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Abstract and Keywords
This chapter discusses the development of quantum devices. It describes interband and
intersubband transitions, which are transitions between electrons and holes, and between
the electron (or holes) confined states, respectively. It then reviews previous studies on
intersubband transitions, and this is followed by a discussion of mid-infrared sources.
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1.1 Quantum devices
Quantum mechanics was first developed and used to understand the behavior of matter at
the microscopic scale. Although its birth was marked by controversies and skepticism, it
was a hugely successful enterprise that managed to provide a firm theoretical background
to chemistry and solid-state physics, not to speak about atomic, nuclear, and particle
physics. Like virtually all successful theories, while they are used to explain ever more
sophisticated phenomena, they are also turned around, becoming also a design tool used to
conceive and predict properties of man-made objects.

The invention of the transistor, followed by the development of solid-state electronics has
continuously pushed the fabrication of semiconductor materials with ever increasing purity
as well as fabrication technologies able to pattern structures at microscopic scales. It is
therefore not a surprise that, leaving aside chemistry, the first man-made quantum
structures were fabricated using semiconductor technology. While being initially a topic of



Fig. 1.1.  Basic schematic showing the growth by
molecular beam epitaxy of a GaAs/AlAs structure.

research, they eventually became ubiquitous in our technology environment for both
electronics and photonics. The most famous examples are the semiconductor quantum well
laser, used in telecommunications, data storage, display; and the high electron mobility
transistor (HEMT), used in the very-high-frequency applications.

The realization of quantum devices required a fabrication technique with nanometer
accuracy. A major step was realized by the invention and development, in the end of the
sixties and early seventies, of the molecular beam epitaxy (MBE) by A. Y. Cho and J. R.
Arthur. MBE opened up for the first time the possibility of growing epitaxial structures
with well-defined interfaces down to the atomic level; it should legitimately be considered
as one of the key scientific step towards the development of nanotechnology [1]. As these
interfaces exhibited a sharpness and a flatness well below the de Broglie wavelength of the
charge carriers in semiconductors, they enabled the creation of quantum states controlled
by confinement.

A schematic drawing illustrating the growth of a quantum well by MBE is shown in Fig.
1.1. In the situation illustrated in Fig. 1.1, the growth takes advantage of the existence of
two materials, in this case GaAs and AlAs, with the same lattice spacing and
crystallographic arrangement. In an ultrahigh vacuum environment, the co-evaporation of
the elements of group III (Ga,Al) with the group V (As) is performed on a single crystal
substrate of GaAs. Because the epitaxial growth occurs at a rate of about a monolayer per
second, shutters in front of the cells enable the control of the evaporation at the atomic
level. As shown in Fig. 1.1, a quantum well structure (p.2)

is grown when an ultrathin
layer of a material with a
narrower gap, say GaAs, is
surrounded by layers with a
material with a wider bandgap,
in our case AlAs. As a result,
the potential seen by the
electrons and holes varies
spatially and abruptly at the
interface between the two
materials.
Because the two materials
(such as GaAs and AlAs)
have very similar electronic
core structures, electrons and
holes may cross the interface while experiencing very little disturbance apart from a change
in effective mass and potential. As shown later in the text, mathematically one may
describe the carrier by the same Bloch function and a slowly varying envelope function.
Because the interfaces are atomically flat, the motion perpendicular and parallel to the
interface remain essentially decoupled. This situation enables a very powerful semiclassical
description to be applied in which the interaction between carriers and crystal can be



Fig. 1.2.  a) An interband transition occurs between
states (electrons and holes) that exhibit an opposite
curvature of their dispersion curve. The two states
are separated by a true bandgap. In clean samples, a
radiative transition is the most likely recombination
process. b) Intersubband transitions occur between
states that belong to the same band and therefore
have the same in-plane dispersion. Highly e?cient
elastic or quasi-elastic non-radiative processes
(interface roughness or optical phonon emission)
limit the upper-state lifetime to very short values.

described by carriers with an effective mass interacting with a one-dimensional quantum
well potential.

1.2 Interband and intersubband
In a celebrated paper [2], Esaki and Tsu pointed out that the additional potential introduced
by a layered sequence of semiconductor layers could mimic a crystal with a periodicity
much larger than the atomic one. They introduced the concept of miniband and minigap to
describe the electronic state created by this artificial one-dimensional crystal and predicted
the transport properties of this new structure. In particular, they realized that such an
artificial structure could potentially lead to the direct observation of “Bloch oscillations” of
electrons—a key concept in solid-state physics.

Another very important result was the first observation by Dingle and co-workers [3] of the
characteristic blueshift and stepwise shape of the interband absorption in a series of
quantum wells. This characteristic shape of the absorption edge is an image of the joint
density of state of two-dimensional systems. It was soon realized by C. Henry [4] and co-
workers that this property of two-dimensional systems could lead to semiconductor lasers
with a much reduced threshold current and in general much higher performances. Indeed,
after a few years quantum well semiconductor lasers had replaced its bulk counterpart
completely.

(p.3)

However, the fabrication of
quantum wells had enabled
consideration of not only
interband transitions between
electrons and holes, but also
transitions between the electron
(or holes) confined states, that
were referred to as
intersubband. As shown in Fig.
1.2, these transitions have a
very different character. For
materials with the so-called
type I alignment, such as the
one depicted in Fig. 1.2 a)
where the minimum of the
conduction band and the
maximum of the valence band
occur in the same material, the
transition energy can be written
as the sum of the energy gap of
the well material and the
confinement energies of the
electrons and holes. As a result, the transition energy is limited towards lower value by the gap of
the quantum well material. In contrast, in intersubband transitions, the transition energy is just the
difference between the confinement energies of the individual electronic states. As a result, the



Fig. 1.3.  Comparison between gain in an interband
and an intersubband transitions system, shown for
simplicity at zero temperature. (a) The intersubband
transition joint density of states is essentially delta-
like as for atomic transitions. The broadening
originates from non-parabolicity as well as the
broadening of the levels (b). In contrast, the joint

latter will tend towards zero as the well width is increased. This property is fundamental to the
intersubband transitions because it enables the fabrication of devices over a very wide frequency
range based on the same heterostructure materials.
As shown in Fig. 1.2, intersubband transitions occur between subband states with the same
in-plane dispersion. As a result, the states are not separated by an energy gap; any elastic or
inelastic transition that provides the necessary momentum exchange allows the scattering of
an electron from the upper to the lower state. The electron lifetime is therefore very short—
typically of the order of the picosecond—and is dominated by non-radiative processes even
in the cleanest samples. This contrasts with the interband case where radiative transitions
dominate the recombination in clean samples.

As mentioned already, the joint density of states for optical transitions is very different for
the interband and intersubband transitions. This difference is illustrated in Fig. 1.3, showing
the gain profile for the two systems. The joint density of states in intersubband transitions is
delta-like, hence the system behaves optically very much like an atomic system. Gain and
absorption lines are mostly broadened by scattering and exhibiting essentially symmetric
lines centered around the transition energy. Like its atomic counterpart, the intersubband
system is essentially transparent on both (high and low energy) sides of the transition. In
contrast, interband systems are (p.4)

characterized by a gain
spectrum that is broadened by
the respective electron and hole
distribution within the bands,
and always displays an
absorption for energies on the
high energy side of the gain
spectrum.
1.3 Intersubband
transitions: historical
aspects
Historically, intersubband
transitions were first
observed in Si/SiO2 inversion
layers. A number of
important physical features
on both experimental and
theoretical aspects of
intersubband transitions were
already discussed in the
context of this first system;
these results are summarized
in the landmark review of
Ando, Fowler, and Stern [5].
However, these transitions
occurred in the terahertz



density of states of an interband transition has the
characteristic step-like feature.

region of the spectrum,
making their observation
difficult experimentally; in
addition the transition energy
could not be tuned over a wide frequency range. As a result, the measurement of these
transitions was meant as a pure spectroscopy tool enabling a better measurement of the
subband spacing in these inversion layers. A significant progress was the observation of
intersubband absorption in a GaAs/AlGaAs multi-quantum well by West and Eglash [6] in
1985. This work demonstrated two important features of the intersubband transitions (p.5)
in this material system: the large value of the dipole matrix element and the fact that the
transition energy could easily be tuned by changing the quantum well width.

The theoretical work of Kazarinov and Suris in 1972 must be credited with the first
proposal for light amplification between discrete subband states [7]. In their work, the
authors investigated the behaviour of a periodic superlattice consisting of alternating
quantum well and quantum barrier layers under application of a strong applied electric
field. In contrast to the work of Esaki and Tsu, they did not consider the regime of
miniband transport but the high field one in which the states are mostly localized in each
well. Their work did yield a number of important results. First of all, it demonstrated how
intersubband transitions could be harnessed to create gain and a laser. A second important
result was their analysis of the intersubband processes in the framework of a density matrix
formalism [8] and the clear distinction it introduced between momentum and energy
relaxation times. This work spurred a large activity, mostly theoretical, proposing variants
of this structure that used resonant tunneling between quantum wells for the injection and
extraction of the electrons [9–13].

Another related idea was the original proposal, in 1960, from B. Lax [14] of a laser based
on an inversion between Landau levels created by a magnetic field in a solid. The
“cyclotron laser” was demonstrated experimentally about twenty years later in the far
infared using very lightly p-doped (about 1014 cm−3) germanium (for a review, see [15]). In
this device, holes perform a streaming motion under application of crossed electric and
magnetic fields at liquid helium temperature. Depending on the magnetic field strength, the
population inversion is either obtained between the light- and heavy-hole band (for the
weaker fields (B  2T) or between Landau levels at higher magnetic fields. Depending on
the magnetic and electric field, gain is achieved in a wide wavelength range of the far-
infrared, from 50 μ m to about 200 μ m. Large peak powers, in the watt range, are also
obtained. However, being a bulk device, the electrical power requirements remain fairly
high and prevent continuous wave operation of the device.

The first observation of emission from intersubband transitions was realized by Tsui and
Gornick in an electron gas heated by a parallel current in a Si/SiO2 inversion layer [16]. An
important step was the observation of intersubband luminescence in a periodic superlattice
by M. Helm in 1989 [17]. In this work, population of the excited states was achieved using
resonant tunneling process; emission at the successive transition pairs in the quantum well



Fig. 1.4.  Number of papers with “quantum cascade
laser” as a topic, published every year. Source: ISI
Web of Science.

were correlated with the successive steps in the current–voltage characteristic of the
superlattice.

The development of intersubband detectors (dubbed QWIP—Quantum Well Infrared
Photocondutors) is discussed in the book by Schneider and Liu [18]. After a number of
proposals and early experimental attempts, the first efficient detector using intersubband
transitions was achieved at Bell Laboratories by the group led by B. Levine [19]. This work
was rapidly emulated in other research labaratories, notably Thomson CSF (today Thales),
and universities. Progress was rapid, as the maturity of the GaAs technology enabled
shortly the fabrication of large arrays for thermal imaging. However, to reach a competitive
detectivity, these detectors had to be cooled close to liquid nitrogen temperature. This can
be readily achieved using portable, lightweight close-circuit coolers; nevertheless the price
of the final system restricts its (p.6) use to high-end applications. Commercial camera
systems based on QWIP detectors are now commercially sold by a number of
manufacturers, mainly for military applications.

The first intersubband laser, called the quantum cascade laser (QCL) was demonstrated in
Bell Laboratories in 1994 [20]. The first QCLs operated with limited optical power at
cryogenic temperatures. Progress was, however, rapid. Due to their significance for
applications, two important milestones were the first room-temperature operation of a
single frequency, distributed-feedback QCL in 1997 [21], and the first continuous-wave
operation of a quantum cascade laser at room temperature in 2002 [22]. These results were
especially significant, since no other semiconductor laser source was operating at room
temperature in the mid-infrared wavelength range. These achievements enabled the
development of applications based on these sources; at the time of writing, the vast
majority of the commercial applications are either for gas sensing or infrared
countermeasures. An important aspect of quantum cascade laser technology

is its versatility, as the same
heterostructure material can be
used to produce devices
operating in a very wide
wavelength range. A very
important milestone in this
respect was the first
demonstration, in 2001, of a
quantum cascade laser
operating in the Terahertz
region of the spectrum [23].
Operation of quantum cascade
lasers has been demonstrated
for frequencies spanning
between 1.2 and 4.9 THz
(corresponding to wavelengths
λ between 60 to 250 μ m), but is
up to now still limited to



Fig. 1.5.  Comparison of the wavelength coverage of
various coherent sources in the near and mid-
infrared. Large coverage is achieved using sources
based on non-linear downconversion from near-
infrared fiber lasers (two lower bars). In contrast, CO
and CO2 gas lasers are limited to fixed emission
lines. Semiconductor lasers are represented by light
or dark rectangles, depending on whether they
operate at room temperature or cryogenic
temperatures, respectively.

cryogenic temperatures (T 
180 K).
Research in quantum cascade lasers remains very active, driven both by the large field of
development still untapped and by the applications. A good indication of the vitality of the
topic is the number of papers which, according to ISI Web of Science, (p.7) mention
“quantum cascade laser”. As shown by the graph presented in Fig. 1.4, this number, equal
to 500 in 2010, keeps increasing year after year.

1.4 Mid-infrared sources
Most of the lasers based on intersubband transitions operate in the mid-infrared portion of
the spectrum. The reason is twofold: on one hand, materials with a large enough conduction
band discontinuity to allow emission in the near-infrared or visible, such as InGaN/AlN
heterostructures, are not mature enough to allow the fabrication of quantum wells with a
high enough quality to enable the realization of intersubband devices. On the other hand,
interband devices are not performing well in the mid-infrared, further stimulating the
development of cascade lasers as a substitution.

A schematic comparison of
various mid-infrared sources is
done in Fig. 1.5. CO and CO2
gas lasers are limited to fixed
emission lines. Large coverage
is achieved using sources based
on non-linear downconversion
from near-infrared fiber lasers,
but at the cost of relatively
complex and expensive
systems. High performance
operation of (AlGaIn)(AsSb)-
based quantum well (QW)
interband diode lasers has been
achieved, but room temperature
has a limitation towards long
wavelength cuto? at about λ 
3 μm. Interband cascade lasers
(ICLs) are semiconductor lasers
exploiting a cascade scheme
similar to that of quantum
cascade lasers, but in which the
radiative transition occurs
between the conduction and valence bands. The ICL concept has been first proposed by Yang [24]
in 1995, one year after the first realization of a QCL. ICLs (p.8) have been operated at or close to
room temperature in the wavelength range λ =3 − 4 μm [25]. The IV-VI lead salt semiconductor
lasers can be fabricated to cover a wide frequency range [26], but have always been limited in
their applications because of their limited reliability, low power and need for cryogenic operation.
Quantum cascade lasers, in contrast, have demonstrated room temperature operation between 3 μm
and 16 μm wavelength with large peak powers, and are therefore attractive for a number of
applications.
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Abstract and Keywords
The development of quantum cascade lasers requires a series of sophisticated process steps
starting with the epitaxy of the semiconductor structure, followed by the fabrication of the
waveguide and contacting structures, and finishing with the mounting and encapsulation of
the device. This chapter reviews the various steps, with an emphasis on the aspects relevant
to the device performances.

Keywords:   quantum cascade lasers, epitaxy, semiconductors, mounting, fabrication

The realization of quantum cascade lasers requires a series of sophisticated process steps,
starting with the epitaxy of the semiconductor structure, followed by the fabrication of the
waveguide and contacting structures, and finishing with the mounting and encapsulation of
the device. We will briefly review the various steps, with an emphasis on the aspects that
are relevant to the device performances.

2.1 Epitaxial layers
Well-defined and long-lived electronic states are obtained only in epitaxial heterostructures,
where the spatial coherence of the crystal is achieved over large distances. In addition, to
provide the necessary well-defined electronic states, the high crystalline quality of the
epitaxial material is essential for obtaining the necessary mechanical stability under the
huge thermal and electrical stresses under which the device has to operate. Obtaining
devices with an active area in the order of 0.01 mm2 with essentially no crystalline defects,



Fig. 2.1.  a) Deposition chamber of an MBE system.
Two sources and common in situ analytical tools are
shown. b) Picture of a small research-scale system
V80H by the company VG Semicon.

necessary for the achievement of devices operating reliably, is a feat that could be achieved
only because of the large investment in the base technologies of optical
telecommunications, which could be recycled for quantum cascade structures.

The first and essential step in the fabrication of quantum cascade lasers is the growth of the
active region, consisting of thousands of layers with a high crystalline and chemical purity,
along with a very tight control of the layer thickness down to the submonolayer level. Two
key techniques are used to grow quantum cascade lasers: molecular beam epitaxy (MBE)
and metalorganic vapor phase epitaxy (MOCVD).

2.1.1 Molecular beam epitaxy

The molecular beam epitaxy (MBE) is a thin-film deposition technique which allows
fabrication of films of exceptional crystalline quality. Initially developed by Cho in Bell
Laboratories, it quickly became a source of research interest and a tool for the fabrication
of many novel semiconductor structures for both research and production.

An MBE system is basically a thermal evaporator with an exceptionally low base pressure
(around 10−11 mbar) and very clean environment. As shown schematically in Fig. 2.1, the
principal components of the MBE are thermal sources, also called Knudsen cells or simply
cells, which hold the source materials, the substrate manipulator carrying a bare substrate
on which the fabricated layer is grown and the growth chamber with ultra-high vacuum
equipped with high pumping capacity. Other MBE components are represented by the
analytical tools which allow in situ characterization (p.10)

of the growth: the substrate
temperature measurements
achieved by pyrometers and
thermocouples, the mass
spectrometer for the
determination of the
background species present in
the chamber, and reflection
high-energy electron diffraction
(RHEED) system used for
surface sensitive
characterization of the grown
layer. Pumping is achieved by
connecting the chamber to a
high-capacity vaccum pump, typically ion and cryopumps, and by surrounding the growth
chamber by a jacket cooled constantly at 77 K by liquid nitrogen.
A typical MBE system also has several separated vacuum chambers which allow
introduction of the substrate without the need to break the vacuum. In an MBE chamber,
epitaxial growth proceed at a rate of 0.5–1 μm per hour, corresponding to 0.5–1 ML per
second. Changing material is achieved by the sequential opening and closing of mechanical
shutters.



Fig. 2.2.  a) Schematic diagram of a MOCVD
system. b) Picture of the quartz reaction chamber of
a horizontal flow MOCVD system during growth.
Picture courtesy of Dr. E. Gini.

For the growth of quantum cascade lasers, semiconductor layers with a total thickness
between 3 μm and 10 μm must be grown with a layer accuracy of about 1 Å for individual
quantum wells and barriers. These requirements place strong constraints on the transition
time and temporal accuracy of the mechanical shutters of the cells to characteristic times τ
below 100 ms. In addition, the overall accuracy for the layer thicknesses as well as for the
alloy composition requires flux accuracy of about 1% or better, during the whole duration
of the growth, depending on the specific laser structure. This is especially true for thick
structures grown from lattice-matched Ga0.47In0.53As/ Al0.48In0.52As materials, as a
deviation from the nominal indium content by as little as 1% yields to a measurable strain
of ϵ = 7 × 10−4. As a result, the cells must also have an excellent short and long term flux
and temperature stabilites  1̊ C. The calibration techniques needed to achieve such an
accuracy rely either on optical reflectrometry or X-ray diffraction.

The development of MBE growth was instrumental in achieving the first intersubband
devices, quantum well infrared photoconductors (QWIP), and QCL. In addition, the
outstanding control of the doping profile in MBE makes it the preferred growth technique
for QWIP.

(p.11) 2.1.2 Metalorganic chemical vapor deposition

In contrast to the MBE system in which the growth proceeds in a UHV environment, in the
metalorganic chemical vapor deposition (MOCVD) reactor the epitaxial growth is achieved
by the thermal decomposition, on the single crystalline substrate, of precursors that will
free the elements III and V as well as the dopants species. As shown schematically in Fig.
2.2, group V hydrides and group III organometallics are flown using a carrier gas (usually
H2 or N2) in the reactor. In the latter, the substrate, positioned on a susceptor, is heated to
the growth temperature by halogen lamps. The decomposition of the hydrides and
organometallics on the substrate free the group III and group V elements that will grow
epitaxially. The remaining gases are pumped out from the chamber and are neutralized in a
scrubber. Composition and layer sequences are controlled by the gas fluxes and gas source
switching.

Because it does not operate
under UHV, a MOCVD system
has less in situ monitor
capabilites than an MBE. For
the same reasons, however, the
downtime after a service is
significantly reduced.
Compared to the MBE, the
MOCVD has the advantage that
the fluxes, adjusted by mass
flow controllers, are not
susceptible to source depletion.
For the Ga0.47In0.53As-based
materials, the growth proceeds
at a substrate temperature of



Fig. 2.3.  Geometry of a typical HRXRD experiment
in a specular scan. Incident (ω) and detection 2Θ
angles are continuously varied. Maxima of the
detected X-ray signal occur whenever the scattering
vector Q = kf − ki = G, where G is a reciprocal
lattice vector of the structure, is met. Inset: Typical
arrangement of a HRXRD system: the X-ray source
is fixed, while the sample and detectors are mounted
on rotary stages.

approximately 600̊ C, about 100̊ C higher than for MBE layers. Probably as a result of this,
otherwise identical QCLs grown using MOCVD operate at a slightly smaller photon energy (30–
50 cm−1, or about 2–3% of the emission frequency) than their MBE grown counterparts. The
higher growth temperature leads probably to interfaces that exhibit more grading in the
composition.
A unique capability of MOCVD is the possibility of performing selective growth of InP on
a SiO2 or Si3N4 masked surface. In addition, in general the growth of phosphide materials
is easier using MOCVD than MBE. For this reason, a combination of MBE (p.12)

growth for the active region
followed by MOCVD for the
top InP cladding and lateral
regrowth is often used.
The first QCL active regions
grown by MOCVD were
reported almost ten years
after the QCL’s first
demonstration by the group at
the University of Shefleld
[27]. Shortly after this first
demonstration, a
collaboration between the
group led by F. Capasso at
Harvard and Agilent
Technologies reported buried
heterostructure quantum
cascade lasers grown by
MOCVD with very high
performance levels [28].
Experience of nominally
identical structures using lattice-matched Ga0.47In0.53As/ Al0.48In0.52As material grown
either by Andreas Bachle at AL Technologies using MOCVD or by Marcella Giovannini at
the University of Neuchatel by MBE did not show any significant differences in
performance levels.

2.1.3 Layer characterization

High-resolution X-ray diffraction. Because it yields highly accurate measurements of
thicknesses and lattice parameters while remaining non-destructive, high-resolution X-ray
diffraction (HRXRD) is one of the key analytical tools for quantum cascade lasers. In fact,
X-ray spectra with broadened peaks are usually well correlated with lower QCL
performances. For a deeper discussion of HRXRD, the reader is referred to the books by
Bowen [29] and Ulrich [30], in which the fundamentals of HRXRD are described in detail.
As shown in the inset of Fig. 2.3, in a high-resolution X-ray diffraction (HRXRD)
spectrometer, a collimated source beam is incident on the crystal surface, diffracted by the



parallel atomic planes of the epitaxial layers and substrates and its intensity measured by a
detector.

As the X-ray reflection is an elastic process the magnitude of both incident ki and diffracted
kf vectors is identical and equals , with λ = 0.154 nm in case of a Copper (p.13) Kα

spectral line that is a standard radiation source. In a typical experiment the X-ray source is
fixed while the sample and detector are mounted on two independent rotation stages,
allowing the free selection of the incident and exit angles αi and αf that will set the
directions of ki and kf. This leads to a well-defined scan of the scattering vector

(2.1.1)
through the reciprocal space. In typical notation used on the goniometer, the rotation of the
sample is denoted by ω and that of the detector by 2θ. The relationships between the
goniometer angles and αi and αf are therefore ω = αi and 2θ = αi + αf.

An example of an X-ray experiment which probes the reflectivity in the vicinity of the
reciprocal vector G corresponding to the (400) direction is shown in Fig. 2.3. This
particular arrangement, called specular scan, is obtained if the direction of scattering vector
Q is kept constant and parallel with respect to surface normal while its magnitude is
gradually increased. A diffraction maximum is then expected when the Bragg condition

(2.1.2)
is met, i.e when the scattering vector is a reciprocal vector of the lattice. Typical reflections
from the (100) face of a zincblende, named also face centered cubic (fcc), lattice
correspond to reciprocal vectors (400), (200), (311), (511). While the reflections (400),
(200) are from the atomic planes parallel with the sample surface (symmetric reflection),
the (311) and (511) planes are tilted (asymmetric reflections).

The maximum of diffracted intensity described by eqn. 2.1.2 corresponds to the one
generated by an homogeneous crystal. Because its unit cell in the growth direction will be
slightly expanded or contracted, a layer under light strain will have its diffraction maximum
at a slightly different angle as compared to the substrate peak. The measurement of the
difference in angle δθ between the two peaks enables very accurate and sensitive
measurement of lattice strain and therefore of the alloy composition. The strain, or relative
mismatch between the epilayer and substrate δa/a, can be evaluated from the splitting
between layer and substrate peaks with the equation

(2.1.3)
where δθ corresponds to peak separation and is small with respect to θ. The separation, for
a strain of 7 × 10−4, corresponds to an angular separation of 76 arcsec or 0.37 mrad for the
(400) reflection.



Fig. 2.4.  Measured and simulated XRD curves. The
simulated curve is offset for clarity. Measured data
fit well with the expected compositions
InGaAs/InAlAs-AlAs. An average period thickness
of 44.2 nm can be derived in good agreement with

A generalization of eqn. 2.1.2 shows that the plot of diffraction intensity as a function of
angle is approximately the Fourier transform of the structure, with the peak amplitude
modulated by the form factor of the diffraction. As a result, a periodic arrangement of
layers, such as the repetition of the active region in the gain region of a QCL, will lead to a
spectrogram consisting of a periodic repetition of satellite peaks. The length of the
superlattice period can be extracted from the spacing of the two satellites observed in the
X-ray reflection using the formula

(2.1.4)
(p.14) where i and j denote satellite order, counted from the layer peak, θi and θj is the
angular position of the maxima on the reflectivity curve, and λ is the wavelength of the X-
ray radiation.

The complete analysis of the rocking X-ray curves are performed by comparing the
experimental result to the predictions produced by simulation software. In particular, the
number of sharpness of the superlattice peaks will yield important information on the
abruptness of the interfaces and possible flux drifts during the growth, while the position of
the center peak measures the possible departure from the lattice matching to the substrate.

As an example, the experimental and simulated rocking curves of a Ga0.28In0.72As/
Al0.48In0.52As/ AlAs strain-compensated QCL designed for the operation at 3.3 μm, and
measured in the (004)InP reflection, are shown in Fig. 2.4. The high degree of crystal
quality and thickness homogeneity enable the observation of more than seventy well-
defined satellite peaks with full width at half-maximums (FWHM) of 18– 30 arcsecs
(FWHM of the InP substrate is 19 arcsecs [31]). From the spacing between

the satellite peaks an average
period thickness of 44.8 nm is
extracted with a deviation
smaller than 0.5% from the
designed value of 44.6 nm. The
0th-order satellite peak is
slightly separated from the
substrate peak by 165 arcec,
indicating that the strain is not
perfectly balanced between the
3.5% compressive strained
AlAs and the 1.3% tensile
strained Ga0.28In0.72As layers
(in respect to InP), though the
overall strain is still less than
0.1%.
(p.15) Transmission electron
microscopy.In a transmission



the expected one (44.6 nm). Reprinted with
permission from [31]. Copyright 2011, American
Institute of Physics (AIP).

Fig. 2.5.  a) TEM micrograph of a cleaved cross-
section of a vertical transition quantum cascade laser
active region [32]. Light regions are Al0.48In0.52As
barriers, while dark regions are Ga0.47In0.53As
quantum wells. b) One period of the active region
shown at a larger magnification. The thinnest layer is
a 9 Å Ga0.47In0.53As quantum well. Micrograph
courtesy of S. N. G. Chu; growth, D. L. Sivco and A.
Y. Cho.

electron microscope (TEM),
a high-energy (200kV
typical) electron beam is
focused on a thin sample (20
nm) and the transmitted beam
contains the information on the image with a resolution down to atomic dimensions. Using
a TEM, individual quantum wells and barriers can be imaged, giving direct information on
the quality of the interface and the thickness of the layers. As such, a TEM cross-section is
a very complementary technique to the X-ray that convolute the overall information of the
active region. However, the slightly lower accuracy as well as the time-consuming and
destructive nature of the sample preparation technique makes it a less practical sample
evaluation technique for routine observation.

Fig. 2.5 shows the transmission electron micrograph image of the active region of a
quantum cascade laser grown by molecular beam epitaxy [32]. In this structure, a three
monolayer thick (9 Å) Ga0.47In0.53As quantum well is sandwiched between two
Al0.48In0.52As barriers and nevertheless appears with no visible fluctuation.

The same measurements,
performed on two Si/SiGe
quantum cascade
electroluminescence structures
[33, 34], show the importance
of the growth conditions on the
flatness of the interfaces, as
shown in Fig. 2.6. In that case,
the TEM micrograph enabled
an optimization of the growth
conditions.
One should note, however,
that the TEM technique
requires the measurement of
an approximately 20 nm thick
sample; as such the interface
seen corresponds to the
average over this thickness.
Incidentally, this distance is
of the same order of
magnitude as the in-plane de Broglie wavelength (λ = 36nm) of an electron with a typical
thermal energy at room temperature. A TEM micrograph may therefore (p.16)

measure long-distance
thickness variations that would
localize electrons, but does not
provide useful information on
the short-range disorder



Fig. 2.6.  a) TEM micrograph of a of a cross-section
of aSi/SiGe quantum cascade structure, sample
E027, grown on a Si wafer [33]. The Ge-rich regions
are darker, the Si-rich lighter. The interfaces remain
flat. b) Si/SiGe quantum cascade emitter, (L045),
grown on a SiGe buffer layer [34]. The less optimal
growth conditions and the larger strain induced a
waviness of the interfaces, nucleating at the
germanium layers. c) Close-up of sample E027,
showing the individual atomic planes. Micrograph
courtesy of Elisabeth Mu¨ller, LMN, Paul Scherrer
Institute.

responsible for the interface
roughness scattering.
Scanning tunneling
microscopy. In a scanning
tunneling microscope [35], a
very sharp tip is brought in
close proximity to a surface
and the tunnel current
monitored. In this way,
individual atoms may be
resolved. Application of this
technique to III–V
semiconductors required the
development of an instrument
able to in situ cleave and
measure a sample under
UHV. The cleavage must
proceed on the (110) face as
the latter, in the absence of
surface contaminants, does
not exhibit band bending.

Using such an approach,
scanning tunneling microscopy was performed on the cleaved edge of two Ga0.47In0.53As/
Al0.48In0.52As quantum cascade laser structures designed to operate at a wavelength of 9
μm [36]. As shown in Fig. 2.7, two samples were compared: one where the interfaces were
abrupt, and one where the interfaces of the active region were intentionally digitally graded.

In agreement with the measurements that showed both samples to exhibit an identical
linewidth of the electroluminescence peak, the two cross-sections showed very similar
interfaces between the two samples. As shown in Fig. 2.7 (d) and (e), the aluminum profiles
of two 22 Å thick Al0.48In0.52As barriers could be fitted successfully by the same error
function

(2.1.5)
(p.17)

with σx = σy = 1Ml = 2.8 Å
while L = 22 Å remained at the
nominal value. The
interpretation was that this
interface grading arose as a
result of the interdiffusion of
the gallium and indium atoms



Fig. 2.7.  STM image of the active region of (a) the
structure with graded interfaces and (b) the structure
with abrupt interfaces. (c) shows the averaged line
profiles of the active region. Aluminum
concentration of a 2.5 nm barrier of the structure
with (d) graded interfaces and (e) abrupt interfaces.
The aluminum concentration was derived from
averaged line proles taken at three sample voltages.
Adapted with permission from [36], courtesy of P.
Offermans and P. M. Koenraad. Copyright 2003,
AIP.

during growth. Note, however,
that in those experiments the
aluminum and gallium atoms
themselves are not directly
probed, but rather the electronic
effects these two atomic species
have on the surface arsenic
atoms. The apparent height of
an arsenic site should be
dependent on the number of
aluminum atoms in the nearest-
neighbor positions at the
cleaved (110) surface.
Atom probe.The atom probe
is another technique that can
resolve chemical structure at
the atomic level. In this
instrument, atoms are
removed from a tip by a
pulsed electric field. The
magnification is achieved by
the crowding of the field
lines at the tip extremity and
their spreading at long
distance on a position-
sensitive detector matrix. A
time-of-flight mass spectrometer enables additional chemical sensitivity. The principle of
operation was proposed already in the 1960s [37]. Recent progress in the instruments and in
the reconstruction algorithm has now enabled three-dimensional (p.18) reconstruction of
multi-layer semiconductor superlattices, yielding critical information on the shape of
interfaces and interdiffusion effects [38]. This technique is potentially able to yield very
critical information on the interface structure of QCLs.

Doping and background impurity level. Although systematic studies are still lacking, it is
generally agreed that a low background impurity level, achieved by a low base vacuum
pressure, is needed to achieve high-performance lasers. An inverse correlation between
threshold current and HEMT mobility has been reported in a systematic growth study of
terahertz QCLs [39]. As the average doping level in mid-infrared quantum cascade lasers is
in the low 1016 cm−3, the material should have a background impurity in the low 1015

cm−3. Such a purity level is challenging to achieve in the high aluminum containing layers
because of the high reactivity to the residual O2 of the growth chamber. In [40] the
performance of quantum cascade lasers were systematically measured as a function of
intentional doping levels. In particular, two otherwise identical devices were compared—
one (N68) grown at the beginning and another one (N120) at the end of a growth run. The
growth chamber is typically cleaner, with a lower base pressure, at the end of a growth run
because impurities are trapped against the walls or pumped away.



Fig. 2.8.  Comparison between the light-versus-
current characteristics of a laser grown at the
beginning (N68, black line) and at the end (N120,
grey line) of a growth run. The shift in the threshold
current is attributed to the larger background
impurity level at the beginning of the run [40].

As shown in Fig. 2.8, the light- and voltage-versus-current of these two otherwise identical
devices are compared. The shift in the threshold current density corresponded to a
background impurity level dropping from 1.7 × 1016 cm−3 at the beginning of the growth
run to 3 × 1015 cm−3 at the end. The sharper IV characteristics, as well as the larger slope
efficiency of N120 compared to N68, is indeed compatible with a lower background
impurity level

(p.19) .
2.2 Quantum cascade laser
processing
A laser consists of a gain
medium inserted in an optical
resonator cavity. In a
quantum cascade laser,
optical gain is achieved at the
cost of a thermal dissipation
of 20–100 kW/cm2. This
number is a factor of 102–103

larger than for a solid-state
laser and 10–102 for a
semiconductor interband
laser. This power constraint
strongly restricts the kind of
cavity geometries that can be
used for such lasers. As a
result, as in in-plane
semiconductor lasers, the optical cavity is formed by the epitaxial layers themselves, as
discussed more in detail in Chapter 6. In the growth direction, optical confinement is
achieved by total internal reflection between the high refractive index gain region and the
lower refractive index substrate and cladding layers. Laterally, confinement is achieved by
defining a stripe. The typical one-dimensional waveguide geometry allows a long
interaction length while minimizing the total volume, and is also favorable for thermal
extraction.

2.2.1 Ridge process

In conventional semiconductor lasers, a stripe is usually achieved by etching only a fraction
of the top cladding, slightly reducing the effective index of the mode on the side of the
ridge. The low effective index step in such rib waveguide structures means that it supports
a single transverse mode even for relatively wide stripes (about 10 λ). In addition, the low
index step is also favorable for reducing the optical scattering on the sidewalls.

The same approach has been realized in QCLs, and has indeed yielded high-peak power
devices [41]. The problem that arises with shallow etched QCLs is their very large
operation voltage, and the anisotropic conduction properties of the active region result in a



Fig. 2.9.  Processing steps for the fabrication of a
Fabry–Perot cavity quantum cascade laser. (a)–(b)
MBE or MOCVD growth of the active region and
cladding. (c)–(h) Defining and etching the ridge. (i)–
(l) PECVD deposition of an insulating oxide or

very large current spreading. In these initial experiments an effective QCL width of 60 μm
was estimated for a physical ridge width of 10 μm, greatly increasing the threshold current.

For these reasons, a ridge process where the active region is etched completely is usually
preferred. In contrast to interband devices, such etching does not create non-radiative
recombination sites, but a depletion layer. An example of a ridge process flow follows the
steps outlined in Fig. 2.9. After MBE growth of the active region structure (a), the samples
are transferred to the MOCVD and the cladding planar regrowth is performed (b). A layer
of SiO2 is then grown by plasma enhanced vapor deposition (PECVD) as a hard masking
layer (c). The patterning of the laser waveguides is defined (d) and the pattern is then
transferred to the SiO2 layer by reactive ion etching (RIE), using an Ar/CHF3 chemistry
(e). The use of a hard masking layer allows the use of an HCl-based etching solution
(HCl:CH3COOH (1:3)) to etch the InP cladding. This allows us to obtain vertical sidewalls
and to reduce the undercutting (g). The active region is then etched using an isotropic
HBr:HNO3:H2O (1:1:10)(h) solution. Exhibiting a nearly uniform etch rate for all the
materials (InP, AlInAs, InGaAs) a smooth surface is obtained after etching. Unfortunately,
due to the isotropic behavior of the used solution, the etched structures show an undercut
larger than the vertical etching depth (undercut ≈ 1.2 times the etch depth).

Once the etching of the active stack is performed, the hard mask layer is removed by HF
etching and an insulating layer is deposited by PECVD on the etched structure(i).

(p.20)

The overlap of the optical mode
with this dielectric layer is one
of the most important sources
of optical losses in this
waveguide configuration. In
order to minimize the losses,
silicon dioxide or silicon nitride
are used as insulation materials,
depending on the laser spectral
range. Using optical
lithography and RIE etching the
insulating layer is opened on
the ridge head. An ohmic
contact is then deposited
(Ti/Pt/Au, 5 nm/40 nm/100 nm)
by e-beam evaporation on the
opening using standard lift-off
(k). Finally electroplated gold
pads are deposited (m) and the
substrates are thinned to ~ 150
μm in order to reduce thermal
resistance. Back ohmic contact
is finally deposited on the wafer



nitride and opening it on top of the ridges. (k)–(n)
Top and bottom contact metalization.

Fig. 2.10.  Scanning electron micrograph of a ridge
waveguide device.

bottom side (Ge/Au/Ni/Au, 15
nm/50 nm/10 nm/150 nm) (n).
An example of a device
fabricated using this process
flow is shown in Fig. 2.10.

2.2.2 Buried heterostructure process

The ridge laser process has many advantages. The process is relatively simple, uses
standard clean-room processes, and does not require additional regrowth. The devices have
a good electrical and mechanical stability. However, large additional waveguide losses are
observed for devices operating at long wavelength (λ  8 μm) using narrow ridges, as both
Si3N4 and SiO2 have large absorption coefficients at these long wave-lengths. As a result,
there was interest in substituting these dielectrics by infrared transparent materials such as
ZnSe [42] or chalcogenides [43]. Nevertheless, the best (p.21)

results were achieved by
regrowing laterally semi-
insulating InP [22]—a process
known in interband lasers as
“buried heterostructure.” This
material is highly transparent,
has a lower index step with the
active region, therefore
reducing the effect of lateral
roughness to the optical loss,
and has a very large thermal
conductivity, enabling thermal
extraction also through the
sidewalls.
The buried heterostructure
process flow is shown in Fig.
2.11 and starts with
processing steps which are identical to the ridge process up to the active region wet etching
(a)–(h). Using the SiO2 etching mask, an insulating InP layer (Fe doped) is regrown using
MOCVD selectively on the sides of the ridge. After stripping the masking layer, by HF
etching, an Si3N4 insulating layer is then deposited using PECVD (j) to prevent parasitic
injection through defects. Since the optical mode is far from the insulating layer, its
influence on the waveguide losses is irrelevant, and consequently only Si3N4 is used due to
its slightly higher thermal conductance compared to SiO2. The devices are then finished
and metalized in a similar manner as in the ridge process (j)–(p).

Recently, a variation of this process has been developed where the order of the regrowth
has been inverted [44]. The ridges are etched and regrown laterally before the top cladding
is grown. This allows an easier fabrication of very narrow devices with vertical sidewalls,
as shown in Fig. 2.12. The highly planar surface achieved after the final regrowth allows a
good junction-down mounting.



Fig. 2.11.  Process flow for the standard buried
heterostructure fabrication in mid-infrared

Fig. 2.12.  Facet of a buried heterostructure device.
a) normal process. b) Process where the order of the
regrowth (lateral and vertical) have been inverted
[44].

Leakage currents. As InP is not an insulator, leakage through the lateral confining layers is
a concern for buried heterostructure devices. As shown in Fig. 2.13a, such a current leakage
path would start from the n-doped InP inside the semi-insulating InP and end up in the
substrate. The leakage current is strongly dependent on the nature of the blocking layer and
on the characteristics of the junction between the latter and the top and bottom claddings.

(p.22)

The characteristics of MOCVD
grown n-i-n mesa structures
with different blocking layers
were investigated. More
specifically, three 2 μm thick
barrier structures are compared.
In the reference sample the
blocking barrier consists of an
undoped InP layer. In the
second sample the undoped InP
layer is interrupted by 8
Al0.48In0.52As barriers. In the
final sample the blocking
barrier consists of an Fe
homogeneously doped InP
layer. As shown in Fig. 2.13a
where the current–voltage
characteristics of these
structures are compared, the i-
InP layer does not efficiently
block the current flow, and
current densities above
100A/cm 2 are measured at 1V
already. The current density
through (p.23) the multi-
barrier Al0.48In0.52As/ InP
structure is already strongly
reduced compared to the
homogeneous layer. However,
leakage currents of 100–
300A/cm 2 are still flowing at
the QCL operating voltage of
12–15 V. In contrast, in the
sample with the Fe-doped InP
barrier the leakage current
remains below 10−2 A/cm 2 up to a maximum bias of
15 V. The blocking behavior of the Fe:InP layer may be understood by considering the
band profile along the leakage path as shown schematically in Fig. 2.14a for zero applied
bias.



Fig. 2.13.  a) Leakage paths (arrows) in a buried
heterostructure device. b) Current–voltage
characteristics of n-i-n structures with different
barrier materials, as indicated.

Fig. 2.14.  a) Schematic band structure of the n-i-n
profile, at zero applied bias, along the leakage path.
b) Arrhenius plot of the current through the blocking
layer at fixed applied bias. Activation energies of Ea
= 588 meV and Ea = 289 meV are found for the
structure with the InP:Fe and the eight multibarrier
InP/ Al0.48In0.52As material sequence, respectively
[45].

The iron doping creates deep
donor states in the InP, pinning
the Fermi level at an energy of
EFe = −0.63 eV from the
conduction band [46].
Assuming room temperature
and a relatively low doping
concentration Nd for the upper
cladding, as required for a low-
loss waveguide, the position of
the chemical potential, in
respect to the conduction band
edge, is given by
(p.24)

(2.2.6)
where

(2.2.7)
and is Nc = 5.7 × 1017 cm−3

for InP. The build-in potential
of the junction is then

(2.2.8)
and we find Vbi = 0.57eV for a typical cladding doping of Nd = 8 × 1016 cm−3. Vbi is the
effective barrier that will block the thermoinic current flowing through the barrier.

To assess the temperature stability of these blocking layers, the current was measured at
fixed bias as a function of the temperature for both the Fe:InP and Al0.48In0.52As/ InP
samples. The result is plotted in Fig. 2.14 as an Arrhenius plot. The current is found to be
activated thermally with an activation energy of 588 meV for the Fe:InP sample, in good
agreement with our previous estimate, and 289 meV for the Al0.48In0.52As/ InP sample, in
good agreement with the expected band discontinuity.

As shown in Fig. 2.13, the current starts to increase super-exponentially at a bias of 2–5 V,
suggesting a barrier lowering of the junctions. A rough estimate of the order of magnitude
of the field at which this happens can be obtained by computing the maximum field in the
junction. For an ideal abrupt junction between the n-doped and the Fe-doped InP, the
maximum field in the junction Fi is given by
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Fig. 2.15.  a) General view and b) close-up of a
device mounted episide-down on an AlN submount
[47].

(2.2.9)
We obtain a field Fi = 80kV/cm for a typical Fe doping of NFe = 8 × 1016 cm−3. This field
Fi will be decreased, on the negative side of the junction, by an applied bias to the junction.
Assuming an operation bias of the QCL of 10 V, the average applied field would be of 50
kV/cm and the field in the junction to be lowered to 30 kV/cm. We do, however, expect a
field redistribution to occur in the junction, and the field lowering to be weaker than this
rough estimate.

2.3 Mounting techniques
The initial mounting techniques of quantum cascade lasers, junction up mounting using
indium solder on copper submounts were developed with cryogenic operation in mind.
Oxygen-free copper has one of the best low-temperature conductivities of all materials (10,
800 Wm−1 K−1 at 20 K, and still 400 Wm−1 K−1 at 300 K). The indium soldering will
accommodate the large thermal expansion mismatch between the InP substrate α = 4.6 ×
10−6 K−1 and Cu α = 15 × 10−6 K−1 submount. In a junction-up mounting, any residual
dislocation would have to cross the whole substrate before reaching the active region.

(p.25)

To achieve the best long-term
reliability with continuous wave
devices operating near room
temperature, however, the
techniques originally developed
for telecom devices and high-
power lasers are now
implemented in QCL. The latter
are mounted episide-down on
AlN submounts using a high
temperature, fluxless AuSn
solder in an hermetically sealed,
organic-free package. AlN
exhibits very good thermal conductivity (200 Wm−1 K−1) along with a room-temperature
expansion coefficient 4.6 × 10−6 K−1, virtually equal to that of InP. The absence of volatile organic
compounds as well as the use of a solder with a relatively high melting temperature (about 280̊ C)
minimizes long-term chemical reactions in the device. An example of such a mounted device is
shown in Fig. 2.15.
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3.1 Band structure of semiconductors in the k·p approximation: origin of the effective mass

3.1.1 The k·p approximation

An accurate computation of the energy states in complicated structures formed by quantum wells
and barriers is a requirement for the design of working devices. Although in principle a number of
approaches can be used to compute the energy bands in a solid, in practice the vast majority of the
computations are performed using the k · p approximation. The latter is a powerful approach to
the computation of the band structure that relies on the knowledge of the band structure at k = 0
and expands the wavefunctions on this basis.

Shown in Fig. 3.1 is the band structure of the GaAs and InAs; the k · p is able to predict
accurately the band structure close to the Γ edge of the bandgap near the Fermi energy. For most
devices, they are the relevant states for the optical and transport properties.

3.1.2 Basic model

The Schrodinger equation for a crystal is:



Fig. 3.1.  Computed band structure of GaAs and
InAs, as indicated. The relevant states considered in
this work are those around the fundamental gap at
the Γ point. The lateral valleys at X and L play only
a parasitic role. Reprinted with permission from [48].
Copyright 1976 by the American Physical Society
(APS).

(3.1.1)
For simplicity, we will drop the spin–orbit coupling term from the following derivation. The latter
arises as a relativistic term. The motion of the electon in the electric field of the ion creates an
equivalent magnetic field that interacts with the spin of the electron. Let us first compute the
action of p on ψ, written in terms of Bloch wavefunctions u n,k of band n and wavevector k so
that

(3.1.2)
We then obtain

(3.1.3)

(3.1.4)

(3.1.5)
(p.27)

Using the above relation, the
Schrödinger equation is obtained for u

n,k(r):

(3.1.6)
The Hamiltonian H = H 0 + W(k) may be split into a k-independent



(3.1.7)
and k-dependent part

(3.1.8)
The solution of the equation

(3.1.9)
shows the energies of the band structure at the Γ point k = 0. The fundamental idea of the k · p
approximation is to use the u n,0(r) as a basis for the expansion of the wavefunction and energies
at finite k value.

In the simplest cases, taking an interband transition across the gap and looking at the conduction
band, taking the second-order perturbation expansion and first neglecting the spin–orbit term:

(3.1.10)
(p.28) In the lowest-order approximation, all other bands except the valence band may be
neglected. Furthermore, computing the dispersion of the conduction band we use the fact that the
interband matrix element p cv is isotropic, and the dependence of the energy is only in the
magnitude of k and not in its direction. As a result the dispersion can be written as (taking the
zero energy at the top of the valence band):

(3.1.11)
Defining the Kane energy EP such that

(3.1.12)
the dispersion of the conduction band can be written as

(3.1.13)
We then obtain the effective mass as:

(3.1.14)
The Kane energy is much larger than the gap EP  Eg and is rather constant across the III–V
semiconductors. As a result, the effective mass is roughly proportional to the bandgap. One
should be careful that some authors use the definition of an interband operator matrix element P
with the units of a velocity, yielding



(3.1.15)
(Bastard [49], for example), while others use P with units of a square root of energy

(3.1.16)
The Kane energy EP is, however, always defined in the same manner.



3.1 Fundamental parameters for various III–V semiconductors. Eg and Δ0 are the fundamental gap and the spin–
splitting, respectively,  the conduction band effective mass, EP the Kane energy, and rvc the interband

matrix element.

GaN GaAs InP GaSb InAs InSb

V) 3.4 1.519 1.424 0.811 0.418 0.235

V) 0.017 0.341 0.11 0.75 0.38 0.81

0.17 0.0665 0.079 0.0405 0.023 0.0139

V) 20.2 22.71 17 22.88 21.11 22.49

) 2.55 6.14 5.67 11.5 21.5 39.5



In the above expressions, the spin–orbit term can be included by replacing the operator p by

(3.1.17)

(p.29) 3.1.3 Beyond the perturbation expansion

A very powerful procedure, first introduced by E. O. Kane in a celebrated paper [50], is to expand
formally the solutions of eqn. 3.1.6 for the nth band in the solutions at k = 0, writing formally:

(3.1.18)
and restricting the sum to a limited relevant subset of m bands. Improved accuracy can be
achieved by adding more bands. In this basis, and projecting the equation onto the state u M,0, the
Hamilton equation is written as

(3.1.19)
where the k · p Hamiltonian is

(3.1.20)
To the extent that these matrix elements are known, eqn. 3.1.19 can be solved.

3.1.4 Example: a two-band Kane model

Let us write explicitely a two-band Kane model. The latter can be a fairly realistic model if one is
interested only in the effect of the valence band on the conduction band, replacing the three spin-
degenerate valence bands (heavy hole, light hole, split-off) by an effective valence band. Using
the subscripts c and v for conduction and valence bands, respectively, the un, k can then be
expressed as:

(3.1.21)
Replacing this expansion into eqn. 3.1.19, we obtain the following matrix equation:

(3.1.22)
Assuming Ec = 0, Ev = −Eg, the solution of the matrix equation satisfies:

(3.1.23)



This second-order equation in En(k) can, of course, be solved directly; it is simplified by the
assumption that the interband matrix element p cv is isotropic and the dependence is only in the
magnitude of k and not in its direction. It is, however, more instructive to write it in the form of a
pseudo-effective mass equation. We take as an example (p.30) the conduction band,
remembering  and neglecting the square of the kinetic energy of the free electron:

(3.1.24)
For k → 0 the above expression reduces itself to the result of the perturbation expansion:

(3.1.25)
Eqn. 3.1.24 can be expressed (by neglecting the term 2E/(EP + Eg)), equivalent to neglecting the
diagonal free-electron kinetic energy in the Hamiltonian 3.1.22, in the somewhat simplified form

(3.1.26)
that is commonly used in the literature. The above expression can be rewritten, using a Taylor
expansion of the square root, to express the dependence of the energy in k 4

(3.1.27)
where

(3.1.28)
is the non-parabolicity coefficient. Setting γ and m ∗(0) uniquely defines the Kane energy EP and
the gap Eg through eqn. 3.1.28 and 3.1.25.

3.2 Envelope function approximation
The problem we will try to solve now is that of a heterostructure, in which two materials A and B
are sandwiched together. Of course, such a material could be seen as a new material by itself, and
its band solved by ab initio techniques, but such a computation is very time-consuming and,
moreover, does not present much physical insight into the result. The envelope function
approximation solves this problem in a very efficient and elegant manner. It is widely used to
predict the optical and electrical properties of semiconductor nanostructures.

3.2.1 Multi-band case

At the core of the envelope function approximation is a generalization of the k · p approximation.
It is postulated that the wavefunction can be written as a sum of slowly varying envelope
functions  that will modulate the Bloch function of the material: namely,



(3.2.29)
Behind eqn. 3.2.29 is the idea that at each point, the wavefunction is described by a k · p
decomposition around a point k 0 in the Brillouin zone (taken in the following (p.31) at the Γ
point, i.e. k 0 = 0) and that this decomposition depends on the position. Furthermore, it is assumed
that

1. the envelop function  is slowly varying compared to the Bloch wavefunction,
if  is written in a Fourier decomposition, the wavevectors are close to the center
of the Brillouin zone.
2. the Bloch functions are identical in both materials, i.e. . This also

implies that the interband matrix element pcv is identical in both materials.

It allows us to write the wavefunction as

(3.2.30)
Let us assume first a quantum well, in which a layer of material A is clad on both sides by a
barrier material B. Because of the in-plane translational invariance, the wavefunction may be
written as plane waves in the x–y direction:

(3.2.31)
where z is chosen as the growth direction and k ∥ = (kx, ky) is the in-plane wavevector. Note that
there is confusion in the literature, since the in-plane direction is referred either with the sign ∥, as
is done here, or with the sign ⊥, meant as “perpendicular to the growth axis.” We finally used the
first notation as it was the one enabling the best consistency in the various topics (strain,
scattering, lifetimes) where such a convention was needed. The Hamiltonian is then

(3.2.32)
where the functions YA(z) and YB(z) “turn on” the potential in the respective layers. We will
develop our system close to k = 0. To solve the system we must

1. Let H act upon Ψ(r).
2. Multiply on the left by .
3. Integrate over space.

We have to use the following relations. As the envelop function is slowly varying over the lattice
cell, we may write

(3.2.33)
and take advantage of the fact that the band edges are eigenfunctions of the Hamiltonian at (k =
0):



(3.2.34)
The derivation is rather tedious, but one should note the similarity with the normal k · p
technique by considering the action of the operator p on the wavefunction:

(p.32)

(3.2.35)
and we then may consider the substitution

(3.2.36)
where it is understood that p then acts only on the Bloch part of the wavefunction. Using the
above substitution in the Hamiltonian, one finally obtains the following set of differential
equations written in a matrix form:

(3.2.37)
where the elements of the matrix D are given by

(3.2.38)
In the above equation,  is the energy of the band edge i (at k = 0) in materials A and B

respectively, the z -derivatives apply to χ, and the matrix elements .

The part of the band structure show in Fig. 3.1 used for the expansion of eqn. 3.2.38 are the bands
around the fundamental gap at the Γ point, in the center of the Brillouin zone. They are shown
schematically in Fig. 3.2 and consist of one conduction band, originating from an s-like orbital,
and three valence bands originating from p-orbitals from the atoms. Because of the spin–orbit
coupling, the sixly-degenerate valence band Γ edge splits into a doubly degenerate split-off band
and a quadruplet heavy-hole light-hole edge separated by the gap Δ0. To keep the system 3.2.38
as simple as possible, it is most helpful to use the quantization of the angular momentum axis in
the growth direction with the basis wavefunction indicated in Fig. 3.2. Since each band is doubly
degenerate, the choice of this basis yields an 8x8 system of equations.

One shows, however, that an accurate description of the valence band (that in particular yields the
correct sign of the mass for the heavy-hole band) requires the introduction of additional bands,
most conveniently achieved by using perturbative terms additional to eqn. 3.2.38. The final result,
given here only for indicative purpose, is (see Bastard [49]):



Fig. 3.2.  Schematic dispersion of the bands taken
into account for the k · p approximation: the various
band edges, their group symmetry notations, and the
basis states expressed by their angular momentum
and its projection.

(3.2.39)
(p.33)

where the indices α and β run over the
three axis x, y and z;  is the energy
of the m band edge and Vm (z) its
position dependence between
materials A and B. The effective mass
parameters  are defined as

(3.2.40)
where the sum ν runs over the remote bands.

3.2.2 One-band model

As an example, let us consider first a pure one-band model in the effective mass approximation.
Setting

(3.2.41)
we obtain the Schrödinger equation:

(3.2.42)
In this equation the band is assumed to be parabolic with a curvature given by an effective mass m
∗. For an isolated band such as the heavy-hole band, it is a rather good approximation. It can also



be used successfully for thick quantum well structures in the conduction band, when the
confinement energies are much smaller than the material energy gap.

One first formal difficulty arises because the mass of the barrier material is in general different
than the one of the quantum well. For this reason the effective mass should be considered as a
position-dependent quantity m ∗ = m ∗(z). In that case, one (p.34) shows that the proper boundary
conditions, derived by integrating the Schrödinger equation across the interface, implies the
continuity of

(3.2.43)
and of the quantity

(3.2.44)
across the interface.

One point, often overlooked, concerns the choice of the mass for the barrier material. Very often
the value barrier mass is taken at the band edge. This is usually a poor approximation, since often
the conduction band discontinuity is a sizable fraction of the bandgap. It is much better to assume
a constant value corrected for non-parabolicity using eqn. 3.1.26.

3.2.3 Two-band model

For the conduction band a very nice model is that in which one valence band is kept, creating a
two-band model. For simplicity, let us look at the states at k ∥ = 0. Starting from eqn. 3.2.38, we
neglect the diagonal free electron term and retain only the firstorder derivative of the envelope
functions, as |∂u n,0/∂z|  |∂χ/∂z|. We then obtain the system of equations given by

(3.2.45)
Extracting χv from the second equation yields

(3.2.46)
Replacing in the first equation, after substitution, the following result is obtained:

(3.2.47)
Recalling the definition of the Kane energy  and defining an energy-dependent

effective mass,



(3.2.48)
we obtain finally a Schrodinger-like equation:

(3.2.49)
This model is very useful for modeling the electronic states in the conduction band with the
inclusion of the non-parabolicity. It is very widely used in the study of intersubband transitions
(p.35) .

3.2.4 The three-band model

The relation between the two-band and the full 8x8 Hamiltonian can be better explored by
considering a three-band model, again assuming that k 1 ≈ 0. In this approximation the heavy hole
is decoupled from the other valence bands and one is left with two equivalent 3x3 Hamiltonians
(one for each spin direction)

(3.2.50)
acting on the three-dimensional vector of the envelope function ψ = (χc, χlh, χso), where c, lh and
so label the conduction, light-hole, and split-off band edges, respectively. In the above expression,
pz acts on ψ as −i ∂/∂z. Note also that in the Hamiltonian 3.2.50, as we did in the 2x2 model, we
have also neglected the diagonal “free electron” terms  that can be shown to contribute to
terms of the order of Eg/Ep ≪ 1. Moreover, as we are interested only in the energy levels located
above the edge of the conduction band, the problem can be solved by using the second and third
rows of the matrix 3.2.50 to express the equation in the first row as

(3.2.51)
but with now the energyand position-dependent effective mass given by

(3.2.52)
The solution of the differential eqn. 3.2.51 gives the conduction component χc and the energy of
the stationary states. Mathematically it is very similar to a one-band model, but with an
energydependent effective mass. Moreover, the difference between the twoand three-band models
lies entirely in the form of the energy dependence of the effective mass.

We must recall, however, that the total stationary wavefunctions are given by the three
components χc, χlh, and χso, weighted by their corresponding Bloch functions, so that the only
knowledge of χc is insufficient for the complete physical description of the stationary state. The
2x2 Hamiltonian can be obtained approximatively, defining an “effective” valence band by Ev =
(2Elh + Eso)/3, and therefore the gap is now an effective gap



Fig. 3.3.  Comparison between various models for
the energy-dependent effective mass for Ga0.47 In0.53
As material. The lower curve is the full three band
expression 3.2.52, using EP = 20.4 eV, Eg = 0.78 eV
and a spin–orbit splitting Δ = 0.36 eV; the upper
curve is the two-band model approximation given by
eqn. 3.1.26 with the parameters usually found in the
literature EP = 17.3 eV, Eg = 0.786 eV, and finally, in
dashed, a two-band model with the parameters fitted
to the values of the three-band model (EP= 18.4, Eg
= 0.84)

(3.2.53)
which has also a contribution coming from the split-off edge Γ7. In doing so, we neglect
contributions to the wavefunctions and energies of the order of

(3.2.54)

with . For typical III–V semiconductors used for QC lasers this factor is quite small:

in GaAs , and in InGaAs (lattice matched on InP) (p.36)
. As a result, the corrections never exceed more than a few percent. For

devices based on InAs, however, this approximation is likely to be poor, as Δ ≈ Eg in this
material.

A feeling for these approximations can be obtained by comparing the various expressions for the
energy-dependent effective mass. This is done in Fig. 3.3, where the three-band expression 3.2.52
is compared to the two-band case, using either the parameters used in the literature for the
InGaAs/AlInAs system lattice-matched to InP, or using fitting parameters. The value of the non-
parabolicity coefficient γ reported in the literature [51] (γ = 1.13 × 10−18 m 2), obtained by fitting
experimental absorption data, is slightly higher than that derived from fitting the three-band
model (γ = 1.06 × 10−18 m 2). This discrepancy is attributed to the inherent inaccuracies of the
model and of the experiments

.
3.3 Hartree potential
For the carrier densities used in
QCLs (typically about 1016 cm−3),
the electron– electron interaction is
not a dominant term but must be
taken into account if the electronic
states are to be computed with a
good accuracy, especially in the
terahertz. The effects are especially
strong in devices where the
electrons are Δte from the ionized
donors. It is usually treated in a
mean-field approximation by
adding a Hartree potential VH(z) to
the Hamiltonian:

(3.3.55)
This term is computed from the
local charge density

(p.37)



(3.3.56)
where ND is the doping profile of ionized dopants, |χi(z)|2 is the probability density, and ni is the
number of electrons per unit area in the ith subband. The potential VH(z) is computed from ρ(z)
using Poisson’s equation:

(3.3.57)
The electronic densities ni on the subbands are not known a priori, and in the general case depend
on the transport in the device. However, a good starting approximation is to assume that the
electron distribution is thermal, characterized by Fermi distribution with a common chemical
potential μ in each period, and that charge neutrality is achieved in each period: i.e.,

(3.3.58)
where

is the density of states of the ith subband, θ(E − Ei) is the Heaviside function,

(3.3.59)
is the Fermi distribution function, and ns is the total sheet electron concentration, which, because
we assumed charge neutrality within each period, is equal to the impurities concentration. The
Hartree potential depends on the solution of Schrödinger’s equation; therefore Schrödinger’s and
Poisson’s equations must be solved iteratively until convergence is achieved.

3.4 Active region building blocks
When designing intersubband structures, it is important to acquire an intuitive grasp of simple
building blocks. This is done most easily in a simple one-band model. The numerical results are
obtained using the following approach:

1. The wavefunctions are found for the regions in which the potential is constant (or
assumed constant). They will be plane waves or decaying exponentials.
2. Those solutions are then matched at each interface, using the boundary conditions
compatible with the Hamiltonian. For a one-band model, it means matching the value of
the wavefunction and of the derivative, divided by the mass, at the interfaces.
3. Boundary conditions are then imposed on the edge of the sample: decaying
exponential for bound states, or periodicity for a periodic structure.

We will review some of these results.



(p.38) 3.4.1 The single quantum well

The simplest case is, of course, the quantum well with infinite barrier height. The wavefunctions
are simply sine and cosine functions (if the well is taken symmetric around zero) or sine only if
the quantum well is lying in the interval [0,L]. In the latter case, the condition on the value of kn

(3.4.60)
with n integer enables us to immediately write the energy as

(3.4.61)
Of course, in real structures one should take into account the finite barrier height. Following
Bastard [49], we assume a potential with the form

The bound energy solutions (E  0) are solutions of the transcendental equation:

(3.4.62)
for even states and

(3.4.63)
for odd states. The wavector kw and κb are defined by

(3.4.64)
and

(3.4.65)
For positive energies, one no longer obtains real bound states, but resonances for which the
transmission function of the quantum well (corresponding to the transmission probability of an
incident electron at energy ϵ) has a maximum. The transmission function can be computed, and is
given by

(3.4.66)
where ξ is given by the weighted ratio of the wavevectors



Fig. 3.4.  Computed confinement energy of the
electrons in the conduction band as a function of well
width. Bound states are shown with full lines, and
resonances with dotted lines.(Adapted from Bastard
[49])

(3.4.67)
where mb and mw refer to the electron mass in the barrier and well, respectively, and 

.

(p.39)

In Fig. 3.4 the energy level of an
electron in a square GaAs/Al0.3 Ga0.67
As quantum well is a function of the
well thickness L.
A very attractive feature of the two-
band model is that some of the
numerical implementations can be
done the same way as the one-band
one by simply introducing the
energy-dependent effective mass as
a small change in the code. This is
of course also valid in the formula
given above. The importance of
introducing the non-parabolicity via
the interaction of the conduction
and valence band is shown clearly
in Fig. 3.5, where the energy states
of a single quantum well are
compared in the case where the
non-parabolicity is neglected
(dotted line) and where it is taken
into account (solid lines). The
discrepancy for the position of the highest level is 90 meV, much larger than any experimental
uncertainty.

3.4.2 The coupled well system

The system to be considered here is two-quantum-well coupled through a tunnel barrier. Of
course this system can be modeled directly by solving the Hamiltonian equation of the whole
structure. We, however, wish to study this system in a tight-binding model in which we use a base
formed by the solution of the individual wells. Again, following Bastard [49], we consider the
Hamiltonian

(3.4.68)
where Vb(z) has the same form as in eqn. 3.4.1.

(p.40)

We solve the problem using the basis
wavefunction of the isolated wells,



Fig. 3.5.  Energy states of a 100 Å thick quantum
well computed with a two-band model, and
compared with a one-band model (dashed lines). The
growing importance of non-parabolicity as one
moves away from the gap is clearly apparent.

Fig. 3.6.  A symmetric coupled quantum well
system.

satisfying

(3.4.69)
Considering only the ground states of the isolated wells, the complete wavefunction can be
expanded in terms of the basis function using

(3.4.70)
Introducing the expansion in the Hamiltonian yields the following matrix equation:

(3.4.71)
Setting the determinant of the matrix to zero yields the solution for ϵ:

(3.4.72)
where r is the overlap,

s is the shift



Fig. 3.7.  Energy levels in a coupled quantum well
system. The term (1 ± r) in eqn. 3.4.72 has been
neglected.

(p.41) and t the transfer integral

This result can be expressed graphically, as shown in Fig. 3.7. The most important term is then
the transfer integral because it is responsible for the splitting between the two states. The larger
the transfer integral, the wider the spacing between the two states.

3.4.3 The superlattice

In a superlattice the potential Vb(z)
is defined as a sum of potential of
the individual wells:

with each potential well being

The wavefunctions for the quantum wells are then given by

For the barriers, for positive energies (ϵ  0), the wavefunction is then given by

In addition to the boundary conditions at both interfaces of the quantum well, we should also
impose the periodicity of the structure. As is well-known, it will force the wavefunction to follow
the Bloch theorem: that is,

(3.4.73)
for a periodicity d.

(p.42)

The resultant transcendental equation
is given by



Fig. 3.8.  Schematic band structure of a superlattice.

(3.4.74)
where ξ = kb/kw has the same meaning as for the single-quantum-wellcase. For negative energies,
ξ → iξ¯ and the transcendental equation becomes:

(3.4.75)
The above equation defines a dispersion relation between the energy ϵ (appearing in kw and kb)
and q. An example of such a dispersion, showing clearly the minibands and minigaps, is shown in
Fig. 3.9. In particular, the increase in the miniband width with energy is clearly apparent. The
superlattice dispersion of the first miniband is compared to a sinusoidal fit, showing that the latter
is a very good approximation for narrow minibands. The equivalent real space picture is shown in
Fig. 3.11 with the energies and wavefunctions of a finite eight-quantum-well long superlattice

3.5 In-plane dispersion
Up to now, the energy states have been computed for vanishing in-plane momentum, i.e. at k ∥ =
0. This assumption was critical to allow the derivation of the pseudoSchrödinger equation 3.2.51
with the energy-dependent effective mass 3.2.52. In fact, keeping the terms dependent on k ∥ in
the 2x2 matrix yields a differential equation that contains both first and second derivatives of the
conduction band wavefunction.

The system can be solved easily if non-parabolicity can be neglected, i.e. if all the other bands are
treated in the perturbation approximation. In that case, the k ∥ dependence appears in the
Hamiltonian as an additive term to the potential. As a result the in-plane dispersion can be
expressed as an effective mass that is a weighted average of the masses of the quantum well and
barriers by the probability density of the state.

As the next order of approximation one may keep a parabolic dispersion, but using the energy-
dependent effective mass computed at k ∥ = 0. As shown in Fig 3.12, where (p.43)

this approximation is compared to the
solution of the full 8x8 Hamiltonian
for a single 48 Å InGaAs/AlInAs
quantum well, the two models yields
comparable values of energy for small
values of k ∥.



Fig. 3.9.  Computed dispersion of a superlattice
composed from 100 Å Ga0.47 In0.53 As quantum
wells followed by 30 Å Al0.48 In0.52 As barriers. A
conduction-band discontinuity of ΔEc = 0.52 eV as
well as a Kane energy of 18.3 eV was assumed in an
effective two-band model. The minigaps are
indicated by shaded regions.

Fig. 3.10.  Computed confinement energy ϵ + Vb
dispersion of the first miniband, compared to a
sinusoidal fit (dotted line). The results of the finite
superlattice are also plotted as full squares.

A better approximation is obtained
by treating the dispersion of the
subband as a bulk material,
assuming that the confinement
energy Ei computed at k ∥ = 0 yields
a value of kz, i, i.e.

(3.5.76)
(p.44)

and writing then for the energy of the
ith subband at a arbitrary value of k ∥:

(3.5.77)
Assuming the simple expression
3.1.26 for the energy-dependent
effective mass, one obtains for the
dispersion



Fig. 3.11.  Square of the wavefunctions for a finite
superlattice formed by eight 100 Å InGaAs wells
separated by 30 Å AlInAs barriers.

Fig. 3.12.  In-plane dispersion for a 48 Å quantum
well computed using an eight-band k · p (full lines),
a parabolic approximation with the energy-dependent
effective mass computed at k = 0 (dashed) and
assuming the bulk-like dispersion given by eqn.
3.5.78 (dotted). For InGaAs, values Eg = 0.78eV and
m ∗(0)/m 0 = 0.043 for the gap and the mass were
assumed.

(3.5.78)
where Ei is the confinement energy at k ∥ = 0. This equation can be inverted to obtain k ∥(E). As
shown in Fig 3.12, this approximation matches very well the result of the eight-band model. We
attribute this good agreement to the fact that, unlike the case of valence band states, all the other
bands are far away energetically (p.45)

.
3.6 Full model: the valence band
These approximations completely
fail in the valence band because the
in-plane wavevector couple states
belonging to different bands. For
this reason, the analysis of
intersubband devices operating in
the valence band requires the
solution of at least a 6x6 k · p
Hamiltonian coupling the valence
bands. Accurate predictions are
obtained by implementing the
multi-band Hamiltonian 3.2.39 that
includes Δte bands effects.

(p.46)

It is observed that:
• It is usually convenient
to use the growth direction
as the quantization



Fig. 3.14.  Dispersion of the valence band states of a
100 Å (left) and 150 Å (right) thick GaAs/Al0.3
Ga0.7 As quantum well. Note the reversal of
curvature of the first light-hole band that becomes
electron-like near k ∥ = 0. Dashed lines: parabolic
approximation. From Ref [49].

Fig. 3.13.  Schematic description of the origin of the
valence band dispersion in the quantum well
showing schematically the effects of confinement
and interactions.

direction for the angular
momentum.
• The confinement
potential lifts the
degeneracy between the
heavyand light-hole
bands, because their
different mass induce a
different confinement
energy.
(p.47)
• The in-plane dispersion
is highly non-parabolic
because of the coupling
between the bands
induced by the in-plane
momentum. In particular,
this coupling prevents any
crossing between the
light-hole and the heavy-
hole band (see dashed
lines).
• In some cases the mass
is inverted: the bottom of
the LH1 band has an
electronlike character over
some portion of reciprocal
space because of the
repulsion and its
proximity to the HH2
state.
• The presence of biaxial
strain will split the heavy-
hole and light-hole bands
even in the absence of
quantum confinement.
• Because of the k · p
interaction, the bands
rapidly lose their character
(light hole, heavy hole,
etc.) when one departs
from k = 0, and are
therefore mixed; each
state is represented by a
superposition of Bloch
functions originating from
many bands.
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Fig. 3.15.  a) Band-structure of a 35 Å Si/Si0.2 Ge0.8
quantum well grown on Si0.5 Ge0.5 substrate as
calculated in the six-band k · p transfer-matrix
approach. The energy at k = 0 of each bound state is
shown by a line. The band onsets are indicated with
different styles, solid black, dashed gray and dashed-
dot grey for respectively the HH, the LH, and the SO
bands. b) Dispersion relations calculated by either a
four-bands (gray curve) or a six-bands (black curve)
bands k · p models. Adapted from [52].

This effect is shown schematically
in Fig. 3.13. As a result, the
computed band structure is usually
fairly complex, and yields results
such as those shown in Fig. 3.14 for
an unstrained GaAs/AlGaAs
quantum wells, and in Fig. 3.15 for
a Si/SiGe quantum well where
strain has to be taken into account.
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At the microscopic level, optical absorption and gain arise as a result of the interaction
between the electronic systems and the optical modes propagating in the waveguide of the
device. In most cases the optical fields are strong enough to modify the population of the
states, by introducing transitions between them, but not strong enough to dress the states
themselves. For this reason, the light–matter interaction can be introduced at the level of a
perturbation. As a result, the Hamiltonian describing the electronic states H 0, discussed in
the preceding chapter, is complemented by an interaction term Hint(t), such that



(4.0.1)
Using perturbative methods, the transition probabilities between the stationary states of H 0
as a result of the interaction term will be computed.

4.1 Interaction Hamiltonian
Typically two different Hamiltonian can be used to compute the absorption. The first one is
the dipole Hamiltonian given by

(4.1.2)
The other one is derived from the potential vector A by writing the kinetic energy term of a
charge in an electromagnetic field as

(4.1.3)
using the Coulomb gauge (∇A = 0). In a single-band model the mass in eqn. 4.1.3 would be
the effective mass m = m ∗; in a multi-band case, as the band curvature arises from the k · p
interaction, the mass would be the rest electron mass m = m 0. Such a case is treated later in
this chapter.

For low intensity (neglecting the term in |A|2), we obtain as an interaction Hamiltonian

(4.1.4)
Because of the large difference between the light wavelength and the atomic dimension, the
spatial dependence of A(r) is neglected inside the matrix elements, and A(r) is (p.49)
taken outside the integral. This is called the dipole approximation. The form commonly
used is then

(4.1.5)
For a plane wave, A is parallel to , and for a wave polarized along z and propagating in
the y-direction:

(4.1.6)
It is convenient to use a purely imaginary A 0, such that both electric  and magnetic fields
B are real: that yields  = 2iωA 0 and B = 2ikA 0.

The matrix elements of the position and momentum operators are related to each other. As
the commutator between pz and z is [z, pz] = i , using this rule to compute the commutator
between the displacement and Hamiltonian [H 0, z] with H 0 = p 2/2m + V(r) one can derive
the relation



(4.1.7)
This relation between the momentum and position matrix elements enables the use of either
interaction Hamiltonian equivalently, with the same remark concerning the mass being
either the rest mass m 0 or the effective mass m  of the electron, depending on the model
used for the electron states.

4.2 Intersubband and interband transition
The intersubband and interband transitions have a very different character. The distinction
can be easily understood when examining the action of the momentum operator between an
initial state i in band ν to the final state j in band ν′:

(4.2.8)
where f (i, j) is the envelope and uν,ν′ the Bloch part of the wavefunction. The matrix
element can be written then as

(4.2.9)
where we have taken advantage of the slow variation of the envelope function compared to
that of the Bloch part. The first part of the last expression represents the intersubband
transition, and will be non-zero when two envelope states are taken from the same band.
Conversely, the second corresponds to an interband transition matrix element

(p.50) Note that this “clean” distinction between intersubband and interband formally
disappears as soon as a multi-band model is used for the initial and final states: i.e., as soon
as these states are written as

(4.2.10)
In these situations all transitions have various “intersubband” and “interband” components.
This is especially true when examining transitions between valence band states, as they are
strongly mixed as soon as k ≠ 0.

4.3 Selection rules and absorption geometries
For conduction band states in a one-band model, only the component of the electric field
(and of the potential vector, as both are parallel) in the growth direction will induce a non-
zero dipole matrix element. In fact, taking for the wavefunction the canonical form

(4.3.11)



Fig. 4.1.  Experimental geometries allowing the
measurement of intersubband transitions. Because of
the large refractive index of the semiconductor
substrates, prism-like geometries are favorable, as
they induce a large electric field component in the
growth direction.

Fig. 4.2.  Photocurrent in a quantum well
photoconductor as a function of the polarization. The
residual responsivity for the TE polarization is less
than 0.2% than for the electric field normal to the
layers. Reprinted with permission from [53].
Copyright 1998, AIP.

then the matrix element corresponding to the x-component of the momentum px yields:

(4.3.12)
which, because of the term δi, j is zero for transitions between different states. Of course, a
similar condition is valid in the y-direction. As a result, only the z-component of the electric
field couples to the intersubband transition. This has profound experimental implications as
it, for example, rules out absorption for light at normal incidence. As a result, a number of
geometries have been developed to measure the absorption, as shown in Fig. 4.1. Because
of the large refractive index (typically larger than nrefr  3) of the semiconductor
substrates, prism-like geometries are required to induce a large electric field component in
the growth direction. The validity of the selection rule

(p.51) was checked in
GaAs/AlGaAs samples by H.
C. Liu and coworkers in a
photocurrent experiment on
specially designed samples
[53]. As shown in Fig. 4.2, the
absorption by the TE
polarization was less than 0.2%
of the TM absorption. The
absorption in TE is non-zero
when considering the
wavefunctions in the multi-
band case, and will be
discussed shortly.
4.4 Absorption strength

4.4.1 Absorption for a two-
dimensional system

When examining the
transmission of an essentially
two-dimensional system, one
should realize that the correct
number to represent the
absorption is unitless, and
represents the fraction of the
light absorption by the
system. The scattering rate,
using Fermi’s golden rule, is



(4.4.13)
The absorption of the electromagnetic wave by the quantum system is responsible for a
decay of the latter. Writing α 2D as the fraction of the wave absorbed by the system, we
have that the power loss per unit area S is now

(4.4.14)
and the intensity is related to the electric field by

(4.4.15)
(p.52) where nrefr is the refractive index and c the velocity of light. Assuming that the
beam arrives at an angle θ to the normal, only the component of  in the z-direction will
couple to the intersubband system. Balancing the energy loss of the EM field with the
energy gained by the quantum system yields

(4.4.16)
We defined the (unitless) two-dimensional absorption α 2D(ω) as the fraction of the light
absorbed by crossing the two-dimensional system, such that the light intensity is I = I 0
exp(−α 2D). Substituting the scattering rate by the one computed above, we obtain

(4.4.17)
where ρ is now a density of state per unit area, the δ function forces the conservation of the
momentum in the light absorption, and i and f are the initial and final states. In the one-
band model the electron subbands are parallel, and the absorption is

(4.4.18)
where ni is the populations (per unit area) of the initial state (the final state is assumed to be
empty) and zif is the shorthand notation for the dipole matrix element.

Scattering of the electrons with lattice vibrations, as well as collisions with interface
roughness, broadens the line in practice, and the δ function δ(Ef − Ei − ω) can be replaced

by a normalized Lorentzian line  of half width γ, and we have finally for

the absorption:



(4.4.19)
For the geometries shown in Fig. 4.1 one should multiply the above result by the number of
quantum wells in the stack and by the number of “passes” in the waveguide: i.e., the
number of times the light crosses the multi-quantum well system.

The value of the dipole matrix element between state i and state j can be computed
analytically for an infinite quantum well, and the value yields for the dipole in the growth
direction, taken as z,

(4.4.20)
where L is the width of the quantum well. This relation stresses the linear relationship
between the dipole matrix element and the size of the quantum well.

(p.53) 4.4.2 Waveguide

Another interesting case is that of the waveguide where the absorption occurs in a guided
mode. In that case, the angle of incidence is θ = π/ 2 and expression 4.4.19 diverges. In that
case it is more convenient to think of the absorption as being from an “homogeneous
material” of thickness L, defined as absorption coefficient α = α 2D cos θ/L for an
homogeneous material in which the light would be traveling. It is sufficient to reinterpret
the above equation as

(4.4.21)
where Ni = ni/L is the volume electron density. The natural questions are of course, “What
is the correct value of L? Is L the thickness of the well, the effective one of the
wavefunction, the one of the quantum well and the barrier?” In most cases, happily, the
particular choice of L has no practical influence on the relevant physical quantity to be
measured. In fact, what is measured directly is not the material absorption but that of a
guided mode. As shown in Chapter 6, the modal loss of the waveguide αw is related to the
material one by an overlap factor,

(4.4.22)
where the overlap factor is defined as a function of the electric field profile in the
waveguide (x) by



(4.4.23)
if Ẽ 2 is the normalized intensity in the guide at the location of the quantum well. The linear
dependence of Γ in L just cancels the inverse dependence of α in the same quantity.

4.4.3 Gain and loss cross-sections

In an electronic system where the upper-state and not the lower state is populated,
stimulated emission will occur with exactly the same rate as for the absorption. As a result,
the same derivation as above can be performed, just changing the sign of Pdiss and R, as the
optical power is now generated instead of absorbed. For this reason, when both lower and
upper-states are populated, the ground-state density in eqn. 4.4.21 should be substituted by
the difference between ground- and upper-state densities.

Rewriting eqn. 4.4.21 using the wavelength  instead of , and writing the volume

density Ni = ni/Lp as a function of the sheet density ni, where Lp is (by convention) the
period length of the active region of a quantum cascade laser, we obtain

(4.4.24)
(p.54) As α can now be either negative or positive, the gain is defined simply as a negative
absorption:

(4.4.25)
An important quantity is the peak-gain cross-section, or the maximum gain at resonance
( ω = Ef − Ei) per unit of population of the upper-state:

(4.4.26)
4.5 Experimental results
The first measurement of the intersubband absorption in a heterojunction quantum well (as
compared to that in an inversion layer) was performed in a fifty period GaAs/Al0.3Ga0.7As
multiquantum well by West and Eglash [6]. In these first measurements, shown in Fig. 4.3,
the quantum wells were modulation doped at a level of 4 × 1011 cm−2 and measured at the
Brewster angle. A much better signal over noise

can be achieved using the
waveguide configuration such
as the one shown in Fig. 4.1, as



Fig. 4.3.  Intersubband absorption in a series of 65 Å
thick and 82 Å thick GaAs/Al0.3Ga0.7As multi
quantum wells. Reprinted with permission from [6].
Copyright 1985, AIP

the absorption strength is
greatly enhanced. Indeed, the
absorption 4.4.19 is given by
the expression

(4.5.27)
where Npass is the number of passes across the quantum well system, and NQW isthe
number of quantum wells in the stack. For a Brewster-angle experiment, the lastterm in
eqn. 4.5.27 is 0.089 for NQW = 1; for a waveguide geometry with a 45-degree (p.55) angle
(such as “multi-pass A” in Fig. 4.1) with a typical length of l = 4 mm and a thickness of t =
0.5 mm, the number of passes Npass = l/t = 8, and the last term is equal to 5.65—an
improvement of a factor of 63 in comparison with the Brewster-angle geometry. The latter
is especially unfavorable for materials with a high refractive index, since the internal angle
becomes very low, with a very small component of the field in the growth direction.

Fig. 4.4a shows the absorption spectrum of a series of twenty InGaAs/AlInAs quantum
wells, 52 Å thick, doped at a sheet density of ns = 2.5 × 1011 cm−2 in a waveguide
geometry at 45-degree incident angle.

In contrast to interband
transition, where the interband
matrix element rcv is the
dominant term, the atomic-like
nature of the joint density of
state as well as the tailorability
of the potential enables the
fabrication of complex energy
ladder structures. This
capability was exploited to



Fig. 4.4.  a) Intersubband absorption between two
bound states in a stack of twenty repetitions of a 52
Å InGaAs/AlInAs quantum well. The latter are
doped with an electron sheet density of ns = 2.5 ×
1011 cm−2. b) Intersubband absorption in a multi-
quantum well designed for triply resonant non-linear
susceptibility. Reprinted with permission from [51].
Copyright 1994, APS.

create multi quantum wells with
levels engineered to provide
resonant non-linearities. The
specific feature of these
structures was to provide
electronic states that were all
coupled by strong dipole matrix
elements. The example of a
structure designed to provide a
resonance for the third
harmonic field [54], i.e.
presenting a very large resonant

, is shown in Fig. 4.4b. The
structure consists of an 18 and
20 Å thick InGaAs quantum
well pair, coupled to a thick 42
Å thick InGaAs well by 16 Å
thick AlInAs barriers. The
absorption of this structure is
shown in Fig. 4.4b and clearly
exhibits the absorption
resonances related to the 1–2,
1–3, and 1–4 transitions.
Another situation arises when
a state (the upper one, for absorption measurements) is located in a continuum. In this case,
the absorption is distributed among a continuum of transitions corresponding to the various
allowed transitions. As both localized (for the ground states) and continuum states (for the
excited states) have to be treated (p.56) together, normalization of the wavefunctions might
be somewhat challenging. One common trick is to confine artificially the whole potential
within a large “box”, such that all states can be considered as bound states. The size of the
box must be large enough such that the level spacing created by the additional confinement
is smaller than the natural line width of the levels.

A comparison between a bound-to-continuum and bound-to-bound transition is shown in
Fig. 4.5, where the absorption measured in a series of 32 Å thick quantum well is compared
to the absorption in a system where the excited resonance of the system, localized some 60
meV above the onset of the continuum, is confined by electronic Bragg reflection [55]. The
asymmetric line of the bound-to-continuum transition

displays a maximum close to
the onset of continuum, and
displays two features attributed
to a superlattice effect due to
the periodic arrangement of the
quantum wells. Note that in this
system the maximum of the
absorption does not correspond
to the position of the resonance



Fig. 4.5.  a) Energy levels in a sample consisting of a
periodic stack of 32 Å thick quantum wells. The
measured absorption (b) shows an asymmetric line
with two features corresponding to superlattice
resonances formed by hybridation of the resonances
created by the individual wells. In the second sample
(c), electron reflectors formed by 16 Å thick InGaAs
quantum wells and 39 Å thick quantum barriers
localize the state above the onset of the classical
continuum. (d) The resultant absorption line is
narrow and peaks at a higher energy than the onset of
the continuum. (Adapted from [55]).

in transmission. In the second
sample the main quantum
wellis surrounded by a
superlattice consisting of an Lw
= 16 Å thick InGaAs quantum
well and an Lb = 39 Å thick
AlInAs barrier, built in order to
fulfil the Bragg reflection
(p.57) condition

(4.5.28)
and

(4.5.29)
with the electron wavevectors in the well kw and in the barrier kb evaluated at the energy of
the resonance. These conditions are equivalent to those used to build optical quarter wave
stack for high-reflectivity mirrors. As a result, the absorption shown in Fig. 4.5d is narrow
and symmetric, as is the one for a bound-to-bound transition shown in Fig. 4.4.

4.6 Sum rule in absorption
Let us consider first a one-band model. Combining the completeness of the (eigen)states

(4.6.30)
and the relationship between position and momentum matrix element 4.1.7, the sum rule
for the oscillator strength can be derived:

(4.6.31)
where the oscillator strength is defined as

(4.6.32)
Writing the sum rule this way emphasizes the effect of the effective mass in the
enhancement of the intersubband absorption that basically scales like m 0/m ∗. In the k·p
approach of Kane, the effective mass arises from the interaction between the conduction
and valence bands, and is therefore proportional to the bandgap. As a consequence, narrow-
gap semiconductors will exhibit a much larger intersubband transition strength than wide
bandgap materials. This important fact is obscured when a “normalized” oscillator strength
is used, f′ = fm ∗, in place of the usual definition 4.6.32.



Fig. 4.6.  Comparison of the intersubband absorption
for various structures, with energy levels
schematically drawn close to the curves, illustrating
the spreading of the oscillator strength for samples
with an increasing number of allowed transitions.

The sum rule is illustrated graphically in Fig. 4.6, where the absorption spectra of samples
with different quantum well arrangements are compared for similar electron densities and
experimental conditions. The strength of a simple square well 1-2 intersubband absorption
is “spread” further between more and more transitions when considering two or three
quantum well systems.

Eqn. 4.6.31 also holds with the initial state being an excited state, in which case the
“downward” transitions have a negative sign. Since the sum must remain constant, the
upwards transitions have an oscillator strength that grows with the initial state index i. In
the simplest case of an harmonic oscillator, the oscillator strength f i, i+1 between adjacent
states is simply proportional to the index j of the state:

(4.6.33)
This very important fact shows that transitions between excited states, as they occur
naturally in quantum cascade lasers, naturally yield larger intersubband absorption (p.58)

.
4.7 Absorption in a
quantum well: a two-band
model
The problem arising with the
previous model is that it does
not allow the introduction of
non-parabolicity. It is valid,
therefore, only for
confinement energies much
smaller than the bandgap (En,
Em  Eg). One could be
tempted to use the same
approach when computing
the absorption in the multi-
band case, taking as the
matrix element the envelope
function of the conduction
band state. This approach was used in some of the initial intersubband literature, but led to
difficulties since, strictly speaking, the envelope functions of the conduction bands are no
longer orthogonal to each other ( χm|χn  ≠ δnm). A much better approach is to compute
the matrix element directly in the multi-band model [51]. If one wants to treat a
conduction-band state, an effective two-band model is a good approximation. In the spirit
of eqn. 3.2.45, we assume a two-component wavefunction for the initial Ψ(1) and final Ψ(2)

state, with

(4.7.34)



(4.7.35)
We then evaluate the matrix element pz:

(4.7.36)
Let us consider the first term, which yields

(p.59)

(4.7.37)
Similarly, the second term will yield

(4.7.38)
Using similar derivations for the third and fourth terms, the result can be summarized in a
matrix form:

(4.7.39)
acting on the components (χc, χv) of the wavefunction. Dropping the diagonal terms as pz

 pcv, we finally obtain

(4.7.40)
Using the relationship between χc and χv given by eqn. 3.2.46, and using the definition of
the energy-dependent effective mass 3.2.48, we finally obtain

(4.7.41)
In this picture, both intersubband and interband transitions are treated on the same footing.

Using a generalized version of this model, it is possible to show [56] that transitions with
in-plane electric field couple states with opposite spins, and for a symmetric quantum well
for a transition between state of opposite parity, the ratio between the two absorption is
given approximately by



(4.7.42)
where Eij is the intersubband transition energy, Δ0 is the spin–orbit splitting, and Eg is the
fundamental energy gap of the material. For a transition at λ = 10 μm in a GaAs/AlGaAs
quantum well, the predicted fraction of the absorption in TE is only 0.35% of the TM
absorption, in rough agreement with the value observed experimentally.

4.8 Depolarization shift
In absorption experiments the electron density is easily of the order of 1017–18 cm‒3. As a
result, electron–electron interactions are expected to add a correction to the transition
energy. Besides the Hartree potential, treated in the preceding chapter, and whose influence
will be felt mostly for potentials with a dipole charge, another important effect is the
depolarization shift. This effect can be seen as a screening of the interaction of one electron
by the rest of the electron bath. Following Ando, Fowler, and Stern [5], it can be treated in
a relatively straightforward manner by considering (p.60) the quantum well system as a
sheet of electronic plasma of sheet density ns, and thickness def f, with a (three-
dimensional) conductivity at frequency ω given by

(4.8.43)
where τ characterizes the broadening of the transition, and f 12 and ω 12 the oscillator
strength and bare electron resonance frequency respectively. The current per unit area is
given as a function of the electric field z by

(4.8.44)
Between the quantum well system and the semiconductor having itself a dielectric constant 

, the boundary conditions of Maxwell’s equation force the continuity of the z-component
of the displacement vector Dz = ϵ 0 ϵ z. As a result, following reference [5], we define the
ratio between the the electric field outside ext the slab to that inside the slab by zz:

(4.8.45)
This relative dielectric constant of the two-dimensional electron gas, in the z-direction, is
given as a function of the conductivity by

(4.8.46)
The effective conductivity σ˜zz, allowing us to write the current–field relation eqn. 4.8.44 in
terms of the external field ext, is then given by



(4.8.47)
This quantity will control the dissipation of the two-dimensional system. The dissipation in
the two-dimensional electron system is given by the effective conductivity

(4.8.48)
The expression for the effective conductivity is given as a function of frequency by
substituting eqns. 4.8.43 and 4.8.46 into eqn. 4.8.47, and its expression (including the term
def f for simplicity) may be written as

(4.8.49)
where a resonance at frequency ω˜12

(4.8.50)
is blueshifted from the bare frequency by an effective plasma frequency given by

(4.8.51)
As a result, the absorption will be peaking at higher frequency than the bare transition. This
difference is called the depolarization shift, and is especially strong for large electron
densities and low frequencies. Its importance was appreciated very early, when (p.61) the
subband structure of the Si/SiO2 interfaces was measured. Fig. 4.7 shows the intersubband
absorption in an asymmetric GaAs/AlxGa1−xAs coupled well system. This system exhibited
a bare subband splitting of 14 meV for the E 12 transition, and allowed transitions E 13 and
E 23 in the mid-infrared range. As a result, the depolarization shift is negligible for these
transitions, and the bare value of E 12 can be directly extracted from the values of E 13, E

23:

(4.8.52)
The derived value compares well with the computed value (14 meV). In contrast, the
measurement of the absorption in the terahertz of the absorption peaks at a photon energy Ẽ

12 = 19.3 meV that includes a significant contribution from the depolarization shift. Indeed,
applying eqns. 4.8.50 and 4.8.51 with ns = 4 × 1011 cm−2, ϵsc = 13.1, def f = 15nm, f 12 =
5.9, and yields Ẽ 12 = 19.1 meV, which is very close to the experimental value

.
4.9 Absorption linewidth



Fig. 4.7.  Intersubband absorption in a modulation
doped asymmetric GaAs/AlxGa1−xAs coupled well
system, consisting of 61 Å and 70 Å GaAs well
coupled through a 20 Å Al0.33Ga0.67As barrier. The
sheet carrier density is ns = 4 × 1011 cm− 2. Inset:
energy level scheme. a) Absorption in the terahertz,
showing the (1–2) transition with the depolarization
shift. b) Absorption in the mid-infrared, showing the
(2–3) and (1–3) transitions where the depolarization
shift is negligible.

The lineshape function has a
very important role in the
modeling of quantum cascade
lasers. For any given design,
material choice, injection
level, and the densities and
oscillator strength will be
fixed. The value of the gain
will then be inversely
proportional to the linewidth
as the lineshape function is
normalized to unity.

4.9.1 Homogeneous and
inhomogeneous broadening

In atomic systems, finite
upper-state lifetime and
inhomogeneities convert the
lineshape of the optical
transition from the δ function
that arises from an energy
conservation (p.62)
requirement into a function
with a finite energy width.
One therefore distinguishes
the homogeneous broadening
component (lifetime broadening due to collisions and radiative transitions) from the
inhomogeneous components (velocity distribution due to thermal motion of the individual
atoms).

An homogeneous broadening will yield a Lorentzian lineshape such as the one assumed in
the preceding section gij(ω):

(4.9.53)
where ωij is the resonant frequency and γ is the broadening parameter. In contrast to a
simple atomic system, the scattering time defining the value of γ is not only given by the
lifetime of the electron in the upper-state. In a quantum well system, upper and lower states
are actually subbands, and a scattering process taking an electron from a state k i to k f
within the same subband will not change the population of the lower or upper-state while
still inducing loss of phase (dephasing) of the state, and therefore a lifetime broadening.
Using the terminology of nuclear magnetic resonance, the time between such dephasing
processes is called T 2, while the upper-state lifetime is referred to as T 1. As a result, the
broadening parameter can be written as



Fig. 4.8.  a) Lineshape functions in various limiting
cases, as discussed in the text. b) Comparison
between the absorption measured in a coupled well
system shown in Fig. 4.7 (solid line) with a Gaussian
(dashed) and a Lorenzian (dotted line) fit. The

(4.9.54)
A more complete model will take into account the correlation between the scattering
mechanisms for both states1 [5], and the computation of these two times is the topic of the
next chapter.

In a quantum-well system, inhomogeneous broadening will arise from long-range quantum
well interface fluctuations, from non-parabolicity, as well as in multi quantum well
systems, from well-to-well width fluctuations. Interface roughness occurring on a spatial
scale much shorter than the de Broglie wavelength of the electron, as we show in the next
chapter, is best treated as an homogeneous broadening mechanism.

Limiting cases. According to these considerations, the lineshape should tend to a square,
Lorenzian, or Gaussian lineshape in the following limiting cases, as shown schematically in
Fig. 4.8a.

• Non-parabolicity. At low temperatures, for large electron densities and
narrow bandgap materials, where non-parabolicity should be dominant, a
square-shaped lineshape should be observed. This lineshape can be seen as an
image of the step-like joint density of state of two subbands with different
masses.
• Disorder. For narrow wells, large bandgap materials with a heavy mass,
wheredisorder should play a dominant role, a Gaussian lineshape should be
observed.
• Lifetime. In a clean system in which a short lifetime would be expected, a
Lorenzian lineshape should be measured.

(p.63) The low-temperature measurement [57] of the 1–3 transition of the asymmetric
quantum well system shown in Fig 4.7 is compared to a Gaussian and Lorenzian fit in Fig.
4.8b. The experimental measurement fits very well with a Lorenzian line shape with
broadening parameter Γ = 1.33 meV. Note that the same fit on the 2–3 transition of the
same system leads to a much more Gaussian lineshape. In the low-density

carrier regime, a Gaussian line
shape was also measured in a
single quantum well in which
the density could be modulated
[58].

4.9.2 Interface disorder

In quantum-well samples the
greatest source of disorder is
the monolayer fluctuations of
the quantum well interfaces.
The first experimental



broadening corresponds to a full width at half
maximum of 2 Γ = 2.66 meV.

Fig. 4.9.  Linewidth of the absorption of quantum
wells of various widths. The dotted line shows the
computed value of the broadening caused by the
optical phonon scattering. The decrease in linewidth
due to the phonon scattering as a function of
quantum well width is a consequence of the increase
in transferred momentum, and the overall increase is
attributed to the increasing role of interface
roughness scattering. Reprinted with permission
from [59]. Copyright 1996, AIP.

indication that the linewidth
was limited by interface
roughness scattering came
from the experimental work
of Campman and coworkers [59], who measured a series of GaAs/AlGaAs quantum well
samples of various width. They also measured samples in which the well was not from a
binary but the ternary systems AlGaAs and InGaAs. As shown in Fig. 4.9, they found
Lorenzian lineshapes whose widths decreased with increasing quantum well width, with
little or no effect on the alloy scattering. This is in contrast to what would be expected if the
linewidth were limited only by the optical intersubband phonon emission, as the strength of
the optical phonon scattering is predicted to increase for wider quantum wells. A very
successful model for interface scattering has been developed by Unuma et al. [60], based
on earlier consideration by Ando on two-dimensional systems [5]. This model, described in
more detail in the next chapter, is able to predict correctly the absolute value and the
temperature dependence of the broadening in quantum well [60] and quantum cascade laser
systems [61,62]. (p.64)

4.9.3 Non-parabolicity and
depolarization shift

Assuming that the non-
parabolicity is treated in the
two-band model, according to
eqn. 3.1.26, the broadening
ΔE is given by

(4.9.55)
where EF is the Fermi energy
of the ground subband, E 21
is the intersubband transition
energy, and EG is the
bandgap. As an example, in a
15 nm thick InAs/AlSb
quantum well (EG = 0.42eV)
with a 1–2 transition energy
of 125 meV doped to a sheet
density of ns = 1 × 1012 cm−2

corresponding to a Fermi energy of about 60 meV, the predicted broadening from eqn.
4.9.55 is about 20 meV. The intersubband absorption was measured by Warburton et al.
[63], and the result is shown in Fig. 4.10. Instead of the square-top lineshape that would be
expected from the simple argument, a narrow line was observed. The authors explained this
effect as the depolarization shift.



Fig. 4.10.  Transmission through a 15 nm thick
InAs/AlSb mult-quantum well system. Because of
the large non-parabolicity of this system, a broad
(about 20meV wide) peak would be expected, in
contrast with the narrow experimental line observed.
This narrowing was interpreted as a result of
depolarization shift. (Adapted from [63].)

As discussed in a preceding paragraph, the depolarization shift arises from the screening of
the incident field, preventing it from penetrating into the quantum-well system, and causing
for a single transition a blueshift of the latter. Its effect is more subtle when a large
collection of oscillators with different transition energies are interacting via the
depolarization field. In essence, the oscillator strength of the transitions at lower energies is
transferred to the one at the higher transition energy. As a result, the overall transition is not
only blueshifted but is also narrower. This effect has been observed both when the
broadening arises from non-parabolicity, as discussed here, as well as from inhomogeneous
broadening [58].

This effect of the depolarization shift can be understood by considering eqn. 4.8.47. We
could rewrite the conductivity, for an ensemble of oscillators with a distribution of
transition energies ω 12, as

(p.65)

(4.9.56)
For low densities, the denominator remains close to unity and the conductivity remains
close to the average of an ensemble of oscillators. In the large density limit, however, the
absorption peaks at the frequency ω where the denominator becomes close to zero. This
effect is especially clear in a simple case where two absorption lines, assumed originating
from the 1–2 and 2–3 transitions of a 22 nm thick GaAs square well, are interacting via the
depolarization shift. A carrier density of ns = 3 × 1011 cm−2 was assumed, leading to a



Fig. 4.11.  Imaginary part of the dielectric constant
(dashed line) and real part of the conductivity (solid
line) showing the effect of the depolarization shift on
an ensemble of oscillator. Case of a doped square
well, with the Fermi energy above the first excited
state. Note the transfer of oscillator strength to the 2–
3 transition at the expense of the 1–2 transition. Case
of a continuous distribution of transitions, as would
arise in the case of a transition broadened by non-
parabolicity at low temperature. Note the narrowing
of the line, as was observed experimentally in Fig.
4.10.

Fermi energy slightly above the n = 2 state, as shown in Fig. 4.11a, where the imaginary
part of the dielectric constant and the real part of the effective conductivity σ˜zz are
compared. The depolarization shift not only increases both transition energies by about 3
meV, but also enhances the strength of the high-energy transition at the expense of the
lower-energy transition. This effect was observed experimentally in an InAs/AlSb highly
doped quantum well [64].

In Fig 4.11b, the hypothetical case of a continuum of transition extending between a
transition energy of 7 meV and 12 meV is assumed, as would occur if the broadening were
originating from non-parabolicity. As observed experimentally in Fig. 4.10, the broadened
line is blueshifted and narrowed by the depolarization shift.

4.10 Stark-tuning of intersubband absorption
The addition of a static electric field to the potential of the heterostructure will shift the
levels. Using a perturbation expansion for the energy levels in a one-band model, the shift
of the i th level ΔEI can be written as

(4.10.57)
(p.66)

as a function of the applied
electric field z in the z-
direction. Due to the lower
effective mass of the electrons
as compared to the bare mass,
the wavefunctions exend over a
larger distance, and the
corrections to the energy
position is usually much larger
than in the case of atoms and
molecules.
For a symmetric quantum
well, the first-order
correction in eqn. 4.10.57
vanishes by symmetry, and if
one takes into account only
the first two levels, the Stark
shift for the 2–1 transition is
written as

(4.10.58)
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where the shorthand notation E 21 = E 2 − E 1 has been used. As shown in the above
equation, the Stark shift can easily be as large as a few meV for a structure with a transition
at 100 meV [65]. A very interesting feature is, however, that quantum-well structures need
not to be symmetric, in which case the first-order term of the perturbation theory dominates
and the Stark shift is now

(4.10.59)
where the term z 22 − z 11 is the difference between the center of mass of the probability
distribution between the upper and lower states. Using this effect, very large changes of the
transition energy can be achieved [66]. Such tunability has been used in lasers [67, 68],
modulators [69], and the tuning of non-linear optics structures [70].

Notes:

(1) In particular, the broadening written in eqn. 4.9.54 assumes an infinite lifetime for the
ground state as well as the same (uncorrelated) dephasing for both upper and lower states.
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probe, intersubband saturation experiments, and intersubband electroluminescence.
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As shown in Fig. 5.1, an electron in an excited subband can recombine to the lower one through a
variety of processes. It can change subband through spontaneous emission, inelastic scattering by
a phonon, elastic scattering through an impurity or interface defect, or finally through electron–
electron scattering. In stark contrast to the inter-band case, the radiative emission of photons is by
far not the dominant intersubband mechanism even in a perfectly clean material. As shown
schematically in Fig. 5.1, the

situation is very different if one
considers two subbands that are
spaced by an energylarger or smaller
than the optical phonon energy. In the
first case, for an electron sitting in the
excited subband, optical phonon
emission is always possible and
leadsto lifetimes in the order of 1 ps.
This process is usually the dominant
scattering mechanism, as other
processes that could compete with the



Fig. 5.1.  a) Schematic description of the relevant
scattering mechanisms in the mid-infrared where the
optical phonon scattering emission, absorption
(abbreviated OP), and interface roughness
(abbreviated (IR)) (for short-wavelength lasers) are
dominant. b) Intersubband relaxations processes in a
quantum well with an energy separation smaller than
the optical phonon energy E 21  ωLO. In this
configuration, various processes may play a role:
optical phonon emission (OP), electron–electron
scattering (EE), ionized-impurity scattering or
interface roughness scattering (II, IR), acoustic-
phonon emission (AC).

latter can be engineered away by
correctly designing the structure, as
discussed in Chapter 7. Another
important process for short-
wavelength lasers (λ ≤ 5 μm is the
elastic scattering by interface
roughness scattering.
In contrast, when the energy
spacing between subbands is
reduced below the optical phonon
energy, scattering by the latter may
be forbidden depending on the
temperature and the electron
densities, and the lifetime is now
controlled by a competition (p.68)
between optical phonons and a
number of other processes, as shown in Fig. 5.1b. Typically, while optical phonon scattering by
thermally excited electrons will always dominate at high temperatures (T  60K), electron–
electron scattering or interface scattering will be the strongest scattering mechanisms at low
temperature, depending on the structure and on the electron density. Only for extremely low
densities, and for very clean systems, will the acoustic phonon scattering be of any significance.

Intersubband and intrasubband scattering. The intersubband scattering rate will be evaluated to
compute the population dynamics of the states and correspond to processes where an electron
moves from one subband to the next. In general, for any given scattering Hamiltonian Hscatt, the
scattering rate between the state with initial wavevector ki in subband i to the available states in
subband j will be evaluated using Fermi’s golden rule:

(5.0.1)
where δE is the energy exchanged during the scattering process, and as such is zero for elastic
processes.

Intrasubband scattering, in contrast, corresponds to processes where the electron remains in its
subband but changes its wavevector. The quantity of interest is the energy broadening Γintra it
will induce to the corresponding intersubband transition. Following the approach of Ando [71],
we write then

(5.0.2)
where the δ function specifies that the energy conservation must be held in both subbands. The
evaluation of this δ function requires expansion of the square, and some extra care when taking
non-parabolicity into account [72].

In an optical transition, the total broadening is then



Fig. 5.2.  Radiative lifetime of a square quantum
well as a function of the transition energy. A constant
value of the oscillator strenght of 23, corresponding

(5.0.3)
Where

(5.0.4)
are the broadening arising from sum of the intersubband rates out of subbands i and j,
respectively. In this approach, therefore, the dephasing time T 2 introduced in eqn. 4.9.54 can be
computed, and is given by

(5.0.5)
(p.69) 5.1 Spontaneous emission
Between an initial state i and a final state j with a non-zero optical matrix element zij, spontaneous
photon emission is possible and will occur with a rate given by

(5.1.6)
The energy dependence of the above equation can be better grasped when expressing it as a
function of the oscillator strength between the two states:

(5.1.7)
as the oscillator strength will be of the order of 1/m ∗ for transition between the first two states in

an infinite potential well  (using eqn. 4.4.20 for the dipole matrix

element) and f 12 = 1/m ∗ for the parabolic well. As a result, the spontaneous emission rate is
fundamentally proportional to the square of the photon energy. In Fig. 5.2 the spontaneous
lifetime is plotted as function of transition energy

for a transition between the first two
states in a
Ga0.47In0.53As/Al0.48In0.52As square
well, assuming an oscillator strength f

12 = 23. The lifetime varies between
60 ns at λ = 10 μm to 6 μs at λ = 100
μm. These long lifetimes are to be
compared with the very short non-
radiative lifetime observed in the same
system, and explain the very low
radiative efficiency observed in the
spontaneous emission.
5.2 Phonon scattering
Lattice vibrations, phonons, perturb
the strict periodicity of the



to an InGaAs/AlInAs quantum well, has been
assumed

semiconductor crystal.For this
reason the electronic states are no
longer strict stationary eigenstates
of the (p.70) Hamiltonian. In the
basis of these eigenstates, phonons induce inter-level transitions and allow energy flow between
the lattice and the electron system. Of all phonon scattering mechanisms, polar optical phonon
scattering is the most efficient in III–V material systems.1

5.2.1 Optical phonons

The simplest treatement of optical phonon scattering in polar III–V semiconductors follows an
approach first outlined by Price [73]. It is based on two important assumptions, usually well
verified in III–V structures:

• The phonon scattering is dominated by the Frölich Hamiltonian, i.e. an interaction
between the electron and the piezoelectric potential created by the local lattice
deformation.
• The optical phonons have very little dispersion, and therefore can be assumed to
be monoenergetic.

In this approach, an electron with an initial wavevector ki and energy Ei in the upper subband
scatters to the lower subband at kf, therefore losing (or gaining, in the case of optical phonon
absorption) an energy equal to ± ωLO in the process. The process is shown schematically in Fig.
5.3. The momentum Q exchanged in the process is

(5.2.8)
The value of Q is on average larger for phonon absorption than for phonon emission because the
final state is higher in the band. The scattering rate is then obtained by applying Fermi’s golden
rule on the envelope wavefunction. Almost all the treatments neglect the valence band part of the
wavefunction (although the computation does not cause any significant difficulty) and treat the
material as being a bulk material.

The scattering rate is then written as

(5.2.9)
where the effective dielectric constant entering the Frölich Hamiltonian is

(5.2.10)
where  are the mid-infrared and the static dielectric function, respectively.

The form factor entering in eqn. 5.2.9 is computed using the envelope wavefunctions:

(5.2.11)



Fig. 5.3.  Scattering by an optical phonon between
two subbands. An electron with initial energy Ei and
initial wavevector ki is scattered to the lower
subband at kf, therefore losing (or gaining) an energy
equal to ωLO in the process.

Fig. 5.4.  Computed electron lifetime (left vertical
axis) due to optical phonon scattering as a function
of transition energy in a square quantum well, whose
width is indicated in the rigth vertical axis. Zero

The intersubband lifetime due to optical phonon emission, computed using eqn. 5.2.9, with zero
initial wavevector, is plotted as a function transition energy for a squaresingle quantum well in
Fig. 5.4. As shown in Fig. 5.4, a strong reduction of the lifetime (p.71)

is predicted when the two states are
spaced resonantly with the optical
phonon. Technically, this increase in
scattering rate appears when Q
approaches zero at resonance. Note,
however, that the model used here,
based on Fermi’s golden rule, is not
able to compute this value exactly at
resonance. The global trend shown in
Fig. 5.4 is rather robust, but will hold
only for small ratios of the in-plane
kinetic energy to the intersubband
energy. The computed lifetime as a
function of in-plane kinetic energy is
shown in Fig. 5.5 for a square
InGaAs/AlInAs, 220 Å thick quantum
well. The strong increase of lifetime
with initial energy can easily be
understood by a study of eqn. 5.2.9
and Fig. 5.3. As the electron kinetic
energy is increased, the average value
of Q is increased as the integral in Eqn
5.2.9 runs on the circle of the available
final kf values. This increase in
lifetime should be kept in mind when
estimating population inversion in
quantum cascade structures, as the
electrons will exhibit a very large
kinetic energy after the first optical
phonon emission.
(p.72)

Temperature dependence. The above
computation was carried out for
spontaneous emission of an optical
phonon. When considering a system at
finite temperature, absorption and
stimulated emission of an optical
phonon should be considered along
with the spontanous emission factor.
The phonon population nLO is given
by the Bose–Einstein factor:
(p.73)

(5.2.12)



initial kinetic energy in the upper subband, and zero
temperature was assumed. Experimental
measurements are reported from Faist APL 1993
[74], Lutgen PRL 96 [75], and Lutgen PRB 96 [76].

Fig. 5.5.  Computed electron lifetime due to optical
phonon scattering as a function of the initial kinetic
energy. A square, 220 Å thick
Ga0.47In0.53As/Al0.48In0.52As quantum well was
considered. The equivalent electron temperature is
shown in the top horizontal axis

Fig. 5.6.  Computed temperature dependence of the
intersubband lifetime for a 100 Åthick

The total scattering rate is then
obtained by separately adding the
emission and absorption processes

(5.2.13)

where  are the optical phonon emission and absorption rate computed using eqn.
5.2.9. For transition energies larger than the optical phonon energy, as the phonon energy is larger
than kT even at room temperature, the resultant dependence of the scattering time is relatively
weak, as the lifetime decreases by about a factor of 2 when the temperature increases from zero to
400 K

.

5.2.2 Acoustic phonons

The computation of the acoustic
phonon scattering rate is usually
made using the same
approximations (one sound velocity
cs, bulk phonons) as in the optical
phonon case [73,77]. The
computation is, however, more
cumbersome as one has to integrate
over the possible values of the
phonon wavevector, assuming



InGaAs/AlInAs quantum wellconservation of energy and in-plane
momentum for the scattering
process between the intial ki and
final kf wavevector of the electron. The momentum of the phonon perpendicular to the interfaces
is q ||. The angle between the initial and final wavevector is θ. The total scattering rate for the
phonon emission wif = 1/τif is then [77]

(5.2.14)
(p.74) where the angular frequency of the phonon ω is obtained from the phonon wavevector q ||

(5.2.15)

(5.2.16)
and the form factor is computed

(5.2.17)
D is the deformation potential for electrons, ρ the density, and cs the longitudinal velocity of
sound (8.6 eV, 5.3 g/cm3 and 3700 m/s for GaAs respectively).

As in the case of the optical phonon, nac is the Bose–Einstein factor for the emission of acoustic
phonons, given by

(5.2.18)
The expression for the scattering rate for the absorption of acoustic phonon is very similar to eqn.
5.2.14, replacing the term (1 + nac) → nac and changing the sign of the optical phonon energy ω
→ ‒ ω. The total scattering rate is then the sum of the scattering rates for emission and
absorption. The computation is more cumbersome because the Bose–Einstein factor enters
directly into the integral that must then be evaluated at each temperature individually.

The lifetime for the emission of an acoustic phonon increases with quantum well thickness, from
a value of 80 ps for a 8 nm thick quantum well (E 21 = 112 meV) to a value of 240 ps for a 20 nm
thick quantum well (E 21 = 29 meV) in the GaAsAl0.3Ga0.7As material system [77]. The lifetime
increases further as the well width is increased, to a value of 400 ps for a 28 nm (E 21 = 16 meV).

These long lifetimes have been very difficult to confirm experimentally. The main reason is that it
is difficult to design an experiment that will measure the lifetime of a single electron in an excited
subband and not the overall lifetime of a population. As is shown further in the text, electron–
electron scattering will shorten the lifetime, as the electron density is above a few 107 cm−2



5.3 Elastic scattering
Elastic scattering between subbands may occur whenever the translational invariance of the
subband within the plane of the quantum well is lost. This may occur either through collision with
an ionized impurity or through scattering at an interface step.

5.3.1 Impurity scattering

Ionised impurity scattering is the strongest scattering mechanism limiting the low-temperature
mobility in clean samples based on “pure” (i.e. not alloyed) semiconductors. Its influence on the
intersubband lifetime was evaluated by Ferreira and Bastard [77]. It was found that, as compared
to other scattering mechanisms, a significant (p.75) scattering rate is found only for relatively
large doping levels. In fact, in a 100 Å square well, a scattering time of 40 ps was computed for a
relatively large background impurity level of Nimp = 1016 cm−3. Nevertheless, it was shown that
doping the active region with doping levels Nimp = 1017 cm−3 dramatically increased the
linewidth of the intersubband electroluminescence [78]. Similarly, the initial quantum cascade
lasers with superlattice active regions also suffered from this poor performances owing to the
additional scattering mechanism introduced by the intentional doping of the active region [79].
Impurity scattering is also expected to play an important role in terahertz quantum cascade lasers.

5.3.2 Alloy scattering

Alloy disorder is another fluctuation that destroys the translational invariance of the potential seen
by the electron in the plane of the layers. In fact, alloy scattering is found to be the dominant
scattering mechanism limiting the mobility of high-purity samples of alloy semiconductors at low
temperatures. The scattering rate between two subbands i and j in the presence of the potential of
the alloy scattering Valloy, describing the fluctuation from the average alloy potential caused by
the individual atoms, can be written as [80,81]

(5.3.19)
Assuming a random point contact potential and summing on the final states, one obtains finally

(5.3.20)
where χi and χj are the envelope functions of the initial and final states, x is the alloy fraction (=
0.47 for In0.53Ga0.47As), Ω0 is the volume of the unit cell, and δV  is the spatial average of the
fluctuating alloy potential over the alloy unit cell. The integration is meant to be carried over the
region of the space where the alloy is present.

The alloy scattering has some interesting features. First of all, it is expected to be relatively weak
in GaAs/Al0.3Ga0.7As QCLs, as most of the wavefunction resides in the binary GaAs material. In
contrast, it is expected to be much stronger for the lattice-matched
In0.53Ga0.47As/In0.52Al0.48As/InP as the scattering is maximum for x=0.5 for a given ternary
mixture. Moreover, it is also expected to decrease in strain-compensated GaxIn1−xAs/ AlyIn1−yAs
as both x and y are departing from 0.5.

According to eqn. 5.3.20 the alloy scattering rate should increase weakly with energy. This
dependence entirely derives from the integral over the wavefunction squares that have an overall



dimension of inverse distance. For this reason, a dependence of / the scattering rate in  is
expected; as such, alloy scattering is increasingly relevant for short wavelength QCLs.

(p.76) 5.3.3 Interface roughness scattering

We showed in the previous chapter that interface roughness scattering is responsible in great part
for the broadening of intersubband transitions in the mid-infrared. A powerful model describing
the role of interface roughness as a scattering mechanism was introduced by Unuma et al. [60],
based on ideas already developed by Ando [5]. This model assumes a statistical description of the
interface that exhibits Gaussian fluctuations of step height Δ with a correlation length Λ, such that

(5.3.21)
where r = (x, y) is in the plane of the layer. The matrix element of scattering between an initial
state in the subband m, at wavevector k’ to subband n at wavevector k is

(5.3.22)
where the form factors Fmn is proportional to the amplitude of the wavefunctions at the interface,
and is defined for such an interface located at zi as

(5.3.23)
Equivalently, one may express Fmn as

(5.3.24)
Intrasubband scattering. The total intrasubband scattering rate (neglecting screening) may be
written as

(5.3.25)
where the wavevector q exchanged during the process is expressed as

(5.3.26)
Using this model, the authors were able to explain the difference between the lifetime deduced
from the mobility and the one obtained from the linewidth of the intersubband absorption. Apart
from an additional angular dependence, the key difference is that for the mobility the prefactor in
the scattering rate is , whereas it is (F 00 − F 11)2 for the intersubband absorption and |F 11| 
|F 00|. Fig. 5.7 compares the measured and computed values of the linewidth for an intersubband
transition in a GaAs quantum well as a function of temperature T.

This model was successfully extended to the case of many interfaces by Tsujino [61] by
introducing a correlation coefficient ci,j between successive interfaces. For the pair of subbands



Fig. 5.7.  Experimental measurement of the
broadening of the intersubband transition and
mobility as a function of temperature, compared with
the model proposed by Unuma et al. [60]. Optical
and acoustic phonon intra- and intersubband
processes are also included in the model, as
indicated.

(mn), the broadening is now (in the limit of qΛ ≫ 1)

(5.3.27)
(p.77)

where the form factors 
 are expressed as a

function of the amplitude of the
wavefunction at the interface located a
the position zi by

(5.3.28)
Uncorrelated interfaces correspond to cij = δij. Using this model, the author was able to correctly
predict the linewidth of various structures based on vertical and diagonal transitions and grown by
various MBE reactors. Although the broadening is mostly driven by the intrasubband scattering,
interface roughness is also predicted to induce intersubband scattering.

Intersubband scattering. This formalism can also be used directly to compute the contribution of
this scattering phenomena to the intersubband lifetime, using the form factor Fmn for a transition
from a subband m to n and a wavevector q given by

(5.3.29)
with ki the initial wavevector of the electron in the subband. The final wavevector kf can be
expressed as a function of the wavevector  corresponding to the intersubband
transition as

(5.3.30)
Because the correlation length Λ enters at the same time squared as a prefactor but also as an
exponential cut-off in the computation of the scattering rate, the total lifetime has a non-trivial

 



Fig. 5.8.  Interface roughness scattering rate between
two subbands as a function of the kinetic energy
within the band for various values of the correlation
length Λ, as indicated. The height of the interface
step is Δ = 1.2 × 10−10 m. a) Transition energy Etr =
0.25eV. b) Same computation, for a transition energy
Etr = 0.14eV.

dependence on this parameter, the initial wavevector, and intersubband transition energy. It is
given by

(5.3.31)
To obtain an order-of-magnitude estimate of the lifetimes involved, the scattering rate was
evaluated for a transition between the ground and first excited state at an angular frequency ω 12
of a quantum well with infinite barriers:

(p.78)

(5.3.32)
The result is plotted for two transition energies at various values of the correlation lengths in Fig.
5.8. Note that in contrast to the optical phonon scattering, and for typical values of the correlation
length Λ, the scattering rate tends to grow with the transition energy, as shown by the 
dependence of the scattering rate. This results, for short wavelength lasers (λ ≲ 5 μm), in a very
strong dependence of the laser performance in the interface quality [82], as both step heights Δ
and correlation length Λ are expected to be dependent on the growth parameters.

As mentioned above, the relative
strengths of the elastic and inelastic
non-radiative channels are expected to
be exchanged as a function of
transition energy. This behavioris
shown in Fig. 5.9, where the relative
strengths of intersubband roughness
scattering, alloy scattering, and optical
phonon scattering are compared for a
strain-compensated Ga0.36In0.64As /
Al0.67In0.33As square quantum well as
a function of the subband spacing.
For the typical values of interface
roughness parameter chosen (a
correlation length Λ = 90 Å and a
height of the interface step Δ = 1.2
Å), the interface roughness scattering becomes dominant even at 300 K for transition energies
larger than 250 meV. Note the much faster increase of the interface roughness scattering rate as
compared to the alloy scattering as a function of transition energy, as expected from the
expressions 5.3.32 and 5.3.20.

This strong dependence of the performance of short wavelength quantum cascade lasers on the
elastic scattering has been observed, using the MBE growth temperature as a way of changing the
interface roughness. Fig. 5.10 shows the slope efficienciesand threshold current densities of a
series of otherwise identical lasers, operating atλ ≈ 4.6 μm, and grown at different substrate
temperatures. The large variation in device performances was interpreted as a result of the change



Fig. 5.9.  Comparison between the elastic and
inelastic non-radiative scattering channels for a
single quantum well using a Ga0.36In0.64As /
Al0.67In0.33As strain compensated material as a
function of transition energy. For the interface
roughness scattering (Ifr trace) a correlation length Λ
= 90 Å and a height of the interface step Δ = 1.2 Å
have been assumed. Note how the alloy scattering
(Ad trace) is weaker in the strained material than in
the lattice-matched one, shown here for comparison.
Adapted from [72]

in the correlation length Λ of the interface roughness of the active region quantum wells [82]
(p.79)

.

5.3.4 Electron–electron scattering

Electron–electron scattering (EE) is
a process in which two electrons
exchange energy and momentum.
This process may also be
accompanied by a change of the
subband index, and is usually
labeled by the index number of the
intial and final electron states, i.e.
process klmn is an interaction with
carrier 1 scattering from sub-band k
to m and carrier 2 from state l to n.
The various processes are shown
schematically in Fig. 5.11. An
important feature of electron–
electron scattering is the fact that
total energy and momentum are
conserved, and as a result this
process can only thermalize a
carrier population but not cool it.

While processes 1212 and 2121
have no influence on the overall
population of the subbands,
processes 2211 or 2221 are
responsible for decreasing the
upper-state population. In summary, the influence of the various processes is

• 2222 or 1111 (scattering within a single subband) will help establish a thermal
equilibrium within a single subband. In particular, for quantum cascade lasers with
a large transition energy (200 meV) where electrons should emit a large number of
optical phonons before reaching the bottom of the band, the strength of this process
will determine whether the electron distribution will be a set of phonon replicas or a
thermal one.
(p.80)
• Process 2121 or 1212
will tend to equilibrate
the temperatures of the
two sub-bands. Again,
for large transition
energies, this process
will tend to heat the
upper-state population,
since the lower one is



Fig. 5.10.  Operation characteristics of a quantum
cascade laser operating at λ ≈ 4.6 μm as a function of
the correlation length of the interface. Solid lines are
computed values using a full-density matrix theory,
and symbols are experimental results. a) Maximum
current density Jmax and threshold current density
Jth. b) Slope efficiency per facet and then full-width-
athalf-maximum of the electroluminescence
measured at a voltage of 14 V. The measured values
for the samples grown at 475, 515 and 525°C, were
compared with simulated values using the values of
the correlation length as a fit parameter. Optimum
performance is reached for Λ ≈ 100 Å. The design is
shown in Appendix A.3.2. Reprinted with permission
from [82], copyright 2011, AIP

Fig. 5.11.  Various electron–electron scattering
processes. The 2, 2 → 1, 1 is the dominant electron–
electron scattering term, as the Auger-like term 2, 2
→ 2, 1 was shown to vanish in symmetric quantum
wells. The 2, 1 → 2, 1 will lead to thermalization
between subbands, while the 2, 2 → 2, 2 or 1, 1 → 1,
1 will tend to thermalize the subbands themselves.

heated by the large
energy loss of the
electrons.
• Process 2211 or
2221 will transfer
electrons from the
upper to the lower
subbands. As shown
by the computations
presented later in this
text, this process is
important for low
tansitions energies
and medium
densities.

(p.81) A theoretical treatement
of electron–electron scattering
between subbands was
performed [83] in the limit of
an infinite square well
potential. Unfortunately, they
focused their work on process
2221, which was shown later to
be forbidden by parity in a
symmetric structure [84]. Smet,
Fonstad, and Hu gave a
thorough treatement of
electron–electron scattering
and evaluated its importance as
a function of temperature and
intersubband transition energy
[84]. They demonstrated that
process 2211 is the dominant
scattering mechanism. Central
to the computation of the
electron–electron scattering
rate is the form factor for the
transition:

(5.3.33)
where q ⊥ = |k i − k f| is the wavevector exchanged during the process. The transition rate for
electron–electron scattering can then be evaluated using Fermi’s golden rule, and yields the



Fig. 5.12.  The electron–electron scattering time for
the 2, 2 → 1, 1 process presented as a function of
well width for an infinite quantum well at zero
temperature for different screening models: no
screening, constant screening length, static single
subband screening for an ideal two-dimensional
system with no z-dependence (i.e. |A 2, 2→ 1, 1| = 1),
and static single subband screening including q ⊥-
dependence form factor. The Fermi energy of the
excited state E f2 is equal to 10 meV and the initial
electron state wavevector k i is equal to zero.
Adapted from Ref [84], with the correction
suggested by [85], with permission.

following expression:

(5.3.34)
where  is the screened dielectric function, and fi(k i) is the Fermi distribution. Even after
reduction of eqn. 5.3.34 using the δ functions, the total rate will require a three-dimensional
integral for each initial wavevector k i, causing a non-negligible computational burden.
Computation of the scattering rate as a function of transition energy and density is shown in Fig.
5.12.

(p.82) In the same work the
temperature dependence of the
electron–electron scattering rate was
also evaluated. The latter is virtually
independent of temperature for
reasonable physical parameters. The
reason for this behavior is because the
integral 5.3.34 is dominated by
contributions in which there is no
exchange of energy between the
electrons, and for which

(5.3.35)
Quantum cascade lasers operate at
very low densities, even in the
terahertz region. As a consequence,
the Fermi factor appearing in eqn.
5.3.34 can be assumed to be fi, j, k, l

 1, and the rates are not
expected to be limited by final state
occupation. Another consequence
of this fact is that the strength of the
electron–electron scattering can be compared between structures by a mere computation of the
form factor 5.3.33 at . Note also that this form factor is the same (except computed for
another wavevector) as the one for the optical phonon scattering.

A computation of the electron–electron scattering rate according to eqn. 5.3.34 is shown in Fig.
5.12 as a function of transition energy, for assuming various screening approximations. The
vertical axis for the scattering rate was rescaled by a factor of 4 compared to the published data,
following a suggestion by a subsequent work of the same group [85]. In this figure, the initial
Fermi energy is assumed to be E f2 = 10meV, corresponding to a population ns = 2.6 × 1011 cm−3.
Under this assumption, the computed scattering rate for a 28 nm thick quantum well,
corresponding to a transition energy of 15 meV, is 8 ps. The upper-state lifetime is half of this
value, as each scattering event will promote two electrons to the lower subband. However, as will



be shown later in this text, the actual density of the upper-state is closer to ns = 2 × 109 cm−3—a
value about 100 times smaller.

Hyldgaard and Wilkins [86] gave a simplified expression for the electron–electron scattering rate
that, in addition to giving an order of magnitude estimate for the lifetime, has the advantage of
showing the dependence of the scattering rate on the physical parameters. In their expression, the
scattering rate Γee = /τee between two subband separated by an energy E 21 is given by

(5.3.36)
where U 0(qE 21) is the unscreened interaction matrix element, and IP (0) ≈ 0.785 is a
dimensionless integrated phase space factor. μ 2 is the chemical potential of the upper subband

and is equal to  at low temperatures, with n 2 the upper-state sheet density. The key
result is the linear dependence of the scattering rate in the electron density, as well as its inverse
dependence on the intersubband transition energy. Numerically, for a coupled well system, and
assuming a Fermi energy of E f2 = 5 meV, their computed lifetime is τ = 0.94ps for a transition
energy of about 10.6 meV. Assuming the linearity between scattering rate and density, this would
extrapolate to a scattering rate of about 45 ps for a density of ns = 2 × 109 cm−3. This value is not
unreasonable for a square well at low temperatures.

From these computations it is quite clear that electron–electron scattering will play a significant
role only for very clean structures at low temperatures (p.83) .

5.4 Comparison with experiments
The measurement of the intersubband scattering time τISB is a very challenging task. It took a
large number of experiments, spread over more than a decade, to reach a general consensus on its
value. Although the rough estimate of the scattering time is not in question (τISB  1 ps) for
transitions energies larger than the optical phonon, and about τISB ≈ 10 ps at low temperature for
transition energies below the optical phonon energy, there is still a lack of systematic
measurement of its dependence with temperature, well width, electron density, and materials. The
difficulty arises from the combination of short lifetime, strong dependence on the experimental
conditions (temperature, density) and on the sample quality, especially for the low transition
energies.

The intersubband lifetime was measured by a number of techniques that one may separate
according to the different excitation and detection mechanisms used. As shown schematically in
Fig. 5.13, these are:

• Interband pump and probe.
• Intersubband pump and probe.
• Intersubband saturation experiments.
• Intersubband electroluminescence.

Understanding the limitations of each
of these techniques is very important
when comparing the experimental
results shown in Tables 5.1 and 5.2.

5.4.1 Interband pump and probe



Fig. 5.13.  Techniques for the measurement of the
intersubband lifetime.

In this approach an initial electron
density is created in the excited
state by a firstpump pulse. The
population of the upper and lower
levels is then probed by a weaker
(p.84) probe pulse that follows
with a variable delay. In general,
this technique presents two key
difficulties:

• Interband pumping on
the second excited state
will always create a
concommitant population
on the first subband at the
same energy. This
population will then
interact with the upper-state population.
• Holes are also created and may affect the intersubband lifetime.
• The most popular optical source, the Ti-saphire mode-locked laser, has a repetition
rate (about 80 MHz) such that the population does not have enough time to
recombine totally across the gap between successive pulses. A parasitic population
of the lower state is then induced. A possibility for preventing this problem is to use
p-doped samples that exhibit much shorter electron radiative lifetimes (although p-
doping will add additional scattering channels), or to sample the pulses with a lower
repetition rate.

Compared with the early results, the generalized use of high-sensitivity detectors has allowed to
greatly decrease the pump and probe pulse energies.

5.4.2 Intersubband pump and probe

In this technique a population is created in the upper-state by a pump photon tuned at the energy
of the transition. The decay of the upper-state population is then measured by either a measure of
the recovery of the fundamental absorption, or by the decay of the absorption from the excited
state. This technique is free from many of the problem cited above and yielded the most reliable
results. It is, however, a technique that is not easy to implement, as it requires the generation and
detection of short pulses in the mid- or far-infrared. This was accomplished by either
downconversion from the visible pulses or by direct generation by a free electron laser.

5.4.3 Intersubband saturation experiments

A simpler technique consists in measuring the intensity-dependent absorption. In a simple two-
level approximation, the latter is written as

(5.4.37)
Fitting the data will yield the saturation intensity Isat, which in turns will yield the lifetime T 1:



(5.4.38)
where a Lorenzian line with dephasing time T 2 is assumed. The latter is usually fitted from the
measurement of the lineshape for small pumping intensities. As shown by the preceding equation,
a drawback of this technique, besides the strong pump powers that it requires, is the requirement
to evaluate correctly the power density inside the sample as well as a knowledge of the dipole
matrix element z 12 (p.85) .

5.4.4 Experimental results

Because of a threshold for the onset of optical phonon emission, it was expected that a very
strong contrast would be observed when measuring the intersubband lifetime below and above the
optical phonon energy. Indeed, the first measurements were the time-resolved Raman experiments
of Oberli et al. [87], which yielded, for a transition energy slightly below the optical phonon
energy (28meV), a lifetime of about 300 ps, while the intersubband pump and probe
measurements of Seilmeier yielded a lifetime of 10 ps for a transition energy of 150 meV, clearly
above the optical phonon emission threshold. However, it was found out that both measurements
did not yield the true intersubband lifetime but rather the global relaxation time of the hot electron
plasma distributed thermally across the two transitions. When large populations are excited,
because of Pauli blocking, the electrons could not scatter back to the ground subband because of
the lack of available states.

In fact, time-resolved Raman experiments by Tatham et al. [88] yielded an intersubband lifetime
of τ  1 ps for a 14.6 nm thick GaAs active quantum well. Later measurements using various
techniques performed at low excitation levels agreed with the values computed using optical
phonon emission, as shown in Fig. 5.4. These values are summarized in Table 5.1.



5.1 Summary of lifetime measurements for transition energies above the optical phonon energy in GaAs quantum
Early measurements were inaccurate due to the strong pumping needed. ISB: intersubband, IB: interband. Only
mperature measurements (T = 10 K) are included

E 12 (meV) τ (ps) Technique ref Year

SQW 150 10 ISB pump probe [89] 1987

SQW 150 0.9 ISB Saturation [90, 91] 198

SQW 53  1 IB Time Res. Raman [88] 1989

SQW 125 0.65 IB lum. and transport [92] 1990

SQW 112 0.65 ISB cw pump probe [74] 1993

As SQW 129 0.8 ISB cw pump probe [74] 1993

SQW 175 0.65, 300K ISB/IB pump probe [93] 2000

As SQW 200 1 ISB/IB pump probe [75] 1996

As SQW 260 1.3 ISB/IB pump probe [76] 1996



Fig. 5.14.  Lifetime as a function of pumping
density, measured by intersubband pump–probe
spectroscopy in a coupled quantum well with an
energy separation smaller than the optical phonon
energy. The solid line is the result of a Monte Carlo
computation. Reprinted with permission from [96].
Copyright 1999, APS. The solid disk is a
measurement deduced from an electroluminescence
experiment in a single-quantum-well terahertz QCL
[97]

In contrast, the lifetime for transition energies below the optical phonon energy, if limited by the emission
of acoustic phonons, would lead to very long lifetimes of the order of more than 100 ps, raising the hope
of intersubband lasers with very low threshold current densities.
Indeed, subsequent work [94,95] found scattering times spread from 20 to 750 ps. Thanks to the
improvement of the detection techniques, the detection of the luminescence signal was possible
even for extremely low excitation densities. In a series of experiments, Hartig et al. [96] showed
that the intersubband lifetime first decreases with decreasing excitation density, as Pauli blocking
effects are reduced. The shortest value measured of 5 ps, limited by the temporal resolution of
their experiment, is achieved for densities around 1011 cm−2. As shown in Fig. 5.14, the lifetime
then increases again (p.86) when the density is further lowered and saturates at about 30 ps.
These measurements, however, were performed in a coupled well system for technical reasons.
Another

aproach has been intersubband
measurements with quasi-continuous-
wave excitationwith a CO2 [98] or free
electron laser [99]; detection was
either by intersubband absorptio [98]
or capacitive measurements [99]. Both
groups used modulation-doped
coupled quantum wells. In the low-
temperature, low-excitation limit, the
measured values of lifetime range
from τ = 300ps [98] to 1ns [99, 100]



5.2 Summary of some lifetime measurements for transition energies below the optical phonon energy.

meV) τ (ps) Technique Ref Year

325 Time-resolved PL [87] 1987

40 ISB pump–probe [95] 1994

300 Continuous wave ISB pump–probe [98] 1994

1200 Intersubband pump–probe [99] 1995

30 Interband pump–probe [101] 1998



Fig. 5.15.  Comparison of the normalized light–
current characteristics in pulsed operation for
InAs/AlSb, GaInAs/AlInAs, and GaAs/AlGaAs
cascade structure. The low electron effective mass,
responsible for the larger dipole matrix element, as
well as the lower optical phonon scattering rate, are
the reasons for the increasing efficiency with In
content in the quantum well layers. Reprinted with
permission from [103]. Copyright 2008, AIP.

.

5.4.5 Intersubband electroluminescence

Pump and probe as well as saturation measurements require relatively strong pumpintensities.
Another drawback is that the measurement will be performed in a model (p.87) system, usually a
single or coupled quantum well. In contrast, quantum cascade lasers will operate in the regime of
very low upper-state densities (in general with a sheet density of about ns ≈ 109 cm−2) and with
an active region consisting of a complex arrangements of coupled wells. For this reason, a
measurement of the intersubband luminescence intensity, although by itself a very indirect
measurement of the upper-state lifetime, proved a very useful technique because it directly
includes some important additional parameters such as the injection efficiency in the upper-state.
In particular, it is especially valuable to measure the variation of the lifetime with an external
parameter such as the electron density, temperature, or material.

For example, the initial measurements performed in the first cascade structure [102] showed that
the electroluminescence intensity decreased with temperature in agreement with an intersubband
lifetime dominated by optical phonon scattering. In another set of experiments, Benveniste et al.
compared the luminescence intensities from three similar quantum cascade structures grown from
the InAs/AlSb, InGaAs/AlInAs and GaAs/AlGaAs material system [103]. The results, shown in
Fig. 5.15, confirms that the lower electron effective mass of the In-containing compounds will
yield larger efficiencies. In fact, for an intersubband lifetime limited by optical phonon emission,
the luminescence efficiency should scale approximately with ((m ∗) −3/2). As shown in

Fig 5.16, this dependence is verified
experimentally.
As discussed in Chapter 7, the
differential gain of a quantum
cascade structure should
theoretically be directly
proportional to the
electroluminescence quantum
efficiency, provided that the line
broadening remains constant, as it
was indeed observed
experimentally. Based on these
considerations, InAs-based
quantum cascadelaser should
clearly outperform the other
material systems. However, laser
performances also depend critically
on the waveguide losses as well as
on the thermal conductivity of the
laser structure—two criteria where
the InAs-based lasers are at a clear
disadvantage compared to the InGaAs/AlInAs/InP material system (p.88)

.

5.4.6 Magneto spectroscopy



Fig. 5.16.  Experimental quantum efficiency, relative
to the lattice matched InGaAs/AlInAs material,
compared with the (m ∗)− 3/2 dependence. Data is
from [103].

Lifetime measurements do not, in
general, provide direct information
of the nature of the scattering
mechanism. This information is
obtained only when an additional
parameter (temperature, density)
can be freely adjusted while the
measurement is performed. A very
powerful technique is to apply a
very strong magnetic field
perpendicular to the layer. In this
case, and considering a one-band
model for simplicity, the
Schrödinger equation for the
envelope function in the Laudau
gauge φk(x, z) is

(5.4.39)
The wavefunction φk(x, z) can be factorized into an in-plane and an out-of-plane motion, such
that φk(x, z) = φn(x) · χm(z). The equation for χm(z) is identical to that of the envelope function at
k = 0 at zero field. The motion along x for φn(x) can be recast into an harmonic oscillator with an
energy spectrum consisting of equispaced Landau levels [104]

(5.4.40)
where  is the energy of the m th subband at k = 0 in the absence of magnetic field, and the

cyclotron frequency is given by ωc = . For each subband, the energy spectrum then consists
of a ladder of equidistant Landau states. By tuning the magnetic field, the energy separation
between these states can be continuously tuned.

Because the energy is now quantized, the intersubband scattering is now strongly constrained,
especially since the key scattering mechanisms in quantum cascade lasers, optical phonon
emission and elastic scattering, each require a fixed energy exchange. As described schematically
in Fig. 5.17b, for well-resolved Landau levels the scattering is strongly suppressed, except when
the condition

(p.89)

(5.4.41)
is set for a resonance with the
optical phonon emission, or



Fig. 5.17.  Energy levels in a quantum well with two
subbands. a) B=0, the states are characterized by a
parabolic dispersion. b) When a strong perpendicular
magnetic field is turned on, the subband splits into
Landau levels. c) Optical phonon resonance: E 12 =
N �ωc + �ωLO d) Elastic resonance E 12 = N �ωc.

(5.4.42)
for an elastic resonance. Each time
such a resonance occurs, the
scattering rate betweenthe subband
is enhanced, leading to a local
maximum of the injected current
and a minimum of the light output.
As a result, the measurement of the
current and lightoutput as a function
of magnetic field B enables not
only the measurement of E 21 but
also of the strength of the individual
scattering mechanisms.

Such measurements were initially
performed in terahertz quantum
cascade lasers [106, 107], as mid-
infrared structures required a much stronger magnetic field that can only be provided by a
resistive magnet. In contrast with the measurements ofterahertz quantum cascade lasers,
performed at cryogenic temperatures, and where the elastic scattering was observed to dominate
the scattering processes, the initial measurements on mid-infrared GaAs/Al0.3Ga0.7As showed a
dominant contribution of the LO optical phonon scattering [108,109]. Further measurements of
GaAs/Al0.3Ga0.7As lasers showed, however, small features corresponding to elastic resonances,
attributed mainly to interface roughness scattering [110].

Measurements of a QCL laser operating at λ ≈ 8.7 μm and based on the
Ga0.47In0.53As/Al0.48In0.52As material system showed, however, a significantly different picture
[105]. As shown in Fig. 5.18, the threshold current and optical scattering trace cannot be
explained in a satisfactory manner without the presence of the elastic scattering channel that was
shown to be 40% of the total scattering rate at the measurement temperature of 77 K. The
computation of the different process showed that at low temperature, alloy scattering lifetime did
correspond to a lifetime of 2.7 ps, while the interface roughness scattering corresponds to a
lifetime of 5.3 ps. By itself, these results, although demonstrating clearly the importance of elastic
scattering in InGaAs-based QCL, did not, however, contradict the general consensus attributingto
LO phonon scattering the strongest non-radiative channel, as the ratio of elastic (p.90)

to inelastic scattering is expected to
drop to 20% at 300 K. The situation is,
however, expected to change for short-
wavelength lasers, as the optical
phonon and elasticscatterings are
following opposite trends, the first one
decreasing and the second one
increasing as a function of transition
energy.

Notes:

(1) In contrast, scattering in non-
polar materials such as group IV
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Fig. 5.18.  a) Normalized threshold current density
Jth(B)/Jth(B = 0) (solid line) and scattering rates 1/τ 3
as a function of the magnetic field. The dotted curve
takes into account the LO-phonon emission; the
dashed curve also includes the elastic contribution
(alloy and interface roughness scattering). The arrow
points at the feature at 27 T that can be explained
only by elastic scattering. b) Measured (solid line)
and calculated (dashed line) emitted power at I/Ith =
1.25 as functions of B. Reprinted with permission
from [105]. Copyright 2006, AIP.

(Ge, Si) semiconductors is
dominated by deformation
potential.
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The very short upper-state lifetime of intersubband transitions means, as a consequence,
that optical gain is achieved only at the cost of a very large power dissipation in the
material. For a typical operation condition of a current density of 3kA/cm2 at an applied
electric field of 100 kV/cm, the power dissipated per unit volume is 300 MW/cm3, a factor
of 10–100 larger than for interband devices and 108 larger than for a Nd YAG solid-state
laser. As a result, the use of laser cavities based on optical waveguides is essential to keep
the total electrical dissipation to a minimum.



Fig. 6.1.  a) Schematic drawing of a slab dielectric
waveguide, showing the axes as well as the E and H
fields for a TM polarized wave. b) Schematic
refractive index profile as a function of distance.

Waveguiding can be achieved fundamentally using either metallic or dielectric confinement
or a combination of both. In general, dielectric confinement has the advantage that it is
essentially loss-free, whereas the use of metals enables the confinement of the light in
regions much smaller than the wavelength. Fortunately, the same semiconductor materials
used to achieve the quantum confinement of the electrons also exhibit, because of their
different bandgaps, a concomitant difference in their refractive index that can be used to
guide the light. Compared to interband devices, the longer wavelength in mid-infrared
quantum cascade lasers limits the relative thickness of the cladding layers that can be used
before creating growth problems. For example, the slight lattice mismatch between Al0.45
Ga1−x As and GaAs constrains the use of dielectric cladding for GaAs-based quantum
cascade lasers.

In a quantum cascade laser, the light is confined vertically, by the sequence of the epitaxial
layers, as well as horizontally, by the ridge structure that also confines laterally the current.
Because the epitaxial growth allows the tighter control of layer thicknesses as compared to
the lateral ridge width, optical confinement is usually stronger in the vertical direction. As a
result, the simplest model of the one-dimensional dielectric slab model already predicts
correctly the propagation index and overlap factor of the waveguide, and is usually a good
starting approximation for a more complete computation.

6.1 Dielectric slab waveguide
As shown in Fig. 6.1, in the simplest dielectric optical waveguide a slab of dielectric
material (core) with refractive index n 1 is sandwiched between two semi-infinite lower
index cladding layers satisfying n 1  (n 2, n 3). In general, the thickness of the guiding
layer is of the order of a wavelength. The electromagnetic treatment of such a problem is
relatively easy due to the homogeneity of the medium in each segment. We consider now
the propagation of monochromatic radiation at frequency ω following Maxwell’s equation
for a dielectric, source-free medium:

(p.92)

(6.1.1)

(6.1.2)
where ni are the refractive
indices and μ 0 the vacuum
permittivity. As the refractive
index is assumed to be
constant (or even slowly
varying), eliminating one of
the two H or E fields, we
obtain the Helmholtz wave equation for each field E and H valid in each region:



(6.1.3)
For a refractive index constant across each layer, the solution can be constructed using, in
each layer, plane waves propagating in the z-y plane. The phase factor in the y-direction is
assumed to be common to all layers. We have then for the E and H fields:

(6.1.4)

(6.1.5)
where βm is defined as the propagation constant of the mode with index m. From the
Helmoltz equation 6.1.3, the wavevector in the z-direction is given by solving the eqn.

(6.1.6)
We will look for values of β where kz is real in the guiding layer and imaginary in the
claddings, i.e. satisfying

(6.1.7)
with k 0 = ω/c, as they will correspond to a guided wave that decays exponentially in the
cladding layers.

Two polarization directions are possible—either transverse electric (TE) or transverse
magnetic (TM) in which the electric and respectively magnetic field vector is (p.93)
oriented along the y-direction. The polarization direction will select the continuity of the
relevant fields at the interfaces:

(6.1.8)

(6.1.9)
Using the relations between H and E fields given by eqn. 6.1.1, one shows that these
boundary conditions correspond to the continuity of the following fields:

(6.1.10)



(6.1.11)
In particular, the boundary conditions for the H field of the TM wave correspond to a
continuity of

(6.1.12)
that we can also recognize as a continuity of the displacement field D = ϵ E and of the
derivative of Ez. As the refractive index is larger in the core of the waveguide, this
boundary condition will force a lower value of |E| at that location. As a result, the TM
modes are in general less confined than TE modes.

As discussed in Chapter 4, the polarization selection rule of intersubband transitions allow
gain only for TM modes. A standard procedure is to compute first the H field, and to then
extract the electric field from

(6.1.13)

(6.1.14)

6.1.1 Symmetric waveguide

A simple solution exists for the case of the symmetric waveguide (i.e. n 3 = n 2). In that
case, the field Hm(z) can be written as

(6.1.15)

where  and . Applying the boundary conditions of
the fields and their weighted derivative (we consider the TM polarization) at the interfaces
(z = ±d/2) yields a set of equations:



(6.1.16)
(p.94) where . Eliminating the coefficients A, B, C, and D leads to the
transcendental equation

(6.1.17)
which yields the possible values of the propagation constant for the mode βm. The effective
refractive index for the mode is defined as

(6.1.18)
For confined modes, its value should lie between the refractive index of the core and of the
cladding n 1  neff  n 2.

6.1.2 Generalization

A nice feature of the model presented above is that it leads itself easily to a generalization
of an arbitrary large number of layers with complex dielectric constants ϵi. In each layer, a
pair of plane waves are assumed to propagate, with a propagation constant in the x-
direction kz given by the (complex) roots of the equation:

(6.1.19)
Depending on the polarization direction (TE or TM), the appropriate boundary conditions
are applied at the interface, given by eqn. 6.1.10.

The loss of the waveguide can be computed by seeking a solution of β in the complex
plane, and extracting the loss as

(6.1.20)
In this approach, the solution is a wave that has the same decay constant in the propagation
direction.

In a laser, this optical loss is compensated by gain in the active region. The effect of the
gain on the propagation constant can be evaluated using a perturbation approach to the
Helmoltz equation, seen as an eigenvalue problem for β 2:

(6.1.21)
The effect of the small change of the (imaginary) part of the refractive index caused by the
material gain gm is evaluated on the propagation constant using a first-order perturbation



expansion,

(6.1.22)
As the imaginary part of ni and β are much smaller than the real part, we can immediately
extract the modal gain:

(6.1.23)
(p.95) The overlap factor Γ is defined for the y-component of the optical field normalized
to the intensity as

(6.1.24)
The amount of material gain g necessary in one layer to compensate the laser losses (αm
mirror and αw waveguide) is then given by the equation

(6.1.25)
In this approach, however, the fact that in the final device some layers are going to be lossy
and some will exhibit gain is not explicitly taken into account in the optical field profile.
Rigorously, a better (but computationally more demanding) solution to the problem is to
include the gain directly in the dielectric function of the active region, and iterate until the
equality

(6.1.26)
is verified. This approach, however, is computationally intensive and is needed only when
the change of refractive index due to gain affects the shape of the guided mode. It was
shown, however, to be very successful for the modeling of “cavityless” and “random” laser
devices [111], and should probably be considered for some terahertz waveguides.

6.1.3 Dielectric waveguide for short wavelengths QCL

In QCLs based on the InGaAs/AlInAs/InP material system, the material combination is
very favorable for dielectric waveguides, as the InP substrate has a refractive index n = 3.1
with a good contrast compared to AlInAs (n = 3.2) and especially GaInAs (n = 3.5). Fig.
6.2 shows the refractive index profile as well as the first three computed eigenmodes for a
QCL emitting at 4.2 μm. In that initial device the upper cladding was AlInAs grown by
MBE, displaying a lower refractive index contrast with the active region than the InP



Fig. 6.2.  Refractive index profile (left axis) and
normalized mode intensity (right axis) of a mid-
infrared dielectric waveguide of the initial QCL
operating at λ = 4.3 μm. Note that the mode m=0
with the highest effective index is not the one
supporting the lasing but an interface plasmon one.
The parameters of the laser mode are shown in the
inset.

substrate. The active region is separated from the heavily doped InP substrate by a low-
doped AlInAs lower cladding layer.

6.2 Interface plasmon mode
In TM mode the boundary condition expressing the continuity of Hx and  enables a

particular bounded mode if the dielectric constant  changes sign at the interface, i.e.
if one of the two material behaves optically as a metal. As shown schematically in Fig. 6.3,
in that case, the slope of Hx(z) changes sign at the interface, enabling a confined mode that
decays exponentially in both materials.

In a simplified treatment, let us assume a metal, characterized by a negative dielectric
constant ϵm for z  0, while the regions z  0 has a dielectric constant ϵd. We therefore
assume the following field:

(6.2.27)
(p.96)

where h and q are now 

 and 

 The

boundary conditions at z = 0 are

(6.2.28)

(6.2.29)
The second equation can be
satisfied only if the dielectric
constant changes sign at the
interface. The propagation
constant can be obtained after
some algebra:

(p.97)

(6.2.30)
In addition to the condition
on the change of sign at the
interface, an additional



Fig. 6.3.  a) Schematic drawing of a single plasmon
waveguide, showing the axes as well as the E and H
fields for a TM polarized wave. b) Schematic plot of
the dielectric constant and of the magnetic field as a
function of distance.

condition is that the dielectric
constant of the metal is “large
enough”, i.e. |ϵm|  |ϵd|.

As QCLs operate using the
TM polarization direction,
interface plasmon modes play
an important role in the light
confinement. In fact, as the
electrical contacting of QCLs
is done by a surface
metalization, an interface
plasmon solution will in
general be present in the
confined mode. In the mid-
infrared it is usually more lossy than the dielectric mode. For very long wavelengths (λ ≳
15 μm), however, modes based on single plasmons have losses and confinement factors that
are competitive with the dielectric wavelength.

6.2.1 Waveguide based on an interface plasmon

As a rule, in dielectric waveguides, the cladding thickness scales linearly with wavelength.
In addition, as the wavelength increases the doping needed to enable electrical transport
creates a loss that grows as λ 2. As a result, for devices operating at wavelengths longer
than about 10 μm, an approach based on single plasmon waveguide becomes more and
more attractive. In fact, the loss of a single plasmon waveguide, derived from eqn. 6.2.30
can be rewritten as

(6.2.31)
as a function of the real nm, nd, and imaginary km parts of the refractive index of the metal
and dielectrics, given by ϵ m= (nm + ikm)2 and . As shown in Eqn. 6.2.31, the
waveguide loss decreases with increasing wavelength as nm and km grow approximately
linearly with wavelength. An example of a QCL waveguide based on a plasmon waveguide
[112] and operating at 11.2 μm is shown in Fig. 6.4. In that example, the confinement of the
mode is further enhanced by the refractive index step between the active region and the
substrate.

Compared to a dielectric waveguide, the single plasmon waveguide exhibits a much
stronger confinement factor (Γ = 0.7 as compared to Γ = 0.54 for a similar thickness of the
active region [113]) as well as a much reduced total thickness of the grown layer. Although
the computed waveguide losses should have remained relatively low (αw = 14 cm−1), the
measured threshold current of these initial devices indicated a much larger optical loss
value.



Fig. 6.4.  Normalized mode intensity of a single
plasmon waveguide of a QCL operating at λ = 11.2
μm. Adapted from [112].

In such waveguides the very strong coupling between the metal and the optical mode has
been used to manipulate the confinement of the mode in the plane of the layers. In
particular, it was used to realize the first QCL based on a photonic crystal cavity [114], and
is still the subject of active research on single-mode devices [115].

6.3 Optical properties of doped layers
Because of the presence of free carriers in both the active region and the cladding layers, it
is essential to develop a model that evaluates the effect of these doped regions on the (p.98)

optical properties of the
materials. The ability to control
the free carriers effects is an
important engineering tool to
control waveguiding in the mid-
infrared and terahertz regions.
A simple Drude-like
approximation approach that
considers the motion of
classical free electrons of
effective mass m ∗ only
subjected to a damping force
yields usually excellent results.
The susceptibility of such an
electron gas is given by

(6.3.32)
where N is the (volume) electron density. To compute the response of the system, the
susceptibility of the free electrons must be added to the susceptibility of the semiconductor
itself, given by χsc = 1− ϵsc, so that the complete response can be characterized by the
dielectric function:

(6.3.33)
where the plasma frequency ωp is now defined as

(6.3.34)
The damping parameter γ can be seen, adopting Drude’s model, as the inverse of the
electron scattering time. Values of τ = γ −1 = 100 − 200fs are typically used for doped
semiconductors.



Fig. 6.5.  (a) Refractive index and (b) absorption
coefficient of GaInAs as a function of wavelength
and for various doping densities.

(p.99)

The refractive index and
absorption coefficient α = 4πk/λ
of InGaAs latticematched to
InP, computed using eqn.
6.3.33, is shown in Fig. 6.5 as a
function of wavelength for
various carrier densities. Three
regimes can be clearly
distinguished, dependent on the
wavelength relative to the
plasma frequency. For
frequencies much higher than
the plasma frequency, the refractive index is essentially unchanged, and the free carriers only
introduce an absorption proportional to the square of the wavelength and of the electron density,
which can be written from eqn. 6.3.33 as

(6.3.35)
The free-carrier absorption, plotted as a function of wavelength, is shown for InGaAs
material for various doping concentrations in Fig. 6.6. As a comparison, the typical mirror
losses of QCL are also shown. For best efficiency, the losses created by the cladding layers
should remain small compared to the cavity losses. As a result, doping in the range of N ≈ 2
× 1016 cm−3 are used close to the active region, where the overlap factor is large. To limit
the additional series resistance, higher doping levels can be used closer to the contact
regions where the optical field is small. Considering again Fig. 6.5, as the light frequency is
decreased and approaches the plasma frequency, the refractive index of the semiconductor
is strongly depressed. This effect can be used to create low-index confining layers that will
tend to expel the optical field. If the frequency is further decreased, the semiconductor
behaves optically as a metallic layer with a low electron concentration. This effect has been
exploited to create plasmon waveguides for QCLs operating in the terahertz range.

6.3.1 Plasmon enhanced waveguides

We now examine some examples of how this effect can be exploited to produce efficient
waveguides. In Fig.6.7 an example of a plasmon enhanced waveguide is reported. Here the
variation of the refractive index as a function of the doping and of the frequency is
exploited in order to obtain a low index (red region) in order to “push” the mode onto the
core of the waveguide.

(p.100)

As shown in Fig. 6.5, care must
be taken not to overdope these
layers, so that the plasma
resonance does not reach the



Fig. 6.6.  Absorption as a function of wavelength for
various free-carrier concentrations, as indicated. The
shaded area represents typical mirror losses of QCL
cavities.

Fig. 6.7.  a) Long-wavelength (λ = 8.4 μm) and b)
shorter-wavelength (λ = 5.4 μm) waveguides using a
low-refractive-index, highly doped top layer (regions
marked n+) to enhance the confinement.

photon energy, otherwise the
absorption coefficient increases
by more than an order of
magnitude. This technique has
also been used successfully to
create waveguides for QCL
based on GaAs [116] or InAs
substrate materials [117]. In
both material systems the
substrate has a refractive index
that is larger than the active
region and therefore is an
antiguiding layer. In addition,
the growth of very thick low-
index ternary cladding layers is
in both cases problematic
because of their poor electrical
and thermal conductivity. The
use of a heavily doped layer as
a low-index material has
enabled, for both devices,
relatively low-loss waveguides
with good electrical and thermal
properties.
(p.101) 6.4 Two-
dimensional confinement
The fabrication of ridges
creates a lateral waveguide,
which is usually broader than
the vertical one, as the
resolution of the fabrication
technique used to define the ridge is of the order of approximately 1 μm. In addition, as the
optical power scales roughly with width, broad ridges are favorable for high power devices.

Fig. 6.8 shows the two common lateral waveguide geometries used in QCL devices. In the
conventional ridge-etched structures Fig. 6.8a, the lateral waveguide is achieved by etching
through the active region and coating the sidewalls with Si3N4 or SiO2 before the
metalization. As a result, the electric field vanishes at the sidewalls and the mode is
completely confined inside the ridge structure. In a slightly different approach, shown in
Fig. 6.8b, after the ridge etching, a layer of semi-insulating InP is regrown on the sidewalls,
providing both optical and electrical confinement. Fig. 6.8 also shows

the computed electric field for
both waveguide geometries. In
this case, the computation was
performed directly by solving
Mawell’s equations 6.1.1
numerically, using the



Fig. 6.8.  Computed electrical field distribution of a)
a 14 μm-wide conventional ridge waveguide design,
and b) a 10 μm wide buried heterostucture
waveguide design for an emission wavelength of 8.4
μm.

Fig. 6.9.  Illustration of the effective index technique
for ftwo-dimensional waveguide computation. a) A
waveguide is defined by an etching of the core layers
on both sides of the ridge. The one-dimensional
problem is solved in the three different regions I, II,
and III along the z-direction, yielding each time an
effective index for the mode for a given polarization.
b) The transverse part of the mode profile is now
obtained by computing an effective index problem in
the x-direction for the opposite polarization.

commercial package COMSOL.
Excellent results can also be
obtained using the effective
index method, in which the
problem is solved along both
axes sequentially. This, of
course, is especially convenient
in rectangular waveguide
geometries. An illustration of
the effective index technique is
shown in Fig. 6.9. The field is
written as

(6.4.36)
where the field  is the solution of the one-dimensional waveguide problem in region i (i
= I, II, II in our example), defining an effective index for the three regions , and 

. These three indices are then used to create an effective guide in the x-direction, and

allows solving for the envelope function A(x), as shown in Fig. 6.9b. This technique,
however, is restricted in the number of geometries it can accommodate.

The optical losses αw and overlap factor Γ for the ridge waveguide and the buried
heterostructure designs are compared in Fig. 6.10 as a function of ridge width. The two
waveguides have the same computed values for Γ and αw down to a ridge width (p.102)

of about 10 μm. Below this
value the penetration of the
field in the lateral InP region
yields a decrease of the overlap
factor for the buried
heterostructure waveguide. For
the ridge waveguide, on the
other side, the increasing
penetration of the optical field
in the metal increases the
optical loss of the mode.

6.4.1 Lateral mode selection

In both ridge and buried
heterostructure waveguides,
because of the large
refractive index step between
the core and the side, these
waveguides support more
than one transverse mode.
The multi-mode character of
the waveguides is important



Fig. 6.10.  Computed waveguide losses and overlap
factor for an emission wavelength of 8.4 μm, for a
ridge waveguide and buried heterostructure
waveguide design.

for its (p.103) spatial and
spectral characteristics of the
laser. In the ridge process the
higher-order lateral modes
will also suffer from a higher
optical loss, as the intensity
of the optical field is larger at
the lossy metal sidewall. This
mode selection has been
successfully used in both
Fabry–Perot and DFB lasers.
In contrast, in buried
heterostructure waveguides
the mode discrimination
arises from the change in
overlap factor between the
lateral modes, and is, as
shown in Fig. 6.10, weaker
for a given ridge width than the change in waveguide loss.

In interband devices, lateral mode discrimination is very often achieved by a weak lateral
confinement obtained, for example, by a shallow lateral etch of the active region as shown
schematically in Fig. 6.9. In fact, if the difference between the effective index in the center
and the side of the active region  is small enough, the lateral waveguide will

support only one guided mode. This technique has been attempted in QCL by a shallow
etching of the cladding that induced a weak lateral confinement [118]. However, in contrast
with interband devices the conductance of a QCL active region is strongly anisotropic, and
is much larger in the lateral than in the vertical direction. As a result, due to current
spreading, the threshold current of these devices remained very large.

In an attempt to control this problem, devices where the lateral current spreading was
limited using H+ implantation were developed, as the definition of a lateral window for
current injection would perform lateral mode selection [119]. Excellent results were
achieved using GaAs-based materials [120]. In InP-based devices, however, the
performance of the lasers was strongly limited by the poor electrical stability of the H+
implanted layers as a function of temperature.

6.5 Large optical waveguides
In pulsed operation, the optical power of a laser is limited by gain saturation of the
medium. As a result, scaling the power up is achieved by increasing the mode
crosssectional area. As mentioned above, this can be achieved by merely widening the laser
stripe. In fact, very large optical powers, of the order of 100s of watts, have been achieved
in this manner. However, the problem of this approach is the strong asymmetry in the
divergence angle of the beam and high multi-mode character of the lateral mode profile.

 



Fig. 6.11.  a) Refractive index and computed mode
profile of a large optical waveguide in which the
active regions are separated by InP interstack
spacers. b) Voltage and light-versuscurrent for such a
device operating at λ ≈ 10 μm. Adapted with
permission from [121]. Copyright 2008, AIP.

Fig. 6.12.  a) Measured far-field pattern for 40 μm
wide and 3 mm long device with a large optical
cavity. b) Comparison between the experimental
(dotted lines) and computed (solid lines) intensities
along the z (growth) and x (transverse) directions.

For this reason, it is also advantageous to increase the mode size in the growth direction.
This can also be combined with an increase of the number of periods of the active region.

The refractive index profile and computed mode profile of a devices where such a large
optical waveguide was implemented is shown in Fig. 6.11. In this device, designed for
operation at a wavelength close to λ ≈ 10 μm, 4 × 15 periods of the active region are
separated by 1 μm thick InP interstacks that provide additional lateral heat transport [121].
The voltage and light-versus-current characteristics of one of these large optical cavity
devices is shown in Fig. 6.11b. Compared to a normal buriedheterostructure waveguide,
this large optical cavity device demonstrated an improvement of the peak power by a factor
of × 10 while keeping a single spatial mode in both vertical and transverse directions.

A measured far-field of such a large optical waveguide is shown in Fig. 6.12 along with the
computed profiles, showing a FWHM of 17.8° and 39° in the xand z- (p.104)

directions, respectively. These
values are to be compared with
the much higher ones of typical
buried heterostructure devices
(45× 65°).
6.6 Thermal properties
Quantum cascade laser active
regions dissipate a very large
amount of heat. The resultant
increase in the active-region
temperature, especially
important in high duty cycle
operation, is in general
detrimental to the device
performance. The only
exception is the tuning of
single-mode distributed
feedback lasers that use
exactly the refractive index
change with temperature. In
steady state the active-region
temperature is related to that
of the surmount by a linear
relationship

(6.6.37)
(p.105) where Rth is the
thermal resistance, and U and I are the device operating bias and current, respectively. It is
therefore important to minimize Rth in order to achieve the best possible continuous wave



performance. The design of optical waveguide is therefore a compromise between the
requirements of achieving low optical losses and tightest possible confinement with the
goal of simultaneously decreasing the thermal resistance.

Table 6.1 Thermal conductance of various materials used in waveguides and
submounts.

Material κ [W/(m K)]

InP 74

Ga0.47In0.53As 4.84

Si3N4 15

Au 317

Cu 384

AlN 257

Diamond 1200

In solder 81

SnAu solder 57

Active region 4.72

In the semiconductor materials used for QCLs, the heat is carried mostly by acoustical phonons, as
the low doping densities used prevent efficient heat transport by the electrons. All III–V have very
similar phonon density of states. In contrast, as compared to binary materials, the phonon mean
free path in ternary materials is very strongly reduced by the alloy scattering. As a result, the
thermal conductance of Ga0.47 In0.53 As and Al0.48 In0.52 As is about 15 times lower than the one
of InP. For this reason, InP is a preferred material for waveguide claddings. In fact, the lack of a
binary cladding material (outside pure AlAs that is prone to oxidation in ambient atmosphere) has
been a consistent drawback of GaAs QCLs.
Thermal considerations were incorporated very early in the design of QCLs, and stimulated
the early use of InP-based claddings, enabling average powers of 5 mW to be achieved at
room temperature for the first time [32]. The use of junction-down mounting was also
demonstrated relatively early to significantly improve the continuous-wave device
performances [122].

The thermal resistance does depend not only on the waveguide but also on all the mounting
and soldering process. For this reason, the latter have also to be included in a realistic
simulation of laser devices.

Thermal modeling.The temperature T in the active region can be found by solving Fourier’s
heat transport equation

(6.6.38)



Fig. 6.13.  Computed temperature plots of the front
facet of an otherwise identical QC laser structure, 12
μm wide and 3 mm long, subjected to an input
electrical power of 8.8 W (24.4 kW/cm2) for various
waveguide designs. The maximum temperature of
the active region is indicated in each case. An
isotropic thermal model was used for the active
region. a–b) Conventional ridge waveguide with 0.3
μm Si3N4 passivation and 0.2 μm (a) and 4.0 μm (b)
thick gold metallization. c–d) Buried waveguide
heterostructure (BH) waveguide design for episide-
up (c) and episide-down (d) mounting.

where κth is the thermal conductance and Q the source power density. The latter can be
written as (p.106)

(6.6.39)
where  is the electric field in
the active region and J the
current density. For a device
operating with  = 80kV/cm
and a current density of J =
5kA/cm 2 we obtain Q =
400MW/cm 3! For this
reason, the heat generation
outside the active region, due
to Joule heating of the
claddings and contacts, is
usually neglected.

As already mentioned, the
thermal conductance kth
varies strongly between the
different materials. Scalar
values commonly used are
displayed in Table 6.1. As the
thermal conductance in the
semiconductor material is
limited by the phonon mean
free path, one may suspect the latter to be anisotropic in the layered active region. In
particular, the thermal conductance should be lower for heat flowing perpendicular to the
layer rather than the one flowing parallel to the layers, i.e. κ ⊥  κ ∥. This result was
indeed found experimentally by Lops et al. [123], with a ratio κ ⊥/κ ∥ strongly temperature
dependent, with a value of κ ⊥/κ ∥ = 0.1 at 100 K, and an extrapolated value of κ ⊥/κ ∥ = 0.3
at 300K, with the corresponding thermal conductance values of κ ⊥ = 2.5W/mK and κ ∥ =
8W/mK.

A comparison of the thermal properties of various waveguide architectures is shown in Fig.
6.13, where the computation of the temperature profile across a waveguide is shown for
identical thermal load conditions. The effect of a thick gold layer, as well as a buried
heterostructure and a junction-down mounting, are evidenced, and translate (p.107)

in a reduction of the ΔT
between the active region and
the substrate from 90 K for the
thin gold, junction-up ridge to
40 K for the buried
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Fig. 6.14.  Experimental (markers) and theoretical
(lines) data of the thermal resistivity (left axis) and
the area specific conductance (right axis) for
different thermal waveguide designs: (upper curve)
conventional waveguide with thick electroplated
gold, (intermediate) buried waveguide design, and
(lower curve) buried waveguide mounted epi-down
on diamond. The experimental data have been
deduced either from the threshold currents (open
marker), or spectral characteristics (filled marker).

heterostructure, junction down
device. Besides the material
used, the thermal resistance of a
device depends strongly on the
geometry. To facilitate the
comparisons, it is worth
rewriting eqn. 6.6.37 as a
function of the current density
J:

(6.6.40)
where Gth is now the area-
specific thermal conductance.
As shown in Chapter 11,
values of Gth are measured
between 250 W/cm2 for wide
ridges with thin evaporated
gold to 2000 W/cm2 for
narrow, buried
heterostructure devices
mounted junctiondown. This
dependence is shown in Fig. 6.14, where experimental measurements of the thermal
resistance of buried heterostructure devices are compared to the computed values. The data
is also shown as a function of the thermal resistivity of the active region, related to the
specific heat conductance by

(6.6.41)
where dact is the thickness of the active region.
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It is clear from the preceding chapters that a laser based on intersubband transitions will benefit
from many interesting features of this system. First of all, as for a detector, it is based on an
optical transition that exhibits a large oscillator strength (f ≈ 20–30 for common GaAs or InGaAs
materials) that can be tuned over a wide range of frequencies in the mid- and far-infrared.
However, it is also clear that such a laser has to overcome a number of inherent challenges, the
most serious one being the very short lifetime of the upper-state transition. Let us emphasize that
in contrast to the case of a light-emitting diode, such a short lifetime will not be an inherent
limitation to the efficiency of such a device, but will rather severely limit the available gain at a
given pumping power density.

7.1 Historical perspective



Fig. 7.1.  Schematic band structure of the device
considered theoretically by R. Kazarinov and R.
Suris. A superlattice is under a strong applied electric
field, such that the ground state of a well is
energetically above the first excited state of the
downstream well.

The idea to use intersubband transitions to achieve optical gain traces back to the original work of
Kasarinov and Suris in the early 1970s [8]. In this paper they examined the optical response of a
superlattice under the application of a strong electric field, such that the ground state of one well
would be energetically situated just below the second excited state of the quantum well
downstream. As compared to earlier superlattice theoretical investigations, focusing on the
appearance of Bloch oscillation and negative differential conductivity in the miniband picture,
they investigated a regime where the electron states would be localized by the electric field in
their respective wells. The mechanism for population inversion and gain is fairly easy to
understand. As shown schematically in Fig. 7.1, the transition between the ground state of one
well 1 to the excited state 2 of the well downstream must proceed through a tunnel barrier. The
strength of this interaction can therefore be reduced by an arbitrary amount by just increasing the
thickness of the tunnel barrier. In contrast, the scattering between levels belonging to the same
quantum well, such as that occurring between the states n = 2 and n = 1, is expected to be much
more efficient. In such a system, as the ground state of each well is also the upper-state of the
laser transition, the population inversion is a robust feature that will arise regardless of
temperature for any monotonic electron distribution.

One of the key problems that has so far prevented this proposal from being demonstrated
experimentally is that the situation they described could hardly be obtained experimentally,
because it would mean operating the device in an unstable electric field region of negative
differential resistance. In other words, as for the Bloch oscillator, the gain extends down to zero
frequency, preventing a stable field distribution in (p.109)

the device. As a result, as shown
experimentally by K. K. Choi [124], a
doped superlattice under strong
applied bias will break into field
domains with, in each domain, energy
states aligned in resonance. This
configuration is more stable because it
enables a larger current to flow
through the structure. For example, in
the case studied by Kazarinov and
Suris, the real band alignment for a
realistic structure would be a part of
the structure that will exhibit a ground
state of each well aligned with the first
excited state of the following well, and
the next part of the structure where the
ground state of each well is aligned with the second excited state.
7.2 Active region: fundamental concepts

7.2.1 Injection/relaxation region

The design of a successful intersubband laser has to solve simultaneously a number of problems:

• The structure should be stable electrically at the operating point.
• Population inversion should be achieved.
• The resultant gain should overcome waveguide and other active region losses.



Fig. 7.2.  a) Schematic conduction band diagram of a
quantum cascade laser [20]. Each stage of the
structure consists of an active region and a
relaxation/injection region. Electrons can emit up to
one photon per stage. b) General philosophy of the
design. The active region is a three-level system. The
lifetime of the 3 → 2 transition has to be longer than
the lifetime of level 2 to obtain population inversion.

As compared to all the previous proposals, the quantum cascade laser was the first demonstration
of an active region that fulfilled all these requirements [20]. To this end, an architecture was
chosen in which the active structure is no longer a simple superlattice but now consists of a
periodic arrangement of unit cells, each one consisting of a complex heterostructure potential
consisting of a number of wells and barriers. As shown in Fig. 7.2, roughly speaking, each cell
can be divided into a gain region and an injection/relaxation region. The gain region is the
structure that will create and maintain a population inversion between the two levels of the laser
transition. As will be shown later, this result can be obtained using various designs. In general, the
active region contains a ladder of at least three states (or continuum of states), such that electrons
are injected in the n = 3 state and the population inversion is maintained between the states n = 3
and n = 2. Assuming that electrons are exclusively injected in the n = 3 state, the population
inversion requirement translates into the following requirement on the lifetimes.

(7.2.1)
(p.110)

i.e. the total lower-state lifetime τ 2 is
shorter than the electron scattering
time from the n=3 to the n=2 levels.
An injection/relaxation region
follows the gain region. The main
purpose of this injection/relaxation
region is to raise the energy of the
electron compared to the band edge,
thus enabling injection by resonant
tunneling in the next period. This
function is achieved conveniently
by a sequence of alternating
quantum wells and barriers with a
(p.111) changing duty cycle,
creating an effective “graded gap”
that compensates the applied
electric field. A portion of the
injection region is also doped,
providing the electron charge
needed for the transport, in order to
prevent the formation of space-
charge domains. This region also
behaves as an “electron reservoir”
that will feed the carriers to the next
period; the low effective applied
electric field due to the bandgap
grading will promote a cooling of
the electron distribution towards the lattice temperature.

In conclusion, the presence of the injection/relaxation region will



Fig. 7.3.  Highly simplified picture of the effective
potential in a quantum cascade laser. At zero field
the current is blocked by the injection regions that
prevent the current from flowing. With the
application of a strong electric field, these injection
regions are “flattened” and the current flows along
the electronic cascade, generating the photons.

• Prevent the formation of electrical domains.
• Reduce the applied electric field by lengthening the period.
• Block electron escape from the upper-state of the laser transition by suitable
engineering.

7.2.2 Cascading

A very attractive feature of lasers based on intersubband transitions is the fact that cascading the
active-region periods is easy and comes almost naturally. In a cascade laser, the gain region
consists of a large (typically Np= 10 − 100) number of repeated periods. Electrons are then
“recycled” from period to period as they cascade down the structure. Cascading has two main
advantages. First, by increasing the size of the region in which gain occurs it will decrease the
population density required for each individual active region period. This allows a reduction of
the threshold current density of the device. In addition, a single electron is able to potentially emit
a number Np of photons, increasing the slope efficiency. As shown in Fig. 7.3, both effects are
obtained at the cost of a larger applied bias. In essence, in a cascade laser one is exchanging a

lower operating current for a larger
operating voltage. This enables a large
reduction of the device’s ohmic losses,
especially in the mid- or far-infrared
where the photon energy is very small.
In fact, as the slope efficiency grows
with Np, the device-operating (p.112)
current for a given power is
proportional to . The ohmic
losses (= RI 2) for this device therefore
decrease with the square of the
number of the period.
This advantage is, of course, valid
for any semiconductor laser. The
problem in applying such an idea to
interband near-infrared structures is
the necessity of inserting a Zener
tunnel junction in the structure to
enable reinjection of carriers across
the gap. Such a tunnel junction must be heavily doped, and therefore tends to increase the optical
losses. An elegant way around this problem is to work in a vertical cavity semiconductor laser,
and place the Zener junction at a node of the optical field.

7.3 Intersubband versus interband lasers
Intersubband and interband lasers are radically different devices. In an interband laser:

• The population inversion is obtained naturally through a physical property of the
material (its energy gap).
• A minimum current must be injected to reach material transparency. An essential
element of the optimization is therefore to minimize this transparency current.
• The maximum current carried by the device is limited by either heating or
catastrophic damage on the facet.

In contrast, in an intersubband laser:



Fig. 7.4.  Population inversion between the two
upper levels of a ladder of three states. The relevant
non-radiative process are also indicated.

• The population inversion must be established by a suitable design of the active
region.
• As a general rule there is no transparency current.
• The device reaches a maximum current given by the doping of the device and an
alignment of the band structure.

As a result, the optimization of the active region in both cases is very different. For interband
lasers the reduction of the transparency current is achieved through a reduction of the active
volume, by confining the electron-hole pairs in quantum wells or even quantum boxes. As a
result, the transparency current historically fell from more than 10kA/cm 2 for a p-n junction diode
to 1 − 3kA/cm 2 for a double heterostructure active region to less than 100A/cm 2 for strained
InGaAs quantum well lasers.

In contrast, in a quantum cascade laser, the gain must be maximized by engineering the lifetimes
and oscillator strengths. In fact, mimimum threshold current (or even power, taking into account
the applied bias) is obtained for relatively large active regions with 25–50 periods, as there is no
direct penalty for increasing the active region thickness. Besides the active–region design, the
other key parameter for achieving highest performance is the minimization of the optical losses
coming from both the waveguide and the active region.

7.4 Rate-equation analysis, threshold condition, slope efficiency
A key understanding of the requirements for the design of a QCL may be achieved by considering
a simple atomic-level analysis of the active region. For historical reasons the gain region is
assumed to consist of three states, with laser action occurring between levels n = 3 and n = 2,
whereas the injector is assumed to consist of only one level, with a constant population ng,
aligned with the upper level of the next period. A (p.113) schematic diagram of the process
connecting these three different states is shown in Fig. 7.4. Electrons are injected in the n = 3 state
from the ground state of the injector

of the previous period at a rate equal
to J/e. Electrons may scatter from this
state to the lower n = 2 and n = 1
states with rates  and 
respectively. The n = 3 lifetime, given
by the relation 

 may include
an escape process into the continuum
with a lifetime τesc. We assume also
that electrons may be thermally
activated to state n = 2 to an
equilibrium population . The
latter term may be approximated by an
activated behavior 

, where ng is the sheet doping density of the injector and Δ the energy
difference between the Fermi level of the injector and the n = 2 state of the laser transition. Therefore, the
rate of change of the population of the three levels may be written as

(7.4.2)



(7.4.3)

(7.4.4)
In eqn. 7.4.4, αtot is the total modal loss (sum of the waveguide and mirror losses), β the fraction
of the spontaneous emission coupled in the laser mode, and τsp the spontaneous emission lifetime.

In considering eqn. 7.4.4, it should be noted that the electron n and photon S densities do not have
the same units. In this work, we choose to define ni as sheet densities per period and S the photon
flux per period and unit active region width. However, it should be remembered that these
equations represent only one period of the active region, whereas a quantum cascade laser will
have many periods sharing the same optical waveguide. Usually, one considers the gain cross-
section gc appearing in eqn. 7.4.4 as one of all the periods in the active region put together, i.e.
proportional to the total overlap factor Γ:

(p.114)

(7.4.5)
where z 32 is the dipole matrix element, 2γ 32 is the FWHM broadening of the transition, λ the
wavelength, and Lp the length of the period. If this convention is chosen, it should be noted that
the photon flux S is the one per period, not the total one for the whole active region.

The behavior below threshold is obtained by setting the time derivatives and S to zero. In this
approach the amplified spontaneous emission is neglected because τsp  τ 3 and only becomes
significant extremely close to the threshold current. From the first equation we obtain a relation
between the upper-state population and the electrical pumping: n 3 = Jτ 3/e. Making use of the
second, one obtains for the population inversion Δn = n 3− n 2,

(7.4.6)
where the effective lifetime τ eff = τ 3(1 − τ 2/τ 32) relates the population inversion to the electrical
pumping. The effective lifetime converges to the upper-state lifetime for states displaying a large
ratio of lifetimes τ 2/τ 32  1. Note also that the population inversion can only exist if τ eff 
0, i.e. if τ 2  τ 32.

The threshold current density is reached when the modal gain gcΔn compensates for the losses α

tot,

(7.4.7)
or, expressing the gain cross-section explicitly:



Fig. 7.5.  Schematic illustration of the behavior of
the population inversion Δn and the photon flux S
with injected current J.

(7.4.8)
Above threshold, the gain is clamped and S increases linearly. By again setting the time
derivatives to zero and differentiating over J, one obtains the slope efficiency for the whole stack:

(7.4.9)
where α m,1 is the front mirror loss. The behavior of S and Δn as a function of injected current is
shown schematically in Fig. 7.5.

7.5 Optimization of the active region: the intersubband toolbox
An analysis of eqns. 7.4.8 and 7.4.9 leads to the following conclusions: a low-threshold, high-
efficiency laser will be obtained in a structure that achieves:

• A large ratio of upper-state to lower-state lifetimes τ 32/τ 2.
• A low waveguide loss αw.
• A narrow transition linewidth γ 32.
• A long upper-state lifetime τ 3.

(p.115)

The multiple QCL designs that exist
simply reflect the complicated trade-
off that has to be made when trying to
simultaneously fulfil these conflicting
requirements. The required
engineering of the lifetimes and
dipoles is achieved by using an
“intersubband toolbox”, the
ingredients of which are combined to
construct the various active-region
architectures.

7.5.1 Tunneling

A very interesting situation occurs
when, as shown in Fig. 7.6, the
initial and final states of the laser
transition are localized in two different quantum wells, coupled by a tunnel barrier.
Mathematically, these states are localized in their respective wells when the coupling energy Ω1′1
between the initial state 1′ and final state 1 is much smaller than the energy difference between
the uncoupled states  and , i.e. when Ω1′1  E 1′ − E 1. In this situation, any scattering
between the two states

will contain the coupling energy Ω1′1.
The latter is proportional to the
tunneling (p.116) probability exp(−κb
Lb), where



Fig. 7.6.  Two states coupled by a tunnel barrier. The
lifetime of the upper-state is controlled by the
thickness of the coupling barrier.

(7.5.10)
is the electron’s wavevector and Lb
is the thickness of the tunnel barrier.
As a result, the scattering rate will
be lowered by simply increasing the
tunnel barrier thickness, regardless
of the scattering mechanism.

This can easily be seen by applying
first-order perturbation theory and
computing the scattering operator S between the perturbed initial |χ 1′  and final states |χ 1 ,
taking for the perturbed state

(7.5.11)
and a similar expression for the perturbed ground state |χ 1 . The result yields

(7.5.12)
The above expression is indeed directly proportional to Ω1′1. In addition, as mentioned already by
Kazarinov and Suris in their seminal paper [8], it appears immediately that a scattering potential
having the same matrix elements with both states 1 and 1′ will experience a destructive quantum
interference, as the right-hand side of eqn. 7.5.12 vanishes. Remote impurities—that is, located
far away from both wells—would induce such a potential. However, most other scattering
mechanisms, like optical phonons or interface defects, have a typically much shorter range and
will act at least with a different phase on states  and .

The approximation used in eqn. 7.5.12 is valid as long as the coupling to other quantum states can
be neglected. In most active regions, however, the above expression must be modified to take into
account the fact that the upper-state couple mainly to the excited state of the downstream well. A
very similar model may then be used based on a set of three states with an upper-state |χ 1′
coupled to the states of the following well.

(7.5.13)
We will then assume that state 1′ couples mostly to the excited state of the following well, i.e. that

(7.5.14)
The expression for the scattering matrix element of S is then even simpler:



Fig. 7.7.  Photon-assisted tunneling transition.

Plotted are the oscillator strength 

and optical phonon scattering rate as a function of
barrier width for a system consisting of a 4 nm and
1.5 nm InGaAs well coupled by an AlInAs barrier.
The additional points are the two values for a 6 nm

(7.5.15)
This approximation justifies the “tunnel-assisted” terminology used for the description of the
processes occurring in such coupled wells, for the matrix elements between states 1′ and 1 may be
seen as those of a single quantum well multiplied by a tunneling coupling.

(p.117) Because of the coupling induced by the tunnel barrier, the upper-state is a superposition
of states 1′ and 2. The scattering matrix element is simply proportional to the amplitude of state |χ

2  in the mixture of states. An important limiting case is the one where states 1′ and 2 are
resonant, i.e. E 1′ − E 2= 0. In this case, the perturbation approach of eqn. 7.5.15 is not valid
anymore; however, the upper-state wavefunction is composed at equal parts of state 1′ and 2 with
amplitude . As a consequence, the matrix elements will all be multiplied by the same factor
and the total lifetime, proportional to the square of the matrix element, will be twice that of the
single quantum well.

In general, in a Fermi golden rule approach, the scattering rates are proportional to the matrix
elements squared, i.e.

(7.5.16)
and therefore proportional to Ω2. The latter is proportional to the intensity transmission of the
tunnel barrier, i.e. to exp(−2κb Lb).

Let us take as an example a system consisting of 4 nm and 1.5 nm InGaAs wells coupled by an
AlInAs barrier. The ground state of the two wells are separated by 230 meV. As shown in Fig.
7.7, both the oscillator strength and the intersubband lifetime decrease strongly with the tunnel
barrier thickness; the dependence expected by eqn. 7.5.15 with the squared matrix elements
varying exponentially in barrier thickness as exp(−2κb Lb) is indeed observed in the limit of thick
tunnel barriers.

As is apparent in Fig. 7.7, both the
oscillator strength and the
intersubband scattering rate have
approximately the same dependence in
barrier thickness. Since the gain cross
section is proportional to the ratio of
these two numbers, the latter is
expected (p.118) to remain
approximately constant with barrier
thickness. A closer look at Fig. 7.7,
however, shows that the initial
decrease of the optical phonon
scattering with barrier width is slightly
faster than that of the oscillator
strength. As a result, a merit factor fτ
of the transition, given as the product
of the oscillator strength and the
lifetime, increases with barrier
thickness.



thick single quantum well exhibiting the same
transition energy.

Fig. 7.8.  Product of the oscillator strength and the
lifetime as a function of tunnel barrier thickness.
This number is a figure of merit of the differential
gain cross-section. The value for Lb = 0 is the one
computed for a single quantum well 6 nm thick, as in
Fig. 7.7.

Fig. 7.9.  Engineering a population inversion using
an optical phonon resonance. In a ladder of three

Indeed, as shown in Fig. 7.8 where
this quantity is plotted as a function
of the tunnel barrier width between
the quantum wells for a fixed
transition energy, fτ increases from 18 to 35 as the diagonality of the transition increases. This
improvement of fτ was one of the justifications for the investigation of quantum cascade lasers
based on a photon-assisted tunneling transition [125]

.

7.5.2 Optical phonon

As was shown in the preceding
chapter, for lasers operating in the
mid-infrared, the lifetimes are
ultimately limited by optical
phonon emission, as the other
parasitic processes such as tunnel
escape in the continuum can be
eliminated with a good design. A
reduction of a lifetime may be
obtained by using a resonant optical
phonon emission process. As shown
in Chapter 5, a strong reduction of
the intersubband lifetime is
predicted when the transition
energy approaches the optical
phonon energy. Consider the
structure shown in Fig. 5.4(a). In
this three-level system the first two states are separated by an optical phonon energy (34 meV in
InGaAs and 36 meV in GaAs). Resonant optical phonon emission between these two states will
reduce the lifetime of the state n = 2 to about 200 fs (close to k = 0). Intersubband transitions
between the n = 3 and the n = 2 states are less likely because they are non-resonant processes as
soon as the emitted photon energy is larger than the optical phonon energy. In other words,
transitions between the n = 3 and the n = 2 and n = 1 states will proceed (p.119) with large
wavevectors, whereas transitions between the n =2 and n = 1 proceed at nearly zero exchanged
wavevectors.

7.5.3 Phase space

Finally, a third approach for
modifying the intersubband lifetime
is based on a phase space argument.
Consider a superlattice formed by
the periodic alternance of wells and
barriers. As in its three-dimensional
counterpart, this one-dimensional
potential will create a set of
minibands and minigaps whose
width can be adjusted by modifying



Fig. 7.10.  Engineering the lifetimes. In a
superlattice, a population inversion builds up at the
edges of the minigap because the phase space for
scattering out from the upper-state of the lower
miniband is much larger than the phase space to
scatter in the same state. a) Real-space and (b)
reciprocal-space picture of the energy bands. The
lifetime “τ 32#x201D;, using the notation of the
three-quantum-well active region, is inefficient
because the scattering from the upper-state is spread
into the whole miniband.

states, where the two lower ones are spaced by an
optical phonon energy, the n = 3 lifetime will
naturally be longer than the n = 2 because of the
smaller exchanged wavevector for the optical
phonon emission between the n =2 and n = 1 states.

the well and barrier thicknesses, as
shown in Fig. 7.10. In an
electrically pumped quantum
cascade laser, the carriers are
injected in the lower state of the
upper miniband, and population
inversion and optical gain is
achieved at the edges of the minigap. Because of the nature of the electron–phonon interaction
that depends on the exchanged wavevector, the intersubband lifetime in a single quantum well
will be almost identical (within 20%) to that of a superlattice with a minigap of identical size. For
this reason, the scattering rate between levels at the edges of the minigap will tend to decrease
with the total number of wells in the superlattice, as the total rate must be shared between more
and more lower levels. In addition, the lower state lifetime τ 2 is very short because electrons in
the upper-state of the lower miniband may scatter to any point of the lower miniband very
efficiently.

Superlattice active regions also exhibit another advantage. In these structures, since the optical
transition occurs between excited states, its oscillator strength will be much larger than the one
taking place in a single quantum well with the same transition energy.

This behavior is illustrated in Fig. 7.11, where the product of the oscillator strength and the upper-
state lifetime is plotted as a function of number of period for a superlattice consisting of an
alternance of 6 nm thick Ga0.47In0.53As wells and 0.5 nm thick Al0.48In0.52As barriers. This
figure of merit increases from 22 to 50 ps as the number of periods increases from 2 to 9.
Similarly, the ratio between the total upper-state lifetime and the lifetime between the edges of the
minigap (called τ 3 and τ 32 by analogy (p.120)

to a three-level system) decreases from
0.5 to 0.11, close to the value of 1/N
expected for a model where the
scattering rate is shared equally
between lower states. Fig. 7.11 shows
a continuous increase of merit fτ as a
function of a number of periods.
Actually, the concept of a superlattice,
strictly speaking, implies an infinite
number of periods. Two physical
reasons prevent, in practice, increasing
the number of active-region periods to
a number larger than 8–10. First, as
the number of periods is increased, the
spacing of adjacent levels is
decreasing, until the point where the
states are closer than their intrinsic
broadening. Upper states separated by
less than kT will also decrease the
injection efficiency, as the population
of the upper miniband will be spread
over many states. Secondly, a related
issue is the electrical injection that by



Fig. 7.11.  Product of the oscillator strength and the
upper-state lifetime (left axis) and branching ratio τ 3
/τ 32 (right axis) for a 60/5 Å
Ga0.47In0.53As/Al0.48In0.52As superlattice as a
function of the number of period N.

(p.121) definition will be at an edge
of the superlattice and that can only
inject electrons over a maximum of a
coherence length.
Intersubband lasers based on
superlattice active regions have
demonstrated high output powers
and high operating temperatures.
Some of these phase-space concepts
may also be used in structures
based on discrete levels.

A very important feature of both the
phase-space argument and the
tunnel effect do not depend on the
exact nature of the scattering
mechanism. They will therefore
also be applicable to other quantum
cascade laser systems such as terahertz QC lasers and QC lasers based on non-polar materials
such as Si/SiGe.

7.5.4 Escape time, Bragg reflection, and upper-level confinement

Strictly speaking, under applied an electric field, all states of a quantum cascade structure are in
fact resonances with a lifetime caused by the finite probability of tunneling by autoionization.
This autoionization will translate into an escape time τesc from the upper-state into the continuum,
reducing the total upper-state lifetime. To circumvent this problem, the confined states of the
active region structure are computed by artificially bounding the structure with high barriers,
transforming all the states into real bound states.

However, especially for states with large confinement energy, the autoionization into continuum
may be relevant to the upper-state lifetime, occurring either directly or through coupling with an
intermediate state further down in the epilayer stack. Preventing this escape path is especially
important in the excited state of the active region, since this process will reduce artificially the
upper-state lifetime below the limit set by the optical phonon scattering.

This lifetime can be computed directly by invoking Heisenberg’s relationship and computing the
FWHM linewidth 2Γ of the resonance, leaving the structure unbounded.

(7.5.17)
The problem with this approach is that it tends to underestimate the strength of the process, since
it assumes an infinite coherence length. In practice, this problem may be circumvented by
computing a structure truncated to a few periods.

To design around this problem, care must be take to design the injection/relaxation region with a
minigap facing the upper-state of the laser transition. Since the atten-uation of the wavefunction
inside this region will be proportional to the width of the gap, it is usually a good design rule to
maximize the width of the latter and to center it around the excited state of the laser transition, as
shown in Fig. 7.12. In fact, it is usually not a solution to just increase the thickness of the escape



Fig. 7.12.  A minigap facing the excited state of the
laser transition will prevent electron escape into the
continuum.

barrier, since this will reduce the escape rate of the lower state as well. When this gap has to be
built in the continuum, a design rule may be used based on the Bragg reflection condition [126].
In this approach, for each well/barrier pair, the condition

(7.5.18)
is imposed, where  and  are the wavevector in the
quantum well and the quantum barrier, respectively. The individual well and (p.122)

barrier thickness lw and lb may deviate
from the exact quarter condition, since
we choose to keep the effective
conduction band edge of the injection
region flat under the applied field.
Mathematically, it translates into the
requirement that the effective
conduction band potential V(x) of the
injector at position x, approximated by

(7.5.19)
exhibits an effective electric field 

 that approximatively

cancels the one applied at threshold.
In Fig. 7.13 the electron transmission coefficient is plotted as a function of energy for an injector
designed to provide Bragg reflection at the energy of the excited state E 3 = 500 meV. At this
energy and given the applied electric field of 85kV /cm, the electron is barely confined in the well
and has an energy above the barrier in the whole injection region. A transmission coefficient of 3
× 10−3 and 10−4 is found, assuming that the electron coherence is maintained over 3, respectively
5 periods, while a relatively large transmission coefficient of ≈ 10−1 is achieved at the energy of
the lower states. The escape time therefore depends critically on the number of periods. Here we
use for the escape time the expression

(7.5.20)
where t is the transmission coefficient. For t = 1 × 10−4 we obtain τesc = 12ps, which is much
larger than the intersubband phonon scattering time. However, if the coherence length is reduced
to three well/barrier periods, the computed escape time decreases to 0.4 ps.

In Fig. 7.14 the electroluminescence intensities of a structure with and without a Bragg reflector
are compared at low temperature. As demonstrated by an improvement of about a factor of 3 to 4
of the electroluminescence efficiency, it is clear that the Bragg reflector is effective in significanly
reducing the electron escape time. Finally note that as the temperature is raised, the coherence
length of the electron will be (p.123)

reduced, and the electron may also be
thermally activated above the minigap,

 



Fig. 7.15.  Schematic description of the relevant
levels and injection efficiencies in a cascade laser.

Fig. 7.13.  Computed transmission of an injector
designed to provide maximum reflection at the
energy of the excited state.

Fig. 7.14.  Comparison of the electroluminescence
efficiency of a structure designed with and without a
Bragg reflector facing the upper-state.

all of which increases the electron
escape rate.

7.5.5 Injection efficiencies

One could be tempted to conclude
from the description above that
optimization of a gain region may
be reduced to the simple
optimization of the computed ratio
of upper- (p.124) to lower-state
lifetimes, combined with an
optimization of the intersubband
oscillator strength. This picture is,
however, oversimplified, because it
implicitly assumes that all the
electrons are initially injected in the
upper-state, and, furthermore, that
they are all extracted immediately
from the lowest state. In fact, the
situation is much more complicated
by the fact that both of these
processes (injection and extraction)
are essentially non-ideal.

Let us assume, as shown
schematically in Fig. 7.15, that a
fraction η 3 of the current is injected
into the upper-state, and η 2 into the
lower state. Such a non-resonant
injection originates from elastic or
inelastic scattering between the
injector state and the lower states of
the active region. In this case the
expression for the material gain

g reads:



Fig. 7.16.  Schematic diagram of the first generation
of quantum cascade laser active region designs.

Fig. 7.17.  Schematic of the parameters optimized in
the active regions.

(7.5.21)
The influence of the injection efficiencies η 3 and η 2 are clearly not symmetric. The gain is
simply scaled by the value of η 3, whereas, depending on the ratio of τ 2/τ 3, the value of η 2 can
have a much more dramatic consequences of cancelling the gain altogether. Clearly, although the
design should in principle aim at reaching injection efficiencies as close to the ideal values (η 3 =1
and η 2 = 0) as possible, the detrimental effects of non-ideal injection efficiencies may be
mitigated by a system with a large lifetime ratio (τ 2/τ 3). In the case of a quantum cascade laser
based on a superlattice active region, eqn. 7.5.21 can still be applied with the n = 3 state being the
lower state of the upper miniband and the n = 2 the upper-state of the lowest miniband. Eqn.
7.5.21 shows clearly the strong dependence of the gain on both injection efficiencies and the ratio
of the lifetimes: one must design a structure which maximizes the difference η 3 τ 3 − η 2 τ 2 and
minimizes the ratio τ 2/τ 32.

7.6 Optimization of the active region: different designs

7.6.1 Designs: general trends

As shown schematically in Fig. 7.16, after the demonstration of the first working laser, the studies
first aimed at testing the validity of the different components of the intersubband toolbox
individually, i.e. whether a quantum cascade laser could be built based only on tunneling, optical
phonon resonance, or phase space. In later studies (p.125)

these different strategies were
combined in a single design in order to
optimize the various components of
the threshold current density appearing
in eqn. 7.4.8, as shown in Fig. 7.17.
The result of this optimization has led
to the focus, for the mid-infrared on
roughly two or three designs, that will
be presented here.

7.6.2 Three-quantum-well active
region

We will start our discussion of our
different QC laser designs with an
evolution of the original structure
designed for operation at 4.3 μm
wavelength [20]. This design has
some unique features: first of all it
is the one which allows the shortest
wavelength to be reached for a
given band discontinuity; by
combining the optical phonon
resonance with the possibility of a
diagonal transition it enables a good ratio of upper-state to lower-state lifetime. A schematic
description showing how such an active region design can be decomposed is shown in Fig. 7.18,
where the “bare” states, the states of the quantum well before coupling by the tunnel barrier, are
shown along the “dressed” states. The active region is based on a pair of quantum wells (see Fig.
7.18a), designed in such a way that the ground state of the thinner well is brought in resonance



Fig. 7.18.  Schematic potential profile and design of
the active region of a quantum cascade laser based
on three quantum wells. a) Two-quantum well before
the application of the electric field. b) The electric
field brings the two ground states in resonance and
yields a splitting equal to the optical phonon energy.
A third thinner well is added upstream. If the state of
this well is resonant with the excited state of the
coupled well, the resultant transition is diagonal (c),
if the well is thinner and the resonance is above, the
transition is vertical (d).

with the ground state of the thicker well. The tunnel barrier is then adjusted such that the energy
splitting matches the optical phonon resonance (see Fig. 7.18(b)). Because the (p.126)

excited states gain energy faster with
quantum well thickness, the excited
states will not be in resonance. A third
quantum well is then added upstream.
Two possibilities exist. In the first one,
the state of this additional quantum
well is resonant with the n = 3 state of
the quantum well, and will anticross
with it as shown in Fig. 7.18c. In this
case the transition is strongly diagonal
and, as a result, the lifetime will be
approximatively twice that of the
vertical transition. If, on the contrary,
the state of this thin well is clearly
above the n = 3 state, see Fig. 7.18d,
the transition will have the lifetime
and oscillator strength of a vertical
transition, but the extension of the
wavefunction in the injection barrier
will improve the injection efficiency.
A schematic band diagram of both
structures, designed for operation at
λ = 10.3 μm and λ = 5.3 μm
respectively, are shown in Fig. 7.19.
The choice of a diagonal transition
at longer wavelength allows
retention of a good ratio of upper- to lower-state lifetime even for a relatively low transition
energy of 120 meV. The diagonal nature of the laser transition is responsible for the lifetime (1.6
ps at low 80 K) longer by a factor of two as compared to a vertical transition at the same energy.
In contrast, the lifetime of the upper-state of the vertical transition device is approximatively the
same as that of the square quantum well. While the oscillator strength of the diagonal structure (f
= 16) is smaller than that expected for a vertical transition at the same energy, it is about the same
as that of the vertical transition at 5.2 μm because of non-parabolicity effects. These devices
operated above room temperature, up to T = 330 K with 200 mW high peak power [32].

7.6.3 Double phonon resonance

One weakness of active regions based on three quantum wells is the extraction from the ground
level of the active region. In fact, studies on diagonal transitions showed (p.127)

that the extraction from the active
region, due to resonant tunneling,
proceeded on a timescale of about 2
ps. This relatively long lifetime,
compared to the fast scattering
between level n =2 and n = 1 of the
active region, enabled electrons to be
scattered back to the n = 2 state by



Fig. 7.20.  Schematic band diagram of a two-phonon
resonance gain region designed for operation at λ ≈ 9
μm. The structure is shown in Appendix A.2.1.

Fig. 7.19.  Examples of active regions based on three
quantum wells, using lattice-matched
InGaAs/AlInAs material. Structure a) is designed for
a wavelength of λ = 10.3 μm using the concept
shown in Fig. 7.18c, which leads to a diagonal
transition with a longer lifetime. The structure is
shown in Appendix A.1.6. Structure b) is designed
for λ = 5.3 μm and exhibits a vertical transition, as
explained in Fig. 7.18d [32]. The structure is shown
in Appendix A.1.7.

multiple scattering events between
states. As a result, the population
inversion was more difficult to
achieve, degrading the high-
temperature and high-power
performances of these devices.
One attempt to solve this problem
has been the design based on so-
called two- phonon extraction [22].
In the two-phonon resonance
design, the extraction is obtained by
a ladder of three states separated by
an optical phonon each. According
to our computation, the addition of this extra level decreases significantly the population of the
lower state. For a structure emitting at λ ≈ 9 μm, the computed distribution show a much reduced
population of the lower laser state. A schematic conduction band diagram of one period of such
an active region is shown in Fig. 7.20. The upper and

(p.128) lower lasing states are the
wavefunctions with numbers 4 and 3,
respectively; and the ground state of
the injector is denominated with the
letter “g”. The active region was
composed of four QWs, which results
in three coupled lower states (levels 1,
2, and 3). Each two of the latter (i.e.
level 3 and 2, and level 2 and 1) were
separated by one phonon energy. This
double phonon resonance yielded a
short intersubband electron scattering
time, and therefore an efficient
extraction of the electrons into the
injector region. The upper lasing state exhibits a much longer intersubband electron scattering time of 

 ps (at T = 300 K) where the lifetimes contain both emission and
absorption processes. The relatively large dipole matrix element, z 43  = 3.0 nm, confirms that the
lasing transition is mainly a vertical one. Due to the thin first well, which reduces the overlap of the
injector ground state g with the lower lasing state wavefunctions 1, 2, and 3, the injection efficiency was
kept similarly high as in the classical three-quantum-well design. The design thus takes advantage of the
good properties of both the three-quantum-well design (high injection efficiency) and the superlattice
design (short lifetime of the lower lasing state).
Low-temperature (T = 80 K) luminescence spectra were taken from a device in which the light
was extracted from a 45-degree wedge polished in the substrate. These spectra, taken for various
injection currents, are shown in Fig. 7.21 along with the calculated transition energies. All the
transitions in the active region can be easily

identified. Our computation show that
the dipole matrix elements between
states 4–1 and 5–1 are always very
small (z 51 , z 41  0.1nm), regardless
of the applied electric field. Peaks
related to transitions from level 5 can



Fig. 7.21.  Low-temperature (T = 80 K)
luminescence spectra of the active region based on a
two-phonon resonance. Calculated transition
energies are shown on the top horizontal axis.

Fig. 7.22.  Oscillator strength f, product of oscillator
strength and upper-state lifetime fτ (right axis), and
transition energy Etrans (right axis) as a function of
applied electric field for a superlattice consisting of
five periods of a 59 Å InGaAs quantum well and a 9
Å AlInAs barrier. The value of oscillator strength for
an unbiased single quantum well is shown for
comparison.

be observed only experimentally in the
strong injection regime. The computed
dipole matrix element z 42 decreases
strongly with applied field, as
observed in Fig. 7.21. In general, the
luminescence peaks shown in Fig 7.21
confirms the location and strength of
the respective intersubband transitions
(p.129) .

7.6.4 Bound-to-continuum active
regions

Besides the two-phonon resonance
approach, the bound-to-continuum
approach provides another route for
maintaining a high population
inversion and low threshold current
densities even at high temperatures.
The bound-to-continuum active
region can be seen as an evolution
of the active regions based on
superlattices. As described above, a
superlattice exhibits two very
attractive features: a very large
oscillator strength and a favorable
ratio of lifetimes at the edge of the
minigap.

However, active regions of
quantum cascade lasers operate
under a strong applied electric field.
The latter, applied on a periodic
superlattice, would break the
miniband of the superlattice into a
set of localized states, losing all the
favorable features of the extended
states. An example of the effect of
an applied field on the product of upper-state lifetime and oscillator strength is shown in Fig.
7.22.

For this reason, the first quantum cascade lasers based on a superlattice were doped
homogeneously inside the active region to screen the field. This technique, however, presented
the disadvantage of introducing additional broadening and loss caused by the ionized dopants. As
a result, operation at room temperature of these devices was strongly limited. A very efficient
technique to solve this problem was proposed by Tredicucci and consisted in “chirping” the
superlattice to artificially compensate the applied electric field. Numerically, it consisted in
changing the barrier and well widths of the superlattice such as to keep the energy of the
miniband edges constant even in the presence of the applied electric field. This procedure can be



Fig. 7.23.  Three first miniband edges as a function
of position for a chirped superlattice (a) and for a
bound-to-continuum structure (b).

performed numerically by solving iteratively eqn. 3.4.74 for a well and barrier pair of thickness Li
and hi, solving for the first minigap edges occurring at qd = π:

(7.6.22)
(p.130) where kw and kb are computed at an energy E(z)= E 0 + ∑j i e(Lj + hj) . The procedure
must be stopped when the excess energy E at the upper band edge approaches close to the
discontinuity. The result of this procedure is shown for the chirped superlattice demonstrated by
A. Tredicucci [127] in Fig. 7.23 and compared to the same computation performed for a bound-
to-continuum structure.

In the latter design, shown
schematically in Fig. 7.24, the active
region spans the whole period and
consists of a chirped superlattice
presenting a tilted lower miniband
whose width is maximum in the center
and decreases on both sides close to
the injection barriers. The upper-state
is created in the first minigap by a
small well adjacent to the injection
barrier. Its wavefunction has a
maximum close to the injection barrier
and decreases smoothly in the active
region. This upper-state is well-separated from the higher-lying states of the superlattice, lying in its first
minigap. It therefore does not need to be confined by separating the structure into an active region and an
injection/relaxation region. Because of this large energy separation (60 meV), the injection efficiency η 3
is not reduced by electron injection into higher energy states of the superlattice [128, 129]. In addition,
this configuration of the wavefunction should enable an injection efficiency comparable to the one of the
three-quantum-well design.
As a result of the localization of the upper-state, the miniband selection rules are somewhat
relaxed, and the oscillator strength is now spread between the upper-state and a number of lower-
states. This feature is apparent in the electroluminescence spectrum show in Fig. 7.24 along with
the computed matrix elements. This design architecture was found to offer many interesting
features:

High-temperature performance The devices shown in Fig. 7.24 operated up to 150° C with a
very low temperature dependence on the threshold current, translated in a T 0 parameter as high
as 190 K.

Long-wavelength operation Because of its good lifetime ratio, this design performs very well at
long wavelengths. Above room temperature, operation at wavelengths as long as λ = 16 μm were
achieved.

(p.131)

Broadband gain Because a single
upper-state shares a number of lower
states, this design is very well adapted



Fig. 7.24.  a) Schematic conduction band diagram of
one stage of a bound-to-continuum active region
under an applied electric field of 3.5 · 104 V/cm. The
moduli squared of the relevant wavefunctions are
shown. b) Luminescence spectrum of the active
region at 300 and 80 K, as indicated. The applied
bias is 9 V. Lower curve: computed oscillator
strength of the various transitions from the upper-
state. The design is shown in Appendix A.2.2.
Reprinted with permission from [130]. Copyright
2001, AIP.

for the achievement of gain over a
broad wavelength range.
Non-linear generation Bound-to-
continuum active regions have been
shown to have a combination of
mid-infrared gain and terahertz
susceptibility, enabling terahertz
generation by intracavity non-linear
mixing up to room temperature
[131].

7.7 Cascading: scaling with the
number of periods
As discussed above, the possibility
of cascading the active regions is a
key advantage of intersubband
lasers. In the simple rate equation
model, the number of periods
appear in both the threshold current
density and slope efficiency.

7.7.1 Threshold current density

The total overlap factor between the optical mode and the gain region, Γ, is a function of the
number of periods of the structure,

(7.7.23)
This expression can be simplified to Γ = Γp Np, when Γ covers only a central part of the optical
mode, i.e. when the optical intensity is constant over the active region periods and therefore the
Γp are almost identical.

As shown in Fig. 7.25 where the overlap factor is plotted as a function of the number of periods
for a device operating at λ = 9 μm with an active region period length of 60 nm, this
approximation is valid as long as the active region thickness is much smaller than the mode
width. For typical InP-based waveguides, it is verified (p.132) for Np  20 for lasers operating
at λ ≈ 5 μm, and Np  30 for lasers operating at λ ≈ 9 μm. In this regime the threshold current
density is simply inversely proportional to the number of periods, as the reduction of the current
density thus relies simply on a geometrical increase of the gain region interacting with the optical
mode. As the laser active regions are electrically pumped in a series configuration, the amount of
carriers injected per period therefore do not vary with their number. Adding more period does not
affect the population inversion in each single stage, but it increases the applied voltage. This
situation is very different from that of conventional diode lasers, where by increasing the number
of quantum wells in the active region one has also to increase the current to reach threshold
because a larger active region volume must reach transparency.

When more stages are added, Γp decreases, as the total overlap factor is naturally constrained by
the condition Γ  1. In practical applications a good practice is to keep the number of periods



Fig. 7.25.  Overlap Γ as a function of the number of
periods for a device operating at λ = 9 μm. Inset:
mode profile for an active region thickness of t = 2
μm.

Fig. 7.26.  Slope efficiency as a function of the
number of periods in a series of otherwise identical

such that the total overlap factor is in the range 0.5  Γ  0.8.

7.7.2 Slope efficiency

In a simple picture the electrons are
simply recycled from period to
period, emitting a photon at each
step. As a result, and as predicted
by eqn. 7.4.9, the slope efficiency
of a quantum cascade laser is
proportional to the number of
stages. In a simplified model this
remains true even when the optical
field is not constant over the
various periods, i.e. when the Γp are
not constant. Intuitively, this can be
understood by the fact that the slope
efficiency inherently does not
depend on Γ.

However, a more detailed analysis
shows that in the latter case a hole burning occurs in the center of the waveguide and the slope
efficiency is renormalised by a factor η v equal to

(p.133)

(7.7.24)
This factor is η v  0.9 in common waveguides.

The dependence of the threshold current density, operating voltage and slope efficiency has been
verified in experiments in which quantum cascade lasers were grown and tested with a number of
stages varying between 3 and 75 [132]. As shown in Fig. 7.26, a very good agreement between
the simple theory shown here and the experiments was found

.
7.8 Temperature dependence
A key feature of mid-infrared
quantum cascade lasers, especially
when compared to semiconductor
lasers operating at similar
wavelengths, is the weak
dependence of the threshold current
density as a function of
temperature. As in conventional
semiconductor lasers, the threshold
current density J th(T) is a
temperature-dependent parameter



Fig. 7.27.  Temperature dependence of the light-
versus-current characteristics of a quantum cascade
laser based on a bound-to-continuum transition
operating at λ = 9 μm. The design is described in
Appendix A.2.2. Inset: Threshold current density as
a function of temperature, fitted by eqn. 7.8.25 with a
T 0 of 190 K. Reprinted with permission from [133].
Copyright 2001, AIP.

quantum cascade lasers. Triangles correspond to data
obtained in continuous wave mode, the circles to
pulsed data. The lines are the best fit to the data. The
discrepancy between the two lines is due to the
different collection efficiencies of the two
measurements: 100% for continuous wave, and 60%
for pulsed. Inset: slope efficiency per stage.
Copyright 1999 IEEE, Reprinted, with permission,
from [132].

that can be conveniently fitted by
the expression

(7.8.25)
where T 0 is a parameter that
expresses the temperature
dependence of the threshold current
density.

As shown in Fig. 7.27 where the light-versus-current plot of a quantum cascade laser based on a
bound-to-continuum transition operating at λ = 9 μm is shown as a function of temperature, the
threshold current density varies according to eqn. 7.8.25 (p.134) with a value of T 0 as large as
190 K. Both the large value of T 0 as well as the fact that the device operates up to such a high
temperature of 150° C is unique to quantum cascade lasers. An interband laser operating at
similar wavelengths, based on lead salts, exhibited maximum operating temperatures of 200 K
with T 0 values around 30 K

7.8.1 Intersubband physics

Theoretically, the weak temperature
dependence of the threshold current
density is expected because of two
inherent features of intersubband
transitions. First, unlike interband
devices, the joint density of states
of intersubband transition is atomic-
like. For this reason and as
discussed in detail in Chapter 5, if
one neglects non-parabolicity, the
temperature dependence of the
broadening of the gain curve
originates only from the
dependence of the in-plane
scattering mechanisms. As a result,
the broadening parameter γ in the
equation of the threshold current
7.4.8 exhibits a weak temperature
dependence. Experimentally, this
can be observed by the small
change in the linewidth of the
luminescence shown in Fig. 7.24 that increases only from about 20 meV at 80 K to 24 meV at
300 K.

The second reason, also discussed in Chapter 5, is the fact that the main intersubband scattering
mechanism is the optical phonon scattering. For this reason, the upper-state lifetime is expected to
decrease by a factor of approximatively two between cryogenic temperature and 400K. If a design



Fig. 7.28.  a) Electrons thermally excited from the
injector populate the lower state. The critical energy
is the difference Δ between the energy of the injector
and the lower state. b) Threshold current density
versus temperature for a series of quantum cascade
lasers with an identical active region based on a
vertical transition operating at λ = 4.6 μm (Design
described in Appendix A.1.2) but with injectors of
various lengths showing different values of Δinj.

displaying a large ratio of upper to lower lifetime is choosen, the threshold is expected to display
approximately the same temperature dependence as the τ eff appearing in eqn. 7.4.8.

(p.135) 7.8.2 Backfilling

Another important term in the expression of the threshold current density is the thermal
population of the lower state . As shown schematically in Fig. 7.28a, this population
originates from carriers thermally excited to the lower state from the injection region. The
population  must be compensated by the same upper-state population to achieve
transparency, and therefore should be minimized in a given design. In a simplified model the
thermal population can be approximated by a simple

thermal activation term at an
electronic temperature Tel

(7.8.26)
where ng is the sheet density of the
injector and Δinj the energy
difference between the lower state
and chemical potential of the
injector. The effect of varying the
value of Δinj for a given design is
shown in Fig. 7.28b, where the
threshold current density versus
temperature for a series of quantum
cascade lasers with injectors of
various lengths show different
values of Δinj. The detrimental
effect of a low value of Δinj on the
high-temperature operation is especially apparent. Considered in detail, the computation of 
is complex because the electronic temperature Tel is in general larger than the lattice temperature
and is a strong function of injected current. Therefore, assuming a constant value of  as a
function of injected current density J is a rather crude approximation.

7.8.3 Self-heating

To reach threshold of operation, quantum cascade devices must dissipate a power density
amounting to 20–50 kW/cm2. For this reason, especially when operating in (p.136) continuous
wave, one cannot assume an active-region temperature Tact equal to the temperature of the
submount Tsub. In a simple model the active-region temperature is assumed to be constant and
related to the submount temperature by a single thermal resistance Rth:

(7.8.27)
where U and I are the operation voltage and current. Expressing the above relation at threshold,
and assuming that the threshold current density has the usual exponential dependence in
temperature with a characteristic temperature T 0 given by eqn. 7.8.25, we obtain



(7.8.28)
where the specific thermal conductance Gth in Wcm−2K−1 has been used. The above equation
defines naturally a maximum for Tsub, which can be obtained by setting dTsub/dTact = 0:

(7.8.29)
The above equation defines the maximum operating temperature in a continuous wave. A large
value of the latter requires the combination of:

• A large value of T 0.
• A low intrinsic threshold power Uth J 0.
• A high specific thermal conductance Gth.

The above criteria have driven the research in quantum cascade lasers. While the first two items
drove the development of new active region designs and low-loss waveguides, the last point is
concerned with thermal engineering of the active region.

7.9 Doping of the active region
Active region doping is a “necessary evil” in a quantum cascade laser, as to a large extent the
electrical stability of the system depends on having a structure displaying global electrical
neutrality in each period. In order to minimize the scattering induced by the presence of ionized
impurities, the latter are inserted as far as possible from the active region. The dramatic
broadening effect of doping impurities inserted directly into the active region is shown in Fig.
7.29. However, when the dopants are remote from the active region (in practice about 20 nm
away from it), no direct relationship between injector doping density and linewidth is observed, in
agreement with a linewidth dominated by the interface roughness effect. We saw in Chapter 6 that
the main loss mechanism of a waveguide is the free carrier absorption. In a simple model where
the optical losses are dominated by the active region one, we therefore expect the waveguide
losses to scale with the doping of the active region. Similarly, to the extent that the lifetimes are
not limited by electron–electron scattering, and therefore are independent of electron density, we
expect the current–voltage characteristic to scale linearly with doping.

Such a simple picture is well supported by the experiments. A device with an active region based
on a two-phonon resonance was grown, and the doping of the injector was (p.137)

varied between a sheet carrier density
of ns = 1 × 1011 cm−1 and ns = 2.5 ×
1011 cm−1. As expected from this
simple model and shown in Fig. 7.30,
both maximum operating current and
the threshold current increased linearly
with doping. As the maximum current
is linear in the sheet carrier density, we
can write it as characterized by a
single transport time at resonance
τtrans:



Fig. 7.29.  Comparison of the electroluminescence
from two otherwise identical samples with different
doping profiles. In the sample with the setback, only
the injector region is doped. The design is described
in Appendix A.1.1. In the reference sample the area
marked in grey in the schematic band structure in the
inset is also doped. The dotted lines are line fits, with
a Gaussian profile for the reference sample and a
Lorentzian profile for the device with setback.

Fig. 7.30.  Pulsed, room temperature threshold
current density Jth (lower curve) and maximum
current density JNDR (upper curve) as a function of
nominal active region sheet doping for a series of
lasers grown in sequence. Solid disks, experimental
measurements; dashed lines, fitted curves
corresponding to an extrapolated doping offset of

(7.9.30)
Therefore the slope of the Jmax
versus ns yields the inverse
transport lifetime. The transport
lifetime extrapolated from the data
shown in Fig. 7.30 yields a
transport time of τtrans = 4.3 ps.
This time takes into account the
sum of the time in the active region
and the one of the transport in the injector. Similarly, one can express the threshold current
density 7.4.7 in a simple form:

(7.9.31)
where we now included the ground state reabsorption into . Expressing the
total losses  as a linear expression in ns:

(7.9.32)
where αm are the mirror losses, αw are the losses of the empty waveguide, and gfc is the “free
carrier” cross-section. As in the case of the maximum current, the slope of the Jth versus ns
characteristics yields

(p.138)

(7.9.33)
Assuming the effective upper-state
lifetime can be computed, the above
expression enables the computation
of the ratio of the loss-to-gain
cross-section gfc/gc. As we will see
in the next paragraph, this number
and the ratio of τef f/τtrans are the
key numbers characterizing the
fundamental performance
limitations of an active region.
Applying this analysis on the data
of Fig. 7.30 and using τef f = 0.55
ps, one obtains a ratio of gfc/gc =
1.9 × 10−2.

Of course, this simple picture of the
effect of doping breaks down if



noffset = 1.0 × 1011 cm−2 added to the active region
doping. Open triangles represent Jth and JNDR of a
laser grown after a longer MBE running time.
Reprinted with permission from [40]. Copyright
2006, AIP.

extremely large doping levels are
used. In that case, the Hartree
potential introduces large
distortions in the conduction band
of the injector and significantly
alters the alignment between
injector and active region levels.

7.10 Wallplug efficiency
The optical power of a laser can be scaled, up to a certain point, by merely increasing the volume
of the gain medium. At the same time, the electrical power needed to drive the laser will change
accordingly. For this reason, the wallplug efficiency of a laser ηwp, defined simply as the ratio of
the extracted optical power to the injected electrical power

(7.10.34)
(p.139) is a number that characterizes the scale-invariant properties of a quantum cascade laser.
It is also a very useful quantity for the design of systems involving QCLs.

7.10.1 Fundamental dependencies

The simple atomic model developed in this chapter, combined with considerations of the doping
dependence developed above, enables us to express the fundamental limitations on the wallplug
efficiency of quantum cascade lasers. Neglecting gain saturation and assuming a constant slope
efficiency, we have

(7.10.35)
As in the preceding paragraph, we will assume that the maximum operating current can be
defined using a global transport time across one period τ trans defined by eqn. 7.9.30. The
operating voltage U at resonance can be easily written as

(7.10.36)
Using for the slope efficiency eqn. 7.4.9, and for the threshold eqn. 7.4.7, we can finally combine
these expressions and obtain

(7.10.37)
where ηtr is the differential efficiency of the laser transition, given in a three-level model of the
active region by

(7.10.38)



For any given material and design, the parameters on which the design will be optimized are the
doping level ns, the number of periods Np, and the mirror loss αm. We are obviously interested in
the maximum efficiency achieved for optimized values of these parameters. As in the previous
paragraph, we assume that the waveguide losses are dominated by the doping of the active region,
i.e. by the term gfc ns in eqn. 7.9.32. We assume also that Δinj is sufficiently large that the thermal
population of the lower laser state  is negligible. Under those assumptions, the maximum
value of the wallplug efficiency, i.e. computed for the value of the mirror loss αm for which Eqn.
7.10.37 is maximum, takes an especially simple form:

(7.10.39)
In this equation 7.10.39, we have introduced the reduced dimensionless upper-state lifetime τ ∗ =
τup/τtr and cross-section g ∗ = gc/gfc. The fact that eqn. 7.10.39 does not depend on either the
doping level or number of periods justifies a posteriori our assumption that losses from the active
region could be assumed to dominate.

In eqn. 7.10.39 the product  is a key parameter determining the wallplug efficiency: a
value lower than 1 indicates a device that will never reach threshold, as (p.140) the free carrier
absorption will always be larger than the intersubband gain. In fact, the optimization of an active
region should, of course, try to maximize this parameter.

A large value of τ ∗ is achieved in an active region where transport is very fast in the injector and
most of the carriers are remaining on the upper-state of the laser transition. An inspection of the
parameter g ∗ demonstrates the very strong wavelength dependence of the wallplug efficiency. In
fact, assuming a Lorenzian lineshape for the gain cross-section characterized by an in-plane
lifetime broadening τ � and a normalized oscillator strength of the laser transition:

(7.10.40)
(where m ∗ is the carrier’s effective mass). Taking similarly the free carrier absorption to originate
from intersubband absorption within the injector states (assumed at a vanishing transition energy)
characterized by a broadening lifetime τfc, the dimensionless cross-section is

(7.10.41)
The intrinsic ω 2 dependence of eqn. 7.10.41 stresses the increasing difficulty of successfully
fabricating quantum cascade lasers operating at low frequencies. Expressing the normalized
cross-section g ∗ using eqn. 7.10.41 removes all explicit dependence on the wallplug efficiency
from eqn. 7.10.39 in the effective mass. Mathematically, it is simply because both the gain cross-
section and the free carrier absorption are proportional to the inverse effective mass. In the mid-
infrared there is, however, a very strong indirect dependence of the wallplug efficiency in the
effective mass through the dependence of both dephasing times τ � and τfc in m ∗. The linewidth
of an intersubband transition is limited by the interface roughness [59, 134]. Thus, for any given
interface structure (described by the step height Δ and the correlation length Λ in Ref [134]) and
band discontinuity ΔEc, the lifetime τ � is proportional to (m ∗)−2. The effective mass dependence



Fig. 7.31.  Wallplug efficiency as a function of
photon energy. Filled squares, experimental values in
continuous wave, from references [28, 135–142].
Solid disk: pulsed values from references[40, 121,
139, 141–145]. The solid line represents the
prediction from the simplified formula with the key
parameters derived from [40]. The influence of a
shorter or longer in-plane dephasing time τ � is
shown by the two dotted curves.

of the free carrier absorption is not as easy to express because it depends on the dominant
mechanism of scattering (interfaces, phonons, or impurities). As shown in Fig. 7.31, the simplifed
expression given by eqn. 7.10.39 predicts the wavelength dependence of the wallplug efficiency.
In the latter plot, an efficiency of the transition ηtrans = 0.7 and a reduced value of the lifetime τ ∗

= 0.11 were used. The value Δinj = 150 meV, obtained by an optimization of the full eqn. 7.10.37
was used. In the spirit of the discussion of the interpretation of the free carrier absorption as
originating mainly from intersubband transitions in the active region (see Section 9.3), τfc = τ �
was assumed, and the value of the wallplug efficiency was plotted as function of photon energy
for three values of τ �.

One limitation of these studies is that the most relevant physical number, the wallplug efficiency
measured in pulsed mode, is also the one most difficult to measure experimentally, as discussed in
Chapter 11. Continuous wave data, usually more accurate, are further limited by self-heating
effects. In a continuous wave the maximum efficiency must be achieved at the minimum possible
current density in order to minimize self-heating effects. In that case, both doping and mirror
losses are minimized, and the optimum value depends strongly on the residual waveguide loss
αscatt.

(p.141)

The model above is overly simplified,
and a few factors not taken into
account could allow devices with
higher wallplug efficiencies than that
predicted by Fig. 7.31. First of all,
whereas the upper-state lifetime is
clearly limited by optical phonon
scattering in the long-wavelength
limit, elastic scattering plays an
increasingly important role as the
wavelength is shortened. The latter is
critically dependent on the growth
conditions and in particular the growth
temperature [82], and on the choice of
the interface construction. Secondly,
the effect of photon-driven transport
on the maximum current was not taken
into account; in a high performance
device the maximum current is
increased by the photon-driven
transport, and both effects will
improve the value of g ∗. Finally,
engineering the free carrier absorption
by redistributing the oscillator
strength, as described in Section 9.3, will increase the value of the normalized gain coefficient g ∗.

7.10.2 High-wallplug-efficiency devices

The practical optimization of these parameters in order to achieve the best possible wallplug
efficiency has been the subject of intense research activity. In a relatively early study performed
using λ ≈ 5 μm wavelength device, an initial optical power level of 0.7 W with an 8% wallplug



efficiency was achieved at cryogenic temperatures [146]. These early results showed the potential
of these devices and helped promote further research in the field. The most recent results report
up to 25% wallplug efficiency [142] and multi-watt output power in a continuous wave at room
temperature [147, 142].

As described in the preceding paragraph, these designs are attempts to enhance the values of g ∗, τ
∗, ηtr while minimizing the effect of backfilling by choosing a well adapted value of Δinj.

In order to maximize τ ∗, a strong reduction of the transport time across one period was attempted
by the use of very short active regions with a reduced number of active (p.142) quantum wells
[148–151]. As in terahertz devices, the use of very short active regions with large applied electric
field introduced problems with the overall electrical stability of the device and backfilling was
difficult to avoid, limiting the performances at high temperatures.

Another approach has been the use of “strong coupling” devices, where the use of a very thin
injection barriers [152] should increase the maximum operating current for a given doping level.
However, in the short wavelength range, the injection barrier is not the only limitation to the
current flow as the need to cool the electron distribution is a significant portion of the transport
time. For a device with a potential drop of 380 meV, the fastest possible cooling occurs when
each electron emits an optical phonon approximately every 0.2 ps. The electron cooling time for
the non-radiative transport, in this limit, is already 2.2 ps, yielding a maximum current density of
7.2 kA/cm2 for a sheet density of 1 × 1011 cm−2.

Fig. 7.32 shows the computed band diagrams of three active regions that recently reported high
values of wallplug efficiencies [147, 153, 154]. The band structure was computed using a
Schrödinger–Poisson solver. As discussed in the next chapter, these devices operating in the short
wavelength band use strain-compensated materials to achieve a large enough conduction band
discontinuity. The active region thicknesses and discontinuities were obtained directly from the
relevant publications, sometimes by measuring directly on the graphs. The average electric field
chosen corresponds to the one at which the maximum wallplug efficiency was computed.

The active region was separated in two sub-units after the fifth well, and this basis was chosen to
compute the light and voltage–current characteristics of the devices using a model described in
section 12.3. Some key numbers computed using this model are compared in Table 7.1. In
contrast to the numbers reported in the original literature, the lifetime reported here includes all
non-radiative channels, including interface roughness and alloy scattering.



7.1 Key parameters of the three high-wallplug-efficiency designs described in Fig. 7.32. The energies as given in
and the lifetimes in ps.

λ(μm) Eexc Δinj τup τdn f f′

resonant 4.6 15.3 15.5 66 117 0.29 0.07 19 0.8

diagonal 4.9 15 15 71 125 0.39 0.11 11.2 0.4

ow well 4.9 27 29 100 124 0.48 0.06 6.8 0.2



Fig. 7.32.  Schematic diagram of the active region
diagram with high wallplug efficiency a) non-
resonant extraction [147], b) three quantum well
[153], and c) shallow well designs [154]. d)
Computed light and voltage versus current for a 10
μm wide, 3mm long HR coated device with 35
periods of the active region. e) Comparison of the
computed wallplug efficiencies as a function of
injected current. The symbols represent the
experimental reported values.

Fig. 7.33.  Lightand bias-versus current
characteristics for two high-performance devices at
room temperature. a) Active region based on a non-
resonant design, and b) on a shallow well. Reprinted
with permission from [142] and [147]. Copyright
20109, 2011, AIP.

The first one (Fig. 7.32a) is described as a non-resonant extraction design in which one first level is
spaced one phonon energy below the lower laser state, and a further doublet 60 meV below. In fact, this
structure can also be seen as a bound-to-continuum active region with a relatively thick (100 meV) lower
miniband. This is especially clear when one considers the shape of the wavefunction obtained by solving
the potential in one unseparated block. They spread relatively uniformly over the whole length of the
device. Of the three devices, it is the one that has the largest oscillator strength (f′ = 0.81) and shortest
upper-state lifetime. As in the other two devices the energy (p.143) separation with the next excited state
Eexc is kept large (Eexc  kT) to
prevent leakage into through this state.
The second one (Fig. 7.32b) is a
diagonal three-quantum-well active
region design, as discussed in
Section 7.6.2, designed in a very
similar way as that shown in Figs.
7.18c and 7.19a. Actually, in the
article presenting this design, this
device was compared to a more
vertical version of the same active
region (similar to Fig. 7.19b) and
shown to exhibit much higher
performances [153]. Compared to
the non-resonant design, it exhibits
a lower oscillator strength f′ = 0.48
but a longer upper-state lifetime
(0.39 ps). Moreover, this one does
not have a “bound-to-continuum”
character, as (p.144)

the wavefunctions of the active region
and of the injector are clearly
separated. This feature is also
responsible for the longer lower-state
lifetime of the device (0.11 ps).
The third one (Fig. 7.32c)is
described as a shallow quantum
well active region. The general
design, as for the non-resonant
device, can again be seen as a
bound-to-continuum architecture
with a relatively diagonal transition
(f′ = 0.29) and a narrower lower
miniband (60 meV) at the location
of the active laser transition,
widening in the injection/relaxation
region. The active region uses five
different compositions of the In-Ga-
Al-As material; the use of a reduced
discontinuity at the location of the
upper-state minimizes the negative
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influence of the interface roughness
scattering. Consequently, it is a
design that combines the longest upper-state lifetime (0.48 ps) and the shortest lower-state
lifetime (60 fs).

Fig. 7.32d shows the computed light-versus-current and bias-versus-current characteristics of the
three devices for a 3 mm long, 10 μm wide cavity with a backside high-reflectivity coating. Each
device was assumed to consists of 35 periods of the active region with an overlap factor of Γ =
0.7. The facet reflectivity was assumed to be R = 0.22, and an additional waveguide loss due to
the cladding and fabrication of 0.3 cm−1 was assumed. As discussed in Sections 9.3 and 11.5 the
free carrier absorption associated with the active region is fully taken into account by the model
directly. The model predicts large optical powers in the multi-watt range already for these
relatively short devices. The very large ratio of upper to lower lifetimes enables a very strong
photon-driven transport of the shallow well design, and enables the very high optical power and
wallplug efficiency achieved by this device.

The wallplug efficiency of these three devices (this time neglecting the additional 0.3 cm−1 loss)
as a function of current are compared in Fig. 7.32e. Compared to the three-quantum-well active
region, the non-resonant design has the advantage of achieving its highest wallplug efficiency at a
lower current, enabling much better continuous wave performances. The shallow well device
demonstrates the best operating performance. (p.145) Note that the reported experimental
wallplug efficiencies correspond well to those predicted by the model.

In addition to the intrinsic performances of the active region, the wallplug efficiency in a
continuous wave depends in a critical way on the thermal resistance of the device. For this reason,
sophisticated processing and mounting techniques have to be used. Fig. 7.33 shows two light and
bias characteristics as a function of injected current, in a continuous wave, for both the non-
resonant extraction device (Fig. 7.33a) and for the shallow well device (Fig. 7.33b). A continuous
wave power up to 5 W is achieved in continuous wave for a single-ridge device.

The very strong photon-driven transport is evident from the shape of the current– voltage curve
that displays a very strong discontinuity at threshold.
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8.1 Conduction band discontinuity and performance
In quantum cascade lasers the ability to tailor the photon energy is limited, on the high-energy
side, by the size of the conduction band discontinuity between the two semi-conductor materials.
In the case of the In0.53Ga0.47As/In0.52Al0.48As material which is lattice matched to InP and has
a conduction band discontinuity ΔEc = 520meV, lasers with photon energies up to hν = 290 meV
(hν = 0.56 · ΔEc) were realized [155], although high-temperature operation (T  300 K) was
achieved typically for photon energies up to hν = 250 meV (hν = 0.48 · ΔEc). The reason for this
limitation is shown schematically in Fig. 8.1. Electrons from the upper-state of the laser transition
can be thermally activated to continuum states. This process is exponential in temperature and
will severely limit the high-temperature operation. A rough estimate of this parameter can be
obtained by assuming an escape time τesc of the form

(8.1.1)
where the escape rate in the continuum τcont ≈ 100fs is estimated from the width of a typical
continuum resonance. These quantities are very difficult to estimate because



Fig. 8.1.  Schematic band structure of a lattice-
matched InGaAs/AlInAs QCL based on a vertical
transition operating at λ ≈ 4.6 μm. The design is
described in Appendix A.1.2. The high-temperature
operation of such a device is limited by the thermal
escape from an electron either to continuum states of
the Γ point or states in the lateral X and L valleys.

Fig. 8.2.  Threshold current density versus
temperature for two GaAs-based quantum cascade
lasers, operating at λ ≈ 9 μm, that use two different
aluminum mole fractions (x = 0.33 and x = 0.45). A
clear relationship between discontinuity and high
temperature behavior is apparent. (Redrawn using
data from [156].)

(p.147) they depend in a critical
manner on the coherence length
chosen. Under these assumptions, an
activation energy of Eact = 85meV,
usually chosen as the minimum value
needed for a good room-temperature
operation, yields an escape time of τesc
= 2.7 ps.
An experiment [156] using devices
fabricated from the AlxGa(1−x)
As/GaAs material system illustrates
this effect very nicely, and uses the
fact that GaAs and AlxGa(1−x) As
are lattice matched for all Al
contents x. In this work, two
otherwise identical quantum
cascade lasers are compared—one
using a barrier with an aluminium
content of 33%, and the other one
with 45%. In Fig. 8.2 are reported
the threshold current density versus
temperature for both devices. As
expected, both devices operate with
identical threshold currents at low
temperature. However, as the
temperature is raised above about
100 K, the device with the lower
conduction band discontinuity of
about 300 meV exhibits a much
worse temperature performance
characterized by a T 0 of 75 K,
while the device with the larger
discontinuity of 390 meV exhibited
a T 0 of 166 K, close to the
theoretical value.

These considerations are well
supported by experimental
evidence. In Fig. 8.3 and Table 8.1, the characteristic temperature T 0 is shown as a function of
the emitted photon energy for quantum cascade lasers fabricated using materials with various
conduction band discontinuities.

For devices limited by optical phonon emission and exhibiting a good population inversion, the
characteristic temperature should lie between 400 K (assuming a broadening independent with
temperature) and 170 K (for typical measured values of the broadening of the
electroluminescence peak). From the data shown in Fig. 8.3, it is clear that the theoretical value of
T 0 ≈ 170 K, limited by optical phonon emission and the broadening of the intersubband



transition, can be achieved for large enough discontinuities, though a limited discontinuity rapidly
limits high-temperature operation. (p.148)



8.1 Characteristic temperature T 0 for operation around room temperature for quantum cascade lasers fabricated
various material systems.

Ephot (meV) λ (μm) T 0 (K) reference

/Al0.33Ga0.67As 300 107 11.5 96 [157]

/Al0.45Ga0.55As 390 120 9.3 166 [156]

As/AlInAs 520 108 11.5 170 [113]

As/AlInAs 520 138 9 190 [133]

As/AlInAs 520 159 7.8 164 [158]

As/AlInAs 520 238 5.2 114 [32]

Ga0.3As/Al0.6In0.4As 800 288 4.3 188 [136]

Ga0.3As/Al0.6In0.4As 800 355 3.49 85 [159]

Ga0.27As/AlAs 1000 326 3.8 143 [160]

Ga0.3As/AlAs(Sb) 1600 375 3.3 101 [161]

Ga0.3As/AlAs(Sb) 1600 344 3.6 116 [161]

AlSb 2100 375 3.3 200 [162]



Fig. 8.3.  Characteristic temperature T 0 for various
quantum cascade lasers, as a function of the photon
energy and for various material systems. A clear
relationship between discontinuity and temperature
behavior is apparent.

8.2 Heterostructure materials
From the above considerations it is clear that quantum cascade lasers operating at wavelengths
shorter than λ ≈ 5 − 6 μm require the use of a material system with a larger discontinuity as the
one (ΔEc = 520meV) provided by the lattice-matched In0.53Ga0.47As/Al0.48In0.52As material. For
quantum cascade lasers based on GaAs, the limit is much more severe since, as shown in the
previous paragraph, lack of conduction band discontinuity starts to hamper the operation of
quantum cascade lasers with wavelengths shorter than λ ≈ 9 μm. For this reason a good deal of
interest has been carried over other material systems that would provide a larger discontinuity.
The conduction band discontinuity of the main III–V semiconductor materials (to the exception of
group III-nitrides) are shown in Fig. 8.4.

Another important parameter in the choice of the material system is the position of the lateral
valleys. In the III–V materials the lateral valleys are characterized by a large electron effective
mass and therefore large density of states. As a result, the upper-state of the laser transition must
remain energetically far enough below the lateral valley to prevent signifficant current leakage
and a degradation of the laser performance. The detrimental effect of the lateral valley current
leakage in GaAs/Al0.33Ga0.67As QCLs was demonstrated in high-pressure experiments by Jin
and coworkers [163].

Fig. 8.5 shows the position of the Γ, X, and L points as a function of Ga and Al composition in
pseudomorphic GaxIn1−xAs and AlxIn1−xAs respectively. It is clear from this graph that large
indium and aluminum mole fractions in the GaxIn1−xAs and AlxIn1−xAs quantum well and barrier
materials are desired, and allow large Γ-(X, L) separation.

From the above considerations, one very good candidate for short-wavelength application is the
InAs/AlSb material system grown on InAs substrates. Both the very large conduction-band
discontinuity (ΔEc = 2.1 eV and the very light effective conduction band mass m�/m 0 = 0.023
should enable both very large optical gain and short-wavelength operation. In addition, the lateral
L and X valleys are also very high (p.149)

(p.150) in energy (about 0.8eV) from
the bottom of the conduction band of
InAs. Indeed, devices grown using this
material system hold the present
record for short wavelength operation
(λ = 2.9 μm) as well as very high
performance at λ = 3.6 μm. Compared
to the device based on the InP system,
this material system suffers from less
favorable refractive index and thermal
conduction and the epitaxial growth is
more difficult to control. For this
reason, another very successful
material system has been the
straincompensated
InxGa1−xAs/AlyIn1−yAs/InP.
8.3 Strain-compensated
InxGa1−xAs/AlyIn1−yAs/InP
material system



Fig. 8.4.  Γ-valley conduction band edges for the
three most used material systems for short-
wavelength QCLs. (1) InAs/AlSb, (2) Strain-
compensated InGaAs/AlAsSb, (3) straincompensated
InGaAs/InAlAs. The position of the band edges as
function of the lattice parameter are considered for a
material grown pseudomorphically on InP, to the
exception of the material system (1) InAs/AlSb that
is considered as grown on InAs.

Fig. 8.5.  Γ, X, L conduction band edges for
GaxIn1−xAs and AlxIn1−xAs as function of the
Gallium and Aluminum mole fraction, computed
using the parameters from [164, 165].

The initial research in
optoelectronics demonstrated that
high crystalline quality, therefore
the absence of dislocations, was a
prerequisite for the achievement of
semiconductor lasers with high
performances and long lifetimes.
Such a requirement also implied
that the heterostructure materials
had to be carefully lattice-matched
so that bulk layers would not
develop dislocations due to strain
between epitaxial layers. It
therefore came as a surprise that
thin layers of strained material
could be grown with no detrimental
effect on material quality as long as
the cumulated strain remained
below the level needed to
destabilize the two-dimensional
growth. Using this approach,
strained InGaAs/GaAs quantum
wells were used to achieve
interband lasers at wavelengths
close to λ = 1 μm with excellent
performance. These results could be
achieved because the active region
material thickness was kept very
small—a few quantum wells of
typical 10 nm thickness. The active
region of a quantum cascade laser is
also based on thin quantum wells,
and therefore is also compatible
with such an approach. If strain with one sign is used only, for example, for compressive strain in
a InGaAs/GaAs/AlGaAs material system, it is the cumulated strain required by the large number
of active region periods that will strongly limit the amount of strain that can be introduced in each
layer. If a material system is chosen where strain of both (p.151) signs is possible—one for the
barriers and the other for the quantum wells—imposing the condition of zero accumulated strain
on one active region periods implies that an arbitrary number of active region periods can be
grown.

Using compressively strained InxGa1−xAs and tensile-strained AlxIn1−xAs, such that the total
strain on an InP substrate is zero, a material combination with a number of attractive features is
realized.

• The conduction band discontinuity can be increased by about 200–250 meV as
compared to the lattice-matched case.
• The Γ–X discontinuity also increases with compressive strain in the InGaAs.



• InP-based waveguides can still be used, with their low losses and high thermal
• conductivity.
• The amount of strain can be chosen according to the target wavelength.

Using this material system, very-high-performance quantum cascade lasers have been realized
from about λ ≈ 3.8 μm to λ ≈ 7 μm [141]. The conduction-band discontinuity can be tailored by
changing the In content in the well and barrier material in a concomitant way. The conduction-
band discontinuity can then be computed using van de Walle model solid theory [164]. In this
approach an absolute energy scale is rigorously defined from pseudopotential band computation.
Deformation potentials are then introduced to compute the new location of the bands. Taking the
total thickness of the well material hw and barrier material hb for one period, imposing lattice-
matching to the substrate means that the lattice constant of the heterostructure at mechanical
equilibrium, given by

(8.3.2)
is equal to the lattice constant of InP (a 0= 5.87 A). In eqn. 8.3.2 the indices w and b refer to the
well and barrier materials and will be referred to as i = w, b in the following equations. As each
layer now under biaxial strain, its lattice constant in the perpendicular direction also changes and
is now given by

(8.3.3)
As a result, in-plane strain components are given by

(8.3.4)
and an out-of-plane component is given by

(8.3.5)
In eqn. 8.3.2 the shear modulus Gi is related to the elastic constants cij by

(8.3.6)
where, for a growth in the [001] direction, the values of Di are given by

(p.152)

(8.3.7)
As the values of elastic constants are not tabulated for the alloys, the usual approach is to
interpolate those linearly from the values of the binaries. The key values needed for the model
presented here are listed in Table 8.2.



8.2 Some elastic constants, energies and deformation potentials relevant for In-GaAs/AlInAs material system.
[164]).

a 0(Å) G 001 (M bar) Ev, av(eV) Ec(eV) Δ0(eV) av(eV)

5.65 2.522 –6.92 –5.29 0.34 1.16 –7.17

5.65 2.656 –7.49 –4.27 0.28 2.47 –5.67

6.08 1.587 –6.67 –6.13 0.38 1.00 –5.08

5.87 1.897 –7.04 –5.58 0.11 1.27 –5.04



Fig. 8.6.  a) Illustration of the energy shift of the
band edges due to compressive strain. b)
Ga0.32In0.68As/ Al0.62In0.38 As heterojunction
showing the band energies when strain effects are
neglected (left) and taken into account (right).

The biaxial strain has an hydrostatic component, responsible for the change of the crystal volume Ω. The
fractional change in volume ΔΩ/Ω is given by the trace of the strain tensor

(8.3.8)
Because of its symmetry, the minimum of the conduction band is only sensitive to the hydrostatic
component of the strain, and the change in the conduction-band energy is given by the
deformation potential ac:

(8.3.9)
To compute the discontinuity, the conduction band positions are first interpolated from the
binaries for the unstrained material, the values then corrected by the shift caused by the strain
using the above equation:

(8.3.10)
The effect of strain is shown schematically in Fig. 8.6, along with the effect on the various bands
of the InGaAs/AlInAs material system. The conduction band discontinuity for AlInAs/GaInAs
heterostructures for In concentrations between 0 and 1 and pseudomorphically grown on InP
substrates is shown in Fig 8.7a as contour plot. As can be seen in the graph, the conduction band
discontinuity is much more sensitive to a variation of the In concentration in AlInAs than in
GaInAs. The design of a quantum cascade laser structure should therefore be compensated by
setting the composition of AlxIn1−xAs and choosing a composition of GaxIn1−xAs that
compensates the strain and not vice versa. The compositions that yield materials lattice-matched
to the InP substrate are indicated as black dashed lines, and the resultant conduction band
discontinuity is ΔE c ≈ 0.52 eV. The compositions used in [159] are indicated as dashed grey
lines, and the resultiant ΔE c is 0.78 eV. As shown in Fig. 8.7 the discontinuity between the two
materials can be increased from 520 meV to about 900 meV, depending on the amount of strain
added to each layer. The latter cannot be increased (p.153)

indefinitely, as the critical thickness
above which the crystalline coherence
cannot be maintained is strongly
decreasing with increasing strain.
Another important consequence of
strain is its strong effect on the
effective mass of the material. The
hydrostatic component will reduce
the bandgap, while the biaxial one
will split the heavy and light-holes
degeneracy at the Γ point. As the
effective gap of both conduction
light-hole and conduction split-off
changes, so does the effective
(p.154)



Fig. 8.7.  Contour plot of the conduction band
discontinuity of the GaInAs/AlInAs material system
for In concentrations between 0 and 1. Effects of
strain are taken into account assuming that thin
layers of material are grown on a InP substrate. The
black dot represents the latticematched composition
resulting in ΔE c ≈ 0.52 eV, and the grey dot
represents the materials used in the first strain-
compensated quantum cascade laser.

Fig. 8.8.  Electron effective mass of In1−x Gax As
material as a function of the Ga content x (in contrast
to the text where x labels the indium content). Full
line: unstrained material. Dotted, dashed lines: in-
plane, respectively out of plane mass for material
grown on InP. Reprinted with permission from [166].
Copyright 1993, APS.

mass of the conduction band as a
result of the k · p interaction. Fig. 8.8
shows the effective mass of the
InxGa1−xAs material as a function of
Indium content x, taken from the work
of Sugawara et al. [166]. The mass
relevant for the computation of the
eignenstates, as well as for the
computation of the dipole matrix
elements, is perpendicular mass m ⊥.
For increasing indium content, the
latter is actually increasing before
decreasing again for indium
concentrations larger than about 80%.
Fig. 8.9 shows the schematic band
diagram of a quantum cascade laser
designed with
In0.7Ga0.3As/Al0.6In0.4As strained
compensated on InP. The band
structure was computed using
effective masses of unstrained
material. As a result, the computed
emission wavelength λ = 3.16 μm is
signifficantly shorter than the one
measured in the actual devices, λ =
3.4–3.6 μm. Using the masses from
Suwagara et al, a value of λ ≈ 3.4
μm—much closer to the
experimental one—is predicted.
The laser emission spectrum of
these devices is shown in Fig. 8.9.
The relatively low T 0= 85 K
measured on these devices
demonstrated that the upper-state
exhibited a lifetime limited by
thermoionic emission above the
barrier.

8.3.1 Lattice-matched and strain-
compensated
InxGa1−xAs/AlyAsSb/InP

Another possibility is to substitute
the Al0.48In0.52As material with
AlAsSb. As shown in Fig. 8.4, this
pair of materials enables large
conduction band discontinuities even with lattice-matched InGaAs quantum wells, simplifying
greatly the design of devices. In fact, this approach was pioneered by the group led by J.
Cockburn [167], achieving emission down to a wavelength of 3.05 μm [168]. However, for short-
wavelength operation, the best results were achieved by using strain-compensated materials. In



Fig. 8.10.  Conduction-band diagram of a period of
the active region at an average field of 120 kV/cm.

Fig. 8.9.  Conduction band structure of a strain-
compensated quantum cascade laser designed for
short-wavelength operation. The predicted emission
wavelength was λ = 3.16 μm using the effective mass
of the unstrained material. b) The measured
wavelength was between 3.4 μm and 3.6 μm,
compatible with a much heavier mass as predicted by
theory. c) Threshold current density versus
temperature for the device operating at λ = 3.6 μm.
The relatively low T 0 observed (85 K) is an
indication of leakage paths above the barriers [159].
The design is described in Appendix A.3.1.

particular, above-room-temperature operation was achieved between 3.3 and 3.5 μm using a
Ga0.7In0.3As/AlAsSb/InP strain-compensated material system [161]. Further- (p.155)

more, it was also found that the Sb-
containing interfaces were inferiors to
the As ones; as a result, AlAs barriers
were used instead of AlAsSb in the
active region of the latter device.

8.3.2 Strain-compensated
InxGa1−xAs/AlyIn1−yAs/AlAs/InP

In the GaxIn1−xAs/AlyIn1−yAs
strain-compensated material
system, the necessity to keep the
barrier thickness below the critical
thickness limits the maximum
aluminum fraction that can be used.
A technique introduced by the
group led by T. Masselink[169] is
the growth of composite
Al0.48In0.52As/AlAs barriers
combined with a relatively high
Indium content quantum well
Ga0.27In0.73As. In this way, the
benefit of the high barrier can be
conserved and the strain-
compensation can be handled in a
way independent of the
heterostructure design. Lasers
operating at cryogenic temperatures
down to wavelengths as short as
3.05 μm at 80 K were achieved [170]. For such short-wavelength devices, the limitation in
performance was attributed to electron leakage into the lateral valley X of the InGaAs material.

(p.156)

Using a similar material system but a
different active region architecture,
Bismuto et al. achieved room-
temperature operation in the important
3.3 μm band [31]. The conduction-
band diagram of the structure, under
an applied field of 120 kV/cm, is
shown in Fig. 8.10. The active region
design is based on a bound-to-
continuum architecture, where
particular care has been taken to widen
the lower miniband in order to obtain
an efficient carrier extraction.
Moreover, to reduce the resonant



Moduli squared of the relevant envelope
wavefunctions are shown. Light gray is used to show
doped wells (6 × 1017 cm−3). The layer sequence is
described in Appendix A.3.3.

Fig. 8.11.  a) Pulsed power–voltage–current
characteristics of a HR coated 4.75 mm long and 18
μm wide laser for different heat-sink temperatures. b)
Fabry–Perot laser emission spectra.

Fig. 8.12.  a) Measured and simulated threshold
current density as a function the laser temperature. b)
Same comparison for the slope efficiency. In both

reabsorption from the extractor levels,
the energy of the upper injector
miniband was maximized. In Fig.
8.11a the emitted optical power and
the applied voltage as functions of the
current are shown for a typical 18 μm
wide and 4.75 mm long laser. A high-
reflection (HR) coating, consisting of 250 nm of Al2O3, 10 nm of Ti, and 100 nm of Au, was applied on
the laser back facet. Watt-level emission was observed at room temperature and the laser performance is
comparable to what was observed for Sb-containing QCLs [161]. The laser emission spectra for
temperatures between 250 K and 350 K are shown in Fig. 8.11b. A tuning coefficient of 0.98 nm/K was
found by linear fitting of the peak emission wavelength as a function of the temperature.
In order to better explore the influence of thermally activated carrier leakage on laser behavior the
dependence of the threshold current density and of the slope efficiency are plotted as function of
the heat sink temperature in figures 8.12)a and b respectively, along with the predictions of a
density-matrix model. Both characteristics were fitted with the phenomenological relationship
eqn. 7.8.25 as well as the equivalent for the slope efficiency:

(8.3.11)
In both cases the measured values of the characteristic temperatures T 0 = 100 K and T 1 = 70 K
are signifficantly lower than the predicted one from a density matrix-based simulation code T 0 =
170 K and T 1 = 600 K. As the latter code includes electron leak- age into the continuum but not
the effect of the lateral valley, we see this discrepancy as a strong indication that the lateral valley
starts to have a non-negligeable effect on (p.157)

transport. In addition, the experimental
characteristic temperatures are
comparable with what is observed in
Sb-containing QCLs that display a
very large conduction band
discontinuity for Γ as well as X and L
points. This further indicates that the
most likely leakage path occurs in the
X and L valleys of Ga0.27In0.73As
materials that are believed to lie, for
this indium mole fraction, ~ 0.6 eV
above the Γ-valley.
As a consequence, the achievement
of even shorter wavelengths could
be feasible by relying on higher
indium mole fractions or other
active region architectures.
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cases, the measured characteristic temperature is
signifficantly lower than the predicted one.
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One very attractive feature of the intersubband transition is that in contrast to the interband
system, the optical transition can be tuned to arbitrarily low energies with no obvious a
priori limit. In fact, the first observation of intersubband absorption in an inversion layer as
well as the first observation of electroluminescence from intersubband transition were both
first demonstrated in what is now referred to as the terahertz frequency range.

In fact, in the original intersubband laser proposals [9–13] or failed experimental attempts,1

it had been assumed that achieving a laser threshold would be easier in the far-infrared (i.e.
for photon energies below the optical phonon energy) than in the midinfrared because of
the absence of optical phonon emission at low temperatures. The longer upper-state lifetime
would lead to lower threshold current densities. As shown in Chapter 7, however, it
happens that the optical phonon process is a key ingredient in the design of a quantum
cascade laser. Resonant optical phonon emission is used in many designs to reduce the
lower-state lifetime. Even in designs in which it is not explicitly used to engineer the
upperand lower-state lifetimes such as in laser based on diagonal transitions and on
superlattices active regions, the optical phonon emission is the dominant electron cooling



Fig. 9.1.  Intensity (a) and normal component of the
electric field (b) for the single plasmon mode trapped
by single GaAs layer doped with N = 2 × 1018 cm−3

at λ = 88 μm.

mechanism. As a result, one expects operation in this wavelength range to require new
active regions architectures.

The second and even more serious problem is to find a strategy to solve the waveguiding
problem. In fact, as shown in Chapter 6, the quantum cascade lasers use a waveguide based
on dielectric confinement, in many ways very similar to that used in interband lasers. In the
terahertz, such an architecture would be impractical, due to the prohibitively thick cladding
layers it would require (about 100 μm thick), as well as the very high optical losses caused
by the doping of the cladding layers, needed to feed in the current in the layers. For these
reasons the optical waveguides used in terahertz QCL use various combination of metallic
or quasi-metallic confinement.

This chapter will cover only a few salient aspects of the topic. Readers are referred to more
thorough review articles for a more in-depth description of these devices [171, 172] (p.159)

.
9.1 Terahertz waveguides

9.1.1 Single plasmon

This waveguide is based on
the realization that in this
frequency range a heavily
doped semiconductor layer
behaves as a “low density
metal”. As already discussed
in Section 6.3, the plasma
frequency for a GaAs layer
doped to N = 1 × 10−18 cm−3

is about 10 THz. As a result, it will exhibit an overall negative dielectric constant in all the
terahertz frequency ranges. Unfortunately, because of the relatively short lifetime of the
carriers, as well as the limited densities that can be reached by doping, such doped layers
cannot directly substitute a metal without creating unacceptably high losses.

However, a thin doped layer can create a waveguide with relatively low losses. Fig. 9.1
shows the intensity and electric profile of the plasmon mode trapped by a 1 μm thick GaAs
doped layer with N = 2 × 1018 cm− 3 at λ = 88 μm. At this wavelength, the doped GaAs has
a dielectic constant of ϵ = − 159 + 79i. As for the interface plasmon polariton mode, see
Section 6.2, the electric field is confined by the boundary condition of the continuity of the
displacement field � = ϵ� that forces the electric field to change sign in the doped layer
(see Fig. 9.1 b). Furthermore, for the same reason, the optical mode is strongly depressed in
the doped region. As, in addition, the doped layer is thin, the optical losses are limited to
the very low value of αw= 1.2 cm−1.

A slightly modified version of this waveguide has been used to demonstrate the first
terahertz quantum cascade lasers [23], and was shown to exhibit very low losses [173]. In
the latter, the confinement of the electromagnetic wave is based on a metallic reflection at



Fig. 9.2.  (a) Computed mode intensity for a single
plasmon waveguide at 3 THz (200 μm wide, 17 μm
thick). (b) Computed mode intensity for an “empty”
double-metal waveguide 200 μm wide and 17 μm
thick at 950 GHz. (c) Calculated absorption for the
empty waveguide of point (b) as a function of photon
energy. (Adapted from[172].)

the top metallization and the quasimetallic confinement provided by a thin, heavily doped
buried contact placed below the heterostructure.

A two-dimensional computation of the mode intensity is shown in Fig.9.2 (a). The
heterostructure has to be grown on a semi-insulating substrate, in order that the large part of
the mode which overlaps with the substrate brings a very small contribution to the
waveguide losses. The heavily doped (typically 0.8-2 × 1018 cm−3) buried layer (p.160)

has the double function of
optically confining the mode
and acting as an electrical
contact. As in the previous
example, the overlap factor
between the field and this
heavily doped region is very
small. The main advantage of
this waveguide resides in its
quite high figure of merit
(overlap divided by losses) in
the 2–4 THz region associated
to a facet reflectivity still close
to the Fresnel reflectivity
calculated via index mismatch
[174], which eases the coupling
to free space modes and yields a
good far-field. This waveguide
loses its efficiency as the photon energy is lowered: the longer wavelength has to accommodate
the same epilayer thickness, and the reduction of the dielectric constant of the active region pushes
the mode towards the substrate, reducing the overlap. Another general disadvantage of this
waveguide is the non-optimal and non-uniform ridge pumping due to the injection via the buried
layer which shows significant in-plane resistance [175].

9.1.2 Double-metal waveguide

The double-metal waveguide is derived directly from the microstrip resonator widely
employed in the microwave range. In this waveguide the active region is sandwiched
between two metallic layers, typically Au, yielding an almost unity overlap factor almost
independently of frequency. In Fig. 9.2b is plotted the two-dimensional simulation of the
mode intensity for a double metal resonator at 950 GHz.

This waveguide was first demonstrated in QCL at mid-infrared frequencies [176] and then
widely employed in combination of resonant-phonon designs in devices that have shown
the highest temperature performance to date [171]. Recently, Cu has been proficiently used
to enhance the figure of merit of this waveguide, setting the new limit in pulsed high-
temperature operation [177]. The main disadvantage of this waveguide is represented by
the patterned far-field [178] due to the impedance mismatch at the laser facet, and solutions
based on micro-lenses [179] or horn antennas [180], which show substantial improvement
in the collected powers have been developed. As shown in Fig. 9.2c, as the frequency is



lowered the waveguide loss decreases as the metals behave more and more as perfect
conductors.

(p.161) 9.2 Active-region designs
The design of quantum cascade lasers for the terahertz also implies a change in the energy
scale, as the photon energy is now smaller than the energy of the optical phonon and also
much closer to the value of the thermal energy, even at cryogenic temperatures. These
constraints yielded new approaches for the active region architecture, which will be
reviewed briefly here.

9.2.1 Superlattice and bound to continuum

Gain between subband depends critically on the population inversion. Using the notations
shown schematically in Fig. 9.3, the population inversion is maximized by achieving the
largest ratio of upper to lower lifetime τ 32/τ 2, a large injection efficiency in the upper-state
η, and a long upper-state lifetime τ 3. The standard approach used in mid-infrared quantum
cascade lasers has been to use the properties of the intersubband non-radiative transitions to
achieve a large ratio of lifetimes, and employ a resonant tunneling injection of the electrons
from the injector into the upper-state to obtain a high value of η. As show in Fig. 9.3b, a
similar approach has worked very well in the terahertz at cryogenic temperatures. The
active region architecture of the first quantum cascade laser operating in the terahertz [23]
is essentially a scaled version of a mid-infrared chirped superlattice active region [127], in
which the population inversion between the two states at the edge of the miniband is
obtained by a phase-space argument, as discussed in Section 7.5.3. The scattering rate from
the lower state  is very large, the latter being the upper-state of the lower miniband
while the scattering from the upper-state is similarly spread among the whole lower
miniband, keeping the scattering rate into the lower state small, i.e. . Similarly,
the bound-to-continuum approach reported in [181] is a transposed version of the same
approach demonstrated at shorter wavelengths [133, 143]. In the bound-to-continuum
approach, the population inversion, achieved by a combination of the phase-space used in
the superlattice active region with a diagonal transition between states with a reduced
spatial overlap, further enhancing the population inversion.

Chirped superlattice and bound-to-continuum were also used very successfully to extend
the wavelength range of mid-infrared to longer wavelength. The terahertz bound-to-
continuum approach was further developed [175, 182], and yielded devices with a very
high slope efficiency and power at temperatures of about 20 K.

However, the maximum operating temperature of these devices remained limited to about
100 K. The problem originates from the scaling of the miniband width Δ with photon
energy hν, considering the effect of temperature kT and the broadening of the individual
levels γ. For the miniband and bound-to-continuum approach to succeed, one should
maintain the miniband width much larger than the broadening of the individual levels Δ

 γ and larger than the thermal energy Δ  kT. In the mid-infrared, at room temperature
(kT = 26 meV) the conditions are satisfied because Δ = 100 − 150meV  γ ≈ 5 − 10 meV
and Δ  kT. In the terahertz, however, the same inequality holds only at cryogenic



Fig. 9.3.  a) Schematic levels of a generic quantum
cascade laser. By tradition, the upper level is labeled
3. b) Bound-to-continuum or superlattice design. c)
Design based on a resonant tunneling extraction. d)
Design combiningresonant tunneling extraction with
an optical phonon resonant stage. e) Bound-to-
continuum with optical phonon resonant extraction
stage. f) Two-quantum well: photon–phonon
cascade.

Fig. 9.4.  Band structure (a) and light-versus-current
characteristics (b), measured in a continuous wave,
of a bound-to-continuum design operating at λ = 88
μm wavelength.

temperatures, because the miniband width is only 15 meV, while the broadening at room
temperature remains of the order of a few meV. Similarly, one cannot keep a very wide
miniband Δ = 100 meV with a photon energy of hν = 15 meV, as the latter should be much
larger than the individual level (p.162)

spacing of the miniband. In
addition, as soon as the sum of
the miniband width and the
photon energy becomes equal
or larger than the optical
phonon energy Δ + hν  �ωLO
= 36 meV, the lifetime of the
upper-state drops very strongly
even at low temperatures.
The schematic band structure
diagram, computed at an
average electric field of 2.5
kV/cm, of such a bound-to-
continuum design is shown in
Fig. 9.4a. The lightand
voltage-versus-current
characteristics, measured in a
continuous wave from a 1.5
mm long and 200 μm wide
device processed into a single
plasmon, are shown in Fig.
9.4b. The large lifetime ratio
between upper and lower
states at low temperature
enables high optical powers,
and also translates into a
strong change in the differential conductivity at threshold (p.163)

.

9.2.2 Resonant tunneling
extraction

As shown schematically in
Fig. 9.3b, a more selective
depopulation of the lower
state can be achieved by
coupling the lower state by
resonant tunneling to a
miniband. Such a laser, based
on a single quantum all-
active region, achieved



Fig. 9.5.  Band structure (a) and light versus current
(b) of a three quantum wells active region operating
up to a maximum temperature of 186K. Reprinted
with permission from [187]. Copyright 2009, AIP.

record low threshold current densities of 30 A/cm2 [183]. In terms of high-temperature
operation, however, this laser suffered from the same limitations as the one described above
because of the small width of the injection miniband.

Coupling by resonant tunneling the lower state of the laser transition to a very short-lived
upper-state of a nearby well, as shown in Fig. 9.3c allows a significant reduction of the
lower-state lifetime while preserving a long upper-state lifetime. This idea is the basis of
the so-called resonant phonon design first demonstrated by the MIT group [184]. This
design has seen many variations [185, 186], and is now the one that has demonstrated the
highest operating temperature of a terahertz quantum cascade laser so far [187]. The low
lifetime of the upper level of the well following the active region is usually achieved by
spacing the levels resonantly with optical phonon energy. In this way, the condition Δ  kT
is satisfied. This architecture has the additional benefit of shifting the intersubband
absorption of the electrons from the ground state of the quantum well to a photon energy
larger than the laser transition. The transfert of some or all of the oscillator strength from
the ground state from very low frequencies to frequencies above the transition energy was
one of the key ingredients for the achievement of intersubband lasers of 1.2–2 THz [188].
In that case, the pair of states was spaced by less than the optical phonon energy. A general
feature of these designs is the requirement for a simultaneous alignment of the injector and
extraction stage at the same electric field [183]. Such a double-resonance condition,
however, increases the sensitivity of the design to growth inaccuracies.

Another class of design aims at combining the advantages of both approaches. As shown
schematically in Fig. 9.3e, the active stage is based on a bound-to-continuum transition,
while the miniband is coupled to an extractor quantum well [189]. This (p.164)

architecture has the advantage
of reducing the direct coupling
between the upper state and the
extractor well, because they are
physically separated by the
length of the miniband region.
The alignment condition on the
extraction stage is also
somewhat relaxed by the fact
that it has to be satisfied over
the width of the miniband and
no longer over that of a single
state. The original design
following this architecture
[189] was based on a five-
quantum-well active region and a two-quantum-well injector region. A shortened version of this
design, where the total number of quantum wells has been reduced to four, with a three-quantum-
well active region coupled to a one-quantumwell injector, is discussed extensively in [190].
Recently, structures with three-quantumwell active regions [186] have demonstrated operating
temperatures up to ≈ 200 K [191]. As shown in Fig. 9.5, in such a device the lower state of a



Fig. 9.6.  Waveguide losses as a function of
wavelength. Solid disks, mid-infrared devices, with
the upper curve representing the existing literature in
1997, while the two lower points are more recent
high performance devices. Solid squares, terahertz
devices. SP, single plasmon and MM metal–metal
waveguides.

diagonal transition between two coupled wells is in resonance with the upper-state of a thicker
phonon well.
Finally, a very interesting structure is the two-quantum-well active region shown
schematically in Fig. 9.3f. In this structure the lower state of a diagonal laser transition is
also the upper-state of an optical phonon transition. This structure should in principle
exhibit population inversion up to room temperature, because the lower-state lifetime
remains very short. The first demonstrations, however, showed operation up to 125 K [192–
194]. The origins of the limitation in temperature are not completely elucidated, and are
further discussed in the context of resonant tunneling diodes in Section 12.2.5. Extremely
wide gain bandwidths (1 THz) have been demonstrated using this device [194]

9.3 Free carrier absorption
As discussed in Section 7.10.1, free carrier absorption imposes some fundamental limits on
the operation of quantum cascade lasers. In the classical Drude model, the free carrier
absorption grows with the square of the wavelength. As shown in Fig. 9.6, the (p.165)

experimentally measured values
for mid-infrared quantum
cascade lasers, representing the
state of the art in 1997, indeed
showed the expected λ 2

dependence, and the
extrapolation of this trend to the
terahertz yielded unacceptably
high losses in the range of 1000
cm− 1.
Interestingly, the values
measured for terahertz QCL
and shown in the same figure
lie about three orders of
magnitude below these
extrapolated values. One
reason for these lower values
is the use of a single plasmon
or a metal–metal waveguide
that removed the need for a
doped cladding, as well as by the use of a lower average doping of the active region,
reducing from ≈ 8 × 1016 cm−3 to ≈ 5 × 1015 cm−3.

However, a closer look shows that treating the active region as a bulk is a crude
approximation, especially in quantum cascade laser waveguides where the electric field is
normal to the layers. A better approach consists in treating all the absorption in the active
and injector regions as resulting from resonant or non-resonant intersubband absorption. In
fact, this approach is obtained naturally for transport and gain models of the whole active
region based on density matrix or on the non-equilibrium Green’s function, as discussed in
Chapter 12. In particular, the second-order absorption formula (eqn. 12.2.58) allows the



Fig. 9.7.  a) Band structure for a 1.7 THz design. b)
Calculated intersubband absorption spectrum of the
band structure, assuming a thermal equilibrium
distribution of the carriers. Adapted with permission
from [197]. Copyright 2006, AIP.

description of the intersubband absorption as a function of temperature in the presence of
an in-plane elastic scattering.

Considerations based on sum rules are very useful, because, as shown theoretically [195],
free carrier absorption can be seen as the limit of intersubband absorption for vanishing
intersubband transition energy. Therefore, there is a transfer of oscillator strength between
the Drude-like free carrier absorption within a miniband and interminiband absorption
[196]. As a result, for devices that operate at low frequencies, injectors can be designed to
transfer the oscillator strength of the free carrier absorption into an intersubband absorption
at a higher frequency. This approach is most beneficial for terahertz QCLs, but is also
applied successfully in mid-infrared devices. A very rough approximation for oscillator
strength carried by the intraminiband conduction can be obtained by considering the dipole
matrix element between the first two states of a coupled quantum well, which is in the
tight-binding approximation:

(p.166)

(9.3.1)
where L is the thickness of an
individual quantum well. A
similar result can be
established with a series of N
coupled wells [196]. Using
the infinite barrier
approximation for the
transition energy, the
oscillator strength is then

(9.3.2)
where 2Ω is the splitting between the two levels and Einter the transition energy to the next
excited state of the quantum well. Note that the numerical prefactor in eqn. 9.3.2 is much
larger than unity, and therefore a significant fraction of the oscillator strength remains in the
miniband even for a ratio 2Ω/Einter below unity.

Fig. 9.7a shows the design of a device operating at 1.7 THz. The injector consists of a
double well, with an energy splitting (2 meV) much smaller than the design photon energy
(6 meV), preceded by a wider miniband located at a higher energy (10 meV) [197]. As a
result, the reabsorption of the injector, shown in Fig. 9.7b, is such that the low-frequency
component is much weaker than the high-frequency component, and that laser operation
can happen in a minimum between the lowand high-frequency peaks. Note that because the
two states of the double well have a splitting smaller than kT, the contribution of this



Fig. 9.8.  Maximum operating temperature as a
function of wavelength, summarizing devices
reported in the literature.

doublet to the absorption decreases with increasing temperature. The rise of intersubband
absorption at 100 K originates from resonant absorption of the laser transition due to
backfilling.

Note also that this feature arises naturally in single-quantum-well injector devices with a
phonon extraction stage.

9.4 Key operation characteristics
As for their mid-infrared counterparts, terahertz quantum cascade lasers are able to deliver
large optical powers. Up to 250 mW in pulsed operation was achieved for multimode
devices, while single-mode devices have shown powers up to 50 mW, due to a (p.167)

photonics crystal structure.
Because of the low frequency,
as well as the low lattice
operating temperature, the
temperature and the current
dependence of the laser is weak.
As a result, very narrow
linewidths, down to a
Schawlow–Townes limit of 60
Hz (unpublished) have been
measured. However, for the
same reason the tuning range of
terahertz QCL is very limited,
and an electrical tuning range of
a few gigahertz is usually
achieved. The maximum
values, achieved by cavity
pulling, are of the order of 30 GHz, as shown in Fig. 10.17.
A summary of the maximum temperature as a function of frequency is shown in Fig. 9.8.
As mentioned, the maximum operating temperature reported is 186 K for a device
operating at 3 THz. It can also be seen that the majority of the reported values follow a
general trend of having the photon energy hν ≈ kTmax.

The temperature dependence of the threshold current of terahertz quantum cascade lasers
was shown to be dominated by optical phonon emission and can be described using simple
models, as shown already for designs based on bound-to-continuum [181, 172], bound-to-
continuum with phonon extraction [190], or resonant phonon extraction [198]. Although
these models predict the temperature dependence of the threshold current density with
various degrees of accuracy, they do not predict the maximum operating temperature. In
fact, the latter is reached when the threshold current density is equal to the maximum
current, at which the gains rolls over because of the onset of a negative differential
resistance. Prediction of the device characteristics in this regime are very difficult, because
they require a good model of the gain saturation mechanisms.

Operation at room temperature remains an elusive goal of terahertz QCL research.
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10.1 Fabry–Perot cavity
The active region of a quantum cascade laser is placed in the center of a mid-infrared waveguide
forming a long ridge. By cleaving the latter at a length of typically 1–3 mm, a Fabry–Perot cavity
is formed. The cleaved facets exhibit an amplitude reflectivity . Imposing a stationary
mode running in the cavity requires the field to close on itself after a round-trip in the cavity:

(10.1.1)
where

(10.1.2)
is the propagation constant for a mode with a vacuum propagation constant k 0 = 2π/λ and a net
gain g −αw. Imposing the condition set by eqn. 10.1.1 for both the amplitude and phase imposes
the well-known conditions for the gain:



Fig. 10.1.  Subthreshold luminescence of a short-
wavelength quantum cascade laser as a function of
increasing current, from 200 mA to 800 mA by steps
of 200 mA. The temperature is 20 K and the
threshold current is at 950 mA. The spectra are
shown with two different horizontal scales a) and b).
The shift of the individual Fabry–Perot resonances is
caused by the device heating.

(10.1.3)
and the condition on the wavelength

(10.1.4)
where N is any positive integer. Taking into account the fact that the refractive index has in
general a wavelength dependence, the mode spacing between adjacent cavity modes is

(10.1.5)
Expressed in wavenumbers, the expression reads

(10.1.6)
where the group refractive index ng is

(10.1.7)
(p.169)

As shown in Fig. 10.1, where a series
of spectra of short-wavelength
quantum cascade lasers is shown as a
function of injected current, the
Fabry–Perot modes of a laser cavity
are clearly apparent below threshold.
Their contrast (which can be directly
evaluated using the logarithmic scale
of the figure) increases with injected
current; their location shifts with the
change of nef f induced by the
temperature change with injected
current. The latter effect can be
analyzed using the expression for the
transmission of a Fabry–Perot cavity:

(10.1.8)
where the parameter controlling the finesse of the Fabry–Perot cavity b is given by



(10.1.9)
For this reason, the measurement of the fringe contrast as a function of injected current enables a
measurement of the gain, as will be discussed in detail in the next chapter.

10.2 Distributed feedback cavity
As is apparent in Fig. 10.1, for usual Fabry–Perot cavity lengths the mode spacing (of the order of
1 cm−1) is much narrower than the gain bandwidth of 100–200 cm−1. For this reason, even if
because of mode competition, the laser operates on a single mode above threshold, the exact
location of the latter is almost impossible to predict with enough accuracy in order to target a
specific molecular vibration line.

10.2.1 Multi-layer approach, Bragg reflection condition

One solution used to solve this problem is to incorporate a distributed feedback inside the active
region of the device by creating a small, periodic modulation of the (p.170) waveguide effective
index. In a first approach, let us consider two regions of effective refractive index na and nb of
lengths a and b repeated with a periodicity Λ = a+b. The coupling between forward and backward
propagation of the plane wave at frequency ω can be described by a 2x2 complex matrix M
describing the coefficients of the plane waves at the nth layer with the one at the n − 1th layer:

(10.2.10)
where the coefficients of the matrix M are given for a TE mode at normal incidence:

(10.2.11)

(10.2.12)

(10.2.13)

(10.2.14)
where λ is the wavelength in vacuum. As the structure is periodic, the solutions must satisfy
Bloch’s theorem:

(10.2.15)
which finally yields the dispersion relation



Fig. 10.2.  The Bragg reflection condition for
gratings of various order N. a) In the first-order
grating, only backscattering is possible. b) For N = 2,
either backscattering or vertical emission is possible.
c) In the third-order grating (N = 3), emission is only
possible inside the substrate because of the large
refractive index difference between the guided mode
(nef f = 3.2  3) and the vacuum. Third-order DFB
lasers using strong gratings have been successfully
developed in the terahertz, however [199].

(10.2.16)

where we have introduced the wavevectors  and  to emphasize the similarity

with the electronic dispersion relation obtained for the superlattice, in particular when considering
the two states in the continuum (eqn. 3.4.74). As in the electronic case, gaps will open for
frequencies corresponding to the Bragg condition

(10.2.17)
where N is an integer that characterizes the order of the grating and n¯ is the average refractive
index, assuming a weak modulation of the latter. The last equation can also be written in terms of
the propagation constant  of the mode as

(10.2.18)
where  is the reciprocal vector of the grating. The Bragg condition can be seen as a

conservation of the in-plane wavevector with the grating providing an integer number of
wavevectors N G, and can be graphically described schematically by the vector diagrams shown
in Fig. 10.2. Of course, as the order of the grating increases, so does the number of different
scattering directions available for the light. Of particular (p.171)

interest are the first-order grating, as
only backscattering is allowed. The
second-order grating enables both the
frequency selection and the surface
emission.
To use again the analogy with solid-
state systems, the Bragg reflection
creates a gap for which the
propagation is not possible. If the
modulation is purely of the real part
of the refractive index, the gap is
opened in the frequency domain; if
the modulation is only on the gain,
the gap opens in the allowed
propagation wavevector. Assuming
again a small refractive index
change

(10.2.19)
and equal thicknesses (a = b) the width of the gap in angular frequency is shown to be

(10.2.20)
by Taylor expansion of the eqn. 10.2.16 to the second order around the Bragg frequency



Fig. 10.3.  Computed transmission (left axis) of a 1.5
mm thick stack of layers with alternating high and
low refractive index. The periodicity is Λ = 1.3 μm,
the average refractive index is 3.2, and a refractive
index step of Δn = 1 × 10−2 has been assumed. A
stop band of width about 2.76 cm−1 appears in the
transmission. The high-reflectivity coating assumed
on one end of the device is responsible for the
asymmetry of the transmission characteristic. The
computed loss of the modes corresponding to the
transmission maxima is plotted on the right axis.

(10.2.21)
and solving for cos K Λ = −1. The computed transmission for a finite quarter wave stack with a
periodicity of 1.3 μm of average refractive index n¯ = 3.2 and a refractive index step of Δn = 1 ×
10−2 is shown in Fig. 10.3. As expected, a gap appears centered at the Bragg wavelength. The
value of the stopband width, 2.76 cm−1, obtained by computing the distance between the two
transmission maxima, agrees with the value obtained from eqn. 10.2.20 (2.52 cm−1). The
asymmetry of the transmission characteristic, as well as the small difference between the two
computed values for the bandgap width, originate from a high-reflectivity coating assumed on
one end of the device and providing an additional reflectivity with a phase shift.

The coupling constant of the grating κ describes the attenuation of the propagating wave in the
gap center. It is obtained as the solution for the imaginary part of K of eqn. 10.2.16 at the
frequency corresponding to the Bragg condition. The quantity 1/κ is the attenuation length of the
field inside the periodic grating. This quantity plays a major role in the evaluation of the
performances of distributed feedback lasers. Again (p.172)

using a series expansion of eqn.
10.2.16 for small values of Δn/n, the
coupling constant is written as

(10.2.22)
A laser with a periodic grating can
only operate at the edge of this gap.
In fact, the gap opened in the ω
versus k dispersion curve will force
the derivative to be zero at the edge.
As a consequence, the group
velocity

(10.2.23)
is zero at the band edge. For this
reason, light at this band edge is
stationary and therefore a mode can
be confined.

Using the multi-stack approach, one
is also able to compute the threshold for the modes of a distributed feedback laser. The
transmission of the finite cavity is obtained by the multiplication of the transmission matrices for
each layer pair given by the elements 10.2.14 but with a complex refractive index ñ given by

(10.2.24)



where g is the gain. The laser modes are defined by the couples of values (λ, g) for which the
transmission diverges.

The result of such a computation is shown in Fig. 10.3. As expected, the threshold corresponds to
the values predicted for a Fabry–Perot device , assuming a 100%

high reflectivity coating on one end) for the modes away from the grating resonance. The modes
on the side of the grating resonance have their threshold gain reduced to about 2.2 and 0.4 cm−1,
respectively.

(p.173) 10.2.2 Coupled mode analysis

Although the previous analysis enabled the computation of the threshold for realistic devices, it is
based on purely numerical simuations and therefore hides the physics of the device. Kogelnick
and Shank [200] have derived a coupled-wave analysis of distributed feedback lasers that shows
the physics of the system. Using their notation, the refractive index is assumed to be modulated
sinusoidally for both its real part

(10.2.25)
as well as for the loss

(10.2.26)
where  is the propagation constant of the grating. The field inside the cavity is

assumed to be the sum of a right-going wave and a left-going wave:

(10.2.27)
where both functions R(z) and S(z) are assumed to vary slowly. Using the latter assumption, a set
of coupled differential equations can be derived for R and S:

(10.2.28)
where the coupling constant κ is given by:

(10.2.29)
and the normalized detuning δ is given as

(10.2.30)
Note that the ratio of the coupling constant defined by eqn. 10.2.22 for a rectangular refractive
index profile and the one defined above is equal to  (taking Δn = 2n 1), which is exactly the
Fourier component of a rectangular wave of unit amplitude. This model enables the computation
of the threshold gain in general, however, without the effect of the facets. The key results are the



Fig. 10.4.  a) Intensity distribution and b) amplitudes
of the right-going R(z) (solid) and left-going S(z)
(dashed) in a 1.5 mm-long DFB-QC laser for
different values of the product κL, as indicated. Non-
reflecting facets are assumed.

position of the modes for modulation of both the real part and the imaginary part of the refractive
index. It also enables us to study the effect of the product κL on the internal optical field along the
cavity. The solution of eqn. 10.2.28, using the appropriate boundary condition for a device
spanning symmetrically between −L/ 2 to L/ 2, is given by the solution of the transcendental
equation:

(10.2.31)
where the parameter γ is given as a function of the loss α and detuning δ as

(p.174)

(10.2.32)
Once eqn. 10.2.31 is solved, the
functions R(z) and S(z) are given by

(10.2.33)

(10.2.34)
The solutions for the bandgap edge
mode of a 1.5mm long laser
operating at λ = 7 μm for various
values of the coupling constant κ
are shown in Fig. 10.4. In general, a
larger value of κL lowers the device
threshold and improves the mode
selectivity but at the cost of a lower
power efficiency.

10.2.3 Fabrication geometries

Surface grating.The first distributed feedback quantum cascade lasers were fabricated by etching
the grating directly onto the surface of the device onto a waveguide specially designed with a thin
AlInAs cladding. The interaction between the mode and the surface plasmon propagating at the
semiconductor–contact interface enabled significant modification of both refractive index and
loss, and therefore yielded complex coupled DFBs. Single mode operation was achieved at both
5.7 and 7.2 μm [21]. The modulation of the effective index can be modeled by the effective index
technique, in which the effective index of a propagating mode is computed in both regions of the
grating (i.e. in the etched and unetched parts). These numbers are then used in a one-dimensional
simulation of the structure as described above. For the structure (p.175)

shown in Fig. 10.5, a refractive index
step of Δñ = 7 × 10−3 + 3 × 10−4 i is
found for an etch depth of 0.5 μm. The
distributed feedback laser is then



Fig. 10.5.  a) Scanning electron micrograph of a
distributed feedback quantum cascade laser with a
grating on the surface. b) Computed effective index,
losses, and mode profile of the reference waveguide
and the one for an etch depth of 0.5 μm. For an etch
depth of 0.3 μm, a value of Δn = 0.03 and α = 10.2
cm−1 are computed. [21]

Fig. 10.6.  a) Schematic cut through a waveguide
design that uses air as the top cladding and a lateral
injection through a doped InGaAs layer. b) Scanning
electron micrograph of a finished device. Reprinted
with permission from [204]. Copyright 1999, AIP.

Fig. 10.7.  a) Light- and bias-versus-current
characteristic of a distributed feedback quantum
cascade laser with a air/semiconductor top cladding
and a lateral injection. b) Representative spectra of
the device at various operation temperatures.
Reprinted with permission from [205]. Copyright
2001, AIP.

predominantly index coupled with a
non-negligible loss component.
Computation techniques based on
the effective index method tend to
predict everincreasing losses for
stronger (deeper) grating because of
the increasing interaction with the
surface metal. A more refined
analysis [201], however, shows that
with the correct set of geometrical
parameters, a combination of strong
coupling and low losses could also
be achieved for deep etched
gratings. In fact, very high-
performance single-mode operation
was achieved for devices based on
both GaAs [202] and InP [203].

Another successful technique has
been to use a device where air is
used as the top cladding layer and
the current injection proceeds
laterally through a doped (n = 2 ×
1018 cm−3) InGaAs conducting
layer which is simultaneously the
layer host to the grating [204]. A
schematic drawing of the
waveguide, together with a
scanning electron micrograph of a
processed device, is shown in Fig. 10.6. Devices fabricated in this way exhibit a number of
advantages. As in the case for the surface-etched devices, the fabrication does not require a
regrowth etch step, and the technique allows strong (p.176)

complex grating coupling. Wide
devices can achieve large peak powers
(1W) while maintaining single
transverse mode operation due to the
lateral losses brought by the lateral
contacts. Finally, the top surface of the
grating could be used as an access to
the optical field circulating inside the
device for intracavity detection.
However, the relatively large width
of the lasers, which enables the
large peak powers, is also
responsible for the high drive
currents of these devices and
prevents their use in a continuous
wave. The light-versus-current, as



Fig. 10.8.  a) Atomic force microscopy of a buried
grating prior to the regrowth step. b) Scanning
electron micrograph of the active region of a device
after the regrowth was performed.

Fig. 10.9.  a) Computed mode for a 10 μm
wavelength with (dashed) and without (solid) 200
nm thick etched grating. The computed change of
refractive index is Δn = 1.5 × 10−2 while the losses
are not affected. b) Real part of the mode effective
index as a function of etched depth. As expected
from eqn. 10.2.35, the relationship is linear.

well as some representative spectra
of such a device, is shown in Fig.
10.7. Single-mode peak optical
powers as high as 1.2 W at 0° C and
operation up to 120° C were
achieved [205].

Buried grating. As for the telecom
devices, a very effective
architecture is to etch the grating in
the InGaAs guiding layer above the
active region, followed by an InP
regrowth. Atomic-force microscopy of a grating prior to the etching step, as well as a scanning
electron micrograph of the active region of such a device, is shown in Fig. 10.8. In such a device
the refractive index step between InGaAs and InP (Δnetch ≈ 0.4) is close to the maximum of the
waveguide. Actually, using the effective-index approach, (p.177)

the change in effective index Δnef f as
a function of etching depth w can be
immediately estimated:

(10.2.35)
where Inorm(zgrating) is the
normalized intensity of the mode in
the waveguide at the location of the
grating, i.e. satisfying

(10.2.36)
This approach is verified by
effective-index computation of an
example shown in Fig. 10.9, where the mode profile and effective index are shown as a function
of etch depth. As expected from eqn. 10.2.35, a linear relationship is found between the effective

index and the etch depth, where the slope of this characteristic  is

reasonably close to the one (6.8 × 10−2) found by eqn. 10.2.35 assuming an average normalized
intensity at the interface (from Fig. 10.9) Inorm = 0.17.

Globally, the buried grating technology allows the fabrication of distributed feedback quantum
cascade lasers with the highest performance levels, at least in terms of low dissipation and
continuous-wave operation. This is especially true when this technology is combined with a
buried heterostructure waveguide. Examples of performance achieved with devices based on this
technology are shown in Figs. 10.10 and 10.11, demonstrating true uncooled operation with tens
of milliwatts of single-mode operating power.

10.2.4 Tuning and linewidth



Fig. 10.10.  Single-mode optical power versus
injected current for a distributed feedback quantum
cascade laser combining a buried grating and a
buried heterostructure waveguide. Reprinted, with
permission, from [206]. Copyright 2009 IEEE.

Fig. 10.11.  Temperature tuning of the a buried
grating device operating in continuous wave above
room temperature. Reprinted, with permission, from
[206]. Copyright 2009 IEEE.

Temperature.The operating frequency of a distributed feedback quantum cascade laser is fixed by
the Bragg condition:

(10.2.37)
As a result, the tuning with temperature has two terms, and can be conveniently written as:

(p.178)

(10.2.38)
Experimentally, this tuning coefficient is βtun = −(6.5 − 9) × 10−5 K−1) and is dominated by the
temperature tuning of the refractive index, as the second term is the thermal expansion of InP and
is an order of magnitude smaller (4.6 × 10−6). As shown in Table 10.1, this coefficient is



wavelength independent but increases with temperature. It is the reason why the tuning
coefficient of continuous-wave devices is larger than that of pulsed ones at the same holder
temperature, as the active-region temperature is significantly increased by self-heating in devices
that are operating in a continuous wave.

Current.The same temperature coefficient is also responsible for the tuning of the devices with
injected current. For slow variations of the thermal load in the device, (p.179)



10.1 Measured temperature tuning coefficients of distributed feedback quantum cascade lasers, as reported in
us references. The tuning coefficient increases with the active region temperature but remains in a very good
ximation independent of the wavelength.

ence βtun(K−1) λ(μm) Temperature (K) Operation

−6.8 × 10−5 7.8 220 pulsed

−6.5 × 10−5 5.3 220 pulsed

−6.5 × 10−5 10.16 200 pulsed

−7.1 × 10−5 4.9 260 pulsed

−7.8 × 10−5 5.3 330 pulsed

−8.9 × 10−5 7.8 310 continuous wave

−9.5 × 10−5 5.4 253 continuous wave

−7.9 × 10−5 9.0 400 continuous wave



Fig. 10.12.  Mode position of a distributed feedback
quantum cascade laser as a function of both the
submount temperature and the dissipated electrical
power. Reprinted with permission from [209].
Copyright 2005, AIP.

the average temperature of the waveguide Twav is related to that of the holder by a thermal resistance:

(10.2.39)
Note that the thermal resistance defined by the above equation is slightly lower than the one
defined by the similar equation for the active region 7.8.27, as the optical mode spreads over the
claddings that are cooler than the active region. As a result, the tuning coefficient can therefore be
written as

(10.2.40)
As expected, a strong tuning is achieved for a device with a large thermal resistance Rth. In short,
a device that will provide a large current tuning exhibits a equally large difference between the
active region and holder temperatures. In this respect, the opimization for maximum tuning is
opposite to the one aiming at reaching the largest continuous wave operation temperature. An
example of tuning with both submount temperature and dissipated power is shown in Fig. 10.12.

Dynamical behavior and linewidth. During short current pulses, the waveguide temperature of a
distributed feedback quantum cascade laser will undergo a change in temperature and, as a result,
induce a chirp of the ouput frequency with time. The example of such a behavior is shown in Fig.
10.13, where a series of time-resolved spectra of a distributed feedback quantum cascade laser
were performed on a device driven by a 100 ns long pulse at room temperature. The spectra were
aquired using a fast, room-temperature mercury–cadmium–telluride detector and a gated averager
with a 3 ns long gate. Because for such short timescales the heat has no time to diffuse out of the
active region, the thermal behavior of the device is dominated by the specific heat of the active
region, and therefore the mode will shift linearly with time. This is indeed the behavior observed
in Fig. 10.13. The device remains single mode but tunes over 2 cm−1 during the 100 ns long
pulse. This rapid chirp enables an “intrapulse” spectroscopy technique in which absorption
features are detected using the very fast chirp of the laser across the gas absorption line.

(p.180)

As a result of this thermal chirp, the
integrated linewidth of a distributed
feedback laser is expected to grow
linearly with pulse length. This is
exactly the behavior observed
experimentally, as shown in Fig.
10.14. For this device driven at 1.25x
the threshold, the linewidth is found to
grow linearly with time at a rate 

. In a very
rough approximation, assuming little
significant heat flow occurs out of the
active region, the chirping rate can be
written as



Fig. 10.13.  Single-mode spectra of a distributed
feedback quantum cascade laser as a function of time
during a current pulse. The chirp is thermally driven.
Reprinted with permission from [21]. Copyright
1997, AIP.

Fig. 10.14.  Measured linewidth as a function of
pulse length. The point labeled “Aerodyne” is the
result of a spectral fit of the absorption line of NH3
at 967 cm−1 that yielded a linewidth of 0.012 cm−1.
Adapted from [210].

(10.2.41)
(p.181)

where Jop = 5.4kA/cm2, is the
operating current, Vop = 11 V is the
operating voltage, tact = 1.75 μm, is
the active region’s thickness, Cv =
1.64 J K−1 cm−3 is the specific heat
and ν is the operation frequency. The
value computed by the above equation
yields a tuning rate of 

, larger
than the value measured over the
maximum 100 ns pulse length but
close to the value measured for the
initial 20 ns, where no significant heat
flow is expected out of the active
region.
Obviously, for very short pulse
lengths, the linewidth is expected to
grow again because of the time–
bandwidth uncertainty relations.
These can be expressed for the
FWHM of the intensity of both the
pulse Δτ and its Fourier transform,
in frequency units Δν as Δν Δτ =
0.44 for a Gaussian pulse and Δν Δτ
= 0.88 for a rectangular pulse. In a
simple approach the two
contributions are simply summed,
and, assuming rectangular pulses,

(10.2.42)
This equation fits relatively well
with the experimental data shown in
Fig. 10.14, and predict a minimum
linewidth of about δ(1/λ) = δν/c = 0.03cm−1 for a pulse length of 2 ns. The minimum pulse width
achievable for a given pulse shape (characterized by its time-bandwidth product Δν Δτ) and a
given tuning rate , is given then by:

(10.2.43)
Distributed feedback quantum cascade lasers driven by short pulses and tuned by a subthreshold
ramp have been used to perform high resolution spectroscopy, an approach pioneered by the
group at Aerodyne Research Inc. A measurement of the laser linewidth can be obtained fitting the
measured absorption of a known absorption line. Using this technique, a narrow linewidth of



Fig. 10.15.  Measured half-width at half-maximum
of the emission spectra of a quantum cascade laser as
a function of pulse length. The linewidth is obtained
by fitting a vibrational molecular line, and the pulse
length is an increasing function of the voltage on the
pulser, indicated in the horizontal axis. Adapted from
[212].

0.012 cm−1 has been measured on a device similar to that used to measure the data shown in Fig.
10.15. Indeed, assuming a Gaussian pulse shape and operating very close to threshold, a
minimum linewidth of ≈ (p.182)

0.02 cm−1 is inferred from eqn.
10.2.43, showing that simply summing
the contributions from the uncertainty
and chirp tends to overestimate the
final linewidth.
In fact, measurements on high-
performance devices yielded very
narrow linewidths. An example of
such a measurement is shown in Fig
10.15, where the measured
linewidth is shown as function of
the voltage on the pulse, the latter
acting as a surrogate for the pulse
length [211]. In the latter
measurement the devices used
exhibited much lower threshold
current densities (about 1kA/cm 2)
and, therefore, yield a predicted
linewidth of only 0.01 cm− 1, still
above the measured experimental
value of 0.0072 cm−1. The latter value is obviously larger than the one (0.005 cm−1) given by the
time–bandwidth product.

The fact that experimentally measured linewidth values close to the limit imposed by the time–
bandwidth product can be achieved is far from obvious. In fact, assuming a perfect rectangular
current pulse, much broader linewidths than the values given by the time–bandwidth limit are
predicted, because the mode competition does not have time to efficiently narrow the emission.
The experimental results have been achieved using a current pulse that exhibits a cosine shape
where the device is brought just above threshold for only a fraction of the pulse length. In effect,
this corresponds to an amplification of an already narrow amplified spontaneous emission.

Linewidth.It was shown by Schawlow and Townes in their celebrated paper [213] that the
linewidth of a laser is limited by the ratio between the spontanous and stimulated photon
emission. This result was adapted later by Henry [214], who showed that the result from
Schawlow and Townes must be multiplied by a term , where the linewidth
enhancement factor αLEF, defined as

(10.2.44)
(p.183) expresses the ratio of the change of the real n′ to the imaginary n″ part of the refractive
index as a function of the upper-state population N. The interpretation is that each random
spontaneous emission event, besides changing the phase of the optical field, also induces a phase



modulation of the total field through the change of the refractive index as a function of the
population N. The laser linewidth Δν is then expressed as

(10.2.45)
where ν is the lasing frequency, αtot the total losses of the cavity, αm the outcoupling losses of the
output facet, P the output power, Δνc = αtot c/(2π ng) the full width at half maximum of the cavity
resonance, and n 3t and n 2t the populations of the upper and lower states of the laser transition at
threshold. Because it expresses the fact that the linewidth of a laser is limited by the ratio of the
spontaneous to the stimulated photon emission, eqn. 10.2.45 remains valid for quantum cascade
lasers, although it was originally derived in the context of interband semiconductor lasers. As will
be discussed below, the very narrow linewidths measured in quantum cascade lasers are only
indirectly a result of their unique physics.

Using the QCL rate equations presented in Section 7.4, and remaining sufficiently close to
threshold so that the upper-state population is close to the threshold value, one can show that

(10.2.46)
where τ 3 and τ 2 are the lifetimes of the upper and lower states,  is the scattering rate from
level 3 to level 2, and  is the thermal population of level 2.

In an interband semiconductor laser the linewidth enhancement factor is usually large because the
gain and the change in absorption do not peak at the same frequency. In contrast, for quantum
cascade lasers, it was noted that the symmetric gain profile would yield a small to vanishing value
for αLEF for devices operated. Indeed, assuming a Lorentzian lineshape with an FWHM equal to
2γ 32 for the intersubband transition, the linewidth enhancement factor of a QCL can be expressed
as

(10.2.47)
and thus is equal to zero at the maximum of the gain curve. Distributed feedback lasers LEF will
usually operate within a range of ν 32±γ 32/2, and as a result . In fact, a value of |αLEF |

 0.5 was measured directly through a high-frequency modulation experiment where the ratio of
the amplitude to the phase modulation was measured for a device under high frequency
modulation [215].

Evaluation of eqn. 10.2.45 with typical values for a mid-infrared distributed feedback quantum
cascade laser yields extremely low values for the linewidth. For a device operating at λ ≈ 5 μm
with an output power of 10 mW, with a waveguide loss of α = 5 cm−1 and an outcoupling loss of
αm = 2 cm−1, a linewidth of δν = 400Hz is found. For a device of length L and group index ng
inserted in an external cavity with a passive section of length l, this value is reduced further by a
factor F = 1 + l/ngL.

(p.184)



Fig. 10.16.  a) Noise spectrum of a quantum cascade
laser operated in a continuous wave. b) Measured
linewidth as a function of current. Reprinted with
permission from [217]. Copyright 2010, APS.

Fig. 10.17.  a) High-resolution spectra of a single-
frequency terahertz quantum cascade laser based on
a photonic bandgap structure as a function of current.
b) Peak position as a function of current. The tuning
originates from a cavity pulling effect.

Theoretical values in the 1–10 Hz
range are easily obtained for a 10 cm
long passive section.
Using a rate equation model,
Yamanishi [216] derived an
expression mathematically
equivalent to eqn. 10.2.45, but
where the linewidth is expressed as
a function of the pumping ratio I/Ith
− 1 instead of the optical power.
This expression enabled the authors
to show that at a given pumping
ratio the low radiative efficiency of
intersubband transitions, caused by strong optical phonon scattering, is indirectly responsible for
the very narrow predicted line, as it naturally yields a very large ratio of the stimulated emission
rate to the spontaneous rate in the laser mode. This result has been sometimes wrongly interpreted
as implying that the linewidth of a QCL is narrower than the one predicted by the Schawlow–
Townes limit of eqn. 10.2.45. This is, of course, nonsense: QCL have narrow linewidth because
they are powerful, and operate with low mirror losses and at long wavelengths—all features that
help reduce the linewidth in eqn. 10.2.45.

The noise properties of a single-mode distributed feedback quantum cascade laser operating at 4.3
μm were studied by Bartalini et al. [217]. In this measurement the light from the quantum cascade
laser was passed through a cell filled with CO2. The laser was tuned to the side of a strong
absorption line; the frequency noise of the laser was therefore converted into an amplitude noise,
recorded with a fast detector over a bandwidth up to 100 MHz. The results of such a measurement
is shown in Fig. 10.16a.

In the low-frequency region the noise exhibit first a 1/f, followed by an 1/f 2 frequency
dependence. This noise is attributed to the conversion of the amplitude noise of the current source
to frequency noise through the temperature dependence of the refractive index, the 1/f and 1/f 2

reflecting the thermal response roll-over of the device. At higher frequencies (  107 Hz) the
noise reaches a plateau where a spectral density of the noise Nw = 163 Hz2/Hz corresponds to the
Lorenzian natural linewidth of the laser δν = πNw [218] that yields a value of δν = 513 Hz in this
case. This value, achieved for an optical power of 6 mW, is in good agreement with the result (δν
= 530 Hz) predicted by eqn. 10.2.45, assuming rather typical values for the (p.185)

waveguide αw = 4 cm−1 and mirror αm
= 1.7 cm−1 losses of these strongly
coupled distributed feedback quantum
cascade lasers. Fig. 10.16b shows the
comparison between the experimental
results for various injection currents to
the Schawlow-Townes linewidth
expressed in the form given by
Yamanishi, showing an excellent
agreement.
Cavity pulling. An important
difference between distributed



Fig. 10.18.  a) Littrow and b) Littman external cavity
configurations. The large gray arrows indicate the
directions of propagation of light, and the small
black arrows show how coarse tuning is achieved.

feedback quantum cascade lasers
and their interband counterparts is
the almost total absence of carrier density-driven changes of refractive index. In fact, the
requirement of preserving global neutrality in a unipolar device forces the number of electrons to
remain constant. As a result, the only changes in refractive index that can be expected are related
to shifts of the carrier distribution or transition energies as a function of applied voltage or
temperature. In particular, a blueshift of the gain curve with applied bias is expected to induce a
concomitant blueshift of the mode. As shown in Fig. 10.17, this phenomenon, called “cavity
pulling” in the literature of gas lasers, has been observed in single-mode quantum cascade laser-
operating in the terahertz. By assuming the laser to operate close to the peak of a Lorenzian gain
curve whose peak frequency shifts at a rate ∂νG/∂J, the cavity pulling of the lasing mode ∂νL/∂J,
obtained by ratioing the imaginary to the real part of the susceptibility, can be rewritten as

(10.2.48)
where GM is the modal gain and γ is the half-width at half-maximum of the gain curve.

It has never been observed in mid-infrared devices, for two reasons. First, the large ratio of
upperto lower-state lifetimes necessary to produce high-performance devices implies that the
upper-state density is practically “locked” to a constant value above threshold. As a result, the
differential resistance of the device decrease abruptly and the Stark tuning of the transition above
threshold is minimum. Secondly, high-performance operation is achieved by employing low-loss
cavities while the half-width (p.186)

at half-maximum remains large at
room temperature. As a result, the
prefactor in eqn. 10.2.48 remains
much lower than unity, and the
concomitant change in refractive index
is therefore small.
10.3 External cavities
The tuning range of distributed
feeback quantum cascade lasers is
not limited by the width of the gain
curve but by the amount that the
mode effective index can be tuned,
usually by temperature. As a result,
for quantum cascade lasers, the maximum tuning range that has been achieved is at most ≈ 10
cm−1 for temperature tuning and ≈ 1 cm−1 for current tuning, much less than the width of a gain
curve ≈ 120 cm−1. Quantum cascade lasers with large tuning capabilities would be desirable for
spectroscopy of multiple gas components or liquids with broad absorption lines. One technique to
achieve this goal is to use a tunable wavelength filter outside the laser cavity. Such an external
cavity configuration is achieved by using a combination of a quantum cascade active gain
medium with an antireflection coating, followed by a lens and a grating.

The most common configurations are the Littrow and Littman–Metcalf [219] configurations
illustrated in Fig. 10.18. Tuning is achieved by the rotation of the grating for the Littrow, and the
rotation of a mirror for the Littman–Metcalf configuration. Whereas the Littmann configuration



Fig. 10.19.  a) Schematic drawing of the Littrow
configuration. The incident horizontal beam is
diffracted by the grating at an angle Δθ depending on
the wavelength λ. b) The angle Δθ introduces a shift
of the reflected beam by a distance Δx = f Δθ. c)

offers a stronger wavelength selectivity by a double pass through the grating, the Littrow
arrangement maximizes the back-coupling into the active region chip. It was for this reason
selected for the majority of QCL-based experiments.

10.3.1 Mode selection in the Littrow configuration

As shown in Fig. 10.19, tuning of an external cavity quantum cascade laser in the Littrow
configuration can be analyzed by a wavelength-dependent amplitude reflection coefficient of the
external cavity r˜1(θG, λ). Neglecting the reflectivity of the AR coated lens and in the limit of
small amplitude reflectivity from the chip facet r 1, we obtain

(10.3.49)
where θG is the grating angle, T 1 the intensity transmittivity of the facet, k = 2π/λ, l the distance
from the facet to the grating, and r ext(θG, λ) describes the reflection of (p.187) the external part
of the cavity. The latter can be written as

where TL is the transmission of the lens, RG the first-order efficiency of the grating, and η(θG, λ)
the coupling of the beam reflected by the grating and lens combination onto the initial waveguide
mode. The latter can be computed as the overlap integral between the normalized amplitude
profiles of these two beams on the coupling facet:

(10.3.50)
The mode will be assumed to have an elliptical Gaussian beam profile [220] whose

waists in the xand y-directions W 0x, y
are located on the facet (z = 0). The
values of W 0x, y are inferred from a
measurement of the far-field of the
device. The normalized amplitude
profile of the beam on the facet reads



Schematic representation of all the terms for the
calculation of r˜1 (θG, λ).

(10.3.51)
(p.188) and inserting in eqn. 10.3.50, we obtain

(10.3.52)
The displacement Δx between the incident and the reflected beams is

(10.3.53)
where f is the focal length of the lens and ΔΘ is the difference between the angle of the incident
and the reflected beams. Significant feedback will only occur when the incident and diffracted
beams are nearly collinear, i.e. near the Bragg reflection condition

for a grating of periodicity d, at wavelength λG and an angle θG. For wavelengths close to λG, we
write θr, 1 = θG + Δθ and linearize the grating equation in the vicinity of λG:

(10.3.54)
We finally obtain for the effective reflectivity of the external cavity

(10.3.55)
Note that this expression has been derived for an ideal (diffraction limited) lens. In the case of an
imperfect lens, the size of the reflected beam on the facet is larger, and consequently r ext has a
broader and less intense peak at λG.

The allowed modes of the external cavity and the corresponding threshold gains are determined
by the stationary condition

(10.3.56)
(the wave should have the same amplitude and phase after one round-trip in the cavity), where n
is the refractive index of the chip and L its length. The condition on the amplitude readily gives
the threshold modal gain as a function of wavelength:



(10.3.57)
and the condition on the phase gives the allowed modes:

(10.3.58)
For wavelengths far from λG, the first term in r˜1(θG, λ) dominates and the usual results for a
Fabry–Perot chip are recovered. The modes are spaced by  and the threshold gain

equals

(p.189)

(10.3.59)
On the contrary, for wavelengths close to λG the second term dominates. In this case, arg(r˜1) ≅ =
2ikl, resulting in a mode spacing equal to . The minimum threshold gain is

(10.3.60)
with .

The coarse tuning range of the external cavity laser can be readily obtained by requiring that the
threshold condition for the external cavity mode  is met, and that before the laser

operates on the parasitic modes of the Fabry–Perot cavity . As a result, we

obtain immediately:

(10.3.61)
For a perfect antireflection coating, αFP is very large and the tuning is limited only by the
available gain. Conversely, large coarse tuning ranges could be achieved even with relatively poor
AR coatings if the gain is very flat spectrally, i.e. if g(λ) ≈ const.

The fine-tuning behavior can be predicted numerically by using eqn. 10.3.56 to determine the
external cavity mode with the lowest losses. The results of this computation for the case in which
only the grating angle is varied is shown in Fig. 10.20. The simulation is done for a 3 mm long
HR coated chip with waveguide losses of 10 cm−1. The lasing frequency as a function of the
grating angle is plotted for two values of the front facet reflectivity, 2% and 0.2%. In the first
case, the tuning happens only on the external cavity modes that are close to the Fabry–Perot
modes of the chip. In the second case, on the contrary, tuning between the chip FP modes is
possible, and mode hops occur only on the EC modes. These mode hops can be suppressed by
varying the EC length together with the grating angle.

Fig. 10.21 shows the computed losses and allowed modes of the external cavity in the two cases
for one given grating angle. The angle is chosen so that the grating selected wavelength λG is
roughly mid-way between two chip FP modes. In this case the waves reflected by the grating and
the facet interfere destructively. For R 1 = 2%, the amplitude of these partial waves are of the



Fig. 10.20.  Fine-tuning behavior of an external
cavity QCL for two different values of the front-facet
reflectivity. With R 1 = 2% tuning is possible only on
EC modes that are very close to the FP modes of the
chip. With R 1 = 0.2% tuning is possible on all the
EC modes.

same order of magnitude so that the modes near λG have a larger threshold than the modes near
the next FP mode, for which rext is smaller but the partial waves are in phase. For R 1 = 0.2% the
contribution from the grating dominates, and consequently the modes which are the closest to λG
have the lowest threshold despite the destructive interferences.

10.3.2 Experiments

The first realization of an external cavity quantum cascade laser was reported by Luo et al. in
2001 [221]. A tuning range of 34 cm−1 was achieved in these initial experiments. Much broader
tunings were achieved by active regions based on bound-to-continuum transitions operating close
to room temperature. These active regions (p.190)

(p.191) exhibited both a better gain
margin and an inherently broader gain
spectrum enabling a tuning of 150
cm−1 at λ ≅ 10 μm using an active
region design with a gain full width at
half maximum equal to 297 cm−1

[222]. An important step was achieved
by the demonstration, by Maulini et al.
[223] in 2005, of an external cavity
device operated in a continuous wave
and tunable over more than 170 cm−1

on a Peltier cooler. Subsequent
progress in the performance levels of
devices based on single active regions
were the increase in the operation
temperature, extension to wavelength
≈ 8 −10 μm using buried
heterostructure waveguides [224,225]
and the increase in the output power
[226].
Fig. 10.22a shows the applied bias
voltage and continuous-wave output
power of a gain element, based on a
bound-to-continuum active region
operating at a wavelength close to 5
μm as a function of the injection
current [223]. The heat-sink
temperature is –30° C. With both
facets as cleaved, the continuous-
wave threshold current density J th
at this temperature was 1.73
kA/cm2, and the maximum
continuous-wave operating
temperature was 0° C. After
deposition of an Al2O3/Au (300
nm/100 nm) high-reflection coating
on the back facet, Jth decreased to
1.35 kA/cm2 at –30° C, and the



Fig. 10.21.  External cavity losses as a function of
the wavenumber for a given grating angle and two
different values of the front facet reflectivity. The
disks mark the allowed modes. The angle is chosen
so that the reflections from the facet and the grating
interfere destructively.

Fig. 10.22.  a) Bias voltage and continuous-wave
optical power of the gain element and the external
cavity laser as functions of the injection current at a
heat-sink temperature of – 30° C. b) Spectra taken at
the extreme tuning range of an external cavity laser,

maximum operating temperature
reached 35° C, with still more than
20 mW of output power at 25° C.
As AR coating, a quarter-wave
layer of Al2O3 on the front facet
was evaporated. The computed
(Fresnel) reflectivity is 1%. After
deposition, a threshold J th = 2.03
kA/cm2 at –30° C was measured. Using the value of αw = 5 cm−1, deduced from the threshold
current measurement before and after HR coating, we computed a residual reflectivity R AR =
3%.

The gain element was then inserted in an external cavity configuration based on a Littrow
arrangement. Fig. 10.22a shows an output power-versus-current characteristic of an ECQCL
tuned near the maximum of the gain curve. The addition of the grating feedback lowered the
threshold current density of the chip down to 1.26 kA/cm2 at –30° C. The ratio of this value to
that of the HR coated chip allows one to calculate the equivalent reflectivity of the external part
of the cavity REC = 36%.

By changing the grating orientation, the laser could be tuned over 174 cm−1 (0.46 μm) from 4.94
to 5.4 μm, i.e. over 9% of the center frequency. The side-mode suppression ration was larger than
25 dB over 169 cm−1 (see Fig. 10.22b, and the laser was single-mode with a SMSR ≥ 30 dB (the
noise level of the FTIR) over 142.5 cm−1 (0.37 μm) from 4.95 to 5.32 μm, i.e. over 7% of the
center frequency.

10.3.3 Dynamical properties of an external cavity

The spectrum of an external cavity quantum cascade laser, formed by a bound-to-continuum gain
chip operating at λ ≈ 9.5 μm in a Littrow configuration, was studied in pulsed operation. Some
resultant spectra, taken at 2 ns intervals with a 2 ns long gate, are shown in Fig. 10.23. They
clearly display the mode competition occurring at the beginning of the pulse. The Fabry–Perot
cavity modes lase first because of their shorter round-trip time, but then vanish when the grating-
selected mode, having a lower threshold gain, starts to lase. The linewidth of these spectra is
smaller than the resolution of our spectrometer (3.75 GHz), proving that the relatively large
timeaveraged linewidth is due to the thermal drift of the wavelength during the pulse. The inset is
a spectrum recorded using a gate covering the end of the pulse, from 12 ns to 50 ns. (p.192)

During this time interval the laser is
single-mode in the limit of our
spectrometer resolution (~30 dB).
These results show clearly the
effect of mode competition between
two well-separated spectral
frequencies inside the gain curve
and the homogeneous nature of the
intersubband broadening in these
bound-to-continuum structures. To
illustrate this point, the quantum
cascade laser rate equations were



displaying nevertheless an SMSR ≥ 25 dB. The
optical power was more than 5 mW over most of the
tuning range.

Fig. 10.23.  Time-resolved spectra of an external
cavity laser. The spectra are taken at 2 ns intervals
with a 2 ns long gate. Inset: logarithmic scale
spectrum of the end of the pulse (from 12 ns to 50
ns).

Fig. 10.24.  Simulated photon flux densities as
functions of time. The time origin corresponds to the
begining of the current pulse.

rewritten for two photon flux
densities S FP and S EC describing
the chip Fabry–Perot modes and the
external cavity modes, respectively.
To take into account the longer
round-trip time of the lat-nL ter, its
speed was multiplied by 1/ρ cav,
where  is the ratio of

the (optical) lengths of the two
cavities, L being the chip length, n
its refractive index, and l the
(p.193)

distance from its front facet to the
external grating. The resultant
equation is

(10.3.62)

(10.3.63)

(10.3.64)



(10.3.65)
where g FP and g EC are the values of the gain cross-section gc(ν) at its maximum and at the
grating-selected frequency ν EC, respectively. α FP and α EC are the total losses of the AR coated
chip and the external cavity. β, the fraction of the spontaneous emission emitted in the mode, is
assumed to be identical for both modes, for simplicity. The numerically computed electronic
populations and photon flux densities (per unit length, per period) are shown in Fig. 10.24 where
the experimentally observed behavior is reproduced. After a few picoseconds the population
inversion Δn reaches the value Jτ eff/q. The photon flux densities grow as eGvt where G = gcΔn −
α is the net modal gain and v = c/n the speed of light. Despite a higher net gain due to smaller
losses, S EC increases more slowly because of its ≈ 10 times smaller effective speed c/(ρ cav n).
As S FP increases, Δn decreases because of stimulated emission until it reaches the value α FP/g

FP. Then S FP is amplified no longer, and saturates, but S EC continues to grow because its net
gain is still positive. Doing this decreases further the population inversion, which becomes too
small to compensate the losses for S FP. The FP modes thus vanish, and the external cavity mode
continues to grow until the population inversion reaches the equilibrium value α EC/g EC.

(p.194) 10.3.4 Heterogeneous stacks

As predicted by eqn. 10.3.61, the part of the gain curve g(ν) over which an external cavity
quantum cascade laser can be tuned is given by the condition g(ν)/g max ≥ ξ, where g max is the
maximum gain and ξ is the ratio between the threshold gain of the EC–QCL and the threshold
gain of the AR coated chip. In a typical Littrow configuration, measured values of ξ between 0.65
and 0.8 are found, depending on the characteristics of the chip. In order to realize a more broadly
tunable EC-QCL, it is thus necessary to design a structure with gain variation of less than ~20%
over a larger wavelength range. A way to achieve this is to make a cascade containing dissimilar
stages emitting at different wavelengths.

A similar concept already been used in the field of optical communications; nearinfrared external
cavity diode lasers with a tuning range of 240 nm (17% of center wavelength) have been realized
using non-identical multiple quantum-wells [227]. QCLs, however, are more adapted to multi-
wavelength lasing than interband lasers, for two reasons. First, the cascaded geometry, in which
the current flows through the active regions arranged in series and not in parallel as in multiple-
quantum-well diode lasers, insures the same injection efficiency in all the active wells
independently of the number of active regions. Secondly, in opposition to interband lasers in
which the gain is always accompanied by absorption at higher frequencies, there is no
reabsorption between active regions emitting at different wavelengths. As a result, an active
region tuned to a specific transition frequency can be designed to be transparent over a wide
range around this frequency. By combining active regions with a gain peaking a different
frequencies, much larger tunings were then achieved.

This concept was first demonstrated at Bell Laboratories by Gmachl et al., who realized a two-
wavelength laser emitting simultaneously at 5.2 and 8 μm [228] and an ultra-broadband laser
[229]. These first devices exhibited relatively limited performances, especially when operated at
room temperature.

Significant progress was achieved by combining active regions based on bound-to-continuum
transitions. This active region architecture displays an intrinsically wide gain spectrum. By



Fig. 10.25.  Laser spectra, taken at the border of the
tuning range, for a device based on two active
regions designed at λ = 8.4 μm and λ ≈ 9.6 μm. a)
Pulsed operation. b) Continuous wave operation.
Reprinted, with permission, from [231]. Copyright
2008 IEEE.

Fig. 10.26.  Very broadband operation of a quantum
cascade laser based on a combination of five
different active regions combined in the same
waveguide [232]. a) Computed gain profiles of the
individual active regions close to the maximum
current. b) Left axis: spectra measured in pulsed
mode for various orientation of the grating,
demonstrating the very large total tuning range of
430 cm−1. Right axis: corresponding peak power.

combining two structures separated by a spacing corresponding approximately to their half-width,
a resultant gain characterized by a very small frequency dependence over a wide frequency range
could be obtained. As shown in Fig. 10.25, devices based on such a combination achieved a
tuning range of 250 cm−1 [230, 231] in pulsed, and 200 cm−1 [231] in continuous-wave
operation. By combining more stacks more widely spaced, an even wider gain curve could be
designed.

In [232] a structure based on a combination of five different active region stacks was used. To
prevent cross-reabsorption, a model that computed the gain over a wide frequency range was used
at the design phase. As shown in Fig. 10.26 a), the computed gain profile of the individual gain
regions were combined to provide a smooth gain profile that matched the expected wavelength
dependence of the waveguide losses.

The device was operated in an external cavity formed using a Littrow configuration. As shown in
Fig. 10.26b, a very wide tuning range of 430 cm−1 was achieved with a peak power larger than
0.5 W for most of the tuning range (p.195)

.
10.4 DFB arrays
The external-cavity QCLs
demonstrate very large tuning
characteristics, and are able to
exploit fully the broad-gain
bandwidth of QCLs and operate
with a narrow linewidth. They are
not, however, monolithic devices,
and therefore are in general more
bulky and fragile than DFB lasers.
In addition, the wavelength stability
depends crucially on the
mechanical stability of the device.
The gain chip is in general easier to
fabricate than a corresponding DFB
laser, though it requires the
deposition on its facet of a very
finely tuned anti-reflection coating
to bring the residual reflectivity
below 10−3.

One possibility of exploiting the
width of the gain curve of a QCL
using a DFB laser is to fabricate an
ensemble of devices at predefined
wavelengths. For a general purpose
spectrometer, those would be
equally spaced by the spacing
corresponding to the tuning of an



Fig. 10.27.  a) Schematic block diagram of a
spectrometer based on a DFB array. Reprinted with
permission from [234]. Copyright 2007, AIP. b)
Emitted spectrum of an array of 24 a DFB laser,
spanning a frequency range of 220 cm−1. Upper
inset: scanning electron micrograph of the buried
heterostructure grating. Lower inset: spectrum of a
single device, shown in a log scale, displaying a high
side-mode suppression ratio. Reprinted, with
permission, from [233], copyright 2009 IEEE.

individual device; for a dedicated instrument the wavelengths (p.196)

could be selected to discriminate a
specific chemical against an ensemble
of interfering substances.

10.4.1 Linear array

Fig. 10.27 shows the spectra of a
linear array of such DFB lasers,
fabricated side by side on a single
chip [233]. The epitaxial layer is an
heterogeneous stack covering the
wavelength range 8–10 μm, used
originally for external cavity
devices as displayed in Fig. 10.25.
The devices are spaced by a
physical distance of 75 μm, so that
the full chip is only 5 mm long.

Although the back facet of the
device was obtained by dry etching,
the accuracy of the process is not
high enough, so that the phase of the back facet reflectivity could be controlled to a constant
value. For this reason, in order to keep the necessary high single mode yield, the devices used an
extremely strong coupling constant. To this end, a strong buried etched grating with an etch depth
of 500 nm was used, providing a very strong coupling product κL ≈ 11. The disadvantage of such
an approach is that a large device-to-device fluctuation of the slope efficiency was observed.
Further work will involve beam-combining as well as other ways to control the phase problem.
Such devices hold great promise for integrated spectrometers with dedicated purposes.

10.4.2 Array of DFB ring lasers

An elegant way to solve the problem of the back facet phase of a DFB QCL is to fold the latter on
itself and fabricate a DFB ring laser. The light extraction is then achieved through the surface or
through the substrate by a second-order grating. The optical-loss component of the grating also
discriminates between the two modes on each side of the stop band. In addition, the bending
losses on the ring provide a strong (p.197)

mode-selection mechanism. Research
in this direction has proceeded very
actively in both mid-infrared [235] and
terahertz [236] frequency regions.
Fig. 10.28 shows the performance
of a two-dimensional 16-element
QCL array based on ring-cavity
surface-emitting lasers. As shown
in Fig. 10.28a, the entire array
occupies an area 4 × 3 mm2 in size.
The inset in the same figure shows
dry-etched second-order gratings to
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Fig. 10.28.  a) Scanning electron microscopy picture
of a two-dimensional sixteen-element QCL array
based on ring-cavity surface-emitting lasers. The
inset shows a waveguide-section illustrating the
etched second-order gratings to allow for vertical
light emission. b) Spectra of sixteen-surface emitting
DFB lasers of the two-dimensional array. Individual
wavelengths are separated by 12.3 cm−1 and cover
an entire spectral range of 180 cm−1. The inset
shows a single-mode spectrum at 1261 cm−1 with a
side mode suppression ratio of 30 dB. c) Peak optical
power and voltage-versus-current density
characteristics for eight individual lasers, located at
the low-frequency side (frequencies shown as inset).
d) Measured (left half) and simulated (right half)
surface emission far-field pattern of a ring laser.
Reprinted with permission from [237] and [238].
Copyright 2010, 2011, AIP.

allow for vertical light emission,
and provides the wavelength
control.

As shown in Fig. 10.28b, each
element of the two-dimensional
array operates in single mode,
providing a comb of individual
wavelengths separated by 12.3
cm−1 and covering an entire
spectral range of 180 cm−1 from
1140 to 1320cm−1. Because the
(p.198) boundary conditions are
now completely defined by the
periodicity of the ring, the device
not only offers a theoretical 100%
single-mode yield, but also provides
optical powers that vary only
through the wavelength dependence
of the material gain. Indeed, as
shown in Fig. 10.28c, the light-
versus-current characteristics of
devices located side by side
spectrally are now differing by less
than 50%, the overall power
dependence originating from the
position of the single-mode
emission compared to the gain
curve.

One particularity of ring-cavity
surface-emitting lasers is the shape
of the far-field, illustrated in Fig.
10.28d. As predicted by a
theoretical model, the latter exhibits a set of concentric rings with a low divergence. The
polarization is azimuthal. As the beam is already strongly collimated, one could build a simple
sensing system by using a concomitant array of detectors facing that of the lasers. The circular
beam, however, would require a phase plate to be converted into a Gaussian beam shape.
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Quantum cascade laser performances are measured after a relatively long sequence of steps,
starting from the design, epitaxial growth, process, mounting and finally measurements.
Ideally, one should find ways to characterize each step separately in order to shorten the
optimization cycle. For quantum cascade lasers, this proved to be difficult. Obviously, the



Fig. 11.1.  Set-up for the electrical and optical
characterization as a function of temperature. The
samples are mounted on a continuous He-flow
cryostat that can be operated between 5 and 325K. a)
LIV measurements in pulsed operation. The average
power of the emitted light is measured with a
thermopile detector head. b) Schematic drawing of a

usual proxy such as optical inspection, X-ray, SIMS and TEM characterization of the
epitaxial layers, SEM characterization of the ridges for the process provide valuable
informations on these respective steps. It has, however, been difficult to provide more
direct proxies for the performance of the epitaxial layers, similar to the broad area device
fabrications performed for interband lasers.

As a result, this lack of reliable proxies has stressed the need for careful measurement of
the various spectral and electrical characteristics of the final laser devices. In this chapter
we will review these.

11.1 Basic electrical and optical characterization
The most important and basic characterization is the measurement of the voltage and light-
current characteristics as a function of temperature. For most devices it is important to be
able to perform this characterization in pulsed mode using relatively short (50–100 ns)
electrical pulses with a low (1-2%) duty cycle to remove the effects of self-heating from the
characteristics. An example of such a measurement set-up is displayed in Fig. 11.1.

Measurement of the optical power. In this example the power is measured using a
calibrated thermopile power meter, with the light collected from the device using a high
(NA = 0.8) broadband antireffection coated aspheric lens. By comparing the power
collected using this arrangement with that measured by placing the power meter directly
facing the laser, an overall collection efficiency of 70–80% is deduced. It corresponds to
the losses from the finite reflectivity of the lenses and optical windows (about 5% each), as
well as the remaining clipping of the optical field. Thermopile detectors have a response
time of about 1 sec, and as such, the peak power is deduced from the average power by
dividing by the electrical duty cycle. The latter must be kept large enough (typically 1%) to
keep a good signal-over-noise ratio on the power meter. The use of a fast detector (for
example, a room-temperature MCT) enables direct measurement of the instantaneous
optical power, but at the cost of a more (p.200)

difficult optical alignment and
an additional calibration
procedure, since the optical
response is strongly wavelength
dependent.
Current and voltage. In the
set-up shown in Fig. 11.1 the
current is fed from a pulse
generator adapted to a 50 Ω
source, with the current
measurement performed
using a current probe and the
voltage measured directly
(via another 50 Ω cable and a
50 Ω resistor) onto the high-
impedance input of an



set-up used for electroluminescence measurements.
The spectrum is measured with a Fourier-transform
spectrometer and 77 K cooled detectors using lock-in
signal filtering.

Fig. 11.2.  Schematic drawing of the electrical circuit
for a high duty cycle characterization.

oscilloscope. This
arrangement has the
advantage of providing, after
a 5–10 ns transient due to the
imperfect impedance-
matching, a reasonably flat
and clean electrical pulse when using reasonably short cables (1.5 m). A better electrical
pulse can be achieved by matching the dynamical resistance of the QCL to 50 Ω (by adding
a 42–45 Ω resistor in series) directly in the cryostat. However, it also has the major
disadvantage of increasing locally the electrical dissipation. Using commercially available
50 Ω pulse generators [239, 240], maximum currents of 1–2 A at maximum duty cycles of
95–40% and 5–7 A with ≤ 5 × 10−4 duty cycles can be achieved.

The major disadvantage of a 50 Ω system is the large instantaneous electrical dissipation
required for the operation (  50W at 1 A), preventing the use of such systems for high-
duty-cycle measurements. For high-current, large-duty-cycle measurements, a better option
is to switch the current close to the device using a power MOSFET. Such circuits can be
home-built or can be found commercially [241], and an example is shown schematically in
Fig. 11.2. In this circuit the current can again be measured (p.201)

using a current probe, taking
into account that the latter acts
as a transformer with a high-
pass frequency or by measuring
the average current on the DC
current source and dividing by
the duty cycle. Accurate
measurements of the voltage
bias are more difficult, and are
best achieved by measuring the
difference between the potential
of the two electrodes of the
laser using a high impedance,
DC coupled voltage probe.
Temperature. In Fig. 11.1 the
device is mounted in a cryostat, enabling the temperature to be varied between 5 and 325
K, and the temperature measured with an Si temperature sensor. This, however, restricts the
implementation of a low-impedance line feeding the laser. When measurements on a more
restricted temperature range are to be performed, a laser holder using a Peltier cooler is
usually preferred, as it is for “real-world” applications. In such holders the temperature is
best measured using a thermistor element because it provides a very large temperature
coefficient enabling a good temperature stabilization.

11.1.1 Continuous wave measurements

Continuous wave measurements are conducted in a very similar way as the pulsed ones. By
driving the device in continuous wave and using a four-probe arrangement, much better



accuracies can be achieved for the current and voltages (δI  100μA, δV  1mV)
compared to the pulsed measurements. The problem, however, is that in most cases the
temperature is not well defined, because self-heating effects are now very important.

In fact, comparing continuous-wave characteristics from the literature must be done with
extreme care. In the older literature the temperature value was usually that of the copper
block on which the device was mounted, as it is the value that is the most relevant for the
end-user. However, recent reports use thermistors mounted very close to the device that,
depending on the mounting technique, report a temperature close to the active-region
temperature. This will, of course, yfield much better-looking curves! As these two different
temperatures can differ by as much as 30–50 K, care must be taken when comparing data.
Of course, the problem is most important in high-power and high-dissipation devices.

(p.202) 11.1.2 Wallplug efficiency

A simple look at the error propagation shows that one of the most important experimental
parameter for a quantum cascade laser, its wallplug efficiency, is very difficult to measure
accurately. NIST quotes an accuracy of 1.5–5% for calibrated optical detectors in the mid-
infrared. In pulsed mode, current and voltage have easily an error of 3–5%, while the
electrical pulse length will suffer from a similar error level. As a result, a very careful
measurement in a continuous wave could reach an error of 5%, while pulsed measurements
are limited to 10%. For this reason, measurements that are based on calorimetry, as shown
later in this text, are especially interesting because they do not rely on the external
measurement of the optical power.

11.2 Electroluminescence and spectral measurements
One important characterization tool is the measurement of the electroluminescence. In fact,
in devices with a good population inversion the shape of the electroluminescence spectrum
is very close to the true gain profile, and therefore enables checking of the gain bandwidth
of an active region. For this measurement to work, it is, however, important to use a
geometry where a multi-pass through the active region is avoided, to prevent optical gain to
distort the true gain profile. Light extraction through a 45-degree wedge is a common
approach. When buried heterostructure devices are processed, good results are also
achieved by extracting the light through a side of the device.

At any rate the intensity of the luminescence is very low because of the low collection
efficiency (typically below 1%) and the low radiative efficiency of the transitions (about
10−6). Assuming an average dissipation of 1 W on the sample (to prevent heating), the
expected average power on the detector amounts to 1–10nW. This is to be compared to the
emitted power by the simple blackbody radiation of the sample that amounts, at room
temperature, to tens of μW. For this reason, a good signal-over-noise requires a small active
area (200 × 200 μm), a 77 K cooled detector such as a mercury–cadmium–telluride with an
NEP of a few picowatts, and an integration time of hundreds of milliseconds. For these
reasons, a grating spectrometer that will spread this electroluminescence intensity spectrally
does not allow acquisition of good electroluminescence spectra. Conversely, the Fourier



Transform InfraRed spectrometer or FTIR, operating in step-scan mode, is well adapted to
this task.

A schematic diagram of the experimental measurement is shown in Fig. 11.1b. The
electrical injected current is modulated at 10–100k Hz and the signal detected
synchronously by a lock-in amplifier. The moving mirror of the FTIR is stepped with a
delay corresponding to a few integration-time constants (100 ms to 10 s) of the lock-in
amplifier. In this manner, the very strong blackbody background is eliminated; the necessity
not to overload the input of the lock-in limits in practice the stepping rate of the FTIR. High
signal-over-noise spectra can be acquired within 10–30 min with a resolution of 16 cm−1.

In contrast, measurements of the spectra of lasing devices do not suffer from signal-over-
noise limitations, because of the large power delivered by quantum cascade lasers. A FTIR
operated in rapid scan, with a room temperature thermal detector (a DTGS for example)
usually provide the best combination of spectral accuracy (guaranteed (p.203) by the
internal reference of the He-Ne laser of the FTIR), resolution (down to about 0.1 cm−1 for
high-resolution models), linearity, and measurement speed. While they typically require
longer measurements, grating spectrometers provide a better noise floor off the peak (  45
dB, in contrast to 30 dB for an FTIR-based measurement).

11.3 Far-field
Beside the power and the spectrum, the far-field of the devices is another characteristic that
affects the use of QCLs in applications. Because of their low gain and their long operation
wavelength, quantum cascade lasers require very strongly confined optical waveguides to
minimize the thermal dissipation during operation. As a result, the optical beam exiting the
facet exhibits a very large divergence angle, at least along the growth direction (x). The
latter can be estimated by assuming an intensity with Gaussian dependence

(11.3.1)
Then the asymptotic divergence half-angle Θx at e −2 is

(11.3.2)
where wx is the Gaussian broadening at the facet. Taking a typical QCL operating at λ = 9
μm, fitting the computed mode intensity in the growth direction yfields wx = 2.2 μm and
therefore θx = 53°. This is a large angle, corresponding to a numerical aperture of NA = sin
θx = 0.82 in the growth direction. Because of these large angles, measurements using two-
dimensional imagers should be performed with the detector very close to the laser, and the
data correctly converted to angle using the tangent that naturally arises. For this reason, the
best results are usually obtained by scanning a pyroelectric detector on a two-axis
goniometer in which the laser to be measured is placed in the center.



Fig. 11.3.  a) Photograph of a two-axis goniometer
far-field measurement set-up. The te?on window
around the cryostat is adapted for measurements in
the terahertz and is removed for room temperature
mid-infrared devices. b) Measured far-field of a λ =
8.4 μm buried heterostructure quantum cascade laser.

Fig. 11.3 shows an example of a far-field measurement set-up based on a two-axis
goniometer, along with the measurement of a buried heterostructure quantum cascade laser
operating at λ = 8.4 μm. The FWHM of the far-field in the growth direction is about 65°,
corresponding to , close to our estimate above. The divergence in the

plane of the layer is smaller, as the width of this waveguide is 8 μm, much wider than its
thickness in the growth direction. In general, it is found, especially for buried-
heterostructure devices, that the measured far-fields correspond very well to the computed
ones.

11.4 Active-region temperature

11.4.1 Average temperature

As discussed in Chapter 6, the large electrical dissipation in a quantum cascade laser heats
the active region, changing its temperature. This effect is most pronounced for (p.204)

long pulses and continuous
wave operation. It is therefore
important to measure the
temperature of the active region
experimentally.
The average active-region
temperature can be measured
by comparing the values in
low-duty-cycle, pulsed mode
and in continuous wave
operation of a temperature-
dependent parameter, such as
the threshold current density
or the emission wavelength
of a single-mode laser. In this
approach, one takes
advantage of the fact that for
short enough pulses, the active region lattice temperature remains the same as that of the
holder.

The starting point is a measurement of the threshold current as a function of temperature
using short pulses to obtain  (Tsub). The laser is then measured in continuous wave at the
temperature of interest Tsub, yfielding a threshold current  (Tsub. The thermal resistance
is then extracted, using eqn. 6.6.37 and assuming that in pulsed operation, Tact = Tsub,
yfielding

(11.4.3)



Fig. 11.4.  Threshold current density as a function of
temperature in pulsed mode (lower curve) and in
continuous wave (upper curve). The temperature
difference between the two curves yfields the
thermal conductance.

where T  is the temperature at which the pulsed threshold current is equal to the one
measured in a continuous wave. The latter temperature is obviously an weighted average of
the temperatures in the active region. The stronger-than-linear dependence of the threshold
current in temperature, combined with the shape of the optical mode that usually peaks in
the center of the active region, means that T  is actually close to the value computed
for the center of the active region.

If the threshold characteristic can be fitted using the usual exponential form 
 then the thermal resistance becomes

(p.205)

(11.4.4)
Obviously the speciffic
thermal conductance can be
obtained instead of the
thermal resistance by
substituting current by
current densities and Rth by
1/Gth in the above equations.
An illustration of the
technique is shown in Fig.
11.4, where a very large
thermal conductance of Gth =
1840W K−1 cm−2 is deduced
for these narrow ridge buried
heterostructure devices.

As discussed in Section 10.2.4, in devices with single-frequency emission, a similar
procedure can be performed using the dependence of the emission frequency as a function
of temperature ν(T), first measured in pulsed mode. A completely analogous derivation can
then be performed as above, substituting the function T(Ith) by T(ν), yfielding eqn. 10.2.40.
In general, the thermal resistance measured using this second technique is significantly
lower than that measured by the threshold current dependence. This difference completely
stems from the temperature sensed by the two phenomena, as the emission frequency
depends on the weighted average temperature by the mode intensity (that also includes the
cladding regions) whereas, as discussed above, the threshold current density is mainly
dependent on the temperature of the center of the active region. The thermal resistance
measured using the threshold current data is therefore relevant to describe the optical power
behavior, whereas the other one will describe the spectral characteristics, such as the mode
maps, as a function of temperature and current.

11.4.2 Spatially resolved measurements



Fig. 11.5.  a) Position of the photoluminescence peak
of a GaAs/AlGaAs quantum cascade laser operating
in the terahertz as a function of lattice temperature.
The solid line is a fit using Varshin’s law. b) Low-
temperature photoluminescence of the facet of a
strain-compensated GaxIn1−xAs/AlxIn1−xAs
quantum cascade laser as a function of dissipated
power. The peaks shown correspond to the
photoluminescence from the injection/relaxation
region. The dashed line shows schematically the
redshift of the main features due to lattice heating,
whereas the solid lines indicate the increase of the
photoluminescence tail due to an increase in the
electron temperature. Reprinted with permission
from [244]. Copyright 2007, AIP.

The position and shape of the interband photoluminescence depends not only on the
heterostructure and applied electric field, but also strongly on the temperature. As a result,
in a microphotoluminescence experiment the local lattice and electron temperature can be
determined separately as a function of temperature and applied field. Using a similar set-up,
a Raman microprobe is able to measure the non-equilibrium (p.206)

optical phonon distribution.
These techniques were applied
successfully in various quantum
cascade structures, and yfielded
spatially resolved data on the
lattice [242], electron [243,
244], and phonon temperatures
[245].
The variation of the
photoluminescence peak
energy with lattice
temperature is to a very good
approximation attributed to
the change of the energy gap
with temperature. As shown
in Fig. 11.5a, the latter
change is then well fitted by
Varshni’s semi-empirical law
[246]:

(11.4.5)
The two parameters
describing the temperature
dependence (α and β) are
then fitted by a measurement
of the photoluminescence as
a function of temperature at fixed dissipated power. In a further experiment, measurement
of the photoluminescence peak position as a function of electrical dissipation then yfields
the local temperature and allows measurement of the thermal resistance. Using this tool, a
systematic study of the thermal properties of quantum cascade lasers was carried over
[123]. The key result was a validation of the theoretical thermal models used, and
confirmed previous results obtained by a sub-gap interferometric technique [247] that the
cross-layer thermal conductivity k  was about an order of magnitude lower than the in-
plane one k�. This (p.207) ratio, however, was found to depend on material and system,
being extrapolated to about a factor of 3 for the Ga0.47In0.53As/Al0.48In0.52As system at
room temperature.



Another interesting use of the temperature measurements is the possibility of improving the
measurement of the wallplug efficiency of the devices in the regime of large duty-cycle. In
fact, rewriting the equation relating the active-region temperature to that of the substrate
6.6.37, but taking explicitly into account the optical power generated Popt [248] and
inverting the equation, yfields:

(11.4.6)
The thermal resistance can be easily fitted from the sub-threshold measurement of the
active-region lattice temperature TL versus electrical power UI as the luminescence
efficiency is effectively negligible. The knowledge of the thermal resistance then enables
the computation of the optical power directly. The optical power Popt derived in this
manner corresponds to the total optical power extracted from the device by all facets. The
wallplug efficiency of QCL devices was measured in the mid-infrared [244] and terahertz
spectral regions [249] using this technique.

In fact, a very attractive aspect of this technique is that it does not require an accurate
temperature measurement of the active region, as the measurement of a quantity
proportional to the temperature increase in the active region ΔT′ = α(TL − Tsub) is still
sufficient to measure the correct value of the optical power. In the latter case, the fit of the
thermal resistance below threshold yfields only the scaled value Rth/α.

The photoluminescence measurements are performed in the low excitation limit in a n-
doped material. Because of the heavy mass of the holes and the n-doping, the shape of the
photoluminescence emission peak (E) is dominated by the electron distribution, and can
be written as

(11.4.7)
where j (E) is the joint density of state and Te is the electron temperature. The joint
density of state is constant for two-dimensional systems and, as a result, the slope of the
high-energy tail of the luminescence should yfield directly the electron temperature.

The effect of electron heating is shown in Fig. 11.5 where the high energy tail of the
photoluminescence emission clearly increases as a function of electrical dissipation. This
property has been used to estimate the electron temperature during operation for GaAs-
based [243] and InP-based QCLs [244] in the mid-infrared, as well as in the terahertz [250].
Extracted from these measurements were the electron-lattice coupling constant α = (Te
−TL)/J for various materials and active regions dopings. An example of such a
measurement performed on a strain-compensated GaxIn1−xAs/AlxIn1−xAs QCL is shown in
Fig. 11.6. A thermal resistance of Rth = 11.5K/W and an electron– lattice coupling value α =
34.8K cm2/kA were deduced from these measurements. A wallplug efficiency of about 5%
was extracted from the lattice temperature measurement as a function of power.



Fig. 11.6.  a) Electron (left axis) and lattice (right
axis) temperatures measured as a function of
electrical dissipation for a strain-compensated
GaxIn1−xAs/AlxIn1−xAs device at 60 K. A thermal
resistance of Rth = 11.5 K/W and an electron–lattice
coupling value α = 34.8 K cm2/kA were deduced
from these measurements [244]. Inset: temperature
difference between the electron and lattice as a
function of injected current. b) The wallplug
efficiency deduced from the lattice temperature
measurement using eqn. 11.4.6. c) Electron
temperature as a function of injected power in a
lasing (solid squares) and non-lasing (solid triangles)
terahertz QCL [251]. The high internal efficiency of
the device prevents a further increase of the electron
temperature above threshold. Reprinted with
permission from [244] and [251]. Copyright 2007,
2009, AIP.

Measurements of the electron temperature as a function of electrical power have also
shown the differential cooling effect of the optical emission, as the photon emission (p.208)

efficiently removes heat from
the active region. An approach
similar to that shown in eqn.
11.4.6 can be followed, but
substituting the lattice by the
electron temperature. An
example of such a differential
cooling is shown in Fig. 11.6c
for a terahertz QCL operating at
1.8 THz. One limitation of
these measurements is the fact
that they are most easily
interpreted by assuming a
single electron temperature
describing all the subbands
simultaneously. This situation is
most likely oversimplified, and
more realistic models will
yfield a small part of the
electrons with a non-thermal
distribution.
11.5 Gain and loss
measurements
What are waveguide losses
after all?. The gain and loss
measurements are very
important tools to
characterize and improve
active regions. In particular,
the value of the waveguide
losses, because it limits both
the threshold current density and the slope efficiency, is a very important parameter.
However, because these two quantities relate to potentially a different definition of the
waveguide losses, a certain confusion exists in the literature.

The waveguide loss αtot appears in the rate equations (eqn. 7.4.4) and in the expression for
the threshold current Jth (eqn. 7.4.7). The sum of all optical loss mechanisms, to the
exception of resonant losses of the laser transition, appears in the slope efficiency dP/dI
(eqn. 7.4.9). As shown schematically in Fig. 11.7, the total waveguide loss can be written
as:

(11.5.8)
where Γ is the overlap factor of the optical mode with the active region.



Fig. 11.7.  Schematic description of the various
contributions to the waveguide losses.

(p.209)

The cladding losses mostly
originate from free carrier
absorption αfc, usually modeled
by the Drude formula 6.3.35.
The resonant absorption 

 arises from
electrons thermally excited to
the lower state of the laser
transition. In principle, this loss
affects only the threshold
current density and not the
slope efficiency, and is already taken into account in the rate equation model by the term 

 in eqn. 7.4.7. The non-resonant losses of the active region arise from all the other
transitions in the active region. In the early work they were estimated using a Drude formula,
because the injection region was treated as a having a three-dimensional character.
It was then realized that such a three-dimensional approximation was too crude, as a
quantization effect should appear, the absorption in the active being closer to that of a
superlattice. As a result, a much better approach is to simply compute the total loss as the
sum of intersubband transition comprising all the possible combination of subbands of the
active region and injector. Note that holistic transport models that compute all the electron
distribution and gain in the active region include the loss naturally in the computation of the
active region gain.

The scattering losses αscatt originate from the waveguide sidewall roughness. Such
roughness has typically a scale much smaller than the wavelength. D. Marcuse presented a
perturbative treatment of such mode conversion loss [252] for a slab dielectric waveguide.
In many ways, his treatment is conceptually similar to the effect of the interface roughness
to the electron lifetime in a quantum well. He derived a full expression where the loss has
the following behavior:

(11.5.9)
where a is the amplitude of the roughness scattering, λ the wavelength, and Δn 2 the step of
dielectric constant responsible for the waveguide confinement. Compared to interband
devices operating in the near-infrared, quantum cascade lasers using etched ridges have
both a much longer wavelength but at the same time a much larger value of Δn 2, making
them roughly as sensitive to sidewall roughness, especially in the shorter wavelength range
3–5 μm. The effect of deliberate sidewall roughness was tested experimentally by Toor et
al.[253], verifying the above overall conclusions.

Experimentally, it is observed that scattering loss affects more strongly the slope efficiency
rather than the threshold current. Such a behavior was for example observed when
considering dry-etched waveguides in devices operating at short wavelength. In fact, for a



narrow waveguide with dry-etched vertical sidewalls covered by a reffective (p.210)
metallic coating, the mode coupling to continuum modes is extremely limited, as most
scattering will then couple the mode to a counter-propagating mode. As a result, the
sidewall roughness acts basically as a distributed reffector, and should rather be seen as a
reduction of the mirror loss rather than an increase of the waveguide loss.

11.5.1 Length dependence

The threshold current density and slope efficiency can be measured as a function of the
device length by fabricating laser devices with a varying cavity length. Assuming a simple
rate equation approach where the net gain is a linear function of current and rewriting eqn.
7.4.7, writing the optical losses explicitly as

(11.5.10)
The above equation is usually rewritten in terms of a transparency current 

 and a differential gain coefficient g′Γ:

(11.5.11)
As a result, a plot of the threshold current density as a function of device length allows the
determination of the gain coefficient and waveguide losses if the transparency current can
be neglected. A more direct measurement of the waveguide loss can be achieved by
measuring the inverse quantum efficiency  as a function of

cavity length L:

(11.5.12)
where R 1 and R 2 are the front and back facet reffection coefficients respectively, and ηtr =
τef f/(τef f + τ 2) the (internal) efficiency of the transition.

A weakness of these techniques is the necessity of measuring precisely the ridge width and
the slope efficiency for devices that can have variations in their geometry or optical far-
field originating from their fabrication and mounting. One possibility for alleviating such
variations is to measure the threshold current density and slope efficiency of the same
device before and after a back facet coating, i.e. with R 2 taking two well-defined values. In
this way, much of the uncertainty in the device parameters are ratioed away, since the
reffection coefficient of a metallic back-facet coating is relatively well known.

11.5.2 Hakki–Paoli

Threshold current density and slope efficiency measurements yfield the waveguide loss
(and therefore the gain) at the laser frequency only. A measurement of the gain as a
function of photon energy allows a much more detailed understanding of the processes in



Fig. 11.8.  a) Gain as a function of photon energy for
various injected currents, for a 1.3 mm long device
based on a vertical transition. b) Solid disks: peak
gain as a function of current. αm are the calculated
mirror losses. The actual threshold current density is
indicated by a filled square. Reprinted with
permission from [255]. Copyright 1995, AIP.

the active region. One of the most natural measurement of the sub-threshold gain is
provided by the Hakki and Paoli technique, first demonstrated in semiconductor lasers
[254]. In this technique the contrast of the Fabry–Perot optical fringes formed (p.211)

by the cavity itself is measured
as a function of the injected
current. As discussed in
Chapter 10, the Airy function
characterizing the contrast of
the Fabry–Perot fringes (eqn.
10.1.8) depends on the quantity
b(ν) = R exp(−(αw − g(ν))L).
One notes that, writing the
transmission I(φ) as a function
of the phase φ = 4πnef fL/λ, we
have the result

(11.5.13)
i.e. b is the ratio of the first Fourier component of the fringe spectrum to the average (DC)
value [255,256]. This “Fourier variant” of the Hakki–Paoli technique is especially
convenient since the Fourier transform of the spectrum is the interferogram itself! As a
result, a spectrum of the gain can be obtained by performing the ratio of the Fourier
transform of the interferogram around the time delay corresponding to the roundtrip time
and the one around the zero path difference. This technique also allows the measurement of
the group index dispersion, with, however, insufficient sensitivity for typical QCL
devices[257]. The gain is then simply retrieved as

(11.5.14)
An example of such a measurement, performed at low temperature on a device based on a
vertical transition, is shown in Fig. 11.8a. The peak gain, extracted from these
measurements, is then plotted as a function of injected current in Fig. 11.8b. The waveguide
losses αw = 12 cm−1 can be either extrapolated from the baseline in Fig. 11.8a or from J = 0
in Fig. 11.8b.

The key limitation of the Hakki–Paoli technique is the assumption of the strict single
monomodicity of the waveguide. In fact, a second transverse mode, never reaching



threshold, will significantly perturb the measurement, as the emission from this mode,
modulated by a different effective refractive index, will interfere with the fringes (p.212)
generated by the fundamental mode. To minimize this effect, Hakki–Paoli measurements
should be performed with relatively low numerical aperture optics, in order to collect
preferentially the light coming from the fundamental mode. An underestimate of the gain
due to transverse modes appears clearly in a plot of the peak gain as a function of injected
current (such as in Fig. 11.8b), because the extrapolated threshold current, given by the
intersection between the loss line (gain = mirror losses) and the extrapolated gain (dashed
line in Fig. 11.8b) would be higher than the true threshold (solid square in Fig. 11.8b).
Another limitation is the fact that pulsed measurements are very difficult because thermal
drifts during the pulses “wash out” the Fabry–Perot fringes. As a result, only extremely
short pulses can be used, considerably reducing the optical signal that has to be acquired
with a high spectral resolution.

11.5.3 Single pass gain measurements

Another limitation of the Hakki–Paoli technique is the fact that the gain can be measured
only in a relatively narrow range around the laser frequency. This limitation can be
overcome by coupling an external light source in the laser waveguide and then measuring
the single pass gain. Two possible techniques use either a single-frequency device (possibly
tunable) or a broadband source.

When a single mode source is used, such as a gas laser (3.39 μm He-Ne) [258] or a DFB
QCL [259], the gain is still measured using the contrast of the fringes of the Fabry–Perot
resonator. The fringes can either be scanned by a thermal chirp of the QCL DFB or of the
device under test. This technique enables accurate measurement of the losses in both TE
and TM at a fixed frequency. The use of a broadly tunable QCL as the source should in
principle enable the use of this technique over a wide frequency range.

By coupling a broadband light such as a blackbody source into the waveguide, a direct
spectrum of the transmission can be achieved [260]. As shown in Fig. 11.9, this spectrum
clearly shows the evolution of the gain and absorption in the device as the carriers are
redistributed inside the active region by the applied field. In particular, the dips at high
energy, marked by arrows, correspond to the absorption transitions between the ground
states of the active region and excited states in the two-phonon active region. The latter
disappear as the carriers are transferred out of the active region into the injector states.

In contrast to the previous techniques, a direct quantitative assessment of the gain from the
transmission is difficult, but the transmission can be written as

(11.5.15)
where c is the coupling efficiency in the waveguide. The latter exhibits usually a slow
wavelength dependence, and must be determined using a separate measurement. To
improve the signal-over-noise and enable measurements in narrow waveguides, the
broadband emission from synchrotron has also been used instead of the blackbody source.



Fig. 11.9.  Broadband measurement of the
waveguide transmission of a QCL operating at 7.4
μm as a function of injected current, measured at low
temperature. Reprinted with permission from [260].
Copyright 2006, AIP.

Finally, using as a source the pulses generated by a non-linear conversion of ultrashort
pulses from a femtosecond laser, the advantages of both techniques can be combined, as the
source is both broadband and coherent. Using this approach, Parz et (p.213)

al. [261] have measured the
gain and the dispersion of a
quantum cascade laser. Such
measurements, performed on a
two-phonon QCL operating at λ
≈ 12 μm, are shown in Fig.
11.10. To unravel the refractive
index from the measurement of
the transmitted electric pulse,
an iterative fixed-point
algorithm was used to find the
real and imaginary part of the
refractive index n and k that
will satisfy the equation for the
transmission of the optical
pulse, given by

(11.5.16)
where k 0 = 2π/λ. As shown in Fig. 11.10, the gain introduces a strong dispersion around the
laser frequency.

Single-pass measurements of the gain using ultrafast lasers have been widely used to probe
the gain in terahertz QCL [262], as at the same time the generation of terahertz using
photoconductive antenna is in general easier than in the mid-infrared, and as the other
techniques based on electroluminescence are plagued by sensitivity issues and the difficulty
to discriminate between the intersubband electroluminescence and the thermal blackbody
emission.

11.5.4 Multi-section

A variant of the single-pass gain measurement is a technique where the laser is separated
into multiple sections, and the electroluminescence from a section in the back is amplified
by passing it through a section in front. This technique, first introduced for interband
devices, was used for gain [263] and waveguide loss [264] measurements. When using a
two-section device, this technique naturally yfields the change in gain Δg; if the waveguide
loss at zero current is known and has little wavelength dependence, the resultant data will
yfield the absolute gain. When applied at room temperature this (p.214)



Fig. 11.10.  a) Broadband measurement of the real
and imaginary part of the transmission of a QCL
operating at 12 μm as a function of injected current,
measured at low temperature. b) Real and imaginary
part of the effective index and of the group index as a
function of frequency. Displayed are full (100%) bias
(squares), 80% (circles), 40% (triangles up) and 0%
(triangles down) [261].

technique no longer works, as
the device suffers from strong
resonant reabsorption losses
from the active region when not
biased. For this reason, as
shown schematically in the
inset of Fig. 11.11a, a three-
section device is preferable.
The light-bulb (A) and
amplifier (B) sections are of
equal length (typically L = 375–
700 μm) while the third section,
in the back of section A, is used
as an “absorber” in order to
remove any feedback from the
back facet. During the
measurements the device is
never turned off completely,
and is always operated with a
baseline current Jbl that flattens
the band structure enough to
remove most of the reabsorption, and therefore yfields a flat baseline. Assuming the two sections
A and B are symmetric, the absorption αbl at this injected current can be obtained from the
measurement of the luminescence upon injection of a small probe current Jp(assumed not to create
any significant gain) as:

(11.5.17)
where we have used the notation  as the luminescence signal obtained with section A

biased with a current Jbl, and section B biased with current Jp.

Once this baseline αbl(λ) is obtained, the device is measured at the final test current Jp, and
the gain is

(p.215)



Fig. 11.11.  (a) Modal gain as a function of injected
current between 0.3 and 6.8 kA cm−2 at T = 80 K.
Inset: sample geometry. (b) The same measurements,
taken between 1.1 and 5.6 kA cm−2 at 274 K. The
baseline absorption measurements are shown as
dashed lines. (c) Comparison between gain (dashed)
and electroluminescence (solid lines) spectra at the
same bias at 274 K. (d) Peak values of the gain as a
function of injected current and for temperatures
between 80 and 322 K. Dashed lines represent linear
fits that yfield the gain coefficient and waveguide
losses that are shown in graphs (d) and (e) as a
function of temperature (dots). Squares represent the
corresponding values obtained by 1/L-
measurements. The dashed line in (e) shows an
exponential fit, and the dotted line the expected
dependence on temperature assuming that optical
phonon scattering is the only non-radiative channel.
The device is described in Appendix A.3.4.
Reprinted with permission from [267]. Copyright
2009, AIP.

(11.5.18)
This multi-section technique is more cumbersome to implement because it requires the
fabrication of devices with sections that have good electrical insulation. However, it has the
advantage of providing calibrated measurements, work in pulsed mode and can measure the
unclamped gain up to saturation. For these reasons it has been used to study the dispersive
nature of the gain in QCL with poor population inversion [265, 266].

Using this technique, the measurement of the gain in a strain-compensated laser operating
at λ = 4.8 μm, as a function of temperature, is shown in Fig. 11.11. These measurements
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point out some important physical results. As expected, the peak gain is reduced from about
45cm−1 down to 12cm−1 as the temperature is increased from 80 to 274 K. In Fig. 11.11c,
the measured gain at 274 K is compared to the electroluminescence lineshape. The two
curves overlap within experimental errors, confirming that (p.216) for devices with a good
population inversion, the unamplified electroluminescence is a good indicator of the shape
of the gain profile. When plotted as a function of injected current (Fig. 11.11d), the peak
gain exhibits a linear dependence with current. This dependence persists up to the onset of
the negative differential resistance, confirming that the gain is not compressed at high
injection by electron–electron scattering or hot carrier leakage. In fact, when the gain
coefficient g′ is plotted against temperature (Fig 11.11e, its dependence is fully explained
by the expected temperature dependence (dashed line) of the optical phonon emission (eqn.
5.2.13) and the broadening of transition. As shown in the same figure, the gain coefficient
found by the multisection technique agreed well with the one measured using the length
dependence of the threshold current density “1/L technique”.

As shown in Fig. 11.11f the measurement of the waveguide losses were found to be
independent of temperature, but the value obtained using the multi-section technique (10
cm−1) was found to be significantly higher than those obtained by the threshold current
density measurements (4 cm−1), the latter result being more consistent with the slope
efficiencies measured.
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In contrast to other optoelectronic devices, quantum cascade lasers cannot be described by
simple drift-diffusion equation. Whereas in interband semiconductor lasers the assumption of
separate quasi-Fermi levels in the conduction and valence bands conveniently allow reduction
of the transport problem to a quasi-equilibrium situation, such approximations completely break
down in QCL. Because of the subpicosecond long intersubband lifetime, the transport scattering
time is never much shorter than the intersubband transition time, preventing the use of such
approximation. For this reason, the development of predictive transport models requires a more
sophisticated approach.



Fig. 12.1.  Schematic description of the relation
between the microscopic quantities, electron, photon,
and phonon states, and their interactions, as well as
the global observables (current, optical field, and
temperature).

Formally, one can see the transport problem as one of solving the equation of motion of an
electron population subjected to various interactions represented by a Hamiltonian

(12.0.1)
where Vcrystal is the crystal potential, Vheterostructure the one created by the heterostructure,
Vfield the applied field, He−phonon the electron–phonon interaction, He−photon the interaction
with the cavity field and Hscatt the other scattering mechanisms (interface roughness, electron–
electron). Fortunately, only quantities such as a current density or a photon population, which
relate to the average electron populations are measured experimentally.

As shown schematically in Fig. 12.1, one diffculty is that the electrons are strongly interacting
with the bath of photons in the cavity on one hand, and the bath of phonons in the crystal. In
addition, under laser operation, the photon population will be by nature out of equilibrium and
therefore cannot be treated as a thermal bath. Although the phonons are usually treated as in
thermal equilibrium, a number of experiments and theoretical prediction have hinted that this is
probably too strong an approximation [245]. To keep the system tractable, the dynamics of
individual subsystems (electrons, photons and phonons) are solved either quantum-
mechanically or classically, and their cross-interactions treated in a mean-field approach.

As mentioned above, the strong quantum confinement of the electron in the direction of the
current flow, responsible for the observation of intersubband transitions, precludes the use of a
purely classical Boltzmann equation approach for the electron transport dynamics, and therefore
requires a treatment of quantum effects.

A general discussion of transport theories is outside the scope of this work, and the reader is
referred, for example, to the work of Wacker [268] and Rossi [269–271], where (p.218)

the merits of various approaches are
compared. These fall roughly into
four classes of model:
Rate equation In this simple
approach the Schrödinger
equation is solved for the
complete heterostructure potential
over one period. A rate-equation
dynamics is then solved between
these basis states.

Density matrix In contrast to the
rate equation, the density matrix
approach enables simultaneous
coherent and incoherent couplings between states, and is therefore able to handle resonant
tunneling between states in a more accurate way.

Monte Carlo Ensemble and quantum Monte Carlo techniques compute the time evolution of
the carrier distribution function. They have been used to follow the in-plane distribution



Fig. 12.2.  Schematic description of the rate-equation
approach.

function and can include coherent terms.

Non-equilibrium Green’s function The non-equilibrium Green’s function is a very powerful
diagrammatic technique that allows the treatment of interactions in a very clean way.

These approaches will be discussed individually, and usually represent various tradeoffs
between their accuracy, numerical overhead, and completeness.

12.1 Rate-equation models
As shown in Fig. 12.2, the approach implicit to the rate equations presented in Chapt. 7 was to
diagonalize the first four terms of the Hamiltonian in the stationary state using the k · p
approach and the envelope function approximation. The in-plane dispersion is then treated as an
additive term to the energy. The last three interaction terms are then treated in a perturbative
approach. In this manner the whole problem can be reduced to a set of rate equations for the
whole structure. For each state i, a rate equation can be written as

(12.1.2)
where the optical transition is assumed to occur between the upper state u and the lower state d.
The time τij corresponds to the outgoing intersubband scattering from (p.219)

subband i, (i  j), and τji the
incoming scattering (i  j). To be
able to separate the scattering neatly
between uniquely incoming and
uniquely outgoing channels imply
that the thermal energy kT must be
assumed to be small enough
compared to the intersubband
energy. This model has been used
with relatively good success to
describe the population in the active
region at low temperatures.
However, this assumption breaks
down as soon as the in-plane kinetic energy of the electrons becomes comparable to the
intersubband spacing. On can circumvent this problem by expanding the equation to include all

the outgoing  and incoming  scattering between the two subbands i and j (of course, now 

 in this notation). These terms are effective scattering rates between two subbands,

weighted by the occupancy fi(k) and the final-state availability (1 − fj(k)). The subband
population is the sum of the k-dependent occupancy ni = ∑kfi(k). The rate equation can then be
written as

(12.1.3)
where the weighted terms in terms of the population distribution are, for the outgoing scattering



Fig. 12.3.  Computation of the transport using a rate-
equation approach for a GaAs-based quantum
cascade laser. The goal was to compare the current
leakage for the AlxGa1−x As barriers with x = 0.33
and x = 0.45. a) Voltage versus current
characteristics. b) Gain versus injected current.
Reprinted with permission from [272]. Copyright
2002, AIP.

(12.1.4)
and for the incoming scattering

(12.1.5)
Such an approach has been used to predict transport and gain in various quantum cascade laser
devices in the mid-infrared and terahertz frequency domain. Fig. 12.3 shows the voltage–
current and gain–current curves, computed for various temperatures, of two GaAs-based three
quantum well active region lasers differing by the aluminum content of the tunnel barriers.
Specifically, it is shown that the devices with the Al0.33Ga0.67 As barrier exhibit a significant
amount of carrier leakage at elevated temperatures, as compared to devices fabricated with
Al0.45Ga0.55As barriers. This (p.220)

effect of carrier leakage was indeed
observed experimentally and is
discussed in Chapter 7. The overall
shape of the voltage–current, as well
as the magnitude of the gain and its
temperature dependence, are in good
general agreement with the
experimental data [272]. However,
the features seen in the voltage–
current curves, for example at 45
kV/cm at 300 K, do not correspond
to the experiments. They probably
originate in resonances between
states that produce artefacts inherent
to the technique used. A solution to
this problem is to introduce a
density-matrix framework in which
dephasing, related to the in-plane
scattering, can be explicitly taken into account. This will be discussed later in this chapter.

12.1.1 Lasers based on photon-assisted tunneling transition

As shown schematically in Fig. 7.16, a class of quantum cascade lasers are based on a very
diagonal transition, whereas the ground state of the injector of one period is also the upper-state
for the next period. In these devices, because the transition must proceed through a tunnel
barrier, the lifetime of the upper-state can be relatively long, up to 20 ps at cryogenic
temperatures. Because upper and lower states are, to a very large extend, localized in different
quantum wells, the radiative transition can be described aptly as proceeding by photon-assisted
tunneling through the coupling barrier, in the manner first described by Kazarinov and Suris [8].
In such a laser, modeling the transport using the approach described above can yield very good
results. In fact, because we are in a situation in which the scattering within the injector is much
faster than the active region transition, we can safely describe the occupation of the injector
states by a thermal distribution. The whole transport is then driven by the intersubband



Fig. 12.4.  Modeling the transport in a quantum
cascade laser based on a photon-assisted tunneling
transition. a) Self-consistent computation of the
energy-band diagram of two periods of the
InGaAs/AlInAs structure under an applied electric
field of 55 kV/cm. The moduli squared of the
relevant wavefunctions are shown. The thickness of
the different layers is indicated in nanometers. b)
Comparison between the measured (solid lines) and
computed (dashed lines) voltage–current
characteristics at 100, 150, 200, 250, and 300 K. The
design is shown in Appendix A.1.4. Reprinted, with
permission, from [273]. Copyright 2001 IEEE.

scattering between periods. Such a design was first demonstrated at an operating wavelength of
λ = 6 μm [125]. A schematic conduction-band diagram of a device, based also on a very
diagonal transition, and operating at a longer wavelength λ ≈ 10 μm, is shown in Fig. 12.4a. In
the same figure the voltage–current characteristics of the same structure is shown and compared
to the theoretical prediction, computed using the eqn. 12.1.3. An excellent agreement is found,
showing that the parameters used to compute the intersubband scattering rates are correct [273]
(p.221)

.

12.1.2 Photon-driven transport

The relative simplicity of the
structures based on a photon-
assisted tunneling transition
enabled the study of two effects
usually neglected in the first
approaches: conservation of the
total charge over one period, and
the influence of the photon-driven
transport. In these structures
where the intersubband scattering
within each period can be
assumed to be much faster than
period-to-period transport, a
simple model can be written
where each period consists of the
state 1, simultaneously a ground
state of the injector and upper
state of the laser transition, and 1′,
lower state of the laser transition,
with densities n 1 and n 1′ satisfying the charge conservation condition n 1 + n 1′ = ntot. The rate
equation in the presence of the optical field is

(12.1.6)
While the lower-state lifetime τ 1′ is assumed to be constant, the upper-state lifetime τ 1, as well
as the gain cross-section gc, varies with the applied electric field and controls the transport. For
typical structures, the product gc · τ 1 is constant:

(12.1.7)
where A [cm · s] is a constant, characteristic of the heterostructure. In addition, the cross-
section gain gc is, with good accuracy, proportional to the applied voltage V  gc. It is
convenient to express the lifetime τ 1 (gc) and τ 1′ as a function of the cross-section gain g 0
needed by an (idealized) device with zero lower-state lifetime and total loss αtot, i.e.



Fig. 12.5.  a) Computed voltage–current and light–
current characteristics for three different values of τ

10/τ 1′, i.e. of g˜/g 0 for the simple analytical model of
transport that includes charge conservation and
photon-driven transport (see text). b) Lightand
voltage-versus-current characteristics, measured in
continuous wave, for the device whose bandstructure
is shown in Fig. 12.4. c) Value of the lower state
lifetime extracted from the measurement of the ratio
of conductance below and above threshold.
Reprinted, with permission, from [273]. Copyright
2001 IEEE.

(12.1.8)
and

(12.1.9)
so that the ratio of τ 1′/τ 1(g 0) is the inverse of the effective cross-section gains g˜˜/gc

(p.222)

The rate equation below and above
threshold can be solved analytically
[273], and the result is shown in Fig.
12.5, where the normalized voltage–
current and light– current are
displayed for various values of the
upper-state to lower-state lifetime
ratio. A very strong dependence is
found, with photon-driven transport
for τ 1/τ 1′ = 20 but the laser not
reaching threshold for τ 1/τ 1′ ≲ 6.
Even if the results shown in Fig.
12.5 are computed using a very
simple model, meant to be applied
for a very specific class of structure,
they actually describe a generic
feature of photon-driven transport:
the abrupt change of the differential
resistance at threshold. As shown in
Fig. 12.5b, such change in
conductance is very apparent for
these devices based on photon-
assisted tunneling. In this particular
model, the ratio of the differential
conductances just below Gb and just
above Ga threshold is approximately
half of the ratio of the lifetimes:

(12.1.10)
This model was applied to the structure shown in Fig. 12.4a. By studying the transport in
devices of varying cavity lengths, the lifetime of the lower state was inferred as a function of
the drive current using the computed value of the upper-state lifetime and the expression
12.1.10. As shown in Fig. 12.5c, this value, dominated by the tunneling out of the lower state of
the quantum well into the injector, is roughly field-independent and is about 2.5 ps. The
relatively long value of this tunneling time stimulated the search for active regions with more
efficient extraction mechanisms, (p.223) such as the bound-to-continuum or two-phonon
extraction schemes as discussed in Sections 7.6.3 and 7.6.4.



12.1.3 In-plane electron distribution

Implicit to the models presented above is the assumption that the in-plane electron distribution
is thermal, characterized by a single temperature. Implicit to this hypothesis is the existence of
thermalization processes happening at a much shorter timescale than the intersubband
transitions. At high drive current and room temperature, this assumption is expected to break
down first in the active region, where the electrons must lose a large amount of energy after
being injected in the upper-state.

In-plane dynamics. A simple model of the electron dynamics in the active region can be derived
by expanding the rate-equation model shown in eqn. 12.1.3 in k-space, by assuming that all the
scattering mechanisms are dominated by optical phonon emission. A schematic description of
this model is shown in Fig. 12.6a for a two-phonon active region: electrons are interacting with
a bath of optical phonons in thermal equilibrium at a temperature TL. Since we are neglecting
electron–electron interactions, the electron may gain or lose energy only in quanta of the optical
phonon energy. As a result, the energy of an electron in the subband i is given by Ei, j = −j
ħωLO, with j = 0, corresponding to the energy of the electron injection.

For an active region containing N states (with N being the upper laser state), the rate equation
for the lower states (i, j) (with i  N) is

(12.1.11)
We assume that a cool electron distribution is injected in the upper laser level. Therefore, all the
electrons are concentrated in j = 0 in the upper level N. The rate equation for that state is

(12.1.12)
Solving eqns. 12.1.11 and 12.1.12 for a given injection current and temperature yields the
densities at each relevant point of the k-space. The result of such a computation, comparing the
densities for a single-phonon, three-quantum-well active region and two-phonon, four-quantum-
well active region is shown in Fig. 12.6, where an extraction time from the active region of 2 ps
was assumed. This model nicely demonstrates the “bottleneck” effect of the long tunneling
escape time τesc in single-phonon resonance structures. At room temperature (T = 300 K), the
ratio of upperto lower-state populations is n 3/n 2 = 1.7 — a value much lower than the one
anticipated by considering the lifetimes ratio τ 32/τ 2 = 5. The reason is a a significant
“reabsorption” probability: electrons scattered out into the state n = 1 at high kinetic energy
have a high (p.224)

probability of scattering back to n =
2. In other words, the two groups of
terms in eqn. 12.1.11 tend to
compensate each other, slowing the
scattering out of level n = 2.
In the two-phonon resonance
structure, a larger phase-space is



Fig. 12.6.  a) Schematic description of the rate-
equation model in k-space for an active region based
on two-phonon resonance [274]. b) Electron sheet
density (in units of 1010 cm−2) as a function of
energy in the relevant subbands of the active region
of a three-quantumwell structure [275] (top) or a
two-phonon, four-quantum-well structure [22]
(bottom), each operating at λ ≈ 9 − 10 μm. For both
devices the lattice temperature is TL = 300 K and the
escape time from the subbands is τesc = 2 ps. The
injected current corresponds approximately to the
threshold value, and is J = 5 kA/cm2 for the three-
quantum-well active region, and J = 3 kA/cm2 for
the two-phonon resonance device. The design used
are in Appendices A.2.1 and A.1.6. Reprinted, with
permission, from [274]. Copyright 2002 IEEE.

available for scattering from the
lower state, reducing its
population. As a result, the
population inversion is
significantly larger, n 4/n 3 = 2.85.
As shown in Fig. 12.6b the
electron distribution in the
subband, for small in-plane
kinetic energies, is close to a
thermal electron distribution,
characterized by an electron
temperature very close to the
lattice one. A larger electron
temperature (Te = 325 K) and
higher non-thermal tail
characterize the electron
distribution of the single phonon
design.

Electron temperature. Another
approach, first proposed by
Harrison [276], has been to
assume that the populations are
characterized by a common
electronic temperature Te to all
subbands, different from the
lattice temperature TL. The
implicit assumption is that
electron–electron scattering,
while not affecting the overall energy loss, will thermalize the electron distributions in each
subband to a thermal distribution characterized by a single temperature. An important quantity
is the average kinetic energy of all subbands, defined as

(12.1.13)
As shown in Fig. 12.7, in steady state the average kinetic energy will be given by the balance
between the processes that tend to increase the average kinetic energy (p.225)

and those that, in contrast, will tend
to decrease. In general, elastic
scattering or intersubband optical
phonon absorption increases the
average in-plane energy, while
optical phonon decreases it. Note
that emission of photons do not
modify Ek .



Fig. 12.7.  Scattering processes between two
subbands. While elastic scattering and phonon
absorption automatically increase the average in-
plane kinetic energy of the subbands, intra-subband
optical phonon emission reduces it.

Fig. 12.8.  Transport between the injector and the
upper state of the laser transition (left). In the strong
coupling case, the two states split in a doublet of

The electronic temperature is
found by globally balancing the
energy input from all the
scattering processes that increase
the in-plane energy with those
that decrease it, i.e. solving the
equation

(12.1.14)
where Ep is the energy exchanged during the process and is equal to ∓ ωLO for the emission,
respectively absorption of an optical phonon, zero for elastic processes, and − ω for the
emission of a photon.

12.2 Density matrix

12.2.1 Limitations of the rate-equation model

In the rate-equation model, transport is completely described as a scattering mechanism
between eigenstates of the unperturbed Hamiltonian. This simple approach, in which the states
are not broadened, leads to unphysical results in certain situations.

Assume, as shown schematically in Fig. 12.8, two states coupled by a tunnel barrier. Often,
these states would be the ground state of the injector |g  and the upper state |3  of the laser
transition. However it can also be a lower state of the active region coupled to a state of the
injector. When computing the transport using the rateequation approach, the Hamiltonian must
be diagonalized in the extended basis where the coupling introduced by the barrier is taken into
account. When the two “bare” states are in resonance, the wavefunctions of the new “dressed”
states are

(12.2.15)
where the energies of these two states are split by an energy difference ΔE = 2ℏΩ. We assume
for simplicity that the state |g  has an infinite lifetime and the upper state |3  (p.226)

has, due to scattering via an
interaction Hamiltonian Hint, a
lifetime τ 3. Because their
wavefunction is equally splitt
between the two states, the
“dressed” states will have a lifetime
equal to 2τ 3, independent of the
coupling strength Ω. In fact, the
scattering rate  is given by



energies and the maximum current depends only on
the upper-state lifetime and not on the coupling
strength Ω. In incoherent tunneling the current
depends, in addition, on the strength of in-plane
scattering.

Fig. 12.9.  Schematic description of a density matrix
model of transport in quantum cascade lasers based
on two levels. The injection level is number 1, and
the upper level of the laser transition is number 2.

(12.2.16)
As a result, the current carried at resonance by the device will be equal to , independent

of the barrier thickness. This result is unphysical and arises as soon as the separation of two
states is small compared to their lifetime, i.e. when the condition Ωτ ≫ 1 is violated. In fact,
when the coupling is small one would expect the current to decrease exponentially in the barrier
thickness, as expressed already in eqn. 7.5.16. To solve this issue, a model based on density
matrix theory has already been developed in Kazarinov and Suris’s original work [8].

12.2.2 A two-level model system

Let us consider first a simple two-level model, described schematically in Fig. 12.9. In this
model, each period has only two levels. The upper level is n = 2 and the injection level is n = 1.
The coupling across the barrier between two periods is described by the Hamiltonian

(12.2.17)
In the Hamiltonian described by eqn. 12.2.17 we took advantage of the periodicity of the
system to identify the states of each following period. For this reason, the off-diagonal element
in eqn. 12.2.17 is really one coupling the state with the previous period, which is then identified
with the state of the same period. While the lifetime τ 1 describes the backfilling time for
electrons inside the same period, the lifetime τ 2 is the scattering time inside the period.

(p.227)

The equation of motion for the
carriers, written as

(12.2.18)
where the last term represents the
loss of coherence due to
collisions, can be rewritten in a
matrix form using the Liouville
operators L 0 and L′:

(12.2.19)



The density matrix elements ρ are
written in vector form

(12.2.20)
and the Liouville operators are

(12.2.21)
where the detuning Δ = (E 1 − E 2)/ℏ has been used and

(12.2.22)
In fact, the decay of the population is given, for the population of state 1 (represented by ρ 11),
by a feeding term τ 2 and an emptying term τ 1, while the situation is the opposite for the second
level ρ 22. The lifetime τ ∥ describes the decay of the coherence between the two states by
elastic or inelastic processes.

(p.228) The first quantity of interest in our model is to compute the current in the structure. It
can be defined in a quantum-mechanical way by the current operator:

(12.2.23)
The expectation of the current is given by the trace of the current operator:

(12.2.24)
In eqn. 12.2.24, we assumed that the states, within one period, are weakly coupled by
incoherent processes, and assumed therefore that the position operator is diagonal (i.e. z 12 = z

21 = 0). In addition, in the definition of the current (eqn. 12.2.23), we should multiply the
operant by a volume density; as the elements of the density matrix are thought of as areal
densities we therefore divide  by the difference between the centroid of the wavefunctions z 11
− z 22 to finally obtain the current density:

(12.2.25)
The equation system formed by the Liouville eqn. 12.2.19,



Fig. 12.10.  Normalized current J/Jmax as a function
of normalized detuning Δτ ∥. A value τ 2 = 10τ ∥ was
assumed. The values of the coupling strength are Ω =
0.1, 0.2, 1, and 5, as indicated in the figure. The
values of the term 4Ωτ τ 2 are then 0.4, 1.6, 4, and
1000 respectively.

(12.2.26)
completed by the charge conservation condition

(12.2.27)
can be solved in the steady-state (ρ˙ = 0) for ρ 21–ρ 12. The result, inserted into the expression
for the current eqn. 12.2.25, and multiplied by the total sheet density ns, yields

(12.2.28)
In a situation where the backscattering is negligible and the injection state has an infinite
lifetime τ 1 → ∞, the above expression reduces to the well-known Kazarinov and Suris formula
for the current:

(12.2.29)
This expression, derived first in a slightly modified form by Kazarinov and Suris [7, 8], has
often been the basis used to explain the transport in quantum cascade lasers, (p.229)

and in particular the injection
process [277]. It describes the
transition between the coherent and
incoherent tunneling. In an injection
process, τ 2 represents the lifetime of
the upper state and τ ∥ the dephasing
between the upper state of the laser
transition and the ground state of the
injector. The detuning Δ is given by
the device’s operating voltage. The
coupling strength Ω is an important
design parameter, because it is
mainly defined at the design stage
by the thickness of the injection
barrier.
The condition Ω2 τ  τ 2 ≫ 1
defines the strong coupling
regime. In this case the maximum
current, always obtained at
resonance (Δ = 0), is given by



Fig. 12.11.  Voltage–current (upper curves, left axis)
and differential resistance-versuscurrent
characteristics of a quantum cascade laser (full lines)
operating at λ = 8.5 μ m at 300 K. Dashed line, the
same characteristic computed using expression
12.2.29, and where only the sheet density ns and the
in-plane scattering τ  have been fitted. Adapted, with
permission, from [277]. Copyright 1998 IEEE.

(12.2.30)
and does not depend on either the dephasing τ ∥ or the coupling strength Ω.

In the opposite case Ωτ τ 2 ≪ 1 we are in the weak coupling regime: the maximum current, still
achieved at resonance, is now given by

(12.2.31)
which is, as expected, proportional to Ω2. The transition between these two regimes is described
in Fig. 12.10, where the normalized current J/Jmax is plotted as a function of normalized
detuning Δτ ∥ for increasing values of the coupling strength Ω. The upperstate lifetime was
assumed to be 10 times longer than the in-plane dephasing time, a typical value for mid-infrared
quantum cascade lasers, and the maximum current available for the doping density and upper-
state lifetime Jmax is given by eqn. 12.2.30. The data shown in Fig. 12.10 illustrates the
compromise needed in the design of the injection barrier. A too-low value of Ω will limit the
maximum output current, while a too-thin injection barrier will unduly broaden the voltage-
current curve as well as the laser transition and enhance non-resonant injection in other states.
In fact, the nonresonant injection into the lower state of the laser transition is a major loss
mechanism (p.230)

that will negatively influence the
threshold current and slope
efficiency. For this reason, assuming
the linewidth of the luminescence is
a good measure of τ ∥, a rule of
thumb has long been to adjust the
coupling strength such that the
splitting between the injector state
and the upper state 2 Ω is equal to
the width of the luminescence,
assumed to be equal to 2/τ ∥, i.e. Ωτ

∥ = 1. As shown in Fig. 12.10, for
such a value of Ω the maximum
current is almost given by eqn.
12.2.30 while the additional
broadening is still kept to a
reasonable value.
Expression 12.2.29, even if based
on a very simplified model, has
nevertheless been successfully
used to model the current–voltage
curves of quantum cascade lasers.
Fig. 12.11 shows the voltage–
current characteristics of a quantum cascade laser operating at operating at λ = 8.5 μ m at 300
K, compared to the result of expression 12.2.29 where only the sheet density ns and the in-plane
scattering τ ∥ have been fitted, the other parameters being computed from the knowledge of the



Fig. 12.12.  Optimization of the injection barrier
thickness in a GaAs/Al0.33Ga0.67 As quantum
cascade laser. a) Normalized electroluminescence
spectra at a current density J = 6kA/cm 2 for three
barrier thicknesses, as indicated. Inset: measured
FWHM and computed anticrossing energy (2 Ω) as a
function of the barrier thickness. b) Calibrated LI
curves for samples at 77 K. The dashed line
represents the calculated collected output power for
unit injection efficiency. Adapted with permission
from [278]. Copyright 2001, AIP.

band structure. A very good agreement between the fitted and experimental values of the sheet
density (ns = 1.6 × 1011 cm−2 and ns = 1.5 × 1011 cm−2), as well as between the fitted value of
the in-plane scattering time τ ∥ = 40fs and the one derived from the linewidth of the
luminescence τ ∥ = 38f s, were obtained [277]. In contrast to this result, it has been argued
recently [152] that the luminescence linewidth is a poor estimate of τ ∥ as the latter describes the
loss of coherence in the injection process between the injector and the upper-state of the laser
transition, while the luminescence linewidth depends on the dephasing between the upper and
lower state of the laser transition. In addition, the computation of the broadening contains
interference terms. Namely, a fluctuation of the layer thickness will induce a modification of the
energy of both lower and upperstates by a quantity of the same sign, and therefore the linewidth
of the transition will be in general narrower than the broadening of the upper-state.
Mathematically, it (p.231)

arises from the presence of the
substraction between terms (F 00 −
F 11)2 in eqn. 5.3.25, and the
strength of this effect obviously
depends on the active region design
and the detail of the form factors Fii.
Optimization of the injection
barrier. The thickness of the
injection barrier has to be
optimized for each design. On
one hand a stronger injection
reduces the injection efficiency,
since, at resonance, the injection
into the upper-state saturates
while the injection in the other
states increases. A too-strong
injection barrier also broadens the
laser transition. A too-weak
injection, provided by a thick
barrier, on the other hand, limits
the maximum dynamical range of the laser by reducing the maximum current that can be driven
before the alignment between injector and upper-state breaks down. In [278] the authors have
explored experimentally the optimization of an injection barrier in a GaAs-based quantum
cascade laser using quantitative electroluminescence. As shown in Fig. 12.12, the linewidth of
the electroluminescence increases, and its intensity decreases, as the thickness of the barrier is
reduced. On the other hand, a too-thick injection barrier (in this case  7 nm) reduces the
dynamical range. Their result yielded an optimum barrier thickness (7 nm thick) corresponding
to Ω ≈ 0.2γ, where 2γ is the FWHM of the luminescence. One expects that such optimization,
performed at room temperature, yielding stronger couplings (even in relative terms) because of
the shorter upper-state lifetime.

The numerical optimization of the injection barrier is a difficult task because it implies a model
that works well in a regime between the”strong coupling” and “weak coupling” limits. Some



very encouraging results have been obtained by Dupont et al. in the terahertz, using a density
matrix model [198].

12.2.3 Bloch gain and second-order current

The preceding derivations assumed that the states could be treated in an atomiclevel fashion, i.e.
that the in-plane dispersion could be factored out. Eqn. 12.2.29, (p.232) while extremely useful
to interpret the transport data, has still some weaknesses. For example, it is symmetric with Δ,
and therefore predicts the same current for an injector misalignement below or above the
resonance. For low temperatures, kT  Δ, this approximation is a poor one.

This behavior can be corrected by explicitly introducing the in-plane dispersion in the density
matrix model, and was first derived by Willenberg et al. [279]. This model takes advantage of
the fact that the coupling Ω between two states preserves the in-plane momentum and is
therefore diagonal in k, while the dominant intrasubband scattering is interface roughness
scattering. The latter is energy-conserving and is maximum between states belonging to the
same subband, and therefore will be diagonal in the state number i, j. As a result, starting with
the same two levels as in the previous paragraph, and using the same state numbering as [279],
the matrix elements of the Hamiltonian in this basis are given by

(12.2.32)
where the respective contributions H and V take the form

Thus, electrons are allowed to tunnel between the subband state i and j by means of the
momentum-conserving matrix elements Ωij, in each of which they are possibly scattered out
of a virtual intermediate state by an intrawell relaxation process V ii as depicted in Fig. 12.13.

For simplicity we assume a parabolic dispersion relation parallel to the layers in the effective
mass approximation

(12.2.33)
where Ei denotes the lower subband edge and m ∗ is the effective mass of the electron averaged
over the extension of the wavefunction in well and barrier. Extension to subbands with a non-
parabolic dispersion relation Ei, k = Ei (k) is, however, straightforward, as shown later.

The time evolution of the system is driven by the equation of motion of the density matrix (eqn.
12.2.18), where, however, the collision term is now explicitly contained in the Hamiltonian .
Eqn. 12.2.18 is first rewritten, separating the diagonal and non-diagonal part of the density
matrix  with respect to the parallel momentum k, k′ according to1

(12.2.34)



Fig. 12.13.  Mixed momentum and real-space picture
of a two-level system where the inplane scattering is
taken into account. Tunneling into a virtual
intermediate state (dotted) is expressed by a transfer
matrix element Ωij. Scattering is assumed to take
place within each subband only.

We obtain two coupled equations with four terms each, which determine the time evolution of
the system. Since the coherent term H is diagonal with respect to the inplane momentum and
the scattering term V is purely non-diagonal, the commutators (p.233)

that determine the diagonal and non-
diagonal part of the density matrix
are evaluated as

(12.2.35)

(12.2.36)
where the commutator of the scattering potential with the non-diagonal part of ρ has been
neglected in the second equation (Born approximation). The steady-state values of the
coherences of the density matrix f ij, which determine the transitions |ik  → |jk , the current
and the absorption, are obtained from a Laplace average [280] defined by

(12.2.37)
and performing the Laplace limit s → 0 using the relation lims→0+ (ω − is)−1 = P(1/ω) + iπδ(ω)
at the appropriate stage of the calculation. In this approach the populations  of the density
matrix are not accessible and appear in the resultant expression as external quantities. The
Laplace average gives

(12.2.38)

(12.2.39)



In a first step, the non-diagonal part in eqn. (12.2.39) is approximated (see [279]). Specifying
the assumptions of a two-level-system with intrawell scattering only, and neglecting terms of
higher order in Ωij corresponding to multiple tunneling processes, gives

(12.2.40)
(p.234) which has to be placed in eqn. (12.2.38) for the diagonal part. Simplifying for intrawell
scattering here, and taking the Laplace limit, yields (see [279])

where f denotes the approximated expression for the non-diagonal part in eqn. 12.2.40.
Performing an ensemble average, i.e. dropping terms related to correlation effects, we obtain

(12.2.41)
Which agrees with the previous result [8]. In contrast to the original treatment, we continue by
neither neglecting the difference of the arguments in the δ functions on the LHS nor omitting
the second term on the RHS. The coherence associated with the transition |2k  → |1k  is
obtained from

(12.2.42)
where we have used abbreviations for the scattering-induced broadening of the transition

(12.2.43)
the subband separation Δ = E 2k − E 1k and the in-plane momentum of the final state

(12.2.44)
The first term on the RHS of eqn. 12.2.42, which contains the difference of populations
between the two states, corresponds to the central result of [8]. The second term, first
introduced in [279], contains differences in population within a subband. When applied to the
transport problem, it modifies the expression for the current by introducing an asymmetry in the
dependence of the current density as a function of detuning Δ. In addition, it is also responsible



for the second-order type of gain, leading to the characteristic negative differential conductivity
and the dispersive gain profile in a superlattice, and a modified spectral shape of the gain in a
quantum cascade laser.

(p.235) Second-order current. We use for the current an expression similar eqn. 12.2.25, but
where we keep explicitly the spatial term z 11 − z 22, and we interpret the density matrix as a
volume density:

(12.2.45)
where the notation d = z 22 − z 11 has been used. Using the expressions 12.2.42 for the
coherences , the current yields

(12.2.46)
The current results from differences in population evaluated for non-equivalentkstates in the
respective subbands. The sum runs only on allowed transitions, i.e. those for which the final
state q ± exists.

A possible formulation of Kazarinov and Suri’s expressions 12.2.29 for the current can be
recovered by setting q ± equal to k, and assuming a constant broadening γ:

(12.2.47)
where Δn = ns (ρ 22 − ρ 11) is the population difference. The above expression can be directly
obtained by combining the third and fourth line of eqn. 12.2.26.

The general expression for the current, 12.2.46, is a priori valid for any population distribution
within the subbands. A simpler form can be derived if one assumes a classical distribution
characterized by the same electron temperature T in each subband. When, in addition, a uniform
scattering potential is considered , the k k current density can be integrated and
simply rewritten as

(12.2.48)
where θ(x) is the Heaviside function, with θ(x −) = 0, θ(x +) = 1 and θ(0) = , β = 1/kT, with k
the Boltzmann constant, and ni is the net population of subband i.

The current density is no more driven by the population difference n 2 − n 1 but by an effective
population term. Let us examine two extreme case: equally populated subbands n 2 = n 1 = n,
and one empty subband n 1 = 0. The first case is shown in Fig. 12.14a, and is the one in which
expression 12.2.47 predicts no current, regardless of the detuning. In contrast, the current
density that includes the second-order scattering effects exhibits a dispersive shape around the



Fig. 12.14.  (a) Effects of second-order contributions
on tunneling between a pair of equally populated
subbands. (A) When the detuning is negative, the
subband edge of subband 1 is above the edge of
subband 2. As tunneling conserves energy, the
current flow from 1 to 2 is greater than the current
flow from 2 to 1, yielding a negative net current. (B)
When the subbands are aligned the detuning is zero,
and both contributions cancel, yielding a zero net
current. (C) The detuning is positive and therefore
the edge of subband 2 is above the edge of subband
1, yielding a positive net current between subbands.
(b) Empty subband 1. (A) The current is reduced, as
only a fraction of electrons can tunnel. (B) Models
overlap perfectly. Because the mathematical
expressions are the same, this figure also depicts the
intersubband absorption for various population
inversion between the subbands, the detuning Δ
being interpreted as the frequency detuning between
the transition and incident photon.

resonance. A negative current peak occurs when the detuning is negative, which is when the
edge of subband 1 is above the edge of subband 2. The current then turns to be positive, after
the edge of subband 2 has overcome the edge of subband 1, which is when the detuning is
positive. The dispersive shape is the consequence of electron tunneling at a constant energy
rather than at a constant wavevector. This case illustrates a superlattice: the current is zero until
second-order scattering terms have been taken into account. The case where one subband is
empty is shown in Fig. 12.14b. For negative detunings, the current (p.236)

between the subbands is
exponentially reduced, as only the
electrons with a sufficient kinetic
energy are able to tunnel to subband
1. In contrast, for positive detunings,
the firstand second-order curves
overlap perfectly, as all electrons are
above the edge of subband 1.
The comparison between the
current computed using the
second-order current of eqn.
12.2.48 and the simplified one
from Kazarinov and Suris is
shown in Fig. 12.15, applied to a
quantum cascade laser structure.
In this computation [281] the total
current was calculated using all
the states of the active region, as
described later in this text.

When injecting the current from a
filled state to an empty one and as
shown in Fig. 12.14, the
symmetric Lorenzian lineshape
obtained from Kazarinov and
Suris’s expression for the current
tends to overestimate the current
before a resonance. This effect is
clearly apparent in Fig. 12.15,
where the predictions using Kazarinov’s expression consistently overestimate the
experimentally measured current, while the second-order current expression 12.2.48 leads to a
much more accurate prediction.

12.2.4 Gain and absorption

The Hamiltonian 12.2.32, although derived for the case of two states coupled by a tunnel
barrier, can also be interpreted in a completely different manner. Let us assume a two-level
system in the presence of an optical field. In Chapter 4 we saw that the interaction Hamiltonian
can be described either by a matrix element of the position (eqn. 4.1.2) or the momentum (eqn.
4.1.5) operators. Using the momentum matrix element given by eqn. 4.1.5, and writing it as a
function of the electric field Eω, we have



Fig. 12.15.  Comparison of the experimental
current–voltage curves with the prediction of a
density matrix theory (Design described in appendix
A.2.4). Kazarinov and Suris’s Lorenzian resonant
shape is compared to the second-order current
expression. Reprinted with permission from [281].
Copyright 2008, APS.

(p.237)

(12.2.49)
Taking advantage of the relation
between momentum and dipole
matrix element 4.1.7 pij = im

0Ωijzij, we can finally write our
interaction Hamiltonian in our
basis as:

(12.2.50)
In the above expression the diagonal terms have been omitted. This is because we are interested
in the low-field regime, and therefore will neglect the shift of the levels experienced by the
optical field. These terms would be zero in a symmetric potential.

Finding the time-dependence of the density matrix involves solving the equation of motion
12.2.18, assuming that the coherences ρ 21 and ρ 12 have an harmonic time dependence e ±iωt2.
The key result is that the solutions have the same form as the time-independent solutions, being
evaluated at an energy (Ω21 − ω) instead of Ω21.

As the Hamiltonian 12.2.50 is, like the one describing the tunneling, diagonal in respect to the
in-plane momentum, the above results can also be applied in that case. As a result, we can write
the corrections to the coherences in linear response , which are related to 

 by

(12.2.51)
which are evaluated at an energy E 21 ± ℏω instead of E 21 due to the time dependence of the ac
field. The corrections to the coherences  will induce a photon-driven ac current, given by

(p.238)



(12.2.52)
The absorption can be deduced from the ac conductivity, defined as σ(ω) = ∂(j + δj(ω))/∂ ω,
using

(12.2.53)
Simply replacing the prefactors and by analogy with eqn. 12.2.46 we finally obtain the
expression

(12.2.54)
Note that because of the analogy between the expressions for the current and the absorption, a
simplified expression also exists for the absorption lineshape in the case of a classical thermal
distribution, similar to the one for the current given by eqn. 12.2.48:

(12.2.55)
As a result of the similarity between the two expressions, the plot of the current as a function of
detuning Δ displayed in Fig. 12.14 can be also understood as that of an intersubband absorption
where Δ is the frequency detuning between the transition and incident photons.

The most striking feature of the expression for the gain between subbands of eqn. 12.2.54 is
that a gain and absorption persist even for equal upperand lowerstate populations. Fig. 12.16
shows the intersubband gain, computed using expression 12.2.54, for increasing values of the
lower-state population, the upper one remaining fixed. As the lower population is increased, the
gain evolves from a quasi-Lorenzian lineshape at high population inversion to a dispersive
lineshape, characteristic of a Bloch oscillator, for equal populations. The gain is still present
even when the global subband upperand lower-state populations are equal, because the
transitions occur between states with non equivalent in-plane wavevectors.

As will be shown in the following, expression (12.2.54) allows a simple explanation of the
intersubband gain mechanism in the presence of strong in-plane scattering. It is instructive to
rewrite the differences in populations as

(12.2.56)
which translate directly into the paths depicted in the inset of Fig. 12.17. The two processes
above relate the states |2k  and |1k +  by the emission or absorption of a (non-resonant)
photon, ω ≠ E 21 for k ≠ k +, assisted by relaxation within the lower state via , which



Fig. 12.16.  Plot of the intersubband second-order
gain from eqn. 12.2.54, computed for various values
of the lower-state populations, the upper one
remaining fixed. As the lower population is
increased, the peak of the gain shifts towards lower
energies. A dispersive gain curve is achieved when
the populations are equal. Reprinted with permission
from [279]. Copyright 2002, APS.

Fig. 12.17.  Full line, intersubband gain for a
population inversion Δn/n = 0.5, is the sum of a
direct contribution (dashed line) and a Bloch-like
contribution (dotted) corresponding to the first and
second terms in eqn. 12.2.42. Inset: possible
quantum-mechanical paths; for an incident photon
with energy �ω ≠ E 21, absorption or stimulated
emission may occur due to a non-resonant absorption
or emission into an intermediate state and a
subsequent relaxation into the final state.

ensures momentum transfer. The second difference in eqn. (12.2.54) is interpreted accordingly,
where the relaxation takes place within the upper state.

(p.239)

Bloch oscillator. The above
derivation is actually relevant to a
relatively old issue in quantum
heterostructure research. Ineeded,
soon after the original proposal of
semiconductor superlattices [2], two
apparently quite different schemes
to obtain optical gain in such novel
systems were put forward. As
discussed previously, Kazarinov and
Suris pointed out that population
inversion and gain can be achieved
between electronic subbands in a
strongly biased superlattice [7],
paving the way to the realization of
the quantum cascade laser. On the
other hand, based on semi-classical
arguments, Ktitorov et al. [282] and
later Ignatov et al. [283] predicted
optical gain due to Bloch (p.240)
oscillations in the miniband
transport—despite an apparent
missing population inversion.
A key problem hampering the
feasibility of the Bloch oscillator,
emitting electromagnetic
radiation, tunable by the external
electric dc field, is the need to
stabilize the electric field domains
in a biased superlattice at the
point of operation. For a long
time the relation between both
proposals was unclear because the
gain in Bloch oscillator was
described using a semi-classical
model of transport based on the
Boltzman equation, while the one
in quantum cascade lasers is
described using a
quantummechanical approach.
Interestingly, the result provided
by the density matrix model
described in eqn. 12.2.54 enables
a quantum-mechanical interpretation of the Bloch gain in superlattices, establishing a link



Fig. 12.18.  Semi-classical (dotted line) versus
quantum-mechanical results (full line) for the
absorption in a superlattice for different temperatures
T. We assume a temperatureindependent scattering
time τ = 0.2 ps in the quantum-mechanical model,
and set τk, e = τ in the semi-classical model. In the
semi-classical picture the peak gain scales with the
ratio I 1 (Δ/2kBT)/I 0(Δ/2kBT). The quantum-
mechanical gain profile exhibits an additional
narrowing with lower temperature. Reprinted with
permission from [279]. Copyright 2002, APS.

between the intersubband gain originating from a population inversion, with its symmetric
spectral shape centered at the transition energy, and the dispersive gain predicted for a periodic
superlattice, with its nearly anti-symmetric profile.

Fig. 12.18 shows the prediction of the gain in a biased superlattice for the semiclassical model
whose expression is given by Ignatov et al. [284], where distinct momentum and energy
relaxation times τp, τe are used:

(12.2.57)
where ωb is the Bloch frequency and Δ the width of the miniband. The ratio of Bessel functions
contains the temperature dependence for a non-degenerate electron gas. Fig. 12.18 shows a
comparison of the semi-classical results and the quantum-

mechanical predictions for the same
constant relaxation time, τ = ℏ/γ =
0.2 ps, at (p.241) different
temperatures T. No independent
parameters are used. The two
approaches agree remarkably well at
high temperatures in the semi-
classical limit eF d  Δ. The
narrowing of the Bloch gain profile
with lower temperature, compared
to the semiclassical curve, reflects
an explicit influence of the electron
distribution within the subband. This
influence is absent in the semi-
classical treatment, regardless of the
approximation for the distribution
function. In the above comparison
the full expression of eqn. 12.2.54
was used that includes the poles at
negative frequencies

(12.2.58)
where we set 

.



Fig. 12.19.  Gain measurements showing evidence
for Bloch gain in samples with a low population
inversion. Left panels, results for Bloch gain sample
(single-quantum well, design described in Appendix
A.1.5). (a) Net modal gain measurements and (b)
simulations. Measurements achieved for increasing
current densities in the amplifier section: 2.1, 3.3,
4.5, 5.7, and 6.9 kA/cm2. The vertical line represents
the transition energy computed from band structure

The agreement shown in Fig. 12.18 supports the identification of the gain described with the
second-order formula as Bloch gain.

Experimental results. To a certain extent, the prediction of the second-order model of gain is
already validated by the same expression, derived for the current. In order to test the predictions
of this density-matrix model experimentally, it is necessary to measure the spectral profile of
the gain in a structure in which the population inversion can be controlled. In [265] the authors
compared gain measurements in quantum cascade lasers built either from a single-quantum-
well active region, where the extraction lifetime could be varied by changing the barrier
thickness, and compared them to measurements carried out in an active region where a resonant
optical phonon scattering provided a fast depopulation of the lower state. The gain
measurements were performed by recording the electroluminescence in a multi-section cavity
structure, where one section was used as a broadband source and the other one as an amplifier,
as described in Section 11.5.4.

The measurements, performed at liquid-helium temperature, are compared in Fig. 12.19 with
theoretical simulations. The gain spectrum of the single-quantumwell sample (N258) as a
function of injected current is displayed in Fig. 12.19a. At the lower current densities (2.1 and
3.3 kA/cm2) the gain shows a clear dispersive shape, with gain for photon energies below the
expected transition energy and loss at higher energies. As the current is increased, a more
symmetric shape is recovered, indicating an improvement in the population inversion as the
injection is made more resonant. Gain measurements of the control sample N123 are shown in
Fig. 12.19c. As expected, the shape of the gain curve is almost symmetric for the whole range
of injected current. For a given injection current density, the maximum gain is also larger by a
factor of 4. Such a behavior is also predicted by the theoretical model.

The dispersive shape of the gain spectrum, and its depedence on the active region design, are a
clear demonstration of the presence of Bloch gain in the low-inversion sample (p.242)

.

12.2.5 Resonant tunneling diodes
and quantum cascade lasers

The density matrix approach
derived above can be used to shed
a new light on the relationship
between resonant tunneling
diodes and quantum cascade
lasers [285].

Traditionally, resonant tunneling
diode oscillators and quantum
cascade lasers have been
described as being of a very
different nature: the resonant
tunneling diode is an electronic
device, limited by transit time,
using an electronic resonator for



Fig. 12.20.  Schematic band structure of (a) a
resonant tunneling diode and (b) a quantum cascade
laser based on a two-quantum-well active region.

between subband edges (k = 0 states) of the active
well. Shown also in (a) is the spectrum of device
N258 operated as a laser. Right panels, results for a
reference sample (single phonon resonance, design
described in Appendix A.1.3). (a) Net modal gain
measurements and (b) simulations. Measurements
achieved for increasing current densities in the
amplifier section: 2.1, 3.0, 4.0, 5.5, and 7.8 kA/cm2.
Adapted from [265].

oscillation. In contrast, the gain in
a quantum cascade laser is
described as arising from
transition between subband states
that sustain an oscillation in an
optical Fabry–Perot-like cavity.

The only fundamental difference
between a quantum cascade laser
and a resonant tunneling diode is
the existence of an injector in the
former that allows active-region periods to be cascaded while maintaining the electrical stability
of the structure [20]. The presence of an injector biased in the regime of positive differential
resistance, however, automatically induces a loss at low frequencies. The comparison between
the schematic band structure of a resonant tunneling diode and that of the simplest quantum
cascade laser is presented in Fig 12.20. This specific terahertz quantum cascade laser design is
based on the recently demonstrated two-quantum-well structure [194, 193].

(p.243)

As shown in Fig. 12.20, transport
and gain in this structure involves
only three states per period: the
optical transition proceeds across a
tunnel barrier from the ground state
of a thin quantum well to the first
excited state of a wider well, whose
transition is resonant with an optical
phonon for fast depopulation and
whose lower state serves as an
injector for the next period.
Whilst negative conductance in
the resonant tunneling diode is
ascribed to the nature of the non-resonant transport between the subband of the injector and the
confined state, the gain in the quantum cascade laser is described by a population inversion
between states 2 and 1. Both processes can be described, however, by the same density matrix
formalism discussed in this chapter. The two subbands 2 and 1, detuned by an energy Δ,
interact through a tunnel barrier with a coupling energy Ω, while the states suffer a dephasing
characterized by a total energy broadening γ.

Applying eqn. 12.2.47 to the case of a resonant tunneling diode; assuming no population of the
lower state (n 1 = 0), the current between the subbands can be written as

(12.2.59)
For a device of active area A and length Lact, the negative differential conductance is computed
by simply differentiating the above equation with respect to Δ, and yields



(12.2.60)
where d is the spatial separation between the upper and lower state, Lper is the total length of
the RTD, and  is the fraction of the electric field dropped across the RTD. We

can rewrite the expression as a function of the maximum current at resonance j (max):

(12.2.61)
so that

(12.2.62)
(p.244) The above expression has its maximum at approximately Δ ≈ γ/ 2:

(12.2.63)
For a resonant tunneling diode, the oscillation condition for a resonant circuit at an angular
frequency ω with a quality factor Q is

(12.2.64)
so that the maximum current, assuming the capacitance is dominated by the resonant tunneling
diode (i.e. C = ϵϵ 0 A/Lact):

(12.2.65)
The latter equation, while much too crude to allow an accurate prediction of the resonant
current necessary to achieve oscillation, nevertheless describes the key factors entering in the
oscillation condition and a correct order of magnitude value (j (max) = 200 kA/cm2 at 1 THz) for
the current densities using typical parameters of [286]. In particular, the current density is
expected to increase linearly as a function of operation frequency, as the quality factor Q of
electronic resonators tends to remain constant with frequency.

However, in the quantum picture the gain between an upper n = 2 state and a lower state n = 1
can be described by the scattering-assisted gain formula, written for classical distribution as
eqn. 12.2.48. As we are interested in the regime of low frequencies, it is important to keep the
non-resonant term in the expression for the gain. This becomes:



Fig. 12.21.  Comparison between the gain computed
directly (solid line) and deduced from the
computation of the differential conductance (dashed
line).

(12.2.66)
The above expression is compared with that derived from the differential conductance, and
using the relationship between gain and conductance, eqn. 12.2.53 yields

(12.2.67)
in the limit of zero ground-state population. Both equations are compared in Fig. 12.21. As
expected, the value of the ac gain given by eqn. 12.2.67 converges towards the value given by
the conductance when ω → 0.

The resonant response peaking at ω ≈ Δ in Fig 12.21 is not characteristic of the operation
characteristics of a resonant tunneling diode. In these devices the broadening (p.245)

is large and the maximum gain is
achieved close to ω = 0 for a
detuning given by the condition
already mentioned, namely Δ = γ/ 2.
The positive gain (or equivalently
negative differential conductance)
exhibited by any inverted subband
system extends down to zero
frequency, as shown clearly in Fig.
12.21. As a result, the structure is
naturally unstable electrically and is
impossible to cascade, as it will
break into high field domains. To
prevent this unfavorable behavior,
quantum cascade lasers incorporate
injectors that are in effect resonant
tunneling diodes biased before their roll-over points, such that the overall differential conductance of
the system

(12.2.68)
remains positive. Of course, the desired positive resistance of the injector at low frequency will
also extend to higher frequencies and therefore quench the gain. In addition, the continuity of
the current requires that

(12.2.69)



Fig. 12.22.  Plot of the absorption contributions from
the active region (showing gain, lower solid line) and
the injector (upper solid line), as well as the sum of
both contributions (solid intermediate line). By
comparison, the contribution of an injector that is
separated from the active region is shown by the
upper dashed line, and the absorption/gain of the
total structure by the lower dashed line. Note the
stronger gain for the separated injector structure.
Inset: schematic drawing of the level scheme for a
active region separated from the injector region

This in turn will require, in a standard quantum cascade laser, that the population in the injector
is greater than the upper-state population ng ⩾ nup, further increasing the absorption.

This effect is clearly apparent in a computation of the absorption in a three-level structure
shown in Fig. 12.22. The parameters (ng = 2n 2; n 1 = 0; Ωinj = Ωact) were choosen such that the
current continuity condition (eqn. 12.2.69) is met. In this example, reabsorption from the
injector strongly decreases the gain.

Injectors in conventional quantum cascade lasers have both the function of selective injection of
carriers into the active region and maintaining electrical stability. Distributing the two
functionalities may actually solve some of the problems raised by the injector reabsorption. For
example, in so-called scattering-assisted injectors, the electrons are actually captured by the
upper-state. This approach was explored initially in the mid-infrared [287], and is presently the
subject of a renewed interest [288]. In this case the electrical stabilization of the structure is
made by the shape of the injector. Another intriguing possibility that was recently investigated
theoretically [289] is to stabilize the structure using the lower state of the laser transition.

(p.246)

The inset of Fig. 12.22 summarizes
the concept: an additional injector is
placed within the structure, in such a
way as to inject it into a state with a
very fast lifetime. In this way the
population of the injector can be
reduced while keeping the same
current. As shown by the
computation shown by dashed lines
in Fig. 12.22, such an approach
enables the reduction of the
reabsorption at the laser wavelength.
However, note that it also (very
naturally) decreases the positive
conductance of the injector, so that
the stability of the structure is also
decreased. An even more promising
approach would be to insert a “slow
and narrow” injector with a long
dephasing time and therefore a
narrow broadening γ. This could be
achieved using transfers to other
valley or quantum dot-based
injectors.
12.3 Full density matrix models
The density matrix approach, presented above for only a pair or a few states has been
successfully used to interpret and predict the transport and gain in devices for both the terahertz
range [183, 198, 290, 291] and the mid-infrared [152, 277]. Generalization to a larger number
of states for mid-infrared quantum cascade lasers are more recent [292, 293].



Fig. 12.23.  Two active periods shown at the
injection resonance (44 kV/cm) of a twophonon
resonance active region, shown in Appendix A.2.4.
The coupling between the subperiods, achieved by
the resonant tunneling (coupling energy matrix Ω for
injection, Ω˜ for extraction), is shown through
injection/extraction barriers. The rate equations from
upper laser state are represented in the active wells of
the second period. The grey shaded layers are doped.
From [293].

Formally, the Liouville time-evolution eqn. 12.2.19 is now written for all the states of the active
region. The choice of a basis of eigenstates on which the transport can be computed is crucial.
Indeed the Fermi golden rule will hold only if the energyspacing between the eigenstates ΔE is
much larger than the broadening γ of the states themselves. For devices with a relatively thick
active-region period comprising a large number of wells, this requirement suggests the use of a
basis that spans only a portion of the structure.

An example of such a basis is shown in Fig. 12.23, where the active-region period is divided
into two sub-periods: the active wells region that includes the laser doublet and the two
depletion states, and the injector region designed to ensure the extraction (p.247) and the
relaxation of the electrons to the next stage. At the splitting barriers the transport is modelled by
sequential resonant tunneling.

It has been shown [72] that the
Liouville equation can be rewritten
as

(12.3.70)
where the operators

(12.3.71)
are the correction to the
Hamiltonian introduced by the
coherent coupling between states.
It is written as

where Ωij is the coupling and Δij is the detuning between state i and state j. The population
decay operator

(12.3.72)
is written as a function of the scattering rate Wik from state k to state i. The loss of coherence is
described by the super-operator

(12.3.73)



(p.248) Finally, eqn. 12.3.70 can be summarized as two main equations for the populations ρii
= ni and for the coherences ρij:

(12.3.74)

(12.3.75)
These equations can be solved in steady-state n˙ i = ρ˙ ij = 0, and after some algebraic
manipulations the equation of motion can be cast into the form:

(12.3.76)
Wik equals to the scattering rate from state k to state i, it sums all the elastic and inelastic
scattering channels discussed in Chapter 5. The resonant-tunneling contribution to the rate
equations reads

(12.3.77)
The effective parameters σij account for electrons tunneling at a constant energy rather than at a
constant wavevector which effectively implements the second-order scattering in the current
calculation. Namely, the parameter σki has the classical distribution considered here:

(12.3.78)
as in eqn. 12.2.48.

According to eqn. 5.0.3, the dephasing time, which relates the loss of the phase correlation
between two states, is computed and has two contributions:

(12.3.79)
The first derives from intersubband transitions, when an electron is scattered from a state of the
resonant doublet to another subband. The second  is the pure phase contribution identified
as intrasubband broadening due to interface roughness scattering as expressed in eqn. 5.3.25.
We have evaluated Γintra at the characteristic energy of the electron distribution kBT, where kB
is the Boltzmann constant and T the electronic temperature.

Addition of the optical field. As discussed already in Section 12.1.2, the optical flux has a
significant influence on the electronic transport. It is therefore desirable to introduce its effect in
the transport using the density matrix formalism. The simplest approach is to introduce it as an
additional scattering channel in a rate equation picture. In such an approximation, if we



consider for simplicity two levels i and j in a sub-period, their equation of motion is affected by
the simulated emission and the absorption as

(12.3.80)

(12.3.81)
where gij is the total net gain between level i and level j. We assume, then, that gij is a linear
functional in the population distributions fi (k) of the subbands, as this is (p.249) the case for
the first-order eqn. 4.4.21 and the second-order gain formula eqn. 12.2.54. The gain between
upper subband i and lower subband j can therefore be rewritten using the gain cross sections 

for states i  and j respectively:

(12.3.82)
This linear form is particularly suited for rate equations, and we can write

(12.3.83)
If we make the assumption that  are computed for an initial population 

, we can estimate the deviation of the initial populations, due to the photon flux

density, by solving these rate equations. In particular, if this system is embeded in a self-
consistent routine on the populations, it will converge to the exact solution. The main advantage
of this technique is to avoid an inhomogeneous term in the global rate equations. Practically, the
gain curve is first computed with populations found with non-radiative processes only. If we
decide to let the laser work at the peak gain gp, given optical losses α for the empty waveguide
(i.e. with no active region loss) and for the mirrors, we obtain a threshold condition

(12.3.84)
where Γ is the modal overlap and

(12.3.85)
is the modal gain, summing all the intersubband contributions (intersubband absorption and
gain). We then match condition 12.3.84 by varying S.

The weakness of this rate-equation approach is that it does not include the effect of the coherent
coupling directly onto the gain profile, but does it only through the population. In particular, it
fails to predict the broadening of the gain curve arising from a too-strong coupling of the upper-
state level to the injector through the injection barrier. A more accurate approach is to introduce



Fig. 12.24.  Simulated light–current–voltage curves
(full lines) for the kinetic balance model and the
electron-lattice thermalization versus experiment
(dashed line) at 300 K. The design described in
Appendix A.2.4. The losses were measured to 5
cm−1, and the modal overlap is Γ ≈ 0.67. From [293].

the coupling to the light directly into the Liouville operator, as was done for a few levels in the
terahertz in [198] and in the mid-infrared in [152].

Comparison with experiment. As an example, we apply the model to a reference two-phonon
quantum cascade laser processed in a buried heterostructure [62]. For the simulation we have
taken typical parameters for the various scattering mechanisms; the interface roughness is
modeled with a value of Λ = 90 Å for the correlation length of the steps, Δ = 1.2 Å for the step
height, and κ = 15 Å for the correlation length between interfaces as obtained from previous
experiments with different Ga0.47In0.53As/ Al0.48In0.52As heterostructures [61, 266].

As this model does not solve directly the distribution in k-space, two different approaches were
compared. In the first one, a very strong intrasubband electron– electron scattering was assumed
that brought all the subbands to the same electronic (p.250) temperature using eqn. 12.1.14. In
the other approach we assumed that the minority of hot carriers would cool fast enough not to
heat the electrons inside the injector levels. This result is shown by the simple k-resolved rate
equation shown in Fig. 12.6 that predicted a negligible electron heating (  10 K) for the lower
states of the active region at J =3 kA/cm2.

The two simulated current–voltage curves are compared in Fig. 12.24. A very good agreement
is obtained when assuming that the electrons are at the temperature of the lattice. In contrast,
the global kinetic balance model is too pessimistic. Note that the excellent agreement between
the model and the experiment is achieved in the virtual absence of the fitting parameter: the
doping was the nominal one from MBE calibration, and an additional waveguide loss αw,scatt
due to scattering from the sidewalls was assumed. The active-region loss is computed implicitly
by eqn. 12.3.85, while a Drude model was assumed for the waveguide cladding layers.

The kinetic balance probably
overestimates the electronic
temperature of most subbands: at the
injection resonance (J = 5.2
kA/cm2) with a lattice temperature
of 300 K, the electronic temperature
is computed near 600 K. This can be
explained by examining the laser
transition more closely. In both
cases of an electron injected in the
upper laser state with no excess of
kinetic energy that undergo a non-
radiative scattering, optical phonon
emission or elastic scattering will
end up in the lower subband with a
high in-plane momentum. The
model will then try to represent
these hot electrons with a thermal
distribution, causing a strong
heating of all the subbands. (p.251)
The overestimation of the electronic
temperature of the injector subbands
generates a backfilling in the active wells that account for the strong threshold current increase.



Fig. 12.25.  (a) Comparison between theory and
experiment of light–current curves for the two
extreme temperatures. (b) Threshold current versus
lattice temperature. Simulated values are represented
with circles for the electron-lattice thermalization,
with triangles for the kinetic balance model and with
squares for the experiment. The solid lines are fits
with an exponential dependence. From [293].

In fact, we can estimate the average time τ¯ spent by an electron in the activewells region. For
an applied electric field of 34 kV/cm in the middle of the dynamic range, we compute the sum
of the carrier density in the subbands of the active-wells region na ≈ 0.26 · 1011 and the
corresponding current density J ≈ 2.6 kA/cm2. Using J = ena/ 2τ¯ we have τ¯ ≈ 1.6 ps. During
this time the electron can emit approximatively 8 optical phonons [294, 295], using 200 fs as
the emission rate of bulk optical phonons. This allows the electron to lose ≈ 256 meV of kinetic
energy, largely covering he energy gap formed by the optical transition and the phonon
resonances designed between the lower states of the active wells. The majority of the electrons
have therefore no excess of kinetic energy when they are extracted to the injector region. In the
injector itself the transport is achieved by direct scattering between a dense collection of states
that allows efficient thermalization.

We now test the model on a wide range of temperatures. Fig. 12.25a shows the light– current
curves at T = 240 K and 400 K, showing again a very good agreement for the threshold current
density and slope efficiency. The temperature dependence of the threshold current density is
shown in Fig. 12.25b, and is fitted by the usual exponential dependence I = I 0 eT/T0. The value
extracted from measurements is T 0 = 174 K. The

simulated value with the kinetic
balance model is T 0 = 111 K, while
the result for equal lattice and
electron temperatures is T 0 = 155
K, in better agreement with the
experiment.
A different situation is, however,
observed in strained compensated
structures where the electronic
temperature was measured clearly
above the lattice temperature
[244]. The simplification made
here no longer holds, as the
energy gap between the upper
laser state and the injector ground
state is much larger.

(p.252) The validation of this
model enables us to predict quantities that are not accessible directly by experiment, like the
injection efficiency. We can readily compute it as η inj = J upper/J total, where J upper is the
current flowing into the upper laser state from the injector region, and J total the net current
through the injection barrier. We find a value of η inj ≈ 0.86.

12.4 Monte Carlo
In the Monte Carlo approach, the time evolution of the distribution function f kα is computed
using a Boltzman-like equation:

(12.4.86)



Where  is the scattering probability for an electron belonging to subband α and in-plane

wavector k to scatter to state α′ and in-plane wavector k′. This approach was introduced in
quantum cascade lasers by Rossi and Iotti [296]. It can be used to compute the full, k-resolved
electron distribution. The Boltzman-like eqn. 12.4.86 reflects the balance between probabilities
of incoming and outgoing electrons in the eigenstates of one period. In this respect it can be
interpreted as a rewriting of a rateequation model 12.1.3 with k space resolution, and suffers
from the same limitations. The introduction of quantum coherences requires a generalization of
eqn. 12.4.86 to a density-matrix formalism, as discussed by Iotti and Rossi [269].

An ensemble Monte Carlo has been used recently to compute the characteristics of quantum
cascade lasers operating at cryogenic temperatures and presenting very high wallplug
efficiencies [150], and in which, therefore, photon emission is an important transport channel.
In Fig. 12.26 the computed light intensity and the wallplug efficiency is compared to the
measured values [297]. Due to this ensemble Monte Carlo technique, the authors also
demonstrated the effect of the photon transport on the k-distribution of the electrons.

12.5 Non-equilibrium Green’s function
Non-equilibrium Green’s functions allow for a consistent combination of scattering and
coherent evolution, and are subject to a growing interest. This approach is based on the seminal
work of Kadanoff and Baym [298] and Keldysh [299]. The first application of Non-equilibrium
Green’s functions to the transport in QCL is due to Wacker [268,300]. The reader is referred to
these articles for a thorough presentation of this method, and here we will outline only some of
the features of this technique.

In this approach [301], quantum-mechanical coherences are represented by offdiagonal
elements of the G  (E) correlation function, which is related to the density matrix by

(12.5.87)
The theory is formulated with the usual envelope function basis states:

(12.5.88)
(p.253)

Here χ α,k(z) is the envelope
function in the growth direction z.
The wavevector k and the spatial
coordinate r are two-dimensional
vectors in the plane of each
semiconductor layer with
normalization area S. A numerical
challenge is that the correlation
function can only be solved self-
consistently with the self-energies
for each scattering process. This
leads to a very numerically intensive



Fig. 12.26.  Comparison between the computed and
measured light-current (a) and wallplugcurrent (b)
characteristic for a high efficiency cryogenic QCL
[150]. The computations are performed using an
ensemble Monte Carlo technique. Reprinted with
permission from [297]. Copyright 2011, AIP.

Fig. 12.27.  Plot of the spatiallyand energy-resolved
current J 0 for a mid-infrared Al0.45Ga0.55As
quantum cascade laser. Reprinted with permission
from [301]. Copyright 2006, APS.

algorithm. As an example, the self-
energies and correlations for the
interface roughness scattering 

 will have to satisfy, in
(p.254) the Born approximation,
the equation

(12.5.89)
and the Keldysh equation

(12.5.90)
The knowledge of the correlation function in turn enables us to compute the global quantities
such as the energy-resolved current density [301]:
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(12.5.91)
A plot of J 0(E, z), given by eqn. 12.5.91 is shown in Fig. 12.27, computed for a midinfrared
Al0.45Ga0.55As quantum cascade laser at 77 K [301]. Note that the current escape from the
active region occuring at high kinetic energy for both lower subbands. Such a plot yield
precious information on the current path across the structure.

Knowledge of the correlation function also enables the computation of physically relevant
quantities such as the total current or the optical gain. In fact, the scatteringassisted or Bloch
gain between subbands, derived using the density matrix as shown in Section 12.2.3, was
simultaneously derived using the non-equilibrium Green’s function approach [300] and shown
to be naturally included in it.

Notes:

(1) position must be handled carefully; a cleaner derivation is provided in[72].

(2) This result can also be obtained by expanding the Hamiltonian in powers of the field
strength and identifying the first order.
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13.1 High-frequency modulation
Because of the specific properties of intersubband transitions, dynamical properties of
quantum cascade lasers are expected to be very different from those of interband lasers.
The first and foremost feature of intersubband transitions is, as shown in Chapter 5, the
very fast non-radiative intersubband scattering, proceeding on a timescale of 1 ps or less.
As a result, and in strong contrast with interband transitions, the transition is limited by
radiative processes only for high optical powers far above laser threshold. A first analysis
of the dynamical behavior of quantum cascade lasers can be performed using time-
dependent rate equations. Repeating, for convenience eqn.7.4.4, introducing the cavity
photon lifetime:

(13.1.1)



Fig. 13.1.  Comparison between the small signal
response of a quantum cascade laser (thick solid
curve) and a semiconductor laser (thin solid curve)
as a function of the normalized angular frequency ω′.

(13.1.2)

(13.1.3)
Since these equations do not have, in general, an analytical solution, a small signal analysis
is commonly performed, exploring small harmonic variations of the timedependent
quantities J, S, ni around a steady-state operating point. One therefore writes

(13.1.4)

(13.1.5)

(13.1.6)
and substitutes in eqn. 7.4.4, keeping only the terms in first order of the time-dependent
quantities. The results are best understood when written in terms of the stimulated lifetime

(13.1.7)
In the limit of vanishing lower-state lifetime τ 2 → 0, and negligible backfilling 

, the modulus squared of the transfer function h(ω), defined as

(p.256)

(13.1.8)
has the following frequency
dependence:



In both cases the stimulated lifetime is ten times the
cavity lifetime. In the interband device the electron-
hole recombination time is assumed to be a thousand
times the photon lifetime.

Fig. 13.2.  Theoretical computed frequency response
of a quantum cascade laser in the limit of no lower-
state population. Photon lifetime is assumed to be τp
= 10ps. Lower curve, laser close to threshold with

(13.1.9)
Eqn. 13.1.9 shows that the frequency response of quantum cascade lasers depends on the

interplay between the three characteristic times , τstim, and τp. The
results can be best understood by rewriting the expression as a function of an effective
frequency ω′ such that

(13.1.10)
which leads to the expression

(13.1.11)
which is a simple second-order response function with a corner frequency defined by ω′ =
1. In interband semiconductor lasers, a similar expression can be derived but where the τup
is the electron-hole recombination lifetime, much longer than the photon lifetime. As a
result, for low optical powers (τstim ≫ τp) the expression  and

the response has a resonant response around ω′ = 1. Both cases are compared in Fig. 13.1.
The maximum frequency response of a quantum cascade laser can be directly estimated by
eqn. 13.1.9. For a typical optical cavity loss of αtot = 10 cm−1, the photon cavity lifetime is
about 10 ps. Assuming zero lower-state (p.257)

lifetime, the stimulated lifetime
can be simply estimated by how
much above the threshold
current jth the device is
operated:

(13.1.12)
In a typical device operated
at room temperature, the
upper-state lifetime is about
τup = 0.6 ps and the device
can be driven at twice the



τstim = 6ps, thick upper curve the current is twice
threshold and τstim = τup = 0.6ps. The dashed line
corresponds to a -3dB response.

Fig. 13.3.  Comparison between the theoretical
computed frequency response of a quantum cascade
laser in the limit of no lower-state population (thin
solid line) and with the lowerstate lifetime relatively
close to the upper one, τ 2 = 0.5 ps (thick solid line).
Photon lifetime is assumed to be τp = 10 ps. Lower
curves, laser close to threshold with τstim = 6 ps.

threshold without reaching
gain saturation, so that τstim =
0.6 ps.

The frequency response,
computed just above threshold and at twice the threshold, is compared in Fig. 13.2. The 3
dB modulation frequency bandpass extends up to about 11 GHz, with a significant
modulation capability extending up to 100 GHz. The frequency bandwidth being
proportional to the , an even wider frequency response can be obtained at the
cost of larger optical losses and by operating even further above threshold. Indeed, very-
high-frequency modulation 3 dB cutoffs above 50 GHz have been predicted for terahertz
devices with large optical losses operating high above threshold.

An expression can also be derived in the case of a laser with a finite lower-state lifetime. As
shown by its explicit expression, it does not contain ntherm:

(13.1.13)
The previous expression is compared to that derived for vanishing lower-state lifetime in
Fig. 13.3 in a case where the lower-state lifetime is close to the upper one (τ 2 = 0.5 ps).
Interestingly, the storage of electrons on the lower state is responsible for an enhancement
of the high-frequency response at frequencies above 100 GHz.

(p.258)

Of course, the rate equations Eq
7.4.4 can be solved directly by
numerical methods. As an
example, the response to a
double step current function is
shown in Fig. 13.4. As
expected, the dynamics of the
populations, driven by the
intersubband times, is much
faster than that of the photon
population, driven by a
combination of the cavity and
stimulated lifetimes. The very
low value of the spontaneous
emission rate, combined with a
clamping of the non-saturated
gain explains the relatively long
turn on time of the laser, here
shown to be about 400 ps.



Upper curves, high optical field situation where τstim
= τup = 0.6 ps.

Fig. 13.4.  Computed values of the upper and lower
sheet electron densities n 3 and n 2, as well as the
photon flux s per period for a quantum cascade laser
driven by a current with stepwise changes. Grayed
regions are the ones where a finite current is driven
through the device, with the value indicated directly
on the graph. The threshold current of the specific
device is 1.02 kA/cm2.

13.1.1 Electrical response

The frequency response
discussed in the previous
paragraph completely
neglects all the electrical aspects of the devices. Assuming one is able to remove all
parasitic components, the fundamental limits of the frequency response can be estimated by
the RC time product for an active region with a number of periods Nper of an area A:

(13.1.14)
The normalized differential resistance  should in principle be deduced from a model of

the transport across the injector. Simulations and experiments show that, in midinfrared
quantum cascade lasers, the equivalent of the whole dynamical current range (of Jmax =
3kA/cm 2 in typical high performance QCLs) is covered over a field range of 20 kV/cm2.
This number can be estimated as the ratio of the typical intersubband broadening parameter
Γ = 20 meV divided by the distance between the injector and upper-state wavefunction
(typically 10 nm). Using these numbers, an RC time constant of 7 ps, corresponding to a 3
dB cut-off frequency of 1/(2πRC)= 21GH z. This number could be increased by a larger
Jmax, obtained by higher active-region doping and a better injection design (p.259)

.

13.1.2 High-frequency
modulation experiments

The first measurements of the
fast optical response of
quantum cascade lasers by an
electrical drive were limited
by parasitic capacitances and
response time of the detectors
[302]. These early
measurements, performed at
cryogenic temperatures,
established unequivocally the
absence of the relaxation
resonance peak in the high-
frequency response [303].
The use of multi-section
devices was also investigated
as a mean of increasing the
frequency response of these
devices [304].



Fig. 13.5.  a) Normalized differential transmission
signal at 275 mA bias current in a QCL operating at
λ ≈ 4.6 μ m. The dashed line is the rate-equation fit.
b) Gain recovery time constants at various bias
currents. Threshold is indicated as a black tick mark.
The filled squares correspond to the superlattice
relaxation; the dashed line is the calculated dielectric
relaxation in superlattice, taking into account the
inhomogeneous effective electric field at each bias
current. The filled circles correspond to the resonant
tunneling injection from the injector ground state and
upper lasing state. Adapted with permission from
[309]. Copyright 2008, AIP.

In the terahertz, the use of metal–metal waveguides is especially well suited for high-
frequency modulation experiments, as the waveguide performs well in both microwave and
terahertz frequency ranges [305]. Direct modulation has been performed and characterized
at 13 GHz [306], and modulation at a frequency of 35 GHz has been used for injection-lock
multimode operation [307].

The use of mid-infrared pump–probe experiments enable the study of tQCL ultrafast
properties without suffering from the limitations imposed by the electrical circuits. In a
series of experiments, the group led by T. Norris has studied the dynamical properties of
quantum cascade lasers based on highly diagonal transitions [308], where photon-driven
transport is especially efficient, as well as on traditional two-phonon designs [309]. The
results achieved on the latter design are summarized in Fig. 13.5. The differential
transmission as a function of time delay between pump and probe shows a dip
corresponding to the saturation of the gain, followed by a recovery with two characteristic
times: the fast one (occurring in a subpicosecond timescale) originates (p.260)

from the active region
dynamics, while the second one
is attributed to the transport
within the superlattice miniband
and the injection process. Note
that the latter was neglected in
the simplified rate equation
approaches shown above.
As shown in Fig. 13.5b, both
time constants decrease as a
function of the increasing
applied electric field. As
expected, from the above
rate-equation analysis, the
onset of stimulated emission
above threshold (here at Ith =
245 mA) will speed up the
active region dynamics.
Similarly, the transport in the
injector miniband will also
show a faster response as the
field is increased, while being
maintained below the onset
of negative differential
resistance. As shown in Fig.
13.5b, this time can be
predicted reasonably well by
a superlattice model with an Esaki–Tsu field-velocity relationship [309].



Note that the recovery time found at the largest bias, 2 ps, corresponds to a -3dB
modulation limit of 70 GHz, demonstrating experimentally the modulation capabilities of
QCLs (p.261) .

13.2 Multi-mode instabilities
As shown by the very broad tunability of external cavity devices (for example, in Section
10.3), especially those based on heterogenous cascades, the quantum cascade laser can
exhibit very wide-gain bandwidth. It is therefore natural to ask whether such a device can
be mode-locked. In fact, such a mode-locking would be extremely interesting for
spectroscopie applications; the application of a very short pulse source in the mid-infrared
could be numerous, for pump–probe spectroscopy of rotovibrational modes of molecules.

In a traditional mode-locked device, the cavity modes are equally spaced and their
respective phases are the same (or have a trivial linear shift) [310]. As a result, in the time
domain, the optical output consists of a train of short pulses spaced by the cavity round-trip
time. In practice, actually, the requirements are often reversed: a saturable absorber favors
(i.e. lowers the average loss for) the appearance of a pulse train, ensuring therefore both the
exact spacing of the modes as well as the correct phase factors. Similarly, demonstration of
mode-locked operation is based on the measurement and characterization, in the spectral
and time domains, of the output pulses train.

For this mode-locked operation to be favorable compared to the continuous wave operation,
the lifetime of the upper-state must be much longer than the cavity roundtrip time, ensuring
that the energy of the inverted system can be stored until it is transferred to the pulse
circulating in the cavity. Unfortunately, high-performance quantum cascade lasers operating
at room temperature completely fail under that criteria, as the lifetime of the upper-state τup
≈ 0.5 ps is much shorter than the round-trip cavity time of τrt = 2nL/c = 42 ps for a 3 mm
long cavity device. As a result, the pumping energy cannot be stored in the material during
a cavity round-trip to feed a single optical pulse running in the cavity. Such a ratio of
lifetimes is very uncommon among laser systems; for a typical solid-state laser the upper-
state radiative lifetime is easily 103 longer than the cavity round-trip time. Of course, the
upper-state lifetime of a quantum cascade laser can be engineered to much longer values by
using a diagonal transition [67]; however, the use of such design parameters usually impact
negatively on room-temperature device performances.

One should note, however, that comb operation, in which equally spaced modes are locked
with an “arbitrary” phase shift, is also extremely interesting for its applications in
spectroscopy. Actually, a replacement for the Fourier spectrometer has been proposed based
on the operation of two such combs with slightly different repetition frequencies [311].

Coherent instabilities had been observed in quantum cascade lasers devices operated in
continuous wave. As shown in Fig. 13.6, in relatively high-power devices, the spectrum
would switch abruptly from single mode to highly multi-mode operation over a significant
total bandwidth (  50 cm−1) [312]. In addition, photocurrent measurements on a very fast
photodetector yielded a strong radio-frequency component at the frequency corresponding



Fig. 13.6.  a) V–I and L–I curves and b) optical
spectra versus pumping ratio j/jth above threshold
obtained in continuous wave at 300 K with a 3 μ m
wide ridge laser emitting at 8.38 μ m. c) Spectral
splitting and twice the Rabi frequency ΩRabi/2π
versus square root of output power collected from a
single laser facet. The dashed line is a least-squares
linear fit of the data. Reprinted with permission from
[312]. Copyright 2008 by the APS.

to the round-trip frequency of the chip. The relatively high spectral purity of this beat tone
lead the first groups to mistake them for evidence of pulse mode-locking [313] (p.262)

.

13.2.1 Origin of the multi-mode
instabilities

The origin of these
instabilities was discussed in
detail in [312]. A key role is
played by spatial hole
burning. As compared to
conventional semiconductor
lasers, the quantum cascade
laser operates in a different
regime of parameters that in
particular favors the effect of
spatial hole burning in
Fabry–Perot cavities.
Intuitively, the standing wave
created by the lasing mode
burns holes in the electron
upper-state density, reducing
locally the gain, and favoring
other longitudinal or
transverse modes that exhibit
a large field overlap with
these high-gain regions. This effect is favored in QCLs because the upper-state is
characterized by very low density and a relatively limited electron mobility due to the many
interfaces. The in-plane diffusion time of the gain grating is written as

(13.2.15)
where D is the diffusion coefficient of the carriers and k = 2πnrefr/λ the wavevector of the
gain grating. We can estimate the diffusion constant D using Einstein’s relation

(p.263)

(13.2.16)
where kB is Boltzman’s constant and T the temperature. At T = 300 K, and for an electron
mobility of 3000cm 2/V s, the diffusion constant is D = 77 cm2/s. Indeed, for a wavelength
of λ = 8 μm the diffusion time τdif f = 20 ps is much longer than the upper-state lifetime τup



= 0.5 ps. As a result, spatial hole burning effects will be dominant but also very fast, as the
lifetime of the gain grating is equal to the upper-state lifetime.

Another characteristic of quantum cascade lasers is their large Rabi frequency of the laser
transition ΩRabi= zudE/ , due to the high optical powers circulating in the cavity and in the
large value of the dipole matrix element zud. Using the Bloch equations for the upperand
lower-state population, a Risken–Nummedal–Graham– Haken (RNGH) instability [314,
315] is predicted, in which a parametric gain appears, peaking at ±ΩRabi off the center laser
frequency. However, the assumption of the presence of a saturable absorber is necessary to
lower the predicted threshold for this parametric gain from 10 times the threshold current,
obtained without saturable absorber, to 1.5 times the threshold which is the typical value
observed for the onset of multimode instabilities in quantum cascade lasers. The key
evidence presented for the presence of the RNGH instability is the presence, in the laser
spectra of some lasers, of two groups of modes whose frequency separation was equal to 2
ΩRabi. An example of such a situation is shown in Fig. 13.6. The respective strength of the
spatial hole burning and of the RNGH instability remains unclear. One problem is that the
nature of the saturable absorber effect was never fully clarified. One assumption was that it
originated from a Kerr self-lensing that would decrease the losses originating from the
interaction of the mode with the sidewalls in ridge lasers. Such an effect would appear
mainly in narrow devices processed in the ridge process. However, similar behavior with
two group of modes separated by about 40 cm−1 was also observed in buried
heterostructure lasers [225], where lateral scattering from the waveguide sidewalls should
be minimum.

Four wave mixing processes (degenerate and non-degenerate), driven by a nonlinear
susceptibility χ (3), will also favor the proliferation of modes, as they do in high-Q
microcavities [316]. In fact, the non-linear interactions mentioned above can also be
described by effective χ (3) interactions.

13.2.2 Autocorrelation experiments

The low pulse energy, as well as the fact that the signal was in the mid-infrared made the
typical pulse characterization using autocorrelation onto a non-linear crystal by detection of
the second harmonic component unachievable. As shown in the inset in Fig. 13.7a, to
characterize the output of the quantum cascade laser structures a different approach was
used in which the beam, after passing through a Michelson interferometer, was focused
onto a two-photon quantum-well infrared photoconductor [317]. In this detector, the
photocurrent  is proportional to the fourth power of the beam’s electric field 

.

Let us define the normalized quantity (τ), equal to the ratio of the photocurrent at the
output of the interferometer compared to the sum of the photocurrent from (p.264) each
arm. Assuming a 50:50 beam-splitter and a stationary process, we therefore have



(13.2.17)
which can be expanded to

(13.2.18)
where

(13.2.19)
and

(13.2.20)
As a function of optical delay, the quantities containing G 1 (τ) will average to zero over
one optical period, as they all contain terms of the form eiωτ or e 2iωτ. As a result, a period-
averaged measurement of  will yield G 2(τ), from where the value of the second-order
correlation function g (2)(τ) can be obtained, using

(13.2.21)
assuming that the intensities are asymptotically uncorrelated with large time separation.

Using eqn. 13.2.18 enables the evaluation of the interferometric autocorrelation for various
possible output laser pulses. Let us first consider the case of a pulsed modelocked laser
where a single pulse of pulse length δt bounces back and forth in the cavity. In that case, for
τ = 0 it is obvious, using eqn. 13.2.17, that (0) = 8, while for τ  δt, inspection of eqn.
13.2.18 yields (τ) = 1 as G 2(τ) = 0. We then have the well-known result that

(13.2.22)
The measurements of the interferometric autocorrelation performed in the devices
discussed in detail in [312] are shown in Fig. 13.7, and yield a measured ratio (0)/ (τ)
between 8:2 and 8:3. This ratio unambiguously confirmed that these instabilities were not
consistent with single-pulse mode-locking [312]. Nevertheless, the spectrum of the
intensity of the same device, taken by focusing the laser output on a fast quantum-well
infrared detector and measuring the electrical spectrum of the current using an RF spectrum
analyser, is shown in the inset of Fig. 13.7. A beat note of 13 MHz FWHM linewidth is
clearly visible at the round-trip frequency of 22 GHz for this 2 mm long device. In [312] a



Fig. 13.7.  a) The experimental set-up of a two-
photon autocorrelation measurement. Inset:
conduction-band diagram of the two-photon QWIP
showing three equidistant energy levels. b) A
second-order interferometric autocorrelation trace of
an 8 μm wavelength ridge QC laser. Inset:
microwave beat note spectrum of photocurrent
generated by a similar laser under the condition of
RNGH instability, showing a peak at the round-trip
frequency. Reprinted with permission from [312].
Copyright (2008), APS.

number of experiments are reported in which the accurate shape of the interferometric
autocorrelation line, as well as the width of the beat note, is varying as a function of device
design, operation temperature, and ridge width (p.265)

.

13.2.3 Multi-mode with random
phases

Given the fact that the
interferometric
autocorrelation signal is not
the one expected from a pulse
mode-locking source with its
8:1 ratio, it is interesting to
look at a more generic
frequency comb model. In
the latter we assume that the
non-linear coupling
introduced by the spatial hole
burning effect effectively
enhances the width of the
gain curve, bringing a set of
N equidistant modes, spaced
by Δω, above threshold. We
further assume that these modes have a (complex) amplitude Ek exp(iϕk(t)) where the
phases ϕk(t) are completely random:

(13.2.23)
Beat note at the round-trip frequency.The intensity is then

(13.2.24)
which can be rewritten by grouping the terms having the same values of m = |l − k| as a sum
over mode pairs m = l − k as

(13.2.25)
We can restrict the sum to positive values of m by grouping the terms k, m and k + |m|, −|m|:

(13.2.26)



Considering, for example, the term at the round-trip frequency Δω, we have

(p.266)

(13.2.27)
This term has the form of a random walk, and if one assumes for simplicity that all N
modes have the same amplitude E, the average intensity at the round-trip frequency,
proportional to the current in the photodetector, is just

(13.2.28)
As a result, the presence of a peak of the photocurrent at the round-trip frequency arises
even for equidistantly spaced modes with random respective phases.

Interferometric autocorrelation.Similarly, the interferometric autocorrelation can also be
predicted in this case. Looking first at the intensity:

(13.2.29)
If the phases are changing with time, the average contains only the terms j = k, and we
obtain

(13.2.30)
assuming the amplitude of the modes are equal. The intensity correlation is therefore

(13.2.31)
We agree that the only way to prevent the average of the phases e i(ω j − ωk)t  from
being non-zero is to force the conditions j = k, l = m, the other being j = m, k = l. Taking the
first possibility,

(13.2.32)
The second possibility is



Fig. 13.8.  Numerical simulation of the
interferometric autocorrelation (τ) for the case of a
multi-mode laser with random phases (a) or a single
mode but noisy laser (b).

(13.2.33)
This term very rapidly vanishes because the sum over all modes of the oscillatory
component will tend to zero for large τ. Asa result, we have that

(13.2.34)
(p.267)

Using the same line of
argument, we also obtain that
for the case τ = 0, the second
line in eqn. 13.2.18 also
contributes 2NE 4 and 8NE 4

respectively. As a result, we
obtain for the ratio

(13.2.35)
As expected, the degree of second-order coherence for such a laser is that of an incoherent
source g (2)(0) = G 2(0)/G 2(∞)= 2.

Another extreme case can also be investigated: that of a single-mode laser, in which the
linewidth is limited by phase jumps. In this case, amplitude fluctuations are cancelled and
the quantity I(t)I(t + τ)  = I(t) 2. We therefore have for the interferometric

autocorrelation the ratio . As shown in Fig. 13.8, these results are also

supported by numerical simulations. This situation also corresponds to that of an FM
modulated laser.

Efficiency of second harmonic generation. Another procedure that has been used to
evaluate the nature of the emission is the efficiency of generation β 2ω of the second
harmonic [318] emitted in specially designed quantum cascade lasers, as the latter is
sensitive to the square of the instantaneous intensity and can be written as proportional to
the term



Fig. 13.9.  a) Numerical computation of the second
harmonic enhancement β 2ω in a multimode laser, as
a function of the number of modes with random
phases. b) Measured second harmonic power below
and above the threshold for multimode emission, as a
function of laser power in log–log plot. The two fits
performed below and above the onset of multimode
emission have a slope of 2, and correspond to a ratio
of efficiencies of 3.2, close to the value expected for
a multimode laser. Reprinted, with permission, from
[318]. Copyright 2004 IEEE.

(13.2.36)
We show here that the multi mode operation with random phases also predicts a
enhancement of this quantity by a factor of 3. To evaluate the quantity |E(t)| 4 we have
to be a little more careful and write the electric field as a real quantity:

(13.2.37)
The evaluation then yields

(13.2.38)
(p.268)

where the quantities Δωjklm and
Δϕjklm are given by all the
combinations of

(13.2.39)
and

(13.2.40)



The average is non-zero only when Δωjklm and Δϕjklm vanish. This requires the conditions
(j = k, l = m), (j = m, k = l), (j = m, k = l), each with four possibilities for the signs (two for
each pair of indices). For equal amplitudes of the electric fields of each mode, the sum of
the 12N 2 possible non-zero terms yield a total value of

(13.2.41)
Applying the same procedure for the electric field squared yields

(13.2.42)
We therefore obtain for the normalized efficiency of generation

(13.2.43)
This value is well supported by the experimental data of [318], as shown in Fig. 13.9.

In conclusion, instabilities in quantum cascade lasers are operating in a very different
regime of parameters compared to the solid-state and semiconductor lasers.

(p.269) The very fast gain recovery stabilizes the device against Q-switching and even
modelocking, and on the other side the non-linearities of the active region, originating from
either the spatial hole burning or the strong field effects, will try to destabilize the single-
mode operation and promote multi-mode operation. The main experimental observations
are consistent with a situation where equally spaced modes are interfering, but the
respective mode phases not constant or linear with frequency, as required for single pulse
mode-locking. In fact, one could go one step further and assume that the very fast recovery
time of the gain material will favor a situation where the intensity of the beam is as constant
as possible. Actually, recent measurements on broadband quantum cascade lasers have
shown that the latter can be made to operate as room temperature frequency combs1

covering 60-100cm−1 and with an intermode beat as narrow as 10Hz. Furthermore,
measurements of the relative phases using a beatnote spectroscopy technique demonstrated
that these relative phases were very close to the ones of a perfectly FM modulated laser.

13.2.4 Active mode-locking

Active mode-locking of a quantum cascade laser has been attempted, usually by
modulating a section of the laser at the round-trip frequency and therefore forcing the mode
to have equal phases. Mode proliferation has been observed in [319], but true pulsed mode-
locking has been achieved only in an experiment where a special active region based on a
highly diagonal transition, with a very long upper-state lifetime, was designed for this
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purpose. Mode-locking has been measured at cryogenic temperature (T = 78 K) over a
bandwidth of about 15cm−1 at 1585 cm−1 [320].

In the terahertz, a bound-to-continuum laser has also been mode-locked by RF injection
and phase-locked onto a fiber laser [321]. This enabled the electric field of the terahertz
waveform to be sampled coherently by a second femtosecond laser using an asynchronous
sampling technique, and this way, imaging the pulse electric field as a function of time.
Pulse lengths in the range of 10 ps were achieved, corresponding to the bandwidth of 200
GHz of the up to ten modes locked together. The experiments were carried over at T = 20
K, as limited by the QCL gain medium.

Notes:

(1) A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, Mid-infrared frequency comb
based on a quantum cascade laser Nature, vol. 492, pp. 229233, (2012)
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The speciffic features of QCLs—operation in a very large-frequency range, high operation
temperature, and the capability to operate them with a high modulation frequency—have
driven their use in applications. In return, the latter have also conditioned the research in
this device. The high-power, high-wallplug-efficiency development of the quantum cascade
laser has been driven mostly by countermeasures. The prospect of developing a mid-
infrared free space optical link has raised the interest in the high-frequency modulation
capability of this device. Finally, spectroscopie applications have stimulated the
development of devices over a very wide frequency range with single-mode tunable
operation.

14.1 Energy deposition
Many types of man-portable air-defense systems (MANPADS) use an infrared sensor to
home in on a heat source on an aircraft. High-power quantum cascade lasers, due to their
brightness, small size, and efficient generation of infrared light, are considered to be an
ideal source to produce an infrared beam that can be used to disturb the guidance system of



Fig. 14.1.  Transmission of the atmosphere and
location of potential free space optics transmission
windows a 800nm, 1.5 μm, 3–4 μm and 8–10 μm.

an infrared-guided missile. Another countermeasure scenario using quantum cascade lasers
consists in using high-power quantum cascade laser sources in the form of laser pointers to
disturb highly sensitive thermal cameras that are used in military equipment such as tanks
and helicopters for night vision. Finally, their use as a beacon or target designator has also
been considered.

14.2 Telecommunications

One application of quantum cascade lasers is its use as the optical source for a freespace
optical link, transmitting telecommunication signals through the atmosphere in a direct line
of sight. In contrast to fiber-optical telecommunications, this technique has the advantage
that it does not require additional cables to be buried in the ground, leading to very low
installation costs. In urban areas where large amounts of fiberoptical connections already
exist, fast free-space optical datalinks could be particularly convenient as a means of
momentarily increasing the bandwidth between two points. Another interesting application
area is to create high-bandwidth access in countries where very little ground infrastructure
exists or to connect mobile phone antennae to the fiber backbone.

The choice of the wavelength for such a free-space optical link must combine a number of
conflicting requirements:

• Transparency of the atmosphere.
(p.271)
• Availability of
high modulation
frequency low-
cost hardware at
the operation
wavelength.
• Limitations in
optical power
caused by eye
safety
considerations.
• Alignment
tolerances and effects of diffraction.
• Effect of solar scintillation.
• Effect of fog and rain.

Fig. 14.1 shows the transmissivity of the atmosphere at sea level for a clear day over a 7 km
pathlength. One can clearly distinguish at least four possible windows for free-space optic
communications, at wavelenths of 800 nm, 1.5 μm, 3–4 μm, and 8–10 μm. From the two
near-infrared wavelengths, the λ = 1.55 μm wavelength has the clear advantage of the
availability of hardware, potential seamless integration with fiber optics, and relatively eye-
safe operation, while the 800 nm offers the possibility of better detectors (Si avalanche
photodiodes). However, as shown in Fig. 14.2, these wavelengths are closer to the peak of
the solar spectrum, and therefore the link quality may be perturbed by scintillation from



Fig. 14.2.  Solar irradiance as a function of
wavelength. Solar glare is a major limitation of FSO
that significantly decreases with increasing
wavelength.

dust or objects in the atmosphere. The shorter wavelength of these near-infrared channels
plays both in a positive way, by decreasing the diffraction losses but at the same time
negatively by also decreasing the alignment tolerance. In comparison, mid-infrared
channels at 3–4 μm and 8–10 μm operate with a lower solar glare, and offer very eye-safe
operation, since the light is not even transmitted through the cornea. The longer wavelength
offers a good compromise between the size of the optics and the alignment requirements.
However, clearly the most attractive feature of mid-infrared is the potential to suffer much
less from scattering by fog particles as compared to the visible. Indeed, if one considers the
fog as consisting mainly of spherical drops of about 1 μm size, the λ −4 dependence of the
Rayleigh scattering with wavelength should reduce dramatically the losses in fog, greatly
increasing the possible link distance.

It is, however, difficult to back these qualitative considerations by more hard data. Since
fog conditions are to a large extent dependent on the location, and temperature, and are
difficult to reproduce, the majority of the link evaluations are carried out using numerical
models. It is generally agreed that the key advantage of the mid-infrared, as compared to
the near-infrared, is to extend a high-availability link distance by a factor of 3 to 10,
depending on the nature of the fog, from 200 m to about 1 km [322].

(p.272)

The high-frequency modulation
characteristics of the quantum
cascade laser discussed in
Chapter 13, as well as its high
operation power, are two very
favorable features for free space
optical link applications.
Initial experiments have been
carried out using first
cryogenically cooled [323,
324] and then Peltier-cooled
lasers and detectors [325],
demonstrating modulation
frequencies in the megahertz
range. The results from a
prototype system developed
by the company Maxima are
shown in Fig. 14.3. Eye
diagrams of a modulated
beam are compared directly
in the laboratory and after
propagation through 810 m of
atmosphere. The
development of such links
using cascade lasers is



Fig. 14.3.  Experimental data transmission using a
quantum cascade laser at 9 μm. a) In the laboratory.
b) Through an 810 m long link. Data courtesy of J.
Plante, Maxima corp.

Fig. 14.4.  Maximum operating temperatures for
continuous (squares) and pulsed (disks) operation, as
reported in the literature.

expected to greatly increase
with recent improvements in
wallplug efficiency, operating
temperature, and optical
power of the most recent
quantum cascade laser
sources.

14.3 Gas-sensing
Quite naturally, the foremost feature of QCL is its ability to operate in a very large
wavelength range. As shown in Fig. 14.4, these devices have been operated between
wavelengths as short as λ = 2.9 μm and as long as λ = 250 μm. The frequency coverage is
almost continuous, with the exception of the so-called Restrahlen band, the frequency
region between about λ = 28 μm and λ = 50 μm where the active material (p.273)

is optically dense, due to the
absorption by the optically
active III–V optical phonon
modes. The mid-infrared region
between approximately λ = 3.3
μm and λ = 16 μm is especially
attractive, since room-
temperature operation is
possible and is also achieved in
continuous wave over most of
this range. In contrast, the
maximum operating
temperatures achieved by
devices operating at frequencies
below the Restrahlen band are
clearly below the reach of
thermoelectric Peltier coolers.
This can be seen as the most
important limitation to the wide application of terahertz QCL in applications. The ability to
operate over a very wide frequency range is especially important for spectrosopy, as the
rotovibrational modes of molecules tend to naturally cover a very wide spectrum of frequencies,
with fundamental modes covering a wide portion of the mid- and far-infrared spectrum.
The key advantage of using the fundamental vibration modes instead of the higher
harmonics stems from their much larger oscillator strength, yielding, therefore, a much
higher detection sensitivity. The plot of a number of these absorption lines, computed using
the HITRAN 2000 database, is shown in Fig. 14.5. Some of these compounds can also be
detected in the near-infrared using overtone lines. The oscillator strength of these overtone
lines is, however, usually much weaker than that of the fundamental mode, the ratio
varying depending greatly on the chemical species. Whereas this value is “only” 100 for
CH4, for example, it can reach up to 25,000 for NO.



Fig. 14.5.  (a) Absorption lines of the H2O molecule
between 400 and 4000 cm−1, showing the two
infrared atmospheric windows. The absorption lines
of a selection of molecules in the first atmospheric
window are shown in (b) and in the second
atmospheric window in (c). Data were compiled
using the HITRAN04 database [326].

Due to the much larger oscillator strength in the mid-infrared, a large number of chemicals
have been measured with very large sensitivity and accuracy. As a result, the development
of quantum cascade laser-based spectroscopy followed the realization of the first
distributed feedback quantum cascade lasers in 1997. Using the very first devices operating
in pulsed mode at room temperature near λ ≈ 8 μm, N2O detection and spectroscopy was
performed and already yielded sensitivities in the ppm range over very short (10 cm) path
lengths [327]. Using liquid nitrogen-cooled devices, high-resolution spectroscopy was
initiated using continuous wave devices for direct absorption [328–330] or photoacoustic
[331] techniques. As shown in Fig. 10.13, (p.274)

the time-resolved spectra
measurements of the distributed
feedback quantum cascade
lasers showed that the device
remained single-mode but
exhibited rapid chirp during the
pulse. This favorable property
was exploited by a group in
IPM [332] and by Strathclyde
university [333] to propose
spectrometers based on the
intrapulse technique. The
advantage of this technique is
that the wavelength scanning is
performed over a time period
where the 1/f noise of the set-up
is no longer a limitation. The
drawback is the necessity of
using a very fast detector and electronics to acquire the data.
In a competing technique, pioneered for QCLs by Aerodyne and described in more detail in
the following paragraph, the QCL is tuned slowly by a DC current while short pulses bring
it above threshold. Examples of measurement sensitivities achieved by Aerodyne, using
this and similar techniques, are shown in Table 14.1. For all these chemicals, a limit of
detection below the ppb is achieved within 1 sec of integration time.

14.3.1 Absorption measurements

Most optical gas detection techniques are based on the measurement of light absorption by
a rotovibration molecular mode, using the Beer–Lambert law to extract the gas
concentration from the measurement of the light transmitted through a cell. A schematic
diagram of such a generic system is shown in Fig. 14.6. In a direct absorption technique,
the light transmitted through the cell is measured on the detector. In a photoacoustic
technique, the quantum cascade laser is modulated in amplitude, and the acoustic wave
generated by the absorbed power in the gas is measured. Because, in general, the absorption
due to the gas is small compared to other optical losses of the system, the sensing signal is
recorded as the laser is tuned across the absorption line.



Fig. 14.6.  Schematic diagram of a generic gas-
sensing system. A quantum cascade laser is tuned
across a roto-vibrational line of a molecule at
frequency ω. In the direct absorption technique, the
transmitted power is measured as a function of laser
frequency. In a photoacoustic technique the laser is
modulated, and the acoustic wave generated by the
absorbed power in the gas is measured.

(p.275)

Table 14.1 Limit of detection for various gases, using a 76 m path length, for
1 sec and for 100 sec integration time. (Data courtesy of Mark Zahniser,
Aerodyne Corp.)

Trace gas cm−1 ppb 1 s RMS LoD ppb 100 s

NH3 967 0.2 0.06

C2H4 960 1 0.5

O3 1050 1.5 0.6

CH4 1270 1 0.4

N2O 1270 0.4 0.2

NO2 1600 0.2 0.3

HONO 1700 0.6 0.3

HNO3 1723 0.6 0.3

HCHO 1765 0.3 0.15

HCOOH 1765 0.3 0.15

NO 1900 0.6 0.3

OCS 2071 0.06 0.03

CO 2190 0.2 0.1

N2O 2240 0.2 0.1

Other approaches are also
possible: for example,
interferometric systems in
which the change in the
refractive index due to the
presence of the gas is measured.
From the Beer–Lambert law,
the optical power P of the
light beam after crossing the
gas cell can be written as a
function of the initial laser
power P 0 as

(14.3.1)
where L is the interaction
length and α = σ(ν)ns the



absorption of the gas, with σ(ν) the optical cross-section and ns the gas concentration. The
sensitivity of a system where the transmitted fraction of the light is measured therefore
depends on

(p.276)

• The accuracy at which a change in transmission ΔTnoise = (P − P 0)/P 0 can
be recorded.
• The strength of the total absorbed fraction, equal for small absorption to
α(ν)L.

The various systems proposed all try to achieve the lowest possible minimum value of
ΔTnoise and maximize the value of α(ν)L. After the selection of a wavelength where the
target gas exhibits a strong line with a large value of α(ν), the sensitivity will be maximized
by a geometry that enables a large path length L. At ambient pressure, all absorption lines
are pressure-broadened; as a result the peak absorption is essentially pressure independent,
as the increase in the concentration ns is exactly compensated by the decrease in the optical
cross-section σ(ν) due to the pressure broadening. For this reason it is usually favorable to
operate at low pressures where the gas of interest exhibits absorption lines close to their
Doppler limit. The narrower lines are less susceptible to interferences from absorption lines
from other gases such as H2O or CO2. The only drawback is the increased system
complexity and cost. As shown later in this text, the interaction length L can be maximized
by the use of an open path, a multi-pass cavity, or a cavity ring-down technique.

The sensitivity of a system, measured in ΔTnoise, depends on a number of factors, the most
important ones being usually:

• The noise of the detector.
• The laser modulation technique.
• The fluctuation in laser power and electronic noise.
• Noise in the optical system.

A rough typical value for the limit in sensitivity is ΔT ≈ 10−5 −10−6. The different sensing
techniques presented in the literature reffect the various strategies adopted to minimize the
value of ΔTnoise in the presence of various noise sources. Modulation techniques are used
to reduce the effect of 1/f noise in the various components of the system.

Detector noise. For an average laser power P 0, and a detector characterized by a noise
equivalent power NEP, the sensitivity limit of the system caused by the detector noise is 

 can be written as:

(14.3.2)
for suffciently low incident powers, before the system becomes limited by the shot noise. In
the latter case the signal-over-noise for a photoconductive detector is given by



Fig. 14.7.  Laser modulation schemes used with
quantum cascade lasers. If the laser is operated in a
continuous wave, the current can be either simply
ramped a), or a small dither can be added for
synchronous detection b). For lasers operating in
pulsed mode, in the interpulse modulation technique
(c) short, 5–10 ns long pulses are added to a
continous ramp. In contrast, in the intrapulse
technique the laser is turned above threshold and the
whole spectrum is acquired during each pulse.

(14.3.3)
where η is the quantum efficiency of the detector.

A 200 μm wide liquid nitrogen-cooled mercury–cadmium–telluride detector, with a
detectivity of , will exhibit an NEP ≈ 1 pW. As a result, a shot
noise limit will already be reached for a laser average power of P 0 ≈ 1 μW, (p.277)

with Eqn. 14.3.2 predicting a
ΔTnoise ≈ 10−6. The shot noise
limited sensitivity for a power
of P 0 = 1 mW is ΔTnoise = 2.5
× 10−8. Such low values are
usually not reached because of
other system limitations.
Thermoelectrically cooled
detectors are usually
preferred to liquid nitrogen-
cooled ones for system
applications. The latter
exhibit approximately 10–50
times lower detectivities 

,
strongly dependent on the
detector wavelength cutoff,
raising the required laser
power to 10–50 μW to reach
shot noise level. One should
remember that the required
laser powers are the values
incident on the detector and do not take into account optical losses in the system. Especially
for systems that use multi-pass cells, the overall transmittivity of the system can easily
decrease to values in the 1% range.

Laser modulation techniques. As already mentioned, the laser must be tuned across the
absorption line during a measurement. As discussed in Chapter 10, distributed feedback
quantum cascade lasers tune frequency with temperature. When a fast modulation is
required, the most efficient way to change the temperature is to vary the drive current of the
device. Depending on the drive technique for the laser (pulsed or continuous wave), various
modulation techniques have been used. The most common ones are summarized in Fig.
14.7. The choice of driving the laser in continuous wave or in pulse is a combination of
various factors. For lasers operated in a continuous wave, the simplest approach is to drive
the laser directly with a continuous-wave ramp and to record the transmitted power. In
order to reduce the 1/f noise of the laser, an additional small modulation can be added to the



drive current, enabling a synchronous detection at the modulation frequency or at its first
harmonic. When the laser is operated in pulse mode, two opposite operation philosophies
can be used. Either, as shown in Fig. 14.7c, the laser is turned on using very short pulses,
designed to maintain a (p.278) narrow linewidth. A sub-threshold continuous-wave current
ramp tunes the laser between each pulse. Using this technique, one spectrum is acquired
during a teth of a milisecond. The advantage of this approach is that it can be used with
relatively slow detectors and acquisition boards. In contrast, in the intrapulse modulation
technique the laser is turned on with a relatively long pulse. The spectral features of the
absorption lines are measured during the pulse by a fast detector and acquisition board.
Both approaches have shown their merits, and the choice of one or the other approach
depends more on the speciffic application targeted. The interpulse modulation has been
successfully used for many applications in environmental monitoring where high sensitivity
and selectivity are a primary concern, such as the data shown in Table 14.1. In contrast, the
intrapulse modulation has been used for industrial applications such as exhaust gas
monitoring or plasma monitoring [334].

Fluctuations in the laser power and electronic noise. A major disadvantage of the direct
absorption technique is that the power stability of the laser source must be at least as good
as the fractional absorption sensitivity. Assuming that the laser does not introduce
additional noise, and assuming a drive current I above the threshold current Ith, the required
stability in the drive current must satisfy

(14.3.4)
For a laser operated 20 mA above a threshold current of 500 mA, aiming at a ΔTnoise =
10−6, the current fluctuations must be below ΔI = 20 nA, not very far from the shot noise
limit of 0.8 nA. These considerations stress the importance of designing low-noise
electronics; an efficient way to reduce the influence of the laser driver noise is by dividing
the transmitted intensity by a continuous measurement of the laser power performed in a
reference arm of the spectrometer.

Noise in the optical system. The whole optical system is susceptible to changes in its
transmission due to thermal drifts, acoustic noise, or mechanical stress. As these noise
sources tend to exhibit 1/f characteristics, modulation techniques are usually employed
along with good construction practice to minimize these noise sources. A notable exception
is the fringing effect, or the modulation of the intensity caused by unwanted Fabry–Perot
fringes along the path. Most difficult to remove are Fabry– Perot resonances with a free
spectral range corresponding to the linewidth of the gas absorption line. In fact, oscillations
of the transmission ΔTfringes equal to

(14.3.5)
are obtained in the limit of low reffectivities. As a result, ΔTfringes  10−6 implies
extremely low scattering on the optics, such that effectively R  2.5 × 10−7.



Fig. 14.8.  Beam pattern (a) and picture of astigmatic
cells (b). A 30 cm long cell with a volume of 0.5 l
enables a large number of passes (N = 238) with 76
m interaction length. (Data courtesy of Aerodyne
Inc.)

14.3.2 Open-path measurements

Long pathlengths can be achieved in open-pass systems, and such systems have relatively
speciffic advantages and limitations. In particular, a proper background normalization by
replacing the gas sample by clean air (”zero air”) cannot be performed (p.279)

directly, and the spectra must be
performed at ambient pressure,
increasing the overlap between
neighboring lines. Problems
created by the inlet, gas mixing,
and tube and cell poisoning are,
of course, removed.
Atmospheric ozone-level
measurements have been
performed using quantum
cascade lasers at 1044 −1050
cm−1 in open-path
configurations with good
detection levels [335].

14.3.3 Multi-pass cavity

Long path lengths are commonly achieved by folding the beam inside a multi pass cavity,
or White cell, formed by two spherical mirrors facing each other. Injection of the optical
beam at a well-controlled angle enables a beam pattern with N number of bounces before
existing the cavity. The use of astigmatic mirrors enables very large values of N = 200 to be
achieved. Examples of such cavities, along with the beam pattern on the mirror, are shown
in Fig. 14.8. A 30 cm long cell with a volume of 0.5 l, enables a large number of passes (N
= 200) with 76 m interaction length. The number of passes N is limited by both the
transmittivity after the N reffection on the mirrors and the necessity to extract the beam
after a well-defined number of cell crossings.

A schematic diagram of the experimental set-up used to achieve the high sensitivities
realized in Table 14.1 is shown in Fig. 14.9 a) [212]. The quantum cascade laser source is
placed in a thermoelectrically cooled enclosure and tuned to the right wavelength range by
selecting the appropriate temperature. The laser can be either driven in pulsed mode, in
which case short pulses, approximatively 10 ns long at 1 MHz repetition rate, are
superimposed on a continuous-wave current ramp that, while keeping the laser just below
threshold, tunes it by temperature. Each current ramp lasts about 100 μ s and contains about
100 pulses. After exiting the laser, a small fraction of the beam is used as a reference for
line locking and spectrum normalization. The main part of the beam enters the astigmatic
multi-pass cell; the N = 238 passes yield an effective pathlength of 76 m. The signal from
the thermoelectrically cooled (p.280)

MCT detector is digitized by a
14 bits data acquisition board.
The whole electronics is driven
by a computer and controlled



Fig. 14.9.  a) Schematic diagram of the optical set-
up. b) Comparison of the measurement of the optical
doublet of NO at 1900 cm−1 measured with a
continuous wave (top) and a pulsed QC laser
(bottom) for 1 sec integration time. c) Allan variance
plot of these measurements with a continuous or
pulsed laser system [212].

by a proprietary software
WINTEL.
The same optical
arrangement can be used with
the laser driven in a
continuous wave with an
average power of 3 mW, in
which case a small current
modulation is added to the
laser drive current.

A comparison of
experimental results obtained
using these techniques is
shown in Fig. 14.9b, where the measurement of the NO doublet at 1900 cm−1 is displayed
for a concentration of 5 ppb for both continuous wave (top) and pulsed laser condition
(bottom) for 1 sec integration time. The much better signal-over-noise of the continous
wave measurement is caused first by the larger average power incident on the detector
(about 50 μW) and the narrower linewidth of the laser Δν = 0.0004 cm−1 or 12 MHz. In
contrast, in the pulsed measurement the NO doublet is not resolved, because of the wider
laser linewidth Δν = 0.006 cm−1, and the much lower laser power on the detector (2 μW) is
responsible for the larger noise.

The plot of the Allan variance of both measurements demonstrates the better sensitivity of
the continuous wave system. For 1 sec integration time, the root mean square noise is 0.1
ppbV for the continuous wave system and 0.5 ppbV for the pulsed system. These values
decrease to a minimum deviation of 0.025 ppbV and 0.075 ppbV, respectively, for 80 sec
integration time. The lowest value, obtained for the continuous wave system, corresponds
to a change in transmission of 1.6 × 10−6, limited by fringing effects. To achieve such high
sensitivity a number of mitigating techniques were used, such as dithering one mirror of the
cell with a piezo drive and by choosing a beam path in the multi-pass cell that minimizes
the fringes with the “wrong” free spectral range.

Using a similar instrument, accurate measurements of the three main isotopologues of 
 —were measured in the spectral region of

2311 cm−1 [336]. By careful referencing and temperature stabilization of the instrument, a
standard deviation of 0.026% for the ratio δ 13 C and 0.029% for the ratio δ 18 O were
achieved. These two values reduced to 0.003% and 0.005%, respectively, after 60 sec
integration time. In the field, real-time monitoring of isotopologues using such a laser
spectrometer is shown in Fig. 14.10, and compared with reference results from a mass
spectrometer, showing the potential of this technique for environmental monitoring. (p.281)

The laser spectrometer provides
a continuous sampling with
very high accuracy.
Isotopologue measurements are



Fig. 14.11.  a) Schematic description of a set-up for
cavity ring-down spectroscopy using a continuous-
wave operation QCL. The device was cooled down
to liquid nitrogen temperature for these initial

Fig. 14.10.  a) Time series of the CO2 mixing ratio
measured by the laser spectrometer (line) and with
an mass spectrometer (dots). The corresponding δ
13C and δ 18O values measured by the laser
spectrometer are shown in (b) and (c). For
comparison, mass spectrometer δ values are also
given. The closed symbols for the δ 18O values
indicate sampling issues with the metal flasks used
for the mass spectrometry measurement [336].

also very interesting for
medical applications.

14.3.4 Cavity ring-down
spectroscopy

Long interaction lengths can
also be achieved using cavity
ring-down spectroscopy. In
this technique the decay time
of a high-finesse Fabry–Perot
cavity is measured in the
presence (τ) and absence
(τempty) of the gas to be
measured. For a cavity length
L, the gas absorption α is then
obtained as

(14.3.6)
As shown by the above equation, the absorption coefficient is obtained entirely from a time
measurement. Very long effective interaction lengths (≈ 1km) can be achieved in very
compact cavities that, however, require mirrors with very large reffectivities. In a relatively
standard approach a continuous-wave laser is abruptly turned off as it is tuned to the cavity
resonance. The characteristic decay time of the optical field is then measured by a fast
detector, allowing the extraction of τ and τempty.

A schematic description of an early cavity ring-down experiment [337] is shown in Fig.
14.11. In the latter, the ring-down cavity is formed by two mirrors with R = 99.97%
reffectivity separated by 37 cm. The cavity has a free spectral range of 405 MHz, a decay
time of τempty = 3.5 μs, and a linewidth Δνcavity = 1/(2πτempty) = 45 kHz. As a comparison,
a free-running quantum cascade laser is expected to have a linewidth in the megahertz
range, whereas a Doppler-broadened line of a typical gas will be in the hundreds-of-
megahertz range. As a result, the spectroscopy of a speciffic (p.282)

gas absorption line can be
performed by setting the
relevant wavelength using the
current tuning of the laser.
Using a piezo control drive, the
cavity is tuned to the laser
wavelength a large increase in
the transmitted signal indicates
that the cavity has been filled.
Once a trigger level has been
reached, the laser is abruptly



experiments b) Ring-down measurement of 620 ppb
of NO diluted in N2. From[337].

Fig. 14.12.  Photoacoustic signal versus gas
concentration using various mid-infrared light
sources. The signal is clearly proportional to gas
concentration as expected in photoacoustic
measurements. All the lines are parallel. The
detection limits for all the gases and all lasers are

switched off and the decay time
of the cavity light is measured.
The measurement of 620 ppb of
NO diluted in dry nitrogen is
shown in Fig. 14.11b. A sensitivity of 1 ppb has been achieved at 1921.6 cm−1; the equivalent
pathlength is l = cτempty ≈ 1km.

14.3.5 Photoacoustic sensing

In the photoacoustic sensing technique the quantum cascade laser, whose power is
amplitude modulated, is shined through the gas cell. The pressure wave created by the
periodic heating of the gas caused by the absorption is detected by a sensitive microphone.
This approach has many advantages compared to direct absorption. The signal is in
principle background-free, as the signal picked up by the microphone is proportional to the
gas absorption. The system needs an optical detector, and is very modular. To achieve high
sensitivity, quantum cascade lasers with higher powers must be used, as the signal-over-
noise is directly proportional to the incident laser power. Initial experiments were
performed using cryogenically cooled, continuous-wave lasers [331] with about 10 mW
power. Later experiments using pulsed, Peltier-cooled devices used even lower powers, in
the milliwatt range [210].

The senstivities achieved in these initial experiments were rather limited. Very large
increases in the single-mode optical power at room temperature, and availability of devices
at the wavelength at which the gases have their largest absorption lines, have greatly
improved the recent achieved sensitivities. A summary of recent results [338] achieved by
the group at Reims University is shown in Fig. 14.12. It should, however, be noted that
even in these results the optical power was never larger than 10 mW.

A very interesting development of photoacoustic spectroscopy is the use of Quartz tuning
forks instead of a microphone. The tuning fork acts as a resonant microphone (p.283)

at a relatively high frequency
and high quality factor. The
development of quartz
enhanced photoacoustic
spectroscopy (QEPAS) has been
pioneered by the group led by
F. Tittel at Rice University, and
offers the potential of systems
with very low cost and volume
while maintaining high
sensitivity [339].
14.4 Broadband
spectroscopy
(p.284) The spectroscopy of
multi-component gas on the one
hand, and of solids or liquids on
the other, requires the use of



Fig. 14.13.  Demonstration of mode-hopfree
operation of the EC-QCL using the piezoactuated
cavity mode tracking system. From[340]

Fig. 14.14.  (a) Upper curve, simulation of
atmospheric absorption over a 286 m path within the
5.3 μm EC–QCL tuning range. For reference, an
absorption spectrum of 1 ppm NO at the same
working condition is plotted. The lower panels
demonstrate mode-hop-free spectra of NO acquired
as (b) a direct absorption spectrum of the NO Q-
branch recorded at a scan rate of 10 Hz for 5% NO in
N2 at reduced pressure and with 10 cm optical path
length, (c) a Faraday rotation spectrum of NO Q(3/2)
and Q(5/2) transitions at ≈ 1875.8cm 1 for 10 ppm

estimated by extending the parallel lines until they
cut the noise limit, i.e. 0.4 V at a signal-to-noise ratio
of 1. Note the high dynamic range of photoacoustic
measurements—up to six orders of magnitude. From
[338].

much wider tuning ranges than
those available with a single
distributed feedback laser.
Multi-component gas detection
systems have been developed
around multiplexed distributed
feedback quantum cascade
lasers. A more radical approach
is the use of external cavity
quantum cascade lasers able, as
shown in Chapter 10, to be
tuned over a large wavelength
range. However, in contrast to
distributed feedback quantum
cascade lasers, tuning the
device without mode jumps is a
challenging task. In an
instrument developed by G.
Wysocki at Rice University, the
grating orientation, external
cavity length, and laser
temperature are tuned together
to achieve a mode-hop free
tuning of tens of cm−1—a result
also achieved by recent
commercial instruments [340].
To achieve these results a
piezo-activated mode
tracking system has been
implemented to enable
independent control of the
EC length and diffraction
grating angle. The grating
was mounted on a moving
platform whose position was
controlled by a piezo-acuated
linear translation stage and a
rotary stage which is equiped
with a (p.285) motorized
coarse angle control and a
piezo-actuated (PZT) fine
control. The chosen
components allowed precise
positioning of the EC length
and grating angle with a
resolution of  0.9 nm and 1
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NO in N2 mixture at 35 Torr and with 42 cm active
optical pathlength, and (d) a QEPAS spectrum
recorded for 4.2% NO in N2 at 1903 cm−1, pressure
of 600 Torr and with 1 cm optical pathlength (the
strongest transition in the fundamental NO R-branch)
From [341].

μrad for external cavity
length and grating angle,
respectively. The total grating
angle range provided by a
PZT scanner was ±520 μrad.
The coarse tuning by the
linear motor could be
performed within a range of
±6.3° and unidirectional repeatability of 10 μrad, with the actual position measured by a
built-in encoder with a resolution of ~ 1.4 μrad/unit. The piezo-actuator controlling the
external cavity length had a total travel range of 90 μm, which corresponds to a maximum
continuous laser frequency tuning range of ~ 2 cm−1 at λ ≅ 5 μm.

Fig. 14.13 illustrates the performance of the mode-tracking system. The output optical
power of the EC–QCL as a function of time was monitored for different fractions of the
control signals UEC and UGR (for the EC length and for the grating angle respectively)
required for full mode tracking. The laser was driven by a ~ 630 mA current and modulated
with a sinusoidal waveform. Three particular modes of operation can be observed: no
wavelength tracking (control signals UEC and UGR not applied), only grating wavelength
tracking (only UGR applied in full), and full wavelength tracking (both UEC and UGR
applied in full). Both QCL FP resonator mode-hops and EC FP resonator mode-hops can be
observed for partial mode tracking. Increase of the PZT control signals results in
progressive separation of the mode-hops, which finally leads to complete laser longitudinal
mode tracking.

Examples of spectroscopy achieved using an external cavity quantum cascade laser,
implementing these mode-tracking techniques, are shown in Fig. 14.14 around 5.3 μm,
comparing various measurement techniques. Fig. 14.14b shows a direct absorption
spectrum of the NO Q-branch recorded at a scan rate of 10 Hz for 5% NO in N2 at reduced
pressure and with a 10 cm optical path length.
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(p.286) Appendix A

Designs

A few designs discussed in the text are summarized here. The layer sequence is given
starting from the injection barrier and the thickness indicated in nanometers. Barrier
material is denoted in bold face, and quantum wells are in Roman. The doped layers are
underlined.

A.1 First-generation designs
All these devices were grown using Ga0.47 In0.53 As for the wells and Al0.48 In0.52 As for
the barrier lattices matched to the InP substrates.

A.1.1 First QCL at λ ≈ 4.3 μm

This design was based on a diagonal transition with one-phonon extraction. The sequence
was 4.5, 9, 3.5, 3.5, 3.0, 2.8, 3.0, 1.8, 1.2, 1.6, 1.4, 1.3, 1.7, 1.1, 1.9, 0.9, 2.1, 0.7, 2.3, 0.6.
The Si doping level was Nd = 1.5 × 1017 cm−3.

A.1.2 Vertical transition at 4.6 μm

This design was based on a two-quantum-well active region, with a vertical transition and a
single-phonon extraction. The layer sequence was 6.8, 4.8, 2.8, 3.9, 2.7, 2.2, 2.2, 2.1, 2.1,
2.0, 2.0, 2.0, 2.0, 1.8, 1.8, 1.7, 2.0, 1.6, 2.2, 1.6, 2.4, 1.4. The Si doping level was Nd = 3 ×
1017 cm−3.

A.1.3 Vertical two-quantum-well active region at 8.55 μm



This design, also based on a vertical transition and a two-quantum-well active region, was
similar to the previous one but adapted for longer wavelengths. The layer sequence was 4.5,
8.0, 1.0, 5.7, 2.4, 4.4, 1.4, 3.6, 1.2, 3.6, 1.2, 3.4, 1.0, 3.4. The Si doping level was Nd = 3 ×
1017 cm−3.

A.1.4 Super-diagonal transition at λ ≈ 10.5 μm

The particularity of this design was a very diagonal transition, where the upper-state of the
laser transition was also the ground state of the active region. The layer sequence was 2.5,
7.4, 2.5, 5.5, 2.5, 4.6, 2.4, 4.2. The Si doping level was 9.2 × 1017 cm−3.

A.1.5 Single-quantum-well active region: Bloch gain at 7.5 μm

The gain arises despite a very low population inversion in a single-quantum well. The
ground state of the well was “pushed” up due to an Al0.48 In0.52 As spike in the center
(p.287) of the quantum well. The layer sequence was 4.8, 3.6, 0.2, 3.6, 3.5, 5.1, 1.1, 5.0,
1.2, 4.5, 1.3, 3.5, 1.5, 3.4, 1.6, 4.4, 1.8, 3.2, 2.1, 3.0, 2.5, 3.0, 2.9, 2.9. The Si doping level
was Nd = 3 × 1017 cm−3.

A.1.6 Three-quantum-well (λ ≈ 10.3 μm) diagonal

This three-quantum-well active region design uses a diagonal transition and a single
phonon extraction. The layer sequence was 4.2, 3.1, 0.9, 6.4, 1.0, 6.0, 2.8, 3.9, 1.0, 3.8, 1.2,
3.7, 1.5, 3.9, 1.7, 4.0. The Si doping level was Nd ≈ 2.5 × 1017 cm−3.

A.1.7 Three-quantum-well (λ ≈ 5.3 μm) vertical

In this three-quantum-well active region, the transition was vertical. The layer sequence
was 5.0, 0.9, 1.5, 4.7, 2.2, 4.0, 3.0, 2.3, 2.3, 2.2, 2.2, 2.0, 2.0, 2.0, 2.3, 1.9, 2.8, 1.9. The Si
doping level was Nd= 2 × 1017 cm−3.

A.2 Bound-to-continuum and two-phonon designs
The high performance was achieved using these design concepts with better population
inversion and high-temperature characteristics. In these designs, Ga0.47 In0.53 As and
Al0.48 In0.52 As were used for the well and barrier materials.

A.2.1 Two-phonon resonance at 9 μm

In this design, extraction from the lower state was achieved by placing a cascade of two-
phonon resonances. The layer sequence of the structure was 4.0, 1.9, 0.7, 5.8, 0.9, 5.7, 0.9,
5.0, 2.2, 3.4, 1.4, 3.3, 1.3, 3.2, 1.5, 3.1, 1.9, 3.0, 2.3, 2.9, 2.5, 2.9. The Si doping level was
Nd = 4 × 1017 cm−3.

A.2.2 Bound-to-continuum at 9 μm

In this design, the transition occurs between an isolated state and the lower miniband. The
layer sequence was 4.0, 2.0, 0.7, 6.0, 0.9, 5.9, 1.0, 5.2, 1.3, 3.8, 1.4, 3.5, 1.5, 3.3, 1.6, 3.1,
1.9, 3.1, 2.3, 3.0, 2.4, 2.9. The Si doping level was Nd= 3 × 1017 cm−3.

A.2.3 Broad bound-to-continuum at 9 μm



This design was bound-to-continuum design specially designed for broad gain operation.
The layer sequence was 3.9, 2.2, 0.8, 6, 0.9, 5.9, 1, 5.2, 1.3, 4.3, 1.4, 3.8, 1.5, 3.6, 1.6, 3.4,
1.9, 3.3, 2.3, 3.2, 2.5, 3.2, 2.9, 3.1. The SI doping level was Nd = 2.3 × 1017 cm−3.

A.2.4 Two-phonon at 8 μm

This was another version of the two-phonon resonance design. The layer sequence was 4.3,
1.7, 0.9, 5.4, 1.1, 5.3, 1.2, 4.7, 2.2, 4.3, 1.5, 3.8, 1.6, 3.4, 1.8, 3.0, 2.1, 2.8, 2.5, 2.7, 3.2, 2.7,
3.6, 2.5. The SI doping level was Nd = 1.5 × 1017 cm−3.

(p.288) A.2.5 Bound-to-continuum at 16 μm

This was a long-wavelength version of the bound-to-continuum design. The layer sequence
of one period of structure was 3.3, 3.2, 0.5, 6.5, 0.6, 6.6, 0.7, 6.3, 0.8, 5.8, 1.0, 4.6, 1.2, 4.4,
1.4, 4.4, 1.7, 4.2, 2.0, 4.1, 2.2, 4.0. The Si doping level was Nd = 3 × 1017 cm−3

A.3 Strain-compensated designs
In these designs, strain-compensated combinations of (In,Ga,Al)As were used. The
composition of the well and barrier materials were indicated.

A.3.1 Short-wavelength (λ ≈ 3.6 μm) three-quantum wells

This was a three-quantum-well active region based on a vertical transition with a single
optical phonon extraction. The barriers were in In0.4 Al0.6 As, the quantum wells in In0.7
Ga0.3 As, and the layer sequence is 4.5, 0.5, 1.2, 3.5, 2.3, 3.0, 2.8, 2.0, 1.8, 1.8, 1.8, 1.9,
1.8, 1.5, 2.0, 1.5, 2.3, 1.4, 2.5, 1.3, 3.0, 1.3, 3.4, 1.2, 3.6, 1.1. The SI doping level was Nd =
2.5 × 1017 cm−3.

A.3.2 Three-quantum-well strain-compensated at 4.6 μm

This was a three-quantum-well active region based on a diagonal transition with a single
optical phonon extraction [153]. The well material was Ga0.365 In0.635 As and the barriers
were Al0.665 In0.335 As. The layer sequence was 3.5, 1.3, 1.4, 4.1, 1.7, 3.7, 2.5, 2.8, 1.5,
2.6, 1.6, 2.4, 1.7, 2.2, 1.9, 2.1, 2.1, 2.0, 2.3, 1.8, 2.4, 1.8. The Si doping level was Nd = 2 ·
1017 cm−3.

A.3.3 Short-wavelength (λ = 3.3 μm) Sb-free

This design was based on a bound-to-continuum transition. The quantum wells were made
in In0.74 Ga0.26 As, whereas the composite barriers were fabricated using latticematched
Al0.48 In0.52 As (italic) and AlAs (bold). The layer sequence was 0.5, 0.7, 1.0, 1.2, 1.0, 3.4,
1.0, 3.1, 0.9, 2.7, 0.9, 2.3, 0.2, 0.8, 2.1, 0.3, 0.7, 2.0, 0.4, 0.8, 1.9, 0.4, 0.8, 1.8, 0.5, 0.8, 1.7,
0.7, 0.9, 1.2, 1.0, 1.0, 1.2, 1.3, 1.0, 1.1, 1.3. The Si doping level was Nd = 6 × 1017 cm−3.

A.3.4 Strain-compensated at 4.8 μ m

In this bound-to-continuum design, both wells and barrierswere composite. The Ga0.391
In0.609 As layer were in Roman, the Al0.546 In0.454 As in italic, the AlAs and the InAs
layers in Roman bold. Composite barriers and wells are further emphasized by parentheses
and brackets. The layer sequence was (46, 10, 14), [20, 2, 21],(7, 2, 7), [19, 2, 18], (8, 2, 7),
[13, 2, 2, 2, 13], (9, 2, 2, 2, 2), [11, 2, 2, 2, 10], (7, 2, 2, 2, 8), [12, 2, 12], (10, 2, 10), 24, 23,
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22, 25, 21, 30, 20, 33, 19, 37, 18. The Si doping level was adjusted such that the sheet
carrier density per period was ns = 9 × 1010 cm−2.
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