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Abstract

The accuracy of single-degree-of-freedom (SDOF) model in describing the beam motion of low-frequency cantilever

fibre Bragg grating (FBG) accelerometer can be further explored, since the SDOF model is limited to fundamental

vibration modes. Therefore, this paper addresses the aforementioned limitation by introducing a modal model of the

cantilever Euler-Bernoulli (EB) beam into the wavelength shift equation. This modal model (FBG-MM) considered five

vibration modes. The convergent series of eigenfunction for cantilevered EB beam was solved using a standard modal

expansion theory. The curvature of the cantilevered beam resulted from dual differentiation of the eigenfunction (with

respect to x) is then related to the strain and wavelength of the FBG. The computed wavelength shift using FBG-MM was

compared with the SDOF model. The experimental results where the harmonic base excitation occurring at five

different frequencies were also discussed. The simulation results showed that the wavelength shift exhibited more

reasonable behaviour along the beam particularly when the excitation frequency exceeded the second bending mode

(596.67Hz). The FBG-MM and experimental wavelength shift showed convincing correlation only when the excitation

frequency came close to the fundamental frequency. On the other hand, there was no agreement at low excitation

frequencies due to stiffness issues of the cantilever beam and the capability of the optical spectrum analyser. In future,

the improvement of this study will focus on introducing a tip mass on the cantilever beam for increasing the acceler-

ometer sensitivity and representing the cantilever beam using Timoshenko model.
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Introduction

Recently, researchers have shown an increased inter-
est in the development of fibre Bragg grating (FBG)
accelerometer due to its capability to operate in harsh
environmental conditions, invulnerability to electro-
magnetic fields, and ability to provide multiple sens-
ing points in a single cable.1 These criteria have
enabled the FBG accelerometer to serve in many
vibration monitoring systems such as in steel foot-
bridge, military wheeled truck, gas exploration, and
ground motion.2–5 Some of the earliest FBG acceler-
ometer studies were presented by Tveten et al.6 where
they had developed a simple harmonic oscillator with
the sensitivity detection of less than 1 lg, while Kersey
et al.7 introduced a fibre Fabry-Perot accelerometer
with high sensitivity and good linearity. The principle
of Fabry-Perot in Kersey et al.7 was then adapted by
Gerges et al.8 to integrate with diaphragm-type
FBG accelerometer and successfully improved its

sensitivity. The diaphragm FBG accelerometer was
also studied by Weng et al.9 with the combination
of U-shaped rigid cantilever beam to enhance the
vibration effect. Muller et al.10 introduced two dia-
phragms in FBG accelerometer design to minimise
the cross-coupling of non-directional accelerations.
However, their design only managed to obtain sensi-
tivity of about 1 pm/G compared with 23.8 to
45.9 pm/G, which was obtained by Liu et al.11 using
two diaphragms as well but with different design.
Li et al.12 presented the latest study on diaphragm
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FBG accelerometer with the combination of temper-
ature compensation. Another design of FBG acceler-
ometer was also presented by Li et al.13 based on a
transversely rotating stick while Jiang and Yang14

successfully developed 3-axis FBG accelerometer.
From the comprehensive literature study, it was

found that the most common design of FBG
accelerometer is based on cantilever beam mecha-
nism.2–3,15–20 However, it could easily induce strain,
as FBG is more sensitive to strain and temperature
due to refractive index change and grating period var-
iation.21 Cantilever FBG beam mechanism basically
consists of a single FBG sensor bonded on a thin
cantilever beam, with or without tip mass. In this
light, the presence of the tip mass improves the sen-
sitivity of the accelerometer.1 Furthermore, to serve
as an accelerometer, this system is framed into a cubi-
cal space functioning as a housing, as shown in the
close-up of cantilever FBG accelerometer in Figure 1
(b). Due to motion transfer from the housing to the
beam at any point (x, t) along the beam, the dynamic
strain of the beam is transferred to the FBG. The
amount of FBG strain generated from the dynamic
motion of the beam will produce an amount of wave-
length shift that is directly proportional to the accel-
eration. As a complete measurement configuration,
Figure 1(a) shows an experimental setup consists of
shaker (base exciter), FBG accelerometer (red dots),
plate (structure where acceleration is to be measured),
and FBG interrogation system.

With regard to the cantilever FBG accelerometer,
Peter et al.22 described that the strain of FBG can be
computed by using pure bending theory23 and

presented a static relationship between variations of
applied load, F, and strain, e(x). This approach is then
adapted by other researchers1,2,16,18,19,24 for dynamic
study, in which the static force (F) is replaced by base
excitation (m� a), known as single-degree-of-freedom
(SDOF) model. This model is based on the assump-
tion that the base excitation is harmonic in time.
However, the base excitation of cantilever beam is
subject to arbitrary small rotation and translation,
as shown in Figure 1(b). Moreover, by equating
shear force to zero for pure bending model, the
beam response for SDOF showed a linear pattern
along the beam, which proved to be inaccurate com-
pared with the advanced model, such as Timoshenko
theory. In addition, the strain generated on the beam
surface is proportional to the curvature of the beam
and not directly related to the base acceleration.
Unquestionably, once the strain has been generated
and converted to wavelength shift (Dk), the sensitivity
of the FBG accelerometer (denoted as º) can be deter-
mined from the relationship of wavelength shift and
base acceleration.

Acknowledging the aforementioned drawbacks of
SDOF, the aim of this study is to introduce a more
realistic mathematical model of the cantilever FBG
accelerometer based on the EB beam theory, which
can consider multiple modes of vibration (next sec-
tion), as it has been successfully applied for piezoelec-
tric accelerometer25 and piezoelectric energy
harvester.26 Furthermore, there were two rationales
for selecting EB model to represent cantilever FBG
accelerometer: (i) low excitation frequency was used
in this study; and (ii) the length to thickness ratio of
the beam (l/d) was more than 20 (l/d was 125 for
cantilever beam used in this study). If these two cri-
teria are not fulfilled, the EB model would be invalid
and Timoshenko (T) beam model should be used
instead. The T model considers shear force and rota-
tional inertia of the beam, making it suitable for
describing small l/d ratio (short and thick beam) for
all excitation frequencies (regardless of low or high
frequencies). The dynamic response of these two
models (EB and T) have been discussed in a prelim-
inary study by previous authors.27 The representation
of T model into cantilever FBG accelerometer will be
considered in future study and presented in the next
publication.

In addition, an accurate strain equation of the can-
tilever FBG accelerometer will be derived from the
standard strain theory under dynamic motion
obtained from EB model, thus resulting in accurate
sensitivity of the accelerometer, as discussed in the
Strain-curvature relationship and sensitivity of canti-
lever FBG accelerometer section. Unlike the works in
references1,2,16,18,19,24 which considered tip mass beam
for increasing the accelerometer’s sensitivity, this
study can only be compared with the work done by
Lam et al.30 for non-tip mass beam. Apart from intro-
ducing tip mass onto the cantilever, some
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(structure to be measured)

frame

ShakerFBG interrogation 
system

y

xx
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Figure 1. (a) Measurement configuration using cantilevered
beam FBG accelerometer; and (b) Close-up of cantilevered
FBG accelerometer (red dotted circle) under translational and
rotational base motions.
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researchers15,16 suggested the use of patch thickness

to alter the distance between axis of the FBG sensor

to the neutral axis of the cantilever for increasing the

accelerometer’s sensitivity.
The scope of this study is limited to wavelength

shift comparison between simulation and experiment,

objectively to demonstrate the feasibility of the FBG-

MM on the cantilever FBG accelerometer. The accel-

eration measurement produced from the experimental

work and its comparison with commercial accelerom-

eter, e.g., piezoelectric type, as well as the sensitivity

studies that will be discussed in the next publication.
The next section describes the theoretical model of

the cantilever EB beam. And then the strain-

curvature relationship and sensitivity model of the

cantilever FBG accelerometer are presented. The

Experimental description section presents the cantile-

ver FBG accelerometer and the test rig. The Results

and discussion of FBG-MM and SDOF model sec-

tion and the Validation of FBG-MM against experi-

mental data section present and discuss the

theoretical and experimental results, respectively.

Steady-state response of cantilevered

Euler-Bernoulli beam model under

harmonic base excitation using

modal model approach

As shown in Figure 1(b), the equation of motion of

EB beam for undamped free vibration can be written

as below:29

EI
@4uðx; tÞ

@x4
þm

@2uðx; tÞ
@t2

¼ 0 (1)

where, E, I, and m are the Young’s modulus, mass

moment of inertia, and mass per unit length, respec-

tively. Appendix 1 can be referred to for detailed der-

ivation of equation (1). The absolute motion of the

beam can be represented by:

uabsðx; tÞ ¼ ubðx; tÞ þ urelðx; tÞ (2)

where, urelðx; tÞ is the transverse displacement relative

to the clamped end of the beam; while the base

motion ubðx; tÞ is a combination of transverse base

displacement gðtÞ and small base rotation of the

beam hðtÞ, as given by equation (3) and illustrated

in Figure 2.

ubðx; tÞ ¼ d1ðxÞgðtÞ þ d2ðxÞhðtÞ (3)

For cantilever beam, d1ðxÞ ¼ 1 and d2ðxÞ ¼ x rep-

resent the displacement influence functions. Under

viscous air (medium) and Kelvin–Voigt (or strain-

rate) damping and considering the relative motion

urelðx; tÞ, the damped equation of motion for the

cantilever EB beam model subject to arbitrary base

motion is given as:

EI
@4urelðx; tÞ

@x4
þ csI

@5urelðx; tÞ
@x4@t

þ ca
@urelðx; tÞ

@t

þm
@2urelðx; tÞ

@t2

¼ �m
@2ubðx; tÞ

@t2
� ca

@ubðx; tÞ
@t

(4)

where, ca and cs are viscous air and strain-rate damp-

ing coefficient per unit length. Appendix 1 can be

made a reference for detailed derivation from equa-

tions (1) to (4). The boundary conditions for relative

vibratory motion of the beam are:

urel 0; tð Þ ¼ 0;
@urelðx; tÞ

@x x¼0
¼ 0 (5a,b)

EI
@2urelðx; tÞ

@x2
þ csI

@3urelðx; tÞ
@x2@t

� �
x¼L

¼ 0 (5c)

EI
@3urelðx; tÞ

@x3
þ csI

@4urelðx; tÞ
@x3@t

� �
x¼L

¼ 0 (5d)

The solution of equation (4) can be expressed by a

convergent series of eigenfunction (equation (6))

solved through modal expansion method, as used by

the corresponding author in solving foil structure

motion in foil-air bearing problem:30

urel

�
x; tÞ ¼

X1
r¼1

urðxÞgrðtÞ (6)

where, urðxÞ and grðtÞ are the mass normalised eigen-

function and the modal coordinate of the clamped-

free beam for the r-th mode, respectively. Since the

system is proportionally damped, the eigenfunction

denoted by urðxÞ is indeed the mass normalised eigen-

function of the corresponding undamped free vibra-

tion problem with the clamped-free boundary

conditions.

urel 0; tð Þ ¼ 0;
@urelðx; tÞ

@x

���
x¼0

¼ 0 (7a,b)

Figure 2. Absolute motion of FBG due to base motion
accelerated by shaker.
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EI
@2urelðx; tÞ

@x2

���
x¼L

¼ 0; EI
@3urelðx; tÞ

@x3

���
x¼L

¼ 0

(7c,d)

Therefore, the resulting mass normalised eigen-

function of the r-th mode is:

urðxÞ ¼
ffiffiffiffiffiffiffi
1

mL

r "
cosh

kr
L
x� cos

kr
L
x

� rr sinh
kr
L
x� sin

kr
L
x

� �# (8)

where, kr is the dimensionless frequency numbers

obtained from the characteristic equation given by:

rr ¼ sinhkr � sinkr
coshkr þ coskr

(9)

The mass normalised eigenfunction given by equa-

tion (8) satisfies the orthogonality conditions:

Z L

x¼0

musðxÞurðxÞdðxÞ ¼ drs;Z L

x¼0

EIus xð Þ d
4urðxÞ
dx4

dx ¼ x2
rdrs

(10, 11)

where, drs is the Kronecker delta and is defined as

being equal to unity for s ¼ r and equal to zero for

s 6¼ r, and xr is the undamped natural frequency of

the r-th mode given by:

xr ¼ k2r

ffiffiffiffiffiffiffiffiffi
EI

mL4

r
(12)

The two terms in the right-hand-side (RHS) of the

equation (4) are left as external excitations. The

modal response of the equation (4) is obtained by

adapting the orthogonality conditions as given by

equations (10) and (11) (see Appendix 2 for detailed

conversion of equations (4) to (13)), thus yielding:

@2grðtÞ
@t2

þ csx2
r

E
þ ca

m

� �
@grðtÞ
@t

þ x2
rgr tð Þ

¼ �m
@2ubðx; tÞ

@t2
� ca

@ubðx; tÞ
@t

(13)

For undamped system, the equation (13) reduces

to (ca ¼ 0 and cs ¼ 0):

@2grðtÞ
@t2

þ x2
rgr tð Þ ¼ �m

@2ubðx; tÞ
@t2

(14)

Let the base excitation consists of transverse dis-

placement and small rotation about clamped end, thus:

�m
@2ubðx; tÞ

@t2
¼ �m cwr

@2gðtÞ
@t2

þ chr
@2hðtÞ
@t2

� �
(15)

where,

cwr ¼
Z L

x¼0

urðxÞdx; chr ¼
Z L

x¼0

xurðxÞdx (16)

Considering only inertial excitation without rota-

tional base excitation (hðtÞ ¼ 0), the modal response

is written as:

@2grðtÞ
@t2

þ x2
rgr tð Þ ¼ �mcwr

@2gðtÞ
@t2

(17)

Let gðtÞ ¼ U0e
ixt and grðtÞ is expected to be har-

monic grðtÞ ¼ gre
ixt

	 

, hence:

�x2gre
ixt þ x2

rgre
ixt ¼ mcwr x

2U0e
ixt (18)

where,

@2ðU0e
ixtÞ

@t2
¼ �x2U0e

ixt and @2ðgreixtÞ
@t2

¼ �x2gre
ixt

From equation (18), the steady-state solution of

equation (14) becomes:

gr tð Þ ¼
mcwr x

2U0

x2
r � x2

eixt (19)

It is known that:

cwr ¼
Z L

x¼0

urðxÞdx ¼ 2rr
kr

ffiffiffiffi
L

m

r
(20)

where, equation (19) becomes:

gr tð Þ ¼
mx2U0

x2
r � x2

2rr
kr

ffiffiffiffi
L

m

r
eixt (21)

Substituting equations (8) and (21) into equation

(6), it yields:

urelðx; tÞ ¼
X1
r¼1

ffiffiffiffiffiffiffi
1

mL

r "
cosh

kr
L
x� cos

kr
L
x

� rr sinh
kr
L
x� sin

kr
L
x

� �#

�mx2U02rr
x2

r � x2kr

ffiffiffiffi
L

m

r
eixt

(22)

After re-arranging equation (22), the relative
motion of cantilever EB beam finally yields:

urelðx; tÞ ¼ 2U0e
ixt
X1
r¼1

�h
cosh

kr
L
x� cos

kr
L
x

� rr sinh
kr
L
x� sin

kr
L
x

� �i
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� rrx2

krx2
r � x2

�
(23)

Equation (23) is used for determining the curvature

of the beam, which is required to compute the strain

and wavelength shift of the FBG accelerometer, as

explained in the next section.

Strain-curvature relationship and

sensitivity of cantilever FBG

accelerometer

Based on the bending strain equation under dynamic

motion31 and referring to work in Erturk et al.,32 the

strain generated by the FBG is given as:

eFBG x; tð Þ ¼ � hþ hfð Þ @
2urelðx; tÞ
@x2

(24)

where, h and hf are half-thickness of beam and FBG,

respectively; and @2urelðx;tÞ
@x2

is the curvature of the beam

resulting from dual differentiation of equation (23),

completely written as:

@2Urelðx; tÞ
dx2

¼ 2U0e
ixt
X1
r¼1

kr
L

� �2�h
cosh

kr
L
xþ cos

kr
L
x

� rr sinh
kr
L
xþ sin

kr
L
x

� �i
� rrx2

krx2
r � x2

�
(25)

It is important to assume that the FBG is perfectly

bonded to the beam’s surface. Assuming that adhe-

sive between the FBG and the beam is to be consid-

ered, the half-thickness of adhesive should be

included in equation (24). As observed from equation

(24), the strain also depends on the location where the

FBG is attached to; more analysis is needed in this

aspect. It is known that the wavelength shift of the

FBG is directly proportional to the strain of the FBG

as given in equation (26):15,16

Dk�1:2� eFBG (26)

where, 1.2 is strain sensitivity for FBGs with peak

wavelengths in the C band regime (1.2 pm/le in gen-

eral). From both derivations in the previous section

and this section, the sensitivity of the FBG acceler-

ometer can be written as:

S ¼ Dk
€ubðx; tÞ ¼

1:2� eFBG
€ubðx; tÞ (27)

In the work done by Lam et al.,28 the FBG strain,

eFBG (see equation (28)) is linear along the beam and

cannot be assumed to be uniform, as it is a function of

position of FBG sensor (x) and time (t). In addition,

the sensitivity of the FBG accelerometer is also linear,

since it depends on the position of the FBG sensor (x)

as well but is no longer dependent on time (t); this is

attributable substituting equation (28) into equation

(27), which produces equation (29).

eFBG ¼ 6ðL� xÞm
bd2E

€ub x; tð Þ (28)

S ¼ 7:2ðL� xÞm
bd2E

(29)

In this paper, substituting equation (24) into equa-

tion (27) yields a non-linear sensitivity (or uniform),

but rather, to be relied on the forcing frequency of the

system, x. Therefore, it is noted that the research on

the sensitivity of FBG accelerometer can be furthered

explored, thereby leading to better understanding of

the FBG behaviour.

Experimental description

Figure 3 and Table 1 show the dimensions and prop-

erties of cantilever beam. For experimental purpose,

the dimensions of the beam were almost similar to the

work in references,15,16 except the length of the beam

was increased to 50mm because of two reasons: (i) to

produce as small as possible the fundamental frequen-

cy (longer beam produces smaller fundamental

Figure 3. Dimensions of cantilever beam.

Table 1. Properties of cantilever beam.

Length, l 50 mm

Width, b 10mm

Thickness, d 0.3mm

Location of centre of FBG measured

from free end, lFBG

20mm

Density, q 8000 kg/m3

Young’s modulus, E 193GPa

Poisson ratio, � 0.29

Khalid et al. 5



frequencies); and (ii) to ease the attachment of the
FBG sensor onto the beam. The FBG sensor was
attached 20mm from the free end of the cantilever
beam. Figure 4 and Table 2 show the experimental
setup and item description for the cantilever FBG
accelerometer measurement. A simple sinusoidal har-
monic excitation at the frequency of 20, 40, 60, 80,
and 90Hz at the same magnitude of acceleration
(�4m/s2) was generated by a portable electrodynamic
shaker (1). The excitation input was channelled from
DASYLAB software through output module NI9236
(8). The cantilever FBG accelerometer (2) was
mounted on a simple clamping mechanism and con-
nected to the portable electrodynamic shaker by a
rigid stinger. The excitation output was measured
by a single axial piezoelectric accelerometer (8) to
ensure the output given by the shaker was as desired.
The recorded acceleration will be dual-integrated to
produce its displacement before it was fed into equa-
tion (23) as the base excitation input to the simulation
FBG-MM. Then, it was fed into the SDOF model
proposed by Lam et al.28 for comparative study.
The FBG sensor was connected to a circulator (4)
as a junction to FBG interrogator (5) and a light
source (6). The wavelength shift signal was channelled
to computer and processed in FBG analyser
SENSE2020 V1.6.3.3. Since the FBG is also sensitive
to changes in temperature, the experimental work was
carried out in controlled room, where the temperature
was approximately 22 �C.

Encapsulation of FBG onto the beam

The recent works done by Liu et al.33 has proved that
the double-point encapsulation has increased the sen-
sitivity of the FBG accelerometer and prevented FBG

spectrum chirp and wavelength split, compared with
the embedded encapsulation method, where the FBG
is fully attached the beam, as presented in this paper.
However, this work chose the embedded encapsula-
tion because of the following reasons:

(i) From the authors’ experience, since the response
(deflection) of cantilever beam at low frequency
is very small, the induced strain is also very small
and it does not create FBG spectrum chirp and
wavelength split;

(ii) The FBG grating was completely attached onto
the beam; and

(iii) For the cantilever beam mechanism, there is a
possibility of buckling occurring on the FBG if
double-point encapsulation is used (double-point
encapsulation lets the grating area move freely).

Table 2. Item description of the experimental setup in
Figure 4.

Item No. Description

1 Portable electrodynamic shaker GW-V4/

PA30E

2 Fibre Bragg grating sensor 1544 nm (grating

length is 5mm)

3 Single axial accelerometer Brüel & Kjær Type

4507B

4 Circulator

5 Optical spectrum analyser FBGA-F-1510-

1590-FA

6 Light source

7 NI 9234C series sound and vibration input

module

8 NI9269 C series voltage output module

Figure 4. Experimental setup.
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Results and discussion of FBG-MM and

SDOF model

Figure 5 shows the strain and wavelength shift of the

FBG along the beam at a specific time (t¼ 1.0138 s)

with different excitation frequencies (20, 40, 60, 80,

and 90Hz) computed using SDOF model28 and FBG-

MM with number of modes considered as five. For

both models, the maximum and minimum strains

occurred at the clamped and free ends, respectively,

as shown in the left column of Figure 5. With regard

to basic pure bending, this phenomenon fulfilled the

criterion of zero-moment when x approached the

maximum length of the beam (limx!L M ¼ 0) while

maximum-moment was generated when x was zero.

Considering multiple mode of vibrations, FBG-MM

depicted more reasonable strain pattern from the

clamped to free ends while SDOF model showed

linear strain (imagine if the cantilever beam is bent,

it will show curved-deflection). Moreover, this strain

pattern can be observed clearly if the FBG

accelerometer was excited beyond the first bending
mode, e.g., 600Hz (close to the second bending
mode), as shown in Figure 8, which will be discussed
with respect to aforementioned figure. The wave-
length shift showed similar pattern (right column of
Figure 5) to the strain, since they are proportionally
linear, as written in equation (26). On the other hand,
the strain and the wavelength shift increased in accor-
dance with the excitation frequencies.

Figure 6(a) to (e) show the wavelength shift plots
against time, where x is 20mm measured from free
end of the cantilever beam at different excitation fre-
quencies; while Figure 7 shows the base acceleration
input for the excitation frequency of 90Hz (Figure 6
(e) is its result). Generally, by fixing the maximum
peak of base displacement for all excitation frequen-
cies, the acceleration increases as the excitation fre-
quency increases, resulting in the increment of the
wavelength shift. This can be seen at 20Hz, when
the maximum strain generated was roughly 78 pm
and 17 pm for both methods, while at 90Hz, it

Figure 5. Strain (left column) and wavelength shift (right column) of the FBG sensor (solid line and blue plot – FBG-MM & dash and
black plot – SDOF model).

Khalid et al. 7



reached 3741 pm and 1600, respectively. The SDOF

model30 overestimated the wavelength shift compared

to FBG-MM. However, this was inconclusive because

at other excitation frequencies, the strain was under-

estimated. This was observed in Figure 5, at the exci-

tation of 80 and 90Hz, especially when x was close to

clamped end. However, both models showed similar

patterns and were in a phase, but they both led

the base acceleration by 180� phase, as shown in

Figures 6(e) and 6.
In Figure 5, the strain and wavelength shift showed

a decrease from clamped to free ends, as the excita-

tion frequencies were less than the first bending mode,

with some non-linear pattern depicted by the FBG-

MM. The pattern, however, can be seen clearly when

the excitation frequency was greater than the second

bending mode e.g., 600Hz (the second bending mode

was 596.67Hz), where the wavelength shift displayed

a fluctuating pattern from clamped to free ends, as

shown on the second column of Figure 8. This result

can be debated, since the EB model is not appropriate

for high-frequency excitation. However, the

employment of the best candidate of T model will

yield similar fluctuating pattern to that of an EB

model but with some discrepancies. Reference can

be to the authors’ preliminary study, which examined

the strain pattern of the cantilever beam27 using EB

and T beam models). As expected, for SDOF

model,28 no matter how high the excitation frequency

was, the pattern of the wavelength shift remained

(a)

(d)(c)

(e)

(b)

Figure 6. Wavelength shift of the FBG sensor at x¼ 20mm from free end at a specific range of time at different excitation
frequencies (solid line and blue plot – FBG-MM and dash and black plot – SDOF model).

Figure 7. Base acceleration signal at 90Hz.
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linear from clamped to free ends, as shown on the

first column of Figure 8.

Validation of FBG-MM against

experimental data

The experimental wavelength shift (red plot) and its

comparison with simulation FBG-MM (blue plot)

and SDOF model (black plot) of the cantilever

FBG accelerometer are shown in Figure 9. The mea-
surement time was set to 11 seconds and for analysis
purpose, the steady state results at the final second of
measurement were considered. The same input data
(base acceleration) used in experimental works were
taken and incorporated into equation (23) as base
excitation (base acceleration was first converted to
base displacement) for FBG-MM and also for
SDOF model. At low excitation frequencies (20, 40,
60, and 80Hz), the experimental wavelength shift

29

Figure 8. Wavelength shift of the FBG sensor at different positions on the beam at a specific range of time at the frequency of 600Hz
(solid line and blue plot – FBG-MM and dash and black plot – SDOF model).

(a) (b)

(d)(c)

(e)

Figure 9. Wavelength shift of the FBG sensor at different excitation frequencies (solid line and blue plot – FBG-MM, dash and black
plot – SDOF model and dotted and red plot – experimental data).
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showed poor correlation compared to FBG-MM and
SDOF model. This is due to two reasons: (i) the high
stiffness of beam led to small deflection when it was
excited at low excitation frequencies; and (ii) since the
maximum sampling rate of the optical spectrum ana-
lyser was only 5000Hz, this resolution was inade-
quate to detect the wavelength shift. However, at
the excitation frequency of 90Hz, the experimental
wavelength shift inclined to demonstrate similar pat-
tern with FBG-MM, while SDOF model underesti-
mated the wavelength shift. It should be mentioned
that when excitation frequency was close to the first
natural frequency of the beam (first bending mode
was 95.6Hz), the cantilever beam closely behaved as
bending motion which created high curvature, thus
producing convincing wavelength shift, as seen in
Figure 9(e). Nonetheless, the second aforementioned
reason (resolution issue) could be attributed to the
notable discrepancies of the wavelength shift ampli-
tude, shape, and phase between experimental and
FBG-MM. It is also noted that the validation was
not done for the excitation frequency greater than
90Hz. By considering the working principle of
common accelerometer, when the excitation frequen-
cy is around its region of natural frequency (95.6Hz),
it can cause the vibration signals to appear much
higher than they actually are. When exceeding this
region, the excitation frequency cantilever beam will
fall under isolation region, where the signal or
response of the FBG might loss. It can be observed
that the duty cycle of the wavelength shift obtained
from experiment is less than what is obtained from
FBG-MM, where this also reflects to their output fre-
quency. It is found that the output frequency of the
wavelength shift obtained from experiment and FBG-
MM is 100Hz and 90Hz, respectively. The most
probable reason for this issue is systematics errors,
which cannot be determined at the time of writing
this paper. The comparison between acceleration
from piezoelectric and FBG accelerometer (as pre-
sented in references2,34) was not able to be demon-
strated in this paper, as the focus of this study is to
present an accurate model to represent the cantilever
FBG accelerometer.

Conclusion

This paper demonstrated the successful implementa-
tion of EB beam model as a representation of the
cantilever FBG accelerometer. In this regard, the
modal model (FBG-MM) of the cantilever EB beam
can consider multiple modes of vibration and ade-
quately describe the beam motion/curvature. The
strain of the FBG had been successfully correlated
to the beam’s relative curvature, resulting in the accu-
rate wavelength shift of the FBG accelerometer. The
FBG-MM was proven to be convincing when validat-
ed against experimental wavelength shift. However, it
needs improvements in future work, e.g., resizing the

dimension of the cantilever beam to lower the natural
frequencies and adding tip mass onto the cantilever
beam to increase the sensitivity of the FBG acceler-
ometer. At this stage, the acceleration and sensitivity
comparison were not able to be explored, as this study
only focused on the feasibility of the FBG-MMmodel
as a replacement of the cantilever FBG accelerometer.
Since the EB model was only valid for low excitation
frequencies, Timoshenko model will be considered in
the next publication to perfectly model the cantilever
FBG accelerometer.
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Appendix

Notation

b width of beam
ca viscous air damping coefficient
cs strain-rate damping coefficient
d thickness of beam
E Young’s modulus
hf half-thickness of FBG
h half-thickness of beam
I mass moment of inertia
l length of beam
lFBG location of centre of FBG measured

from free end
m mass per unit length
r mode number
urelðx; tÞ the transverse displacement relative

to the clamped end of the beam
ubðx; tÞ combination of transverse base dis-

placement gðtÞ and small base rota-
tion of the beam hðtÞ

U0e
ixt function of base excitation

V shear force
d2 xð Þ & d2ðxÞ displacement influence functions
drs Kronecker delta
Dk wavelength shift
eFBG strain generated by FBG
grðtÞ modal coordinate of the clamped-

free beam for the r-th mode
urðxÞ mass normalised eigenfunction of

the clamped-free beam for the r-th
mode

kr dimensionless frequency numbers
� Poisson’s ratio

Khalid et al. 11



q density
rr a constant for mode ‘r’
x forcing frequency
xr natural frequency of mode ‘r’

Appendix 1

The basis of equation (1) is derived from the summa-

tion of force and moment of a basic beam (refer to

Figure 1(b)) subjected to dynamic loading, as shown

in Figure A.1. The geometric and physical parameters

of the rotor are as shown in Figure 10.
The summation of force in vertical axis acting on

differential elements and moments at point A due to

inertial forces per unit length fðx; tÞ, is given as:

V x; tð Þ � V x; tð Þ þ @Vðx; tÞ
@x

dx

� �
� f x; tð Þdx ¼ 0

(30)

M x; tð Þ þ V x; tð Þdx� M x; tð Þ þ @Mðx; tÞ
@x

dx

� �
¼ 0

(31)

For base motion and f x; tð Þ ¼ m @2wðx;tÞ
@t2

, equations

(30) and (31) are given as:

@Vðx; tÞ
@x

¼ m
@2wðx; tÞ

@t2
(32)

@Mðx; tÞ
@x

¼ V x; tð Þ (33)

Solving equations (32) and (33) simultaneously

results in equation (1) in the Steady-state response

of cantilevered Euler-Bernoulli beam model under

harmonic base excitation using modal model

approach section. It is noted that the moment is not

only due to the strain of the material but also its

strain rate, denoted as _e and leads to the moment in

Figure 10 as:

M x; tð Þ ¼ EI
@2wðx; tÞ

@x2
þ a

@2wðx; tÞ
@x2@t

� �
(34)

which relates to the following equations (equation

(35a–c))

r ¼ E eþ a_eð Þ; e
c
¼ @2wðx; tÞ

@x2
and M ¼ rI

c

(35a,b,c)

where c is the half-thickness of the beam, a is damp-

ing constant, and r is stress of the structure. Thus,

equation (1) turns into equation (36):

EI
@4uðx; tÞ

@x4
þ csI

@5uðx; tÞ
@x4@t

þ ca
@uðx; tÞ

@t
þm

@2uðx; tÞ
@t2

¼ 0

(36)

The additional damping velocity due to air particle

ca and cs is aE. Using the relationship between abso-

lute and base motions (equation (2)), the above equa-

tion becomes:

EI
@4urelðx; tÞ

@x4
þ csI

@5urelðx; tÞ
@x4@t

þ ca
@urelðx; tÞ

@t

þm
@2urelðx; tÞ

@t2

¼ �EI
@4ubðx; tÞ

@x4
� csI

@5ubðx; tÞ
@x4@t

�m
@2ubðx; tÞ

@t2

� ca
@ubðx; tÞ

@t
(37)

It is noted that ub along x is constant and its dif-

ferentiation with respect to x is zero, thus, the first

and second terms of RHS of equation (37) vanish,

and equation (36) becomes equation (4), as written

in Section 2.

Appendix 2

The detailed derivation of equations (4) to (13) is

shown here by choosing the first left term of equation

(4) as an example. By multiplying the first left term

of equation (4) with usðxÞ and integrating it with

Figure 10
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respect to x from along 0 to L,
R L

x¼0 dðxÞ, it is written
as:

Z L

x¼0

us xð ÞEI @
4urelðx; tÞ
@x4

d xð Þ

¼ EI

Z L

x¼0

us xð Þ @
4
P1

r¼1 urðxÞgrðtÞ
	 


@x4
d xð Þ (38)

Since grðtÞ is given as a function of modal coordi-
nate with respect to time, it can be excluded from the
integration and the mass normalised eigenfunction
are left to be integrated, where:

Z L

x¼0

us xð ÞEI @
4urelðx; tÞ
@x4

d xð Þ

¼ EIgr tð Þ
Z L

x¼0

us xð Þ @
4
P1

r¼1 urðxÞ
	 


@x4
d xð Þ (39)

It is known that urðxÞ is given by equation (8),
@4

P1
r¼1

urðxÞ
	 


@x4
is then given as:

@4
ffiffiffiffiffi
1
mL

q
cosh kr

L x� cos krL x� rr sinh kr
L x� sin kr

L x
� �h i� �

@x4

(40)

which gives,

@4
P1

r¼1 urðxÞ
	 


@x4
¼ kr

4

L4
ur xð Þ (41)

Equation (38) then turns into equation (42), as
follows:

Z L

x¼0

us xð ÞEI @
4urelðx; tÞ
@x4

d xð Þ

¼ EI
kr

4

L4
gr tð Þ

Z L

x¼0

usðxÞurðxÞdðxÞ (42)

The integration term in equation (42) can be sim-
plified by equating it to equation (10) and multiplying

both the denominator and numerator by m,

Z L

x¼0

us xð ÞEI @
4urelðx; tÞ
@x4

d xð Þ

¼ EI
kr

4

mL4
gr tð Þ

Z L

x¼0

musðxÞurðxÞdðxÞ (43)

It can be seen that the integration term in the left-
hand side of equation (43) is similar to equation (10),
while the term EI kr

4

mL4 can be simplified by relating it to
equation (12), thus equation (43) becomes:

Z L

x¼0

us xð ÞEI @
4urelðx; tÞ
@x4

d xð Þ ¼ gr tð Þ (44)

where,

x2
r ¼ kr

4 EI

mL4
and

Z L

x¼0

musðxÞurðxÞdðxÞ ¼ drs ¼ 1

(45a,b)

Same derivation process from equations (38–45) is
also applied to the second until fourth terms of equa-
tion (4), simplified as follows:

Second term:

Z L

x¼0

us xð ÞcsI @
5urelðx; tÞ
@x4@t

d xð Þ ¼ csx2
r

E

@grðtÞ
@t

(46)

Third term:

Z L

x¼0

us xð ÞcsI @
5urelðx; tÞ
@x4@t

d xð Þ ¼ csx2
r

E

@grðtÞ
@t

(47)

Third term:

Z L

x¼0

us xð Þm @2urelðx; tÞ
@t2

d xð Þ ¼ @grðtÞ
@t

(48)
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