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Facial affect analysis is an active field of research that aims at 
automatically estimating the emotions of a person in order to 
provide new types human–computer interaction. However 

there has typically been a gap between the state of the art in psy-
chology and what is done in computer vision. In particular, most 
existing work in computer vision is focused on a simplistic setting, 
namely that of predicting discrete classes of ‘prototypical’ expres-
sions of emotions displayed in laboratory conditions. Meanwhile, 
psychologists have moved away from these coarse classes that do 
not reflect the range of emotional display shown by humans on a 
daily basis in naturalistic, everyday situations1. Instead, they focus 
on dimensional measures of affective display, the most notable of 
which are valence (how negative or positive the emotional display is)  
and arousal (how calming or exciting the emotional display looks 
like)2,3 (Fig. 1). In addition, while we are interested in performing 
affective display analysis in naturalistic (in-the-wild) conditions, 
most existing work focuses on controlled, laboratory conditions.

This mismatch between theory and practice can be explained 
by various factors: (1) the difficulty of collecting large corpora of 
emotional data in naturalistic conditions and (2) the difficulty of 
accurately labelling large amounts of data3,4. To be able to general-
ize well to unseen real-life situations, deep learning requires both 
of these. This state of affairs has recently started evolving with the 
introduction of datasets collected in the wild and accurately anno-
tated for valence and arousal (for example, AffecNet5, AFEW-VA6 
and SEWA7).

Virtually all existing works approach the task as a series of 
disjoint steps4. First a face detector is run on an image to detect 
every face present in it. Each face is then cropped to remove the 
background using the bounding box predicted by the face detec-
tor. Facial landmarks (fiducial points) are detected on each face 
and employed to project the face to a canonical coordinate frame 
to remove translation, rotation and scaling of the face in the face 
box. These aligned images are finally used as the input to a machine 
learning algorithm that can interpret facial information such as 

emotions. In contrast with existing work, our approach uses a single 
network to estimate three types information in a single pass: facial 
landmarks, discrete emotions and continuous emotions. This leads 
to a great improvement in affect estimation performance since 
important facial features around fiducial points can be used to build 
an attention mechanism. It also facilitates the implementation of 
such a single-step method as a lightweight model that runs in real 
time. Figure 2 compares the traditional approach to our method.

Specifically, in this paper, we make the following contributions:

•	 We propose a novel method for continuous valence and arousal 
estimation from images of facial display recorded in naturalis-
tic conditions, which outperforms state-of-the-art methods by 
a large margin.

•	 We do so by proposing a novel deep neural network architec-
ture (Fig. 3) that jointly performs facial alignment and cor-
rectly predicts both discrete and continuous emotion labels in a  
single pass.

•	 We simplify the pipeline of emotion recognition from facial 
imagery and provide a series of improvements to achieve a bet-
ter performance at this task.

Results
We devised a convolutional neural network that takes as input 
an image of a person’s face and estimates the person’s affect on 
that image. This estimation is done in terms of continuous values 
of valence and arousal levels. We show that our method outper-
forms all existing methods by a large margin and compare it to the 
inter-agreement between human annotators.

Baseline comparison. In order to compare to the performance 
of a traditional deep learning approach to the target problem, we 
implemented a baseline approach to valence and arousal estimation. 
Specifically, we trained a ResNet-18 neural network8directly on the 
face images from the datasets5–7 and on augmented data (that is to 
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say small rotations, scaling, translations and image flips are applied 
during training). The network is trained to maximize the concor-
dance correlation coefficient (CCC)9, a metric that consistently 
incorporates both elements of relative error and correlation. This 
metric has been widely adopted for affect estimation5,7,10–15.

Our approach. In contrast with existing methods in the field, we 
propose a single network that detects facial landmarks and esti-
mates both categorical and continuous emotions. This method 
takes advantage of the features learnt by a face-alignment network 
(FAN)16 used for facial points detection, which are also relevant for 
the emotion recognition task. This increases the performance of the 
complete model. In addition, we also introduce a series of steps that 
further improve the performance of the model. These steps include: 
a joint prediction of categorical and continuous emotions to make 
the network more robust to outliers in the dataset; an attention 
mechanism17 that drives the focus on regions of the face that are rel-
evant for affect estimation; a student–teacher training framework, 
known as knowledge distillation18,19, that smooths labels learnt by 
the network; and finally a specifically tailored loss function that 
leads to the optimization of metrics related to affect recognition. 
The performance of our network can be seen in Tables 1, 2, 3 and 4.  
A diagram of the architecture of our network, called EmoFAN, 
is shown in Fig. 2 and qualitative results are presented in Fig. 4. 
Additional qualitative results can be found in the Supplementary 
Information.

Results on AffectNet. Results on the AffectNet dataset5 are given 
in Table 1. Our method surpasses all existing methods by a very 
large margin on all metrics. In particular, we outperform the pre-
vious state of the art14 in terms of the CCC values by 17% on the 
valence estimation task and by 20% on the arousal estimation task 
(corresponding to a 0.11 increase in the CCC values for both tasks). 
This is despite the fact that the approach in ref. 14 was trained on the 
AffectNet dataset plus an additional 2.5 million proprietary images. 
Similarly, our approach outperforms the single-shot detection 
method in ref. 15 by a very large margin. In our experiments, we also 
found incorrect labelling to be a big issue in the AffectNet dataset. 
Cleaning the validation and test sets of these incorrect labels is cru-
cial to be able to accurately assess the performance of the models. 
On manually cleaned test and validation sets, the improvement on 
CCC over the state of the art is even greater with an increase of 0.2 

for valence and 0.21 for arousal. Details on how the manual clean-
ing was performed are provided in the Supplementary Information.

Results on SEWA. Results on the SEWA dataset7 are presented in 
Table 2. Our method outperforms the state of the art20 in all metrics. 
In particular, for the CCC values, we obtain a relative improvement 
of 38% for the valence estimation task and 56% for the arousal esti-
mation task (corresponding to an increase in the CCC values of 0.18 
for the valence and 0.22 for the arousal).

Results on AFEW-VA. Results on the AFEW-VA dataset6 are 
given in Table 3. Following previous work6,21, we employed a 
five-fold person-independent cross-validation strategy to train 
our networks. The baseline using a ResNet-18 showed a very poor 
performance due to the very small size of the AFEW-VA dataset 
(around 30,000 images). To overcome this problem, we trained our 
EmoFAN network on the AffectNet dataset and then fine tuned 
it on the AFEW-VA dataset using a five-fold person-independent 
cross-validation strategy. The resulting network outperforms the 
state of the art on the AFEW-VA dataset by a very large margin on all 
metrics. In particular, for the CCC values, we achieve an improve-
ment of 33% for the valence estimation task and 18% for the arousal 
estimation task (corresponding to an increase in the CCC values of 
0.17 for valence and 0.1 for arousal).

Comparison to human inter-agreement. Comparison to human 
inter-agreement has also been made. As with any computer vision 
application, supervised learning methods for affect analysis from 
facial imagery are trained using ground-truth labels generated 
by human observers who are asked to manually annotate target 
facial imagery in terms of discrete emotions and affect dimensions 
(valence and arousal). Whereas in standard computer vision appli-
cations (for example, object detection) the ground truth has low 
inter-observer variability, annotation of facial imagery in terms of 
displayed emotions is particularly difficult due to the lack of context 
knowledge needed for accurate annotation (for example, the cul-
tural background of the recorded person, their personality and the 
current task). This results in higher inter-observer variability, which 
is usually reported for each facial imagery dataset.

Human inter-agreement is provided for both AffectNet5 and 
SEWA7 datasets (Table 4). Interestingly, for the AffectNet dataset, 
if our method is treated as another annotator, its average agree-
ment with human annotators is at least as good as that of any other 
annotator when estimating valence, and it outperforms the average 
agreement that any annotator has with other annotators when esti-
mating arousal, with CCC values being higher by 0.2 on average. 
This confirms the research in psychology that found that humans 
are much better at judging facial affect in terms of valence than at 
estimating how calm or excited a person is based on their facial 
expression (arousal)22,23. On the SEWA dataset, our method’s aver-
age agreement with human annotators is much higher than the 
average agreement human annotator reach among themselves, with 
CCC values being 0.38 higher for both the valence and arousal.

Applications and ethical considerations
Given that people react to and emote in response to a very wide 
range of stimuli (including media content, interpersonal conversa-
tions, social situations, and casual observations of people and nature 
around them), there are a large number of potential applications 
for facial affect analysis methods. The method presented in this 
article is non-obtrusive, using only facial imagery collected with 
commercially available cameras (rather than specialized cameras), 
which increases the number of potential applications. On the purely 
commercial side, the usage of such technology has proved to be 
very successful in market analysis, for fast and accurate judgement 
of whether large cohorts of paid observers like or dislike certain 
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Fig. 1 | Valence and arousal circumplex. Valence and arousal space with 
the corresponding location of a few discrete emotional classes.
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Top, the traditional approach first finds facial landmarks to align each face and then estimates either categorical or continuous emotions from the aligned 
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continuous affect dimensions and fiducial landmarks on the face. An attention mechanism built using these facial landmarks is employed on the feature 
maps to attend to the most relevant parts of the face.

Table 1 | Results on the AffectNet dataset

Valence Arousal

Network Acc. RMSE SAGR PCC CCC RMSE SAGR PCC CCC

AffectNet baseline5 0.58 0.37 0.74 0.66 0.60 0.41 0.65 0.54 0.34

Face-SSD15 – 0.44 0.73 0.58 0.57 0.39 0.71 0.50 0.47

VGG-FACE+2M images14 0.60 0.37 0.78 0.66 0.62 0.39 0.75 0.55 0.54

ResNet-18 – 0.39 0.78 0.66 0.66 0.34 0.77 0.60 0.60

Ours (original set) 0.62 0.33 0.81 0.73 0.73 0.30 0.81 0.65 0.65

Ours (clean set) 0.75 0.29 0.84 0.82 0.82 0.27 0.80 0.75 0.75

Our methods performs best on all metrics. In particular, we outperform all previous works, including VGG-FACE + 2M images, in which the authors trained their model on AffectNet with an additional 2.5 
million synthetic images. Unless specified, results were computed on the original test set.
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products and adverts. This was the crux of the successful EU SEWA 
project (https://sewaproject.eu) and is the main business of the two 
very successful small and medium enterprise companies RealEyes 
(https://www.realeyesit.com/) and Affectiva (https://www.affectiva.
com/). On the purely research-oriented side of the application spec-
trum, the technology for facial affect analysis has proved indispens-
able in various psychological and psychiatric studies. For example, 
the ability to accurately extract emotional information from the 
face of the person one is communicating with plays a major role 
in prosociality24 and this capacity is often found to be altered in 
numerous psychiatric conditions characterized by impaired social 
functioning, such as schizophrenia (psychology25,26; computer-based 
study27), depression (psychology28; computer-based study29) and 
autism spectrum disorder (psychology30; computer-based study31). 
Automatic facial affect technology of the kind presented here opens 
up tremendous potential to measure affective behaviour indicators 
that heretofore resisted measurement because they were too subtle 
or fleeting to be measured by the human eye.

It is important to note here that, although our objective is to build 
robust technology for automatic facial affect analysis to be used in 
‘humane’ applications like those listed above, the technology could 
be potentially misused. Along with other information, this technol-
ogy could be employed to more robustly identify and trace sub-
jects and their behavioural patterns over a variety of channels (for 
example, telephone, webcam) and use this information for targeting 
in political or other aims. In turn, we argue that every application 
using automatic facial affect technology of the kind presented here 
needs to be properly audited and that the risks and merits of this 
technological solution relative to other solutions need to be clearly 
communicated to the public and all users of the target application. 
Specifically, we argue that adequate auditing and redress proce-
dures, in line with the procedures that biometric technologies are 
now making32 and in relation to ethical concerns specific for affec-
tive computing technology33, are needed.

We would also like to stress that the facial affect analysis 
approach presented here is neither capable of recognizing ‘inner-
most emotions’ of people nor is it sensitive to cultural differences 
existing in display of various emotions. Specifically, the facial affect 

technology proposed here is able to analyse only what is portrayed 
on someone’s face, nothing else. As a result, if someone chooses to 
smile in order to mask his or her feelings, the technology would 
fail to correctly recognize the actual affective state of that person 
and will recognize just the smile (that is ‘happy’ state and positive 
valence). Furthermore, neither emotional displays nor perception 
of emotional displays are universal; facial expressions are displayed 
and interpreted differently depending on the cultural background of 
subjects and annotators34,35. As a result, the data used to train facial 
affect analysis technologies may be biased towards facial displays 
present in the training data (for example, if the majority of subjects 
are European Americans, the method would be biased towards 
facial expressions typically displayed by European Americans36). 
Similarly, the data used to train facial affect analysis technolo-
gies may be biased towards how facial displays are interpreted in 
terms of emotions in the culture of the annotators. One version 
of the method presented in this paper has been trained on the 
AffectNet database. This database contains facial imagery of mainly 
European American people, which was also annotated mainly by 
European American annotators. Hence, the version of our method 
trained on the AffectNet dataset is not expected to perform with 
the same high accuracy presented in this paper on data coming 
from non-European American cultural backgrounds or on the data 
being annotated by non-European American annotators. This is the 
reason why the recent SEWA dataset7 employs culture-dependent 
annotations, meaning that annotators are from the same culture as 
the person whose facial affect is being annotated. However, even for 
the version of our method trained on the SEWA dataset, it will be 
sensitive to cultural differences in facial affect displays only for the 
six cultures for which we have the data in the SEWA database (that 
is, German, Hungarian, Serbian, British, Greek and Chinese). For 
other cultures, such as African, South Asian and South American, 
the method will be insensitive to culture-specific differences in 
facial affect displays and interpretation. Of course, if such data 
becomes available, the method could be retrained.

Finally, we would like to emphasize that the above-mentioned 
auditing and redress procedures need to include auditing of the 
training data used for building automatic facial affect technology.  

Table 3 | Results on the AFEW-VA dataset

Valence Arousal

Network RMSE SAGR PCC CCC RMSE SAGR PCC CCC

AFEW-VA baseline6 0.27 – 0.41 – 0.23 – 0.45 –

VGG-FACE+109k images14 0.48 – 0.56 – 0.27 – 0.61 –

AffWild Net21 – – 0.51 0.52 – – 0.58 0.56

ResNet-18 0.43 0.42 0.05 0.03 0.41 0.68 0.06 0.05

Ours 0.23 0.65 0.70 0.69 0.22 0.81 0.67 0.66

VGG-FACE+109k images means that the authors trained a VGG-FACE network on AFEW-VA with an additional 108,864 synthetic images.

Table 2 | Results on the SEWA dataset

Valence Arousal

Network RMSE SAGR PCC CCC RMSE SAGR PCC CCC

SEWA baseline7 –a – 0.32 0.31 – – 0.18 0.20

VGG16 CNN+TRL20 0.33 – 0.50 0.47 0.39 – 0.44 0.39

ResNet-18 0.37 0.60 0.35 0.35 0.37 0.69 0.35 0.29

Our methodb 0.32 0.70 0.66 0.65 0.35 0.77 0.61 0.61
aThe dashes in the table mean that no results were provided for these metrics by the authors. bOur method outperforms the baseline approach as well as the previous methods on all metrics.

Nature Machine Intelligence | VOL 3 | January 2021 | 42–50 | www.nature.com/natmachintell 45

https://sewaproject.eu
https://www.realeyesit.com/
https://www.affectiva.com/
https://www.affectiva.com/
http://www.nature.com/natmachintell


Articles NATure MAcHine InTelligence

The issue here is that this technology could also be used for seem-
ingly benign applications that could nonetheless end up being 
severely discriminatory if the technology is not trained properly. 
Examples include AI-empowered remote-interviewee analysis and/
or rental-car driver analysis where behavioural patterns indicative 
of stress or intoxication could be screened. The applied automatic 
facial affect technology needs to be trained on appropriate demo-
graphically diverse data as to avoid situations in which certain por-
tion of the users would be discriminated against because their age or 
culturally specific behavioural patterns are under-represented in the 
used training data. Hence, once again, we argue here that adequate 
auditing and redress procedures, fully in the line with the proce-
dures for biometric technologies that are now in making32, which 
address all issues including privacy considerations, training data, 
dual use/misuse, and ethical considerations of the choice to use 
affective technology in the target application, are essential.

Emotion estimation from facial imagery
Our method outperforms state-of-the-art algorithms by a large 
margin at the emotion recognition task. In what follows we explain 
the details of our approach and the changes that we have made in 
the architecture of our approach that led to this highly improved 
performance.

Datasets. In our experiments, we employ three datasets of videos 
and images, collected in naturalistic conditions and annotated by 
human expert annotators in terms of valence and arousal levels.

AffectNet. A large-scale facial imagery dataset5 annotated in terms 
of discrete and continuous emotion labels (valence and arousal). 
It contains more than a million images downloaded from the 
Internet along with the annotation of 66 facial landmarks. Among 
these, 450, 000 images were manually annotated by twelve human 
annotators. The dataset contains a very large demographic variety 
of subjects.

AFEW-VA. A dataset of 600 video clips6, spanning 30,000 frames 
with high-quality annotations of valence and arousal levels, and 68 
facial landmarks, all highly accurately annotated per frame.

SEWA. A large-scale multimodal dataset containing over 2,000 
minutes of audio and video data, and richly annotated in terms of 
59 facial landmarks and continuous valence and arousal levels. It 
contains 398 different subjects from six different cultures, almost 
uniformly spanning an age range of 20–80.

Performance metrics. The performance metrics used in our evalu-
ation studies are: the RMSE, which must be minimized, and the 
SAGR, PCC and CCC, which all must be maximized. If Y is the pre-
dicted label, Ŷ

I
 is the ground-truth label and μY and σY correspond 

to the mean and the standard deviation of Y, respectively, then these 
metrics are defined as follows.

Root mean square error (RMSE) evaluates how close predicted 
values are from the target values:

RMSEðY ; ŶÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EððY � ŶÞ2Þ

q
ð1Þ

Sign agreement (SAGR) evaluates whether the sign of the pre-
dicted value matches the sign of the target value:

SAGRðY ; ŶÞ ¼ 1
n

Xn

i¼1
δð sign ðyiÞ; sign ðŷiÞÞ ð2Þ

Pearson correlation coefficient (PCC) measures how correlated 
predictions and target values are:

PCCðY ; ŶÞ ¼ EðY � μY ÞðŶ � μŶÞ
σYσŶ

ð3Þ

Concordance correlation coefficient (CCC) also incorporates the 
PCC value but penalizes correlated signals with different means. In 
other words, if the predicted signal has a trend similar to the target 
signal but with values that are far from the target values (high error), 
it then gets penalized with a low CCC (although the PCC is high).

CCCðY ; ŶÞ ¼ 2σYσŶ PCC ðY ; ŶÞ
σY 2 þ σŶ

2 þ ðμY � μŶ Þ
2 ð4Þ

Combining geometric and appearance information. The tradi-
tional approach of affect analysis from facial imagery is composed 
of a pipeline that first pre-processes images using geometric infor-
mation (in the form of facial landmarks), then extracts appearance 
features to perform a classification or a regression in order to attain 
affect recognition. This pre-processing removes translation and 
scaling by cropping the input image around the face, previously 
aligned based on a set of fiducial points (or landmarks). Therefore, 
accurate facial landmark detection and face alignment are essen-
tial and the accuracy of the detected landmarks has a significant 
impact on the performance of the algorithm. As the landmarks 
provided in affect datasets such as AffectNet and SEWA were origi-
nally computed using older, less accurate methods, we recomputed 
them using the state-of-the-art facial landmarks detector of Bulat 
and Tzimiropoulos16. All reported networks were trained using 
these improved landmarks and all showed an increase in their per-
formance on the two datasets. The improvement obtained by using 
these more accurate landmarks can be seen in the second row of 
Table 5 (ResNet-18 with modality F+R).

Based on the above observation that the detection of accurate 
facial landmarks is essential, we go one step further and propose 
to merge the landmarks detection and the emotion recognition 
into a single novel method that incorporates both. In particular, we 
build on a network trained for the detection of landmarks16, and 

Table 4 | Comparison to human inter-agreement

Valence Arousal

Dataset Network Acc. RMSE SAGR PCC CCC RMSE SAGR PCCa CCC

AffectNet5 Human IA 0.66 0.34 0.82 0.82 0.82 0.36 0.67 0.57 0.55

Ours 0.75 0.29 0.84 0.82 0.82 0.27 0.80 0.75 0.75

SEWA7 Human IA – 0.24 0.64 0.38 0.27 0.24 0.62 0.33 0.23

Ours – 0.32 0.70 0.66 0.65 0.35 0.77 0.61 0.61
aFor the correlation coefficients PCC and CCC that are of interest in continuous affect estimation, our approach reaches a performance superior to the agreement between expert human annotators on both 
AffectNet and SEWA databases.
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Fig. 4 | Qualitative results of our approach. For each image, the detected face bounding box, the facial landmarks and the corresponding predicted 
emotion on the valence and arousal circumplex are displayed.

Nature Machine Intelligence | VOL 3 | January 2021 | 42–50 | www.nature.com/natmachintell 47

http://www.nature.com/natmachintell


Articles NATure MAcHine InTelligence

first combine features from several layers of the FAN, as well as the 
heatmaps it predicted, before passing them on to a series of convo-
lutional blocks to predict emotional labels. These features intrin-
sically encode both low-level facial features (such as edges located 
at the boundary of the facial parts) and high-level morphological 
features that contain the location of certain facial regions (that is, 
eyes, lips). Such geometric features are known to have a strong 
correlation with facial expressions of emotions37, which has been 
empirically observed in practice for both constraint and naturalistic 
environments6. This allows us to get a single network that jointly 
finds facial landmarks and estimates discrete and continuous emo-
tions. Since the FAN network is pretrained on large datasets of faces 
containing extreme head poses and various facial expressions, the 
features it extracts from images are very relevant to affect analysis as 
well and act as weak supervision for emotion prediction. This novel 
approach leads to large improvements in performance, reported in 
the fourth row of Table 5 (EmoFAN with modality F+R).

Joint prediction of continuous and discrete affect. Most exist-
ing work focuses on predicting either discrete emotions or affect 
dimensions (‘continuous emotions’)5,14,21. By contrast, we posit that 
the model is less likely to mislabel the data when having to predict 
both discrete and continuous emotions in the same facial image. As 
a result, unlike previous works5,14,21, we train the network to estimate 
both discrete and continuous emotions jointly when annotations 
are available. Our network therefore becomes more robust against 
outliers in the dataset, that is against images that have been incor-
rectly annotated either in terms of discrete or continuous emotion 
labels. To incorporate this, we introduce a novel loss function being 
a sum of a cross entropy for the categorical loss (discrete emotion 
classes ; equation (5)) and a CCC loss (equation (6)) for the continu-
ous affect dimension estimation.

LcategoriesðY ; ŶÞ ¼ Cross entropy ðY ; ŶÞ ¼ �
Xn

i¼1
ŷilogðyiÞ

ð5Þ

LCCCðY ; ŶÞ ¼ 1� CCCvalenceðY ; ŶÞ þ CCCarousalðY ; ŶÞ
2

ð6Þ

This results in a further improvement of all metrics as shown in 
Table 5 (third and fifth rows with modality F+R+C).

Attention mechanism. Not all the information in the image is rel-
evant for emotion classification. In particular, there is a strong evi-
dence that areas around facial landmarks are particularly relevant 
while the areas on the face boundary are less relevant6. This is a 
consequence of human foveal vision, which focuses our attention 
on a ‘central’ part of the object we look at, rather than its periph-
ery. Consequently, humans learnt through evolution to communi-
cate visual signals by contracting central parts of their faces38. This 
information, which is not taken into account by traditional neural 
networks, can be incorporated via an attention mechanism17. The 
attention mechanism in our network is implemented as a multipli-
cation of the features extracted at different levels in the FAN with 
the predicted facial landmarks (heatmap). Additional informa-
tion on this step can be found in the Supplementary Information. 
This allows the network to better focus on areas of the face that 
are likely to be important for emotion estimation and reduces the 
importance of regions that are less useful. The fact that each heat-
map represents the probability of the location of each landmark 
facilitates this. As a result it leads to an improvement in the met-
rics as shown in the sixth row of Table 5 (EmoFAN with modality 
F+R+C+A).

Knowledge distillation. Knowledge distillation19 is a technique to 
improve network predictions. It works in two steps. First a teacher 
network is trained on a specific dataset. Then a second network, 
called the student network, is trained on the same dataset but 
using the labels predicted by the teacher network instead of the 
labels given in the dataset. The idea behind this process is that the 
teacher network has already learnt how to smooth incorrect labels 
in the dataset. Hence, providing these to the student network gives 
much cleaner data to learn from. Mathematically, as the output of 
each network is a distribution over the labels, we minimize the dis-
tance between the distribution predicted by the student ps and the 
teacher pt, typically using a KL divergence18. The KL divergence is 
defined, for two probability distributions pt and ps corresponding 
respectively to the predictions from the teacher and the student, 

as KL ðptjjpsÞ ¼
Pn

i¼1 ptðiÞlog
ptðiÞ
psðiÞ

 

I

. This results in the following 

loss term added to the loss function:

Ldistillationðps; ptÞ ¼ KL ðptjjpsÞ ¼
Xn

i¼1
ptðiÞlog

ptðiÞ
psðiÞ

 
ð7Þ

Table 5 | Ablation study on the AffectNet dataset

Valence Arousal

Network Modality Acc. RMSE SAGR PCC CCC RMSE SAGR PCC CCC

ResNet-18 O+R – 0.39 0.78 0.66 0.66 0.34 0.77 0.60 0.60

ResNet-18 F+R – 0.37 0.79 0.69 0.69 0.34 0.78 0.61 0.6

ResNet-18 F+R+C 0.59 0.37 0.79 0.70 0.70 0.33 0.79 0.62 0.62

EmoFAN F+R – 0.38 0.79 0.70 0.70 0.34 0.78 0.62 0.62

EmoFAN F+R+C 0.60 0.36 0.80 0.71 0.71 0.33 0.80 0.64 0.64

EmoFAN F+R+C+A 0.60 0.35 0.81 0.72 0.72 0.33 0.80 0.64 0.64

EmoFAN F+R+C+A+D 0.62 0.34 0.80 0.72 0.72 0.31 0.80 0.64 0.64

EmoFAN F+R+C+A+S 0.60 0.35 0.80 0.72 0.72 0.31 0.81 0.64 0.64

EmoFAN F+R+C+A+S+D 0.62 0.33 0.81 0.73 0.73 0.30 0.81 0.65 0.65

EmoFAN (clean 
set)

F+R+C+A+S+D 0.75 0.29 0.84 0.82 0.82 0.27 0.80 0.75 0.75

Modalities: O, original landmarks; F, FAN landmarks; R, valence–arousal regression; C, discrete emotion classification; A, attention mechanism; S, shake–shake regularization between MSE, PCC and CCC 
losses; D, distillation.
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The results for distillation are given in the seventh row of  
Table 5 (EmoFAN with modalities F+R+C+A+D), which again 
show an improvement.

Improving the evaluation. At the core of machine learning is the 
idea of minimizing the empirical risk as a good approximation to the 
actual risk; this circumvents the need for evaluating the joint prob-
ability distribution over the labels and the data. As a result, a crucial 
assumption is that the distribution of the data and their labels is 
the same for the training, test and validation sets. However, for the 
AffectNet dataset, we found that, on the validation and test sets, a 
large proportion of labels were incorrect. As a result, the probability 
distribution of the training, validation and test sets can be drastically 
different. This phenomenon, known as label shift, severely affects 
performance, since minimizing the empirical risk on the validation 
set no longer results in good performance on the test set. This is the 
reason why, in general, great care should be taken to consider such 
issues when interpreting the predictions. We therefore cleaned the 
test and validation sets by manually removing all incorrect labels. 
This gave us a better way to validate the hyper-parameters of our 
model and evaluate its performance, resulting in a large improve-
ment in performance as shown in the last row of Table 5 (EmoFAN 
(clean set)). For details on how the test and validation sets were 
cleaned, please refer to the Supplementary Information.

Loss function. For continuous affect prediction, we are mainly 
interested in maximizing the correlation coefficients between the 
prediction and the ground-truth annotation, namely PCC and 
CCC. However each metric encodes important information about 
the target task (for example, a lower RMSE usually leads to a higher 
SAGR as the prediction error is lower). Therefore an optimal pre-
dictor should be able to maximize all of them while minimizing the 
RMSE. We encode this information by changing the loss function 
to a sum of four terms: a categorical loss for discrete emotions, a 
loss related to minimizing the RMSE, a loss to maximize the PCC 
and a loss to maximize the CCC. Furthermore, the regression loss is 
further regularized with shake–shake regularization coefficients39 α, 
β and γ chosen randomly and uniformly in the range [0; 1] at each 
iteration of the training process. This ensures that the network does 
not only focus on the minimization of one of the three regression 
losses. The full loss minimized by the network is given by:

LðY ; ŶÞ ¼ LcategoriesðY ; ŶÞ þ α
αþβþγLMSEðY ; ŶÞ

þ β
αþβþγLPCCðY ; ŶÞ þ γ

αþβþγLCCCðY ; ŶÞ
ð8Þ

with:

LMSEðY ; ŶÞ ¼ MSEvalenceðY ; ŶÞ þMSEarousalðY ; ŶÞ ð9Þ

LPCCðY ; ŶÞ ¼ 1� PCCvalenceðY ; ŶÞ þ PCCarousalðY ; ŶÞ
2

: ð10Þ

The use of this loss function leads to an overall improvement of 
the network performance. This can be seen in Table 6, where we 

study the improvement that each part of the above-defined loss 
function has led to. In particular, when compared to a baseline 
trained with a regular CCC loss (first row), the same model trained 
with our loss function has a lower RMSE and better SAGR without 
degrading the CCC values (EmoFAN with shake–shake).

Implementation. The implementation was done using open-source 
software, specifically PyTorch40 for the deep learning part. We 
trained the networks using Adam optimizer41 with a decrease of 
the learning rate by 10 every 15 epochs. All the hyper-parameters 
were validated using a randomized grid search. In particular, we 
validated the weight decay in the range [0.0, 0.01], the learning rate 
in the range [0.0001; 0.01] and the optimizer’s parameters beta1 and 
beta2 in the range [0.0; 0.999]. Additional details and specifications 
are provided in the Supplementary Information.

Conclusions
In this paper, we investigated a deep learning approach to  
facial affect analysis in naturalistic conditions with an unprec-
edented level of accuracy. We confirmed the importance of facial 
geometric information for this task, information typically encoded 
by the location of fiducial landmarks on the face. We then high-
lighted the importance of the attention mechanism to focus on the 
most relevant part of the image for the target emotion estimation 
task. We identified a significant issue with the annotation of the 
data, which can be mitigated by further cleaning the validation and 
test sets as well as training the deep neural network to estimate 
both categorical and continuous affect labels simultaneously. The 
annotation issues on the training set can then be smoothed-out 
using model distillation. Our method incorporates all the above 
into a single, end-to-end trainable model which outperforms 
all existing work on automatic facial affect estimation by a  
large margin.

Reporting Summary. Further information on research design is 
available in the Nature Research Reporting Summary linked to this 
article.

Data availability
The datasets analysed during the current study are available from 
the original authors in the AFEW-VA (https://ibug.doc.ic.ac.uk/
resources/afew-va-database/), AffectNet (http://mohammadma-
hoor.com/affectnet/) and SEWA (https://db.sewaproject.eu/) repos-
itories. The list of cleaned images for the validation and test sets 
of AffectNet employed in this paper are available on the authors’ 
Github repository (https://github.com/face-analysis/emonet).

Code availability
The pretrained network, testing code and the annotations of the 
cleaned AffectNet test and validation sets are available at https://
github.com/face-analysis/emonet under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International 
Licence (CC BY-NC-ND).
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Table 6 | Investigation of the impact of each term of the proposed loss function

Valence Arousal

Variations in loss function Acc. RMSE SAGR PCC CCC RMSE SAGR PCC CCC

EmoFAN with CCC-based loss 0.60 0.36 0.80 0.71 0.71 0.33 0.80 0.64 0.64

EmoFAN with MSE loss 0.59 0.34 0.80 0.70 0.68 0.30 0.82 0.62 0.59

EmoFAN with shake–shake 0.61 0.34 0.80 0.72 0.72 0.31 0.81 0.64 0.64
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