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A METHOD OF MEASURING THE RESISTIVITY AND HALL COEFFICIENT
ON LAMELLAE OF ARBITRARY SHAPE

Resistivity and Hall-coefficient measurements at
different temperatures play an important part in
research on semiconductors, such as germanium and
silicon 1), for it is from these quantities that the
mobility and concentration of the charge carriers
are found.

Such measurements are commonly carried out
with a test bar as illustrated in fig. I. The resistivity
is found directly from the potential difference and
the distance between the contacts O and P, the
current ¢ and the dimensions of the bar. To deter-
mine the Hall coefficient the bar is subjected to a
magnetic field B applied at right angles to the direc-
tion of the current and to the line connecting the
diamétrically opposite contacts O and (). From the
potential difference thus produced between these
latter contacts the Hall coefficient is derived. (The
relation between the Hall coefficient and the change
in electric potential distribution due to a magnetic

field will be explained presently.)
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Fig. 1. Classical form of sample used for resistivity and Hall-
coefficient measurements. The test bar is provided with current
contacts M and IV and voltage contacts O, P, Q and R. The
fourth voltage contact R serves for check measurements.

In measurements performed at low temperatures
— e.g. in liquid nitrogen — point contacts possess
resistances of the order of megohms, in consequence
of which the voltages cannot be determined with
sufficient accuracy. In such cases “bridge-shaped”
samples are used as illustrated in fig. 2. The voltage
and current contacts here have a relatively large
surface area, and hence the contact resistances are
low.

The methods referred to are based on the fact
that the geometry of the sample ensures a simple
pattern of virtually parallel current stream-lines.
Formulae have been devised to correct for the devia-
tion from parallelism in fig. 2, caused by the finite
width of the arms. A drawback of the bridge-shaped

1) See e.g. C. Kittel, Introduction to solid state physics,
2nd edition, Wiley, New York 1956, Chapter 13, p. 347
et seq.
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sample is that it is rather difficult to make, having
to be cut out of the brittle semiconductor material
with an ultrasonic tool. There is therefore a consider-
able risk of breakage, particularly when the arms
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Fig. 2. The bridge-type sample, which is provided with relative-
ly large contact faces to reduce contact resistances. This form
is of special importance in measurements at low temperatures.

are made narrow.

In the following we shall describe a method of
performing resistivity and Hall-coefficient meas-
urements on lamellae of arbitrary shape 2). The
lamella must not, however, contain any (geomet-
rical) holes.

New method of measuring resistivity

We take a flat lamella, completely free of holes,
and provide it with four small contacts, M, N, O
and P, at arbitrary places on the periphery (fig. 3).
We apply a current i,y to contact M and take it
off at contact IN. We measure the potential difference
Ve— V, and define:

Ve—V,
RMN,OP == P.—Q .
M
Analogously we define:
Viu—V
RNO,PM = —M.—P .
Ino

The new method of measurement is based on the
theorem that between R,y ,p and Ry, py there
exists the simple relation:

exp (— ? RMN,OP) + exp ("‘ ? RNo,PM) =1, (1)

where d is the thickness of the lamella and o the

%) L. J. van der Pauw, A method of measuring specific
resistivity and Hall effect of discs of arbitrary shape, Philips
Res. Repts. 13, 1-9, 1958 (No. 1).
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resistivity of the material. If d and the “resistances”
Rynop and Ryppy are known, then (1) yields
an equation in which p is the only unknown
quantity.
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Fig. 3. A flat lamella of arbitrary shape, with four contacts
M, N, O and P on the periphery, as used in the new method
of measuring resistivity. THe Hall coefficient can also be
measured on a sample of this kind.

The situation is particularly straightforward if
the sample possesses a line of symmetry. In that
case, M and O are placed on the line of symmetry,
while N and P are disposed symmetrically with
respect to this line (fig. 4). Then:

RNO,PM:RMN,OP, o o e e . (2)

which may be seen as follows. From the reciprocity
theorem for passive fourpoles, we have quite
that  Ryopy = Rpy,no
of current and voltage contacts), and it follows
from the Reyvnvo = Rynop-
Hence we arrive at (2); o can then easily be found
from (1):

generally (interchange

symmetry that

nd
Q — i;;EE IQAJPLOIJ' e & & & s & (3)

In this case a single measurement suffices.

P

N 95927

Fig. 4. The resistivity measurement is simplified if the sample
has a line of symmetry. If two of the contacts are situated
on the line of symmetry and the two others are symmetrically
situated with respect to this line, one measurement is sufficient
to give the required resistivity.
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In the general case it is not possible to express o
explicitly in known functions. The solution can,
however, be written in the form

7d RMN,OP + RNO,PM

o= g fooooo@

where fis a factor which is a function only of the
ratio Ryy op/Ryopy» as plotted in fig. 5. Thus,
to determine g, we first calculate Ry op/Ryo.pyro
read from fig. 5 the corresponding value of f and
then find ¢ from (4).

Photographs of samples as used for the old and
for the new method are shown in fig. 6.

The complete proof of the theorem underlying
the measurement of p is given in the paper quoted
in footnote 2). The proof consists of two parts.
First of all, relation (1) is developed for a special
case, the case of a lamella in the form of an infinite
half-plane, provided with four contacts at the
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Fig. 5. Between the factor f in formula (4) and the ratio
Ryn,op/Rno,pm there exists the relation:

cosh ) (Bavop/Ryopy) —11n2) explnl
( (Run,op/Ryopm) +1 f ) °F f

which is represented here graphically.

periphery. It is then shown that the relation must
also apply to a lamella of any shape. This is done
by means of conformal mapping of the arbitrarily
shaped plate on the infinite half-plane with the aid
of complex functions.

We shall consider the first part of the proof in more detail,
since it reveals the origin of the exponential functions in (1).

We first consider a lamella which extends to infinity in all
directions. To a point M we apply a current 2i, which flows
away from M with radial symmetry into infinity. Let d again
be the thickness of the lamella and ¢ the resistivity. Then at a
distance r from M the current density is

J = 2i/27rd.

The field-strength E is radially oriented and according to the
generalized form of Ohm’s law has the value:

E = oJ = pi/nrd.
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Fig. 6. Some samples of silicon used for resistivity and Hall-coefficient measurements.
Samples @ and b correspond respectively to figs. 1 and 2. Measurements on samples ¢
and d are possible only by the new method. The incisions in sample d serve to reduce the.
error caused by the contacts not being infinitely small.

The potential difference between two points O and P lying
on a straight line with M (fig. 7a) is:

0 0
o o g:*gi a-+b+c
Vp—Vo -/Edr-ndr e L et
P P

Since no current flows in the direction perpendicular to the
line through M, O and P, the result obtained remains valid
if we omit the part of the lamella at one side of this line —
yielding a half-plane — and if at the same time we halve the
current (fig. 7b).

Next we consider the case of ¢) in fig. 7, where a current i
now flows out from a point N, that again lies on the same
straight line with OP, viz. on the edge of the infinite half-plane.
We now find:

Vp~—Vo—+g b:c.

Superposition of the cases b) and ¢) in fig. 7 yields the case d),
the current i being introduced at M and taken off at IV. The
value now assumed by Vp — ¥V is found by adding together
the two previous results. After dividing by i we then find:

Llatb) @+
(a+b+c)b °

Rynor =

or
(a+b+c)b
(@ +b) (b+c)

Similarly we find:

d .
= exp (—% RMN,OP) .

ac

nd 3
@rHGTa R Rrer).

Addition of the last two equations yields (1).
We shall now explain how formula (4) follows from (1).
For simplification we put:

wd Rynop = %1, ) (5')

7 d Ryo,pyr = %,. )
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Formula (1) can then be w&_itten:
'\,1 .'\':
e edte e=1. . ... ... (6)
Next we write:
=5 {(x + w) + (3 — 1)}
and xy = 3 { (% + %) — (¥, —x) },
whereby (6) takes the form:
x4, Xy — %, Ap— Xy
e 20 (e 2 +e+ 2 )=1.
This is the same as:
Ay X, — X,
e 20 cosh™t L I
20 - g,

The exponent of e in (7) is now written as —(In 2)/f; i.e.

we put:
ETRY)
I AR (8)
Formula (7) then becomes:
In 2
= —1_In2)
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Fig. 7. Illustrating the derivation of formula (1).
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This expression represents a relation between f and x/x,,
and hence also between f and Ryn,op/Ryo,pv (see 5). The
relation is shown graphically in fig. 5. By re-writing (8) to
give o and substituting for x; and x, from (5), we find formula

().
Method of measuring the Hall coefficient

The Hall coefficient, too, can be measured on
an arbitrary lamella as in fig. 3. We then apply the
current to one of the contacts, say M, and take it
off at the contact following the succeeding one, i.e.
in our case at 0. We measure R, yp, after which
we set up an uniform magnetic induction B at right
angles to the surface of the lamella. This changes
Ryonp by an amount AR, yp. We shall now
denote the Hall coefficient Ry and show that it is
given by:

d
Ry = §ARM0,NP7 wowoiox (9)
provided that:
a) the contacts are sufficiently small,
b) the contacts are on the periphery,
¢) the lamella is of uniform thickness and free of
holes.

The validity of formula (9) depends on the distri-
bution of current stream-lines not changing when
the magnetic field is applied. With samples of the
classical shape of figs. 1 and 2, where the current
stream-lines are always parallel to the edges of the
sample, there is evidently no change. From the
properties of the vector field representing the current
density it follows that the same also applies to
lamellae- of arbitrary shape, provided the above
conditions are satisfied 3).

Under the magnetic induction B, the charge
carriers, with charge ¢, are subjected to a force
perpendicular to the stream-lines and perpendicular
to the lines of magnetic induction. The magnitude
of this force is F' = ¢quB, where v is the velocity
of the charge carriers. Between v, the concentration
n of the charge carriers and the current density J
J/ng. Dividing the
force exerted on the charge carriers by their charge
g, we see that the effect of the magnetic field is
equivalent to an apparent electric field Ey, the

there exists the relation v =

Hall electric field, for which we can write 4):

1
Ey=  JB.
Ilq

3) The proof of this statement is also indicated in the paper
quoted under 2).

1) This formula is not entirely exact because, apart from their
ordered motion with velocity v, the electrons also move
randomly owing to thermal agitation. More precise calcula-
tion shows, however, that the formula given here is a good
approximation.
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E,; is proportional to J and to B; the proportionality
constant (= 1/nq) is called the Hall coefficient Ry.
Since ¢ is known, one can calculate from Ry the
concentration n of the charge carriers.
The fact that the current stream-lines are not
affected by the magnetic field implies that after
of the

field is no longer in the same direction as the cur-

application magnetic field the electric

rent stream-lines, but has acquired a transverse
component F; which exactly compensates the
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Fig. 8. The resultant of the electrical field-strength E and the
Hall field-strength Ep lies in the direction of the current density
J. Resolving E in directions perpendicular and parallel to J
therefore yields a perpendicular component E; which in mag-
nitude is equal to Ey.

apparent Hall electric field Ey (fig. 8). The change
A(Vp— Vy) in the potential difference between,
P and N is therefore given by integrating Ey from P
over a path orthogonal to the current stream-lines
to N’ across the lamella (fig.9), and thence along
the periphery —- i.e. along a stream-line — from
N’ to N. The last portion of the path makes no
contribution to the integral; hence

N’ N’

A(Vp—Vy) :/EHds:RHB/ Jds =Ry
P

P

Lpo
2

where d is again the thickness of the lamella. This
expression leads directly to (9).
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Fig. 9. To calculate by how much the potential difference
between points P and N changes when a magnetic field is
applied at right-angles to the plane of the sample, the trans-
verse electricfield Ey produced by the magneticfield is integrated
along the path s which runs from P, orthogonal to the current
stream-lines, to N’ and thence along the periphery from N’
to N.
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Estimation of errors
In the foregoing we have assumed the contacts

to be “sufficiently” small and to be situated on the
periphery. To gain an idea of the error made in the
calculations when these conditions are not exactly
satisfied, we have worked out the error for three
cases. For simplicity we consider a circular disc of
diameter D with the contacts mutually 90° apart.
We assume further that only one of the contacts is
not ideal. The three cases are represented in the
adjoining table, togei:her with the formulae for the
relative errors in the resistivity and the Hall
coefficient. The cases are:
a) One of the contacts has a length I along the

periphery.
b) One of the contacts has a length I perpendicular

to the periphery. ’
¢) One of the contacts, although a point, is situated

at a distance [ from the periphery.

In practice, none of the contacts will be ideal. To

the first approximation the total error is then equal
to the sum of the errors per contact.

The value of the method described here lies in
the fact that, in many cases, the material under
investigation is already available in the form of
small lamellae (e.g. thin discs sawn from a crystal
rod); these samples now need no further prepara-
tion and can therefore be used for other purposes
after the measurement.

If very small contacts are undesirable, having
regard to contact resistances in measurements at
low temperature, use can be made of “clover-leaf”
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Table. The relative errors Ag/p and ARy/Ry in the calculated
values of the resistivity and the Hall coefficient for a circular
disc of diameter D on which one contact P is non-ideal, in the
senses indicated in the sketches.
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samples (see fig. 6d), the incisions in which sub-
stantially reduce the error due to the finite dimen-
sions of the contacts. The clover-leaf sample thus
replaces the bridge-type sample (fig. 6b) which is
used for the same purpose in the classical method.
The clover-leaf sample is easier to make than the
bridge-type sample and is also less susceptible to
breakage.

L. J. van der PAUW.




