MATHEMATICAL ASSOCIATION

95.01 The rational distance problem Author(s): ROY BARBARA Source: The Mathematical Gazette, Vol. 95, No. 532 (March 2011), pp. 59-61 Published by: The Mathematical Association Stable URL: http://www.jstor.org/stable/23248619 Accessed: 30-01-2017 23:50 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms

The Mathematical Association is collaborating with JSTOR to digitize, preserve and extend access to The Mathematical Gazette

NOTES

Notes

95.01 The rational distance problem

Introduction

It is not known whether there is a point in the plane of a unit square, that is at a rational distance from each of the four corners. See [1, 2, 3]. Here, we give a negative answer for boundary points, using the non-existence of particular Pythagorean triangles.

Throughout, variables will denote positive integers, and (a, b), (a, b, c) will denote HCFs. A Pythagorean triangle is a triple T = [a, b, c] satisfying $a^2 + b^2 = c^2$. T is called primitive (PPT) if further (a, b, c) = 1. Recall that:

(R0) If [a, b, c] is a PPT, then, for some p > q, with (p, q) = 1 and p + q odd, we have

$$\{a, b\} = \{p^2 - q^2, 2pq\}$$
 and $c = p^2 + q^2$.

(R1) In a PPT, the hypotenuse is odd, and the even side is divisible by 4. The following is left as an exercise:

(R2) Suppose that xy = pq with (x, y) = 1 and (p, q) = 1. Then $x = p_1q_1$, $y = p_2q_2$, where $p_1p_2 = p$, $q_1q_2 = q$ and p_1, p_2, q_1, q_2 are pairwise coprime.

(R3) A system of the form $x^2 - y^2 = z^2$, $4x^2 + y^2 = t^2$, where x, y, z, t are pairwise coprime, is impossible.

Proof: Otherwise, [y, z, x] is a PPT, so x is odd. Hence $2x \equiv 2 \pmod{4}$. But [2x, y, t] is a PPT with 2x even. Hence, by (R1), $2x \equiv 0 \pmod{4}$. We obtain a contradiction.

The results

Proposition 1: There is no Pythagorean triangle of the form $T = [a^2 + b^2, ab, c]$. Stated otherwise, the Diophantine equation $X^4 + Y^4 + 3X^2Y^2 = Z^2$ has no solution in non-zero integers.

Lemma: Suppose that $t^2(x^2 - y^2) = z^2(4x^2 + y^2)$, where x, y, z, t are pairwise coprime. Then [y, 2z, t] and [t, z, x] are both PPT's.

Proof of the Lemma: Set $N = x^2 - y^2$, $D = 4x^2 + y^2$. Rewrite the relation as $\frac{N}{D} = \frac{z^2}{t^2}$ (1) where the fraction $\frac{z^2}{t^2}$ is in lowest terms. Set d = (N, D). Because d divides $N + D = 5x^2$, d divides $D - 4N = 5y^2$, and (x, y) = 1, we easily find that d = 1 or 5. If d = 1, N/D is in lowest terms, hence, $N = 5z^2$ and $D = t^2$, which is impossible by (R3). Hence d = 5 and hence $N = 5z^2$ and $D = 5t^2$, that is, $x^2 - y^2 = 5z^2$ and $4x^2 + y^2 = 5t^2$. Eliminating first x^2 , we get $y^2 + (2z)^2 = t^2$. Hence, as (y, t) = 1, [y, 2z, t] is a PPT. Eliminating next y^2 , we get $t^2 + z^2 = x^2$.

Proof of Proposition 1:

We use infinite descent: suppose that $T = [a^2 + b^2, ab, c]$ is a Pythagorean triangle. By factoring out $\delta = (a, b)$, we may assume (a, b) = 1. This operation is non-increasing for T. Now, clearly, $(a^2 + b^2, ab) = 1$, so T is a PPT. By (R0), for some coprime p and q (p > q) with p + q odd, we have

$$\{a^2 + b^2, ab\} = \{p^2 - q^2, 2pq\}$$
 and $c = p^2 + q^2$.

If we had $a^2 + b^2 = 2pq$, a + b would be even. Since (a, b) = 1, a and b would be odd and we would get $a^2 + b^2 \equiv 2 \pmod{4}$, which contradicts with $2pq \equiv 0 \pmod{4}$. We conclude that

$$a^{2} + b^{2} = p^{2} - q^{2}$$
 and $ab = 2pq$ (*)

Now, a, b have opposite parity and play symmetric roles. We may assume a even. Set $a = 2\omega$. Relations (*) become

$$4\omega^2 + b^2 = p^2 - q^2 \quad (1) \qquad \omega b = pq \quad (2)$$

with $(\omega, b) = 1$. From (2) and (R2) we get $\omega = xz$, b = ty, p = xt, q = zy, x, y, z, t pairwise coprime. (1) can be rewritten as $t^2(x^2 - y^2) = z^2(4x^2 + y^2)$. By the lemma, [y, 2z, t] and $T_1 = [t, z, x]$ are both PPTs. In particular, by (R0),

$$y = r^2 - s^2$$
, $2z = 2rs$, $t = r^2 + s^2$.

Finally, the Pythagorean triangle T_1 has the same form as T, namely

$$T_1 = [t, z, x] = [r^2 + s^2, rs, x]$$

where $r^2 + s^2 = t \le ty = b < a^2 + b^2$ and $rs = z \le xz = \omega = \frac{1}{2}a < a \le ab$. That is, T_1 is strictly smaller than T.

Corollary: There is no Pythagorean triangle of the form $T = [a^2 - b^2, c, ab]$. Stated otherwise, the Diophantine equation $X^4 + Y^4 + Z^2 = 3X^2Y^2$ has no solution in non-zero integers with $X^2 \neq Y^2$.

Proof: Otherwise, there is such a triangle T with (a, b) = 1, so $(a^2 - b^2, ab) = 1$. Hence T is a PPT. By (R1), ab is odd, so $a^2 - b^2$ is even. By (R0), $a^2 - b^2 = 2pq$ and $ab = p^2 + q^2$. Hence $a^2(-b^2) = -(p^2 + q^2)^2$. Now, a^2 and $-b^2$ are the roots of $t^2 - 2pqt - (p^2 + q^2)^2 = 0$. The (reduced) discriminant must be a perfect square. That is, $(p^2 + q^2)^2 + (pq)^2 = r^2$, where clearly $r \neq 0$. This contradicts Proposition 1.

Proposition 2: There is no point on the perimeter of a unit square that is at rational distance from the four corners.

NOTES

Proof: Let $A_1A_2A_3A_4$ be a unit square (in cyclic order), and M the midpoint of A_1A_2 . Let P be a point on A_1A_2 , say on A_1M . Set $d_i = PA_i$, i = 1, ..., 4and suppose the d_i are all rational. We multiply by an appropriate integer so all the d_i are even (positive) integers. Set $A_1A_2 = 2m$, $d_3 = 2p$, $d_4 = 2q$, PM = n. The Pythagorean relations are $4m^2 + (m + n)^2 = 4p^2$ (3) and $4m^2 + (m - n)^2 = 4q^2$. Subtracting, we get $p^2 - q^2 = mn$. Hence $(5m^2)n^2 = 5(p^2 - q^2)^2$. Replacing mn by $p^2 - q^2$ in (3), we get $5m^2 + n^2 = 2(p^2 + q^2)$. Now, $5m^2$ and n^2 are the roots of

$$t^{2} - 2(p^{2} + q^{2})t + 5(p^{2} - q^{2})^{2} = 0.$$

Since $5m^2 = n^2$ is impossible, the (reduced) discriminant

$$\delta = (p^2 + q^2)^2 - 5(p^2 - q^2)^2 = 4(3p^2q^2 - p^4 - q^4)$$

is a non-zero perfect square, and so is $\delta/4$. Therefore, for some $r \neq 0$, we have $p^4 + q^4 + r^2 = 3p^2q^2$, which contradicts the Corollary.

References

- 1. Richard K. Guy, Unsolved problems in number theory, Vol. 1. (2nd edn.). Springer-Verlag (1991), pp. 181-185.
- 2. J. H. J. Almering, Rational quadrilaterals, *Indag. Mat.* 25 (1963), pp. 192-199.
- 3. T. G. Berry, Points at rational distance from the corners of a unit square, *Ann. Scuola Norm. Sup. Pisa Cl. Sci.* 17 (1990), pp. 505-529.

ROY BARBARA

PO Box 90357, Jdeidet El Metn, Lebanon

95.02 Commensurable triangles

The problem I would like to address is the following. It was posed and solved recently by Richard Parris [1], so what I have to say was inspired by him. But my solution is more direct.

We are given two positive integers h and k, which we may suppose are relatively prime, and we want to construct triangles in which the ratio of one angle to another is h : k.

This problem was motivated in part by the 4-5-6 triangle, in which one angle is twice amother.

Let $\frac{p}{q}$ be any rational with p and q relatively prime, with

$$1 > \frac{p}{q} > \cos\frac{\pi}{h+k}.$$

Define α by

$$\cos \alpha = \frac{p}{q}.$$