
Chapter 3 

Planar Waveguides 

Optical signal transmission via fiberglass waveguides revolutionized 
telecommunication over long distances. The wavelength regimes 
around 1.3 µm and 1.55 µm are chosen because of extremely low 
absorption and dispersion windows for the silica fiberglass used. 
The loss requirements for planar waveguides on substrates with 
wafer-size (about 30 cm) to chip-size (about 1 cm) dimensions are 
less stringent. The wavelength window is open in the transparency 
regime, which is the near-infrared regime above 1.2 µm for silicon as 
the waveguide material. The application scenario and the availability 
of active devices define the upper limit. Now, germanium (Ge) on 
silicon (Si) active devices cover the wavelength range up to 1.55 µm. 
However, ongoing research with new semiconductor materials 
(strained Ge, GeSn, and low-bandgap III/V compounds) will extend 
the available range into the mid-infrared beyond 2.5 µm. Silicon, as 
the main material in the microelectronics industry, has attained great 
success; thus one wishes to utilize silicon as the base for photonic 
systems, too. The planar waveguide is an essential building block for 
photonic systems. So far, the silicon-on-insulator (SOI) platform has 
been the most popular structure for silicon waveguides. It has many 
advantages, such as high speed, low loss, small size, optoelectronic 
integration, and compatibility with the mature complementary 
metal-oxide semiconductor technology. 
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Electromagnetic theory of light is the basis for understanding 
guided wave optics. Research on the effects of light in the waveguide, 
such as propagation, scattering, polarization, and diffraction, 
becomes the theoretical basis for a variety of waveguide devices. 
For silicon material, we want to study transmission, coupling, and 
interaction with the external field oflight, especially the single-mode 
condition and transmission characteristic of the SOI waveguide. In 
the first part of the chapter, we will focus on the mode characteristics 
and single-mode conditions for the SOI waveguides, including the 
slab, strip, and rib waveguides, and then continue on the loss and 
polarization dependence in the SOI waveguide. 

3.1 Modes in the Slab Waveguide 

As a kind of electromagnetic wave, the propagation of light in 
a waveguide must satisfy Maxwell's equations. The material 
properties, structure, and dimensions of an optical waveguide are 
the boundary conditions for solving Maxwell's equations. To solve 
Maxwell's equations in the optical waveguide, we will get multiple 
different sets of eigenvalues and their corresponding eigenfunctions. 
The eigenfunction is the corresponding field distribution of the 
electromagnetic field components in the waveguide cross section, 
that is, it corresponds to the discrete mode of optical wave 
propagation. The eigenvalue is the propagation constant ~ of the 
corresponding mode in a given waveguide. 

By solving Maxwell's equations, we first discuss the field 
distributions of various modes in the slab waveguide and then we 
extend them to the field distributions in strip and rib waveguides. 

Maxwell's equations can be specifically expressed in the following 
forms (Eqs. 3.1-3.4): 

VxE(r,t)=- aiit,t) (3.1) 

n -H( ) -: dD(r,t)
v x r,t =1+-d-t- (3.2) 

VD(r,t)=p (3.3) 

VB(r,t)=O (3.4) 
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Here, j is the vector of free current density, p is the volume 
density of free charge, V is the Hamiltonian operator, E is the 
electric field vector, H is the magnetic field vector, D is the electric 
flux density or electric displacement vector, and B is the magnetic 
flux density vector. They are all related to the time variation t and the 
position vector r. For a passive dielectric medium, it has no current 
and charge sources, sop= 0 and 1= 0, and Maxwell's equations can 
be simplified. 

In the classical theory, there are the constitutive relations 
between the flux densities D and B as well as the fields E and H . 
For a linear and isotropic medium, the relations are given by 

D=EE (3.5) 

B=µH (3.6) 

where E is the dielectric permittivity of the medium and µ is the 
magnetic permeability of the medium. For a linear dielectric 
medium, the permittivity E and permeability µ are independent of 
field intensities, but most dielectric mediums become nonlinear 
when the electric field intensity is relatively high. For a lossless 
medium, E and µ are real scalar; while for an absorbing medium, 
they are complex scalar. If we substitute the constitutive relations 
(Eqs. 3.5 and 3.6) into Maxwell's equations, assuming that the 
medium is homogeneous, we can derive the following basic wave 
equations for E and H: 

z- oEz-
V E-µt:-=0 (3.7) ot2 

z - a2H
V H-µE-=0 (3.8) ot2 

Generally, electromagnetic waves are related to time by a 
sinusoidal relationship. The electromagnetic wave is radiated with 
a single frequency or can even be decomposed into many single-
frequency waves by using Fourier transforms. Hence, the electric 
field vector and magnetic field vector can be written in the following 
forms : 

E(r,t) =E(r)exp(-imt) (3.9) 

H(r,t) =H(r)exp(-imt) (3.10) 
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Here E(r) and H(r) are the complex amplitude vectors and w is 
the angular frequency. Substituting Eqs. 3.9 and 3.10 into Maxwell's 
equations (Eqs. 3.1 and 3.2), we get 

V x E(r) = iwµ0 H(r) (3.11) 

and 

V x H(r) = -i(J)£0 n2 E(r) , (3.12) 

where £0 and µ0 are free space permittivity and free space 
permeability, respectively. For nonmagnetic dielectric mediums, µ 
= µ0 and n is the refractive index of the medium and satisfies the 
relation c = c0n2• 

Now we solve Maxwell's equations in the planar dielectric 
waveguide, and then we can further analyze the electromagnetic 
wave modes in the waveguide. The slab waveguide is the simplest 
optical waveguide as shown in Fig. 3.1, and there are accurate 
analytical solutions to this waveguide. The slab waveguide consists 
of a guiding layer (or core layer), a substrate layer, and a cover 
layer or cladding layer. Their refractive indexes are ni, n2, and n3, 

respectively, and commonly n1 > n2 2'. n3. In the slab waveguide, 
the thickness of the core layer is d, which is much smaller than the 
waveguide width. So this waveguide can be considered infinite in the 
horizontal direction (y axis), namely 

aE = aii =O . (3.13) 
dy dy 

z 

Figure 3.1 Planar dielectric waveguide. 

Going by the coordinate axes shown in Fig. 3.1, the electric and 
magnetic fields are not functions of y for an electromagnetic wave 
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propagating along the z axis. We assume the electric field polarizing 
along they axis; the solutions to the wave equations should have the 
following forms: 

Ey(x,z,t) =E(x)exp[i(t3z-mt)] (3.14) 

HxCx ,z,t) = H(x)exp[i(,l3z-mt)] (3.15) 

Ifwe substitute Eqs. 3.14 and 3.15 into Eqs. 3.11 and 3.12, we get 
the following: 

,l3EY =-mµHx 
cJE 
__Y =imµHz (3.16) 
dX 

',l3H cJHZ . EI ---=-!CUE 
X dX y 

f3Hy=CUEE X 

cJHY .--=-ICUEEdX z 
(3.17) 

' f?E cJEZ . H1,.., ---=ICUµ
X dX y 

As discussed in classical theory, there are two possible 
electromagnetic field polarizations, that is, the transverse electric 
(TE) field and the transverse magnetic (TM) field . The electric 
field of a TE wave exists only in the transverse direction, which 
means that there is no electric field component in the propagation 
direction; the magnetic field of a TM wave exists only in the 
transverse direction, which means that there is no magnetic field 
component in the propagation direction. Waves in a slab waveguide 
can be also classified as TE and TM waves. Looking at the above two 
sets of equations, these two sets of equations are independent of 
each other, and their solutions are also independent. There are only 
electromagnetic components Ey, Hx, and Hz in the Eqs. 3.16 and only 
electromagnetic components Hy, Ex, and Ez in Eqs. 3.17. Applying 
some assumptions, the solutions of these two sets of equations are a 
TE wave and a TM wave, respectively. If we consider one of the two 
waves, the TE wave, E2 = 0. Inserting it into Eqs. 3.17, we get 

oHy/ox= 0 
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that is, Hy is a constant independent of x. We assume this constant 
is zero because it doesn't have influence on the calculation results. 
From Eqs. 3.16, we know that Ex is zero too. Hence, the TE wave only 
has the electric field Ey component and the magnetic field Hx and H2 

components. Similarly, inserting H2 = 0 into Eqs. 3.16, we can also 
obtain the TM wave with only the magnetic field Hy component and 
the electric field Ex and E2 components. 

For simplification, Eqs. 3.16 and 3.17 can be reduced to the 
Helmholtz scalar equations of TE wave and TM wave, which are also 
called wave equations: 

·;J2E 
__Y +(k2n2 - fi)E =0 (3.18) axz OJ y 

o2H 
__Y +(k2n2 -/32)H =0 (3.19) axz O J y 

where k0 = w,Jt:0µ0 =2n/}.,. 

The above equations are second-order differential equations, and 
they are solved by imposing the additional boundary conditions. The 
forms of the solutions to these second-order differential equations 
are related to the comparison of the magnitude between k0nj and /3. 
If k0 nj < /3, the solution is an oscillatory function (sinusoidal form); on 
the other hand, if k0 nj > /3, the solution is an exponentially decaying 
function. On using the different propagation constant f3 to solve Eqs. 
3.18 and 3.19, we can obtain different solutions with different field 
distribution in the slab waveguide. Each possible solution of f3 is 
called a mode. The modes in the slab waveguide can be classified as 
guided mode (k0n2 < /3 < k0n1), substrate mode (k0n3 < /3:::; k0n2), and 
radiation mode (0 :::; f3:::; k0n3) . For the guided mode, k0n2 < f3 < k0n1, 

solutions to the wave equation are exponentially decaying in the 
substrate layer and cladding layer; however, oscillatory waves form 
in the core layer. For the substrate mode, k0n3 < f3:::; k0n2, solutions to 
the wave equation are exponentially decaying in the cladding layer, 
while oscillatory waves form in the substrate layer and the core layer. 
For the radiation mode, 0 :::; f3:::; k0n3, there are oscillatory waves in 
all three layers of the waveguide. From the above discussion, we find 
that only when propagation constant f3 is in the range for the guided 
mode (k0n2 < f3 < k0n1), the electromagnetic wave can propagate in 
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the guided layer. However, for the substrate mode, light waves will 
penetrate out of the waveguide through the substrate layer; for the 
radiation mode, light waves will penetrate out of the waveguide 
through the substrate layer and the cladding layer. Generally, it is 
deemed that the cladding and substrate layers have absorbing and 
scattering function for light waves, so light waves propagate in the 
two layers with a large loss and may even disappear. Therefore, we 
should avoid the latter two modes in the waveguide. 

For simplicity, we take the TE wave as an example. To solve 
Eq. 3.18, according to the solution types in the guided mode case 
analyzed above, we can assume the electric field in the three layers 
of the slab waveguide to be written as follows: 

1 
A1 exp(-ox) 0::;; x < +oo 

Ey(x) = Acos(KX)+ Bsin(KX) -d::;; x::;; 0 (3.20) 
A2 exp(yx) - 00 < x :::::-d 

where A, B, Ai, and A2 are amplitude coefficients to be determined 
by the boundary conditions, I(, y, and o, which are defined as follows : 

K =(k5ni - /J2 )112 

y =(/32 - k5n~ )112 (3.21) 
o=(/32 - k5n~ )1;2 

Considering the continuity of the electric field at x =0 and x =-d, 
the boundary conditions are as follows: 

IEy(O- )= Ey(O+) 
(3.22) 1Ey ( -d- ) =Ey ( -d+) 

Combining Eq. 3.16 and boundary condition 3.22, we can get 

tan(Kd) = K(y +o) (3.23) 
K 2 -yo 

Equation 3.23 is the characteristic equation for the TE modes of 
the slab waveguide. All the parameters ( K, y, and o) in the equation 
depend on the propagation constant /3, so it is also the eigenvalue 
equation of f3 for TE modes of the slab waveguide. Because the 
equation is transcendental, the solutions for f3 to this equation 
need to be calculated numerically. We can consider Kd as a variable. 
Using the mapping approach, we can get multiple sets of eigenvalue 
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propagation constants and their corresponding field distributions, 
where each set of solutions corresponds to a propagation mode in 
the waveguide. Similarly, we can derive the characteristic equation 
for the TM modes of the slab waveguide: 

n2K"(n 28 +n2y)
1 2 3 

(n~njK" 2 - n{° 8y)
tan(K"d) = (3.24) 

Let us look at the solutions, Eqs. 3.20, in the slab waveguide 
again. The solution is sinusoidal in the core layer, which is a periodic 
function. Therefore, the possible value of f3 is discrete, that is, there 
are a limited number of modes that can exist in the slab waveguide. 

From Eqs. 3.20 and 3.21 and the continuity of the field 
components in the x direction, comprehensively considering TE and 
TM modes, we can get 

2 2(nf - N2 )1/2 k0d = mn +arctan[ niN : N~n 7]2l+arctan[ 
(3.25) 

where N = {3/k0 is the effective refractive index of the mode; for the 
TE mode, 7]2,3 =1; for the TM mode, 7]2,3 =(nifn2,3) 2. From the process 
of derivation, we find that Eq. 3.25 is equivalent to the characteristic 
Eqs. 3.23 and 3.24 for the TE or TM modes of the slab waveguide. m 
is called the mode number, m = 0, 1, 2, ... , where each m corresponds 
to an effective refractive N, which also proves the above analysis that 
the possible value of f3 is discrete. 

Considering the most popular silicon waveguide system, that is, 
the silicon-on-insulator (SOI) platform, the three layers of the slab 
waveguide, as shown in Fig. 3.1, are air, silicon, and silica, with the 
corresponding refractive indices n3, n1, and n2. The thickness of the 
middle silicon guiding layer is d. From the above discussion, solving 
the Helmholtz equations, we can obtain the analytical solutions of 
the waveguide modes. Figure 3.2 shows the field distributions of 
a few low-order TE and TM modes when the thickness d = l µm. 
Figure 3.2 shows that the field distributions penetrate deeper into the 
cladding and substrate layers when the mode number m increases. 
From Eq. 3.25, we find that when the mode number m increases, 
the effective refractive index N decreases, that is, the propagation 
constant f3 decreases. When the waveguide thickness d increases, 
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the propagation constant f3 increases, and when the thickness is 
greater, the waveguide can support more guided modes. Figure 3.3 
shows the relationship between the propagation constant of the 
first eight guided modes (including both TE and TM modes) and the 
silicon layer thickness. Due to the guided mode condition (k0n2 < f3 
< k0n1), the mode number m cannot be infinitely large. Only a finite 
number of modes will be guided in the waveguide. If the waveguide 
thickness reduces to below some value, the waveguide will support 
only one mode with a polarization (TE or TM), which is the so-called 
single-mode waveguide. To reduce the interaction between the high-
order modes, we usually prefer single-mode waveguides. 

-™o 
·----™1 
---·--™2 

Si Air 

(a) 

- TE0 

-TE1 
....... TE2 

Si Air 

(b) 

Figure 3.2 Field distributions for (a) TE0, TEi, and TE2 modes and (b) TM0, TMi, 
TM2 modes, when the silicon thickness d = l μm (1.55 μm wavelength) . 
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If we take into consideration the guided mode condition k0n2 < 
f3 < k0ni, then f3 = k0n2 is the cutoff condition of the slab waveguide 
guided modes. Therefore, we have the cutoff equation of guided 
modes 

2 2 _ n2 -n3 l(n1 -n2 ) 
21 k0d -mn +arctan [ - 2

2 --22 r13 . (3.26) 
n1 -n2 

From Eq. 3.26, we can also derive the condition of the slab 
waveguide maintaining single-mode operation as follows: 

(3.27) 

where k0 = 2; is the wave number of light waves in vacuum and A 

is the wavelength. The left part of the above equation is the cutoff 
thickness for TE0 and TM0 modes, and the right part is the cutoff 
thickness for TE1 and TM1 modes. Substituting the real refractive 
index of air, silicon, and silica into Eq. 3.27, we can get the single-
mode condition 26.27 nm< d < 274.58 nm for TE mode and 105.28 
nm< d < 353.59 nm for TM mode (1.55 µm wavelength) . Obviously, 
in order to achieve single-mode transmission in the air/silicon/ 
silica three-layer dielectric slab waveguide, we must reduce its size 
to the order of submicrons. 

The above discussion reveals the basic methods to analyze the 
modes in the waveguide. For the analysis of the multilayer slab 
waveguides, strip waveguide and rib waveguide, the differences in 
methods are because of the differences in boundary conditions. We 
can analyze them by considering that the effective index method 
(EIM) is equivalent to the multilayer slab waveguide. Solving the 
propagation constants of the modes and the corresponding field 
distributions is the fundamental approach to analyzing the modes 
in the waveguide. The related issues are treated in the classical 
literature [1]; so we will not review them here. 
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Figure 3.3 Relationship between the propagation constant /3 of the TE and TM 
modes and the silicon layer thickness (1.55 μm wavelength). 

3.2 Strip Waveguides and Rib Waveguides 

The slab waveguides confine light waves to only one dimension; the 
waveguide must be very thin to meet the single-mode condition. To 
confine light better, 2D confinement waveguides are required. There 
are two common basic SOI waveguide structures: strip waveguides 
(or photonic wires [2]) and rib waveguides, as shown in Fig. 3.4. The 
cross sections of the strip and rib waveguides can be rectangular (Fig. 
3.4) or any other shape (such as a trapezoidal cross section). They 
confine light waves both in the horizontal and vertical directions, 
so an analytical solution of the modes in these waveguides cannot 
be directly obtained by mathematical derivation of the Helmholtz 
equations. When the widths of the strip and rib waveguides increase, 
the waveguide can support more guided modes, which is similar to 
the 1D slab waveguides. To analyze the modes in the waveguide, 
many approximate or numerical solutions have been developed, 
such as the EIM, the beam propagation method (BPM), the finite 
difference time domain, and the film mode-matching method. 

To achieve single-mode operation, strip waveguide dimensions 
in both directions (height and width) should be below certain cutoff 
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values. The SOI waveguide cutoff dimensions are usually smaller 
than 1 µm due to the high refractive index contrast between silicon 
(~3.5) and silica ( ~1.5). By using different numerical methods 
from the above description, one can accurately calculate the cutoff 
dimension of certain waveguide type and obtain the single-mode 
condition. 

SiO2/Air Clading 

(a) 

SiO2/Air Clading 

(b) 

Figure 3.4 The cross-section structure diagram of (a) strip waveguides and (b) 

rib waveguides. 

Figure 3.5 shows the single-mode condition for a strip waveguide 
with oxide cladding [3] when a full-vector finite difference method 
is used for calculation. The horizontal and vertical axes in Fig. 3.5 
are the width w and height h of the core, respectively. The curves 
indicate the critical boundary under which the single-mode region 
lies. The size of the core for a single-mode Si strip waveguide is 
of the order of several hundred nanometers. Similar to 2D slab 
waveguides, the fundamental modes for TE and TM polarization in a 
1D waveguide also have a cutoff condition. The single-mode region 
is located between the curves that are determined by the cutoff 
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conditions for the fundamental and first-order modes. We have two 
curves for each TE and TM polarization in a width w versus height H 
presentation (Fig. 3.6), which define the single-mode region for both 
modes (black color) and adjacent regions in which either TE or TM 
is single mode. 

775 ,-----------------, 

620 

multimode region 

310 

155 ~-------------~ 
155 310 465 620 775 

w (nm) 

Figure 3.5 Single-mode conditions for the TE and TM modes of a strip 
waveguide with oxide cladding (1.55 μm wavelength). Reprinted with permission 
from Ref. [3] © The Optical Society. 

Soon Lim et al. solved the cross-section field and effective 
refractive index of the strip waveguide by using a 3D imaginary 
8PM and analyzed the single-mode conditions [4] of the strip 
waveguide with oxide cladding at both operating wavelengths, 1310 
nm and 1550 nm, in detail, as shown in Fig. 3.6. To satisfy single-
mode conditions in both polarizations (TE and TM), two conditions 
have to be considered: (i) the cutoff condition of the first-order TE 
mode ( upper limit) and (ii) the cutoff condition of the fundamental 
TM mode (lower limit). Let us consider a waveguide dimension of 
300 nm x 350 nm; the result indicates that the waveguide is single 
mode at a wavelength of 1550 nm but not at a wavelength of 1310 
nm; this implies that the single-mode condition is more relaxed at 
longer wavelengths and more stringent at shorter wavelengths. If 
the boundaries of the TM0 and TE1 cutoffs are fitted, we can obtain 
an experiential equation that describes the single-mode condition at 
wavelength 1550 nm as follows : 

0.2 + 162e- H10·03 :::; W:::; 0.3+5.9e- H/o.os (3.28) 
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Figure 3.6 The single-mode condition for photonic wire at operation 
wavelengths of (a) 1330 nm and (b) 1550 nm. Reprinted with permission from 
Ref. [4] © The Optical Society. 

For rib waveguides, in the middle of the cross section, there is 
a raised ridge region as the guided region that is similar to strip 
waveguides. But on both sides of the ridge the film is not completely 
removed, which is different to strip waveguides. The cross section 
of a rib waveguide in SOI is shown in Fig. 3.7. Due to the existence 
of the outside slab region, rib waveguides have a more complex 
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mode characteristic, where high-order modes (modes other than 
the fundamental mode) can leak out from the slab region. Therefore, 
large rib waveguides even with micron-sized cross-sectional 
dimensions can behave as single-mode waveguides. However, 
strip waveguides support multiple modes when the cross-section 
dimensions reach a few hundred nanometers. Large rib waveguides, 
whose dimensions are closer to those of optical single-mode fibers, 
can achieve low-loss coupling to optical fibers. Rib waveguides have 
stronger confinement for light waves than strip waveguides, and 
we can fabricate electrodes on their slab region easily. So, the rib 
structure has been widely used for photonic waveguides. 

w 

Air 
n2 = 1I 

f 

I 
H 

n1 = 3.5 Si h 

l 

Figure 3.7 Cross section of a rib waveguide. 

Petermann first proposed multimode rib waveguides with a 
large cross section [5] . Soref et al. used mode matching and BPMs to 
analyze the single-mode operation condition of optical GeSi-Si and 
Si-SiO2 rib waveguides. They gave the following relation for single-
mode conditions [6] : 

w r 
- ::::; 0.3 + ~ 
H '\fl-rz{ (3.29) 

' hr=-~0.5 
H 

where W is the rib width, H is the overall rib height, and h is the 
slab height, as shown in Fig. 3.7; r is the ratio of slab height to rib 
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height. The second equation in Eqs. 3.29 represents a rib waveguide 
that is shallow-etched to ensure single-mode characteristics in 
the vertical direction of the rib waveguide. If r > 0.5, the effective 
index (propagation constant) of high-order modes in the vertical 
direction of the ridge region is smaller than that of the fundamental 
mode in the slab region, which makes high-order modes leak out of 
the guided region, leaving only fundamental modes in the vertical 
direction of the ridge region. After r is determined, the ratio W/His 
determined by the first equation in Eqs. 3.29, which ensures single-
mode characteristics in the horizontal direction of the rib waveguide. 

Later, Rickman et al. and Schmidchen et al. studied the single- and 
multimode conditions of SOI rib waveguides by using experimental 
methods [7, 8]. They found a considerable difference between 
Soref's formula and the experimental results. Soref's formula is 
more relaxed than experimental data. On the basis of the above 
differences, many researchers analyzed the single-mode condition 
of large rib waveguides further using different numerical methods. 
Pogossian et al. studied the single-mode condition of the rib 
waveguide by using the EIM and obtained the single-mode condition 
[9], which is in better agreement with Rickman's experimental data, 
as shown in Fig. 3.8. The single-mode condition can be written as: 

(3.30) 

where the variable definitions are the same as in Eq. 3.29. 
Moreover, Xia et al. [10] analyzed the mode characteristics for rib 

waveguides with a trapezoidal cross section by using the 8PM and 
then they obtained the single-mode condition for rib waveguides 
that is similar to Soref's formula. 

The difference between numerical modeling and experiment may 
partly be explained by the different length scales. Theory considers 
stable modes in an infinite long waveguide, but in experiment light 
is coupled in and out after finite lengths. 

When light waves couple with the waveguide from optical 
fibers, multiple different modes are exited in the waveguide due 
to discontinuous medium interfaces. Some modes constitute the 
guided modes in the waveguide, while the modes that cannot be 
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guided in the waveguide leak out of the waveguide after a certain 
length [11] . The final stable field distribution in the waveguide is 
the superposition of the guided modes. It is possible to detect the 
high-order modes if the waveguide length is not long enough in the 
experiment and then to consider the waveguide as a multimode 
waveguide. 

SorcrsExperimental Data 
formula• Multimode 

2,2 X Singlemode \; 
2, 0 • • • • • 

1,8 

• • • •• •• • ... 

1,6 EI M 

1,4 • • • • X 

• X 
:::c: 
j 1,2 

X 

1,0 • .·.• X 

X X X• •.·· 
0,8 xx X 

0,6 

• xx x x x£' xx 

0,4 

0,4 0.6 0,8 1,0 

h/H 

Figure 3.8 Different single-mode calculations of rib waveguides (Soref's 
formula, EIM) from Refs. (6, 9] compared to experimental data (7, 8] on a w/H 
versus h/H presentation. 

However, the current trend is miniaturization and integration 
in silicon photonic devices to improve device performance and cost 
efficiency. When the cross-section dimensions of the rib waveguide 
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reduce to around 1 µm or even to submicron levels, its single-mode 
condition is different to that of the large rib waveguide. The Yu 
[12] research group calculated the single-mode cutoff dimensions 
for quasi-TE and quasi-TM modes by using scalar and full-vector 
numerical simulation methods, respectively. It has been pointed out 
that small and deeply etched rib waveguides can satisfy the single-
mode condition as long as the waveguide dimensions are designed 
reasonably. From the simulation data obtained, they give a fitting 
formula for the single-mode condition of small and deeply etched 
rib waveguides as follows : 

w ~0_05 + (0.94+0.25H)r 
{ H .J1-r2 ' (3.31) 

0.3 < r < 0.5,1.0 ~ H ~ 1.5 

where r is in the range of 0.3 to 0.5 because of polarization 
dependence. 

Compared with the single-mode conditions given by Soref et 
al. and Pogossian et al., the simulation results of the single-mode 
condition for small-cross-section rib waveguides have the following 
characteristics. 

• The ratio of slab height to rib height r is no longer limited to 
the condition r > 0.5. When the rib waveguide is deeply etched 
with r < 0.5, it can achieve single-mode transmission in the 
waveguide by choosing an appropriate waveguide width W. 

• There is an obvious difference between the single-mode 
conditions for quasi-TE and quasi-TM modes, and the single-
mode condition for the quasi-TM mode is more rigorous. 
Therefore, the single-mode condition for the quasi-TM mode 
should be the limiting condition for the waveguide design, 
because only when this is satisfied, both polarizations are 
single-mode ones. 

3.3 Loss in a Silicon Optical Waveguide 

With the development of the silicon micronanofabrication technolo-
gy, single-mode propagation loss in a silicon waveguide has reduced 
to several decibels per centimeter from the initial several hundred 
decibels per centimeter. Low propagation losses of 0.8 dB/cm have 
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been reported [13]. 
Loss reduction in the waveguide is very important for the quality 

of guided wave transmission. There are three main reasons for loss 
in the waveguide: absorption, scattering, and radiation. The losses 
caused by the three effects in a silicon waveguide are dependent on 
the waveguide design and micronanofabrication technology. In this 
section, we will discuss loss mechanisms in SOI waveguides. 

The silicon in the SOI guided layer is transparent at the 
communication band in the range of 1.3 µm to 1.55 µm, so the loss 
of the SOI waveguide caused by intrinsic absorption is negligible. 
However, for some active photonic devices, free carriers are injected 
into the silicon by applying an external bias, which leads to free 
carrier absorption. The loss caused by free carrier absorption may be 
significant in the SOI waveguide. The absorption loss is proportional 
to the concentration of free carriers. 
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Figure 3.9 Substrate leakage loss of a photonic wire versus oxide thickness 
(parameter width w). 

Substrate leakage is another important reason for propagation 
loss. In the case of submicron SOI waveguides, although they have 
strong confinement for light waves, a relatively large part of the 
mode field will leak into the cladding or substrate layer due to the 
small cross section. If the lower cladding layer of silica is too thin, 
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the mode field even penetrates the buried oxide layer and couples 
with the silicon substrate, which leads to radiation loss. This leakage 
is larger due to smaller waveguide dimensions and a thinner buried 
oxide layer. Figure 3.9 shows the relationship between the loss of the 
TE mode in the waveguide with height H = 0.22 µm and the different 
widths caused by substrate leakage and the buried oxide thickness. 
It is clearly seen that the loss caused by substrate leakage decreases 
while the buried oxide thickness and waveguide width increase. 
Therefore, the buried oxide should be thick enough to reduce the 
substrate leakage loss. 

For submicron waveguides, scattering caused by imperfections in 
the bulk waveguide material and roughness at the interface between 
different mediums in the waveguide is the main loss mechanism. 
The waveguide sidewalls are produced through lithography and 
etching process, so they are much rougher than the upper and lower 
interfaces of the silicon layer; and with the waveguide size shrinking 
further, the interaction between the mode field and rough sidewalls 
will be further enhanced, which leads to a sharp increase in the loss. 

Sidewall roughness in the waveguide can change the waveguide 
width with random fluctuations, that is, the waveguide width is a 
random varying function along the propagation direction. Usually, we 
can use the standard deviation a and the correlation length Le to make 
a quantitative description for this function. These parameters can 
be measured through a variety of electron microscope experiments. 
Payne-Lacey theory indicates the scattering loss coefficient a (dB/ 
cm) caused by the sidewall roughness in the waveguide as [14] : 

(Y2 

a=4.34 r;:: 4 g(V) · fe(x,y), (3.32) 
ko"\J2W nclad 

where g(V) = uzvz is a function depending only on the waveguide 
l+W 

geometry with the normalized coefficients U =k0 d✓n~ -n;ff , 
V = k0 d✓n~ore -n~lad , and W = k0 d ✓n;ff -n~lad . The function/e (x, i) 
is linked to the sidewall roughness 

x✓l - x2+ ✓Cl+ x2)2 + 2x2y2 
fe(x,y)= /

\f(l+x2)2 +2x2y2 

Le nc1Vx=W- y=--=--~
d' ncW~ 
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(3.33) 

where ncore and nc1act are the refractive indices of the core layer and 
the cladding layer, respectively; n eff is the effective refractive index, 
w is the waveguide width, and k0 is the free space wave number. 
Figure 3.10 shows the contour lines of the sidewall scattering loss 
versus the standard deviation a and the correlation length Le in the 
strip waveguide with a 200 nm x 200 nm cross-sectional dimension. 
The functions of g(V) and fe(x, y) in Eq. 3.32 are slowly varying 
functions depending on the waveguide parameters, which have 
little effect on waveguide loss, while the waveguide width and the 
standard deviation are the main factors for the waveguide loss. 
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Figure 3.10 Contour lines of the sidewall scattering loss of a 200 nm x 200 nm 
strip waveguide as a function of (a, Le) . 

Measuring the loss in the waveguide is very important for 
designing photonic devices because the loss determines the quality 
of guided wave transmission in the waveguide. The propagation 
losses in the SOI single-mode strip waveguides have been measured 
by many research groups. There are many experimental methods 
associated with waveguide measurement, such as the cutback 
method, the Fabry-Perot resonance method, and the Fourier spectral 
analysis method. Table 3.1 shows some reported results. 
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Bending of a waveguide leads to radiation losses in the bend. The 
magnitude of the bend loss strongly depends on the bend radius: the 
bend loss has a sharp increase with the radius curvature. It has been 
demonstrated in both theory and experiments that the bend loss in 
the submicron SOI strip waveguide is usually of the order of 0.1 dB, 
even with the bend radius R = l µm. Table 3.2 shows some bend 
loss measurement results of the single-mode SOI strip waveguides 
given in literature. To reduce the bend loss further, there are some 
methods: compact resonator structures are introduced into the 
bend to increase the transmissivity; the lateral offset is introduced 
into the junction between the straight waveguide and the bent 
waveguide to achieve better mode field matching. 

Table3.2 Comparison of bend loss measurement results for SOI single-mode 
strip waveguides (TE) 

Height Width Radius Wavelength 
Reference (nm) (nm) (µm) Loss (dB) (nm) 
Lim [21] 200 500 1 0.5 1540 
Sakai et al. [16] 320 400 1 1±3 1550 

2 0.46 
300 300 1550

Tsuchizawa et al. 
[22] 3 0.17 

Corner
Ahmad et al. [23] 340 400 1 1550

mirror 
15 0.5 

Dumon et al. [24] 220 400 Corner 1550
1

mirror 
0.086 ±

1 
0.005 

Vlasov et al. [20] 220 445 2 
0.013 ± 1500 
0.005 

5 ±0.005 

It is easier to obtain a small propagation loss in the rib waveguide 
because the side area is reduced. The propagation loss of a shallow-
etched rib waveguide with ridge height H =0.34 µm, width W =0.50 
µm, and slab height h = 0.14 µmis about 0.7 dB/cm [25]. However, 
the shallow-etched rib waveguide has weaker confinement in the 
lateral direction, so light in the ridge waveguide leaks out easily 
from the slab region. Usually, the ridge waveguide requires a longer 
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bend radius to obtain a low bend loss. Therefore, the rib waveguides 
often use corner reflectors to achieve a 90Q deflection of rays. The 
bend loss in the rib waveguide with corner reflectors was reduced to 
0.32 ± 0.02 dB (92.9% bend efficiency) for TE polarization at A= 1.55 
μm [26]. 

3.4 Polarization Dependence of Silicon 
Waveguides 

Polarization dependence in SOI optical waveguides of small 
dimensions is rather strong. As already shown in Fig. 3.2, there is 
a difference between the TE and TM field strength distributions in 
the waveguide. Figure 3.11 shows the field distributions and loss 
spectra for TE and TM modes in a single-mode SOI strip waveguide. 

Usually, polarization dependence is described by waveguide 
birefringence, which is defined as the effective index or group 
refractive index difference between TE and TM modes, 

A TE TM 
D.neff =neff - neff . 

ca, 
TM 

3 

4 

E 5 

~ 
:3. 6 
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1/) 
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..J 
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1300 1400 1500 1600 1700 

Wavelength (nm) 

Figure 3.11 The mode field distributions (above) and loss spectra (below) for 
TE and TM modes in a single-mode SOI strip waveguide. 
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Figure 3.12 shows the relationship between the effect refractive 
index and the waveguide width, where four colored lines represent 
TE and TM modes in the strip and rib waveguides, respectively. The 
effective refractive index for the TE mode can be equal to the one 
for the TM mode in the waveguide at some specific dimensions in 
order to achieve zero birefringence. However, it should be noted 
that a deviation in the waveguide width will cause a change in 
the birefringence. When the strip waveguide width has a 10 nm 
deviation, the birefringence deviation reaches the order of 10-2• 

2.9.------..------..------..--------, 

2.8 

2.7 

- Channel, TE 
- Channel TM 
- Rib, TE 
- Rib, TM 

0.25 0.3 0.35 0.4 
Waveguide Width [µm] 

Figure 3.12 Effective refractive index of TE and TM modes in the strip and rib 
waveguides. 

Birefringence control from the geometry and dimension of 
the waveguide requires precise dimension control with a high 
requirement for fabrication tolerance. The waveguide birefringence 
of a given waveguide may be changed by two mechanisms: asymmetry 
of the structure and the opto-elastic effect due to anisotropic stress 
in the waveguide core layer. Therefore, we could consider these two 
aspects to reduce polarization dependence. 

A silica cladding usually covers the silicon core layer of SOI 
waveguides. The stress in the upper cladding layer causes anisotropic 
stress distribution in the core and at the edge of the silicon layer, and 
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the refractive indices of silicon and silica are changed by the elastic-
optic effect; a stress-related birefringence component is introduced. 
The birefringence caused by stress is related to the oxide density, 
oxide thickness, and waveguide geometric. Therefore, the waveguide 
birefringence can be effectively reduced by properly changing the 
upper cladding thickness and the stress in the material. 

3.5 Summary 

Silicon has shown great advantage for photonic waveguiding, 
especially for optoelectronic integration. SOI has become the 
most popular platform for silicon photonic waveguides due to 
the high refractive index contrast between the semiconductor 
and the surrounding silicon oxide. To discuss basic waveguide 
properties, we began with Maxwell's equations, analyzed the mode 
field distributions in the slab waveguide, extended that to the strip 
and rib waveguides, and then gave a comprehensive analysis of 
single-mode conditions for the waveguides. Basic loss mechanisms 
and polarization properties were discussed, with reference to 
experimental results and numerical calculations. Nanowire 
waveguides are the backbone of chip-sized photonic systems; they 
transport optical signals between sources and receivers, splitters 
divide the signal into various directions, and different signals are 
added at waveguide combiners. The high refractive index contrast 
of SOI waveguides allows dense packing of many waveguides, with 
strong bending on a silicon chip. 
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