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ABSTRACT
Plant diseases can greatly affect the total production of food and
agricultural materials, which may lead to high amount of losses in
terms of quality, quantity and also in economic sense. To reduce the
losses due to plant diseases, early diseases detection either based on a
visual inspection or laboratory tests are widely employed. However,
these techniques are labor-intensive and time consuming. In a view to
overcome the shortcoming of these conventional approaches, several
researchers have developed non-invasive techniques. Recently,
spectroscopy technique has become one of the most available non-
invasive methods utilized in detecting plant diseases. However, most
of the studies on the application of this novel technology are still in
the experimental stages, and are carried out in isolation with no
comprehensive information on the most suitable approach. This
problem could affect the advancement and commercialization of
spectroscopy technology in early plant disease detection. Here, we
review the applications and limitations of spectroscopy techniques
(visible/infrared, electrical impedance and fluorescence spectroscopy)
in early detection of plant disease. Particular emphasis was given to
different spectral level, challenges and future outlook.
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Introduction

Plants are the main sources of foods for human around the world. Plants are also useful in
creating a balance between human and the environment (1, 2). However, during cultivation,
plants can be affected by different kinds of diseases. These diseases could affect the produc-
tion yield of plant fruits, and reduce the total bulk of available plants for human utilization,
hence, reduction in the economic value in terms of quantity and quality (3, 4).

To date, a number of studies have reported more than 50,000 parasitic and non-parasitic
plant diseases are available all over the world (5). Parasitic diseases are all the disorders that
occur in plants as a result of severe attacks by an organism known as parasite (6). While
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non-parasitic diseases are physiological diseases that arise as a result of imbalance in the
physiology of the vital plant parts due to factors such as inappropriate plant growth and
environmental conditions (7, 8). These diseases cause a great deal of damage and are charac-
terized by wilting, scabs, mold coatings, rusts, blotches and rotted tissue (9). The most com-
mon form of plant diseases include anthracnose (10), apple scab (11), bacterial canker (12),
blossom (Monilinia laxa) (13), end rot (14), brown rot (Monilinia fructicola) (15), cedar
apple rust (Gymnosporangium juniperi-virginianae) (16), club root (17), corn smut (Ustilago
maydis) (18), crown gall (Agrobacterium tumefaciens) (19), damping off (20), downy mildew
(21), early blight (Alternaria solani) (22), fire blight (23), fusarium wilt (oxysporum f. sp.
Cucumerinum J. H. Owen) (24), gray mold (Botrytis cinerea) (25), late blight (Phytophthora
infestans) (26), leaf curl (27), leaf spot (28), mosaic virus (29), potato scab (30), grapevine
leaf-roll (Grapevine leafroll-associated virus) (31), citrus variegated chlorosis (CVC) (32), Fiji
leaf gall (33), powdery mildew (Erysiphe necator) (34), wheat rust (Puccinia striiformis f. sp.
tritici) (35), huanglongbing (HLB) (36), basal stem rot (BSR) (37) and verticillium wilt (38).

Major production and economic losses caused by these plant diseases in agricultural and
food sectors have been reported to be over 40% of the total production losses in most devel-
oping countries (39). For instance, Sharma (39) also reported about USD 622,805 losses per
year resulting from wheat rust (P. striiformis f. sp. tritici) in India. In fact, this figure reaches
up to USD 7.79 million during the years of epiphytotics plant disease. Similarly, BSR disease
caused by Ganoderma boninese was reported to cause immense damage to most oil palm
plantations in Malaysia each year, with yield losses up to 80% in the infected areas (40). Gen-
erally, high percentage of losses is incurred during agricultural production due to the effect
of plant diseases. These losses can be reduced or eradicated by early detection, monitoring
and management of these plant diseases.

Several methods ranging from conventional to advance techniques have been used in
early detection of plant diseases (41). These methods includes: visual inspection, laboratory
tests and non-invasive techniques as illustrated in Figure 1. Visual inspection involves the
identification of affected plants based on the appearance of pathological symptoms. For
example, Ganoderma disease on oil palm trees can be identified based on fungus fruiting
bodies on affected trees. This approach can detect the disease distribution within a wide
range of the field (42). However, this method is labor-intensive, time consuming, inefficient

Figure 1. Different methods of plant disease detection.
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and expensive in the early stages of infection (43–47). On the other hand, laboratory based
methods used in the detection of plant diseases include: physiological, biological, serological
and molecular tests (48–51). However, the most common of the laboratory tests are serologi-
cal test, such as enzyme-linked immunosorbent assay (ELISA), based on the use of protein in
the detection of causative diseases, and also molecular test, such as polymerase chain reac-
tion (PCR) used in detecting plant diseases based on DNA sequence of the pathogen (52,
53). The DNA-based sequencing involves the identification of nucleotide within the plant
DNA molecule in a precise order thereby enabling the detection of diseases before any visual
symptoms appear. This biological method of plant disease detection is widely applied in
identifying the severity level of different plant diseases, such as bacteria, fungi and genetically
modified organisms. A typical DNA based sensor, which operates based on specific nucleic
acid hybridization of the immobilized DNA probe can be used as a reliable and accurate test-
ing device for plant genetics and disease detection (51, 54, 55). Nonetheless, there are limita-
tions to the application of these techniques in early detection, control and management of
plant diseases. This is due to the complexity of the methods and the time required (56, 57).
In addition, these techniques are expensive and lack rapidity for the detection of plant
diseases.

In view of the above drawback, non-invasive techniques have gained much attention in
recent years as reported in the literature (41, 45, 58–61). These techniques, such as terrestrial
laser scanning (46), image processing (62), electronic nose (63), sonic tomography (49),
microfocus X-ray fluorescence (uXRF) (64), GanoSken technology (65), and spectroscopy
have recently been applied in detecting plant diseases (58). Nevertheless, most of these tech-
niques have numerous limitations. Some of the drawback to the application of these techni-
ques in detecting plant diseases include (i) cumbersome process, (ii) long setup process, (iii)
high-cost, (iv) sensitive to the change in environment condition and (v) low selectivity and
high specific software requirement (51, 66). However, the advantages of spectroscopy over
other novel techniques can be attributed to simplicity, rapidity and affordability. Therefore,
the application of spectroscopy technique in the detection of plant diseases becomes
indispensable.

Spectroscopy techniques are widely differentiated into molecular and atomic based on
their mode of application (67, 68). Besides, they can be classified based on the nature of their
interaction. Example of molecular spectroscopy include visible (VIS), infrared (IR), nuclear
magnetic resonance (NMR), mass spectroscopy (MS) and electrical impedance (EI). On the
other hand, the atomic spectroscopy includes fluorescence spectroscopy (FS). Most of these
spectroscopy techniques have been widely applied for plant disease detection (59, 69–72).
For example, VIS/IR spectroscopy was used to detect olive leaf spot (OLS) disease in olive
trees (73). On the other hand, several studies reported that IR spectroscopy is used for iden-
tifying the disorders that affect the molecular structures and properties of plants (58, 74, 75).
FS is stated as a tool to evaluate and determine the plant diseases at early stage (76–79).
More so, EI technique has been used as a promising approach for plant disease detection
(80, 81). Taken together, many researchers have justified the potential of molecular and
atomic spectroscopy techniques for analyzing and monitoring the changes in the quality of
agricultural and food products, and most importantly in detecting plant diseases at the early
stage.

Despite the advantages associated with the application of spectroscopy technique in plant
disease detection, most of the studies are carried out in isolation with no comprehensive
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information on the most effective type of spectroscopy technique, and applied advanced sta-
tistical approach. These drawbacks limit the use of spectroscopy technique in detecting plant
disease both in small and large scale applications. Thus, this paper attempts to make an
assessment of the application and limitation of spectroscopy techniques (VIS/IR, EI and F)
spectroscopy in plant disease detection.

Spectroscopy techniques for detection plant diseases

The rapid developments in advanced agricultural technologies have increased the demand
for the application of non-invasive technique in detecting plant diseases. From the literature
reviewed, most spectroscopy application in detecting plant diseases fit these criteria; rapid,
non-invasive and specific to a particular type of disease whereby, the sensitivity for detection
at the early stage of the infection are taken into consideration in the design and development
of the said non-invasive technique (82, 83).

Spectroscopy is the study of the interaction of electromagnetic waves, including ultravio-
let, visible and infrared spectra with matter, as illustrated in Figure 2 (84–86). Spectroscopy
data is often described by an emission or absorption spectrum, and the result can be illus-
trated as a function of wavelength or frequency. Presently, several studies have reported the
design, development and application of different spectroscopy techniques as an effective and
practical tool for large-scale real-time plant disease detection under field conditions (45, 58,
66, 73, 76, 87–91).

Visible and infrared spectroscopy

Visible and infrared (VIS/IR) spectroscopy (400–100,000 nm) is one of the most promising
non-invasive techniques which has obtained extensive acceptance in many areas due to its
advantages over other analytical techniques. It is an effective approach to reveal quality of
agro-products (93). Much of the current literature on VIS/IR pays particular attention to
determine the quality of agricultural products and few publications have addressed the use

Figure 2. Infrared, visible and ultraviolet allocation in the electromagnetic spectrum. ELF: extremely low
frequency, VLF: very low frequency, LF: low frequency, MF: medium frequency, HF: high frequency, VHF:
very high frequency, UHF: ultra-high frequency and RF: radio frequency (92).
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of this technique for detecting plant diseases (73). However, among many available disease
detection techniques, a rapid and non-invasive method like VIS/IR spectroscopy is
preferable.

Spectral reflectance analyses have proven to be very useful in detecting plant stress due to
changes in the absorption of incident light in the VIS and IR range of the electromagnetic
spectrum (94–99). In addition, the influence of the pathological status of a crop on its spec-
tral characteristics can be visible or detectable in the VIS and/or the IR regions of the electro-
magnetic spectrum (100, 101). Several studies have used VIS/IR spectroscopy technique for
detecting and monitoring plant diseases at early stage. These diseases included yellow rust in
wheat, spot in wheat, parley and olive leaves, BSR disease in oil palm trees, HLB and CVC
disease in citrus, verticillium wilt in cotton, leaf-roll in grape (Grapevine leafroll-associated
virus), scab in apple, Fiji leaf gall in sugarcane, powdery mildew (E. necator) in wheat, patho-
gen in tomato, fungal infection in corn, crown rot in tomato and leaf folder infestation in
rice (102–105).

Normally, VIS and IR spectroscopy system consists of four components, namely light
source, light-isolating mechanisms, detector and sampling devices (106). The data acquisi-
tion using VIS and IR techniques depends on the type of mode used. There are 3 different
modes of data acquisition, namely reflectance, interactance and transmittance mode. The
main difference between these modes is the location of the light source and detector as illus-
trated in Figure 3. In reflectance mode, the detector is situated at the same side of the light
source, in interactance mode the detector and the light source are positioned parallel to each
other, while in the transmittance mode, the detector is located at the opposite side of the illu-
mination (107). In reflectance mode, the wavelength is wider compared to the other modes,
while in transmission mode the wavelength is narrowest. Figure 4 shows the different wave-
length in the 3 modes whereby the vertical transmission scale is only approximate and the
vertical interactance axis shows raw intensity on an arbitrary scale (106).

Based on the wavelength of VIS/IR spectroscopy technique in plant disease detection 4
different VIS/IR regions have been identified. They are visible, near-infrared (NIR), mid-
infrared (MIR) and far-infrared (FIR) regions. In order to effectively apply VIS/IR spectros-
copy in detecting plant diseases, the ideal wavelength must be known. This is because the
wavelength in VIS/IR can be changed in response to many factors such as nutrients,

Figure 3. Mode of data acquisition in the VIS/IR system (106).
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temperature, color and water activity in plants (45, 66). According to the American Society
of Testing and Materials (ASTM), the spectrum for VIS covers the wavelength range of 400–
750 nm, NIR of 780–2500 nm, MIR of 2500–25,000 nm and FIR of 25,000–100,000 nm. VIS
spectrum has blue-green band region (400–650 nm), which has been used to report differ-
ences between healthy and affected tissues in plants (51, 77). NIR consist of 2 important
regions, short-wavelength (SW-NIR) (750–1300 nm) and long-wavelength (LW-NIR)
(1300–2500 nm) where every region is associated with special content in the plants (90).
MIR consists of 2 regions including water absorbance region and carbohydrate region with
wavelength of 2500–6500 nm and 8500–11,500 nm, respectively (102, 108, 109).

Overall, the reflectance properties of individual leaf depend on the interaction of pigment
content, leaf structures and water content with electromagnetic radiation (EMR) (110, 111).
In VIS spectrum, the reflectance of leaf is low because of the absorption by photosynthetic
pigments mainly chlorophylls and carotenoids. Similarly, SW-NIR region has no strong
absorption features whereby the magnitude of reflectance is governed by structural disconti-
nuities encountered in the leaf. Schaare and Fraser (107) studied the response of wavelength
of VIS and SW-NIR (450–1150 nm) at the 3 different modes (reflectance, interactance and
transmittance). It was found that the reflectance at VIS was weak and the reflectance
increased at the SW-NIR as illustrated in Figure 4. However, LW-NIR region presents vari-
able-reflectance values mainly linked to the absorption characteristics of water and other
compounds (100, 112). MIR region of the spectrum has also been applied to detect changes
in infected plants, when comparing to healthy or non-infected plants (108).

The changes in VIS/IR reflectance spectra due to the plant diseases and pathogens can be
clarified by impairments and the variation of chemical composition inside the affected tissue
that can be seen, such as the appearance of typical fungal structures like powdery mildew
hyphae. Also, changes in MIR spectra can be attributed to water and carbohydrate vibra-
tional bands present in the leaves include various sugar, starches and cellulose. In addition,
plant diseases produce fungal and bacterial structures in the leaves surface, which can influ-
ence spectra characteristics of the plant-pathogen interaction. Thus, the measured patterns
enable the identification of diseases based on the spectral properties of plants.

Previous works have described the application of IR spectroscopy in detecting amino
groups (113–115). The amines compounds can be characterized by absorption bands
between 3300 and 3500 cm¡1. The results of studies in the scientific literature have shown

Figure 4. Typical reflectance, interactance and transmission for VIS/NIR spectra. The reflectance spectra
range from 500 to 1100 nm (107).
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that measurements of bandwidth, frequency and intensity permit much greater refinement
in the structural identification of these compounds, because the OH stretching vibration in
monomeric alcohols. In 2007, Schulz and Barunska (115) investigated the amino acids in the
plant material using IR spectroscopy. It was found that amino acid structure provides helpful
information for a reliable interpretation of the registered IR spectra. Consequently, the vibra-
tional bands corresponding to amine groups can be useful information and reference in
detecting the plant disease in plant.

Application of VIS/IR on plant disease detection
Typically, the quantitative and qualitative analyses of VIS/IR spectroscopy data require the
application of multivariate calibration algorithms and statistical methods in order to model
VIS/IR spectral response with chemical or physical reference sample parameters. VIS/IR
spectral data needs careful attention because the absorption bands are typically wide,
extensively interfered and weak. The available instruments of spectroscopy normally have
high resolution, with spectral data, which can be thousands of variables having noises gen-
erated from the instrument and/or environment. Therefore, very specific methods such as
partial least squares (PLS), principle component regression (PCR) and multiple linear
regressions (MLR) can be used to treat the VIS/IR large data and also extract relevant
information (116, 117).

Several studies have reported significant findings on the use of VIS/IR method in plant
disease detection as shown in Table 1. Abu-Khalaf and Salman (118) investigated the feasi-
bility of using of VIS/NIR spectroscopy on sensing tomato’s pathogen. It was demonstrated
that the lowest classification rates using VIS/NIR spectroscopy were 90%, 80% and 74% for
pathogens, antagonistic and their combinations, respectively. Liaghat et al. (58) investigated
mid-infrared spectroscopy for early detection of BSR disease in oil palm. In their study, the
overall accuracy was found to be 92% using linear discriminant analysis (LDA) classification
model. In 2011, Sankaran et al. (103) applied VIS/NIR spectroscopy for detection of HLB in
citrus orchards. The results shown that quadratic discriminant analysis (QDA) classified
between healthy and symptomatic HLB-infected leaves with accuracy higher than 90%, also
88% accuracy was found when asymptomatic leaves were included in the classification. Simi-
larly, Hawkins et al. (102) studied the effects of IR spectroscopy to detect the HLB disease in
its earlier pre-symptomatic stages. It was reported that this method can be a substitute
method of a PCR test, as it took minutes rather than hours to measure a sample with accu-
racy of 95%. In addition, Chen et al. (119) applied VIS/IR spectroscopy for revealing and
evaluating verticillium wilt in cotton. It was found that the wavelength range of
731–1317 nm shown the maximum determination coefficient of 74%. Naidu et al. (78)
examined the feasibility of applying VIS/NIR spectroscopy for the detection of grapevine
leaf-roll (Grapevine leafroll-associated virus) disease. It was observed that the accuracy of the
classification ranged from 73% to 81% relying on characteristics (vegetative indices) used for
healthy leaves and detecting infected either symptomatic or asymptomatic. In 2012, Cardi-
nali et al. (104) applied IR spectroscopy (2500–1428 nm) as a potential tool to detect the
CVC disease. It was highlighted that the accuracy found greater than 90%. Kos et al. (87)
studied the effect of MIR spectroscopy on detection of fungal infection on corn. It was
depicted that two clusters made up of contaminated and blank kernels were obviously distin-
guishable by principle component analysis (PCA) on ATR averaged spectra with accuracy of
79%. Xu et al. (90) tested the efficacy of NIR spectroscopy to diagnose miner disease in
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tomato leaf. Moreover, reflectance at 1450 and 1900 nm was highly correlated with miner
severity level (R2 D 0.98 and 0.96, respectively).

It can be seen that VIS/NIR spectroscopy can detect up to 66–90% of different types of
plant diseases, while NIR spectroscopy can detect the diseases with accuracy ranging from
90% to 96%. However, MIR spectroscopy can sense up to 79–92% of plant diseases. In addi-
tion, from Table 1, VIS/NIR spectra and the NIR region were applied in detecting plant dis-
eases with a percentage of 75% and the MIR region was used with a percentage of 25%.
These results show that VIS/NIR, with wavelength in the range of 400–2500 nm, was used
by exactly three-quarters of the studies reviewed and the applied spectroscopy technique.
However, fewer studies have been reported on the application of MIR, which covers the
wavelength between 2500 nm and 25,000 nm, for plant disease detection. This limitation in
the use of MIR in detecting plant diseases may be associated with the high cost and complex-
ity of the equipment. These can be due to the type of plant disease infection, which also
affects the plant tissue contents, such as chlorophyll, water content and plant structure.
These can lead to changes in the appearance of plant leaves based on certain symptoms,
such as color or spot.

Impedance spectroscopy

Impedance spectroscopy (IS) or electrical impedance spectroscopy (EIS) has been used as a
powerful measurement approach in many applications, including biology and medicine,
material science, electrochemistry, fuel cell and battery, semiconductor industry and sensors
(129). Besides that, IS has been established as a promising technique for plant diseases detec-
tion and monitoring of food quality (81, 130). IS measures the electrical properties of sam-
ples as a function of frequency. Since IS can be measured over a wide range of frequency,
this raises the informational basis that can be obtained during test. The working principle of
IS involves the application of an external field upon a material for example plant tissue or
leaf to measure impedance or energy stored, then the results were interpreted and showed as
the change of electrical properties as a function of frequency (131).

In plants, the electrical properties of tissues significantly rely on the composition and dis-
tribution of cell and extracellular fluid. Both extracellular and intracellular fluids comprise
electrolytes, water, salts, free ions and other components; thus, their electrical behavior is
generally resistive. Nevertheless, the double lipid layer located in the cell membrane works
as an interface between extracellular and intercellular media. Because of the existence of the
double layer, the cell membrane has a capacitance behavior. These two behaviors affect the
electrical impedance of biological tissues (132).

There were several studies describing the ability of using electrical impedance as a diagno-
sis criterion to reveal the physiological responses (81, 133–136). Although most recent atten-
tion regarding the application of IS on food and agricultural materials focused on analysis
and determination of quality attributes (137–141), the applications of IS in plant disease
detection and determination of physiological dysfunction and membrane damage are being
introduced at an increasing rate (130, 138, 142–144).

The application of IS to determine the physiological dysfunction, tissue and mem-
brane damage commonly implemented at two frequencies, namely low frequency and
high frequency (145). The low frequency ranges from 50 Hz to 1 kHz, while the high fre-
quency ranges from 100 Hz to 1 MHz Coleman (146) even though Ando et al. (144)
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argued that high frequencies generally ranged from 100 MHz to 10 GHz. At low frequen-
cies the cell membrane acts as an insulator and blocks the current flow, causing a very
high impedance modulus. While at high frequencies, the current flow indiscriminately
through the cell structures (147–149). However, it can be observed that the frequency
area in which the properties of cell structures appear is approximately from 100 Hz to
10 MHz.

Application of IS on plant disease detection
Table 2 presents some findings of the application of IS on plant disease detection. Previous
studies have reported that impedance measurements are appropriate for plant disease detec-
tion (143, 150, 151). In 2009, Mendes et al. (152) published a paper on detection of Asian
rust disease on soybean leaves extract at the early stages using EIS. In their study, biosensor
was developed based on surface plasmon resonance, which the antibody was covalently
immobilized on a gold substrate via a self-assembled monolayer. The measurement of the
impedance was conducted at frequency range from 100 kHz to 100 MHz. The results found
that, the correlation coefficient was 0.995. It was stated that the EIS can be used as a tool for
the early diagnosis of soybean rust. Similarly, Huirong et al. (153) examined the application
of EIS to detect cucumber mosica virus red beandisease in tomato leaves. In their study, the
impedance measurements were taken in the frequency range from 1 Hz to 10 MHz. It was
found that as frequency increased the impedance decreased.

Borges et al. (143) applied bioelectric IS for early detection and monitoring of disease on
pine. The authors developed electrical impedance equipment that would be able to perform
AC scans in frequency range between 1 kHz to 1 MHz. In their study, the bioimpedance was
identified of healthy pine individuals and tested the feasibility of using IS in early detection
of nematodes disease. They found that the initial bioimpedance tests in young pine samples
revealed some classification between healthy samples and those infected with nematode dis-
ease. It was being arisen that EIS system can be used as a suitable technique to diagnose plant
diseases.

In 2014, Borges et al. (154) investigated the differential impact of IS technique to evaluate
the physiological state of plants. It was designed a portable electrical impedance system to
stand for biological application purpose. In their study, the samples were chosen from three
different plant species: chestnut (Castanea sativa), pine (Pinus pinaster) and physic nut
(Jatropha curcase) affected by ink, pinewood and esca disease, respectively. The healthy sam-
ples were selected to be eight while some individuals were inoculated with disease for assess-
ing the affected plants. The hydric stress which is the internal hydration condition of the
plant was measured. In addition, it was measured the impedance of the samples using the
EIS in a frequency range between 1 kHz and 1 MHz. It was reported that the results found
from EIS can determine three various physiological states namely as plants with disease,
plant with high level of hydric stress, and healthy and watered plant. Similarly, in 2014,
Repo et al. (155) investigated the applicability if IS to detect the mycorrhizal colonization in
scots pine roots. It was measured the impedance values from healthy root samples and from
affected root samples by hebeloma sp (H) and suillus luteus (SL) fungus at a frequency range
between 5 Hz and 100 kHz. It was stated that there was obvious change between affected and
non-affected root samples. In their results, the impedance values were classified correctly for
more than 95% of the samples. As we can see from the previous studies and their results, the
IS can detect the plant disease with high significant level.
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Many factors, including frequency, temperature and moisture content, influence the
dielectric properties of plant tissues (156, 157). Knowledge of the relationship between fre-
quency and dielectric properties is helpful in determining the optimum frequency range for
early detection of disease applications (158). From Table 2, almost 66% of the previous stud-
ies have used frequency ranges between 1 Hz and 1 MHz. On the other side, 34% from the
previous studies used high frequencies of IS in disease detection. Therefore, frequency range
between 1 Hz and 1 MHz is widely applied from previous studies for disease detection in
plant. This is largely due to the electrical conductance of plant tissue which consists of extra-
cellular fluid and cells containing the intracellular fluid inside the cell membrane, and it rely
on the moisture content and the water or liquid available in the tissues. In biological tissue
the conductivity of the double-layer plasma membrane can be neglected, which leads to a
very high value of membrane resistance. The application of this technique is affected by the
type of disease infection, since impedance measurement is highly influenced by water con-
tent, the challenge in disease detection is therefore to verify that the changes was actually
due to plant disease infection or merely due to effect of water stress/water uptake of the
plant.

Fluorescence spectroscopy

FS is a spectroscopy method employed to measure the fluorescence from certain substances
after excitation with a beam of light (usually ultraviolet spectra, wavelength from 10 to
400 nm). The absorbed light is invisible to the human eye, while the emitted light being in
the visible region, gives the fluorescent substance a distinct color that can only be seen when
exposed to UV light. The operating mechanism involves using a beam of light to excite the
electrons in the molecules of the substances, causing them to emit light (162). FS has many
applications in life (163–167). It has been employed in monitoring the physiological states
and stress levels in plants (41). The leaves of green plants possess chlorophylls, and as such
are able to emit two different kinds of F; blue-green F having a wavelength range of 400–
600 nm and chlorophyll F with a range of 650–800 nm (76). Generally, the application of FS
in plant sciences, particularly plant diseases and nutrient deficiencies has received consider-
able attention (76, 77, 79, 168–170).

The FS method is used as a tool to sense and determine plant-pathogens at an early stage.
For example, it is used to sense plant-pathogen interactions in spring barley (79), powdery
mildew infection and leaf rust in wheat (77), to detect cucumber diseases (170), detection of
HLB, citrus canker and mechanical injury in citrus orchards (76, 78, 171), to visualize and
analyze the infection of banana with Fusarium oxysporum f.sp. cubense (168) and to detect
and quantify infection symptoms on detached grapevine leaves (172). The mechanism of
this is that at spectra data, the intensity of samples inoculated with diseases are different
from the normal and healthy samples due to the accumulation of pathogen or resistant spe-
cific compounds, such as lignin, and/or the production of waxes, which affects the F emis-
sion and changes the intensity of measurement (79).

Different types of devices and equipment of FS have been used to measure the data from
plant samples. These devices include fiber-optic fluorescence spectrometer, imaging multi-
spectral fluorescence and portable multiparametric F sensor (79). However, the most effec-
tive kind of F used in detecting plant diseases is the fiber-optic fluorescence spectrometer as
compared to other techniques (77, 169, 170, 173). In F, there are four excitation wavelengths
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used: UV, blue (B), green (G) and red (R), and the emitted F is detected in yellow YF, red RF
and far-red FRF (79). Although various F ratios are determined from the spectra ranges, the
ratios which yields the most promising results to sense and diagnose the fungal diseases in
plants are simple fluorescence ratio (SFR), which is the inverse ratio of the chlorophyll fluo-
rescence ratio F680/F730, and blue-to-far-red fluorescence ratio (BFRR), which is dependent
on the blue and far red F (174). This can be explained due to the fact that diseases cause
minor changes in the SFR and obvious change in BFRR, this can be attributed to the biotro-
phic relationship of the pathogens with their host. Whereas the changes in SFR can be
explained due to the distribution of photosynthetic quantum conversion and consequently
the chlorophyll content will be decreased.

In the investigated literature, different types of statistical approaches have been used to
measure and analyze the spectral data measured using FS. These approaches include: Gauss-
ian cure fitting, back propagation artificial neural networks (BP-ANN) algorithm, PCA, NB,
bagged decision trees (BDT), SVM, ANOVA and t-tests (77, 79, 168–171). In addition, these
statistical methods facilitated the analysis by removing possible data distortion, and reducing
the dimensionality of measured spectral data, classified tools and tools to find the significant
difference of health and infected plants at different spectral range.

Application of fluorescence on plant disease detection
Burling et al. (77) analyzed the application of three F ratios including, (F451/F522) blue-to
green, (F451/F687) blue-to-red and (FF451-F736) blue-to-far-red for early detection of pow-
dery mildew infection in susceptible and resistant leaves in wheat varieties. In their study, it
was found that the accumulation of defense-related secondary compounds of pathogen
infection lead to longer F decays. In addition, it was reported that the mean lifetime in spec-
tral range from 500 to 620 nm was significantly increased in inoculated leaves as compared
to control leaves. Also, Leufen et al. (79) highlighted that the rust diseased spring barley
leaves show a lesser green and blue F intensity as compared to powderly mildewed leaves.
Moreover, it was noted significant differences between healthy and diseased leaves. Addi-
tionally, Romer et al. (169) studied the potential application of F spectra for presymptomatic
wheat leaf rust infection. In their study, a wavelength ranging from 370 to 800 nm was
recorded. The accuracy of 93% was found in their study. It was highlighted that a spectral
range from 550 to 630 nm could separate between healthy and inoculated leaves; however,
the range from 650 to 800 nm has limited effects on the results. Similarily, Burling et al.
(173) conducted an experiment to assess the change of F induced by the pathogens of leaf
rust (Puccinia triticina) in wheat leaves. Their results indicated that more pronounced
increase of green F as compared to the rise in blue F were observed early after inoculation.
Furthermore, spectral range from 560 to 620 nm measured longer mean lifetime due to path-
ogen infection.

Yao et al. (175) demonstrated the relationship between F emissions of corn kernels inocu-
lated with Aspergillus flavus spores and aflatoxin contamination levels. In their research, the
results emphasized that contaminated corn kernels illustrates specific F emission peaks
around 470 nm related to the presence of aflatoxin in the samples. In addition, low contami-
nated corn kernels got high F response around 470 nm while high contaminated samples
showed lower F. It was stated that F hyperspectral imaging was applicable to estimate the
total aflatoxin concentration in individual corn kernels. In 2012, Yang and Yu (170) investi-
gated the potential of F technique to detect cucumber diseases and insect pests. Cucumber
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samples were divided into four classes, namely healthy, downy mildew, aphid and downy
mildew and aphid. It was found that BP-ANN showed significant identification with an
accuracy of 100%. Also, it was reported that chlorophyll F spectrum could be a promising
tool to diagnose cucumber diseases and insect pests. The detection of powdery mildew (E.
necator) infection symptoms on detached grapevine leaves was investigated using UV-
induced F technique (172). In their experiments, the grapevine plants were grown in a green-
house under controlled environment and then the selected leaves were divided into con-
trolled and inoculated leaves. The authors applied different excitation/emission wavelength
combinations. It was found that the ratio between blue and green (F440/F520 nm) F inten-
sity of healthy and diseased areas of leaves displayed significant difference after three days
post-inoculation process. Also, it was reported that the detection was increased in the spatial
average of F440/F520.

In 2011, Li et al. (168) discussed the usage of green fluorescent protein (GFP)-tagged
transformed to visualize and analyze the infection of banana with Fusarium oxysporum f.sp.
cubense. The authors mentioned that epidemal cells of banana roots was invaded by Foc
race 4, and fungal hyphae could pentrate cell walls immediately to grow inside and outside
cells. In their study, samples of nine cultivars were inoculated with the GFP-transfored path-
ogen. The authors have pointed to GFP-tagged foc race 4 as an effective tool to monitor and
evaluate resistance in banana to foc race 4.

In 2008, Belasque et al. (76) employed FS to detect stress caused by citrus canker and
mechanical injury. In their experiment, the measurement probe was located 2 mm above the
leaf in order to collect data from different samples during the study period (60 days). The exci-
tation wavelength applied was 532 nm and different wavelengths ratios were used to detect the
stress caused by bacterial infection. In their research, three different ratios of F intensity were
used including: 452/685 nm, 452/735 nm and 685/735 nm. The leaves samples were grouped
into four classifications: leaves with disease, leaves with no stress, leaves with mechanical stress
and leaves with disease and mechanical stress. Similarly, Lins et al. (89) used FS to monitor
citrus canker in citrus plants. In their study, the same approach as in the previous study was
used. It was stated that FS could detect disease and would be able to discriminate between
mechanical and diseased stress. The above study could classify healthy leaves from citrus can-
ker-affected ones. But were unable to identify water stress and distinguish between variegated
chlorosis and citrus canker-infected leaves. It was not presented yet any statistical analysis to
evaluate the ability of the technique to discriminate or classify different plant conditions. On
the other hand, Sankaran and Ehsani (171) used handheld F spectrometer sensor to collect
data from healthy, nutrient-deficient and HLB-infected leaves of two different sweet orange,
namely Hamlin and Valencia. In their study, it was applied four excitation wavelength called
UV, blue, green and red, and from these wavelength yellow, red and far-red F was measured.
NB and BDT were used as classifiers with 85% and 94% accuracy, respectively. In addition, it
was reported that the best overall accuracy was higher than 94% for field HLB detection. The
BDT classifier resulted in better performance as compared to NB; however, it required more
time for the computation process, at least 10 times greater than the NB. Also, some asymp-
tomatic leaves were incorrectly detected as healthy leaves.

Leufen et al. (79) highlighted that the most significant changes between healthy and
affected (mild powderly and leaf rust diseases) leaves were detected in the blue-green spectra
with 75% accuracy as compared to minor alterations in the spectra with 25% for powdery
mildew (E. necator) disease. Leaf rust disease showed 68% in blue-green spectra compared
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to 32% for chlorophyll F spectra. Similar results were reported by Ludeker et al. (176), who
stated that chlorophyll concentration has less change with fungal infection that was 30% as
compared to blue-green spectra that was 70%. Similarly, Romer et al. (169) revealed that
blue-green spectra (550–630 nm) found feasibility of detecting the separation between
healthy and inoculated leaves with highest accuracy of 93%, whereas chlorophyll spectra
(650–800 nm) has only very limited impact. In addition, Burling et al. (173) found accuracy
of almost 83.33% as the significant difference between healthy leaves and those inoculated
with pathogen infected wheat leaves at blue-green region (F451/F522) and 33.33% at chloro-
phyll region (F687/F736).

In contrast, Burling et al. (77) reported that for detecting the powdery mildew the result
was 68.75% at chlorophyll F spectra and 87.5% at blue-green spectra. This increasing result
at chlorophyll F spectra can be due to the reduction of chlorophyll content causes by the dis-
tribution of photosynthetic quantum conversion. Similarly, Kuckenberg et al. (177) used
chlorophyll F spectra (F686/F740) to study the damage in apple leaves, with R2 of 0.73. In
the same vein, Yang and Yu (170) diagnosed cucumber disease in the area of green spectra
and found accuracy between 76% and 89%, while the accuracy of 95–98% was found in the
chlorophyll spectra. Moreover, Belanger et al. (172) mentioned that at chlorophyll region
particularly ratio of F690/F740 did not present significant visual differences between infected
and healthy grapevine leaves and the mean was found 25%. Also, Marcassa et al. (178) and
Belasque et al. (76) applied the ratio of two chlorophyll F bands F685/F735 to detect and dis-
criminate mechanical and water stress in citrus limonia osbeck and orange leaves and they
found R2 was almost more than 80%. More information is given in Table 3. These studies
revealed the prospective of the FS technique in conjunction with advanced statistical models
for detecting different diseases and health conditions in plants. This indicates that the F
emitted spectral range released by plants could be used as a disease monitoring tool for rapid
and early detection of plant diseases.

Challenges and future direction

All studies reviewed in the literature supports the notion that spectroscopy techniques,
which largely depends on frequency and spectral reflectance, can be used for non-invasive
field detection of plant diseases. However, there are several limitations on the wide accep-
tance and commercialization of spectroscopy techniques in plant disease detection. One of
the challenges includes the effect of environmental conditions. Griffin and Burke (185)
reported that environmental conditions could affect the spectral reflectance from the object
under test. Moreover, noises and high light intensity can interrupt the frequency and wave-
length and increase the noises to signal ratio. Therefore, there is a need to identify suitable
approaches to overcome this problem. One of the ways that can be applied to overcome this
drawback is to identify a specific wavelength range or index that is not only sensitive to a
specific plant disease but also is least affected by the changes in the environmental condition.

Probes or test fixtures play a very important role in using the IS technique in measure-
ments. This importance comes because the probe is the medium between devices and objects
to be measured. Collecting data depends on the properties of the probe. In other words, the
probe is the sensor or the transducer, the maximum reading that can be obtained from the
probe is considered the highest limitation to accurate measurement. For example, Lizhi et al.
(186) observed that the precision of inductance (L), capacitance (C) and resistance (R) of the
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LCR meter (4284A) manufactured by the Agilent Technology Company can produce fre-
quency more than the maximum limitation of the probe of solid test fixtures, which can
measure up to a maximum of 30 MHz. This limitation can be overcome by creating a probe
that can measure at a larger frequency in order to collect data at wider range of frequency or
combine two techniques of spectroscopy to improve efficiency. The available probes and
devices used in IS methods require tedious and complex processes for the calibration. The
calibration is required for every single test. Thus, completing all steps of a calibration proce-
dure is time consuming. Therefore, reducing and simplifying the calibration process can
help in getting enough time for measurement. In order to tackle this matter, developing
automated system software that can automatically calibrate the entire process becomes
essential. In addition, regarding IR, the application of Fourier transformation can also serve
as a potential tool for rapid and accurate calibration.

Another major challenge for FS techniques is photobleaching. Photobleaching is a general
term for any photochemical process that causes the molecule to eventually change to another
form and stop absorbing and/or emitting photons. This chemical phenomenon affects the
integrated signal on application of spectroscopy, thereby resulting in decreased sensitivity,
inaccurate recording and data collection. This phenomenon was observed in the application
of FS on plant disease detection (51). However, this challenge may be overcome by reducing
the intensity and duration of light exposure, using more encompassing-less photobleaching-
sensitive fluorophores, and increasing the concentration of fluorophores. In addition, the
ratio of power/time/signal to that of digital noise must be carefully considered. Pulsing the
probing laser at low duty cycle with long intervening dark periods may be a very important
technique of overcoming the non-linear photobleaching effect.

The deployment of a spectroscopy technique in on-site detection of plant disease is still
carried out manually. This can affects the efficiency of using this technique in term of time
and work required in data collection. Thus, it is feasible to incorporate the VIS/IR, I and F
spectroscopy techniques into an autonomous machine. These methods can further be inte-
grated with an automatic agricultural vehicle to be used as real-time monitoring for plant
diseases, if these techniques are well established for a specific disease detection application.
Therefore, more study in this regard is required. The overall comparisons of three major
techniques are summarized in Table 4.

Conclusion

The main goal of the current paper was to review and summarize the spectroscopy techni-
ques that have been used for plant disease detection. The three major categories for non-
invasive monitoring of plant diseases are the (i) VIS/IR technique, (ii) IS technique and (iii)
FS technique. This study has shown that spectroscopy techniques have the ability to be used
as tools for monitoring and identifying different levels of infection in plants and trees.

The scientific literature reviewed have shown that the application of IS depends on the
properties of the electrodes or probes and also on the physical structure of the products. The
most significant advantage of using this method is the potential for rapid detection if com-
bine with artificial learning software. However, its use in industrialization and commerciali-
zation is limited by its low frequency range limits. This can be overcome by combining IS
with either VIS/IR or FS technique. Similarly, the application of VIS/IR in plant disease
detection has been shown to be a promising novel technology due to higher accuracy when
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compared to IS and FS. Nevertheless, its long image processing time still limits its overall
efficiency. More so, the investigation on applied FS technique has further revealed that it has
great potential in detecting plant diseases.

In terms of cost and practical difficulties in adopting these technologies, the VIS/IR is the
least expensive to set up and easy to adapt when compared to other spectroscopy techniques.
More so, in terms of field configuration and equipment optimization, the VIS/IR and IS are
the most adequate, while the FS is less suitable for field deployment.

In conclusion, this review suggests that spectroscopy techniques have the potential to be
applied on plants, as a non-invasive disease detecting tool. Although they are generally lim-
ited by (i) the effect of environmental light to the measured spectra data on the field, (ii)
photobleaching, (iii) optimization of the technique for a specific plant/tree and disease and
(iv) limit of frequency and wavelength range, they can however be automated and easily
commercialized, especially the VIS/IR technique. Thus, more studies should focus on
enhancing their acceptability, commercialization and automation.
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