
Chapter 2 

Band Structure and Optical Properties 

The band structure of semiconductors is mainly influenced by 
the lattice type, the bonding distance, and the ionicity of bonding 
partners. Have a look along the group IV element column of the 
periodic table, and one will find a thermodynamically stable diamond 
(zincblende) lattice type for silicon and a zincblende lattice type for 
AlP. The diamond ( zincblende) lattice can be described by a cubic cell 
with eight atom positions, where all the positions are occupied by 
one element, A, ( diamond lattice) or by two elements, A and B, from 
group III and group V elements, respectively. The lattice is strongly 
bonded by covalent forces between an atom and its immediate four 
neighbors ( diamond lattice) and additionally by ionic forces in the 
zincblende lattice. The A (111) stacking of planes in the zincblende 
lattice may be described by an (abc) sequence a, b, c, a, b, c, .. .. 
This lattice scheme is only challenged at the low atomic number Z 
end (carbon, Z = 6; SiC, Z = 10) and at the high atomic number end 
(tin, Z = 50) . For carbon the diamond lattice is metastable whereas 
the stable lattice is the layered graphite structure. A single or a few 
layers of graphite are now in research focus as graphene that can 
be considered as a narrow graphite quantum well. On the tin side 
the semiconducting a-Sn (gray tin) is only stable below 17°C; above 
room temperature the metallic /3-Sn is stable. Alloying of Sn with 
small amounts of Ge stabilizes the diamond structure. Increasing 
ionicity by choosing atomic partners from group II (A) and group VI 
(B) favors a different lattice cell (hexagonal wurtzite lattice) that has 
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the same nearest-neighbor bonding as the zincblende lattice but a 
different stacking in the next nearest (111) plane. The (111) stacking 
in the hexagonal wurtzite lattice has an (ab) sequence with a, b, a, b, 
. .. . A wrong sequence is called a stacking fault, in the sense that the 
wurtzite lattice is considered as a zincblende lattice with a periodic 
stacking fault arrangement. A special situation is given with silicon 
carbide (SiC) where the stacking fault energy is very low, allowing 
a variety of (111) arrangements (polytypic SiC) from zincblende to 
wurtzite, with stacking faults of decreasing periods. The diamond 
lattice SiC is named "cubic-SiC" or "/3-Sic." 

2.1 Bonding Lengths in a Diamond/Zincblende 
Lattice 

To simplify the discussion we concentrate now on the majority of 
applications with diamond (zincblende) lattices. The lattice constant 
Go increases with an increasing atomic number Z (mean number 
Z = 1/2(ZA + Z8) for AB compounds). In Table 2.1 a comparison of 
group IV and group III/V elements/compounds is given. The lattice 
constantG0 [1] and the normalized lattice constantG0/Z113 are shown 
in picometers (1 pm = 10-12 m). The atomic diameter increases 
roughly with Z113. 

The bonding length, that is the lattice constant Go, determines 
largely the bandgap, with sharply decreasing gaps as the lattice 
constant increases. The bonding length is given as Go · ✓3/4 . The 
direct bandgap that separates the valence band maximum ( which is 
always at the Brillouin zone center, wave vector k = 0, named r) from 
the lowest conduction band at r is given as Egctir- From C to SiC to Si 
to Ge to Sn it reduces from 6.5 eV to 6 eV to 3.2 eV to 0.8 eV to 0 eV, 
spanning the transition from a semi-insulator to a semimetal. 

In many semiconductors of this group the lowest bandgap 
is indirect, which means the lowest conduction band is either in 
(111) direction (called L point) or in (100) direction (Li point; 
the final (100) in the Brillouin zone is named the X point) . The 
indirect transition needs a phonon help to fulfil the momentum 
conservation. Absorption and photon emission are much weaker 
in indirect transitions than in direct transitions. In Fig. 2.1 the 
indirect bandgaps are named EgL er valence band to L conduction 
band transition) or E gx (r valence band to X or Li conduction band 
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transition). The L conduction band energies decrease rapidly, with 
bond length dominating the indirect bandgap material Ge, whereas 
the indirect semiconductors C and Si are characterized by a /j. (EgJ 
conduction band minimum. 

Table 2.1 Cubic diamond/zincblende lattice 

Element/ Atomic Lattice Normalized lattice 
compound numberZ constant a0 (pm) constant a0/Z113 (pm) 
C (diamond) 6 356.7 196.3 

BN 6 361.15 198.7 

SiC 10 436 202.4 

AIN 10 438 203.3 

Si 14 543.1 225.3 

AIP 14 546.7 226.8 

Ge 32 564.6 177.8 

GaAs 32 565.3 178.1 

Sn 50 648.9 176.1 

InSb 50 648 175.9 

Note: Given are the lattice constant o0 and the normalized lattice constant a0 /Z113 (Z 
means atomic number) as a function of Z. 

Table 2.2 Bandgaps fgdir, fgL, and fgx of group IV elements and their 111/V 
counterparts with the same mean atomic number Z 

Element Lattice type z Egdir (eV) EgdeV) Egx (eV) 
a-Sn D 50 -0.41 0.14 0.9 

lnSb ZB 50 0.25 1.08 1.71 

Ge D 32 0.8 0.66 0.85 

GaAs ZB 32 1.42 1.25 1.94 

Si D 14 3.2 1.65 1.12 

AIP ZB 14 3.62 2.49 

SiC ZB 10 6 4.2 2.2 

AIN ZB 10 6.2 

C D 6 6.5 9.2 5.45 

BN ZB 6 8.2 6.4 

Note : The lattice type is diamond (D) or zincblende (ZB) . Direct semiconductors are 
underlined, and the lowest transition is underlined. 
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Figure 2.1 Band edge energies for different group VI and group 111/V 
compounds as a function of Z113 (Z means atomic number). Group IV is given 
by full symbols and group 111/V by empty ones. fg is black, fgL red, and fgx blue. 

Compare group VI with group III/V materials to identify the 
influence of the ionicity that contributes to group III/V compounds. 
At all energy levels-direct and indirect, L or X-the ionicity 
increases the transition energies and strengthens the tendency for 
direct semiconductors; see AlN, GaAs, and InSb (Table 2.2) compared 
to Si, Ge, and Sn. 

2.2 Dielectric Function 

The macroscopic influence of a material on the electrical properties 
is described by a complex dielectric function fr [2], 

(2.1) 

that links the electric field strength E with the electric displacement 
vector D by the well-known relation 

(2.2) 

For static fields or low-frequency modulation the displacement 
vector is in phase with the electric field and then the dielectric 
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function reduces to the dielectric constant (permittivity) Er· For a 
higher circular frequency the dielectric displacement is out of phase, 
which is described by the complex dielectric function fr· Figure 2.2 
shows the dielectric function of silicon at room temperature in the 
spectral range of interband transitions as obtained by spectroscopic 
ellipsometry [3]. The dominant contribution to the frequency 
dependence of the dielectric function of semiconductors arises from 
electronic interband transitions between occupied valence band and 
empty conduction band states. Conservation of momentum imposes 
direct transitions without a change of wave vector for a first-order 
process. 
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Figure 2.2 Dielectric function g = c' + jE" of silicon versus photon energy. 

The phase delay is explained by atomistic theories that take 
into account the polarization P of a material under the influence 
of an electrical field. One can immediately imagine that an atom 
is polarized by the different forces on the positive nucleus charge 
and the negative electron cloud charge or that in an ionic crystal an 
additional term is created by the different charges on the crystal 
lattice sites. The originally classical mechanics and later quantum 
mechanical theories of polarization P are the base of a quantitative 
understanding of the dielectric function of different dielectrics and 
semiconductors, 

D=Eo ·E+P (2.3) 

From Eqs. 2.2 and 2.3 

P =Ea ( Er - 1) ·E . (2.4) 
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The linear polarization property (Er - 1) is termed electrical 
susceptibility x: 

(2.5) 

For the description of an electromagnetic wave in a nonmagnetic 
material a related set of optical constants is more practical. 

Let us define a complex quantity 

~ = ( Er )1/2' (2.6) 

which is the square root of the dielectric function. 
This complex quantity n is composed of the refractive index n 

and the absorption index K: 

~=n- jK (2.7) 

This follows from the solution (Maxwell's equations) of an 
electromagnetic wave in a nonmagnetic semiconductor 

E =E0 exp[j(wt-k0 ~x)] . (2.8) 

The vacuum wave number k0 is given by 

ko = 2n/Ao, (2.9) 

with Ao as the vacuum wavelength. 
The physical meaning of n and K will be clearer after separating 

the imaginary and real parts in the wave equation, Eq. 2.8. 
E =E0 exp[j(wt-k0~)]exp(-k0Kx) (2.10) 

The refractive index n describes the wave vector in a material 
k = k0 ·nor A= A0/n, (2.11) 

whereas the absorption index describes the attenuation of the field 
strength E on a k0x scale. 

For measurement purposes the absorption coefficient a is more 
convenient, which is a measure of the intensity attenuation on a 
pure length scale. Because the intensity is proportional to the square 
of the E field, this absorption coefficient reads as follows: 

a= 2k0 K (2.12) 

The relations between the optical constants n and K and the 
dielectric function are summarized in the following equation: 

E~ =n2 -K2 =n2 -(a2 /4k5) (2.13) 

E; = 2nK = na/k0 (2.14) 
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The frequency dependencies of the dielectric function components 
£~ and £; are not independent; they are linked by the Kramers-
Kronig relationship 

'( *)- -if=w.s;(co) d
£r co l - z * z co (2.15) 

TC CO -(CO )
0 

and 

"( *)=- zco* =s £~(co)-l d 
£r CO 2 * 2 CO· (2.16) 

TC 0 co -(CO) 

That means if the whole frequency dependence of one component 
is known the other can be calculated by a numerical integration. 

2.3 Absorption Processes 

In the visible and near-infrared spectral regime the fundamental 
absorption processes [4] can be easily explained considering the 
electronic band structure of semiconductors and keeping in mind 
the conservation laws of energy and momentum. The energy Eph of a 
photon is rather high in this spectral range, 

Eph(co) = nco= l.24eV/Ao (µm), (2.17) 

with a rather small momentum Pph 

Pph (co)= nk0 = nco/c (vacuum) (2.18) 

compared to the momentum space Pmax given by the first Brillouin 
zone 

Pmax =nkmax =nTC/Go ( diamond lattice) (2.19) 

as Pph!Pmax =2a0/ A0 is typically on the order of 10-3 (Si, Ao= 1.1 µm). 
The phonon energies are rather low (Si: below 65 meV), but they 
cover the whole momentum space. As an example Fig. 2.3 shows the 
energy versus wave vector diagram of transversal optical (TO) and 
transversal acoustic (TA) phonons in Si. 

TO phonons have got energies rather insensitive to the wave 
number. TA phonon energies start roughly linear with wave numbers. 

Interband absorption (valence band to conduction band) 
requires as minimum energy the bandgap transition Eg. This gives 
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a clear cutoff wavelength above which no interband absorption is 
possible. 

A-cutoff= 1.24 µm/Eg (eV) (2.20) 
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Figure 2.3 The phonon spectra along the (100) direction in Si. Shown are the 
transverse modes TO and TA, respectively (O: optical, A: acoustic). 

Absorption above Eg is strongly dependent on the type of 
transitions (direct or indirect) because indirect transitions need 
phonons to satisfy momentum conservation. One obtains easy 
relations for the absorption coefficient, assuming effective mass 
approximation for the electronic band structure. 
Direct transition: a · OJ= A (Eph - Eg) 112 (2.21) 

Within a limited energy range near the band extremum (where 
effective mass approximation is valid for steady functions) this 
relation is often simplified as a2 proportional to (Eph - Eg)-

Indirect transition: The onset of absorption caused by indirect 
transitions is much weaker due to the phonon contribution for 
momentum conservation. It is described by 

a= A' (Eph - Eg) 2 (2.22) 



Direct Group iv Semiconductor I11 

The extracted bandgap Eg is in reality a temperature-dependent 
mixture of two curves for Eg + Ephon and Eg - Ephon because 
absorption and emission of a phonon are possible. As an example 
silicon absorption [5] is shown (Fig. 2.4) because Si is completely 
indirect in its band structure up to 3.2 eV. The square root of the 
absorption coefficient versus the energy scale should give a straight 
line for indirect semiconductors. This is fulfilled near the band edge 
when the effective mass model is a good description of the density 
of states of the bands. Photocurrent spectroscopy may be used for 
absorption measurements of thin layers of materials [6] in order to 
assess direct or indirect fundamental absorption and to estimate 
the band edge energy. However, near energetic distances between 
indirect and direct bandgap as given in pure Ge or GeSn alloys result 
in higher resonant indirect optical absorption [7]. 
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Figure 2.4 The room temperature absorption a of Si, depicted as a05 

versus fph· 

2.4 Direct Group IV Semiconductors 

Unstrained alloys change their lattice cell volume Vwith composition. 
The relative volume change f1 V/V with respect to a reference 
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cell depends on the lattice mismatch f between the alloy and the 
reference. We treat the corresponding bandgap changes within a 
linear approximation, which delivers enough accuracy within a few 
percent volume change because the data for deformation potentials 
and indirect/direct conduction band crossover are uncertain by at 
least 10%. 

6V/V=3f (2.23) 

The lattice mismatch f is 0.043*x for SiGe, with Si as reference, 
and 0.147*y for GeSn, with Ge as reference, respectively. The molar 
concentration of Ge in SiGe is given by x, and the molar concentration 
of Sn in GeSn is given by y . 

With increasing lattice cell volume of GeSn, the energy difference 
!:::,.Ee between the direct conduction band and the indirect one shrinks 
from 136 meVforGeto 0 meVforGeSn atthecrossoverconcentration. 
The crossover concentration of Sn in GeSn is assessed to be between 
7% and 11 % [8]. The uncertainty stems from the contribution of 
residual strain and the low detectivity of weak indirect transitions 
near the strong direct transitions. The following numerical values 
for the linear approximation are consistent with data from Ref. [9]. 
In this work, the crossover is obtained either with 9% Sn in GeSn 
or 2% biaxial tensile strain. A linear superposition delivers for the 
energy difference !:::,.Eeof a biaxial strained GeSn: 

!:::,.Ee= 0.136 eV - 1.Sly- 6.7 eps (2.24) 

Crossover is obtained if Sn contenty and biaxial strain eps fulfil 
the relation 

l.Sly + 6.7 eps = 0.136 eV (2.25) 

Applying strain changes the lattice cell volume. An increase is 
obtained with a tensile strain. The volume increase is much larger for 
biaxial strain than for uniaxial strain. The cubic cell is distorted to a 
tetragonal cell for a (100) substrate surface. The following relations 
for uniaxial and biaxial strains then give the cell volume changes. 
Uniaxial strain: !:::,.V/V= eps*(l-2 v) = eps*0.46 (2.26) 
Biaxial strain: !:::,.V/V= 2eps*[(l-2 v)/(1-v)] = eps*l.26 (2.27) 

The Poisson number v describes the contraction in a perpendi-
cular direction to the tensile elastic stress; its value is 0.27 for Ge. 

Comparison of Eqs. 2.26 and 2.27 proves that the volume change 
with biaxial strain is nearly three times higher than that with uniaxial 
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strain. Indeed, crossover with uniaxial strain requires more than 4% 
tension, in agreement with the simple volume considerations. 

Both tensile biaxial strain and Sn alloying reduce the bandgap to 
about 0.5 eV for crossover. 

A rough approximation for the direct bandgap E gdir delivers as 
first overview 

E gdir = 0.8 eV - 3.3 y- 14.7 eps (2.28) 

This approximation is only valid for biaxial tensile strain. Strain 
splits the degenerate values of heavy holes and light holes. The 
lowest energy transition is related to the light hole valence band 
for biaxial tensile strain, whereas compressive biaxial strain moves 
up the heavy hole band. This causes a fundamental asymmetry of 
bandgaps concerning the sign of the strain (remark: tensile strain is 
counted positive, compressive strain negative). 
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