a finite Un(x,t). The removal of the divergence in UB occurs order
by order in the small parameter e, so an expansion of Z in powers of e
is assumed. However, Z is dimensionless, so an arbitrary parameter A
having the dimension of length should be introduced into its argument.

In the third step of the renormalization procedure, the expansion

(6.64)

is assumed. The functions ai , <Z2, . . . should be chosen to cancel, order
by order in e, the divergence in UB(X,£) as / —> 0. It can be shown (see
the details in Goldenfeld, Martin, Oono and Liu, 1990) that

1 [ < * £ ] (665)
where C\ is an arbitrary dimensionless number; whence

v27re
This expression shows that UR remains finite as I —> 0, because / does not
enter it at all. In fact, the relation (6.66) describes a family of solutions,
not just a single one.

Step four of the renormalization group procedure is to choose a par-
ticular element of the family by requiring that at some time instant t*
the value UR(X, t) at x = 0 is equal to a certain number U:

uR(0,t*) = U.

Then the corresponding solution to order e is

] (667)
This expression will be referred to as the renormalized perturbation

expansion. The arbitrariness of t* enables, under some assumptions,
the renormalization expansion to be improved.

In the fifth step the renormalization-group argument due to Gell-Mann
and Low (1954) is used: the U(t*) dependence is found in such a way as
to cancel out the explicit £*-dependence of the renormalized perturbation
expansion:

dt* dt*
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The partial derivatives dtui&, OUUR can be explicitly evaluated to O(e)
from the expression (6.66), and the result is

The sixth step is to solve this differential equation for U:

U = A (2«f) l i + (2^I 7 T + O ( < ! )J (6.70)
(A is a constant) and, substituting (6.70) back into (6.67), we obtain

(T)
ta F + H (671)

where

a = J ~ c + O(e2). (6.72)

The value t* can be selected in an arbitrary way, so we can put t* = t,
and the final representation of the renormalized solution is obtained:

The example considered above gives the general idea of the renor-
malization group approach in the form in which it is used in statistical
physics and quantum field theories. The following basic points should
be noted: a scaling law is assumed, depending on a parameter. For
the value zero of the parameter the solution is known. An asymptotic
expansion is then used to find the solution for small but finite values of
the parameter.

If there is no value of the parameter for which there exists complete
similarity, e-expansion cannot be performed. In such cases only the ways
demonstrated earlier in this book remain for obtaining the exponents, i.e.
the 'anomalous dimensions' a i , . . . , am: solving a nonlinear eigenvalue
problem, as we have shown in chapter 4 for the problem of impulsive
loading, numerical integration (see the examples in chapters 3 and 4),
or physical experiment (see chapters 10, 11).

Note, in conclusion, that the difficulties in the traditional renormal-
ization group approach are related essentially to representation of the
power function za as an exponential and then attempting to use an
expansion,

which is obviously divergent as z —>0orz—>oo. The technique of
intermediate asymptotics avoids these difficulties.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.009
https://www.cambridge.org/core


Self-similar solutions
and travelling waves

7.1 Solutions of travelling-wave type

In various problems in mathematical physics an important role is played
by invariant solutions of the travelling-wave type. These are solutions for
which the distributions of the properties of the motion at different times
can be obtained from one another by a translation rather than by a sim-
ilarity transformation as in the case of self-similar solutions. In other
words, one can always choose a moving Cartesian coordinate system
such that the distribution of properties of a motion of travelling-wave
type is stationary in that system. One can reduce to a consideration of
travelling waves the study of the structure of shock-wave fronts in gas dy-
namics (see, e.g. Kochin, KibeP and Roze, 1964; Zeldovich and Raizer,
1966, 1967) and in magneto-hydrodynamics (Kulikovsky and Lyubimov,
1965), the structure of flame fronts (Zeldovich, 1948; Zeldovich, Baren-
blatt, Librovich and Makhviladze, 1985), the investigation of solitary
and periodic waves in a plasma and on the surface of a heavy fluid (Jef-
frey and Kakutani, 1972; Whitham, 1974; Karpman, 1975; Lighthill,
1978; Eilenberger, 1981; Drazin and Johnson, 1989; Fordy, 1990), and
many other problems. In recent years many processes have been studied
involving the effects of the propagation of plasma fronts in electrical,
electromagnetic, and light (laser) fields, the so-called waves of discharge
propagation. These processes also lead to the consideration of solutions
of travelling-wave type (Raizer, 1968, 1977).

In accordance with the definition given above, solutions of travelling-
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wave type can be expressed in the form

V0(t). (7.1)

Here v is the property of the phenomenon being considered; x is the
spatial Cartesian coordinate, an independent variable of the problem; t
is another independent variable, for simplicity identified with time; and
X(t) and VQ(£) are time-dependent translations along the x- and v-axes.
In particular, if the properties of the process do not depend directly on
time, so that the equations governing the process do not contain time
explicitly, the travelling-wave propagates uniformly:

v = V(x - Xt + c) + [d. (7.2)

Here A, /x and c are constants; c is the phase shift and A and \i represent
the speeds of translation along the x- and v-axes. For an important
class of steady travelling waves the distribution of properties in the wave
remains unchanged in time, so that /i = 0, and

v = V(x-\t + c). (7.3)

In particular, steady travelling waves describe the structure of shock
waves and flames.

Travelling waves are closely connected with self-similarities. Indeed,
if in (7.1) we set

v = lnu, t = lnr, V0(t) = lnno(r),

V = lnU, x = ln£, X(t) = ln&(r)
we obtain a representation of the travelling wave in the self-similar form

u = uo(r)Umo(r)). (7.5)
In particular, the relation (7.2) for a uniformly propagating travelling
wave reduces to a self-similar form with power-type self-similar variables,

u = BT»U(£/ATX) ; (7.6)

where A and B are constants.
The simple connection noted here between self-similar solutions and

travelling waves is well known; it has been used to simplify the study of
some self-similar solutions (see, e.g., Staniukovich, 1960). Surprisingly,
however, the connection between the classification of self-similar solu-
tions and the well-known classification of steady travelling waves has
long remained unnoticed.

In fact, as already remarked, steady travelling waves describe the
structure of the fronts of shock waves, flames, and analogous regions
of rapidly changing density, speed, and other properties of the motion
which are described by surfaces of discontinuity when dissipative pro-
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7.2 Burgers shock wave 183

cesses are neglected. Another example of such regions is the upper ther-
mocline in the ocean.

One distinguishes two types of such fronts; see, e.g., Sedov (1971).
For fronts of the first kind (shock waves, detonation waves, etc.) the
speed of propagation of the front is found from the conservation laws
of mass, momentum and energy only. The structure of such a front is
adapted to the conservation laws in the sense that for one and the same
speed of propagation of the front, dictated by the conservation laws, its
thickness can be different depending on the character of the dissipative
processes in the transition region and the magnitudes of the dissipative
coefficients. Of course, analysis of the structure of shock waves allows
one to reject unrealizable situations such as shock waves of rarefaction,
for which it is impossible to construct the structure but basically the
speed of propagation of the front is determined independently of the
structure of the transition process.

For fronts of the second kind (a flame, gaseous discharge, etc.) the
conservation laws become insufficient for the determination of the speed
of the front: this is found as some eigenvalue in the course of determining
the structure of the front, that is, a solution of travelling-wave type of the
equations describing the dissipative processes in the transition region.

It turns out that this classification of travelling waves corresponds ex-
actly to the classification of self-similar solutions discussed above. Here
we consider the simplest examples of steady travelling waves of both
types, after which we shall see how the two classifications correspond.

7.2 Burgers shock wave — steady travelling
wave of the first kind

The Burgers equation

8tv + vdxv = vd2
xxv (7.7)

is a successful, though rather simplified, mathematical model of the mo-
tion of a viscous, compressible gas. Here v is the speed, v the kinematic
viscosity, x the spatial coordinate, and t the time. If the viscous term is
neglected, (7.7) assumes the form of the simplest model equation of gas
dynamics,

dtv + vdxv = 0. (7.8)

This last equation has a solution of the type of a uniformly propagating
shock wave: v = V(£)y £ = x — Xt 4- c, where V(() is a step function
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equal to v\ for £ > 0 and to V2 for £ < 0, with ^i < V2> The value of the
speed of propagation A = Ao is obtained from the law of conservation of
momentum at the front of the discontinuity, which corresponds to (7.8):

I, (7.9)

whence we find

A o = Vl V<1 . (7.10)

We now take into account the dissipative process, that is, the viscosity,
and return to (7.7). We construct a solution of the Burgers equation of
travelling-wave type: v = V(C)> C = x — Xt + c. Substituting this
expression for v into (7.7), we have

(7.11)

whence, integrating and using the condition V = v\ at £ = oo, we find

^ .1) + ^ I . (7.12)

To satisfy the condition at the left endpoint, V(—oo) = t>2, it is nec-
essary to take

A = — - — = Ao , (7.13)

after which a solution is obtained in the form

< = _ ^ l D ^ . ( T . M )

This solution describes the structure of the transition region on the
length scale v/{v2 — v{) that is characteristic for this region. We see
that the condition v2 > v\ imposed above is essential, since a solution
describing the structure of the transition region of a wave with V{—oo) =
V2 < vi = V(oo) does not exist. In fact with (7.13) taken into account,
(7.12) assumes the form

Since V lies between v\ and v2i the right-hand side of (7.15) is always
negative, and the left-hand side is negative only for V2 > v\. The analysis
just presented was performed (for the complete set of the equations of
gas dynamics) by Taylor (1910, 1963). In fact, it was the first scientific
paper of the future giant of applied mathematics and mechanics of the
twentieth century.

A solution of travelling-wave type with A = Ao serves as an asymptotic
representation of a solution of an initial-value problem for the Burgers
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equation with initial data of transitional type,

v(x,0) =V2(x< a ) ; v\ < v(x,0) < V2 ( a < x < b)\ v(x,O) = vi(x> 6) ,
(7.16)

where a and b (a < b) are arbitrary real numbers, and the function v(x, 0)
is monotonically non-increasing: dxv(x,0) < 0. This was rigorously
proved by Oleinik (1957). As is evident, in the present case the value
of the speed of propagation Ao is obtained from a conservation law and
is independent of the structure of the wave, that is of the viscosity v.
As (7.14) shows, the viscosity determines only the spatial scale of the
transition region, that is, the 'width' of the front.

The situation is completely analogous for shock waves in gases and
detonation waves: the speed of propagation of these waves is determined
from the laws of conservation of mass, momentum and energy alone,
and does not require for its determination any consideration of the wave
structure. The latter determines only the width of the transition region.

7.3 Flame: steady travelling wave of the second kind

We now consider travelling waves of the second kind, for which the
speed of propagation cannot be found from conservation laws alone but
is determined by analysis of the structure.

A rigorous mathematical investigation of travelling waves in nonlinear
problems with dissipation was first undertaken in the fundamental work
of Kolmogorov, Petrovskii and Piskunov (1937), carried out in connec-
tion with a biological problem concerning the speed of propagation of a
gene that has an advantage in the struggle for life. A remarkable study
of this phenomenon was developed independently and simultaneously
by Fisher (1937) (see also the book: Murray, 1977). To describe the
structure of the transition zone near the boundary of the domains of
habitation of genes of both types (advantaged and disadvantaged) they
obtained the nonlinear diffusion equation

dtv - Kd2
xxv = F{v), (7.17)

where v is the gene concentration, and F(v) is a continuous function that
is differentiate the necessary number of times, defined in the interval
0 < v < 1 and having, in accordance with the physical meaning of the
problem, the following properties:

F(0) = F(l) = 0; F(v)>0 ( 0 < w < l ) ;< w < l ) ;

F'(0) = a > 0; F'(v) < a (0 < v < 1).
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Under these conditions (7.17) has a solution of travelling-wave type,
v = V(Q, ( = x — A£4-c, satisfying the conditions v(—oo) = 1, t>(oo) = 0
for all speeds of propagation A greater than or equal to Ao = 2(«a)1/2

and for arbitrary c. It is of prime importance that among these solutions
only that corresponding to the lowest speed of propagation can be an
asymptotic representation as t —> oo of solutions of the initial-value
problem with conditions, as in (7.16), of transitional type:

v(x,0)==l (x<a), 0 < v ( z , 0 ) < l {a<x<b),

v{x, 0) = 0 (x > b).

In other words, it turns out that the direct consideration of solutions of
travelling-wave type gives a continuous 'spectrum* of possible speeds of
propagation A > Ao = 2(^a)1/2, but only the solution corresponding to
the lowest point A = Ao of this spectrum can be an asymptotic solution
as t —> oo of the initial-value problem with conditions of transitional
type; the remaining travelling waves are unstable. The quantity Ao
determines the required speed of propagation of the gene that has an
advantage in the struggle for life.

Note that the condition F'(v) < a is not necessary for the estab-
lishment of a wave having propagation velocity Ao = 2(/sa)1/2. This
was shown using analytical investigation and numerical experiment by
Aldushin, Zeldovich and Khudyaev (1979).

We now consider in more detail the rather similar problem of thermal
flame propagation in gaseous mixtures (Taffanel, 1913, 1914; Daniell,
1930; Zeldovich and Prank-Kamenetskii, 1938a, b; Zeldovich, 1948).
We shall formulate the simplest schematization of the problem. Suppose
that in the course of a reaction a component of a gaseous mixture, whose
concentration we denote by n, is annihilated. The reaction rate g, that is,
the mass of combustible matter annihilated in unit volume in unit time,
depends on the concentration n and the temperature 6. We introduce
the notation

q=±$(n,6), (7.20)

where $ is a function having the dimensions of density, and r is a con-
stant with the dimension of time - the characteristic time of the reaction
- a quantity that is ordinarily very small in comparison with a charac-
teristic time for the large-scale motion of the gas. It is known from
physical chemistry that the temperature dependence of reaction rates is
very strong: a small change in temperature greatly changes the reaction
rate. We shall assume that this reaction is irreversible, so that $ > 0.
Furthermore the original state of the gaseous mixture, n — 1, 6 = #i,
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is assumed to be uniform and stable. For this, it is sufficient that the
function 3>(n, 6) be equal to zero not only for the initial temperature
6 = 0\ but also in some interval of temperature 8\ < 0 < #i + A close to
it (the meaning of this condition will be elucidated below). It is obvious
also that the reaction does not take place in the absence of combustible
matter. Thus, it is assumed that the function $(n, 0) satisfies the con-
ditions

$(n,0)>O; $(n,0) = O, (0 < n < 1, 6X < 0 < 6X + A); $(0,0) = 0.
(7.21)

The velocity of the gas motion due to the spreading of the flame is
small compared with the speed of sound; therefore we can neglect the
compressibility of the gas and assume that the density of the gaseous
mixture depends only on the temperature . p = p{6). Finally, the reac-
tion is assumed to be exothermic: combustion yields a release of heat.
We denote by Q the thermal effect of the reaction, that is, the amount
of heat released upon combustion of a unit mass of combustible gas. In
accordance with what has been said, the system of basic equations of
motion for the mixture of combustible gas and the products of combus-
tion formed in the course of the reaction can be written in the form

dt(pVi) + da(pViVa) = -dip,

dtp +da(pva) = 0,

dt(pn) + da(pnva) = da(pDdan) 3>(n,0),

dt(pa6) + da(paeva) = da(kda0) + ^$(n, 0).

The first three equations are the usual equations for the motion of an
incompressible fluid whose density depends on temperature (where re-
peated Greek indices a indicate summation from a = 1 to a = 3). In
addition we have the equations for the balance of mass of combustible
gas and for the conservation of energy. In these equations the Vi are the
components of the velocity vector of the mixture, p is the gas pressure,
k is the coefficient of thermal conductivity, D is the diffusion coefficient,

Without essential loss of generality we can neglect the difference between the
density of the combustible gas and the density of the combustion products at
the same temperature, so that the density of the mixture does not depend on
the concentration. This assumption is by no means crucial and is made only to
simplify the calulations.
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188 7. Self-similar solutions and travelling waves

and a is the specific heat at constant pressure; we will assume the last
two coefficients to be constant.

The problem under consideration has two length scales that differ sub-
stantially in magnitude: the inner scale L\ = (Dr)1^2 characterizing the
size of the region in which the processes of chemical reaction, diffusion,
and heat transfer occur, and the outer scale L^ — L characterizing the
size of the container or combustion chamber, the diameter of the burner,
etc. In view of the great disparity in these two scales it is natural to
apply to this problem the method of matched asymptotic expansions
(Van Dyke, 1975; Cole, 1968; Lagerstrom and Casten, 1972; Kevorkian
and Cole, 1980; Hinch, 1991). We first consider the 'outer' asymptotic
expansion of the solution, that is, we change to dimensionless variables
in which we take the outer scale L as the length scale and L/{D/r)1^2

as the time scale. Then the equations for the balance of mass of com-
bustible gas and for the conservation of energy, the last two equations
of (7.22), assume the form

t[dn(pn) + da(pnVa)} = e2da(pdan) - $(n, 6),

e[dn(pcrO) -f da(p<j0Va)] = e2da ( — dc

here Q, is the dimensionless 'slow' time t(D/r)l^2/L; Va = va/(D/r)1^2,
the operator da is taken into the dimensionless spatial variables asso-
ciated with L, and e2 = L\/L2 <C 1. Thus everywhere except in the
narrow region in which the gradients of temperature and concentration
are large (of order 1/e) we can assume the reaction rate to be equal to
zero. The intermediate transition region must necessarily be narrow, of
relative width not greater than e, since the changes of temperature and
concentration in it are bounded and the gradient is of order 1/e. Hence
it follows that the whole region occupied by the gas splits (Figure 7.1)
into (1) a region of cold unburnt gas, where the reaction has not yet
started since the gas has not yet warmed up; (2) a region occupied by
the hot products of combustion, where the reaction no longer continues
since all the combustible matter there has burned; and a narrow tran-
sition region where the combustion reaction is going on and transport
processes, diffusion and heat transfer, are taking place. If we pass to
the limit e —» 0, that is, to the first order approximation, the transition
region becomes a discontinuity surface on which occur jumps in speed,
density, temperature, and concentration, but not in pressure. The speed
of propagation through the gas of the discontinuity surface - the flame -
(the 'normal' speed of the flame) is not determined by the equations of
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motion and the conditions of balance of mass, momentum and energy on
the discontinuity surface. One could regard this quantity as a physico-
chemical constant that is defined independently; for example, it might
be determined from experiments. Thus one obtains a closed system of
relations, the so-called gas-dynamic theory of combustion (cf. Landau
and Lifschitz, 1987). For an analytic determination of the normal speed
of propagation of the flame we must turn to the 'inner' asymptotic ex-
pansion of the solution and consider the phenomena in the transition
zone, taking L\ = (Dr)1/2 as the characteristic length scale and r as
the characteristic time. We choose the direction of the normal to the
median of the transition zone (Figure 7.1), as the direction of the co-
ordinate x, measured from the median, and change to a dimensionless
variable £ = x/L\. Because of the narrowness of the transition zone,
only derivatives with respect to £ are of order unity. Derivatives with
respect to the other spatial variables that would be of order unity in the
outer scale L are negligibly small in the new scale.

1
Figure 7.1. The region of motion splits into (1) a region occupied by
the cold combustible mixture, (2) a region occupied by the products of
combustion, and a narrow transition region in which the chemical reaction
and the processes of diffusion and thermal conduction are occurring.

Keeping only leading terms in the equations for the balance of com-
bustible matter and energy, we write these equations in the form

pd^n 4- pVd^n = d^(pd^n) - <S>(n, 6),

k \ (7 24)
d0)+Q9(n0) '

Here V = vx/(D/r)1/2, vx being the component of the velocity of the
mixture along the x-axis, and u = t/r is the 'faster' time, i.e., the
dimensionless time referred to the scale r. Furthermore, to the same
approximation the equation for the conservation of mass is written in
the form

0. (7.25)
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We shall seek a solution of (7.24), (7.25) of steady travelling-wave
type:

n = N(C), 0 = 6 ( 0 , V = V(Q, C = £~Au; + c, (7.26)

where c is a constant that cannot be determined in the course of con-
struction of the travelling-wave solution (it may be obtained by match-
ing with the 'outer' expansion) and A is the speed of propagation of
the travelling wave, which is unknown and subject to determination.
Substituting (7.26) into (7.24) and (7.25), and keeping in mind that
p = p(U(Q) = i?(C)> we obtain for the determination of the unknown
functions iV, ©, and V the system of ordinary differential equations

Integrating the last equation, we obtain

-XR + RV = const. (7.28)

The distributions of temperature, concentration, and velocity in the
transition zone must satisfy obvious boundary conditions: on one side of
the transition zone, where it borders on the fresh combustible mixture,
combustion has not yet begun, the gas is at rest, and its temperature is
prescribed. On the other side of the transition zone, combustible matter
is fully burnt. According to standard asymptotic procedure, in view of
the smallness of the inner scale L\ compared with the outer L, the first
boundary condition should be imposed at £ = oo and the second at

C = —°° :

JV(oo) = 1, 0(oo) = 0i, iV(-oo) = 0, F(oo) = 0. (7.29)

Substituting these conditions into (7.28), we reduce this relation to
the form

A(p0 - R) + RV = 0. (7.30)

Here po is the density of the fresh combustible mixture. Substituting
(7.30) into the first two equations of (7.27), we reduce them to the form

dN d

d ( k de\ Q, ( 7 3 1 )
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Figure 7.2. The function ^(6) vanishes in some interval close to 6 = 6\.

It is known from physical chemistry that if the combustible matter
and the products of combustion have close molecular weights, one can
assume the quantity k/paD to be equal to unity. Under this assump-
tion, multiplying the first equation of (7.31) by Q/a and adding the two
equations we find that the system (7.31) has the integral

^ K 1 + G(C) = const, (7.32)
G

which is called in the theory of combustion the Lewis-von Elbe similarity
law for the fields of concentration and temperature. Prom (7.29) we find
const = 6\ + Q/a, and from this and (7.32) we obtain

0(-oo) = 0i + Q/a = 02 . (7.33)

Using the similarity law (7.32), one can decompose (7.31) and reduce it
to a single equation for the temperature,

d( d( I po d(\ p(0)
Here

Q * i - £ ( e - 0X), e ^ . (7.35)
Poo- \ Q J Po

By assumption, 3>(n, 0) = 0 for 9\ < 0 < 0i + A . Hence, and since
p(Q) is positive and bounded, ^(0) is identically equal to zero in the
interval 0i < 0 < 0i + A, vanishes for 0 = 02, and is positive for
01 + A < 0 < 02 (Figure 7.2). Setting p = [p(Q)/po]dQ/dC, and taking
0 as independent variable, we reduce (7.34) to the form

^ 0 . (7.36)

As remarked above, this condition guarantees the stability of the original state.
In fact, let us set d^n and d^O identically equal to zero in (7.24), so that n and 0
depend only on time. Then, if the assumed condition is satisfied, a small change
in the temperature of the gas mixture does not cause a reaction to start.
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192 7. Self-similar solutions and travelling waves

It follows from (7.29) that the solution of (7.36) of interest to us satis-
fies the obvious condition that the heat flux vanishes on the boundaries
of the transition zone:

^ = 0 for C = ±oo. (7.37)

Prom this and (7.29) we obtain boundary conditions for the function

= 0, G = 0 2 . (7.38)

7.4 Nonlinear eigenvalue problem

We have again, as in the case of self-similar solutions of the second kind,
a nonlinear eigenvalue problem: (7.36) is an equation of the first order
and (7.38) gives us two boundary conditions. We shall show, following
Zeldovich (1948), that there exists a unique eigenvalue A for which the
desired solution exists. We consider the phase portrait of (7.36) in the
region of interest to us in the 9p-plane (Figure 7.3). At 9 = 62 and
p = 0, (7.36) has a singular point of saddle type. Through this singular
point pass two separatrices with slopes —A/2 ± [A2/4 — \&'(02)]1/'2; since
^'(#2) < 0) the slope of one of the separatrices is positive, the other
negative. It is clear that only the separatrices can satisfy the second
condition of (7.38). Furthermore, for A = 0, (7.36) can be integrated in
finite form: the solutions satisfying (7.38) for 0 = 62 have the form

j (7.39)

so that the ordinates of the points of intersection of the corresponding
integral curves with the vertical axis are

r e2 >|V2 . 62 . 1 / 2

Pl = ) 2 j #(9)dO \ > 0, p2 = - I 2 f *(0)d9 I < 0, (7.40)

We now consider the function #(9, A) = d\p for all solutions of (7.36)
satisfying the second condition of (7.38). It is clear that q{02, A) = 0
since p(#2,A) = 0. Differentiating (7.36), we obtain for the function q
the equation

Close to the point 9 = 62 the separatrices behave, according to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.010
https://www.cambridge.org/core


7.4 Nonlinear eigenvalue problem

Pi

193

Figure 7.3. Phase portrait: picture of the integral curves of the first-order
equation (7.36).

above, like p = (0 - 02){-A/2 ± [A2/4) - ^/(<92)]1/2}. Differentiating
with respect to A, we find that the corresponding curves </(0, A) behave
near to 0 = 02 like q = K(Q — 02), where

is negative for both separatrices, that is, q > 0 for © < 62. Furthermore
there cannot be an intersection of the curve q(Q, A) with the axis q = 0 at
some point intermediate between 8\ and 62, because at a point of inter-
section one would have dq/dO — — 1, which is geometrically impossible.
Thus, q(fii 4- A, A) > 0. But for 0x < 9 < Bx + A we have # ( 0 ) = 0,
and from this and (7.41) we get <?(#i, A) = q{0\ + A, A) + A > A. Since

J J +AA, (7.42)

it follows that one can find a value A = Ao, and moreover only one,
such that the lower separatrix reaches the point p — 0, © = #i, that is,
satisfies all the conditions of the problem.

Thus, the existence and uniqueness of the solution of the nonlinear
eigenvalue problem is proved. Using the methods developed by Kol-
mogorov, Petrovsky and Piskunov (1937), Kanel' (1962) proved that
this solution is an asymptotic representation as t —> 00 of the solu-
tions of a certain naturally defined class of initial-value problems with
transitional-type conditions. We note that in the gene propagation prob-
lem as well as in the flame propagation problem, direct construction of
a solution of travelling-wave type, 6 — O(£ - Au; 4- c) determines the so-
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194 7. Self-similar solutions and travelling waves

lution to within the constant c. This latter constant can be found only
by matching an invariant solution with a non-invariant solution of the
original problem. Here it is obvious that no matter what intermediate
state of the system V(£,u), 0(£,u;), n(^u) we have taken as initial, the
value of the constant c is unchanged. In this sense the constant c is an
integral of the equations of the problem considered (see Lax, 1968).

The eigenvalue Ao we have obtained, when expressed in the original
dimensional variables, determines the speed of flame propagation:

(7.43)

Furthermore, since the 'faster' time was involved in the problem of de-
termining the speed of the travelling wave, it is clear, that in the natural
outer time scale, passage to the asymptotics occurs in fact very quickly,
and the 'pre-asymptotic' evolution of the solution is of no value.

7.5 Flame propagation in a reacting
mixture: an intermediate asymptotics

In the above presentation it was assumed that the chemical reaction
does not occur at the initial temperature of the mixture: ${n,9\) =
0. Moreover, a strong and apparently rather artificial condition was
additionally imposed on the reaction rate: that it also vanishes in a
certain temperature interval close to the initial temperature, $(n, 6) = 0,
0\ < 0 < 6\ + A. However, in physical chemistry Arrhenius' law for the
reaction rate is commonly assumed,

*(n,e) = An»exp(-j^) , (7.44)

where the constants A and p are the pre-exponent and the reaction
order, E is the activation energy of the chemical reaction, and R is the
universal gas constant. The relation (7.44) gives for practically occurring
values of the initial temperature of the mixture, values of the reaction
rate that although rather small are, however, finite. It is of interest to
find out whether this means that the solution to the nonlinear eigenvalue
problem for flame propagation does not exist, in which case there would
be no intermediate asymptotics of travelling-wave type in this problem.

In fact neither of the conditions imposed above on the reaction rate
is necessary. It is sufficient to have the reaction rate at the initial tem-
perature much less than maximal for the process under consideration.
If so, an intermediate asymptotics for the distributions of temperature,
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7.5 Flame propagation in a reacting mixture 195

concentration, etc. will remain a solution of travelling-wave type - a
propagating flame solution.

Let us demonstrate this. To simplify let us make some additional
assumptions that are by no means crucial. We assume, at first, that the
Lewis-von Elbe similarity law for the temperature and concentration
fields,

OH + 6 = 02 = const, (7.45)
G

is valid also at the stage of non-steady flame propagation; here #2 is, as
before, the constant temperature of the burnt mixture. Furthermore we
neglect the gas extension in combustion and the gas motion arising due to
extension. Therefore we assume that the density of the gas mixture does
not depend on temperature. Finally, we assume that all thermophysical
properties of the mixture are constant and that k/paD = 1.

Under these assumptions the energy equation (the second equation of
(7.24)) can be rewritten in the form

auo = ^e + f(e) (7.46)
where

Let us consider for equation (7.46) the 'ignition problem' with the
following initial condition at u = 0:

0(£,O) = 02 (K |<£o) , 0(t,0)=ti°1 ( | £ | > & ) . (7.48)
where 6\ is a constant. The physical meaning of the initial-value problem
(7.48) is obvious: it is a model of flame initiation by a certain mass of
burnt gas. The constant £o defines the value of this mass as equal (per
unit area of the flame surface) to 2p£oy/Dr. The constant 6\ is the initial
temperature of the cold gas mixture. From symmetry considerations we
can construct the solution at £ > 0 simply by assuming, at £ = 0, the
condition of thermal insulation,

d^O = 0 . (7.49)

Let the temperature 0? be so small that the reaction rate at this
temperature and the quantity 6 = f{6\)/8\ are also small. Then we can
assume that in a certain temperature interval near 6 = 0\ the function
/ can be represented in the form f(6) = 6F(0), where 6 <^ 1 and the
quantity F{6) is of order 6.

Taking into account the reaction in the region ahead of the flame front
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means that the condition 4>(n, 0\) = 0 is replaced by the relation

^ (7.50)
au

which is obtained from the basic equation of energy conservation in the
reacting mixture (see (7.22)) if the temperature gradients are negligibly
small. Let us introduce now a new dimensionless 'slow' time Q = u6
based on the time scale r/6 of the reaction in the region ahead of the
flame front. Then the relation (7.50) can be written in the form of a
system,

%-m>. £-«• (».)
Prescribing the initial temperature of the mixture ahead of the front,

0? and integrating (7.51) we obtain the dependence of the temperature
ahead of the front on the slow time Q,: 0i(Cl). It is convenient to
introduce the relative variation of temperature inside the reaction zone
according to the relation

Substituting (7.52) into equation (7.46) we obtain an equation for JJL
in the form

^ /i(Ai,n) (7.53)

where

The function /i(/x, f2), in contrast with /(0), vanishes both at \x = 0,
0 = 0i and n = 1, 0 = 02 •

To zeroth order in 6 the second relation of the system (7.51) gives
dQ/duj = 0, so that the function /i(//,fi) ceases to depend on the time
u) explicitly: Q becomes a parameter. Therefore we can again construct
a solution to equation (7.53) of travelling-wave type,

M = MO, C = £ - A(n)u/ + c(Q), (7.55)

which represents an intermediate asymptotics of the solution to the non-
invariant problem under consideration, (7.46)-(7.48), in the transition
region. Substituting (7.55) into equation (7.53) and using the boundary
conditions /x= 1 a t£ = — oo,/i = 0 a t £ = oo, we obtain the nonlinear
eigenvalue problem

0 ^+/i(A*,ft) = O, /x(-oo) = l, /x(oo)=0, (7.56)

where the solution determines the functions //(£, ft) and A = Ao(fi). The
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function c(Q) in (7.55) remains undetermined when an invariant solution
of travelling-wave type is constructed directly. It can be found numer-
ically by matching with the asymptotics of the original non-invariant
solution.

In Figure 7.4 the results are presented of a comparison of the numerical
solution to the problem (7.46)-(7.48) with the intermediate asymptotics,
i.e., the solution of travelling-wave type (7.55). The function c(Cl) in the
solution (7.55) was determined by requiring coincidence of the points
corresponding to /i = 0.5 in the invariant solution and in the numerical
solution of the non-invariant problem. As it is seen, the intermediate
asymptotics in the transitional region is close to the solution obtained
by numerical calculation.

e-e2

-1

-3

-7
10 15 20

• 1 2

Figue 7.4. The numerical experiment shows good agreement of the
numerical solution and the intermediate asymptotics of travelling-wave
type, in the transitional region. Solid line, the numerical solution at
various time instants; broken line, intermediate asymptotics obtained by
solution of a nonlinear eigenvalue problem. The points of forced coinci-
dence are marked.

The analysis presented in this section has followed, with slight mod-
ifications, the papers of Ya.B. Zeldovich and his co-workers (Zeldovich,
1978; Aldushin, Zeldovich and Khudyaev, 1979). It is interesting to
note that as the numerical calculations showed (Aldushin, Zeldovich and
Khudyaev, 1979) the dependence of the propagation velocity on the slow
time Q. agrees over a large temperature interval, with the Kolmogorov-
Petrovsky-Piskunov formula

Ao(fi) = 2^//{(0,O) (7.57)

even though the condition /{(/i,O) < /{(0, fi) is not satisfied here. An
analytical explanation of this was given in the same paper.

Let us now consider in which cases the reaction ahead of the flame
must be taken into account. In the problem under consideration we
have two small parameters: the ratio of the front thickness to the ex-
ternal length scale, e = \fUrjL, and the ratio of the dimensionless heat
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generation rate to the initial temperature 6 = f{0\)/6\. The variation
of the mixture's composition far from the flame occurs in times of the
order r/<5; a characteristic time of flame propagation over the vessel is
L/y/D/r; the speed of the flame is of order of magnitude y/D/r. The
occurrence of reaction in the region ahead of the flame should be taken
into account if the second characteristic time has the order of magnitude
of the first one or is even larger,

(7.58)

i.e., if <5>e. If 6 <C e, the condition $(n, 8\) = 0 is acceptable and,
even more, it can be assumed that <I>(n, 6) = 0 within some temperature
interval near the initial temperature of the mixture.

We have demonstrated in this chapter that there exist two types of
steady travelling waves. As has already been mentioned, 'external' con-
servation laws suffice to determine the speed of propagation for travelling
waves of the first kind, but they are insufficient to determine this for
waves of the second kind, and it is necessary in the latter case to in-
voke the internal structure of the waves. The speed of propagation
of travelling waves of the second kind is determined, in fact, by the
condition for global existence of the internal structure, that is, by the
condition for the existence of a solution of travelling-wave type, to the
equations of motion in the transition region that satisfies the boundary
conditions for this region .

This situation corresponds to the classification of self-similar solutions
considered above. In fact, for a solution of the type

0 = 9(x - Xt + c),

we again set x = ln£, t = lnr, c — — In A Then this solution can be
written, as we have seen already, in the form

e(x - At + c) = e (in JLs>) = e1 ( J L ) , (7.59)

that is, in self-similar form. It is obvious that the classification of so-
lutions of travelling-wave type formulated above carries over into the
language of self-similar solutions. In particular, the exponent A in the
expression for the self-similar variable corresponds to the speed of propa-

Sometimes (see below) the speed of propagation is determined non-uniquely upon
consideration of the structure. This means that it depends on the initial conditions
of the original problem, the asymptotic solution of which serves as the travelling
wave.
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7.5 Flame propagation in a reacting mixture 199

gation in solutions of travelling-wave type. The constant A corresponds
to the phase shift. Therefore the classification of such solutions, into
solutions for which the speed of propagation can be found from conser-
vation laws at the shock front alone, and solutions for which this speed
is obtained from the conditions for global existence of the inner struc-
ture, corresponds to the classification of self-similar solutions into those
solutions of the first and second kind. The correspondence between self-
similar solutions and travelling waves will be used more than once in
what follows.
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Invariant solutions: asymptotic
conservation laws, spectrum of

eigenvalues, and stability

8.1 Asymptotic conservation laws

For problems in mathematical physics leading to self-similar solutions of
the first kind, such as the heat source problem, and the very intense ex-
plosion problem, there exist integral conservation laws, valid even at the
initial, pre-self-similar stage of the motion. Such integral conservation
laws do not exist for 'modified' problems leading to self-similar solutions
of the second kind. They are replaced by certain non-integrable rela-
tions that do not allow one to determine the basic constant entering a
self-similar solution.

Nevertheless, for these modified problems leading to self-similar so-
lutions of the second kind there exist instead 'asymptotic' conservation
laws, valid in the intermediate-asymptotic range only, which reveal the
existence of more complicated integrals of motion. The following ex-
amples will clarify this general idea. We begin with the modified heat
source problem considered in chapters 3 and 6, which is an initial-value
problem for the nonlinear equation

dte = nd2
xxe (dto>o), ate = *(i + t)d2

xxo (dte<o) (8.1)

under the initial condition

0(z,O) = 00(x) = - |Le-*2/2<2 , (-00 < x < oo). (8.2)

At e = 0 we have the case of complete similarity, so that asymptotically,
for t >̂ I2/«, the solution is represented by a self-similar solution of the
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first kind,

^ 2 (8.3)

and at any time t > 0 the following integral conservation law holds

Q(t) = / 0(x, t)dx = Q = const. (8.4)
J-oo

For e > 0 the asymptotics for t ^> I2 /7c takes the different form of a
self-similar solution of the second kind:

A = aQla . (8.5)

For |a;| < xo(t) = £OVK£ the derivative dtO is negative; for \x\ >
xo{t) this derivative is positive. The dimensionless constants a, £o are
determined from the solution to a nonlinear eigenvalue problem (see
chapter 3); the constant a is determined by matching (8.5) with the
solution at the pre-self-similar stage. The integral conservation law (8.4)
is replaced by a non-integrable relation,

^ J — oo
(8.6)

which does not allow one to determine a. Nevertheless we can define
the quantity

Q(t) = /
J-c

0{x,t)dx, (8.7)

which, asymptotically, for t >̂ /2/ft, is determined by the relation

Ac f°°

the quantity Xo(t) is asymptotically determined by the relation

xo(t) = Zo(e)Vrt. (8.9)

From (8.8) and (8.9) an asymptotic conservation law is obtained:

Q(t)[xo(t))
a = AcCo = °c$Qla = const Qla . (8.10)

(From the initial condition (8.2) it follows that Q(0) = Q.)
The conservation law (8.10) has two important distinctions. Firstly, it

holds only asymptotically, for t ^> /2/«, i.e. it does not hold at the pre-
self-similar stage. The second property is that the constant in (8.10),
which is equal to O~C£Q, contains only one constant, cr, depending on
the initial conditions, i.e., on pre-self-similar stage; the other constants,
£0, c, a, are determined by the solution to the nonlinear eigenvalue
problem considered in chapter 3. The constant a will remain invariant,
if instead of the initial condition (8.2) we take 9(x,t) at an arbitrary
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time t. Therefore the a is an 'integral' of the problem. However, this
integral is now a more complicated functional of the initial conditions
and cannot be determined by some integral relation, as it was for e = 0.

Let us demonstrate briefly analogous asymptotic conservation laws for
other problems, considered above, having asymptotic self-similar solu-
tions of the second kind.

For the modified very intense explosion problem considered in chapters
4 and 6 the shock wave radius 77 at large times, when it is much larger
than the initial radius ro, is represented asymptotically by the relation

/ A\ (

r / = ( - ) t^-fl/s, A = aErwd-m (8.11)
\PoJ

where (3 is determined by the solution of a nonlinear eigenvalue problem
and a is determined by the initial conditions. For 71 ^ 7, in contrast
with the case 71 = 7, it is impossible to determine a from an integral
conservation law.

The asymptotic relation for the bulk energy of gas motion inside the
shock wave is

£(t) = 4* jT ' ^ + jJL^ r2dr = po^e, (8.12)

where

{ (

From (8.11), (8.12) the asymptotic conservation law is obtained:

S(t)rf{1~0) =Ae = veErWW . (8.14)

Again a is a complicated functional of the initial conditions, determined
by the evolution of the solution at the pre-self-similar stage.

For the problem of ideal fluid flow past a wedge with an opening angle
a, considered in chapter 3, the intermediate-asymptotic solution for the
flow potential has the form (3.15):

4> = /3UL~xrl+x cos [(A 4-1)6 + 7] (8.15)

where A = a/(7r — a), 7 = — 7ra/(7r — a) are obtained from the solution
to an eigenvalue problem and /? is obtained from matching (8.15) with
the solution to the problem of the flow past a wedge of finite length L.
For a = 0, we have a flat plate, A = 7 = 0, and (8.15) gives the potential
for a uniform flow with velocity C/, so that (3=1. For a > 0 the velocity
components ur, UQ are not constant:

ur =dr(p = (3(1 + X)UL~xrx cos[(A + 1)9 + 7]
\ \ (8.16)

X)UL-\xsin[(X +1)9+ j),
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so that the velocity magnitude does not depend on the polar angle 0:

u(r) = yju* + v?e = 0(1 + \)UL~xrx . (8.17)

The asymptotic conservation law assumes the form

u{r)r'x = 0(1 + A)JB, B = UL~X . (8.18)

In the same way asymptotic conservation laws can be obtained for
the Guderley very intense implosion problem, and the von Weizsacker-
Zeldovich impulsive loading problem considered in chapter 4. Further
on in the text we will obtain the asymptotic conservation laws for many
examples of interest.

The existence of asymptotic conservation laws for problems leading
to self-similar solutions of the second kind was noted by Batchelor and
Linden (1992).

8.2 Spectrum of eigenvalues

In determining the exponent of time in the expression for self-similar
variables in self-similar solutions of the second kind or, what is the same,
the speed of propagation for solutions of travelling-wave type, we have
arrived at special eigenvalue problems for nonlinear operators. These
problems are by their nature close to classical eigenvalue problems for
linear differential operators, and for them too there arises the question
of the structure of the spectrum, i.e., of the set of eigenvalues.

We recall the well-known problem of a vibrating string,

d\tu = d2
xxu + q(x)u (8.19)

(u being the displacement, x the coordinate measured along the string,
and t the time) under the conditions of fixed ends:

u(0,t) = u(l,t) = 0 (8.20)

(I being the length of the string). Separating variables, we seek a solution
in the form

u = exp(i>/A*)tf (z, A). (8.21)

For the determination of ^(x,A) we thus obtain the boundary-value
problem

\)=0,

0. ' '

In general, for arbitrary A, a non-trivial (not identically equal to zero)
solution to this boundary-value problem does not exist. However, there
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are exceptional values of A, eigenvalues, for which non-trivial solutions of
the boundary-value problem do exist. These eigenvalues form a set (the
spectrum) having a certain structure; this may be discrete, continuous,
mixed, etc., depending on the properties of the function q{x).

One can look at all this somewhat differently. Relations (8.19) and
(8.20) are invariant with respect to the two-parameter transformation
group

v! = cm, t' = t + 0, x' = x. (8.23)

This means that substituting (8.23) into (8.19) and (8.20), we again
obtain the same problem but in the variables u', x', t' for arbitrary group
parameters - the constants a and /?. In separating variables we actually
look for solutions that are invariant with respect to some one-parameter
subgroup of this group. The subgroup corresponds to the following
relation between the parameters a and /?,

a = exp(-iVXp), (8.24)

and the invariant solution has the form (8.21). The eigenvalues A de-
termining the subgroup are found from the condition that there exists
an invariant global solution of the form (8.21), i.e., a solution satisfying
(8.20).

The situation is completely analogous for solutions of travelling-wave
type. In order that such a solution exists, the equations and the bound-
ary conditions must be invariant with respect to the two-parameter
group of translational transformations

x' = x + a, t' = t + p, u' = u. (8.25)

Here too in finding a solution of travelling-wave type we seek a one-
parameter subgroup of this transformation group corresponding to a =
X/3 -f const, where A is an eigenvalue, and a solution, invariant with
respect to that subgroup, u(xl\tf) = u(x, t).

The eigenvalues A that extract from the basic group a one-parameter
subgroup are also determined by the condition that there exists an invari-
ant global solution, i.e., the invariant solution, satisfying the boundary
conditions. In this case too, the spectrum of eigenvalues can have vari-
ous types of structure. Thus, in the problem, considered in the previous
chapter of the propagation of a gene, it is continuous and semi-bounded:
A > Ao. In the problem of flame propagation (given the assumption that
the reaction rate becomes equal to zero over some temperature interval
near to the temperature of the cold mixture, as considered in section 7.3)
the spectrum consists of one point. There is the peculiar situation of
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8.2 Spectrum of eigenvalues 205

the remarkable Korteweg-de Vries equation, which arose initially in the
theory of surface waves on shallow water (see Whitham, 1974; Lighthill,
1978), and was later encountered in numerous other problems (see Jef-
frey and Kakutani, 1972; Karpman, 1975; Eilenberger, 1981; Novikov et
a/., 1984; Drazin and Johnson, 1989; Fordy, 1990; Ablowitz and Clark-
son, 1991):

dtu 4- udxu + {5d\xxu = 0. (8.26)

In the theory of surface waves, u is, to within a constant factor, the
horizontal velocity component, which is constant, in the present approx-
imation, over the channel depth; (3 = co/i2/6, CQ = (g/i)1/2, g is the
acceleration of gravity, h the undisturbed depth of the fluid layer, t the
time and x the horizontal coordinate in a system moving with speed CQ
relative to fluid at rest at infinity. An analogous equation is valid also
in the corresponding approximation for the elevation of the free surface
over its undisturbed level. Equation (8.26) has solutions of travelling-
wave type, the so-called solitons (Figure 8.1),

» = ,a, 7° ,^n,, (8-27)

where £ = x — Xt + c and UQ — 3A. (The name 'soliton' reflects the
particle-like behaviour of such solutions: after a 'collision' they remain
the same except that 'phases' c become, generally speaking different.)

u
2

J_
1.0 x

Figure 8.1 Solitary wave-soliton.

The solution (8.27) satisfies the conditions

u(oo) = u(-oo) = 0 (8.28)

for any A > 0; the spectrum of eigenvalues A is continuous and semi-
bounded: A > 0. There is, however, an essential difference between
the continuous spectrum in the problem of gene propagation and in this
problem. In the former problem only the lowest point A = Ao of the
spectrum satisfies the requirement that the solution of the initial-value
problem with initial data of transitional type tends to the given solution
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of travelling-wave type as t —> oo; for all other A this is not so, and there-
fore the corresponding solutions are unstable. For the Korteweg-de Vries
equation a remarkable discovery was made by Gardner, Greene, Kruskal
and Miura (1967) (see also Lax, 1968'): as t —• oo for large positive
x the solution of the initial-value problem, for initial data u(x, 0) that
decrease sufficiently rapidly at x = ±oo, is represented asymptotically
(Figure 8.2) by a finite sum of solutions of the form (8.27):

(8.29)
n = l

where the /xn are the discrete eigenvalues of the Schrodinger operator,
well-known from quantum mechanics, with potential equal to —u(x,0):

= O, * (±oo)=0, (8.30)

and the 'phases' cn are certain constants, also determined by the initial
condition. Hence any solution of soliton type can be an intermediate
asymptotics of the solution of an initial-value problem as t —> oo, but
exactly which one it is will be determined by the initial conditions.

Figure 8.2. Initial elevation of the free surface of a heavy fluid in a shallow
channel generates a finite series of solitary waves (solitons).

For self-similar solutions too there is an analogous situation. In fact,
for a self-similar solution to exist it is necessary that the equations and
boundary conditions of the idealized problem be invariant with respect
to some group - a subgroup of the group of similarity transformations of

t The L, A-peAr technique invented in this paper permitted the result to be under-
stood from a more general point of view and analogous results to be obtained for
other equations.
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the independent and dependent variables. In searching for self-similar
solutions one seeks a subgroup of that group and a solution that this sub-
group leaves invariant. Here too, eigenvalues A that are determined by
the condition of global existence of an invariant (this time, self-similar)
solution arise naturally. The examples considered above illustrate what
has been said. Thus in the problem considered in chapter 3 of the fil-
tration in an elasto-plastic porous medium, the basic equation

dte = nd2
xxe (dte > o), dte = KXd2

xxe (dte < o) (8.31)
and the condition at infinity

9(±oo,t) = 0 (t>0), (8.32)

and also the condition of continuous matching, with continuous z-deriv-
ative, at the points x = ±xo(t) where the quantity dtO vanishes, are all
invariant with respect to the two-parameter group

0' = a6, t' = /32t, xf = (3x, (8.33)

which is a subgroup of the three-parameter group of similarity transfor-
mations 0f = A\6, t1 = Ait, x1 = A$x. We seek a one-parameter sub-
group of the group (8.33) for which a = (32X, and also a self-similar so-
lution u = txf{x/t1/2) that remains invariant under this one-parameter
subgroup. The parameter A, the eigenvalue, is determined from the con-
dition for the global existence of a self-similar solution; the spectrum
turns out to be discrete and, in fact, for e = K\/K — 1 not too large,
consists of one point only.

Analogously, in the problem of a very intense explosion with loss or
deposition of energy at the wave front (chapters 4 and 6), the equations
for spherically symmetric adiabatic motion of an ideal gas, the conditions
at an intense shock wave, the condition t>(0,£) = 0, and the conditions
p(oo,t) = po> v = 0, p = 0 at infinity are all invariant with respect to
the two-parameter group of transformations

p' = a2p, / / = /o, v' = avy r' = apr, t' = fit. (8.34)

We seek a one-parameter subgroup of this group for which a = fix and
also a self-similar solution

P = P°R{^h P = ">*P(j&)' v = -tV{^x) (8"35)

that is invariant with respect to this subgroup. As we have seen, the
spectrum of eigenvalues A, determined by the condition for the global
existence of a self-similar solution, turns out for 7 < 2 to consist of one
point.

In the problem of a converging very intense shock wave, first con-
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sidered by Guderley (1942), which also leads to self-similar solutions of
the Bechert-Guderley type (8.35) but with other boundary conditions,
the spectrum for values of the adiabatic exponent 7 > 70 = 1.87 turns
out (cf. Brushlinskii and Kazhdan, 1963) to be continuous and semi-
bounded. There is a conjecture due to I.M. Gelfand according to which
the intermediate asymptotics of the non-self-similar problem as t —> 0
(the time of collapse) selects the lowest point of the spectrum, just as in
the problem of propagation of a gene, but the question actually remains
open, since numerical calculations have not yet been able to confirm this
conjecture.

There is an instructive self-similar interpretation of the result pre-
sented above (8.29) for the Korteweg-de Vries equation (8.26). If we set
x = ln£ t = lnr, equation (8.26) can be written in the form

rdTu + iud^u + Pi^dl^u + Z^d^u + £0€u) = 0. (8.36)
The solution of travelling-wave type (8.27) here assumes the self-

similar form

u = 7 = ^ T = , 7 ? = - r T - (8-37)
/ V ^ A ^ ATX

Here, A = e~c is constant. We note that the right-hand side of (8.37)
is not small only for 77 of order unity; it is small if 77 is either large
or small. The spectrum of eigenvalues A, obtained by direct construc-
tion of solutions of travelling-wave type, is continuous and semibounded:
A > 0. The result of Gardner, Greene, Kruskal and Miura (1967) pre-
sented above can be expressed in the following way in the self-similar
interpretation: an asymptotic solution of the initial-value problem for
(8.36) as r —> 00 and for large £ can be represented in the form

- ( 8 - 3 8 )

Thus the initial distribution tt(£,O), which by assumption decreases
sufficiently rapidly as £ —> 0 or 00, determines N positive constants Ai,
..., AJV and N positive constants A\, ..., ^4^, and selects N intervals in
£. Here, inside each of the intervals £ = O{rXn)^ the asymptotics of the
solution is self-similar and has the form

• ( 8 - 3 9 )

Outside the intervals mentioned the solution u is small: u = o(l). Here
it is significant that in the self-similar asymptotics not only do the con-
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stants An depend as usual on the initial conditions of the original non-
idealized problem, but so also do the exponents An in the expressions
for the self-similar variables. We meet an analogous situation later in
considering the self-similar decay of isotropic turbulence. This exam-
ple has once again emphasized the insufficiency in the general case of
dimensional analysis for determining the exponents of the self-similar
variables.

The examples given above demonstrate the variety of possible struc-
tures of the spectrum of a nonlinear eigenvalue problem arising in the
construction of a self-similar solution.

8.3 Stability of invariant solutions

8.3.1 Stability of travelling waves

The statement of the stability problem for invariant and, in particular,
self-similar solutions is distinguished by certain peculiarities. In the
present and following sections a general approach to the investigation of
the stability of self-similar and other invariant solutions is outlined and
illustrated by several instructive examples.

A simple example will immediately take us to the heart of the matter.
The equation

dt6 = nd2
xxe + f(0), (8.40)

where f(6) is bounded together with its first derivative and satisfies the
conditions

/(0) = O ( 0 i < 0 < 0 i + A) /(<92) = 0,
(o.41)

is a simplified model of thermal flame propagation (9 being the tem-
perature), where the density of the gaseous mixture is assumed constant
and the concentration of combustible matter and the temperature at any
moment are related by the Lewis-von Elbe similarity law; this follows
readily from what was presented in chapter 7. The equation (8.40) has
a solution of travelling-wave type

0 = 6 ( 0 , < = z -A* + c, (8.42)

where c is an arbitrary constant and the speed of propagation A is
uniquely determined by solving a nonlinear eigenvalue problem, the
equation

^ ^ (8.43)
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obtained by substituting (8.42) into (8.40) with the conditions

e(-oo) = 02, ©(oo) = 0i. (8.44)

It is easy to show that the solution (8.42) is a monotonically decreasing
function (Figure 8.3). The function ©(£) cannot have a minimum lying
between © = 0i and 6 = 02, because at this point one would have to
have dQ/dC = 0, d29/d(2 > 0, /(©) > 0, which is impossible by virtue
of (8.43). Neither can the function have a maximum within these same
limits, because there would then have to be a minimum between © = 0\
and © = 02, which is impossible by the preceding argument.

0 ,

Figure 8.3. The temperature distribution in a travelling wave is mono-
tonic.

The stability of the solution (8.42) is of paramount importance. In
fact, as has already been remarked more than once, the invariant solution
(8.42) is of physical interest first of all as an asymptotic representation
of a certain class of solutions to the non-idealized initial-value problem
for equation (8.40) with initial data of transitional type. If this solution
were unstable, so that a small perturbation imposed on the temperature
distribution at some moment led to a large deviation in the temperature
distribution at later moments, then the solution would be physically
meaningless.

Here it is necessary, however, to define stability and instability pre-
cisely. Suppose that at some moment t = to the temperature distribution
is determined by the relation

0(x, t0) = ©(x - Xt0 + c) + 6(p{x), (8.45)

where 6 is a small parameter and (j>{x) is a finite function, i.e., one equal
to zero outside some finite interval; such a temperature distribution
corresponds to the solution of travelling-wave type already considered
plus a small local addition. At first glance, a natural definition of the
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Figure 8.4. A perturbed solution (broken line) tends to a shifted unper-
turbed one and there is no reason to consider this as an instability.

stability of the travelling wave would appear to be the following: if a
solution of the type (8.45) of any 'perturbed' initial-value problem can
be represented for t > to in the form

0(x,t) = e(C)+t£/«,i). (8.46)

where the function w(C,t) tends to zero as t —• oo, then the original
solution is stable; otherwise, it is not.

Just such a definition of stability was adopted for the stability of
flames by Rosen (1954), who arrived at the conclusion that instability is
possible in the problem just considered and indicated some approximate
criteria for the stability of solutions, etc. In fact, such a definition of
stability is insufficient, and must be replaced by another one; this turns
out to be essential for the case of travelling waves and of self-similar
and, in general, invariant solutions; it was clarified by Barenblatt and
Zeldovich (1957b).

Actually, a solution of travelling-wave type is invariant under a one-
parameter group of translations with respect to the coordinate and time.
Hence the solution (8.42) is determined by (8.43) and (8.44) up to a
constant. Consequently a definition of the stability of a travelling wave
must also have the corresponding invariance. If in fact the perturbed
solution tends not to the original unperturbed solution as t —> oo, but
to a shifted one (Figure 8.4), then there is no reason to consider this
transition as an instability. Thus an invariant definition of the stability
of the travelling wave (8.42) consists of the following: a solution is stable
if one can find constant a such that the solution of the perturbed problem
can be represented for t > to in the form

6{x, t) = B(C + a) + w(C, *), (8.47)

where w(£, t) tends to zero as t —> oo; otherwise the solution is consid-
ered unstable.
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In what follows we shall restrict ourselves to the investigation of linear
stability. For small <5, the quantity a must be small. Expanding ©(C + a)
in a series and restricting ourselves, in accord with our adoption of the
linear approximation, to the first term of the expansion, we reformulate
the definition of stability (8.47) in the following way: if one can find a
constant a, tending to zero along with 6, such that the solution of the
perturbed problem can be represented in the form

6{x, t) = 0(C) + a9'(C) + u/(C, *), (8-48)

where w((,t) —> 0 as t —> oo, then the unperturbed solution is stable.
We shall prove the stability of the travelling wave (8.42), in the sense

indicated, for any f(6) satisfying (8.41). In (8.40) we set 0(x,t) = ©(C) +
6v(^t). Discarding terms of higher than first order in <5, and using the
fact that ©(£) satisfies (8.43), we obtain for v(C,£) the equation

dtv - Xdcv = Kd2
av + f'(Q(Q)v • (8.49)

Applying the method of separation of variables, we construct a solu-
tion of the initial-value problem for (8.49), with arbitrary initial distri-
bution of the perturbation v(£, 0), vanishing outside some finite interval,
in the form of a Fourier series,

(8.50)
n=l

where the function \I>(C,/in) is the nth eigenfunction of the operator
defined by the equation

A— + n—j + [n + /'(©(C))] * = 0 (8.51)

and by the conditions of tending to zero faster than any power |C| for
£ = ±oo. Here \xn is the nth eigenvalue.

The coefficients cn in (8.50) are determined by expanding the initial
condition in series with respect to the functions \P(£,/in). According to
(8.50), if it could be shown that all the eigenvalues \in are non-negative,
then the stability of the travelling wave in the sense of (8.48) would be
proved. We thus note that differentiating (8.43) with respect to £,

(8.52)

we find that dO/d£ satisfies (8.51) for /i = 0. Observing further that
d@/d£ tends exponentially to zero as £ —> ± oo we see that dQ/d£ coin-
cides to within a constant factor with the eigenfunction corresponding
to \i = 0. From the proof of the monotonicity of the function 0(£) given
above it follows that dQ/dC, does not vanish for finite £. But an eigen-
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function of the operator \I> has as many zeros as its ordinal number.
Therefore d@/d£ corresponds to the smallest eigenvalue. Since this
is equal to zero, there are no negative eigenvalues in the problem; all
[in > 0. As for fin = 0, this eigenvalue does not spoil the stability, since
the corresponding eigenfunction is equal to dQ/dC, to within a constant
factor, and this eigenfunction corresponds to just a shift of the travelling
wave. Thus the linear stability of the progressive wave (8.42) in the sense
formulated is proved . Generally speaking the proof of linear stability
is only part of the problem: the rejected nonlinear terms in principle
could make the solution unstable. In this special case, however, it is
not so: the global stability of the travelling-wave solution in the sense
(8.47) follows from the results by KaneP (1962) who used essentially the
technique of the paper by Kolmogorov, Petrovsky and Piskunov (1937).

It is clear that under assumptions that are sufficiently broad for our
purposes the considerations presented have a completely general mean-
ing. In particular, they are easily reformulated to apply to the stability
of self-similar solutions, as we now demonstrate.

8.3.2 Stability of self-similar solutions

As we have seen, self-similar solutions are determined by direct con-
struction to within some constant A that is found from conservation
laws, or by following the evolution of a non-self-similar solution if the
conservation laws assume a non-integrable form.

By definition, a self-similar solution is stable if the solution of any
perturbed problem with sufficiently small perturbations can be represented
in the form of a self-similar solution corresponding to a constant Ar that
is in general different from A plus some additional term whose ratio to
the unperturbed solution tends to zero as t —> oo.

Relying on this definition, we proceed to investigate the stability of
the solution to the modified heat source problem that was considered
in chapter 3 (Kerchman, 1971). We present this investigation here to

"" In fact (8.51) reduces to self-adjoint form if one sets # = e " ^ / 2 * ) ^ in it. But
the factor e~(^''*K> does not vanish, and for a self-adjoint operator the property
formulated holds, as is well known.
We emphasize that the argument given proves the stability of a flame only under
the assumptions indicated. In particular, if similarity of the fields of concentration
and of temperature does not hold (for example, for the burning of powder), some
instability arises.
For convenience we identify the non-self-similar variable with the time t.
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demonstrate the technique of linear stability analysis for self-similar so-
lutions of the second kind.

As shown in chapter 3 a self-similar intermediate asymptotics of the
solution to the initial-value problem given by the equations

dte = K.dlxe (ft0>o), dto = Kidixo {dte<o) (8.53)
is obtained, for K\ ̂  «, in the form of a self-similar solution of the second
kind,

» - 5 ^ B I / « . « ) . <-73. « - T - 1 - ( 8 5 4 )

where the function /(£, e) can be expressed in terms of parabolic cylinder
functions. For the self-similar solution (8.54), if |x| < Zo(Kt)1/2 the
derivative dt0 < 0, but if \x\ > £o(Kt)1/2, dt9 > 0, so that the change of
coefficient in (8.53) occurs for

x —

The constants a and £0 are found from the set of equations

(8.55)

2 ' 2 ' 4(1 +e)
We now consider, in accordance with the general procedure outlined

above for analytical investigations of the linear stability of a solution,
the perturbed initial-value problem, for which the initial condition at
t = to can, without loss of generality, be written in the form

Here 6 is a small parameter, and the function i>o(£) vanishes outside
some finite interval in £. In the linear approximation, for t > to,

1 )] , (8.56)

where V(£,T) is the perturbation. (Instead of the time t it is convenient
to take r = ln(£/£o) as independent variable for the perturbation.) The
surfaces X\(t) and X2(t) on which dtu vanishes are also shifted, so that

xi = [6> + /?I(T)]>/K*, *2 = -[& +A(r)]VJ5. (8.57)
The perturbation is not necessarily symmetric, so /?i(r) ^ /?2(r)- Sub-

stituting the perturbed solution (8.56), (8.57) into the basic equation,
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we obtain an equation for the perturbation when £ > 0 in the form

« 2 2 ' — — '

1 + a e

g v - d 2 v i d v
 1 + a

v re 0 (T)<£ OO)

(8.58)
and an analogous equation for £ < 0.

Furthermore, from (8.56) we obtain an expression for the derivative
dt9 of the perturbed solution:

Setting £ = £0 + /MT) m this relation, linearizing, and keeping in mind
that /"(Co) = 0 and dt6 = 0 for £ = Co 4- /?i(r), we obtain

6 \drv -
2 2 '

whence it follows that the displacement of the boundary is proportional
to the small parameter 6. Linearizing (8.58), we obtain for V(£,T) the
linear equation

dTv = (1 4- e)d#v + ——% 4- -d^v (|C| < Co),

1 + a C ( 8 ' 5 9 )

At C = Co the functions v and d$v must be both continuous. In fact,
from the second equation of (8.58) we get, integrating from C = Co to

. / [*.-!*.-i±H.
The quantities under the integral sign on the right-hand side are bounded
and, by the preceding argument, PI(T) is of order (5, so that the entire
integral is of order 6. Furthermore, for £ = Co the quantity /"(£,e)
vanishes, so the second term on the right-hand side is also of order <5; and
from this and the linearity of the approximation follows the continuity
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216 8. Invariant solutions

of d^v at |£| = |fo|- The continuity of v is proved by multiplying it by £
and using the same kind of integration and subsequent estimates.

A solution to the initial-value problem for the perturbation is sought
in the form

n = 0

where the function \P(f,/in) is an eigenfunction of the operator deter-
mined by the equations

and by the condition of vanishing more rapidly than any power of |f | at
f = ± oo, so that

*(±oo,/in)=0 (8.62)

(fj,n being the nth eigenvalue of this operator). Furthermore, the func-
tions \£(f,/xn) together with their first derivatives with respect to f are
continuous at f = fo-

It is convenient to consider separately the symmetric (\ti) and anti-
symmetric (^2) eigenfunctions of the operator (8.61), (8.62). A sym-
metric solution of (8.61) satisfying (8.62) must be representable in the
form (cf. subsection 3.2.4).

£ \

To determine the constants C\ and C2 we use the continuity of \I> and
dty/d£ for |f I = fo- Thus we get a system of homogeneous linear al-
gebraic equations; the condition that the determinant of this system
vanishes gives the characteristic equation

= 0. (8.64)
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The quantities a and £o are determined, as before, by the relations
(8.55). Using these relations it is easy to show that /io = 0 is a root of
(8.64). We now show that the other roots of this equation are positive.
Equation (8.64) can be put into the form

AM - ( 4 ) D1+a+2, (-%) M (-1 - <2L+M, I; -Jt

D (to\\M( (a + 2n) 1,

'
2 '2 '4(1 + .

= 0. (8.65)
It is known (see Abramowitz and Stegun, 1970), that the function

M(a + /, 1/2, xo) is a monotonically increasing function of / for / > 0 if
xo is the smallest positive root of the equation M(a, 1/2, x) = 0. If Co
is the smallest positive root of the equation £)a_|_2(C) = 0, then

^a+2/i-f-2(Co) > 0 for /i < 0.
Therefore A(/i) > 0 for all negative /i, and there are thus no negative
roots of (8.65).

Further, the antisymmetric solution has the form

- Dt

r / e2\] / n
^ 2 = C4 < exp - — > Da+2u, —7= > (Co < K < 00) .

I V 8 / J \V2/
Its characteristic equation can be reduced to the relation

l
2 ' 2 ' 4 ( l +

= 0. (8.66)
Comparison with (8.65) shows that the smallest root of (8.66) is equal

to Hi = 1/2. Subsequent investigation reveals that the smallest positive
root of (8.65) is equal to fi2 = 1 and the corresponding root of (8.66) is
equal to /X3 = 3/2. Thus, (8.56) and (8.60) show that a solution of the
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perturbed initial-value problem can be written in the following form:

?) '" *

(8.67)
(the Ci being the coefficients of the expansion of the function vo(£) in a
Fourier series with respect to the eigenfunctions of the operator (8.61),
(8.62)). Thus the self-similar solution constructed in chapter 3 turns
out to be stable with respect to small perturbations. It is evident that
in the present case the constant A also turns out to have been shifted
to: Af = A(l -f £co), so that the invariance we have incorporated in
the definition of the stability of self-similar solutions is used in this case
too. Here again we have to emphasize that the proof of linear stability
forms only part of the problem. In the special case considered here
global stability in the sense proposed at the beginning of this subsection
follows from the results by Kamin, Peletier and Vazquez (1991).

In the linear case K\ = «, e = 0, a = 0 one gets the expected result
for the stability of a self-similar solution, of instantaneous heat-source
type, of the classical equation of heat conduction. The representation
(8.67) of the solution of the perturbed initial-value problem in this case
assumes the form

(8.68)

4
The coefficients of (8.61) in the linear case (e = 0) are actually con-

tinuous, and that equation can be written in the form

!** + i±^vl> = 0. (8.69)

For /i = 0 a solution to this equation that satisfies the condition (8.62)
of rapid convergence to zero at infinity is e~^ /4. This function does not
vanish for any finite £; hence it is the zeroth eigenfunction, and ji = /io =
0 is the zeroth eigenvalue. Furthermore, the derivative of e~^ /4 with
respect to £, equal to — (£/2)e~^ /4, vanishes except at infinity only for
£ = 0, and it satisfies (8.69) for \i — 1/2, and also the conditions at infin-
ity. This is consequently the eigenfunction with n = 1, and /x = fi\ = 1/2
is the corresponding eigenvalue. Thus \£(£,/ii) = — (£/2)e~^ /4. In gen-
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eral the eigenvalues are given by fin = n/2, n = 0,1,2, . . . , and the
eigenfunction corresponding to fin is are equal to the nth derivative of

It is easy to obtain the result for the linear case e = 0 directly (Zel-
dovich and Barenblatt, 1958; see also Zeldovich and Raizer, 1967), since
in this case there exists an explicit representation of the solution to the
perturbed initial-value problem.
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Scaling in the deformation
and fracture of solids

9.1 Transition from self-similarity of the first kind to
self-similarity of the second; a linear elasticity problem

9.1.1 Equilibrium of an elastic wedge under the action
of a concentrated couple applied at its tip

The consideration of linear problems is instructive for our purposes: for
them one can follow analytically the transition to self-similar asymp-
totics of the solutions of non-idealized problems, and the transition at
certain critical values of the parameter from self-similarities of the first
kind to self-similarities of the second kind. For nonlinear problems, as
a rule one has not been able to do this. The example given below, as
well as the problem of ideal flow past a wedge considered in chapter
3, is simple enough that construction of the complete solution to the
non-idealized problem with non-self-similar solution is possible; at the
same time it exhibits clearly enough the complexities that can appear
in nonlinear problems.

We shall consider some problems in the theory of elasticity for the case
of plane strain, when the components of the elastic fields - the stress
tensors, deformation tensors, displacement vectors, etc. - are identical
in all planes perpendicular to some direction. The equilibrium equations
for plane strain have the form (Muskhelishvili, 1963; Germain, 1986b;
Landau and Lifshitz, 1986)

1 1 1 2
drarr + -d0O~r0 + -(arr-crr0) = 0, -d0O~oo + drcrrQ + -(jre = 0. (9.1)

r r r r
Here r, 6 are polar coordinates in the deformation plane and arr, a00,
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9.1 A linear elasticity problem 221

aro are the corresponding components of the stress tensor. (In what
follows, polar coordinates are what we shall need.) These equations are
identically satisfied by introduction of the Airy stress function \I>:

oTT = h (roe = (9-2)

Hooke's law relates the components of the stress tensor to the first spa-
tial derivatives of a single displacement vector, whence it follows that
the three components of the stress tensor satisfy a certain integrability
condition, the so-called compatibility relation. If we substitute into this
relation the expressions (9.2) for the components of the stress tensor in
terms of the stress function, we obtain for this function the biharmonic
equation

Aa* = I -dr(rdr) + \ir rz = 0. (9.3)

Figure 9.1. A wedge of opening angle 2a under the action of a couple of
moment M applied at its tip.

We begin with an instructive problem first considered by Carothers
(1912) and Inglis (1922). Namely, we take (Figure 9.1) an infinite wedge
of opening angle 2a and at the tip of the wedge we apply a couple of
moment M. The stress function ^ that governs the elastic field depends
in this case on four parameters, M, r, 6 and a, whose dimensions in the
natural class FLT are respectively F, L, 1 and 1. (The dimension of the
moment of a couple in the plane problems of elasticity coincide with the
dimensions of force, since in such a problem one is really dealing with a
couple per unit thickness.) By virtue of (9.2) the dimension of the stress
function also coincides with the dimension of force. Hence the standard
procedure of dimensional analysis leads to a relation

tf = Af$(0,a), (9.4)

so that the stress function is independent of the radius.
Substituting (9.4) into (9.3), we get for $(Q, a) the ordinary differen-

tial equation

* / v r + 4 * " = 0. (9.5)
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222 9. Scaling in the deformation and fracture of solids

Furthermore the lateral faces of the wedge are free of stress over their
entire extent:

aoo(r, ± a) = 0, are(r, ± a) = 0,

and from this, (9.2), and (9.4) we get the boundary conditions for the
function $(6, a):

<90$(±a,a) = 0. (9.6)

The equation and boundary conditions determine the solution to within
a constant factor, which is found from the following consideration: we
make a cut along a circle of arbitrary radius, calculate the total moment
of the stresses acting on the cut, and equate the result to M, because
the cut-off part of the wedge must be in equilibrium. As a result the
final expression for the stress function is obtained in the form

^ = M(2flcos2a-sin2fl)
2(sin2a-2acos2a) ' { ' }

and for the components of the stress field we have
2M sin 20 M(cos 2a - cos 20)

arr — (sin 2a - 2a cos 2a)r2 ' (sin 2a - 2a cos 2a)r2 ' (9.8)
aee = 0.

9.1.2 The Sternberg-Koiter paradox. Intermediate
asymptotics of the non-self-similar problem

Everything seemed to be clear with this problem, and for a long time it
occupied a permanent place in the text-books. However, in the remark-
able paper of Sternberg and Koiter (1958) attention was drawn for the
first time to a strange property of the solution (9.7), (9.8) just obtained:
as the angle a approaches the value a = a* « 0.715TT for which the de-
nominator in (9.7), (9.8) vanishes (which is perfectly admissible from the
physical point of view), the stresses at all points of the wedge tend to in-
finity according to (9.8). In this connection the following question arises:
is the self-similar solution of the idealized problem (9.7) an asymptotics
of some non-self-similar solution of the non-idealized problem; in other
words, does it have a certain physical meaning?

In order to clarify this matter, Sternberg and Koiter considered for the
same wedge the following non-idealized (and therefore non-self-similar)
problem (Figure 9.2a). On finite segments of the lateral faces of the
wedge 0 = ± a , O < r < r o , there is distributed, according to some
law, a normal loading that is antisymmetric with respect to the axis of
the wedge and statically equivalent to a couple with moment M. The
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9.1 A linear elasticity problem 223

tangential stress is as before equal to zero everywhere on the faces of the
wedge. Thus one has the conditions

ae9(r, a) = - aee(r, -a)= p(r),

°re(r,a) =are(r,-a) = 0 (0 < r < oo),

where p(r) is a function, identically equal to zero for r > ro, and satis-
fying the conditions

r0 r0

[p(r)dr = 0y jp(r)rdr=—. (9.10)

o o
Furthermore, to get a unique solution one imposes the additional reg-
ularity requirement of boundedness of the resulting force on any radial
cut of the wedge:

oo oo

/ 0$o(r, 0)dr < oo, / ard(r, 6)dr < oo. (9.11)

(a) ^ (b)

Figure 9.2. Non-idealized problems of the elastic equilibrium of a wedge
under the action of a couple of moment M: (a) forces distributed over
the lateral faces of the wedge; (b) forces applied to a stiff ring segment of
finite radius R.

To get a solution of the problem posed we apply following Sternberg
and Koiter, the Mellin integral transformation in the variable r. As is
well known (see Sneddon, 1951), the Mellin transform of a function and
its inverse are given by the relations

oo c-Moo

f(s) = J Hry-'dr, f(r) = ^~ j J(s)r~'ds. (9.12)
0 c—ioo

Applying the Mellin transformation to the biharmonic equation (9.3),
we get for the transform, ^(s,^), of the stress function the ordinary
differential equation
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224 9. Scaling in the deformation and fracture of solids

The stress field sought is antisymmetric, thus the stress function must
be also so. The general antisymmetric solution of (9.13) has the form

#(5, 6) = A{s) sin s6 + B(s) sin(s + 2)0. (9.14)

Further, (9.9) with (9.2) taken into account can be written in the form

r, ± a) = ±p{r)r2 , dr -de®{r, ± a) = 0. (9.15)

Applying the Mellin transformation to these conditions and integrating
by parts (in order to do this it is necessary to multiply by r2), we get
the boundary conditions for the function i&(s,6):

= 0. (9.16)

Here
' O

p{s) = I p(r)i (9.17)
b

From (9.14) and (9.16) we determine the constants A(s) and B(s);
substituting the result into the inversion formula we obtain the solution
for the stress function in the form

c+ioo

/
p(5)[5COS5asin(5 4- 2)6 — (s 4- 2)cos(5 4- 2)ashi50]r~sd5

27ris(s 4- l)[(s 4-1) sin2a — sin2(s 4- l)a]
c—ioo

(9.18)
The relations for the components of the stress tensor are obtained from
this by differentiation:

c+ioo

/
p(s) [s cos 5a sin(s + 2)6 — (s -f 2) cos(s + 2)a sin s6]r~s~2ds

2ni[(s 4-1) sin 2a - sin 2(s -f l)a]
c—ioo

arr(r,e) =
c+ioo

p ( s ) [ ( s 4 - 2 ) c o s ( s 4 - 2 ) a s i n s ^ - ( s + 4 ) s i n ( s 4 - 2 ) ^ ] s

2 m [ ( s 4 - 1 ) s i n 2 a - s i n 2 ( s 4 - l ) a ]

c+ioo
p(s)[(s 4- 2) cos 5a cos(5 + 2)0 - ( 5 4-2) cos(5 4- 2)a cos s6]r~s~2ds1 2ni[(s 4-1) sin 2a - sin 2(5 4- l)a]

c—too

(9.19)
It is evident that the integrands in (9.9) are meromorphic functions of
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9.1 A linear elasticity problem 225

the complex variable s whose poles correspond to the zeros of the entire
function

(5 + 1) sin 2a - sin 2(s + 2)a = G(s, a). (9.20)

In the integrals (9.18), (9.19) the abscissa of the line of integration
Re(s) = c can be chosen arbitrarily within one band of regularity of
the integrand. Which band of regularity to take is determined by the
conditions imposed on the stress at infinity. The requirements of vanish-
ing at infinity and of regularity of the stress, i.e., the satisfying of (9.11),
allow us to select the band of regularity containing the point s = — 1.
The representation of the solution by (9.18), (9.19) is convenient for
calculating asymptotics.

To calculate the integrals we must close the contour of integration,
adding to the line Re(s) = c a semicircle of large radius on the right or
left, depending on whether we are interested in the asymptotics of the
stress field for r —» 0 or r —> oo, and then letting the radius of the circle
tend to infinity. Thus the required integral is expressed in terms of the
sum of the residues at the poles contained in the contour obtained, i.e.,
for the stress, at the points corresponding to the roots of the function
(9.20). The principal terms in the asymptotic solution for r —> oo of
interest to us are thus determined by the roots of (9.20) that have the
smallest real parts.

Investigation of the roots of (9.20) shows that the situation changes at
the value a = a* « 0.715TT that makes the expression sin 2a — 2a cos 2a
vanish. Namely, for 0 < a < a* the root of (9.20) having the smallest
real part is actually the simple root 5 = 0. For a = a* the root 5 = 0
becomes double: for s = 0, not only G(s, a) but also G'{s, a) — sin 2a -
2acos 2(5 -f l)o: vanishes. Finally, for a* < a < TT there appears a real
simple negative root 5 = A(a), where A (a) varies monotonically from
zero for a — a* to —1/2 for a = TT. Hence the principal terms in the
expansion for r —> 00 are different in these three cases:
(1) For 0 < a < a* and r —> 00,

M(2i9cos2a-sin2<9) , x

tj) — i: L _J_ o(l)
2(sin2a-2acos2a) v n

2Msin20 . 9N , 9x
*" = ( s in2a-2acos2a)r 2

 + °<r >'
M(cos2a — cos 20) _2.

(sin 2a - 2a cos 2a)r2
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(2) For a-a^ and r —> oo,

9 = M ( 3 L r 0 ) - In - 1 (20cos2a* - sin20)
12a2 sin 2a* I |_ roJ

- 30 cos 20 4- 4 sin 20 - 50cos 2a* - 6a*0sin2a* i 4 o(l), (9.22a)

- I I sin20

120 cos 20 - 60 cos 2a* i 4 o(r~2), (9.226)

o(r~2), (9.22c)

L — 4 1 (cos 2a* - cos 20)

4- 60sin 20 - 6a^ sin 2a* \ 4 o(r"2) , (9.22d)

where
ro

•ln( —

0

(3) For a* < a < 7T and r —> oo,
_ p(A) [(A + 2) cos(A + 2)a sin A0 - A cos Aa sin(A + 2)0]
~ A(A 4-1)(sin 2a - 2acos2(A + l)a)rA

M(20cos2a-sin20) , .

_ p(A) [(A + 2) cos(A + 2)a sin A0 - A cos Aa sin(A + 2)0]
a66~ [sin 2a - 2acos2(A + l)a]rA+2

-f o(r'2), (9.236)
_ p(X) [(A 4- 4) cos Aa sin(A + 2)0 - (A + 2) cos(A + 2)a sin A0]

GTT ~ [sin 2a - 2a cos 2(A 4- l)a]rA+2

2Msin20 . _2x
+ + ( }

2)[cos(A + 2)acosA0 - cosAacos(A + 2)6}
ar9~ (sin 2a - 2acos2(A + l)a)rx+2

M(coS2a-cos20)
(sm 2a - 2a cos 2a)r2

where p(X) is determined by (9.17) as before.
We now apply dimensional analysis to the original non-self-similar
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9.1 A linear elasticity problem 227

problem. Without loss of generality we can write the function p(r) in
the form

* r ) - § H £ ) - (9-24)
Here <p is a dimensionless function of its dimensionless argument. It is
evident that the solution \I> is governed by the following quantities: M,
ro, r, 6 and a, whose dimensions are respectively F, L, L, 1 and 1.
Consequently the standard procedure of dimensional analysis gives

( , , ) (9.25)
\ r o /

The previous considerations by means of which we arrived at (9.4) were
based on the implicit assumption that at large distances from the tip
of the wedge the parameter r/ro is very large, and hence the length
ro of the part of the lateral face of the wedge on which the loading is
distributed is an inessential parameter.

The analysis just performed showed that this is actually so only for
0 < a < a*. If a > a*, then the size ro remains an essential parameter,
no matter how far we go from the tip of the wedge. Nevertheless the
asymptotics of the stress function, and hence also of all the components
of the stress tensor, are self-similar; but this self-similarity is of the
second kind, not determined by dimensional considerations.

Indeed, if as is seen from (9.23) there exists a real number A such
that the function $(77,0,a), where 77 = r/ro, behaves like ri~x$i(0,a)
as 7/ —> 00 (i.e., as r —* 00 or r0 —• 0), then by virtue of (9.25) the
limiting solution obtained by shrinking r0 to zero, i.e., for 77 —> 00, has
the form

# = — ^ $ i ( 0 , a ) . (9.26)

It is clear here that if we want to get a correct asymptotics of the
solution of the non-self-similar problem as r/ro —» 00 by shrinking ro to
zero it is impossible to keep M constant; it should also tend to zero so
that the product Mro remains constant.

Let us substitute (9.26) into the biharmonic equation (9.3). We obtain
for $i(0, a) the ordinary equation

$[v 4- [A2 + (A + 2)2]$'/ + A2(A + 2)2$i = 0, (9.27)

which coincides with (9.13) for 5 = A. The solution of interest to us must
be antisymmetric and satisfy the conditions $1 = 0, d$\/d6 = 0 for 6 =
±a. The latter conditions follow from the fact that both components of
the stress on the lateral faces of the wedge are equal to zero. From these
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conditions we get a relation for $1 to within a dimensionless constant
factor /?,

$! = /3[(X + 2) cos(A + 2)a sin \6 - A cos Xa sin(A -+- 2)6>], (9.28)

and also the characteristic equation for determining A,

(A + 1) sin 2a - sin 2(A + l)a = 0, (9.29)

which coincides with the condition for vanishing of the function (9.20).
As was said above, for a* < a < -K (9.29) has a real negative root, and at
the same time for 0 < a < a* the root of this equation with the smallest
real part is zero. Therefore for 0 < a < a* the function $(77,0, a) in
the expression for the solution of the non-self-similar problem tends to
a finite non-zero limit as 77 —• 00 (as the region of application of the
load shrinks to zero), and the dimensional considerations developed in
subsection 9.1.1 turn out to be applicable and to lead to the correct final
result. For a* < a < TT, however, the limiting solution can be written in
the form

# = i i [(A + 2) cos(A + 2)a sin X0 - A cos Xa sin(A + 2)0], (9.30)

A < 0, where the constant A = (3MrQ can no longer be determined
if we seek a self-similar solution of the second kind directly. It can be
found only if we follow the transition from a solution of the non-self-
similar problem to a self-similar asymptotics. In fact the asymptotic
representation of the solution to the non-self-similar problem for large
r/ro has, in the case a* < a < TT, a principal term that coincides with
(9.30) (cf. (9.23)) if one takes

CP(r)rdr
A(A +1)[sin 2a - 2acos2(A + l)a] " V ' ;

Thus the asymptotics of the solution obtained by shrinking the region
of application of the loading on the lateral faces of the wedge to zero
'remembers' for a* < a < n not the ordinary moment of force, i.e.,
not the integral fo°p(r)rdr = M/2, but a more complicated fractional-
power moment of the system of forces acting on the lateral faces of the
wedge. Here the exponent to which the radius appears in the moment
depends on the opening angle of the wedge, and is determined by solving
the eigenvalue problem for the linear equation (9.27) under the condi-
tions that the solution and its derivative vanish at the endpoints of the
interval.

The solution just considered is instructive in many respects. It con-
tains the parameter a, the opening angle of the wedge. As is evident
from the preceding analysis, for angles less than some critical value we
can use the naive arguments of dimensional analysis, considering only
the prescribed moment of forces acting on the wedge; we get a self-similar
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solution of the first kind, which is completely determined by direct con-
struction with the help of dimensional analysis. For wedge angles larger
than the critical one, naive considerations of dimensional analysis are
not applicable, because it is impossible, for a > a*, to delete ro from
the list of governing parameters while leaving M in the list. Neverthe-
less, by shrinking to zero the region of application of the loading on
the lateral faces of the wedge, we obtain in this case too a self-similar
limiting solution. The attempt to construct this solution directly as a
self-similar solution of the second kind determines the limiting solution,
just as for any self-similar solution of the second kind, only to within
a constant. The value of this constant can be obtained by matching
the self-similar solution with a solution of the non-self-similar problem.
It can be expressed, as carrying out the matching shows, in terms of
some fractional moment. That is, to what exponent r is raised in this
moment can be determined only after solving the eigenvalue problem;
it is impossible to determine this exponent in advance from dimensional
considerations. Finally, for a wedge angle equal to the critical one, di-
mensional considerations turn out to be meaningless; they do not lead
to any simplification of the solution, and arguing about the smallness of
the part on which loading is applied, in order to arrive at an idealized
problem, is not valid. In other words, similarity in the parameter rj does
not occur, no matter how large 77 may be.

Nevertheless, as (9.22) shows, the asymptotics of the solution is self-
similar in this case, since the expression for 3> = ty/M can for large
77 = r/ro be written in the form

This self-similarity, however, is not of scaling type and is itself no longer
a solution.

It is obvious that it would be impossible to establish what was said
above without knowing the non-self-similar solution of the complete non-
idealized problem. In nonlinear problems an analysis similar to that pre-
sented above is practically never possible; as already mentioned, one of
the main reasons that we are generally interested in self-similar solutions
of idealized problems is the desire to obtain some idea of the structure
of the solutions of complicated non-idealized nonlinear problems. The
example presented clearly demonstrates that it is insufficient simply to
construct a self-similar solution; it is necessary to verify that this solu-
tion is an intermediate asymptotics for at least a certain restricted class
of non-idealized problems. After the fundamental paper of Sternberg
and Koiter (1958) there appeared other studies of the same kind. An el-
egant work by Moffatt and Duffy (1980) should be especially noted; it is
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230 9. Scaling in the deformation and fracture of solids

concerned with the elastic field near the angular points of the bar cross-
section's contour in torsion'. The papers by Dundurs and Markenscoff
(1989), Dempsey (1981) and Ting (1984) contain interesting additional
remarks concerning plane-strain problems for an elastic wedge.

Self-similar solutions of the second kind for the flow of rigid-plastic ma-
terial in a wedge-form channel were constructed recently by Alexandrov
and Goldstein (1993a, b). An instructive application of the intermediate-
asymptotic approach and solutions for the experimentally obsesrved phe-
nomenon of separation in plastic extrusion are presented in these papers.

9.1.3 The use of self-similar solutions for estimating
integral characteristics: the stiffness of a wedge

Budiansky and Carrier (1973) carried out in connection with the same
problem of a wedge on which a couple acts, an instructive investigation
concerning the application of self-similar solutions to the estimation of
the bulk integral characteristics of the solution to non-idealized prob-
lems. Namely, they considered (Figure 9.2(6)) an elastic wedge trun-
cated along a circular arc r = R close to its tip and reinforced by an
absolutely stiff ring segment at the cut r = R. Using the fact that the
same equations of the plane theory of elasticity apply to the case of plane
stress (thin plates) as to the case of plane strain, Budiansky and Carrier
considered a 'generalized wedge' consisting of a tightly wound infinite
helicoid. This makes it possible to consider the problem for arbitrary
angles a, including those greater than TT. A couple is applied to the ring
segment with torque M (per unit thickness of the wedge). It is clear
that the reinforced boundary will turn by a small angle fl. This angle Q,
is proportional to the applied torque M per unit wedge thickness; it is
natural to call the quantity M/Cl the torsional stiffness of the wedge. As
considerations of dimensional analysis show, this quantity, which is gov-
erned by the shear modulus G, by Poisson's ratio v, and by the radius R

In fact, Moffatt and Duffy (1980) considered this problem in a different, hydro-
dynamic interpretation: a Poiseuille flow in a cylindrical pipe with angular points
at the cross-section's contour. The analogy between these problems is now well
known. Note, in general, that the analysis of mathematically equivalent self-similar
problems of plane elasticity for wedge-form regions and slow viscous flows in wedge-
form vessels was performed over nearly sixty years without any cross-correlations,
so that the difficulties were always got over twice. (Compare two fundamental
papers, Williams (1952) and Moffatt (1964).) The hydrodynamic interpretation
of the Sternberg-Koiter solution was given by Barenblatt and Zeldovich (1972),
and Moffatt and Duffy (1980). In the paper by Anderson and Davis (1993) two-
fluid viscous flow in a wedge-form vessel was considered. Effects similar to the
Sternberg-Koiter problem were also treated.
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of the circle along which the wedge is cut, is equal to GR2C(v), where
the quantity C(y) is called the dimensionless stiffness . The problem
consists in obtaining a sufficiently reliable estimate for the dimensionless
stiffness. Budiansky and Carrier used self-similar solutions for this in
an effective way that was instructive from a general point of view. They
started from the principle of minimality of the complementary energy,
proved in the theory of elasticity, according to which, among all virtual
stress fields that vanish along the lateral faces of the wedge and have on
the arc r = R zero resultant force and torque equal to M, the actual
stress field minimizes the stress energy (per unit thickness)

W " = - / / a^e^rdrde (9.32)

R -a

(with summation over repeated Greek indices). Here the components
of the deformation tensor e^ are expressed in terms of the components
of the stress tensor a^ by Hooke's law for a generalized state of plane
stress (6ij being the components of a unit tensor):

(<TiJ- . + * • > - < " • ( 9 - 3 3 )

The exact value of the total stress energy is evidently equal to Mil/2.
Consequently, if W is the energy corresponding to a certain virtual stress
field, then

whence

The idea consists in using self-similar stress fields to obtain values of
W as close as possible to the actual one, and by the same token obtaining
good estimates for C(v). Here the energy W is found from the relation

W
R f

= ~~2 /

obtained from the energy equation and the condition of rapid decrease
of the stress at infinity. If we take as the virtual elastic field the field
corresponding to the Carothers-Inglis solution (9.7), (9.8), then a simple

Contrary to previously considered cases here the elastic displacements appear in
the problem statement; therefore among the governing parameters appear the
elastic constants G and v.
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but lengthy calculation according to the indicated recipe gives a lower
bound for C(v):

16(sin2a-2acos2a)2
S~1( \

Here K = (3 - i/ 4(ft 4- 5)a 4- 8a cos 4a — (K + 7) sin 4a
+ i/).

(9.37)

C(a,v)

24

16

C«4a-1.92

1 2 3 2«/TI

Figure 9.3. Dependence of the dimensionless stiffness C(y) of a wedge on
its opening angle for v — 0.

This estimate is represented by the broken line in Figure 9.3 for the
case v = 0. It has obvious absurdities. For example, according to it
the wedge loses stiffness at the critical values at which the numerator of
(9.37) vanishes, and long before the critical angles the stiffness starts to
decrease as the angle a increases. The latter is obviously wrong since for
any wedge an admissible stress field is given by that for a wedge of any
smaller angle, but extended as identically zero up to the boundary of the
wedge, so that the stiffness is a non-decreasing function of the opening
angle of the wedge: dC/da > 0. In fact, calculating the stiffness for
a = a* on the basis of a non-self-similar solution, given by the first
terms of (9.22) and also belonging to the admissible stress fields, leads
to a non-zero estimate of the stiffness. Furthermore, for angles not equal
to the critical ones, admissible fields were taken to be represented by the
sum of the solutions (9.7) and (9.30), where the coefficient A in (9.30)
was chosen so as to minimize the stress energy W. Also, A was taken as
the real root of (9.29) giving minimal stress energy. The corresponding
estimate for the stiffness, represented in Figure 9.3 by the lower solid line,
goes significantly higher than the previous estimate and, what is most
important, passes smoothly through the critical angles. However, this
estimate is unsatisfactory for large a. For large a the 'generalized7 wedge
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must in fact behave like a closed elastic ring, for which OTQ = M/2?rr2,
arr = (Tee = 0 at all points, and the stress energy is equal to

1 lMO n 1 olQ J M 2

2J^d (9.38)2,
R

consequently the dimensionless stiffness C(v) is C = M/Q.GR2 = 4?r.
Thus for large a each increase of a by n must increase the dimensionless
stiffness by 4TT, SO that dC/da ~ 4 and we have the asymptotic formula

C = 4a- 6{y). (9.39)

To obtain a very accurate estimate of the dimensionless stiffness, Budi-
ansky and Carrier (1973) used the fact that for a = TVTT/2, where N is
an integer, all the roots of (9.29) are real and are expressed by a simple
formula,

777,

A = - - l , (9.40)

where m is an integer. For the elastic field one can take an expression
in the form of the sum of a large number of solutions of the type (9.30),

A

L i , (9-41)

where K > N, and m is positive. (The last term corresponds to the
root that is equal to zero, and is expressed by just the same formulae
as in (9.7).) The coefficients Am are also obtained from the condition
of minimality of the stress energy W. The results of the corresponding
calculations are represented in Figure 9.3 by the upper solid line. It is
evident that this estimate is considerably higher and, what is important,
is compatible with (9.39). The calculations give the following values for

6(0) = 1.92, 6(0.25) = 1.68, 6(0.5) = 1.48.

This example shows that self-similar solutions can be used success-
fully to obtain estimates of the bulk characteristics of non-self-similar
solutions of the non-idealized problems. The investigation conducted
by Budiansky and Carrier shows, however, that such use of self-similar
solutions should be made only with great care. In fact, for example, for
all a < a* the solution at large distances from the tip is well approxi-
mated by the Carothers-Inglis solution. It would seem that this implies
the possibility of using the latter solution to estimate the stiffness for
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234 9. Scaling in the deformation and fracture of solids

a < a*. This leads, however, to an unnatural decrease in stiffness, con-
nected with the unsuitability of the self-similar solution for describing
the stress field close to r = i?, which makes an essential contribution to
the stress energy .

9.2 Similarity laws for brittle and quasi-brittle fracture

9.2.1 Basic concepts of fracture mechanics

The classical theory of elasticity does not allow us to determine the
strength of a body or structure directly. The reason is that this theory
is a linear one. In fact, the components of the stress are related to the
components of small deformation (strain) by Hooke's law, which is lin-
ear. The components of small strain are linear combinations of space
derivatives of the elastic displacement components. Therefore, after sub-
stitution of the relations for stress into static equilibrium equations that
are linear with respect to stress components a linear system of differen-
tial equations for the displacement components is obtained. Moreover,
in typical problems in elasticity either the actual components of the dis-
placement or the acting loadings i.e., ultimately, linear combinations of
displacement space derivatives, are prescribed at known boundaries.

The linearity of the elasticity theory leads to a result that is in obvi-
ous contradiction to everyday experience. Let a solution be obtained for
stress a and elastic displacement u corresponding to a certain load P.
Then, increasing the acting load arbitrarily, say C times, where C can
be arbitrarily large, so that Pi = CF, we obtain that the solution to
an elasticity problem always exists and can be represented in the form
O\ = Co, Ui = CVL. Therefore from the viewpoint of classical elastic-
ity theory the structure can support arbitrarily large loads, so that the
very statement of the strength problem is impossible. To obtain the
fracture phenomenon within a mathematical model of deformable solid
a certain nonlinearity is necessary; though obviously not every sort of
nonlinearity makes the fracture phenomenon possible. Meanwhile, for
many materials (metals, ceramics, polymers) under ordinary conditions
the strains before fracture are small and generally plastic deformations
are either completely absent (brittle fracture) or concentrated in a tiny

Remember the analogous situation in the Guderley very intense implosion problem,
and the von Weizsacker-Zeldovich impulsive loading problem.
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vicinity of the fracture surface (quasi-brittle fracture)^ so classical elas-
ticity theory should be applicable! Therefore the first strength theories
that were proposed complemented the elasticity theory by certain local
fracture conditions. These conditions bounded the stresses in a struc-
ture by a certain constant, which was considered as a material property.
It was assumed, more precisely, that the fracture occurs when a certain
(positive definite) combination of stress components reaches a limiting
value and in the place where the latter is reached.

The crucially important step in the construction of the mathematical
model of brittle fracture was performed by the great British scientist and
engineer A.A. Griffith (Griffith, 1920). He understood that representing
the shape of a structure in an ideal form as in the drawing of a designer
we define the boundaries of the body incompletely. In fact, along with
'legitimate' boundaries every structure always contains defects - flaws
and cracks - whose surfaces also form a part of the boundary of this
structure. But the strength theories mentioned above, complementing
elasticity theory by a certain bound to stresses, are in principle inappro-
priate for the calculation of structural strength for bodies with cracks,
since at the crack tip the stresses according to elasticity theory are al-
ways infinite.

Cracks are capable to extend under increasing loads and this very
aspect makes the elasticity problem for a body with cracks essentially
nonlinear even for perfectly linear elastic materials. Therefore in the
fracture problem a certain additional material property must appear
that characterizes the material's resistance to crack propagation in it.
As such a property Griffith himself chose the energy of crack formation
per unit area. Irwin (1949) and Orowan (1949) extended the Griffith
concept to more realistic quasi-brittle fracture, and so enlarged in an
essential way its field of applicability.

A different, force, approach to the theory of brittle and quasi-brittle
fracture, based on explicitly taking into account 'cohesion forces' that
complement the basic loads was developed by the author (Barenblatt,
1959a). It was shown (Barenblatt, 1964), that the estimation of a lim-
iting load, i.e., of the structural strength, leads, from a mathematical
viewpoint, to a global problem: the determination of the existence do-
main (for the given loading parameters) of the solution of a nonlinear
problem, the elastic equilibrium of a body with cracks. The last problem
belongs to a class of complicated free-boundary problems (the cracks are

Everybody remembers a china cup or vase broken in childhood. The child tries
to put the pieces together, and seemingly there is no difference from what was
before, but punishment is inevitable.
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236 9. Scaling in the deformation and fracture of solids

able to extend with increasing loads), so it is unrealistic to expect an
analytic result for more or less general cases. Therefore the value of ex-
periment, numerical and physical, increases and, consequently, so does
the role of scaling and similarity rules. We refer for the details of the
fracture problem statement to the reviews by Irwin (1958), Barenblatt
(1962), Barenblatt (1964), Raizer (1970) and Barenblatt (1993c) and
the monographs by Muskhelishvili (1966), Panasyuk (1968), Liebowitz
(1968a,b), Landau and Lifshitz (1986), Bui (1977) and Hahn (1976).
We will restrict ourselves in this and the following sections to discussing
the scaling laws for static brittle and quasi-brittle fracture where time
effects are negligible (Barenblatt, 1956, 1962, 1964).

The plastic head of a crack for a classical example of quasi-brittle
fracture - a crack in organic glass - is presented in Figure 9.4(a). As we
see, the head size is small, of order of a few hundredths of a millimetre.
So, we take as the crack surface under such circumstances the sharp
boundary between the elastic region (region 2 in Figure 9.4(6)) and the
strongly plastically deformed region (the so-called 'crazy', white region,
i.e. region 1 in Figure 9.4(a)). In our approach the forces G(s) (Figure
9.4(6)) acting from the side of the plastic head on the elastic region
should also be taken into account in addition to the basic loads. In
the ideal case of purely brittle fracture such forces also exist: they are
the molecular cohesion forces. Therefore the forces G(s) are unified by
the common title cohesion forces. Thus, some additional dimensional
quantities should enter into consideration: the crack head size d, which
is, generally speaking determined by the load and by the microstructure
of the material, as well as a characteristic magnitude of the cohesion
forces, GQ.

Analysis shows that for a wide class of practically important cases
of brittle and quasi-brittle fracture two basic hypotheses (Barenblatt,
1959) can be applied:

(1) the smallness of the crack-head size d in comparison with the total
crack length / (d/l <̂C 1), and

(2) the autonomy of the crack head, i.e., the property that in the
mobile equilibrium state' the form of the crack head (and, conse-
quently the distribution of the cohesion forces) is identical for all
cracks in a given material under fixed external conditions (temper-
ature, pressure and composition of the ambient medium, etc.).

At the state of mobile equilibrium the cohesion forces reach a maximum value, so
that the crack starts to extend even at slight increasing of the load.
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Figure 9.4. The crack head in a quasi-brittle fracture: (a) photograph of
a crack head in organic glass (Van den Booghart, 1966), and (6) schematic
of the cohesion forces in a quasi-brittle fracture.

The condition of boundedness of stress and strain at the crack tips pro-
posed by S.A. Christianovich (Zheltov and Christianovich, 1955; Baren-
blatt and Christianovich, 1955) was also used in this approach.

The first hypothesis is in fact a definition of the class of cracks under
consideration; the proposed approach is inappropriate for the consid-
eration of crack formation and the early stages of its extension. The
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autonomy of the crack heads is explained by the very large magnitude
of the cohesion forces, which are much larger than the characteristic
magnitude of the applied loads ao, so that o~o/Go ^ 1> a nd by the
short distance-range action. Owing to these hypotheses the whole the-
ory of brittle and quasi-brittle fracture is an intermediate-asymptotic
one. It turns out that the quantities Go and d do not enter the theory
separately. The only material property in this theory in addition to the-
ordinary elasticity constants (Young's modulus, Poisson's ratio) is the
fracture toughness, or cohesion modulus:

d G{s)ds v

* • /

(9.42)

o
The cohesion modulus is a material property and is independent of the
shape of the crack as a whole, the form of the body, the loading, etc.
namely because of the autonomy of the crack head, since the crack head
size d and the distribution of cohesion forces G(s) in the state of mobile
equilibrium are identical for all cracks in a given material under given
external conditions. The cohesion modulus (9.42) enters the problem
statement in the following way. Consider a structure with given cracks
and applied loads (without taking into account the cohesion forces).
According to elasticity theory the tensile stress a at the crack tip is
singular:

V5

where s is the distance inside the body from the crack tip. The quantity
AT, called the stress-intensity factor, obtainable from the solution to
the linear elasticity problem when the crack tip position is prescribed,
depends linearly upon the applied loads. It depends also upon the shape
of the structure and the cracks in it. A fundamental formula relating
the stress-intensity factor N to the specific energy released at virtual
crack extension (also obtainable from the solution to the linear elasticity
problem) was obtained by Irwin (1957). In the simplest case of an
isolated rectilinear crack N is a function of its length. According to
the above hypotheses,

7T

at the points of the crack contours where the mobile equilibrium state is
reached. This relation in fact determines the position of the crack con-
tours; in the simplest case it is an equation for the crack length. This
very condition makes the problem of the elastic equilibrium of a body
with cracks an essentially nonlinear freie boundary problem in elasticity
theory. The dimension of the cohesion modulus K is FL~3/2, where F
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is the force dimension. It characterizes the crack-extension toughness
of a material and is a material-strength property that is independent of
the elastic constants. It can be related (Barenblatt, 1959) to another
material-strength property, the specific energy of crack formation, i.e.,
the energy expended per unit area of crack extension, introduced and
used by Griffith in his fundamental paper (Griffith, 1920). The cohe-
sion modulus if, introduced in the paper Barenblatt (1959) should be
distinguished from another fracture toughness characteristic of the same
dimensions, Kic, introduced nearly simultaneously by Irwin (1960), and
determined by the start of catastrophic crack extension. The latter re-
quires instability of in the original mobile equilibrium state. The auton-
omy of the crack head is not achieved, generally speaking, if the original
state at which the crack starts to extend is unstable. Therefore a large
scatter in the experimental values of the property Kic is observed.

If the cohesion forces are time independent (as well as the destruction
of bonds in the crack head), the cohesion modulus is a constant material
property. Fracture in such circumstances is called static. We give the
values of the cohesion modulus under ordinary conditions for several
materials: for organic glass K ~ 102 kgf/cm3/2, for structural steel
K ~ 25 x 104 kgf/cm3/2, for duraluminium K ~ 104 kgf/cm3/2.

The cohesion modulus (fracture toughness) should be one of the gov-
erning parameters when the similarity laws of brittle and quasi-brittle
fracture are formulated. The appearance of one governing parameter
K ~ GoVd instead of two parameters d and Go is a typical manifesta-
tion of incomplete similarity.

9.2.2 Scaling in static fracture

Let us turn to several instructive examples.

1. The first, considered in the basic paper Griffith (1920), concerns an
infinite body under plane strain with a single plane crack under the
action of a uniaxial tensile stress cr, perpendicular to the crack surface
(Figure 9.5(a)). The length I of the mobile-equilibrium crack is obviously
governed by the dimensional quantities a and K\ dimensional elastic
constants like Young's modulus do not enter the relations because the
load, not the displacement, is prescribed. We obtain from dimensional
analysis

K2

I = const —z-. (9.43)

According to the complete solution given by Griffith (1920), the con-
stant in (9.43) is l/4?r2. For the type of loading under consideration a
catastrophic crack extension, leading to complete failure of the structure,
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240 9. Scaling in the deformation and fracture of solids

starts at even the smallest increase in the load after the crack reaches
the mobile-equilibrium state. Generally speaking, though, as the next
example shows, this may not be the case.

t t - t

(a)

/

(b)

\ '

\ , \

(c)
Figure 9.5. (a) The Griffith crack under the action of a uniform tensile
stress, (b) The crack under the action of opposite concentrated forces, (c)
The crack in a compressed body is supported by opposite concentrated
forces.
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2. Let us now consider, again for the conditions of a plane strain, an
infinite body with a rectilinear crack supported by two concnetrated
forces, equal in magnitude and opposite in direction, applied at the
centres of the opposite crack sides (Figure 9.56). The size / of the mobile-
equilibrium crack depends on the cohesion modulus K and the force P
per unit thickness ([P] = FL~l). Dimensional analysis gives

p2
I = const —2 . (9.44)

According to the complete solution to the problem (Barenblatt, 1959a),
the constant here equals 1. As may be seen, under this type of loading
the reaching of mobile equilibrium is not related to the global failure of
the structure: under further loading the crack length grows but the load-
ing capacity of the structure is not exhausted. The formula (9.44) gives
a good practical basis for experimental determination of the cohesion
modulus (see Panasyuk, 1968).

3. If the resistance to a crack extension supported by the same concen-
trated forces is due to a compressive external pressure q (Figure 9.5(c)),
and not to cohesion forces, as for instance in rock massifs, where the
action of cohesive forces is negligible, then, according to dimensional
analysis,

p
I = const — . (9.45)

Q

From the complete solution (Barenblatt, 1956) we obtain the constant
in (9.45) as 2/TT. In this case unlike the previous one, the crack grows
proportionally to the tearing force P, and not to its square.

4. In the remarkable experiments of Roesler (1956) and Benbow (1960),
a punch with a small, flat point was pressed into the face of a sample of
brittle material (glass or fused silica, see Figure 9.6). A conical crack was
formed under the punch, and, as the load increased, the crack increased
in size; the diameter of the base of the cone rapidly became much larger
than the diameter of the punch.

It is natural to assume that the diameter D of the base of the conical
crack depends on the load P and on the properties of the material,
its fracture toughness (the cohesion modulus) K, which determines the
resistance of the material to crack propagation, and Poisson's ratio v.
For sufficiently large loads, the diameter of the punch d is much smaller
than the diameter of the base of the cone, and the size A of the fused
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Figure 9.6. When a punch is pressed into a block of fused silica, a conical
crack is formed. (From Benbow (I960)).

silica block is much larger than the diameter of the base of the cone, so
that these two parameters may be assumed to be non-essential'.

We therefore obtain the dimensions of the quantities involved:

[£>] = L, [P] = F, [K} = FL~3/2, M = l- (9.46)

Thus, the governing parameters P and K have independent dimensions,
and dimensional analysis immediately yields

D = (P/K)2/Z$(v). (9.47)

Benbow's analysis of the experimental data for punches of different sizes
under various loads confirmed this relation (Figure 9.7). In fact, com-
plete similarity in the parameters d/(P/K)2/3 < 1 and A/(P/K)2/S >
1 was tacitly assumed in this argument. As Figure 9.7 shows this as-
sumption is apparently correct.

5. We consider now the general similarity rules for brittle (quasi-brittle)
fracture. We repeat that when modelling fracture, one should keep in
mind the fact that it is impossible to model a structure in the idealized

t As is known from the theory of elasticity, for a given load acting on a body the
stress field in the body (which determines the size of the crack) does not depend
on the second elastic constant, Young's modulus. This is the reason that Young's
modulus here, as before, does not appear among the governing parameters.
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Figure 9.7. The experimental data on the propagation of a cone crack
in a block of fused silica confirm law (9.47), which was derived using
dimensional analysis (Benbow, 1960). The circles show the experimental
points, while the solid line corresponds to the law D ~ P 2 / 3 .

form in which it appears in the designer's drawing: there are always
defects in any object - flaws and cracks. The surfaces of the cracks
form an * illegitimate' (although very important) part of the boundary of
the body undergoing failure; the stress concentration on their contours
is very high, so that these defects are precisely where failure begins.
Therefore the first requirement for the model's structure is that it be
geometrically similar to the prototype not only with respect to its 'legit-
imate' boundaries, but also with respect to the initial defects (cracks).

The loads acting on the structure are either forces, tensions (forces
distributed along a line), or stresses (forces distributed over an area),
depending on the way in which they are applied. Thus, the problem
consists of determining the values of the force P/, tension s/, or stress
Of corresponding to failure of the structure on a geometrically similar
model. These quantities are determined by a characteristic length of the
structure / (for instance, the specimen thickness), the fracture toughness
(the cohesion modulus) K, and the dimensionless Poisson ratio v\

Pf,sf,<Tf = f(l,K,v). (9.48)

The dimensions of the governing and determined parameters in the LFT
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class are [Pf] = F, [8f] = FL~\ and \af] - FL~2, [I] = L, [K] =
FL~3/2, H = 1. respectively. Thus

(9.49)
K(M)

Sf K(M)

(the fracture toughness of the material for the model's structure may
differ from that of the prototype's structure; however, it is important
that the model material also be brittle or quasi-brittle).

If the plastic deformations incident to failure are not confined to the
narrow region around the crack but occupy a significant portion of the
structure (this is called ductile failure), a new governing parameter with
dimensions of pressure appears: the yield stress ay. In this case, we
have an additional similarity parameter,

^ I , (9.52)

for which the name Irwin parameter or Irwin number has been proposed
(in honour of the American scientist and engineer G.R. Irwin, who has
made fundamental contributions to the study of fracture mechanics). In
particular, Irwin (1960) was the first to establish the decisive influence
of a parameter equivalent to / on the characteristics of ductile failure
and on the transition from quasi-brittle to ductile failure.

The necessity of complying with the similarity conditions (equality of
the Irwin similarity parameter) for the model and prototype structures
creates particular difficulties in modelling. In fact, the Irwin parameter is
physically the square root of the ratio of the length scale of the structure
to the intrinsic structural parameter of the material K2 joy, which is, to
an order of magnitude, equal to the length of the plastic zone near the
crack tip. Thus, it is impossible to carry out tests in plastic materials
on a model structure made of the same material under identical external
conditions*. If the similarity conditions i/(M) = i / p ) and 7(M) = 7( p )

are satisfied, the scaling of loads from model to prototype may be carried
out using the same equations (9.49)-(9.51).

Goldstein and Vainshelbaum (1978) have suggested that modelling should be car-
ried out by testing models of the same material at different temperatures: the
intrinsic scale of the material / f 2 /^ , increases strongly with increasing tempera-
ture. This proposal rests on an essential assumption that all of the dimensionless
characteristics of the material remain unchanged under temperature changes.
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9.2.3 Scaling in fatigue

Fatigue - the gradual failure of a structure under a pulsating load, in-
evitable in contemporary structures, especially aircraft, is now the great-
est challenge for engineers and mathematicians working in material sci-
ence. In some sense it is an analogue of turbulence in solids (cracks and
flaws forming a dynamic cascade corresponding to vortices in fluids (see
the next chapter)).

In the absence of a theory, technological tests such as the traditional
fatigue experiment are very important. In this experiment the specimen
(a notched or slotted bar or plate) is loaded by a pulsating tensile load
at constant frequency and amplitude. At the edge of the notch a fatigue
crack is formed, and its propagation is recorded. In 'multicycle' fatigue
experiments the number of cycles before the failure is of the order of
millions. In the fundamental paper by Paris and Erdogan (1963) the
following scaling law was discovered,

^ = yl(A7V) , (9.53)
an

where / is the crack length, n is the number of cycles, dl/dn is averaged
over the cycle; AN = ATmax — iVmin is the stress intensity factor ampli-
tude, and A, m are certain constants. The scaling relations (9.53) are
well confirmed by experiment (Figure 9.8).

As we know, scaling laws never appear by chance but always reveal the
self-similarity of a phenomenon; the scaling law (9.53) is no exception.
Therefore, the question arises, what kind of self-similarity is this, and
- most important - what are the constants A and m? More precisely,
are they material properties or do they depend also on the specimen
size? Usually designers estimate the lifetime of structures on the basis
of the relations like (9.53); therefore, the question is of basic practical
importance.

We consider here the phenomenon of fatigue crack propagation on the
basis of the similarity approach (Barenblatt and Botvina 1981, 1983).
The average velocity dl/dn can depend, in principle, upon the follow-
ing quantities: AN = iVmax — Nm\n, R — Nmax/Nm\ni the so called
loading asymmetry (-/Vmax and iVmin are the maximum and minimum
stress-intensity factors over a cycle), / , the frequency; t, the time; /i,
a characteristic specimen length scale (for instance, its thickness); the
material properties, the yield stress ay (detailed fatigue fracture surface
analysis shows that local yield plays an important role), and a fracture
toughness property. Here, for the latter, we take KJC because plentiful
experimental data is available in the literature.
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Figure 9.8. Kinetic diagram for fatigue crack growth in the aluminium
alloy BT-3-1 (Botvina, 1989) confirms the scaling law (9.53) in the major
part of the crack velocity range.

Dimensional analysis gives in a standard way
2

where

(9.54)

(9.55)

is the basic similarity parameter. It is natural to consider an inter-
mediate-asymptotic stage in the multicycle fatigue process where the
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influence of the argument ft disappears. The beginning of this stage is
clearly marked by the appearance at the fracture surface of a regular
system of striations.

The argument AN/Kic is small, and it is expedient to consider the
asymptotic relations for AN/Kic <C 1. Two possibilities appear: com-
plete similarity when the limit of the function $ at AN/Kic —> 0 is
finite and different from zero, and lack of complete similarity. In the
case of complete similarity the following scaling relation is obtained for
AN/KIC < 1:

i-(£)9™
i.e., the scaling law (9.53) with m = 2; in practice this is hardly ever
found, except for some aluminium alloys. According to the general pro-
cedure outlined in chapter 5 we now assume incomplete similarity in the
parameter AN/Kic < 1 at the intermediate stage of the fatigue crack
extension. We obtain

i.e., exactly the Paris-Erdogan scaling law (9.53) with

A = ' f f » m = 2 + a(R,Z). (9.58)

Therefore the constants A and m depend not only upon the material
properties and the asymmetry of loading, but, through the basic param-
eter Z, upon the specimen size h. The processed experimental data show
that this dependence can be very strong (Figure 9.9) so that designers
must exercise caution when using the results of the standard fatigue
tests performed on small specimens for predicting the life-time of large
structures.

9.2.4 Scaling in creep

The phenomenon of creep is characteristic for metals, in particular at
elevated temperatures. In a common tensile test, under a constant stress
cr, the strain

e = ^ , (9.59)
to

where Al is the specimen elongation and 1$ is the original specimen
length is slowly growing with time; this is the phenomenon of creep.
Usually three stages of creep are distinguished (Figure 9.10): / , unsteady
creep, as a rule a short stage; / / , steady creep; 777 terminal unsteady
creep. Stage 77 is the longest and most interesting practically; at this
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Figure 9.9. The dependence of the exponent in the Paris-Erdogan law
(9.53) on the similarity parameter Z for 4340 steel for specimens of vari-
ous orientations (A,LyT) with respect to rolling direction: o, A\ •, L\ x,
T. From Barenblatt and Botvina (1981) on the basis of data from Heiser
and Mortimer (1972).

stage the strain rate e is constant in time. The relationship between this
constant strain rate e and the stress cr, the creep constitutive equation, is
an important material property. The creep phenomenon was discovered
by Andrade (1910). In this paper (see also Bailey, 1929 and Norton,
1929) was proposed a scaling relation

e = Aam (9.60)

where A and m are constants. Since that time many other constitutive
equations have been proposed, of both scaling and non-scaling type.
Sometimes scaling constitutive equations are considered simply as or-
dinary approximations among empiric formulae representing creep ex-
perimental data in different, non-scaling form. However, here again the
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e = const ^ ^ ^ II

Figure 9.10. Various stages of creep. At the longest and most practically
interesting stage, //, of steady creep, the strain rate is constant.

applicability of a scaling law demonstrates a deep physical property of
steady creep: its self-similarity.

We shall derive the scaling law (9.60) from a basic assumption: in the
steady-creep process under consideration there exists no characteristic
material time scale.

Indeed, in this steady-creep process, in order to support a constant
strain rate e\ a certain constant stress o\ has to be applied to the spec-
imen. The stress G\ depends on ei and perhaps on some additional
parameters, among which, however, there exists no characteristic time
scale. In fact, the stress in a steady-creep process is constant and, more-
over, there is no characteristic time scale of the material governing the
phenomenon, owing to the basic assumption. Let us now consider an-
other steady-state process for the same material under the same external
conditions (temperature, ambient atmosphere, etc.) but corresponding
to a different strain rate t<i\ to support it a stress o~2 is necessary. Owing
to the lack of a characteristic time scale of the loading process or of the
material, the ratio 0-2/0-1 can only depend on the ratio 62/ei:

v = *(7) • (9-61)

°\ \ e i /
If a certain characteristic time r were available, the function ip would
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also depend on the argument ri\\ the quantity e obviously has inverse
time at its dimension. A similar equation is obtained for a third strain
rate is and stress as, so that

(9.62)

(9.63)

and we obtain from (9.61) and (9.62)
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Figure 9.11. Pore size distributions in (a) natural coordinates, N being
the number of pores of size I (Cane and Greenwood, 1975), and (b) uni-
versal coordinates, for crystalline iron specimens (0.006% carbon)tested
in creep under 9.3 MPA tensile stress at 700 °C. (1) e = 2.1%, t = 23
hours; (2) e = 6.2%, t = 142 hours; (3) e = 9.3%, t = 262 hours. ATmax,
maximum statistical frequency; /max, corresponding pore size (Barenblatt
and Botvina, 1986).
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Note now that owing to the lack of characteristic time scale the process
with strain rate k\ is not a distinguished one. Therefore the relation
(9.62) will still be valid if a\ is replaced by &2 and e\ by e2:

— = ^ ( -r- ) , (9.64)

where <p is the same function as in (9.61), (9.62) and (9.63).
From (9.63) and (9.64) we obtain a functional equation for the function

V {x = c2/ci, y = e3/ei),

<p(y)
cp(x)

(cf. chapter 1), whose solution is (p(z) = za, whence, denoting 02 and
€2 simply by a and e, and n = I/a, A = erf nei, we obtain the relation
(9.60).

An independent argument in favour of our basic assumption concern-
ing the self-similarity of steady creep can be obtained from measuring
pore size distributions at various strains within the steady-creep range
(Figure 9.11). As it is seen, the pore size distribution transforms during
the steady-creep process in a self-similar way.

An important point is related to the fracture process under conditions
when the cohesion forces deteriorate in time (owing, for instance, to
fluctuational breaking of bonds between the microstructural elements).
Under wide assumptions, in this case the cohesion modulus K is not
a constant, but a universal (for a given material under given external
conditions) function of the velocity u = dl/dt of the crack extension rate
(/, crack length, t, the time): K = K(u). The following scaling law was
proposed for the latter relation:

K — An171

(Vavakin and Salganik, 1975; Parvin and Williams, 1975). This scaling
law again demonstrates the self-similarity of the cohesion-force deteri-
oration process and can be derived from the basic assumption of the
lack of a characteristic time scale. This time, however, A and m are the
material constants.
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Scaling in turbulence

10.1 Homogeneous and isotropic turbulence

10.1.1 The problem of turbulence

This chapter differs from the previous ones in that scaling laws and
self-similar solutions of the first and second kind will be established
by making essential use of experimental data and without turning to
a mathematical formulation of the problem, which, for turbulence, is
lacking at the present time.

The problem of turbulence, to which this chapter is devoted, is consid-
ered with good reason to be the number-one problem of contemporary
classical physics. Discovered by Leonardo and baptized by Lord Kelvin ,
it has attracted the greatest minds of the century, including such giants
as W. Heisenberg, A.N. Kolmogorov, G.I. Taylor, L. Prandtl, and Th.
von Karman. Nevertheless, it remains an open problem: none of the
results available has been obtained from first principles. They are based
essentially on strong additional assumptions, which may or may not be
correct.

The phenomenon of turbulence, as is well known, consists in the fol-
lowing. As we have seen in chapter 1, the basic similarity parameter
that governs the global properties of the flow of an incompressible vis-
cous fluid is the Reynolds number pUl/fi (p being the density and \i
the viscosity of the fluid, U a characteristic speed, and I a characteristic

Professor U. Prisch showed me the place in the diaries of Leonardo where the word
'turbulent' was used in exactly the same sense as we use it now. An instructive
case of congeniality!
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length scale of the flow). When the Reynolds number reaches a certain
critical value Recr, different for different flows (for example, for flow in a
smooth cylindrical pipe of circular cross section, Recr ~ 103, for flow in a
boundary layer, Recr ~ 105), the character of the flow changes suddenly
and sharply. A stream that at subcritical values of the Reynolds number
was regular and ordered - laminar - becomes essentially irregular both
in time and in space. The flow properties for supercritical values of the
Reynolds number undergo sharp and disorderly variations in space and
time, and the fields of flow properties, - pressure, velocity, etc. - can to
a good approximation be considered random. Such a regime of flow is
called turbulent.

At the present time there exist only more or less plausible conjectures
regarding the origin of turbulence, sometimes very interesting, but not
having conclusive strength. Also, there exists no complete mathematical
description of developed turbulent flows. Under these circumstances,
in all attempts to create theoretical models valid for certain classes of
turbulent flows though not pretending to be universal, similarity, scaling,
and renormalization group considerations occupy a primary place.

Together with the majority of investigators, we shall start from the
assumption that, for velocities small compared with the speed of sound,
turbulent motion can actually be described by the equations of motion
for a viscous incompressible fluid, i.e., by the Navier-Stokes equations
for momentum balance and the continuity equation, which in rectan-
gular Cartesian coordinates can be written in the form (Kochin, Kibel'
and Roze, 1964; Batchelor, 1967; Germain, 1986a; Landau and Lifshitz,
1987)

1
tu% ua aut - ^ %p ut, ^ ^

daua =0.

Here the ui are the components of the velocity vector, v = fi/p is the
kinematic viscosity, p is the pressure, and one sums over repeated Greek
indices from one to three.

To construct, for instance numerically, a solution of these equations
corresponding to some special realization of a developed turbulent flow is
impossible in view of their extreme instability . Hence, and also in view
of the possibility noted above of considering the properties of a turbulent
flow field as random, the description of turbulent flows is always given in

All attempts at the direct numerical simulation of turbulent flows are related
to values of the Reynolds number for which the flow cannot be considered as a
developed one.
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statistical terms. As is known (for details see, e.g., Monin and Yaglom,
1971, 1975), a sufficiently complete description of a developed turbulent
flow is given by a set of mean quantities

<txi(x,t)), (p(x,t)) (10.2)

and moment tensors
Bijk . . . = (ui(x,t)uj(xut)uk(x2it)... ) ,
BPij . . . = (p(x1t)ui(xut)uj(x2,t)... ) ,

for all possible point systems: x, Xi; x, Xi, X2; x, Xi, X2, X3, —
Here the sign (...) denotes the probability mean value. Taking proba-

bility mean values is used in theoretical work on turbulence as a natural
method of averaging. In experimental practice, one uses volume or time
means, the identification of these types of averaging with the taking
of probability means being made on the basis of the so-called ergodic
hypothesis.

A system of equations for the moments can be obtained by multiplying
(10.1) by the velocity components at different points of the flow and
subsequently averaging. This was done by Keller and Friedmann (1924).
As a special case one obtains a non-closed set of equations for the mean
quantities, first given in the fundamental paper of Reynolds (1895).

10.1.2 Homogeneous isotropic turbulence

Essential progress in the development of a statistical theory of turbulence
occurred when Taylor (1935) introduced the idea of considering homo-
geneous isotropic turbulence. This idea gained additional fundamental
significance after Kolmogorov (1941) and Obukhov (1941) predicted that
at small scales all developed turbulent flows (i.e., flows at large Reynolds
numbers) are statistically identical and therefore have the properties of
homogeneity and isotropy. A flow is called homogeneous and isotropic
if all its moment tensors remain unchanged upon translation, rotation,
or mirror reflection with respect to some plane, of the system of points
x, Xi, X2, (To be unchanged means that in a coordinate system
arranged relative to the transformed system of points in the same way
as the original coordinate system was arranged relative to the original
system of points, the values of the components of the tensor remain the
same.) For a homogeneous isotropic flow the mean velocity vanishes,
and the number of independent components of moment tensors is sub-
stantially reduced, as well as the number of quantities on which they
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depend. Thus in an arbitrary Cartesian coordinate system the com-
ponents of the second-order moment tensor for the velocity field of a
homogeneous isotropic flow are expressed in the following way:

Bij = (ui(x, t)uj(x + r, t)) = (BLL - BMM^J/T2 + BNNSi5 . (10.4)

Here r = |r| is the distance between points, the & are the components
of the radius vector r joining the two points x and Xi = x -f r, t is the
time, and

BLL{r,t) = (uL(x,t)uL(x + r,t)),

BNN(r,t) = (u(xt)u(x + rt))

where UL is the projection of the velocity vector in the direction of the
radius vector r and UN is its projection in the direction normal to the
r. Because of the incompressibility of the flow, the quantities BLL and
BNN are connected by the relation

BNN = BLL + (r/2)drBLL . (10.6)

Thus, the second-order moment tensor for the velocity field is deter-
mined by a single scalar function of two scalar arguments, BLL(^»*)-

The situation is analogous for the two-point third-order moment tensor

Bijik = (wi(x, t)uj{x, t)uk(x + r, t)),

which, because of homogeneity, isotropy and incompressibility, can be
expressed in terms of one component, a scalar function of the scalar
arguments r and t\ for example,

BLL,L{r,t) = (u2
L(x,t)uL(x + r,t)). (10.7)

A similar reduction in the number of independent variables and inde-
pendent components of moment tensors, due to homogeneity, isotropy
and incompressibility, holds also for moments of higher order.

We turn now to the Navier-Stokes equations, multiply them by ve-
locity components at successively increasing numbers of points, take the
average, and use the symmetry relation following from the homogeneity
and isotropy of the flow. Thus we obtain an infinite system of equations,
which is, however, not closed at any finite stage because of the presence
of quadratic-nonlinearity in the Navier-Stokes equations.

The first equation of this system, connecting the two-point second and
third moments can be reduced to the form

dtBLL(r,t) = 2u^drr
4drBLL + ±drr

4BLL,L(r,t). (10.8)

This relation, connecting two unknown functions, is called the Karman-
Howarth equation. It should be noted that in the fundamental paper
of von Karman and Howarth (1938) this equation was presented in a
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different, less convenient form. It was first expressed in the form (10.8)
by Loitsiansky (1939) and Millionshchikov (1939).

The problem in its complete form consists of solving the infinite sys-
tem of equations for given initial conditions on the moments; this is the
so-called problem of the decay of homogeneous isotropic turbulence. As
a matter of fact, we have at best only very general information con-
cerning the initial conditions, and so are unable to give the complete
initial distribution of the moments. Therefore the asymptotics of the
solution for large t, which 'remembers' only some basic properties of the
initial conditions, is of particular interest. Under broad assumptions the
asymptotics can be considered self-similar.

10.1.3 The decay of homogeneous isotropic turbulence

1. If at some stage of the motion the contribution of the third moments in
the Karman-Howarth relation (10.8) is small, then this relation becomes
a closed equation for the second moment

±drrdrBLL, (10.9)

which coincides in form with the equation of heat conduction in five-
dimensional space for the case of central symmetry. Self-similar solutions
of this equation were obtained in the paper of von Karman and Howarth
(1938) (see also Sedov, 1944, 1959)); they have the form

where A, n and to are constants, and the function /(£, n) satisfies the
equation

under the conditions

/(0,n) = l, /(oo,n) = 0, (10.12)

the first of which is a normalization condition and the second of which
is obtained from a natural assumption concerning the statistical inde-
pendence of the velocities at infinitely distant points: BLL(OO,^) = 0.
The function /(£, n) so defined can be expressed, as is easily found (see
Abramowitz and Stegun, 1970), in terms of a well-known special func-
tion, the confluent hypergeometric function M(a,/?, z):

f = M(n, 5/2, -e/8). (10.13)

The spectrum of the eigenvalues n that determine the rate of decay of
the second-order moments turns out, upon direct construction of the self-
similar solution (10.10), to be continuous: a solution of (10.11) under the
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conditions (10.12) exists for any n > 0. The value of n that is actually
realized must be determined by the initial conditions of the problem, for
which (10.10) is a self-similar intermediate asymptotics.

If the initial distribution -BLL(^, 0) is such that the quantity
oo

A o = /r4BLL{r,0)dr (10.14)
o

is finite and different from zero, i.e., 0 < Ao < oo, then n = 5/2 and the
asymptotics of the solution as t —• oo corresponding to such an initial
distribution can be written in the form

Here the quantity
oo

A= f r4BLL{r,t)dr (10.16)
o

is an integral of the motion, analogous to the total amount of heat
in the theory of heat conduction; that is, it is independent of time,
A = Ao- Loitsiansky (1939) has shown that under certain assumptions
this quantity remains independent of time even when third moments are
taken into account.

One can prove, using properties of the confluent hypergeometric func-
tions, that the solutions (10.10) with n > 5/2 have A equal to zero.
These solutions are in a certain sense structurally unstable with respect
to the initial conditions. In fact, if perturbations of such solutions have,
say, small but finite Ao, then for sufficiently large t only the contribution
of the perturbation will govern the decay law, since it corresponds to the
smallest n:n = 5/2. For this reason self-similar solutions with n > 5/2
are of rather lesser interest. On the other hand there is considerable
interest in solutions with n < 5/2, for which A = oo. These solutions
can be represented in the form

5-2n

(10.17)

where Ao and / are constants having dimensions L7T~2 and L, respec-
tively; they are chosen so that A = A0/~(5"2n)^5/2~n.

It is evident that all these solutions with n ^ 5/2 are self-similarities
of the second kind, * remembering' the characteristic length scale / of
the initial distribution. (See chapter 3, where, for another problem, a
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completely analogous situation was analyzed). The situation is that the
asymptotics of the dimensionless function

r I
) £

which appears upon applying dimensional analysis to the solution of the
original non-self-similar problem, has, for small 77, the form

Therefore the characteristic length scale I of the initial distribution ap-
pears in the constant A governing the solution, but only in combination
with Ao; therefore it does not spoil the self-similarity.

We note that the stage of development of homogeneous isotropic tur-
bulence at which the third-order moments are negligibly small is some-
times called the final stage of decay. It is sometimes argued that at this
final stage the velocity is small and hence so are the third-order mo-
ments, which are of the order of the velocity cubed and therefore small
compared with the second-order moments, which are of the order of the
velocity squared. Such an argument is insufficient. Actually, a stage at
which the third-order moments are negligibly small can occur only at
the start of the motion with a special choice of initial conditions.

(a) (b)

Figure 10.1. Turbulizing grids, used by S.C. Ling and co-workers: (a)
passive; (6) active.

2. Prom the very first appearance in the papers of Taylor (1935) of the
concept of homogeneous isotropic turbulent flow, attempts have been
made to model this by the decay of turbulence in wind and water tun-
nels. There is a detailed summary of this work in the paper of Gad-
el-Hak and Corrsin (1974). One should note especially the careful ex-
periments performed by Ling and his associates (Ling and Huang, 1970;
Ling and Wan, 1972) using a water tunnel - a long channel of square
section into which water was introduced through a passive or active grid
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10.1 Homogeneous and isotropic turbulence 259

of rods. Figure 10.1 shows the arrangements of grids used in these ex-
periments: passive (Figure 10.1 (a)) and active (Figure 10.1(6)). In the
active grid the rods are equipped with agitating bars that perform os-
cillating motions at speeds and frequencies that can be varied. In the
work of Gad-el-Hak and Corrsin (1974) a different type of active grid (a
'jet grid') was used; the rods of the grid were hollow and were provided
with upwind or downwind controllable nozzles evenly distributed along
each rod. Through the hollow rods and nozzles air was injected at vary-
ing rates into the flow. (In this work the experiments were performed
in wind tunnels.) Thus in all these experiments turbulent fluctuations,
introduced into the flow by a grid, then decayed as the fluid moved
downstream. Here the fluctuations of velocity become close to isotropic
even at small distances from the grid. Figure 10.2 shows the ratios of
the mean square fluctuations of the measured longitudinal and trans-
verse components of velocity (Ling and Huang, 1970); it is evident that
they are close to unity. We see that if one takes as the time the quantity
t = x/U (U being the mean velocity of the flow and x the coordinate
measured along the channel downstream from the grid), then the pattern
of decay of turbulence along the channel corresponds sufficiently well to
the scheme of decay of homogeneous isotropic turbulence in time. (The
homogeneity was also specially checked by moving gauges, by means of
which velocities were measured in the cross-flow planes x — constant.)
This idea for the implementation of homogeneous isotropic turbulent
flow was proposed and realized for the first time by Taylor (1935).

1.1

<£i.O
(v2)

0.9

•
o

0 40 80 120 160 200 240 280
x/M

Figure 10.2. Velocity fluctuations in the turbulent flow behind a grid are
nearly isotropic: o, ReM = 470, M = 1.78 cm, M/d = 2.8, U = 2.9
cm/s; • , ReM = 940, M = 3.56 cm, M/d = 2.8, U = 2.9 cm/s; A,
ReM = 840, M = 3.18 cm, M/d = 5.0, U = 2.9 cm/s. From Ling and
Huang (1970).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.013
https://www.cambridge.org/core


260 10. Scaling in turbulence

The statistical properties - the moment tensors of the turbulent mo-
tion under consideration - are thus governed by the mean velocity U of
the flow, the characteristic length scale M of the grid, the thickness d of
the rods, the viscosity coefficient is, and the quantities r and t—to, where
to is the effective origin of time, about whose determination something
will be said below. Furthermore, for active grids of the type used by Ling
and Wan (1972) the moments are governed also by the speed Vp and fre-
quency of oscillation u of the tips of the agitating bars; for the active
grids used by Gad-el-Hak and Corrsin (1974) an additional governing
parameter for the moment tensors is the injection ratio J = Qi/Q (Qi
being the flux rate of gas supplied through the hollow rods of the grid
and Q the flux rate of gas supplied to the grid).

Dimensional analysis gives for the two-point moments of second and
third order,

^ ( - ^ ) (10.18,

where the $'s are dimensionless functions of their dimensionless argu-
ments

r M M
C = yJvit-toY 7]~ (X-XO) = U(t-t0)'

of the grid parameter M/d and the Reynolds number MU jv of the grid,
and also of the parameters characterizing the activity of the grid.

It is of interest to consider the motion at sufficiently large distances
from the grid such that M/U(t — £ 0 ) ^ 1 a nd o n e c&n assume that
random details of the initial conditions at the grid no longer influence
the flow. The simplest assumption is that for 77 <C 1 there is complete
similarity in the parameter 77. Such an assumption was introduced by
von Karman (von Karman and Howarth, 1938), supposing that it is
satisfied for large Reynolds numbers. Under the assumption of complete
similarity in 77 for 77 <C 1, one must have at sufficiently large distances
from the grid the relations

BLL(r,t) ( M MU \ A
= / ( ^ ) B { 0 t ) =

BLL,L(r,t) ( M MU

Here A is a constant depending on the initial conditions at the grid.
Equations (10.20) and (10.21) were proposed by Dryden (1943) and Se-
dov (1944).
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10.1 Homogeneous and isotropic turbulence 261

Next in degree of complexity is the assumption of incomplete similarity
in the variable 77 for rj <C 1. In this case one must have at large distances
from the grid the relations

BLL(r,t)= t M MU
BLL(o,t) /V*

M MU \
Y , —,:.) , (10.25)

MU \
) (10-26)

Here A, B and a are again constant quantities. The equality of the pow-
ers to which 7] — M/U(t—to) appears in the expressions for BLL^, t) and
BLL,L{T, t) follows from the Karman-Howarth equation (10.8), which re-
lates these quantities.

We turn to the results of experiments. In Figures 10.3 and 10.4 are
shown the results of measuring the correlation function

f = BLL{r,t)
1 BLL(0,t)

in the cases of a passive grid (Ling and Huang, 1970) and an active grid
(Ling and Wan, 1972) as a function of £ = r/[i/(t - to)]1 /2 (the effective
origin to being appropriately defined, see below). It is evident that in
each case the experimental points lie close to a single curve, different for
each different case. This confirms the self-similarity of the correlation
function / , but does not determine the character of the self-similarity
of the moment tensors; it is evident from (10.20) and (10.23) that a
corresponding result must hold in both cases, for complete as well as for
incomplete similarity.

In Figure 10.5 and Figure 10.6 are shown the results of measuring the
quantity I?LL(0, t) for, respectively, passive grids of different types (Ling
and Huang, 1970) and active grids (Ling and Wan, 1972). It is evident
that in all cases the decay, even at small distances, follows the law

BLL(0,t)= ( t J * t o ) w , n = l + a . (10.27)

The method for determining the effective origin of time t0 is shown
in Figure 10.7. The scaling law of decay BLL(0,t) = (u2) ~ (t - to)~

n

leads to the fact that for large t the quantity [U2/(u2)]1/71 must be a
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262 10. Scaling in turbulence

15

Figure 10.3. The correlation function / for flow behind a passive grid is
self-similar: all experimental points lie on a single curve /(£)• From Ling
and Huang (1970).

1.0

Figure 10.4. The velocity correlation functions for flow behind an
active grid are self-similar: all experimental points lie on a single
curve /(£)• Curve 1, VP/U = 3; curve 2, VP/U = 17. From Ling
and Wan (1972).

linear function of time. Hence the intersections with the time axis of the
straight lines drawn through the experimental points give the values of

t0.
We see that in all cases the exponent a turns out to be different from

zero: it is equal to unity for passive grids, 0.73 for an active grid with
Vp/U = 3, and 0.35 for an active grid with Vp/U — 17. This exponent
thus depends on the initial conditions, i.e., the conditions at the grid.

The paper by Gad-el-Hak and Corrsin (1974) contains results of the
data processing of other experiments of various researchers. In treating
the variation of the quantity £?LL(0,£) with t, this dependence was as-
sumed to be a scaling law in accordance with (10.27). In some cases the
turbulence was found to be weakly anisotropic, so the decay exponents
are presented, in this paper, for all three components of velocity fluc-
tuation. The experiments were performed on passive grids, as a rule,
but the results of some experiments performed on active grids are also

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.013
https://www.cambridge.org/core


10.1 Homogeneous and isotropic turbulence

1 0 " 1 -

263

1-210

QQl 1 0 " 3
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10 1000100
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Figure 10.5. The moment B^z^O,*) behind a passive grid decays accord-
ing to a scaling law, but the exponent is different from unity. Different
curves correspond to different combinations of passive grids. Prom Ling
and Huang (1970).

Figure 10.6. The moment B^L^,*) behind an active grid decays
according to a scaling law, but the exponent is different from unity.
Curve 1, Vp/U — 3; curve 2, Vp/U = 17. From Ling and Wan,
(1972).
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264 10. Scaling in turbulence

60 r-

-20 0 200

Figure 10.7. Determination of the effective origin of time, to, according
to Ling and Huang (1970), for the case of a passive grid.

presented. In these experiments on active grids, as already mentioned, a
grid of hollow rods was used with nozzles through which air was injected
into the flow. The dependence of the exponent on the injection ratio J
is shown in Figure 10.8.

yCA
1 i 1

r )

, i

^ ^ 1.3C

1.2

1.1

1.0

i I i I i I i I

-4 -2 6 8

Figure 10.8. Dependence on injection rate J of the exponent n in the
decay law for Bn,{0,t), for an active grid. J > 0 corresponds to coflow
injection and J < 0 to counterflow injection. For J > 0 the decay is
isotropic and the exponent is different from unity, o, lengthwise compo-
nent of velocity; A,D, transverse components of velocity. From Gad-el-
Hak and Corrsin (1974).

It is evident that the exponent in the decay law depends on conditions
at the grid (the Reynolds number of the grid, and the characteristics of
its activity, J, Vp/U, a;, etc.). The exponent a turns out to be equal to
zero, i.e., the self-similarity of the decay turns out to be complete, only
in the case of enormously large Reynolds numbers of the grid, reached
by Kistler and Vrebalovich (1966).
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10.1 Homogeneous and isotropic turbulence 265

Unfortunately, third-order moments have been measured by almost
no one: one of the few papers up to now in which measurements of
third moments are given is that of Stewart (1951). In this paper the
self-similarity of the correlation function is emphasized, and attention is
especially given to the absence of a unique dependence of the quantity
BLL}L(^J t)/BLj* (0> 0 o n t n e self-similar variable for different instants of
time (Figure 10.9). This conforms to incomplete similarity of the decay
(cf. (10.26)) and would not hold for complete similarity.

0.03 r-

0.02

0.01

0.1 0.2 0.3 0.4

' (Figure 10.9. Unique dependence of the quantity BLL^(r,t)/BL'L (0,t)
on the self-similar variable is lacking - the curves for different moments
of time do not coincide, x, t = 0.041 s.; •, t = 0.0615 s.; o, t = 0.123 s.;
+, t = 0.184 s.; ^ and jf, t = 0.246 s. From Stewart (1951).

Thus we have arrived at the conclusion that in experiments the decay
of turbulenceis self-similar even at small distances from the grid, but
this self-similarity is of the second kind, so that the influence of the
initial scale - the length scale of the grid - never vanishes, but, because
of the peculiarities of homogeneous isotropic turbulence, appears only
in combination with various parameters. The exponent in the law of
decay cannot be determined from considerations of dimensional analysis,
but is selected from the continuous spectrum of possible values by the
initial conditions (the conditions at the grid), the situation in principle
being analogous to what we met above when considering the self-similar
analogue of the Korteweg-de Vries equation.

The analysis of the self-similar decay of homogeneous isotropic turbu-
lence presented above was given by Barenblatt and Gavrilov (1974).

10.1.4 Locally homogeneous and isotropic turbulence

The investigation of the local structure of turbulent flows of an incom-
pressible viscous fluid at large Reynolds numbers in the papers of Kol-
mogorov (1941, 1962) and Obukhov (1941, 1962) also furnishes very
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266 10. Scaling in turbulence

instructive examples of self-similar intermediate asymptotics of various
types. The outstanding work of their predecessor, the great British
physicist L.F. Richardson (1922), who proposed a qualitative scheme of
vortex cascade in turbulent flow, should also be acknowledged.

According to the basic hypothesis of Kolmogorov and Obukhov, at
large Reynolds numbers hydrodynamic fields have the properties of local
isotropy, homogeneity and stationarity. Local isotropy and homogeneity
mean that the moment tensors, in which the relative velocities

Aru = u(x + r, t) - u(x, t) (10.28)

appear, are homogeneous and isotropic at sufficiently small |r|. The
condition of stationarity of the statistical properties of local fields results
from the fact that the characteristic times of variation for the local fields
are much smaller than those for the basic flow.

Thus, as in the case of an ordinary homogeneous and isotropic in-
compressible turbulent flow, the tensor of second-order moments of the
quantities Aru can be expressed in terms of one of its components, for
example,

DLL = ((uL(x + r, t) - uL(x, *))2) (10.29)

(UL being, as before, the component of the velocity vector u in the
direction r). The quantity DLL, in principle, may depend on r, the
modulus of the vector r, and also on the kinematic viscosity of the fluid
i/, the external scale A, and the energy transmitted per unit time from
the large-scale motions to the fine-scale motions under consideration;
this, by virtue of stationarity, is equal to the mean rate of turbulent
energy dissipation per unit volume, (e). Introducing in place of the
viscosity the linear scale A of the motion in which viscous dissipation
occurs,

A = z/3/4(e)-1/4, (10.30)

the internal Kolmogorov scale, we have

DLL = f(r,(e),X,A). (10.31)

Dimensional analysis gives by the standard procedure

DLL = (e)2/V/3$ ( I , j) . (10.32)

The relationships valid in the so-called inertial range of scales, i.e.
for A <C r <̂C A, are intermediate asymptotics of (10.32) as r/X —• oo
but r/A —* 0. (For large Reynolds numbers, A«3C A.) In the classical
version of the Kolmogorov-Obukhov theory an assumption is implicitly
made that is equivalent to the assumption that there is a finite non-
zero limit of $(r/A,r/A) as r/X —> oo and r/A —» 0, i.e., that there is
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10.1 Homogeneous and isotropic turbulence 267

complete self-similarity in both parameters r/X and r/A. Therefore for
A < r < A we obtain the famous 'two-thirds scaling law' of Kolmogorov,

DLL = C{e)2'*r2!\ (10.33)

where C is a universal constant that must be equal to $(oo,0).
In fact, the existence of complete similarity in the parameter r/A for

small r/A is in some doubt owing to the so-called intermittency effect.
Intermittency consists in the non-uniform spatial distribution of the en-
ergy transfer rate towards smaller vortices. Indeed this energy transfer
rate is also a random quantity and the contribution of its fluctuations
in larger scales than the scale of the 'equilibrium range' r < A , which
is the only scale possessing local isotropy and homogeneity, can turn
out to be essential. This point was attributed by A.N. Kolmogorov to
L.D. Landau, although the relevant note in the book of Landau and Lif-
chitz (1987), (the first edition was published in 1944) in fact concerns a
different matter.

We therefore assume that there is complete similarity in the parameter
r/X for r/X > 1, and incomplete similarity in the parameter r/A for
r/A <C 1, so that, as r/X —• oo and r/A —• 0,

( r r \ / r \ a

A'A)^(A) ( 1 ( K 3 4 >
where C\ and a are universal constants. Then (10.32) gives

DLL = Ci(e)2/3r2/3 + aA-a . (10.35)
But we find just such a relation in the refined Kolmogorov-Obukhov
theory, which takes account of the influence of fluctuations in the en-
ergy dissipation (Kolmogorov, 1962; Obukhov, 1962). The constant a,
according to this theory, is related to a coefficient in the relation for the
variance of the energy transfer rate averaged on a scale r (see Monin
and Yaglom, 1975),

( [ ( lne) ' ] 2 )=A- / i ln r , (10.36)

so that a = fi/9. According to experimental data, \x — 0.4, so that
a ~ 0.04 and the dependence (10.35) actually differs from the two-thirds
law only slightly.

In the paper by Castaing, Gagne and Hopfinger (1990) an alternative
relation for the variance of the energy transfer rate averaged on a scale
r was proposed,

([(lne)']
2) = (r/r0)- '3 (10.37)

(ro is a constant length parameter), which exactly corresponds to the
incomplete similarity assumption. The experiments presented in this
paper confirm the incomplete similarity relation (10.37) rather than
the logarithmic relation (10.36). The authors also presented a model
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268 10. Scaling in turbulence

that leads to the relation 0 — /?i/lnRe, where (3\ is a constant, Re a
global-flow Reynolds number based on the Taylor linear scale parameter.
So, according to this work, the exponent a depends on the global-flow
Reynolds number and therefore is not a universal constant.

Moreover, recently Barenblatt and Goldenfeld (1995) came, under cer-
tain additional assumptions, to the relation for DLL in the inertial range

where AQ, A and a are universal constants. In this formula the cor-
rection a/ In Re is not substantial in comparison with the exponent 2/3
to which r enters (10.33) and can hardly be observed at present. The
essential point is that according to (10.38) the correction to the Kol-
mogorov constant appears to be inversely proportional to In Re. This is
consistent with the experimental data of Praskovsky and Oncley (1994).

10.2 Turbulent shear flows

10.2.1 Similarity laws for the velocity distribution in the
wall region of a turbulent shear flow

A turbulent flow whose mean properties do not depend on the coordinate
x in the direction of the mean velocity is called a shear flow. Thus, the
mean velocity and all the other mean properties of a shear flow depend
on only one coordinate, z, transverse to the mean flow and having its
origin at the rigid wall that constrains the flow (Figure 10.10). This type
of flow occurs in a channel or pipe far from the inlet, in the flow past a
plate far from the leading edge, in the boundary layer of the atmosphere,
etc.

In the vicinity of the wall bounding the flow, it can be assumed that
the shear stress is constant, i.e., independent of the transverse coordinate
z. The part of the shear flow in which this assumption is valid is called
the wall region.

Thus, the properties of the motion at some point in the wall region
of a turbulent shear flow are governed by the shear stress r (which is,
by assumption, constant), the properties of the fluid (its density p and
kinematic viscosity i/), the distance z of the point under consideration
from the wall, and some external flow scale A - the diameter of the pipe
or depth of the channel, etc.

We shall adopt the gradient of the mean velocity u at a given point,
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z t

U(z)

V////////A
Figure 10.10. Shear flow.

dzu, as the quantity being determined; it will become clear below why
we do not choose the velocity itself. Thus, we have

dzu = / (r , p, z% v, A). (10.39)

The LMT class of systems of units is appropriate here. In this class,
the governing parameters have the following dimensions:

M r , M
T = (10.40)

The dimensions of the first three governing parameters r, p and z
are obviously independent. The dimension of the determined parameter
dzu and those of the last two governing parameters can be expressed in
terms of the dimensions of the first three parameters in the following
way:

[dM = [r]l/2[p]-l[z]-\ [A] = [*], M = H1/2[P]"1/2W. (10.41)
Thus, we obtain the following dimensionless form for the relation un-

der study:
zdzu

n=- = *(nlfn2),
(10.42)

According to tradition, we shall now introduce the notation u* =
(T/?)"1/2; this quantity u*, which has the dimension of velocity, is called
the dynamic, or friction, velocity. It is both natural and convenient,
for the analysis that follows, to transform from the parameter III to its
reciprocal, n^ 1 = u*zjv = Re/, which serves as a local Reynolds num-
ber, and an analogous quantity I^IIj"1 = Re* = u*kjv, which serves
as a global Reynolds number. (The local Reynolds number contains the
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270 10. Scaling in turbulence

local coordinate z, while the global Reynolds number contains the exter-
nal length scale A. The global Reynolds number Re* differs from that
normally used in the hydraulics of flow in pipes in that it contains the
dynamical velocity U* rather than the average flow velocity in the pipe.)

Thus, we obtain

II = ^ = *i(Re/, Re,). (10.43)
i£*

We shall now estimate the values of the parameters Re* and Re*.
For flowing water (y — 10~2cm2/s) with a relatively low dynamical
velocity, w* = 10 cm/s, the local Reynolds number at a distance of just
one millimetre from the wall is equal to 100 and the global Reynolds
number is 10 000 for a pipe 10 cm in diameter. Both these parameters
are therefore large outside the immediate vicinity of the wall; it seems
natural to investigate whether it is possible to use limiting similarity laws
in this region. Note that it was precisely the desire to construct limiting
similarity laws that led us to consider the gradient of the velocity rather
than the velocity itself. The point is that the velocity at any distance
from the wall, unlike the velocity gradient, obviously depends on the
situation in the immediate vicinity of the wall, where the local Reynolds
number cannot be assumed to be large.

Thus, under the assumption of complete similarity with respect to the
local and global Reynolds numbers (this assumption dates back to von
Karman, 1930 and Prandtl, 1932b), we obtain the following result from
(10.43):

n = ^ ^ = $i(oo, oo) = const. (10.44)
u

The constant in (10.44) is traditionally denoted by 1/K; the constant
K is called the von Karman constant. Clearly, under the assumption
of complete similarity in Re/ and Re* made above, the von Karman
constant must be universal, i.e., independent of the Reynolds number.

Integration of (10.44) yields a universal logarithmic law for the velocity
distribution across the flow,

u = — In z -f const,
K

which is usually written in the form

cp= -In77 + Ci, (10.45)
K

where
u u*z

ip = —, rj = , C\ — const.

At first glance, this universal logarithmic law seems to be fairly well con-
firmed by measured data on the mean velocity distributions in smooth
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10.2 Turbulent shear flows 271

pipes, boundary layers and channels (Figure 10.11), and a numerical
value of approximately 0.4 is obtained for the von Karman constant
K. However, more detailed analysis of the experimental data reveals a
systematic dependence of the von Karman constant on the Reynolds
number for the flow. Thus, small but systematic deviations from the
universal logarithmic law are observed in the velocity distribution.
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Figure 10.11. Universal dimensionless mean velocity profile tp = u/u* of
turbulent flow close to a smooth wall according to the data of pipe-,
channel-, and boundary-layer measurements (Kestin and Richardson,
1963). After Monin and Yaglom (1971, 1992): region a, <p = 77; region 6,
ip = 2.5 In 77 + 5.1.

In accordance with the recipe outlined in chapter 5, we shall look
(Barenblatt and Monin, 1979) at the possible assumption of incomplete
similarity with respect to the local Reynolds number and lack of self-
similarity with respect to the global Reynolds number. Under the as-
sumption of incomplete similarity with respect to Re*, (10.43) yields

zdzu
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272 10. Scaling in turbulence

where the exponent a is also assumed to depend on the global Reynolds
number Re*. Integrating (10.46) and assuming, in agreement with ex-
periment, that the constant of integration is equal to zero, we obtain the
scaling velocity distribution

ip = Crja (10.47)

where we have defined C = (l/a)4>(Re*). The global Reynolds number
Re* = u*h/v is a function of a commonly used Reynolds number for
the flow, based on the mean flow velocity u rather than on the friction
velocity:

71 A

Re, = /(Re), Re - — ;

this follows directly from dimensional analysis. Therefore the constants
C and a in (10.47) can be considered also as functions of the flow
Reynolds number Re.

Scaling laws for the velocity distribution in various turbulent shear
flows have been suggested as empirical relationships for a long time. One
recognises (cf. Schlichting, 1968; Hinze, 1959) that scaling (power) laws
for velocity distributions, with exponents depending on global Reynolds
number, are confirmed by experiment at least as well as is the universal
logarithmic law. Nevertheless the latter is generally considered to have,
in contrast to the scaling law, a theoretical basis whereas the scaling
law is considered as simply an empirical relation. As a matter of fact,
however, we have seen that the scaling law can be derived from the
assumption of incomplete similarity of the flow in the local Reynolds
number not less rigorously than the universal logarithmic law can be
derived from the assumption of complete similarity, i.e., complete inde-
pendence on the molecular viscosity. Therefore neither the logarithmic
law (10.45) nor the power law (10.47) should be considered only as a
convenient representation of the experimental data; both have rigor-
ous theoretical foundations based, however, on different assumptions.
Moreover, the assumption of the lack of a characteristic length in the
flow leads in general to the scaling law, and as a special case to the
logarithmic law'.

Indeed, according to this assumption the ratio of velocity gradients dyu at heights
z\ and 22 is a function of z\/z2 only. This leads to the well-known functional
equation, which we have used more than once:

whose solution is (p(x) = xn, where the constant n remains indeterminate. If
n = — 1, the logarithmic law is obtained; if n ^ — 1, the scaling law.
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Therefore an important qualitative question arises: which of these
assumptions is correct?

The results presented below (Barenblatt, 1991, 1993a; Barenblatt and
Prostokishin, 1993) give some evidence in favour of the power-type law
(10.47) with exponent a inversely proportional to the logarithm of the
flow Reynolds number and constant C a linear function of this logarithm:

k <10-48»

As a matter of fact, the inverse proportionality of a to In Re was
suggested by the idea that the local structure of developed turbulent flow
should imprint the velocity distribution, and by the result of Castaing,
Gagne and Hopfinger (1990) mentioned in subsection 10.1.4.

To check the dependence (10.48) all 16 sets of experimental data ,
available in the paper by Nikuradze (1932) of average velocity measure-
ments in smooth cylindrical tubes at various distances from the wall and
at various Reynolds numbers^ were subjected to a stringent procedure
for the verification of (10.47), (10.48). Namely, the functions Vp(2inRe)/3
as functions of 77 were constructed and inspected. The question was
whether the straight lines would be found for intermediate values of
77. The processing of the experimental data clearly revealed (Figures
10.12(a)-(e)) such intermediate straight lines for all 16 sets. We note
a good level of accuracy: the exponent I /a = (21nRe)/3 is large, of
the order of 10 or so, therefore even small deviations in exponent from
those that are needed could destroy the straight lines. The revealing of
straight lines in the intermediate intervals can be considered as experi-
mental verification of (10.48).

One point should be explained. There exists an obvious arbitrariness
in the definition of Re - for instance, the maximum velocity can be taken
instead of the mean velocity, or the radius instead of the diameter. For
(10.48) it is immaterial, because in fact this relation should be considered
as the first term in an asymptotic expansion, valid when In Re, not only
Re itself, is large, so that a different definition of Re will influence only
higher-order terms in the expressions for C and a.

Further processing allowed one to obtain with rather good accuracy

It is essential that they are presented in tabular form, contrary to the data of other
experimentalists.
Covering nearly three decimal orders of magnitude.
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Figure 10.12(a)-(e). Each set of data for <^21nRe)/3(r7) reveals a straight
line for an intermediate interval of values of rj.

(Figure 10.13) the linear dependence (10.49) of the coefficient C in the
power law (10.47) on In Re. Therefore the power law (10.47) can be
represented in the form
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A X
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|X

= f_LlnR^+-U3/(21nRe) (10.50)
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9 -

8 11 14

Figure 10.13. The function C(lnRe) obtained by the processing of ex-
perimental data.

Simple transformations allow to reduce the relation (10.50) to another
form,

2anp1 .
= - In

ot
(10.51)

which is quasi-universal, i.e. independent of Reynolds number. It means
that if the relations (10.50), (10.51) are correct, all experimental points
for sufficiently large 77 and various Reynolds numbers (large enough to
correspond to developed turbulence) should lie on a single curve in the
\I>, In77-plane, in fact, a straight line, the bisectrix of the first quadrant.
Figure 10.14 shows that the overwhelming majority of the 256 experi-
mental points available in the tables of the paper by Nikuradze (1932)
occur, for large 77, close to the bisectrix in accordance with (10.51). Cer-
tain points that occur rather far from the bisectrix correspond to mea-
surements either in close proximity to the wall, where 77 is not sufficiently
large for turbulence to have developed, or at comparatively low Reynolds
numbers for which the turbulence is not fully developed. (Some errors
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Figure 10.14. The experimental points in the coordinates \P, In 77 settle
down for large 77 close to the bisectrix of the first quadrant, confirming the
quasi-universal form of the scaling law. The values of Re are as follows:
A, 4 x 103; A, 6.1 x 104; o, 9.2 x 103; •, 1.67 x 104; • , 2.33 x 104; • ,
4.34 x 104; 9 , 105 x 105; V, 2.05 x 105; ^7, 3.96 x 105; w, 7.25 x 105; 0,
1.11 x 106; • , 1.536 x 106; +, 1.959 x 106; x, 2.35 x 106; o , 2.79 x 106;
**, 3.24 x 106.

in the measurements close to the wall, where the distance is comparable
with the gauge size are also possible.)

As we have seen, in the <£, lnzy-plane the curves that represent the
power laws for varying Reynolds numbers

. (10-52)

form a family of which the Reynolds number is the parameter. The
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family possesses an envelope that satisfies both equation (10.52) and
the equation &&eF = 0. The latter equation can easily be reduced to
the form

1 +
20 1/2\ I/*

- 1 (10.53)

Eliminating In Re from (10.52) and (10.53) we obtain the equation of
the envelope; this is represented in Figure 10.15. As is seen it is close
to the straight line representing the universal logarithmic law with an
empirically fitted constant C\ = 5.5, even for rather moderate In 77 .
This seems to be natural because the envelope is the locus of the points
where the derivative with respect to Reynolds number vanishes. It was,
however, the first of the assumptions on which the derivation of the
logarithmic law (10.45) was based.

30

20

m

<P

2.5 In 77 + 5.5v\
Envelope

In 77
i i

8 11

Figure 10.15. The envelope of the scaling law curves for fixed Re in the
</?, In 77-plane is very close to the generally accepted universal logarithmic
law even at moderate In 77.

Moreover, if we let In 77 tend to infinity while remaining on one of the
curves (10.52) at Re = const, the function $(77, Re) in the general simi-
larity relation (10.43) obviously tends to infinity. However, if we let In 77
tend to infinity while remaining on the envelope, i.e., we let In Re tend
simultaneously to infinity, we will obtain a finite limit for $(77, In Re).

The envelope is even closer to the straight line with the constant C\ =5 .1 , used
for instance in the book by Monin and Yaglom (1971) (see Figure 10.11).
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Indeed, for large In Re the relation (10.53) gives (31n77)/(21nRe) —> 1,
whence and from (10.52) we obtain

ip = ¥—- in v + const, $(77, Re) -> ^— . (10.54)

Therefore at large In 77 all assumptions leading to the universal logarith-
mic law are fulfilled on the envelope and this envelope can be identified
with this law. This allows us to obtain the value of the von Karman
constant:

* = - i - ^0.424. (10.55)
V3e

Nikuradze (1932) himself, on the basis of processing his experimental
data, arrived at the value K = 0.417.

On the basis of the proposed scaling law (10.50) for the average veloc-
ity distribution a corresponding skin friction law can be proposed and
compared with experimental data.

We define the skin friction dimensionless coefficient A in the traditional
way:

(10.56)

According to (10.50) the following relation for the bulk average veloc-
ity u is obtained:

d/2

(10.57)

a \ v
In deriving (10.57) the fact was used that for developed turbulent

flows in pipes we can neglect the contribution to the bulk flow rate of
the viscous layer near the wall as well as the contribution of the region
near the tube axis where the law (10.50) is not valid.

Prom (10.48),
Re = udjv = e3/2a (10.58)

whence and from (10.57) we obtain

v [ V3 + 5 J V '
and the final relation for the dimensionless skin friction coefficient A
corresponding to the scaling law (10.50) takes the form
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where

a =2*a(l+<x)(2 + a) ' 2lnRe
(10.61)

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

A A x

I I I I J I J I I I

InRe
I i

8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0
Figure 10.16. The experimental data for various pipes and various Rey-
nolds numbers confirm the skin friction law (10.60), (10.61) which follows
from scaling law (10.50) with rather good accuracy. The values of d are
as follows: • , 1 cm; A, 2 cm, 0 , 3 cm; x, 5 cm; +, 10 cm.

A comparison of values of A predicted by (10.60) with experimental
values (Nikuradze (1932), table 9) is presented in Figure 10.16. It was
found to be less instructive to compare predictions (10.60), (10.61) with
experimental data directly, since they coincide with very high accuracy.
Therefore a different, more objective, form of comparison has been cho-
sen: the quantity

* = T = i f *2/(1+Q) - (10-62)
where Ae is the experimentally determined value of the skin friction
coefficient plotted as a function of In Re. In table 9 of the paper, Niku-
radze (1932) a total of 125 points is available, corresponding to vari-
ous Reynolds numbers in a rather wide range from slightly supercritical
(Re = 3.07 x 103) to very large (Re = 3.23 x 106). Ideally the quantity
£ would be equal to unity. As Figure 10.16 shows, nearly all deviations
from this value lie within the experimental scatter range.

The coincidence of the experimental data concerning skin friction with
predictions based on the scaling law (10.50) also contributes to the ver-
ification of this law.
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10.2.2 The wall region of a turbulent shear flow - semi-empirical
theory and Kolmogorov's similarity hypothesis

We now consider the wall region of the turbulent shear flow described
in the preceding section in more a quantitative way, based on the semi-
empirical theory proposed by Kolmogorov (1942). Kolmogorov's theory
is based on closing the equations for the conservation of momentum and
turbulent energy with the help of certain similarity hypotheses. Later
we shall use this theory more than once; therefore it is appropriate to
demonstrate here its basic ideas for a simple example, the wall region of
a turbulent shear flow. Note that, independently, closely similar ideas
were developed by Prandtl (1945).

We exclude from our consideration the region in close vicinity to
the wall where the viscous stresses are comparable with the turbulent
stresses due to momentum transfer by vortices. The equation for mo-
mentum balance for a shear flow can then be written in the form

-p(u'w') = r , (10.63)

where vl and wf, respectively, are the fluctuations in the velocity com-
ponents longitudinal and transverse to the wall, p is the density of the
fluid, and r is the shear stress; in (10.63) we neglect the contribution of
the viscous stresses in comparison with the turbulent Reynolds stresses.
The equation for turbulent energy balance for a steady shear flow can
be written in the form (Monin and Yaglom, 1971)

{u'w')dzu z

Here v1 is the fluctuation in the transverse velocity component, p1 the
fluctuation in pressure, and e the mean rate of dissipation of turbulent
energy per unit mass of fluid. Equation (10.64) reflects the simple fact
that the local balance of turbulent energy for a steady shear flow consists
of the generation of turbulent energy by the mean motion (the first
term), the diffusive influx of turbulent energy (the second term), and
the dissipation of turbulent energy into heat (the third term). For the
problem of interest the transfer of turbulent energy by diffusion is small
and we can neglect it.

We introduce the coefficient k of momentum exchange by the relation

(uV) = -kdzu. (10.65)

We stress that for a shear flow the relation (10.65) is simply a redesig-
nation and does not involve any additional hypothesis.

As was said earlier, a developed turbulent flow contains a great num-
ber of vortices, creating irregular rapidly varying motion. The basic
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idea of Kolmogorov was that it is possible to assume as a first (perhaps,
'naive', as he used to say) approximation that the local structure of this
set of vortices is statistically the same for all developed turbulent flows
as far as dimensionless quantities are concerned. Therefore according
to Kolmogorov's (1942) hypothesis, the momentum exchange coefficient
and the rate of energy dissipation eat a given point in the flow are de-
termined only by the local values of two kinematic quantities of different
dimensions, e.g. the mean turbulent energy per unit mass,

b= i ( n ' 2 + t /2 + w'2),

and the turbulence external length scale /. (Another possibility will be
considered later). Dimensional analysis leads in the standard way to the
relations

k = lVb, e = j4b3/2/l, (10.66)

where, by virtue of identification of the length scale to within a constant
factor, the constant in the first relation can be taken to be equal to unity,
and the constant 7 is close to 0.5 by estimates from experimental data
(see Monin and Yaglom, 1971).

Substituting (10.65) and (10.66) into (10.63) and (10.64), and neglect-
ing in the latter equation the contribution of the diffusion of turbulent
energy, we get a system of equations in the form

^4L3/2

lVbdzu = ul lVb(dzu)2 - ±—— = 0, (10.67)
L

where u* = {r/p)1^2 is the friction velocity.
This system is still not closed, since the turbulence length scale / is

not yet defined. In accordance with subsection 10.2.1, in the wall region
of a turbulent shear flow, where the friction velocity u* is constant,
the turbulence length scale / depends on the friction velocity u*, the
kinematic viscosity v, the vertical coordinate z, and the external length
scale A. Dimensional analysis gives

/ = z$i(Re/,Re*), (10.68)

where, as before, Re* = u^zjv and Re* = u*h/v are the local and
global Reynolds numbers. Under the assumption of complete similarity
in both Reynolds numbers, at large Re/ and Re* the function $1 is
identically equal to a constant that it is convenient to denote by tvy, 7
being the constant introduced earlier and K a new constant (the von
Karman constant), so that

Z = «7*. (10.69)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.013
https://www.cambridge.org/core


282 10. Scaling in turbulence

Substituting (10.69) into (10.67), we get
2

u = — In z + const, b = ^ , (10.70)
ft 7 J

i.e., the logarithmic law for the velocity distribution (10.45), obtained
earlier from more general considerations. If we assume that for this flow
similarity of the flow in the local Reynolds number is incomplete, then
the relation for the turbulent length scale assumes the form

y , (10.71)
and from this and (10.67) we find

I T = B T *<*•»•>• * (E<!->=infer a=a(Re-h

(10.72)
i.e. the scaling law (10.47), obtained earlier from more general consid-
erations.

10.2.3 Unsteady phenomena in the viscous sublayer of a
turbulent shear flow

In the last few decades fundamental investigations of turbulent shear
flows in the immediate vicinity of a wall have been published. (See
Kline, Reynolds, Schraub and Runstadler, 1967; Corino and Brodkey,
1969; Kim, Kline and Reynolds, 1971; Offen and Kline, 1975.) By a skil-
ful combination of visualization methods (hydrogen bubbles and tracing
pigments) and thermoanemometric methods it was shown in these pa-
pers that turbulent flow close to the wall has a complicated, essentially
unsteady, and spatially inhomogeneous structure.

The question concerns the phenomena in a viscous sublayer where the
global characteristics of the flow are governed by the shear stress r, the
density p, and the kinematic viscosity v of the fluid, and also by some
external length scale A, for example the momentum thickness of the
boundary layer. Thus, the kinematic properties must be governed only
by the friction velocity u* = (r//))1/2, the external length scale A, and
the kinematic viscosity v. It turns out that, in the range of thickness of
the order of some tens of the characteristic linear scale v/u* of the vis-
cous sublayer, there arise with a statistically determined frequency local
separations of the flow, as a result of which horseshoe-shaped vortices
are generated, move deep into the flow, and in their own right stimu-
late the occurrence of new local separations. This generates a chequered
pattern of longitudinal strips of the retarded flow. Interactions between
the horseshoe vortices that arise, lead to the local loss of stability and
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bursting. As is convincingly shown in the papers of Kline and his as-
sociates, basically it is just these bursts that determine the generation
of turbulence close to a rigid boundary in a turbulent shear flow. An
illustration of the character of the local flows that arise is given by the
photograph in Figure 10.17, which shows the twisting by these flows of
originally vertical lines of hydrogen bubbles.

r-

Figure 10.17. In the wall region of a turbulent shear flow there exists
a complicated unsteady and spatially inhomogeneous flow. Shown in
the photograph is the twisting by a vortex of initially vertical lines of
hydrogen bubbles. From Kim, Kline and Reynolds (1971).

Despite the complicated character of the local flows in the viscous
sublayer of a turbulent shear flow, some of their statistical characteristics
are well described by scaling laws. We demonstrate this here for the
mean time TB between bursts, i.e., the mean period of the cyclic process
occurring close to the wall. This quantity can depend, according to
the above, on the friction velocity w*, the kinematic viscosity z/, and
the external length scale A, whence, applying dimensional analysis, we
obtain

The parameter u*A/i/ is very large, of order 100 or more; therefore it was
natural to take, as a first assumption, one equivalent to the hypothesis
of complete similarity in this parameter. This gives

TB = C-^ , (10.74)
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1

0.01 0.02 0.03 0.1
Figure 10.18. Experimental data at first glance confirm complete simi-
larity of the dependence of the time TB between bursts on the parameter
u* A/i/, for large values of this parameter. Prom Kim, Kline and Reynolds
(1971).

where C is a constant. The experimental data at first glance confirm the
relation (10.74) (cf. Figure 10.18). However, an attempt to apply (10.74)
to the experiments of B.J. Tu and W.W. Willmarth (see Rao, Narasimha
and Badri Narayanan, 1971), in which significantly higher friction ve-
locities were achieved, led to errors of more than an order of magnitude.
Actually, as was shown by Rao, Narasimha and Badri Narayanan (1971),
there is no complete similarity in the parameter u*k/v. Consideration
of more complete experimental data in the latter paper and that by Kim,
Kline and Reynolds (1971) led to the relation

/r/A\ °'73

$ = 0.65(— J (10.75)

(see Figure 10.19). Here U is the free-stream velocity and A the mo-
mentum thickness of the boundary layer. As is well known the ratio
u*/U is close to a power-law function of the global Reynolds number in
a restricted interval of this parameter. This relation therefore reveals
what appears to be incomplete similarity with respect to the parameter

10.2.4 Decay of a turbulent burst in a fluid at rest

1. The problem of the decay of instantaneously formed turbulent bursts
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10

Figure 10.19. Experiments over a wider range of values of the parameter
UA/u show incomplete similarity in this parameter. From Kim, Kline
and Reynolds (1971).

is of special interest for turbulence studies. Indeed, the formation of
turbulent bursts by intersecting or self-intersecting vortices is (see the
preceding subsection) one of the leading mechanisms of turbulence gen-
eration. From the theoretical viewpoint this problem deserves consid-
eration as a fundamental local disturbance, like the heat source or the
very intense explosion at the early stages of a nuclear blast considered in
chapter 2. We will present here the solution for a symmetric initial form,
based on several assumptions concerning the turbulence behaviour. Ini-
tially the burst has, generally speaking a non-symmetric form (Figure
10.20(a)). However, it then takes a more or less symmetric form and
only thereafter begins to extend.

-h(t)

(a) (b)

Figure 10.20. Two stages of a turbulent burst in a fluid at rest, (a) The
burst initially has an arbitrary form; (b) the burst now has the form of
a statistically horizontally uniform layer.
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Thus, we shall consider the evolution (extension and decay) in a ho-
mogeneous quiescent fluid of a statistically horizontally-homogeneous
turbulent burst (Figure 10.20(6)) enclosed initially in a layer between
the horizontal planes z — a and z = -a. Let the initial turbulent energy
per unit area of the plane layer boundary be

Q = fb{z,0)dz (10.76)

where b(z, t) is, as before, the turbulent energy of unit mass of fluid.
The dimension of Q is clearly L3T~2. Evidently from two kinematic

quantities Q and a a kinematic quantity of arbitrary dimension can
be composed,; so, for instance, the initial conditions for the turbulent
energy and the dissipation rate per unit mass can be presented in the
form

O
b(z, 0) = Jtio(C), €(*, 0) =

Here £ = z/a, ^o(C) a n d ^o(C) a r e dimensionless even functions, identi-
cally equal to zero at |£| > 1.

Thus, all kinematic statistical properties of the motion for arbitrary
time t at an arbitrary point z are determined by the parameters

Q,t,z,a. (10.78)

The first two of these governing parameters have independent dimen-
sions. Dimensional analysis gives, accordingly, the following relations
for the turbulent energy of unit mass, b(zy t), and the dissipation rate of
turbulent energy per unit mass, e(z,£):

^ 7 T ^73 (10.79)

where

(10.80)*7 = Q1/3J2/3 '

Here B(^,rj), E(£yrj) are dimensionless functions of their dimensionless
arguments. For a half-width h(t) of the layer a relation is obtained from
the same dimensional considerations,

h = Ql/3t2/3H(r)), (10.81)

because, evidently h does not depend on z and does depend on three
other arguments. Here H(r}) is a dimensionless function of its dimen-
sionless argument. The basic interest is in considering the asymptotic
solution at large times when the layer thickness is much larger than
the initial one, h(t) >̂ a, i.e., the asymptotics of the functions (10.79),
(10.81) at 7} < 1.
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2. The simplest assumption is that for 77 <C 1 there is complete similarity
in the parameter 77. This means that finite limits different from zero exist
of the functions J9(£, 77), E(£, 77), and #(77), as 77 —• 0,

B(0 = hmBfov), E(£) = lim £(£,*/), £0 = limtffo), (10.82)
so that the self-similar asymptotic solution takes the form

c = 7S7r£(O. /* = £oQ1/3*2/3. (io.83)

This assumption is, however, incorrect. Indeed, the equation of turbu-
lent energy balance for the case of a horizontally-homogeneous shearless
flow assumes the form

dtb + dzqb = -e (10.84)

where qb is the turbulent flux of turbulent energy. Let us integrate this
equation within the limits z = —h(t) to z = h(t) taking into account
that at the boundaries of the layer z — ± h(t) both turbulent energy
and its flux vanish:

b(± h{t),t) = 0, qb(± h{t),t) = 0. (10.85)

We obtain that the time derivative of the total turbulent energy per
unit area of the layer is negative,

h(t) h(t)

j I b{z,i)dz = - I e(z,t)dz<0 (10.86)
-h(t) -h(t)

because e, the dissipation rate of turbulent energy, is a positive quan-
tity within the turbulent layer. At the same time it follows from the
asymptotic solution (10.83) that the turbulent energy per unit area

h h Co

b(z, t)dz = %r f B(^dz = Q f B^)dZ = c o n s t Q (10-87)
-h -h - £ 0

is time independent. The contradiction obtained proves that the as-
sumption of complete similarity is incorrect.

3. We assume, therefore, incomplete similarity with respect to the pa-
rameter 77, i.e., we assume that the functions £(£,77), £(£,77) and #(77)
at 77 —• 0 have power-type asymptotics,

^ \ , E t i E o ( ^ \ H = constT^, (10.88)

where Ai, A2, v\, v^ are constants.
We can use the fact that the quantities 6, e and q should satisfy the

turbulent energy balance equation (10.84) and therefore that this equa-
tion should be reduced to an ordinary differential equation involving the
functions of one variable ^/T?VX : Bo (C/V1) and Eo (£./r)Vl). This allows
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288 10. Scaling in turbulence

us to express three of the constants Ai, A2, v\, ^2 via one of them, say
v\. The asymptotic solution is reduced to the form

b = AT2lAF(Q, e = A2t-2"-lG(Q, h = At1-" . (10.89)

Here
F(C) = const! B0(C), G(0 = const2 E0(Q ,

(10.90)
We must emphasize two essential points: the parameter //, which

determines the layer extension and turbulent energy decay rate cannot
be obtained from dimensional considerations, and both the initial bulk
energy of the turbulent layer per unit area, Q, and the initial layer
thickness a enter the constant A in some powers.

To determine the parameter \x an eigenvalue problem must be stated
and solved.

First we shall use the (6, e) semi-empirical turbulence model (the tra-
ditional notation is the A;,e model). This model, based on the idea of
A.N. Kolmogorov (1942), was elaborated by D.B. Spalding, B.E. Laun-
der and their associates (Launder, Morse, Rodi and Spalding, 1972;
Launder and Spalding, 1974; Hanjalic and Launder, 1972). For a com-
prehensive review see Reynolds (1976). According to this model the
dissipation rate e is taken in addition to the specific turbulent energy as
the second kinematic quantity necessary to determine all the kinematic
properties of turbulent flow. In addition to the equation for turbulent
energy balance (10.84) the equation for balance of the dissipation rate
is used. This equation is obtained basically in the same way as the tur-
bulent energy balance equation and, for the case under consideration
of the horizontally-homogeneous layer and shearless flow, assumes the
form (see, e.g., Reynolds, 1976)

dte + dzqe = -U. (10.91)

Here qt is the turbulent flux of the dissipation rate and U is the rate of
homogeneization of turbulent energy; they are the one-point moments
of the velocity and the velocity-gradient fluctuations.

Let us introduce turbulent exchange coefficients, kb for the turbulent
energy and ke for the dissipation rate, according to the relations

• » — © • "--£• (10-92)

We emphasize that for the case of a horizontally-homogeneous layer
these relations do not contain any additional assumptions. According
to the Kolmogorov similarity hypothesis, which is assumed to be appli-
cable in the turbulent part of the flow, the turbulent vortex field in the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.013
https://www.cambridge.org/core


10.2 Turbulent shear flows 289

developed flow is statistically self-similar. Therefore all kinematic flow

properties are determined, each to within a constant, by any two of them

having different kinematic dimensions. We take as such the governing

properties b and e.

Dimensional analysis gives

b2 b2 e2

kb = a - , ke=(3-, U = i j (10.93)

where the coefficients of a, /?, 7, according to the assumed hypothesis,
should be universal constants. Roughly speaking it is so, and these
constants have been determined by comparison with experiment for some
special cases (see, e.g., Reynolds, 1976).

Thus, equations (10.84) and (10.91) take the form
(b2 \

dtb = adz f — dzb j - e (10.94)

dte = (3dz l-dze) - Jj (10.95)

and (10.94), (10.95) form a closed set of equations for the turbulent
energy and turbulent energy dissipation rate.

4. After substitution of the solution in the form (10.89) into the system
(10.94), (10.95), a set of ordinary differential equations is obtained for
the functions / = /3F and g = @G:

- 1 7 = ° (I0-97)

By symmetry, only one half of the layer, 0 < z < h(t), need be
considered, with boundary conditions at z — 0 and z = h(t). At the
boundary z = h(t) the turbulent energy 6, the dissipation rate e, and
their fluxes qb and qe must be continuous. However, outside the layer
there is fluid at rest. Therefore at z = h(t) the following conditions must
be fulfilled.

6 = 0, 6 = 0, qb = 0, qe = 0. (10.98)

Prom (10.98) and from (10.92) and (10.93) we find boundary conditions

for the set (10.94), (10.95):

6 = 0, e = 0, — dzb = 0, —dze = 0 at z = h(t). (10.99)

Using the self-similar representation of the solution (10.89) we obtain
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290 10. Scaling in turbulence

a first group of boundary conditions for the system of ordinary equations
(10.96), (10.97):

f = 9 = 0, —^=0, — « 0 at£ = l. (10.100)

Furthermore, owing to symmetry with respect to the middle plane of
the layer, z = 0, the fluxes are equal to zero:

qb = qe = 0 at 2 = 0. (10.101)

Prom (10.101) and from (10.92) and (10.93) we obtain the second group
of boundary conditions, this time at the boundary £ = 0, for the system
(10.96), (10.97):

— ^ 7 = ° ' —17 = 0 atC = 0. (10.102)
g dQ g dQ

We have obtained, therefore, a boundary-value problem (10.100),
(10. 102) for the system of second-order ordinary differential equations
(10.96), (10.97), which contains a parameter /i. We shall restrict our-
selves further to the case a = /?: the recommended values of the pa-
rameters a and (3 give for the ratio a//3 an interval between 0.7 and
1.2.

A more detailed investigation shows that there exists a class of solu-
tions / , p, that are positive at 0 < £ < 1, identically equal to zero at
£ > 1, continuous, having continuous quantities:

ifc 'it
(the fluxes must also be continuous).

In the vicinity of the point £ = 1 at £ < 1 the solution satisfying the
conditions (10.100) is expanded in series:

/ = c ( l - M ) ( l - £ ) + . . . , <, = c 2 ( l - / i ) ( l - £ ) + . . . . (10.104)
Here the positive quantity c, along with /x, is a parameter of the prob-

lem. Each pair of values c, /x determines uniquely non-trivial solutions
to the system (10.96), (10.97) satisfying the conditions (10.100). It is
necessary to find the values of the parameters c, /i for which the solu-
tions also satisfy the conditions (10.102). Thus, as it is customary for
self-similar solutions of the second kind we have obtained a nonlinear
eigenvalue problem for determining the time degrees in the self-similar
variables.

This problem is easily solved analytically. Indeed, let us assume that
g = cf over the whole interval 0 < £ < 1. Substituting this relation
into (10.96), (10.97) we obtain for the function /(£) two second-order
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10.2 Turbulent shear flows 291

ordinary differential equations that coincide if c = 1/(7 — 1). For this
value of c the equation for / takes the form

c / = o - < i o i o 5 )

Integrating from ( = 0 to £ = 1 and using boundary conditions (10.100)
and (10.102), we obtain

1

(1-3/ i + c) f fdC = O (10.106)
0

whence

" = ^ = 3 ( 7 ^ ] < I 0 '1 0 7>
because the function / is positive and so is its integral in (10.106). For
the values c = 1/(7 — 1) and \x — 7/3(7 — 1) the equation (10.105) can
be simply integrated:

/ = D(1-C2) , 9 = D{\ - C2)(7 - I )" 1 (0 < C < 1) -

where D = (27 /3- l ) /2 (7 - I)2. Thus, the solution (10.89) assumes the
final form

D 0 - i) •' - J^ <£) (
h{t) = At^'3^3^-^ , b = e = 0 (2

A = COnst Q(27-3)/6(7-l)ol/2(7-l)

(10.109)
In particular, for the recommended value 7 = 2 the form of the solu-

tion is especially simple:

(10.110)
So, the solution is essentially different from (10.83), which was obtained
from 'naive' dimensional considerations.
5. Another closing of the system can be obtained within the frames
of a different turbulence model, the so-called 6, / model based on the
same similarity hypothesis but a different choice of second governing
kinematic quantity: the external length scale / instead of e.

According to the dimensional analysis the relations

kb = lVb, e = c1b
3/2/l (10.111)

hold, where c\ is a constant (the constant in the relation for kb can be
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292 10. Scaling in turbulence

assumed to be equal to unity by corresponding renormalization of the
length scale). The equation for turbulent energy balance (10.84) takes
the form

dtb = dziVbdzb - Cl ^ . (10.112)

To close this equation the simplest assumption, / = ai/i, a\ = const
is made: we assume that the length scale is constant over the turbu-
lent layer and is proportional to its thickness. So, we assume that the
characteristic size of the vortices is a fixed fraction of the layer thickness
and so we neglect the time of adjustment of the vortices to the layer
thickness. The equation (10.112) then assumes a closed but non-local
form:

The non-locality of (10.113) is related to the fact that the width h(t)
entering the right-hand side is a global functional of the solution b(z, t).

The asymptotic solution to the equation (10.113) is represented, as
before, in the form (10.89):

For determining the function / and the parameter /x the following
relations are obtained from equation (10.113), the boundary conditions
(10.85) and the symmetry conditions:

^ 0 atC = 0; / = 0, ^ j — = 0 at C = 1 •

These relations again form a nonlinear eigenvalue problem. Due to the
group invariance property the eigenvalue \x depends only on the combi-
nation c\/a\. The eigenvalue problem is easily solved numerically; its
solution is represented in Figure 10.21.

The solutions based on the two closure hypotheses, i.e., the 6,/ and
6, e models, are basically identical. The most essential differences are
the sharper decrease of turbulent energy near the boundary and the
vanishing of the length scale / = ci&3/2/e at the boundary in the 6, e
model.

6. Batchelor and Linden (1992) noted that in the problem of turbulent
burst evolution there exists an invariant of instructive form.
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Figure 10.21. The eigenvalue fi in the bj model versus the parameter

(10.115)

Consider the turbulent energy per unit area at time t:
h

Q(t) = Jb(z,t)dz.
-h

At the asymptotic stage of the motion, we have, according to the solution
(10.89),

Q(t) = const A3tl~3^ , h = At1'^ , (10.116)
l

where the constant equals / /(C)^C- Therefore the quantity
- l

g(t)[/i(0](3M"1)/(1"/x) = const AW-ri = cons txQa^" 1 ^ 1 -^
(10.117)

is preserved in time at the asymptotic stage of turbulent-burst evolu-
tion. At the initial, non-self-similar stage of turbulent-burst evolution
the relations (10.116) and (10.117) do not hold, but it is instructuve that
the value of the integral (10.117) is preserved if instead of the initial dis-
tribution of turbulent energy its distribution at an arbitrary moment of
time is taken.

Let us consider the relevant constants. Numerical calculation of the
eigenvalue in the second variant (the 6, / model) shows that the value
fi = 2/3, obtained in the 6, e model for the recommended value 7 = 2
corresponds to c\/a\ ~ 17. According to (10.111), in the bj model
/ = ci&3/2/e, kb = c\b2 je. Comparing with (10.93), we obtain c\ — a.
Therefore a\ = (a/17)1/2. The recommended (Reynolds, 1976) range of
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294 10. Scaling in turbulence

values of a gives an estimation of c\ as 0.06-0.085 and of a, as 0.063-
0.071.

7. Thus, we have presented here, within the framework of the basic
models of semi-empirical turbulence theory, the solution to the problem
of the evolution of a turbulent burst having the form of a plane layer.
In the same way the solutions for cylindrical (/x = 3/4) and spherical
(// = 4/5) bursts can be obtained. The problem statement and the
solutions presented here were given in papers by Barenblatt (1983) and
by Barenblatt, Galerkina and Luneva (1987).

The statement and solutions to the problem of turbulent-burst evolu-
tion considered in this section have many non-standard properties de-
serving special attention, as follows.

An important point in the problem statement is that the ambient
fluid is quiescent. Therefore the turbulent energy, the turbulent energy
dissipation rate, and their fluxes are equal to zero at the boundary of
the burst. Zero is also a number, and this means that no additional
constants enter the problem statement except the constants appearing in
the equations. The values of these constants are more or less established.

Equation (10.113) for the turbulent energy in the 6, /-model is non-
traditional also from the mathematical viewpoint. We emphasize again
that it is non-local because on its right-hand side we have a global func-
tional of the solution. Therefore the work of Kamin and Vazquez (1992)
was very important. They proved the existence and uniqueness of the
solution to the initial-value problem for this equation. An especially
important result of this work is that a self-similar solution of the sec-
ond kind presented in point (5) above is indeed the asymptotics to the
solution of the initial-value problem at t —> oo. The coefficient A is
the integral of this solution: taking the solution at any time instead of
the initial condition we obtain the same value of A as for the asymp-
totics. The problems of the existence and uniqueness of the solution of
the initial-value problem for (10.113) were considered also by Grebenev
(1992).

In the paper by Hastings and Peletier (1992) some rigorous estimates
for self-similar solutions of (10.113) were obtained. Chen and Goldenfeld
(1992) applied to the initial-value problem for the non-local equation
(10.113) the renormalization group technique and obtained by the e-
expansion method a very accurate result for the eigenvalue.

The system (10.94), (10.95) of quasi-linear parabolic equations, de-
scribing the evolution of the burst within the framework of the 6, e model
has also attracted the attention of mathematicians. Bertsch, dal Passo
and Kersner (1994) proved the existence and uniqueness of the solution
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to the initial-value problem for this system in the case a = 0. They also
proved that the self-similar solution of the second kind (10.109) is the
asymptotics of the solution to the initial-value problem at t —> oo, A
being the integral of the solution to the initial-value problem. Hulshof
(1993) considered self-similar solutions for the system (10.94), (10.95) at
a/0 ^ 1, and proved the existence of solutions with 'compact support',
i.e., h(t) < oo for a/0 < 2. M. Bertsch suggested that for a/0 > 2 the
asymptotics is self-similar, but the thickness of the burst h(t) instan-
taneously becomes infinite as for the linear heat conduction equation.
This hypothesis has found confirmation in the numerical computations
of V.M. Prostokishin (1994).
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Scaling in geophysical
fluid dynamics

11.1 Scaling laws for the atmospheric surface layer

Geophysical fluid dynamics has become in the last few decades a broad
subject (see Pedlosky, 1979) with many applications in earth sciences
and in engineering practice. In all branches of geophysical fluid dynamics
using similarity considerations, scaling laws and self-similar solutions
play an important, often decisive role. We have chosen in this chapter
for demonstration's sake some topics from geophysical fluid mechanics
related mainly to geophysical turbulence.

The surface layer of the atmosphere is usually modelled (see, e.g.,
Monin and Yaglom, 1971) by a turbulent flow that is statistically hori-
zontally-homogeneous and stationary, and is bounded below by a hori-
zontal plane. The shear stress r in the surface layer is also assumed to
be constant. The essential difference from the flow in the wall region
considered in section 10.2 consists in the presence in the surface layer
of thermal stratification - temperature inhomogeneity over the height
of the layer . The stratification is stable if the temperature increases
with height and unstable in the opposite case. Owing to the thermal
inhomogeneity, a vertical displacement of fluid particles, produced by a
vertical velocity fluctuation, is accompanied by work done against the
force of gravity (or extracted, depending on whether the stratification

We do not consider here such supplementary factors as moisture, dust etc.
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11.1 Scaling laws for the atmospheric surface layer 297

is stable or not). This work is either taken from the turbulent energy
or added to it, thus influencing the turbulence level, i.e. the transfer of
heat, mass and momentum, and consequently also influencing the ver-
tical distribution of the mean longitudinal velocity across the flow. The
effectiveness of the influence of thermal stratification on the balance of
turbulent energy is governed by the product of the coefficient of ther-
mal expansion of the air and the acceleration of gravity, the so-called
buoyancy parameter. The air in the atmospheric surface layer is usually
considered to be a thermodynamically ideal gas, for which the coefficient
of thermal expansion is equal to 1/T, where T is the absolute temper-
ature. The atmospheric surface layer is not thick, so the variation in
mean pressure and the corresponding variation in the density can be ne-
glected. In general, the variations of density and absolute temperature
in the surface layer are considered to be small, and their influence on the
dynamics of the flow is taken into account only through the buoyancy,
which governs the contribution of thermal stratification to the turbulent
energy balance. Thus the state of motion at some point of the flow in
the atmospheric surface layer is governed by the following quantities:
(1) the friction velocity u* = \fr]~p^\ (2) the reference density poj (3)
the dynamic temperature T*, introduced by analogy with the friction
velocity through the relation

(where w' is the vertical velocity fluctuation, T" the temperature fluctu-
ation, and the quantity (w'Tf) coincides to within a constant factor with
the vertical heat flux, which is also assumed constant over the surface
layer), the dynamic temperature T* being positive in the case of stable
stratification (dxT > 0) and negative for unstable stratification; (4) the
buoyancy parameter /? = g/To (where g is the acceleration due to gravity
and To is the reference temperature, which does not appear separately
anywhere, since a change in To turns out to influence the flow dynam-
ics only through the buoyancy parameter, i.e., in combination with the
force of gravity); (5) the vertical coordinate z\ (6) the molecular kine-
matic viscosity of air, v\ (7) the molecular thermal diffusivity of air, \\
and (8) the external geometric length scale A (e.g. the height of the
atmospheric surface layer).

The standard procedures of dimensional analysis give

(11.2)
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(11.3)

where Pr = vjx is the Prandtl number and LQ is the thermal length

scale ,

Lo=u2J(3T*. (11.4)

The existing similarity theory for flows in the surface layer of the
atmosphere, which owes its origin to the pioneering work of Prandtl
(1932a) and the works of A.S. Monin and A.M. Obukhov (see Obukhov,
1946; Monin, 1950; Monin and Obukhov, 1953, 1954), is based on the
assumption of complete similarity of the flow in both Reynolds numbers,
the local one, Re/ = u*zjv, and the global one, Re* = u*h/v. The
plausibility of such an assumption and, consequently, of neglecting the
dependence on Re/ and Re* in (11.2) and (11.3) is usually argued on the
basis of the very large values of both Reynolds numbers (for the local
one, very large values outside a small region close to the surface itself
whose height does not exceed a few millimeters). Here the assumption of
the existence of finite limits of the functions $u and $T as Re/ —• oo and
Re* —* oo is accepted implicitly. If the functions <&n and <I>T tend to finite
limits as Re/ —• oo and Re* —• oo in accordance with the assumption of
complete similarity, then for sufficiently large Re/ and Re* a universal
similarity law, independent of the Reynolds numbers, must hold:

zdxu/u. = *u(z/Lo, Pr), (11.5)

zdzT/T*=VT(z/Lo,Pr). (11.6)

This is called in the literature the Monin-Obukhov similarity law. In
the special case when thermal stratification of the flow disappears, we
again arrive at the universal logarithmic law, considered in subsection
10.2.1.

The considerations presented in subsection 10.2.1 show that even in
the case of a thermally neutral flow one detects a weak dependence of the
universal function on both Reynolds numbers. This weak dependence
allowed us to introduce the assumption of incomplete similarity of the
flow in the local Reynolds number, which is apparently not contradicted
by the experimental data on flows in smooth pipes, etc. It is natural to
make a similar assumption for thermally stratified flows in the surface
layer of the atmosphere (Barenblatt and Monin, 1976, 1979a).

This definition of the thermal length scale follows Yaglom (1974) and is somewhat
different from the conventional one.
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11.2 Flows with strongly stable stratification

As discussed earlier, in spite of many years of continuous effort by many
researchers, including top-level people in physics, mathematics, and me-
chanics, hydrodynamic turbulence remains a challenge for even the sim-
plest case, a homogeneous incompressible fluid. Fluid lamination by
density under the gravity field - stratification - additionally complicates
the pattern of turbulent flows and leads to the appearance of substan-
tially new effects.

Flow stratification introduces into our considerations a characteristic
vertical length scale - the vertical length at which the density varia-
tion reaches a magnitude at which it will influence the flow dynamics.
Stratification is considered to be strong if the characteristic vertical flow
length scale is substantially larger than this scale. In this and the fol-
lowing sections scaling laws are considered for phenomena related to
turbulent flows with strongly stable stratification. Some of these phe-
nomena are of basic interest for geophysical fluid mechanics.

First, one of the simplest stratified flows is considered, turbulent flow
in the wall region, where the strongly stable stratification is due to sus-
pended small heavy particles. Examples of such flows are sediment trans-
porting rivers, high-energy benthic bottom layers in the ocean, and dust
storms. Considering flow stratification by suspended particles is attrac-
tive owing to the simple formulae at which we arrive, which allow one to
explain a seemingly paradoxical phenomenon: under certain conditions
the heavy particles can accelerate the flow!

In the case of stable stratification created by temperature and/or salin-
ity an essentially new factor appears, internal waves. An instructive
problem will be considered preliminarily: heat transfer in the oceanic
upper active layer where the temperature (and salinity) distribution is
subject to seasonal variations. As is known the density of sea water
differs from the density of fresh water by three to four per cent, whereas
its density fluctuations have the order of tenths of one per cent. Nev-
ertheless these tiny density variations can influence the flow dynamics
in an essential way. The temperature distribution over depth in the
upper active ocean layer has the typical form represented schematically
in Figure 11.1. The upper homogeneous layer where temperature and
salinity , and, consequently, density are nearly uniformly distributed, is

For simplification's sake we will speak further only about temperature stratifica-
tion.
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the result of turbulent mixing. This mixing is carried out by the simul-
taneous actions of shear and of convection, which causes heavier fluid
particles to sink. These particles thus come to the flow depth from the
surface layer where the fluid is heavier, because this layer is cooled, and
its salinity increased by evaporation from the oceanic surface and also
by the breaking of surface waves. The depth of the homogeneous layer is
time dependent: in moderate latitudes it grows in the fall-winter period
and decreases in spring. The upper homogeneous layer is supported by a
region where the temperature variation is sharp, the upper thermocline,
which terminates at the depth where seasonal temperature variations
vanish. This depth, i.e., the depth of the oceanic upper active layer, has
an order of magnitude of about 200-250 m.

Analysis of the mean temperature distribution in the strongly stably
stratified upper thermocline shows that an adequate model of this dis-
tribution is the Hertz travelling thermal wave, whereas the magnitude
of the effective thermal diffusivity coefficient appears to be constant, to
rather high accuracy. This coefficient is of order 10"1 — lcm2/s, surpris-
ingly, at first sight, being intermediate in value between the turbulent
thermal diffusivity coefficient in the upper homogeneous layer, estimated
as 103 cm2/s, and the molecular thermal diffusivity coefficient, of order
10~3 cm2/s. At the same time high-precision measurements show (this
is discussed in detail in the monograph Fedorov (1976)) that the in-
stantaneous temperature distribution over the depth is never smooth
(as appeared to be the case earlier when these measurements were per-
formed by highly inertial gauges), but has a rather step-wise character:
intervals where the temperature is nearly constant alternate with in-
tervals where there are large temperature, salinity, and, consequently,
density gradients.

This is explained by a peculiar intermittence of the turbulence in flows
with strongly stable stratification. The turbulence in such flows is not
uniformly distributed everywhere, but is concentrated within patches. It
is generated and then decays rather rapidly and is closely connected with
internal waves. The interaction between internal waves and turbulence
is illustrated by an instructive experiment performed by O.M. Phillips,
which is described and analyzed below.

Internal waves also determine the very structure of turbulence in a
strongly stable stratified flow. For various reasons the internal waves
break, forming patches of mixed fluid that collapse through being squ-
eezed at the level of their density. This collapsing of mixed fluid patches
is also considered below. It is shown that at all its basic stages the
collapse is characterized by various scaling laws. The most durable stage
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11.3 The regime of limiting saturation 301

of collapse is the final, viscous one, where the drag to the patch-extension
driving force is due mainly to viscous force. It may occur that the
patch extension at this stage is so slow that the patch can seem to the
unprepared observer as being non-extending.

It is essential to note that the fluid inside the patch is uniform or
close to being uniform, whereas outside the patch it is strongly and
stably stratified. Therefore outside the patch the turbulence must spend
part of its energy in working against the buoyancy force, whereas inside
the patch it does not. Hence outside the patches the turbulence decays
rapidly, and inside it is supported at a higher level. This very effect gives
rise to the peculiar, intermittent, archipelago-like character of turbulence
in a flow with strongly stable stratification.

The inhomogeneous and strongly anisotropic character of turbulence
under strongly stable stratification was predicted by A.N. Kolmogorov
in the late nineteen-forties. The existence of pancake-form turbulent
patches (blini, from a similar Russian word) in the atmosphere and
ocean under strong stratification conditions was established by Phillips
(1967).

Turbulence in a shear flow, if it is sufficiently strong, can support
sediment which would fall down in a non-turbulent or weakly turbulent
flow. The capturing of falling sediment by turbulent patches can make
the latter visible by contrast in an ambient fluid with weaker turbulence.
It is plausible that this explains at least partially discoidal formations
in the atmosphere, which have attracted rather wide attention, as well
as * turbidity clouds' in the ocean.

11.3 The regime of limiting saturation of a turbulent shear
flow laden with sediment

We turn now to the consideration of a flow laden with small suspended
particles. The volume and mass concentrations of particles are assumed
to be very small (e.g. in rivers carrying a large amount of sediment, their
volume and mass concentrations rarely exceed several ten-thousandths).
Nevertheless, the dynamic action of the particles on the flow can turn
out to be crucial, owing to the vast influence of the force of gravity.
Furthermore, the particles are assumed to be much smaller than the
internal turbulence scale; therefore the viscous relaxation time of the
particles is negligible and one can assume that the horizontal components
of the instantaneous velocities of the particles and the fluid coincide, and
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that the vertical ones differ by a constant quantity a, the velocity of free
fall of the particles in the unbounded fluid.

We consider again the wall region of the flow (for example, the sur-
face layer of the atmosphere or the bottom layer of a channel). The
momentum equation in this region remains just the same as for the pure
fluid, since the influence of the particles on the density of the mixture is
negligibly small.

The equation of conservation of mass for the load is obtained by setting
equal to zero the total flux of particles through unit horizontal area. This
flux is the sum of the flux of turbulent transport of particles, {sfw'), and
the flux of settling particles, —as, so that

( s V ) - a s = 0. (11.7)

Here s and sf are the mean volume concentration of particles and its
fluctuation, respectively.

Finally, the steady equation of turbulent energy balance assumes, if
one neglects the contribution of the diffusion of turbulent energy, the
form

{u'w')dzu + e + (r{s'w')g = 0. (11.8)

Here a = (pp — p)/p is the relative excess of the density of particles pp

over the density of the fluid p and e is the dissipation rate of turbulent
energy. The last term expresses the rate at which turbulent energy is
consumed in the suspending of particles by the flow; the other terms
were explained in subsection 10.2.2. Despite the smallness of the con-
centration of particles in the flow, this term can have a significant value,
since the force of gravity is very large.

Equation (11.8) can be put into the form

(uV)82u(l - Ko) + c = 0, (11.9)

where the dimensionless parameter

^ £ L , (11.10)
du

called the Kolmogorov number, expresses the relative consumption of
turbulent energy on the suspending of particles by the flow. This pa-
rameter gives a natural criterion for the dynamic activity of the load,
i.e., the influence of the suspended particles on the dynamics of the
flow. A similar parameter for stratification due to temperature and/or
salinity (see below) is called the Richardson number. We introduce, in
analogy with the coefficient of momentum exchange, the coefficient of
load exchange, according to the relation

(s'w') = -ksdzs. (11.11)
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We now assume, in the spirit of the Kolmogorov similarity hypothesis
of semi-empirical turbulence theory, that this coefficient too, like the
coefficient of momentum exchange and the mean rate of dissipation,
depends only on the local turbulent energy of a unit mass and on the
length scale of the turbulence. By dimensional analysis we then obtain

ks=aslVb, (11.12)

where as is a constant.
In the problem being considered of a laden flow, in contrast to the flow

of a pure fluid an additional parameter has appeared, the Kolmogorov
number Ko, so that for the external scale of turbulence we have according
to dimensional analysis,

Under the assumption of complete similarity in the local and global
Reynolds numbers' the turbulent length scale can be represented
through a universal function of the Kolmogorov number,

Z = /c7z$z(Ko), (11.13)

where $j(0) is obviously equal to one. The turbulence scale decreases
under the influence of the load, so the function $j must decrease when
its argument increases. Thus, under the assumption made, the basic
system of equations for the wall region of a laden turbulent shear flow
assumes the form

2

aslVbdzs + as = 0, b = ^ ( 1 - Ko)1/2 ,

%ozu
The system of equations (11.14) has some characteristic properties.

First of all, it contains only the gradient of the velocity dzu, and not
the velocity itself. Furthermore, for the case of an unrestricted supply
of particles on the underlying surface, in view of the back influence of
the particles on the dynamics of the flow we can anticipate the existence
of flow regime in which the flow absorbs the maximum possible amount
of the sediment load for given friction velocity and other parameters.

As was shown in chapter 10, this assumption is apparently invalid for neutral flow.
However, we neglect here further discussion of this matter, for two reasons. First,
the quantitative difference is not essential here and does not play any significant
role: we do not have at our disposal sufficiently precise experimental data to
distinguish complete and incomplete similarity in sediment-laden flow. Second,
what we need here is a qualitative explanation, and this one is more transparent
for the case of complete similarity.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107050242.014
https://www.cambridge.org/core
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This regime, which we shall call the regime of limiting saturation, must
be described by a singular solution of (11.14), which in turn must be
determined by the parameters appearing in the differential equations
themselves. Thus the determination of the regime of limiting satura-
tion does not require the prescribing of any boundary condition for the
sediment concentration.

An essential point is that the system (11.14) is invariant with respect
to the transformation group

s = S/a, z = aZ, u = U + (3 (11.15)

(a > 0 and /? being the group parameters), so that substituting (11.15)
into (11.14) we obtain the same system (11.14) but in the variables
S,U,Z. Let the singular solution corresponding to the regime of limiting
saturation determine the velocity gradient and load concentration by the
relations

0*ti = / (* ) , s = g(z). (11.16)

But the singular solution is determined only by the system itself and
therefore it also must be invariant with respect to the group (11.15),
i.e., it can be expressed in the form

where / and g are the same functions as in the relations (11.16). Ex-
pressing U ,5 and Z in terms of u, s, z, and a, we get for the functions
/ and g the functional equations

f(z) = af(az), g(z) = ag(az). (11.17)

The solution of these functional equations is found in an elementary
way,

/ = § • , 9 = ̂ , (11-18)
where C\ and C2 are constants subject to determination. Substituting
into (11.15) the relations

dzu=^-, s=Q, K O = ^ E E const, (11.19)
z z Gj

we obtainC ^ (n2°)
whence we find a finite equation for determining the Kolmogorov number
Ko, which is constant in the regime of limiting saturation:

a; = ( l -Ko) 1 / 4$/(Ko) . (11.21)

But $1 is a non-increasing function of its argument, 3>/(0) = 1, and Ko
by its physical meaning lies between zero and unity. Hence it follows
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that for u > 1 there exists no root of (11.21), and for u < 1 a unique
root exists. Therefore a necessary condition for the existence of a regime
of limiting saturation is

u> = —— < 1 . (11.22)
OLSKU*

The physical meaning of the condition (11.22) is transparent. In fact,
the value of the friction velocity u* is proportional to the mean square
velocity fluctuation. Thus if the fluctuation is large, so that during the
time in which a fluid mass is lifted up by the turbulent fluctuation the
heavy particles inside it have no time to fall (the velocity a of free fall
being relatively small), the particles come into the main core of the flow
and become suspended in it. In the opposite case, the particles are
transported by the flow in the bottom layer, do not reach the main core
of the flow, and do not influence the flow dynamics in the main part of
the stream.

From the first equation of (11.19), taking into account (11.20), we get
for u < 1

u = — In z + const. (11.23)

This means that for the flow in the regime of limiting saturation, which
can be realized for a; < 1, the velocity distribution remains logarithmic,
just as in a pure fluid, but a reduction of the von Karman constant
has occurred: instead of K, it is now equal to KUJ. Therefore under the
same external conditions (the same friction velocity) the flow accelerates
under the action of particles in comparison with the flow of pure fluid.

Since the capture of particles by the flow is realized by turbulent
fluctuations, the turbulent energy must decrease. Actually, the turbulent
energy per unit mass for the regime of limiting saturation is equal to

6 = 6 0 (1-Ko) 1 / 2 , (11.24)

where bo = w*/72 is the turbulent energy for the flow of pure fluid
with the same friction velocity. But the turbulent flow drag depends
on the intensity of the fluctuations, so it turns out that the suspended
particles decrease the turbulent drag. It is clear that this conclusion is
valid only under the conditions indicated above of horizontal or nearly
horizontal flow and of small volume and mass concentrations of particles,
etc. Under such conditions a drag reduction in the flow and an apparent
decrease in the von Karman constant under the action of suspended
particles have been observed by experimentalists (Vanoni, 1946; Einstein
and Ning Chen, 1955).

The theory presented here of the transport of particles by a turbulent
flow was developed by Kolmogorov (1954), and Barenblatt (1953, 1955);
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the derivation of the equations for the regime of limiting saturation on
the basis of group considerations was given by Barenblatt and Golitsyn
(1974).

Dust storms in the Earth's atmosphere, as well as in the atmosphere
of Mars, can be explained by the effect discussed above (Barenblatt and
Golitsyn, 1974). It also explains the acceleration of flows in rivers car-
rying a relatively large amount of sediment, which had been repeatedly
noticed by hydrologists. Apparently flow acceleration due to strongly
stable stratification by particles, temperature, and salinity can explain
(Barenblatt, Galerkina and Lebedev, 1992, 1993) the formation of high-
energy benthic boundary layers in the ocean. The discovery of these
layers (Nowell and Hollister (1985), see also the rest of the issue of
Marine Geology in which this paper is published; Weatherly and Kelly
(1982)) was one of the most important events in modern oceanology.

11.4 Upper thermocline in the ocean —
the travelling thermal wave model

Stratification in the ocean is established due to the non-uniform distri-
bution over depth of temperature and/or salinity. In contrast with strat-
ification due to suspended particles, considered in the previous section,
here we have the mixing of stratifying agent and fluid on the molecu-
lar level. Hence the turbulent exchange intensity and consequently the
heat and mass exchange intensities are closely related to internal waves.
We shall see this as we consider an instructive problem regarding the
temperature distribution in the oceanic upper thermocline in moder-
ate latitudes. For the fall-winter period the upper thermocline is most
clearly manifested and its lowering occurs.

Heat and mass exchange on the oceanic surface, including the falling
of heavy cold fluid particles formed from breaking waves, leads to the
formation of a peculiar oceanic boundary layer where temperature (and
salinity) are influenced by the water-air interface. This layer - the upper
active layer of the ocean - consists of the upper homogeneous layer,
where the temperature is nearly constant, and the upper thermocline
supporting it where, on the contrary, temperature variation is sharp
(Figure 11.1). The depth of the upper active layer in the open ocean
is at least an order of magnitude less than the total oceanic depth.
Therefore the upper thermocline can be considered as a semi-infinite
region h < z < oo (z is the depth measured from the oceanic surface, h
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Figure 11.1. Schematic representation of the upper active layer of the
ocean: (1) upper homogeneous layer; (2) upper thermocline.

is the depth of the upper homogeneous layer). The excess temperature
- the difference between the current temperature and the mean annual
temperature at a given point - therefore vanishes at infinity. If the
natural observation data are averaged over a period of a month, the
influence of short-time processes (daily variations, short-time random
temperature anomalies, etc.) will disappear. The averaged parameters
of the oceanic upper active layer, such as the speed of lowering of the
upper homogeneous layer, u = dh/dt, and its excess temperature Go will
be functions of some dimensionless 'slow' time T:

u = u(T), 9o = e o (T) . (11.25)

Let us neglect the influence of horizontal inhomogeneity, and let us
assume furthermore that the motions governing the turbulence, and in
consequence the heat and mass exchange mechanisms in the upper ther-
mocline, are statistically steady, spatially homogeneous and small scale.
Then, under these assumptions the heat conduction equation for the
averaged excess temperature G(z, i) is obtained:

dte = Kd2
zzG. (11.26)

Here t is the ordinary dimensional time, and K is the effective thermal
diffusivity coefficient, which is constant according to our assumptions.
Note, that in further considerations the variability of this coefficient,
and, in particular, its dependence on temperature and/or temperature
gradient could be taken into account without additional mathematical
difficulty. Further analysis will show, however, that there is no need for
this complication.
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The excess temperature distribution satisfies the boundary conditions

i,t) = e o (T) , e(oo,t) = o (ii.27)

Let us introduce a moving coordinate £ = z — h reckoned from the
thermocline's upper boundary, so that 0 = 0(£,£). Then equation
(11.26) and the boundary conditions can be written in the form (cf. the
analogous consideration in section 7.5)

dte - u(T)d^e = Kd^G (11.28)

9(0,t) = 0O(T), 0(oo, t )=0. (11.29)

The characteristic time scale in this problem r = K/U2, as will be
seen, is of the order of days. The averaged excess temperature 0 is not
influenced by short-time processes, so the characteristic time scale of t
should be considered to be larger than r. For large t/r the solution
to the problem (11.28), (11.29) asymptotically becomes steady, so that
the time derivative in (11.28) disappears. The equation obtained can be
integrated simply, and under boundary conditions (11.29) the solution
achieves the form

0 = 0oexp(-u£/t t) . (11.30)

It is convenient to introduce a universal variable,- the relative excess
temperature 0 = (0o — 0)/0o- In terms of 6 the solution (11.30) can
be written in the form

0 = l - e x p ( - u f / « ) , (11.31)

i.e., the relative excess temperature distribution appears to be self-sim-
ilar. Self-similarity of the relative excess temperature distribution in the
upper thermocline was found empirically by Kitaigorodsky and Miro-
polsky (1970), by processing natural data. Linden (1975) performed a
successful attempt to process, on the basis of the self-similarity hypoth-
esis, data obtained in his laboratory experiments concerning the salinity
profile in the laboratory model of the upper thermocline. However, the
self-similarity was not associated in these papers with a definite physi-
cal mechanism. In the preceding chapters we have seen repeatedly that
self-similarity never occurs by chance, it always means that there exists
a certain stabilization of the process. The settling down of the average
temperature field to a steady travelling wave is another instructive exam-
ple confirming this general rule. The model of a travelling wave for the
upper thermocline was proposed and shown to agree with experimental
data - both laboratory and natural data - in Barenblatt (1978b); in-
dependently and simultaneously an analogous model was proposed by
Turner (1978). Note that the steady-state solution (11.30) for the heat
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conduction equation with a moving heat source was found by the fa-
mous German physicist H. Hertz in the last century and since then has
been used in many branches of mathematical physics. In particular, it
plays a fundamental role in the theory of combustion, where it describes
the temperature distribution ahead of the combustion region where the
chemical reaction has not as yet started (see chapter 7). The travelling
thermal wave model has also been much used in physical oceanology.
Munk (1966) applied a similar model in a different physical situation;
following his figurative expression, we might say that this model comes
from oceanographic antiquity.

Integrating (11.31) we obtain

(11.32)

so that the relation (11.31) can be represented in universal form:

In
1 - 0

(11.33)

6 r-

Figure 11.2. Results of the processing of natural data confirm the trav-
elling wave model for the upper thermocline.
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Therefore, if the proposed model is an adequate one then in the re-
duced coordinates

the experimental points should settle down along the bisectrix of the
first quadrant. Efimov and Tsarenko (1980) processed numerous natural
data using these coordinates and were able to confirm the travelling-wave
model for the upper thermocline. In Figure 11.2 are presented Efimov's
results of the processing of natural data by B.N. Filyushkin of the aver-
aged October 1968-72 temperature profile at the 'Echo' weather station
(34°0' N and 48°0' W). As is seen these data confirm the thermal trav-
elling wave model for the upper thermocline and the constancy of the
effective vertical temperature diffusivity coefficient . The data presented
allow one to give some instructive estimates. For natural measurements
at the 'Echo' station the KJU value, determined according to formula
(11.32) is about 2 x 103 cm. The estimates for the averaged velocity of
lowering of the thermoclines upper boundary give u ~ 10~4 —10~3 cm/s.
Hence, using the previous estimate we find K ~ 10"l — 1 cm2/s. It is
important to note that this value is intermediate between the magni-
tude of the molecular thermal diffusivity coefficient of water, of order
10~3 cm2/s, and the magnitude of the turbulent temperature diffusivity
coefficient in the upper homogeneous layer, of order 103 cm2/s. This
estimate obtained for the effective vertical temperature diffusivity coef-
ficient agrees with Munk's (1966) estimate for the value at an interme-
diate depth of the Pacific and corresponds to Stommel's (1958) global
estimate. An analogous intermediate value is obtained for the data from
laboratory experiments. This gives some basis for assuming (Phillips,
1977) that heat (and mass) exchange in the upper thermocline is gov-
erned by intermittent turbulence, related to the breaking of internal
waves.

Internal waves are a phenomenon specific to fluid flows with stable
stratification. When the stratification is 'discrete', i.e., if the fluid con-
sists of several homogeneous layers and their densities decrease from
bottom to top, the energy of the internal waves is mainly concentrated
close to the interfaces between layers. In the case of continuous stable
stratification the internal waves fill the whole space, if there exist in the
fluid some sources of disturbance. Such sources always exist in the at-
mosphere and in the ocean (let us note even the tides, which provide in

The systematic deviations in the upper part of this graph, corresponding to the
lowest part of the thermocline, are apparently due to the processing procedure.
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the ocean internal waves of huge amplitude and length), so that internal
waves are a phenomenon occurring everywhere in the ocean and also in
the atmosphere (see, e.g., Gossard and Hooke, 1975). The interaction
between internal waves and turbulence is decisive for the whole pattern
of turbulence in a stratified fluid.

11.5 Strong interaction of turbulence with internal waves.
Deepening of the turbulent region

The strong nonlinear interaction of internal waves with turbulence leads
to essentially new effects compared with those due to turbulence in neu-
tral fluid flows. One such effect was demonstrated by Phillips (1976).
The principal scheme of his remarkable experiment is as follows.

At the interface of two layers of liquids of different density internal
waves are produced (Figure 11.3). After the establishing of steady waves
turbulence was initiated by an oscillating grid at the upper boundary.
Gradually the turbulent region propagated downwards from the upper
boundary of the upper layer. Its lower boundary appears to be very
sharp. The basic effect demonstrated was that when the turbulent front
approached the interface of the two layers, the waves became smoothed
out and disappeared practically instantaneously.

Note that in fact the tank in Phillips' experiment had the form of
a circular cylinder, and turbulence was stirred up by a rotating disc
bearing metallic ripples which covered the upper boundary of the up-
per layer, so that a rotating shear mean flow appeared. For theoretical
consideration (Barenblatt, 1977) the problem statement was simplified:
the fluid layers were assumed to be horizontally homogeneous, and tur-
bulence was assumed to be stirred by an oscillating grid without shear.
In fact, the simplified stirring scheme corresponds to a real experiment
(Turner, 1968, 1973; Thompson and Turner, 1975).

Consider first the propagation of turbulence, stirred without the for-
mation of shear flow, at the boundary z = 0 of an infinitely deep sta-
tistically horizontally-uniform layer of constant density. Since the flow
is shearless, turbulence generation by a mean flow does not occur and
the turbulent energy balance equation in the turbulent region can be
written in the form

(the notation is the same as in subsection 10.2.2). We cannot neglect
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vwv
Figure 11.3. Principal scheme of Phillips' experiment: (1) light fluid
layer; (2) heavy fluid layer; (3) oscillating grid producing turbulence; (4)
turbulent region; (5) turbulent front.

the effect of turbulent energy diffusion here because this effect governs
the 'entrainment' - the extension of the turbulent region.

The relation for the diffusion flux of turbulent energy can be written
in the form

= -fodzb (11.35)

where fc& is the turbulent energy exchange coefficient. We emphasize that
the relation (11.35) simply introduces a new quantity kb not related to
any additional assumption.

Let us assume as before (subsection 10.2.2) the Kolmogorov similarity
hypothesis. This gives (within the frame of the 6, I model)

= lVb, c = (11.36)

where c\ is again a constant; according to subsection 10.2.4 the estimated
range of its value is 0.06-0.085. Equation (11.34) then assumes the form

rdtb - lVbdzb + — = 0. (11.37)

Equation (11.37) is relevant to the nonlinear heat conduction equa-
tions considered in chapter 2. Initial turbulence in the flow field is
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absent, according to the experimental conditions, so the initial value of
turbulent energy can be assumed equal to zero. The energy flux (per
unit mass) q at the boundary is assumed to be constant (in fact, special
organization of the experiment is required to maintain the energy flux
at the boundary as time independent). Thus, the initial and boundary
conditions appropriate to the problem under consideration take the form

6(2,0) = 0 , (lVbdzb) =-q (11.38)

so that the turbulent energy depends on the quantities t, q, z whereas the
turbulence length scale /, which we assume constant over the depth of
turbulent region, depends on t and q. This assumption of a length scale
that is constant over depth is related to an important idea of Townsend
(1976) concerning the governing role of large vortices in turbulent ex-
change processes.

As in the problems of a strong thermal wave, considered in chapter 2,
and of turbulent-burst evolution, considered in chapter 10, the solution
is represented by a finite function, different from zero in a finite region
0 < z < h(t) only.

Dimensional analysis gives

(H-39)

Here the constant ai can be considered as a known universal con-
stant; the other constant £o is determined in the course of solution.
The estimates performed in subsection 10.2.4 gave a\ the range ot\ =
0.063 - 0.071. Substituting (11.39) into (11.37) and (11.38) we obtain
for the function / an ordinary differential equation

T~AC \ v I-;? ) +€37 j-t = 0 ' £ = T 7 A ' (11.40)
£0 &i \ di) di ai£0 h(t)

and boundary conditions

) - 1 .

We recall that, like the solution to similar problems in chapters 2 and
10, the function / is different from zero for 0 < £ < 1, identically equal
to zero for £ > 1, and continuous, as is the derivative d/3/2/d£; the last
two conditions (11.41) follow from these continuity conditions and the
first condition (11.38). The constant £0 is obtained as an eigenvalue of
the problem (11.40), (11.41).

Therefore under the assumptions we have accepted the turbulent en-
ergy at a certain time instant t is different from zero in a region of finite
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depth h(t) growing linearly with time, so that the entrainment speed
appears to be constant:

f (11-42)
The bulk turbulent energy in the turbulent region per unit boundary

area grows linearly with time,
h 1

/m, (H.43)
0 0

whereas the integral dissipation rate per unit area is time independent:
h 1

[edz = rq, r=— f f ! 2 d £ . (11.44)
J Oil J0 0

Integrating (11.40) from £ = 0 to £ = 1 and using the boundary
conditions (11.41) we find an obvious relation between r and a: a =
1 - T .

We note that the problem under consideration could be solved within
the framework of the 6, e turbulence model. However, in the latter model
the dissipation-rate flux must somehow be prescribed at the boundary,
and up to now we have no physical argument adequate to determine
this quantity. This point is in general a difficult aspect of using the 6, e
model. The case of turbulent-burst evolution considered in subsection
10.2.4 was a lucky exception because this quantity turned out to be equal
to zero due to symmetry.

We return to Phillips' experiment. The dynamics of the internal waves
at the interface between the heavy and light fluids is described by simple
potential theory and, as is known, the energy density of the waves rapidly
(exponentially) decays with distance from the interface. Therefore, the
pattern of steady waves at the interface is not influenced by turbulence
until the turbulent front, propagating with finite velocity, reaches the
vicinity of the interface. It is plausible to assume that turbulence creates
a turbulent flux j of wave motion energy Ew directed opposite to its
gradient (Benilov, 1973):

j = -fcwgrad£^. (11.45)

Here &w is the coefficient of wave energy exchange, which is introduced
in the same way as the exchange coefficients of mass, temperature, mo-
mentum, etc. were introduced earlier. Therefore, applying here for
qualitative reasoning the Kolmogorov similarity hypothesis we obtain
the estimate

(11.46)
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Thus, until the turbulent front approaches the region of large wave
energy gradient, i.e., the close vicinity of the interface, the coefficient
kw remains equal to zero because the turbulent energy is zero; also,
when the turbulent front is far from the interface, the gradient of the
wave energy in the turbulent region is exponentially small. Therefore the
wave energy flux is small everywhere. However, when the turbulent front
approaches the close vicinity of the interface the wave energy exchange
coefficient there becomes different from zero, and, because close to the
interface the gradient of wave energy is not small, the turbulent flux
of wave energy increases sharply (Figure 11.4). Due to this flux the
wave energy becomes more or less uniformly distributed over the whole
upper layer. Thus, when the turbulent front arrives at the interface, the
wave producer becomes ineffective: the wave energy due to turbulence
becomes uniformly distributed over the whole upper part of the tank
and not concentrated close to the interface as it was before the turbulent
region approached the interface. This is the reason for the smoothing of
the waves at the interface.

Figure 11.4. Wave energy redistribution over the whole volume of the
turbulized fluid: (1) turbulent front; (2) interface.
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It is clear that the special circumstances of the Phillips experiment
are immaterial here: we have met, when analyzing this experiment, a
phenomenon of a quite general nature. Indeed, we have seen how the
turbulent region, extending in the ambient fluid, and sharply bounded
by a front when the turbulence intensity in the ambient fluid is small,
'sucks' and redistributes the energy of waves approaching the region
involved in wave motion. This leads to rapid smoothing of the waves.
The phenomenon which we have just discussed is often observed when
looking at the sea surface from the rear of a ship: the smooth mirror-like
surface over the turbulent wake of the ship is in a sharp contrast with the
ambient rippled surface. Also, those who practise water skiing observe a
smooth track behind the speed-boat. This is due to the sucking of wave
energy by the turbulent wake of the speed-boat. However, the skier feels
also a frequent weak tremor due to turbulence.

Note that the remarkable fact of the presence of a sharp boundary
between the turbulent and non-turbulent regions, which was basic in our
previous considerations and has been obtained here from a mathematical
model, has repeatedly been noted by experimentalists (see, especially,
the paper by Kovasznay et al. (1970) , and Turner's (1973) monograph
where a review of earlier work can also be found).

11.6 The breaking of internal waves and extension of
mixed-fluid patches in a stably stratified fluid

The interaction of internal waves and turbulence in a fluid having
strongly stable stratification is not restricted to the redistribution of
wave energy by turbulence considered in the previous section. In fact,
turbulence in a stably stratified fluid has a peculiar, intermittent, spa-
tial structure. Observations, in particular those in the upper layer of the
ocean, show that it is concentrated in 'patches' of turbulence, pancake-
form layers extending horizontally much further than their thickness
(Fedorov, 1976). These pancake-form patches occur as sharply bounded
and relatively long-lived formations. Even after the decay of turbulence,
the fluid in the patches remains mixed (homogenized) for a rather long
time. Therefore the origin and evolution of mixed-fluid patches in sta-
bly stratified fluids is of considerable interest, in particular in connection
with the oceanic fine structure and microstructure.

In this paper some proposals are also discussed concerning the mathematical mod-
elling of the sharp boundary.
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The initial formation of mixed-fluid patches is related to the destruc-
tion of internal waves which can be due to various reasons: simple
breaking (Woods, 1968), shear or convective instability (Belyaev and
Gesenzwei, 1978; Korotaev and Panteleev, 1977), resonance interaction,
etc. After the destruction of internal waves patches of mixed fluid ap-
pear (Figure 11.5) and extend, being gradually squeezed by the ambient
stratified fluid and intruding into it. It is clear that the intrusions will be
squeezed at the vertical level z = z\ where the density of the stratified
fluid is equal to the mixed-fluid density. The mixing of fluid within the
patch establishes an excess pressure there, which forms the driving force
of intrusion: owing to this force the extension of the patch goes on.

Z ; k

c c c
ccc

* - * ,

Figure 11.5. Mixed-fluid-patch intrusion into the ambient stratified fluid.

It is natural to distinguish three stages in the collapse-spreading of
mixed fluid patches in a stably stratified fluid: (1) the initial stage,
essentially a non-steady one, when the driving force of the intrusion
substantially exceeds the drag forces; (2) an intermediate steady stage,
when the driving force is in equilibrium with the form drag and the
wave drag due to radiation of internal waves by spreading patches; and
(3) a final, viscous stage, when internal waves are not radiated and the
driving force is in equilibrium with the viscous drag. As we will see, each
of these basic stages is governed by its own scaling laws. Between the
basic stages there are some non-self-similar intermediate periods. After
the viscous stage (3) the patch becomes mixed due to diffusion with the
ambient fluid and disappears. Classification of these collapse stages of
mixed-fluid patches goes back to the paper of Wu (1969). In this paper
an important fact was observed: the volume of a patch remains constant
from the early stages until the last observed extension period.

Let us consider these stages in sequence. In the first stage a particle in
the mixed fluid will be falling, or being raised, to the plane of its density
level z = z\, with subsequent spreading along this plane. Therefore
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the variation rate of the patch's planform area 5 at the first stage is
proportional to the current patch area times the speed of fluid inflow
to the plane z = z\. Under conditions of free fall the speed of fluid
inflow is proportional to the product of time and free fall acceleration.
In turn the free fall acceleration is proportional to iV2, where N is a basic
stratification parameter, the so-called Brunt-Vaisala frequency, defined
by the relation'

AT2 __ 9 dp , _ _

P s
N is equal to the frequency of the linear internal wave that arises when
the stably stratified fluid at rest is weakly disturbed . The patch's verti-
cal size is not large, therefore the variation of TV in the vertical direction
can be neglected. Therefore for the first stage the following relation is
obtained:

dtS~SN2t. (11.48)

Integrating, we obtain for small Nt

{S~So) ~N*t*. (11.49)

Here So is the initial patch planform area. Thus, at the first stage the
variation of the patch's characteristic length L is proportional to time
squared:

^~L0Nt. (11.50)
LQ at

Indeed, for the case of a patch having the form of an elongated cylinder
with horizontal axis, typical for a wake, 5 is proportional to L and the
relation (11.50) is obtained from (11.49) directly. However, if the length
sizes of the patch planform are about equal, for instance if the patch
planform is circular, S ~ L2. When L — LQ <C LO> S — So ~ L2 — L\ ~
2(L — Lo)Lo, whence and from (11.49) the relation (11.50) is obtained
again. Relations of the form (11.50) were obtained by Wu (1969) by
processing the data of laboratory experiments with wakes. They were
confirmed by the semi-quantitative theoretical analysis of Kao (1976),
and by numerical calculations. They appear to be valid up to t ~ 2.5/iV.

At the intermediate stage the intrusion-driving force is in equilibrium

In the relation (11.47) and in what follows g is the acceleration due to gravity,
and p is the potential density, i.e., the density obtained when the fluid pressure is
reduced adiabatically to a certain standard value.
A typical value of N is for the atmosphere is 10~2 s"1 and for the ocean is 10~3

s"1.
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with the form drag and the wave drag, so the governing parameters
will be the basic stratification parameter N and the current mean patch
thickness h. Dimensional analysis gives

^ (11.51)

We now note that at this stage the patch extension rate is different for
different planforms. In fact, as was said previously, the patch volume V
is constant. Therefore for a wake-like patch having cross-sectional area
5, h ~ S/L, and for a patch of circular planform h ~ V/L2, and we
obtain for these cases, correspondingly,

^ p ~ S W , L~[S7V(*-*o)]1 / 2 , (11.52)

71-3

— ~VN, L~[VN{t-to)}
l/3 . (11.53)

Here to is the time of the origin of the second stage. Again, relations
of the type (11.52) were obtained by Wu (1969) by processing laboratory
experimental data, and confirmed by the semi-quantitative theoretical
analysis of Kao (1976). They appear to be valid in the interval 3/7V <
t < 25/AT.

Let us consider the final, viscous stage of mixed-fluid patch collapse
(Barenblatt, 1978a).

Under the assumptions made earlier in the section, the equation of
mass conservation in the mixed fluid patch has the form

dth + div/m = 0, (11.54)

where h(x, y, t) is the local patch thickness, x, y are the rectilinear co-
ordinates in the z = z\ plane, t is the time, and u is the mixed-fluid
velocity, averaged over a given vertical line inside the patch. For the
derivation of this equation it is enough to consider the mass balance in
an elemental volume, or particle, of the patch, shown in Figure 11.6, and
to take into account that no ambient fluid entrainment and no viscous
erosion of the patch is occuring at this stage.

To determine the average velocity u consider the system of forces
acting on the elemental particle (see Figure 11.6). It is bounded by the
patch's upper and lower surfaces and by a cylindrical surface around an
elemental area 6S in the plane z = z\. The intrusion-driving force for
this particle is due to the gradient of the quantity ph, where p is the
excess pressure over that of the ambient stratified fluid, averaged over
the vertical within the patch:

(11.55)
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Figure 11.6. Elemental particle of a mixed-fluid patch.

Indeed, on each vertical line on the cylindrical boundary of the ele-
mental particle a force p/in per unit contour length is acting here; n is
a unit vector normal to the contour 6C of the elemental area 6S. The
driving forces at the upper and lower patch boundaries are zero because
the pressure there coincides with the pressure in the ambient stratified
fluid. Applying Gauss's formula we obtain

= - / phnds~ -(gradp/i)<55.

sc
The drag force P r acting on the particle can be calculated in the fol-

lowing way. At the stage under consideration the patch collapse is pro-
ceeding slowly, so that it is possible to neglect the accelerations within
the patch and simplify the equations of motion. Integrating these sim-
plified equations over the patch thickness we obtain that the drag force
is proportional to the derivative over z of the actual fluid velocity at
the upper or lower patch boundary. The velocity distribution can eas-
ily be found given boundary conditions at the upper and lower patch
boundaries. Experiments and numerical calculations show that the fluid
velocity at the upper and lower patch boundaries is much lower than
the average velocity within the patch. This is due to the fact that above
and below the patch the fluid motions are, during the collapse, in the
reverse direction to the fluid motions inside the patch. Therefore, it can
be assumed with adequate accuracy that the fluid velocity vanishes at
the upper and lower patch boundaries. Integrating the simplified equa-
tions of motion under this condition it is possible to obtain the velocity
distribution over the patch thickness, and, consequently, the relation for
the drag force.

We will, however, derive this relation directly, using dimensional anal-
ysis. In fact, the drag force per unit planform area is governed by the
local mean fluid velocity u, the fluid's dynamic viscosity fi inside the
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patch, and the local patch thickness h. Dimensional analysis gives us
that this force is proportional to //u/ft. Therefore the viscous drag force
F r acting on the elemental particle of the patch is equal to

Fr = c^6S (11.56)

where c is a constant, which can be found by comparison with the well-
known solution to the problem of viscous fluid motion between plane
walls, according to which P r = 12IIU6S/R. Therefore we obtain that
c = 12.

Prom the equality of the drag force (11.56) and the driving force
(11.55) on the particle, we obtain

h
u = gradp/i. (11.57)

Cjl

Only the mean excess pressure in the mixed fluid remains to be deter-
mined. The density distribution in the stratified fluid near the z = z\
plane, along which the patch is extending, can be considered as linear
one owing to the small patch thickness. Evidently the extending patch
is symmetric with respect to the plane z — z\, so this divides the patch
into two symmetric parts. Let us denote by pi and pi the pressure and
density of the stratified fluid at the level z — z\. Then, integrating the
hydrostatic equation we obtain a relation for the pressure variation in
the stratified fluid:

N2(z — zA2

P = Pi-Pig(z-zi) + Pi l
2 • ( 1 L 5 8 )

Here, as before, N is the Brunt-Vaisala frequency, so N2 = ag and a =
\dp/dz\/pi. Furthermore, the pressure at a patch boundary coincides
with the pressure of the ambient stratified fluid at the same height.
Thus, the pressures at the upper point, z = z\ -f /i/2, and the lower
point, z = Z\ — h/2 on a vertical line within the patch are equal to

h N2h2 h N2h2

pu=Pi- pig- + p i — — , PI=PI + pig- + pi—^—. (n.59)
The pressure inside the patch is distributed hydrostatically because

the fluid density in the patch is constant and equal to p\\

P = Pi- Pig(z - zi) + PlN
s
h . (11.60)

The mean pressures averaged over a vertical line inside the patch and
over a similar depth in the ambient fluid are correspondingly equal to

N2h2 N2h2

Pai = P i + p i — — , Pas =Pi+ Pi—fij-' (11.61)
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The difference between these quantities gives the mean excess pressure
over a given vertical line inside the patch:

From relations (11.57) and (11.62) we obtain

u = - ^ - h grad/i3 = - ^ h 3 grad/i. (11.63)
\2c\i AC/JL

After substituting this relation into the equation for mass conservation
in the patch, we obtain for the patch thickness a nonlinear equation of
heat conduction type:

TV2

( 1 L 6 4 )

where A is the two-dimensional Laplace operator and v is the kinematic
viscosity of the fluid inside the patch. In particular, for symmetric rectin-
linear and axisymmetric one-dimensional motions, equation (11.64) as-
sumes the respective forms

dth = Kdlxh
5 (11.65)

dth = -dr{rdrh
b) (11.66)

r
where a: is a horizontal Cartesian coordinate and r is the horizontal
polar radius. We met an analogous equation earlier, in chapter 2, when
considering the initial stage of a nuclear explosion.

If the initial length sizes of the patch planform are about the same,
it is natural to expect that the patch will become axisymmetric, pre-
sumably during the end of the second stage and the final viscous stage.
The results of a numerical computation performed by E.I. Tikhomirova
are presented in Figure 11.7: equation (11.64) was solved numerically*
for a non-symmetric initial patch-thickness distribution /i(x,y,0). As is
seen, after even slight spreading the patch planform becomes indistin-
guishable from circular; therefore the patch collapse can be considered
as axisymmetric and equation (11.66) can be used for its description.
The equation for patch-volume conservation assumes the form

oo

2?r / h(r, t)rdr = V = const. (11.67)

o
We are interested, first of all, in the intermediate-asymptotic stage of

Numerical computation methods for the degenerate case - the vanishing of h at
the boundary of the disturbed region - were used in this computation, developed
by Samarsky and Sobol' (1963).
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Figure 11.7. Numerical solution to equation (11.64) for a non-symmetric
initial condition: h(x,y,0) = ho for points x,y inside the square G;
h(x,y,0) = 0 for points outside G; r — ntiot/l2. (The calculation was
performed by E.I. Tikhomirova.)

patch extension when the patch planform diameter substantially exceeds
its initial diameter. At this stage the random details of the initial patch-
thickness distribution cease to be important. Therefore, as in Chapter 2,
for an asymptotic description of the viscous stage of collapse we can as-
sume an initial distribution in the form of a concentrated instantaneous
source:

/i(r, ti) = 0 at r ^ 0, 2TT / /i(r, ti)rdr = V (11.68)

where t\ is the moment taken as the beginning of the self-similar viscous
stage.

The problem solution here is completely analogous to that for the
instantaneous heat source problem in Chapter 2. The solution to equa-
tion (11.66) under the initial condition (11.68) depends on the quantities
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t — £1, K, V and r. Dimensional analysis shows that the solution is self-
similar and can be represented in the form

V

From (11.69) and (11.66) an ordinary differential equation follows for
the function /(C)-

< ^ i < r _c_# I (1170)

This equation, when multiplied by £, is reduced to an equation in
total derivatives. After integrating and using the conditions (11.67) and
(11.68) we obtain a very simple relation for the function / :

Therefore the patch has at each moment a finite radius ro(£); this is
the peculiar property of the nonlinear equation (11.64) that distinguishes
the latter from the linear heat conduction equation (cf. chapter 2). The
relation for the patch radius is

which reveals that it grows with time very slowly. For the maximum
patch thickness at time t we obtain the expression

1/4 r v i 1 / 5 r w i 1 / 5

[] U]]
(11.73)

so that its decay in time also proceeds very slowly. It is of interest
to consider the form of the patch's cross-section as represented in the
reduced self-similar variables r/ro(£), h/ho(t) on Figure 11.8. The patch
thickness is nearly constant and only at the very edge does it shrink
abruptly, so that the patch has in fact a discoidal form.

Similarly, if the patch has a wake-like form, as do the patches of mixed
fluid in the wakes of aircraft, often seen in the sky, equation (11.65) can
be used, x being the horizontal coordinate along the wake's symmetry
axis. The conservation condition for the volume of the mixed-fluid patch
assumes the form

oo oo

/ h(x,t)dx = S= I h(x,0)dx = const; (H-74)

—oo —oo

here S is the patch's cross-sectional area. The initial conditions for
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h(r,t)/hQi,
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Figure 11.8. The form of a mixed-fluid patch at the viscous stage is nearly
a discoidal.

an intermediate-asymptotic solution of instantaneous source type are
represented in the form

oo

f (11.75)

and the solution, which may be obtained analogously to the previous
one, is

h = 4/c(* — *i)J

1/6

C =
1/4

c -

for (0 < C < Co)
for (C > Co)

•i 2 / 3
^,1 71

1/4

lr(i/2)r(5/4)J
so that the relation for the edge of the patch x = ± £o(O is

(11.76)

(11.77)

0.67.

(11.78)

(11.79)

Comparison of the intermediate asymptotics (11.72) and (11.78) with
the intermediate asymptotics for the previous stage, (11.52), (11.53),
leads to an important conclusion: after transition to the viscous stage,
spreading of the patch slows down sharply, so that if observed at time
intervals that are not too large, the patch can seem invarying. The
scaling law of 1/6 (11.76) was obtained in a semi-quantitative way by

and maximum patch thickness decays with time as follows:

h(O,t) = ho(t) = A
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Figure 11.9. The scheme of the laboratory set-up for investigating the
spreading of a mixed-fluid patch of circular planform (Zatsepin, Fedorov
et al.j 1978). 1, the tank with stratified fluid; 2, shadowgraph; 3, glass
tube; 4, DC electric motor; 5, mixer; 6, piston; 7, screen; 8, photographic
or movie camera.

Maxworthy (1973) and, using the more detailed analysis presented here,
by Barenblatt (1978a).

The relation (11.72) for the spreading of a patch of circular planform
looks remarkably simple, so its experimental checking was important.
This was performed in an elegant laboratory experiment by Zatsepin,
Fedorov, et al. (1978). The following experimental scheme was used
(Figure 11.9). Into an open Plexiglass tank filled by linearly density-
stratified fluid a vertical hollow cylindrical tube was slowly introduced,
under the fluid level. The fluid in the lower part of the tube, separated
by a piston at rest, was then stirred by a special mixer. After allowing
sufficient time for the fluid motion to decay the tube was slowly raised,
releasing a patch of mixed fluid which started to spread into the am-
bient stratified fluid. The experimental set-up allowed the observation
and recording of the two last stages of the patch's collapse. Photographs
similar to those presented in Figure 11.10 demonstrate that, as expected,
soon after the collapse starts, spreading of the patch slows sharply and
the patch at this stage has the form of a disc with blunted edges, similar
to that presented in Figure 11.8. The patch volume, kinematic fluid
viscosity, fluid, and tube diameter were the same in all experiments.
Therefore, if the relation (11.72) is valid then experimental points plot-
ted in the coordinates

* - tx)\ (11.80)

should lie on a single straight line with slope 1/10. This is confirmed
by the graph of Figure 11.11. The value t\ = 10 s was obtained by the
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Figure 11.10. The shadow image of a spreading mixed-fluid patch (after
Zatsepin, Fedorov et a/., 1978).

Figure 11.11. Results of experiment confirm the one-tenth law. •, N =
0.63 s ~ \ x, N = 1.00 s~ \ A, TV = 0.58 s"1 (after Zatsepin, Fedorov et
a/., 1978).

same method of extrapolation as in Figure 10.7. Thus, the one-tenth
law (11.72) received experimental confirmation by Zatsepin, Fedorov et
al. (1978). It turned out also that the duration of the final viscous stage
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is at least one order of magnitude longer than the duration of the two
first stages; it reached in these experiments the value of about 300/N.

It may be of interest for some applications to consider the case where
the stratification is not continuous but stepwise: a two-layer fluid of
density p\ in the upper layer and density P2 in the lower layer. Then for
a viscous intrusion of intermediate density p% along the interface between
the two fluid layers an equation similar to (11.64) is obtained but with
a different exponent, 4 instead of 5 (Barenblatt, 1978a; Huppert, 1982):

Scfi(p2 -pi)

In the special case p2 = oo (viscous flow along the solid interface),

(11.82)

In the above-mentioned papers an axisymmetric solution of (11.81) was
also presented, which corresponds to the spread of an initially concen-
trated viscous intrusion:

|V4

Thus the intrusion spreads along the interface of the layers according to

rf(t) = 83^3'^2[V3K(t - ti)^3]1^ . (11.84)

The solution (11.83) was compared with experiment in Huppert (1982);
a good agreement was found.

In the paper Diez, Gratton and Gratton (1992) the same equation as
(11.81) was derived and the axisymmetric focussing problem - an ana-
logue of the Guderley very intense implosion problem in gas dynamics
- was obtained. (For a rigorous investigation of the focussing prob-
lem for the general porous-medium equation see the paper by Aronson
and Graveleau (1993).) The focussing problem for equation (11.81),
like the Guderley problem in gas dynamics, has a self-similar interme-
diate asymptotics of the second kind. Comparison of this solution with
a specially performed experiment, also reported in Diez, Gratton and
Gratton (1992), leads to good agreement. It is an instructive example
of the comparison of a self-similar solution of the second kind with an
experiment that is physical, not numerical.
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11.7 Several phenomena related to turbulence
in a stably stratified fluid

Under strong stable stratification turbulence is suppressed owing to a
large consumption of turbulent energy in work done against the buoy-
ancy force. In fact, the equation for the turbulent energy balance in a
stratified fluid has the form

dtb = -{u'w')dzu - e - dz[{b'wf) + (jtw')lp] - p'w'g/p. (11.85)

The last term is new in comparison with the same equation for a homo-
geneous fluid and determines the energy consumption rate for the work
against the buoyancy force. Owing to the large value of the acceleration
due to gravity, g, the contribution of this term is substantial in spite
of the fact that the magnitude of the density fluctuations p' is small
in comparison with the mean density p, and the contribution of p' to
other terms in the equation is small and can be neglected. Therefore the
turbulence cannot exist under natural conditions for long times in the
whole fluid volume (Monin and Ozmidov, 1981). In fact, turbulence is
concentrated in pancake-form layers, vertically uniform owing to turbu-
lent mixing and separated by relatively thin layers (laminar sheets, see
Woods, 1968), where a sharp variation in temperature, salinity, density,
electroconductivity, and sound speed, as well as other thermodynamic
properties, and sometimes also in flow velocity, is concentrated. This
laminated vertical structure of flow fields, which is revealed by steps
on vertical profiles of temperature, density, and other thermodynamic
properties, is called, depending on the vertical scale, the micro structure
or fine structure of flow fields. Numerous field experiments specially
performed from research vessels by the method of continuous vertical
sounding have revealed that this phenomenon exists practically every-
where in the world's oceans.

Smoothing the distributions of density or temperature over depth one
obtains a curve that characterises large-scale stratification (a similar
smooth curve is obtained when averaging data over time). The stability
parameter of the shear flow for a stably stratified fluid is the Richardson
number

\dpldz\g JV2

^'rtW (W (1L86)

Instability in a shear flow is commonly related to reaching a critical
value Ricr = 0.25 in the Richardson number: this was a theoretical
result of Miles (1961, 1963). In stable flows Ri > Ricr. As a rule,
large scale stratification is stable from the viewpoint of this criterion,
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so Ri > 0.25. However, if the microstructure is taken into account, in-
tervals with Ri < 0.25 are observed on the graph Ri(z), i.e., instability
regions. Apparently, in some of these intervals turbulence generation at
the moment of sounding was observed . This generation of turbulence
is related to internal waves: the Richardson number is obviously mini-
mal at the crests and hollows of internal waves. Moreover, other such
mechanisms of turbulence generation are plausible, such as the break-
ing of internal waves, their resonance interaction, etc. For mixed-fluid
patches in the atmosphere and ocean that appear after the breaking of
internal waves, the rapid generation of a continuous spectrum, i.e., the
formation of developed turbulence, is characteristic even for short times
after breaking (Belyaev, Losovatsky and Ozmidov, 1975; SethuRaman,
1980). This is understandable, because after fluid stirring following the
breaking of internal waves the fluid in the stirred region becomes density
homogeneous, so the energy consumption rate due to work against the
buoyancy flow (the last term of equation (11.85)) vanishes there. There-
fore in the patch of mixed fluid formed in a shear flow conditions arise
for the generation and rather long-term existence of turbulence at higher
levels than in the ambient stratified fluid. In fact, the turbulent energy
inflow due to the work done by the Reynolds stresses against the veloc-
ity gradient (the first term on the right-hand side of equation (11.85))
is consumed in the patch of mixed fluid by viscous dissipation into heat
only, which is a relatively small effect; the third term on the right-hand
side of equation (11.85), which is related to turbulent energy transfer,
vanishes after integration over the patch thickness, so it does not in-
fluence the mean value of the turbulent energy. Thus, mainly owing to
internal waves, the turbulence in fluids with strongly stable stratification
has a specifically intermittent, 'archipelago' character. Furthermore, the
patches of mixed fluid collapse basically in the same way as described in
the previous section, where the turbulence inside the patch was not ac-
counted for explicitly. The difference consists only in the time variation
in the turbulent viscosity. Note its effect should not be substantial. This
is seen already from the fact that the fluid viscosity within the patch
enters the patch extension law (11.72) to the degree 1/10, so its variation
over three orders of magnitude changes the radius only by a factor of

Loss of stability in a steady homogeneous shear flow considered in Miles' (1961)
paper, does not mean the origin of turbulence. Therefore the reaching of the
critical value Ricr = 0.25 as the condition of turbulence generation should be
considered with a certain care. Analysis of experiments in the ocean shows (Monin
and Ozmidov, 1981) that the critical Richardson number related to the origin of
turbulence is close to 0.1.
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two. It is plausible therefore that the turbulent patches in a fluid with
strong stratification also have the form of circular discs and expand very
slowly at the final stage. It is also plausible that the microstructure
and fine structure in the ocean are related to pancake-form patches of
fluid having constant temperature and density. These patches are in fact
patches of mixed fluid, of various length scales, which arise mainly due
to the breaking of internal waves, and are at the longest, final, viscous,
stage of their evolution. The above considerations also give us a plausi-
ble explanation (Barenblatt and Monin, 1979b) of discoidal formations
in the atmosphere, which have repeatedly attracted attention in recent
years ('flying saucers').

Indeed, under strong stable stratification in the atmosphere (Sethu-
Raman, 1980) and in the ocean (Woods, 1968) internal wave breaking
is going on and so patches of mixed air or fluid appear. The patches
of mixed fluid collapse, reach a discoidal form, and under sufficiently
strong shear become turbulized. In this respect the paper of SethuRa-
man (1980) is of special interest. SethuRaman observed and registered
the breaking of internal waves, as well as the creation and long-term exis-
tence of localized turbulence patches, under conditions of strong temper-
ature inversion (strongly stable stratification) and strong shear of wind
velocity (Figure 11.12). It is essential to note that, as SethuRaman's
observations showed, sharply localized turbulence arising as a result of
internal wave breaking (Figure 11.12(c)) is not a burst at the very mo-
ment of wave breaking, which then rapidly decays (cf. Figure 11.12(a)).
On the contrary, it develops rather slowly and is maintained for rather
a long time (more than an hour). The creation and long-term mainte-
nance of localized turbulence can be explained, according to what was
said above, by the work done by the Reynolds stresses on the strong
wind-velocity shear at small viscous dissipation, when turbulent-energy
consumption by the work against the buoyancy force has disappeared.
Indeed, after wave breaking and subsequent stirring the air density in
the patch should be homogeneous or close to homogeneous.

Discoidal patches of stirred turbulized air in the atmosphere some-
times, although rather rarely, become visible. Such visibility can be
explained in the following way.

Let us assume that for some reason a certain amount of suspended
particles, e.g. an aerosol, appears in the atmosphere. Under ordinary
conditions these particles fall more or less uniformly over the area (Fig-
ure 11.13). To support the particles in a suspended state it is necessary
(see section 11.3) for the ratio of the velocity of free fall to the mean
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Figure 11.12. A turbulence-intensity measure - the dissipation rate e -
at different stages of internal wave breaking, (a) z = 183 m. no internal
waves; (6) z = 40 m, the beginning of internal wave breaking, z = 40 m,
(c) after internal wave breaking. (SethuRaman, 1980).

square velocity fluctuation to be less than a certain critical value. In the
stratified air between the patches, the turbulence, according to what was
said above, is low and cannot support the particles. In contrast, the tur-
bulence in the patches can be sufficiently high to suspend the particles.
The suspended particles increase the optical thickness of the patch and it
becomes visible when the ambient air is illuminated by the Sun or Moon.
Indeed, for the patch to be visible it is enough that its optical thickness
r is around one hundredth to one tenth. The necessary concentration
of particles can be estimated by the relation n = r/2nr2H1 where H is
the effective patch thickness and r is the particle radius; we obtain for
H ~ 103 cm and particles of size 3 /xm (having a velocity of free fall
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Figure 11.13. In a stratified fluid particles continue falling where the
turbulence intensity is low, but are trapped by a discoidal patch where
the turbulence is high.

of the order of several cm/s) a concentration n of order 10 - 102 cm"3.
This value is quite realistic for dust clouds.

In the course of the extension of a patch its thickness is reduced,
and the shear intensity necessary for supporting turbulence in the patch
increases. When the available shear becomes insufficient to support
turbulence, the patch drops the particles and becomes mixed with the
ambient air.

An analogous explanation can be given of 'turbidity clouds' in the
ocean.
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Scaling: miscellaneous
special problems

12.1 Mandelbrot fractals and incomplete similarity

12.1.1 The concept of fractals. Fractal curves

In the scientific and even popular literature of recent time fractals have
been widely discussed. By fractals are meant those geometric objects,
curves, surfaces, volumes and higher-dimensional bodies having a rugged
form and possessing certain special properties of homogeneity and self-
similarity. Such geometric objects were studied intensively by mathe-
maticians at the end of the last and the beginning of present century, in
particular in connection with the construction of examples of continuous
nowhere-differentiable functions. To most physicists and engineers they
seemed mathematical monsters having no applications in the problems
of natural science and technology In fact, it is not so.

The revival of interest in such objects and the recognition of their
fundamental role in natural science and engineering is due to a series
of papers by B. Mandelbrot and especially to his remarkable mono-
graphs (1975, 1977, 1982). Mandelbrot coined the very term 'fractal'
and introduced the general concept of fractality. In the monographs
and subsequent papers Mandelbrot and his followers showed that, con-
trary to what was expected, this concept, enclosing many known special
examples, appeared to be exceptionally fruitful in such diverse and im-
portant applications as polymer physics, geomorphology, the theory of
Brownian motion, turbulence theory, astrophysics, fracture theory and
many others. In the monographs of Mandelbrot are referenced from a
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unified viewpoint the preceding works of other authors that relate to
these topics'.

In this section we will demonstrate the concept of Mandelbrot fractals
for the simplest example, fractal curves. We will discuss the properties
of homogeneity and self-similarity that make a continuous curve fractal,
and we will show that the very idea of fractals is closely related to
the incomplete similarity concept. A non-trivial example related to the
fractality of respiratory organs will be presented in conclusion.

We will start from an instructive example. The famous English physi-
cist L.F. Richardson (see Richardson, 1961; Mandelbrot, 1975, 1977,
1982) attempted (as a commission from the British Admiralty for which
he worked at that time) to determine the length of the West coast of
Britain. Richardson chose the following way of solving this problem,
quite natural for ordinary smooth curves. He approximated the coast-
line on the most detailed map of Britain by a broken line composed of
segments of constant length 77, all vertices of which were situated on the
coastline. The length L^ of this broken line was taken as an approxi-
mate value of the coastline's length corresponding to a given value of 77.
Richardson assumed at first that, when reducing r), corresponding values
of the length of approximating broken lines Lv will tend to a definite
finite limit that should be considered as the coastline's length.

Naturally, this is found to be the case when this method is used for
a circle (Figure 12.1 (a)). However, the West coastline turned out to be
so rugged even down to the smallest scales available on the map, that
the value Lv did not tend to a finite limit as the segment length 77 of the
approximating broken line was reduced. Just the opposite: the value Lv

tended to infinity as rj tended to zero; throughout the available range of
77 the growth in L^ followed the power law (Figure 12.1(6)):

Lv = Xrj1-0 (12.1)

where A > 0 and D, 2 > D > 1, were certain constants. For approximate
lengths of separate parts of the same coastline between certain points of
it relations of the form (12.1) were again obtained, with the same D, but
a different, smaller value of A. When such processing was performed later
for the coastline of Australia (Figure 12.1(c)), the power-type (scaling)
law remained, but at this time both A and D were found to be different.

Mandelbrot's success was so complete that nowadays people try to find fractals
everywhere. I have to emphasize therefore that fractals in their turn are very
special objects.
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Figure 12.1. The dependence of the length L^ of a broken line, approx-
imating the coastline, on the length 77 of its segment: (a) a circle, (b)
the West coast of Britain, (c) the Australian coast. (After Mandelbrot,
1977).

As is seen, D is dimensionless; however, A has the unusual dimension of
length raised to a non-integer fractional power.

Formal passage to the limit 77 —> 0 in the relation (12.1) gives a result
rather poor in its content: the length of the coastline determined by the
method proposed, and even the length of each part of it, appeared to be
infinite. The most essential point here is that if one tries to use a more
detailed map in the hope that there the desired limit will appear, he or
she will discover that such a map is somewhat meaningless because due
to tides the very concept of the coastline is restricted by rather large
scales.

It follows from (12.1) that the parts of the coastline can be compared
by a certain measure of their extension, although not by their length. In
fact, let us approximate two pieces of the coastline by broken lines with
the same segment length 77. In both cases relations of the form (8.1) are
obtained:

,v - n .,l~". (12.2)

As is seen the ratio L^ /L^ = A ^ / A ^ does not depend on the
segment length 77. Therefore, the extent of certain parts of the coastline
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can be compared, not, however, by their lengths but by the correspond-
ing coefficients X. Thus, the very approach of measuring the extent of
the coastline by the same means as for smooth curves is found to be
inapplicable.

An adequate representation of the coastline appears to be not a smooth
curve of the type of a circle or ellipse, for which the limiting length of an
approximating broken line L^ is finite, but a curve of the von Koch triad
type, which was considered in the Introduction. Indeed, for the latter
curves the relation obtained by Richardson as an empirical equation,
(12.1), is also valid, if we denote A = 3d1+a.

It follows from relation (12.1) that the number of segments of the
length rj of the approximating broken line is

Nv = Lv/r} = \r]-D . (12.3)

The quantity Lv, the length of the approximating broken line, tends
to infinity as r/ —> 0, because D > 1. Let us construct a square on
each segment of the approximating broken line. The total area of these
squares is equal to Nrj2 = Xr]2~D. This quantity tends to zero as 77 —> 0,
because D < 2. Therefore, roughly speaking, the length of this curve
is infinite, and the area is equal to zero. However, a finite quantity,
different from zero, is obtained in the limit as 77 —> 0, if the number of
segments in the approximating broken line is multiplied by 77 raised to
a power D, intermediate between one and two:

NrjD = \ . (12.4)

The constant D is called the Hausdorff dimension of the curve con-
sidered. For the Hausdorff dimension of the von Koch triad the double
inequality 1 < D < 2 is valid. The same follows for the coastlines:
for the West coast of Britain D ~ 1.24, and for the Australian coast-
line D ~ 1.13 (Figure 12.1). Thus, for these curves also the Hausdorff
dimension lies between one and two. However, the length of the ap-
proximating broken line for ordinary smooth curves is bounded, so for
smooth curves D = 1. It is clear that the Hausdorff dimension is defined
not for all continuous curves, but only for those where the relation (12.1)
for the length of the approximating broken lines holds. Let us now give
a formal definition of fractal curves.

As far as is known to the present author, L.F. Richardson did this measurement
by the commission of the British Admiralty, in connection with some argument
with the British Treasury concerning the necessary number of coastguards. The
regulation in force was that there should be one coastguard for a certain length
of coastline. Apparently, the answer did not completely satisfy the admirals, let
alone the Treasury.
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The fractal curve is a continuous curve for which the Hausdorff di-
mension is strictly larger than unity:

D>\. (12.5)

Prom what was said it follows that the von Koch triad is a fractal
curve. As was shown by Richardson's analysis, presented above, the
coastlines of the British West coast and of Australia are also adequately
approximated by fractal curves.

Note that the constancy of the Hausdorff dimension along the whole
fractal curve is not necessary. To be fractal, a continuous curve should
allow, in the vicinity of each point, a local approximation of the curve
by broken lines whose lengths are represented by a relation of the type
(12.1), where D is in general more than unity, but can be different
for different points. A simple example of a fractal curve with varying
Hausdorff dimension is obtained if we change at a certain step of the von
Koch triad construction the elementary operation, making it different for
various segments of the broken line. Thus, on the first segment we may,
for example, leave the elementary operation as it was. On the second
segment we may divide the segment into five equal parts and replace
the second and fourth parts each by two sides of an equilateral triangle
constructed on their base. On the third segment we may divide the
segment by seven equal parts and replace the second, fourth, and sixth
parts, etc. As a result on the first part of limiting curve the Hausdorff
dimension will equal In 4/ In 3, as before, on the second part it will equal
In 7/ In 5, on the third, In 10/ In 7, etc.

The consideration of fractals presented above for the example of frac-
tal curves can be in principle extended very simply to surfaces, volumes,
and, in general, to objects of arbitrary topological dimension. For in-
stance, surfaces should be approximated by ones composed from tetra-
hedrons (see section 12.3).

12.1.2 Incomplete similarity of fractals

Let us explain the properties of fractal curves considered above which
led to a scaling law of growth of the length of the approximating broken
lines when reducing the segment length. Consider a continuous closed
line, whose diameter (the distance between the furthest points) is equal
to d. Approximate the curve considered by a broken line with constant
segment length', its vertices being situated on the curve. It is clear

Obviously, the last segment can have length less than 77, but this does not matter
for 77 —> 0.
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that the number of segments Nv of the broken line depends on the
dimensional parameters d and 77. The quantity Nv is dimensionless;
therefore, dimensional analysis gives in a standard way

Nv = f(d/rj). (12.6)

Let us take another approximating broken line with a lesser length
of segment, £ < 77. Consider the portion of the basic curve between
two neighbouring vertices of the first broken line and let us attempt to
determine the number of vertices of the second curve contained in this
portion. The von Koch triad has two very important properties. The
first is homogeneity: all portions of the basic curve between neighbouring
vertices of the first broken line generate equal numbers of segments of
the second broken line. The second is self-similarity (the similarity of
the curve to its part): the number of segments of the broken line with
segment length £ that are placed between neighbouring vertices of the
broken line with segment length 77 depends only on the ratio 77/̂ , not
on 77 and £ separately. We shall assume that the curve considered also
possesses the properties of homogeneity and self-similarity. Now consider
the broken line with segment length equal to the diameter of the curve.
The number of segments of such a broken line is equal, according to
(12.6), to / ( I ) . Thus, each segment of the broken line, equal to the
diameter of the curve contains f(d/r))/f(l) segments of the broken line
with segment length 77. According to the self-similarity property, the
analogous expression with d replaced by 77, and 77 by £ holds also for the
number N^ of segments of a second broken line, with segment length £,
that are contained between two neighbouring vertices of the broken line
with segment length 77:

However, due to the homogeneity of the curve the same relation holds
for all segments of the broken line with segment length 77, whose number
is equal to f(d/r}). Therefore, on the one hand the total number of
segments of the second broken line contained in the basic curve will be
equal to

«f. (.2.8,
On the other hand, owing to the same formula (12.6) the number of
segments of the second broken line contained in the basic curve is equal
to f(d/£). Equating these two relations we obtain a functional equation
for the function / :

f(x)f(y/x) = f(y)f(l) (12.9)

where x = d/r] and y — d/£, so that 77/̂  = y/x. We have met already a
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relevant functional equation, (1.6) in chapter 1, equation (1.6). Equation
(12.9) is solved in an analogous way, and we obtain its solution in the
form

f(x) = CxD (12.10)

where C = / ( I ) and D are constants. Bearing in mind that Lv = N^rj,
we obtain from (12.6) and (12.10)

Lv = \<ql-D (i2.li)

where A = CLD', i.e. the relation (12.1). For the von Koch triad, for
instance, C = 3, D = 1.2618....

Thus, we have shown that for a continuous closed curve possessing
the properties of homogeneity and self-similarity the scaling law (12.1)
is valid, D having a constant value over the whole curve. If D > 1, the
curve is fractal.

However, the requirements of homogeneity and self-similarity are very
restrictive ones, so the set of curves exactly satisfying them is rather
narrow. It is unlikely, for instance, that the curves representing the
coastline, would satisfy this property exactly. We will show that the
properties of homogeneity and self-similarity are not necessary for a
curve to be fractal: the much weaker properties of local homogeneity
and local self-similarity are sufficient.

The latter properties imply that for every point on such a curve a small
vicinity A can be found where the curve has the following property. The
leading term in the asymptotic representation of the number of vertices
N^ of the approximating broken line with segment length £ between two
neighbouring vertices of the broken line with segment length 77, depends,
a s v/€ —* °° o nly o n ^ n e ratio rj/%. We may assume therefore that, with
accuracy to small quantities, the number of vertices N^v of the broken
line with segment length £ inside a segment of the broken line with
segment length 77 does not depend on the position of this latter segment
within the vicinity A or on the values of 77 and £ given that the ratio
77/̂  > 1 is held fixed:

tf*> = / fo /0 . (12.12)
Consider now a third broken line with still smaller segment length

£ <C £. Due to local homogeneity and self-similarity the number of its
segments within one segment of length 77 positioned in the vicinity A is,
on the one hand, equal, with accuracy to small quantities, to /(77/C).
On the other hand it is equal to the product of the number f(rj/£) of
segments of length £ inside one segment of length 77 times the number of
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segments of length £ inside one segment of length £. Equating the two
expressions we obtain a functional equation for the function / ,

f(x)f(y/x) = f(y), (12.13)

which coincides with equation (1.6). Here x = r}/£ and y = r]/(. The
solution to this equation is represented by f(x) = xD. The value of D
can be different for various parts of the basic curve. Going from the
number of segments to the length of the broken line we obtain that for
the lengths of approximating broken lines in the vicinity of each point of
a continuous curve possessing the properties of local homogeneity and
local self-similarity a scaling asymptotic relation is valid,

L^=tiD^'D + . . . (12.14)

where the dots refer to quantities small in comparison with the first
term. If D > 1 this means that the curve considered is fractal.

We emphasize again that the set of curves having the properties of
local homogeneity and local self-similarity is more rich than the set of
curves of the van Koch triad type, which possess the very special prop-
erties of complete homogeneity and self-similarity.

Fractals reveal the properties of incomplete similarity. Let us show
this for the same example, fractal curves. In fact, the length of a bro-
ken line of segment length £ that approximates the continuous curve
between two of its points a distance rj apart depends on the dimensional
parameters rj and £. Dimensional analysis gives

Lt, = *7*fa/O- (12.15)

For a smooth (or piecewise smooth) curve, as £ —> 0, i.e. as rj/£ —> oo,
the function $ tends to a finite limit, 4>(oo). By definition the value

Lo = $(00)77 (12.16)

is the length of a portion of a smooth curve between two of its points
a the distance 77 apart. For instance, if the curve considered is a half-
circle, having the segment 77 as its diameter, $(00) = TT/2. Therefore
for smooth curves we have complete similarity in the parameter 77/̂  at
77/£ -» 00.

For fractal curves a finite limit of the function $(77/0 as 77/̂  —> 00
does not exist; the limit is equal to infinity. However, it follows from
the relation (12.14) that as 77/̂  —> 00 the function $(77/$) has a scaling
asymptotic representation,

*(v/t) - (v/t)D~l, (12-17)
i.e., incomplete similarity occurs in the parameter 77/̂  as 77/̂  —• 00. It
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is clear also that the HausdorfF dimension D depends on the geomet-
ric properties of the form of the curve and cannot be obtained from
dimensional considerations.

We note in conclusion that, passing from geometric objects to the
physical objects represented by them, we can simply identify fractality
with incomplete similarity.

12.2 Example: scaling relationship between the
breathing rate of animals and their mass.

Fractality of respiratory organs

Every animal possesses a respiratory organ that absorbs oxygen from
the environment. At first sight, the part of the organ that directly as-
similates the oxygen may be schematically represented as a line (this will
be the case if the respiratory organ consists of one or more whiskers),
a surface, or some volume that, like a kidney, contains a multitude of
small absorbent sacs separated by pores along which water, or air, con-
taining oxygen moves. (As we shall see later, the actual situation is more
complicated.) Thus, the respiratory organ of an animal can be charac-
terized by some specific absorptive capacity /3n, i.e., the mass of oxygen
absorbed per unit time per unit length (n = 1), unit area (n = 2), or
unit volume (n = 3) of the respiratory organ, respectively. Of course,
the specific absorptive capacity (3n may depend on external conditions:
the temperature, the composition of the environment, the time of day,
the speed at which the animal is moving, etc.

Our basic assumption is that the breathing rate of the animal, i.e.,
the mass of oxygen it absorbs per unit time, R, is determined by the
following quantities: the body mass of the animal, W, the density of its
body p, and the specific absorptive capacity of its respiratory organ (3n.
Thus, it is assumed that the external factors only exert an influence via
this specific absorptive capacity of the respiratory organ. Hence

R = f(W,p,/3n). (12.18)

We now note an important feature: the mass of oxygen absorbed and
the body mass of the animal may be measured in independent units.
This is natural, since the change in the body mass of the animal due to
breathing in and out is small, and may be neglected. Thus, we choose
the LMTMo2 class of systems of units, in which Mo2 is the dimension
of the mass of oxygen absorbed, which is, according to what we have
just said, independent of the dimension of the body mass of the animal,
M.
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The dimensions of the parameter R and of the governing parameters
W, p, and f3n are, as may easily be seen, given by the following relations:

[R] = Mo2T~\ [W] = M, [p ]=ML" 3 , [/?„] = MO2L~nT-1.
(12.19)

Thus, the number of governing parameters is equal to three; they all
have independent dimensions, and, according to dimensional analysis,
the relation (12.18) can be written in the following dimensionless form:

t ( 1 2 - 2 0 )

Hence, we have

R = AWa, A = const(3np-a, a = n/3, (12.21)

i.e., a scaling relationship between the breathing rate of an animal and
its body mass. According to the foregoing, if the respiratory organ
consists of whiskers, a should be equal to 1/3; if the respiratory organ
is a surface, a should be equal to 2/3; finally, if the oxygen absorption
occurs in a volume, a should be equal to unity.

Biological data (see Figure 12.2 for some instructive examples) indi-
cate that a relationship of the form (12.21) is in good agreement with
experiment. However, we can say that it is also fairly well-established
that, as a rule, the exponent a lies between 2/3 and unity, and very
rarely takes on these extreme values.

We interpret this result in the following way. Respiratory organs do
not have smooth surfaces like a sphere or an ellipsoid, but fractal sur-
faces, i.e., surfaces whose planar cross sections are fractal curves similar
to the Koch curve discussed in the Introduction and in the previous
sections of this chapter.

More precisely, we give the name fractal to a surface that, although
continuous, has an extremely broken shape and possesses the property
described as follows.

We inscribe polyhedra consisting of triangles with side length rj within
the surface, just as we inscribed broken lines within the Koch curve.
Then, as rj tends to zero, the total surface area of the polyhedron, SVi

does not approach a finite limit as it does for a smooth surface such as
a sphere. On the contrary, 5^ goes to infinity according to the scaling
law

S^ = aV
2-D , (12.22)

where a is some constant having dimension LD, where D is a dimen-
sionless constant greater than two, but less than three. The constant D
is the Hausdorff dimension of the fractal surface.
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Figure 12.2. The rate R of oxygen absorption as a function of the body
weight of sea animals, (a) Mysids: A, sea mysids; •, farm mysids; x, lab-
oratory mysids (Shushkina, Kus'micheva and Ostapenko, 1971). The rate
of oxygen absorption and the body weight of the animals are expressed in
energy units (which are convenient for biologists), (b) Rhithropanopeus
harrisii tredentatus crabs (Nikolaeva et a/., 1975).

Clearly, the area of each face of the inscribed polyhedron is (\/3/4)^2.
Prom this and (12.22), it follows that the number of faces in the inscribed
polyhedron depends on 77 in the following way: Nv = const r)~D.

Thus, for fractal surfaces, the surface area of the inscribed polyhedron
tends to infinity as the side length 77 tends to zero. At the same time, if a
prism with altitude 77 is constructed on each face of the polyhedron, the
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total volume contained within all such prisms will be Vv = 7Vr7(v
/3/4)r;3.

It tends to zero as rj —> 0, since D < 3. However, there is some measure
of the fractal surface that is intermediate between area and volume; since
the quantity NvrjD (2 < D < 3) approaches a finite limit as rj goes to
zero, this limit can be used as a measure of the surface mentioned above.
Clearly, if the surface of the respiratory organ is a fractal, the specific
absorptive capacity of this organ, /?n, should not be defined as the rate
of absorption per unit area or volume but per unit of this intermediate
dimension. Thus, f3n has dimension

[/?„] = [R)L-D , (12.23)

where D is the fractal dimension of the respiratory organ; D is not
restricted to integer values. A comparison of this result with the data
presented above (Figure 12.2) and data obtained by other biologists indi-
cates that self-consistency is obtained if one assumes that the respiratory
organ is a fractal surface, with, for example, D = 2.4 for man and stur-
geon, D = 2.4 for mysids (small sea animals) (Shushkina et a/., 1971),
D — 2.25 for the Rhithropanopeus harrisii tredentatus crab (Nikolaeva
et a/., 1975), etc. The idea that respiratory organs are fractals is also in
qualitative agreement with the anatomical data. The analysis performed
above was presented in the paper Barenblatt and Monin (1983).

12.3 The spreading of a ground-water mound

12.3.1 Mathematical model

This problem, briefly outlined in the Introduction, is of practical impor-
tance, in particular for ecology, and its analysis is instructive in many
respects. Moreover, here every step can be justified rigorously. There-
fore we will discuss it at some length. Consider a stratum consisting
of a gas-filled porous medium (for example, sandstone) containing a
ground-water (or liquid waste) mound on top of an underlying horizon-
tal impermeable bed (Figure 12.3).

Under the influence of gravity, the mound spreads out and flows along
the impermeable bed.

We shall discuss this problem using the following simplifying basic as-
sumptions: (1) the mound is axially symmetric, and (2) the height of the
mound /i(r, t) decreases with increasing radius from the very beginning
of the motion.

The fluid motion in a porous medium is slow, so that the water pres-
sure within the mound may be assumed to obey the hydrostatic law
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Gas

t2>U

Figure 12.3. A schematic diagram showing the spreading of a ground-
water mound.

h(r,t+dt)

r r+dr r0 r
Figure 12.4. Derivation of the equation describing the spreading of a
ground-water mound.

p = pg(h — z), where p is the ground-water density and g is the gravita-
tional acceleration (we shall neglect the gas pressure). Thus, the total
head, i.e., the quantity p + pgz well-known from hydraulics, remains
constant throughout the height of the mound within the mound, and
is equal to pgh. The fundamental law that is assumed to hold in the
theory of filtration (fluid seepage in porous media) is the Darcy law (see
Polubarinova-Kochina, 1962). According to this law, the flux of fluid
(flow rate per unit area per unit time) is proportional to the gradient
of the total head, i.e., in this case, the gradient of the quantity pgh.
This implies that the radial component of the filtration flux is constant
throughout the height of the mound (h is evidently independent of z).
Thus, the total flux of water through a cylindrical surface of area 2nrh
(Figure 12.4) is, according to Darcy's law,

q = --(drp)27rrh = --pg(drh)27rrh = - (12.24)
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where k is the permeability coefficient, a constant property of the porous
medium with dimensions of area and of order 10~8 cm2, and /i is the
dynamic viscosity of the ground water; the coefficient of proportionality
in the relation for Darcy's law is thus k/fi. Furthermore, we introduce
the fractional volume of the stratum occupied by pores - the porosity
of the medium - which we denote by m; m is generally of order 10"1.
It is important to note that when water enters an empty pore, it does
not occupy its entire volume, but only some fraction <r; the remaining
fraction is occupied by gas. At the same time, the ground water never
completely flows out of an initially full pore; some fraction of the water
is held back by capillary forces. We shall denote this fraction by ao and
assume that the quantities m, a, and cr0 are constants.

Thus the situation in those portions of the mound where the water
is leaving previously filled pores (r < ro, Figure 12.4) is different from
that in those portions of the mound where the water is filling previously
empty pores (r > ro). The quantity dth vanishes at the radius r = ro;
ro is obviously a function of time.

In principle, the basic equation for the mound-height h can be derived
in the same way as was the equation of heat conduction in chapter 2.
Namely, we derive the rate of change in the volume of water within a
volume element of the mound lying between the cylinders with radii r
and r -f dr. The rate of change is due to the difference in the flux of
water through these cylindrical surfaces. This quantity is then set equal
to the rate of change in the volume of water due to the decrease in the
water saturation from a to <7o where the water is flowing out of the pores
and the mound-height is decreasing (r < ro and dth < 0, Figure 12.4)
and the increase in the water saturation from zero to a where the water
is flowing into the pores and the mound-height is increasing (r > ro and
dth > 0).

As a result, the following equation for the mound-height is obtained:

( « i W K / . 2 ) (9th <0),
{K/r)dr{rdrh?) (dth > 0),

where

2ra//(cr - cr0)
The solution h must be continuous; the flux of water, which is propor-
tional to the derivative drh

2 = 2hdrh, must also be continuous. For
non-zero h, the latter condition reduces to the requirement that the
derivative drh be continuous; at h = 0, the derivative drh may have a
discontinuity even though drh

2 remains continuous (cf. the discussion
of very intense thermal waves in subsection 2.2.1).
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Equation (12.25) must be supplemented by an initial condition. We
assume that at the initial time the water is concentrated only within a
certain finite region of the stratum, the water saturation in the mound
is equal to a and the total volume of water in the mound is equal to V.
Without loss of generality, we may write the initial height distribution
of the mound, ft(r,0), in the form

^ ( 0 (12-27)
where r* is the initial radius of the mound and ho(s), s = r/r*, is
a monotonic non-increasing dimensionless function such that ho(s) is
equal to zero for s > 1 and the integral

l

sho{s)ds (12.28)
o

is equal to unity.
Thus, we have a mathematical formulation of the problem at hand,

and we seek a solution to (12.25) that is continuous, has a continuous
derivative drh

2, and satisfies initial condition (12.27).

12.3.2 Dimensional analysis of the problem

The solution h depends on the following governing parameters: the
independent variables r and t in (12.25), and the parameters «i, K,
Q = V/27rracr, and r*, which enter equation (12.25) and initial condi-
tion (12.27), so that

/i = /(Q,Ki,*,r,r*,K). (12.29)

The dimensions in the HLT class of the local ground-water mound-
height h and of the governing parameters are as follows:

1 1
— 1 TT— 1

(12.30)

where the dimension H of the mound-height may be assumed to be
independent, since the ratio of the mound-height to the horizontal size of
the mound does not appear explicitly among the governing parameters .

Dimensional analysis yields

(12.31)

Also, the mound-height can be replaced by the total head pgh (which obviously
has an independent dimension) without changing the subsequent relations. This
we did in the Introduction. This is another good example of an additional group.
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where

n=—-—n

We are interested in long time scales, when the influence of the de-
tails of the initial conditions - the initial shape of the mound - has
disappeared. It is therefore natural to discuss the limiting similarity re-
lationships with respect to the parameters IIi and II2. Since the radius
r can be chosen arbitrarily (in particular, it can be increased in such a
way that IIi remains finite as t increases), we shall begin by assuming
that the parameter II2 is small while the parameters IIi and 113 are fi-
nite and, in accordance with the recipe presented in chapter 5, we shall
assume complete similarity in the parameter II2.

First of all, we note that if this assumption turns out to be valid,
the solution obtained will correspond to that for an instantaneous, line-
concentrated source. Thus, we seek a solution to (12.25) of the following
form:

Q1/2 * (* K \ <• TT r (12.33)

Under the assumption of complete similarity in the parameter II2,
dimensional analysis yields the following expression for the radius ro of
the cylinder at which dth vanishes:

ro = fr ( £ ) QV*K\'W* , (12.34)

where £0 is a dimensionless quantity which might depend on K/K\ but
does not depend on time.

Substituting (12.33) and (12.34) into (12.25), we obtain for the func-
tion 3>i an ordinary differential equation with discontinuous coefficient:

_o, tts«.
2

Equation (12.35) may easily be solved: we multiply both sides by £ and
obtain an equation in total differentials. Integrating, we have

(12-36)
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We have set the constants of integration equal to zero in both cases
for the following reasons.

First, along the axis of symmetry, i.e., at £ = 0, the dimensionless
nitration flux, which is proportional to ^d^\/d^ is equal to zero, and the
dimensionless mound-height 3>i(£, K, K\) is finite; therefore, the constant
in the first equation (12.36) is equal to zero.

Second, unlike the linear heat conduction equation, the nonlinear
equation (12.25) possesses the following property: if the initial height
distribution in the mound has a compact support, i.e., it is different from
zero over only a finite region, then at all times t the height remains dif-
ferent from zero only over a finite region, i.e., for r less than some r\{t)
(cf. the discussion of very intense thermal waves in chapter 2). Under
the assumption of complete similarity with respect to the parameter II2,
dimensional analysis yieldsri = 6 ( £ ) < 3 l / 4 / c ' / v / 4 - (12>37)

From continuity of the mound-height and the filtration flux at r = 7*1,
it follows that the mound-height h(ri,t) and the filtration flux, i.e.,
r\drh

2(ri,t), vanish simultaneously at r = 7*1; thus, we find that $1 and
£d$f/d£ vanish simultaneously at £ = £1 and, consequently, that the
constant in the second equation of (12.36) is also equal to zero.

For K\ — K, i.e., zero residual water saturation cr0 = 0, the assumption
of complete similarity with respect to the parameter II2 is valid. The cor-
responding self-similar solution for an instantaneous concentrated source
can be explicitly constructed in this case. We leave this to the reader; the
resulting expression for the function <£, which can be obtained exactly
as in chapter 2 can be written in the form

so that for GQ = 0, i.e., K\ = «, the limiting mound-height distribution
for a concentrated, instantaneous source is given by the following relation
(Barenblatt, 1952):

QV2
h= *

10 (r>n).
As is evident, the derivative d$\/d£, is continuous at £ = £1, although

d$i/d£ has a finite discontinuity. This implies that the flux of liquid,
which is proportional to drh

2, is also continuous.
For «i ^ K, i.e., <TQ ^ 0, we reach a contradiction, since a change
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in sign of dth should occur within the mound at a radius where the
mound-height and the flux are non-zero. Thus, r$ < r\ and £o < £i-
However, setting £ = £o m (12.36) and subtracting the second equation
from the first, we find that $i(£o) = 0 for «i ¥" &, which is impossible.
Thus, the assumption of complete self-similarity with respect to the
small parameter IT2 turns out to be incorrect for K\ -^ n.

12.3.3 Intermediate asymptotics. Self-similar
solution of the second kind

Following the general recipe presented in chapter 5, we shall now make
the next-most-complicated assumption, incomplete similarity for K\ / ft,
i.e., for <7o ¥" 0- Since the two parameters 111 and II2 tend to zero with
increasing time £, we shall assume that both these parameters are small.
Under the assumption of incomplete similarity in the parameter II2, we
obtain a scaling representation of the function $ at II2 small:

where 7 and 8 are constants.
From this expression and the general relation (12.31) for the solution,

we find that
Q(2-7)/4r7

~

(12.39)
We now substitute (12.39) into the first equation of (12.25), and in-

troduce the notations
a = (2 + 7 ) /4 , /3 = ( l - « ) / 4 ,

A = Q(2-^)/4 r> f Q , B = (Qfti)^1-4^ , (12.40)

We thus have

^UA) 0 \ (12.41)

(
(12.42)

However, since the function $1 cannot depend directly on the time t,
because it is a function of £ only, the exponent a + 2/3 — 1 must be
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equal to zero, so that a = 1 — 2/3. Prom this and (12.40), we find that
A = B2JK\. We finally find that the function <&i satisfies the equation

l + I*S + , , - » f l . 1 + « * _ . (12.43a)

for C < Co, i-e., by virtue of (12.41), for (1 - 2/?)$i +/?Cd$/dC > 0, and
the equation

f ^ * ] 0 (i2-43b)
for (1 - 2/3)$i + /3(d$i/d(; < 0, i.e., for C > Co- From the requirement
that the filtration flux be equal to zero at the axis of the mound, we
obtain a boundary condition on the function $i :

d$i/dC = OforC = 0. (12.44)

The desired solution $i must be continuous and have a continuous
derivative d$f/d£.

Note that by renormalizing the constant B appropriately we can al-
ways ensure that the radius of the expanding mound corresponds to
£ = £x = 1. The quantities $i and d^\/dC, must vanish at ( = 1, since
the height of the mound and the filtration flux must be continuous at
the edge of the mound and the function <3>i must be identically equal to
zero for £ > 1. Consequently, approaching the point £ = 1 from £ < 1,
we find from (12.43b) that, at C = 1,

Prom this, we obtain two conditions on the function $ at £ = 1:

*i(l) = 0, d$i/d£ = -KI0/2K . (12.46)

For C > 1, $ = 0, so that the derivative d$i/d( undergoes a discontinu-
ity at the point £ = 1, while dQf/dC is continuous.

However, the function $ i must also satisfy condition (12.44):

In general, the solution to a second-order equation cannot satisfy the
three boundary conditions mentioned above for arbitrary (3. However,
there exist exceptional values of /? - eigenvalues - for which all three
boundary conditions are satisfied. Hence, the exponent /? in the law
describing the extension of the mound,

n = Bt?, (12.47)

is determined by solving an eigenvalue problem rather than via dimen-
sional analysis; this is completely analogous to the situation for the
examples in chapters 3 and 4. This eigenvalue problem may easily be
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Figure 12.5. The function $i(C> ^/
problem.
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Figure 12.6. The relationship between (3 and K/K\ obtained by solving
the eigenvalue problem.

solved numerically; the results are shown in Figures 12.5 and 12.6. We
find that the self-similar solution gives the form of the height distribution
in the mound for large times up to a constant B. There is no integral
mass-conservation law for this problem: some of the water is retained
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in the regions out of which the water is flowing (see Figure 0.7 in the
Introduction). Therefore, the only way of determining the constant B is
to match up the asymptotics obtained above with a numerical solution
to the non-self-similar problem concerning the damping of a mound for a
given initial mound shape. A numerical solution of this type was carried
out, and its results confirmed to reasonable accuracy that the solution
rapidly approaches the self-similar stage discussed above (Figures 12.7
and 12.8), which corresponds to the assumption of incomplete similarity.

h ,
ho

1.0

0.8

0.6

0.4

0.2

0

0.35 M

0.85 \

"2.46 >

10 .06^

2K-{hot

/ r-

-0.05

\

0 1 2 3 4 r/r.
Figure 12.7. The height distribution in the ground-water mound as a
function of space and time obtained by solving the complete non-self-
similar problem numerically, using the following initial conditions at t =
0: h = ho for r < r* and h = 0 for r > r* (the mound is initially
cylindrical in shape).

The limiting similarity law obtained above turns out to be informative.
Indeed, by virtue of this law, instead of carrying out a numerical integra-
tion to large times one may terminate the numerical integration at the
beginning of the self-similar stage and determine the constant B from
the numerical calculation (at which point the calculation of the damping
of the mound may be considered complete). However, for K\ ^ K, i.e.,
cr0 ^ 0, this self-similar solution no longer corresponds to an instanta-
neous source consisting of a finite mass of water concentrated at the axis
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Figure 12.8. The maximum height and radius of the mound as functions
of time obtained from a numerical solution to this problem rapidly ap-
proaches a scaling law with an exponent identical to that obtained by
solving the eigenvalue problem.

(as for K\ = K). Letting the initial radius of the mound, r*, go to zero,
we must (in accordance with (12.40), (12.41)) increase the initial mass
of the fluid in the mound so that the product

Qrl/(3~4 (12.48)

remains constant while the limiting regime remains invariant (i.e., B
remains constant).

As one can see, the situation in the problem of the spreading of a
ground-water mound is rather peculiar. For zero residual water satu-
ration <7o, i-e., «i = «, the exponent 0 is equal to 1/4, and complete
similarity holds in the limiting stage: this limiting stage corresponds
to a concentrated, instantaneous source. For GQ > 0 and K\ ^ ft, the
limiting stage possesses incomplete similarity and no longer corresponds
to a concentrated, instantaneous source.

The solution presented above was obtained in the paper by Kochina,
Mikhailov, and Filinov (1983) under the author's supervision.

12.3.4 Application of renormalization group and e-expansion.
Asymptotic conservation laws

In the paper by Chen, Goldenfeld and Oono (1991) the problem consid-
ered above was solved by the renormalization-group method in a way
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completely analogous to the Goldenfeld, Martin and Oono (1990) solu-
tion to the modified heat source problem presented in chapter 8.

The authors obtained the result

f O{e6) (12.49)
*± ±v

where we denote K\ = n(l -f e). Comparison of this result with the
numerical solution to the nonlinear eigenvalue problem presented above
is shown in Figure 12.9. It is seen that the agreement is very good even
up to rather large values of e.

Figure 12.9. The eigenvalue 0 as a function of e. The data points deter-
mined by numerically solving the nonlinear eigenvalue problem presented
above are denoted by •. The continuous curve is the renormalization
group calculation of equation (12.49) (from Chen, Goldenfeld and Oono,
1991).
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We will obtain this result with accuracy to e using a different tech-
nique, also demonstrated in chapter 8 for the problem of the modified
heat source.

Indeed, the non-integrable conservation law can be easily obtained by
integration of equation (12.25)

j t f rh(r, t)dr = KC (rdrh
2)r=Mt) . (12.50)

o
Assuming again an asymptotic solution in a form invariant with re-

spect to the renormalization group,

r o = Co(c)J5^, a = 1 - 2 ) 8

we obtain
n

rh(r, t)dr = - ^ j $« , e)<d< (12.52)
o

and

so that the conservation law (12.50) gives us, bearing in mind that
a - 2 0 = 4(1/4-/9),

For 6 = 0 we obtain easily from the solution (12.38)

*K.0) = ^ ( l - < 2 ) , <o = ^ , (12.55)

so that for small e > 0 the following relations hold:

^ 2 L ( e ) . (12.56)) = ^ ( l C ) + O(e), <0 = +O(e).

Substituting (12.56) into (12.54) we obtain

k-fi=h> (12-57)
i.e., the result (12.49) with accuracy to O(e2).

It is interesting that for this problem there exists an invariant, asymp-
totic conservation law, similar to that noted by G.K. Batchelor and P.F.
Linden in the problem of a turbulent burst (chapter 10). The current
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amount of water in an 'active' state, i.e., not retained by the porous
medium, at the self-similar stage is equal, according to (12.52), to

? S4

Q(t) = 2nma / rh{r, t)dr = const j ^ • (12.58)

o
In the case of cro = 0 it remains constant. If <7o 7̂  0, as may be seen

from (12.51) and (12.58), the quantity

Q(t)r\/f3-4 = const — = const Qrl/(3~4

remains constant with time.
The problem of ground-water mound extension considered in this sec-

tion, and its generalization, has attracted the attention of mathemati-
cians. From the mathematical viewpoint the basic problem is reduced
to the initial-value problem (12.25)-(12.27) (the mathematicians have
coined for this equation the term 'modified porous medium equation'; it
is of special interest because it combines two essentially different types
of nonlinearity).

Hulshof and Vazquez (1993) performed a rigorous investigation of the
family of self-similar solutions (12.41). They proved an important theo-
rem according to which a solution belonging to this family is the asymp-
totics at t —• 00 of the solution to the initial-value problem (12.25)-
(12.27). And here again, as we have seen repeatedly in this book, the
constant A is an integral of the solution. Indeed, replacing the initial
condition (12.27) by the solution to (12.25)-(12.27), h(r,ti) for an arbi-
trary time t\, does not change A.

Of special interest in this respect is the paper by Aronson and Vazquez
(1993). Here a general method, called by the authors the implicit func-
tion theorem (IFT) method, was developed for determining the expo-
nents in the self-similar variables (the anomalous exponents) as functions
of the parameters. In the papers by Aronson and Graveleau (1993) and
Angenent and Aronson (1993), the focussing problem was formulated
and solved for the nonlinear heat conduction ('porous medium') equa-
tion

dt6 = -J (3rr"3r0
n+1)

(y = 1 for plane radial symmetry, v = 2 for spherical radial symmetry)
repeatedly considered in this book. The focussing problem (see also Diez
et a/., 1992) is a complete analogue for this equation of the Guderley very
intense implosion problem in gas dynamics. The rigorous investigations
performed in these papers are especially instructive because there is
also non-uniform convergence to the self-similar asymptotics, as in the
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Guderley and the von Weizsacker-Zeldovich impulsive loading problems.
Such rigorous investigation is inaccessible nowadays for the problems
mentioned in gas dynamics.
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Afterword

The technique of scaling, incomplete similarities, and intermediate
asymptotics seems now to be a recognized well-established tool in fre-
quent use. Any attempt to expose in this book, or even to reference here,
every essential application of the technique would make the book a mon-
ster. I would like to make here only one exception, for a field from which
I myself am far - particle physics. I was impressed indeed by the papers
of A.M. Baldin and his associates (see the review Baldin and Didenko,
1990). In these papers perfect scaling laws were obtained embracing
many orders of magnitude of the relevant quantities. I was delighted
to see that the technique of intermediate asymptotics was substantially
helpful here too.

However, there exist many problems of recognized importance where
this technique has not yet been fully explained, but for which results
of substantial value can be expected from its application. I will briefly
mention two of them here.

The equation

dth + Kdx(h
nd*xxh)=0 (1)

is basic in several models of special viscous flows that have attracted
the attention of applied mathematicians and physicists (see the recent
papers by L.P. Kadanoff and his colleagues and associates: Bertozzi,
Brenner, Dupont and Kadanoff, 1993; Boatto, Kadanoff and 011a, 1993).
Here h is a fluid-film thickness or relevant quantity, t is the time, x is
the space coordinate, K and n are positive constants. The case n = 1
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is relevant to the flow in a Hele-Shaw cell, n — 3 corresponds to a
surface-tension-driven viscous flow on a solid surface. There are some
interpretations for other values of n too. However, for all n there remains
an interesting problem that is not yet completely solved - the boundary
conditions at the contact boundary line where h — 0 (for n = 3 see
especially Dussan V. and Davis, 1986; Dussan V., Rame and Garoff,
1991).

Equation (1) seems to be a genuine Pandora's box of incomplete sim-
ilarities and self-similarities of the second kind, not less so, and perhaps
even more so, than the 'porous medium' equation

dte = Kdxxe
n+l (2)

and its modifications, considered repeatedly in the present book. Basic
mathematical information concerning equation (1), including a defini-
tion of the generalized solutions and existence (but not uniqueness!)
theorems, was obtained by Bernis and Friedman (1990). Some impor-
tant results were announced recently by Beretta, Bertsch and Dal Passo
(1995); Bertozzi and Pugh (1995). Bernis, Peletier and Williams (1992)
performed a natural step: they constructed source-type self-similar solu-
tions corresponding to a (̂ -function initial condition and possessing the
property of continuity of h and of the flux h3dxxxhy which preserve the
integral

poo

/ h(x,t)dx. (3)
J—oo

These solutions have finite support at any time, i.e., they are differ-
ent from zero only at |x| < a(t) < oo, and satisfy the conditions
dxh(±a(t),t) = 0. And here questions begin to arise. Firstly, it ap-
pears that such source-type solutions exist for n < 3 only. But what
are the asymptotics as t —> oo of the solution to the non-self-similar
initial-value problem if the fluid is concentrated initially (h(x, 0) ^ 0)
in a small but finite region, and n is greater than or equal to three?
Furthermore, let us consider for 0 < n < 3 the sequence of initial data

/i(x,0) = —3 (&o ~~ x2), |#| < ao; /i(x,0) = 0, \x\ > ao , (4)

which are 'overturned parabolas' with the integral (3) equal to unity,
converging as ao —> 0 to a ^-function. It seems natural to expect the
source-type solutions to be asymptotics of the solutions with initial val-
ues such as (4) for a(t) ^> ao. However, as is easily seen, (4) is a steady
solution of (1) itself, possessing the property of continuity of h and of
the flux h3dlx h. So, what is the class of initial conditions for which the
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Bernis-Peletier-Williams source-type solution is an intermediate asymp-
totics? And what are the asymptotics of the solutions for general initial
conditions having a finite support?

Furthermore, let n again be in the interval 0 < n < 3 where source-
type solutions appear to exist. What is the asymptotics for 'dipole-type'
initial and boundary conditions, similar to those considered in chapter
2? Indeed, in contrast to the porous medium equation (2), for equation
(1) the dipole moment

L (x, t )xdx

is not preserved. A self-similarity of the second kind can be expected
here!

The following example belongs to an entirely different branch of ap-
plied mechanics: contact mechanics. Nearly a hundred years ago the
great Swedish engineer J.A. Brinell proposed a test for estimating the
quality and homogeneity of metals. The test is very simple and based
on indentation of a metal surface with a small very hard indentor, often
a ball. During the test the maximum load L and the diameter of the
circular impression a are measured. (The details and references can be
found in a comprehensive book, Johnson (1985).)

After the Brinell invention, activity began in areas closely related to
the main subject of this book, scaling and intermediate asymptotics.
This activity continues until the present time. Indeed, E. Meyer es-
tablished, rather soon after BrinelFs invention, that in an intermediate
range of the ratio a/D, where D is the diameter of the indenting ball,
something like

-0.01 < ^- < - 0 . 5 ,

a scaling law is valid

where fc, n are material constants, k has the dimensions of pressure, and
n is dimensionless. Much later H. O'Neill established that, in an ordinary
uniaxial tensile test, the true (Cauchy) stress r and the finite plastic
strain (a logarithmic measure) 7, again in an intermediate interval, are
also related by a scaling law

r = K7
1/n (6)

where n is the same dimensionless material constant as in the Meyer
scaling law (5), and K is another material constant with the dimension
of pressure, like k in (5). Thus, we have two scaling laws with the same
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powers. And a real sensation was the discovery by Tabor (1951) of a
fundamental scaling-law relation between k and n:

- = ap™^ (7)
AC

where a and {3 are universal constants: a ~ 2.8, /3 ~ 0.4. Universal
means the same for all metals! The law (7) was obtained by careful
processing of experimental data obtained for many metals. Apparently,
similar scaling relations are valid for creep. Laws like the Tabor scaling
law (7) seem to be very simple after the main guess; such laws always,
in fact, mark something very fundamental.

Recently R. Hill, B. Storakers, and their associates performed a fun-
damental analysis of the indentation problem using the classical similar-
ity approach and extensive numerical analysis (see Hill, Storakers and
Zdunek, 1989; Hill, 1992; Storakers, and Larsson, 1994). Their results
are very instructive, but I still have a definite feeling that here is a fasci-
nating self-similarity of the second kind. Its discovery will be interesting
and important and will clarify the internal nature of these scaling laws.

A different, practically important, and challenging (for mathemati-
cians) branch of solid mechanics - the theory of shells - should also
be mentioned. The instructive recent paper by Andrianov and Kholod
(1993) showed the perspectives of intermediate asymptotics in this the-
ory.

The self-similarities and travelling waves mainly considered in this
book form an important class of intermediate asymptotics. However, it
should be emphasized that this class is only a very special one.

In general form the latter statement is trivial, but I want to mention
here an important and natural complication which is by no means so.
Apparently one of the first observations of this complication goes back
to a rather early paper by Shkadinsky, Khaikin and Merzhanov (1971).
In this paper a model of gasless combustion of solid fuel was studied
numerically. (Later physical experiments were reported confirming the
mathematical model.) At certain critical values of the parameters a
conventional intermediate asymptotics of travelling-wave type became
unstable, and periodic fluctuations began. Further departure from the
stability threshold led to period doubling and the classical transition to
chaos.

In a recent paper by G.I. Sivashinsky and his colleagues (Prankel,
Roytburd and Sivashinsky, 1994) the reader can find an instructive
example and a short but comprehensive review. More recently still
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Brailovsky and Sivashinsky (1994) performed numerical experiments us-
ing the system

l)

dtC = -IJLCH{9 - 1)

(H is the Heaviside step-function) under the boundary and initial con-
ditions

Vt < x < oo, 0{Vt, t) = 1 + A, 0(oo, t) = 0,

C(oo,t) = l, C(z,0) = l, 0(z,O) = O
(the parameters /x > 0 and A > 0 were fixed.) It was found that for
large V a travelling wave is the stable intermediate asymptotics. At
a certain critical value V = Vcr periodic oscillations begin, and with
further reduction in V new frequencies appear. The nonlinear system
(8) is convenient: the equations in fact turn out to be linear, and this
simplifies the stability analysis. So, intermediate asymptotics makes con-
tact with chaos and the transition to chaos, so fashionable now. How
should we deal practically with periodic, quasi-periodic, or stochastic
intermediate asymptotics? Naturally, the very concept of intermediate
asymptotics should be modified, and nowadays it is clear how such mod-
ification should be done. By the way, a natural question arises - what
is the counterpart of this behaviour for self-similarities? Periodicity in
t for travelling waves should correspond to periodicity in log t for self-
similarities. Natural, non-artificial, examples of such phenomena are
clearly of interest. Apparently, one such example is known: the Forsyth
effect, the jump-like extension of a fatigue crack (Forsyth, 1976; see also
Barenblatt and Botvina, 1993).

Let us note another important point. We understand by intermediate
asymptotics the behaviour of the solution in the space and time regions
where the solutions no longer depend on the details of the initial and
boundary conditions, yet the system is still far from being in its ul-
timate equilibrium state. It is natural to inquire further whether this
intermediate-asymptotic regime is independent, in a certain well-defined
sense, of the details of the model, i.e., of the equations themselves? In
other words, whether this intermediate asymptotics is in a certain sense
also structurally stable? This problem statement was advanced recently
by N. Goldenfeld, Y. Oono and their students (Paquette, Chen, Golden-
feld and Oono, 1994; Paquette and Oono, 1994). They considered several
instructive examples. These examples showed that the renormalization
group may be viewed also as a means of extracting structurally stable
predictions from model equations: i.e., that a class of models all give rise
to the same behaviour at large times (and/or at large distances). Indeed,
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this notion is analogous to the situation familiar in critical phenomena,
where a class of microscopic statistical mechanical models all give rise to
the same thermodynamic behaviour close to the critical temperature. If
the intermediate asymptotics happens to be structurally unstable, then,
generally speaking, it ceases to be invariant, and, in particular may lose
self-similarity or translational invariance. A variety of new phenomena
may appear, including bifurcations, boundary layers, limit cycles, etc.
A good example is the periodic phenomena in combustion mentioned
before. Nevertheless, as is demonstrated by Chen, Goldenfeld and Oono
(1994), the renormalization group remains an advantageous method of
global asymptotic analysis.

These are only a few examples of current problems involving scaling,
self-similarities, and intermediate asymptotics. When solved, they will
produce new knowledge, but also new numerous challenges.

The best way I can see, under the circumstances, of finishing the book
is with lines from Rudyard Kipling's The Palace:

'They sent me a Word from the Darkness. They whispered and
called me aside.

They said 'The end is forbidden'. They said 'Thy use is fulfilled.

Thy Palace shall stand as that other's - the spoil of a King who
shall build.'

I called my men from my trenches, my quarries, my wharves, and
my sheers.

All I had wrought I abandoned to the faith of the faithless years.

Only I cut on the timber - only I carved on the stone:

'After me cometh a Builder. Tell him, I too have known!'
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Airy stress function 221
anomalous dimensions xiv, 175,

358
asymptotic conservation laws 200
atomic explosion 47, 48, 76, 90

blast waves 80, 87
boundary layer on a flat plate 163
Boussinesq approximation 59
breathing rate of animals 342
Britain, length of the West coast of

335
Brunt-Vaisala frequency 318, 321
buoyancy parameter 59, 297
Burgers equation 183

chaos 364
class of systems of units 30, 31, 32,

34
classification of self-similar

solutions 25
classification of similarity rules 146
cohesion modulus 238, 239, 241
collapsing of mixed fluid patches

300
complete similarity 24, 25, 147,

150, 153, 154, 158, 159, 166, 173,
175, 177, 260, 265, 270, 272, 283,
284, 287, 298, 303, 341, 349, 350,
355

cone crack 241, 243
convection 59
covariance principle xii, 23, 149,

162

critical phenomena 365

Darcy's law 105, 346
decay of homogeneous isotropic

turbulence 256, 259, 265
dimension 3, 28, 32
dimension function 32, 34, 35, 37,

38, 39, 40
dimensional analysis xii, 1, 2, 7, 9,

10, 11, 14, 17, 18, 19, 20, 22, 23,
28, 39, 43, 46, 48, 49, 50, 51, 53,
60, 63, 64, 69, 76, 78, 83, 91, 95,
103, 107, 111, 126, 142, 145, 146,
148, 149, 151, 153, 155, 155, 157,
158, 161, 162, 164, 165, 166, 167,
169, 170, 221, 226, 227, 228, 229,
230, 241, 260, 265, 266, 272, 281,
286, 289, 291, 297, 303, 313, 319,
320, 339, 341, 343, 348, 350, 352

dimensionless stiffness 231, 233
drag force 5, 6, 8, 9
ductile failure 244
dust storms 306

eigenvalue problem 102, 103, 252
eigenvalues, spectrum of 27, 203
elastic wedge,equilibrium of an 220
explosion at a plane interface 141
extension of mixed-fluid patches

316

fatigue 244
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filtration in an elasto-plastic porous
medium 104, 105, 106 107, 109,
111, 113, 115, 117

flame propagation xiii, xvii, 194
flame propagation in a reacting

mixture 194
flame stability 211, 213
flow in a Hele-Shaw cell 361
flow of an ideal fluid past a wedge

95
focussing problem 358
fractal 12, 13, 334ff., 341
fractality of respiratory organs 342
fracture, general similarity rules for

242
fracture, quasi-brittle 235
fracture toughness 238, 239
Proude number 56

general similarity rules for fracture
242

generalized homogeneity 1, 24, 42,
146, 149, 162, 174

generalized wedge 230
geometric similarity parameters 54
geophysical fluid dynamics 27
Grasshof number 61
ground water mound, spreading of

15, 17, 345, 355
Guderley very intense implosion

problem 203, 208, 234

Hausdorff dimension 337, 343
heat conduction 64
Hele-Shaw cell, flow in a 361
high-energy benthic boundary

layers in the ocean 306
homogeneous isotropic turbulence

254ff., 265

ignition problem 195
impulsive loading xii, 133, 138
incomplete similarity 25, 26, 27,

149, 150, 155, 159, 166, 171, 172,
173, 174, 175, 247, 261, 261, 265,
267, 271, 272, 284, 287, 298,
334ff, 341, 342, 355, 361

incomplete similarity of fractals
338

instantaneous heat source 68, 87,
152

intense blast waves 152, 154
intense thermal waves 152, 154
intermediate asymptotics xiii, xiv,

xv, xix, xxi 18, 19, 22, 26, 27, 86,
88, 90, 91, 92, 94, 108, 110, 122,
126, 127, 132, 136, 145, 171, 172,
194, 197, 208, 222, 257, 266, 325,
351, 362, 362, 363, 364, 365

internal Kolmogorov scale 266,
299, 300, 306, 310, 311, 316

Irwin parameter 244
Ishlinsky's formula 6
isotropic turbulence 252ff

Kapitza's system of units 37
kinematic similarity parameters 54
Koch triad 12, 13, 337, 338, 339,

343
Kolmogorov constant 268
Kolmogorov number 302, 303, 304
Kolmogorov-Obukhov theory 1,

266, 267
Kolmogorov scale, internal 266,

299, 300, 306, 310, 311, 316

length of the West coast of Britain
335

Lewis-von Elbe similarity law 191,
195, 209

local homogeneity 340, 341
local self-similarity 340, 341
local structure of turbulent flows

265
locally homogeneous and isotropic

turbulence 265
logarithmic law, universal 270,

272, 278, 298

Mach number 7, 9
mixed-fluid patch collapse 316,

317, 319
modelling 52
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modified very intense explosion
problem 121ff, 119

motion of a body in a gas at high
velocity 5

Navier-Stokes equations 253, 255
nonlinear eigenvalue problem xiii,

22, 27, 113, 115, 116, 129, 151,
155, 157, 157, 192, 194, 197, 201,
290

numerical experiment 108, 109,
110, 122, 126, 135

Obukhov; see
Kolmogorov-Obukhov

Paris-Erdogan scaling law 245, 247
pattern recognition xvii
pendulum, period of oscillation 2,

3,5
physical covariance principle 163
physical similarity 52
n-theorem 42, 43
Prandtl number 61
propagation of an advantageous

gene xiii
Pythagoras' theorem 49

Rayleigh number 61
recipe for similarity analysis 158
regime of limiting saturation 301,

304
renormalisation group xiv, xv, 18,

25, 26, 161, 171, 172, 173, 174,
178, 179, 180, 364

renormalized perturbation
expansion 179

Richardson number 302
rotating fluid 168

sediment-laden flow 303
self-similar solutions xii,xiii, xviii,

14, 15, 18, 19, 24, 64, 76, 87, 88,
91, 103, 110, 117, 121, 222, 230,
234, 256, 361

self-similar solutions of the first
kind 103, 151, 152, 200, 228

self-similar solutions of the second
kind 19, 27, 103, 151, 154, 200,
203, 214, 229, 230, 290, 295, 351

self-similar solutions, classification
of 27

self-similarity xi, xviii, xxi, xxii,
14, 15, 16, 18, 19, 24, 26, 69, 84,
86, 87, 339, 341

self-similarity of the first kind xiii
self-similarity of the second kind

xiv, 361
shock wave 8, 47
similar phenomena 52
similarity 1, 28, 54
similarity analysis, recipe for 158
similarity criteria 53
similarity laws 22, 160, 270
similarity of the first kind 24, 147
similarity of the second kind 25,

149
similarity parameters 25, 52, 54,

60, 149
similarity rules 118, 153, 154
skin friction 278, 278
spectrum of eigenvalues 27, 203
speed of flame propagation 194
spreading of a ground-water mound

345, 355
stability of flames 211, 213
stability of invariant solutions xxi,

209
stability of self-similar solutions

213
stability of travelling waves 209,

212
statistical theory of turbulence 254
Sternberg-Koiter paradox 222
stress function 221, 223, 224
stress-intensity factor 238
strongly stable stratification 299,

300, 301
surface layer of the atmosphere

296, 298
surface-tension-driven viscous flow

361
system of units 28, 29, 32, 37
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thermal diffusivity 66
thermal dipole solution 74, 87
thermal flame propagation 186, 209
thermal travelling wave 300, 306,

309, 310
thermal waves 87
thermometric conductivity 66
transformation group 161, 204, 304
transition to chaos 364
travelling waves 26, 181, 182, 183,

194, 211, 308, 363
travelling waves of the first kind

198
travelling waves of the second kind

198
travelling waves, classification of 27
travelling waves, stability of 209,

212
travelling-wave type solutions 203,

204, 208, 210, 211
turbulent burst 284, 294
turbulent shear flow 268, 282, 283,

301
two-thirds scaling law 267

units 2
units, system of 28, 29, 32, 37

units of measurement 28
universal logarithmic law 270, 272,

278., 298
upper thermocline 300, 306, 307,

308, 309, 310

very intense explosion 120, 123,
145

very intense implosion xii
very intensive thermal waves 76
viscous stage of mixed-fluid patch

collapse 319
viscous sublayer 282, 283
von Karman constant 270, 278,

281, 305
von Karman-Howarth equation

255
von Weizsacker-Zeldovich

impulsive loading problem 203,
234

wall region 268, 302
wave energy redistribution 315
wedge under the action of a couple

221, 223
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