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THREE-DIMENSIONAL NUMERICAL SIMULATION OF BIOSONAR SIGNAL 

EMISSION AND RECEPTION IN THE COMMON DOLPHIN

James L. Aroyan

ABSTRACT: This dissertation constitutes the final stage of a highly successful research project 

to quantitatively investigate fundamental mechanisms of dolphin biosonar. This report describes 

appropriate techniques for three-dimensional acoustic simulation, and demonstrates their accu­

racy. A novel method for mapping of acoustic tissue parameters from x-ray computed tomo­

graphic (CT) data is also introduced. These techniques, applied to models of the forehead and 

lower jaw tissues of the common dolphin, Delphinus delphis, have revealed the acoustic mechan­

isms involved in sonar signal emission and reception by this animal. The conclusions of this pro­

ject include: 1) the acoustical parameters of soft biological tissues (including the delphinid 

melon) can be accurately modeled from x-ray CT data; 2) the skull plays the predominant role in 

beam formation; 3) the melon (in combination with other soft tissues of the forehead) plays a far 

more significant role in beam formation than indicated by previous simulations; 4) the melon 

behaves as a waveguide, a megaphone, and a lens in the biosonar signal emission process; 5) 

experimentally observed beam patterns are best approximated at all frequencies simulated when 

the sound source is placed about 1cm below the center of a region of the model known as the 

right MLDB (monkey lip/dorsal bursae) complex, and not elsewhere; 6) a model has been pro­

posed for the source region which, in conjunction with the mechanisms operating in the melon, 

may largely explain the observed temporal and spatial characteristics of delphinid biosonar emis­

sion fields; 7) a mechanism has been proposed for the production of ‘jaw pops’ in dolphins; 8) the 

same mechanisms operating in the melon during signal emission also operate in both fat bodies of 

the lower jaw in the signal reception (hearing) process; 9) the lower jaw fat bodies significantly 

improve the forward receptivity patterns of both left and right ear complexes; 10) several 

mechanisms influencing the directional receptivity of the dolphin have been demonstrated.
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1

Chapter 1. Introduction

The unravelling of the physical mechanisms underlying dolphin biosonar presents fascinat­

ing challenges. Active biosonar involves the generation of acoustic waves, the scattering of these 

waves off of targets, and the detection and interpretation of the scattered waves (by ears and 

brain). It has become common knowledge that many odontocetes have excellent biosonar capa­

bilities. However, a clear understanding of the mechanisms of odontocete biosonar has only 

recently begun to emerge. For example, despite the application of various experimental metho­

dologies, the exact location of the biosonar source tissues and the physical mechanisms responsi­

ble for generation of the acoustic signals have eluded investigators for decades. Other 

unanswered questions include the exact mechanisms by which the signals are focused into narrow 

forward-directed beams and the tissue pathways for echoes returning back to the inner ears. 

Indeed, the literature on dolphin biosonar is rich with hypotheses that remain largely conjectural.

This dissertation constitutes the final stage of a doctoral research project to quantitatively 

investigate fundamental mechanisms of dolphin biosonar. This report describes appropriate tech­

niques for three-dimensional (3-D) acoustic simulation, and demonstrates their accuracy. A 

novel method for mapping of acoustic tissue parameters from x-ray computed tomographic (CT) 

data is also introduced. These techniques, applied to models of the forehead and lower jaw tis­

sues of the common dolphin, Delphinus delphis, have successfully revealed the acoustic mechan­

isms involved in sonar signal emission and reception by this animal. The results presented here 

address several key aspects of the biosonar system of the common dolphin including: the location 

and acoustical mechanisms of the biosonar signal source tissues; the roles of the skull, air sacs, 

and soft tissues (including the melon) in beam formation; the role of the lower jaw fats in the 

reception (hearing) process; and the mechanisms involved in the directional hearing response of
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the dolphin.

Bioacoustic modeling offers an approach that is complimentary to experimental investiga­

tions of biosonar mechanisms. The author has demonstrated (Aroyan 1990, and Aroyan, et al, 

1992) that acoustic simulations are capable of addressing questions that have proven difficult to 

resolve experimentally. In his M.S. thesis, the author conducted two-dimensional (2-D) simula­

tions of sound propagation through modeled forehead tissues of the common dolphin. The 

interaction of the skull with potential source locations was investigated, as well as the roles of the 

skull, nasal diverticula, and fatty melon on the formation of acoustic beams. Despite the limita­

tions of 2-D modeling and sparse tissue velocity information, these simulations closely repro­

duced experimentally measured beam characteristics, helped confirm basic effects of tissues in 

beam formation, and provided substantial evidence for a recently proposed sound source location.

The current thesis presents a novel combination of techniques which removes all of these 

limitations, and extends the previous 2-D simulations into highly accurate 3-D modeling. The 

methods utilized here may be summarized as follows. First, using a new technique for the precise 

mapping of tissue density and acoustic velocity from x-ray attenuation data, tissue models of the 

dolphin’s head are constructed from x-ray CT data. Second, 3-D finite difference programs are 

used to propagate echo waveforms back into the tissues in order to locate the ‘epicenter’ of the 

dolphin’s biosonar signals (analogous to using inverse seismologic simulations to pinpoint the 

epicenter of an earthquake), or to simulate echo propagation back to the ear complexes. Third, 

given a source location from the inverse simulation, finite difference programs are again used to 

propagate the acoustic field of the given source and tissue model out to a surface surrounding the 

tissue (the forward problem). Fourth, in the forward problem, boundary extrapolation programs 

are used to compute the emitted acoustic far-field from the pressure and its normal derivative at
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the surface. Finally, biosonar mechanisms are investigated by comparing the field emitted by 

specific source and tissue models to experimentally measured echolocation fields of live animals, 

or by studying the acoustic energy density of echoes propagating backwards into the forehead tis­

sues or through the lower jaw tissues to the inner ear complexes.

As we shall clearly demonstrate, the combination of methods developed here permits highly 

realistic and accurate 3-D modeling of the acoustical roles of delphinid forehead and lower jaw 

tissues in biosonar signal emission and reception. Generalization to all odontocetes of the con­

clusions drawn in this thesis about the biosonar system of Delphinus delphis is limited by the 

large variation in odontocete forehead morphology. However, the common dolphin is a good 

representative of the typical forehead anatomy of members of the family Delphinidae having 

intermediate-to-moderate values of soft tissue asymmetry (Cranford 1992). Obviously, the tech­

niques utilized in this thesis are directly applicable to investigation of all x-ray CT scanned odon­

tocete species. It should also be apparent that the paired methodologies of acoustic tissue model­

ing from x-ray CT data and numerical simulation used in this project have applications in many 

other areas. The conclusions regarding biosonar mechanisms and the potential of the methodol­

ogy developed for this project are discussed in the last chapter.

The scope of such an interdisciplinary thesis demands patience from an audience for its 

presentation. As one might guess, physicists are often impatient with anatomical and physiologi­

cal details, biologists are often uncomfortable with the abstractions of mathematics, and computer 

specialists tend to focus on the numerical methods employed. It is hoped that the readers of this 

thesis will perceive some of the author’s enthusiasm for the exquisite interplay of the physics, 

biology, and computational techniques that constitute the bases of this investigation. Chapters 2 

through 6 may appear at first glance to be unrelated, since they originate from different discip­

i
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lines and/or computational methodologies. However, the combined application of this material in 

Chapter 7 should demonstrate the fruitfulness of the interdisciplinary approach. Indeed, while 

excellence within every discipline is essential, the artificial boundaries of the scientific divisions 

often obscure productive avenues of interdisciplinary exploration.

The order of presentation is as follows. Chapter 2 discusses the necessary biological back­

ground, reviewing the primary experimental characteristics of biosonar signal emission and 

reception in odontocetes, as well as the anatomy of the dolphin forehead and lower jaw. Chapter 

3 then discusses various aspects of sound propagation in homogeneous and inhomogeneous 

fluids, including the acoustical mechanisms underlying biosonar signal production, emission, and 

reception in delphinids. In Chapters 4 and 5 we shall discuss the numerical methods used to 

solve the acoustic wave equation; Chapter 4 emphasizes finite difference methods, while Chapter 

5 discusses boundary integral extrapolation methods. A novel technique for modeling the 

dolphin’s tissues from x-ray CT data will be discussed in Chapter 6. Finally, the results of the 

simulations are presented in Chapter 7, with an overall summary of conclusions and a discussion 

of research opportunities in Chapter 8.

Essential information not easily accommodated by the organization of the dissertation has 

been moved into appendicies. This material includes: (1) The author’s conjecture for the ‘jaw- 

pop’ source mechanism; and, (2) The detailed density, velocity, and impedance structure of the 

melon of the common dolphin.

Finally, I wish to share my own views on the role of a physicist studying biological organ­

isms. A physicist’s analysis often suggests functions for biological structures, but not necessarily 

as the ‘sole purpose’ of those structures. Science seeks simple answers, yet nature always has 

multiple purposes incorporated into her designs. However, neither does she waste anything. The
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author remains awed by the fact that the simplest of living organisms functions simultaneously 

and successfully within multiple levels of physical, chemical, and biological interrelationships. 

Perhaps it is no surprise that interdisciplinary research has been and continues to be so fundamen­

tal in the life sciences.

My sincere hope is that, in the process of demonstrating the importance of interdisciplinary 

perspectives, I may have raised our appreciation of these unique mammals with which we share 

the planet as well as the remarkable beauty of their biosonar systems.
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Chapter 2. Biological Background

In order to clarify the questions addressed in this dissertation, we now present a brief intro­

duction to the primary experimental characteristics of delphinid biosonar signals and measured 

patterns of biosonar emission and reception. We also offer a brief description of the essential 

anatomy of the delphinid forehead and lower jaw pertaining to biosonar signal production, emis­

sion, and reception.

Experimental Characteristics of Delphinid Biosonar Signals

Among the many types of sounds which dolphins are capable of producing are extremely 

short duration, broad bandwidth, and intense acoustic pulses which are utilized during active 

biosonar search and investigative behavior.1 The ability of dolphins to accurately perceive their 

environment and to perform difficult recognition and discrimination tasks depends to a large 

extent on the characteristics of these biosonar signals and how they are emitted. Signal charac­

teristics and emission patterns have been extensively investigated for only a few species. Since 

data is not extensive on the sonar signals of the common dolphin, Delphinus delphis, we shall 

often refer to the signal characteristics and emission patterns of other, better studied species.

Figure 2.1 illustrates a typical echolocation click train emitted by an Atlantic bottlenose 

dolphin performing a target detection task. The frequency spectrum versus time is plotted on the 

left and the individual click waveforms are displayed on the right. Note the presence of energy in 

the spectra of these broadband pulses out to roughly 200kHz. Figure 2.2 displays averages of 

both the spectra and waveforms for the series of clicks shown in Figure 2.1. Note that the signals

1 Another unusual sound which dolphins are capable of producing is a very loud and explosive 'jaw pop’ 
or ‘bang’ which some researchers believe may be used to stun or disorient prey. The author suggests a possi­
ble mechanism for the production o f jaw pops in Appendix 1 of this dissertation.
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Figure 2.1. Signals and spectra of a biosonar click train emitted by a bottlenose dolphin (Tursiops trun- 
catus) performing a target detection task. The frequency spectrum versus time is plotted on the left and the 
individual click waveforms are displayed on the right. [Reproduced from Au (1993).]
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Figure 2.2. The averaged waveform and spectrum for the Tursiops biosonar click train shown in Figure 
2.1. [Reproduced from Au (1980).]
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last only about 70(isec on average, a remarkably short duration considering their biological ori­

gin. Traveling at 1500m/s in seawater, sound covers only about 10cm in 70psec.

A representative biosonar signal waveform and spectrum for the common dolphin is repro­

duced from from Wood and Evans (1980) in Figure 2.3. Peak frequencies for the click 

waveforms of Delphinus have been variously reported as 20-60 kHz (Titov 1972), 30-60 kHz 

(Evans 1973), 23-67 kHz (Dziedzic 1978), and 70 kHz (Korolev et al. 1973). In addition, click 

durations of 50-300psecs (Titov 1972), 50-250jxsecs (Evans 1973), 50-150psecs (Dziedzic 1978), 

and lOOpsecs (Bel’kovitch and Reznikov 1971) have been reported. In this thesis, we will con­

duct acoustic simulations with tissue models of the common dolphin at frequencies of 25, 50, 75, 

and 100 kHz. This set of frequencies spans the ranges reported for Delphinus, although the 

recording equipment used for many of these measurements apparently had a frequency bandwidth 

of only 100 kHz. For technical reasons discussed in Chapter 5, we have continued the use of sin­

gle frequency simulations in this thesis.

Although it can be difficult to distinguish directional effects from variations in signal type, 

dolphins appear to emit biosonar signals that are species stereotypic even though a type of spec­

tral adaptation to environment has been observed (see below). The higher level signals in any 

particular Tursiops click train, for example, are generally quite repetitive (Au 1980). Note the 

extremely high signal source levels listed for each waveform in Figure 2.1, the typical peak spec­

tral energy at around 120kHz, and the occasional subsidiary spectral peak at around 60kHz.

Both the intensities and the peak frequencies of the signals illustrated in Figure 2.1 were 

considerably higher than those previously measured for tank-held animals. In fact, evidence is 

accumulating for a specific kind of spectral adaptation that appears to have more to do with the 

dolphin’s mechanism of click production than with the exercise of fine control over signal spectra
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Figure 2.3. Representative biosonar click waveform and spectrum for the common dolphin, Delphinus 
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and (b) in the horizontal plane. [Reproduced from Au (1993).]
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and shape. Au et al. (1985) postulated that shifts in the relative strengths of the (often nearly har­

monic bimodal) signal components may be a by-product of shifts in the intensity level of click 

production. Studies with Tursiops truncatus, Delphinapterus leucas, and Pseudorca crassidens 

(Moore and Pawloski 1990, Au et al. 1985,1987, 1995, Au 1980) have found that high amplitude 

clicks tend to be slightly bimodal in character, with a major peak frequency above 100 kHz and a 

secondary peak at or somewhat below half the major peak frequency. Clicks that were lower in 

amplitude tended to have proportionately more energy at the lower frequency peak. High ampli­

tude emission of clicks peaked near the lower mode frequency was never observed in these stu­

dies.

All observed characteristics of the biosonar signals emitted by odontocetes (all toothed 

whales including dolphins) may be explicable in terms of a fairly simple set of physical mechan­

isms. The structure of all odontocete biosonar signals is reminiscent of the decay of a resonant 

but highly damped system which has been excited by an impulsive source mechanism. This anal­

ogy becomes quite compelling when we consider the acoustical impedance structure of the source 

region in delphinids (as established by this thesis for Delphinus) and the recently published bimo­

dal variations of biosonar signal spectra. In Chapter 3, we will discuss the resonant behavior of 

the source region and the acoustical mechanisms operating in delphinid forehead and lower jaw 

tissues.

Directional Patterns of Biosonar Emission

Experimentally measured patterns of delphinid biosonar emissions are highly directional. 

Figure 2.4 illustrates composite ‘broadband’ emission patterns measured for three bottlenose dol­

phins in both the horizontal and vertical planes.2 Note that the patterns shown have maxima at

2 See Au et al. (1986), Au (1980), and Au et al. (1978). Unless one is only concerned with energy distri­
butions. representation of a single beam pattern can be somewhat misleading. The reader is warned that em-
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about 5° in the vertical plane and 0° in the horizontal plane. In addition, Au (1993) reports aver­

aged -3dB angular widths of 10.2° and 9.7° in the vertical and horizontal planes, respectively, and 

an averaged ‘broadband’ directivity index of 25.8dB for the emission patterns presented in Figure

2.4. It is important to note that the angular resolution of even the finest reported measurements of 

delphinid emission patterns is quite low by standard sonar specifications. Extrapolation to a com­

plete field from only a few samples at 5° or 10° increments in the horizontal and vertical planes of 

the forward beam involves several assumptions.

Comparatively little information is available on the emission patterns for Delphinus delphis. 

Korolev et al. (1973) measured a horizontal beam pattern at a frequency of 70 kHz having two 

peaks at angles of ±15°. Each peak was up to 20° wide, and the overall width of the horizontal 

pattern about 40°. The -3dB beam width in the vertical plane was estimated to be close to 20°. 

Apparently Bel’kovitch and Reznikov (1971) determined the horizontal width of the common 

dolphin’s beam to be 20° using the signal envelope (equivalent to an energy beam width). The 

bandwidth of the recording system in both cases only extended up to 100 kHz.

There has been a great deal of informed speculation as to how dolphins achieve these 

focused acoustic emission patterns. In the chapters that follow, we will present a novel combina­

tion of techniques which permits highly realistic three-dimensional modeling of the acoustical 

roles of delphinid tissues in both the emission and reception processes. Using these techniques, 

we will be able to demonstrate the focal properties of the skull, the soft tissues, and one model of 

the air sacs. We shall actually resolve much of the mystery that has surrounded the acoustical 

function of the melon and lower jaw fats in dolphins.

ission patterns always depend strongly on frequency [Ziomek (1995) and personal communication].
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Directional Patterns of Biosonar Reception

The directional reception pattern of a sonar system is crucial to its capability for filtering 

out ambient noise in both active and passive modes. Measurement of the directional hearing sen­

sitivity in dolphins has been carried out only for the bottlenose dolphin, Tursiops truncatus. Au 

and Moore (1984) measured masking thresholds as a function of horizontal and vertical angle to 

determine the dolphin’s receiving beam pattern. The resulting vertical and horizontal receiving 

patterns at (cw) frequencies of 30, 60, and 120 kHz are reproduced in Figures 2.5 and 2.6. 

[Please note that the sign convention in Figure 2.6 for horizontal angles is opposite to the conven­

tion adopted in this thesis]. Au (1993) computed the directivity indexes (in dB) of these receiv­

ing patterns and reported that they increased almost linearly with the logarithm of frequency.

The techniques developed in this thesis have allowed us to compute the full 3-D receptivity 

patterns for each ear of the common dolphin individually, to determine the timing delay between 

the ears versus arrival direction at any fixed frequency, and to study the physical effects of the 

lower jaw fats contributing to the dolphin’s directional reception. Numerical simulation offers a 

means for identifying the directional cues provided by the physical structure of the dolphin’s 

skull, lower jaw fats, and ear complexes.

Dolphin Anatomy : Acoustic Role of Tissues

From the point of view of a sound wave traveling through the body of a dolphin, the tissues 

divide naturally into three categories: bone, for which sound has a much higher velocity than sea­

water; all soft tissues, which are acoustically comparable to seawater, but may contain velocity 

gradients affecting the path of propagation; and air cavities, with a density and sound velocity 

much lower than that of seawater. Chapter 6 discusses modeling of the acoustical properties of 

biological tissues in great detail. Here we briefly review the tissues that play major roles in the
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Figure 2.5. (a) Receiving beam patterns in the vertical plane of a bottlenose dolphin at frequencies of 30, 
60, and 120 kHz, (b) Same data fitted by a cubic spline function. [Reproduced from Au and Moore
(1984).]

kHl

(T.mincatut)
H 31 Tl11

Figure 2.6. (a) Receiving beam patterns in the horizontal plane of a bottlenose dolphin at frequencies of 
30, 60, and 120 kHz (b) Same data fitted by a cubic spline function. The sign convention in this figure for  
horizontal angles is opposite to the convention adopted in this thesis. [Reproduced from Au and Moore 
(1984).]
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emission and reception of biosonar signals: the skull, the nasal air sac system, and the unique fats 

of the melon and lower jaw. A discussion of potential source tissues will also be included as part 

of this review of relevent anatomy.

The Skull

The skull and its associated air sacs are the dominant features in the dolphin forehead from 

the point of view of acoustics. The acoustic impedance mismatch between bone and soft tissues, 

though not as large as the soft tissue-air mismatch (see Chapter 3), implies that bone will reflect 

sound effectively (especially at higher angles of incidence) . 3  Consequently, the shape of the skull 

is of greater importance than the precise acoustical properties of bone.4  Highly accurate data on 

the geometry of the skull is available. Chapter 6  explains how CT data was used to derive both 

the geometry and density of the dolphin’s skull. A number of pertinant observations regarding 

skull shape are given below.

The delphinid skull is characterized by an exceptional displacement of the bones normally 

comprising the forehead (see Figure 6.3). In an evolutionary process called ‘telescoping’, the 

location of the nasal passages has migrated from the tip of the snout or rostrum back towards the 

middle of the skull and up against the brain-case. A thin cartilaginous rod (the mesorostral car­

tilage) divides the rostrum from the nares to the tip of the snout; the channel in the rostrum filled 

by this cartilage is visible in the upper rostral contours of Figure 6.2.

The role of the skull in beam formation was investigated by Evans, Sutherland and Beil 

(1964) using both an acoustic source and ray tracing techniques, by Dubrovskiy and Zaslavskiy

3 Note, however, that extremely thin sections of bone can transmit sound efficiently. Passage of sound 
through the thin bone panels of the lower jaw are important in the dolphin’s reception of echoes (Norris 
1968).

4 The acoustical properties of bone alter its surface reflectivity but not its overall focal behavior. By anal­
ogy, the geometry of a mirror is more important than small shifts in surface reflectivity.
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(1975) using lightbulb-as-source techniques, and by Romanenko (1973) using an acoustic source 

with and without soft tissue present. In this thesis, we have utilized inverse simulations to deter­

mine the focal positions of the 3-D skull geometry (completely analogous to the use of inverse 

seismologic simulations to determine the epicenters of earthquakes). Placing point sources at 

these foci, we have then conducted forward simulation and extrapolation of the far-held patterns 

created by the skull. Finally we have simulated the effect of the skull on the reception of sound 

through the pan bone of the lower jaw both with and without soft tissue present. Thus we have 

determined the optimal focal behavior of the skull in 3-D, demonstrated its importance in acous­

tic beam formation, and studied its major effects on the process of hearing. As the simulations 

are based on physical acoustics as opposed to the short-wavelength geometrical acoustics approx­

imation, we add valuable information regarding the interaction of finite wavelength sound with 

the skull.

The Nasal Passages and Air Sacs

The soft tissue-air interface is a very efficient reflector of sound wave energy (see Chapter 

3). We can expect the geometry of the nasal passages to play an important role in biosonar beam 

formation.

Delphinid nasal passages differ greatly from those of terrestrial mammals. 5  In dolphins, the 

single outer blowhole leads downward into at least four paired air spaces, beginning with the ves­

tibular sacs, comparatively large air sacs capable of expanding along their upper and lateral mar­

gins, but supported by a pleated connective tissue base. The floor of the vestibular sacs opens 

downward into the vertically oriented spiracular cavity, which is normally flattened except during

s Many excellent descriptions of the delphinid nasal sac system exist. See, for example, Schenkkan 
(1973), Dormer (1974,1979), or Green et al. (1980).
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breathing or air recycling. Several chambers surround the spiracular cavity, including the ante­

rior and posterior nasofrontal sacs and the inferior vestibules, forming a complex 3-D sac struc­

ture. Anterior to the base of the spiracular cavity, thin premaxillary sacs cover most of the 

shelves of the premaxillary bones. Heavily muscled nasal plugs cover the bony nares (the nasal 

passage through the skull). A thin but stout bony septum divides the upper nares into left and 

right sides.

The exact configuration of the air sacs during click production is an important issue (see 

discussion of mechanisms in Chapter 3), as well as the degree of the dolphin’s control over this 

configuration. Several researchers have reported great mobility of the upper air sac region during 

phonation (Dormer 1979, Cranford 1992). The flexible nature of air sac geometry suggests that 

dolphins may achieve partial beam steering by controlling air sac shapes, yet measurements of 

beam patterns do not in general appear to support this idea (Au 1993). Reliable data on the exact 

configuration of the air sacs during click production is not available for any species. However, 

sufficient information is available to enable us to demonstrate that air passages play an important 

role in acoustic beam formation. The model of the nasal air sacs used in the current simulations 

is discussed and illustrated in Chapter 6 .

The Source Tissues

Before leaving our discussion of the dolphin nasal passages, we shift our attention from the 

effect of tissues on sound propagation to their role in sound production. Several studies have 

implicated the general region of the nasal plugs as the source of the dolphin’s echolocation 

pulses: cineradiographic studies (Norris et al. 1971, and Dormer 1974, 1979), pulsed ultrasonic 

imaging (Mackay 1980), ultrasonic Doppler-shift motion detection (Mackay and Liaw 1981), 

pressure sensing and electromyographic studies (Ridgway et al. 1980). However convincing
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these studies may appear, some researchers6  have concluded from available information that the 

larynx is the most likely sound source. In this thesis, we will present evidence that the source of 

biosonar emissions is located in one particular region of the upper nasal passages.

The larynx appears to play a role in biosonar pulse generation, though probably not as the 

source of biosonar clicks. The larynx is located below the skull at the base of the narial passage­

way. 7  A ring of muscular tissue (the palatopharyngeal muscle) closes around the cartilaginous 

epiglottic spout of the larynx. During normal breathing, air passes through the upper nasal pas­

sages and enters the trachea through the epiglottic spout. However, the muscled sphincter can 

securely squeeze the spout shut, and the powerful set of gular muscles are capable of pulling the 

epiglottis up into the bony nares to create substantial air pressure within the narial chamber. A 

pressure increase within the nares always precedes, and the cycling of air upwards into the upper 

nasal sacs is always concomitant with, biosonar click production. 8

Though most researchers have accepted the nasal passages superficial to the skull as the 

probable source region of echolocation pulses, information on the precise location of pulse pro­

duction has remained conjectural. Recently however, x-ray computed tomography (CT) studies 

(Cranford 1986, 1988) and magnetic resonance imaging (MRI) (Mackay 1988) have revealed 3-D 

in situ tissue structure with great accuracy. From CT scans of several species, Cranford has noted 

similarities in the configuration of the posterior melon in the foreheads of a large number of 

odontocetes (and homologues in the extremely asymmetric Physeterids). At the posterior tip of 

the melon are two pairs of fatty bursae straddling the upper portion of the spiracular cavity (Cran­

ford 1988, 1992) overlaid by patches of darker mucosae referred to as museau du singe, or ‘mon­

6 See, for example, Purves and Pilled (1983).
7 For an in-depth study of the larynx and surrounding musculature, see Green et al. (1980).
8 See Evans and Prescott (1962), Dormer (1979), and Ridgway et al. (1980).
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key lips’, which give "every appearance of being a sound generator" (Norris 1968). Cranford has 

emphasized the homologous relationship of the monkey lips and the bursae themselves to struc­

tures discovered in the sperm whale head (Norris 1964, Norris and Harvey 1972). It is conjec­

tured that slapping motions of the MLDB (Monkey Lip/Dorsal Bursae) complex are responsible 

for the pulsed emissions of all odontocetes (Cranford et al. 1987). In Chapter 7, we shall see that 

the simulations conducted in this thesis actually implicate a region slightly (“1 cm) below the 

center of the right MLDB complex as the most likely source location of biosonar clicks. The 

physical mechanisms involved in the production and projection of biosonar signals from this 

source region are discussed in detail in Chapter 3.

After this brief discussion of tissues involved with sound production, we return our atten­

tion to anatomical features relevent to biosonar beam formation and to signal reception.

The Melon

Much discussion has surrounded the acoustic role of the fatty lobe of tissue referred to as 

the ‘melon’ in the delphinid forehead (see Figure A2.4 of Appendix 2), as well as the related fats 

of the lower jaw. The melon of the dolphin rests on a concave pad of connective tissue and mus­

culature atop the bony rostrum of the skull (Cranford 1992). The lipids of the delphinid melon 

and lower jaw are chemically and acoustically distinct9  from other body fats and the blubber 

(which appear to be very similar to the fats of terrestrial mammals), and exhibit a layered compo­

sitional topology. Across the family Delphinidae, the innermost melon and lower jaw lipids exhi­

bit an approximate 60-40 percent by weight triglyceride-isovalerate wax ester composition 

(Litchfield et al. 1975). Because of the location and configuration of these unique fats, because

9 See Varanasi et al. (1982), Litchfield et al. (1979, 1975, 1973), Malins and Varinasi (1975), Varinasi et 
al (1975). See Morris (1986) for an excellent discussion and synthesis of this information.
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they represent a considerable metabolic investment, and because measured velocity profiles of the 

various lipid fractions within the delphinid melon and forehead exhibit a distinct waveguide or 

lensing structure, the melon has been conjectured to have an important acoustic function (Norris 

1964,1968, Norris and Harvey 1974, Morris 1986). We quote from Au (1980):

Besides the nasal sacs and the cranial bones, the melon may also play a large role in 
the spatial directivity of the emitted beam. In 1957, F. Wood (1964) suggested that 
the melon of a porpoise might be a sound transducer helping to couple internally gen­
erated sounds to sea water. He also speculated that the melon may act as an acoustic 
lens to focus the sound into a narrow beam. The beam patterns measured by Evans, 
Sutherland, and Beil (1964), using a Tursiops skull were considerably broader than 
the beam patterns of [Figures 2.3 and 2.4]. This suggests that the melon may play a 
role in focusing the outgoing acoustic energy, causing a narrower beam to be radiated 
than would otherwise exist. Romanenko (1973), studied the effects of a dolphin’s 
skull, with and without soft tissue present, on the horizontal beam pattern. He found 
that for frequencies of 80kHz and higher, the beams measured with the whole head 
were approximately half as wide as the beams obtained with the skull alone. Norris 
and Harvey (1974) examined the sound velocity of the lipids in the melon and found a 
definite structure that could cause the focusing of the outgoing acoustic energy. By 
slicing the melon of a dead animal in a regular fashion and measuring the sound velo­
city of the various sections within each each slice, they found a low-velocity core 
extending from just below the anterior surface towards the right nasal plug and a 
graded outer shell of higher velocity tissue. Such a velocity gradient would cause the 
signal to be focused both in the vertical and horizontal planes. The amount of refrac­
tion and the subsequent effect on the overall beam patterns have not been determined

Computer wave propagation techniques are quite appropriate for this task, and have permit­

ted several remarkable advances here. All previous modeling attempts have lacked detailed tis­

sue density and velocity information (Au 1993, Aroyan et al. 1992, Litchfield et al. 1979). Util­

izing a novel technique for mapping of acoustical tissue parameters from x-ray CT data, the 

detailed density, velocity, and impedance structure of the melon of the common dolphin has been 

determined in this thesis (see Chapter 6  and Appendix 2). We have then applied 3-D acoustic 

wave propagation and extrapolation programs in order to demonstrate the acoustic behavior of

10 Au (1980), p265-67.
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the melon (see Chapter 7). A brief discussion of the physical mechanisms underlying the acous­

tic behavior of these unique fats is presented in Chapter 3, along with suggested analogies for the 

entire process of biosonar click production and emission in delphinids.

The Fats of the Lower Jaw and the Hearing Process

Sound conduction into the middle and inner ear complexes of delphinids remains a topic of 

great interest. Some researchers have argued for the functionality of the external auditory meatus 

in dolphins (Fraser and Purves 1960, Purves and Pilleri 1983). However, the external meatus in 

cetaceans is a fibrous cord of tissue having a small (sometimes nonexistent) cross section, the 

outer portions of which are often filled with a waxy plug. No evidence was ever presented for 

how such a structure could guide sound to the middle/inner ear complexes.

As mentioned above, the lower jaw also contains two fat bodies having the same composi­

tion as the melon lipids. 11 These fat bodies broaden anteriorly and extend to the skin surface in 

front of the thin pan bones on both left and right sides of the lower jaw. The fats extend across 

the pan bone and fill both left and right mandibular canals. Each extends back in a narrowing 

channel along the inside of the mandible and ends near its respective ear complex. Norris (1968) 

proposed that sound enters the dolphin’s head through the fatty ‘acoustic window’ in front of the 

lower jaw, passes through the thin pan bone, and is conducted to the middle/inner ears by the left 

and right fat bodies. The lower jaw hearing hypothesis has been confirmed by both electrophy- 

siological techniques (Bullock et al. 1968, McCormick et al. 1970, 1980) and by behavioral 

investigation (Brill et al. 1988). However, the precise mechanisms of lower jaw hearing have 

remained conjectural.

11 See Norris (1968) for an outstanding discussion and far-sighted analysis of the evolution and acoustics 
of lower jaw hearing in odontocetes.
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In this thesis, we provide very detailed proof of Norris’s lower jaw hearing hypothesis. 

Numerical simulations of sound propagation through accurate 3-D models of the lower jaw tis­

sues have allowed us to illustrate the patterns of conduction through the fat bodies back to the ear 

complexes, again producing dramatically clear results (see Chapter 7). In addition, we have 

mapped the individual reception patterns of the left and right middle/inner ear complexes. 

Finally, comparing the reception patterns of various truncated models to the reception patterns 

with the complete model, we have been able to demonstrate several mechanisms contributing to 

the directional hearing of the doiphin.
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Chapter 3. Sound Propagation in Homogeneous and Inhomogeous Fluids

We are concerned with modeling the passage of sound both through seawater and through 

the living tissues of the dolphin forehead and lower jaw. On the scale of our simulations (less 

than a meter), seawater is an isotropic, homogeneous medium. Biological tissues, however, are 

composed of both liquids and elastic solids, mostly inhomogeneous and often intermixed. In this 

chapter, we first review the linearized wave equations for acoustic propagation in homogeneous 

and inhomogeneous fluids, and then establish the assumption of linearity. We then give some 

relevant details of sound transmission through fluid interfaces. Next, a brief discussion of the 

behavior of resonators, reduced-velocity waveguides, lenses, and megaphones is provided in 

order to clarify the basic mechanisms underlying the biosonar signal source tissues and the chan­

neling properties of the ‘acoustic fats’ of the melon and lower jaw. Finally, we provide a brief 

derivation of the Helmholtz integral equation which will be applied in later chapters to compute 

the acoustic emission patterns of the tissue and source models.

The Wave Equations For Homogeneous and Inhomogeneous Fluids1

The linearized equation for acoustic (compressional) wave pressure variations p = p (x , t )  in 

a homogeneous fluid having sound speed c is:

?  f  ■ v2'  ( 31 )

The same equation holds for the variations of density and temperature that are associated with 

sound waves traveling through a quiescent medium. In the case that the curl of the vector fluid 

velocity V x v = 0 , then each cartesian component of v also satisfies the above wave equation.

1 Derivations of the linearized homogeneous and inhomogeneous acoustic wave equations are provided in 
Aroyan (1990).
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In inhomogeneous fluids, the background density p=p(x) and the sound speed c =c(x) are

functions of space (not time). The linearized acoustic wave equation for inhomogeneous fluids

is:

c (x) dt2 P(x)

This equation differs from the equation for homogeneous media only in the last term on the RHS.

From the numerical solution p  of equation (3.2) we will need to obtain two quantities of 

special interest. Visualization of the acoustic energy density W within models of the dolphin’s 

tissues will allow us to locate potential source positions and to demonstrate acoustic channeling 

within specific tissues. For inhomogeneous fluids, it can be shown that2

W(x) = - If-M l L  (3.3)
p(x) c 2(x)

The Assumption of Linearity

The fundamental equation describing the motion of fluids under applied forces or its evolu­

tion from initial conditions is the Navier-Stokes equation:

= -u *  Vu + — V2u (3.4)
dt p P

where u is the vector fluid velocity and p is the viscosity. In the derivation of the linearized 

acoustic equations, both the nonlinear (or advective) term [-u*Vu] and the viscous term 

[(p/p)V2 u] in the Navier-Stokes equation are ignored. 3  The ratio of the magnitude of each of 

these terms to the LHS terms that were kept is characterized by a dimensionless parameter. 4

2 See, for example. Morse and Ingard (1968), or Pierce (1980). Because only the fourier transform of 
W(x, i ) is used, we have suppressed the time dependence here.

2 Static forces such as gravity are of no importance over short acoustic propagation distances, and are left 
out of equation (3.4).

4 See Morse and Ingard (1968), Medwin and Clay (1977), Tritton (1977), Pierce (1980), or Novikov et al. 
(1987).
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The dimensionless ratio of the magnitude of the viscous term to the inertial terms on the 

LHS of equation (3.4) is pco/pc2. Because p. is of the order of 10~ 3 kg/(m*s), p=  1.03X103 Kg/m3 

and c=1.5xl0 3  m/s for seawater, and an upper biosonar frequency limit is approximately 

g l > =  IxlO6  rad/s, this ratio is at maximum of order 10~7. Within the frequency and spatial ranges 

of the present investigation, the viscous term can therefore be safely ignored.

The ratio of the magnitude of the nonlinear (advective) term to the LHS terms is the acous­

tic Mach number M =u/c . Because M  is approximately equal to the magnitude of the fractional 

density perturbation, the criterion that M « 1  is often used as a measure of whether a fluid 

phenomenon can be validly treated assuming incompressibility. Values of M  as large as 0.2 may 

permit significant predictions with linear models. 5

Now consider the maximum value of M associated with biosonar emissions. The max­

imum peak-to-peak sound pressure level measured (Au 1980) at lm from an echolocating Tur- 

siops was SPL=230dB re lpPa, or a peak source level SL=224dB re IpPa. This is equivalent to 

Ppeak = 1-6x105 Pa. If M turns out to be quite small, then we can set the RHS of equation (3.4) 

equal to zero to obtain the linearized Euler equation

p — - = - V p  (3.5)

For one-dimensional harmonic waves, this reduces to u=p/pc.  Hence, for the peak pressure 

measurement at lm from Tursiops, we may write

= = 7x10-5 « 1  (3.6)
c p c

justifying the use of equation (3.5). We conclude that the acoustic phenomena associated with 

delphinid biosonar emissions lie well within the linear regime. Furthermore, unless the peak

5 Tritton (1977), p58.
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acoustic pressures inside the dolphin’s source tissues during click production rise to more than 

108  Pa (103  Atm, or SPL=280dB re lpPa), it is not necessary to include nonlinear terms in the 

equations used to model acoustic propagation within the tissues.

The same pressure threshold for significant nonlinear effects to occur within the tissues can 

also be derived from consideration of the dependence of sound speed on pressure. This is usually 

characterized by the dimensionless ratio B/A of the quadratic to linear terms in the adiabatic 

Taylor expansion of the pressure in terms of the density. It can be shown that6

B _
— = 2 poCo A

dc (3.7)
p o . J o

dp

where po, Co, and so are the equilibrium density, sound speed, and entropy respectively. Meas­

ured values of this parameter for biological tissues7  are only slightly higher than for seawater, for 

which B/A is approximately 5. A simple estimate of the sound pressure level that would be 

required to cause significant nonlinear effects within the dimensions of the dolphin’s forehead tis­

sues again gives SPL=280dB re IpPa for the highest frequencies associated with biosonar emis­

sions. Shock wave formation does not appear to be possible unless the nonlinearity parameter 

B/A for the melon lipids is several hundred times its value for normal mammalian soft tissue.

The simulation procedures described in the next two chapters will allow us to demonstrate 

that the peak pressures inside the dolphin’s modeled tissues do not rise to the nonlinear thresholds 

given above except within a very small radius of a (physically inplausible) point source sound 

production mechanism.

6 See Beyer (1960), or Coppens et al. (1965).
7 Law era/. (1981,1983), Dunn etal. (1981), Sehgal etal. (1984).
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Acoustic Impedance and Transmission of Sound Through Fluid Interfaces

The specific acoustic impedance z is defined as the ratio of the complex pressure to the 

complex magnitude of the acoustic particle velocity. This impedance characterizes the fluid’s 

response to pressure waves: the absolute magnitude of z equals the amplitude of the pressure 

oscillations required to produce a unit velocity response. The specific acoustic impedance for 

plane waves, or the characteristic impedance, has the value z=p c , where p is the density and c 

the speed of compressional wave propagation in the medium.

The pressure amplitude transmission coefficient T 1 -> 2  for plane waves incident on an inter­

face between two fluids with acoustic impedances z , =pjc j and z 2=p2c 2-> incident angle 0 t, and 

transmission angle 0 2, is

2 z 2 sec0 2

I - * 2  ~ Z[ sec0 j + z 2 sec0 2
(3.8)

where 0 2  is given by

* - 2 V 4

C O S 0 2  = 1  - c2
s i n 2 © ! (3.9)

. Cl .

If c 2 > c j, a critical angle 0C =sin *(c ,/c2) exists with r 1 - > 2  = 0 for all 0j > 0 C (all energy is 

reflected). The power transmission coefficient is simply (z 1/z 2 ) '̂i2-> 2  •

Let us consider two examples of special interest. First, the transmission coefficient for 

sound passing from soft tissue into air. Assuming the ratios of velocities and densities to be

^  1 _  c soft tissue __ 1500mA — 4 3  P1 _ Psoft

350 mA ■ ’ p2  p air
= 103 (3.10)

0 2 c air

we obtain the transmission coefficient for normal incidence

1—>2
1 + z / z 2

= 5 x 10" 4 (3.11)
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Hence we obtain the power transmission coefficient (z \/zi)T j *  10- 4  at normal incidence. 

In other words, air spaces within soft tissue constitute extremely efficient reflectors of acoustic 

energy.

Second, considering bone as a fluid, and taking both the density and the speed of sound in 

bone to be roughly twice that of soft tissue, we find a power transmission coefficient at normal 

incidence of (z x/z 2)T ?_ > 2  = 0-36 for sound passing from soft tissue into bone. We also find a criti­

cal angle of approximately 30 degrees past which all energy is reflected back into the soft tissue.

Of course, while bone may contain fluid inclusions, the bony matrix itself is an elastic solid 

and not a fluid. Transmission of sound from a fluid into an elastic solid depends on the elastic 

and absorptive properties of the solid at the frequencies of interest, and generally exhibits more 

complex behavior than transmission between fluids. 8  However, in all cases of interest to this 

thesis, very little error is introduced by ignoring the elastic characteristics of tissues. This is 

because the shear wave velocity for soft tissues remains less than 1% of the compressional wave 

sound speed for frequencies up to 1 MHz, and soft tissue shear wave attenuation coefficients are 

of the order of 104  times the compressional wave attenuation coefficients. 9  Air sacs normally 

cover much of the skull surface in the vicinity of the nasal passages (the most probable source 

region) in delphinids, and hence very little compressional wave energy is directly incident (at low 

angles) on the skull. Taken together, these considerations suggest that mode conversion at skull- 

soft tissue interfaces may contribute additional attenuative mechanisms, but does not argue for a 

significant role in biosonar emission.

8 See Kinsler et al. (1965), or Auld (1973).
9 See Frizzell et al. (1976), Carstensen (1979), and Madsen et al. (1983). While possible, full elastic tis­

sue modeling was not attempted in the current project.
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Fundamental Mechanisms: Acoustic Resonators, Waveguides, Lenses, Megaphones

Two of the primary goals of this thesis are to explain the physical mechanisms determining 

the character of delphinid biosonar signals, and to address the degree of waveguiding and/or 

chaneling that is exhibited by the so-called 'acoustic fats’ of the delphinid forehead and lower 

jaw. As shown below, the MLDB tissue region superior to the nares in dolphins is closely analo­

gous to a damped acoustic resonator, while the melon exhibits properties analogous to both a 

reduced-velocity waveguide (and lens) and a horn (or megaphone). In order to clarify the physi­

cal meaning of these behaviors, we now offer a brief discussion of acoustic resonators, 

waveguides, lenses, and megaphones.

A region of soft tissue that is completely surrounded by air (pressure release surfaces) con­

stitutes an acoustic resonator. 1 0  The resonant frequencies depend on both the geometry of the 

region and the tissue velocity distribution. Let us consider the especially simple case of a uni­

form spherical soft tissue mass suspended in air. 11 The resonant modes are obtained by solving 

the homogeneous Helmholtz equation (3.16) in spherical coordinates and requiring the pressure 

to vanish at the air radius. The complete solution is usually written out as a product of spherical 

bessel functions (for the radial dependence) and spherical harmonic functions (for the angular 

dependence). However, the frequencies of the solution are determined solely by the radial depen­

dence. We need only examine the first few frequencies of the first two radial modes to describe 

the relevant resonant structure. 1 2  The first radial mode corresponds to purely radial oscillations of

10 The acoustic resonances of air sacs enclosed within soft tissue has been investigated as a possible 
source of the low frequency components of delphinid biosonar signals (Giro and Dubrovskiy 1973, 1974, 
Romanenko 1973, 1974) and whistles (Romanenko 1974). However, it appears that no one has considered 
the flip side of the coin • i.e., the resonance structure of soft tissues partially surrounded by air sacs - which, 
as we shall see, explains the main (high frequency) signal components.

11 Rather than cataloguing resonant frequency spectra for the many possible simple (but probably in­
correct) geometries, we give this one very suggestive example, and then indicate how to perform a rigorous 
analysis for an arbitrary 3-D soft tissue and air sac geometry (see below).

12 If an impulsive monopole source is assumed to be located at or near the center of the sphere, then only 
the first radial mode is of interest because the source couples primarily into this mode. In addition, the higher
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the soft tissue. For a radius of r=1.25cm and a uniform tissue velocity of c=1500m/s, the n th

frequency of the first mode is given by

f \ j i = n Y~r = n / ,  = n (60kHz) (3.12)

Note that the first mode contributes a set of harmonically related frequencies to the resonant spec­

trum.

The second mode corresponds to both radial and side-to-side (dipole) oscillations of the soft 

tissue, and does not contribute harmonically related frequencies. For the same radius and uni­

form velocity, the first three frequencies of the second mode are

The message to take home here is that any soft tissue source region completely (or partially) 

surrounded by air sacs has a resonant structure which can be determined (see below for general 

case). For an impulsive point source located at or near the center of our simple example of a 

spherical air-bounded mass of tissue, a predominantly harmonic response would be observed with 

a small degree of coupling into the non-harmonic second and higher modes. Note also that the 

broader the spectrum of the impulsive source, the more of the higher resonances we would expect 

to be excited. A resonant source region model, along with the fact that the spectrum of any 

impact mechanism (such as hands slapping in air, or pneumatically driven soft tissue impacts 

within the MLDB region) broadens with the speed of impact, offers a simple explanation for the 

observed bimodal variations in the sonar signals of certain odontocetes. In addition, because the 

resonance spectrum scales with the size of the soft tissue source region, this model also appears to

explain why the smaller odontocetes can produce high frequency but low intensity signals: 1 3  the

modes are expected to decay more rapidly when damping is added into the model.
13 See Au (1993), pp. 133-137.

f u  = 85.8 kH z, f 22 = 148 kH z, f Z3= 208 kHz (3.13)
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frequency of the lowest mode of their soft tissue ‘resonators’ would be expected to scale 

inversely with the size of their source regions, and hence roughly inversely with body size.

Now, if the spherical region is only partially enclosed by air sacs (as is the MLBD region in 

dolphins), then a damped acoustic resonator results with a Q -value for spherical resonances 

roughly equal to1 4

Q =  ---------  r ---------- (3-14)
“  (  ^ to ta l 'a i r  sacs )

where A total/A air sacs is the inverse ratio of air-covered surface to the total surface area. If we 

assume that an impulsive source mechanism excites the mth spectral component (with frequency 

f m) to amplitude p 0jn, then we expect this component to decay according to

= Pojn e ~Pm' sin(27t/mr) (3.15)

where Pm = rc/m/£? is an effective damping constant. Note that the more completely the source 

region is surrounded by air, the higher the expected Q-value, and hence the longer it will ‘ring’. 

As an example, the sonar signal of the harbor porpoise, Phocoena phocoena, exhibits a long 

("190 msec) decay with many oscillations; the harbor porpoise is also known to have a soft tissue 

‘capsule’ that is almost entirely surrounded by air sacs (Cranford 1992). Note that, to this first 

order approximation, the decay rate of each component is simply linear with frequency.

Although the above quantities are only intended as rough estimates, a damped but resonant 

source region excited by an impulsive mechanism (such as pneumatically driven impacts of soft 

tissue within the MLDB complex) offers a qualitatively correct explanation for the frequency 

range, short duration, rapid decay, and observed modal shifts in the biosonar signals of several

14 This follows by analogy with the LRC circuit result that the ratio of successive voltage amplitude peaks 
Vj/VM in the impulse decay of a lightly damped oscillator is approximately equal to exp(it/Q ). I have simply 
assumed that the successive amplitude ratios in the case of the resonant sphere should vary roughly with the 
square root of Aulal/Aair u a .
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odontocetes. A more rigorous analysis for each species might proceed as follows: first, determine 

the true resonant spectrum for the partially air-bounded soft tissue source region; second, multi­

ply this spectrum by the spectrum of the assumed impulsive excitation; finally, transform the pro­

duct back into the time domain to obtain the expected pressure waveform within the soft tissue 

region. Numerical simulations utilizing accurate air sac and soft tissue velocity information are 

probably the best way to determine the resonant spectra of the irregularly shaped soft tissue 

source regions in most species. The far-field projection of the source signal depends on the tissue 

structures that surround the source region, which leads us to our next consideration.

The delphinid melon exhibits an internally lowered density and velocity profile extending 

back to the MLDB complexes, with its posterior end surrounded by a roughly conical connective 

tissue theca and muscle of higher density and velocity. These structures suggest analogies to a 

reduced-velocity waveguide (or lens), and a horn (or megaphone), respectively. While neither 

the melon tissue nor the lower jaw fats constitute elementary geometries, 1 5 and several principles 

may operate simultaneously, it is useful to consider the behavior of the each analogue separately.

Reduced-velocity structures can function as waveguides and/or lenses, depending on their 

configuration. For many simple waveguide shapes, it can be shown that certain wavefunctions 

(referred to as the ‘modes’ of the guide) propagate coherently along the direction of the guide 

without attenuation or change of envelope shape. The efficiency of this channeling behavior 

depends on several factors including the dimensions of the guide, the wavelength of the sound, 

and the distribution and magnitude of the velocity perturbation over the guide structure. For sim­

ple geometries, it can be shown that the percentage of the energy of a guidefunction that is 

trapped or channeled within the width of the guide generally increases with both frequency and

15 The detailed density, velocity, and impedance distributions within the melon of the common dolphin 
are illustrated in Appendix 2 of this thesis.
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the magnitude of the velocity perturbation. In addition, coupling of a specific source into the 

modes of the guide is important in determining how much of the source energy will be coherently 

propagated. It will be dramatically demonstrated in Chapter 7 that the melon of Delphinus 

delphis is quite effective in channeling acoustic energy within its cone-shaped posterior throat 

region.

Reduced-velocity structures that do not stretch out far in any linear dimension may behave 

more importantly as acoustic lenses, even though waveguiding behavior may also be present. We 

will also demonstrate in Chapter 7 that the lens-like velocity distribution within the melon of the 

common dolphin does contribute significantly to biosonar beam formation.

Conical shell structures of high impedance material within a low impedance medium can 

act as acoustic resonators, directional emitters or collectors, and impedance matching devices. 

Most musical instruments with conical bores utilize all three mechanisms in the production and 

projection of musical tones. 1 6  If the ratio of the wall impedance to that of the ambient fluid is 

very large (or very small), sound is strongly channeled within the bore and harmonically related 

resonant frequencies (if driven) can build up. Projection into the environment of the resonant 

structure within the bore depends on the impedance discontinuity at the bell of the instrument 

(which varies with frequency). In woodwind and brass instruments, nonlinear driving mechan­

isms are entrained by the harmonic structure reinforced within the bore. 1 7  The energy spectrum 

within the bore eventually reaches an equilibrium with both the driving spectrum and filtering 

caused by the impedance of the bell of the instrument. An important efficiency aspect of the 

entire process is the acoustic coupling acheived between the source and the ambient fluid. Flar­

ing horns are often used to efficiently link sources or receivers of intrinsically high impedance to

16 See any textbook on musical acoustics, for example. Backus (1977), or Benade (1976).
17 See, for example, Benade (1960, 1973).
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a medium of low impedance.

Let us now consider bow well these (musical) horn analogies apply to the melon. First, 

note that the melon ‘wall’ impedance rises somewhat gradually to a maximum of only about 40% 

above the impedance of the melon floor at the posterior melon ‘throat’ (see Appendix 2). This 

implies a relatively weak wall structure when compared to musical instrument materials in air 

(typically very sharp, order 103  impedance boundaries). Hence we expect only partial wavefunc- 

tion channeling within the melon walls. Energy can therefore ‘leak’ out, causing the melon reso­

nances to be weaker than those of a similarly shaped but sharp-walled instrument. Second, the 

lowest resonant frequency of a cone of length (apex to opening) of roughly 5cm in a medium of 

velocity 1500m/s is around 15kHz. The peak biosonar frequencies of delphinids therefore 

correspond to harmonic numbers ranging from 2-9. Third, the opening angle of the roughly coni­

cal posterior melon ‘hom’ in the Delphinidae1 8  appears to be very large (50-70 degrees) com­

pared to typical opening angles in conical bored musical instruments (5-15 degrees). Such a wide 

opening angle would significantly dampen the higher hom resonances, which is equivalent to say­

ing that higher frequencies are emitted efficiently but without much resonant interaction from the 

end of the hom. That is, only the megaphone effect remains important at the higher resonant fre­

quencies.

Finally and most importantly, the impulsive nature of the biosonar signal source in all del­

phinids (regardless of the source mechanism) constitutes the main reason for dismissing most of 

the conical musical instrument analogy except for the megaphone effect. Given the brief duration

18 While the exact structure of the posterior throat of the melon differs somewhat among the delphinid 
specimens described by Cranford (1992), his measurements of the posterior melon throat dimensions imply 
opening cone angles of approximately 56 degrees in Delphinus delphis, 62 degrees in Tursiops truncatus, and 
70 degrees in Lagenorhynchus obliquidens. The anterior opening of the soft nasal tissue capsule in Phocoena 
phocoena (similar to the posterior melon throat in delphinids) flares at about 47 degrees. On the other hand, 
the melon of the monodontid, Delphinapterus leucas, forms a longer and more even cone with a much small­
er opening angle.
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of delphinid biosonar signals (typically lCTS or less), there can exist no feedback between the 

source and the melon that could cause source entrainment at a fundamental melon resonance. 

Were the source duration on the order of milliseconds, feedback could initiate and begin to stabil­

ize, making the resonant structure of the melon potentially important. However, in addition to 

the waveguide/lens behavior discussed above and confirmed by the current simulations, the 

megaphone analogy with its properties of improved directional projection and higher harmonic 

impedance matching appears to be appropriate for the melon tissue.

In summary, we have postulated here the analogy of a damped resonator driven by an 

impulsive mechanism for the source region in dolphins, with projection of the ensuing signal 

aided by the waveguide and megaphone effects of the throat of the melon, with mild focusing and 

transmission into seawater aided by the lensing and impedance matching effects of the remaining 

melon. The same waveguide, megaphone, and lens analogies also appear to hold for the acoustic 

effects of the lower jaw fats in signal reception (with the order of occurance reversed).

Derivation of the Helmholtz Integral Equation19

The remainder of this chapter is concerned with the derivation of a result that will be central 

to the computational methods of Chapter 5. In order to numerically investigate biosonar signal 

emission from the foreheads of dolphins, it will be necessary to accurately compute the acoustic 

far-field for various models of tissue and source configurations. One elegant approach to solving 

this problem applies the mathematical relationship between the acoustic field on a surface 

immediately surrounding a source region and the pressure at other spatial locations. The 

Helmholtz integral equation, as it is commonly referred to, sums the contributions of infinitesimal

19 This brief derivation is largely excerpted from Junger and Feit (1986). For a more detailed discussion 
and development of boundary integral methods, see Baker and Copson (1950), Copley (1967, 1968), or 
Schenck (1968).
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Figure 3.1. Vector geometry of the extrapolation problem. A sourceless and homogeneous volume V is 
bounded outwardly by spherical surface S | at large radius R 1 from the origin, and inwardly by surface S. 
The volume interior to surface S is assumed to contain an arbitrarily complex and/or inhomogeneous 
source medium. Note that the unit normal vector n to surfaces S and S [ is defined to point into volume V.

surface elements to the field at any location in space. It is the homogeneous nature of the sur­

rounding (seawater) medium that allows us to perform this ‘boundary extrapolation’ of the field. 

Below we provide a brief derivation of the Helmholtz integral equation. Programs which numeri­

cally implement this equation will be performance analysed in Chapter 5 and then applied in 

Chapter 7 to compute the emission fields of the tissue and source models.

The geometry of the extrapolation problem is shown in Figure 3.1. Consider the volume V 

external to a surface S and bounded by the spherical surface S , at (large) radius R j from the
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origin. We wish to obtain an expression for the pressure field p  (R) at any point R within V  in 

terms of the pressure p and the normal derivative of the pressure dp/dn on S . An arbitrary distri­

bution of field sources is assumed enclosed by surface S , while S itself and the volume external 

to 5 are assumed to be sourceless and homogeneous; i.e., the homogeneous Helmholtz equation,

(V 2 + k2)p = 0 (3.16)

is satisfied everywhere in V . Here k =co/c is the acoustic wavenumber, where to is the angular 

frequency of the field, and c is the constant speed of sound in the external medium. Note that a  

defines the coordinates of surface S .

The desired expression for p (R) is obtained by using Gauss’s integral theorem,

J  V - F dV = -  J  n - F dS (3.17)
v s+s,

formulated in terms of the coordinate system of the field point R, with

F = p (R) V* G (R'.R) -  G (R,R) VRp (a) (3.18)

Here G (R,R) is the Green’s function defined by

AIRT-RI

C(R'-R) = - ^ T F ^ r  a i 9 )

Note that we have assumed the unit normal vector n in equation (3.17) to be oriented into volume 

V. The integrand of the volume integral thus becomes

V , - ( p  VRG - G V Rp ) = p V l G - G V &  (3.20)

while the integrand of the surface integral becomes

n - ( p V RG - G V * p )  = p ^ - - G &  (3.21)
on an
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where 3/9n=n*V denotes the directional derivative along the unit normal vector n. Substituting 

these results into equation (3.17), one obtains Green’s identity,

J  {PV lG - G V f o ) d V  = -  J
s+s,

dG dp dS (3.22)

To evaluate the LHS volume intergral we solve the homogeneous Helmholtz equation (3.16), also 

formulated in the coordinate system of the field point R, for V |p ,

v,2p = - k 1p

and make use of the fundamental property of the Green’s function:

(3.23)

V |G  = - k 2G + S (R -R ')  (3.24)

When equations (3.23) and (3.24) are substituted into the volume integral of equation (3.22), the 

integrand reduces to p (R )5 (R —Rf). Upon integration of this product over volume V, three dif­

ferent results are possible depending on whether R lies in V, on the boundary surfaces S or S 1? or 

interior to surface S (and thus exterior to the volume of integration). These three cases yield 

p (R), p (R)/2, and 0, respectively. Thus equation (3.22) becomes

P(R) = -  J
s+s,

dG r  dp dS (3.25)

where e=l for R within V, e= 1/2 for R on S or St, and e=0 for R outside V.

Now consider the integral over surface S j as R [ approaches infinity. Because all sources 

are localized within the inner surface S,  it makes sense to impose the requirement that the pres­

sure field consists only of outgoing spherical waves as R t—**>. The Sommerfeld radiation condi­

tion,

lim /?. 
* , —►00

/kp(R ,)-
dp (Rj) 

dR ]
= 0 (3.26)
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which implies that the pressure drops off at least as fast as R f 1 over surface S { as R holds 

for all sources of finite extent. In the limit that R ! »  R , it is also true that

G (R„R ) = -
,«*|Ri-R|

4tc/? i
(3.27)

and that

dG
9R,

~ ikG(R[, R) (3.28)

Finally, writing out the surface integral over S x and applying equations (3.26), (3.27), and (3.28), 

we find

lim f dG dp dS = lim 4 j c R }
Ri-*oo

_  a G ( R j , R )  dpiR,)
P& 0----^ ---------C(R„R)-dR,

= 0 (3.29)

The surface integral at infinity is therefore seen to vanish, and we are left with the desired expres­

sion for p  (R) in terms of the integral over S . For field points R lying exterior to surface S (e=l), 

we thereby obtain the result referred to as the Helmholtz integral equation:

p(R) = -  ji jp (q) ~ G «y,R) j  dS (a) (3.30)

In our application we obtain both the pressure p and the normal derivative dp/bn over a 

surface surrounding our delphinid tissue and source models from finite difference simulations 

(see Chapter 4). Equation (3.30) therefore can be used to compute the pressure anywhere exter­

nal to the model. In Chapter 5, we will show how far-field emission patterns can be computed 

from equation (3.30).
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Numerical Simulation o f  Sound Propagation -- Part I  

Chapter 4. Finite Difference Methods

We are interested in solving two classes of bioacoustic problems in this thesis. The first 

class consists of simulations of biosonar signal echoes propagating back (returning in the reverse 

direction of their emission) into our models of delphinid forehead and lower jaw tissues. We are 

investigating two distinct questions with this first class of ‘inverse’ simulations. First, where in 

the forehead tissue model does the source have to be located in order to produce the biosonar 

beam that is measured experimentally for these animals? 1 Second, is sound channeled back 

towards the ear complexes by the fats of the lower jaw, and if so, which properties of the fats pro­

duce this waveguiding behavior? The nature of the acoustic reception process will also help 

answer several questions concerning delphinid mechanisms of directional hearing.

The second class of problem we wish to solve is ‘forward’ simulation of the acoustic far- 

field produced by a given model of tissues and sources. With these emission simulations we are 

investigating the effects of various tissues (either separately or in combination) on the formation 

of biosonar beams. The boundary extrapolation programs discussed in Chapter 5 constitute the 

second half of the forward simulation process.

Note that in both classes of problem it is necessary to propagate sound through models of 

biological tissue. We now turn our attention to the finite difference (FD) methods used to solve 

the 3-D inhomogeneous acoustic wave equation inside the models of delphinid forehead and 

lower jaw anatomy. 2

1 This is analogous to using an inverse seismologic simulation to pinpoint the epicenter of an earthquake 
from the seismic time records of the quake at the earth’s surface.

2 While alternative techniques exist for modeling sound propagation within inhomogeneous media, most 
notably (to this application) the finite element method, the FD method was chosen for the following reasons.
First, the x-ray CT data from which the tissue models are constructed consists of coefficients of x-ray attenua-
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This chapter presents the exact algorithms utilized in the FD programs, and provides an 

analysis of their dispersion behavior. Next we shall discuss the absorbing boundary algorithms 

applied at the edges of the grid. Finally we discuss aspects of the design of the grids in the simu­

lations.

Primary Algorithms

Several texts offer introductions to the FD method for numerical solution of differential 

equations, 3  which is based on the replacement of derivatives with difference quotients over small 

intervals. The central equation we wish to solve is the acoustic equation for fluids of inhomo­

geneous velocity and density [equation (3.2)], which we restate:

_ J _  i k  = v v  -  ^ ' VpW (4.D
c 2(x) 9 r 2 P(X)

Note that both the tissue sound speed c and mass density p are functions of position x, while the 

acoustic pressurep  is dependent on position and time, p=p(x,t) .

Discretizing equation (4.1) on a cubic spatial lattice of increment size h=1.5mm (the finest 

CT scan increment), and discrete time increment /, we introduce the notation

/, (x,,y; ,zt ;rm) = P(ih,jh ,kh;ml)  = 

for the value of the numerical solution of the pressure at the (i , j , k  )’th grid position and the m ’th

time step. 4  Similarly, we define grid values of velocity as c (x,-, y;-, ) = cij Jc and density as

tion within small rectangular volume pixels (voxels). It is simpler to use a similar rectangular grid to model 
sound propagation through such a dataset, rather than mapping to a grid of different geometry. Second, as 
demonstrated below, all relevant propagation characteristics of FD grids can be calculated. Hence numerical 
errors can be quantified. Third, the application of boundary extrapolation techniques (see Chapter 5) means 
that we do not need to propagate the solution into the far-field, and hence that the uniformly dense FD grid 
need not extend far beyond the immediate volume of the modeled tissues. Finally, the ease with which FD 
algorithms can be programmed is a significant advantage.

3 See, for example. Smith (1985), or Twizell (1984). See also Alford et al. (1974). A brief but relevant 
introduction to 2-D FD methods is also provided in Aroyan (1990).

4 We switch notations from p to P to maintain a formal distinction between the exact solution p of equa­
tion (4.1) and the solution P of the approximating scheme (4.2). See Aroyan (1990), p26-28.
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p(.xi , y j 'Z k ) = P i J jc .

The following FD scheme was used to time-step the solution of equation (4.1) over the tis­

sue region of the grid:

r s i  =  ( 2 - i s k ?j j r r j *  -  p r ji

4 k,2 r i
, • J I p m  , p m  , p m  , p m  , p m  , p m3 +  “i j+l j c  + * i j - l j c  iJJc+l ‘ i j j c - l  J

K 2  _ F* .
_  p m  , p m  , p m  , p m  , p m  , p m

|_ i+2JJt “ i-2JJc +  “iJ+2Jc +  “ i J - U c  +  “iJJc+2 +  ‘ i. jJc-2 J

V JJt
3p,-i Jt

/  p m  p m  \  1 /  p m  , p m  \
V r i+ lJJc ~  “ i - I J J c  > ~  g  t  ^ i+ 2 J J c  +  r / - 2 j  j t  '

K/jJt
3Pi

/  p m  p / n  \ _A /  p m  , p m  \
V r iJ+lJc -  “ i j - l j c  > -  g  y r , j + 2 jt  +  r ,  ) (Pi'j'+Ijfc P /j-ljt )

3 p,-
( Dm p m  \ ✓ p m  , p m  \
t r / , M + I  ) -  t ^ i J J c + 2  + r i J Jc -2  ) ( P i J J c + l ~ P i J J c - 0  (4-2)

Here KI J Jt = (//7i)c,jyt, with p( y Jt and c ,-^  labeling the spatially varying density and acoustic 

velocity. This scheme is fourth-order in the spatial derivatives of pressure, second-order in the 

spatial derivatives of density, and second-order in the time derivative of pressure. Second order 

spatial derivatives of density were used in order to best simulate behavior at sharp tissue inter­

faces.

The first three lines of equation (4.2) constitute the scheme for the homogeneous wave 

equation. This homogeneous scheme was used outside the tissue regions of the grid and greater
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than two points away from the grid faces. A second-order spatial derivative scheme was applied 

at the next-to-last points of the grid edges. Third-order Halpem and Trefethen absorbing boun­

dary conditions (see below) were applied at the extreme faces of the grid. Grid comers were 

time-stepped using simple averaging of the forward time values of neighboring points.

Consistency and stability can be shown for the homogeneous scheme provided k,- <0.5.

Stability for the inhomogeneous scheme further requires that density discontinuities not exceed a 

factor of about 2.5 per grid point. 5  While a stability analysis for the combined grid scheme 

(including absorbing boundary conditions) was not attempted, instabilities never occured over the 

range of simulation parameters for the scheme used here. All derivative schemes used (except at 

the boundaries) were symmetric and centered in both time and space. A symmetric but uncen­

tered spatial derivative scheme is required at the extreme grid edges (see discussion of absorbing 

boundary conditions).

Dispersion Behavior of the Homogeneous Algorithm

All propagation characteristics of the fourth-order 3-D homogeneous algorithm may be 

derived from it’s dispersion relation, which is found by plugging the plane wave solution

p j * j n  = exp [i(kxXj+kyyk + kzzm - co/„)] = exp [ / ( kxjh + kykh + k ,m h -a m i)]  (4.3)

into the first three lines of equation (4.2). Here, kx , ky, kz are the cartesian components of the 

wavevector k which is oriented perpendicular to the phase fronts of the wave. The following 

dispersion relation is thereby obtained:

' r  ■% r  *\

co/ 4 k 2 •  2 h k x , ■ 2
h k y

■ 2
h k z

—  — — « sin + sm + sin >

2 3 2 2 2
% *

5 As in previously reported work (Aroyan 1990. Aroyan et al. 1992), air sacs are therefore modeled as
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- -^-•|sm 2( h k x )  +  sin2( h k y  )  + sin2( h k z  )| (4.4)

The velocity with which the phase fronts of a wave packet propagate is called the phase 

velocity cph=cph k = (m/k) k, which we assume to be oriented along wavevector k. While real 

fluids are acoustically isotropic, the cubic simulation lattice is nonisotropic. Hence, the phase 

velocity on the grid varies as a function of both wavelength and direction of phase front propaga­

tion, i.e., as a function of k. From equation (4.4), we calculate cph to be

sin
h k r

+ sin
hky

+ sin
h k ,

— jy  j sin2( h k x ) + sin2( h k y ) + sin2( h^ )

1/2

(4.5)

In addition, the cubic grid’s nonisotropy affects the velocity with which energy is tran­

sported by waves. The velocity with which the envelope of a nearly-monochromatic packet pro­

pagates is called the group (or energy) velocity cgr, and is not necessarily perpendicular to the 

surfaces of constant phase. Hence we expect that ‘quasi-longitudinal’ modes6  exist for which cgr 

is neither exactly parallel nor equal in magnitude to the phase velocity cph. In three dimensions, 

the group velocity is defined to be

„ 3co « da> .  3 co
car = x —  + 9 ^

d k T dkv■Vy dk.

Calculating the partial derivatives from equation (4.4), we find

(4.6)

cgr(k) = h k2

/ sin(co I )
x^ ~  sin(Jhkx) -  - j  sin(2hkx ) [■ + y -j \  sm(hky) -  -g- sin(2 hky)

pressure release surfaces.
6 See Auld (1973), vol. 1. p227-236.
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(4.7)

A discretization scheme can cause propagation artifacts when either cph or cgr vary substan­

tially. Let us first examine the dependence of cph and cgr= \ cgr | on wavelength. The magni­

tudes of cph and cgr are plotted as functions of inverse wavelength (number of wavelengths per 

grid increment, h/X) for the fourth-order homogeneous algorithm in Figure 4.1a, and for the 

corresponding second-order algorithm7  in Figure 4.1b. The plots give curves for two values of 

the stability parameter k, often called the numerical velocity because both cph and cgr approach 

Kh/l in the limit X— (or h/X—>0). In addition, the curves have been normalized to the values 

of kh /l used, and propagation along a cartesian axis direction has been assumed. Note that the 

fourth-order algorithm exhibits considerably less divergence of cph and cgr than the second-order 

algorithm at all finite wavelengths.

We next examine the dependence of the magnitudes of cph and cgr on the direction of 

(phase) propagation on the grid. Figure 4.2 plots the normalized values of cph and cgr for the 

fourth-order homogeneous algorithm along an arc connecting the ‘slow’ 1 ,0 , 0  and the ‘fast’ 1 , 1 , 1  

lattice directions for a wavelength of 1 0  grid increments (corresponding to a frequency of about 

100kHz in the simulations). Figure 4.2 also plots normalized values of cph and cgr for the related 

second-order algorithm. Again, the advantage of the fourth-order algorithm over the second- 

order is obvious. For example, the relative shift in cph between the fast and slow directions can 

cause phase errors to appear in the values of the pressure and it’s normal derivative over the sur­

face used to extrapolate the far-field (see Chapter 5). Use of the fourth-order algorithm minim­

izes this problem (phase errors remain less than about 0.5% over the extrapolation surfaces used

7 Centered second-order spatial derivatives of pressure are used instead of the fourth-order derivatives in 
the first three lines o f equation (4.2).
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Figures 4. la-b. Normalized phase and group velocities plotted as functions of inverse wavelength 
(wavelengths per grid increment, h/X) for the fourth-order homogeneous algorithm in Figure 4.1a (above), 
and for the corresponding second-order algorithm in Figure 4.1b (below). Curves are also given for dif­
ferent values of the stability parameter k . Velocities have been normalized to the values o f <h A used, and 
propagation along a cartesian axis direction has been assumed.
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Figure 4.3. Plot of the angular divergence of the fourth-order phase and group velocity vectors plotted 
along the slow-to-fast directional arc for several wavelengths.
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in the simulations) . 8  In addition, it can be shown that the fast-vs-slow directional shifts in cph and 

Cg,. drop off with the inverse fourth power of the wavelength for the fourth-order algorithm, but 

only with the inverse square of the wavelength for the second-order algorithm.

Finally we examine the artifact of quasi-longitudinal wave behavior on the FD grid. The 

angle (in degrees) between the fourth-order vectors cph and cgr along the slow-to-fast directional 

arc is plotted in Figure 4.3 for several wavelengths. For a wavelength of 10 grid increments or 

greater, this deviation is extremely small. This illustrates that quasi-longitudinal distortion of the 

wavefront cannot occur significantly on grids having dimensions of a few hundred points. This 

angular divergence also drops off with the inverse fourth power of the wavelength for the fourth- 

order algorithm.

Figures 4.1a-b also indicate that grid dispersion is minimized while efficiency is maximized 

for both schemes when they are run near their stability limits (maximum values of k ) .  All simu­

lations in this project utilized the fourth-order algorithm over interior grid points, and were run at 

their stability limit for the highest velocity appearing in the simulation. Taking the fourth-order 

dispersion curves and the maximum required grid dimensions into account, a wavelength of 6  

grid increments was determined to be the practical dispersion limit (corresponding to an upper 

frequency limit of about 170kHz in the simulations). However, because of an upper frequency 

bound of approximately 100kHz for acceptable accuracy in the extrapolation programs discussed 

in Chapter 5, the FD simulations were restricted to frequencies less than or equal to 100kHz in 

the current project. This frequency range is adaquate for our study of Delphinus biosonar emis­

sion and reception.

8 From the fast-vs-slow directional shift in c^ for X=10 grid increments, it can be shown that waves pro­
pagating in these two directions will accumulate a 1 percent phase difference at a radial distance of about 200 
grid increments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

Absorbing Boundary Conditions

In FD simulations of wave propagation, artificial reflections arise at the edges of the domain 

of computation. In order not to compromise the accuracy of results in the grid interior, one can 

either enlarge the domain of computation or employ conditions at the boundaries which ‘absorb’ 

incident waves. Enlarging the grid wastes computational resources since both the required 

storage and the number of calculations per time step increase linearly with grid length in each 

spatial dimension. For 3-D grids, this rapidly becomes the dominant limitation. Hence absorbing 

boundary conditions (ABC’s) are ordinarily utilized to minimize the unwanted reflections.

Several types of ABC’s have been developed. 9  Many are based on approximations to one­

way wave equations which freely allow propagation in the outgoing direction. The performance 

of some of the one-way wave equation formulations appears very promising. For example, Ran­

dall (1988) outlines a proceedure devised by Lindman (1975) that is remarkably efficient (having 

a reflection coefficient less than 1 percent) for incident angles up to 89 degrees. Renaut (1992) 

has generalized Lindman’s formulation into a computationally elegant approach to ABC’s. In 

her reformulation, higher degree approximations to the radical in the one-way dispersion relation 

are achieved by simply adding more coefficients to the expansion of the radical. Surprisingly, 

this does not increase the order of the differential equation being applied at the boundary, yet 

greatly improves the boundary absorption. Unfortunately, this approach seems to be unstable 

when used in conjunction with the fourth-order 3-D algorithm given by equation (4.2) in the grid 

interior. The author implemented two different versions (M=l and M=2) of the 3-D Lindman 

ABC’s given in Tirkas et al. (1992) and found them both to be unstable. Nevertheless, because

9 For a tutorial on the theory and application of absorbing boundary conditions, see Moore et al. (1988).
For excellent reviews of ABC’s formulated in terms of one-way wave equations, see Renaut (1992), and Tir­
kas et al. (1992). One unusual approach (Shaw 1974) uses boundary integral equations more typically ap­
plied in radiation and scattering problems to formulate ABC’s.
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of the exceptional elegance and efficiency of Renaut’s reformulation of Lindman ABC’s, the 

author would encourage further investigation of this approach.

For the simulations in this project, the more pedestrian variety of third-order (fourth-degree) 

Halpem and Trefethen (1988) ABC’s was selected. This choice provides better absorption than 

the second-order (second-degree) ABC’s utilized in the previous 2-D simulations, but still forces 

us to exercise some caution in the design of simulation grids. Interference effects from reflected 

boundary waves are greatly reduced but not absent.

We now briefly discuss the construction of the selected ABC for the rear boundary of the 

grid. 1 0  Plugging a plane wave solution into the 3-D homogeneous wave equation (3.1), we obtain 

the full wave dispersion relation

=  k 2 = k 2 + k f  +  k 2 (4.8)

Solving this for kx , we find

kr = ±
0 )
c

1 -

c 2k f  c 2k 2
1/2 -

=  ±
CU

C
l - s 2

1 1/1
(4.9)

co2 co2

where the plus and minus signs respectively indicate the forward- and backward-traveling 

wavevector kx component with respect to the positive x  direction, and s 2 has been introduced as 

a shorthand for the last two terms inside the square root bracket.

Next we construct a fourth-degree rational fraction approximation of the square root func­

tion in terms of the Pad6  coefficients a 0,a 2, b2:n

10 For a full discussion see Halpem and Trefethen (1988), Renaut (1992), and Tirkas et al. (1992).
11 Halpem and Trefethen (1988) analyzed seven classes of approximants to Engquist and Majda’s (1977) 

rational function expansion of the radical. The selection of Pad£ coefficients from among many alternative 
classes is suggested by the results of Renaut (1992) and Tirkas et al. (1992), and was confirmed by tests of 
the full grid scheme utilized here. The coefficients a0, a2, b2 are normally labelled po, p 2, q2 in the literature.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

1  2  (0  ClQ +  a 2 S
(4.10)

1  + b2S
which we rewrite as the equality

c +c2b2[kxkf + kxk ]̂ = idQO? ±c2a2[akf+ oak2] (4.11)

Selecting out waves traveling backwards into the x - 1 grid plane (negative kx component), and 

identifying the quantities ^ , ky, kz, and co with the appropriate plane wave derivative operators, 

we associate equation 4.11 with the third-order partial differential equation

Finally, we approximate this equation with a discrete derivative scheme and apply it at the rear 

( j c =  1 )  boundary of the grid.

At the very edge of the grid, it is wisest to average grid values in both space and time to 

maintain a truncation error of 0 ( h 2) + 0 ( l 2) + 0(hl)  (Renaut 1992). In terms of the the standard 

forward and backward ^-derivative operators ( D l . D i  ), one such discretization of equation 

(4.12) is:

This discretization is carried out and- solved for the forward time step. Equivalent conditions are 

applied at the left, right, top, bottom, and front boundaries of the grid. In effect, these ABC’s 

simulate ‘one-way’ windows at each of the boundaries; that is, waves are allowed to travel out­

ward through, but not backwards into, each boundary.

Accurate reflection coefficients for any ABC scheme can be calculated, though the author 

has found the subject to be incompletely treated in the literature. The standard procedure is to

c pta+c3b2[pyyx+pzzx] =  a0pm + c 2 a 2 [ p w  +Pez ] (4.12)
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insert the sum

Pt +Pr = e,vp[i(kxx +  ky-y +A^z-cor)] + R e x p[ i ( - k xx + k y y + k zz —oat)] (4.14) 

of incident and reflected plane wave amplitudes into the one-way wave equation (4.12), and then

solve for / ? . 1 2  This calculation is normally carried out assuming that cph=arfc is equal to the

speed c appearing in the wave equation, which is incorrect for discrete schemes. This approach 

therefore describes absorption by equation (4.12) in the absence of discretization error.

A more realistic procedure is the following. First derive the dispersion relation for the 

discrete scheme by plugging a plane wave solution [equation (4.3)] into the discretization equa­

tion (4.13), and solve for the phase velocity cph , 13 Next, insert the usual sum of incident and 

reflected amplitudes [equation (4.14)] into wave equation (4.12), and solve for R (k) by substitut­

ing the discrete scheme’s cph into the expression for R wherever u/k occurs. The amplitude 

reflection coefficient for our third-order ABC that results from this procedure is:

noh cos0  + b 2n l  cos0  sin2 0  -  an -  a 2n~h sin2 0  
*(k) = -2=------------ --------------- --------2 t-E l  (4.15)

nph cos0  + b 1nph cos0  sin 0  + aQ + a 2nph sin 0  

where 0  is the (polar) angle of plane wave incidence on the boundary (0 = 0  at normal incidence; 

see Figure 4.4), and nph= nph (k)= c/cph (k) is an effective index of refraction for the discretization 

scheme. A weak dependence on the azimuthal angle 0 enters through nph.

Figure 4.5 plots R(Q) [equation (4.15) with <J>=0] using Pad6  coefficients for X=10 grid 

increments as well as R(Q) assuming nph= 1 (zero discretization error) as ordinarily presented in 

the literature. 1 4  Several aspects of this plot deserve notice. First, the curve for R which includes 

discretization error actually increases beyond R=l for angles of incidence between about 8 8  and

12 See. for example, Moore et al. (1988).
13 This may involve numerical solution of an implicit equation for c^  with high order boundary schemes.
14 Cf. Moore et al. (1988), equation (39) and Figure 3, pl802-1803, and Renaut (1992), Figure lb, p239-
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Figure 4.4. Angles of plane wave incidence on a grid boundary.
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Figure 4.5. Amplitude reflection coefficients as functions o f the incident angle 0. Solid curve is R (0) for 
the third-order Halpem and Trefethen ABC scheme using Pade coefficients for k=I0 grid increments and 
0=0. Dashed curve is R (0) assuming nph = I (zero discretization error).
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90 degrees. This indicates an instability in the performance of the ABC at high angles not 

apparent from the standard analysis. Although this instability does not ordinarily appear to cause 

difficulties, and there is an easy way to circumvent the problem (see next paragraph), it should 

not be dismissed as trivial. Second, we note that R appears to have a root (total absorption) at an 

angle of approximately 48.9 degrees. Finally, we note the importance of taking the discretization 

scheme into account in order to obtain realistic practical estimates for R . The real ABC perfor­

mance is well described by the solid curve in Figure 4.5. For example, at X=10 grid increments, 

the selected ABC scheme does cause less than 5 percent reflection out to ±75 degrees. This is 

confirmed by examining the amplitude of the spatial interference patterns caused by boundary 

reflections. As a function of wavelength, R varies with the inverse square of X.

It is worth mentioning two more tricks that help cut unwanted reflections from grid boun­

daries. First, slightly lowering the numerical velocity input to the ABC algorithms causes a 

refractive decrease in the angles of incidence on the boundary. This lowers the maximum angle 

of incidence below the unstable region, and, because ABC’s generally perform better at lower 

incidence angles, slightly improves ABC performance. Another means of reducing boundary 

reflections is to apply mild attenuation along the grid boundaries. 1 5  Although rarely necessary, 

attenuation was occasionally applied in combination with the above ABC scheme to improve 

overall boundary absorption.

Parenthetically, boundary reflections are not always detrimental to the purposes of our 

simulations. The nearly perfect reflectance of the ABC’s at high angles of incidence implies that

1S Attenuation applied directly over the ABC scheme described here actually creates an instability. This 
problem is easily avoided by applying the attenuation near but not directly over the grid edges. Reflection 
from attenuating boundaries can be minimized by keeping it mild and graduating the effect into the boundary.
Adding noise to the attenuation coefficients can also help reduce coherent (Bragg) diffraction from regions of 
layered attenuation.
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the grid can function as a waveguide. This means that certain wavefunctions can propagate 

almost without diffraction across the grid when properly oriented. Although a tradeoff with equal 

illumination occurs, we will use this behavior to eliminate the near-field interference of the 

source of the returning echoes in the inverse simulations.

Design of Simulation Grids

For readers interested in applying the same methodology elsewhere, we briefly discuss grid 

design in the simulations undertaken here. Most (but not all) of this information is well known to 

seismologists and other specialists is FD wave propagation techniques. Although additional con­

straints exist, the setup of the grid in any particular simulation is closely analogous to the way 

that one might arrange an anechoic chamber for real acoustical measurements. Elementary prin­

ciples are applied in both cases to optimize the measurement of interest.

In single frequency simulations, we usually generate a steady-state response to the source 

wave. The time required to build up a steady-state response depends on the performance of the 

ABC’s — the better the boundary absorption, the shorter the required run-time. A general rule- 

of-thumb for estimating the required steady-state run-time is to allow the wave energy to pro­

pagate three times across the longest (diagonal) distance of the grid. With the selected ABC’s, it 

is the author’s experience that a steady-state response is usually achieved within two crossings of 

the longest diagonal.

Where possible, one can attempt to time-gate the pressure records at receiver points so that 

reflections from the walls do not have time to occur (a common practice in real reverberant 

environments). However, with the limited size of 3-D grids, time-gating is often impossible. The 

effects of boundary reflections on the far-field extrapolation errors discussed in the next chapter is 

an important issue. Tests of the extrapolation results as the surface data evolves from time-gated
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to initial boundary interaction to the steady state show that the lowest errors are always achieved 

by time-gating the data records at the extrapolation surface. Errors rise with the initial boundary 

interactions, but then decrease again to nearly the time-gated levels as the steady-state is 

approached.

The accurate simulation of sources is a topic of some importance here. Discrete modeling 

of an extended source generally breaks down in the immediate vicinity of the source. Instead of 

trying to model propagation at small scales with the standard algorithms, it is often better to sub­

stitute a small analytic source region immediately surrounding the source. Assuming the simu­

lated field is real-valued, this can be done as follows. First, calculate the complex spatial ampli­

tudes of grid points surrounding the source structure; next, multiply the complex amplitudes by 

e ,<ot; finally, use the real part of this product to time-step the nearby points. This technique 

prevents difficulties associated with the simulation of small and/or phased source structures on 

the discrete grid.

The extrapolation procedure (see next chapter) is sensitive to errors in both amplitude and 

phase of the pressure and its normal derivative. Note that two separate sources of error enter 

from the FD simulation programs: 1 6  the propagation algorithm causes dispersion errors; and the 

algorithm used to compute the normal derivative at the extrapolation surface introduces errors. In 

this chapter we have already discussed the mild dispersion characteristics of the fourth-order pro­

pagation algorithm. Maximum phase errors caused by dispersion in a given simulation can be 

estimated from the angular dependance of the phase velocity (as in Figure 4.2a) and the max­

imum distances from the simulated source to the grid points at which data is to be extracted.

16 All FD simulation errors combined, however, contribute a maximum of only about 20 percent to the er­
rors in the extrapolated results of the mathematical patterns tested in Chapter 5.
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The accuracy of the normal derivative algorithm in the FD simulation programs is quite 

crucial. It is difficult to design a normal derivative scheme that is accurate for nearby sources of 

all types: plane, cylindrical, and spherical. The author found that a superior procedure for com­

puting the derivative is to keep a (complex) three-deep array over each face of the extrapolation 

surface, and to compute in-place Fourier transforms of the records at these points. The normal 

derivative may then be accurately computed in terms of centered second-order normal derivatives 

of the complex magnitude and phase using the transformed values at the surface and adjacent 

points. Tests of the extrapolation procedure presented in Chapter 5 demonstrate that this deriva­

tive scheme is sufficiently accurate to permit placement of the extrapolation surface 3 grid points 

away from the inhomogeneous tissue/source modeling region of the grid — which significantly 

reduces the required dimensions of the extrapolation surface and the FD grid.

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

Numerical Simulation o f  Sound Propagation — Part II 

Chapter 5. Boundary Integral Extrapolation Methods

In order to investigate biosonar signal emission from the foreheads of dolphins, it is neces­

sary to simulate the acoustic far-held for various models of tissue and source configurations. 

However, as discussed in the last chapter, the dimensions of finite difference (FD) spatial lattices 

are severely restricted by computer memory limitations. In three dimensions (3-D), this restric­

tion limits the spatial extent of the (1.5mm cubic) grids utilized here to the acoustic near-held 

over the range of wavelengths of interest. One of the most elegant and accurate solutions to this 

problem utilizes the mathematical relationship between the acoustic held on a surface immedi­

ately surrounding a source region and the pressure at other spatial locations. In one sense, this is 

analogous to reconstructing a 3-D holographic image from the interference held on a 2-D photo­

graphic plane. To be precise, we can sum the contributions of infinitesimal surface elements to 

the held at any particular point in space. It is the homogeneous nature of the surrounding (seawa­

ter) medium that allows us to perform this ‘boundary extrapolation’ of the held, thus reducing the 

dimensionality of our problem from 3-D to 2-D. The equation describing this relationship, the 

Helmholtz integral equation, was derived in Chapter 3. In this chapter, we shall discuss relevant 

aspects of the application of the Helmholtz integral equation to our bioacoustic problem, provide 

some examples of extrapolated far-held patterns, and then demonstrate the accuracy of the 

selected numerical method of solution.

The Helmholtz Integral Equation

The Helmholtz integral equation relates the pressure p  and the normal derivative of the 

pressure dp/dn over a surface S surrounding an arbitrary distribution of sources to the pressure
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S

Figure 5.1. Diagram o f the geometry assumed by the Helmholtz integral equation (5.1). For our applica­
tion, field points R are assumed to lie in the sourceless homogeneous region exterior to the extrapolation 
surface S which encloses an arbitrarily complex and/or inhomogeneous source volume. Note we have 
defined the vector connecting the field and surface points to be r= a-R , and the unit normal vector to sur­
fa c e s  to ben.

p (R) at any field point R. For points R lying exterior to the source volume enclosed by surface S 

(see Figure 5.1), the Helmholtz integral equation has the form: 1

p (  R) = - 1 j p  (q) -9~G"  ~ G (q,R) j  dS (g) (5.1)

Here o  defines the vector coordinates of surface S , while d/dn = n * V denotes the directional 

derivative along the outward pointing unit vector n normal to surface 5 . We have also used the 

notation G(c,R) for the 3-D free-space Green’s function,

i*|o-R | g ikr
=  5 7 = - T " ’ r  = <y- R - (5-2)4 j t |a - R |  4ttr

Here k=ta/c  is the acoustic wavenumber, where co is the angular frequency of the field, and c is 

the (constant) speed of sound propagation at surface S and in the medium external to 5 . 2

1 This equation has a slightly different form for points lying on. or interior to, surface S . See the deriva­
tion provided in Chapter 3.

2 No assumptions are made about the distribution of sound sources, speeds, or other properties of materi­
als inside surface S. This source region may be arbitrarily complex. The medium external to 5, however, is
assumed to be infinite, homogeneous, and sourceless.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

The Helmholtz integral equation can be applied to a wide range of 2-D and 3-D wave 

phenomena including diffraction by arbitrarily complex apertures, calculation of the held scat­

tered ftom complex objects, and calculation of the field emitted by a complex source. Indeed, an 

extensive literature has developed on methods for numerical solution of equation (5.1) with appli­

cations to acoustical problems. 3  In this chapter, we shall only discuss the application of the 

Helmholtz integral equation to the last of the aforementioned phenomena, namely to calculate the 

patterns of sound emitted by various 3-D models of delphinid forehead tissues and biosonar sig­

nal source locations.

One property of equation (5.1) that is highly propitious for our application is that waves 

incident on surface 5 from all sources exterior to 5 contribute nothing to the far-field integral for 

the internal sources. That is, the Helmholtz integral equation integrates to zero for all exterior 

source fields. 4  This means that imperfect absorption at the grid boundaries generally does not 

cause problems as long as a steady-state solution has been reached over the extrapolation sur­

face. 5

; It is worth emphasizing that we need both the pressure and the normal derivative of the

! pressure over the surface of extrapolation in order to evaluate equation (5.1). These two fields are
ti
| ----------------------

3 Sec, for example, Baker and Copson (1950), Copley (1967, 1968), Schenck (1968), Tobocman (1984),
Seybert et al. (1985), Junger and Feit (1986), Seybert and Rengarajan (1987), Cunefare et al. (1989), and 
Hwang and Chang (1991). As a theoretical aside, note equation (5.1) may also be used to compute the time 
domain solution given time varying surface data by incorporating the retarded time into the Green’s function.

j Indeed, this suggests using a delta function source signal in order to obtain the response over all frequencies
{ simultaneously. Although this theoretically attractive approach was utilized in a 2-D scattering study (Shaw
j 1974). computer memory limitations in large scale 3-D simulations prohibit storage of time domain surface

data (or its full Fourier transform).
4 The integrand of equation (5.1) is clearly zero if we insert a spherical wave solution originating from the 

field point R for the pressure since the pressure p(a) is then proportional to the Green’s function G(a.R) 
everywhere.

5 Note, however, that program run-times required to build up the steady-state solution depend on the per­
formance of the absorbing boundary conditions (ABC’s). In addition, scattering by our tissue models of the 
energy from the 'virtual' sources behind the slightly reflective boundaries of the grid can affect our results.
Hence ABC efficiency remains important.
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not independent, and much of the literature on surface extrapolation methods has focused on the 

difficulties encountered when only one of these fields is known (a common predicament). How­

ever, in our application we obtain both fields from FD simulation of the tissue and source models, 

as discussed in the previous chapter. We therefore do not encounter the difficulties associated 

with non-unique surface solutions at eigenfrequencies of the interior problem which have plagued 

many previous formulations. 6

Far-Field Formulation of the Helmholtz Integral Equation

Because we are concerned only with calculation of the far-field pressure (to be compared 

with far-field measurements with live animals), we now develop a form of equation (5.1) valid for 

R »  c. Writing equation (5.1) out explicitly, we have:

p(R) = j>

*

, , 3 eikr dp (a)
4rcr 4nr dn

dS(a) (5.3)

Performing the usual expansion of r = a - R  in terms of or and R, we find:

r2 = a2 + R 2 -  2R -ct = R 2 

Hence, for R »  o, we have the approximation

1 -

2 R -q
R 2

r ~ R 1 -
R*q
R 2

= R -  R*o (5.4)

where R=R/R defines the unit vector in the direction of the far-field point. We now apply this 

result to obtain the following set of approximations:

6 See, for example, the discussions on uniqueness in Schenck (1967), Seybert and Rengarajan (1987), 
Cunefare et al. (1989), Hwang and Chang (1991), and Jia era/. (1993).
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Akr „ikRe—  e-itR-a
R (5.5)

and

d_
dn

e ikr
-

d_ = r  * n Mr dn dr r r

-ikr  . ikR
- —  = - ik  R*n (5.6)

We have also used the approximation d r /d n = r  • n = -  R * n here. Substituting equations 

(5.5)&(5.6) into equation (5.3), we thereby obtain:

p i R) =
-  e ikR

4ftR
j> |t£ R * n p (a ) + 1( ,-ik R-a dS(a) (5.7)
H  dn J

The factor in parentheses multiplying the integral is merely an overall phase and/or amplitude

factor. Because we are only concerned with relative phase and amplitude, we shall drop this fac­

tor and consider the result proportional to the far-field pressure:

&  =  r  i  =  i k R ’ a p (<j) +
-  e ikR

4kR

dp (a)  I -ikH't 
dn \ e

dS(a) (5.8)

Equation (5.8) serves as the starting point for many formulations of far-field diffraction and 

scattering. It also helps us resolve some puzzling theoretical aspects of wave propagation. 7

7 For example, it can easily be demonstrated from equation (5.8) that Huygens wavelets do not contribute 
to field points in a direction opposite to their propagation vector. Consider the effect of the ‘Huygens 
wavelet’ of form p(r)=poexp(ikT) incident on infinitesimal area dS of the extrapolation surface from the 
interior volume. Let dS have outward normal n. Then dp/dn = n*Vp(r) = ik*np(r), and equation (5.8) 
(retaining the negative sign) tells us that the contribution from the ‘wavelet’ at dS to the far-field pressure 
p# (R)is:

4[pf (R)l = -(ik R 'n  + i k*n) p(a) e~**'a dS = -ifc(R + k ) -n p (o )e 'tf* '<’ t£S

The directional (or ’obliquity*) factor (R+k)*n varies from a value of 2 when the far-field direction R and 
the propagation direction k are aligned with n, to a value of 0 when R points opposite to k. That is, the 
wavefront at surface element dS contributes nothing to field points lying in a direction opposite to k. Hu­
ygens wavelets therefore do not sum in the direction opposite their propagation. Additionally, the factor - t 
indicates that Huygens wavelets are re-radiated with a phase advance of 90 degrees.
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Details of the Far-Field Integral Calculation

In order to clarify our application of equation (5.8), we now specialize this integral to the 

+z-face of the rectangular boxes used as extrapolation surfaces in this project. On this face, the 

outward unit normal vector is simply n=z. The orthogonal coordinates are x and y , so we may 

take <y=(x,y ,z +), where z+ is the z-coordinate of the +z-face. In terms of the spherical angles 0 

and <J>, the components of the far-field unit direction vector R are:

A
R = (sin0cos<(>, sin0sin<|>, cos0)

Therefore, on this face, we also have:

k R * n = k cos 0 = k, and k R*a = k^x +kyy +kzz+

where the wave vector k=(kx,ky,kz ) is assumed to be oriented in the direction R.

Using the above information, the +z-face portion of the surface integral [equation (5.8)] 

becomes a 2-D Fourier transform (multiplied by a phase factor) of the bracketed quantity inside 

the following integral:

Pff(M-)+z-face = « j j j  &z P( x , y )  +
* y

dp_
dn

(X , y ) Ye - ,lk‘x+k'y]dxdy (5.9)

This 2-D transform is the standard far-field diffraction result for an aperture lying in the z= z+ 

plane. 8  The integral is to be computed over all elements of the +z-face. Similar integrals must be 

computed over the other faces of the extrapolation surface, and the results summed together. In 

effect, each face of the rectangular extrapolation surface constitutes an aperture radiating its own

8 For the case of an infinitely baffled aperture lying in the z = plane, equation (5.9) can be simplified
further by choosing a different Green’s function [not equation (5.2)] that satisfies either Dirichlet or Neumann 
boundary conditions in the aperture plane. Either the pressure or the normal derivative then drops out of the 
integral in equation (5.9). This approach, however, cannot be used for multiple non-coplanar (and unbaffled) 
apertures.
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far-field diffraction pattern.

Now consider ways of numerically computing equation (5.9). The values of both the pres­

sure p  and the normal derivative of pressure dp/dn at the square mesh of points defining each 

face of the extrapolation ‘box’ surface are calculated by the first-stage FD simulation programs. 

At first glance, it would seem that equation (5.9) can be most efficiently computed by using fast 

Fourier transform (FFT) methods. However, this 2-D Fourier transform remains a function of L,. 

Hence we would need to compute multiple FFT’s to span the range of possible values of or 

essentially a 3-D FFT. Likewise, the FFT ’s for the other faces would also be 3-D transforms. 9  

The efficiency of 2-D FFTs is therefore not attainable in this application. Also, FFT’s computed 

for functions on a discrete spatial lattice generate exact results only at the wavevector com­

ponents of the reciprocal lattice. However, it is necessary to be able to compute the integral for 

arbitrary orientations of the wavevector. For these reasons, it was decided not to utilize FFT’s.

Another way of computing equation (5.9) is to simply pull p and dp/dn outside of the 

integral. The integration then becomes a simple sum over the suface elements of the values of p  

and dp/dn (assumed constant over each element) multiplying the remaining integrals (which are 

easily computable in closed form for the flat, square elements used here). The assumption of con­

stant pressure and derivative values for each element was commonly made up until quite 

recently, 1 0  although it merely constitutes the zeroth order approximation. Unfortunately, this 

approach produces unacceptably large error magnitudes within the range of wavelengths required 

for our application.

9 One could sum the resulting 3-D FFTs together, and then search the transform space over the spherical 
(or ellipsoidal) surface of appropriate wavevectors. However, different surface edge-lengths (transform 
lengths) and wavevector magnitudes would make this search procedure difficult to generalize.

10 See, for example, the CHIEF and CHIEF88 extrapolation and scattering packages first developed for 
sonar applications discussed in Schenck (1967).
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A more accurate way of performing the integration is to model the values of p  and dp/dn

high-order approximation to the integral over each surface element. The method selected for the 

present simulations was to model the pressure and pressure derivative data with bicubic polyno­

mials over each face of the extrapolation surface. By construction, the bicubic interpolating poly­

nomials have continuous zeroth, first, and second derivatives, but no cross terms.

For example, say we are modeling the pressure over each element of the +z-face of the 

extrapolation surface. Since the orthogonal coordinates over this face are x  and y , the pressure p 

is modeled over the m th element using the bicubic form1 2

The pressure and the normal derivative are actually complex quantities, so the real and imaginary 

parts of each are modeled separately. The coefficients a, , b, for each element can be computed 

using standard bicubic interpolation routines. Plugging these bicubic expressions for the pressure 

and the normal derivative into equation (5.9), the integral over each element of the surface can 

now be computed to third order in closed form. While computationally intensive, this technique 

produces consistent and accurate results within a broad range of simulation parameters, as we

11 This approach is equivalent to what is commonly referred to as the technique of ‘isoparametric ele­
ments’. See, for example, Lachat and Watson (1976), Rizzo and Shippy (1977), or Seybert et al. (1985).

12 Bicubic natural splines were selected simply for convenience and computational efficiency. As the er­
ror analysis will demonstrate, the absence of cross terms does not cause problems. The cubic terms may 
compensate somewhat for the lack of rotational symmetry of the bicubic form. A generalized quadratic form 
with one (x-y) cross term may perform as well if not better, and would reduce the number of coefficients by 
one.
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Likewise, the normal pressure derivative dp/dn is modeled as
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shall demonstrate.

Before presenting some examples of computed far-field patterns, it is worth discussing cer­

tain computational details. First, most interpolation techniques perform better inside the data 

domain — that is, away from the edge-data where derivative information is least accurate. The 

use of ‘natural’ bicubic splines causes interpolation errors to increase around the perimeters of the 

faces of the extrapolation surface. This problem is easily remedied, however, by storing an extra 

row of data around the faces in the FD simulation programs. It can be shown that natural bicubic 

splining of the slightly enlarged dataset gives excellent results within the original domain of the 

face data.

Second, depending on the geometrical shape of the extrapolation surface and how the 

integral summations are structured, various symmetries can be exploited to reduce the amount of 

required computation. In the programs written for the present application, a factor of two 

speedup was obtained by simulataneously computing the integral for the component of the 

wavevector reflected about the face of the surface being extrapolated.

Finally, evaluation of the extrapolation integral requires double precision (64 bit) arithmetic 

because of the division by the fourth power of the wave vector components that results from 

inserting the bicubic forms of the interpolated data [equations (5.10) and (5.11)] into equation 

(5.9). This also means that far-field directions having vanishing wave vector components cannot 

be computed. This problem is easily avoided, however, by introducing small offsets whenever k 

lies in an axis plane.

Examples of Extrapolated Far-field Emission Patterns

In order to familiarize readers with the results of the extrapolation process, Figures 5.2 and 

5.3 illustrate far-field emission patterns computed for two simple source configurations. Figure
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Figure 5.2. Plot of the computed far-field emission pattern of a square (unphased) transducer of side- 
length 2.0X. The normalized far-field intensity is plotted for 7200 directions in spherical polar projection.
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Figure 5.3. Plot of the computed far-field intensity pattern emitted by four coherent point sources in a 
square configuration. The normalized far-field intensity is plotted for 7200 directions in spherical polar 
projection.
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Figures 5.4a-b. Alternate representations of the transducer emission data in Figure 5.2. Figure 5.4a 
(upper) is a perspective view of a global mapping of the data with height indicating intensity, while Figure 
5.4b (lower) is a contour plot of the same data projected down into the plane of the global map. (See Fig­
ure 5.6 for explanation of the global equal-area mapping o f emission directions used here).
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Figures 5.5a-b. Alternate representations of the square configuration point source emission data in Figure 
5.3. Figure 5.5a (upper) is a perspective view of a global mapping o f the data with height indicating inten­
sity, while Figure 5.5b (lower) is a contour plot of the same data projected down into the plane of the glo­
bal map. (See Figure 5.6 for explanation of the global equal-area mapping of emission directions used 
here).
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Figure 5.6. Diagram explaining the azimuthal equal-area global mapping of emission angles used in Fig­
ures 5.4a-b and 5.5a-b, and in the biosonar emission pattern results o f Chapter 7. Note that the viewer 
orientation here is looking back at the emitter (center map) from a position forward of the emitter. Note 
also that vertical angle 0 and horizontal angle 0 are both defined to be zero in the forward (center map) 
emission direction.

5.2 plots the far-field intensity pattern produced by a square (unphased) transducer of side-length 

2.0k (transducer lying in the x=0 plane, X= 1 0  grid increments). The 20x40x40 surface pressure 

and normal derivative data was generated by FD simulation and then input to the extrapolation 

program. The (normalized) squared magnitude of the far-field pressure computed for 7200 direc­

tions was plotted in spherical polar projection to create the diagram. Similarly, Figure 5.3 plots 

the far-field intensity pattern emitted by four coherent point sources in a square configuration 

(sources in the x=0 plane, separations Sy=Sz=.9X, )U=10 grid increments). The basic idea is that 

far-field patterns can be computed for virtually any configuration of sources and/or materials that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



can be accurately modeled on the FD simulation grid. We shall see below that the errors for 

these computed patterns are quite small.

Although 3-D polar plots of emission data are dramatic, they do not permit rapid examina­

tion of the pattern over all spherical angles. For this reason, we now illustrate two additional 

ways of visualizing the emission data that will be utilized in Chapter 7. Both of these alternate 

representations make use of an azimuthal equal-area global mapping of the emission directions 

(please see explanation in Figure 5.6). Figure 5.4a is a perspective view of a global mapping of 

the same data in Figure 5.2 with height indicating intensity, while Figure 5.4b is a contour plot of 

this same data projected down into the plane of the global map. Similarly, Figure 5.5a plots 

intensity as height in a global mapping of the data in Figure 5.3, while Figure 5.5b contours the 

same data projected onto the global map. Once understood, these alternate representations pro­

vide an excellent means for rapid examination of the far-field data over all angles of emission.

Analysis of the Extrapolation Procedure Errors

Errors can enter the extrapolation results at four different levels. First, the tissue and source 

model may be inaccurate or incomplete (see discussion of models in Chapter 6 ). Second, the 

first-stage FD simulations contribute errors, either from grid dispersion or incomplete boundary 

absorption (see discussion in Chapter 4 and below). Third, the discrete scheme used to calculate 

the normal derivative at the extrapolation surface in the FD simulation programs contributes 

errors (discussed in Chapter 4 and below). Finally, the numerical extrapolation procedure gen­

erates errors. We now quantify this final source of errors as well as the errors introduced by FD 

simulation and the discrete normal derivative.

The accuracy of the selected method of extrapolation can be demonstrated by examining the 

difference between mathematically calculated patterns for simple source configurations and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

numerically extrapolated versions. In order to define performance measures here, let us assume 

that the mathematical far-field distribution (normalized to unity maximum amplitude) has the 

spherical angular form p o(0 , <(>) while the computed version is pff  (0 ,, 0 ,) calculated for the / = 1 JV 

far-field directions (0 ,, 0 ,-).

An important ‘global’ measure of the accuracy of the computed pressure is the integrated 

root mean square error in pressure magnitude , given by

E rms =

it 2  it

4 "  j  J  \}As M 0’*)! -  Ipoce,<t»l
8=0 0=0

sin0  dQdfy

1/2

^  f
X  I Aff Pff (Qi ’ ) I -  IP 0 (9 / .<{>/) I I ~sin0 , 50,- 50, 
/=!L J

N

X  sin0, 50, 50,
/= !

1/2

(5 .12)

The discrete sum form of E is a very good estimate of the average error per unit solid angle 

provided that the density of computed far-field directions samples the mathematical distribution 

well. An arbitrary (real) constant Aff has been included in front of the computed pressure 

p^r(0,0) in equation (5.12) because pf f {R) in equation (5.8) is merely proportional to the desired 

pressure. To construct the best match between the mathematical and computed distributions, we 

determine Aff using least-squares error minimization. is minimized by choosing

i t  2 i c

J  |  |p^(0,0)po(9,0)l 2 sin0 </0 d 0

Aff - 8=0 0=0
i t  2 i t

8=0 0=0
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n
X  |Pflr(8,*.0f)Po(0f.0/)l sinG,- 50, 50,-

=   (5.13)
X |p# (0 ,-,0 , ) | 2 sin0 ,- 50,- 50,.
1=1

A second measure of the accuracy of the computed pressure is simply the maximum error 

in magnitude between the calculated and computed distributions, or

Emax = Max,_ IJV \Aff — lpo(0 , ,0 , ) l '
1/2

(5.14)

For computed patterns that are directional (peaked in some direction), another performance 

measure is the error in the angular positioning of the maxima. This error is important in assess­

ing the significance of the angular beam peak data in the forward simulations. We shall label this 

error E ^ u , and define it to be the angular deviation (in degrees) between the directions of the 

maxima of the computed and the mathematical distributions.

As a final measure of the accuracy of the computed directional distributions, we will 

include both the computed and the theoretical directivity indexes. The directivity index Dl 

characterizes the intensity of any particular maximum in the pattern relative to the total emitted 

power. Let the maximum of an emitted far-field pressure distribution p (0 , 0 ) be . Then Dl 

is defined to be

x 2 it

Dl = —10 Log |o L  f f | £ « L « !
4rt £ > £ ,1  Pmcx ■

(5.15)

As with the definition of E^ , we may substitute a discrete summation for the integral provided 

our computed distribution samples the emitted field ‘well’. Our results will demonstrate, how­

ever, that it is not necessary to sample the emitted distributions extremely finely to obtain accu­

rate data here. As long as the peak emitted pressure is accurately determined, the discrete version
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of equation (5.15) gives remarkably close estimates of Dl even for rather sparsely sampled distri­

butions.

Errors in Point Source Patterns

First consider the computed patterns of point sources. In this case, errors represent devia­

tions from the expected isotropic distribution. The behavior of these errors as a function of 

wavelength, of the location of the source point within the volume enclosed by the extrapolation 

surface, and of the dimensions of the extrapolation surfaces is critical to this investigation. Fig­

ure 5.7 plots both and as a function of wavelength for a point source located at the 

center of a 20x20x20 extrapolation surface. The surface data was generated by FD simulation 

and then extrapolated for N =1800 far-field directions. Note that both and decrease 

with approximately the inverse square of the wavelength. Note also that the average or ‘global’ 

error E ^  rises to only about 1 percent at a wavelength of 10 grid increments. The maximum 

local error Emax appears to remain larger than £ TO by roughly the same ratio for all wavelengths. 

This maximum error usually lies along one of the ‘fast’ (1,1,1 or equivalent) lattice directions, 

and we therefore expect better accuracy for forward biosonar beam results. Although one can 

reasonably argue that the errors for wavelengths smaller than 1 0  grid increments would still per­

mit significant quantitative investigation, it was decided to limit the use of the extrapolation pro­

cedure to wavelengths equal to or greater than 10 grid increments. A secondary reason for 

imposing this lower wavelength limit was that the single-frequency emission patterns generated 

here become sharply peaked with multiple interference lobes at higher frequencies, making the 

patterns more difficult to characterize.

Next consider the dependence of the point source errors on the location of the source within 

the volume enclosed by the extrapolation surface. Figure 5.8 plots E ^  and E ^  as functions of
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Figure 5.7. Plot o f the integrated root mean square error and the maximum error Emax 
of wavelength for a point source located at the center o f a 20x20x20 extrapolation surface.
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Figure 5.8. Plot o f and £„„,. as functions of the displacement (in unit grid cell diagonals) of the point 
source from the center o f a 20x20x20 extrapolation box along the box diagonal for \= 1 0  grid increments. 
(The last data point is one grid increment from the comer of the extrapolation box). Also plotted are Erms 
and Emax (curves labelled AErms and AEmax) for ̂  same source displacements and extrapolation box size, 
but inputing analytic data to the extrapolation program instead of simulated data.
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the displacement of the source from the center of a 2 0 x2 0 x2 0  extrapolation box along the box 

diagonal for X=10 grid increments. It is significant that neither nor increases sharply 

until the source is within 3 grid increments of the extrapolation surface (the surface is at a dis­

placement of 10 grid unit cell diagonals from the box center along any box diagonal). These 

errors also decrease with approximately the inverse square of the wavelength, as in the previous 

figure. Also plotted in Figure 5.8 are E ^  and E ^  (curves labelled A E ^  and A E ^ )  for the 

same source displacements and extrapolation box size, but inputing analytic point source surface 

data to the extrapolation program instead of simulated data. Note that, up until the source is 

within 3 grid increments of the extrapolation surface, all simulation errors combined (which 

include both FD propagation and the discrete normal derivative errors) increase E ^  and E ^  by 

a maximum of only about 20 percent over the analytic errors. This means that both the FD simu­

lation and the normal derivative schemes are quite adaquate, and justifies locating the extrapola­

tion surface only 3 points outside of the inhomogeneous modeling region of the grid.

Next we plot the dependence of E ^  and E ^  on the side-lengths of cubic extrapolation 

surfaces in Figure 5.9 for centered point sources and X=10 grid increments. Note that E ^  

increases very slowly with extrapolation box size while E ^  quickly reaches a maximum and 

appears to become independent of (or even decrease with) box size. The same behavior occurs 

with non-cubic boxes. Again, by inputing analytic point source surface data into the extrapola­

tion program instead of FD simulation data, it can be shown that all FD simulation errors contri­

bute only about 10 percent of these centered-source E ^  and E ^  errors at all box sizes. In 

addition, as long as double precision (64 bit) arithmetic is used in evaluating the surface integral, 

numerical error does not appear to alter the results within the range of extrapolation surface 

dimensions used in this study.
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Figure 5.9. Plot o f the dependence of and on the side-lengths of cubic extrapolation surfaces for
centered point sources and k=I0 grid increments.
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Figure 5.10. Emission pattern (height indicates intensity) of the flat square transducer of side-length 3.0X 
used to study angular extrapolation errors. In this case, the source was unphased (main beam steered into 
the forward direction).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

Errors in Directional Source Patterns

Let us now consider errors for directional source patterns. For the far-field pattern of the 2- 

lambda square transducer shown in Figure 5.2, the global and local errors were =.00090 and 

Emax--00296. For the pattern of four point sources in a square configuration shown in Figure 5.4, 

the global and local errors were =.00953 and £'mai=.02119. Figure 5.11 tabulates and 

Emax for the computed patterns of a phased 3-lambda square transducer (used below for angular 

tests). Like the single point source pattern errors discussed above, these small error magnitudes 

depend mildly on box size and on source positioning within the extrapolation surfaces, while 

decreasing sharply with wavelength.

Finally, we inspect the angular errors for highly directional source patterns. For these tests 

we shall utilize a 3-lambda square transducer at X=10 grid increments emitting into a half-space 

(transducer mounted on a semi-infinite rear baffle). Phasing the source allows us to steer the 

main lobe in any direction we choose. We then study angular pattern errors by comparing the 

direction of the extrapolated pattern maximum to the mathematically expected direction. Figure 

5.10 illustrates the sharply peaked far-field pattern for this source when unphased (main lobe in 

the forward direction). The density of far-field points computed here corresponds to 3 degree 

separations in latitude and longitude between sample points (7200 points total).

Figure 5.11 tabulates the results of the angular tests for seven directions of source phasing. 

Listed in the table are the vertical and horizontal angles (0o, <l>o) into which the beam was steered 

(angle definitions in Figure 5.6), the error E^gie (in degrees) in the direction of the computed 

maximum, the global and local errors (£TO and Emax) for the distributions, and the computed and 

theoretical directivity indexes DIcomp and DItheory for the main lobes of the patterns. As these 

results demonstrate, the accuracy of the extrapolation program’s peak localization routine is quite
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Directional Pattern Errors : 3-Lambda Square Transducer

(degrees)
E angle 

(degrees) ^ rm s E m ax D Icom p D Itheory

0 , 0 .0059 .00046 .00176 17.57 17.565
0,27 . 1 2 0 1 .00106 .00586 16.96 16.956
27,0 .1158 .00107 .00605 16.96 16.956
27,27 .0868 .00147 .00689 16.59 16.554
0,45 .1420 .00142 .00771 16.02 16.010
45,0 .1382 .00142 .00787 16.02 16.010
45,45 .3471 .00199 .01266 14.91 14.800

Figure 5.11. Tabulated angular error results for seven directions o f source phasing of a 3-lambda square 
transducer. Listed are the vertical and horizontal angles (0o, into which the beam was steered, the error 
Engle in the direction of the computed maximum of the distribution, the global and local errors ( E ^  and 
Emu) for the patterns, and the computed and theoretical directivity indexes DIcomp and DItheory for the 
main lobes of the patterns.

good. 1 3  The maximum angular positional error varies approximately linearly with the density of 

far-field sampling, and increases somewhat as the beam moves away from the global equator. 

However, even in the polar directions (upwards and downwards), Eangle only increases to a mag­

nitude of approximately 1 degree. In addition, these results demonstrate excellent characteriza­

tion of main lobe directivity. Finally, we note that both global and local errors (£TO and E ^ )  

remain small even for such sharply peaked distributions.

The magnitude of the errors exhibited in these tests demonstrate a level of accuracy for the 

extrapolation process that is quite sufficient for the purposes of this investigation. The combined 

accuracy and efficiency of FD simulation used in conjunction with the boundary extrapolation 

techniques discussed in this chapter permit us to conduct highly realistic 3-D modeling of the 

acoustical roles of the dolphin’s forehead and lower jaw tissues in the chapters ahead.

13 Peaks are localized by computing a finer grid o f  far-field directions around the maximum direction of  
the primary sampling grid. Bicubic splitting of the data on this finer grid permits application of a simple 
zero-gradient search routine.
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Chapter 6. Acoustic Modeling of Delphinid Tissues from X-Ray CT Data

In the last two chapters we have demonstrated the small error magnitudes of the numerical 

techniques for simulation of sound propagation utilized in this study. The validity of the results 

of these simulations therefore depends mainly on the accuracy and appropriateness of the tissue 

models employed. In this chapter, it will be demonstrated that remarkably accurate acoustical 

models of the density and velocity of mammalian (including delphinid) tissues can be constructed 

from x-ray computed tomographic (CT) data. Much of this information is new and will be of 

quite general interest to researchers in bioacoustic or ultrasonic tissue modeling. We now discuss 

several aspects of the models utilized in this study including: choice of delphinid species; the 

nature of x-ray CT data and model construction using this data; acoustic characteristics of biolog­

ical tissue; soft tissue and bone density and velocity mappings from CT data; and modeling of the 

dolphin’s air sacs.

Choice of Delphinid Species

While the techniques presented here are directly applicable to all x-ray CT scanned species 

of odontocetes, available funding and time restricted the current investigation to a single species. 

The common dolphin is, however, a good representative of the typical forehead anatomy of 

members of the family Delphinidae having an intermediate-to-moderate value of soft-tissue 

asymmetry (Cranford 1992). The topology of the skull, the upper nasal sacs, the lower jaw fats, 

and the posterior melon terminus (MLDB) complex in the common dolphin is quite similar to the 

topology found in the spotted dolphin (Stenella attenuate) and the bottlenose dolphin (Tursiops 

truncatus). For the purpose of confirming the results of the earlier 2-D simulations conducted 

with Delphinus (Aroyan 1990, Aroyan et al. 1992), and as a means of demonstrating the effec-
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dveness of the techniques presented in this thesis for 3-D bioacoustic modeling, it is sufficient to 

examine a single species. The potential for novel insights to be gained from the application of 

these techniques to other species shall be firmly established.

X-ray CT Source Data

Complete 3-D data on delphinid forehead anatomy has only recently become available 

through the application of noninvasive medical scanning technologies in studies of cetacean mor­

phology and physiology. 1 Both magnetic resonance imaging (MRI) and x-ray CT imaging tech­

niques provide excellent volumetric data on tissue configuration. MRI is slightly better for 

discriminating soft tissue types, while x-ray CT is generally superior for clear demarcation of 

interfaces between tissues of differing densities (such as between bone and soft tissue). However, 

because of information about tissue mass density contained in x-ray attenuation coefficients (dis­

cussed below), CT scans constitute more appropriate data for bioacoustic simulation. Little infor­

mation can be extracted directly from either type of scan regarding tissue sound velocity, but den­

sity information in the CT source data will allow us to indirectly generate surprisingly accurate 

velocity information.

X-ray CT scanners measure the attenuation of x-rays within small volume elements (voxels) 

of the scanned material. This attenuation results mostly (95 percent) from Compton scattering by 

atomic electrons, and measured attenuation coefficients are therefore closely related to the density 

of electrons in the scanned material. Because the density of electrons and protons is always the 

same, and the nuclei of the low-Z atoms of interest to biochemistry (except for Hydrogen) contain 

approximately the same number of neutrons and protons, the electron density is approximately 

half the nucleon density and is therefore very nearly proportional to mass density. For a broad

1 See, for example, Cranford (1992,1988), Ketten and Wartzok (1990), and Mackay (1988).
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range of tissue types, single-energy x-ray CT attenuation coefficients can be mapped linearly to 

mass density with errors of ±5 percent or less (Henson et al. 1987).

X-ray CT data contains several potential sources of error (see Cann 1988). The primary 

error in the attenuation data is caused by variation of effective beam energy with sample thick­

ness, normally referred to as ‘beam hardening’. This is a consequence of the fact that the Comp­

ton scattering cross section decreases with increasing x-ray energy for typical scan voltages (80- 

140 kV). Because the lower energy components of the beam are attenuated more strongly, the 

effective beam energy increases with sample thickness. The CT scan used in this project was per­

formed on a GE 9800 scanner which apparently incorporates beam hardening correction 

software. 2  Further processing of the CT data to correct for beam hardening did not appear neces­

sary since internal ‘cupping’ of the data over approximately 6  centimeters of plexiglass (speci­

men registration frame) was only of order 0.6 percent. Secondary errors are caused by ‘partial- 

volume’ sampling. This occurs, for example, when the scanned volume elements straddle a sharp 

tissue interface, effectively blurring the interface. We will therefore utilize interface sharpening 

corrections in the mapping process. Neither machine calibration nor fluctuations in x-ray tube 

irradiance appeared problematic in this dataset.

For this project, an x-ray CT scan of the head of a male (body length= 1.92m) common dol­

phin, Delphinus delphis, was provided by Dr. Ted Cranford of the Naval Command Control and 

Ocean Surveillance Center, RTD&E Division in San Diego. 3  After interpolation, CT numbers 

were mapped to a 1.5mm cubic propagation grid as a density field (see below). A novel CT-to- 

velocity mapping was then generated indirectly based on measured acoustic parameters of mam­

malian and unique odontocete tissues (see below).

2 T.W. Cranford, personal communication.
3 The animal scanned was identified as specimen D4 in Cranford (1992).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



E
Ein

c
©
E
©wOc

2■c
0
cn
x<1
N

120

100

80

60

40

20

0

82

Delphinus Skull Outlines from CTdata
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F ig u re  6 .1 . A  p ro je c tio n  in to  th e  x - z  p la n e  o f  a l l  C T  d a ta p o in ts  w ith  v a lu e s  a b o v e  th e  th r e s h o ld  f o r  b o n e  
(3 0 0  H U )  illu s tra tin g  th e  s p a c in g  o f  th e  y-z p la n e s  o f  th e  o r ig in a l D e lp h in u s  d a ta se t. T h e  s p a c in g  o f  th e  
o r ig in a l p la n e s  v a r ie s  f r o m  5 .0 m m  o v e r  th e  ro s tru m , to  1 .5m m  o v e r  th e  n a r ia l/M L D B  re g io n , to 3 .0 m m  
o v e r  th e  p o s te r io r  c ra n iu m .

The spacing of the scan planes varied in the original CT dataset from 5.0mm over the ros­

trum, to 1.5mm over the narial/MLDB region, to 3.0mm over the posterior cranium. Each scan 

plane consists of a 320x320 voxel transverse sectional image on a 1.5mm square grid. Thus 

scanned voxel volumes vary from 11.25mm3, to 3.375mm3, to 6.75mm3. An x-z projection of all 

datapoints with CT values above the threshold for bone (300 HU) is shown in Figure 6 .1 to illus­

trate the y-z planes of the original Delphinus dataset. 4  For the purposes of FD simulation, the ori­

ginal data was linearly interpolated (only) in the x-direction to planes spaced 1 .5mm apart (hence 

to a 1.5mm cubic grid) . 5  A higher order interpolation did not appear necessary because of the 

smooth surfaces of the Delphinus rostrum. A plot of bone threshold contours in every 12th plane

4 Please note that a right-handed coordinate axis system is assumed in the present analysis of this CT da­
taset which differs from Cranford (1992).

5 Use of the original dataset without interpolation would have produced artifacts at all but the lowest fre­
quencies simulated.
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(1.8cm apart) of the interpolated dataset is shown in Figure 6.2. Note that the data has been 

' rotated 180 degrees about the z-axis to make the positive x-axis point in the direction of forward

: emission. Note also that the y-axis is directed to the left of the animal while the z-axis points

upward in all representations used in this thesis.

The information contained in the CT data may be visualized in many different ways. For 

example, Figure 6.3 illustrates an isosurface within the volumetric data at the CT value threshold 

between soft tissue and bone. The figure is thus a 3-D visualization of the surface of the 

dolphin’s skull. Modem visualization packages permit extraordinary flexibility in viewing such 

volumetric data.

Acoustic Characteristics of Biological Tissues

Broadly speaking, soft biological tissues are acoustically quite similar to seawater, with 

densities and velocities varying roughly 1 0  and 15 percent, respectively, from those of seawater. 

They exhibit little (order 3 percent) anisotropy of velocity, and small longitudinal wave attenua­

tion coefficients (roughly order 0.1 dB/cm at 100kHz) which, unlike water, increase linearly with 

frequency (Johnston et al. 1979). As with water, the acoustic velocity in soft tissues varies with 

temperature. For soft tissues other than fat, the rate of change dc/dT is of order +1 m/s/°C at 

37°C. For mammalian fats (including odontocete melon and lower jaw lipids), however, dc/dT 

is of order -3 m/s/°C at 37°C (Bowen et al. 1979, Litchfield et al. 1979).

Bony tissues, again speaking broadly, have densities and velocities roughly twice those of 

seawater, with specific values grading from porous cancellous bone to compact cortical bone. 

The speed of longitudinal waves in cortical bone ranges from about 3200-3700 m/s. Bone matrix 

can also exhibit significant anisotropy of velocity, with variations as large as 2 0  percent about the 

matrix axes. In addition, longitudinal wave attenuation coefficients in bone are roughly an order
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of magnitude larger than for soft tissue (of order 1.0 dB/cm at 100kHz) (Johnston et al. 1979, 

Goss etal. 1980b).6

With the exception of fatty tissues, soft biological tissues may be considered as composite 

materials whose acoustic characteristics are governed by the individual properties of both struc­

tural and globular proteins. Soft tissue velocity can be modeled quite accurately as a linear com­

bination of the compositional percentages of structural protein (collagen) and globular protein 

(Goss et al. 1980a). While not quite as precise as this two-component model, it is also true that 

soft tissue velocity correlates well with density. This is of great importance to the current appli­

cation because excellent volumetric tissue density information is available from x-ray CT data. 

As shown below, soft tissue (including fat) velocity can be modeled as an elementary function of 

density. A slight modification of the near-linear mapping appropriate for all typical terrestrial 

mammalian soft tissues will then permit us to take account of the unique velocity structure 

known to exist within the delphinid melon and lower jaw fat bodies.

Model Mappings of Density and Velocity for Soft Tissues and Bone

Numerical implementation of equation (3.2) for acoustic waves in inhomogeneous media 

requires that we specify both the velocity and density throughout the tissue model. We now 

describe the mappings utilized in the current simulations, and demonstrate that a mapping from 

tissue density yields surprisingly accurate tissue velocity data.

Measurement of bone mineral density utilizing single-photon quantitative CT is an esta­

6 We mention that the density and velocity of tooth dentine are roughly 10 percent above bone, while 
values for tooth enamel can rise as high as 75 percent beyond those of bone. Remarkably, the density of the 
periotic bone of the inner ear in some cetaceans can rise as high as 4-5 g/cc. In the common dolphin, the 
maximum density of the ear bones is about 2.6 g/cc (Cranford, personal communication). However, the 
acoustic properties of teeth and cetacean periotic bone do not impact upon the present modeling since only 
the ear bones and very small portions of the rostrum exceed cortical bone densities in the Delphinus dataset.
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blished discipline. 7  Henson et al. (1987) demonstrated that a simple linear mapping between CT 

attenuation values and tissue density was accurate to within ±5 percent for densities ranging from 

soft tissue to cortical bone. 8  In the present study, tissue densities were mapped hum CT values 

using the linear model shown in Figure 6.4. 9  The CT attenuation scale ranges from -1024 to 

+2519 Hounsfield Units (HU). The low end of the CT scale (below -138 HU), is below all soft- 

tissue structures (except air sacs which are handled separately). Since we wish to map the air sur­

rounding the scanned specimen to seawater, we have mapped this lower range to the density of 

seawater (1.03 g/cc). We will see that this CT-to-density mapping can be shifted by large percen­

tages without appreciable effects on the emitted patterns.

Tissue velocity can in turn be deduced from tissue density as follows. Figure 6.5 plots 

approximate density and velocity values and ranges for several types of normal terrestrial mam­

malian soft tissues and delphinid melon lipids measured at 37°C. 1 0  Note that the velocities for the

7 See, for example, Cann (1988), Hunter (1988), or Erlichman (1986).
s Note that the slope of this linear correspondence varies with the effective beam energy of the CT 

scanner. The GE 9800 scanner used to collect the Delphinus data has an effective beam energy of 80 keV 
(Cranford 1992, Cann 1988). It is possible to reduce tissue density errors to well below 1 percent by using 
dual-energy CT with phantoms and taking the slightly different electron densities of various tissues into ac­
count. The use of phantoms alone with standard CT would establish density mappings of sufficient precision 
for the purposes of acoustic simulation. The author strongly urges the use of phantoms in future x-ray CT 
studies of cetaceans.

9 Because a phantom was not used in Cranford’s Delphinus CT scan, the author has made the best use of 
all available data in establishing this linear map. At least three calibration points are determined by the 
known density of the inner melon (Varanasi et al. 1975), the known density of the plexiglass specimen regis­
tration frame, and the maximum density of the dolphin’s inner ear bones. Because these points are not exact­
ly colinear, some uncertainty remains in this mapping. However, the primary importance of the CT-to- 
density mapping actually lies in its use in determining the CT-to-velocity mapping (see below). If the veloci­
ty mapping is not altered, the simulations are only weakly affected by large shifts in the tissue density map­
ping.

10 Terrestrial mammalian tissue data mainly from Goss et al. (1980b), Parry and Chivers (1979), and Lele 
and Sleefe (1985). Bottlenose dolphin melon lipid velocity data taken primarily from Norris and Harvey 
(1974) and secondarily from Litchfield et al. (1979), since Litchfield et al. apparently measured the velocities 
of their samples after the lipids were extracted from melon and blubber tissues. Extraction of the lipids from 
connective tissue components probably lowered the values reported for the velocities of the ‘outer’ and 
‘under’ melon. Both papers agree approximately on the velocity range for the inner melon tissues. Melon 
and lower jaw lipid densities (down to by weight triglyceride-isovalerate wax ester melon lipid composition, 
which is similar across the family Delphinidae (Litchfield et al. 1975). Although very few measurements of 
intact tissue velocity, density, and tissue temperature are available, an attempt was made to define the ranges 
for normal mammalian tissues in Figure 6.5 as 1-sigma variations in the tabulated values.

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1II

87

o
■§>

(0c
®Q

3 .0

2 .5

2.0 Dentine, Enamel, 
and Periotic Bone .

Soft,
Issue' BoneSeaw ater—

1.5

1.0

0 .5
1000 1500  2 0 0 0  2 5 0 0-1000  -5 0 0 5 0 00

CT Number (Hounsfield Units)

F ig u re  6 .4. P lo t  o f  th e  lin e a r  m a p p in g  fr o m  C T  v a lu e s  (in  H o u n s fie ld  U n its) to  tis su e  m a ss  d e n s ity  u s e d  in  
th e  s im u la tio n s  (b a s e d  o n  H e n so n  e t  a l. 1987). T is su e  typ es  c o r re sp o n d in g  to  m a p p e d  C T  r a n g e s  h a v e  
b e e n  indicated.

o
,o
3

>.
‘ 5 5c©
Q
©
3intn
i-

1 .15

Melon
Fat

Brain
Blood
Liver

Kidney
Spleen
Muscle

Tendon

1.10

1 .05

1.00

0 .9 5

0 .9 0

18001500 1 6 0 0 17001200 1300 1400
Acoustic Velocity (m/s)

F ig u re  6.5. P lo t  o f  a p p ro x im a te  v a lu e s  a n d  ra n g e s  o f  d e n s ity  a n d  v e lo c ity  f o r  s e v e ra l typ es  o f  n o r m a l te r ­
re s tr ia l m a m m a lia n  s o ft  tissu e s  a n d  d e lp h in id  m e lo n  lip id s  m e a su re d  a t  37°C. T h e  s o lid  lin e  in d ic a te s  th e  
p ie c e w ise  c o n tin u o u s  lin e a r  m a p p in g  o f  d e n sity  to  ve lo c ity  u se d  in  th e  s im u la tio n s  o v e r  th e  ra n g e  o f  s o ft  
tissues.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



normal mammalian soft tissue types can be quite well represented by mapping their density coor­

dinate to a single line drawn from mammalian fat to tendon. However, as discussed in Chapter 2, 

the lipids of the delphinid melon and lower jaw are chemically and acoustically distinct1 1  from 

other body fats and the blubber (which appear to be very similar to the fats of terrestrial mam­

mals). It therefore makes sense to model the velocities of all tissues except the melon and lower 

jaw fats using a single linear mapping from mammalian fat to tendon for the characteristic mam­

malian tissue range. 1 2  The unique ‘acoustic fats’ can then be incorporated by adding a linear 

extension from typical fat down to the lower melon lipid density and velocity threshold. This 

piecewise linear mapping of density versus velocity for the soft tissue range is also shown in Fig­

ure 6.5, demonstrating that a good correspondence can be achieved between soft tissue velocity 

and density. The full range of velocities and densities from those of the inner melon lipids to 

those of the connective tissue theca surrounding the posterior end of the melon are correctly taken 

into account by this mapping. The current study is the first to correctly model the impedance 

structure of all tissues including the melon and lower jaw fats (Au 1993, Aroyan et al. 1992, 

Aroyan 1990, Litchfield et al. 1979).13 Appendix 2 illustrates the detailed density, velocity, and 

impedance structure of the melon tissue of the common dolphin.

Because the CT-to-density map has already been specified (Figure 6.4), the density-to- 

velocity map (Figure 6.5) determines the soft tissue CT-to-velocity mapping. The CT-to-velocity 

mapping across all CT values is pictured in Figure 6 .6 . The soft tissue range of this mapping

11 See Varanasi et al. (1982), Litchfield et al. (1979, 1975,1973), Malins and Varinasi (1975), Varinasi et 
al. (1975). See also discussion in Morris (1986).

12 Given the magnitude of the variations in mammalian soft tissue densities and velocities, a simple linear 
model was deemed satisfactory for this initial series of simulations. The acoustic phenomena of interest here 
result mainly from the velocity shifts between fat. muscle, cartilage, and bone. The magnitude of the soft tis­
sue shifts appears to be adaquately represented by a linear model. Higher order mappings are certainly possi­
ble, and may permit application of these techniques to areas where greater precision is required.

13 The simplicity and accuracy of this approach to modeling the acoustic parameters of normal mammali­
an tissues has broad ramifications for several areas of bioacoustic investigation, as discussed in Chapter 8.

i
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Figure 6.6. Plot o f the linear mapping from CT values (in Hounsfield Units) to tissue velocity used in the
simulations. This mapping (over the soft tissue range) is implied by the previous two figures. Tissue types
corresponding to mapped CT ranges have been indicated.

generates good agreement between Cranford’s (1992) plots of CT values through the Tursiops 

melon and Norris and Harvey’s (1974) Tursiops melon velocity measurements. The low velocity 

melon core and surrounding tissues for the posterior third of the melon are mapped to the correct 

measured velocity magnitudes provided one shifts the Tursiops CT-to-velocity map approxi­

mately 130 HU down from the Delphinus map. While tissue velocities for Delphinus have not 

been measured, there seems little reason to doubt that a mapping which is based on the measured 

acoustic properties of normal mammalian tissues and which works for Tursiops will work for 

other delphinids1 4  as well, provided the CT data ranges for each specimen have been properly

14 Similar triglyceride and isovalerate wax ester lipid mixtures (roughly 60 and 40 percent composition by 
weight respectively) are found in the melon and lower jaw fats across the family Delphinidae (Litchfield et al. 
1975). These ratios differ substantially from blubber compositions. Slight variations of the delphinid lipid 
density and velocity mappings presented in this thesis should be sufficient for modeling the odontocete fami­
lies Phocoenidae and Monodontidae. The families Ziphiidae, Physeteridae, and Platanistidae, however, may 
require somewhat different treatments.
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determined.

j Several aspects of Figure 6 . 6  deserve discussion. First, the CT range below -138 HU
i

(below all soft-tissue structures except air sacs) is again set equal to the velocity of seawater 

(1500 m/s). Next, note that soft tissue velocities above tendon (at 150 HU) and up to the bone 

threshold (at 300 HU) are modeled as a constant 1730 m/s. This was done for several reasons: 1) 

measured soft tissue velocities do not appear to exceed this value; 2 ) very little soft tissue can be 

found in the CT range 150-300 HU; and 3) the lower CT values of the partial-volume blurring of 

the soft tissue-bone interface appear in this range. Third, note that a large discontinuity in velo­

city at the bone threshold has been introduced to correct for the CT artifact of partial-volume 

blurring of the soft tissue-bone interface. The magnitude of this discontinuity correctly differen-

! dates between the velocities of bone and the densest soft tissue.
!

Finally, note that the velocity above the bone threshold of 300 HU has been modeled as a 

constant 3450 m/s. A mapping from density to velocity could be constructed for dolphin skull 

bone, 1 5  but does not appear to be necessary. Bone velocities do not increase substantially until 

densities well beyond those of tooth dentine are reached, approaching the high density of 

enamel. 1 6  It should be noted that the delphinid skull is predominantly composed of cortical bone, 

and that most acoustic energy incident from soft tissue is reflected at the bone interface (even in 

the absence of covering air sacs). As we shall demonstrate in the next chapter, the value of the 

bone velocity constant can be varied by ±15 percent without significantly affecting either the 

position of the source determined by inverse simulation or the emitted far field patterns computed

15 For example, Lees and Davidson (1979) discussed the correlation of bone velocity with the percentage 
composition of mineral hydroxyapatite (HAP) crystallites within a more compressible collagen matrix. Be­
cause of the difference in the densities of HAP and collagen, this correlation in turn implies a mapping 
between bone density and velocity.

16 See. for example, Goss et al. (1980b), or Lees and Davidson (1979).
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by forward simulation. 1 7

i

It should be mentioned that partial-volume blurring of the skin-seawater (skin-air in the CT
I

scan) interface was corrected using a simple technique. CT values for skin normally rise slightly 

above the inner tissue values (note the slight ridge at the skin surface of the melon in the figures 

of Appendix 2). However, the partial-volume effect often shifts these values down below seawa­

ter values, creating an artificially lowered velocity and density ‘skin’ around the dolphin tissue 

model. This problem was corrected by searching for all points at the outer tissue surface that had 

CT values lower than seawater (-59 HU), and resetting their values to the next neighboring value 

inside the tissue. If the direction of the inner neighboring point is properly chosen, it is improb­

able that the partial-volume effect also occurred at the inner point.

Finally, note that no attempt was made in the current simulations to correct for tissue velo­

city dependence on temperature at the skin of the animal. For the following reasons, the author

I does not believe that this dependence is crucial to the current modeling. For integumental skin 

tissue itself, the velocity decreases only by about 1 percent (assuming seawater temperature near 

20°C), which is a small effect. Although incomplete data exists on bodily temperature distribu­

tion, there probably exists a sharp gradient over the first few centimeters of tissue, especially over 

the blubber layer. Hence, we would expect a blubber velocity increase grading toward the outer 

skin of maximum magnitude 3 percent over these tissues, still not a large effect. The combined 

effect possibly makes the seawater-skin-blubber interface series slightly more transparent to 

sound. However, the net effect of a smooth, localized, and small amplitude distortion of the velo-

17 There are also technical reasons for modeling the bone velocity as a constant. For stability reasons, the 
numerical velocity in the finite difference programs is set equal to the highest velocity occuring in the tissue 
model, and all other velocities are scaled with respect to this maximum. The run times of the FD programs 
required to achieve a steady state over the grid therefore scale inversely with the value of the highest modeled 
velocity. Modeling the bone velocity as a constant simplifies these stability and efficiency issues.
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; city profile moving into the tissue is likely to be small since the total angular refraction of the

I sound paths remains the same.

Model of the Peribullary and Pterygoid Sinuses and the Nasal Air Sacs

Provided that numerical threshold values are properly chosen, x-ray CT data provides 

exceptionally accurate information on the 3-D geometry of skull-soft tissue and external soft 

tissue-air interfaces. The peribullary air sinuses surrounding the dolphin’s middle and inner ear 

complexes, and the pterygoid sinuses, extending within the posterior bones of the palate, 1 8  are 

very clearly defined in the CT data. Both were incorporated into the lower jaw hearing simula­

tions and were considered distinct from the upper nasal air sac model.

Air spaces inside soft tissues, however, often suffer distortion in these scans due to postmor­

tem changes. The difficulty of extracting accurate upper nasal sac outlines from postmortem CT 

data adversely impacts the quality of any nasal sac model proposed here (note also that the upper­

most nasal sacs in live animals are reported to be quite mobile during phonation). I therefore 

have utilized the simplest model of the upper nasal sacs that is supported by the data and previous 

anatomical studies.

The outlines of the narial air spaces are very clear in the Delphinus CT data. The vestibular 

sacs, however, are only marginally discemable. By extracting all CT data coordinates with 

values below soft tissue thresholds,. the narial sacs and portions of the vestibular sacs may be 

located in the data. Unfortunately, the inferior vestibules and the premaxillary, nasofrontal, and 

accessory sacs are not even marginally discemable in this data. Nevertheless, the location of the 

premaxillary sacs is so well documented in the literature1 9  that it was deemed permissible to

18 See, for example, Fraser and Purves (1960).
19 See, for example. Green et al. (1980), or Dormer (1979).
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Left Vestibular Sac

Right Vestibular Sac
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Right Premaxillary Sac
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Figure 6.7. Visualizations of the model of the narial, vestibular, and premaxillary air sacs used in the 
simulations. Upper figure is an elevated right side view of the sac surfaces; lower figure is an elevated 
front view. Labels identify the individual sacs. Note that the vestibular sacs are incompletely represented 
in this model (see discussion in text).
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include their positions above the premaxillary shelves of the skull in this conservative air sac 

model. With assistance from cetacean biologists it should be possible to reconstruct a more com­

plete model of the upper nasal sacs. The author decided, however, only to include the narial, ves­

tibular, and premaxillary sacs in the current model. Perspective views of this simplified air sac 

model are shown in Figure 6.7. Note that several portions of both left and right vestibular sacs 

are clearly missing from this model. Nevertheless, it was decided not to guess about filling them 

in. One consequence of this incomplete model is that some of the acoustic energy that would 

have been reflected forward by more complete sac structures will appear as spurious ‘leaks’ in 

upward and backward emission directions.

As in previously reported simulations (Aroyan 1990, Aroyan et al. 1992), the air sacs were

simulated as ‘pressure release’ surfaces by setting the pressure to zero at all sac grid coordinates.

Note that any possible air-cavity resonance behavior is eliminated by this proceedure.
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Chapter 7. Results of the Simulations

We now present results of the 3-D simulations for various tissue and source models of the 

common dolphin, Delphinus delphis. Grid layouts, model illustration, and graphical and numeri­

cal output are presented after the introductory comments for several cases of interest bearing on 

both the biosonar emission and reception processes. We shall weave together the results of the 

inverse and the forward simulations since, although related, each contains different types of infor­

mation. We will present forward and inverse results for tissue models of the skull-only, of the 

skull and air sacs, of the skull and soft tissues (including the melon), and then for the skull, air 

sacs, and soft tissues combined. Finally, we shall present the results of two different types of 

lower jaw hearing simulations.

7.1. Skull-Only Simulations

The skull-only model was constructed as follows: the density and velocity of points in a 

selected region of the interpolated CT dataset that were equal to or greater than the bone thres­

hold were computed from the CT-to-density and CT-to-velocity mappings described in Chapter 

6 . All other points were mapped to background seawater density (1.03g/cc) and velocity 

(1500m/s) values. The region of the CT dataset that was selected for all of the forehead simula­

tions (including the skull-only simulations) is illustrated by an isosurface at the CT data bone 

threshold (300 HU) in Figure 7.1 and by bone and skin isosurfaces in Figure 7.2. 1 This tissue 

region is a rectangular volume having x,y,z side-lengths of 27.0cm, 12.6cm, and 12.6cm. The 

last few points of the density and velocity grids along the back, bottom, and side edges of the

1 The full CT dataset was not used here because of computer CPU time and memory restraints. Inclusion 
of the rostral tip and the remaining tissues is not as important to the forehead simulations as it may appear.
Initial simulations with the full CT dataset at half resolution agree very closely with the results of the truncat­
ed tissue model shown here.
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tissue region were graded back to seawater values in order to reduce spurious reflections at the 

i  model boundary.

The grid setup used in all of the forehead tissue inverse simulations (including the inverse 

skull-only simulations) is diagrammed in Figure 7.3. Note that the front face of the grid is used 

as a flat source (a simulated transducer) to ensonify the skull with a cosine-windowed2  ‘echo' at a 

fixed angle of return. Absorbing boundary conditions were applied to all outer grid edges to 

absorb reflections, as discussed in Chapter 4.

The primary information obtained from the inverse emission simulation programs is the 

acoustic energy density [equation (3.3)] within a volume enclosing the upper nasal passages 

(region labeled ‘PSR’ in Figure 7.3). The acoustic reciprocity theorem3  tells us that we can 

reverse the roles of emitter and receiver in any acoustic medium without altering the transmitted 

signal. Thus, if the dolphin emits an acoustic pulse from within a small region of its tissues and 

that pulse travels out to be picked up by a distant receiving hydrophone, then the process can be 

reversed. That is, by propagating a returning plane wave ‘echo’ backwards into the tissues, we 

should see ‘hot spots’ at all potential source locations that could produce far-field beams at that 

specific frequency and propagation angle. This approach is closely analogous to the use of 

inverse seismologic simulations to pinpoint the epicenters of earthquakes. In effect, we are seek­

ing to locate the ‘epicenter’ of the dolphin’s biosonar signals. In most cases, the inverse simula­

tions also clearly demonstrate patterns of sound propagation within the tissues, such as channel-

2 A cosine-enveloped (in both y and z directions) aperture function was used to reduce the near-field in­
terference of the source transducer. The dual cosine envelope corresponds roughly to the first axial guide- 
function mode for the grid-grid boundary system, as noted in Chapter 4. Although a tradeoff with equal il­
lumination occurs (which can in turn be corrected by suitably enlarging the grid), the use of this envelope 
greatly decreases near-field diffraction effects. The energy density at the ‘epicenters’ found in the inverse 
simulations is generally between 2 and 3 orders of magnitude above the background variation caused by 
near-field diffraction and uneven illumination.

3 See, for example. Cook (1996), or Pierce (1980).
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ing behavior, etc.

In order to establish positional reference with respect to the soft tissue structures in the

1 inverse simulation data volume (I have labeled this volume the ‘potential source region’, or PSR 

for short), Figure 7.4 illustrates a parasagittal slice through the center of the right MLDB complex 

within the PSR. Several tissue structures have been labeled, but it is worth mentioning that the 

center of the left MLDB complex lies about 3.3cm to the left and about 0.7cm downward from 

the center of the right MLDB. Note that the PSR is a rectangular volume having x,y,z side- 

lengths of 12.0cm, 9.0cm, and 9.0cm. The skull isosurface is included in all PSR diagrams for 

positional reference.

We now illustrate some of the skull-only inverse simulation results. Figures 7.5-7.8 illus­

trate the energy density in PSR sections containing the maxima or ‘epicenters’ for skull-only 

inverse simulations at frequencies of 25, 50, 75, and 100 kHz. The direction of return propaga­

tion in this case was 5° below the negative x-axis, which corresponds to a forward beam direction 

of 0, <{>=5o,0o. The patterns of spatial interference caused by reflections off of different portions of 

the skull surface are clearly evident. Note that the sharpness and complexity of the interference 

maxima increase (as expected) with frequency. Note also that the positions of the maxima appear 

below the (right) MLDB and also up against the sharply rising surface of the cranial bone. The 

maxima lying immediately against the cranium may be caused simply by the process of reflection 

at hard surfaces, where the pressure amplitude nearly doubles, and the energy density quadruples. 

This does not necessarily imply source locations at these positions, since any hard surface 

oriented roughly perpendicular to the incident beam can exhibit such maxima. Indeed, the reader 

is cautioned against jumping to the conclusion that any one of these single frequency focal max­

ima is optimal for the animal — especially for the simpler tissue models. As we shall see, multi-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I

98

pie maxima appear in most of the models, although the ambiguity decreases significantly when 

the air sacs and the soft tissue velocity information are both included. 4  The reader is urged to 

examine the overall patterns of maxima for various tissue models before drawing final conclu­

sions.

The positions of these ‘epicenters’ for several inverse simulations at the four frequencies 

25, 50, 75, and 100 kHz are shown in two PSR projections (viewed from the right and the front 

sides) in Figures 7.9-7.11 for return angles of 10°, 5°, and 0° below the negative x-axis. The max­

ima up against the skull is shown if it exists and the ‘soft tissue’ position (not against the skull) of 

highest energy density for each frequency. The general trends in the positioning of these skull 

focal positions are clear. First, in the front-back direction, the focal maxima always occur in the 

region of the upper nasal passages, within a distance of about 3cm (generally less) from the stee­

ply sloped cranium. Second, in the left-right direction, they appear on the right side of the nasal 

soft tissue region above the bony nares, and not on the left side. Third, the skull-only foci appear 

either up against the cranium or off of the skull and below the location of the right MLDB. A 

few of the lower focal positions against the cranium appear to lie within the vertical range of the 

right nasal plug. All but one of the locations away from the skull appear too high to be con­

sidered within the right nasal plug.

Now consider the emission patterns that result from placing point sources at the focal posi­

tions of the skull. Figures 7.12-7. i 5 illustrate the far-field emission distributions computed 

(using the forward simulation and extrapolation techniques discussed in Chapters 4 and 5) for 

point sources of frequencies 25, 50, 75, and 100 kHz placed at the 5° inverse simulation focal 

maxima of highest energy density (the 5° inverse simulation maxima locations were illustrated in

4 This is entirely analogous to the situation in inverse seismologic simulations where ambiguity decreases 
with the accuracy and completeness of the geologic models assumed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I

99
I

Figures 7.5-7.8 and 7.10). The directions of peak emission (in degrees) and the directivity 

: indexes (in dB) for these patterns are included in the figures. While a fair amount of energy is 

projected to the sides and upward (note the diffraction rings at the lower frequencies), the skull by 

itself is capable of forming significant forward beams. The directions of the forward maxima 

agree nicely with the reversed propagation direction of the inverse simulations, proving that the 

forward and inverse simulation techniques are symmetrically related. 2

12. Skull and Air Sac Simulations

Figure 6.7 of Chapter 6  illustrated the model of the narial, vestibular, and premaxillary air 

sacs used in the current simulations. The air sacs are treated as ‘pressure release’ surfaces in 

these simulations. We emphasize that the vestibular sacs are incompletely represented in this 

model, and that several other sacs are entirely absent (see explanation in Chapter 6 ). However, 

the narial and premaxillary sacs are presumed to be well represented.

Figures 7.16-7.18 indicate the PSR focal positions (viewed from the right and the front 

sides) from several inverse skull and air sacs simulations at frequencies of 25, 50, 75, and 100 

kHz for return angles of 10°, 5°, and 0° below the negative x-axis. The maxima up against the 

skull is shown if it exists and the ‘soft tissue’ position of highest energy density for each fre­

quency. Note again that the focal positions lie in the nasal passage region within a few centime­

ters of the cranial slope, and on the right side. In addition, the ‘soft tissue’ foci again seem to lie 

below the right MLDB, but not so far down as to be considered within the right nasal plug.

5 Most of the inverse focal positions are actually somewhat distributed maxima (especially at the lower 
frequencies). Hence it is expected that placement of a point source at the single grid position of highest ener­
gy density will not reproduce the exact forward beam maxima. Use of more of the inverse maxima amplitude 
and phase information to simulate extended sources in the forward simulations would result in closer agree­
ment.
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The far-field emission patterns that result from placing point sources at the focal positions 

| of the skull and air sacs model are shown in Figures 7.19-7.22. Again, these distributions were 

i computed for point sources at frequencies of 25, 50, 75, and 100 kHz placed at the 5° inverse 

simulation foci of maximum energy density. The peak emission directions (in degrees) and 

directivity indexes (in dB) for these patterns are included in the figures. Note that a fair amount 

of energy is still projected in mid-azimuth directions and to the sides, but the air sac model (even 

though incomplete) is assisting the skull in forming forward beams. The air sacs have the effect 

of eliminating most of the downward and high upward angle emissions, of slightly narrowing the 

main lobes, of raising all of the directivity indexes, and of generally moving the pattern peaks 

closer to the forward direction.

73. Skull and Soft Tissue Simulations

For the skull and soft tissue model, the density and velocity of all points within the selected 

region of the interpolated CT dataset (see Figures 7.1-7.3, and also the figures of Appendix 2) 

were computed from the CT-to-density and CT-to-velocity mappings described in Chapter 6 . 

Recall that these mappings assign all air CT scan voxels to the background seawater density 

(l.03g/cc) and velocity (1500m/s) values, so that air sac regions within the forehead soft tissue 

model are effectively simply ‘filled’ with seawater. (When the air sac model is added to the fore­

head soft tissue model, and for the peribullary air sinuses surrounding the middle and inner ear 

complexes in all of the hearing simulations, points within the air regions are treated separately as 

pressure release surfaces).

Examination of the inverse simulation results when the soft tissues of the dolphin’s fore­

head are included indicates an astonishing shift in the patterns of acoustic energy flow through 

the PSR region from the skull-only and skull and air sacs models. Figures 7.23-7.25 illustrate a
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series of isosurfaces at the 50%, 30%, and 10% levels of acoustic energy density viewed from 

both the right side and from above for the case of a 5° inverse 50 kHz simulation. Figures 7.26- 

7.28 illustrate 50%, 20%, and 10% isosurfaces for a 5° inverse 75 kHz simulation. The patterns 

no longer look simply like spatial interference caused by multiple reflections from a complex sur­

face. A clear tendency towards collimation or channeling of energy is exhibited by the melon tis­

sues. Energy is strongly channeled in both the vertical and horizontal directions back through a 

region passing approximately 1cm ventral to the right MLDB complex. Note that this channeling 

is most pronounced within the posterior throat of the melon (note the narrowing of the energy iso­

surfaces within the melon throat in the top diagrams of Figures 7.25 and 7.27). Note also that the 

anterior melon appears to be behaving as a broad lensing element (note the curvature of the wave­

fronts in Figures 7.25 and 7.28). Examination of the patterns at 25 and 100 kHz (not pictured 

here) reveals that the channeling efficiency and the complexity of the remaining interference pat­

terns generally increase with frequency as expected. Note finally that interference lobes appear 

along the propagation channel. A significant amount of energy is reflecting off the steeply sloped 

surface of the cranium and propagating back out to interfere with the incoming energy. The 

incoming and outgoing paths do not always appear parallel (especially when viewed from above).

Figures 7.29-7.31 indicate collected PSR focal maxima positions (viewed from the right 

and the front sides) from inverse simulations at frequencies of 25, 50, 75, and 100 kHz for return 

angles of 10°, 5°, and 0° below the negative x-axis for the skull and soft tissue model. The max­

ima up against the skull is shown if it exists and the soft tissue position of highest energy density 

for each frequency. Again, note the focal positions occur in the nasal passage region within a few 

centimeters of the cranial slope. Most appear on the right side, but three are located within 3mm 

of the cranial slope on the left side (these are the only instances where this occured). These left­

sided maxima are positioned about 1.5cm posterior to, and about 1cm medial to, the center of the
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left MLDB complex. Also, three maxima of the 10° pattern occur against the skull down within 

the right nasal plug. However, the foci not lying against the skull generally appear below the 

right MLDB.

Next we demonstrate the extraordinary effects that the soft tissues (including the melon) 

have on the emission patterns. The far-field patterns that result from placing point sources at the 

focal positions of the skull and soft tissue model are shown in Figures 7.32-7.35. Again, the dis­

tributions were computed for sources at frequencies of 25, 50, 75, and 100 kHz placed at the 5° 

inverse simulation foci of maximum energy density. The peak emission directions (in degrees) 

and directivity indexes (in dB) for these patterns are included in the figures. Note that addition of 

the soft tissues has dramatically narrowed the skull-only emission patterns. The melon (in com­

bination with other soft tissue) is collimating much of the energy projected to the side and 

upward by the skull alone. The increased directivity indexes reflect a significant melon contribu­

tion to forward beam formation. As discussed in the concluding chapter, the magnitude of this 

effect largely explains the extraordinary evolutionary investment that the specialized melon tis­

sues represent in delphinids.

7.4. Skull, Air Sacs, and Soft Tissue Simulations

The skull, air sacs, and soft tissue model utilized the same CT-to-density and CT-to- 

velocity mappings as the skull and soft tissue model (see above) but added in the air sac model. 

This combined model constitutes a fairly complete representation of the dolphin’s forehead tis­

sues (albeit a rather conservative air sac model). The results of this model are therefore of special 

interest.

We illustrate a series of isosurfaces at the 50%, 30%, and 10% levels of the PSR acoustic 

energy density in Figures 7.36-7.38 (viewed from both the right side and from above) for the case
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of a 5° inverse 50 kHz skull, air sacs, and soft tissue simulation. Figures 7.39-7.41 illustrate 50%, 

20%, and 10% isosurfaces for a 5° inverse 75 kHz simulation. Again, energy collimation is 

clearly exhibited within the posterior melon tissue, with strong channeling in both the vertical 

and horizontal directions back through a region passing approximately 1cm ventral to the right 

MLDB complex. Note that the channeling is most pronounced within the posterior throat of the 

melon, and that the anterior melon appears to be functioning as a broad but weak lensing element.

The focal maxima positions are plotted in Figures 7.42-7.44 (as viewed from the right and 

the front sides) from many inverse simulations at frequencies of 25, 50, 75, and 100 kHz and 

return angles of 10°, 5°, and 0° below the negative x-axis for the skull, air sacs, and soft tissue 

model. Again, the maxima up against the skull is shown when it exists and the soft tissue posi­

tion of highest energy density for each frequency. Note that all of the foci occur on the right side 

of the nasal passages, not on the left, and that they have become fairly well grouped along the 

guide channel of the posterior melon which passes roughly 1cm below the right MLDB, but not 

so far down as to be considered within the right nasal plug. Note also that the focal positions 

appear to be most tightly grouped in the 0° inverse results, suggesting that the animal probably 

produces a beam centered close to 0° in vertical angle.

Figures 7.45-7.48 plot the far-field emission patterns that result from placing point sources 

at the focal positions of the skull, air sacs, and soft tissue model. The distributions were com­

puted for sources at frequencies of 25, 50, 75, and 100 kHz placed at the 5° inverse simulation 

foci of highest energy density. The peak emission directions (in degrees) and directivity indexes 

(in dB) for these patterns are included in the figures. First note that these beam patterns are 

remarkably well focused in the forward direction. The relative importance of the (conservative) 

air sac model compared to the melon (and other soft tissues) varies with frequency. Generally
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speaking, the air sacs tend to be more important in forward collimation of energy projected 

upward, sideways, and downward by the skull alone, while the melon is more important in nar­

rowing the main forward lobe. However, to some extent, the air sac model and the melon both 

contribute to both effects. The net effect of the complete model is to produce fairly uniformly 

directed, well focused forward beams.

7.5. Inverse and Forward Hearing Simulations

Nearly the full dimensions of the CT dataset were used for the tissue model in the hearing 

simulations, but only at half resolution (a 3.0mm cubic grid was utilized).6 The grid setup for the 

inverse hearing simulations is diagrammed in Figure 7.49. The region of the grid holding the tis­

sue model is a rectangular volume having x,y,z side-lengths of 45.0cm, 26.4cm, and 28.2cm. In 

these simulations, the acoustic energy density within a volume containing the pan bone of the 

lower jaw, the lower jaw fats, and the middle and inner ears was stored and visualized with 

' graphics packages. The tissues within this volume, which I have labelled the ‘PGR’ region, are 

illustrated in various slice planes in Figure 7.50. In addition to the upper nasal sac model, the 

peribullary air sinuses, which surround the middle and inner ear complexes, and the pterygoid 

sinuses, which extend within the posterior bones of the palate and lateroposteriorly,7 were 

included as separate components in the hearing simulations. As with the nasal sacs, the lower 

sinuses were modeled as pressure release surfaces in the hearing simulations.

Let us begin with a 50 kHz, 0° inverse hearing simulation8 using a model excluding soft

6 On a 3mm grid, the errors at 50 kHz are equivalent to the errors at 100 kHz (X=10 grid increments) on 
the 1.5mm grid. Although some precision is unavoidably lost at lower resolution, there is an enormous 
efficiency tradeoff with grid increment size. At half resolution, the FD propagation programs run 16 times 
faster, while the extrapolation programs run 4 times faster.

7 See, for example, Fraser and Purves (1960).
8 This terminology may be somewhat misleading, since an ‘inverse’ simulation which propagates echoes 

back into the lower jaw tissues is actually a ‘forward’ simulation of the hearing process. Nevertheless, we 
stick with the terminology as initially defined above.
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tissues, but including the skull, the nasal air sacs, and the peribullary and pterygoid sinuses. Fig­

ures 7.51-7.52 illustrate 20% and 13% isosurfaces of energy density within the PGR volume 

(viewed from the right and from above) for this model. As with the forehead simulations using 

the skull and nasal air sacs model, strong reflections off of various portions of the lower jaw and 

skull are apparent, with energy distributed quite broadly over the entire region of the posterior 

and ventral skull and ear complexes. There are no especially distinct maxima near the inner ears.

Now consider what happens when the soft tissues (including the lower jaw fats) are added 

back into the tissue model. Figures 7.53-7.54 illustrate 20% and 13% isosurfaces of PGR energy 

density (viewed from above) for a 50 kHz, 0° inverse skull and soft tissue simulation. Note the 

dramatic shift in the energy distribution from the previous results without soft tissues. The 

acoustic energy now exhibits very clean maxima immediately adjacent both left and right ear 

complexes. Collimation or guiding appears within the jaw fats across and below9 the pan bone 

and back toward the region of the middle and inner ears. For this direction of return, the right 

‘funnel’ of maximum energy density just touches the lateral and ventral section of the periotic 

bone of the right ear complex, while the left ‘funnel’ ends up against the outer middle section of 

the periotic bone of the left ear complex. Differences of this sort in the left-right ear reception 

patterns are expected to play a role in the dolphin’s directional discrimination processes. Mega­

phone and waveguiding behaviors appear to be occuring within the posterior portions of the 

lower jaw fats, while a certain degree of lensing appears to be operating within the larger anterior 

portions. Another clear result (not illustrated here) is that sound is strongly channeled within the 

blubber layer over the inner tissues, confirming earlier studies (Fraser and Purves I960, Norris 

and Harvey 1974). While much work remains to be done, these initial results, in conjunction

9 Besides filling the mandibular canals and extending anteriorly forward of the pan bone of the lower jaw, 
it is clear in the Delphinus CT data that the fat bodies also extend somewhat below the lower jaw pan bone.
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; with those presented above for the melon, resolve most of the conjecture that has surrounded the
(
; acoustic function of the lower jaw fats in dolphins ~  they do indeed channel sound received from

1 the forward direction through the lower jaw to the middle and inner ear complexes.

Finally, we illustrate how much can be learned from the far-field emission patterns gen­

erated by placing sources at the inner ear complexes. The first possibility here is to demonstrate 

the far-field emission patterns of each ear complex which are equivalent (by the reciprocity 

theorem) to the monaural receptivity patterns for each ear. Secondly, since both amplitude and 

phase are computed by the extrapolation programs, we can calculate the amplitude sum or differ­

ence patterns, and the phase difference (timing delay) pattern between the ears. The sum ampli­

tude pattern has relevance to the binaural reception of the dolphin, while the difference amplitude 

and timing delay patterns are relevant to the directional localization mechanisms of the dolphin. 

Below, we include only a few examples from among many important results here.

We first illustrate the far-field patterns (intensity vs. emission angle) of the left and right 

ears using a model which includes only the skull and nasal air sacs (without soft tissues and 

without the peribullary and pterygoid sinuses). Figures 7.55 and 7.56 illustrate these emission 

patterns, which are equivalent to the left and right ear receptivity patterns, at a frequency of 50 

kHz. In these simulations, the densest portion of the periotic bone of each ear was used as the cw 

source region. Note that the reception patterns appear to have very little directivity. Energy is 

spread over all downward directions in a fairly complicated interference pattern, and there is an 

unexpectedly broad backward and upward maximum which is opposite for each ear. The highest 

peaks for both ears, however, lie roughly 31° below the forward horizon, and occur on the same 

side as the ears themselves. These left-right differences will become clearer when we add the 

excluded components back into the model, but they are identifiable even at this stage.
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Let us next add the peribullary and pterygoid sinuses back into the model. Figures 7.57 and 

7.58 illustrate the left and right ear receptivity patterns at 50 kHz for a model including the skull, 

nasal air sacs, and the peribullary and pterygoid sinuses, but without soft tissues. Notice that the 

patterns are now directed almost exclusively downward and forward. This demonstrates that the 

peribullary and pterygoid sinuses of the lower skull and palate contribute quite significantly to the 

formation of downward and forward reception patterns, apparently insulating the ears from most 

other directions of incidence. The importance of these sinuses to the receptivity patterns was 

predicted by Norris (1968). The peaks for both ears again lie quite low (36° and 42°) below the 

forward horizon, and occur on the same side as the ears themselves. While most of the patterns 

are directed downward, note the shifts that occur in the receptivities as one moves through for­

ward horizontal arcs. This differing receptivity of the two ears was also predicted by Norris 

(1968) as a consequence of propagation through the angled pan bones of the lower jaw.

Finally, adding the soft tissues (including the lower jaw fat bodies) back into the model 

causes another dramatic shift in the reception patterns. Figures 7.59 and 7.60 illustrate the left 

and right ear receptivity patterns at 50 kHz for the complete skull, soft tissue, nasal air sacs, peri­

bullary and pterygoid sinuses model. Note that the patterns have become sharply enhanced in the 

forward direction. This enhancement is mostly due to the waveguide, megaphone, and lens 

effects of the lower jaw fat bodies, and explains the enormous evolutionary significance of these 

tissues. Again, note that clear differences exist in the left versus right ear receptivities as one 

moves through forward horizontal arcs. These differences undoubtedly contribute to the 

dolphin’s directional discrimination capabilities. Figure 7.60 is in general agreement with the 

horizontal receptivity measured experimentally by Norris and Harvey (1974) at a point inside the 

fat channel near the right ear complex of a bottlenose dolphin. Figures 7.59 and 7.60 both agree 

roughly with the 60 kHz bottlenose dolphin receptivity pattern measurements of Au and Moore
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(1984) reproduced in Chapter 2, although the vertical patterns are peaked nearly 20-25° lower. In 

summary, all results of the hearing simulations have confirmed the lower jaw hearing hypothesis 

of Norris (1968), and have also revealed the roles of several tissues in the reception process.

I have presented only a few of the results of an initial series of simulations in this chapter. 

The conclusions of this project regarding the mechanisms of delphinid biosonar signal produc­

tion, emission, and reception will be summarized in the next chapter, as well as the enormous 

potential of this very powerful combination of modeling techniques.
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F ig u re  7.1. V isu a liza tio n  o f  iso su r fa c e s  a t  th e  C T  d a ta  b o n e  th r e s h o ld  (3 0 0  H U )  illu s tra tin g  th e  s k u l l  s u r ­
fa c e s  w ith in  th e  reg io n  o f  th e  C T  d a ta se t s e le c te d  f o r  a l l  fo r e h e a d  s im u la tio n s .

F ig u re  7.2. V isu a liza tio n  o f  s k in  a n d  b o n e  iso su r fa c e s  w ith in  th e  reg io n  o f  th e  C T  d a ta se t s e le c te d  f o r  a ll  
fo r e h e a d  s im u la tio n s . T he r ib b e d  a p p e a ra n c e  o f  th e  sk in  su r fa c e  is  a n  a r tifa c t o f  th e  g ra p h ic s  p a c k a g e  th a t  
p r o d u c e d  th e  im a g e .
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F ig u re  7 .3. G r id  se tu p  f o r  th e  inverse  fo r e h e a d  tis su e  s im u la tio n s . T he re g io n  o f  th e  g r id  c o n ta in in g  the  
tissu e  m o d e l is  in d ica ted . N o te  th a t the  f r o n t  f a c e  o f  th e  g r id  is  u sed  a s  a  f l a t  so u rc e  to  e n s o n ify  th e  tissu e  
m odel. T h e  a c o u s tic  e n e rg y  d e n s ity  w ith in  th e  vo lu m e  la b e le d  ‘P S R ’ w a s  c a lc u la te d  b y  th e  s im u la tio n  p r o ­
g ra m s  a n d  v isu a liz e d  w ith  g ra p h ic s  p a cka g es .
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F ig u re  7.4. P ersp ec tiv e  v ie w  o f  a  p a ra sa g itta l C T  d a ta  s l ic e  th rough  th e  c e n te r  o f  the  r ig h t M L D B  co m p lex  
w ith in  th e  P S R  reg ion . S e v e ra l tissue  s tru c tu re s  a re  in d ic a te d  a n d  the  s k u l l  iso su r fa ce  a d d e d  in  o rd e r  to  
p ro v id e  p o s it io n a l re fe re n c e  in  la te r  d ia g ra m s  o f  th e  re su lts  o f  th e  in verse  s im u la tio n s .
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F ig u re  7.5. I l lu s tra tio n  o f  th e  e n e r g y  d e n s ity  in  th e  P SR  y -s l ic e  co n ta in in g  th e  m a x im a  f o r  a  s k u ll-o n ly  5  
d e g r e e  in ve rse  s im u la tio n  a t  a  f r e q u e n c y  o f  2 5  kH z- The s k u ll  iso su r fa ce  a n d  e d g e  s lic e s  w e r e  a d d e d  f o r  
p o s i t io n a l  o r ien ta tio n .

F ig u re  7.6. I llu s tra tio n  o f  th e  e n e rg y  d e n s ity  in  th e  P SR  y -s l ic e  co n ta in in g  th e  m a x im a  f o r  a  s k u ll-o n ly  5  
d e g r e e  in ve rse  s im u la tio n  a t  a  fr e q u e n c y  o f  5 0  kH z. The s k u l l  iso su rfa ce  a n d  e d g e  s lic e s  w e re  a d d e d  f o r  
p o s i t io n a l  o r ien ta tio n .
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F ig u re  7 .7. I l lu s tra tio n  o f  th e  e n e rg y  d en sity  in  th e  P S R  y - s l ic e  c o n ta in in g  th e  m a x im a  f o r  a  s k u ll-o n ly  5  
d e g re e  in v e rse  s im u la tio n  a t  a  fr e q u e n c y  o f  7 5  k H z . T he s k u l l  iso su r fa c e  a n d  e d g e  s l ic e s  w ere  a d d e d  f o r  
p o s i t io n a l  o r ie n ta tio n .

F ig u re  7.8. I llu s tra tio n  o f  th e  e n e rg y  d e n sity  in  th e  P SR  y - s l ic e  c o n ta in in g  th e  m a x im a  f o r  a  s k u ll-o n ly  5  
d e g re e  in v e rse  s im u la tio n  a t  a  fr e q u e n c y  o f  100  kH z. The s k u l l  iso su r fa c e  a n d  e d g e  s lic e s  w ere  a d d e d  f o r  
p o s it io n a l o r ien ta tio n .
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F ig u re  7.9. P o sitio n s o f  th e  'e p ic e n te r s ’ f o r  th e  0° in ve rse  sk u ll-o n ly  s im u la tio n s  a t  f o u r  fr e q u e n c ie s .  Top  
d ia g ra m  is  a  P SR  v iew  o f  th e  m a x im a  p o s it io n s  f r o m  th e  r ig h t s id e ;  b o tto m  d ia g ra m  is  a  P S R  v ie w  f r o m  th e  
f r o n t  side . W hen m u ltip le  m a x im a  exist, th e  s iz e  o f  th e  sy m b o ls  h a v e  b een  s c a le d  to  th e  in te n s ity  o f  th e  
m a x im a  represen ted . T he s k u ll  iso su rfa ce  is  in c lu d e d  f o r  p o s it io n a l o r ien ta tio n .
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F ig u re  7. JO. P o s itio n s  o f  th e  'e p ic e n te rs  ’ f o r  th e  5° in ve rse  sk u ll-o n ly  s im u la tio n s  a t  f o u r  fr e q u e n c ie s . Top  
d ia g ra m  is  a  P S R  v ie w  o f  th e  m a x im a  p o s it io n s  f r o m  th e  r ig h t s id e ; b o tto m  d ia g r a m  is  a  P S R  v ie w  f r o m  th e  
f r o n t  side . W hen  m u ltip le  m a x im a  ex is t, th e  s ize  o f  th e  sy m b o ls  h a v e  b e e n  s c a le d  to  th e  in te n s ity  o f  th e  
m a x im a  re p re se n te d . T h e  s k u ll  iso su r fa c e  is  in c lu d e d  f o r  p o s it io n a l o r ien ta tio n .
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100 kHz -  A 
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F ig u re  7 .11. P o sitio n s o f  th e  'e p ic e n te r s ’ f o r  th e  I f f  in v e rse  s k u ll-o n ly  s im u la tio n s  a t  f o u r  fr e q u e n c ie s .  
T o p  d ia g ra m  is  a  P S R  v iew  o f  th e  m a x im a  p o s it io n s  f r o m  th e  r ig h t s id e ;  b o tto m  d ia g ra m  is  a  P S R  v iew  

f r o m  th e  f r o n t  side. W hen m u ltip le  m a x im a  ex is t, th e  s iz e  o f  th e  s y m b o ls  h a v e  b een  s c a le d  to  th e  in te n s ity  
o f  th e  m a x im a  represen ted . T he s k u ll  iso su r fa c e  is  in c lu d e d  f o r  p o s it io n a l o rien ta tion .
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Thet,Phi=15.86,-1.78; Dl=7.84; freq=25kHz
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F ig u re  7 .12. E x tra p o la te d  fa r - f ie ld  e m is s io n  p a tte rn  a t  2 5  k H z  f o r  th e  sk u ll-o n ly  m o d e l. T h e  so u rc e  p o in t  
w a s the  fo c a l  p o s itio n  o f  h ig h e s t e n e r g y  d e n s ity  o b ta in e d  f r o m  a  25  k H z  5° in ve rse  s im u la tio n  (se e  F ig u re  
7.10). T op  d ia g ra m  p lo ts  in te n s ity  a s  h e ig h t in  a  p e r sp e c tiv e  v iew  o f  th e  fa r - f ie ld  d a ta . B o tto m  d ia g ra m  is  
a  c o n to u r  p lo t  o f  th e  sa m e  da ta , a ls o  p lo t te d  in  th e  g lo b a l eq u a l-a rea  p ro je c tio n . T h e  d ir e c tio n  a n g le s  o f  
th e  em issio n  p e a k  a n d  th e  d ir e c tiv ity  in d e x  f o r  th is  p a tte rn  a r e  ind ica ted .
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Thet,Phi=7.57,4.17; Dl=10.87; freq=50kHz
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Figure 7.13. Extrapolated far-field emission pattern at 50 kHz for the skull-only model. The source point 
was the focal position o f highest energy density obtained from a 50 kHz 5° inverse simulation (see Figure 
7.10). Top diagram plots intensity as height in a perspective view of the far-field data. Bottom diagram is 
a contour plot of the same data, also plotted in the global equal-area projection. The direction angles of 
the emission peak and the directivity index for this pattern are indicated.
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Thet,Phi=6.80,4.14; Dl=12.39; freq=75kHz
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Figure 7.14. Extrapolated far-field emission pattern at 75 kHz fo r  the skull-only model. The source point 
was the focal position of highest energy density obtained from a 75 kHz 5° inverse simulation (see Figure 
7.10). Top diagram plots intensity as height in a perspective view o f the far-field data. Bottom diagram is 
a contour plot of the same data, also plotted in the global equal-area projection. The direction angles of 
the emission peak and the directivity index for this pattern are indicated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

Thet,Phi=5.63I-0.59; Dl=13.30; freq=100kHz
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Figure 7.15. Extrapolated far-field emission pattern at 100 kHz for the skull-only model. The source point 
was the focal position of highest energy density obtained from a 100 kHz 5° inverse simulation (see Figure 
7.10). Top diagram plots intensity as height in a perspective view of the far-field data. Bottom diagram is 
a contour plot of the same data, also plotted in the global equal-area projection. The direction angles o f  
the emission peak and the directivity index for this pattern are indicated.
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100 kHz -- A
75 kHz -- 0
50 kHz -- □
25 kHz -- 0

Figure 7.16. Positions of the 'epicenters' fo r  the 0° inverse skull and air sacs simulations at four frequen­
cies. Top diagram is a PSR view of the maxima positions from the right side; bottom diagram is a PSR 
view from the front side. When multiple maxima exist, the size of the symbols have been scaled to the 
intensity of the maxima represented. The skull isosurface is included for positional orientation.
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100 kHz -  A  
75 kHz -  0  
50 kHz -  □  
25 kHz -  A

Figure 7.17. Positions of the 'epicenters' for the 5° inverse skull and air sacs simulations at four frequen­
cies. Top diagram is a PSR view of the maxima positions from the right side; bottom diagram is a PSR 
view from the front side. When multiple maxima exist, the size o f the symbols have been scaled to the 
intensity o f the maxima represented. The skull isosurface is included for positional orientation.
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100 kHz -  A  
75 kHz ~  O  
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25 kHz -  A

Figure 7.18. Positions of the 'epicenters’ for the 10P inverse skull and air sacs simulations at four frequen­
cies. Top diagram is a PSR view of the maxima positions from the right side; bottom diagram is a PSR 
view from the front side. When multiple maxima exist, the size o f the symbols have been scaled to the 
intensity of the maxima represented The skull isosurface is included for positional orientation.
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Thet,Phi=13.17,-0.74; Dl=8.99; freq=25kHz

ehind

Above

rffiaffiKBSaSSAftl

WtoHV\\uini
mtntXvmTmr

ITOllUBehin

Below

0.1 - - - - -

0.2 ......
0.3
0.4
0.5 — -
0.6 ......
0.7 .......
0.8 .......
0.9 ------

Behind

Above

Behind

ow

Figure 7.19. Extrapolated far-field emission pattern at 25 kHz for the skull and air sacs model. The source 
point was the focal position of highest energy density obtained from a 25 kHz 5° inverse simulation (see 
Figure 7.17). Top diagram plots intensity as height in a perspective view of the far-field data. Bottom 
diagram is a contour plot o f the same data, also plotted in the global equal-area projection. The direction 
angles o f the emission peak and the directivity index for this pattern are indicated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

Thet,Phi=4.08,-3.73; Dl=11.46; freq=50kHz

Behind

Above

Bxn"n<«

k .*  llK lV fitK t I

. ■ ■ »**gnl*«-l'"J
Behin

Below

0.1 - - - - -

0.2 ......
0.3
0.4 — -  
0.5
0.6 ......
0.7 ......
0.8
0.9 ------

Behind

Above

r  •

Behind

ow
Figure 7.20. Extrapolated far-field emission pattern at 50 kHz for the skull and air sacs model. The source 
point was the focal position o f highest energy density obtained from a 50 kHz 5° inverse simulation (see 
Figure 7.17). Top diagram plots intensity as height in a perspective view of the far-field data. Bottom 
diagram is a contour plot of the same data, also plotted in the global equal-area projection. The direction 
angles of the emission peak and the directivity index for this pattern are indicated.
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Figure 7.21. Extrapolated far-field emission pattern at 75 kHz fo r  the skull and air sacs model. The source 
point was the focal position of highest energy density obtained from a 75 kHz 5° inverse simulation (see 
Figure 7.17). Top diagram plots intensity as height in a perspective view of the far-field data. Bottom 
diagram is a contour plot of the same data, also plotted in the global equal-area projection. The direction 
angles o f the emission peak and the directivity index for this pattern are indicated.
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Figure 7.22. Extrapolated far-field emission pattern at 100 kHz fo r  the skull and air sacs model. The 
source point was the focal position o f highest energy density obtained from a 100 kHz 5° inverse simulation 
(see Figure 7.17). Top diagram plots intensity as height in a perspective view of the far-field data. Bottom 
diagram is a contour plot of the same data, also plotted in the global equal-area projection. The direction 
angles of the emission peak and the directivity index for this pattern are indicated.
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Figure 7.23. Visualizations of the isosurface at 50% of the PSR acoustic energy density for a 5° inverse 50 
kHz skull and soft tissue simulation. Top diagram is a view of the PSR from above. Lower diagram is a 
view of the PSR from the right side. The skull isosurface is included for positional orientation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

Figure 7.24. Visualizations of the isosurface at 30% of the PSR acoustic energy density fo ra  5° inverse 50 
kHz skull and soft tissue simulation. Top diagram is a view of the PSR from above. Lower diagram is a 
view of the PSR from the right side. The skull isosurface is included for positional orientation.
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Figure 7.25. Visualizations of the isosurface at 10% of the PSR acoustic energy density fo ra  5° inverse 50 
kHz skull and soft tissue simulation. Top diagram is a view of the PSR from above. Lower diagram is a 
view of the PSR from the right side. The skull isosurface is included for positional orientation.
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Figure 7.26. Visualizations of the isosurface at 50% of the PSR acoustic energy density for a 5° inverse 75 
kHz skull and soft tissue simulation. Top diagram is a view of the PSR from above. Lower diagram is a 
view of the PSR from the right side. The skull isosurface is included for positional orientation.
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Figure 7.27. Visualizations of the isosurface at 20% of the PSR acoustic energy density fo r  a 5° inverse 75 
kHz skull and soft tissue simulation. Top diagram is a view of the PSR from above. Lower diagram is a 
view of the PSR from the right side. The skull isosurface is included for positional orientation.

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 7.28. Visualizations of the isosurface at 10% of the PSR acoustic energy density for a 5° inverse 75 
kHz skull and soft tissue simulation. Top diagram is a view of the PSR from above. Lower diagram is a 
view of the PSR from the right side. The skull isosurface is included for positional orientation.
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Figure 7.29. Positions of the ‘epicenters' from the 0° inverse skull and soft tissue simulations at four fre­
quencies. Top diagram is a PSR view of the maxima positions from the right side; bottom diagram is a 
PSR view from the front side. When multiple maxima exist, the size of the symbols have been scaled to the 
intensity o f the maxima represented. The skull isosurface is included for positional orientation.
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Figure 7.30. Positions of the ‘epicenters' from the 5° inverse skull and soft tissue simulations at four fre­
quencies. Top diagram is a PSR view of the maxima positions from the right side; bottom diagram is a 
PSR view from the front side. When multiple maxima exist, the size o f the symbols have been scaled to the 
intensity of the maxima represented. The skull isosurface is included fo r  positional orientation.
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Figure 7.31. Positions of the 'epicenters’ from the I CP inverse skull and soft tissue simulations at four fre­
quencies. Top diagram is a PSR view of the maxima positions from the right side; bottom diagram is a 
PSR view from the front side. When multiple maxima exist, the size of the symbols have been scaled to the 
intensity o f the maxima represented. The skull isosurface is included for positional orientation.
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Figure 7.32. Extrapolated far-field emission pattern at 25 kHz for the skull and soft tissue model. The 
source point was the focal position of highest energy density obtained from a 25 kHz 5° inverse simulation 
(see Figure 7.30). Top diagram plots intensity as height in a perspective view o f the far-field data. Bottom 
diagram is a contour plot o f the same data, also plotted in the global equal-area projection. The direction 
angles o f the emission peak and the directivity index for this pattern are indicated.
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Figure 7.33. Extrapolated far-field emission pattern at 50 kHz for the skull and soft tissue model. The 
source point was the focal position of highest energy density obtained from a 50 kHz 5° inverse simulation 
(see Figure 7.30). Top diagram plots intensity as height in a perspective view of the far-field data. Bottom 
diagram is a contour plot of the same data, also plotted in the global equal-area projection. The direction 
angles of the emission peak and the directivity index for this pattern are indicated.
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Figure 7.34. Extrapolated far-field emission pattern at 75 kHz for the skull and soft tissue model. The 
source point was the focal position of highest energy density obtained from a 75 kHz 5° inverse simulation 
(see Figure 7.30). Top diagram plots intensity as height in a perspective view o f the far-field data. Bottom 
diagram is a contour plot of the same data, also plotted in the global equal-area projection. The direction 
angles of the emission peak and the directivity index for this pattern are indicated.
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Figure 7.35. Extrapolated far-field emission pattern at 100 kHz for the skull and soft tissue model. The 
source point was the focal position of highest energy density obtained from a 100 kHz 5° inverse simulation 
(see Figure 7.30). Top diagram plots intensity as height in a perspective view of the far-field data. Bottom 
diagram is a contour plot of the same data, also plotted in the global equal-area projection. The direction 
angles o f the emission peak and the directivity index for this pattern are indicated.
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Figure 7.36. Visualizations of the isosurface at 50% of the PSR acoustic energy density for a 5° inverse 50 
kHz skull, air sacs, and soft tissue simulation. Top diagram is a view of the PSR from above. Lower 
diagram is a view of the PSR from the right side. The skull isosurface is included for positional orienta­
tion.
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Figure 7.37. Visualizations of the isosurface at 30% of the PSR acoustic energy density fo ra  5° inverse 50 
kHz skull, air sacs, and soft tissue simulation. Top diagram is a view of the PSR from above. Lower 
diagram is a view of the PSR from the right side. The skull isosurface is included for positional orienta­
tion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I

142

Figure 7.38. Visualizations of the isosurface at 10% of the PSR acoustic energy density for a 5° inverse 50 
kHz skull, air sacs, and soft tissue simulation. Top diagram is a view of the PSR from above. Lower 
diagram is a view of the PSR from the right side. The skull isosurface is included for positional orienta­
tion.
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Figure 7.39. Visualizations o f the isosurface at 50% of the PSR acoustic energy density fo ra  5° inverse 75 
kHz skull, air sacs, and soft tissue simulation. Top diagram is a view of the PSR from above. Lower 
diagram is a view of the PSR from the right side. The skull isosurface is included for positional orienta­
tion.
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Figure 7.40. Visualizations of the isosurface at 20% of the PSR acoustic energy density fo ra  5° inverse 75 
kHz skull, air sacs, and soft tissue simulation. Top diagram is a view of the PSR from above. Lower 
diagram is a view of the PSR from the right side. The skull isosurface is included for positional orienta­
tion.
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F ig u re  7 .41. V isu a liza tio n s o f  th e  iso su r fa c e  a t  1 0 %  o f  th e  PSR  a c o u s tic  e n e rg y  d e n s ity  f o r  a  5° in v e rse  75  
kHz sku ll, a ir  sacs, a n d  so ft  tis su e  s im u la tio n . T o p  d ia g ra m  is  a  v iew  o f  th e  P S R  f r o m  a b o v e . L o w e r  
d ia g ra m  is  a  v iew  o f  th e  P S R  f r o m  th e  r ig h t  s id e . T he sk u ll isosurface  is  in c lu d e d  f o r  p o s i t io n a l  o r ie n ta ­
tion .
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Figure 7.42. Positions o f the 'epicenters' from the CP inverse skull, air sacs, and soft tissue simulations at 
four frequencies. Top diagram is a PSR view of the maxima positions from the right side; bottom diagram 
is a PSR view from the front side. When multiple maxima exist, the size of the symbols have been scaled to 
the intensity of the maxima represented. The skull isosurface is included for positional orientation.
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Figure 7.43. Positions of the ‘epicenters' from the 5° inverse skull, air sacs, and soft tissue simulations at 
four frequencies. Top diagram is a PSR view of the maxima positions from the right side; bottom diagram 
is a PSR view from the front side. When multiple maxima exist, the size of the symbols have been scaled to 
the intensity of the maxima represented. The skull isosurface is included for positional orientation.
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Figure 7.44. Positions of the 'epicenters’ from the 1CP inverse skull, air sacs, and soft tissue simulations at 
four frequencies. Top diagram is a PSR view of the maxima positions from the right side; bottom diagram 
is a PSR view from the front side. When multiple maxima exist, the size of the symbols have been scaled to 
the intensity of the maxima represented The skull isosurface is included for positional orientation.
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Figure 7.45. Extrapolated far-field emission pattern at 25 kHz for the skull, air sacs, and soft tissue model. 
The source point was the focal position of highest energy density obtained from a 25 kHz 5° inverse simula­
tion (see Figure 7.43). Top diagram plots intensity as height in a perspective view of the far-field data. 
Bottom diagram is a contour plot o f the same data, also plotted in the global equal-area projection. The 
direction angles o f the emission peak and the directivity index for this pattern are indicated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



150

Thet,Phi=4.20,-7.91; Dl=13.77; freq=50kHz

Behind

Above

amauiammuguiiuimmm

Below

0.1 - - - - -

0.2 ......
0.3
0.4
0.5
0.6 ......
0.7 .......
0.8
0.9 ------

Behind

Above

Behind

Below

Figure 7.46. Extrapolated far-field emission pattern at 50 kHz for the skull, air sacs, and soft tissue model. 
The source point was the focal position of highest energy density obtained from a 50 kHz 5° inverse simula­
tion (see Figure 7.43). Top diagram plots intensity as height in a perspective view of the far-field data. 
Bottom diagram is a contour plot o f the same data, also plotted in the global equal-area projection. The 
direction angles o f the emission peak and the directivity index for this pattern are indicated.
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Figure 7.47. Extrapolated far-field emission pattern at 75 kHz for the skull, air sacs, and soft tissue model. 
The source point was the focal position of highest energy density obtained from a 75 kHz 5° inverse simula­
tion (see Figure 7.43). Top diagram plots intensity as height in a perspective view o f the far-field data. 
Bottom diagram is a contour plot of the same data, also plotted in the global equal-area projection. The 
direction angles of the emission peak and the directivity index for this pattern are indicated.
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Figure 7.48. Extrapolated far-field emission pattern at 100 kHz for the skull, air sacs, and soft tissue 
model. The source point was the focal position o f highest energy density obtained from a 100 kHz 5° 
inverse simulation (see Figure 7.43). Top diagram plots intensity as height in a perspective view o f the 
far-field data. Bottom diagram is a contour plot o f the same data, also plotted in the global equal-area 
projection. The direction angles o f the emission peak and the directivity index for this pattern are indi­
cated.
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Figure 7.49. Grid setup for the inverse hearing simulations. The region o f the grid containing the tissue 
model is indicated. Note that the front face of the grid is again used as a flat source to ensonify the tissue 
model. The acoustic energy density within the volume labeled 'PGR ’ was calculated by the simulation pro­
grams and visualized with graphics packages.
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Figure 7.50. Tissues within the PGR region illustrated by several slice planes. Several structures are indi­
cated to enable the reader to establish positional reference in later diagrams o f the results o f the inverse 
hearing simulations.
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Figure 7.51. Visualizations of the isosurface at 20% of the PGR acoustic energy density for a 50 kHz 0° 
inverse hearing simulation using a model including the skull, the nasal air sacs, and the peribullary and 
pterygoid sinuses (but without soft tissue). Top diagram is a view of the PGR from above. Lower diagram 
is a view of the PGR from the right side.
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Figure 7.52. Visualizations of the isosurface at 13% of the PGR acoustic energy density for a 50 kHz CP 
inverse hearing simulation using a model including the skull, the nasal air sacs, and the peribullary and 
pterygoid sinuses (but without soft tissue). Top diagram is a view of the PGR from above. Lower diagram 
is a view of the PGR from the right side.
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Figure 7.53. Visualizations of the isosurface at 20% of the PGR acoustic energy density for a 50 kHz 0° 
inverse hearing simulation using the complete model including the skull, soft tissues, nasal air sacs, and the 
peribullary and pterygoid sinuses. Top diagram is a view of the PGR from above. Lower diagram is a 
view o f the PGR from the right side.
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Figure 7.54. Visualizations of the isosurface at 13% of the PGR acoustic energy density for a 50 kHz CP 
inverse hearing simulation using the complete model including the skull, soft tissues, nasal air sacs, and the 
peribullary and pterygoid sinuses. Top diagram is a view of the PGR from above. Lower diagram is a 
view of the PGR from the right side.
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Figure 7.55. Extrapolated far-field emission (receptivity) pattern at 50 kHz for a source placed within the 
LEFT inner ear for a model including only the skull and the nasal air sacs (without soft tissue and without 
the peribullary and pterygoid sinuses). Top diagram plots intensity as height in a perspective view o f the 
far-field data. Bottom diagram is a contour plot of the same data, also plotted in the global equal-area 
projection. The direction angles o f the peak and the directivity index for the pattern are indicated.
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Figure 7.56. Extrapolated far-field emission (receptivity) pattern at 50 kHz for a source placed within the 
RIGHT inner ear for a model including only the skull and the nasal air sacs (without soft tissue and without 
the peribullary and pterygoid sinuses). Top diagram plots intensity as height in a perspective view o f the 
far-field data. Bottom diagram is a contour plot o f the same data, also plotted in the global equal-area 
projection. The direction angles of the peak and the directivity index for the pattern are indicated.
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Figure 7.57. Extrapolated far-field emission (receptivity) pattern at 50 kHz for a source placed within the 
LEFT inner ear for a model including the skull, the nasal air sacs, and the peribullary and pterygoid 
sinuses (but without soft tissue). Top diagram plots intensity as height in a perspective view o f the far-field 
data. Bottom diagram is a contour plot o f the same data, also plotted in the global equal-area projection. 
The direction angles of the emission peak and the directivity index for the pattern are indicated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



161

Right Ear; Thet,Phi=-35.80,-13.21; Dl=9.57; freq=50kHz

0.1
0.2
0.3

Behind

Above

m

Behin

Below

Above
0.4
0.5
0.6
0.7
0.8
0.9

Behind

Below

Behind

Figure 7.58. Extrapolated far-field emission (receptivity) pattern at 50 kHz for a source placed within the 
RIGHT inner ear for a model including the skull, the nasal air sacs, and the peribullary and pterygoid 
sinuses (but without soft tissue). Top diagram plots intensity as height in a perspective view of the far-field 
data. Bottom diagram is a contour plot o f the same data, also plotted in the global equal-area projection. 
The direction angles of the emission peak and the directivity index for the pattern are indicated.
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Figure 7.59. Extrapolated far-field emission (receptivity) pattern at 50 kHz for a source placed within the 
LEFT inner ear for the full model including the skull, soft tissue, nasal air sacs, and the peribullary and 
pterygoid sinuses. Top diagram plots intensity as height in a perspective view of the far-field data. Bottom 
diagram is a contour plot of the same data, also plotted in the global equal-area projection. The direction 
angles of the emission peak and the directivity index fo r the pattern are indicated.
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Figure 7.60. Extrapolated far-field emission (receptivity) pattern at 50 kHz for a source placed within the 
RIGHT inner ear for the full model including the skull, soft tissue, nasal air sacs, and the peribullary and 
pterygoid sinuses. Top diagram plots intensity as height in a perspective view o f the far-field data. Bottom 
diagram is a contour plot o f the same data, also plotted in the global equal-area projection. The direction 
angles of the emission peak and the directivity index for the pattern are indicated.
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Chapter 8. Summary of Conclusions

In this chapter we summarize the conclusions of the project concerning the mechanisms of 

biosonar signal production, emission, and reception. We also discuss the potential of the metho­

dology developed here for future applications.

The most far-reaching result of this project is that the acoustical parameters of soft biologi­

cal tissues can be accurately modeled from x-ray CT data. This modeling technique applied in 

conjunction with highly accurate methods of 3-D numerical wave propagation constitutes an 

extraordinarily fruitful approach to the investigation of odontocete biosonar mechanisms.

Strong evidence for the tissue location of the source of biosonar signals in the common dol­

phin has been presented. Simulations with the full model have implicated a region slightly 

Clem) below the center of the right MLDB complex as the most plausible ‘epicenter’ of the 

dolphin’s biosonar clicks. Note that this location may explain the observation of Romanenko 

(1973) that hydrophones placed on the skin surface above the right vestibular sac picked up 

almost no biosonar signals, while hydrophones placed just across the blowhole above the left ves­

tibular sac picked up significant signals. Propagation paths between the right MLDB and the skin 

surface above the left vestibular sac appear to exist in the Delphinus data, while no direct paths 

exist between the right MLDB and the skin surface above the right vestibular sac. Several previ­

ously proposed source locations are contraindicated by the absence of inverse simulation foci at 

the proposed sites. In addition, while time and space limitations prevented their inclusion here, 

forward extrapolations of the far-field produced by sources at the proposed locations have demon­

strated their nonviability. The contraindicated sites include the right and left nasal plugs, the lar­

ynx, and the left MLDB complex. In addition, we have noted that the focal positions cluster 

together for vertical return angles between 0 and +5 degrees. This suggests that the animal may
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emit a pattern peaked in this vertical range.
i

The contributions of various tissues to the focal characteristics of the emitted patterns have 

been demonstrated. We have demonstrated the profound reflective focal behavior of the skull 

geometry by itself, corroborating many earlier studies (Evans et al. 1964, Dubrovskiy and 

Zaslavskiy 1975, and Romanenko 1973). The skull certainly plays the predominant role in 3-D 

beam formation.

A conservative model of the air sacs has been shown to to be important in the forward 

reflection of energy projected upward, sideways, and downward by the skull alone, although it 

also contributes slightly to narrowing of the main forward lobe. Addition of the air sacs into the 

tissue model always improves the patterns and raises the directivity indexes, though the impor­

tance of the contribution varies with frequency.

Remarkably, we have also demonstrated that the melon and other soft tissues of the fore­

head play a far more significant role in beam formation than was indicated by previous simula­

tions. While this role has been hypothesized by several investigators, demonstration of the mag­

nitude of the contribution and the underlying mechanisms remain a significant achievement of 

this thesis. The melon’s most important effect appears to be narrowing of the main forward lobe, 

although the exact contribution varies with frequency. The melon also contributes to collection 

of emitted energy into the main forward lobe, as do the air sacs. The experimental result of 

Romanenko (1973) that beams measured with the whole head are roughly half as wide as the 

beams measured with the skull alone has been corroborated for frequencies of 75 kHz and higher. 

The melon’s effect on vertical beam widths is smaller. In addition, we have illustrated the 

detailed density, velocity, and impedance structure of the melon and the spatial patterns of sound 

propagation through it to reveal the mechanisms which produce its effects. The posterior throat
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of the melon has been shown to operate as a waveguide and a megaphone, while the larger for­

ward lobe of the melon has been shown to operate as a lens and an impedance matching device in 

the biosonar signal emission process.

From the structure of the nasal passage region in delphinids, a physical model has been pro­

posed (see Chapter 3) which, in conjunction with the demonstrated behavior of the melon, may 

largely explain the observed temporal and spatial characteristics of delphinid (and perhaps all 

odontocete) biosonar emission fields. The analogy of a damped resonator driven by an impulsive 

mechanism has been proposed for the source region in dolphins, with projection of the ensuing 

signal aided by the waveguide and megaphone effects of the throat of the melon, with focusing 

and transmission into seawater aided by the lensing and impedance matching effects of the 

remaining melon. While several avenues of rigorous investigation with this model can be pur­

sued, Chapter 3 has provided simplified equations for the expected behavior of such a source 

region. In addition, the author has offered a conjectured mechanism for the dolphin’s production 

of the explosive sounds referred to as ‘jaw pops’ (see Appendix 1).

We have also demonstrated that the fats of the lower jaw act as efficient waveguides chan­

neling the received acoustic energy back to the middle/inner ear complexes in the hearing pro­

cess, confirming and explaining several aspects of the lower jaw hearing hypothesis. The same 

mechanisms operating in the melon have been shown to operate (in reverse order) in signal recep­

tion through the lower jaw fat bodies.

We have also computed and illustrated the individual reception patterns for the left and 

right ear complexes in the common dolphin. In the full model, we have seen that the reception 

patterns of the left and right ears are peaked at about -2 2 ° and -15° in vertical angle, respectively. 

Both are well below the main lobe of the illustrated emission patterns of the forehead models. In
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the horizontal direction, the left and right ear patterns are peaked at about +7° and -9°, respec-
i

; tively. We have been able to confirm that differences in the left-right patterns exist which 

undoubtedly contribute to the directional hearing capabilities of the dolphin. By comparing these 

reception patterns with those produced by the model without soft tissues, we have also shown that 

the jaw fats significantly improve the reception patterns in the forward direction. In addition, we 

have demonstrated that the peribullary and pterygoid sinuses of the lower skull and palate contri­

bute quite significantly to the formation of downward and forward reception patterns, apparently 

insulating the ears from most other directions of incidence. The importance of these sinuses to 

the receptivity patterns was predicted by Norris (1968).

Clearly, these initial simulations have only scratched the surface of the potential applica­

tions to investigation of the dolphin’s hearing processes. For example, while not illustrated in 

this thesis, it is quite easy to obtain the time delay between the left and right inner ear complexes 

as a function of the direction of reception at any fixed frequency from the complex receptivity. 

Timing delay diagrams will be included, along with many other important results, in later publi­

cations.

Available funding and time imposed severe limitations on how far the author could carry 

his applications of these techniques - a preliminary investigation of a single delphinid species has 

been achieved. The generality of the above conclusions about the biosonar system of Delphinus 

delphis are limited somewhat by the large variation in odontocete forehead morphology. How­

ever, the common dolphin is a good representative of the typical forehead anatomy of members 

of the family Delphinidae having an intermediate-to-moderate value of soft tissue asymmetry 

(Cranford 1992). It is therefore expected that similar if not identical mechanisms operate in all 

delphinids exhibiting intermediate-to-moderate soft tissue asymmetry (including Tursiops trun-
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catus). It is also reasonable to expect that similar mechanisms operate in all odontocetes possess­

ing forehead and lower jaw structures of ‘acoustic fat’ resembling the common dolphin.

Obviously, the techniques utilized in this thesis are directly applicable to investigation of all 

x-ray CT scanned odontocete species. This project has proved the capability of its methodology 

for accurate modeling of biosonar emission and reception. Application of the same techniques to 

odontocete species with better documented biosonar fields (i.e., Tursiops truncatus, Delphinap- 

terus leucus, Pseudorca crasidens) would allow closer comparisons with experimental data and 

tests of the generality of the mechanisms discussed in this thesis.

In addition, possibilities exist for investigation of many more questions than have been 

addressed here. For example, the author suggested several years ago that simulation of sound 

propagation into the inner ears and cochlea of dolphins is feasible. Such a project might utilize 

the sound field of larger scale simulations of the type conducted in this thesis as input to more 

detailed elastic simulations. Similar techniques are also applicable in studies of audition in other 

marine mammals including baleen whales, pinnipeds, and the phocid seals.

Another research direction holding extraordinary potential stemming from this thesis is 

extension of the methods for acoustical modeling of biological tissue from x-ray CT data 

presented in Chapter 6 . Higher order mappings are certainly possible, and may provide levels of 

precision adaquate for medical applications. For example, measurement of only a few tissue 

samples throughout the soft tissue range could provide calibration points for higher order density 

and velocity mappings. Or, consider the following. This thesis has shown how to obtain an 

acoustical model of biological tissues accurate to within a few percent for both density and velo­

city. Comparing the results of simulations using such a model with ultrasound measurements 

through the scanned tissues can yield refinement of the model (as is routinely done in seismoiogic
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modeling). Because one is starting with a remarkably good ‘geologic’ model here, the conver­

gence process should be quite rapid. Study of the converged model should yield information on 

how to improve the original mappings. Other possibilities here include the computer design of 

ultrasound equipment, or computer-aided ultrasound image enhancement.

Furthermore, applications of these methods are not limited to biological systems. The 

author has demonstrated the extraordinary usefulness of similar techniques in the design and per­

formance analyses of electro-acoustic systems through consulting work with acoustic component 

manufacturers.

Finally, the author is awed by the opportunities for both research and education that have 

resulted from the application of 3-D visualization software to medical scanning data. The oppor­

tunity to examine the internal anatomy of a complex organism repeatedly in an unlimited variety 

of representations continues to be a deeply enriching experience. Biology departments may want 

to consider the potential benefits of providing student access to workstations with high quality 

graphics packages along with several varieties of medical scan data.
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Appendix 1: A Conjecture for the ‘Jaw-pop’ Source Mechanism

Although this thesis is mostly concerned with the mechanisms underlying the emission and 

reception of echolocation pulses, dolphins also produce a wide variety of other sounds. One 

striking example is a loud explosive sound commonly referred to as a ‘bang’ or ‘jaw-pop’ that is 

often associated with aggressive behavior in captive animals. It has been hypothesized that these 

loud sounds may be used by a dolphin to momentarily stun or disorient their prey (Norris and 

Mohl 1983), thus permitting easier capture.

In 1991, Ted Cranford succeeded in training the Pacific White-sided dolphins 

(Lagenorhyrtchus obliquidens) at the Long Marine Laboratory of the University of California, 

Santa Cruz, to direct jaw-pops at a hydrophone suspended in their tank. Ted video taped the 

animals producing their bangs along with an oscilloscope display of the hydrophone output. In 

February 1991, after viewing some of these tapes, I personally communicated to Ted a conjec­

tured mechanism for how the Lags could be producing their jaw-pops. This conjecture, as com­

municated at the time, went as follows:

Ken Norris mentioned that underwater explosions used to be made by breaking glass 
spheres deep in the ocean, right? What if the Lags were rapidly sucking air OUT of 
an inflated spiracular cavity instead of forcing air up through the cavity (as they nor­
mally do when producing echolocation clicks)? The tissue around the cavity would 
build up inward momentum as the air exited and the cavity closed, and should be 
enough to produce a huge slam.

Can the Lags be yanking air out of the nares rapidly enough to collapse the spiracular 
cavity? Is that why a ripple of muscle/fat moves down the underside of their throats 
just before the bangs occur? [Does this ripple initiate a rapid withdrawal of their lar­
ynx from the nares? See next paragraph.]. This process would not have to be very 
rapid on the time scale of the bangs — the energy of the slapping tissue would be many 
times more than necessary to produce the bang. Exactly like quickly sucking the air 
out of a balloon underwater. Or analogous to slapping your hands together underwa­
ter on either side of an air-filled balloon — the air allows your hands to clap together 
rapidly, while the ‘clap’ propagates directly through the palms and out into the water.
This mechanism of sound production would be similar to the hypothesized MLDB 
source mechanism except: 1 ) the larger mass of tissue that is in motion; 2 ) the time
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scale of the clap; and 3) the motion is not driven by pressurized air passing through 
‘lip’ structures.

[We (humans) are able to produce glottal clucks by dropping the larynx and opening up our 

throats. Try speaking the word "gall" while touching your Adam’s apple. Then over-emphasize 

the motion involved in pronouncing this word in order to produce a glottal cluck. Notice that 

your tongue also moves backward when the larynx is dropped. The Lags might be using a similar 

motion to suck air rapidly out of a widely opened spiracular cavity. This may also explain why a 

muscular ripple moves down the underside of their throats just before the bangs occur.]
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Appendix 2: Density, Velocity, and Impedance Structure 

of the Melon of the Common Dolphin

In this appendix, we examine the acoustic characteristics of the forehead tissues of a dol­

phin with an accuracy that has never been possible before. The soft tissue CT-to-density and 

CT-to-velocity mappings presented in Chapter 6  allow us to illustrate the detailed density, velo­

city, and impedance structure of the melon of the common dolphin, Delphinus delphis. With this 

new information, we can develop an understanding of the mechanisms underlying the acoustic 

behavior of the unique fats of the delphinid forehead and lower jaw.

It has long been known that the melon constitutes an inhomogeneous impedance structure 

(see Chapter 2). In 1957, Forrest Wood (1964) hypothesized that the melon tissue in dolphins 

may serve as an acoustic impedance matching device coupling internally generated sound to the 

surrounding water. Such a coupling would minimize reflective losses and protect the ears from 

spurious echoes within the dolphin’s own tissues of internally produced sound. Wood also specu­

lated that the melon may act as an acoustic lens to focus the sound into a narrow beam. Let us 

keep Wood’s hypotheses in mind, as well as the waveguide and megaphone principles discussed 

in Chapter 3, as we examine the following diagrams.

Figures A2.1, A2.2, and A2.3 illustrate the density, velocity, and impedance structures, 

respectively, in a 2-D parasagittal slice through the right MLDB complex of the common dol­

phin. The perspective in these diagrams is looking down from in front of the dolphin at the 

melon skin-seawater interface. This sectional plane also passes roughly through the axis of the 

melon. Height in each of these plots indicates the specified quantity relative to the value for sea­

water (density 1.03g/cc, velocity 1500m/s, acoustic impedance 1.55xl06  kg m- 2  s-1). The quanti­

ties for bone have been truncated at the value 2 . 0  in all diagrams in order to better illustrate the
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soft tissue range of values. Each of these diagrams is worthy of careful study.

Note that both the density and the velocity (hence also the impedance) of the melon- 

seawater interface region is quite well matched to seawater values, corroborating Wood’s 

matched impedance hypothesis for the melon. In addition, the velocity structure exhibits a broad 

depression in the forward melon, grading back to form a relatively sharp channel through the pos­

terior throat of the melon. In the author’s opinion, the broad forward depression appears most 

closely analogous to a lens structure, while the posterior velocity channel appears more closely 

analogous to a waveguide which has been flared so as to behave additionally as a megaphone. 

The velocity distribution pictured in Figure A2.2 certainly corroborates Wood’s melon lensing 

hypothesis, and suggests additional physical mechanisms for the posterior melon throat.

One way of visualizing the 3-D configuration of the melon tissue inside of the dolphin’s 

forehead is illustrated in Figure A2.4. Isosurfaces have been plotted at the CT data bone thres­

hold and at a CT value for an outer layer of the melon. Figure A2.4 thus represents the melon tis­

sue in relation to the skull. Sections of the skin surface are also visible (mainly on the far side of 

the forehead) as well as portions of the vestibular sacs below the blowhole. Note the narrowing 

of the posterior melon as it approaches the region of the right MLDB. The data volume pictured 

here is the same region of the CT data that was used in all of the forehead tissue simulations 

(compare Figures 7.1 and 7.2).
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Figure A2.J. Density of melon tissues in a 2-D parasagittal slice through the right MLDB complex o f the 
common dolphin. Height indicates density relative to seawater (1.03g/cc). Bone densities have been trun­
cated at the value 2.0 to better illustrate the soft tissue density range.
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Figure A2.2. Acoustic velocity of melon tissues in a 2-D parasagittal slice through the right MLDB com­
plex of the common dolphin. Height indicates velocity relative to seawater (1500m/s). Bone velocity has 
been truncated at the value 2.0 to better illustrate the soft tissue velocity range.
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Figure A2.3. Acoustic impedance of melon tissues in a 2-D parasagittal slice through the right MLDB 
complex of the common dolphin. Height indicates impedance relative to seawater (7 .5Jxl06 kg m~2 s~x). 
Bone impedance has been truncated at the value 2.0 to better illustrate the soft tissue impedance range.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure A2.4. Visualization o f the 3-D configuration of the melon inside of the dolphin's forehead. Isosur­
faces are plotted at the CT data bone threshold and at a CT value for an outer layer of the melon. Sections 
of the skin surface are also visible (mainly on the far side o f the forehead) as well as portions o f the vesti­
bular sacs below the blowhole. The data volume pictured here is the same region of the full CT dataset 
that was used in all o f the forehead tissue simulations (compare Figures 7.1-7.2).
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