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PREFACE 
MANY observed effects in semiconducting materials are determined in 
part by the densities of electrons and holes in the various bands and 
levels. A carrier density cannot of course be measured directly; the 
magnitude of an observed quantity is always concerned with other 
attributes of carriers as well as their density. (Thus electrical conduc­
tivity depends on the densities of electrons and on their mobilities.) 
Several recently published books (e.g. 1953:4, 1958:9, 1960:19) dwell 
at length on the relationships between carrier densities and transport 
effects, and the subject matter of this volume is complementary to that 
topic. 

The book is divided into two parts. Part I , of three chapters, provides 
introductory material on the electron theory of solids and then dis­
cusses carrier statistics for semiconductors in thermal equilibrium. Of 
course a solid cannot be in true thermodynamic equilibrium if any 
electrical current is passed; but when currents are reasonably small 
the distribution function is but little perturbed, and the carrier distri­
bution for such a "quasi-equilibrium" condition is inappreciably 
different from that of thermal equilibrium itself. Thus the results of 
Part I are not invalidated when the properties of a semiconductor are 
measured using small current densities. 

The seven chapters of Part I I consider non-equilibrium statistics, for 
semiconductors with appreciable excess carrier densities. The various 
kinds of recombination mechanism are considered in turn, and the 
consequences discussed for steady state and transient situations. No 
attempt is made to expose the special problems of semiconductor con­
tacts and junctions, since these have been treated so extensively in other 
recent volumes (e.g. 1957:32, 1960:17). 

The subject matter of this book is deliberately restricted in scope so 
that the volume may be of maximum value to scientists with an active 
interest in the basic properties of semiconducting materials. The intro­
ductory material of Chapter 1 should help to make the book useful to 
those who are approaching semiconductors as a new field of 

xi 



xii PREFACE 

specialization. Appreciation of Chapter 1 is aided by some awareness 
of basic quantum-mechanical principles, but a detailed knowledge 
of that subject is certainly not necessary in order to make use of 
the results presented here. 

Dr. Henisch first suggested the writing of this book in 1952, and I 
have been conscious since that time of his encouragement. Enough is 
now known about recombination processes to permit a hope that this 
volume might remain useful for some time. 

I should like to express my appreciation of the help given by a 
number of other colleagues and friends. My first interest in thermal 
equilibrium carrier statistics was stimulated by Mr. G. King, Mr. T. R. 
Scott and Mr. A. C. Sim. I t is a pleasure to acknowledge the 
encouragement given by Dr. V. W. Bearinger and Dr. F. J . Larsen to 
basic recombination studies at Honeywell. In both the experimental 
and theoretical aspects of these studies I have enjoyed a close collabora­
tion with Dr. K. C. Nomura, and many of the ideas in Chapters 8 and 
10 were developed jointly with Dr. Nomura. His comments on this 
manuscript, and those of Dr. S. R. Morrison Dr. A. Nussbaum, and 
Professor P. T. Lansberg have helped in the elimination of many errors 
and obscurities. The difficult task of typing the manuscript has been 
undertaken by Mrs. C. Lehr, and that of preparing the figures by Mrs. V. 
Squier; hearty thanks are due to both. My wife, June Blakemore, has 
been forced into the role of an observer as the writing process has 
enveloped her husband's existence for many months; her faith and 
constant encouragement have indeed been appreciated. 

J . S. B. 
Hopkins, Minnesota, U.S.A. 



Chapter 1 

BASIC CONCEPTS IN THE ELECTRON THEORY 
OF SOLIDS 

1.1 CLASSICAL THEORIES OF METALLIC CONDUCTION 

CONSIDERABLE insight into the nature and behavior of semiconductors 
(and metals) comes from an examination of the band theory of solids. 
This theory can be regarded as arising naturally from the broadening 
of the discrete quantized energy levels of an isolated atom, but it is also 
useful to observe the development of band theory from the so-called 
collective electron point of view. We accordingly start with a review of 
the classical and quantized free electron models of metallic conduction. 
This discussion serves to introduce in historical sequence the important 
ideas which led to the band model and to an explanation of the dis­
tinction between metals, semiconductors and insulators. 

1.1.1 DRUDE'S MODEL 

Not long after the discovery of the electron, the suggestion was first 
made that the outer electrons of each atom in a metal might not be 
tightly bound to their individual atomic cores, but might rather form a 
free electron gas, collectively owned by the entire set of atoms which 
make up a crystal. That electrons should be free to move anywhere in 
a crystal seems reasonable in view of the validity of Ohm's law; and 
that their density might be comparable with that of atoms is indicated 
by the very large electrical and thermal conductivities of metals. 
Drude (1904:1) investigated the consequences of a simple model in 
which all the free electrons moved with a classical momentum 
p = (3mokT)1/2 and were presumed to be scattered in random directions 
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4 THE ELECTRON T H E O R Y OF SOLIDS 

by the positive ion cores. The model did not have any features from 
which the absolute strength of this scattering could be determined, thus 
conductivities could be quoted only in relative terms. Drude's model 
did, however, give a result for the ratio of thermal to electrical con­
ductivities : 

; = 3w (11U) 

which was in surprisingly good agreement with the experimental law 
of Wiedemann and Franz (1853:1). 

1.1.2 LORENTZ'S MODEL 

Attempts were made by Lorentz (summarized in 1909:1) to improve 
upon Drude's model, particularly in recognizing that not all free 
electrons will move with the same speed and momentum. Of course, 
from general thermodynamic principles it is evident that if a system 
contains a large number of particles (such as electrons), then the par­
ticles will normally tend to find positions of lowest energy. At the same 
time, for any temperature other than absolute zero, particles are con­
tinually receiving and emitting energy in a way which tends to oppose 
the process of settling towards minimum energy. 

Lorentz assumed that electron velocities and momenta varied in 
accordance with the classical Maxwell-Boltzmann distribution law. 
For a classical population of JV free electrons in thermal equilibrium, 
the number with momenta in an infinitesimal range dp is 

4TTJV/>2 Γ -p2 1 

The Lorentz theory considered the deformation of this distribution in 
applied fields, and the manner in which a perturbed distribution tends 
to return to normal. By an ironic chance, these sophisticated calcula­
tions yielded apparently less satisfactory results than Drude's crude 
model in several respects: 

(a) Drude had obtained a ratio of thermal to electrical conductivity 
of 3(kje)2T, in good agreement with the experimental law of Wiede­
mann and Franz. Lorentz's result was one-third smaller. 
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(b) The more elaborate theory made it impossible to explain the 
actual temperature dependence of conductivities in ordinary metals if 
scattering was based on any central law of force, elastic or inelastic ! 

(c) Lorentz was able to predict values for other metallic properties 
such as thermoelectric, magnetoresistive and Hall coefficients. The 
Hall effect expression 

R = -3n/8ne (112.2) 

confirmed that free electrons are as numerous in metals as atoms—yet 
this served only to deepen the mystery that the free electron gas does 
not give metals a large additional specific heat. 

From the foregoing, it will be seen that classical theory could do 
little to account for electronic behavior in metals—let alone semi­
conductors, whose existence was barely noted at the beginning of this 
century. I t was not until the 1920's that any significant advances were 
made by the application of quantum ideas to the problem. 

1.2 QUANTUM STATISTICS AND THE FREE 
ELECTRON THEORY 

Arnold Sommerfeld (1928:1) retained a number of the important 
features in Drude's and Lorentz's earlier theories. Thus, like them, he 
assumed that free electrons enjoy a constant potential energy — W 
inside a metal. (Whereas the potential experienced by an electron must 
actually depend on its relationship to other free electrons and to the 
periodic array of positively ionized atomic cores.) Also he was forced 
to accept that some form of scattering takes place to set the absolute 
value of the resistivity, yet he could not cite the specific cause of this 
scattering. Even so, a number of mysteries on the classical theories 
were easily explained by Sommerfeld's model, based on quantum 
statistics. 

1.2.1 p-SPACE AND k-SPACE. THE DENSITY OF STATES 

Consider a space for which the co-ordinates are the x, y and z com­
ponents of electron momentum (Fig. 12.1). An electron of any momen­
tum p can be represented by the vector from 0 to some point in p-space. 
This electron has kinetic energy E = p2/2mo, and it is evident that a 
sphere centered on the origin of p-space will be a constant energy 
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6 THE ELECTRON T H E O R Y OF SOLIDS 

surface, f Applying the concept of p-space to the classical distribution 
(112:1), it can be seen that the density of electrons in p-space for a given 
energy is 

L2mo*rJ 
dJV M 

4π/>2 . dp (27Γ7ηο*7~)3/2 exp 

exp [4] (121.1) 
(27rmo*r)3/2 

when classical conditions hold. 
In expressing the result (121:1), it is assumed that an electron may 

have any momentum and energy. This does not hold true when the 

FIG. 12.1. Momentum space. The vector p represents the momentum of 
a particle, p = \/(pz2+Pv2+pz2)- Thus any sphere centered on the origin 

of momentum space is a surface of constant kinetic energy. 

additional postulates of quantum theory are taken into account. 
According to quantum theory, when the motion of an electron is re­
stricted by boundary conditions (as it is for an electron moving within 

t In discussing the free electron model, the origin of energy is arbitrarily set as that 
of zero electronic kinetic energy. This is convenient for our present purposes since we 
are concerned only with differences of kinetic energies, and do not discuss problems 
of thermionic emission, contact potential, etc. (for which the height W of the surface 
potential barrier would be important). In discussions of the more complicated band 
models later in the book, different criteria of the most convenient origin for energy 
are encountered, and adopted where appropriate. 
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a crystal of finite size), there is a finite number of possible electron 
states (distinguishable patterns of electron behavior) within any 
specified range of energy and momentum. 

In order to determine how many separate quantum states there are 
within a range of momentum, it is convenient to recall that—in quan­
tum-mechanical terms—a free electron of momentum p can be 
represented by a wave of wavelength λ = h/p, or wave-vector k = p/Ä. 
Thus as a companion to p-space, we can construct the corresponding 
k-space (Fig. 12.2), in which a vector k shows the direction and period­
icity of the wave representing an electron of component momenta 

FIG. 12.2. k-space. The vector k represents the periodicity and direction of 
the wave representing an electron for which kx = (px/h), ky — (py/h), 
kt = (pz/h). For free electrons a sphere of radius k9 centered on the origin, 

is a surface of constant energy. 

px = Hkx, py = hky, and pz = hkz. The kinetic energy of such an 
electron can be written 

E = — (kx* + ky2 + kz2) = - — 
2mo 2m0 

(121.2) 

It is necessary to be temporarily concerned not only with the energies 
but also with the wave-functions ψ of electrons. According to wave-
mechanical principles [for a very readable account see (1957:1)], ψ is 



8 THE ELECTRON T H E O R Y OF SOLIDS 

to be interpreted as a probability function such that \φ|2 d r is the proba­
bility of finding an electron in the volume element dr . The permissible 
functions must satisfy Schrödinger's equation 

V V = E$ (121.3) 
2 TWO 

subject to appropriate boundary conditions. Now any real crystal is 
very large compared with atomic dimensions, and the properties of 
electrons in the bulk are imperceptibly affected by the true nature of 
the surface. Thus all boundary conditions will give the same result for 
the density of states, and one might as well be chosen which gives the 
wave functions a convenient analytical form (1942:1). Let ψ be periodic 
with period L along each Cartesian axis. Then solutions of (121.3) 
having the form of plane waves 

φ = C e x p ( i k . r ) (121.4) 

are acceptable provided that 

kx = (277/2*/!,), ky = (2ir«„/L), kz = (2ττηζΙΣ) (121.5) 

when nXy ny and nz are any integers, 0, ± 1 , ± 2 , ± 3 , ... This is all 
consistent with Heisenberg's uncertainty principle (on which the 
Schrödinger equation is based) that when an electron is restricted to 
having co-ordinates determinate to distance Z, momentum is indeter­
minate over a range Δ/> = h\L for each co-ordinate, or an indeterminacy 
in wave-vector of Ak = (27τ/Ζ). 

Thus now only certain positions in k-space correspond to acceptable 
wave-functions, such that k-space would be filled if each of these 
positions were to be surrounded with a cubic cell of volume (2TT/L)3 

(Fig. 12.3). For a real metal of macroscopic dimensions, these cells are 
exceedingly small, and calculus procedures can be adopted to write the 
number of cells lying between spheres of radii k and (k + dk) as 
(k2Ißj2n2)dk. Per unit volume of material, then, there are (k2/2n2)dk 
cells available within a range dA: of wave-vector. 

The density of available electron states is actually twice as large as the 
cell density, since wave-functions with spin s = ± £ are separate 
permitted states for any permitted wave-vector and energy. Thus the 
number of states per unit volume within an infinitesimal range of 
energy or wave-vector is 

g(E). dE = g{k). dk = (ψ)2 dk (121.6) 
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Fio. 12.3. Permitted states in k-space for cyclical boundary conditions, indi­
cated by the points in the plane for nz = 0. All of k-space would be filled if 
each allowed point were surrounded by a cubical cell of side (2TT/L), as 

exemplified by the cell for nx = +2, % = +3, nz = 0. 

0 k ► 

FIG. 12.4. (a) The parabolic relationship (E) = (h2k2/2mo) between wave-
vector (in one dimension) and kinetic energy; and (b) the density of states 

as a function of kinetic energy for free electrons in a metal. 

Now the energy and wave-vector of an electron state are connected 
by Eq. (121.2). Differentiating this and eliminating k in the combina­
tion with Eq. (121.6), the density of electron states at energy E is 

g{E) = 4π(2τηοΙΗψ^Ε1^ (121.7) 
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Having considered the electronic states permitted by quantum theory, we 
must now turn to considerations of how electrons are distributed over 
the various states. 

1.2.2 PAULI'S EXCLUSION PRINCIPLE AND FERMI-DIRAC STATISTICS 

Consider a number of particles whose individual wave-functions 
(including spin) are φα^ for the first, φ^ for the second, φ^ for the 
third, and so on. The wave-function Ψ for the system as a whole is 
determined by these one-particle functions. Now if the particles are 
indistinguishable one from another, the function Ψ must be constructed 
in such a way that |Ψ|2 is not affected by the interchange of a pair of 
particles. There are two possibilities for this: 

(a) The symmetrical combination 

% = 2^(1¥&(2W3)... (122.1) 

with the sum taken over all permutations P of the arguments. For this 
method of combination, Ψ itself is not affected by any interchanges. 

(b) The antisymmetrical combination 

ψ·- K-m^w2^... (122.2) 

where r is the number of interchanges which must be made to obtain a 
permutation from the standard form. In determinantal form, 

Ψα = 
φα™ 
fa*» 
ΦΡ 

* 

Φ<Ρ 
φιΡ 
φρ> 

• 

φα® ... 
φιΡ ... 
φΡ ... 

. ... 

(122.3) 

Ψα changes sign when permutations are made, but |Ψ|α2 remains 
the same. 

Note an interesting feature of the antisymmetrical arrangement, 
that Ψα vanishes whenever two particle functions are the same (since 
two rows of the determinant are then identical). In view of the Pauli 
principle that no two electrons in an atom can be in the same quantum 
state, this suggests that electron wave-functions combine in antisym­
metrical ways. 
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Pauli's principle is a postulate introduced to explain certain experi­
mental facts (notably the absence of a ground state in orthohelium). 
I t acquires additional strength as a postulate when further results follow, 
such as the shell structure of the periodic system, and the success of 
Fermi-Dirac statistics in accounting for the behavior of large systems 
of electrons. For while Pauli applied his principle to electrons in an 
atom, Fermi and Dirac applied the same idea to any assemblage of 
electrons, that no two could have the same set of quantum numbers. 

The relevance of this to the discussion in the previous sub-section 
of electronic states is that not more than one electron can be in any 
given state. Recalling the distribution of states in espace for free 
electrons (Fig. 12.3) it can readily be seen that when electrons are 
placed in a system, as many as possible will execute motions character­
istic of states with small k (and low energy), but it will still be obligatory 
for many electrons to occupy states of high energy—no matter how low 
the temperature. This is very different from the classical notion that all 
electrons would come to rest at the absolute zero of temperature. 

The reasoning which leads to the distribution function of Fermi-
Dirac statistics is rather detailed ; this has been placed in an appendix 
in order to avoid going through all the arguments at this point. The 
final and important result is that for a system of indistinguishable 
particles which occupy quantum states in accordance with the Pauli 
principle, the thermal equilibrium probability of occupancy for a 
state of energy E is 

m =
1 +

 l('-*\ , 1 2 2 - 4 ) 

This is consistent with the classical distribution of (112.1) and (121.1) 
as a limiting case for energies considerably higher than φ, but for 
energies comparable with or lower than <f>, Eq. (122.4) represents a 
far from classical situation. The form of the probability of occupancy 
function f{E) as a function of energy is shown in Fig. 12.5 for the 
absolute zero of temperature and for a finite temperature T. For an 
energy equal to </>,f(E) = 0-5 ; while for energies higher or lower by an 
interval kT, f(E) = (1+*)" 1 =0-27 or f(E) = (1 + 1/tf)"1 = 0 - 7 3 , 
respectively. Only for energies within a few kT of φ is the probability 
of occupancy appreciably different from zero or unity. 

The quantity φ is variously known as the Fermi level, Fermi surface, 
and electrochemical potential. The Fermi level behaves as a normalizing 
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parameter, characterized by the number of electrons per unit 
volume, no, and by the density of states function. For φ is determined 
by the condition that the number of occupied states at all energies must 
be equal to the total number of electrons present: 

no 

00 00 

= j n{E). dE = J7(£) . g(E). àE (122.5) 

This is quite generally true, for the density of states function (121.7) 
characteristic of free electrons in a simple metal, or for the more com­
plicated g(E) required with semiconductors and multivalent metals. 

f (E) 

FIG. 12.5. The Fermi-Dirac probability function/(£) as a function of energy 
for a finite temperature and for absolute zero temperature. 

Continuing the historical approach it will be noted first how Sommer­
feld fused Eqs. (121.7) and (122.4) to explain several characteristics of 
monovalent metals. In subsequent chapters it will frequently be 
necessary to reckon with Eq. (122.5) when g(E) takes complex forms. 

1.2.3 DEGENERACY OF AN ELECTRON DISTRIBUTION. 
MODEL 

SOMMERFELD'S 

Classical theories predict that each free electron should have a specific 
heat of 3k 12. Then a metal with one free electron per atom should 
have a specific heat of 9 cal/mole, compared with 6 cal/mole for a 
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non-metal above the Debye temperature. But the additional specific 
heat of the electron gas in a metal is experimentally very small and 
proportional to the absolute temperature. This is explained by Sommer-
feld's quantized model, which is based on the following argument. 

The density of permitted states is given by (121.7) when there is no 
variation of potential energy within a metal. In conformity with 
Eq. (122.5), the Fermi level must have an energy such that 

r 
no = 

(* 
f(E)g(E).dE = 

J 
—00 

477(2wVA2)3/2£1/2.àE: 
(123.1) 

Fig. 12.6 illustrates how n(E) will vary with energy above the supposed 
origin of zero kinetic energy, at 0°K and at a finite temperature. 

The integration of Eq. (123.1) is very simple at T = 0°K, when all 
states are occupied up to the Fermi energy φο, and all those of higher 
energy empty: 

Φο 
r r2mo l 3 / 2 87rr2m0iol3/2 

— Mir *"■··*-Tir- <123'2) 

0 

This statement can equally well be inverted, to note that corresponding 
with an electronic volume density no, the Fermi level at low tempera­
tures must be 

φο - srhd ( 1 2 3 · 3 ) 

For a monovalent metal with a typical interatomic spacing of about 
3Â, this Fermi energy comes to the surprisingly large value of 
φο ~ 5 eV, or 200 times larger than Â:Tfor room temperature! 

Thus the curve drawn for T > 0 in Fig. 12.6 would actually require 
a temperature of several thousand degrees. At normal temperatures 
the levels are completely occupied almost up to the Fermi level, and very 
few electrons are to be found in states above the Fermi energy, φ does 
decrease on heating, as shown in the figure ; but the change, 

ττ2£2Τ2 
ΦΤ-ΦΟ= - -ττΓΓ-, kT < φ0 (123.4) 

1^90 

is very small at attainable temperatures, 
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The term degenerate is applied to an electron distribution for which 
the energy range of completely occupied levels is large compared with 
the width ~ 2kT of the transition range. In a degenerate system, only 
a small fraction ~ (kT/φο) of electrons are capable of changing their 
energies in infinitesimal amounts.f This fraction alone is effective in 
determining those properties of a material which depend on electrons 
making a graduated response to a stimulus. As an example, we should 
expect the specific heat of an electron gas to be degenerated to a small 

FIG. 12.6. Distribution of electron states g(E) and of electrons in these states 
for the Sommerfeld free electron model, when the population in the metal 

is degenerate. 

fraction (kT^o) of its classical value—which is just the observed 
behavior in a metal at normal temperatures. The paramagnetic 
susceptibility of the electron gas is similarly degenerated (1927:1). 

Sommerfeld noted that when the simple quantum conditions are 
applied, only electrons in states near the Fermi level contribute signifi­
cantly to conductivities and galvanomagnetic coefficients. His ex­
pressions were calculated from the Boltzmann transport equation, 

t Two electrons occupying low lying states may interchange, but since electrons 
are indistinguishable there is no observable result of such an exchange. An electron 
in a low energy state can only change significantly by being raised to an empty state 
near the Fermi level. In view of indistinguishability, this is equivalent to requiring 
all intermediate electrons to move up one step—a process of very low statistical 
weight. 
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solved on the assumption of isotropie elastic scattering. The flow of 
electrons in response to an external stimulus—electrical, magnetic or 
thermal—was always proportional to a member of the set of integrals 

00 

- J EmX 
dE 

άΕ (123.5) 

where m is an integer and λ is the electron mean free path between 
scattering collisions. Now df/BE is finite only for the energy range 
immediately around the Fermi level (Fig. 12.7) ; then if λ is any reason-

je. 
f(E) 

Φ 
FIG. 12.7. The functions f(E) and —df/dE for a degenerate electron distri­

bution. 

able function of energy, an integral of the form (123:5) receives appre­
ciable contributions only from this small energy range. Sommerfeld 
showed, for example, that the electrical conductivity of a degenerate 
electron gas is given by 

σ - ( 2 ^ 7 * ( 1 2 3 · 6 ) 

where λ(φ) denotes the mean free path for an electron with the Fermi 
energy. 

The only term in this expression which can be temperature-depen­
dent is the mean free path. This is a little awkward, for the conductivity 
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of simple metals is proportional to 1/!T, yet such a dependence of mean 
free path is not compatible with elastic scattering. Thus a correct 
theory of metallic behavior cannot be based on the approximations 
used so far. Nevertheless, the Sommerfeld theory is a considerable 
improvement over classical approaches, explaining specific heat 
degeneration, providing an improved value for the Wiedemann-Franz 
ratio, and giving results for Thomson, Seebeck, magnetoresistance and 
Hall coefficients which describe fairly well the behavior of the simplest 
monovalent metals. 

A. H. Wilson (1953:4) has remarked that the most important feature 
of Sommerfeld's model is separation of the concepts of free electron 
and conduction electron. Only electrons in the energy range for which 
(df/dE) is finite can be regarded as conduction electrons. 

The Sommerfeld approach to scattering is, however, unsatisfactory. 
For this model, as for the classical models, the theory gives no clue as 
to the proper numerical magnitude for the mean free path λ. Com­
parison with experimental conductivities suggests that λ ~ 400 Â at 
room temperature and may be as much as a factor of 104 larger at low 
temperatures. 

If elastic scattering is rejected as being incompatible with the 
observed temperature dependence, then two sources of inelastic scatter­
ing present themselves. One source is that of point imperfections 
(impurity atoms, lattice vacancies, etc.)—this scattering is temperature-
independent and gives a low-temperature residual resistance. A second 
inelastic scattering mechanism is provided by phonons (thermal lattice 
vibrations). Phonons could make the mean free path proportional to 
T _ 1 since λ is of the same order of magnitude as the wavelength of 
average acoustic phonons. 

Before investigating this attractive possibility, it is necessary to 
explain how the electronic mean free path can be very large in perfectly 
periodic crystal lattices. An answer to this problem is given by the 
band theory of solids. 

1.3 THE BAND THEORY OF SOLIDS 

The free electron theory of the previous section introduced the 
important concepts of quantized distribution in an electron population. 
This theory foundered on the insertion of the concept that electrons are 
elastically scattered by nuclei, which could not be reconciled with the 
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temperature dependence of conductivities in metals. Now inelastic 
scattering could be imposed on Sommerfeld's model—for example, 
interaction with phonons—but this is hardly a wise procedure when it is 
not obvious why elastic scattering does not occur in a perfect crystal. 
Moreover, the free electron model cannot cope with complicated multi-
valent metals and does not explain why some materials are metals and 
others are semiconductors or insulators. 

A good reason for these deficiencies is that the free electron theory 
ignores the potential fields in a solid. We shall now explore the theory 
resulting from one method of taking the crystalline potential into 
account, supposing a perfect lattice in order to calculate the distribution 
of electrons in energy, f 

1.3.1 SCHRÖDINGER'S EQUATION—ONE-ELECTRON FUNCTIONS 

The band theory of solids is based on a single electron approximation, 
whereby the permissible properties of one electron are calculated 
from an equation allowing for the effect of everything else in the 
crystal. The use of one-electron wave-functions permits the use of 
Fermi-Dirac statistics. The advantages and limitations of the band 
model as compared with other possible schemes for representing outer 
shell electrons in a solid are discussed in Sub-section 1.3.5. 

The adoption of single electron wave-functions involves the important 
assumption that an effective field can be introduced into the wave-
equation to replace that due to all other electrons present. This is a 
self-consistent field, as used by Hartree (1928:2), Fock (1930:1) and others 
in extensive attempts to solve the multi-electron problems of atoms and 
molecules. In his approach to electrons in solids, Bloch (1928:3) 
assumed that one-electron wave-functions could be constructed which 
would satisfy Schrödinger's equation with an appropriate expression 
for this crystal field. The potential experienced by an electron depends 
on: 

(1) The periodic array of atomic cores in the crystal. The term 
"core" includes the nucleus and all inner electronic shells which 
are not appreciably affected by the proximity of other atoms. 

t The concept of a finite mean free path resulting from some scattering mechanism 
is necessary for an evaluation of transport phenomena. But this idea can be inserted 
after the model of a perfectly periodic crystal lattice has been set up. 
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(2) All other outer shell electrons from every atom in the crystal. 
If the atoms remain rigidly fixed in position, the contribution of the 
cores to the potential will vary spatially with the periodicity of the 
lattice. It seemed reasonable to Bloch that the time-averaged effect of 
all the outer shell electrons should also be the same in each unit cell 
of the crystal—this satisfies requirements for electrical neutrality and 
crudely takes account of electron-electron repulsion. 

On this basis, then, the total crystal potential V(r) will have the 
threefold periodicity of the lattice. Bloch showed that the solutions of 
the Schrödinger equation 

— V t y + [ £ - ν(ν)]φ = 0 (131.1) 
2/wo 

are then of the form 

φ= t/*(r).exp(ik.r) (131.2) 

where U is a function (depending in general on the wave-vector k) 
which also has the periodicity of the lattice, f When k is real, the 
solutions are running plane waves modulated with the periodicity of 
the lattice; these solutions are well behaved and acceptable. But solu­
tions corresponding with an imaginary k must be discarded, since the 
wave-function (131.2) is not then well behaved. 

This has interesting consequences. For whatever the concrete form of 
the potential V(r), there must be some ranges of the eigen-energy E 
which correspond with real values of k and other ranges for which k 
can only be imaginary. For the ranges of E where k is real, electron 
functions exist. For the energy ranges where k is imaginary, no electron 
can exist in a perfectly periodic lattice. 

The energy ranges for which stable solutions exist are known as the 
permitted electron bands of the solid. We are very interested in finding out 
the positions (on an energy scale) of these bands and of the forbidden 
energy gaps between the bands, and also to know the distribution of 
permitted electron levels within the bands. All of this depends on the 
symmetry of the crystal structure, the interatomic spacing and on the 
types of atom setting up the crystal field. 

t This result was previously known in pure mathematics as Floquet's theorem 
(1927:2). 
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As an indication of the complexity in a real three-dimensional solid, 

it should be noted that constant energy surfaces in k-space will not 
normally be spherical. This marks a difference from the free electron 
model, where energy was expressible as (Â2A;2/2/wo) and a sphere 
centered on the origin of k-space was always a constant energy surface. 
Referring to Fig. 13.1, for the free electron model OA was the direction 
of the waves associated with the state A and was also the direction of 
motion of an electron—considered as a packet of waves around the 

ky 

f A 

k 

kz 

FIG. 13.1. k-space. 

point A. The electron moved (in real space) along the direction normal 
to the energy contour (in k-space) and this was just the direction OA. 

For band theory, taking into account the periodic crystal field, 
individual waves around A have a phase velocity in the direction OA, 
but the group velocity of the wave-packet (which describes the direction 
of motion of the electron) must be normal to the energy contour in 
k-space, and this may have a direction quite different from OA. 

At the risk of repetitiousness, it is again remarked that permitted 
wave-functions (131.2) are the same in every unit cell of a periodic 
lattice. Thus the packet of waves describing an electron in an allowed 
state is not attenuated as the electron moves through the crystal. This 
is relevant to the earlier discussion of free electron theory, which was 
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unable to explain why electronic mean free paths should be so large, 
particularly at low temperatures. I t now emerges in an entirely natural 
way that an electron moving under the influence of a perfectly periodic 
potential undergoes no scattering—the mean free path is infinite. 
Scattering can only occur to yield a finite mean free path if the periodi­
city of the potential is broken; this occurs at grain boundaries, under the 
influence of localized imperfections such as foreign atoms or lattice 
vacancies, and through the modulation of interatomic spacings by 
thermal vibrations. 

That an electron wave should be transmitted without attenuation by 
a periodic lattice is a result which has many analogies in physics. 
Brillouin (1946:1) has discussed this topic at length, illustrating the 
same mathematical methods in connection with acoustical and electri­
cal circuit problems as well as band theory. Shockley (1950:1) uses the 
multi-section electrical transmission network as a foil with which to 
demonstrate many features of band theory. For instance, he remarks 
on the formal similarity between the problem of attenuation in a non-
uniform transmission line and that of electron scattering by thermal 
vibrations in semiconductors, j 

Localized imperfections are a source not only of scattering but also 
of localized energy states. Whereas the only states in an infinitely large 
perfectly periodic crystal are those described by Bloch waves and 
forming the "permitted bands", the states introduced by impurities 
may have energies within the forbidden gaps. In many cases the 
impurity states are not truly new, but are descended from states which 
have been split off from the bands by the powerful potential of the 
imperfection. 

There is an important difference between a band state and an im­
purity state. For the former is non-localized, representing a charge 
density spread uniformly throughout the crystal ; yet the wave-function 
of the latter is localized in the vicinity of the impurity. An electron 
occupying an impurity state is said to be bound to the impurity, for such 
an electron is not free—as the band electrons are free—to move any­
where in the crystal. Many properties of semiconductors are controlled 
by the extent to which electrons can be released from these bound 
impurity states. 

t In the deformation potential approach of Shockley and Bardeen (1949:1) 
to this type of scattering, it is assumed that the modulation of interatomic spacing 
involved in the thermal vibration perturbs the edges of the energy bands. This has 
consequences analogous to those of mismatch in a transmission line, 
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1.3.2 THE ENERGY-WAVE-VECTOR RELATIONSHIP. BRILLOUIN ZONES 

A number of attempts have been made in recent years to calculate 
the band structures of real solids. As an example, one may note the work 
of Herman (1954:1, 1955:7) on germanium and silicon. Complicated 
iterative techniques must be used, effective wave-functions being 
synthesized from series of terms with appropriate atomic configurations. 
For the results to have much rapport with reality, the amount of work 
required is enormous. Even so, the results of Kronig and Penney's 
simple calculations (1930:2) give some insight into the relationship of 
energy E and wave-vector k when there is a periodic crystal potential. 
Kronig and Penney supposed a monatomic one-dimensional crystal of 
lattice spacing a in the Ar-direction, and represented the potential 
by a rectangular pulse at each lattice site. They then proceeded to the 
limiting case of a potential pulse with given area as this became 
infinitely high and infinitesimally wide (a delta function potential). 
Fig. 13.2 shows the type of result they obtained for the dependence of 
E on kx. The forbidden ranges of energy will be noted. As the amplitude 
of the delta function potential is reduced to zero, the forbidden gaps 
disappear and the curve merges with the dashed parabola. 

E = (mjßmo) (132.1) 

of the Sommerfeld model. On the other hand, when the potential 
becomes infinitely strong, only the discrete set of energies 

En = (η*/ιψτηοαη (132.2) 

are allowed. (These are just the eigenvalues of an electron in an en­
closure of length a.) In all cases, the wave-function is of the form 

Φ = Uk(x). txp(ikxx) (132.3) 

It is evident in Fig. 13.2 that the energy discontinuities occur for 
kx = (nn/a) where n is any (positive or negative) integer. These are the 
values of kx which give ψ itself the perfect periodicity of Kronig's and 
Penney's one-dimensional lattice, and form an essential feature of 
solutions in terms of Bloch waves, which is preserved in the description 
of real three-dimensional structures. 

Brillouin (1946:1) and Seitz (1940:1) have discussed in detail the 
permissible wave-functions for lattices in more than one dimension, and 
the values of k which correspond with an energy discontinuity. The 
positions in k-space for which discontinuities occur depend on the 

3 
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20 r 

FIG. 13.2. Variation of energy with wave-vector (one-dimensional) for the 
Kronig-Penney model with a finite delta function crystal potential. 

(a) 

FIG. 13.3. The first two Brillouin zone boundaries for a face-centered cubic 
lattice. Zones of the same shape are found for lattices derived from F.G.G., 
such as the zincblende and diamond structures. After Seitz (1940:1). 
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symmetry of the crystal structure and on the interatomic spacings; 
they form a series of surfaces centered on the origin of k-space. These 
surfaces are polyhedral, with faces corresponding to crystallographic 
directions. Fig. 13.3 shows the first two members of the series of surfaces 
when the crystal structure is face-centered cubic, and Fig. 13.4 similarly 

FIG. 13.4. The first two Brillouin zones for a close-packed hexagonal lattice. 
After Seitz (1940:1). 

illustrates the first two surfaces in k-space when the atoms are in a close-
packed hexagonal array. 

The region lying between two successive polyhedra in k-space is 
known as a Brillouin zone. The relationships of the polyhedra are such 
that each Brillouin zone occupies the same volume of k-space. This 
volume is sufficient to accommodate 2N electron states, where N is the 
total number of atoms in the crystal.f 

That each Brillouin zone should contain two states (one of each spin 
choice) for every atom is entirely to be expected, since the band system 
of a solid arises naturally from the discrete energy levels of an isolated 
atom. Each level becomes broadened through interaction between the 
closely spaced atoms of a solid in such a way that the energy range of a 
band is independent of the number of atoms in the crystal but depends 
upon their interatomic spacing and on the energy level from which the 
band arose. Fig. 13.5 illustrates this schematically for two successive 
quantum states when a small number of atoms are brought together. 

f This follows from the volume of k-space encompassed by a Brillouin zone and 
from the density of electron states in k-space (Sub-section 1.2.1). 
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When the number of atoms in the crystal is very large (as is the case 
for any real crystal), the 2M states in each band are exceedingly closely 
spaced in energy, but the distribution of states in energy is still the same. 

Interatomic Spacing 

FIG. 13.5. Qualitative picture of the manner in which permitted energy 
bands and forbidden gaps arise from discrete atomic energy levels, broad­

ened by interatomic coupling. 

We shall expect to see: 
one zone arising from atomic Is states 
one zone arising from atomic 2.Γ states 
three zones arising from atomic 2p states 
one zone arising from atomic 3s states 
three zones arising from atomic 3p states 
five zones arising from atomic 3d states 

} K shell 
) L shell 

M shell 

and so on. Electrons which occupied inner shell states in an isolated 
atom are not much affected by the proximity of other atoms—these 
electrons are still very closely associated with a single nucleus. Accord­
ingly, the first few Brillouin zones describe states with very limited 
ranges of energy. But the zones corresponding with the outermost 
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electrons may cover a broad range of energy; electrons in such states 
belong to the crystal as a whole rather than being identifiable with any 
one atom. 

After the first few zones of tightly bound electrons are over, it is fre­
quently found that subsequent zones overlap in energy. Now for a 
given direction in k-space there is an increase in energy on passing a 
zone boundary, but it often happens that the highest energy attainable 

-kc-kb-ka ka kb kc 

(a) (b) 

FIG. 13.6. Dependence of energy on wave-vector (a) for a case where overlap 
occurs between two Brillouin zones (the second zone starts in some directions 
with energy lower than the highest energies attainable for other directions 
in the first zone) and (b) for a situation with no overlap. After Seitz (1940:1) 

in one zone is larger than the lowest energy for a different direction in 
the next zone. There is then no forbidden energy gap between the pair 
of zones, and they are said to overlap, forming a band of AN states. Part 
(a) of Fig. 13.6 shows a situation of overlapping zones, while there is 
evidently no possibility of overlap for the case of part (b). 

The actual resultant bands of a crystal may have 2JV, 4JV, 6jV, etc., 
states, and perhaps show little superficial resemblance to the original 
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atomic levels. When a band does show characteristic features of atomic 
states, it is often referred to by the atomic designation.f 

1.3.3 FILLING OF ENERGY BANDS—METALS AND INSULATORS 

Band theory offers a highly satisfactory reason for the distinction 
between metals and non-metals. This may be appreciated by visualizing 
a solid from which all the outer electrons of each atom have been re­
moved, leaving just the periodic array of atomic cores (nucleus plus 
tightly bound closed shells). If the electrons are now restored to the 
solid, one by one, the first ones added will assume the lowest states in 
the lowest empty band. As more electrons are added, this band fills 
up until every state in it is occupied. Further electrons must enter the 
lowest state in the next band, and so on until the full complement is 
present and the solid is electrically neutral. 

In each completely full band, electrons do not enjoy freedom of 
response to an externally applied field—they cannot take part in con­
duction. This follows from the arguments used in Sub-section 1.2.3, that 
electrons can only interchange states, with no observable result. 

Whether a solid is a metal or insulator now depends on the occupancy 
of the highest band containing any electrons. If this band is only partly 
full, the Fermi level is part way up the band. Electrons near the Fermi 
energy can take part in conduction, etc. But if the highest occupied 
band is completely full, then no electrons are available for conduction 
in any band and the material is an insulator. The condition depends on 
the number of electrons per atom since each band has 2M states or a 
multiple of this. 

As an example, sodium has eleven electrons. Of these, two occupy 
states in the Is band {K shell), eight occupy states in 2s and 2p bands 
(Z, shell), one is available for the lowest band in the M shell. Then if 
the 3s band in sodium is a simple zone, this band is half full. If there is 
any overlap between 3s and 3p zones, the resultant band is less than 
half full. In either case, sodium would be expected to behave as a 
metallic conductor. 

The next element, magnesium, has twelve electrons, two of which are 
available for the M shell bands. This element would be insulating if the 

t Thus for example in discussing the properties of the iron group of transition 
elements, reference is often made to the 4tf band (of 2N states) and to the 3d band 
(of lOjV states, formed by overlap of the five 3d Brillouin zones). 
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3s band were completely lower in energy than any states of 3p bands. 
The interatomic potential in Mg actually takes a form which produces a 
small overlap of the 3J* and 3p bands, and so metallic behavior is made 
possible. 

Silicon has fourteen electrons per atom, of which four must go into 
3s and 3p states. The periodic potential in this material is such that, for 
the interatomic spacing of solid silicon, the eight states divide into a 
band of 4N states, then a gap, then an upper band with the remaining 
4JV* states. The electron supply is just sufficient to fill the lower band 
and leave the upper band completely empty. We expect then to find 
that silicon is an insulator, and indeed the electrical conductivity of 
pure silicon is extremely small at low temperatures. 

1.3.4 THERMAL EXCITATION IN SEMICONDUCTORS 

On warming any insulator, a conductivity is found which increases 
with temperature. It was pointed out by Wilson (1931:1) that this can 
result from thermal excitation of electrons from the highest occupied 
band (known as the valence band) to the lowest empty band (the con­
duction band). The term intrinsic semiconductor is used to denote a 
material which derives its conduction from this mechanism, and the 
energy difference by which an electron must be elevated is known as 
the intrinsic gap (Fig. 13.7). Thermal vibrations co-operate to raise 
electrons into the conduction band, and while there they are capable of 
taking part in conduction. The density of electrons in the conduction 
band for thermal equilibrium is determined by a dynamic balance of 
thermal excitation and subsequent de-excitation. This depends princi­
pally on the intrinsic gap width and the temperature, in the form 

niOcexp(-Eil2kT) (134.1) 

All of this will be discussed in much more detail in Sub-section 2.3. 
When an electron has been raised to the conduction band, a vacant 

state exists in the valence band. This provides some slight freedom for 
other electrons in that band to change their energies in response to a 
field. The overall effect is that of a particle with positive mass and 
charge; this particle is called a positive "hole". The wave-function 
for a full band with one electron missing shows properties formally 
equivalent to the situation of one positive charge in an otherwise 
empty "hole" band (1931:4). Shockley (1950:1) has shown this in 
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FIG. 13.7. An intrinsic semiconductor. 
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(a) (b) 
FIG. 13.8. Extrinsic (impurity-controlled) behavior in a semiconductor, 
showing the action of (a) donor impurities to provide possible free electrons 
(tt-type semiconductor), and (b) acceptor impurities to make hole con­

duction possible (/>-type semiconductor). 
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considerable detail, and such arguments give one confidence in dealing 
with holes as "real" particles. Electrical conductivity and other associ­
ated properties reflect the response both of free electrons and free holes 
to an applied stimulus. 

Shortly after his first paper on intrinsic excitation in semiconductors, 
Wilson (1931:2) discussed the influence of impurity states, f He noted 
that since localized levels may correspond with energies within the 
intrinsic gap, either free electrons or free holes may be thermally excited 
at temperatures too low for appreciable intrinsic excitation. When the 
free carriers produced are predominantly electrons, the semiconductor 
is said to be extrinsic w-type. Conditions are said to be extrinsic j^-type 
for a semiconductor containing predominantly free holes. The two 
kinds of situations can arise in the manner shown in Fig. 13.8. 

An impurity or flaw which—when electrically neutral—has an 
electron fairly weakly bound to it is called a donor center. The weakly 
bound electron can be described in terms of a level at energy E& below 
the bottom of the conduction band, and the opportunities for exciting 
this electron thermally to the free states are proportional to 

exp(-£Ä/*r) 

The number of free electrons for thermal equilibrium at any tempera­
ture depends on a dynamic balance of excitation from donors and re­
capture by these impurities. 

Another class of impurity is the acceptor center, which in electrical 
neutrality offers a level with an electron vacancy at an energy Ea above 
the valence band. A valence band electron has a probability propor­
tional to exp(-EalkT) of being excited into the acceptor state, leaving 
a free hole behind in the valence band. The acceptor can be considered 
as having a "bound hole" in its neutral condition, which is capable of 
being thermally excited down to the valence band. 

Some kinds of flaw provide more than one donor or acceptor level, 
and can indeed take on the attributes of donor and acceptor in different 
states of ionization. This complicates the picture but does not obscure 
the general classification of excitation modes. More will be said about 
localized levels in Section 1.6. 

j* Impurity states are discussed in more detail in Section 1.6. For the present we 
may note that any disturbance of the periodicity of the crystal lattice may give rise 
to localized "impurity" or "flaw" states. 
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1.3.5 VALIDITY OF THE BAND MODEL 

The movement of electrons in crystals is governed by more complex 
laws than the movement of a smaller number of electrons in an atom 
or a molecule. This is due, in the first place, to the larger number of 
electrons and nuclei in a macroscopic body. The problems of electron 
motion in solids require the use of special approximate methods. Since 
it is often difficult to determine the limits of applicability for these 
approximations, doubts can arise as to the extent to which theoretical 
results correspond with reality. 

In the previous pages we have introduced the basic concepts of band 
theory, based on a one-electron approximation for motion in a solid; 
the problem of the interaction of electrons is in this theory reduced to 
a single-electron problem by the device of the self-consistent field. 
Before using the band concept freely (as we shall for the remainder of 
this book), it is useful to review the validity of this model. To what 
extent then is the band theory legitimate for describing solids ? Slater 
(1959:1) suggests that this question may be asked in two ways. Firstly, 
how well do the consequences of band theory agree with experiment ? 
And secondly, how well does the band picture agree with the more 
elaborate theory which we should find by rigorously applying wave-
mechanical principles to the problem of a solid ? 

Only positive answers to the latter question can be reassuring to a 
theoretician ; for apparent agreement of theory and experiment carries 
no guarantee that the theory is the correct one. Even so, the ever-
broadening areas of agreement which have developed since the early 
1950's between energy band calculations and more detailed experi­
mental observations [compare for instance (1958:1) and (1958:2)] 
both for semiconductors and metals provide considerable encourage­
ment for the theory. While metals are probably less understood in 
detail than certain semiconductors at the present time, it is interesting 
to note that band theory has traditionally and successfully been used for 
a description of the metallic state (1952:1). This despite the objections 
of some Russian writers (e.g. 1951:1, 1951:2) who evidently feel that 
agreement between band theory and the behavior of degenerate semi­
conductors or metals occurs in spite of the theory rather than because 
of it! Falicov and Heine (1961:4) comment on a wide range of experi­
mental results which point to the existence of a "sharp" Fermi surface 
in metals. This, of course, is the expectation of the one-electron model. 

Before turning to theoretical, rather than experimental, justifications 
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of the band model, it should be remarked that a one-electron theory is 
not to be abandoned lightly. For only within the framework of a one-
electron theory is it possible to use the Fermi-Dirac distribution function 
for a statistical description of the total electron population, and to use 
the Boltzmann kinetic equation for the distribution function in applied 
electric and magnetic fields. Multi-electron theories of electron trans­
port are possible (1959:2) but far from simple. 

Having said this, let us consider some respects in which the simple 
theory has been held to be possibly inadequate. By band theory we 
mean that electron wave-functions are solutions of Eq. (131.1) and 
that the interaction of an electron with the diffused charge of all other 
electrons in the system may be represented by a suitable potential. 
Electrons in different states do not necessarily see the same potential. 
Now the Hartree-Fock self-consistent field approach is known to be 
highly successful for multi-electron atoms, but as applied to a crystal 
it takes but poor account of correlations in electron motion. This means 
that, even with the most diligent search for the best effective potential, 
a set of energy bands calculated for a crystal is not likely to correspond 
too closely with the actual electronic configuration of the crystal. I t 
does not mean that the concept of electrons distributed in a set of energy 
bands is false. 

A variety of multi-electron methods have been developed to describe 
the correlation between electrons more completely. In the plasma 
oscillation method of Böhm and Pines (1953:1, 1955:1), a screened 
Coulomb interaction is used between electron pairs. Hubbard (1955:2) 
has explored some variations of the plasmon approach. Methods based 
on use of the density matrix have been used by several authors (e.g. 
1955:3, 1948:1), A very interesting approach is that of "elementary 
excitations" (1959:3, 1957:2, 1949:2); the energy of a system of inter­
acting electrons is represented as the sum of the energies of separate 
non-interacting "quasi-particles", governed by some statistical law.f 

The impressive conclusion of all these—and other—multi-electron 
theories is that they validate all the qualitative features of the simple 
band theory. Alternation of permitted and forbidden ranges of energy, 
the concepts of reduced wave-vector and effective mass (see Section 1.4) 
all are preserved in the more exotic theories. Herman (1958:1) remarks 
"there is good reason to believe that the success of the energy band 

t The treatment of quasi-particles has much in common with the methods of 
quantum electrodynamics (field theory). The unity of the several branches of physics 
involving many-particle interactions is well brought out by ter Haar (1958:7). 
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theory in accounting for a wide variety of experimental observations 
is far from accidental. The essential features of the energy band theory 
will probably persist in future, more sophisticated, theories". He notes 
that the multi-electron methods provide a great deal of physical insight 
into the reasons why the one-electron methods are actually as successful 
as they are. 

Aside from the question of the self-consistent field, a prominent 
feature of band theory is that the nuclei are supposed to form a perfectly 
periodic array. At any temperature other than absolute zero, thermal 
lattice vibrations will ensure that this is not the case; it is conventionally 
supposed that the modification of internuclear distances by these vibra­
tions can be allowed for by perturbation methods after the band scheme 
of the unperturbed array has been set up. A possibly more potent 
threat to the ideas of electron bands lies in the question : how much 
does an electron deform the lattice in its vicinity ? This is the question 
of the distinction between a free electron and a polaron. 

If atoms near to an electron in an ionic crystal are polarized and 
displaced through Coulomb interaction with the electron, the term 
polaron is given to the complex of electron plus accompanying polar­
ization. Landau (1933:1) noted that the energy of the system is lowered 
as a result of this polarization and suggested that the electron might be 
" t rapped" by its own field.f Early calculations by Pekar (1946:2) 
led to a result that an electron could be self-localized in an ionic crystal, 
but subsequent work of the same author (1949:3, 1953:9) revealed 
that this was not the case. Pekar still found that a polaron should be 
much less mobile than a "free electron", with a different temperature 
dependence of mobility. (Polaron states do form a set of bands which are 
filled in accordance with Fermi statistics, but the "inertia polarization" 
modifies the dependence of energy on wave propagation vector in a way 
which tends to give the polaron a very large effective mass.) Gubanov 
et al. (1960:8) have reported an experimental polaron mass in Cu2Ü 
which agrees well with Pekar's theory. 

While Pekar and some other Russian writers evidently feel that 
polaron states must be used for semiconductors with ionic lattices, 
another school of thought (e.g. 1950:2, 1956:1) feels that the distinction 
between an electron and a polaron is not a very strong one. This school 
recognizes that some inertia polarization does occur in an ionic crystal, 

t It was at one time thought (1936:2, 1937:3) that self-trapped electrons might be 
responsible for the well-known color centers in alkali halide crystals, but it is now 
known that color centers arise from electron trapping at vacant lattice sites. 
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but concludes that this produces only a minor shift of the energies cor­
responding with band edges. 

Band theory in its basic form fails in another respect to give full 
expression to the behavior of the electron system in a solid—it ignores 
multiplet structure. In metals with partially filled d and f shells the 
opportunities for complicated multiplet structure are overwhelming, 
and even in the highly simplified case of a semiconductor the structure 
known as an exciton can persist for a finite time. Frenkel (1931:3) 
described an exciton as an electron and a hole situated at the same 
lattice cell, which jump simultaneously from cell to cell. It was soon 
appreciated (1937:1, 1938:1) that in an exciton the electron and hole 
may be many lattice spacings apart; they form a rotating pair with a 
coulombic attraction modified by the crystal. The system has a ground 
state and a series of excited states, f terminating with the liberation of 
hole and electron. 

It is interesting that, while excitons do not form an integral result 
of a one-electron theory, they can be described very well once the 
properties of the valence and conduction bands are known (1956:9). 

We have been attempting in the face of some objections to justify 
the use of the Bloch collective electron model which generates the band 
theory. It should now be noted that there are some materials whose 
behavior is at variance with the normal provisions of band theory. Oxide 
semiconductors such as ocFe203, CoO and NiO provide excellent 
examples of this apparently paradoxical situation. 

It has been known for a long time that these materials have the pro­
perties normally associated with semiconductors. In the pure state 
they have an extremely low electrical conductivity, and a many-fold 
increase can be provoked by departures from lattice perfection. Thus 
extrinsic conduction in NiO can be encouraged by departures from 
stoichiometric proportions (1949:7, 1951:12), which is easily accom­
plished by controlling the oxygen vapor pressure at high temperatures 
(1934:1). Vacant anion sites then behave as acceptors. An acceptor 
can also be produced by a "controlled valency" procedure (1948:3, 
1950:6) such as the replacement of a nickel atom in the NiO lattice 
with a lithium one. 

Now the nickel ion in NiO is in the (3uf)8 configuration; thus whether 
the 3d band of 10 states per atom is split by the cubic crystal field into 
sub-bands of 4 + 6 states or not, nickel oxide should—according to the 

f When the electron-hole spacing is large, the energy levels may be hydrogenic, 
renormalized by the dielectric constant. 
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Bloch model—have a partially filled band. In accordance with Wilson's 
classification,this compound (and the others like it) should be metallic, 
yet it is not. The paradox was first discussed by de Boer and Verwey 
(1937:2), who suggested that metallic conduction is inhibited by a very 
large interatomic potential barrier. This means in essence that the 
Bloch picture is not applicable to materials such as NiO ; perhaps, then, 
the Heitler-London (1927:3) procedure should be used, in which 
electrons are associated with individual atoms. 

The inapplicability of the Bloch approach for materials of large 
interatomic spacing has been argued very persuasively by Mott 
(1949:6, 1956:3), who points out that the Heitler-London and Bloch 
models are not different approximations to the same exact wave-
function. Mott shows that when a material of large interatomic spacing 
such as NiO is treated from the Heitler-London viewpoint, energy is 
required to create the polar states (such as some Ni+ and Ni3 + in NiO 
rather than all Ni2 + ions) which are necessary for conduction. According 
to this picture, if the lattice constant were progressively decreased, a 
point would be abruptly reached where a lower energy could be ob­
tained with many electrons available for conduction. From this critical 
lattice constant downwards, the Bloch picture would be appropriate. 

In another approach to these compounds, Yamashita and Kurosawa 
(1958:19) start essentially from the Heitler-London viewpoint, but 
treat the electron-phonon interaction in zero order to argue that 
electrons should be self-trapped. The periodic potential is then used as 
a perturbation to show that the self-trapped configuration can migrate 
through the crystal. This is a concept similar to those applied (e.g. 
1959:12) in the theory of impurity conduction via weakly interacting 
impurities. 

Slater (1951:11) and Heikes (1955:24) think it significant that the 
anomalous compounds of the NiO type are antiferromagnetic. They 
suggest that a system of energy bands would be modified by the addi­
tional field of the magnetic superlattice, superimposed on the normal 
crystal potential, and that for an antiferromagnetic material this could 
split the bands in a manner which would make the highest occupied 
one completely full. This approach sounds attractive, but it does not 
explain why these compounds do not become metallic in nature above 
the Néel temperature. Moreover, Katz (1952:10) points out that the 
conditions necessary for band splitting will rarely be achieved. 

It is not really surprising that some groups of materials elude the 
ordinary classifications. I t is more a matter for surprise that so many 



E F F E C T I V E MASS OF C H A R G E CARRIERS 3 5 

materials can be classified from a rather small number of general 
principles. 

The transport properties of electrons in the bands of a semiconductor 
or metal are conventionally developed from a kinetic approach (see 
1953:4 and 1960:19) based on the Boltzmann equation. As Joffe 
(1960:22) emphasizes, this is improper for low mobility semiconductors. 
When μ <, 5 cm2/volt sec [as is the case for elemental semiconductors 
such as boron (1957:38) and selenium (1951:19), for many inorganic 
compounds, and for almost all organic semiconductors], the mean free 
path deduced from a kinetic approach turns out to be smaller than 
interatomic distances. For such materials the "mean free pa th" concept 
loses its meaning, and "mobility" has a changed significance. Of course, 
this affects only the way electrons must be regarded as undergoing 
scattering from one state to another in a band. The existence of energy 
bands in these solids is not directly in question. 

As a final reflection on the reality of energy bands for electrons in 
many solids, we may take note of the fact that the conductivities and 
other electrical properties of some metals and semiconductors are 
virtually unchanged in melting, suggesting that a band structure is 
preserved even though there is no longer any long-range order. f This 
is not really surprising if we recall that in band theory the influence of 
everything beyond one or two atomic spacings is lumped into a self-
consistent field. The division of permitted electron states into groups 
or bands is dictated by the nature of the short-range order, and this 
can be the same in a highly ordered crystalline lattice, in an amorphous 
phase of the same solid (1960:22) or in the liquid phase. 

1.4 THE EFFECTIVE MASS OF CHARGE CARRIERS 
It is now necessary to consider in more detail the mathematical 

formulation of the band model. This leads to a description of the E-\L 
relationship and the distribution of states in energy in terms of an 
"effective mass" tensor. 

f Some other semiconductors become metallic on melting. This is true for instance 
of germanium, in which a change of co-ordination number (from 4 to 6) occurs at 
the melting point. This is analogous to the reversion of semiconducting gray tin to 
metallic white tin at 17°C when the co-ordination number makes the same change, 
and demonstrates that the choice between semiconducting or metallic behavior 
depends on co-ordination number (short-range order) rather than on the existence 
of long-range order. 
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1.4.1 PHASE AND GROUP VELOCITIES 

From the discussions in Section 1.3 it is evident that solutions of the 
(time-dependent) Schrödinger equation when a periodic potential is 
present are plane waves of the form 

φ = Uk(r) exp[f(k . r - ω**)] (141.1) 

Here a probability wave of angular frequency ω moves through the 
solid. The long-term probability density is of course the same in every 
cell, since an electron of any energy which is an eigenvalue of the wave 
equation can move anywhere in the crystal, even though its energy E 
may be lower than the peak of the periodic potential. 

The phase velocity (ω/k) of the probability wave is not important. 
What is important is the velocity of the actual electron expressed as a 
wave packet. This is the group velocity. 

v = Vk«> (141.2) 

and since E = Â w w e can alternatively write the group velocity as 

1 
v = - V k £ (141.3) 

h 
A particular point in k-space with a certain energy characterizes the 
motion of an electron (in real space) in a straight line with uniform 
velocity v. I t is interesting that the electron's behavior can be described 
without knowing the absolute value of k. As will be seen below, it is 
necessary only to know the value of k relative to that at a zone bound­
ary. This leads to a useful simplification of the zone scheme. 

1.4.2 T H E REDUCED ZONE 

In discussing the simple one-dimensional Kronig-Penney model in 
Section 1.3.2, it was noted that zone boundaries occurred whenever 
kx was a multiple of π/α. I t is not in fact necessary to use values of kx 
larger than ± ττ\α in describing any state. For suppose the wave-vector 
of a position outside the first zone is described as (kx + 2nnla), where n 
is a (positive or negative) integer and kx is the wave-vector of a position 
inside the first zone. Then the wave-function 

φ = JJ(x) txp[ix(kx + 2nnla)] (142.1) 
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can equally well be written as 

φ = U\x) cxp(ixkx) (142.2) 

where U'(x), like U(x), has the periodicity of the lattice. Eq. (142.2) 
is as good a Bloch function as (142.1). 

This means that the electron energy E(k) can be plotted as a multi­
valued function of k within the first Brillouin zone, as indicated by the 
dashed curves of Fig. 14.1. Such a representation is known as that of 
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FIG. 14.1. Multi-zone and reduced zone representation of the energy-wave-
vector relationship for a one-dimensional monatomic lattice. 

the reduced zone, and the value of k corresponding to a whole series of 
possible energies is known as the reduced wave-vector. The point P in 
Fig. 14.1 becomes P' in the reduced zone, just as Q, becomes Q,'. 

A reduced zone formalism is very useful since the mathematics is 
greatly eased. This is not too apparent for the hypothetical one-
dimensional solid of Kronig and Penney but becomes much more 
obvious when the reduced zone concept is applied to multi-dimensional 
systems. Thus consider Fig. 14.2, which shows the first four Brillouin 

4 
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zones for a simple two-dimensional square lattice. Even this provides 
enough complexity for the points A and B in separate sections of the 
fourth zone to have no obvious connection. Yet the equivalent points 
A' and B' in the reduced zone can be seen to correspond with closely 
neighboring states, quite near to the zone center. 

FIG. 14.2. The first four zones of a two-dimensional square lattice. The 
points A and B in the fourth zone appear quite remote; but when viewed 
as the corresponding points A' and B' of the reduced zone can be seen to be 

neighboring states. 

The translation in k-space which relates equivalent points in different 
zones is said to be 2π times a reciprocal lattice vector. The establishment 
of the directions and magnitudes of such vectors is as follows. Con­
sider a general (not necessarily cubic) three-dimensional lattice for 
which the primitive translations are a i ? a2, and a3. These are not 
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necessarily perpendicular to each other or of equal length. Then the 
reciprocal lattice is defined by three primitive vectors b i , b 2 , and b3 such 
that 

il if i = j 
*i.hs = &i, = \ \ (142.3) 

10 if ι Φ j 
The hj are given by expressions 

a 2 x a3 
&i = : (142.4) 

a i . ( a 2 x a 3 ) 
so that b i is normal to the plane of a2 and a3, and so on. A reciprocal 
lattice vector is then of the form 

n = wibi + w2b2 + W3b3 (142.5) 

where η±9 w2 and n% are integers. Such vectors have the convenient 
property that exp(27rt'n . r ) has the periodicity of the lattice; and it is 
this property which enables us to assert that two states in k-space, 
with wave-vectors k and k ' related by k ' = (k + 27rn), are essentially 
the same state, though they occur in different Brillouin zones. 

When k is expressed as a sum of components k±, £2, k% along the 
directions of b i , b 2 and b3, the first—or reduced— zone is the region 
of k-space attainable within the limits 

— Trbi < k\ ^ irbi 

-πο2 ^ k2 ^ 7rb2 (142.6) 
— irbz ^ kz ^ Trbs 

For crystals of hexagonal symmetry (including zinc and cadmium), the 
reduced zone is itself a simple hexagonal prism (see Fig. 13.4). A more 
complicated polyhedron is necessary with most types of lattice ; thus 
the first zone for a F.C.C. lattice (such as copper or aluminum) in 
Fig. 13.3 is constrained by six 100 surfaces and eight 111 surfaces. For 
a more complete discussion, see (1946:1). 

1.4.3 T H E EFFECTIVE MASS 

I t has previously been shown (Eq. 141.3) that the group velocity of 
an electron wave-packet in space is 

1 
v = - V k £ 

h 
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Accordingly, the acceleration in an external field is 

dv 1 d 
a = = V t £ 

dt Kdt 
1 Γ dkl 

-ϊ^Γ**-*] <1431) 
Now if the force on the electron resulting from the external field is F 
(which is just tfV^when no magnetic field is present), then solution of 
the time-dependent Schrödinger equation requires that F = — A(dk/d£). 
Substitution into (143.1) gives 

a = - — VkVk£. F (143.2) 

which has components 

" - - F ? ^ * " · (143-3) 
The tensor quantity h2 [d^Jdkidkj]-1 is known as the tensor of effective 
mass, since it has the dimensions of mass and is analogous with the 
mass required to fit Newtonian equations of motion. 

In the analysis of experimental data on solids, it is often assumed 
that there are no non-diagonal components to this tensor; indeed it 
is common practice to hope that all the diagonal components will be 
the same, giving a scalar effective mass 

m* = %2\{d2E\dk2) (143.4) 
for the states of interest. This can prove to be a poor approximation 
for a discussion of transport phenomena, but fortunately an equivalent 
scalar effective mass can usually be defined for use in discussions of 
carrier statistics. 

At the lowest energy in a band, the three principal values of the 
effective mass tensor are all positive, but at the very top of a band the 
values are all negative. [This can be seen in a one-dimensional sense in 
Fig. 14.1; (d2E/dkx

2) is positive at the bottom of each band and 
negative at the top.] The particle known as a hole—the absence of an 
electron—accordingly behaves as though it has a positive effective 
mass — h2[d2Ejdkidkj\~1 near the top of a band. 

The Fermi level in a metal customarily occurs at some energy inter­
mediate between the bottom and top of a band. For such an energy 
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the components of effective mass may be positive and negative in 
different directions. Fortunately in semiconductors we are usually only 
concerned with levels very near to either the top or bottom of a band, 
where all the components are of one sign. 

The variation of energy E with wave-vector k is determined by 
acceptable solutions of the Schrödinger equation for the actual crystal 
potential—which varies markedly from one solid to another. One 
feature is, however, common to two very different approximate methods, 
the tight binding method and the nearly free electron method, f This 
feature is that just above the bottom of a band (characterized by Ec and 
kc) the dependence of E on k is to first order of the form 

E = £ c + const(k-kc)2 (143.5) 

Terms involving higher powers of (k—he) become significant at higher 
energies. 

From the previous definition of effective mass, it is evidently possible 
to rewrite Eq. (143.5) as 

Â2(k-kc)2 

E = EC+ \ ^ (143.6) 

where mc implies the electron effective mass for the direction of the vector 
(k —kc). Similarly, near the top of a band (EVy kv) the dependence of 
electronic energy on wave-vector is represented to a first approximation 
by 

£=i--V ( 1 4 3 · 7 ) 
where mv is the (positive) hole effective mass for the given direction 
in k-space. 

When mc and mv simplify to scalar quantities for energies close to 
that of a band extremum, the constant energy surfaces in k-space are 
spherical. Fig. 14.3 shows schematically how energy contours in the 
Brillouin zone might develop for a two-dimensional square lattice. For 

f In the tight binding approximation, the periodic potential is assumed to be very 
large. For the nearly free electron approximation it is assumed that the Fourier com­
ponents of the periodic potential represent a small perturbation. Kittel (1953:2) and 
Dekker (1957:3) examine these models in some detail. Herman (1958:1) gives an 
excellent account of the results for these models with a number of real crystal struc­
tures. 
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the purpose of this figure the lowest energy is assumed to occur at the 
zone center, and the uppermost energy at the zone corners kx, ky 
= ±π/α. Around the zone center and around the corners the energy 

contours are circular, indicating isotropy of effective mass; and are 
parabolically spaced in accordance with the requirements of Eqs. 

FIG. 14.3. Schematic display of energy contours in the reduced zone of a 
two-dimensional square lattice. 

(143.6) and (143.7). (The spacing is not the same at the top of the band 
as at the bottom, since the masses mc and mv which characterize the 
two regions are by no means necessarily equal.) For intermediate 
energies and regions of k-space there is necessarily a breakdown of 
parabolic contour spacing and of isotropy in effective mass. As indicated 
previously, the manner of this breakdown depends on the periodic 
potential, and Fig. 14.4 shows how the energy contours are likely to be 
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(a) (b) 

FIG. 14.4. The schematic arrangement of energy contours for a two-
dimensional square lattice (a) with the tight binding approximation 

(b) with the nearly free electron approximation. After Dekker (1957:3). 

(a) (b) 

FIG. 14.5 Constant energy surfaces in the reduced zone of a face-centered 
cubic lattice (a) corresponding with an energy not far above the bottom of 
the band (b) for an energy approaching the top of the band. After MotÇ 

and Jones (1936:1). 
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distorted when the periodic potential is either very strong or rather 
weak. 

In the limiting case of zero periodic potential we are left with the 
Sommerfeld model, and a mass mo is appropriate for all states. Accord­
ingly we can expect that when the periodic potential is rather small, 
the effective mass at the bottom of the band will not be very far 
different from mo, and that energy contours well out into the zone will 
bear the mark of this effective mass. These tendencies are sketched in 
part (b) of Fig. 14.4. Similarly, Fig. 14.5 attempts to illustrate energy 
contours in the three dimensional reduced zone of an F.C.C, lattice 
when the periodic potential is not too large. 

1.4.4 T H E DENSITY OF STATES 

In Sub-section 1.2.1 it was shown that the volume of k-space to be 
allowed for each electronic level is (27r/Z)3 with a cubical crystal of 
side L. The volume per one-electron state is half of this, 4(7r/Z)3, since 
each level can accommodate two electrons of opposite spin.f Consider 
two energy contour surfaces in k-space representing energies άΕ apart. 
The total volume of k-space lying between these two surfaces can be 
expressed as a surface integral. 

dS . 

LJ Vk£j 
For unit volume of crystal this must comprise 

dS IdE 
dns 

ΓΓ dS IdE 
states (144.1) 

The quantity g(E) = (dns[dE) is the density of states (per unit volume 
of crystal) per unit energy interval, and evidently 

*W - J; dS 
(144.2) 

47r3Vk£ 

The simplest situation is that of a scalar electronic effective mass, 

f This statement is sometimes made in the form that the spin degeneracy of electronic 
levels is two. When we later come to consider impurity levels in semiconductors we 
shall find that they have a spin degeneracy which may exceed two. 
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when the constant energy surfaces are spheres centered on k = 0 , 

%2k2 

E = EC+—— (144.3) 

Then (dE/dk) = (h2klmc) over an entire surface while J dS = 47τΑ;2. 
Application to Eq. (142.2) gives a density of states 

g(E) = (*/w)2(dA/dE) = 4^(2mc/A2)3/2(£_£c)i/2 ( 144.4) 

When a band covers a comparatively small range of energy: 
(a) contours corresponding to successive energies are widely spaced 

in the Brillouin zone, i.e. Vki? is small; 
(b) the density of states per unit energy interval as described by 

Eqs. (144.2) or (144 4) is high; 
(c) as a corollary of these statements the effective mass is large and 

the velocity (141.3) and acceleration (143.2) of an electron are small. 
The common parlance for this type of situation is that electrons of 

large effective mass have a small mobility. Conversely, highly mobile 
carriers of low effective mass are to be found in a band which is spread 
over a wide range of energy to keep the density of states small. 

In the free electron theory we obtained an expression (121.7) for 
the density of states which differed from Eq. (144.4) only in the use of 
the normal electronic mass rather than an effective mass. In Eq. (144.2), 
however, we have a much more powerful generalized expression for 
the density of states, no matter how anisotropie and convoluted the 
energy surfaces are. 

As a simple—and practical—example, suppose that the effective 
mass tensor can be characterized by principal values 7%, my and mz 
along the three orthogonal axes. A constant energy surface now satisfies 

E-Ec = - [(**-**o)2
 + (*»-*«>)8

 + (*«-**)2j (144-5) 
2 L τηχ my mz J 

when the lowest energy Ec occurs at kxo, kyo, kzo. Relative to this point 
in k-space, the energy surfaces are still parabolically spaced in any 
direction; but they are now ellipsoids with axes in ratios mx~1/2:my~1/2: 
mz~1/2. Using the general principle of Eq. (144.2) or alternative 
simpler arguments it may be shown that the density of states is given 
by 

g{E) = 477(ma;7nî,mzi/2(2/A2)3/2(£_£c)i/2 (144.6) 
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Now this is just of the form (144.4) if {mxmymz)llz is replaced by mc. 
In this case, as in many others of non-spherical energy surfaces, it is 
possible to describe the density of states in terms of an equivalent scalar 
electronic mass—the "density-of-states" effective mass. The point to 
note is that spherical energy surfaces [characterizing a scalar mass 
mc = {rnxmym^)1,^\ which describe energies 8E apart capture the same 
volume of k-space as exists between the spheroidal surfaces of the same 
energies. This is the important thing in determining the statistical 
picture of a semiconductor, since the number of electrons within a given 
energy interval depends on the Fermi distribution function and the 
number of states within that interval (that is, dependent on the volume 
of k-space available but not affected by the distribution of this volume 
within the zone). 

I t will be understood that references made in the previous discussion 
to electrons at the bottom of a band are applicable, mutatis mutandis, to 
holes at the top of a band. 

1.4.5 MASS RENORMALIZATION IN BAND THEORY 

In Section 1.2, electrons in a solid were considered as being free, 
subject only to the statistical constraint of the Fermi-Dirac distribution. 
This constraint did place a limit on the number of electrons which 
could occupy states within a given range of k, but k-space was treated 
as a quasi-continuum, and any solution of the simple Schrödinger 
equation 

m 
ν2Φ + Εφ = 0 (145.1) 

2 m0 

was regarded as acceptable. 
The failure of the free electron model was attributed to the neglect 

of the crystal potential, and this led to a replacement of 

V 2 

2m0 

as the Hamiltonian operator by 

Γ ^2 1 
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However, it was pointed out in Section 1.3 that V(r) could reasonably 
be expected to have the periodicity of the lattice, and that the solutions 
of 

»a 
— — V ¥ + [ £ - V(r)]i/j = 0 (145.2) 
2 mo 

would then be the familiar Bloch functions of band theory. In the pres­
ent section it has been demonstrated that many attributes of a band 
can be described in terms of the concept of an effective mass m*. 

Although we have not so far made the explicit statement, band theory 
gives back to electrons the complete freedom they had in the Sommer­
feld model provided the mass is suitably renormalized. By this is meant 
that the wave-functions and energies of band states are the solutions 
and eigenvalues of the simple equation. 

»a 
ν2Φ+Εψ = 0 (145.3) 2m* 

Eq. (145.3) differs from (145.1) only in the use of m* rather than mo; 
the value of m* takes into account the periodic potential which appeared 
as a term in Eq. (145.2). 

This assumption of free quasi-particles can even be pushed a stage 
further by using 

—V¥+ U + - k = 0 (1 4 5·4) 
2m* L KT\ 

as the equation for determining the ground state and excited states of 
an impurity in the lattice (1957:2). The procedure is not satisfactory 
when an orbit is so small that the concept of dielectric constant breaks 
down, but appears to be satisfactory in high dielectric constant mater­
ials both for impurity states and exciton states (1956:11). 

The concepts of electrons as particles with very few restraints must 
undergo some adjustment when the application of an external field is 
considered. A conductor is not in a state of thermal equilibrium if there 
is any gradient of the Fermi level, as occurs when an external electric 
field is applied—for then energy is continuously dissipated by the 
consequent passage of current. Thus it is not proper to consider electric 
fields here. But the presence of a steady magnetic field does not con­
stitute a violation of thermal equilibrium, and it is important to note 
the changes this type of field has on the distribution of states. 



48 THE ELECTRON T H E O R Y OF SOLIDS 

1.4.6 MAGNETIC SUB-BANDS 
Purely from the reasoning of classical mechanics, it is to be expected 

that if an electron of effective mass m* is subjected to a magnetic field 
Hz in the z direction, its motion in the xy plane will tend to create a 
circular orbit, with angular frequency 

eHz 
ωο = — - (146.1) 

rrrc 
This is usually referred to as the cyclotron frequency. Quantum-
mechanical restrictions would be expected to take the form that the 
only permitted orbits would have radii corresponding with an angular 
momentum which was a multiple of k. This simple reasoning is sub­
stantiated by the quantum-mechanical treatment of Landau (1930:3), 
who showed that in the presence of the magnetic field HZi the Schrö-
dinger equation (145.3) must be elaborated! to 

K* eHz Hi d d\ e*Hz2 

2m* 2m*c ι \ cy ox] 8m*c2 

Seitz (1940:1) demonstrates how this equation can be transformed to 
provide the form of a harmonic oscillator in the ^y-plane. The energy 
levels of the system are 

W efiHz 
£ = Z ? C + _ + ( „ + £ ) _ _ (146.3) 

2m* m*c 
where n is a positive integer or zero. Using Eq. (146.1), Eq. (146.3) 
assumes the popular form 

E = Ec+ —— +(η + $)Ηωο (146.4) 
2 m* 

The electron is free in the z direction, but for directions normal to the 
magnetic field is trapped in the levels of the harmonic oscillator. This 
affects the description of the permitted states on an energy scale and 
their locations in k-space. 

f Landau's discussion was related in point of fact to the free electron model. The 
arguments of Peierls (1933:2) and more recently of Luttinger (1951:9) indicate that 
the same procedure may be used for electrons experiencing a periodic lattice potential 
if the electron mass mo is replaced by the effective mass m*. 
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The levels for the different values of n are known as Landau levels. 
Since energy can vary quasi-continuously with kz, electronic energy 
in the crystal is not confined to a series of levels in the conventional 
sense of the word, but to a series of magnetic sub-bands, each based upon 
one of the Landau levels. Fig. 14.6 illustrates how energy varies with 

(E-Ec) 

K2 

FIG. 14.6. Electron energy as a function of kz for the first four magnetic 
sub-bands when a field Hz is applied in the ^-direction. The base of each 
sub-band is at an energy (η + £)Ηωο, where ωο is the cyclotron frequency 

(proportional to Hz). 

kz for the various sub-bands. The base of each sub-band is (n + %)hœo 
above Ec, thus the separation of each sub-band from the zero-field 
band minimum is linearly dependent on the magnetic field. 

So far as the distribution of states in k-space is concerned, we have 
previously considered the field-free case for which k-space was uni­
formly filled with cells of volume (2ΤΓ/Ζ)3, each of which could accom­
modate two electrons of opposing spin. This availability of all k-space 
disappears when the field Hz is applied. A given value of kx is now 
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compatible only with certain other values of ky, such that 

(2n+\)eHz (2η+1)τη*ω0 kX2 + ky* = 
cH 

(146.5) 

Upon viewing a cross-section of k-space in a plane normal to kz (as in 
Fig. 14.7), the permissible relationships of kx to ky are represented by a 

FIG. 14.7. A cross-sectional view of any KxKy plane in k-space when a 
magnetic field Hz is applied. The permitted states fall on circles (cross-

sections of cylinders in three-dimensional k-space). 

series of circles, with radii 

rn = [ (2Λ+1Κωο/Α]1 / 2 (146.6) 

Since kz is still allowed to be quasi-continuous, all the allowed states 
fall on a series of coaxial cylinders in k-space, aligned along the axis 
of kz. 
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This does not mean that a band has states for fewer electrons in the 
presence of a magnetic field than it has in the absence of the field. Each 
level of the two-dimensional system illustrated in Fig. 14.7 contains as 
many states as does an area (2πηι*ωοΙΗ) in the kxky plane of the field-
free semiconductor. What a magnetic field does do is collect up bundles 
of (m*œolh) states (per unit volume) which had energies in the xy plane 
between nhœo and (n + l)ha>o, and impress upon each the energy 
[n-\-\)hwQ. This collection into bundles is illustrated schematically in 
Fig. 14.8. The larger the magnetic field, the more states per bundle, 

Zero Field 

. 

| 

| n = 2 

1 n= 1 

Ί n=0 

Field Hz 1 

(7/2)ÎiCJ0 

(5/2)ΐω0 

(3/2)ΐω0 

(ΐ/2)ΐω0 

FIG. 14.8. Illustrating how the application of a magnetic field Hz causes the 
collection of bundles of (πι*ωο/Η) states (per unit volume) from energy 
ranges ηΗωο -> (η + \)Ηωο into degenerate states at energies (η + %)Ηωο. 

the wider the energy range from which this bundle is drawn, and the 
larger the steps of energy between successive bundles for a given kz. 

Viewed over a sufficiently large range of energy or of k-space, the 
application of a magnetic field does not change the average density of 
levels—but it certainly changes the detailed distribution. Since in a 
semiconductor we are usually interested in the lowest lying energy 
states of a band, the influence of the magnetic field can be profound. 

Kahn and Frederikse (1959:7) give a result for the density of states 
per unit volume and energy interval which may be expressed (allowing 
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for electron spin degeneracy) as 
'2m*\3/2 w» /2m*\3/a»~* Tic KCOQ 

+ i)***]1/a (146.7) 

where the summation over n extends over all positive integers for which 
the radical is real. When the magnetic field is very large, only a small 
number of terms contribute to g(E) for any moderate energy. For 
vanishingly small Hz, the summation involves so many terms that it 
can be replaced by an integral, which of course gives the anticipated 
result, 

/2m*\3/2 
g(E) = 4 * ( — J - {E-Ecyi\ HZ->Q (146.8) 

We shall return to the result (146.7) in Chapters 2 and 3 where 
consideration is given to the relationship of the Fermi level to a band 
containing a given number of electrons, and the effect of a magnetic 
field on impurity ionization. In a completely qualitative fashion, it 
can be surmised from the appearance of Fig. 14.9, with most of the 

FIG. 14.9. The density of states as a function of energy above Ec. Broken 
curve shows the smooth function (146.8) which applies in the absence of a 
magnetic field. Solid curve shows the discontinuous nature of g(E) when 

a magnetic field is applied [from Eq. (146.7)]. 
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energy levels compressed into narrow sub-bands, that the problems of 
carrier statistics will depend on the relative magnitudes of hœo and AT, 
and on whether the electron supply is enough to fill several sub-bands 
or only a small portion of one. 

The preceding discussion has for simplicity been couched in terms of 
an isotropie effective mass. Such a simplification is not valid in many 
cases, for the conduction and valence bands of most semiconductors 
seem to proliferate with multiple extrema, band degeneracies, spin-orbit 
splittings and the like. However, Luttinger and Kohn (1955:17) have 
shown that the Landau procedure can be extended to cover each of 
these band complexities. That the creation of quantized Landau levels 
is still recognizable when the effective mass is anisotropie and multi­
valued permits an interpretation of the vast amount of recent literature 
concerning cyclotron resonance experiments (e.g. 1955:8, 1956:5), 
oscillatory magneto-absorption (e.g. 1957:13, 1959:8, 1959:9), Faraday 
effect (1959:10) and other associated phenomena. In a highly degener­
ate semiconductor the magnetic quantization produces a tendency 
towards an oscillatory behavior of magnetic susceptibility, known 
experimentally as the de Haas-van Alphen effect (1930:4). This effect 
is very useful in providing information about the shape of the Fermi 
surface in a metal, even when the shape is very complicated (e.g. 
1957:14, 1960:2). A very full account of progress up to 1958 in the 
various fields of magnetic quantization is given by Lax (1958:2), who 
demonstrates the relationships between some of the more prominent 
effects. 

1.5 BAND SHAPES FOR SOME REPRESENTATIVE 
SEMICONDUCTORS 

In order to illustrate more fully the forms which can be taken by the 
effective mass tensor, this section indicates the state of knowledge (at 
the time of writing) about the shapes of conduction and valence bands 
in some well-known semiconductors. In the last decade it has been the 
general rule that, the more is known about a semiconductor, the less 
simple do its bands appear. 

One of the most important features of the band structure in a semi­
conductor is the intrinsic gap E\. This is the minimum energy separation 
between the valence and conduction bands. Since optical phenomena 
are so frequently employed in attempting to find band separations, it 

5 
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is desirable to emphasize the distinction between "vertical" and "non-
vertical" optical transitions as used for this purpose. 

Ideally one would like to have the minimum of the conduction band 
and the maximum of the valence band occur at the same point (or 
points) in the reduced zone. Such a situation is illustrated in Fig. 15.1. 
Since the momentum of a photon is exceedingly small, energy and 
momentum are conserved if an electron is raised from the valence band 
to a conduction band state of almost exactly the same k. Such a tran­
sition appears vertical when drawn on a figure such as Fig. 15.1, and is 

E 

Ec 

Ec-Hi 

k >· 

FIG. 15.1. A semiconductor for which valence band maximum and con­
duction band minimum are at the same point in the reduced zone, so that 

the least energetic optical transition is a direct or "vertical" one. 

also direct in that the transition takes place in a single step. The least 
energetic photon which can induce such a transition has hv = Ei, 
thus the intrinsic gap can be deduced from the position of the funda­
mental optical absorption edge. 

The form of optical absorption for hv > Ei depends on the matrix 
element of the initial and final wave-functions, and this is a complete 
subject in itself which need not be pursued here. In practice, the 
position of the absorption edge may be complicated due to exciton 
formation (1958:4) but this too is a point of fine detail which lies 
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outside the present scope. For a complete and lucid description of the 
theories of direct (and indirect) optical transitions, the reader is re­
ferred to the book by Smith (1959:4). 

Indirect transitions are important when the valence band maxima 
and conduction band minima occur for diffèrent values of k, as illus­
trated by Fig. 15.2. A hole at energy (Ec-Ei) and an electron at Ec 

c m 

Ec 

EcfE i 

k >-

FIG. 15.2. A semiconductor for which the least energetic intrinsic optical 
transition is an indirect or "non-vertical" one, involving a lattice phonon. 

can not be created directly by absorption of a photon for which hv = Et, 
since momentum would not be conserved. Bardeen et al. (1956:12) 
point out that such a "non-vertical" transition can occur indirectly; 
that is, as a two-stage process involving the emission or absorption of a 
lattice phonon to make up the difference in momentum. Such a phonon 
inevitably has some energy kB associated with it; thus there will be 
two closely spaced absorption edges (1955:12) corresponding with 
hv = Et± ΚΘ. Since exciton effects can again produce complications, 
it is a delicate and involved procedure to determine the actual intrinsic 
gap from optical data. 

Even when the intrinsic difference between conduction and valence 
bands does not correspond with a vertical transition, it is still of some 
importance to determine the vertical band separation also, the quantity 
marked as (Ei + Em) in Fig. 15.2. In thin samples the powerful absorption 
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due to this transition can be detected above the skirts of indirect 
absorption. Thus in germanium, optical absorption (1955:10) and 
magneto-absorption (1957:8) have been used to establish the value of 
(Ei + Em) for the point in k-space where the valence band maximum 
occurs. 

While more and more reliance seems to be placed on optical tech­
niques for determining interband energies, a variety of techniques 
has been improved and devised for exploring the E—k relationship 
within a band. Perhaps the most spectacular of these is diamagnetic 
or cyclotron resonance, which can measure components of the effective 
mass tensor from the separation of the Landau levels. The anisotropy 
of magnetoresistance (e.g. 1954:6) and of piezoresistance (e.g. 1954:7) 
provide additional valuable information. The possible forms of band 
anisotropy can be delineated from group theory considerations, based 
on the symmetry operations of the crystal lattice. 

The first two semiconductors to be discussed, silicon and germanium, 
crystallize in the diamond structure; and the third, InSb, in the related 
zincblende structure. As Fig. 15.3 shows, each atom in the diamond 

FIG. 15.3. Arrangement of atoms in the diamond structure, showing each 
atom with four nearest neighbors in a tetrahedral arrangement. After 

Shockley (1950:1). 
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structure has four nearest neighbors in a tetrahedral configuration. 
The only difference for the zincblende structure is that each atom has 
four atoms of the other chemical type as its nearest neighbors. Both of 
these structures consist essentially of two'interpenetra ting face-centered 
cubic lattices. Since the translational symmetry is the same as that of a 
F.C.C, lattice, the reduced zone is a volume bounded by six (100) 
faces and eight (111) faces, just as for a simple F.C.C, lattice itself. 
This reduced zone is illustrated in Fig. 15.4. 

FIG. 15.4. The reduced zone for a material crystallizing in a lattice with 
the translational symmetry of face-centered cubic. Thus this is the reduced 
zone for the diamond structure. Each co-ordinate should be multiplied 
by 2π/α to yield the actual magnitude of the component of k (a is the unit 

cube edge). 

In connection with this figure, note a point of terminology. The point 
on the reduced zone boundary for the positive axis of kx has a wave-
vector with components [(2πΙά), 0, 0] with respect to the zone center. 
(Here a is the length of the unit cube, as indicated in Fig. 15.3.) For 
brevity of expression, the factor (2nja) is often omitted, and this point 
described simply as [100]. In like manner, both [π/α, π/α, ττ\ά\ and 
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[£ 2 i ] a r e accepted and understood descriptions of the zone boundary 
in the center of the positive octant, and so on. 

The Brillouin zone of Fig. 15.4 has a number of axes and planes of 
symmetry. If the lowest energy anywhere in the conduction band 
occurs at a point in k-space which is not on any of these axes or planes 
of symmetry, then this same low energy must occur at forty-seven other 
positions in the reduced zone. For a very slightly higher energy, there 
must be an energy contour in the form of forty-eight ellipsoidal surfaces 
surrounding these extrema. 

Usually we can expect to find that the lowest energy does occur on 
one or more axes and planes of symmetry. The number of equivalent 
points in the zone is then smaller, and the energy surface surrounding 
each extremum is less general in shape—such as an ellipsoid of revolu­
tion. 

1.5.1 T H E BAND STRUCTURE OF SILICON 

Theory [notably as developed by Herman (1954:1, 1955:7) using 
the orthogonalized plane wave method] and experiment have been 
fruitful and mutually helpful in providing information about energy 
bands in silicon. Probably the most direct evidence comes from meas­
urements of cyclotron resonance (1955:8, 1956:5), but useful support 
can be derived from other effects, such as magnetoresistance (1954:6) 
or piezoresistance (1954:7). All of this evidence indicates that the 
lowest energy for the conduction band occurs at six points in the re­
duced zone. These points lie on the principal cubic axes of the zone, 
and are about 75% of the way out from k = 0 to the zone boundary. 

An energy surface for any slightly higher energy must then comprise 
six ellipsoids (Fig. 15.5). From symmetry arguments these must be 
ellipsoids of revolution pointing along the cubic axes, characterized 
by a longitudinal mass mi and two equal transverse masses mt. The 
experimental evidence is that these ellipsoids are quite prolate (elon­
gated), with mi « 0-98 mo and mt « 0-19 mo. Thus for discussions of 
carrier statistics and density of states, all the ellipsoids could be replaced 
by a single spherical surface with a density-of-states effective mass 

mc = 62/3 . (mm2)1'* = 1-081710 (151.1) 

The energy bands of silicon are shown in Fig. 15.6 as visualized by 
Herman (1954:1). This figure shows how energy varies with reduced 
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wave-vector along one of the cubic axes and along a cube diagonal 
direction from the center of the zone. One of the six equivalent con­
duction band minima is clearly apparent from the deep trough part 
way along the [100] direction, and it can be expected that almost all 
phenomena involving free electrons will be associated with these 

[OIO] 

[Too] [100] 

[010] 

FIG. 15.5. The surface of constant energy in k-space for an energy just 
above the bottom of the conduction band in silicon. An ellipsoid of revolu­
tion pointing along one of the principal cubic axes surrounds each extremum. 

portions of the zone. The figure shows that other minima do occur in 
the complex of conduction bands, notably at the extremities in the 
[111] directions, but these minima are so high in energy compared 
with the group of six already discussed that there can never be a notice­
able number of electrons in these elevated states. 
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f i l l i I222J 

FIG. 15.6. The energy band structure of silicon as expected from the cal­
culations of Herman (1954:1). The lowest conduction band minima occur 
at a point along each of the six [100] directions in the reduced zone. The 
valence bands all have a single extremum at the center of the zone (000). 

4 0 0 

T°K 
FIG. 15.7. Temperature dependence of the intrinsic energy gap in silicon, 
as deduced from measurements such as the optical absorption data of 

Macfarlane et al. (1958:3). 
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The energy difference between the conduction band minima and 
the high point of the uppermost valence bands defines the intrinsic gap. 
This quantity, not surprisingly, is a function of temperature. The 
dilatation of the lattice and the increasing strength of lattice vibrations 
both tend to modify the intrinsic gap as silicon is heated; the result 
is believed to be substantially as shown in Fig. 15.7, determined from 
the absorption edge for indirect (non-vertical) optical transitions. 

Below the intrinsic gap lie the valence bands, repositories of free 
holes. Fig. 15.6 shows three valence bands, all of which have a single 
extremum at k = 0 . The two upper ones are degenerate at this point in 
the zone—that is, they have the same energy. According to the simpler 
forms of energy band theory, all three valence bands would be degener­
ate at k = 0 , but the degeneracy is partially removed by spin-orbit 
splitting, f The three resultant bands are known as the heavy-hole 
band, the light-hole band and the split-off band (the last name being 
self-explanatory). 

Of the two upper valence bands in Fig. 15.6, the term "heavy" is 
applied to the one for which energy decreases least rapidly with in­
creasing k in every direction. This follows from the discussion of 
Section 1.4.4, that if Vki? is small, the density of states and the effective 
mass are large. The effective mass in the heavy-hole band, m^ is some 
three times larger than the mass m\ for the light-hole band with which 
it is degenerate at k = 0 . These masses are not isotropie, for the sur­
faces of constant energy are warped from truly spherical shapes in 
k-space. The energy surface for the heavy-hole band protrudes in 
[111] directions, while for light holes the corresponding surface for the 
same energy is squashed in [111] directions and protrudes in [100] 
directions. Fig. 15.8 indicates the intersection of the two energy surfaces 
with the (110) plane in k-space for a given energy. Dresselhaus et al. 
(1955:8) have developed the expression, 

E = E0 {Ak*± [BW+ C\kx*ky2 + kxUz2 + kyZkz*)Y<2} (151.2) 
2m0 

for the two bands, where the plus sign refers to the light-hole band and 
the minus sign to the heavy holes. The constants A, B and C have been 

f The importance of taking account of spin-orbit interaction in energy band 
calculations was brought out by Elliott (1954:5). This phenomenon is actually the 
interaction between the magnetic dipole field set up by a spinning electron and the 
magnetic field produced by the orbital motion of the same electron, 



62 THE ELECTRON T H E O R Y OF SOLIDS 

determined from cyclotron resonance (1956:5) as 

A = 4-0 ±0-1 N 
B = 1-1 ± 0 4 for silicon 
C = 4-1+04 J 

(151.3) 

It will be noted that the light- and heavy-hole bands of Eq. (151.2) 
are parabolic; energy decreases as the square of wave-vector for any 

001 

FIG. 15.8. Contours of constant energy for the two uppermost valence bands 
of silicon, as viewed by a cross-section of the (110) plane in k-space. 
mi denotes the light-hole band and rri2 the heavy holes. After Lax (1958:2). 

direction away from the origin of k-space. This at least is one comfort­
ing thought, though as we shall show in a moment, parabolic behavior 
breaks down when k and (Ev — E) become at all large. 

Even in the region of k-space for which energy surfaces are para-
bolically spaced, the surfaces of Eq. (151.2) are very complicated, and 
it is not easy to deduce the corresponding density-of-states effective 
masses. Gold (1957:4) has demonstrated a general method for evaluat­
ing the volume of k-space lying within a constant energy surface, but 
when applied to the valence bands of silicon this method has to reckon 
with severe computational difficulties. A rather different approximating 
procedure was used by Lax and Mavroides (1955:9), who arrive at 
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mi = 0-16/wo and m% = 0-53mo for the density-of-states masses of light 
and heavy holes. From this, 

mv = [mi3/2 + m23/2]2/3 = o-59m0 (151.4) 
for the combination of upper valence bands. 

The lower valence band cannot be ignored in these discussions. The 
energy Δ by which it is split from the other bands is quite small, 
possibly as small as ~ 0-04 eV. This band is spherically symmetrical, 
with a mass dependent on the parameter A in Eq. (151.2), 

E = Ev-A- A&k* 
~2^T 

(151.5) 

so that m$ « 0-25 mo. 
Eqs. (151.2) through (151.5) have validity only for a small region 

of k-space surrounding the center of the zone, i.e. only for energies 
quite close to the extrema. Kane (1956:4) has shown that the prox­
imity of the split-off band seriously perturbs the situation, so that the 
bands become non-parabolic. Fig. 15.9 shows the result of Kane's 
perturbation calculation. In this figure, energy is plotted vs. k2 for the 
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FIG. 15.9. Variation of energy with k2 (from the zone center in a [111] 
direction) for the three valence bands of silicon. [After Kane (1956:4.)] 1 
denotes the "light" holes, 2 the * 'heavy' * holes, and 3 the split-off band. 
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[111] direction. Thus a parabolic band for which m* was independent 
of energy would show up as a straight line in this representation. I t 
will be noted that the "light"-hole band becomes almost as heavy as 
the "heavy"-hole band for energies more than ~ 0-02 eV below the 
valence band maximum. This means that the assumption of constant 
effective mass for holes in silicon is not a good one for temperatures 
higher than 100°K—though such an assumption is frequently made in 
the interests of expediency. Accurate considerations of carrier statistics 
must take account both of the departure from parabolic behavior of 
the light-hole band and the presence of free holes in the split-off band 
at high temperatures. 

1.5.2 GERMANIUM 

There are many similarities in the semiconducting behavior of 
silicon and germanium, but also some differences in the band structure 
which make it profitable to consider Ge as another example. 

I t was noted for silicon that the important conduction band minima 
occurred at points along the [100] directions of the zone, and that 
another branch of the conduction band had minima much higher in 
electronic energy at the points equivalent to [ £ £ £ ] . I t is this latter 
branch of the conduction band which now becomes important—for 
in Ge the minima at [ | | J] and seven other equivalent points offer the 
lowest possible energy for occupancy by electrons. Part (a) of Fig. 
15.10 shows the reduced zone for germanium and the positions of one 
opposite pair of minima. For a slightly higher energy, the constant 
energy surfaces have the symmetry of ellipsoids of revolution, charac­
terized by a mass mi towards the zone center and a transverse mass mu 
Since each minimum occurs actually on the zone boundary, only half 
an ellipsoid develops from an extremum. As indicated by part (b) of the 
figure, two facing half-ellipsoids should be regarded as one complete 
ellipsoidal energy surface, since they can be made to match by trans­
lating through a vector of the reciprocal lattice. 

Thus the germanium conduction band has four ellipsoids, not eight. 
Cyclotron resonance results (1955:8, 1956:5) indicate that mi « 1-64/rco 
and mt » 0-082mo. Accordingly the set of ellipsoids can be regarded 
from a density-of-states point of view as being equivalent to a single 
spherical surface with mass 

mc = \*i\mim?yi* = 0-56m0 (152.1) 
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Unlike the previous example of silicon, it is not possible to focus 
attention in germanium on just one group of conduction band minima. 
Other branches of the conduction band have minima also, and these 

<~~" 
—\ ( 

<·— Reciprocal Lattice Vector—► 

' ·} 

(b) 

FIG. 15.10. (a) The reduced zone for germanium, showing two of the eight 
positions on the zone boundary where conduction band minima occur. 
The half-ellipsoids extending from each for an energy slightly higher than 
E e are shown, (b) Showing how a pair of half-ellipsoids can be regarded 
as a single ellipsoid, since they match when either is translated through 

a reciprocal lattice vector. 

at energies not very much higher. Fig. 15.11 illustrates schematically 
the conception (at the time of writing) of the complete conduction and 
valence band structure for germanium. In addition to the previously 
discussed minima (the principal seats of free electrons), there is a single 
minimum at the center of the zone [000], and six at points along the 
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[100] directions. It is obviously an important matter to determine the 
energy of these states relative to the lowest conduction band minima. 

From an analysis of optical absorption (1955:10, 1958:4) and of 
oscillatory magneto-absorption (1957:8) it appears that the minimum 
at k = 0 is higher than the [111] minima by 0-14 eV both at 77°K and 

FIG. 15.11. The energy band structure for germanium as visualized by 
Herman (1954:1, 1955:7). There are eight conduction band minima, one at 
the center of each of the hexagonal faces in the reduced zone (Fig. 15.10). 
Thus these minima lie along the various [111] directions, and a half-ellipsoid 
spreads out from each as we consider progressively higher energies. The 

valence bands all have a single extremum at the center of the zone. 

300°K. Less is known of the [100] minima, but these are likely to be 
comparable in energy to the [000] minimum. Thus while the [111] 
minima represent the lowest energy states in the conduction band, the 
other minima are only a few k T higher at elevated temperatures and 
must inevitably support an appreciable fraction of the free electron 
density at such temperatures. This has an effect on the Fermi level of 
intrinsic germanium at sufficiently high temperatures. 
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The highest valence bands in germanium are separated from the 

lowest conduction band by an intrinsic gap which is—as for silicon— 
a non-linear function of temperature. Fig. 15.12 shows the dependence 
predicated by optical measurements. 

The valence band structure of germanium is qualitatively similar to 
that of silicon. The two upper bands, degenerate at [000], have warped 
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FIG. 15.12. Temperature dependence of the intrinsic energy gap in ger­
manium, as illustrated by Smith (1959:4) and largely based on the optical 

absorption results of Macfarlane et al. (1957:7). 

energy surfaces described by Eq. (151.2), but now with parameters 
A = 13-1 ±0-4 N 
B = 8-3 ±0-6 (152.2) 
C = 12-5 ±0-5 J 

These bands are less severely warped than the corresponding bands 
of silicon, but the ratio {m^mi) of "heavy"-hole mass to "light"-hole 
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mass is considerably larger, so that only 4 % of the free holes are "light" 
holes. Lax and Mavroides (1955:9) estimate that the density-of-states 
masses for the two bands are mi = 0O43mo and m% = 0-36mo; from 
which 

mv = [mi3/2 + m23/2]2/3 = o.37m0 (152.3) 

Infrared optical absorption which is attributed to transitions between 
the upper valence bands and the split-off band (1955:11) indicate that 
the spin-orbit splitting in germanium is much larger than in Si, 
amounting to some 0-3 eV. This has two simplifying effects. First, the 
split-off band is so low in energy that it is never likely to contain any 
free holes under conditions of thermal equilibrium. Second, the per­
turbing effect on the E-L· dependence of the upper valence bands is 
not too pronounced. The perturbation calculations of Kane (1956:4) 
suggest that the light- and heavy-hole bands will be approximately 
parabolic (effective mass independent of energy) down to an energy 
' vO ' l eV below Ev. For lower energies the "light"-hole mass does 
become rather larger, but not to an extent which should seriously 
jeopardize a simplified discussion of carrier statistics at any reasonable 
temperature. 

1.5.3 INDIUM ANTIMONIDE 

I t has already been remarked that the zincblende lattice in which 
InSb and a number of other I I I - V compounds crystallize has the same 
reduced zone as the diamond and F.C.C, structures. From several 
points of view, we might reasonably expect the semiconducting nature 
of Ι Π - V compounds to show similarities with that of group IV elements 
—but with modifications imposed by the partially ionic nature of the 
bonding. This aspect has been extensively developed by Welker 
(1959:5). 

Despite intensive investigation over a period of several years, some 
details of the InSb band structure remain in doubt at the time of 
writing. I t does appear fairly definite that there is but a single con­
duction band minimum at the center of the zone. Constant energy 
surfaces for higher conduction band energies are spherically symmetri­
cal (i.e. the effective mass is a scalar), but these surfaces are non-
parabolically spaced to make the effective mass a sensitive function 
of energy. An electron mass mc = Ο·013#2ο is found by cyclotron 
resonance (1955:12) for the lowest conduction band states, but values 
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considerably larger are reported from measurements involving states 
of higher energy. 

Kane (1957:5) has shown that the departure from parabolic be­
havior in the conduction band of InSb arises naturally from the inter­
actions between bands—particularly since the intrinsic gap is rather 
small. Fig. 15.13 shows the gross features of Kane's calculation for the 
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FIG. 15.13. Valence and conduction band energies for InSb as a function 
of A;2 in some typical direction of k-space, according to the calculations of 
Kane (1957:5). The curvature indicates departure from parabolic band 

behavior in the conduction band and light-hole band. 

energy bands in InSb. There are light and heavy holes degenerate at 
k = 0, and a split-off band separated from the others by such a large 
spin-orbit splitting that it can be ignored for all practical purposes. 

The effective masses of holes in the "light" and "heavy" bands 
remain in doubt. The cyclotron resonance data of Dresselhaus et al. 
(1955:12) indicates a band of mass 0-2^o, with rather ambiguous 
evidence of a larger mass also; but other evidence suggests that 0*2mo 
should be the mass of the heavy rather than the light holes. Kane's cal­
culations lead to a possibility that the heavy-hole band may have eight 

6 
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shallow maxima slightly separated from k = 0 along the [111] direc­
tions. This is not readily apparent from Fig. 15.13 but is shown in more 
detail by Fig. 15.14. Such a model for the heavy-hole band would 
conform with the interpretation of optical absorption given by Potter 
(1956:6). An alternative explanation of the optical data, given by 
Dumke (1957:9), would require the heavy-hole band to have but a 

k along [ill] axes 

FIG. 15.14. One possibility for the details of the energy band structure of 
InSb near k = 000, as described by Herman (1957:6) based on calcula­
tions by Kane (1957:5). The heavy-hole band maxima would occur only a 

small percentage of the way out to the zone boundary. 

single maximum at [000] ; and correct discussion of carrier statistics 
will be much simplified if this proves to be the case. 

Indium antimonide provides a striking demonstration of the caution 
which must be used in applying optical absorption evidence to a 
picture of band separation. Early measurements of the fundamental 
absorption edge showed that this occurred at a shorter wavelength 
for impure w-type samples than for purer samples (1953:10). Burstein 
(1954:10) and Moss (1954:11) independently suggested the explanation 
of this effect, which is a result of the very small electronic effective 
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mass. When the electron density is rather large, the Fermi level is a 
considerable energy above Ec, and optical transitions to the conduction 
band states lower than φ are inhibited (since these states are already 
completely filled). This Burstein-Moss effect is liable to occur in any 
material for which the majority carrier mass is rather small. 

Various kinds of electrical and optical measurements suggest that 
at least some of the other III-V intermetallic compounds have a band 
structure resembling that of InSb, though with rather larger energy 
gaps. In general, however, it can be expected that the accretion of 
experimental data on both elemental and compound semiconductors 
will lead to the identification of rather few semiconductors in which 
conduction and valence extrema coincide in the zone, and a consider­
ably larger number of semiconductors for which the extrema occur in 
different parts of the zone. 

1.6 SOME VARIETIES OF IMPURITY CENTER (FLAW) 

Section 1.3.4 mentioned Wilson's idea of localized levels in a semi­
conductor, which can provide either electrons or holes for an energy 
expenditure smaller than Eu The simplest kind of donor center has two 
states of charge; it is either neutral or bears a chargef of +q. The 
simplest acceptor is either neutral, or is ionized and has a charge — q = e. 

It is sometimes useful to employ the term "flaw" suggested by 
Shockley and Last (1957:21) as a generic name for any permanent 
perturbation of the periodic crystal lattice which gives rise to localized 
states. The word "impurity" sometimes carries the connotation that 
localized states have arisen from the presence of foreign atoms. Similar­
ly, the words "defect" or "imperfection" are often taken to imply the 
activities of lattice vacancies and interstitials. The term "flaw" encom­
passes foreign atoms, vacancies, interstitials or combinations of any of 
these. In the following chapters we shall sometimes follow the traditional 
course in speaking of impurities, but at times the word flaw is used to 
emphasize the generality of the discussion. 

Some impurities (flaws) are, as described in the first paragraph, 
monovalent. Such flaws have only two possible conditions, separated 
by the amount q, and present but a single level which is either occupied 

f q is a positive charge numerically equal to that of an electron and absolutely 
equal to that of a hole. 
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or not. Other kinds of flaw are multivalent, and a series of levels are 
presented as electrons are added or subtracted one by one. 

1.6.1 IMPURITIES IN ELEMENTAL SEMICONDUCTORS SUCH AS Ge AND Si 

Probably the most easily appreciated example of a monovalent 
donor impurity in an elemental semiconductor is furnished by the 
picture of an arsenic atom replacing a germanium atom in the Ge 
lattice. Since the arsenic atom has one more electron than the ger­
manium atom it replaces, the tetrahedral bonding arrangement leaves 
this extra electron rather loosely bound; it is the removal of this electron 
to a remote part of the crystal which constitutes single ionization of 
the donor. A second electron could be removed from the arsenic atom 
only by a much larger expenditure of energy—no less than the intrinsic 
gap-

Analogous to the behavior of this type of flaw there is the monovalent 
acceptor, such as a gallium atom in germanium. In this case there is a 
deficiency of one electron when the four tetrahedral bonds have to be 
formed, and such a situation can be envisaged as maintaining neutrality 
by the device of a weakly bound hole, which can be enticed away 
rather easily. 

I t may then be expected that the replacement of an atom in the 
germanium lattice by one of an element outside groups IIIB, IVB, 
and VB of the periodic table could produce a situation in which several 
levels might appear in the intrinsic gap, corresponding to successive 
stages of ionization. This is indeed the case. As an example, when 
zinc (the element to the left of gallium in the periodic table) is placed 
substitutionally in the germanium lattice, divalent acceptors result. Tyler 
and Woodbury (1956:24) have shown that it takes an energy Ea\ 
= 0*03 eV to release one hole from a zinc acceptor and that then a 

second hole can be freed by providing the energy Ea2 = 0*09 eV. The 
ratio of these energies is not too different from what might naively be 
expected by drawing an analogy between a divalent impurity and a 
helium atom. 

In elemental semiconductors such as germanium and silicon, a host 
of other chemical elements provide several levels corresponding with 
states of successive ionization. Thus divalent acceptors are produced 
in germanium by addition of the transition elements manganese 
(1955:25), iron (1954:16), cobalt (1955:26^ and nickel (1955:27). 
An impurity in germanium such as gold presents a fascinating problem, 
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and the possibility that it can act either as acceptor or donor, depending 
on the Fermi level (1956:25). We shall have occasion to refer again to 
this "amphoteric" behavior of gold as an impurity in Ge. 

Of course the behavior of a foreign atom in a lattice depends to a 
large extent on whether it is present substitutionally or interstitially. 
The transition elements mentioned above occupy interstitial positions 
in the germanium lattice, as do lithium and copper, whereas gold 
appears to be a substitutional impurity. Interstitial atoms of germanium 
itself provide donor levels, and germanium vacancies act as acceptors. 
These two forms of imperfection are readily created by fast nucléon 
bombardment; the results of such treatments were at one time inter­
preted as though each imperfection provided a single level (1951:13, 
1951:14), but a more complete analysis indicates that interstitials and 
vacancies act as divalent donors and divalent acceptors, respectively 
(1957:27). 

1.6.2 DONORS AND ACCEPTORS IN COMPOUND SEMICONDUCTORS 

Foreign atoms and departures from lattice perfection are both very 
important in creating localized levels for compound semiconductors. 
Sometimes (but not, alas, very frequently) the kind of level engendered 
by the substitution of a foreign atom is v/hat might be expected from a 
simple-minded valency approach. Verwey and his associates have used 
the "controlled valency" principle to some effect in promoting con­
duction in oxide semiconductors ; thus it has previously been noted that 
an acceptor is formed when a divalent nickel atom in NiO is replaced by 
a monovalent lithium one (1948:3, 1950:6). Similarly, the replacement 
of zinc by aluminum in ZnS provides donor centers, and replacement 
with copper forms acceptors (1955:28). But in a great many cases the 
rules which control the type and effective valency of an impurity site 
are less easy to divine. 

Interstitials and vacancies play a great role in compound semi­
conductors. Even for a compound which is completely stoichiometric, 
the lattice is partially disordered at high temperatures in the state of 
maximum entropy. One form of disorder is that of Frenkel defects 
(1926:1) whereby some atoms are in interstitial positions, leaving the 
same number of vacancies. The alternative form, Wagner-Schottky 
disorder (1931:5), has vacancies of two atomic species present in the 
proportions needed for chemical equilibrium. The relative abundance 
of the two forms of disorder depends on their energies of formation. 
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More serious still, compound semiconductors are rarely stoichio-
metric, and appreciable densities of interstitials or vacancies (each 
effective as a flaw) must be present when the proportions of the 
elements making up the compound deviate from the ideal ratio. This 
deviation can be modified by changing the vapor pressure of the more 
volatile component while keeping the semiconductor at a high tempera­
ture. Thus the free charge carrier densities in semiconductors such as 
NiO, CU2O and PbS can be varied over a wide range by vapor pressure 
adjustment (e.g. 1951:12, 1956:26, 1961:3). 

The equilibrium distribution of electrons, holes, vacancies and 
interstitials is governed by a series of equations based on the law of 
mass action. The relationships can be very complicated, and a com­
plete discussion would fall outside the scope of this volume, f The reader 
is recommended to the comprehensive review article by Kröger and 
Vink (1956:27) for an extensive analysis of the reactions between a 
semiconducting crystal and the vapor of one of its constituents. 

The flaw levels provided by interstitials and vacancies (and more 
elaborate complexes of these) are still of interest to us in the chapters 
which follow. For lattice defects are "frozen-in" when a semiconductor 
is rapidly quenched from a high temperature. They also occur in 
material which is subjected to high-energy nucléon bombardment at 
temperatures low enough to inhibit annealing effects. We are inter­
ested in seeing how electronic equilibrium is obtained for these situa­
tions, even though the lattice itself is not in a condition of minimum 
free energy and is unable at these low temperatures to perform the 
atomic replacements necessary for minimizing the free energy. 

I It is the purpose of the present volume to consider purely electronic adjustments 
in a semiconductor. This means that we are restricted to temperatures low enough 
for atomic migration to be negligible. 



Chapter 2 

THE FERMI LEVEL—ELECTRON DENSITY 
EQUILIBRIUM 

THE concept of the Fermi level was introduced in Section 1.2.2. as a 
normalizing parameter for conditions of thermal equilibrium. At that 
time it was remarked that the probability of finding an electron in a 
state of energy E is 

When states are distributed over permitted ranges of energy, it is per­
missible to speak of the density of states g(E) per unit energy interval 
at any energy. Then if the total electron density is wo, there must 
clearly be a unique value of the parameter φ for each temperature 
which allows the condition 

no 

00 

= j f{E).g(E).dE (200.2) 

to be satisfied. 
The simplest possible kind of band has a single energy minimum in 

the reduced zone, and spherical constant-energy surfaces are para-
bolically spaced with respect to this minimum, 

E = EC+—— (200.3) 
2mc 

The electronic effective mass mc then has a perfectly clear meaning, 
75 
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and the density of states is 

g(E) = 4^2mc/Ä2)3/2(£_£c)i/2 (200.4) 

Of course, the parabolic spacing of Eq. (200.3) must break down beyond 
a certain range of k ; then the density of states must deviate from 
Eq. (200.4) for high energies. This does not affect the evaluation of the 
free carrier distribution provided that Eq. (200.4) is valid up to energies 
at which the probability of occupancy is essentially zero (i.e. to energies 
a sufficient number of A;7" above the Fermi level). 

The previous chapter indicated that the density of states can still 
be written in the form (200.4) even though energy surfaces be far from 
spherical. The only necessary condition is that energy must increase as 
the square of wave-vector in every direction. For example, Section 
1.4.4. noted the possibility of a band with a single extremum surrounded 
by ellipsoidal surfaces 

E = Ec+W [ ( * * ~ M 2 + - ^ - ^ + {kz~kzo)2] (200.5) 
L mx my mz J 

and remarked that the density of states would be of the form (200.4) 
with mc = (mxmymz)1/s. I t can well happen that there are Ji such 
minima at symmetrical points in the Brillouin zone; the equivalent 
density-of-states mass is then mc = JV2/3 (mxmymz)1/s. Similarly, if two 
separate bands of masses m\ and m^ are degenerate in energy at their 
extrema, the total density of states can be described in the terms of 
Eq. (200.4) with 

mc = [mi8 /2 + m23 /2]2 /3 (200.6) 

The individual bands may be far from isotropie, but this too does 
not matter. Thus it will be recalled that the principal valence bands of 
silicon and germanium have appreciably warped or "dimpled" sur­
faces. As Gold (1957: 4) has demonstrated, it is impossible to calculate 
exactly the corresponding density-of-states mass for these bands; but 
the difficulty is purely computational and not conceptual. Since E does 
vary as k2 for every direction a density-of-states mass does exist, and by 
numerical methods may be approximately calculated. 

Suppose a band with minimum energy Ec, for which Eq. (200.4) 
is a satisfactory description of the density of states up to an energy well 
beyond any likely Fermi level. As a result of some thermal excitation 
(whose nature we shall not worry about for the present), there are no 
electrons per unit volume occupying some of the states in this band. 
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Then dependent on the magnitude of no and on the temperature, the 
Fermi level φ may be either higher or lower than Ec. Its value is con-
troled by the condition 

= j n(E).dE = j f(E).g(E).dE 

} An{2mclh*f i\E - Ecy/2 dE 

Ec 

1+ΆΎΓ\ 
(200.7) 

The upper limit of integration is unimportant provided that it lies well 
above all occupied states. Then it causes no error to suppose that 
Eq. (200.4) will hold up to infinite energy and to set + co as the limit 
of the integral (200.7). 

When wo is large and T small, the condition (200.7) can be satisfied 
only by a value of φ higher than Ec. The curve of n(E) vs. energy will 
then resemble that shown in Fig. 20.1. Almost all states are occupied 
up to an energy one or two k T short of the Fermi level. This degenerate^ 
kind of occupancy distribution was encountered in the earlier discus­
sion of the free electron model. Mildly degenerate conditions often 
occur in semiconductors, but the degree of degeneracy is usually much 
smaller than that of the electron distribution in a normal metal. 

When the temperature is not too low and the number of carriers not 
unduly large, the condition (200.7) is satisfied with φ < ECi as illus­
trated in Fig. 20.2. Even for the lowest energies in the band, only a 
minor fraction of the available states are now occupied, and almost all 
the occupied states lie within three or four kTofEc. This kind of system 
is truly non-degenerate in that every electron has a full opportunity to 
readjust to thermal change. The term classical is also applied to such 
a carrier distribution; for if φ is several kT lower than Ec, the 
function f(E) may be approximated by a classical Boltzmann factor 
exp[(0 — E)jkT] for all energies within the band. 

Whether the electron distribution be classical or degenerate, the 
condition relating the Fermi level to the electron content of a band of 

f It will be recalled that the term degenerate indicates that the specific heat per 
electron is degenerated to a small fraction of the classical value 3A;/2. 
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Ec < H E 

FIG. 20.1. Electron density distribution in a highly degenerate case. 

Φ Ec E ^ 

FIG. 20.2. Electron density distribution in a non-degenerate case. 
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standard formf is rigorously given by (200.7). The integral in this 
equation is a member of a well studied series. 

2.1 THE F E R M I - D I R A G INTEGRALS 

For further study of the integral in (200.7) it is convenient to adopt 
a dimensionless notation. We shall set 

and 
[ kT J 

The choice of Ec as the origin of energy simplifies the discussion, and is 
perfectly legitimate since only differences of energy are important. In 
the new notation Eq. (200.7) becomes 

\2mckT-\*i* f e i 
"0 = 47ThH JlTe 

'*. de 

0 exp(e-^) 

= KFiMv) (210.1) 
where 

K = 2[-τΗ ( 2 1 0 · 2 ) 

and &ΐβ(η) denotes the integral 

Γ e i « , de 
PiMn) = l"-1'2 7 - — ; -, (210.3) 

J l+exp(e-i7) 
This is one of the more important members of the set of functions 

1 f ei . de 
Pfa) : (210.4) 

*™ Γ0+1) J l+exp(e-,) k ; 

which are collectively known as the Fermi-Dirac integrals. 

t We shall frequently describe a band as being of standard form when energy 
increases as the square of wave-vector, so that a density-of-states mass m* can be 
defined which is independent of energy above the bottom of the band. 
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It will readily be appreciated that finding the Fermi energy corre­
sponding with a given electron density (or vice versa) will be greatly 
facilitated if ^1/2(17) is expressible analytically. This, alas, is not the case 
for a Fermi-Dirac integral of any positive order. Asymptotic expansions 
are available for the various orders when η > 0, and all ^j tend 
towards exp^ ) when η <ξ 0 ("classical" conditions) but expressions 
of rather limited accuracy only are available when η is fairly small 
(1952:2). The asymptotic expansions and some approaches to approxi­
mate expressions for the semidegenerate region are discussed in Appen­
dix C. This appendix also indicates the occasions which make the 
integrals (210.4) important for various values of j . 

Some approximate expressions for &Ί/2{η) developed in Appendix C 
will be used elsewhere in this book. We are not, however, dependent 
on these alone, since a number of tabulations of #^(77) for various j have 
been published, and all of this tabular matter is collected in Appendix 
B. The description in Appendix B indicates the use of these tables, 
including the procedures for interpolation and inverse interpolation. 

2.1.1 EQUIVALENCE OF FORMALISM FOR ELECTRON AND H O L E 
POPULATIONS 

It has been shown that the number of electrons in a conduction band 
of standard form is related to the Fermi level by 

n0 = Νο^ΐ/2{η) 

= 2 ( 2 ^ * ^ * 2 ) 3 / 2 ^ 2 Γ ^ ^ Ί (211.1) 

The quantity Nc is sometimes referred to as the effective density of states 
in the conduction band. This term owes its origin to the fact that, for a 
highly non-degenerate carrier distribution such that η <̂  0, &Ί/2(η) 
approaches the classical value 

exp(^) = exp 

This is the same as the classical limit for occupancy of a level at E = Ec-
Thus in a classical or non-degenerate semiconductor the total number 
of electrons in the conduction band is the same as though there were 
Nc levels per unit volume all at the energy Ec. 

m 
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Similarly, for a valence band characterized by an effective mass 
mv, when the Fermi level is far above the band extremum Ev, the 
total number of free holes will be the same as though there were 
Nv = 2(2nmvkTlh2)s/2 levels at E = Ev replacing the band. 

In all other respects also, the formalism of holes in a valence band 
matches that of electrons in a conduction band. Thus iffp(E) denotes 
the probability of an electron not occupying a state at energy E, 

UE) = 1 -f{E) = \—— (211.2) 
1 +exp m 

When a band of mass mv extends downwards from energy Ev, the total 
hole density will be 

Po = j g(E)fp(E).dE 

= 477(2/^2)3/2 

E;{Ev-Eyz.àE 

1+expfër] 
(211.3) 

We have previously defined reduced energy with respect to the base of 
the conduction band 

\E-EC 
€ 

~ L kT \ 
For consideration of a valence band it is convenient to set 

\EV-E-] 

where e$ is the intrinsic gap width in units of kT (and is a positive 
quantity). When the integral in Eq. (211.3) is made dimensionless in 
terms of cp, the hole density becomes 

1 / 2 dep 
A) = Λν \ 

J l+exp(€a ) + 0 ψ(€ρ + €ί + η) 

= Νν&1Ι2{-*1-η) (211.5) 
which is a complete analogue of Eq. (211.1). 
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2.2 INTERRELATION OF FREE ELECTRON DENSITY AND FERMI 
LEVEL 

We are now well aware that the free electron density in thermal 
equilibrium, no, can be related to the reduced Fermi energy 

by 
In this equation, 

no = JVe^i /2(i j) (220.1) 

No = 2 
[2nmckTl3'2 

= 2 — - — = 4-831 x 10i5(m<,/mo)3/2r3/2 cm-3 (220.2) \m~\ 
and the quantity «^1/2 (η) is by now quite familiar. Evidently η must 
increase monotonically when temperature is lowered yet no maintained 
constant, and similarly η must rise monotonically with no at constant 
temperature. Fig. 22.1 shows the course of lines of constant η for the 
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free electron density as a function of (Tmclmo). A large carrier density, 
particularly in a band of small effective mass at low temperatures, 
leads inevitably to the complications of degeneracy. This figure is 
useful as a rapid guide in indicating whether a degenerate or non-
degenerate treatment is called for in a particular situation. 

When any free electrons remain in a band at 0°K, the conditions 
must necessarily be completely degenerate. The Fermi level φο and 
electron density are then related by 

no = (8W3)(2mc/A2)3/2(^-£c)3/2 
or 

^o = ^c + (Ä2/2mc)(3no/87r)2/3 
(220.3) 

For a finite but small temperature, the Fermi level is very close to <£o, 
and as may readily be derived using Eq. (C3.15) of Appendix C, 

1400-A;) 

The situations of Eqs. (220.3) and (220.4) are of course exactly those 
depicted in Fig. 20.1. 

When φο is expressed in electron-volts and no in cm*"3, 

^o = £c + 3-64x 10-i5(mo/mc)wo2/3 (220.5) 

McDougall and Stoner (1938:2) noted that φο can be used as a com­
plete characterization of the carrier density at any finite temperature. 
This means that instead of quoting the carrier density no at any tem­
perature 7~, the same information could be conveyed by quoting T 
and the Fermi energy φο which would be achieved by the given carrier 
density at 0°K [using Eq. (220.3) as the vehicle for interchange of 
variable]. Their procedure amounted to using 

Γψο—E c ~l 3 / 2 377-1/2 

ΠΪΓΊ = — ^1/2(7?) ( m 6 ) 

in order to find the value of η = [(</> — Ec)lkT] corresponding with a 
given value of [(<£o — Ec)/kT]. Table 22.1 (which is based on one of 
McDougall and Stoner's tables) shows the result of carrying through 
this procedure for various ratios of AT to (φο — Ε€)· 
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Table 22.1 

Temperature T 
in units 

-[—1 
0 05 
0 1 
0-2 
0-5 
1 
2 
5 

10 
20 

Wo-Ecl 

L kT\ 

20 
10 
5 
2 
1 
0-5 
0-2 
0 1 
0 05 

Reduced Fermi energy 
at temperature T, 

M kr J 
19-96 
9-916 
4-823 
1-486 

- 0 0 2 1 
-1-231 
-2-675 
-3-734 
-4-765 

2.2.1 TEMPERATURE-INDEPENDENT ELECTRON DENSITY 

The successive entries of Table 22.1 may be visualized as forming a 
sequence of increasing temperature when conditions occur to make 
wo (and φο) temperature-independent over some range. The first few 
entries show a close correspondence between the values in the second 
or third columns. This is not at all surprising, since for a given no the 
Fermi level is very weakly temperature-dependent under conditions of 
strong degeneracy [kT <ζ (φο — Ε0)]. Differentiating Eq. (220.4), the 
result is that 

άφ TflkT 

m)x-ü^<XltkT<{M-Ei) (22U) 
Table 22.1 shows that the Fermi level passes through Ec when 7~is 

very slightly smaller than (φ — Ec) /k, and that φ drops much more rapidly 
on further warming. The manner in which this occurs, and the fact that 
(άφ/άΤ) becomes essentially constant in the high-temperature non-
degenerate region can probably be brought out more effectively by a 
graph rather than a table. Accordingly, Fig. 22.2 shows curves which 
illustrate the dependence of φ on T (or kT) for two supposedly 
temperature-independent free electron densities. 

The slope of such a curve is zero at T — 0 and becomes monotoni-
cally more negative as temperature rises. In order to appreciate the 
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FIG. 22.2. Variation of Fermi level with temperature when the density of 
electrons in the conduction band is constant. 

(a) For no(molmc)3'2 = 1019cm-3, φ0 = 0-0169 eV. 
(b) For no(mo/mc)3/2 = 10«cm-», φο = 0-00364 eV. 

course taken by (άφ/άΤ), consider the following argument. If no does 
not depend on temperature, then 

or d 3 
— ^1/2(1?)= -^r^ldv) 

(221.2) 

(221.3) 
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It is more convenient to perform the differentiation with respect to 
another variable : 

^1/2(v) = ^ r · ^ i / a f o ) = ^ : ·&-Μ (221.4) 

where of course 

ÈL = AAtJk] = _L["^ _ t-Jl] Ì221 51 
άΤ ATI kT J kTldT kT \ K ' ' 

From Eqs. (221.3)—(221.5), the Fermi level varies with kT at a rate 

— — = - - . , κ υ -η\ (221.6) 
d{kT) 12 &-idv) I V ' 

when no is invariant. For the highly degenerate conditions of low tem­
peratures, <^Ί/2 (η) and ^"-1/2 (η) must be described in the form of 
Eq. (C3.9); if the first term only of each series (C3.14) is retained in 
describing the remainder Rjfa), it may easily be shown that Eq. (221.6) 
is consistent with (221.1). 

When η passes through zero at a temperature 0*99 (φο — Ε0)^, 

a i =_Ι.?ΚΜ (221.7) 

Using Eq. (C3.3) for expression o f ^ ( 0 ) in terms of the zeta function, 

ί — — 1 = ^ ' ' = -1-898 (221.8) 
ld(kT)\^Ec 23/2ζ(1/2) V ' 

It is rather interesting that the slope of φ for this condition should be 
a universal constant, independent of carrier density. It may be verified 
that the two curves of Fig. 22.2 are parallel, with the required slope, as 
they pass through Ec. 

At much higher temperatures, when essentially non-degenerate 
conditions prevail, (ηο/Ν€) = ̂ Γΐ/2(η) ~ ^~-i/2(??) ~ e x p ^ ) . Accord­
ingly, 

^ * - H +ln(JVc/̂ o)] , η<0 (221.9) 

The temperature dependence of ln(JVc) will have but a mild effect on 
(άφ/άΤ); thus Eq. (221.9) confirms the visual evidence of Fig. 22.2 
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that under non-degenerate conditions φ falls more or less linearly 
when temperature rises yet no remains unchanged. 

The preceding discussion has considered how the Fermi level varies 
with temperature when the free carrier density remains constant over 
the entire range. But this is not a normal condition for a semiconductor 
—it is more reminiscent of a metal. As elaborated in Section 2.3, the 
carrier densities in an intrinsic semiconductor vary continuously with 
temperature. At lower temperatures such that intrinsic excitation is 
overshadowed by impurity effects (to be explored in Section 2.4 and in 
Chapter 3), the majority carrier density can be invariant with tem­
perature only in the temperature range for which all impurity levels 
are ionized. This condition must normally be violated when the tem­
perature becomes sufficiently small, since progressive cooling eventually 
causes all conduction and valence states to be emptied in favor of 
trapping impurity states.f I t will depend on the ratio of the intrinsic 
gap width to the impurity ionization energy how wide the "exhaustion 
range" of constant majority density may be. In germanium dominated 
by shallow chemical impurities, for instance, this range extends from 
~350°K down to ~40°K with typical localized center densities. 

2.2.2 T H E EFFECT OF A MAGNETIC FIELD 

Section 1.4.6 described the change which occurs in the distribution of 
band states when a magnetic field is applied, due to the creation of 
sub-bands based on the Landau levels. I t was shown that the density 
of states must be described as a summation over the contributions from 
the various sub-bands at any energy. The effective mass mc in the 
conduction band determines the cyclotron frequency ωο = {eHzjmcc) 
for a magnetic field in the ^-direction, and this in turn sets the splitting 
Ηωο between Landau levels. In terms of this parameter it follows 
[see Eq. (146.7)] that 

% max 

is the density of states function for the conduction band. 

t The solitary exception is the class of materials we call impurity metals, which 
are described in Section 3.5. Even in these materials, it is only the total number of 
electrons at energies > Ec which remains temperature-independent, not the number 
of electrons in the "ordinary" conduction band states. Accordingly, the Fermi level 
in an impurity metal does not behave in the manner we have just described. 
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The mutual relationship of the free electron density no and the Fermi 
level is expressed by 

00 

no = jf(E)g(E).dE (222.2) 
Ee 

where f(E) is still as given by Eq. (200.1). It makes no difference 
whether the lower limit of integration for Eq. (222.2) is written as 
Ec or as (Ec + \Ηωο) when the magnetic field is finite, since it will be 
observed from Eq. (222.1) (and from Fig. 14.9) that there are no states 
between Ec and (Ec + \hœo). 

Substitution of Eqs. (200.1) and (222.1) into Eq. (222.2) gives us that 

no = 2J—Γ2 Σ ? hœ°'dE (222 3) 
" lW •-•J[,+ep(^)][Ä-*-(.+^]"' 

By making the usual substitutions Nc = 2(2nmckTlh2)3/2, e = 
[(E-Ec)lkT],v = [(φ-Ε0)βΤ}9 and the additional one Θ = {Hwo/kT), 
Eq. (222.3) can be expressed more compactly as 

V f 7 7 - 1 / 2 . 0 . de 
m-M'àjmi^<-w-^iw« (222·4) 

It is worth noting at the outset that Eq. (222.4) is consistent with the 
usual expression for vanishing magnetic field. For if Hz is very small, 
θ <ζ 1, the summation over n can be replaced by an integral, 

no = Nc i f — —,—~—^———— , Hz->0 
J J [ l + ( o o 

7 r - i / 2 0 . d € . d f l 

-ex7(7-^[e^Î^ 1 / 2 ' 

Ne 77-—7—T7 = Nc^idv) (222.5) 
J ri+exp(e-7i)l 

This is of course identical with the ordinary result (210.1). 
When the magnetic field is large enough to provide an appreciable 

reorganization of the energy levels, the summation in (222.4) must be 
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preserved. But each of the integrals in this equation can be expressed 
in terms of a Fermi function. Thus if we define a set of variables ξη by 
%n = [e— (^ + έ)0]> Eq. (222.4) can be expressed as 

no 
°° 0 7 7 - 1 / 2 . ^ - 1 / 2 . d ^ 

e x p [ ^ + (K+^)ö-7j] 

= JVC 2 θ^-ΐ/2[η-(η+$)θ] (222.6) 
η = υ 

from our general definition of the set of functions «^(77) (see Appendix 
B). The form of Eq. (222.6) is such that the application of a magnetic 
field always tends to lower the Fermi level with respect to the conduction 
band levels; i.e. it always tends to make conditions less degenerate. 

This tendency can be demonstrated to hold whether the semiconduc­
tor is degenerate or non-degenerate in the absence of a field. To start 
with, consider the limiting case of a semiconductor in which the 
conduction band is strongly degenerate under zero-field conditions. 
The symbol 770 will temporarily be used to indicate the reduced Fermi 
level for i / = 0; then we are considering a material in which 770 > 0. 
On application of the magnetic field, almost all states are occupied up 
as far as the sub-band of index n œ (W#), whereas sub-bands of higher 
index are virtually empty. To obtain a crude approximation to the 
behavior of Eq. (222.6), it will be assumed that the strong degeneracy 
approximation for ^-ΐ/^η) (see Appendix C) can be used for all 
sub-bands of positive argument and that no contribution at all is made by 
the higher sub-bands, i.e. 

^_1/2[η-(η + ±)θ] » 0, ^ - ( „ + 1)0] < Oj 

From Eqs. (222.6) and (222.7) we have that 

(222.7) 

no « No 2 21Γ-1 /2θ[η - (η + %)θγ '* , η > 0 (222.8) 
tt = 0 

The reduced Fermi energy η for Eq. (222.8) is an oscillatory function 
of the magnetic field parameter 0, as illustrated by the example of 
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Fig. 22.3. These oscillations are quite real but the rather abrupt form of 
the assumption (222.7) makes them slightly more exaggerated than 
would be the case for an exact calculation. We have chosen to plot 
this figure with energy expressed relative to Ec, the conduction band 
minimum for H = 0. Since the lowest Landau level for any finite 
magnetic field is %hwo above Ec (as indicated by the rising line in Fig. 
22.3), the Fermi level relative to the actual conduction band base declines 

e = icu0/kT 

FIG. 22.3. Variation of reduced Fermi level (for a constant no) with the 
magnetic field parameter Θ, when the conduction band distribution is 

highly degenerate (ηο = 20) at low fields. 

fairly steadily (albeit with superimposed oscillations) as H increases, 
precipitating a failure of the assumption of strong degeneracy. 

Each maximum of η in Fig. 22.3 marks the boundary between 
occupancy of n or (w — 1) sub-bands. For the example illustrated, the 
only occupied states are in the lowest sub-band when Θ > 15 (and a more 
exact calculation confirms that this is not far from the truth). 

The oscillatory result (222.8) can be graphically demonstrated in 
another fashion by plotting η vs. ηο as a function of magnetic field 
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strength. For strong degeneracy and zero field, 

no = Nc^i^ivo) « Nc. 
4 ^ 3/2 

3ττΐ/2' η*>0 (222.9) 

From Eqs. (222.8) and (222.9), the relationship of η to η0 when Θ 
has any value is 

2[0?/*)-»-*] =g[w0] , V>0 (222.10) 

Fig. 22.4 shows how {-η\θ) varies with (170/0) for this supposition of 

-i | i r 

I 
■£> 3 h 

p-|Q> 

#> ■ fe Θ 
FIG. 22.4. Relation between the reduced Fermi level in a magnetic field 
and that for zero field. For conditions of extreme degeneracy at small fields. 

strong degeneracy. This figure contains the same information as did the 
example of Fig. 22.3, but unlike the earlier figure is of universal charac­
ter, not restricted to any particular carrier density. Whereas the abscissa 
of Fig. 22.3 was proportional to H, that of Fig. 22.4 is inversely proportional 
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to H9 and the strong field region is that lying to the left. I t can be seen 
that the oscillatory character of φ has almost a constant period in 
\\H. As / / i s reduced, the difference between η and 770 becomes pro­
gressively smaller (as had already been ascertained from the example 
of Fig. 22.3). 

When conditions are non-degenerate in the absence of a magnetic field, 
very different approximations can be made in Eq. (222.6). Each of the 
Fermi integrals «^-1/2 fo — (n +1)0] can then be expressed (Appendix C) 
simply as exp[^ — (n + J)0]. Thus Eq. (222.6) becomes 

00 

«0 = JVC 2 θ · exp[??-(n + £)0], η0 < 0 (222.11) 
n = 0 

= JVC. Θ . exp(r? - £ 0 ) . [1 + e x p ( - Θ) + exp(-20) + ...] 
Γ 0exp( -40) 1 

= JVC expfo) . [Jfl cschftfl)] (222.12) 

The result is expressed in this form since no = Nc exp(^o) is the zero-
field result for a non-degenerate situation; the quantity [|öcsch(^ö)] 
represents the change wrought by the magnetic field. This quantity is 
approximately (1— 02/24) when Θ is small, but becomes very small 
when Θ > 1. The effect on the equilibrium of Eq. (222.12) is that η 
must increase with Θ to preserve a given value of no. An example of this 
behavior is furnished by Fig. 22.5 for a semiconductor in which 
ηο = —4-6, or {nojNcj = 10~2. η rises with the magnetic field para­
meter 0, but never quite as fast as the lowest Landau level rises above 
Ec* Thus the energy separation of the lowest conduction levels and the 
Fermi level widens monotonically as magnetic field increases. 

In discussing the influence of the magnetic field on the distribution of 
states and on the Fermi energy, it is useful to keep in mind the magni­
tude of field required to produce a given situation. If H h expressed in 
oersteds, then 

Ηωο « 1-16 x 10rS(molmc)H. eV, (222.13) 

This is only likely to be comparable with or larger than kT for bands of 
rather low effective mass at rather low temperatures, in view of the 
physical limitations on the magnetic field strength which can be 
maintained continuously. Thus for carriers of mass mc « 0*2 mo at a 
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field of ~ 5000 oersteds (as typically used in standard measurements of 
galvanomagnetic coefficients), hwo Ä 3 X IO-4 eV, which is smaller 
than AT for any temperature outside the liquid helium range. 

On the other hand, for the conduction band of indium antimonide, 
in which mc « 0-013mo, a field of 30,000 oersted will provide a Landau 

6 

4 

oc 

uj 0 

ÜJ 

" -2 

-4 

-6 
0 2 4 6 8 10 12 

Θ s (f)cu0/kT) 

FIG. 22.5. Variation of the reduced Fermi level η with the magnetic field 
parameter Θ when the ratio (nojNe) remains at 001 . η rises with 0, but still 
becomes progressively more separated from the lowest Landau level. 

level spacing of hwo ~ 0-027 eV. This is a little larger than kT even for 
room temperature, and it is obvious that almost all free electrons will 
be in the lowest magnetic sub-band at low temperatures. 

The condition of very large magnetic field, Θ > 1, enables us to use 
the first term only of the summation (222.6), viz., 

n0 = Μοθ ^ - i / 2 f o - \ β ) , Θ > 1 (222.14) 

whether conditions be degenerate [(η - \θ) > 0] or non-degenerate or 
of intermediate status. This simplification is, however, rarely a justi­
fiable one. 

Π I I I Γ 
Lowest Landau Level, 

I Reduced Fermi Level rj 
for n0

 s 0.01 Nc 

J I I I L 
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2.3 INTRINSIC SEMICONDUCTORS 

The densities no and po of conduction band electrons and valence 
band holes in an intrinsic semiconductor depend only on the nature of 
these bands and the intrinsic energy gap between them. Impurities 
(by definition) play a negligible role. 

In an intrinsic semiconductor, electrical neutrality requires that 
wo = po, a value which is usually called n^ the subscript i denoting the 
intrinsic state. 

A semiconductor is very sensitive to impurities at low temperatures, 
since carriers can often be excited from impurity levels for a small 
expenditure of energy. It does, however, seem reasonable that at high 
temperatures (when the intrinsic gap is a smaller multiple of kT)> 
intrinsic excitation should become dominant in any semiconductor. 
This certainly happens in some fairly well purified semiconductors with 
a small intrinsic gap (such as a Sn, InSb, HgSe and Te) and in a few 
materials of rather larger intrinsic gap for which purification proce­
dures are well advanced (including Ge and Si). However, in most wide 
gap semiconductors it is not feasible to carry purification to a point 
where intrinsic excitation can dominate over extrinsic excitation 
before either the melting point or decomposition temperature is reached. 
However, this is a rapidly evolving field, and the advent of new purifica­
tion procedures will certainly provide us with more materials in the 
future which can be examined in a state of wholly intrinsic excitation. 

The requirement that no = po = n\ sets the position of the Fermi 
level for an intrinsic conductor. This level is the root of the equation 

m = Ne #1/2(1?) = Nv Fid-*-*!) (230.1) 

for bands of standard form, using the results (210.1) and (211.5). From 
symmetry considerations we might expect to find the Fermi level at 
(Ee — %Ei), and this is just the location of intrinsic (which will subse­
quently be signified as φι) at 0°K, as shown in Fig. 23.1. 

2.3.1 NON-DEGENERATE INTRINSIC SEMICONDUCTORS 

When the intrinsic gap is a fairly large multiple of kT, and the 
masses mc, mv are not too dissimilar, n% is small compared with both 
Nc and Nv The Fermi level is then considerably lower than Ec, yet 
considerably higher than (Ec — Ei). Both of the Fermi integrals in 
Eq. (230.1) can be replaced by their non-degenerate limiting forms, 
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Ec 

Φο 

Ec-Ei 

fy \ 

^ ^ \ 
FIG. 23.1. Conduction and valence bands in an intrinsic semiconductor, with 

the Fermi level in the middle of the intrinsic gap at 0°K. 

EC-Ei 

Conduction Bond 

Valence Band 

Temperature —>-

FIG. 23.2. Variation of intrinsic Fermi level with temperature if mc < mv. 

so that 
m = JVcexp(^) = Ννεχρ(-€ΐ-η) 

From this, evidently 
expfo) = {NvINcyi^M-¥i) 

or 
<f>t = Ec-\Et + \kT\ii{NvlNc) 

= Ec-iEi + %kTln(mv/mc) 

(231.1) 

(231.2) 

(231.3) 
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On warming, the Fermi level departs from the middle of the gap at a 
rate dependent on the ratio of hole and electron masses, as indicated in 
Fig. 23.2. Only in a material for which by chance mc « mv will φ be 
near the middle of the gap at very high temperatures. Extreme dis­
parity of mc and mn can lead to degeneracy problems, which are ex­
amined in the next sub-section. 

The intrinsic carrier density is found by re-inserting (231.2) into 
(231.1), yielding 

m = (MvNc)1 /2 exp( - Ei/2kT) (231.4) 

When the intrinsic gap width is a rather large multiple of kT, the 
exponential term in Eq. (231.4) provides most of the temperature 
dependence for n\ [since (NCNV)112 varies only as !T3 /2]. Because of this, 
it is common practice to correlate experimental observations in the 
intrinsic range by plotting ln(w^) vs. l/T. Fig. 23.3 provides an example 
of such a plot for intrinsic germanium. The experimental points are the 
observations of Morin and Maita (1954:3), who found that the data 
was best fitted by the expression 

m = 1-76 x 10i6r3/2exp(-0-785/2*T) cm~3 (231.5) 

The plot of Infoi) vs. 1/7" is not truly linear [because of the T 3 / 2 factor 
in Eq. (231.5)] and it is often preferred to construct a graph of 
1η(^/Γ3/2) v s# 1/7-. This is done in Fig. 23.4 for the data of Fig. 23.3, 
and now the relationship is accurately linear. 

In comparing an experimentally derived expression such as Eq. 
(231.5) with Eq. (231.4), considerable care must be taken in establish­
ing the meaning of the "intrinsic gap" deduced from the slope of 
l n ( ^ / T 3 / 2 ) vs. l /T . In the case of germanium, 0*785 eV is not the true 
intrinsic gap at any temperature. This seeming anomaly occurs because 
Ei is usually itself a function of temperature. 

The simplest form of variation is one in which Ei changes linearly 
with temperature, 

Ei = Eio-aT (231.6) 

Substitution into (231.4) then gives 

(Λ</Γ8'8) = 2Î ^ - — J exp(a/2*) cxp(-Eiol2kT) (231.7) 

A semilogarithmic plot of (nijTs/2) vs. l / T for this situation still gives 
a linear relationship, but the slope is indicative ΟΪΕΜ, the gap for T = 0, 
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not the gap at the temperature of the measurements. At the same time, 
the intercept of such a plot is controlled by the value of a as well as by 
the mass ratios (mc/mo) and mvlmo). If any pair of the three quantities 
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FIG. 23.3. The temperature dependence of carrier density in an intrinsic 
semiconductor, using the experimental data of Morin and Mai ta (1954:3) 
for intrinsic germanium. The curve is the expression given in Eq. (231.5). 

a, (mc/mo), (mvlmo) are known, the third can be found by comparison 
of Eq. (231.7) with an empirical expression such as Eq. (231.5). We 
shall use germanium as the basis for an example of this procedure after 
reviewing how the intrinsic gap actually does change with temperature. 

I t should hardly come as a surprise to acknowledge that the tem­
perature dependence of the intrinsic gap in a real semiconducting 
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material will usually be more complicated than a simple linear law. 
If such non-linearity is pronounced, a semilogarithmic plot of ( W Ì / T 3 / 2 ) 
vs. 1/Twill appear noticeably curved, which gives us good reason to 
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FIG. 23.4. Temperature dependence of (m/T3'2) for intrinsic germanium, 
showing the experimental points of Morin and Maita (1954:3). The line 

gives the behavior of 1-76 x 101· exp(-4550/T). [See Eq. (231.5).] 

take an active interest in the physical mechanisms giving rise to change 
oÎEi. 

The increasing amplitude of thermal vibrations as T increases will 
generally lead to a fall in Et; this can be linear in T but is not neces­
sarily so. In addition to this effect, there is a change in interatomic 
spacing due to thermal expansion. Depending on the character of the 
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potential V{f) in a particular material, this expansion can cause either 
an increase or decrease of E^ which may be either linear or of higher 
power in T. 

Lead sulfide provides a good example of a material in which (dEijdT) 
is far from constant. Early measurements of electrical properties on 
single crystals (1951:8) were construed as corresponding to the in­
trinsic state [Eq. (231.4)] with an intrinsic gap of ~ 1 eV. It has since 
been realized (1953:7, 1954:8) that the above result is seriously in 
error, caused by: (a) drastic temperature dependence of E^ and (b) 
thermal generation of lattice imperfection donor impurities which 
obscured the intrinsic behavior. Some ambiguity remains concerning 
the true energy gap in this semiconductor; one estimate has placed it as 
being essentially of the form shown in Fig. 23.5. The reconciliation of 
Eq. (231.4) with intrinsic data is obviously far from straightforward in 
such a material, as it will be in any other material for which {dEijdT) 
changes over the range of measurements. 

Germanium was deliberately selected as the model of Figs. 23.3 and 
23.4, to be compared with Eq. (231.4), because the energy gap can be 
approximated in the form (231.6) for a wide range of temperature. The 
optical work of Macfarlane et al. (1957:7) indicates that Εχ « 0*746 
at 0°K, and that it decreases in a highly non-linear fashion for tempera­
tures up to ~150°K (see Fig. 15.10). Further warming however is 
characterized by a constant value of (dEifdT), and to a good degree of 
approximation we have that 

Ei = (0-785 -0Ό004Τ) eV in Ge for T > 200°K (231.8) 
It is fortunate indeed that the non-linearities occur at low temperatures 
where intrinsic phenomena are of least interest. Germanium is usually 
only observable in the intrinsic state for T ^ 250°K; then Eq. (231.8) 
applies, and the empirical expression (231.5) can legitimately be 
compared with Eq. (231.7). This is a far happier situation than the 
one for PbS, but in approaching a new material one should always be 
prepared for complexity even while hoping for simplicity !f 

The coefficient of exp( — J?io/2A:T) in Eq. (231.7) can be expressed as 
4-83 x 1015(mcmv/mo2)3/4 exp(a/2£) cm-3 deg_3/2. Comparing this with 

f One complication we have overlooked for germanium is that at sufficiently high 
temperatures there will be some electrons in states near the [000] minimum and 
[100] minima of the conduction band (Section 1.5.2). This will tend to make </>t 
rather lower and m rather larger than we calculate when T is higher than (say) 
700°K. 
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the empirical equation (231-5), it is then evident that (mc/nv/mo2)3/4 

exp(a/2£) « 3-65 for germanium, or mcmv\mç? « 0-235 in view of the 
value Eq. (231.8) provides for a. This composite effective mass ratio 
can be compared with the results of cyclotron resonance measure­
ments (see Section 1.5.2). The comparison supports the assumption 
(based on entirely different kinds of experiment) that the germanium 
conduction band comprises four prolate ellipsoids rather than eight. 

The cross-checking procedure of the preceding paragraph could be 
inverted for another semiconductor in which mc and mv were known, but 
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TeK 

FIG. 23.5. Temperature dependence of the intrinsic gap in PbS as estimated 
by Smith (1954:8). 

a unknown. It is useless, however, to attempt to deduce a from in­
trinsic data on a new and poorly understood semiconductor by setting 
mc and mv provisionally as equal to mo. The result of such a dubious 
procedure for a is likely to be so erroneous that the only purpose served 
will be the demoralization of further investigations. 

For temperatures which are not too high or too low, an attempt may 
be made to fit intrinsic data on a smaller energy gap semiconductor 
such as InSb by the procedure we have followed with germanium. The 



INTRINSIC SEMICONDUCTORS 101 

intrinsic gap of InSb is believed to vary non-linearly with T for low 
temperatures (1955:13) but in the higher range becomes rather more 
linear—as happened with Ge. Not much error would be involved in 
supposing 

Ei « (0·26-0·00027Γ) eV in InSb, T > 200°K (231.9) 

The carrier effective masses for InSb depend on energy (see Section 

1000/T (°K ') 

FIG. 23.6. Temperature dependence of the intrinsic carrier density in 
InSb. [After Hrostowski et al. (1955:6).] 

1.5.3) but will not be far from mc Ä 0-02 mo, % Ä 0-2 mo. This dis­
parity of effective masses displaces the intrinsic Fermi level from the 
mid-point of the gap. When non-degenerate conditions still hold 

8 
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(temperature not too large), 

4>i = Ee-ÌEt+ìkTìnWvINc) 

= Ec-ÌEio+bxT+ìkTlnimvImc) (231.10) 

For the numerical values suggested this is 

4H = jE'c-0-13 + 0-000284reV (231.11) 

The non-degenerate intrinsic carrier density which accompanies this 
Fermi level should [from Eq. (231.7)] be 

m « 37 x 1014Γ3/2 exp(-0-26/2*r) cm~3 (231.12) 

The conditions of Eqs. (231.11) and (231.12) do apply in InSb over a 
reasonable range of temperature. Fig. 23.6 shows the experimental 
data of Hrostowski et al. (1955:6) for ni\ the data over most of the 
temperature range follows the solid curve, which satisfies an equation 
whose temperature dependence is identical to Eq. (231.12). (The 
empirical equation has a slightly larger coefficient, but this is not sur­
prising in view of the assumptions made.) 

Note, however, that the experimental points in Fig. 23.6 fall below 
the solid curve at high temperatures. If we were to plot the correspond­
ing Fermi level, this would rise at high temperatures much less rapidly 
than Eq. (231.11). For at these high temperatures, the conduction band 
is becoming degenerate. 

2.3.2 DEGENERATE INTRINSIC SEMICONDUCTORS 

Even for a material in which the combination of high tem­
perature and small intrinsic gap means that the intrinsic Fermi level 
must be separated from each band by a painfully small multiple oikT. 
But this invalidates the replacement of each Fermi integral by a simple 
exponential, as was done in Eq. (231.1). When there is also a con­
siderable disparity between mc and mv, the Fermi level remains further 
from the heavier carrier band (making this band less affected by 
degeneracy considerations), but closer (or even inside) the light carrier 
band. The latter band then has severe degeneracy troubles. 

Such a situation occurs in InSb, which we had been considering at 
the close of the previous sub-section. Since mv > mc it is necessary for 
(<f> — Ev) to be considerably larger than (Ε6—φ) in order to maintain the 
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condition no = po = n%. As the temperature is increased, the condition 
can be maintained only by (Ec—<j>) becoming negative, presenting us 
with the problem of degeneracy in the conduction band. 

For the non-degenerate semiconductor, both of the Fermi integrals 
in Eq. (230.1) were replaced by exponentials, giving Eq. (231.1) and 
hence the condition (231.2) for the Fermi level. Now when degeneracy 
must be allowed for in the conduction band (the valence band re­
maining non-degenerate), instead of Eq. (231.1) we should write 

m = Νο&ΐβ(η) = Λν>χρ(-€ί -7?) (232.1) 

The condition for the reduced Fermi level is then 

exp fo^ i^ fo ) = {mvlmcf * exp( - n) (232.2) 

which of course can be expressed as 

e x p f o î ^ f o ) = (mvlmcf'* exp(a/A) αφ(-ΕφΤ) (232.3) 

when the intrinsic gap is of the form (EÌO — KT). The appropriate 
changes of terminology when mv <ζ mc and the Fermi level tends to­
wards the valence band are obvious and will not be detailed. 

Austin and McClymont (1954:9) have examined intrinsic data on 
InSb in the light of Eq. (232.3), using an approximation 

expfo) 
1+0-27 expfo) 

which is discussed in Appendix C as suitable both for non-degenerate 
and partially degenerate occupancy. The numerical parameters 
suggested for InSb can be substituted into Eq. (232.3) to yield 

expfa) . ^ 1 / 2 ^ ) = 725 e x p ( - 3 0 2 0 / r ) (232.5) 

whose solution is illustrated in Fig. 23.7. Even at 200°K the Fermi level 
is considerably above the middle of the gap, and it lies inside the con­
duction band for T ^ 440°K. For further increases of temperature, η 
increases rather slowly. Fig. 23.7 is patterned on one given by Austin 
and McClymont, but differs in detail since they supposed rather less 
mass disparity. 

For any semiconductor, once the intrinsic Fermi energy has been 
located, it is a simple matter to deduce 

m = Me ^i/2fa0 (232.6) 
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This is done for InSb in curve (B) of Fig. 23.8, using the Fermi level 
data of Fig. 23.7. For comparison, the original non-degenerate approxi­
mate expression (231.12) is shown in curve (A). Since a constant 
(dEijdT) has been supposed, the non-degenerate attempt at represent-
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FIG. 23.7. Variation of gap energy and Fermi level (in units of kT) with 
temperature for intrinsic InSb if Et X (0-26-000027 7')eVandmt, « 10 mc. 

ing ln(riilT3/2) as a function of 1/7"is linear, but it will be noted that the 
result of the more correct model deviates from this linearity when the 
Fermi level approaches and enters the conduction band. 

It is easy to see that this should be so, since the number of available 
and empty band states does not increase as T3 / 2 when one or other of the 
bands experiences degeneracy. Failure to recognize this is just one of the 
many pitfalls available in the interpretation of experimental data. 

InSb has been used at some length as an example because it typifies 
a "classical" intrinsic semiconductor which becomes degenerate in one 
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band at high temperatures. The same must happen to other small gap 
materials. Thus HgSe with an intrinsic gap of only 0-1 eV (1960:3) 
and gray tin with Εχ ~ 0Ό8 eV (1956:7) must have the Fermi level 
within one or two kT of one band or the other at room temperature. 

T 1 1 1 

(A) 

(B) 

J l I 
1.5 2.0 2.5 3.0 3.5 

1000/T (·ΚΗ) 

FIG. 23.8. Variation of (m/T^) with l / Γ for InSb if Et « (0-26-
0-00027 T) eV and mc = 0-1 mv = 002 m. 

(a) Calculated from the non-degenerate expression Eq. (231.12). 
(b) Based on Eq. (232.6) allowing for conduction band degeneracy. 

For HgTe the entire gap is less than kT wide at room temperature 
(1955:14). Such an intrinsic semiconductor is necessarily semidegenerate 
in both bands, and must be treated with procedures similar to those 
employed for a semimetallic material with touching bands (e.g. 
graphite) or weakly overlapping bands (e.g. bismuth). 
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2.4 THE PRODUCT n0po AND φ FOR INTRINSIC AND 
EXTRINSIC SITUATIONS 

The preceding discussions have shown that the densities of electrons 
and holes in the conduction and valence bands of a semiconductor can 
be expressed as 

A) = JV*^l/2(-1J-€«) I 

Since the semiconductor is in thermal equilibrium it is the same reduced 
Fermi level which applies to both sections of Eq. (240.1)—thermo-
dynamic considerations require that the same electrochemical potential 
should be experienced by all states. This was used in the previous 
section to establish a condition for η in terms of Εχ and T when the 
semiconductor was intrinsic. I t will be recalled that for the "normal" 
condition of a non-degenerate intrinsic semiconductor, 

m = {NvNcY/2 exp( -EißkT) \ 
4>i = Ec-iEi = \kT\n{NvINc)) { ' * 

but that rather less simple expressions were unavoidable if the Fermi 
level was rather close to one band or the other. 

When impurities have an influence on the Fermi level and the carrier 
densities, it can be stated with complete generality that no and po are 
related to n% by 

no = ikl&wWI&wtoi)] 
pO = « ί [ ^ 1 / 2 ( - η - €i)lßri/2( -ψ- €<)] 

) (240.3) 

This has a particularly simple result for a non-degenerate semi­
conductor, in which φ remains at least two or three k T from either band 
edge. For in non-degenerate circumstances each of the Fermi integrals 
in Eq. (240.3) can be replaced by an exponential factor (see Section 
2.1). On making the substitutions it can readily be seen that 

nopo = Wi2 (240.4) 
while no = w* e x p ^ - ^ ) (240.5) 
and po = ηχ exp(^< -η) (240.6) 

These relationships for a non-degenerate semiconductor are extremely 
useful. From them it will be observed that, for instance, a change in 
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impurity density which causes p0 to be increased by a factor ß will cause 
no = (nt2lpo) to decrease by this factor /}, while the Fermi level must 
move towards the valence band by an amount kT ln(ß). Such behavior 
can be seen in the central portion of Fig. 24.1, which plots η as ordinate 
against a logarithmic scale of (po/m). The figure is based on a hypo­
thetical semiconductor in which (την/τη€) = 2-5 at a temperature for 
which €t = (Ei/kT) = 10. 

It will be noted in Fig. 24.1 that the linear relationship of η to 
In(polni) is disturbed when the Fermi level enters the valence band, 
and that the graduations of ln(/zo/wi) become compressed as they strive 
to indicate the continuing truth of Eq. (240.5). The degeneracy of the 
valence band invalidates both Eqs. (240.4) and (240.6). Similarly, 
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reduced Fermi level η. Example calculated for an intrinsic gap 10 kT wide; 
with (mvlmc) = 2-5 so that ηι Ä —4-3. The abscissa is a logarithmic scale 

in {po/rii), which distorts the scale of (ηο/ηή, 
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when the Fermi level enters the conduction band, Eq. (240.6) remains 
valid [and η continues to vary linearly with ln(^o/w«)] but Eqs. (240.4) 
and (240.5) are not true, so that the graduations of ln(/zo/fli) must 
become swollen. 

In general the expressions of Eq. (240.3) can be combined as the 
statement 

Ιηφ\ = [^^/i^i] , (240 7) 

The equality sign is appropriate when φ is far from both bands. 
It might seem that when φ is very close to one band, the minority 

carrier density in the other band would be so small as to render its 
precise value unimportant. However, it is worth remembering that 
when degenerate conditions obtain in the majority band, the minority 
density is larger than prescribed by Eq. (240.4), and can become rela­
tively insensitive to the majority concentration. 

Returning now to consider non-degenerate conditions, it must be 
observed that any difference between no and po for electrically neutral 
material is caused by the ionization of impurity states. In the next 
chapter considerable attention will be paid to the distribution of 
electrons between various kinds of impurity levels and the conduction 
band. Without encroaching on that discussion it can be observed that 
if Mr = (no—po), then jVr is the difference between the densities of 
impurity states which have lost an electron and those which have gained 
an electron. The condition 

p0= (!!L\ =no-JVr (240.8) 

leads to two simple quadratic equations for no andpo in terms of ni and 
JVr, with solutions 

= iJVr[(l + 4/^/^2)1/2 + 1]| 
= iJVr[(l+4^2/jVr2)i/2_i]/ I · ' 

At low temperatures, when intrinsic excitation is rather feeble, the 
expressions of Eq. (240.9) simplify to 

n0 « Nr+(n?INr)\ 
1 / 2/vî \n*<Xr (240.10) 
po « (npjNr) ) 
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For a higher temperature (or smaller value of JVr), the limiting approxi­
mation of Eq. (240.10) for almost intrinsic conditions is 

no « ni+\Nr 

po « ni-\Nr 
m > Nr (240.11) 

This result may at first seem a little surprising, for it indicates that 
when a few readily ionizable donors are added to intrinsic material, 
only half the electrons so made available enter the conduction band; 
the other half serve to reduce the free hole density. As JVr increases, the 
hole density becomes quite small compared with no, and then every 
additional ionized donor does indeed provide an electron for the con­
duction band. The contribution of impurities and of the valence band 
towards w0 are equal if no = (po + Nr) = 2po- This happens when 
Mr = 2-1/2m. 

0.6 0.8 I 8 10 

( Nr/n·,) 

FIG. 24.2. The mutual dependence of no and po on ni and Nr, as described 
by Eq. (240.9) and its asymptotic forms (240.10) and (240.11). 
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Fig. 24.2 illustrates the solution (240.9) for the range 0-1 < (Nr/m) 
^ 10. Beyond this range one or other of the forms (240.10) and (240.11) 
will be perfectly acceptable. With a simple inversion, this figure is of 
course equally applicable to a />-type situation. 

The variations of no and po with temperature when (no —po) = Nr 
remains constantf are exemplified by the curves of Fig. 24.3. A semi-
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FIG. 24.3. Temperature dependence of majority electron density (solid 
curves) and minority hole density (broken curves) in a semiconductor for 
which m = 1 -45 x 101* T** exp( - 1850/T) cm~3. [mc = 0· lm0, mv = 0-2m0, 
Et = (0-32-0-0003T) eV.] (a) Jir = 2 xlOie Cm-3, (b) JVr = IO** Cm-3, 

(c) Nr = 0 (intrinsic). 

t (̂ o —po) can only remain constant over a range of temperature if the supply of 
electrons from impurities is completely exhausted. This temperature interval is often 
referred to as the "exhaustion range" for the semiconductor, 
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conductor is supposed for which mc = 0-lmo, mv = 0-2mo and 
Ei = (0-32-0-0003 T) eV. These parameters provide an intrinsic 
density 

m = 145 x 1015T3/2 exp(- 1850/T) cm~3 (240.12) 

which appears as curve (c) of the figure. The remaining curves are of 
no and/>o for two finite values of JVr. At high temperatures these curves 
approach that of ηχ in accordance with Eq. (240.10), but when the 
majority electron density settles towards Nr at lower temperatures, po 
has the temperature dependence of nft and falls off very rapidly. 

Before accepting the visual evidence of the curves in Fig. 24.3 [which 
are based on Eqs. (240.12) and (240.9)] we should question whether 
the values chosen for the parameters are compatible with the non-
degenerate basis of Eqs. (240.8) and (240.9). To be on the safe side, 
it would be desirable to have η < — 2 over the entire temperature range 
under consideration. 

The curves of φ in Fig. 24.4 are for the same conditions as the corre­
spondingly labelled curves of Fig. 24.3, and it can be seen that the 
condition η < — 2 is indeed satisfied (except for a minor violation at the 
very highest temperatures). Even so, the extrinsic Fermi level does 
rise on cooling, and must pass through η = — 2 at some low tem­
perature if the same value ofNr be maintained. When η > — 2 the condition 
Nr = (no—po) should properly be written as a transcendental equation. 

Mr = Ne&wW-Nr&ifti-il^i) (240.13) 

for 77, and the procedure for evaluating no and po is much less straight­
forward. [The same difficulties apply, of course, if po > no and 
η< (2-e ,)] · 

For Figs. 24.3 and 24.4 it has been supposed that Mr = (no—po) 
would remain constant over the temperature range 140-500°K. It 
may be queried whether this is a realistic assumption to make; the 
answer is that it would be most unrealistic in many semiconducting 
materials, but could be a good approximation in some others. For the 
requirement that (no —po) should not change in a certain temperature 
range is essentially that there should be no impurity states in the energy 
interval swept out by the Fermi level between the limiting tempera­
tures. When the Fermi level passes through the energy of a set of im­
purity states, it must ionize or de-ionize them, changing Nr in the 
process. 
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Now it is possible for the exhaustion range of constant JVr to prevail 
from the intrinsic point down to a rather low temperature if the majority 
impurity levels are rather close to the majority carrier band, and all 
other impurity states are in the opposite half of the intrinsic gap. This 
is plausible for a semiconductor such as germanium doped with Group 

///////////////////////////////////// 

2 3 4 5 6 7 

1000/T CK"1) 
FIG. 24.4. Variation of the Fermi level with 1/Tfor the situations depicted 

in Fig. 24.3. 

I l l and Group V impurities\ but containing almost no other impurities 
(such as transition elements). On the other hand, it is suggested (1955: 
15, 16), that some other semiconductors such as CdS and ZnS usually 
contain impurity states at a variety of energies all through the intrinsic 

t The present author has discussed elsewhere (1958:6) the manner in which the 
Fermi level for germanium would vary with temperature for a number of values of 
the parameter jVr, allowing for a temperature-dependent intrinsic gap. Except for 
very large values of jVr, φ joins φι at high temperatures. A similar analysis could be 
used for other semiconductors. 
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gap. For such a material, exhaustion conditions of constant Nr could 
not be contrived over any temperature range. 

We shall defer until the next chapter the discussions of various 
models for sets of impurity levels and the consequent temperature 
dependence of φ and the carrier densities. 

2.5 SPATIAL FLUCTUATIONS OF CARRIER DENSITY 
In the preface to this volume it was pointed out that particular atten­

tion would not be paid to p-n junctions, semiconductor contacts and 
other systematic manifestations of inhomogeneity in a semiconducting 
crystal. At this point it is proposed only to comment in a qualitative 
fashion on two phenomena which can occur in a crystal which is—to 
outward appearances—macroscopically homogeneous. The two pheno­
mena noted here have been discussed by Burgess (1956:10). 

2.5.1 SPATIAL FLUCTUATIONS OF THE INTRINSIC G A P 

When two semiconductors have the same lattice, with not much 
disparity of lattice constant, they are often partially or wholly miscible; 
and the range of alloys so formed is also semiconducting. Thus semi­
conducting alloys in all proportions exist between silicon and ger­
manium (1957:11) and between compounds such as HgSe and HgTe 
(1955:14) or CdS and ZnS (1940:2). Such alloys are not ordered, 
and there will be microscopic spatial fluctuations in the densities of two 
chemical species which can occupy a given kind of lattice site. We do 
not refer to massive variations caused by imperfect crystallization 
procedures, but to the minor variations required by the thermodynamic 
consideration of minimum energy and maximum entropy. 

These variations automatically affect the electrical properties on a 
microscopic scale. For the example of HgSe-HgTe alloys, regions con­
taining rather more selenium atoms will have a larger intrinsic gap 
than neighboring tellurium-rich regions. The degree to which this 
will occur depends on a number of considerations, but qualitatively it 
can be seen that the energies of the conduction and valence bands with 
respect to the intrinsic Fermi level will be contravariant functions of 
position (using the term suggested by Burgess). Such a situation is 
sketched in Fig. 25.1. The Fermi level is of course completely constant 
through any crystal in thermal equilibrium. The fluctuations of Ec and 
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(Ec — Ei) with respect to φί create "pockets" in which electrons and 
holes are more numerous than elsewhere. While UQ andpo are functions 
of position, they are everywhere equal to each other if the semiconductor 
is intrinsic, and electrical neutrality reigns throughout. 

Such a situation does not raise any conceptual problems so far as 
carrier density is concerned. Whatever spatial fluctuations of Ei may 

Ec 
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FIG. 25.1. Contravariant displacement of the energy bands with respect to 
the Fermi level in a disordered alloy intrinsic semiconductor. 

occur, the usual expression can still be written for η% at any point. 
(Great difficulties occur in attempting to interpret the transport 
properties of such an alloy, but we are not at present concerned with 
this topic !) 

2.5.2 SPATIAL FLUCTUATIONS OF IMPURITY DENSITY 

For this second aspect of spatial fluctuations, there are actual diffi­
culties involved in writing down an expression for free carrier density 
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as a function of position. Even so, it is not proposed to solve the problem, 
but merely to draw attention to it. 

In Chapter 3, a variety of models are considered in which a semi­
conductor contains one or more sets of impurity levels, and the Fermi 
level and carrier densities consistent with these models are evaluated. 
Throughout that chapter the customary assumption will be made that 
impurity atoms are distributed evenly through the volume of the semi­
conductor. It is the present purpose to observe that impurities will never 

EcfEi 

Distance >· 
FIG. 25.2. Covariant displacement of the energy bands with respect to the 
Fermi level in a semiconductor with spatial fluctuations of impurity density. 

be distributed perfectly uniformly in space, but that the discussions of 
Chapter 3 will overlook this additional complication. 

When impurity atoms become incorporated into the lattice of a 
semiconductor, their spacing will sometimes be more and sometimes 
less than the mean value. Since some microscopic regions have more 
electrons to offer than others, it seems reasonable that in an w-type 
case the conduction band edge might fluctuate with respect to the 
Fermi level more or less as sketched in Fig. 25.2. Since the intrinsic gap 
is now supposed to be constant, the valence band moves covariantly with 

Conduction Band 
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the conduction band. Most electrons collect in the low-lying pockets 
of the conduction band, and in an extreme case there might be an 
appreciable number of holes in areas where the valence band goes 
through a maximum. 

The situation of Fig. 25.2 poses problems which did not occur for 
Fig. 25.1, in that fluctuations in the extrinsic semiconductor involve 
localized space charge. The regions in which (Ε€—φ) is large tend to 
have more complete ionization of donor impurities, and since there are 
very few free electrons there, such regions have a positive space charge, 
while areas in which (Ε0—φ) is small bear a net negative charge. 
Shockley (1949:5) in his discussion of the limiting case of a p-n junction, 
has shown that the importance of space charge effects on the spatial 
dependence of (Ec — φ) depends on the distance scale over which changes 
of impurity density occur. The form of solution depends on whether 
such changes occur in distances small or large compared with the Debye 
length, and must in general be pursued by an iterative technique. 
The reader is referred to Shockley's article for a more complete account 
of the necessary procedures. 

It is natural to hope that fluctuations of impurity density will be 
small enough to make the maximum excursions of (Ε0—φ) very small 
compared with kT; the semiconductor will then have properties strongly 
resembling those for an ideally uniform impurity distribution. 



Chapter 3 

SEMICONDUCTORS DOMINATED BY 
IMPURITY LEVELS 

I N Section 2.4, an allusion was made to the importance of impurity 
levels, in the sense that consideration was given to the relation of no 
and po when these were unequal and the Fermi level departed from the 
intrinsic position. It is now necessary to consider in detail just how 
electrons are distributed in thermal equilibrium between the bands 
and the various sets of levels provided by impurities. 

3.1 OCCUPANCY FACTOR FOR I M P U R I T Y LEVELS 

Appendix A proves that under thermal equilibrium conditions, the 
probability that any state of energy E will be occupied by an electron 
is given by the Fermi-Dirac factor 

f{E) 7 ^ ^ | (310.1) 
1 + exp [ — j 

In the last chapter we have seen that the application of Eq. (310.1) to 
the distribution of states in the permitted bands leads to expressions 
involving the Fermi-Dirac integrals &Άη). It is similarly necessary to 
find out what fraction of impurity atoms retain their outermost electron 
(or acquire an additional one) when the Fermi level is at any specified 
energy. 

Following Wilson's (1931:2) theory of the extrinsic semiconductive 
process, a rather simple approach to the problem of center occupancy 
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was widely used during the two following decades. This approach is 
typified by the following argument. Consider a semiconductor con­
taining Nd monovalent donor impurity atoms per unit volume, such 
that in the ground state each atom has an electron trapped at an 
energy Ed below the base of the conduction band (see part (a) of Fig. 
13.8). I t would seemingly appear that the number of states within any 
small range of energy centered on (Ec—Ed) must be 

Ec-Ed+& 

g(E) dE = Nd (310.2) 
Ec—Ed—A 

/ 

A donor which has an electron trapped at this energy is electrically 
neutral; the density of these may be indicated as Ndn* Similarly, 
Ndi = (Nd — Ndn) denotes the density of ionized donor atoms. From 
the formulation of Fermi-Dirac statistics it is to be expected that 

Ndi :Ndn=l : e x p ^ ^ T ^ ] (310.3) 

so that the density of neutral donors would be 

N*n = J T, j ( 3 1 0 · 4 ) 
1 +exp [Ec-Ed-φΐ 

kT J 

This result looks very simple and appealing, but unfortunately 
represents an incorrect simplification of the matter. The factor over­
looked is that of impurity level spin degeneracy, which we now con­
sider. 

3.1.1 IMPURITY LEVEL SPIN DEGENERACY 

The important consideration overlooked in the preceding discussion 
is that each impurity atom will usually offer more than one state for 
either the neutral or ionized configuration. This has been recognized 
by a few workers in the field for a considerable time (e.g. 1948:2), but 
there has been a more general awareness since the appearance of 
contributions by Landsberg (1952:4, 1953:5) and by Guggenheim 
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(1953:6). Using a free energy approach and the grand canonical en­
semble, respectively, these authors show how spin and orbital degener­
acy of bound states have an effect on the number of electrons retained 
by a set of impurities. 

As the simplest example of this, consider a set of simple monovalent 
donor impurities for which all electrons save the least tightly bound 
are in paired valence bonds. The wave-function of the outermost 
electron is of purely s character, and since this is an unpaired electron, 
it can be trapped in two ways, with spin either up or down. Note that a 
donor can not trap two electrons, since once one electron is trapped, 
electrostatic forces raise the remaining spin possibility to a very high 
energy; nevertheless the neutral state of the impurity has a statistical 
weight of two compared with the ionized state. Accordingly we should 
replace Eq. (310.3) by 

JVdi:JVdn = 1 :2 e x p ^ ^ " ^ ] (311.1) 

Then the density of neutral donors is 

JV/7 

For other kinds of impurity level, the coefficient of the exponential 
in Eq. (311.2) will differ from \. We may say in general that for a level 
at energy Er, the probability that this level will contain an electron 
is 

nK) i - g - j - (311.3) 

In the current literature, the term impurity level spin degeneracy is 
applied rather indiscriminately to either ßr or /?Γ

-1, whichever is larger 
than unity. This may appear a little confusing, but should not cause 
undue difficulty if it is borne in mind that Eq. (311.3) refers always to 
the probability that a level contains an electron at the specified energy, 
not necessarily that the impurity is electrically neutral. For our illus­
trative example of simple donors, β~λ = 2 is the spin degeneracy, 
since the level can be occupied by an electron in two ways. When the 
impurity in question is an acceptor center which requires an extra 
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electron to complete a set of paired bonds, ß = 2 is the spin degeneracy 
—since the absence of this electron can be described in two ways. 

When an impurity level is created by splitting off states from a con­
duction or valence band with multiple or degenerate extrema, ß or ß'1 

will be larger than two. Thus for acceptor levels introduced by Group 
I I I impurities into a semiconductor such as germanium (with two 
valence bands degenerate at k = 0), Kohn (1957:10) has shown that 
ß should equal four, and this is in accord with experimental observa­
tions (e,g. 1959:6). 

Moreover, when the impurity ground state wave-function is not 
spherically symmetrical, orbital degeneracy affects the statistical 
weights of the neutral and ionized conditions. The effect of this can be 
included in the quantity ]8, which is still loosely referred to as a "spin" 
degeneracy factor. For multivalent impurities which can donate or 
accept several electrons from successively deeper states, there will be a 
ßr characteristic of each state of ionization. 

3.2 SEMICONDUCTORS CONTROLLED BY A SINGLE 
MONOVALENT DONOR SPECIES 

In Chapter 2 we traced the connection between the Fermi level 
and the conduction band free electron density at any temperature. The 
previous section has further established the connection between the 
Fermi level and the fraction of impurity sites which retain an electron. 
Combining these two pieces of information, we can now see how elec­
trons are distributedbetween impurity levels and the conduction band. 

I t is equally simple to study the models of either w-type or p-type 
semiconductors, though this section will in practice discuss primarily 
w-type behavior, concentrating on the conduction band. Except when 
especially noted, it will be assumed that the hole density po is negligibly 
small compared with no and with the densities of impurity states (i.e. we 
shall not discuss the transition towards intrinsic conduction at high 
temperatures). This is not as restrictive an assumption as it may seem, 
for provided that the majority of donor levels lie inside the upper half of 
the intrinsic gap (at least two or three kTabove φι) all these impurities 
will become ionized before temperatures are reached at which intrinsic 
excitation is at all appreciable. This means that the intrinsic transition 
takes place from a region of temperature-independent Jff9 as described 
in Section 2.4. 
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3.2.1 TEMPERATURE DEPENDENCE OF no AND φ FOR A SET OF SIMPLE 
UNCOMPENSATED DONORS 

The model to be considered first is a purely academic and unrealistic 
one. For it is impossible to prepare a semiconductor containing only 
one set of impurities, with no compensating centers at all. Grave errors 
can result from applying this model over the complete temperature 
range, though it can be a reasonable approximation to the truth at 
temperatures which are not too low. This earliest described model of 
an extrinsic semiconductor (1931:2) is used simply because it helps 
to demonstrate some features which are useful in discussing more 
realistic models. 

For this preliminary discussion, then, the model to be used is the 
simplified one of Fig. 32.1. There are Nd donor levels of spin degeneracy 

Φ 
E c - E d 

CONDUCTION BAND 

DONOR LEVELS 

FIG. 32.1. The simplest model of an extrinsic n-type semiconductor. 

j3_1 per unit volume at an energy Ed below the base of the conduction 
band. The latter is characterized by a mass mc and through this by the 
quantity Nc = 2(2nmckTlh2)s/2. The Fermi level <f> may be above or 
below either Ec or (Ec — Ed). 

Now the number of electrons excited in the conduction band is 
known to be 

* - xsJfë) (321.1) 
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while from the formalism of Eq. (311.3) it is known that the number of 
electrons remaining in the donor levels is 

N«n ff (321.2) 
I + M-*H 

Since electrons in the conduction band can have come only from the 
donor levels, the sum of the densities (321.1) and (321.2) must be Jfa 
itself. Hence we have that 

1+"- l0! [>HwH 
Adopting the usual dimensionless notation, and in addition denoting 
(EdjkT) as €d, the previous equation can be written 

«o = JfcPidn) = JV*[1 +j8-i e x p ^ + η)]-! (321.4) 

When the donors are not too numerous, and of reasonably large 
ionization energy, conditions will tend to remain non-degenerate 
(φ several kT below Ec) at all temperatures. They will certainly be 
non-degenerate at the very lowest temperatures, for then all the elec­
trons are withdrawn to the donor levels. As temperature rises and some 
electrons become excited into the conduction band, η rises; but it 
passes through a maximum and falls again at the high temperatures 
for which impurity ionization approaches completion. 

When conditions are non-degenerate over the entire temperature 
range, the solution of Eq. (321.4) is conveniently simple. The approxi­
mation ^Ί/2(^) « exp0>7) c a n then be used at all temperatures. Thus 
substituting (no/Nc) for exp(iy) on the right side of Eq. (321.4), there 
results a simple quadratic in wo, 

ao[l + - ^ r exp^)] = Md (321.5) 

with the solution 

m = 2Λ* 
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Fig. 32.2 illustrates a typical numerical example of the temperature 
dependence of no prescribed by Eq. (321.6). Following the usual custom, 
this figure plots ln(/z0) vs. \jT. This is done for the benefit of the low 
temperature "reserve" region, when few electrons are excited and 
Eq. (326.6) approximates to 

no « (ßNcNd)1 /2 exp( - EdßkT), small T (321.7) 

The exponential contributes most but not all of the temperature 
dependence in this range, as can be seen in the figure from a comparison 
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FIG. 32.2. Semilogarithmic plot of no vs. 1/7* for a set of uncompensated 
donors when conditions are non-degenerate at all temperatures. Calculated 

for Na = 1016 c m - 3 j Ed = o-Ol eV, mc = 0-25 m0, β = J. 

of the straight line of slope (Ed/2k) with the curve of a calculated carrier 
density. The discrepancy in slopes results from the T 3 / 2 temperature 
dependence of Jfc. 

Eq. (321.7) was originally derived by Wilson (1931:2) and was for 
a long time adopted uncritically in the interpretation of experimental 
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data. We should note that the equation can properly be applied only 
if 

(a) conditions are completely non-degenerate; 
(b) the number of carriers no excited to the conduction band is very 

small compared with Jfal and furthermore 
(c) the number of electrons lost to compensating impurities is very 

small compared with no, i.e. Na <̂  no <̂  Na· 

We have deliberately assumed zero compensation for the present, and 
thus are safe on the last score. As will be revealed in a moment, the 
numerical values adopted in Fig. 32.2 are consistent with non-degener­
acy at all temperatures. Before proceeding to this topic, it may be noted 
in passing that the carrier density of Eq. (321.6) tends to N& at suffi­
ciently high temperatures, producing what have previously been 
described as exhaustion conditions. Since at sufficiently low tempera­
tures almost none of the donors are ionized, while at high temperatures 
they are almost all ionized, it is evident that φ tends from a position 
above (Ec — Ed) to one below this energy on warming. 

When conditions are non-degenerate, the Fermi level is always re­
lated to no through 

(φ-Ec) = kTv = kT\n(nolNc) (321.8) 

Substituting for no from Eq. (321.6), 

{φ-Ec) = hTf) 
= - ^ n { ( j V - c / 2 J ^ (321.9) 

Fig. 32.3 (based on the same numerical parameters as Fig. 32.2) shows 
how no, η and φ vary with temperature in accordance with Eq. (321.6) 
and (321.9). 

In connection with this figure, note first the behavior of (φ — Ε0), 
shown in part (c). At high temperatures, when essentially all the 
impurities are ionized, conditions approach those discussed in Section 
2.2; for when T is large enough to make expißajkT) <̂  (Nc[Nd), the 
Fermi level of Eq. (321.9) approximates to 

φ » Ec-kT\n(NclNd), large T (321.10) 

This would be true for the example of Fig. 32.3 at temperatures 
> 100°K, when at least 90% of the carriers have been excited from 
the donor levels. 



SINGLE M O N O V A L E N T DONOR SPECIES 125 

1 

0.8 

0.6 

?̂ 0.4 

0.2 

0 

1 1 

/ 

/ 

—.^/λ 

-■ ■-"■ ι ■■- ι 

1 1 

A 

J 

-\ 

A 

3 0.01 

ο 
ÜJ 

0.02h 

FIG. 32.3. The temperature dependence of (wo/JVi), η and φ for the 
uncompensated donor model of Fig. 32.2. 

On proceeding to lower temperatures, a progressively smaller fraction 
of the carriers is excited, and φ moves closer to the conduction band. 
In conformity with (321.2) φ must coincide with (Ec-Ed) at the 
temperature for which ( Ι + β ) - 1 of the donors are neutral. In the 
present example, this temperature is 32°K. 
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When only a very small fraction of the donors are ionized, φ ap­
proaches the energy (Ec-\Ed), but the approach is not a monotonie 
function of temperature. This occurs because the low temperature 
approximation to Eq. (321.9) is 

φ « {Ec-\Ed)-\kT\n(NSNd)y small T (321.11) 

At some sufficiently small temperature Ti, Nc will be equal to ßNd; 
then φ will be higher than {Ec-\Ed) for the temperature range 
0 < T < T±. This is not readily apparent in Fig. 32.3, and so the data 
from 10°K downwards are shown on an expanded scale in Fig. 32.4. 
For the numerical example considered in these figures, 7 i = 4 -ΓΚ. 

0.0048 
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>' 
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^ 0.0054 

0.0056 
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FIG. 32.4. An amplification of the low-temperature region in part (c) of 
Fig. 32.3, showing φ rising above {Ec—\Ed) when the temperature is 

small enough to make Ne < ßNd-

Part (b) of Fig. 32.3 shows how the reduced Fermi level η varies with 
temperature. As already predicted, this variable passes through a 
maximum ηΜ at a temperature for which an appreciable fraction of 
the donors is ionized. The value of this maximum is sufficiently negative 
to confirm that no was correctly calculated from the non-degenerate 
equation (321.6). I t is obviously desirable to have a general procedure 
for determining ^ m a x from parameters such as Ma, ft mc and Edi so that 
it is known in advance whether Eq. (321.6) is applicable or whether 
Eq. (321.4) must be solved in more general form to yield no and η. 

Taking η from Eq. (321.9), differentiating with respect to tempera­
ture and setting the result equal to zero, it can be shown as a result 

Ί Γ 
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of some tedious but elementary manipulation that η will have a maxi­
mum at a temperature Tm for which edm = (EdjkTm) satisfies the 
condition 

(2€dm-3)* exp(etfm) = 6ßNC€dmINd (321.12) 
To employ this condition, we should like to collect everything involving 
temperature-dependence on one side. Since Nc varies as T3/2, we can 
write (321.12) as 

Z = 1 2 ( 2 ^ Ο / Α 2 ) 3 / 2 ^ - 1 / 2 ( 2 € ^ -3)-2 exp(-€Äm) (321.13) 
where the quantity 

Z = JVäß-^moImcEa) (321.14) 
depends on the density and character of the impurities but not on 
temperature. When Nd is expressed in cm~3 and Ed in eV, then 

Z = 3-6 x 1022^m-i/2(2eöm-3)-2 exp(-€ t o ) cm-3eV-3/2 (321.15) 
It is a simple matter to determine the corresponding values of £ and 

€dm and their relationship is shown in Fig. 32.5. Knowledge of €dm 

E 

ε 

rTl , ?/2 r "3 ~3 / 2τ 
Z « N d # (m0/mcEd) [cm. ev. J 

10 
22 

FIG. 32.5. Determination of the temperature at which η reaches its maximum 
value ητη, for a set of uncompensated donor levels. The ordinate is the 

parameter cam = (Ea/kTm) which satisfies Eq. (321.15). 
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means that Tm = (E'a/k e dm) is obtained, and r\m itself can then be 
determined. 

When Eq. (321.4) is differentiated and the condition (άη/άΤ) = 0 
imposed, a simple relationship between r\m and eam is obtained, 

Vm = —e<lm + L2€tfm-3j 
(321.16) 

This is valid whether conditions be degenerate or not. Combination 
of Eq. (321.16) with the root of Eq. (321.15) leads to the graphical 
relationship of f\m to Z shown in Fig. 32.6. Strictly speaking we should 
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FIG. 32.6. The maximum value reached by η as a function of the density, 
ionization energy, etc., of a set of uncompensated donor centers. The curve 
shown is for β = £. With any other value, the curve should be raised by 

the amount ln(2j8). 

draw a family of parallel curves for various values of /?; the one shown 
is for β = \ so that the curve for any other β would be displaced 
vertically by ln(2j8). 

The solution of Eq. (321.4) is less simple than we have described if 
the donor density is large enough to produce some conduction band 
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degeneracy over part of the temperature range. One of the earliest 
and most striking discussions of the carrier statistics problem for a 
degenerate extrinsic semiconductor is that of Shifrin (1944:1). No 
great complication is involved provided that the maximum value of η 
is not much greater than unity, for then ^1/2(77) can be approximated 
by an expression of the form [C + exp( — ^) ] _ 1 . As discussed in Appendix 
C, this kind of expression with C « 0-27 is suitable whenever η < 1·3. 
With such an approximation to the behavior of «^1/2(17), Eq. (321.4) 
becomes a quadratic in exp(^) : 

Μ0&φ(2η + €α)+β(Νο-Μα)αρ(η) = ßNd, η < 1-3 (321.17) 

For the reduced Fermi level, the solution is 

2Na 

( j 4 l . l o ) 
while the corresponding free electron density is 

2jy«jre 

*° (JVC+ cjfa)+viW- CNtf+Ap+NtNc « P ( « ) ] ' η <
 2 1 

Considerably more difficulty is encountered if the donor density is 
so large that η goes through a maximum value rather larger than 
unity. While Appendix C does discuss approximate expressions for 
■^1/20?) in the degenerate domain, none of these has a form which 
would permit a simple analytic solution for Eq. (321.4). However, it 
is always possible to find the mutually consistent values of ed and η. 
We can write (321.4) as 

[1 +j3-i «p ( e 4 + , ) ] - i = JVeAi-i.Fi/afo) 

where A is a dimensionless quantity characteristic of the density and 
type of donor centers, 

A = 2 ( 2 ^ ^ 2 ) 3 / 2 ^ - 1 
(JVd m cm~d 

= 6xl02i(^mc/mo)3/2JV^-i for I . Λ7 (321.21) 
\Ed m eV 
ίNd in cm-3 

: VW\lLdmclmo)*i*jyid-L tor 

Now if we denote 

*2 = [A€dl-3^1/2(V)] Ì 
(321.22) 

http://JVeAi-i.Fi/afo
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it will always be possible by numerical or graphical methods to find 
the value of η which permits the condition x\ = #2 to be satisfied for 
any value of e# (i.e. for any temperature). Such procedures are cer­
tainly tedious, but there is no other alternative for an exact solution. 

In order to bring home the change wrought by conduction band 
degeneracy on the temperature dependence of no, Fig. 32.7 shows how 
no and η vary with 1/7" for a typical numerical example. The ionization 
energy, spin factor and effective mass ratio are all the same as for the 
previous example of Fig. 32.2; the only parameter changed is that Na 
is now assumed to be 1019 c m - 3 instead of 1016 cm - 3 . I t is interesting 
to compare the shape of the curve in Fig. 32.2 with that of part (a) in 
Fig. 32.7. In the former case the slope of ln(^o) vs. l/T was not very 
different from (Eaßk) when donor ionization was less than 10%. 
This is certainly not true for the example of Fig. 32.7, because the 
Fermi level is well above Ec until the temperature is low enough to 
make no < 0-01 JV .̂ At sufficiently small temperatures and ionized 
densities, the slope does eventually approach (Eaj2k), but Fig. 32.7 
demonstrates how dangerous it can be to infer an impurity ionization 
energy from an experimental curve unless all the factors are known. 

Of course, the situation for a real solid is complicated by a number of 
other factors as well, which must now be considered in turn. 

3.2.2 T H E REALISTIC CASE—PARTLY COMPENSATED IMPURITIES 

The most important respect in which the discussion of Sub-section 
3.2.1 fails to represent the properties of any real extrinsic semiconductor 
is that semiconductors inevitably contain traces of several kinds of 
impurity. Sophistication in purification techniques may reduce the 
influence of "unwelcome" impurities, but no process can completely 
eradicate them. 

There are several kinds of complexity which have to be considered. 
Thus an w-type semiconductor will usually contain significant quanti­
ties of more than one donor species. I t will always contain acceptor 
impurities of various kinds. Some impurities may be able to provide 
or accept more than one electron. Moreover, electrons can be trapped 
by an impurity not only in ground states but also in excited states, and 
the spin and orbital degeneracy of any bound state may be modified 
by splitting occasioned by a magnetic field or by anisotropie elastic 
strain. 
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Thus the general problem for an extrinsic semiconductor is quite 
complicated. It is possible, as Landsberg (1958:10) has shown very 
powerfully (by the method of the grand canonical ensemble), to write 
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FIG. 32.7. Variation of (a) no and (b) η with reciprocal temperature for a 
set of uncompensated donors when conditions are partially degenerate over 
much of the temperature range. Calculated for Na = 1019 cm-3, Ea = 0 01 eV, 

mc = 0-25 mo, β = £. 
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down a general expression for the electronic equilibrium in a semi­
conductor containing any impurity configuration; but this is not the 
same thing as a complete solution. Such a complex problem must be 
attacked piecemeal, by considering which complications can be re­
linquished in each individual case. 

Accordingly, the complications of multivalent impurities are deferred 
to Section 3.4. Section 3.3 deals with the problem of an w-type semi­
conductor containing two species of donors at appreciably different 
energies in the upper half of the gap—and it will be seen at that time 
that each species will dominate the behavior over a different tempera­
ture range. The influence of occupied excited bound states is evaluated 

<EC-Ed) 

.CONDUCTION BAND 

Principal Donor Levels 
Density N j 

FIG. 32.8. Model of a partially compensated extrinsic A-type semiconductor. 

in 3.2.3, but first it is fitting to come to grips with the most basic of all 
these problems; that an extrinsic semiconductor is always partially 
compensated (1935:1, 1939:1). 

Consider then the situation idealized in Fig. 32.8. In addition to the 
principal set of donor levels, we suppose that there are appreciable 
concentrations of several other impurity species, whose levels lie 
further from the conduction band. The Fermi level φ will presumably 
lie well above the energies of all these other kinds of impurity state for 
all temperatures of interest. 

If this is the case, all donor states among them will retain their 
electrons; that is, they will be electrically neutral. Thus their density 
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will have no bearing on the solution of our problem. All acceptors, how­
ever, will acquire extra electrons as consistent with their position 
below the Fermi level. How many acceptors there are of each type is 
unimportant; the only thing which matters is the total density of 
electrons required to satisfy the needs of these acceptors, a density 
which will be denoted as JVa. 

Now since these Na electrons occupying compensating states have 
had to come from the principal donors, there remains only a density 
{Nd — Maj of electrons which can be distributed between the donor 
levels at (Ec — Ed) and the conduction band. The fraction of ionized 
donors now varies from (JVa/JV )̂ at low temperatures to unity at 
high temperatures, and the free electron density can not become larger 
than (Na — Na) until the falling Fermi level reaches (a) another set of 
impurity states, or (b) its intrinsic position. 

Since the number of ionized donors is equal to (n0 + Na) and also to 
(Nd — Ndn) [see Eq. (321.2)], we have for a partially compensated 
semiconductor that 

no + Ma = JV*[1 +j8-i exp(€tf + 77)]-i (322.1) 

When the degree of degeneracy is not known, and no can safely be 
related to η only by using no = Nc^i/ 2(^)5 we can still write 

[1+ j8-i exp(e(i + η)]-ι = [Aef* /* . &i/2(v) _ (jVe/JVd)] (322.2) 

where A = [2(2nmcEdlh2,)z/2IMd] is the dimensionless quantity prev­
iously introduced in Eq. (321.20). I t was noted for the uncompensated 
situations of Sub-section 3.2.1 that pairs of values for η and ed could 
always be found which would make the two sides of Eq. (321.20) equal. 
Obviously the same kind of procedure will hold good for the partially 
compensated case of Eq. (322.2). 

Eq. (322.1) reduces to a quadratic in exp(^) provided that η ^ + 1 - 3 , 
so that inolici = ^ i / 2 ( ^ ) can be approximated by [C + exp( — ^ ) ] - 1 , 
as described in Appendix C. 

When this expression is substituted into Eq. (322.1), some elementary 
manipulation leads to 

exp(27?) + exp(77)i 
Ma + ßexp(-€d)[JVc-C(Xd-Mg)] 

Nc+CNa 

ß{Nd-Na) exp(-€d) 
~ Jj^+~CNaJ 

, η ^ +1-3 (322.3) 
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This has the solution 

2{Nj-Ng) 
e X P ( , ? ) [JVC - C{Nä - Na) + jS-MT. «p(«*)] + ViWc - C{Na - Na) + 

+ß-Wa exp(e(i)]2 + 4i8-i(JVc+ CXa)(Nd-Xa) expfa)} 
(322.4) 

for exp(ij) and 

= 2Ν£ΝΛ-ΝΛ) 
*° ~ [Xc+C(Md-Ma)+ß-1XaeMe*)] + V{Wc-C(X(l-J{a) + 

+ß-Wa exp(€(i)]2+4j3-i(jVc+ CNatNi-Na) expier)} 
(322.5) 

for the corresponding free electron density. 
These expressions are considerably simplified when the Fermi level 

is several kT below the conduction band, so that &Ίβ(η) « exp(i?) 
and 

2(Nd-Na) 
n° [l+(NalßNc)cxp(ed)] + 

+ V{[1 + (JfalßWe) e x p M ] 2 + WßNe){Nd - Na) e x p M } 
(322.6) 

The value of e x p ^ ) is then of course (wo/JVc)· 
A comparison with the equations of Sub-section 3.2.1 shows that 

Eqs. (322.4), (322.5) and (322.6) reduce to the forms of Eqs. (321.18), 
(321.19) and (321.6) when the density of compensating centers tends 
towards zero. But at low temperatures even a very small acceptor 
density has a considerable effect on no and η. This effect is of the same 
general character for any degree of conduction band degeneracy, thus 
the remarks we shall make about the non-degenerate case would apply 
with little modification to more strongly doped material. 

Compare then Eqs. (322.6) and (321.6). The denominator of each 
is equal to 2 at high temperatures when the donor ionization is com­
plete. On considering progressively lower temperatures, the quantities 
{^lßNc){Nd-Na) exp(e^) and {NajßNc) exp(e^) become comparable 
with and then larger than unity. When the degree of compensation is 
very small (Na < No), it is possible to find a temperature range for 
which Na < ^o <̂  Nd> This condition is equivalent to the statement 
{NalßNc) exp(e^) <ξ 1 <̂  (^NalßNc) exp(ed); when such a tempera-



SINGLE M O N O V A L E N T DONOR SPECIES 135 

ture range exists, the carrier density approximates to 

no « (ßNcNa)112 e x p ( - ^ / 2 * T ) , Na < no < Na (322.7) 
which is of course just the same as Eq. (321.7). A moment's reflection 
will confirm that it is entirely reasonable for no not to depend in any 
material fashion on the density of compensating impurities when this 
density is much smaller than no. 

Such a situation cannot be maintained indefinitely on progressive 
cooling. Eventually no must approach, and then become smaller than, 
the density Na- This happens when the two terms (NalßNc) exp(e^) 
assume the dominant role in the denominator of Eq. (322.6). At 
sufficiently low temperatures then, 

[ Nd—N l 
— — — cxp(-EdikT), no<Na< Nd (322.8) 

Na J 
The dependence of ln(wo) on 1/Tis twice as large for this temperature 
range as in the range of Eq. (322.7). 

When the degree of compensation is rather large, there is no range 
of temperature for which Eq. (322.7) has any validity; on cooling 
from the exhaustion range, the carrier density decreases rather rapidly 
and soon conforms with Eq. (322.8). 

Fig. 32.9 provides a semilogarithmic plot of no vs. \jT for a semi­
conductor containing donors and rather fewer acceptors. As with the 
previous example of Figs. 32.2-32.4, a model is adopted of donors 
0-01 eV below a conduction band, when β = J and mc = 0*25 mo. 
The four curves of Fig. 32.9 correspond with different degrees of com­
pensation, but for simplicity it is assumed that (Nd — Na) is 1016 cm"3 

for each case. Curve (i) corresponds with Na = 0, and is identical with 
the curve of Fig. 32.2. Curve (ii) is for Na = 10 1 4 cm- 3 (about 1% 
compensation), curve (iii) for Na = 1015 c m - 3 (about 9% compensa­
tion) and curve (iv) for Na = 1016 c m - 3 (50% compensation). In the 
cases of curves (ii) and (iii), it will be seen that no is reasonably close 
to the zero-compensation curve until the temperature is low enough 
for Na to become comparable with no. The slope then increases and 
reaches a limiting value of ~ (Ed/k) at the lower temperatures, when 
Eq. (322.8) applies. The compensation is so large for curve (iv) that 

(Nd-Na) . . /ΟΟΟΛΧ 
wo « heavy compensation (ό2,2..υ) 

l+(NalßNc)CKp(€d) 
is a reasonable approximation to the truth at all temperatures. 
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The Fermi level corresponding with Eq. (322.6) : 

(φ-Ec) = kTv = kTln(nolJVc) 

= kTln\ 2ß{Na-Na) 
Ü3JVc + jVaexp(€rö)] + 

(322.10) 
is not given by a particularly simple expression. From what has been 
said about the behavior of no, Eq. (322.10) obviously must become 

6 - i 8 

IOO/T (°K ') 
10 12 

FIG. 32.9. Semilogarithmic plot of no vs. 1/7* for a set of partially com­
pensated donors under non-degenerate conditions. For simplicity it is 
assumed that (Na — Na) = 1016 cm- 3 in each case, with Ea = 001 eV, 
mc — 0-25mo, ß = i* (i) For Na = 0, i.e. zero compensation. This is 
identical with the model of Figs. 32.2-32.4. (ii) For Na = 1014 cm"3, (iii) 

Na = 1015 cm-3, (iv) Na = 10" cm-3. 
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essentially equivalent to (321.9) whenever no > Jfa. When the tempera­
ture is low enough and the compensation severe enough for Na to be 
larger than wo, Eq. (322.10) reduces to 

φ - Ee-Ed+kTln\ß{Md-*a)l no < *a 
L Ma J 

(322.11) 

Such behavior is evident in curves (ii), (iii) and (iv) in part (b) 
of Fig. 32.10. It will be noted that the Fermi level starts from the 

KJ.O 

Ό.4 

— 0.3 
2° 
1 

£ 0.2 

cP 
0.1 

0 

1 

" 

| 

( h 

1 \/J 

m) / 
/(iV) 

1 1 

1 / 1 

J 

"1 

(a) j 
1 J 

~ -0.01 

I 

-0.02 

FIG. 32.10. The temperature dependence of [«o/(JVi — JVe)] and φ for the four 
numerical cases of Fig. 32.9. The curve for (ii) is not shown in part (a) since 

it lies extremely close to that of (i). 
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donor energy at T = 0°K; this must always happen no matter how 
small the fractional compensation, since if there are any compensating 
impurities at ally the principal donors are less than 100% occupied at 
T = 0. This means that the Fermi level must differ from the donor 
level by a finite multiple of AT as 7*->0, and must coincide with 
(Ec — Ed) at absolute zero itself. 

Whether the Fermi level rises or falls as T increases from absolute 
zero depends on whether [ß(Nd — Na)/Na] is larger or smaller than 
unity. In Fig. 32.10, the former is true of curves (ii) and (iii) and the 
latter of curve (iv). As T increases further, the Fermi level curves for 
samples of the same (Md — Ma) but different Ma eventually coincide. 
This process has reached completion for the situations characterized 
by curves (i), (ii) and (iii) in Fig. 32.10, but the Fermi level for the 
most heavily compensated sample will not join with the others until a 
temperature of some 150°K is reached. 

It is customary to plot ln(wo) vs. 1/7" in discussing the temperature 
dependence of carrier density, but other forms of presentation are 
sometimes useful. As an example, we may note from the curves in 
part (a) of Fig. 32.10 that the addition of compensating centers moves 
the curve of no vs. T bodily to the right, by an amount which is approxi­
mately proportional to [Mal(Md — Na)]· The curve corresponding with 
case (ii) could not be drawn since it is almost indistinguishable from 
the zero-compensation curve (i) at all temperatures. 

The reader may perhaps be wondering at this point how all the 
preceding information can be used in the analysis of experimental 
data, when the given information consists of values of no for various 
temperatures. One of the most popular approaches starts from Eq. 
(322.1), rearranged to read 

(Md- Ma-no) 

When no is not large enough at any temperature to provoke the com­
plications of degeneracy, exp(^) = wo/JVc, and 

^ + ^ = ßNccM^EalkT) (322.13) 
{Na-Ma-no) 

The task now is to find values for Ma and Md which will permit the 
two sides of (322.13) to be equal at all temperatures. 
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This does not require many experimental points if Ea, ß, and mc are 
known, but this is not generally the case. I t is not possible to isolate 
ß and mc, only the combination ßmc

s/2 from use of (322.13). Thus if 
mc is known, ß can be determined, and vice versa. Suppose for instance 
that the effective mass for the conduction band is known. Referring 
to the curves of Fig. 32.9, (JV^ — Na) can be estimated from the limit 
of wo in the exhaustion range. A reasonable approximation to Ea can 
be obtained from the slope of ln(wo) vs. l/T in the low temperature 
range, and (Najß) from the value of no at any temperature in this 
range [using Eq. (322.8)]. The method of least squares can then be 
applied to Eq. (322.13) to find the values of the parameters which 
give the best fit over the entire temperature range. 

As with all the preceding discussion, methods applicable to the 
relationships of donors to the conduction band can be adopted in their 
entirety for p-type semiconductors with majority acceptors above the 
valence band. The counterpart of Eq. (322.13) for a non-degenerate 
/>-type semiconductor is 

po(po + Nd) iNv = (-^Jexp(-EalkT) (322.14) 
{Na-Na-Po) \ ß 

where the spin degeneracy ß of the acceptors is in general larger than 
unity. 

Fig. 32.11 provides an example of experimental results (derived from 
Hall coefficient measurements) fitted by means of Eq. (322.14). The 
sample is one of a series the present author once investigated (1959:6), 
composed of germanium doped with indium acceptors and partially 
compensated with antimony. For the combination of the two valence 
bands of germanium, the density-of-states effective mass is known 
(1955:9) to be mv = 0-37 mo. The results could be fitted in the most 
satisfactory fashion by using the numerical values noted in the figure 
caption for JVa, Nd, Ea and j8. I t will be observed that this fit is obtained 
with ß equal to 4. The more conventional choice for simple acceptors 
of ß = 2 (combined with a different value of Ma to satisfy the low 
temperature data) led to an appreciably less satisfactory fit over the 
range 20-50°K. That an acceptor should offer four states above the 
double valence band of germanium was in fact predicted by Kohn 
(1957:10). 

Before congratulating ourselves prematurely that experimental data 
can be reliably handled using Eqs. (322.13) or (322.14), it must bç 
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observed that these equations are not entirely correct. Next we have to 
see how they can be generalized to take account of excited states. 

3.2.3 T H E INFLUENCE OF EXCITED STATES 

An isolated hydrogen atom consists of an electron moving under the 
influence of a proton. The ground state of this system, the Is state, has 
a spin degeneracy of 2, and an energy of some 13-6 eV is required to 
ionize the atom. But there are also many possible excited states of this 

100/T (eK ) 

FIG. 32.11. The variation ofpo with 1/7"for germanium doped with indium 
and compensated with antimony (1959:6), fitted to satisfy Eq. (322.14) 
when an effective mass mc = 0-37 m0 is used for the valence band. The 
optimum fit is for Na = 2-66 x 1015 cm~3, JVd = 0-48 x 1015 cm"3, Eß = 

001025 eV and ß = 4, 



SINGLE MONOVALENT DONOR SPECIES 141 

atom, the eight 2s and 2p states, the eighteen 3s, 3p and 3d states, and 
so on. I t is dangerous to press too far for the analogy between a hydro­
gen atom and a monovalent impurity center, but such analogies are 
useful in reminding us that a donor impurity is electrically neutral 
whether it has an electron bound in the ground state at (Ec — Ed) or 
in an excited state rather closer to the conduction band. The importance 
of excited states was remarked by Shifrin (1944:1), but allowance for 
them in discussions of impurity level—conduction band equilibrium 
has only become popular in recent years (1955:20, 1956:14). 

Rather than the model of Fig. 32.8, we should then accept Fig. 32.12 
as the picture of a partly compensated w-type semiconductor. We 

[z %~ 1 EXCITED 
r = 5 ^ STATES OF 
r* 2 J DONORS 

"1 DONOR 
. r * l VGROUND 

J STATES 

COMPENSAT­
ING IMPURITY 
LEVELS 

FIG. 32.12. Model of a partly compensated n-type semiconductor including 
the excited states of the principal donors. 

denote by the symbol 1 the lowest, or ground level of the principal 
donors; this state has a spin degeneracy of βι_ 1 . Groups of excited 
states in general have different degeneracy factors, say ßr'1, and lie 
at energies Er\ = kTeri above the ground states. 

A donor is capable of binding an electron in one of the j8r
_1 states at 

energy (Ec — Ed + Eri) only if it does not have an electron already 
bound in any other state, either at the same level or a different one. 
If we denote the density of donors with electrons trapped at the rth level 

E„ 

Φ 

^ m CONDUCTION BAND 

~r:F:-
- E2I E3 I 

L L -
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by Ndnr, then 

Ndnr — 

{Nd- ΣΝαηβ} 
s*r 

l+ßrexp(-η-€d + €rl) 
(323.1) 

The summation extends over all levels except the rth. Now the numera­
tor on the right can be written 

s^r all s 

= {Nd-Ndn) + Ndnr 
= (Ndi + Ndnr) (323.2) 

Placing this expression in the numerator of Eq. (323.1), we arrive at a 
relationship which might have been expected all along for the ratio 
of Ndnr to the ionized donor density: 

Ndnr 

lût 
βτ-1εχρ(η + €α-€η) (323.3) 

This is of course exactly the kind of relationship laid down in Eq. 
(311.1) when only the ground states were being considered. 

The total density of neutral donors is given by summing Ndnr over 
all r: 

Ndn = Ndi 2 ßr'1 exp(?? + *d - *rl) 
r=l 

(323.4) 

Since (Ndn + Ndi) is just Nd itself, (Eq. 323.4) leads to a pair of equa­
tions 

00 

Nd Σ ßr~X exP(*7 + *d - €rl) 
r=l 

\ 

Ndn = 

Ndi = 

1 + 2 ßr'1 exP(*7 + €d - en) 
r=l 

Nd 
00 

1 + 2 ßr'1 e xP(^ + €d - Cri) 
r=l 

(323.5) 

which are of completely general validity. Whatever the energies and 
spin degeneracies of excited states, their influence can be calculated. 
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Let us return now to consider Fig. 32.12, and the distribution of 
electrons between the conduction band, all states of the donors, and any 
compensating impurities. Nai must (in the absence of any free valence 
band holes) be equal to the sum of no and JVa. Then 

Na 
no = JfcFiMv) = JVa (323.6) 

1 + Σ ßr'1 exP(*7 + €d - €f i) 

When free electrons are not unduly numerous, so that the Fermi level 
lies below the conduction band, the non-degenerate approximation 
exp(?7) « (wo/JVc) c a n be substituted into the denominator of Eq. (323.6) : 

no + Na = ~ - (323.7) 
1 + {nojNc) 2 ßr"1 exp(ed - eri) 

Rearranging Eq. (323.7) in the manner employed previously, the 
quadratic equation for no can be given in the form 

no(no + Na) Nc 

J p r ^ e x p ^ - e r i ) 
r=l 

(jSiJVcJexpi-cd) 

l + 2 ( » ) e x p ( - e r i ) 
r=2 

(323.8) 

As with Eq. (322.13), from which Eq. (323.8) differs only in the addi­
tional presence of the summation over excited states, the right-hand 
side depends on the character of the impurities and on the temperature, 
but not on the donor or acceptor densities. This makes the form of 
Eqs. (322.13) and (323.8) convenient for the treatment of experimental 
data when it is known that the conduction band density is small enough 
at all temperatures for Nc exp(^) to be a good approximation for^i^Orç). 

For compactness, we may denote 

Σ ( » ) exp(-erl) 
r=2 



144 SEMICONDUCTORS DOMINATED BY IMPURITY LEVELS 

by the symbol F, so that 

nojno + Na) = ftijycexp(-€a) 
{Nd-Na-m) l+F { ' ) 

Since F is a function of temperature, the temperature dependence of 
no will be slightly different from that predicted by (322.13), and if the 
data are analyzed on the basis of Eq. (322.13) rather than Eq. (323.9), 
it may look as though the energy Ea were slightly temperature-depen­
dent (1957:16). It will depend to a major extent on the distribution of 
excited states in energy whether their occupancy can affect the equili­
brium of Eq. (323.9). When there are some excited states with energies 
rather close to that of the ground states, F may become comparable 
with or even larger than unity in certain temperature ranges. 

Certainly at low enough temperatures, F «̂  1, and Eqs. (322.13) 
and (323.9) will coincide. All neutral donors then hold an electron 
in the lowest possible energy state. Similarly at very high temperatures 
the Fermi level is well below all states of the donors, and wo « (Na—Na)-
It is for intermediate temperatures that the value of F can have a 
maximum effect on no. 

Let us suppose initially that an electron bound by a donor ion can 
be described perfectly by Eq. (145.4), the effective mass equation. 
Temporarily neglecting all the complications which have been super­
imposed on the simple Bohr model of a hydrogen atom, we may suppose 
that the ground and excited states of a donor resemble those of the 
original Bohr atom, renormalized by the effective mass and dielectric 
constant. This is the model in which sy p, d, etc., states of a given shell 
all have the same energy. Then (ßilßr) = r2 and Eri = Ea{l—r~2). 
In terms of such a simple model, 

F = 4exp(~3€d/4) + 9exp(-8€d/9)+16exp(-15€ii/16) + ... (323.10) 

As Shifrin (1944:1) remarks, it is only necessary to consider the first few 
terms of such a series since for a finite donor density the wave-functions 
for the higher excited states will overlap quite strongly and these 
states will form part of the conduction band. 

As an illustrative numerical example of the effect produced by 
excited state occupancy when F has the form (323.10), consider a semi­
conductor with donor levels E a = 0-01 eV below the conduction band 
when {Na — Na) = lOJVa = 1016 cm"3 and mc = 0-25 mo· This was the 
example previously used as curve (iii) in Figs. 32.9 and 32.10. The 
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broken curve in Fig. 32.13 is identical with curve (iii) of Fig. 32.9, and 
the solid line shows the variation of no with 1/7" when excited states 
are taken into account by using Eqs. (323.9) and (323.10). For this 
example, the excited states have quite a considerable effect between 
20°K and the exhaustion range. It would be possible crudely to fit 
the behavior of the solid curve in Fig. 32.13 by using Eq. (322.13), 
but only with seriously erroneous values of ß and JVa. 
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FIG. 32.13. Semilogarithmic plot of no vs. Ì/T for an n-type model with 
Na = 1-1 x 1016 c m - 3 j Να = lois c m - 3 j Ed = 0·01 eV, mc = 0-25m0. 
The broken curve is identical with curve (iii) of Fig. 32.9. The solid curve 
shows the change resulting from taking into account occupancy of hydro-

genic excited states. 
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We are then immediately faced with the question : how trustworthy 
is the analysis applied to the experimental data in Fig. 32.11? For 
excited states of the indium acceptors were not allowed for in those 
calculations. This is the kind of question which must be asked on an 
individual basis for each type of impurity in each semiconductor, 
since the effective mass equation has to be modified in accordance 
with the band structure peculiarities of a semiconductor. The energy 
spacings and degeneracies of excited states usually bear little relation 
to a hydrogenic spectrum. In the case of Group I I I acceptors in ger­
manium, the calculations of Schechter (1955:23, 1956:20) suggest 
that the 2p states are split into several components, most of which are 
too close to the valence band to affect the carrier density-temperature 
relationship to any extent. Incidentally, the designation of these states 
as 2p is rather confusing, since there is no direct connection with the 
hydrogen energy scheme. 

At any rate, for />-type germanium with Group I I I acceptors, it 
would seem to be justifiable to ignore the excited states. Similar simplifi­
cations are permissible for silicon containing these same types of 
acceptor. Infrared absorption measurements (e.g. 1956:17, 1958:20) 
and the calculations of Kohn and Luttinger (1955:22, 1957:10) indicate 
that the excited states are not close enough to the ground state to have 
much effect. In the extreme case of indium acceptors in silicon, the 
optical measurements of Newman (1956:19) indicate that the ground 
state binding energy is ten times larger than that of the first excited state. 

For semiconductors such as germanium and silicon, description of 
acceptor states in terms of an effective mass equation is complicated 
by the existence of two valence bands, the light- and heavy-hole bands, 
degenerate at k = 0 . 

Complexities of a different kind occur in considering donor states 
for these semiconductors, because the conduction band has multiple 
minima and the impurity wave functions are appropriate combinations 
of contributions from each minimum (1954:13, 1955:17, 1957:10). 
One possibility which emerges from this theoretical work is that the Is 
states—the deepest lying states of the system—can themselves be split 
into two factions. This is the topic of the next sub-section. 

3.2.4 IMPURITY GROUND STATE SPLIT IN THE CRYSTAL FIELD 

I t is not surprising that theoretical studies of donor states in semi­
conductors should have concentrated on silicon and germanium, since 
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the conduction band shapes of these semiconductors are known so well. 
Work on silicon is particularly profitable because the energies of optical 
transitions fall in a convenient spectral range. The left column in Fig. 
32.14 shows the spacings of levels for phosphorus donors determined 
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FIG. 32.14. Comparison of optical absorption experimental results (1956:18) 
with theoretical term schemes for phosphorus donors in silicon. The figure 
in parentheses at the right of each term is ß'1, the total state degeneracy 

(including spin). 

optically by Picus et al. (1956:18). Comparison with the center column 
shows that the excited states agree well with the term scheme obtained 
from effective mass theory. But theory predicts a ground state much 
shallower than the energy found in practice for any Group V donor. 
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This discrepancy is now believed to be a result of the composition 
of the ground state wave-functions, influenced by the six equivalent 
conduction band minima. The Is level is compounded of six states, 
each with a spin degeneracy of 2, or twelve states in all. Two of these 
states have wave-functions which do not vanish at the donor nucleus 
(completely symmetrical states) whereas the wave-functions of the other 
ten do vanish at this point. The two completely symmetrical states of 
the representation Αχ will be affected much more by a breakdown of 
the effective mass equation (145.4) than the others, and accordingly 
lie at a considerably lower energy than the remaining Is states. This 
revised theoretical picture is shown at the right in Fig. 32.14. (Actually, 
group theory shows that the upper ten Is states may be split again 
into 4 + 6 states, but such splitting will presumably be rather small 
compared with the energy difference Δ between the two lowrest Is 
states and their erstwhile companions.) 

Optical identification of the upper Is states will be very difficult. 
For transitions between the two sets of Is states are obviously forbidden. 
At the low temperatures required to obtain narrow optical line widths, 
it will be almost impossible to maintain enough electrons in the upper 
levels to make a transition into a 2p or 3p state detectable. 

For this reason, Long and Myers (1959:13) used an electrical method 
in measuring the energy difference Δ. As illustrated in Fig. 32.15, they 
measured the temperature dependence of free electron density (by 
deduction from the Hall coefficient), and found the value of Δ which 
permitted the optimum fit to 

no(n0 + JSia) Ncexp(-Ed/kT) 
(324.1) ( Νή — Nn — Tin) °° 

v a oy 2 + 10exp(-A/Ar)+2i8r-1exp(-JBri/^r) 
r=2 

which is an obvious adaptation of Eq. (323.8). For phosphorus donors 
in silicon they determined Δ as (0-010 ± 0-0002) eV. Similar procedures 
should be applicable to other types of donor. 

By now it should be discouragingly clear that the determination of 
densities and energies of bound states is by no means a simple matter. 
Unless a great deal of information is available about the band structure 
and other features of a semiconductor, we can not know whether a 
simple analysis is permissible. Yet if a simple analysis is carried out— 
say on the lines of Eq. (322.13)—when it is inappropriate, the numerical 
values deduced may be seriously in error. With most semiconductors, 
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our state of ignorance at the time of writing is so profound that it would 
be unwarrantably pretentious to attempt more than a simple semi-
quantitative analysis. Accordingly, while we have considered excited 
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FIG. 32.15. Variation of no with 1/Tfor silicon containing partly compen­
sated phosphorus donors in silicon, according to measurements of Long 
and Myers (1959:13). Calculated curves are for Na = 6-9 xlO14 cm"3, 

Na = 3-8 x 1014 cm-3, Ed = 00435 eV. 

states and split ground states with due seriousness in these two sub­
sections, it will not be fruitful to consider them in connection with all 
the remaining models of this chapter. 

3.2.5 IMPURITY STATES SPLIT BY ANISOTROPIG ELASTIC STRAIN 

The complexities of impurity wave-functions and energy levels con­
sidered so far result only from the complicated form of the periodic 
potential in any real solid. I t should now be noted—rather briefly— 
that deformation of the crystal lattice will have further effects on 
impurity states. 

I I 
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A simple isotropie elastic strain should not affect the structure of 
impurity states in most materials, for this should be equivalent to the 
effects of thermal expansion and contraction on the lattice. (Even this 
will not be true for an anisotropie semiconductor such as tellurium, 
which has a negative compressibility along the £-axis (1954:14), so 
that hydrostatic pressure alters the bond angles.) But in any semi­
conductor, an anisotropie elastic strain will perturb the edges of the 
bands (1950:7). This in turn will modify impurity state wave-functions. 
That impurity states would be affected by strain was first pointed out 

0 Shear Strain 
FIG. 32.16. Suggested variation with shear strain of the conduction band 
edges and donor ground state energy for Group V donors in silicon, 

according to Kohn (1957:10). 

by Price (1956:21) and the implications for donor and acceptor states 
in Ge and Si are discussed by Kohn (1957:10). 

Kohn remarks that a shear strain will split each conduction band in 
Si into two branches, with energy linearly dependent on the magnitude 
of the shear. On the other hand, the first-order shift of the donor ground 
state vanishes, and the main effect is the second-order one, as sketched 
in Fig. 32.16. 

Measurements of the conductivity of w-type germanium at low 
temperatures under uniaxial strain have been reported by Fritzsche 
(1959:14) (1960:6). With antimony doped germanium, the principal 
effect is the inhibition of impurity conduction parallel to the strain. 
Strikingly different behavior is exhibited with arsenic donors (1961:2) 
due to the much larger valley-orbit splitting. 
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3.2.6 EFFECT OF A MAGNETIC FIELD ON IMPURITY STATES 

In previous chapters it has been seen that the application of a 
magnetic field splits the conduction and valence bands into series of 
sub-bands founded on Landau levels. By analogy, it may be expected 
that a magnetic field will also influence the energies of bound impurity 
states. 

Yafet et al. (1956:22) have calculated this influence for the model 
of a hydrogenic ground state, when the effective mass mc is isotropie. 
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FIG. 32.17. Variation of donor ionization energy with magnetic field 
strength, after the calculations of Yafet et al. (1956:22). 

As we already know, the lowest conduction states are at an energy 
\hwo above Ec in the presence of a magnetic field (see Sub-sections 1.4.6 
and 2.2.2). The donor ground state also moves towards higher energy 
with magnetic field, but at a rather slower rate, so that the effective 
donor ionization energy EdH is larger than its value Eao for zero field. 
The essential result of the variational calculation of Yafet et al. is shown 
in Fig. 32.17. I t will be noted that EdH changes with field most rapidly 
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when the dimensionless parameter (hœojEdo) is still small; but appre­
ciable increases in Ed still correspond with rather large magnetic fields 
for most materials. As an example, with group V donors in germanium, 
Ηωο does not exceed Edo for magnetic fields less than 105 oersteds. 

The model used by Yafet et al. indicates that the impurity wave 
function becomes restricted to a smaller volume when a magnetic field 
is applied. This shrinking occurs mainly in directions normal to the 
field, but also to some extent along the field direction. The overall 
effect is that of transforming a rather large spherically symmetrical 
wave-function into a very small cigar shape. Such constriction of the 
orbit for a bound electron necessarily means that the effective mass 
approximation must become less tenable as the field increases; thus 
the high field region of Fig. 32.17 should be regarded as highly tenta­
tive. 

Experiments are reported by Keyes and Sladek (1956:23) on the 
variation of no with magnetic field for w-type InSb, in support of the 
calculations just mentioned. The carrier density certainly decreased 
with increasing H, though this was probably due in large measure to 
the magnetic break-up of a nascent impurity band (Section 3.5). 

3.2.7 SOME COMMENTS IN SUMMARY 
At this point we should take stock of the degree of complexity likely 

in an actual semiconductor. Except for material under rather severe 
strain or in a very large magnetic field, the complications of Sub­
sections 3.2.5 and 3.2.6 can usually be neglected. Whether the statistical 
description is complicated by the influence of excited states or a split 
ground level as in Sub-sections 3.2.3 and 3.2.4 depends very much on 
the individual impurity and semiconductor; however, there is reason 
to believe that many systems will be essentially free from such compli­
cations. 

This brings us to the discussion of Sub-sections 3.2.1 and 3.2.2. The 
apparently unrealistic case of Sub-section 3.2.1 was discussed in some 
detail for several reasons. One good reason is that it provides the sim­
plest introduction to the ideas involved. Another is that some of the 
information can be applied to partly compensated semiconductors. 

For instance, Figs. 32.5 and 32.6 indicate the maximum value of η 
and the temperature for which it occurs as functions of the parameter Z· 
Now in a partly compensated semiconductor, the behavior of η is 
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quite different at very low temperatures; but by the time ionization 
has proceeded far enough to take η through a maximum, the Fermi 
level for a given (Nd — Na) is almost independent of the actual degree 
of compensation (see Fig. 32.10). Thus even for a partly compensated 
semiconductor, 7]m and Tm can be found with reasonable accuracy 
using Figs. 32.5 and 32.6, substituting {Na — Na) into Z- This gives a 
good indication of the range of η which will be encountered and shows 
whether a solution must be effected with Eq. (322.2) or with the 
simpler non-degenerate forms of Eq. (322.6) and (322.12). 

The uncertain effects of compensation discourage the use of other 
simple graphical aids for determining no and φ as functions of tempera­
ture when JVtf, Ed, etc., are known. In a previous discussion of the inter­
relationships of carrier populations in bands and impurity levels 
(1952:3) the present author used a number of graphical aids, based 
on the uses to which Eq. (321.4) had been put by Landsberg et al. 
(1951:5) and by Lehovec and Kedesdy (1951:15). But such curves 
must be replaced by families of curves for different degrees of compensa­
tion, and by families of families if excited states are to be allowed for. 
This removes the essential basis of graphical methods, that of simplifying 
the task of calculation. 

3.3 S E M I C O N D U C T O R S D O M I N A T E D BY SEVERAL 
LOCALIZED LEVELS 

Throughout Section 3.2 we considered the dynamics of situations 
dominated by a single species of monovalent donor. Other impurity 
levels were acknowledged only for their effect on compensation. Such 
a viewpoint is justifiable when the Fermi level is either far above or 
far below all other kinds of impurity level ; but these conditions cannot 
necessarily be maintained over a wide range of temperature. Now it is 
necessary to consider more general models. 

3.3.1 SEVERAL INDEPENDENT TYPES OF MONOVALENT DONOR 

The simplest kind of generalization is indicated by the model of 
Fig. 33.1. Two entirely independent species of monovalent donor are 
supposed, which present levels for electron occupancy at characteristic 
energies below the conduction band. There must also be some assorted 
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compensating acceptor levels, which accommodate Na trapped elec­
trons per unit volume. Only (Ndi+N<Z2 — Na) electrons remain for 
distribution between the two sets of donors and the conduction band. 

Two completely different forms of behavior will exist depending on 
whether Ma is larger or smaller than JV^i. If Na > JV^i, the upper 
donor levels will be completely denuded of electrons at 0°K and the 
Fermi level will be locked to the energy (Ec — Ed2)· As temperature 
rises some electrons will be excited to the conduction band and φ will 
readjust itself in an appropriate manner. At sufficiently high tempera­
tures, φ will be several S l o w e r than (Ec — Ed2)> and no will approach 

CONDUCTION BAND 

E c - E d 2 
N d ; 

FIG. 33.1. Model of an τζ-type semiconductor containing two independent 
kinds of donors at different energies, and assorted low lying compensating 
centers. The temperature variation of wo depends on whether Na is larger 

than or smaller than Nai. 

its limiting value of (Ndi+Nd2 — Na)' Note that unless the two donor 
binding energies are very similar, the Fermi level will always be many 
kT below the upper donor levels, and these will remain empty at all 
temperatures. This situation is really entirely equivalent to the one 
we have considered throughout Section 3.2, for a semiconductor 
dominated by the single species oïNdz donors with an effective compensat­
ing density of (Na — Ndi) states. 

On the other hand, if Na < Ndh a t absolute zero the lower donors 
will be completely full and the upper donors will contain (Ndi—Na) 
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electrons. The Fermi level at 0°K then coincides with the energy 
(Ec — Edi). As temperatures rises, the upper donors offer their electrons 
to the conduction band, and φ must move below (Ec — Edi) as this 
supply becomes exhausted. On further warming, no appreciable 
increase of no is possible until φ has dropped almost to the energy 
(Ec — Ed2) ; the second set of donors then begins to lose electrons and at 

FIG. 33.2. Schematic change of no and φ with temperature when the upper 
set of two donor species is incompletely compensated. 

sufficiently high temperatures no saturates at (Ναι+Ναζ — Να) while 
φ drops more rapidly in accordance with 

φ = Ec-kTln \-
LJVdi + Nd2-Nc d high T (331.1) 

This kind of behavior is shown schematically in Fig. 33.2. The extension 
to three or more independent kinds of impurity is obvious. 

The preceding description can be readily expressed in mathematical 
form. Suppose that there are M species of monovalent donor impurities, 
and that the 7th class is of density Ndj, ground state binding energy 
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Ea], etc. The number of ionized donors in this class may, from Eq. 
(323.5), be written as 

Nai 
(Ndj)ion = T - - ^ 7 7 - F T 7 x ( 3 3 L 2 ) 

where the quantity Fj indicates the influence of any excited states, as 
previously discussed. The sum of all ionized donors is equal to the 
conduction band electron density plus all electrons in compensating 
acceptors. Thus 

{Ma + m] = [Na + NoPii&ìiì = Ì L o l n /!*,' , Γ-Ϊ (331·3) 
jt{ 1 +βί~1[1 + Fj] expfo + edj) 

When the Fermi level is at least several k T below the conduction band, 
so that J r i /2(^) can be replaced by exp(ry), Eq. (331.3) is an equation 
of order (M+l) in either no or exp(^). 

Such an equation is by no means simple to solve in the general 
case, but there is one saving feature. For any temperature we choose to 
specify, the ground state energies of most classes of impurity will be 
either well above or well below the Fermi level; in the former case 
(Ndj) ion = Ndj and in the latter (Ndj) ion = 0. Thus there will not 
usually be more than one or two classes of donor for which (Ndj) ion 
lies between its extreme values, and Eq. (33.13) will be either a quad­
ratic or a cubic in exp(^). For the example we sketched in Fig. 33.2, 
the two levels were so far apart in energy that ionization of one set of 
levels reached completion before it became at all appreciable in the 
other set. Separate quadratic equations can then be obtained from 
Eq. (331.3) to cover the various temperature ranges. Solution of a 
cubic equation is only necessary when two energy states are rather 
close in energy, and even then only for the temperature range in which 
φ progresses through those levels. 

3.3.2 ELECTRON DISTRIBUTION OVER A SET OF MULTIVALENT FLAWS 

It was remarked in Section 1.6 that flaws often have the capacity 
to donate or accept more than one electron. When a set of multivalent 
centers is the dominant one in determining the electronic equili­
brium, it is necessary to give a generalized discussion of the distribution 
over available states. 
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This subject has received attention in recent years from Landsberg 
(1956:14, 1958:10), and from Shockley and Last (1957:21), while 
Champness (1956:8) has discussed the particular case of divalent 
donors. The equations can be formulated from a direct statistical 
approach, by the use of the grand canonical ensemble, or from free 
energy considerations. The reader is referred to the literature references 
just cited for elaborations of the various points of view. 

Some of the attributes of this problem are indicated for divalent 
donors by Fig. 33.3. When the Fermi level is sufficiently high, as in 

Ec 

E c " E , 

Ec-E2 

ΐ ιθπα uction Ban H 
a 

Φ--
-Θ· -e- -θ- -Θ- -»-

-e- -e- -Θ- -^ ■&-

(a) 

- - Φ - -

-&■ -©- -Θ- -e- -Θ-

(b) 

£ 
— - Φ - — 

(c) 

FIG. 33.3. The conventional way of indicating the energy states for divalent 
donors, indicating (a) the neutral condition, (b) the singly ionized condi­

tion, (c) the doubly ionized condition. 

part (a) of the figure, each donor is electrically neutral, and holds two 
fairly weakly bound electrons with a total binding energy of (E1+E2). 
Now the two electrons will probably have rather similar orbits and bind­
ing energies ; the significance of marking the two separate energies E± and 
£2 is that the center must receive an energy £1 to ionize it singly, and in 
the singly ionized state the second electron is held with energy E2. 
This is the equilibrium condition when E\ < (Ε0 — φ) < Ε<ι as in part 
(b) of Fig. 33.3. A singly ionized divalent donor offers empty states at 
(Ec — Ei) with a statistical weight of βι"1. 

When the Fermi level is lower again, the donors are doubly ionized 
and β2~λ states per donor are offered at the energy (Ec — £2)· This 
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situation is shown in part (c) of Fig. 33.3. Note that no available states 
are now shown at the upper level, since these states do not come into 
existence until a single electron has been recaptured. As soon as this 
first electron is captured, a second electron can be received only into one 
of the upper states which develop at this point. 

In general, for each stage of ionization there will be not only a 
ground state but also a series of excited states into which an electron 
can be received. However, as Shockley and Last (1957:21) point out, 
it is not proper to construe the placement of an electron at the energy 
(Ec — E{) as a valid excited state of the singly ionized configuration. 
This is a meaningless state of affairs; the excited states for the condition 
of single ionization will usually be quite different. 

Landsberg (1956:14, 1958:10) has provided a very compact deriva­
tion for the total number of electrons retained by a set of M centers, 
through differentiation of the grand partition function for the system, 
including allowance for excited states (which we shall not consider 
further). For our purposes, mindful of the amphoteric centers to be 
discussed in the next sub-section, we prefer to consider the numbers 
Nj of centers each of which has already lost] electrons. Thus JVo centers 
are neutral, JV\ have lost one electron and present j8i-1 levels at energy 
(Ec — E{), and so on. If the centers are of valency M with respect to the 
crystal, then 

T = ~~M (332,1) 

1+ 2/feexp(-€jt-A;i7) 
k=l 

The total number of electrons lost from the impurities is 

M 

IM 
3=1 

and this must equal the number in the conduction band and in any 
compensating levels. Thus 

M 
no = Mc^idv) = - J V a + 2J*i ( 3 3 2 · 2 ) 

When conditions are non-degenerate, Eqs. (332.1) and (332.2) lead to 
an equation of order ( M + l ) for no or e x p ^ ) . Thus Champness 
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(1956:8) obtained a cubic equation for the divalent case, which he 
solved for a numerical example of zero compensation. 

This problem is not too dissimilar from that of several kinds of inde­
pendent donors present in identical amounts [see Eq. (331.3)] when 
the energy levels are well separated. Shockley and Last (1957:21) have 
discussed the problem of two separate donors treated as a composite 
flaw. 

As with any other of the systems considered so far, the extent of com­
pensation will determine which level of a multivalent donor will house 
the Fermi level at low temperatures. For divalent donors, if the amount 

(100/T 
FIG. 33.4. Variation of free hole density with temperature for zinc-doped 

germanium crystals of Woodbury and Tyler (1956:24). 
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of compensation is rather small, the Fermi level will lock on to (Ec — E{) 
at low temperatures and 

tN— Na\ flow temp. 

" • « » ( - d ^ - ^ U < * (332·3) 
As temperature rises, the first stage of ionization becomes complete, 
and no » (jV— Na)- Further heating drives the Fermi level down 
towards and beyond the second ionization energy, and an additional 
JV electrons are added to the conduction band in the course of this 
process. 

On the other hand, if N < Na < 2JV, the saturation free electron 
density is (2JV— Na), which is smaller than JVa. A drop in no occurs as 
soon as the temperature is low enough for φ to approach (Ec — £2), 
and on further cooling the Fermi level locks to this energy and provides 
an exp(—Ü^/^T) temperature dependence for no. 

These two forms of behavior are illustrated in Fig. 33.4, which is 
based on experimental data of Tyler and Woodbury (1956:24). The 
impurities in these samples are actually acceptors (zinc in germanium), 
but as has been emphasized previously, donor and acceptor situations 
are always formally equivalent. For sample 98A, cooling first changes all 
the zinc acceptors from double to single ionization, then the Fermi 
level approaches and locks on to the first ionization level. The second 
sample evidently has a donor density slightly in excess of the zinc con­
centration, and the low-temperature distribution still has many doubly 
charged zinc atoms. 

3.3.3 AMPHOTERIC IMPURITIES 

Some unusual kinds of impurity can act as either donor or acceptor, 
depending on the Fermi level. [This is true, for instance, of gold in 
germanium (1956:25).] By an amphoteric impurity we mean one 
which is most likely to be electrically neutral when the Fermi level lies 
at some energy Eo within the intrinsic gap. At some lower Fermi energy 
the impurity is likely to lose an electron—the attribute of a donor. 
Perhaps more stages of donor ionization will occur before φ drops as 
low as (Ec — Ei). But also, the center is likely to add one or more elec­
trons when φ has an energy higher than Eo yet still below Ec\ this con­
stitutes single or multiple acceptor action. 

For gold in germanium, a single donor level is rather close to the 
valence band and there are three successive stages of acceptor ionization 
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before the Fermi level enters the conduction band. Fig. 33.5 indicates 
the intrinsic gap width of germanium at room temperature and 
the positions of the four levels, after Dunlap (1957:28). The right-hand 
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FIG. 33.5. The energy levels of the amphoteric impurity gold in germanium 
showing how the charge per atom will depend on the Fermi level at low 

temperatures. 

portion of this figure shows how the charge per gold center should vary 
with the Fermi level at a rather low temperature (such that kT is small 
compared with the spacing of levels). 

The statistical approach to amphoteric impurities is the same as 
for more conventional multivalent impurities, since it is still legitimate 
to use the result 

^ = A-exp(^ + er) (333.1) 
Mr ßr-1 

[compare for instance with Eq. (311.1)] where now r may be either 
positive, zero, or negative. 
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3.4 THE INFLUENCE OF LATTICE DEFECTS 
In addition to the impurity levels provided by foreign atoms, there 

are often localized levels provided in semiconductors by lattice defects 
such as vacancies and interstitials. This section comments very briefly 
on two facets of the problem. 

3.4.1 NON-STOICHIOMETRIC COMPOUNDS 

When a semiconducting compound is maintained at a high tempera­
ture, there will be a tendency for the ratio of the elements present to 
change from that of the pure stoichiometric compound. The amount by 
which it changes depends on a number of parameters, including the 
pressure at which vapor of the most volatile component is maintained 
around the sample, and the temperature of the treatment. I t was indi­
cated in 1.6.2 that a very complete description of this electronic-ionic 
equilibration is given by Kröger and Vink (1956:27). See also the 
discussion by Brebrick (1961:3). 

At any rate, when a compound is rapidly cooled to a much lower 
temperature, a number of lattice defects are "frozen-in" (1939:1) and 
their density will have an influence on the low-temperature electronic 
equilibrium. As one of the two principal choices, we may suppose these 
defects to be lattice vacancies and that their habit is of acceptors. 

It should perhaps be remarked that vacancies can also be introduced 
into an elemental semiconductor such as germanium by strenuous 
heat treatment, and frozen-in by sudden cooling. The true vacancy 
effect in germanium is very small and is often masked by the influence of 
chemical contaminants such as copper (1952:5, 1952:6) ; but by careful 
exclusion of contaminants, effects which are probably due to vacancy 
acceptors can be seen (1953:11, 1953:12). The vacancy concentrations 
which can be produced in compounds such as oxides or sulphides are 
frequently several orders of magnitude larger. 

If the semiconductor contains Na monovalent chemical donors at 
an energy (Ec — Ed), and is now confronted with NA vacancy acceptors 
at energy (EC — EA), the electronic equilibrium is described by 

[no-po] = ( ^ ) i o n - ( ^ ) i o n (341.1) 

The left side of the equation includes po since the vacancy levels may 
well be closer to the valence band than the conduction band. Assuming 
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that the Fermi level will not be closer than 2£Tfrom either band, we 
have 

[Nc expM - Nv exp( - η - e*)] 

Na NA 

1 + ßa'1 exp(^ + €d) 1 + ßA exp( - η - eA) 
(341.2) 

This is a quartic in e x p ^ ) , but it can always be reduced to an equation 
of lower order. As was seen in the previous discussions of compensation, 
if the donors lie in the upper half of the gap, po can be dropped and 

0 0.5 1.0 1.5 2.0 

(Vacancy Density / Donor Density) N^/Nd 

FIG. 34.1. Variation of low temperature Fermi level with the density of 
"frozen-in" vacancy acceptors if the semiconductor originally has Na 

chemical donors. 

O^Oion simplified to just NA when the vacancy density is not as large 
as Nd· When the non-stoichiometry is sufficient to make NA > Nd, the 
low temperature Fermi level switches to (EC — EA) and other terms can 
be simplified. Fig. 34.1 shows how φ will vary with the ratio (ΝΑ/ΝΟ) 
for a rather low temperature. The semiconductor is essentially intrinsic 
when NA = Nd if the two sets of levels are several kT above and below 
<j)i respectively. 

For vacancy acceptors which can accept more than one electron, 
the course of <f> with the ratio (ΝΑ/Nd) will be more or less as indicated 
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in Fig. 34.2. Judgment of a high temperature equilibration process 
must be quite careful if enough vacancies are to be introduced to com­
pensate the donors yet not so many that the Fermi level locks to the 
lower acceptor level. 

3.4.2 IRRADIATION EFFECTS 

Exposure of a semiconductor to thermal neutrons leads to transmuta­
tion of some of the host atoms, often providing new kinds of chemical 
donors and acceptors. This is not the problem of immediate concern 

E c -E d 

^ E c - E 2 

> 
_J 

£ Ec-E| 

Ec-Ei 
0 0.5 1.0 1.5 2.0 

(Vacancy Density /Donor Density) N^/N^ 

FIG. 34.2. The variation of φ with (NA/NO) at low temperatures if each 
vacancy can accept two electrons, at energies (Ec—Ei) and (isc—£2). 

here. Instead, consider a semiconductor already containing densities 
of shallow donor and acceptor states JV ,̂ JVa, which are almost com­
pletely ionized at room temperature. (This is a reasonable assumption 
for semiconductors such as germanium, silicon, tellurium, InSb, PbS, 
and many more.) When such a semiconductor is bombarded with fast 
nucléons (energy more than say 20 eV and perhaps up to several MeV), 
Frenkel defects are introduced, equal densities of interstitials and 
vacancies. It is reasonable to suppose that irradiation has produced N 
donor levels at some energy ED below the conduction band and an 
equal number of acceptor levels at energy (EC — EA). The electronic 
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equilibrium is now given by 

[fio-Po] = (Nd-Na) + 
JV 

+ 1 + β/Γ1 exp(?7 + €D) 1 + ßA exp( - η - eA) 
(342.1) 

The model characterized by this equation has been discussed by 
James and Lehman (1951:14) and has some rather interesting features. 
Consider a semiconductor which is w-type to start with, JV̂  > jVa, and 
suppose that both sets of defect levels are well below the conduction 
band. Then (342.1) simplifies to 

no « (Nd-Na)-N 
for which situation 

φ « Ec — kTln \- *· 1 

(342.2) 

(342.3) 

The fall of φ with increasing JV is at first very gradual, but as JV ap­
proaches (Nd — Na) this fall becomes cataclysmic. This can be appre­
ciated most readily from viewing Fig. 34.3, which is based on a model 
James and Lehman use for germanium. 

(Nd - Na) 
18 

N (cm 

FIG. 34.3. Schematic variation of the Fermi level with Frenkel pair density 
for a semiconductor similar to germanium. From the model of James and 

Lehman (1951:14). 
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When JV becomes large compared with |JVd —JVa|, the last two terms 
of Eq. (342.1) are essentially equal, and the Fermi level adopts an 
energy intermediate between (EC — ED) and (EC — EA). By equating 
these two terms, 

φ = Ec-i(ED+EA) + ikTln(ßDßA) (342.4) 

The change of Fermi level is less dramatic for material which was 
originally jfr-type, but a break in the behavior of φ still occurs when 
JV exceeds (JVa — JV^). Whether </> rises or falls as a result of heavy irradia­
tion depends on the energies ED, E A , and on the original value of 

For a material in which the defect levels straddle the intrinsic Fermi 
level φί, irradiation will tend to make either rc-type or jfr-type material 
virtually intrinsic, a situation which may be the case for silicon 
(1951:13). 

As experimental evidence on irradiation effects is accumulated 
(e.g. 1957:27), it appears likely that the simple model of Fig. 34.3 is 
inadequate for any semiconductor. Vacancies and interstitials them­
selves are likely to present more than one level of ionization, and in 
compounds there are four or more possible types of defect. It is fruitful 
to consider the more elaborate models which can be envisaged only 
in relation to experimental data on actual materials. 

3.5 IMPURITY BANDS AND THE BEHAVIOR 
OF AN IMPURITY METAL 

When impurity levels are separated by a finite energy from the 
conduction or valence bands, it is impossible to maintain a finite 
carrier density in either of the principal bands down to 0°K. However, 
when impurity atoms are very numerous—and hence rather closely 
spaced—they tend to interact with each other. As the impurity density 
is increased, the impurity ionization energy Ea or Ea becomes smaller, 
and above a critical density—characteristic of the host lattice and the 
impurity type—disappears completely. Shifrin (1944:1) forecast that 
this should always occur. Experimental evidence of the attenuation 
and final disappearance of the ionization energy is well exemplified 
by the classic paper of Pearson and Bardeen (1949:4) on silicon doped 
with phosphorus or boron. Their experimental result for boron 
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acceptors is indicated in Fig. 35.1, and the curve joining the points 
for samples with different acceptor densities is given by 

Ea = [0-084-4-3 x 10-8JVai/3]eV (350.1) 

Pearson and Bardeen noted that if the ionization energy is reduced 
by overlap between impurity wave-functions, this should be inversely 
proportional to the average distance between an ionized impurity and 

0.08 

0.06 

.0.04 

0.02 

FIG. 35.1. Variation of boron acceptor ionization energy with acceptor 
concentration, according to the measurements of Pearson and Bardeen 

(1949:4). 

a free carrier. This at first sight seems to support the presence of a 
term proportional to Na

m in Eq. (350.1). Further reflection destroys 
this illusion : if Coulomb interactions provide the seat for the reduction 
of ionization energy, the reduction should depend not on the total 
impurity density but only on those which are ionized in the temperature 
range of interest. Taking this more rigorous approach, Castellan and 
Seitz (1951:6) were unable to account for the effects seen in silicon. 
More recently, Debye and Conwell (1954:2) have been able to fit the 
ionization energy for arsenic donors in germanium by an expression. 

Ed = [0-0125-2-35 x 10-8(JV^)1/3] eV (350.2) 
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(see Fig. 35.2) where Ndi denotes the density of donors which are 
ionized at the low temperatures for which E& can be measured. Not 
much reliable experimental information is available for impurities in 
other semiconductors. 

Our theoretical understanding of the manner in which impurity ion-
ization energies depend on density is still incomplete. Pincherle 
(1951:7) has shown that part of the effect can come from the screening 
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FIG. 35.2. The ionization energy for arsenic donors in Ge, as a function of 
the average density Ndi of ionized donors in the temperature range used for 
fitting. The experimental points are the data of Debye and Conwell 

(1954:2). 

of the field around an ion by free carriers. Mott (1956:3) has presented 
some arguments from which one would expect an abrupt change from 
finite to zero Ed at a critical impurity density. Landsberg (1960:1) 
makes semi-quantitative estimates of how such a transition might be 
affected by statistical spatial fluctuations in impurity density. 

At any rate, when donor impurities become sufficiently numerous, 
they can no longer be described in terms of discrete localized levels 
below the conduction band. Instead they form an impurity band of 
non-localized states situated at the energy Ec, the base of the conduction 
band. (For low lying acceptor levels the corresponding impurity band 
is of course at the very top of the valence band.) The system of an im­
purity band contiguous to one of the principal bands gives us impurity-

I Γ 

J I I L 
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metallic behavior. The term impurity metal is used since the number of 
carriers in non-localized states is then constant throughout the extrinsic 
temperature range, just as a metal has a temperature-independent 
electron density. 

From a strict point of view, impurity states should not be regarded as 
entirely additional to the Bloch states of conduction and valence bands. 
As Brooks (1955:5) remarks, impurity levels usually represent states 
split off from the main bands. Thus when co-operation between donors 
leads to the formation of an impurity band joined to the conduction 
band, the conduction band is perhaps no more than getting its own 
states back again! 

There is, however, more to the picture than this. Certainly if the 
donor density is very large (say large compared with 1020 cm - 3 ) , the 
density of states function Eq. (144.4) will be appreciably affected by 
the provision of donor states, and the impurity band will be spread 
over a considerable range of energy. However, if the donor density is 
only slightly larger than the critical value required for impurity-
metallic behavior (say ~ 1018 cm - 3 ) , g(E) for the conduction band 
will be but little affected, whereas the impurity band will consist 
essentially οΐβ^Να non-localized states all in the immediate neighbor­
hood of the energy Ec. It is this concept of a "weak" impurity metal 
which is considered first. 

3.5.1 WEAK IMPURITY METALS 

It will be noted that the number of states in the impurity band is 
described as j8-1JV^, not just as Na· We have to make an adjustment to 
a slight change of conception with regard to impurity spin degeneracy, 
For previous sections have considered separate non-interacting im­
purities; each had j8_1 wave-functions describing a possible ground 
state of the system, but only one of these could be occupied at a time. 
This restriction is no longer true for an impurity band; the wave-
functions are sufficiently non-localized so that more than one electron 
can occupy states derived from a given impurity atom. (The simple 
matter of electron supply will ensure, however, that the Ναβ~λ impurity 
states contain less than Na electrons.) 

Suppose that in addition to the donors, there is a smaller density Na 
of assorted acceptor impurities, each of which can (and will) take the 
opportunity to acquire an extra electron. All compensating acceptors 



170 SEMICONDUCTORS DOMINATED BY IMPURITY LEVELS 

will be ionized, since their levels fall well below the anticipated Fermi 
energy. Then there are (JV^ — Na) electrons per unit volume to be 
distributed over the conduction band states and the β~λΝα impurity 
band states. If the latter are all at Ec, the equation expressing neutrality 
is 

{Ma-Na) = Nc&ißic^j +ß~Wdf(Ec) (351.1) 

where/(i?c) denotes the usual Fermi occupancy factor {1 + exp( e — η ) } - 1 

or {1 +exp[(£-<£)/AT*]}"1 for the energy Ec. 
Since the effective density of conduction band states varies as T 3 / 2 , 

the term in Eq. (351:1) containing jVc must become negligibly small at a 
sufficiently low temperature. This means that all the available electron 
supply is in the impurity band and none in the conduction band at 
T = 0. At temperatures sufficiently small for this to be essentially the 
case, Eq. (351.1) is linear in exp(^), viz. 

(JV* - JV«)[1 + expfo)] = jS-iJV«, expfo), T -> 0 (351.2) 

Thus the Fermi energy and its reduced version tend at low tempera­
tures towards 

1 U*G8-1-1) + JVJ 

φ = Ec +kT ln\ 
U*(i8-i-l) + JVj 

(351.3) 

In the particular case of no compensation and simple donors (for 
which j8_1 = 2), the logarithmic term in Eq. (351.3) is zero, and <j> is at 
the energy Ec for any temperature low enough to keep almost all the 
electrons out of the "conventional" conduction band states. When 
j8_1 is larger, or when there is any appreciable compensation, (άφ/ά Τ) 
has a finite negative value even at the lowest temperatures. Thus for 
j8-i = 2 and (JVe/JV*) = 0-2, we have (άφ/άΤ) = - 0 4 * at 0°K. 

In any event, <f> will fall more rapidly at high temperatures than at 
low, since an appreciable number of the ordinary conduction band 
states become accessible for occupancy. The Fermi level must then be 
found by solving Eq. (351.1). Note that since η will necessarily be 
negative, one of the approximate expressions developed in Appendix C 
can be substituted f o r ^ i ^ ^ ) without serious loss of accuracy. In order 
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to make Eq. (351.1) no higher than quadratic in exp(ry), we may use 

1 + C exp(77) 

knowing that the error will be less than ± 3 % for any negative value 
of 77 if C =0-27. 

Employing the form (351.4), we can write Eq. (351.1) as the 
quadratic 

exp(2^)[jVc+ CJVÄ(j8-i - 1) + CNa] + 

+ exp(v)[JVc + JVd(ß-i-l-C) + Na(l + C)]-(Nd-Na) = 0 (351.5) 

whose solution for exp(^) is 

{[M + Ναψ-1 +1 - C) - JV«( 1 - C)Y - Aß-^Na x 
x {Na- JV«)(1 - C)}i/2 - [JVC + JVÌO8-1 - 1 - C) + JV.(1 + C)] 

exp(77) = 

At sufficiently /öie; temperatures, this of course asymptotically ap­
proaches the form required by Eq. (351.3); while (not surprisingly) 
exp(^) tends towards (JV̂  —JVa)/JVc at sufficiently high temperatures. 
At intermediate temperatures, when the populations of the impurity 
band and the conduction band are comparable, Eq. (351.6) is not 
exactly a simple expression to visualize. 

Fig. 35.3 shows how φ and η vary with temperature when the im­
purity metal is derived from a conduction band with mc = mo (i.e. 
JSfc = 4-83 x 1015T3/2 cm-3) and a set of 1018 cm - 3 donors for which 
j8_1 = 2. The uppermost curve in each part of the figure relates to a 
condition of zero compensation, JVa = 0. As has been remarked in 
earlier sections, compensation can never be completely absent in any 
real material; but the curves would not be appreciably different from 
those shown provided that Na were smaller than, say, 0-01JV .̂ As noted 
in connection with Eq. (351.3), the reduced Fermi level is zero at 0°K 
for j8_1 = 2 and Na = 0. The two pairs of curves for Na =2 x 1017 cm - 3 

(20% compensation) and Na = 4 x l 0 1 7 cm - 3 (40% compensation) 
illustrate the marked effect of compensation on η and </>, particularly at 
low temperatures. 
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FIG. 35.3. Variation of (a) Fermi level, and (b) reduced Fermi level with 
temperature for a weak impurity metal. Conduction band supposed with 
mc = mo, and 1018 cm- 3 donors for which jS_1 = 2. Curves show the effect 

of 40%, 20%, or zero compensation. 

3.5.2 STRONG IMPURITY METALS 

It has been supposed in the last sub-section that the density of 
impurity atoms was large enough to create an impurity band, but not 
much more. In such a context it was reasonable to suppose that the 
impurity band would be very narrow in energy, situated just about at 
Ec. It was also reasonable to suppose that g(E) for the conduction band 
would be not appreciably affected by the subtraction of states needed 
for the impurity band. 
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Such assumptions cease to be permissible if the impurity density is 
very large, say 1020 c m - 3 or more. The situation then becomes what we 
choose to call that of a "strong" impurity metal. Fig. 35.4 indicates 
qualitatively the features of a weak impurity metal and what might 
be expected for a strong impurity metal. In the latter case, overlap 
between impurity wave-functions is so strong that the impurity band 
must cover an appreciable range of energy. The center of gravity for 

ώ . E 
TO u c 

(a) WEAK IMPURITY METAL (b) STRONG IMPURITY METAL 

FIG. 35.4. Possible variation of the density of states with energy (a) for a 
weak impurity metal in which the impurity band is very narrow, situated 
at about Ec on the energy scale, and not appreciably affecting the density 
of states function for the conduction band; (b) for a strong impurity 
metal in which the impurity band is rather broad, possibly centered on an 
energy higher than Ec, and such that g(E) for the conduction band is 

seriously perturbed. 

this distribution may occur at an energy above Ec. The presence of this 
large impurity band must necessarily have a considerable effect on 
g(E) for the original conduction band. This effect should be most pro­
nounced on the lower energy states of the conduction band, making 
that band non-parabolic as suggested in the figure. 

For a strong impurity band compounded from donor states with 
β-1 = 2, the Fermi level will be a little below the midpoint of the 
impurity band at low temperatures (the exact position depending on 
the number of accessible conduction band states and the extent of 
compensation). This Fermi level will decrease very slowly on warming 
and will remain above Ec up to fairly high temperatures. 
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A theoretical understanding of strong impurity bands and their 
effect on the conduction band parameters is blocked by formidable 
mathematical problems. Thus we are not in a position to suggest 
analytic forms for g(E) in either of the bands illustrated by Fig. 35.4(b), 
and do not propose to enter into any more detailed discussion. At least 
the preceding remarks do give some qualitative indications of the 
expected behavior for a strong impurity metal. There is considerable 
interest in these problems, for such materials occur in important semi­
conducting devices. Thus the degree of doping is probably enough to 
move the Fermi level into either the conduction or valence band 
in the emitter region of many transistors, and in tunnel diodes 
(1958:5). 

3.5.3 OCCUPANCY OF WEAKLY INTERACTING IMPURITIES 

When the spacing of impurity centers is moderately large, the over­
lap of impurity wave-functions is not strong enough to cause the com­
plete breakdown of localized states in the manner of an impurity metal. 
Erginsoy (1950:8) suggested that while the impurity ground states 
would be localized, excited states might still form impurity bands, 
some of which could be separated by small energies from the conduction 
or valence bands. It is difficult to judge realistically what the effect of 
excited state bands might be, since such bands would presumably be 
separated from the Fermi level by many kT at low temperatures; 
however Koshino (1956:28) has suggested that they provide the key 
to some results of Fritzsche (1955:29) with gallium doped germanium. 

Certainly when majority impurity densities are of the order of 1016 

c m - 3 or less, the overlap between impurity wave-functions will be very 
small and it is not proper to refer to transition of an electron from 
one impurity to another as constituting impurity band conduction. At 
one time, theoretical discussions of this subject were entangled in the 
concept that each impurity atom provides two states (of opposite spin) 
and that a half full impurity band would be realized by the ground 
states. This concept is false, since the Bloch collective electron treat­
ment is not applicable to a set of very weakly interacting centers ; the 
Heitier-London approach is more appropriate, f 

t As is also the case in materials for which the spacing between the atoms of the 
ordinary lattice is rather large. We have commented on this previously in connection 
with NiO and related compounds. 
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For a system of impurity centers sparsely distributed through a semi­
conductor, charge transfer between the impurities is possible only if some 
centers have been ionized through the presence of compensating centers. 
This has been described by Conwell (1956:29), Mott (1956:3), and Price 
(1957:29, 1958:21). It is interesting to consider the basis of Price's 
model for a set of partly compensated monovalent donor impurities. 

Price points out that if there are Na <̂  Na compensating acceptors 
present, every one will be ionized, leaving (Nd — No) electrons on the 
Na donor levels. The distribution of these electrons will not be entirely 
random. For donor centers which happen to be reasonably close to an 
ionized acceptor will be rather less likely (as a result of Coulomb re­
pulsion) to contain an electron than donors which are far from any 
ionized acceptors. Price suggests that each acceptor will be surrounded 
by a small group of r donors which he calls "trapping sites". An electron 
must have an extra energy Et to exist on a trapping sitef when it is the 
first site in the group to be occupied, although subsequent sites in the 
group can be occupied more cheaply, or even free of any penalty. 

For simplicity, we consider here the use of one trapping site per 
compensating acceptor. Then there are simply Nf = (Nd — Na) "free" 
donor sites at energy (Ec — Ea), and JVt = JVa "trapping" sites at energy 
(Ec — Ed + Et). If we denote the density of unoccupied free sites as/>/ 
and the density of unoccupied trapping sites as pt, then 

pt ^ (353.1) 

l+ja-iexpfo + é«) 
Now (pf+pt) must equal the sum of Na and any free electrons left in the 
conduction band, no. Using this fact, we have from Eq. (353.1) and 
(353.2) that 

\Ma-Na-pf-] 
Pf 

Pt - e x p ( e i )h?] 
= e x p ( e 0 [ - 4 — - 1 <353·3> 

INa + no-pfi 
f In other words, a "hole" is trapped by energy Et on a trapping site. 

file:///Ma-Na-pf
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This can be rearranged as a quadratic equation for/?/: 

Pf2(z-l)+pf[Xd-no(z-l)] = {Na-Na){Na + no) (353.4) 

where z denotes exp(^) . The solution for the density of holes among the 
free sites is 

= 2{Nd-Na){Ng + nç>) 
Pf { [ ^ - r c o ( * - l ) ] 2 + 4 ( * - W 

(353.5) 
At high temperatures (such that Et <ξ kT and z ~ 1), this reduces 

to 

pf « {Na + flo)(l -NalNa), Et < kT (353.6) 

which indicates as expected that at a reasonably high temperature there 
will be (Na + no) vacant donor sites distributed uniformly between the 
"free" states and the "trapping" states. 

At low temperatures, (Et > kT, z > 1), it is reasonable to expect 
that no will become extremely small. Then Eq. (353.5) reduces to 

pf = [JVa(JVd - JVa)]i/2 exp( -Etl2kT), Et > kT (353.7) 

Experimental results for the temperature dependence of electrical 
conductivity in doped semiconductors such as germanium and silicon 
support the general form of Eq. (353.7). Correlation with electrical 
conductivity of course requires a model for the mobility of holes on 
"free" donor sites. The theory of Mott and Twose (1959:12) suggests 
that the mobility for hopping between impurity atoms may not 
depend on temperature. A similar conclusion is reached by Miller and 
Abrahams (1960:23). Some temperature dependence of mobility is 
however expected from the alternative theories of Kasuya and Koide 
(1958:22) and Conwell (1956:29). 

Most experimental papers have been content to report the apparent 
trapping energy Et from an essentially exponential dependence of 
conductivity on reciprocal temperature [e.g. (1955:29, 1957:30, 
1960:9)]. This author has, however, found (1959:6) that experimental 
results for indium-doped germanium fit the changing temperature 
dependence of Eq. (353.5) quite well. More elaborate models could 
presumably give an even more satisfactory description, and Price 
(1958:21) suggests the form such elaborations might take. 



Chapter 4 

FACTORS AFFECTING CARRIER TRANSITION 
RATES 

I N PART I we considered how densities no and po of free electrons and 
holes would exist in a semiconductor which is in thermal equilibrium 
with its environment. Thus, for an intrinsic material it was shown how a 
particular value φι of the Fermi level gave equality of electron and hole 
densities. When impurity levels were important a Fermi level φ could 
always prescribe the occupancy of conduction, valence and impurity 
levels in a way which corresponded with overall neutrality. Through 
all of this it was not necessary to worry about how electrons came to be 
distributed over various sets of levels, it was simply assumed that when a 
semiconductor is brought to a certain temperature and left there for 
long enough, conditions become stabilized. In Part I I , semiconductors 
are considered with excess carriers present, and the actual mechanisms 
of electronic transitions now become important. 

4.1 RECIPROCITY OF TRANSITION PROBABILITIES 
For a semiconductor in thermal equilibrium, there are several forms 

of energy which can be utilized to raise an electron from one state to 
another of higher energy. Such excitation processes may be known as 
generative processes if they generate free electrons or free holes (or 
both). We shall discuss a number of these processes later in the chapter, 
but for the present may note as one example that an electron may 
advance to a state higher in energy by E by absorption of a photon with 
frequency v = (E/k). For each generative or excitation process there 
is a converse recombinative or de-excitation process, in which electrons 
undergo transitions to states of lower energy, and liberate the energy 

179 
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difference in some form (e.g. as photons). The maintenance of free 
and trapped carrier densities in thermal equilibrium is determined by 
a dynamic balance of generative and recombinative processes. 

When some external stimulus is suddenly applied to a semiconductor, 
the opportunities for generative processes change and there follows a 
period during which carrier densities are functions of time. Provided 
that the external stimulus is maintained constant, a new steady state 
distribution of carriers is established, once again determined by the 
balance of generative against recombinative processes. The removal of 
stimulation heralds a new period of time-dependent carrier densities 
before the balance of thermal equilibrium is restored again. In Part I I 
we shall be specifically concerned with these periods of carrier build-up 
and decay, and with the dynamics of non-equilibrium steady state 
situations. 

4.1.1 T H E PRINCIPLE OF DETAILED BALANCE 

Since for every energy transformation process there is an inverse, we 
might expect to find a connection between the rate of a process and the 
rate of its inverse. Such a connection is provided by the principle of 
detailed balance. This is a very general principle for which no formal 
proof can be given, but which accounts in a very satisfactory way for the 
general laws of thermodynamics and statistical mechanics. 

The principle of detailed balance is a statistical concept, which may 
be stated in the form that, for a system in thermal equilibrium, the rates 
of a process and of its inverse are equal and balance in detail. This is closely 
related to the principle of microscopic reversibility, which asserts that 
the transition probabilities for a process and its inverse are equal. Note that 
this second principle refers only to transition probabilities, not to transi­
tion rates\ it is quantum-mechanical rather than statistical in nature, 
and is applicable to many systems whether they be in thermodynamic 
equilibrium or not. Detailed balance will in general not hold for a 
system which is in a steady non-equilibrium state, though the existence 
of a steady-state condition together with microscopic reversibility will 
in general imply also the existence of detailed balance (1961: 5). 

What is meant by balance in detail can be illustrated most readily 
by an example. Consider a semiconductor in thermal equilibrium for 
which some fraction of the hole-electron pairs are optically generated 
(through absorption of infrared photons from the black body radiation 
field surrounding the sample). Then the general balance requires that 
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the same fraction of electron-hole recombination should be radiative, 
the energy being released as a photon. The detailed balance requires 
furthermore that the recombination radiation should have the same 
spectral characteristics as the radiation absorbed in creating carrier 
pairs.f Similar reciprocity holds between other pairs of complementary 
processes, both in toto and in detail. 

When a semiconductor departs from thermal equilibrium under an 
external stimulus, the rates of reciprocal processes no longer balance, 

E 2 

Ec 

Jk 
FIG. 41.1. Transition rates between groups of conduction and valence band 

states. 

either in general or in detail,^ though the transition probabilities are the 
same. To see what goes on, let us return to the example of a semi­
conductor in which radiative recombination is a process of some im­
portance. Consider the rates of radiative generative transitions and 
radiative recombinative transitions occurring (as in Fig. 41.1) between 

t This is tantamount to a statement of KirchhofTs law, one of the many mani­
festations of detailed balance. 

% Thus under intense illumination the carrier densities n and p are larger than 
those of equilibrium, no and po. The additional free carriers have been excited by an 
optical process, but this does not imply that they will necessarily decay via an optical 
transition. The fraction which decays by a radiative process is determined by the 
relative magnitudes of capture cross-sections for all types of recombinative process 
accessible to the carriers. 
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a group of levels at energy E± in the valence band and another group at 
energy E% = (Ei + hvyz) in the conduction band. I t is not suggested 
that other types of transition do not occur as well, but the present 
preoccupation is purely with the relationship of the two complementary 
radiative processes. 

Denote by QJihvw) the density of photons per unit energy interval 
per unit volume for photon energy (E2 — E1) = hvi2. The interaction of 
this photon density with the crystal will excite electrons from E± up to E2 
at a rate which can be written in the form 

dgl2 = AuPjpùPdEimhm) όΕ (411.1) 

Here A±2 is proportional to the square of the matrix element of the 
initial and final state ; it depends on the density of state function in the 
conduction and valence bands, and on the form of the wave-functions 
making up each band. Pe{E) = [1 — Pji(E)] is the probability that a 
state of energy E contains an electron. Under thermal equilibrium 
conditions, Pe{E) reduces to 

Λ*>-['+=Ρ(ΤΤ)Γ 
of Part I, and it is then a simple matter to show that 

[Pe(£l)Pft(£2)]eq. = exp(^=^)[PJk(£i)Pe(£2)]eq. (411.2) 

However, when the conditions are of non-equilibrium, no single Fermi 
level exists and Pe(E) can not be identified with/(.E). (It will be seen in 
the next sub-section that so-called "quasi Fermi levels" represent 
attempts to rationalize the description oiPe(E) as a function of energy.) 

Corresponding with transitions 1 -> 2, as given by Eq. (411.1), an 
expression can be written for the rate of downward transitions, 2 -> 1, 
in the form 

dr21 = Ph(E1)Pe(E2)[B2i + A2i Qihv12)] dE (411.3) 

The term in B21 represents the rate of spontaneous recombination 
between the two sets of states. We shall expect to establish a close 
relationship between A12 and B21, since the latter also depends on the 
densities of states in the bands, and on a matrix element controlled by 
the form of the wave functions for each band. Concepts such as capture 
coefficient and capture cross-section (which will be used frequently in 
later sections) are contained in the description of Z?2i. 
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The second term of Eq. (411.3) [that involving A21QJJ1V12)] is the rate 
of downward transitions stimulated by the presence of radiation 
(1917:1). Since the matrix element of a real operator is Hermitian, 
A21 is equal to A12. 

Consider Eqs. (411.1) and (411.3) at thermal equilibrium, when 
QJJ1V12) -> Q,(Ai>i2)eq· The rates dgvz and dr^i must then be the same; 
by equating Eqs. (411.1) and (411.3) and using Eq. (411.2) we have 

£21 = AnÇ&hvuU.[exp(^) - l ] (411.4) 

This appears at first to indicate a temperature-dependent relationship 
of £21 and ^21, which would be a violation of the previous remarks 
about the purely quantum-mechanical foundation of these transition 
coefficients. However, from the Planck radiation law, 

QlhwU. = (87rv12
2/^3)[exp(Än2//:r)- l ] - i (411.5) 

where c' = (cfn) is the velocity of light in a medium of refractive index 
n. Then the ratio of B21 to A21 is actually 

(£21/421) = (8T7VI22/^) (411.6) 

depending on nothing except the energy transformed in the two re­
ciprocal processes and the refractive index. 

For any other kind of energy transformation process in a semi­
conductor, a similarly simple relationship exists between the transition 
coefficients for upward and downward processes involving any two 
groups of states. 

4.1.2 ELECTROCHEMICAL POTENTIALSAND M E A N CAPTURE COEFFICIENTS 

It has been possible to characterize the electron and hole densities 
for a semiconductor in thermal equilibrium by a single parameter, 
the Fermi level φ. Also the product nopo was very simply related to ni2; 
was in fact equal to np for any non-degenerate situation. 

The action of an external stimulus of some kind will change the 
carrier densities to values f which will be referred to as n and/?, reserving 

f Most kinds of stimulation tend to increase the densities of both kinds of carrier, 
so that np > tit2. It is possible to decrease the densities of electrons and holes below 
their equilibrium values by using samples with rather special kinds of contacts 
(1954:12, 1955:19, 1957:32), and the following discussion is quite applicable to 
such cases; the only difference is that of the two electrochemical potentials, φρ will 
be higher than <f>n. 
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the subscript zero for equilibrium conditions. When n Φ no and p Φ po, 
no single parameter suffices to describe the total charge densities in the 
two major bands. However, Shockley (1949:5) has suggested that the 
terminology of carrier statistics should include quantities called 
"quasi-Fermi levels", each of which is to characterize the total density 
of carriers in a given band. In this book it is preferred to describe these 
quantities as the electrochemical potentials for electrons and holes. 

In order to explain the use of these terms, it may be noted that if 
ge(E) = 47r(2mc/A2)3/2(£-JÈ;c)i/2 is the density-of-states function for the 
conduction band, the number of electrons per unit volume in all the 
levels of that band is 

00 

n= j Pe(E)gc(E)dE (412.1) 
Ec 

Here Peiß) is the probability that a state of energy E contains an 
electron; as has already been remarked, Pe{E) tends towards f(E) of 
Eq. (122.4) at thermal equilibrium, but may perhaps have a very 
different form in non-equilibrium (dependent on the method used to 
create excess carriers). 

Nevertheless, the total integrated density n can always be described 
in terms of an electrochemical potential for electrons, φη, by writing 

n = j Pe(E)gc(E)dE = Nc^1/2(^~j (412.2) 
Ec 

The quantity φη becomes coincident with the Fermi level itself when 
thermal equilibrium is restored, but is higher in energy when excess 
electrons are excited into any conduction band levels. 

Corresponding with the relationship of n to φη> a similar potential 
φρ for valence band holes can be defined through 

P= ''j* Pn{E)UE)àE = A ^ i / 2 p C ~ ^ ~ - ] (412.3) 

The two quantities φη and φν now serve the purpose for which φ alone 
was adequate in thermal equilibrium. 

It is obviously desirable to be able to express n or p in terms of the 
density at thermal equilibrium and the difference between the appro­
priate electrochemical potential and the ordinary Fermi level. This can 
be accomplished very readily for a non-degenerate semiconductor 
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which remains non-degenerate even under external stimulus. I t will be 
recalled that with the simplification of non-degeneracy, the densities at 
thermal equilibrium 

[ φ-Ε0~\ 
—— = jVcexp(^) 

[ Etc — E% — ψ\ 
— = Nvexp(-v-€i) 

(412.4) 

could be combined with the expression (231.4) for ni to yield useful 
relationships between no, po and n^ viz. : 

po = (ni2ln0) = Λ< expfa - η) J 

Equations of the same qualitative form can be written for non-
equilibrium situations, now based on φη and φν\ or more compactly 
in terms of their dimensionless equivalents 

/φη — Ε€\ 

"" - ΓΊΓί 
= ίΦρ-ΕΛ 
~ \ k T j 

Provided that excess carriers are not present in large enough quantities 
to force φη into the conduction band or φν into the valence band, we can 
write 

n = Nc expfan) = »i expfo»-iji) Ì 
^ = JV*t ,exp(-^-€ i ) = w<exp(îy< —^p) / 

Comparison with Eq. (412.4) or (412.5) shows that the departure of 
φη or φρ from φ is an indication of how much n or p has changed from 
the equilibrium values : 

n - a o e x p f o - i , ) j 
p = Ρθ^χρ(η-ηρ) ) 

The product wjb under non-equilibrium conditions differs from the 
product nopo = ̂ 2 of a non-degenerate semiconductor in equilibrium, 
yet it can be seen from Eq. (412.7) that 

(nplnopo) = &φ(ηη-ηρ) (412.8) 

so that {φη — φρ) provides a measure of the carrier density product. 
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It will be appreciated from Eqs. (412.6)—(412.8) that the use of 
electrochemical potentials is very helpful in conveying information 
about the total densities of free electrons and holes. Fig. 41.2 sketches 
how the Fermi level φ for an rc-type semiconductor in equilibrium 
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(α) (b) 
FIG. 41.2. (a) The Fermi level and carrier distributions in thermal equili­
brium for an w-type semiconductor, (b) The quasi-Fermi levels correspon­

ding with excess carrier densities when np > nopo. 

(φ > φι) splits into the quantities φη and φν when n and p are induced 
to be larger than no and po, respectively. The electrochemical potential 
for the minority carrier band moves much further from φ than that for 
the majority carrier band, since quite a small number of excess minority 
carriers can easily be larger than the thermal equilibrium density of this 
carrier type. 
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The designation of a φη indicates how many electrons are in the 
conduction band, but it does not give any information about the detailed 
distribution of electrons over the band states. Thus curves (a) and (b) 
in Fig. 41.3 have very different forms. For curve (a) it is supposed that 
Pe(E) oc exp( — E/kT), whereas curve (b) corresponds with a maximum 
in Pe{E) at the energy E\. Yet the areas under curves (a) and (b) are the 
same, and so from Eq. (412.2) the same value of φη must characterize 
either electron distribution. That a given φη can correspond with a host 

FIG. 41.3. Showing two possible forms which gc(E)Pe(E) could take as a func­
tion of energy above the base of the conduction band which correspond with 
the same electron quasi-Fermi level <f>n. The areas under curves (a) and (b) 

are the same, thus a single value of φη characterizes both. 

of different distributions of occupancy poses a serious (and usually un-
mentioned) threat to a number of cherished concepts. 

For instance, this volume is not concerned with scattering processes 
per se, but Section 4.2 does consider the continuity equations, which 
involve terms proportional to the gradients of current densities. It is 
customary to show that drift and diffusion currents can be added 
(invoking the Einstein diffusion relationship) to give a current density 
controlled by the gradient of the electrochemical potential. But such a 
procedure cannot be justified unless the energy dependence of Pe(E) 
is very much like exp( — E/kT), as in thermal equilibrium! 

The assumption that the distribution of excess electrons over conduc­
tion band states is the same as for thermal equilibrium also lies implicit 
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in the way capture coefficients are defined. Suppose for example that 
recombinative transitions take place from the conduction band to a set 
of Nf flaw levels at an energy Ef. Let c[E) be the probability that an 
electron from an occupied conduction band state at energy E will be 
captured by an empty flaw state in unit time. Then the rate of down­
ward transitions is 

00 

r = NfPh{Ef) j c(E)Pe(E)gc(E)dE (412.9) 
Ee 

It is customary to define a mean capture coefficient <£n> by express­
ing this rate as 

r = n(cnyNfPh(Ef) (412.10) 

Noting that n is given by Eq. (412.1), a comparison of Eqs. (412.9) and 
(412.10) shows that this mean capture coefficient is 

00 

jc(E)Pe(E)gc(E)dE 

<cn> = - (412.11) 
00 

jPe(E)gc(E)dE 

It will be appreciated that if c(E) is a reasonably sensitive function of 
energy, the value obtained for <VW> will depend on just how Pe{E) 
varies with energy. (Only in the improbable case of an energy-
independent capture probability are we relieved of this responsibility.) 

Now (cny will have a well defined value for transitions occurring 
between the band and the flaw levels in thermodynamic equilibrium. Under 
non-degenerate conditions Pe(E) is then of course just exp[(<|> — E)jkT], 
It is almost invariably assumed in discussions of recombination pheno­
mena that the same value for (cny will hold good when excess 
electrons are present; which can only be the case if 

PÂE) _ e x p ( * ^ ) 

rather than some more exotic function. 
We hasten to add that this is likely to be a plausible assumption if 

most carriers are scattered many times between excitation to a band 
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and de-excitation from that band. The electronic distribution will then 
resemble that of curve (a) in Fig. 41.3. 

Curve (b) of the same figure could be the electron distribution only 
if most excess electrons were optically excited to states of energy ~ E± 
and suffered recombination before undergoing many thermal scattering 
collisions. The curve shown is probably more exaggerated than could 
ever occur in practice, but it does serve to remind us that the concept of 
a unique capture coefficient is a questionable one when lifetimes are 
very short and comparable with scattering times. 

This particular point has been illustrated by discussing transitions 
to a flaw level. Of course, the same kind of caution must be employed 
in considering interband transitions. Nevertheless, the following sections 
and chapters will discuss models of band-to-band and multi-stage re­
combination based on the usual premise that excess carriers in a band 
have time to distribute themselves as though they were in internal 
equilibrium. The preceding remarks indicate that these models 
may reflect the truth rather imperfectly for materials of short 
lifetime. 

In the discussions of the later chapters, reference will be made again 
to capture coefficients, and also to the related capture cross-sections. The 
capture coefficient <cw> of a flaw for a free electron is the product of 
the capture cross-section ση and the mean thermal velocity % for elec­
trons in the conduction band. The popularity of discussing capture in 
terms of a cross-section is probably carried over from atomic physics, 
and is perhaps inspired by a hope that a cross-section might be related 
to the size of an atom (~10~16 cm-2). This turns out to be a gross 
simplification. Capture cross-sections may lie anywhere in the range of 
10-25_io- i2 c m 2 . 

4.2 THE CONTINUITY EQUATIONS 
When the densities of free electrons and holes are functions of space 

and time, the rate of change of each can be expressed through a con­
tinuity equation. Consider for instance the density n(x9y9 z, t) of 
conduction band electrons. This will tend to change as a net result of: 
(a) generative processes; (b) recombinative processes; (c) carrier 
diffusion and drift. The term "generative processes" includes all the 
mechanisms by which electrons may be thermally excited to the 
conduction band from the valence band and from impurity states. This 
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includes the re-excitation of electrons which had previously been 
trapped. The total rate of generation may be denoted as (g+gPn), 
where gPh is the rate at which free electrons are generated by absorption 
of excess illumination, f while g lumps together all the "natural" genera­
tive processes. 

Similarly, the total rate of recombination can be expressed as (r -f rpn), 
where r accounts for all the natural processes whereby an electron can 
drop to a lower level (either in the valence band or in an intermediate 
trapping state), while rpn is the rate of downward transitions induced 
by the presence of excess electromagnetic radiation. 

I t will be noted that the word excess has been emphasized in connec­
tion with radiation causing the transition rates gpn and rPh. The rate 
of radiative generation produced by the normal black-body background 
is included in g, and the rate of recombination induced by this back­
ground is similarly included in r. Only radiation coming from outside 
the semiconductor, or created inside by radiative recombination of 
excess carriers, contributes to the rate gPh. In some of the earlier treat­
ments of this subject, the induced downward rate rpn has not been 
explicitly included in the continuity equation. As noted in the next 
chapter, induced recombination can proceed at a considerable rate 
for a small gap material under strong modulation; however, it is true 
that for most semiconductors under most conditions the magnitude of 
rPh will be small compared with that of other terms in the continuity 
equation. 

Having noted that gpn and rpn are two distinct quantities (which to 
some extent depend on each other) we shall in the continuity equation 
use the symbol gs to denote the net rate (gPh — rph) of transitions 
up to the conduction band caused by externally applied ionizing 
radiation. 

In addition to generation and recombination, the passage of current 
can tend to change the local electron density. An electron current 
density In signifies the flow of ( — In/q) electrons per sec across unit area 
of a surface normal to the direction of the current vector. J In order to 
establish the relationship of In to the time-dependence of n, consider a 
small volume element bounded by the planes x and (x + dx),y and 
(y + dy), z and {z + dz). 

f Or other stimulation of external origin (atomic particles, etc.). 

% q is a positive quantity numerically equal to the electronic charge. We could 
equally well say that q is the charge carried by a hole. 
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The rate at which electrons flow into the element through the plane 
x is 

-q-ilnz.dy.dz (420.1) 

while they flow out through the plane at (x + dx) at the rate 

- Γ Ψ η ζ + {dlnxldx)/dx] dy . d* (420.2) 

Thus the net rate of electron accretion via these two planes is 

rWnx/dx] dx.dy. dz (420.3) 
Using the same argument for the other two pairs of faces, we find that 
the element dx . dy . dz acquires electrons by current flow at a rate 

0 - i L u f + _^l + _ H àx.dy.dz = ς~λν Λη dx.dy. dz (420.4) 
L dx dy dz J 

As a result of generation, recombination and current flow, the rate of 
change of local free electron density can be summarized in the continuity 
equation 

dn 
j t = {g-r)+gE + q-^ Λη (420.5) 

A continuity equation of the same character summarizes the rate of 
change of free hole density: 

jt = {g'-r')+g'E-q-^.\v (420.6) 

The primes on the generative and recombinative symbols serve as a 
reminder that each of these quantities can be different from the rate 
appropriate in the electron equation. The rates gs and g'ß will be equal 
if there is no interaction between externally applied light and impurity 
states, and this assumption is often a justifiable one. But there is hope of 
finding g equal to g' and r equal to r' only in carefully purified semi­
conductors of small intrinsic gap width at high temperatures, when 
band-to-band processes dominate the behavior. Such situations are 
reviewed in Chapters 5 and 6. 

4.2.1 SOME DEFINITIONS OF CARRIER LIFETIME 

It is the general tendency of a non-equilibrium electron density n 
to try and restore itself towards the equilibrium value no. The strength 
of this tendency may not be precisely proportional to the excess density 
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ne = (n — no), but the tendency will not usually be very far from linear 
in ne. This encourages us to replace (g-r) in Eq. (420.5) by —ne\rn 
or —nevn, where the quantities τη and vn will either be completely 
independent of ne or will depend on this variable in a rather gradual 
fashion. Thus the continuity equation is written 

dne ne 

— = ^ + r 1 v . i n — 
ct τη 

= gE + q^V . In-«ev» (421.1) 
The left-hand side is written as (dnejdt) since this is manifestly the 
same thing as (dn/dt). 

The quantity rn, with dimensions of time, is usually called the 
electron bulk lifetime. Its reciprocal, vn, should properly be described by 
a name such as "bulk recombination coefficient", but in fact it is 
usually referred to in the literature as the recombination rate. Such a 
description is a little confusing since the same name is applied to the 
quantity r, yet the two quantities are not synonymous and even have 
different dimensions. When the name "recombination rate" is used, 
it will usually be clear from the context whether r or v is meant. 

The simplest hypothetical model for a semiconductor assumes that 
rn = vn'1 does not depend on ne at all. It is then possible (1960:4) 
to solve Eq. (421.1) no matter how gs and ln depend on position and 
time. Chapter 10 comments on solutions of this type, which assist in an 
appreciation of the phenomena occurring in a semiconductor sample of 
finite size. 

When τη depends on the excess electron density ne (as it usually does) 
it becomes extraordinarily difficult to solve Eq. (421.1) unless V *In 
vanishes and gs does not depend on the positional variables. This 
would be true of a semiconducting sample whose surfaces were com­
pletely inactive in recombination if it were possible by some magical 
trick to create excess carriers perfectly uniformly in space. It is cus­
tomary to make these idealistic assumptions in establishing the dy­
namics of creation and recombination, then an attempt is made after­
wards to assess the perturbing effects of spatial non-uniformity in ne. 

At any rate, when V - I ^ and Vgjs vanish, Eq. (421.1) becomes an 
ordinary differential equation. 

dne 
— = gE-ne\rn 

= gE-nevn (421.2) 
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The equation gives us a good idea of the connotations associated with 
the terms "bulk lifetime" and "bulk recombination rate". Thus when 
excess generation is maintained at a constant rate for a long time, the 
"steady state bulk lifetime" is simply the excess electron density divided 
by the excess generation rate required to maintain it; τη = nejgE* When 
excess generation ceases, vn = — ne~1{anejàt) is the logarithmic decre­
ment of the excess population, setting the rate at which conditions may 
return towards equilibrium. 

Analogous with the phenomena of the conduction band, a bulk life­
time Tp = vjT1 can be defined to characterize the dynamics of situa­
tions involving a uniform excess hole density^ = {p—po)· In terms of 
Tp, the continuity equation is 

dp pe 
-f = g>B-rv7.jp-L· (421.3) 
tit Tp 

which can be handled in exactly the same fashion as Eq. (421.1). 
When recombination occurs through band-to-band transitions, 

τη and Tp are the same. Only under special circumstances do the two 
lifetimes coincide if recombination is controlled by flaw states within 
the intrinsic gap. 

4.3 BAND-TO-BAND AND BAND-TO-FLAW TRANSITIONS 

4.3.1 TRANSITIONS ACROSS THE INTRINSIC GAP 

When an electron drops from the conduction band into an empty 
state of the valence band, the potential energy of the hole-electron 
pair is transformed into some other kind of energy. In order to develop 
a theory for the dynamics of band-to-band recombination, it is neces­
sary to know which physical process is dominant, i.e. into what form 
the energy of recombination is transformed. 

The term radiative recombination is applied when a photon is released 
as a carrier pair annihilates itself. For a direct or vertical radiative transi­
tion (see the beginning of Section 1.5), all the energy is given to the 
photon. For an indirect or non-vertical transition, a phonon is either 
emitted or absorbed at the same time. 

Recombination is usually rather loosely termed radiationless when all 
the potential energy of the hole-electron pair is dissipated as a shower of 
phonons. This is usually considered to be a highly unlikely event. 
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The energy of the pair can alternatively be given as kinetic energy to 
a third carrier (either an electron or a hole). Such a process is variously 
described as one of Auger, impact, or three-body recombination. 

We shall consider these band-to-band processes in rather more detail 
in the following chapters. Chapter 5 establishes the continuity equation 
for a semiconductor dominated by radiative and radiationless intrinsic 
transitions; and shows how the lifetime varies with temperature, im­
purity concentrations, strength of external stimulation, etc. Chapter 6 
provides the corresponding information for a semiconductor dominated 
by direct Auger recombination. 

4.3.2 TRANSITIONS TO A LOCALIZED STATE (FLAW) 

When an electron goes from the conduction band to a localized state 
whose energy is indicated by a position within the intrinsic gap, the 
difference in energy is released in some other form. As in the previous 
sub-section, this recombination energy may be in the form of electro­
magnetic radiation, lattice vibrations or kinetic energy of another free 
particle. Thus again there are possibilities of radiative, radiationless, and 
Auger transitions. The same principles hold good for the transition 
of an electron from a localized state to an empty state in the valence 
band. This of course is the process of hole capture by the localized 
level. 

As noted in Section 1.6, the term "flaw" is a useful one for any per­
manent perturbation of the lattice which produces localized levels 
within the intrinsic gap of a semiconductor. When a flaw is monovalent 
(only two possible charge conditions, separated by the amount q), a 
single level is presented which is either occupied or not. Other kinds of 
flaw are multivalent, and a series of levels are presented as electrons 
added or subtracted one by one. 

Chapters 7, 8 and 9 are concerned with capture at flaw levels. The 
first of these examines the dynamics of one kind of flaw and a single 
band, but goes on to comment generally about flaw capture from both 
bands. Chapter 8 discusses in detail the case of a semiconductor for 
which electron-hole recombination is dominated by a single species of 
monovalent flaw. 

The more complicated models (several sets of flaws, multivalent 
flaws, etc.) do not lend themselves to a complete analytic study. 
Chapter 9 indicates the general features of several such models. 
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4.3.3 RELATIVE IMPORTANCE OF RECOMBINATION PROCESSES 

The order in which the various models for electron-hole recombina­
tion are discussed in the following chapters is that of increasing difficulty, 
and should not be confused with any order of decreasing or increasing 
importance. 

The relative importance of the various processes depends to a large 
extent on the ratio of the intrinsic gap width Ei to the thermal energy 
kT For the purification techniques which are employed with semi­
conducting materials at the time of writing, it is impossible to avoid 
domination by flaw recombinative processes when Ei ^ 20£Τ 
( « 0*5 eV at room temperature). With materials for which purification 
techniques are less surely established, or in samples containing deliber­
ately added recombination centers, band-to-band processes will be 
unimportant even when {Ei/kT) is considerably less than 20. 

Thus the direct recombination models of Chapters 5 and 6 are 
expected to play a significant role for semiconductors of rather small 
energy gap at reasonably high temperatures. These chapters discuss 
the implication of the models for lower temperatures in the expectation 
that purification techniques will be improved over the years, so that 
flaw recombination might sometimes be subordinated even for large 
values of {Ei/kT). 

Chapters 5 and 6 discuss radiative and Auger recombination in turn 
as though each was the only process going on, which is a simplification 
of reality. In practice, when radiative recombination is important there 
will always be an Auger component as well, and this must predominate 
at some sufficiently high temperature. Thus for highly pure tellurium 
(1960:11) there are enough residual flaws to control the lifetime 
below ~200°K. Radiative recombination is the limiting process 
between 200°K and 350°K, but Auger processes assume control above 
~350°K. For a different semiconductor the temperature range of 
radiative domination could be much wider or much narrower. 

Then in reading the following chapters, which present models one 
by one, it is well to remember that in any real semiconductor there will 
be differences—slight or serious—due to the perturbing effects of com­
peting recombination mechanisms. 



Chapter 5 

RADIATIVE AND RADIATIONLESS 
RECOMBINATION 

T H E two processes of concern in this chapter are both forms of band-to-
band recombination. It is convenient to consider them together since 
they both lead to the same form of continuity equation. 

5.1 THE PHYSICS OF THE TWO PROCESSES 

5.1.1 RADIATIVE RECOMBINATION 

It is possible to found a theory of radiative recombination on a 
quantum-mechanical treatment, considering the matrix elements for 
transitions from one state to another. Dumke (1957:15) has in fact 
made such calculations for the vertical and non-vertical transitions 
in germanium. 

This fundamental kind of recombination theory is simplest if the 
conduction and valence bands each have a single non-degenerate 
extremum at the same position in k-space, and can each be described 
by a spherically symmetrical energy-independent effective mass. Such 
simplicity cannot usually be expected. It is known that a band often 
has multiple extrema, with anisotropie and energy-dependent effective 
mass components, and that the most probable transitions are often the 
non-vertical ones. When enough complexities are added to the problem, 
the probability of reaching a correct solution to the quantum-mechani­
cal problem becomes rather small. 

Fortunately, this does not prohibit calculation of the radiative recom­
bination rate if it is possible to measure the macroscopic properties of the 
semiconductor, principally the optical absorption coefficient K% 

196 
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(in cm - 1 ) corresponding with the production of intrinsic carrier pairs. 
As normally measured, the total optical absorption coefficient (which 
is a function of photon energy hv) contains some small components 
in addition to Ki (corresponding to free carrier absorption, etc.). When 
these are subtracted, the value of Ki for any hv is a measure 
of the strength of the interaction between pairs of valence and con­
duction states separated in energy by hv (for vertical transitions) or 
by (hv — kd) or (hv + kd) (for non-vertical transitions). When the value 
of hv is appropriate for either vertical or non-vertical transitions, Ki will 
reflect the contributions of both. Ki starts from zero at photon energy 
hv = (Ei — k6) or hv = £ ^ as the case may be, and is usually as large 
as 104 or 105 c m - 1 for photon energies only a few-tenths of an electron 
volt higher. 

van Roosbroeck and Shockley (1954:15) described the basis for 
using data on the observable quantity Ki to deduce the radiative recom­
bination rate. Their presentation was based on the principle of detailed 
balance, which has already been discussed in Sub-section 4.1.1 for the 
relationship of radiative generation to radiative recombination. That 
principle provided a simple result for the ratio (^21/^21), though in 
Sub-section 4.1.1 the value of A21 itself was left as a quantum-mechani­
cal problem. It must now be recognized that Ki for a given hv depends 
on the sum of A21 for all pairs of states separated by that photon energy. 
It is not necessary to know the wave-functions of initial and final states. 
It does not matter whether transitions are predominantly vertical or 
non-vertical ; the experimental K\ provides all the necessary information 
about the total probability of upward transitions. 

The theory of van Roosbroeck and Shockley allows for dispersion 
of the refractive index n. This is not an important elaboration of the 
theory, and it is assumed here that the refractive index n and electro­
magnetic wave group velocity c' = {cjn) do not depend on photon 
energy h v. 

Inside a solid of refractive index n which is in thermal equilibrium at 
temperature T, the number of photons per unit volume having fre­
quencies within a range dv is given by the Planck expression 

877(1/2/^3) . dv 
Qßq. . dv = 

exp(hv/kT) — 1 

8TT(/ZV/<;3) . dv 
= ^{hv]iäy^\ (51L1) 

14 
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This radiation is moving through the solid at a speed c' = {cjn) and 
interacts with the solid in several ways. That interaction which pro­
duces hole-electron pairs is described through K\. 

The rate (per unit volume) at which pairs are generated radiatively 
can be expressed as (ge +gr), where ge refers to the influence of externally 
applied ionizing radiation. We shall use the capitalized symbol Gr to 
denote the value assumed by gr under conditions of thermal equilibrium. 
Then Gr must be given by 

00 

Gr= / c'Ki.Qev.dv (511.2) 
0 

When the value of Q^q. is inserted from Eq. (511.1) and the integral 
expressed in terms of photon energy hv, 

rKi. (hvf . d(hv) G, - ̂ φή-±±-±1 (5U.3) 
The lower limit is given as zero, but of course K{ does not become 

finite until hv approaches 2?$. Most of the contribution to the integral 
(511.3) comes from the spectral region starting at hv « Εχ up to a 
photon energy some 10 k T higher. The absorption coefficient is custo­
marily expressed as a curve rather than as an analytic function of hv, 
and so the integral (511.3) must be evaluated numerically or graphically. 

This is illustrated in Fig. 51.1, which shows how Q,eq., Ki a n d their 
product vary with hv for germanium at 300°K. The curve for the 
product shows a first peak for indirect (non-vertical) transitions; and 
a second, rather sharper, peak corresponding with the most important 
region for direct (vertical) transitions. Fig. 51.1 corresponds with one 
for germanium at room temperature given in the original paper of van 
Roosbroeck and Shockley. The figure shown here represents an im­
provement only in that it is based on more recent and complete optical 
absorption data of Dash and Newman (1955:10). 

Calculation of Gr is only a means to the desired end of knowing the 
radiative recombination rate. We signify this latter quantity as rr, 
and capitalize as Rr for the rate in thermal equilibrium. Thermo-
dynamic balance requires that the generative and recombinative 
rates be the same in thermal equilibrium, 

Gr = Rr (511.4) 

thus the integration (511.3) actually provides the value of Rr. 



PHYSICS OF THE TWO PROCESSES 199 

When the intrinsic gap E\ is very large compared with kT (as is true 
for germanium at room temperature), it makes little difference whether 
Q̂ eq. is given by the correct Planck expression or by Wien's asymptotic 
form. By this we mean that the denominator of Eq. (511.1) [and of 
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FIG. 51.1. Variation of Q,eq., Ki and their product with photon energy for 
300°K black body radiation and germanium. The area under the curve of 

KiQjttL. corresponds with Gr = 2*8 x 1013 cm - 3 sec -1. 

Eq. (511.3)] could be simplified to txp(hvlkT) without appreciable 
error. This can be verified from Fig. 51.1; in the important spectral 
range the energy dependence of Q,eq. is dominated by the exponential in 
the denominator. 



200 RADIATIVE AND RADIATIONLESS RECOMBINATION 

For a material of very small intrinsic gap, however, it would not be 
warrantable to calculate Gr by numerically integrating 

8^WJ (511.5) 
0 

In any case there is a real physical significance to the quantity (511.5)— 
it is the rate of spontaneous radiative recombination for thermal equilibrium. 

For, as emphasized in the last chapter, radiative recombination is 
the sum of spontaneous and stimulated components 

rr = rsp + rst in general \ 
} (511.6) 

Rr = Rsp + Rst in thermal equilibrium J 

In Chapter 4 it was shown [see Eq. (411.4)] that transition probabilities 
for states separated by an optical energy hv must be in a ratio such that 

dR 
—^=[exp(Av/A7-)-l] (511.7) 
UKst 

From Eqs. (511.3), (511.4), (511.6) and (511.7) it can easily be shown 
that the respective rates of the two varieties of downward transition 
will be 

» n ,_„ ,jKi.{hvf.à{hv) 
K-sp 

Γ At. (hv)* . d{hv) 
= Bnh-*(nlc)* ——— — (511.8) 

V ' J J CXO(hvlkT) V J 

and 

Γ Kt. (hvf . d(hv) 
Rst = 8TTÄ-3( n\cf — ^ — (511.9) W ; J exp(hvlkT)[exp(hvlkT)- 1] V J 

in thermal equilibrium. The spontaneous rate Rsp is the previously 
mentioned quantity (511.5). 

Suppose that band-to-band radiative transitions form the only 
recombination mechanism in a semiconductor. Then electrical neu­
trality requires that when thermal equilibrium is disturbed, the same 
excess carrier density will be found in the conduction and valence 
bands ; ne = (n — no) = (p —po). The presence of excess carrier pairs 
makes recombination speed up, and we should like to establish a con­
tinuity equation and define a ''radiative lifetime". This turns out to 
be rather difficult, for a most curious reason. 
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As remarked in Sub-section 4.2.1, the details of a recombination 
process are conventionally discussed by supposing a very large sample 
(so that the continuity equation does not need to contain any spatially 
dependent terms, and the boundary conditions of surface recombina­
tion are eliminated). Now Dumke (1957:15) points out that recom­
bination radiation will tend to be re-absorbed within a large sample, 
producing another hole-electron pair. Since there is no degradation of 
the photon energy, this cycle could be repeated many times. Dumke 
suggests that an experimentally observed lifetime must be limited by 
the take-over of other bulk recombinative processes and by the escape 
of some recombination radiation through sample surfaces. 

Dumke's picture is incomplete in two respects. He did not account 
for free carrier absorption, which will assist in the dissipation of recom­
bination radiation. Also he did not distinguish between spontaneous 
and stimulated recombination. When this distinction is taken into ac­
count we may note the following : 

(a) The generation rate gr will be larger than Gr to the extent that 
the semiconductor is inundated with excess recombination radiation. 

(b) In a non-degenerate semiconductor, the spontaneous recombina­
tion rate rsp will be proportional to the product np of the free electron 
density and the free hole density. Since this rate is Rsv in thermal 
equilibrium, evidently 

Up = Rsv{--) = R J ^ \ (511.10) 
\ n0po I \ np ! 

van Roosbroeck and Shockley pointed out that proportionality to the 
product np must break down if the Fermi level enters either the con­
duction or the valence band, since the velocity distribution of carriers 
then depends on the concentration. This complication of a degenerate 
semiconductor has been examined by Landsberg (1957:22) but will 
not be considered further here. A further assumption implicit in 
Eq. (511.10) is that the occupancy probabilities Pe{E) in the conduction 
band and Pn(E) in the valence band are smooth exponential functions 
of (E—<j)n)lkT and (<f>p — E)lkT, respectively. As noted in Sub-section 
4.1.2, this assumption is reasonable if the lifetime is long compared 
with scattering times. 

(c) The stimulated downwards rate rst will be larger than its equili­
brium value Rst both by virtue of the increased carrier densities and by 
the presence of excess recombination radiation. In fact if the excess 
densities are large enough to make the difference of electrochemical 
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potentials, (φη—φρ), comparable with the intrinsic gap, excess radiation 
provokes almost as many downward as upward transitions. (This is true 
also for externally applied radiation when carrier modulation is very 
large; for this reason we took care in Section 4.2 to define gs as the 
net rate of upwards transitions provoked by external radiation.) 

It is not particularly fruitful to attempt setting up a continuity 
equation for this system, since photon disposal does depend on the 
sample dimensions and on the efficacy of free carrier absorption in 
dissipating photons. Instead, we retreat to the conventional position, 
and overlook any effects which might be caused by the repeated trap­
ping of photons. For this simplified model 

gr = Gr 

rsp = RsV[—) 

Ώ ίηΡ\ I 
(511.11) 

when the semiconductor is non-degenerate, i.e. 

rr = (rsp + rst)= Gr(^-\ (511.12) 

by virtue of Eqs. (511.4) and (511.6). 
When spatial dependence is excluded from Eq. (420.5), the resulting 

simple continuity equation is 

an 
SE-— = (rr-gr) 

( np — m2 \ 
-L·—) (911.13) 

It will be recalled from Sub-section 4.2.1 that the lifetime is defined as 
nej{r — g) ; then this quantity is given by 

nf 
Gr(no+po + ne) 

(511.14) 

sincere = (n-no) = (/>-/>o). 
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5.1.2 RADIATIONLESS (MULTIPHONON) RECOMBINATION 

At one time it was generally assumed that recombination in a semi­
conductor would predominantly occur from one band to the other. 
Since recombination radiation was not detected from solids in which 
rapid recombination was evidently occurring, it seemed plausible to 
assume that band-to-band radiationless recombination (in which the 
electron-hole energy is released as a group of phonons) must be an 
important process. 

This viewpoint is no longer widely held. I t is now realized that much 
of the non-radiative recombination in wide gap materials occurs 
through flaws—a realization which took over a decade to spread from 
the phosphor field to the semiconductor field. It does in fact seem rather 
likely that band-to-band radiationless recombination will be an ex­
tremely rare process, unlikely to dominate the dynamics of any semi­
conductor. For the recombination energy must usually be assumed by 
several phonons (perhaps as many as twenty) ; while theoretical esti­
mates of the corresponding transition probability vary rather widely, 
none of them suggest that this probability could be very large. The crux 
of this argument is that at least one of the carriers should be strongly 
coupled to the lattice for efficient dissipation of the energy, and this 
can not be when the electron and hole undergoing recombination are 
both free. Much better opportunities can exist for multi-phonon 
capture of a free carrier by a localized level, as discussed later. 

For any direct radiationless recombination which does occur, the 
generation rate should be independent of excess carrier densities, while 
the recombination rate should (in non-degenerate semiconductors) be 
proportional to the product np. Thus the continuity equation has exactly 
the same form as Eq. (511.13) for radiative recombination. In any 
discussion of excess carrier dynamics, we can regard radiationless direct 
recombination as providing a small correction to the effective value 
of Gr in Eqs. (511.13) and (511.14). The generation rate for any band-
to-band radiationless transitions should even have approximately the 
same temperature dependence as for radiative recombination, more 
or less as exp( — Ei[kT). 

5.2 BEHAVIOR OF THE RADIATIVE LIFETIME 
We now wish to consider the dependence on modulation, doping 

and temperature of the lifetime for a semiconductor which is dominated 
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by radiative band-to-band transitions (with perhaps a minor contri­
bution from radiationless processes). I t was shown in the previous 
section that if spatial dependencies are ignored, the excess electron 
density ne for such situations satisfies a continuity equation 

dne 
gE--rr = (r~s) dt 

Grne(no+po + ne± 

m2 

This forms the basis for discussing how ne varies with strength of excita­
tion, time, etc. 

5.2.1 EQUIVALENCE OF A L L DEFINITIONS OF LIFETIME 

In Sub-section 4.2.1 the lifetime of an electron was defined as 
nel{r—g); then in the present context 

= T i 2 = _ ! (521.1) 
(r-g) Gr(no+po + ne) 

A simplifying characteristic of direct recombination is that the quantity 
described by Eq. (521.1) fulfils all the requirements of the term "life­
time" under various circumstances. This is not the case when recombina­
tion occurs via a large concentration of flaws; then the term "lifetime" 
must be qualified by an explanation of the meaning being given to the 
word. For instance, Bube (1960:10) defines five types of lifetime which 
can differ from each other, though with direct recombination they are 
are all numerically the same. 

Thus under conditions of steady state illumination, ne attains a 
constant value [(drie/dt) = 0]. From Eq. (520.1), the lifetime TR of Eq. 
(521.1) is obviously the ratio of the excess pair density ne to the genera­
tion rate gE responsible for it. This can be regarded as the average 
interval between creation and recombination of a pair. 

The TR of Eq. (521.1) can equally properly be described as the time 
constant of excess carrier decay when illumination is interrupted or 
modified in intensity. Wheng# stops, TR is the reciprocal of the logarith­
mic decrement of ne, i.e. at any moment the temporal dependence of 
rie could be described as exp( — Ì/TR). Of course, n? does not decay as a 



B E H A V I O R OF THE R A D I A T I V E LIFETIME 2 0 5 

simple exponential from a large initial value, since TR is itself a function of 
ne; but at any instant TR does characterize the decay. 

5.2.2 VARIATION OF LIFETIME WITH DOPING AND MODULATION 

At any given temperature (which fixes the values of Gr and n<) the 
lifetime TR of Eq. (521.1) depends on the doping of the semiconductor 
and on the excess pair density ne. The lifetime is largest for small 
modulation, 

ni2 

TO = 777 when ne <ζ (n0+po) (522.1) 
(sr{no+po) 

and this is smaller for extrinsic material than the low-modulation life­
time in an intrinsic semiconductor 

rmax = ——, when { (522.2) 
2G/ 1 ne 4, n% 

The value of this maximum lifetime depends on the intrinsic gap of 
the semiconductor and the temperature. For germanium at room 
temperature, the evidence of Fig. 51.1 is that Gr = 2-8 x 1013 c m - 3 sec- 1 . 
Since intrinsic carriers have a density ηι = 1·7χ IO13 c m - 3 in Ge at 
300°K, the maximum radiative lifetime is Tmax « 0-30 sec. With the 
wider intrinsic gap of silicon, Tmax ~ 3 hr at room temperature, while 

'it is less than a microsecond in the narrow gap compound InSb. 
Fig. 52.1 shows how radiative lifetime depends on the equilibrium 

Fermi level in the semiconductor—both for infinitesimal modulation 
and for several finite values of the ratio [ne\ni). The abscissa in this 
figure is marked as a logarithmic scale of (fto/M? but this can of course 
be regarded as a linear scale of the Fermi level </>, centered on the 
intrinsic position φ^ 

With this double logarithmic presentation of Fig. 52.1, note that the 
shoulders of the curve for TO have slopes of + 1 and — 1, because TO is 
inversely proportional to the majority carrier density in markedly 
extrinsic material [see Eq. (522.1)]. The figure is symmetrical about 
the intrinsic point, a feature which may be contrasted with the conse­
quences of Auger recombination (to be discussed in Chapter 6). 

Another feature of Fig. 52.1 is that the lifetime for a large excess pair 
density is essentially independent of doping for a range of Fermi level 
symmetrical about φι. This insensitivity of TR to no (or po) occurs 
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- *—(Po/n j ) 
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FIG. 52.1. Radiative lifetime as a function of carrier density at constant 
temperature, for small modulation and for three progressively larger 
values of ne. The abscissa is essentially a linear one for the Fermi level <f>. 
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FIG. 52.2. Variation of radiative lifetime with excess pair density for 
intrinsic material and for two stages of doping. 
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because when ne is large compared with (no+po), an "excess" carrier 
of one type is more likely to encounter an "excess" carrier of the other 
type than a member of the "permanent" population. Such a form of 
recombination is often described as "bimolecular". In the bimolecular 
range, TR may be insensitive to doping, but it is very sensitive to ne; 
indeed 

Tli2 

TR « — — when ne > (n0+po) (522.3) 
ne&r 

Fig. 52.2 illustrates the progression of the lifetime between the limiting 
forms of (522.1) and (522.3) as the excess pair density increases. For the 
intrinsic case and the less strongly doped of the two extrinsic examples, 
TR has essentially reached the form of (522.3) at the right of the figure. 

5.2.3 T H E DEPENDENCE ON EXCESS GENERATION R A T E 

When excess generation is externally provoked at a rate gE for a long 
time, the excess pair density ne assumes a steady value. The second 
term on the left side of Eq. (520.1) vanishes under these conditions, 
and ne and gE are related by a quadratic equation : 

Grne
2+ Grne(n0+po) = gsn? (523.1) 

This has the solution 

^ t ) ö H - ( t ) ö r r ™ 
which incorporating the terminology of Eq. (522.1) can be written 

ne = 2 r o ^ j l + f 1 + ± T ^ 1 1 / 2 ] * (523.3) 
I L no+poi i 

When the excitation rate gE is small, ne is directly proportional to 
gE, but this linearity ceases to hold when the generation is sufficiently 
vigorous to make ne comparable with (wo+^o)· Indeed, ne varies as 
gE1/2 when the modulation is very large (the bimolecular recombina­
tion region in which TR OC He'1). Part (a) of Fig. 52.3 sketches the 
general appearance of a log-log plot of ne and gs* 

The corresponding lifetime TR = (nejgE) has of course the value 
TO of Eq. (522.1) when the excitation and modulation are small. As 
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indicated by part (b) of Fig. 52.3, TR declines as gE~1/2 (i.e. as nf1) 
when gE is very large. 

In recapitulation of the asymptotic forms : 

ne = TogE 

and 

\Gr/\no+po/ 

ne = TRgE » m (tr 

(Ue < (no+po) 

when „/no+po\2 

\gE < <*.(—-) 

ftie > (no+po) 

when „ino+po\2 

[gE > Gr[---) 

(523.4) 

(523.5) 

/ (no+Po) 

Slope = 1 /s 

Slope = \ ^ > ^ 

^ (a) 

, n 0 + p 0 . 2 

o 

h? 

g (logarithmic) 

"i 
(T° Gr(n0 + p0) 

- - ^ ^ S l o p e » - - ^ 

(b) 

g (logarithmic) 

FIG. 52.3. Variation of (a) excess pair density ne, and (b) effective lifetime 
TR, with steady state generation rate gE, when radiative recombination is 

dominant. 
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5.2.4 TRANSIENT DECAY 

The transformation of the recombination characteristic between the 
limits ne <̂  (no +po) and ne > (no +po) necessarily has an influence on 
the form of excess pair build-up and decay when excess generation 
begins or ends. For simplicity the case of transient decay will be con­
sidered, supposing that an excess pair density JV has been built up by 

FIG. 52.4. Transient decay from initial excess pair densities of JV = 
100 (no+po), 10 (wo+A)), (no+po) and 0-1 (m+po). When JV > (n0+p0) 
the initial portion of the decay is hyperbolic; but in every case the 
decay is exponential with time constant TO = rn2/Gr(no +po) for the range of 

time in which ne <^ (no+po). 
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illumination which stopped abruptly at time t = 0. Then during the 
ensuing decay, Eq. (520.1) requires that 

dne Grne(no+po + ne) 
dt ni2 t > 0 (524.1) 

The variables ne and t can be separated, and integration of Eq. (524.1) 
is quite straightforward. When the initial condition ne = JV at t = 0 is 
imposed, the solution is 

ne = ^ - ^ , t > 0 (524.2) 
6 (tfo+A) + JV)exp(*/T0)-JV' K } 

where TO is the usual low-modulation lifetime of Eq. (522.1). 
Fig. 52.4 illustrates the form of the decay (524.2) for four values of 

JV. No matter what value is supposed for JV, the decay eventually 
becomes exponential [varying as exp( — tj TO)]. Indeed if JV < (no+po), 
the decay is virtually exponential throughout its course. But if a very 
large initial excess pair density is supposed, the decay is extremely 
rapid during the interval 0 > t > 0·25το. 

When the short time simplification of Eq. (524.2) is considered, 

JV 
ne « , t <ξ T (524.3) 

1 + *[JV/TO(A) + «O)] 

it can be seen that the initial decay of ne is hyperbolic if JV > {no+po)* 
It is impressive to note that, no matter how large JV may be, this vigorous 
hyperbolic decay brings ne down to a fraction of (no +po) within the 
time interval TO. The upper curve in Fig. 52.4 is actually for 

J V = 100(7*0+A)) 

but at times later than 0-1 TO it is indistinguishable from the limiting 
curvet of infinite JV. 

f It will be seen in the next chapter that the large-modulation recombination is 
also extremely vigorous for band-to-band Auger processes. This stands in contrast 
to the behavior to be found in Chapters 8 and 9 for recombination through flaws. 
With flaw recombinative processes, the lifetime may decline to some extent as the 
excess carrier density increases, but it is still possible to have a disturbance larger 
than (no +po) at a time long after the beginning of a decay provided that the initial 
disturbance is made sufficiently large. 
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5.2.5 VARIATION WITH TEMPERATURE 

When the temperature in a semiconductor is raised, the supply of 
photons in equilibrium with the environment increases for all fre­
quencies, though the increase is particularly marked for the high 
frequency end of the spectrum, v > kT\h. This means that the equili­
brium generation rate Gr of Eq. (511.3) should be a strong positive 
function of temperature. Since Gr depends on the availability of photons 
with energies from Ei upwards, we may anticipate that Gr should vary 
crudely as exp[ — (Ei + δ) jk T ] , where δ would be rather small compared 
with the intrinsic gap E{. 

As a graphical example, the steepest curve in Fig. 52.5 shows the 
variation of Gr with reciprocal temperature for the elemental semi-

FIG. 52.5. Illustrating the temperature dependence of the factors which 
control the radiative lifetime. The curves show how for tellurium, the 
radiative generation rate in thermal equilibrium Gr, the intrinsic pair 
density m, and the corresponding maximum lifetime rmax = rn/2Gr vary with 
lOOO/T. Gr has been calculated by integration of Eq. (511.3) at six tem­

peratures. After Blakemore (1960:11). 
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conductor tellurium. This illustrates some calculations once made by 
the present author (1960:11) ; Gr was calculated at six temperatures by 
graphical evaluation of the integral (511.3), and a smooth line drawn 
to connect the six points. Fig. 52.5 shows also the increase of the intrinsic 
pair density rii with temperature, and the resultant maximum radiative 
lifetime rmax = ni/2Gr (for small modulation when the semiconductor 

2.5 3.0 3.5 4.0 4.5 5.0 5.5 
1000/T (°K) 

FIG. 52.6. Variation with temperature of the small-modulation radiative 
lifetime in tellurium, showing the transition from intrinsic to extrinsic 
behavior. The intrinsic curve of rmax is identical with that of Fig. 52.5. 

is in the intrinsic condition). Since Gr is about twice as sensitive as ni to 
temperature change, the intrinsic radiative lifetime declines on warming. 

Fig. 52.6 reproduces the curve of Tmax from Fig. 52.5, and also shows 
how the small-modulation radiative lifetime varies with temperature 
for a semiconductor containing a finite density of impurities. 

A semiconductor normally contains both donors and acceptors, and 
Section 2.4 used the symbol Nr to denote the excess of ionized donors 
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over ionized acceptors. This must also be the excess of free electrons 
over free holes: 

no-po = Mr (525.1) 
in an electrically neutral semiconductor. Since rtopo = nfi in a non-
degenerate semiconductor (a restriction adopted throughout this 
discussion), it is elementary to demonstrate that 

(no+po) = [4*2+ J W * (525.2) 
When Eq. (525.2) is incorporated into Eq. (521.1), the expression for 
radiative lifetime becomes 

Tli2 

TR = : (525.3) 
Gr{[4*2 + jV-r2]i/2 + W e } v ' 

This simplifies appropriately to Tmax for small modulation at tempera­
tures so high that the semiconductor is completely intrinsic. On con­
sidering progressively lower temperatures, the radiative lifetime tends 
to the form 

ìli2 

""f tPTî ïJ w>nt (525'4) 

when the semiconductor becomes completely extrinsic. Note that only 
the modulus of Nr is required, since />-type and n-type cases of the same 
majority density enjoy the same radiative lifetime. 

The curves of Fig. 52.6 for finite values of jVr demonstrate that the 
small-modulation lifetime is essentially temperature-independentf in 
the temperature range governed by Eq. (525.4). This insensitivity to 
temperature occurs since Gr has about the same temperature depen­
dence as ni2 (for the physical reason mentioned at the beginning of this 
sub-section). 

f The lifetime will, of course, increase again when the temperature is lowered 
sufficiently to de-ionize an appreciable fraction of the impurities. 



Chapter 6 

BAND-TO-BAND AUGER RECOMBINATION 

JUST as radiative recombination is a process complementary to optical 
absorption, so Auger recombination is complementary to impact ioniza-
tion. 

Impact ionization has two important forms. The extrinsic version 
consists of the ionization of neutral impurities by fast moving free 
carriers. This phenomenon is prominent when a moderate electric 
field is applied to doped germanium at low temperatures (1954:17). 
The converse process of extrinsic Auger recombination (in which the 
transition of an electron to a bound state is accompanied by the trans­
fer of energy to a free carrier) has been the subject of several theories 
(1955:30, 1955:31, 1957:17, 1950:9). However it is proposed to defer 
detailed consideration of transitions to bound states until Chapters 7-9. 

The present chapter concentrates on band-to-band processes. The 
generative process then consists of a fast electron or hole losing most 
of its kinetic energy in the act of creating a hole-electron pair. This is 
very prominent in the behavior of a semiconductor in a very large 
electric field—as occurs in a strongly biased p-n junction. At one 
time it was thought likely that Zener transitions (1934:2) controlled 
the breakdown of a p-n junction (1951:16), but it is now fairly well 
established (e.g. 1955:32, 1955:33) that the abrupt breakdown of a 
p-n junction is an avalanche phenomenon triggered by impact ioniza­
tion, except in exceedingly narrow junctions (1957:12). 

Even for a semiconductor in thermal equilibrium, there will be some 
free carriers whose kinetic energies are large enough to make band-to-
band impact generation possible. Detailed balance requires that Auger 
recombination must occur at an equal rate, re-creating the identical 
spectrum of fast carriers. A quantum-mechanical model described by 
Beattie and Landsberg (1959:15, 1959:16) suggests expressions for the 

214 
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two important contributions to the Auger generative rate in thermal 
equilibrium. The results of this model are embodied in the following 
discussion of non-equilibrium recombination rates. 

6.1 ELECTRON-ELECTRON AND HOLE-HOLE COLLISIONS 
Auger recombination actually comprises two processes which occur 

in parallel. One involves electron-electron collisions and the other 
hole-hole collisions. These two processes and their inverses are symbol­
ized in the four parts of Fig. 61.1, which has the following meaning. 

(a) There is a finite probability that two electrons, 1 and 2, may 

CONDUCTION 
BAND 

VALENCE 
BAND 

>2' • 2' 

(a) (b) 
* 2 ' 

(c) 
o 2 ' 

(d) 

FIG. 61.1. Auger processes which lead to creation or destruction of a 
hole-electron pair, (a) Destruction of a pair by e-e collision, (b) Creation 
of a pair by the reverse phenomenon (fast electron impact ionization). (c) 
Destruction of a pair by h-h collision, (d) Pair creation by the inverse process 

(fast hole impact ionization). After Beattie and Landsberg (1959:16). 

collide in such a fashion that 1 drops to the empty state Γ in the valence 
band while 2 assumes all this recombination energy in advancing to 
the empty state 2' high in the conduction band. The rate at which pairs 
recombine because of electron-electron (e-e) collisions is denoted as 
ree. In conformity with the nomenclature adopted in Chapter 5, this is 
capitalized as Ree for the rate occurring in thermal equilibrium. 
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(b) The rate of pair creation resulting from impact ionization by 
fast electrons (the inverse of the previous process) is denoted as gee- In 
thermal equilibrium this becomes Gee (which from detailed balance 
considerations must equal Ree). 

(c) Hole-hole (h-h) collisions can occur in a manner which excites 
one of them to a very low state in the valence band, while the other 
recombines with an electron from the conduction band. The rate of 
this annihilation is rnn (Run in equilibrium). 

(d) Pair creation from h-h processes occurs at a rate^Ä (whose equili­
brium value Gun equals Run). 

In a semiconductor with rather heavy holes, so that ft = (mclmv) < 1, 
the difference of ree and gee will dominate the recombinative behavior 
of w-type, intrinsic, and even mildly p-type situations. Only when the 
semiconductor is strongly p-type can h-h processes involving (rhh—ghh) 
become the dominant factor. [The converse of these statements is of 
course true for any semiconductor in which μ = {mcjmv) > 1.] 

6.1.1 THE MODEL OF BEATTIE AND LANDSBERG 

In order to establish a quantum-mechanical basis for the probability 
of Auger transitions, it is necessary to make some assumptions about 
the conduction and valence bands, and the occupancy of states within 
them. Beattie and Landsberg (1959:16) assume that the conduction 
band minimum and the valence band maximum occur at the same point 
in the reduced zone. For each band the density-of-states function is 
taken to be that for a scalar, energy-independent, effective mass— 
mc or mv. It is further assumed that the lifetime is large compared with 
the scattering time, so that the electron occupancy probability can be 

Pe(E) = — — (611.1) 
1+exp ΐΕ-φη\ 

\ kT ) 
for the conduction band, and the hole probability 

Pn(E) = 1 — — (611.2) 

for the valence band. 
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The usual band theory, in which states are described by Bloch one-
electron functions, is based on a Hartree-Fock approximation, whereby 
the Coulomb interaction between electrons is replaced by a self-
consistent field. Beattie and Landsberg remark that a description of 
Auger transitions requires an explicit consideration of Coulomb inter­
action terms in the Hamiltonian relating to outer shell electrons. The 
Auger transition probability is then determined by the change this 
makes in the Hamiltonian; and on this Beattie and Landsberg build 
their perturbation theory. The states of the crystal are described by 
normalized determinants of orthonormal one-electron functions. 

When the electrons involved in a transition are marked 1 and 2 
(separated by distance 712), and all other electrons are supposed un­
affected by the transition, only the term involving! (?2//cri2) of the 
perturbation operator can have a non-zero matrix element. In the 
original model this was modified to take account of screening, and the 
effective potential was written as 

(?2/,cr)exp(-Ar) (611.3) 

However, it is not necessary to introduce the refinement of screening 
except for degenerate semiconductors, and we shall give only the simple 
unscreened non-degenerate result. 

The matrix element linking initial and final states can be written as a 
multiple sum over reciprocal lattice vectors. Many of the terms corres­
pond to Umklapp-type processes (1955:35), but these have a negligible 
effect on the result. For the recombination rate is obtained by integrating 
the matrix element over all permissible initial and final states, these 
states being weighted by the probabilities (611.1) and (611.2). Since 
with Umklapp-processes the initial and final states are far from the 
band edges, they receive very little weight. Considering the dominant 
term, Beattie and Landsberg find that the thermal equilibrium genera­
tion rate due to e-e processes is 

= 8 ( 2 ^ / y . c i ^ 2 i ^ r / ^ r /i±gjj\Al (611.4) 

in a non-degenerate semiconductor. The expression is rather more 
involved for a degenerate semiconductor but that complication will 
not be pursued in this chapter. 

f Here κ is the dielectric constant. 
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The quantities F±9 F% are overlap integrals of the periodic parts of 
Bloch functions, 

Fi = J V ( k l 5 r)K,(ki', r ) d r (611.5) 
F2 = J V ( k 2 , i> c (k 2 ' , r ) d r (611.6) 

The magnitude of these integrals depends on the interatomic spacing 
and potential in the semiconductor, and must be evaluated for each 
material. Using a Kronig-Penney model, Beattie and Landsberg first 
estimated (1959:16) that li^i^l should be ~ 0-1 for Insb, but have 
since concluded from some more detailed calculations (1960:12) that 
a value of ~ 025 is more appropriate. 

When the numerical values for A, q and mo are placed in Eq. (611.4), 
this reads 

_ r8(27r)5/2g4mo-|r (mc/mo)lFiF2l2 1 

" L A3 J L / C 2 ( 1 + ^ ) 1 / 2 ( 1 + 2 / X ) J 

x^W'expf-^ll] 
= 1-32x10" v ' " ' 

Γ /1+2μ\Ει1 
x no(kT/Ei)z/2 exp — I c m - 3 sec - 1 

L U + " ' * r J (611.7) 
In similar fashion, for h-h processes 

a . - 1 - a x i o . . r <■·*"&** 1 , 
L««(l + l/l<)in(l+2/|>)J 

,M*W"exp[-(^-) | :] cm - 3 sec- 1 

P (611.8) 
There are several things to be noted about these two equations. 

Since an Auger transition is a three-body process involving two 
electrons and a hole, or two holes and an electron, it might perhaps 
have been expected to find that Gee oc noni2, while Gun oc poni2. In 
fact Gee and Gnu turn out to be more rapidly temperature-dependent 
than this. Gee is proportional to ^ 2 Τ _ 3 / 2 exp[ — μ£*/(1 +μ)/ίΤ], and 
Ghh to τζί2Τ-3 /2 exp[ — 2?«/(l +/χ)£Τ]. This happens because the two 
recombining particles in an Auger transition are not at their respective 



ELECTRON-ELECTRON AND HOLE-HOLE COLLISIONS 219 

band extrema. Requirements of momentum conservation as well as energy 
conservation make the transitions occur primarily over energy intervals 
rather larger than the minimum gap width. 

Considering the recombination process in part (a) of Fig. 61.1, 
analysis of the momentum and energy conditions shows that a transi­
tion is most probable when the electrons 1 and 2 initially have about 
the same energy—but this must be higher than the conduction band 
minimum by an amount depending on the intrinsic gap and the 
effective mass ratio μ — {mcjmv) : 

E± = E2 = Ec + pZEiKl+3μ + 2μ*) (611.9) 

The final state of the first electron is also displaced from the valence 
band maximum, 

(EO-Ey) = μ-^Εχ-Εο) (611.10) 

Only when μ = (mc\m^) < 1 can an Auger transition take place from 
the bottom of the conduction band to the top of the valence band. 

The expressions (611.7) and (611.8) for Gee and Gnn should be 
satisfactory both when μ = [mc\m^) is smaller than unity and when 
it becomes larger than unity. The formulation of the model was originally 
expected to break down for the case of equal electron and hole masses 
μ = 1), but Beattie and Landsberg have since confirmed (1960: 12) 
that the expressions (611.7) and (611.8) are still valid for that case. 

6.1.2 N E T RECOMBINATION RATE IN NON-EQUILIBRIUM 

At the point of thermal equilibrium, Auger e-e processes account 
for electron-hole pair generation and annihilation at the rate Gee. For 
h-h processes, Gun denotes the equal rates of upward and downward 
transitions. Now when the semiconductor contains excess carrier pairs, 
of density ne = (n — no) = (p—po), the recombination rate for each 
kind of process exceeds its companion generation rate. 

Since e-e recombination involves two electrons and one hole, the 
rate in a non-degenerate semiconductor should be proportional to n2p 
[provided, as usual, that Pe(E) and Pn(E) are exponential functions of 
(E/kT)]. Thus this rate should be 

/ n2p \ 
Tee = Gee ~ Τ (612.1) 
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The generative process of electron impact ionization should, under 
the same conditions, satisfy 

= Gee(-) \n0/ 
(612.2) 

since it depends on the supply of fast electrons in internal equilibrium 
with the remaining free electrons. The net rate of e-e recombination is 
then 

( nò — m2 \ I n \ -i^-J^-j (612.3) 
Similarly for h-h processes, the net recombination rate is 

{rnn-gnn) = G^{^f-){j) (612·4) 

When a semiconductor has recombinative behavior dominated by 
these two processes, the continuity equation (420.5) must then be 

dw (np-niZ)(Geenpo+Ghhpno) 
gE-— = (ree+rhh)-(gee + ghh) = (612.5) 

at ne 
if spatial effects are excluded. The right side of Eq. (612.5) can of 
course be written as ηβ/τΑ, so that the expression for the Auger lifetime 
is 

nfi 
rA = - (612.6) 

(n0 +po + ne){ Geenpo + Ghhpn0) 
The foundation has now been laid for studying the dependence of this 
lifetime on temperature, excess pair density, etc. 

6.2 BEHAVIOR OF THE AUGER LIFETIME WHEN mc < mv 

As with radiative and radiationless recombination (Chapter 5), there 
is only one lifetime when band-to-band Auger recombination dominates 
a semiconductor. The time constant which characterizes the transient 
changes of excess pair density is also the value of {ne[gE) under con­
tinuous external stimulation. 

We need to know the characteristic form of this lifetime for /z-type, 
/>-type, and intrinsic material—whether ne be large or small. In the 
following discussion the expressions used for Gee and Gun are those 
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resulting from the model of Landsberg and Beattie—as a matter of 
convenience. For any semiconductor which does not meet the con­
ditions of their model, TA should still have essentially the same func­
tional dependences. 

It is equally convenient to describe the behavior for a semiconductor 
with μ > 1 as for μ < 1. In the former case, h-h processes tend to 
dominate; while e-e processes are usually more important in the latter. 
As an arbitrary choice, this section is written in terms of a semiconductor 
for which μ < 1 (mc < mv). It will be evident throughout that the 
discussion can be applied to a semiconductor (such as CdAs or CdS) 
in which mc is larger than mv by reversing the role of pairs of terms such 
as "electron"-"hole", or "/z-type"-"/>-type", etc. 

At any rate, for a semiconductor in which μ is smaller than unity, it 
is convenient to write the Auger lifetime (612.6) in the form 

2rii2Ti 
TA = — (620.1) 

( n0 +po + ne)[(n0 + ne)+ß(po + ne)] 

Adopting Eqs. (611.7) and (611.8) for the equilibrium generation rates 
of the two Auger processes, the quantity τ̂  in Eq. (620.1) is 

3-8 x 10-18*2(1 +/*)1/2(1 +2/*) ^ ρ ί ί γ 1 ^ ) ! ^ ] 
ri = ■ ■ — sec (620.2) 

(mc/m0)|FiF2|2(AT/^)3/2 

while 

The quantity τ\ is the lifetime for intrinsic material with very small 
modulation provided that ß(po + ne) <̂  (no + ne). This is the condition 
that h-h processes should be insignificant, since the quantity ß(po + ne) 
in the denominator of Eq. (620.1) represents the influence of h-h pro­
cesses. As ß will be much smaller than unity for the chosen type of 
material (in which μ < 1), this term will not affect TA to any significant 
degree except in strongly />-type material with very few excess carriers. 
Thus Eq. (620.1) is written in the form which brings out most clearly 
the dependence of the e-e lifetime on temperature and carrier densities. 
Note that the activation energy of r< is larger than the intrinsic gap 
width. 
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The sub-sections which follow examine in some detail how lifetime 
does depend on the various factors, and how changes in doping and 
excess pair density can swing the balance from e-e to h-h domination 
and back again. In three figures used to illustrate the temperature 
dependence of the lifetime, a semiconductor is supposed for which 

Ei = 0-32-0-00003reV 
K = 28 

mv = O'/o/wo 
mc = 0-24/tto 
μ = (mclmv) = 0-32 

These happen to be the numerical values appropriate for the ele­
mental semiconductor tellurium. Behavior suggesting the dominance 
of Auger recombination has been observed in tellurium above room 
temperature (1960:11), and this material will certainly serve as well 
as any other for the basis of some illustrations. Using the numerical 
values of Eq. (620.4), the important parameters in (620.1) are 

m = 1 -55 x 10!5Τ3/2 exp( - 1850/Γ) cm~3 , 
Ti = 3-5 x 10"7r-3/2 exp(4600/r) sec (620.5) 
β = 0-48exp(-1900/r) ' 

for tellurium. Parameters corresponding with a semiconductor of 
smaller energy gap are used in another graphical example. 

6.2.1 DEPENDENCE ON DOPING AND MODULATION 

As with any other process, the Auger lifetime at a given temperature 
is influenced by the doping of the semiconductor and by the density 
of excess hole-electron pairs. The small-modulation lifetime 

2rii2Ti 

(no+po)(n0 + ßpo) 

for any values of no and po is necessarily larger than that for finite 
modulation. When β <ξ 1 (as it will be supposed to be throughout this 
section), ri is indeed the small-modulation lifetime for intrinsic material, 
controlled by e-e recombination. 
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Fig. 62.1 is used to show how the Auger lifetime varies with doping, 
for small modulation and several finite values of ne. The figure also 
indicates the regions in which e-e and h-k processes dominate each 
other. For it can be seen from Eq. (620.1) that h-h processes are 
dominant when ß(po + ne) > (no + ne); this condition is satisfied only 
within the shaded region of Fig. 62.1. In all other regions of the figure 

io3 io2 io1 i io loo 
(n0/nj) — * 

FIG. 62.1. Variation of Auger lifetime with doping status for zero modulation 
and several finite excess pair densities, in a semiconductor for which 
ß = IO-3. The h-h processes are dominant only within the shaded area. 

either no or ne is large enough to make e-e processes more important— 
and usually to an overwhelming degree. 

It was remarked in the previous chapter that the curves of Fig. 52.1 
were symmetrical about the intrinsic point; this certainly can not be 
said for the Auger model of Fig. 62.1. The maximum lifetime of 2r< is 
reached for material which is sufficiently p-type to make no <ζ ηι, yet 
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not so p-type that ßpo becomes comparable with no. It is just about 
possible to satisfy such a condition with the value 0-001 chosenf for 
ß in Fig. 62.1. 

10 
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FIG. 62.2. Variation of Auger lifetime with excess pair density when 
β = IO-3. For intrinsic material, one «-type and two p-type cases. The 
stronger p-type case of po = 100 m is dominated by h-h transitions for weak 

modulation, ne< 0·1 nu 

A number of features of Fig. 62.1 should be apparent by inspection 
of Eq. (620.1). Thus for n-type material, lifetime varies inversely as the 

t For a semiconductor with parameters as given by Eqs. (620.4) and (620.5), 
β « 0·001 at room temperature. 
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square of the electron density [TA « 2τ^ 2 / (^ο + ηβ)2] to provide a 
limiting slope of - 2 in the log-log plot. Similarly, there is a slope of 
+ 2 at the left of the figure, since for h-h dominated material (strongly 

p-type, very small modulation), lifetime does vary as po~2. When this 
material is stimulated more strongly, e-e recombination takes over 
and TA oc l/fl^po· 

Fig. 62.2 attempts to show the course of TA VS. ne for several positions 
of the equilibrium Fermi level. (The value of β is taken to be the same 
as for the previous figure.) For each case, lifetime becomes independent 
of ne when this modulation is sufficiently small ; while for sufficiently large 
modulation all the curves must eventually approach the limiting 
behavior of 

TOO = 2Ti(nilne)2 (621.2) 

The range of possible modes of behavior for intermediate modulation 
is too broad to permit complete categorization, depending as it does 
on the relative magnitudes of no,po, ne and ß. In passing it can be noted 
that for n-type material, the transition from a constant lifetime to one 
varying as ne~2 occurs moderately abruptly (within two decades); 
whereas a region in which TA varies as ne~x can persist for several 
decades in />-type material. 

6.2.2 T H E VARIATON WITH GENERATION R A T E 

When steady state external stimulation produces the generation 
rate gE, the relationship between ne and g E is at first linear, but becomes 
a cube root one for the strongest excitation. In between, a variety of 
courses is offered by the cubic equation 

ne* + ne
2[n0 + (1 +β)(ηο +p0)] + ne(n0 +po)(no+ßp0) = 2ni2TigE (622.1) 

which describes the equilibrium. However, the general trend for w-type 
and p-type cases will be as sketched in Fig. 62.3 (supposing conditions 
of doping which give the same low level lifetime for the two cases). 
In the />-type case the linear relationship breaks down for rather small 
modulation [as soon as ne > no, as may be seen from Eq. (622.1)], and 
as gE increases there may be several decades in which ne oc gE1/2 before 
the limiting behavior of 

ne = (2nih-igE)m
9 ne g> (p0 + n0) (622.2) 

is reached. For n-type material there is no such intermediate range. 
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FIG. 62.3. Schematic variation of excess pair density ne with externally 
induced generation rate, under steady state conditions. For an Auger-
dominated semiconductor when j8 < 1. (a) Typical characteristic for 

n-type material, (b) Typical characteristic for />-type material. 

6.2.3 TRANSIENT DECAY 

It was pointed out in the last chapter that transient decay involving 
radiative recombination is very rapid in the early stages, but that it 
eventually becomes an exponential function of time. Behavior of the 
same general character can be expected for Auger recombination, 
though not necessarily with a hyperbolic shape for the early decay. 

When some excitation process has been effective in the past but has 
now ceased, the decay of ne is governed by 

dne 

~dt 
ne ne(ne + n0 +po)[(no + ne) + ß(p0 + ne)] 

TA 

In 

2rii2Ti 

The solution subject to the condition that ne 

L JV*J (PO + ßn0) * L^+^o"+Ä)J " 

(l+ß)ipo + n0)i [ne(l+ß) + (n0 + ßpo) 

(623.1) 

JV at time t = 0 is : 

(po + ßno) 
In 

JV(l+ß) + {n0 + ßp0). 
;] = ~{tlro) (623.2) 
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where TO is given by Eq. (621.1). The form of the decay described by 
Eq. (623.2) is not intuitively obvious, but when expressed in a semi-
logarithmic plot of we vs. //TO, it is qualitatively similar to the appearance 
of the curves in Fig. 52.4 (for radiative recombination). The only 
important difference with Auger decay is that the initial decay from a 
very large JV is even more rapid (especially for w-type material) since 
the high level lifetime is inversely proportional to the square of the 
excess density. 

6.2.4 LIFETIME-TEMPERATURE RELATIONSHIP 

At the risk of laboring the point, the reader is again reminded that 
the model of Auger recombination being discussed presupposes that 
mc < mv to make β <ζ 1. For such a model, the ranges of interest can 
be divided as follows : 

(i) Intrinsic Range 
Throughout the range of temperature for which no = po = n^ the 

quantity τχ of Eq. (620.2) describes the lifetime for rather small 
modulation. This is usually the quantity of most interest for the in­
trinsic range, since at high temperatures when n\ is large it is not often 
that external stimulation will be sufficiently vigorous to maintain a 
very massive excess density. When such conditions do arise, 

2^ί2τί 
TA = — - -, when n0 = po = n% (624.1) 

(2ni + ne)(ni + ne) 

« τ<(1—3«e/2«<) for ne <̂  η% (624.2) 

The typical temperature dependence of TI is shown in curve (a) 
of Fig. 62.4. This uses the numerical values prescribed by Eq. (620.5). 
The predominant temperature dependence is that of the exponential 
factor in Eq. (620.5) [or Eq. (620.2)], as evidenced by the fact that 
In T% is almost completely a linear function of reciprocal temperature. 
(The very slight curvature of the line shows the influence of the 7"~3/2 

term.) As noted earlier in the chapter, the exponential term in τ% has 
an activation energy Ε{[(2μ+ 1)/(μ + 1 ) ] , which for our supposed 
numerical model is almost 25% larger than the width of the intrinsic 
gaP· 



228 BAND-TO-BAND AUGER RECOMBINATION 

As an intrinsic semiconductor is cooled, control of the Fermi level is 
eventually taken by the impurities present. The influence of this on the 
Auger lifetime depends very much on whether the extrinsic transition 
occurs to an w-type or/>-type status. 

(ii) Extrinsic n-Type Behavior 
When donors are more numerous than acceptors, the semiconductor 

becomes /z-type on cooling. Since the majority carriers are electrons 
(the carriers most efficient in promoting recombination when μ < 1), 
it can be expected that a considerable recombination rate will be main­
tained over a wide range of temperature. 

As before, JVr = (rto—po) is used to denote the excess of ionized 
donors over ionized acceptors; then 

no-Wr+ViW + m*)) (m3) 
(no+po) = v W + 4/^) / v · ' 

Assuming that h-h collisions are of negligible importance, 

(ηο + ηβ) > ß(po + ne) 

Eq. (620.1) may be rewritten in the form 

TA = — (624.4) 
[ne + VW2 + 4fli2)] [2ne + Nr + V(W + W)] V ; 

The lifetime of (624.4) begins to diverge from (624.1) when the semi­
conductor is cooled to a point at which n% is no longer much larger 
than jVr. On continuing to cool into the extrinsic region, the lifetime 
eventually approaches the limiting form of 

2«ί2τί 
TA ~ ττ; ^> no π Nr> m (624.5) 

(Nr + tie)2 

Curves (b) and (c) of Fig. 62.4 illustrate the behavior of (624.4) 
between the limiting forms of (624.1) and (624.5) for small modulation. 
The term small modulation is applied here in the sense that ne <̂  JVr. 
This is not a severe restriction when it is noted that curves (b) and (c) 
correspond with Nr = 1015 cm -3 and Nr = 2 x 1016cm-3, respectively. 
It will not happen too often in practice that excess carrier pairs will be 
present in densities as large as these. 
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Since the case under discussion is dominated by e-e collisions, the 
recombination rate is linear in total hole density and quadratic only in 
total electron density, f Then ne may be large or small compared with pa 

FIG. 62.4. Temperature dependence of small-modulation Auger lifetime 
for a semiconductor described by the parameters of Eqs. (620.4) and 
(620.5). (a) For intrinsic material, no = p0 = m. (b) For n-type material, 

(no-po) = 1015 cm-3. (c) For (n0-po) = 2 xlO1 6 c n r t 

without affecting the lifetime at all. Only when ne becomes appreciable 
compared with no (i.e. with Nr) does the lifetime start to droop below 
the value characteristic of zero modulation. 

t Note that the two extrinsic curves of Fig. 62.4 differ in ordinate by a factor of 
400, while the corresponding values of Nr differ by a factor of 20. This happens 
because recombination is quadratic in electron density for e-e processes, 

i6 
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When radiative recombination was reviewed in Chapter 5, a 
temperature-independent lifetime was found in the extrinsic range. 
This does not happen for Auger processes, since the energy of a recom-
bining pair is larger than the intrinsic gap. For extrinsic τζ-type material, 
the temperature dependence of η^τι in Eq. (624.5) is 

The exponential factor provides most of the extrinsic temperature 
dependence for curves (b) and (c) of Fig. 62.4, which is based on the 
parameters of Eqs. (620.4) and (620.5). 

(iii) £ero~Modulation p- Type Behavior 
In starting to discuss the lifetime in />-type material for which μ < 1, 

it is useful to suppose first that any departure from thermal equilibrium 
is very small, ne <ζ both po and no. The lifetime appropriate to this con­
dition is TO of Eq. (621.1). This can be rearranged to read 

2r* 
TO = (624.6) 

(l + nolpo)(l+ßpolno) 
Throughout the intrinsic range, the first factor in the denominator 
equals 2, while the second factor is imperceptibly different from unity 
(provided that β < 1, which is supposed to be the case). 

On cooling into the jfr-type extrinsic range, (l + ßpo/no) will remain 
essentially unity for a considerable range of temperature. On the other 
hand, ( 1 + no/po) approaches unity when the temperature is lower than 
that of the extrinsic-intrinsic transition. Thus the first effect of cooling 
to a /?-type status is that of reducing the denominator of Eq. (624.6) 
from 2 to 1. This makes the lifetime twice as large as τ$. 

The physical reason for this is that the source of electrons for e-e 
collision recombination is being depleted more rapidly on cooling than 
would have been the case in undoped material, and this is only partially 
offset by the greater availability of holes to complete the process. At 
any rate, the low-modulation lifetime TO behaves like 2τ$ for a consider­
able part of the extrinsic temperature range. This is illustrated by the 
curves of Fig. 62.5. Curve (a) is that of completely undoped intrinsic 
material, just as in Fig. 62.4. Curve (c) also corresponds exactly with 
curve (c) of Fig. 62.4; that for a material with (no—po) = 2 x 1016 cm"3· 
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These curves are used to throw into sharper contrast the low-modula­
tion lifetime behavior of a jfr-type sample. Curve (b) is calculated 
assuming (po — no) = 2 x 1016 cm- 3 and it will be seen that TO « 2τ$ from 
300°K down to about 180°K. 
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FIG. 62.5. Temperature dependence of TO for a semiconductor described by 
the parameters of Eqs. (620.4) and (620.5). (a) For intrinsic material. 
(b) For p-type material, (po—no) = 2 X 1016 cm-3, (c) For rc-type material, 

in which (no-po) = 2 X 1016 cm"3. 

On further cooling, the lifetime rises less rapidly, crossing the intrinsic 
line at a temperature Ta and becoming appreciably smaller than τ% at 
lower temperatures. This happens when the electron supply is so 
limited compared with that of free holes that h-h recombination processes 
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finally are able to dominate over e-e collisions. The two mechan­
isms are of equal strength at temperature Ta, when the second factor 
in the denominator of (624.6) reaches a value of 2 ; thus the position 
of this cross-over is determined by the majority hole density in the 
semiconductor. 

p0 = Wij8-i/2 = ηοβ-ι 

At temperatures rather lower than Ta, the less favored h-h processes 
take over completely and the lifetime assumes the form 

™*WœrMexp[(îT^]' T<T' (6248) 

This is substantially the case below about 130°K for curve (b) in 
Fig. 62.5. 

There is a similarity between the expressions describing the zero-
modulation lifetime for n-type and/Mype cases. [Compare Eqs. (624.5) 
and (624.8).] However, the activation energy in the n-type case is 
μΕ^(1 +μ), whereas it is larger by a factor of/x-1 in the j&-type case. 
The low-temperature activation energy of curve (b) in Fig. 62.5 is 
smaller than the intrinsic gap—but not by a very large amount. 

The low-temperature slopes of curves (b) and (c) in Fig. 62.5 do in 
fact indicate the temperature dependence of the effective interaction 
cross-sections for h-h and e-e processes. It has already been remarked 
that momentum as well as energy must be preserved in an Auger 
transition, and this makes the cross-sections decrease on cooling. For 
a semiconductor in which μ < 1, the h-h cross-section decreases more 
rapidly than the e-e cross-section; hence the steep slope of curve (b) 
compared with that of curve (c). 

(iv) p-Type Behavior with Finite Modulation 
This rapid drop-off of h-h efficiency on cooling means that when any 

finite excess pair density ne is maintained, h-h processes must be over­
shadowed by e-e processes at sufficiently low temperatures. Consider a 
semiconductor which is quite jb-type (po > wo)> an<^ suppose that excess 
pairs are present in a density which is still small compared with the 

at T = Ta (624.7) 
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majority density po—though large enough to be reckoned with no at 
low temperatures. Under these conditions the first term in the denomin­
ator of Eq. (624.6) can be left as unity, and the second must be modified 
to account for the additional possibilities of e-e recombination by using 
an excess electron as the recoil particle. Thus for these conditions 

TA « } (624.9) 
1 + ß(polno) + (nJn0) p0 > ne) 

From the preceding discussion it is known that unity is the most im­
portant term in the denominator for a considerable temperature range 
(in which the lifetime is 2τ$, controlled by e-e collisions). Moreover, 
ß (polno) becomes larger than unity when T < Ta, representing the 
influence of h-h collisions. But now the additional possibilities for e-e 
collisions are represented by the third term in the denominator. 

When ne is smaller than no = nplpo for the temperature ϋΓα, h-h 
collision recombination will take over as previously described, but it 
will remain predominant only down to a second temperature 7& < Ta, 
characterized by 

(ndPo) = β } 
at T=Tb (624.10) -""C£W-C-3#] 

For all temperatures lower than 7&, the e-e recombinative term 
(ne/no) is the largest in the denominator, and the lifetime increases 
much less rapidly with decreasing temperature. In this range the 
lifetime can be expressed as 

2ni2Ti 
rA « — — T <Tb (624.11) 

pone 

which has the same temperature dependencef as Eq. (624.5) for an 
n-type sample. 

When ne is sufficiently large, ra changes over from 2r$ to the form 
of Eq. (624.11) before the temperature Ta is reached. Recombination 
is then e-e dominated over the entire temperature scale. Fig. 62.6 shows 
curves of TA VS. 1 / T for the />-type sample previously discussed and with 

f Lifetime varies as T3/2 exp 
[(ΐ+μ) AT]· 
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various added pair densities. The transition temperature Ta for this 
example is 165°K (po = 2 x 1016cm-3, no = 101:Lcm~3), and a tempera­
ture range of h-h domination can only occur when ne < 1011 cm-3. This 
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FIG. 62.6. Temperature dependence of Auger lifetime for a semiconductor 
with parameters as given by Eqs. (620.4) and (620.5). (a) For intrinsic 
material, ne Ä 0. (b) For material doped with 2 X 101β cm- 3 excess accep­
tors when ne » 0. (c) (d) (e) (f) Similarly doped material with pro­

gressively larger excess pair densities (in cm- 3 as marked). 

criterion is satisfied in curve (c) of Fig. 62.6, but never quite happens 
with curve (d). For the excess pair densities supposed incurves (e) and 
(f), e-e domination is complete at all temperatures. 
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(v) Effect of a Smaller Intrinsic Gap 
It will be appreciated that much of the preceding discussion is of a 

purely academic character, in that we have scrutinized the temperature 
dependence of lifetime for various conditions without regard for other 

1000/TCK 

FIG. 62.7. Zero-modulation Auger lifetime for a semiconductor if E\ Ä 0·09 
eV and μ = 0-25. (a) In intrinsic material, (b) With 5 x 1016 cm"3 excess 

acceptors, (c) With 5 X 1016 cm- 3 excess donors. 

recombination mechanisms which would supervene in any real solid. 
Thus the extremely long lifetimes depicted for/?-type material with small 
modulation could never be expected to be realized in practice; other, 
more vigorous, recombination mechanisms would inevitably dominatç 
the behavior, 
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This is not so likely to happen for a material with a small energy gap 
(such as gray tin or mercury selenide for example). This statement can 
be made since Auger lifetimes and their temperature dependences are 
greatly reduced when the energy gap is smaller, and the factor differen­
tiating between the probabilities of e-e and h-h processes is also smaller. 
As an illustration of this, Fig. 62.7 shows how the zero-modulation 
Auger lifetime should depend on temperature for intrinsic, n-type and 
/»-type examples of a hypothetical semiconductor in which E% ~ 0-09 eV 
and μ = (mclmv) = 0-25. This calculation is not exact in that degener­
acy has been ignored, which is not a safe assumption with such a small 
energy gap and rather large doping concentrations. Nevertheless, the 
figure does indicate the general features to be expected of Auger recom­
bination in a small gap semiconductor. 

It will be noted that when the electrons form the majority population, 
TA is quite insensitive to temperature, since T3 / 2 and 

have almost canceling effects over a broad range. Also, the life-time 
for p-type material is much smaller than in the example previously 
discussed (for a much larger intrinsic gap). It is not, then, so implausible 
that Auger transitions could actually be the controlling factor in the 
lifetime of a small gap semiconductor in both w-type and p-type con­
figurations. 



Chapter 7 

FREE CARRIER CAPTURE BY FLAWS 

IN this chapter, the important considerations are the excitation of free 
carriers from flaws, and the ways in which they can be recaptured. For 
the first two sections of the chapter, attention is focused on the interac­
tions between a single species of donor flaw and the conduction band 
—when transitions to and from the valence band are negligible, f 
Section 7.1 describes the basic mechanisms which can contribute to 
such transitions, and Section 7.2 the dynamics of the models. J These 
problems differ from those of Chapters 5 and 6 in that a set of donor 
flaws represents a limited source of electrons for excitation. 

Flaws must offer capture possibilities for both electrons and holes. 
This is discussed in Section 7.3 as a preparation for Chapters 8 and 9. 

7.1 FLAW C A P T U R E M E C H A N I S M S 

As noted in Sub-section 4.3.2, a free electron can undergo a transition 
to a localized flaw state only if some suitable means is found of liberating 
the recombination energy. This energy can appear as a photon (radia­
tive recombination), as lattice vibrations (phonon recombination), or 
as added kinetic energy for a free carrier (Auger recombination). 

The model to be used for this section is illustrated by Fig. 71.1. As 
an arbitrary choice, the material is supposed to be w-type with donors 

t Entirely similar considerations should apply for a model of transitions between 
a set of acceptor flaws and the valence band, if the conduction band can be ignored. 

£ Rittner (1956:13) has discussed the behavior of the extrinsic lifetime, but did 
so for a supposedly uncompensated semiconductor. This will not usually be a satis­
factory assumption. 

237 
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at the energy (Ec-Ed) more numerous than all the various kinds of 
low-lying compensating acceptors. The reactions which are of interest 
for the present involve only the donors and the conduction band. 
Indeed, we shall go a stage beyond Fig. 71.1 in supposing temperatures 

Conduction 
Band n « (n0+ne) 

((N0 + n-p) ionized 

(Nd-Na-n+p) neutral 

— > N a 

Valence 
Band p«n 

FIG. 71.1. Model of an w-type semiconductor at low temperatures used for 
the discussion of Sections 7.1 and 7.2. 

so low that p is completely negligible in the expressions for neutral and 
ionized donor densities, f 

As in the two previous chapters, spatial effects will be ignored in 
considering the continuity equation. The symbol gE now denotes the 
rate at which electrons are excited from the donors to the conduction 

t This does not imply that flaw <—> band transitions are not important at higher 
temperatures; in later sections the electron-hole recombination is studied which 
results from the interaction of flaws with both bands. But excitation and recombination 
between flaws and a single band can most readily be separated from other phenomena 
at low temperatures. 

Ec 

Φ 
Ec-Ed 

Ec-Ei 
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band by external stimulation. Then the continuity equation can be 
expressed in the form 

dne Γ 1 1 1 Ί 
gE--£ = ne\— + — + — (710.1) 

at {.TR rp TA\ 

where the three lifetimes are characteristic of the radiative, phonon, and 
Auger processes. Each term on the right side of Eq. (710.1) is the net 
difference of recombination and generation rates for a process : 

ne = (rR—gR) radiative process 
TR 

Tie 
= (rp—gp) phonon process V (710.2) 

TP 
tie 

= (TA— gA) Auger process 
TA 

The following sub-sections consider the functional form of (r—g) for 
each of these three processes, and comment on assessments which have 
been made about their importance. 

7.1.1 RADIATIVE RECOMBINATION 

When the conduction band is non-degenerate and the probability 
function (even with excess electrons present) is of the Boltzmann type, 
the radiative capture rate TR should be proportional to the total 
electron density n. It should also be proportional to the number of 
ionized donors with which recombination is possible. Thus when the 
rate is GR in thermal equilibrium, the capture rate in general is 

Γ n(n + Na) . , 7 1 1 n 
TR = GR\—- —- (711.1) L no(no + JV«)J 

Similarly, the generation rate must depend on the density of neutral 
donors. From the requirements of detailed balance in thermal 
equilibrium, 

gn-Gnl"-*·-] (711.2) 

The net radiative recombination is the difference of Eqs. (711.1) and 
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(711.2), and so 

m-gR = _L = /<*R\ Γ (Md-iïa) + (no + ne)l 

Some idea of the order of magnitude of GR can be obtained from the 
model of Sciar and Burstein (1955:30), in which the cross-section for 
capture is calculated by assuming that donor centers are hydrogen-like. 
When the standard quantum-mechanical result (e.g. 1933:3) is 
renormalized to allow for a dielectric constant κ and effective mass 
mCy the capture cross-section for electrons of energy E is 

GR(E) « 1-7X10-**KU*(—\ ( — ) cm2 (711.4) 
\mcJ \E-EC/ 

The mean capture coefficient <£#> can be determined as described 
in Sub-section 4.1.2; the result then is 

/ \ GR 1 - 2 X 1 0 - 1 2 ^ / 2 ^ / ^ / 2 

no(no + JVa) T I/2 \mcI 

with the donor ionization energy E& expressed in electron-volts. 
When impurity states are non-hydrogenic, the capture coefficient is 

not likely to differ from the result (711.5) by more than an order of 
magnitude. Yet the capture coefficients determined experimentally for 
various impurities in germanium and silicon are several orders of 
magnitude larger than provided for by Eq. (711.5). This is taken 
(1955:30) to indicate that radiative capture is much less efficient than 
the other possible processes. 

It may be noted in passing that the radiative generation rate at 
thermal equilibrium can always be calculated by the method of van 
Roosbroeck and Shockley (1954:15). This requires knowledge of the 
optical absorption coefficient for impurity ionization over the spectrum. 
Such information is available for some types of chemical donors and 
acceptors in silicon (e.g. 1956:17, 1956:18, 1955:38). None of these 
impurities show the very strong optical absorption which would be a 
required sign for vigorous extrinsic radiative recombination. 

The most direct proof of optical recombination is of course the detec­
tion of recombination radiation. Such radiation has been definitely 
associated with free carrier capture by impurities (e.g. 1956:31, 
1960:7), but the small amounts of radiation detected demonstrate 
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only that some radiative transitions take place, not that this is the 
dominant process. 

7.1.2 PHONON RECOMBINATION 

When the recombination energy of a captured electron is released as 
one or more phonons, the continuity equation has the same functional 
form as for radiative capture. For the capture rate rv depends on both 
n and (n + Na)l while the excitation rate depends on (Na — Na — n) · 
As a companion to Eq. (711.3), the equation for phonon recombination 
can be expressed immediately as 

*-gp = 1 = /Gp\ r (JVtf-JVq) + (*ο+*)π 
ne rp \ n01 l(Nd-Na-no) (flo + JVa)J 

A number of theoretical models have been advanced for electron 
excitation and capture involving absorption and emission of phonon (s). 
A crucial feature of such theories must be thè way they allow for multi-
phonon processes, since in many cases the energy to be accounted for is 
larger than possible for a single phonon. 

One of the earlier models was that of Goodman et al. (1947:2), 
who described the interaction of the electron with the lattice by an 
interaction potential which depended only on the motion of the donor 
atom. They allowed for multi-phonon processes through higher order 
terms in the expansion of this interaction potential, but found that the 
resultant transition probability was diminished by a factor of 106 for 
each additional required phonon. Thus the model suggested a notice­
able transition rate only for single-phonon processes. 

Gummel and Lax (1955:34) have calculated the ionization rate due 
to single-phonon absorption, when a Coulomb wave-function is used 
for the final state. This increased the probability by two orders of 
magnitude compared with the Goodman-Lawson-SchifF result for a 
final state composed of plane Bloch waves. An increase by a further 
order of magnitude resulted from use of the Bardeen-Shockley deforma­
tion potential (1950:7), and Gummel and Lax then found that for 
typically expected semiconductor parameters the capture coefficient 
would be 

GP 
<£P> = « 6 x 10-*r-1 / a cm3 sec"1 (712.2) 

no(no + Na) 
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Kubo (1952:11) has questioned the Goodman-Lawson-Schiff 

treatment of multi-phonon processes. He argues that the lattice vibra-
tional modes are dependent on the occupancy of electronic states, and 
shows that such an argument could lead to a greatly enhanced proba­
bility for transitions involving several phonons. Haken (1954:19) has 
given rather different arguments for expecting reasonable probabilities 
for multi-phonon transitions. 

A comprehensive account of multi-phonon capture is given by Lax 
(1960:15), based on the reasonable premise that capture takes place 
first into an excited state of large orbit. This is followed by a cascade 
of one-phonon transitions, the electron finally reaching the ground 
state. Both optical and acoustical branch phonons can assist in these 
processes, which are dependent on the charge carried by the impurity 
center. It appears that Lax's model can account for the varied forms of 
capture cross-section temperature dependence, and is capable of 
explaining the extremely large cross-sections (as large as 10~12 cm2) 
exhibited by some types of impurity. 

7.1.3 AUGER RECOMBINATION 

For the extrinsic n-type model currently under discussion, the only 
Auger capture process which can occur involves electron capture by 
a donor when a second free electron is excited to a high energy state. 
Then the recombination rate should be proportional to n2 and to the 
density of ionized donors which can receive an electron: 

rA = GA\^±^L] ( 7 1 3 . 1 ) 

The excitation rate must be proportional·)- to n and to the number of 
neutral donors. Detailed balance in thermal equilibrium then demands 
that 

u = GJ «*-*'-> 1 (7,3.2) 

From the difference of Eqs. (713.1) and (713.2) in non-equilibrium, 

f This proportionality is required since the supply of fast electrons which can 
ionize donors is a constant fraction of the total free electron density, provided that 
Pe(E) = exp[(<t>n-E)/kT]. 
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the Auger lifetime of Eq. (710.2) will satisfy 

Ά-gA = J_ = GA(no + ne)r (JVa-JVq) (no + ne)l 
We τ ^ Wo2 L(JVd- Na-no) (no + Na)\ 

Sciar and Burstein (1955:30) have calculated G A for a situation 
involving impurities with hydrogen-like levels, using the Born approxi­
mation (1926:2). This procedure overestimates the cross-section 
(1949:9), but probably not to an alarming extent, and it does enable 
use of the well-known result (1949:8) for the cross-section of hydrogen 
atoms with electrons incident. Sciar and Burstein renormalize this 
result to allow for effective mass and dielectric constant, and integrate 
over conduction states to obtain the total transition rate. The result is 

<CA> GA 2xlO-2Q(">o/02
 6 , , _ . „ , , 

= « cm6 sec - 1 (713.4) 
no no2(no + Ma) T2Ed 

if Ed is expressed in electron-volts. 
This result will be modified for impurities with non-hydrogenic 

states, and will be considerably different if the impurity is not electrically 
neutral after capturing an electron by an Auger process (as is often the 
case for multivalent flaws). 

Bess (1957:17) has also calculated Auger transition rates for hydrogen­
like impurities in the Born approximation. The most important 
difference from Sciar and Burstein's model is the consideration of other 
kinds of Auger process which become important when there is a con­
siderable free hole density. This will be referred to in Section 7.3. 

7.1.4 RELATIVE PROBABILITY OF THE VARIOUS PROCESSES 

Enough has been said already to indicate that radiative capture— 
while always present to some extent—is unlikely to dominate the re­
combination of electrons with impurities. The choice for a dominant 
process must lie between phonon and Auger recombination. 

Lax (1960:15) suggests that phonon-aided recombination of the 
cascade type will usually prevail unless the center bears a strong charge 
which is repulsive for the carrier to be captured. For monovalent donors, 
each ionized center carries a charge q which assists in Coulomb attrac­
tion of a free electron. It is only for multivalent flaws that electron 
capture may be required by centers which already have a negative 
charge of one or more units. 
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Certainly, measurements of the recapture time for simple donors do 

not usually show a functional dependence which would indicate the 
activity of Auger processes. For the sake of completeness, however, 
Section 7.2 does consider the functional behavior of the lifetime both for 
phonon-dominated recombination [Eq. (712.1)] and for Auger-
dominated capture [Eq. (713.3)]. 

7.2 BEHAVIOR OF THE EXTRINSIC LIFETIME 

7.2.1 FOR PHONON-AIDED RECOMBINATION 

Eq. (712.1) describes the relationship of excess carrier density to 
lifetime when Auger and radiative capture processes are of very minor 
significance. The zero-modulation lifetime TO can be written as 

no(JVa + n0)r (Na + n0)(Nd - Να)Λ "χ 

To = T: «o+—— — (721.1) 
GP L (Nd-Na-n0) J 

It should be noted that the quantity no(Na + no)IGp in Eq. (721.1) 
is likely to be but feebly dependent on the temperature, since this 
corresponds to l/<£p> of Eq. (712.2). 

In terms of TO, the lifetime for any finite modulation is 

Γ no(Nd -Na- no) + (Na + np)(Nd - Na) 1 
T " T°L(/*o + ne){Nd-Na-m) + (Jfa + m){Nd ~Na)\ ( ' ) 

which falls below TO when ne exceeds whichever is the larger of no 
or Na­

in practice, deliberate extrinsic modulation of a semiconductor is 
usually carried out at very low temperatures—such that no <̂  Na < Na-
The temperature range for which this condition is satisfied has been 
discussed in Sub-section 3.2.2. Equations (721.1) and (721.2) simplify 
at low temperatures to 

no 
TO = — - = 77——, no<Na< Nd (721.3) 

and 

r = - — ^ — , no < Na < Na (721.4) 
1 + nejNa 

«0 

GP 

1 
Na{cPy 

TO 
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This form of behavior f is closely parallel to that of Chapter 5 for band-
to-band recombination in a semiconductor with a temperature in­
dependent majority carrier density (corresponding here with the density 
of ionized donors). 

When a semiconductor is maintained at a very low temperature, so-
called "background radiation" leaked from neighboring warmer sur­
faces often makes n considerably larger than no even before any deliberate 
"signal" illumination is turned on. For a small signal, the lifetime of 
importance is then the incremental lifetime rinc = (dne[dgE) rather than 
(jielgE) itself. In the temperature range for which Eqs. (721.3) and 
(721.4) are valid, 

dne TO 
rinc = — = 7Γ-0-7-Λ7Τ (721.5) 

dgE (1+2^/JVa) 
It is possible for rinc to be only a minute fraction of the lifetime TO 
enjoyed when "background radiation" is eliminated. 

Excess generation produced by photons from outside the semi­
conductor hinges on how many donors are already ionized. I t is not 
possible for ne to exceed (Nd — Na — no), and when this limiting value is 
reached, photons are not absorbed usefully at all. J Thus if the cross-
section for absorption of a photon by a neutral donor is σ^, the absorp­
tion coefficient is σα multiplied by {Na — Na~ w), the density of such 
donors. For an incident photon flux / , the ionization rate becomes 

gE = Iad(Nd-Na-n) (721.6) 

Under steady state conditions, gE is also equal to (we/τ), with a lifetime 
given by Eq. (721.2) in the general case, or by Eq. (721.4) at sufficiently 
low temperatures. Then ne is related to / by a quadratic equation. For 
the very low temperature range when TO = l/jVa<cp>, this quadratic 
relationship is 

η? + η,[Να + ΙσαΙ 0 > ] = {Nd-Na)Ioäl (cP> (721.7) 

When the incident photon flux is small, ne is directly proportional to 
/, but with increasing flux a range of proportionality to I1/2 is reached. 

t As one experimental example, Ascarelli and Brown (1960:13) find that the 
recombination time for electrons with As and Sb donors in Ge at 4°K is in accordance 
with Eq. (721.4). They study transient decay, which is bimolecular for large modula­
tion and becomes exponential as expected when ne < JVa. 

i In order to keep the problem reasonably simple it is assumed that stimulated 
radiative recombination is too slow a process to have any influence. 

i7 
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This gives way in turn to a saturation condition when / is large enough 
to make ne approach (Nd - Na). These properties of the relationship 
(721.7) can be seen in the calculated curves of Fig. 72.1. The two 
curves shown are for a set of donors which is either 1% or 10% 
compensated. 

T I I I 1 Γ 

Icrd/<cp> cm"3 

FIG. 72.1. Variation of excess electron density with incident photon flux If 
for a semiconductor with Nd = 1016 cm- 3 donor centers and (a) 1014 cm-3, 
(b) 1015 cm- 3 compensating acceptor levels. Temperature is supposed 

sufficiently low to make wo <ζ Na < Nd. 

7.2.2 FOR AUGER RECOMBINATION 

The essential features of excess carrier dynamics with Auger re­
combination dominant can be seen by considering the behavior for very 
low temperatures, when n0 <4 Na < Na- In this temperature range, the 
lifetime of Eq. (713.3) reduces for very small modulation to 

no 
TO = — , n0< Na < Nd (722.1) 

Both no and G A are functions of temperature, the dependence of no 
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being given by Eq. (322.8). If the Sciar and Burstein model leading to 
Eq. (713.4) is at all realistic, G A has essentially the temperature de­
pendence of no2 at low temperatures.f Thus TO should vary approxi­
mately as exp(EdlkT). 

An interesting aspect of Auger recombination is that the zero-
modulation lifetime TO should not depend on the density of compensat­
ing centers until this becomes comparable with Na itself. This can be 
verified by substitution from Eqs. (322.8) and (713.4) into Eq. (722.1). 

With the model of phonon recombination (Sub-section 7.2.1) the 
lifetime was degraded below TO only when ne became comparable with 
the density Na of normally vacant donors. However, for Auger re­
combination the lifetime TO holds good only when ne <ξ no. A second 
change in the behavior occurs for excess electron densities comparable 
with JVa. From Eqs. (713.3) and (722.1), 

TO 
T = , low temperatures (722.2) 

(l + nelno)(l + nelNa) 

This form of concentration dependence occurs because Auger capture 
involves two electrons and one ionized donor. 

The incremental lifetime when Auger recombination dominates 
(just as for the previously considered model of phonon recombination) 
can be drastically reduced when background radiation maintains a 
steady non-equilibrium population of electrons. The relation between 
ne and incident photon flux is cubic, and there are possibilities for ne 
to vary directly as / , as 71/2, and as 71/3 before saturation is reached. 
The procedure to be followed is obvious and will not be discussed 
further. 

For many kinds of impurity, the Auger low-modulation lifetime is 
likely to be much larger than that for phonon-cascade capture. But 
since the Auger lifetime decreases rapidly when excess carriers are 
added, the electron capture can become dominated by Auger transi­
tions for sufficiently strong modulation. Conditions for which the two 
kinds of process go on at the same rate depend on the type of impurity, 
degree of compensation, temperature and incident photon flux. The 
preponderance of phonon or Auger recombination may be controlled 
by the extent to which "background radiation" can be suppressed. 

f The exponential factor involved should be more powerful than the factor T~2 in 
promoting temperature dependence. 
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7.3 INTERACTION WITH BOTH BANDS 
The preceding discussion has been concerned exclusively with transi­

tions between a set of localized levels and one band (specifically, between 
donors and the conduction band). As an introduction to the subject 
matter of the next two chapters, it must now be acknowledged that a 
localized flaw of any kind will have some interaction with both the 
valence and conduction bands. Not only can a neutral donor give the 
conduction band an electron, and an ionized donor capture such an 
electron; there must be a chance that a neutral donor can capture a 
free hole, and that an ionized donor can expel a hole to the valence band. 

The previously discussed radiative, phonon and Auger capture 
processes must be kept in mind for the interactions of a flaw with both 
bands. Radiative capture from the conduction band to flaw levels has 
been demonstrated by observation of emitted photons both for flaws 
very close to Ec and for flaws almost as low as the valence band. Thus 
Koenig and Brown (1960:7) have detected O01 eV photons emitted in 
electron capture to shallow antimony donor states in germanium. At the 
opposite end of the energy scale, Haynes and Westphal (1956:31) 
report that photons are liberated when electrons drop from the silicon 
conduction band into boron, gallium and indium acceptor states; 
hv is then almost as large as Εχ. The observation of emitted photons 
shows only that some capture is radiative, not that radiative capture is 
the dominant process, and indeed Koenig and Brown estimate that 
only 1 in 109 of the transitions they induced were radiative. On the 
other hand, Pokrovsky and Svistunova (1961 : 6) demonstrate that 
most of the capture acts of free electrons by neutral indium acceptors in 
silicon are radiative. We may expect that a flaw which captures car­
riers from one band predominantly by one process can be controled 
by quite different processes in its relationship with the other band. 

Bess (1957:17) considered a hydrogenic model for a flaw level a nd 
calculated the Auger capture coefficients for both bands. Four processes 
must be considered; electron capture using an electron or a hole as the 
recoil particle, and hole capture with the same two choices of recoil 
particle. Bess notes that excitons as well as free carrier pairs can be 
annihilated by Auger processes involving flaws; however, he finds that 
the rate of this should be very small, a conclusion in agreement with 
that of Toyazawa (1954:18). 

The phonon-cascade model of Lax (1960:15), previously referred to 
in Sub-section 7.1.2, allows for capture of both kinds of free carrier. 
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It is likely that this kind of process is the dominant one for most kinds of 
flaws encountered in semiconductors, since it can account in a plausible 
fashion for the wide range of observed capture cross-sections and of 
cross-section temperature dependences. 

Phonon-aided recombination requires the capture cross-section to be 
concentration independent, which experiment indicates to be usually 
the case. Cross-sections proportional to the majority carrier density, as 
reported for some kinds of flaw in silicon (1955:36, 1955:37) and in 
lead sulfide (1953:13), are an indication of Auger activity. Lax sug­
gests that in these cases the flaws have a double or treble repulsive 
charge for the majority carrier to be captured, and that this repulsion 
inhibits phonon recombination to such an extent that Auger recombina­
tion is enabled to take over. As can be seen from several published 
tables (1958:15, 1960:15, 1960:16) for various kinds of center in 
silicon and germanium, the capture cross-sections show a marked 
progression with flaw charge. 

The asymmetry of capture cross-sections has a profound influence on 
the principal function of a flaw—whether it should be regarded as a 
recombination center for holes and electrons or as a trap for one kind of 
free carrier. Thus when a flaw captures a free electron, it can return to 
its original charge state in two ways : 

(a) The electron can be re-excited to the conduction band. In this 
case, the flaw has behaved as a temporary electron trap. 

(b) The flaw instead can capture a free hole. In this case the flaw 
has behaved as a recombination center. 

In practice, flaws will perform both of these functions to a greater or 
lesser degree. The relative importance of trapping and recombination 
depends on the relationship of the flaw level to the Fermi energy and on 
the asymmetry of the capture cross-sections. 

The distinction between the trapping and recombinative functions 
made above is in agreement with that drawn by Rose (e.g. 1955:16, 
1957:20) and Bube (1960:10) among other writers. I t should be 
pointed out that when the energy, cross-sections, etc., of flaws places 
them definitely in the recombination center class, they may still have a 
considerable trapping effect in the sense that the flaws produce a marked 
disparity between the densities of excess electrons and excess holes. 
This is demonstrated in the next chapter. 



Chapter 8 

RECOMBINATION THROUGH A SET OF 
MONOVALENT FLAWS 

T H E band-to-band models of electron-hole recombination described in 
Chapters 5 and 6 are particularly important for small energy gap semi­
conductors. It is more likely that the dominant mechanism for electron-
hole annihilation in a material with a large energy gap will involve the 
successive capture of an electron and a hole by a flaw. The importance 
of this kind of process has been recognized for a long time by those 
working in the field of phosphors (e.g. 1939:2), but it was not applied 
to semiconductors until a number of years later (1952:7, 1952:8). 

The concept of carrier capture by a flaw was explored in the previous 
chapter, and it was noted at that time that flaws tend to interact with 
free carriers of both types. As the title of the present chapter indicates, 
it is now proposed to consider the dynamics of a semiconductor when a 
single species of monovalent flaw controls the electron-hole recombina­
tion rate. More complicated models are deferred to Chapter 9. 

8.1 THE TWO CONTINUITY EQUATIONS 

8.1.1 CAPTURE CROSS-SECTIONS AND CAPTURE COEFFICIENTS 

The model forming the basis for this chapter is shown in Fig. 81.1. 
Monovalent flaws of density jV/ per unit volume each present a level 
at energy Ef within the intrinsic gap. The two possible states of this 
flaw are called "empty" and "full". When empty, a flaw has a cross-
section ση for capturing a free electron. When the charge on the center 
has been changed by — q through addition of such an electron, a flaw is 
full, and has a cross-section σρ for hole capture. 

250 
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It will be noted that we have not specified whether the flaw is donor­
like or acceptor-like in character. If a flaw is donor-like, then it will be 
electrically neutral when "full" and will be ionized (carrying a net 
charge q) when empty. The capture cross-sections for this kind of flaw 
must have a relationship such that ση > σν\ since electron capture is 
aided by Coulomb attraction, but hole capture is not. Conversely, 

Φ 
( E c - E i ) 

FIG. 81.1. Semiconductor model used in considering recombination 
through the set of jV/ flaws. 

σν > ση for an acceptor-like flaw which is neutral when "empty" and 
charged when "full". The continuity equations, and their solutions for 
flaw recombination, can be studied without need for distinguishing 
between donor-like or acceptor-like behavior of a flaw. 

Fig. 81.1 indicates donor and acceptor impurities in addition to the 
flaws of interest. It is assumed that these are far above and below the 
Fermi level <£, so that they remain permanently ionized and do not 
have any direct influence on electronic transitions. Whether {n—p) 
is larger than or smaller than (Nd — Na) depends on whether the flaws 
are donor-like or acceptor-like in character; however, we do not con­
cern ourselves with the values of Na and Na but use instead the Fermi 

EFFECTIVE 
DENSITY 
ΝΛ 

-•-DONOR DENSITY Nd 

*-FLAW DENSITY N f 

FERMl_ LEVEL 

'^-ACCEPTOR DENSITY NQ 
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level as the sole criterion of the equilibrium free carrier densities : 

(φ — Ec 
* - A*-^) 

, (811.1) 

In practice, it will be assumed throughout this chapter that the free 
carrier densities are non-degenerate, f so that 

n0 = JVcexpl—— I 

iEc-Ei-φ 
Po = JV^exp^ — 

in thermal equilibrium, and 

(φη — Ec 

) 

(811.2) 

( Φη — EQ\ 

( Ec—Ef — φρ\ 
kf / 

(811.3) 

even when excess carriers are present. 
The possibilities for capture of electrons and holes depend on the 

fraction Pe{Ef) of the flaws which are "filled". In thermal equilibrium 
this can be expressed in terms of the Fermi level : 

f(Ef) = Î — — (811.4) 
1 +expl fë) 

Note that no spin degeneracy factor is used here. The "empty" and 
"full" conditions of a flaw will normally have different spin and orbital 
degeneracy choices, but this is absorbed in the definition of Ef. 

f This assumption has been made in the well known treatment of Shockley and 
Read (1952:7) and in most subsequent discsssions of the subject. Landsberg (1957:22) 
attempted to treat the more complicated problem of a degenerate semiconductor, 
but was forced to treat the result in terms of integrals which can only be evaluated 
by making special assumptions. 
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It is useful at this point to define a quantity n\ as the thermal free 
electron density when φ is coincident with Ef\ and the corresponding 
hole density p\. Thus 

/Ef-EA lEf-φχ 

/Eo-Ei-EA (φ-ΕΛ (Ec—Ei~ Ef\ ίφ—ΕΛ 

in terms of which 

(811.5) 

^o Pi 
f(Ef) = - — = -^— (811.6) 

When the free carrier densities are different from those of thermal 
equilibrium, any discrepancy between ne and pe must be accounted 
for by a change in the number of "full" flaws and by an electrostatic 
charge on the semiconductor. Then if the semiconductor is required to 
remain electrically neutral, 

[l-Ph(Ef)] = Pe(Ef) = M - + ^ - 1 (811.7) 

At all times, the flaws are capturing and re-exciting electrons and 
holes to various energy states in the conduction and valence bands. 
As an example, the rate of electron capture r must depend on the density 
of empty flaws, NfPh{Ef). It also depends on an integral over all 
occupied conduction band states and the capture coefficient therefrom : 

oo 

r = NfPh{Ef) J cn(E). Pe(E). gc(E). àE (811.8) 

According to the procedures of Sub-section 4.1.2, this can be written 

r = n(cnyNfPh{Ef) (811.9) 

It must of course be remembered that <cw> has an unambiguous 
meaning only if the electron distribution is non-degenerate and well-
behaved, so that 

φη—Ε\ 
PAE) X exp(^) 
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For the discussion of electron-hole recombination through flaws, 
it is useful to compound two more symbols from JV/ and <%>, 

Cn = = Nficn> (811.10) 

Now Cn dt is the probability that an electron will be captured by any of a 
set of JVf empty flaws within the interval dt. τηο is the shortest possible 
time constant for electron capture. 

As a companion to electron capture, the hole capture rate in a non-
degenerate semiconductor can be expressed as 

r' = p<cp>XfPe(Ef) (811.11) 

where <£p> is the appropriate average over valence band states. 
Corresponding with Eq. (811.10), the probability that a hole will be 
captured in unit time by any of a set of "full flaws" is written 

Cp = — = JV)<^> (811.12) 
ηρο 

The quantities Cn and Cv are of course usually appreciably different. 
For a donor-like flaw, the ratio y = (CvICn) = (T^O/T^O) is smaller 
than unity, while y > 1 with acceptor centers. 

8.1.2 BALANCE BETWEEN GENERATION AND RECOMBINATION 

Equations (811.9) and (811.10) indicate that the electron capture 
rate should be written in the form 

nPh(Ef) r = _ ? L Z i (812.1) 

where the flaw occupancy is governed by Eq. (811.7). In this equation, 
n and Pji(Ef) are sensitive to the presence of excess carriers (and TWO may 
be as well if Auger processes are important in the band-flaw transitions). 
In thermal equilibrium, flaws capture and emit electrons at the same 
rate, which from Eqs. (812.1) and (811.7) is 

noni 
G = — — (812.2) 

τηο(ηο + ηι) 

Since in general the electron emission rate is expected to depend on 
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Pe(Ef), this must be given by 

niPe(Ef) 
g = 

TreO 

Thus the net rate of electron capture is 

nPh(Ef)-niPe(Ef) 

(812.3) 

(r-g) = 
TnO 

1 \(no + ni + ne)(ne-pe) | Wi 1 (812 4) 
TnO I Nf (Wi+^o). 

Similarly, the net rate of hole capture by the flaws is 

pPe(Ef)-PlPh(Ef) 
{r'-g') 

1 npO+Pl+Pe)(pe-ne) + pepi 1 5 

r ^ L Nf {po+pi)\ 

When a model for a semiconductor is supposed for which the transitions 
to the flaw levels represent the only important chances for recombina­
tion, the electron lifetime rn (of Sub-section 4.2.1) is equal to nel(r—g), 
and the hole lifetime rp = pej{r'— g'). In contrast to the models con­
sidered in Chapters 5 and 6, rn is not usually equal to rp. 

If we suppose a large semiconductor sample with no drift or diffusion 
currents, and let gs be the rate at which hole-electron pairs are created 
by external stimulation, the continuity equations (420.5) and (420.6) 
become 

gE- — = — = + -—■—r (812.6) 
di τη Tn0L Nf {no + ni)j 

_ dpe = & = 1 r(pO+pl+pe)(pe-ne) pepi 1 

dt TP Tpol Nf (Po+pi)\ 

Under steady state illumination, rn = {ne/gE) and rp = (pe/gs), 
and so the electron and hole lifetimes are in the ratio of their respective 
excess densities. We shall see subsequently that ne Φ pe unless Nf is 
small or unless the Fermi level and flaw level have a special relation­
ship , piTnO = pOTpO-
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When excess generation ceases, the lifetime for each kind of carrier 
is the inverse of the logarithmic decrement, rn = — ne{dtjdne) and 
TP = —pe{dtjdpe). The principal difficulty, as may be seen from 
Eqs. (812.6) and (812.7), is that these expressions involve both ne and/>e. 

What makes the problem so complicated is that the flaws indulge in 
both recombination and trapping. It was noted in Section 7.3 that a 
flaw is behaving primarily as a recombination center if, after capturing an 
electron, it is most likely to return to the empty condition by capturing 
a free hole. On the other hand, the flaw is acting primarily as an electron 
trap if it is more likely to return the electron to the conduction band. 

The relative strengths of the recombinative and trapping tendencies 
vary with the conditions of excitation. Steady state excitation is at 
least a little simpler to understand in that the net trapping rate is zero. 
But during transient decay, (dnejdt) and {dpejdt) vary continuously 
during the course of the decay, and their difference is the net rate at 
which flaws are trapping electrons. 

This chapter explores so far as practicable the steady state relation­
ship of illumination rate to the excess densities ne,pe; and the dynamics 
of excess carrier decay. However, a complete analytic solution is not 
possible for the transient problem with JV/, ne and pe of arbitrary 
magnitude. In a transient case, Eqs. (812.6) and (812.7) can be solved 
simultaneously to yield an equation for ne and its time derivatives, and 
another for pe and its derivatives. But these highly non-linear second-
order differential equations can at best be reduced only to a general 
form of Abel's differential equation of the first kind (1956:30). Solu­
tions are known only for certain restrictive values of the parameters, 
since this equation defines new transcendental functions. Perturbation 
methods necessarily fail since all terms in the equations assume com­
parable importance in some part of the decay. 

8.1.3 ADOPTION OF A DIMENSIONLESS NOTATION 

In some previous work on transient decay through flaws it has been 
found convenient (1958:13, 1961:1) to resort at times to a dimension-
less notation. Since much of the discussion concerns p-type semi­
conductors, the equilibrium hole density po is used as a normalizing 
parameter. In the notation to be used, x = (nelpo) and y = {pelpa) are 
the important variables; and JV = {Nflpo), a = {nilpo) and b = {pi/po) 
are the parameters associated with them in (812.6) and (812.7). Thus 
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ab = (no/pò), which is less than unity for a jfr-type semiconductor, but 
becomes larger than unity in w-type material. 

The symbol y = (τ^ο/τρο) has previously been defined. The time 
scale is made dimensionless by setting &" = (J/TWO). In this notation, 
x' = (dtf/d^), etc. The externally provoked generation rate is ex­
pressed as the dimensionless quantity GE = (gETnolpo)· 

In terms of these symbols, the continuity equations (812.6) and 
(812.7) become 

(x—y)\x + a(l+b)] x 
e°-*~ M " + û î <8i3i> 

and 
y{j>-x)[y+l+b] yhy 

GE-y + — (813.2) 

8.1.4 STEADY STATE AND TRANSIENT DECAY EQUATIONS 

When the generation rate GE is continued for a long time, the terms 
x' and y in (813.1) and (813.2) disappear. These two equations can 
then be solved simultaneously, giving separate cubic equations in 
x andjy: 

Ä 8 + Ä 2{ ( l + fl + 2flÄ) + JV/(l+*)-GÄ(l + l/y)} + 
+ x{a(l+b)(l + ab) + Nabl(l+b)~ 

-GE{l+b)(l + a + 2alY)-JVGE(2 + b)l(l+b)}-
-GE{a{\+b)\\ + aly)-N(GE-ab)} = 0 (814.1) 

and 

y*+y2{(2 + b + ab) + MI(l+b)-GE(l + llY)} + 
+y{(\ + A)(1 + ab) + MI(l + b)-

- (G Ä / y ) ( l+i ) ( l + fl + 2y)-JVGÄ(l+2*)/y(l+Ä)}-
- GE{{\ +4)2(1 + α/γ)-N{GE-yW} = 0 (814.2) 

The usual Shockley-Read (1952:7) treatment discusses the solutions 
only for small flaw density or for small excess carrier densities. The 
former is the case for which rn and rp coincide ; this model is reviewed 
in Section 8.3. Section 8.4 is concerned with steady state conditions for 
arbitrary flaw density and carrier densities, and includes the Shockley-
Read result as the small-modulation limiting case. 
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It is also possible to solve Eqs. (813.1) and (813.2) simultaneously 
for the conditions of transient decay, when GE = 0. Thus Eq. (813.1) 
leads to 

JV*' + ^ + e(l+A) + JV/(l+*)] 
y = - - - - — (814.3) 
J x + a(l+b) V ; 

This substitution can be made at three places in Eq. (813.2), and the 
result of differentiating y placed on the left side ofthat equation. The 
result is a second-order equation for x : 

Ν{χ"[χ + α(1+ο)]-χ'2(1-γ)} + 
+ χ'{χ2(1+γ) + χ[(1+ο)(γ + γα + 2α) + 

+ YN(2 + b)l(l+b)] + a[(l+b)2(a + y) + N(l+Yb)]} + 
+ yx{x* + x[(\ + a + 2ab) + NI{\+b)} + 

+ a[(l +Ä)(1 + ÖÄ) +JV*/(1 +*)]} = 0 (814.4) 

The corresponding equation describing the decay of y is 

^{y , (^+i+^)-y 2 ( i - i /y)}+ 
+/OT+y)+J>[(l+A)(l + û + 2y) + 

+ JV(1 +2*)/(l +A)] + [(1 +A)2(fl + y ) +JV<1 + y * ) ]} + 
+ Yy{y2+y[{2 + b + ab) + Nbl(l+b)] + 

+ [(l+b)(l + ab) + MI(l+b)]} = 0 (814.5) 

Section 8.5 is devoted to a review of the modes of decay for arbitrary 
densities of flaws. The problem is divided into cases of Class I and Class 
I I decay, this sub-division being made as described below. 

8.2 THE CRITERIA OF TRAPPING 

8.2.1 CLASS I AND CLASS I I SITUATIONS 

It might seem that the equations describing the behavior of excess 
electrons and holes could be simplified in four ways, by noting which 
terms are most important for w-type and p-type semiconductors (φ > φ{ 
and φ < φι), and for flaws in the upper and lower halves of the intrinsic 
gap (Ef > φι and Ef < φ$. This approach leads, however, to needless 
duplication, since only two of the four types of situation mentioned 
above are actually different. 
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Thus merely an interchange of the roles of electrons and holes sep­
arates the description of an n-type semiconductor with Ef > φι and of a 
jfr-type material with Ef < φχ. Similarly, results deduced for a model 
when Ef > φι > φ can be applied to the case of φ > φι > Ef by inter­
changing the symbols. 

This chapter will use the term Class I for situations in which the flaw 
level and Fermi energy are in the same half of the intrinsic gap, and 
Class II for situations in which they are in opposite halves of the gap. 
This follows the terminology of Nomura and Blakemore (1958:13, 
1961:1). 

As mentioned at the beginning of Sub-section 8.1.3, many of the 
solutions given in this chapter are for a jfr-type semiconductor. This 
choice is a purely arbitrary one and does not prevent us from regarding 
the same processes as going on in w-type Class I and Class I I situations. 
However, the expressions given in Section 8.5 are usually given in the 
nomenclature for p-type Class I decay (Ef < φι) and p-type Class I I 
decay (Ef > φί). 

8.2.2 ELECTRON AND HOLE TRAPPING 

As will be demonstrated in Sub-section 8.2.3, trapping is negligible 
when the flaw density is sufficiently small, and pe is then equal to ne 
whether these excess densities are large or small. Even when flaws are 
numerous, trapping is completely absent for one special relationship of 
the flaw energy and Fermi level. This relationship is that Ef must 
coincide with the energy 

ξ = φ + ΙεΤΙη(γ) (822.1) 

[as will later become apparent from the form of Eq. (823.3)]. 
When flaws are at all numerous, either one type of carrier or the 

other must tend to be trapped when Ef Φ ξ. The ratio (nejpe) may be 
comparatively close to unity when the semiconductor is strongly 
modulated, but moves monotonically further from unity as progres­
sively smaller excess densities are considered. Electron trapping results 
when Ef > ξ and hole trapping whenever Ef < ξ. 

Fig. 82.1 attempts to illustrate the relative positions of Fermi level 
and flaw level for various kinds of trapping. This figure is based on a 
jo-type semiconductor and donor-like flaws [for which γ < I and 
kTin(y) is a negative quantity]. An analogous figure could of course 
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equally well have been drawn for an w-type semiconductor and/or 
for donor-like flaws. Majority hole trapping will occur under the condi­
tions of part (a) in the figure. Trapping must be absent for the conditions 
of part (b), while parts (c), (d) and (e) all correspond with minority 
electron trapping. The distinction between the situations of parts (c), 
(d) and (e) will become apparent in Section 8.5. 

ζφ.-φ 
X 

Φι 
φ 

(Ec-E;) 

/ A CONDUCTION BAND / / / / n. = obp << pn
 / / / / / 

-

-

~ 7 [ 

-kTln.(y) 
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._ _ _ 
-kT ln.(/) 

-

/ / / / VALENCE B A N D / / / / / / P0 / / / / / / / , '//// / , , , , / /////// / 0 / / / / / / / / 
(a) (b) (c) (d) (e) 

FIG. 82.1. The varieties of trapping for various flaw energy positions when 
the Fermi energy φ is in the lower half of the gap and the flaws are donor-like 
(y< 1). kT ln(y) is a negative quantity, thus ξ = φ+kT \η(γ) appears 
lower than <f>, while χ = (2φί— 4>)+kT ln(y) is lower than {2φι—φ). 
(a) Majority hole trapping when yb > 1, Ef < ξ. 
(b) No trapping when yb = 1, Ef = ξ. 
(c) Electron trapping whenever yb < 1, Ef > ξ. 

This is essentially "permanent" when a < y, Ef lower than the "level 
of equality" χ. 

(d) "Semi-permanent" trapping when Ef = χ. 
(e) "Temporary" trapping when a > y> Ef > χ. 

8.2.3 T H E EXCESS CARRIER RATIO 

A useful quantity in the analysis of trapping phenomena is the 
limit of the ratio of excess electron density to excess hole density for 
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vanishingly small disturbance of equilibrium : 
S = lim (tielpe) = Hm (*/j) (823.1) 

When the characteristics of the semiconductor are such that S < 1, 
electron trapping must occur to some extent for any values of the excess 
densities; the same holds for hole trapping if S > 1. 

( E c - E j ) ξ φ φ χ [ΖφΓφ) 
Flaw Level Ef 

FIG. 82.2. Variation of the quantity JV defined by Eq. (823.3) with flaw 
energy, for donor-like flaws in a p-type semiconductor. 

Under steady state conditions, the right sides of Eqs. (813.1) and 
(813.2) are equal; if each is divided by y and the zero-modulation 
limit taken, then S can be expressed as 

y6JV+(fl + y) ( l+6)2 

It follows from Eq. (823.2) that trapping will be negligible whenever 
JV <ζ |jV|, where the quantity JVis defined by 

(a + y)(l+6)2 
{\-yb) (823.3) 

i8 
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Fig. 82.2 sketches the way the quantity \N\ will vary with flaw energy 
—this figure is again based on donor-like flaws in a p-type semi­
conductor. A large number of flaws can be tolerated if their energy is 
very close to one band or the other, but for flaws having energies within 
a broad range in the middle of the gap, trapping is important unless 
JV <ζ JV « y. The spike in the figure for one position of Ef corresponds 
to yb = 1 and Ef = ξ, when no trapping occurs for any density of flaws. 
JVis of course a negative quantity when the conditions are those of hole 
trapping, Ef < ξ. 

When GE — 0, and transient decay occurs, the ratio (x/y) can be 
obtained by dividing Eq. (813.1) by (813.2), then dividing numerator 
and denominator by y. When the limit of infinitesimal modulation is 
taken, the resulting equation for S is 

YS2+ s [ ( « - y ) + ^ ~ ] = « (823.4) 

which provides for trapping to be negligible when N <ξ | JV|. Using the 
definition (823.3), the solution of (823.4) is 

s = (2y)-H[(y-*)-(y + * ) W ^ 
(823.5) 

8.3 LIFETIME FOR A SMALL FLAW DENSITY (THE 
S-R MODEL) . 

When the flaw density is small, JV/ <̂  poN, the excess densities ne and 
pe are the same. Under these circumstances, Eqs. (812.6) and (812.7) 
can be replaced by a single continuity equation 

dne ne(n0+po + ne) / o o n n 
gE = (öJU.l) 

d t rno(po +pi + ne) + TPo( n0 + n± + ne) 
which corresponds with the pair lifetimef 

Tno(po +pi + ne) + τρο(ηο + m + ne) 
Tn = Tp = T = (ÖOÖ.Z) 

(no+po + ne) 

•f The more general expression for the electron lifetime with arbitrary flaw 
density [of which Eq. (830.2) is a special case] is given in Section 8.4. 
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This expression for carrier lifetime was derived by Hall (1952:8) and 
independently by Shockley and Read (1952:7). The latter authors 
considered the consequences of this model in some detail, and since 
their names are so closely associated with the subject, we shall refer to 
recombination through a small density of flaws as constituting the 
S-R model. 

Equation (830.2) serves as a reminder that electron-hole annihila­
tion by S—R recombination involves the capture first of an electron then 
of a hole (or vice versa). The first term in Eq. (830.2) indicates the time 
constant for electron capture, and the second term the time required 
for emptying the flaw again by hole capture. The relative importance 
of the two terms depends on the semiconductor doping, flaw energy and 
asymmetry of capture coefficients, temperature, etc. 

8.3.1 SMALL-MODULATION LIFETIME 

As the modulation of the carrier populations tends towards zero, the 
lifetime approaches 

TO = rno\ )+Tp0\ (&31.1) 
\po + no/ \no+po/ 

Fig. 83.1 shows how this zero-modulation lifetime varies with the Fermi 
energy in a semiconductor supposing a small density of donor-like 
flaws at an energy in the lower half of the intrinsic gap. This figure is 
adapted from one given by Shockley and Read, and as in their figure, 
indicates the two components which add up to TO. 

For the case illustrated, donor-like flaws are supposed ; thus TPQ > τηο. 
Even so, the term in rno dominates the right side of Eq. (831.1) for all 
/>-type material and for mildly w-type cases up to a Fermi energy which 
coincides with ζ = [2φι — Ε/ + /εΤΙη(γ)]. It will be noted in the figure 
that ζ is actually a little lower than (2<f>i — Ef) with donor-like flaws. 
If acceptor-like centers had been supposed (for which y > 1), the 
change-over point would have been for a Fermi energy higher than 

The features of Fig. 83.1 can be described in terms of four ranges for 
the Fermi level : 

(a) φ < Ef. The rate-determining process is that of capture of excess 
free electrons by empty flaws. Since φ < Ef, the flaws are all empty, 
and this process has its minimum time constant of τηο. Any flaw which 
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becomes filled empties itself by hole capture in a time very much shorter 
than τηο because the free hole density is so large. 

(b) Ef < φ < φί. Now only a fraction [1 - / (£ / ) ] or (1 +^i/po)_1 of 
the flaws are empty and available for electron trapping; thus the time 

'Po 

τ η 'Ρ/Ρο1 

/ ^ T D , > o ο'Ρο) 

' / V r P o ( n i / p o ) 
,-kT \ηΛγ) 

(Ec-Ej) Ef φ| ζ (2<£rEf) Ec 

FIG. 83.1. Zero-modulation lifetime as a function of Fermi energy for a 
semiconductor with donor-like flaws in the lower half of the gap. The 
solid line shows TO, while the two broken curves give the contributions 

arising from electron and hole capture times. 

constant for this process is forced to increase. The free hole density is 
still sufficiently large to keep the time constant for hole capture negligibly 
small. 

(c) φι < φ < ζ. Holes are now the minority carriers. Since the 
flaws are now all full, there is a time constant τρο for hole capture. But 
an even larger contribution to the time constant is provided by the 
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subsequent process of electron capture, this contribution being 
~Tno{pilno)· When rc0 is still rather small, this process is much slower 
than hole capture. As Shockley and Read put it, there are not enough 
electrons to recombine with every trapped hole before most of the latter 
are re-emitted to the valence band. 

(d) ζ < φ. Hole capture still provides a time constant rpo and this 
is now the major contribution to TO. The electron density is now large 
enough to make electron capture speedy. 

We shall not discuss the corresponding arguments for a flaw level 
located in the upper half of the energy gap, since it is obvious that a 
simple mirror transposition of the above description would cover the 
situation. However, it is interesting to show the dependence of TO on 
flaw energy for a particular free carrier density. This is illustrated in 
Fig. 83.2, supposing a/?-type semiconductor and donor-like flaws. As in 

<Ec~E i> ζ Φ Φ\ X (2φί-φ) 
Ef ■ 

FIG. 83.2. Zero-modulation lifetime τ0 as a function of flaw energy for a 
p-type semiconductor. Donor-like flaws are supposed, so that (ξ—φ) = 
(χ + φ—2φί) = kT In (y) is a negative quantity. The solid line shows the 
complete lifetime, and the two broken curves the contributions arising from 

electron and hole capture times. 
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Fig. 83.1, the two contributions to TO are shown as broken curves, and 
their sum as a solid line. The two contributions are equal when 
γ = a( = ni/pò). This happens when the flaw level has the energy 
χ =[2fc-* + *rin(y)]. 

This position for a flaw level has been called the "level of equality" 
by Shockley (1958:16), and the "demarcation level" by Rose 
(1957:20). Nomura and Blakemore (1961:1) have suggested that 
conditions might be called those of "semi-permanent trapping" when 
Ef = χ; for under these conditions half of the captured electrons are 
re-excited to the conduction band and half remain in the flaws until 
holes can be captured. Trapping is a very temporary affair when Ef > χ 
for then an electron is likely to be trapped and re-excited several times 
before a free hole can be procured with which to annihilate it.f When 
Ef < x, most trapped electrons are retained by the flaws until they can 
find free holes, and in this sense, trapping is of a more "permanent" 
character. 

From both Figs. 83.1 and 83.2 it is obvious that TO will depend on 
temperature, but the precise form of the dependence cannot be seen too 
readily. This is clarified in the next group of figures. As a purely 
arbitrary choice, these figures are based on a model of a p-type semi­
conductor. It will be assumed that the major impurities remain com­
pletely ionized over the range of interest, so that Nr = (po — nò) does 
not depend on temperature. A further assumption is that TUQ and TVQ 
are themselves not functions of temperature. When these quantities do 
depend on temperature, the additional trends must be superimposed 
on those of Figs. 83.4 and 83.5. 

Fig. 83.3 shows howjfro and no will themselves depend on temperature 
for this model, the material becoming intrinsic at the temperature T\. 
The broken lines in the figure show the behavior of pi and n\ for a 
(Class I) situation in which Ef < φ{. At a temperature T2, pi and po 
are equal—the Fermi level is coincident with £/. 

The temperature dependence of TO (and its two constituents) for this 
Class I model is illustrated in Fig. 83.4. Since no and ni are both very 
small at low temperatures, the term rpo[(no + ni)/(no+po)] of Eq. 
(831.1) is negligible all through the extrinsic range. 

f This is particularly prone to happen with very asymmetric flaws for which 
y <^ 1, such as those reported in silicon by Hornbeck and Haynes (1955:36). 
Section 9.3 considers the Hornbeck—Haynes model of a semiconductor containing 
extremely asymmetric flaws when a second recombinative mechanism exists in the 
material. 
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The term in Eq. (831.1) dependent on TWO is essentially equal to 
rno itself at low temperatures but increases when T > T2, since then 
pi > po. The activation energy for this rise of TO is the energy separation 
of the flaw state from the top of the valence band. A maximum lifetime 
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FIG. 83.3. Temperature dependence of free hole and electron densities 
in a/>-type semiconductor with a net excess of ionized acceptors over ionized 
donors of Nr = (no—po). The broken lines indicate the behavior of pi and 

n\ when flaw levels are in the lower half of the gap. 

is reached at the intrinsic transition point T\ ; and the electron capture 
term rwo[(^o+^i)/(^o + ^o)] declines on further heating, f characterized 
by an activation energy (φι — Ε/). 

It was decided to draw Fig. 83.4 for donor-like flaws. Had acceptor­
like flaws (rno > Tpo) been used, the contribution of rpo[(no + ni)[{no +po)] 

t It will be noted from Fig. 83.4 that this contribution to the lifetime is marked as 
Tno(/>i/2wi) for temperatures higher than 7i, since p± > m at any finite temperature. 
The line curves to reach τηο rather than rno/2 at infinite temperature, since m, no, 
po, wi and pi must all coincide for T = 00. 
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to the lifetime would have been negligible at all temperatures. However, 
with the donor-like flaws adopted for Fig. 83.4, the hole capture time con­
tribution to TO does become the larger one at temperatures higher than 
the value T3 (for which n% = ypi). The zero-modulation lifetime TO 
will exhibit a plateau of | τ Ρ ο for a wide range of temperature extending 

Tn0(P,/2ni> 

T n 0 <P . / N r> 

RECIPROCAL TEMPERATURE 

FIG. 83.4. Temperature dependence of TO for a Glass I situation, involving a 
/»-type semiconductor with flaws in the lower half of the gap. These flaws are 

supposed to be donor-like, rno < TVQ. 

upwards from T3, but it will eventually risef to become τρο at infinite 
temperature. 

Fig. 83.5 illustrates the corresponding temperature dependence of 
TO (and its two components) for a />-type Class I I situation—one for 
which flaw levels are in the upper half of the gap. Then m > ηχ > px 
at any finite temperature. Once again, donor-like flaws are supposed for 
this figure. 

In this kind of situation, the behavior of the electron capture term 
Tno[{po+pi)l{po + no)] is very simple. It reduces to rn0 throughout the 
extrinsic range [T < 71), and to JT W 0 in the intrinsic range (except for 
an approach to rn0 againf at the highest temperatures). With the donor-

t Because, as previously noted, m, n0, p0, m and pi are all the same for infinite 
temperature, irrespective of the doping and flaw position. 



LIFETIME FOR A SMALL F L A W DENSITY 2 6 9 

like flaws supposed here, electron capture is the rate-controlling process 
only below the temperature 7*4 for which n± = yjVr. 

The hole capture term τρο[(ηο + ηι)Ι{ηο+Ρο)] comprises the majority 
of TO for T > T4. In the extrinsic range this term rises, characterized 
by an activation energy (Ec — Ef). The maximum lifetime occurs for the 
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FIG. 83.5. Temperature dependence of τ0 for a Class II situation, involving a 
/»-type semiconductor with donor-like flaws in the upper half of the 

intrinsic gap. 

intrinsic transition point, T = 71, and the activation energy for the 
subsequent decline of τρο[(ηι-\-ηι)Ι(2ηι)] is (Ef-<j>i). 

Note that for acceptor-like flaws (γ > 1) the electron capture will 
control the lifetime again for temperatures in the intrinsic range above 
a point for which n± = (y— 1)^ . Indeed if γ is sufficiently large com­
pared with unity, electron capture can be the rate-determining process 
over the entire range of temperature, f 

8.3.2 VARIATION OF LIFETIME WITH MODULATION 

The discussion in this section has so far been centered on the lifetime 
TO for an infinitesimal modulation, showing that this is a function of 

f This will be the case if n\ is smaller than yNr at the temperature 7"i. 
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flaw energy, doping, temperature, etc. But it will be noted from Eq. 
(830.2) that the lifetime for infinitely large modulation is not explicitly 
dependent on any of these factors, being simply 

Too = (τ^Ο + Τρθ) 

= Tno(l + l/y) (832.1) 

In terms of TO and Too, the lifetime for any carrier modulation can be 
expressed as 

T = ( ^ j t ^ O ^ T c o ( 8 3 2 < 2 ) 

no+po + ne 

Thus whether the lifetime rises or falls with increasing modulation 
depends on whether the ratio (TOO/TO) is larger or smaller than unity; 

1 2 3 4 5 6 
ne/(po+n0) 

FIG. 83.6. Variation of lifetime with modulation (a) when TO > τ» 
(b) when TO < Too. Donor-like flaws are supposed for which γ ~ 0*085. 

and this does depend on doping, temperature, etc. Fig. 83.6 indicates 
the way the lifetime varies with ne for the two alternatives. 

In either case, the quantity τ[1 +^/(wo+j^o)] increases with ne, and 
the increase is a linear one : 

T[1 + ne/(n0 +po)] = TO + Tao[nel(no +po)] (832.3) 

Then if experimental data on lifetime is expected to satisfy a 
S-R model, the quantities TO and Too can be determined from the 
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intercept and slope of a plot such as that given in Fig. 83.7. A lack of 
linearity in the relationship between r [ l + nel(no+po)] and ne indicates 
(1957:25, 1957:26) that the simple S-R model is inadequate. This can 
be because the flaw density is large enough to make trapping serious or 

0 [ne/(n0+p0)] 

FIG. 83.7. Determination of TO and τ« from the intercept and slope when 
the S-R lifetime is plotted in accordance with Eq. (832.3). 

because more than one species of flaw is active (1958:17). The plot of 
Fig. 83.7 is also likely to be non-linear when capture is in accordance 
with the Auger model of Bess (1957:17). 

8.3.3 VARIATION OF EXCESS DENSITY WITH STEADY STATE EXCITATION 
RATE 

Under conditions of steady state generation, the term driejdt in 
Eq. (830.1) vanishes, and the equation which results for the excess 
density ne maintained by any generation rate gs is 

ne2 + ne(n0+po-TaogE) = (no+po)rogE (833.1) 

This can be solved in the customary fashion for a quadratic equation, 
and the solution has some rather curious features. For the special case of 
TO = Too, the relationship of ne to gE is a completely linear one over the 
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entire range of modulation, but when TO φ Too, either sub-linear or 
super-linear behavior occurs in some part of the range. 

The behavior when TO > Too is indicated by the double logarithmic 
plot of Fig. 83.8. For small modulation, the relationship is a linear one, 

ne = r0gE when (———) < 1 (833.2) 
\n0+po/ 

As the generation rate is increased, a range of sub-linear response is 

g£ (logorithmic) 

FIG. 83.8. The variation of excess density with steady state generation rate 
for the S-R model when TO > Too. 

entered, for which ne varies as the square root of g#, 

ne « W « o + M ] 1 / 2 when 1 <(———) < — (833.3) 
\no+po' Tea 

For a generation rate larger than (//o+jbo)(To/T<»2)5 the response 
becomes linear again, 

/ Tle \ TO 

ne = ToogE when > — (833.4) 
\no+po' Too 

When TO is very much larger than Too, the range of generation rate for 
which ne oc gE1/2 will be considerable. This is a point to bear in mind 
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when experimental observations show that the dependence of excess 
density on generation rate is at first linear and then a square root one. 
Such behavior is possible for any of the three direct recombination 
processes described in Chapters 5 and 6 as well as for the S-R model. 
However, the response becomes linear again at very high modulation 
for the S-R model and does not for direct recombination. 

g£ ( logar i thmic) 

FIG. 83.9. The variation of excess density with steady state generation 
rate for the S-R model when TO < Too. The slope at the point of inflection 
IS imax 

= £ Π + (T°°/To)1/2]> which is equal to 2 in the above curve (τ«> = 9το). 

We now consider the characteristic of ne vs. gE for an S-R model when 
TO is smaller than Too. Fig. 83.9 shows the appropriate double logarith­
mic plot. The relationship is a linear one for small modulation and for 
large modulation, 

while 

ne = TQgE when gE < 

ne = Toogs w h e n gE > 

no+po 
Too 

no+po 
Too 

(833.5) 

(833.6) 

There is, however, an intermediate region for which ne varies super-
linearly with gE, centered on a point of inflection at the indicated posi-
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/gE\/dne\ 
\ nj \dgE) 

tion in the figure. Thus for a considerable range, ne oc g*E with s > 1. 
The maximum slope, %axj occurs at the inflection point; its value 
depends on the ratio (TOO/TO). 

A general expression for 
'ώΐΑ 

\dgE/ 

can be obtained by differentiation and manipulation of Eq. (833.1). 
This is rather unwieldy in the general case, but simplifies at the point of 
inflection to 

«5-max = £[1+(TOO/T0)1 / 2] when I (833.7) 
(no+po) 

gE = 
Too 

The maximum slope of 2 in Fig. 83.9 is thus consistent with (τοο/τ0) = 9. 
It will presumably not often happen that Too can exceed TO by a much 
larger factor. Thus it will not usually be expected that super-linear 
behavior for an S-R model will involve a very large value of s or extend 
over a range of more than a decade or so. This contrasts with the pos­
sibilities which can arise for multi-level models (e.g. 1951:17, 1958:23). 
Such models are especially interesting for insulating photoconductors, 
as discussed extensively by Rose (1955:15, 1955:16, 1957:20) and 
Bube (1960:10). In these materials it is not uncommon to find a 
super-linear response occurring over a range of many decades (e.g. 
1957:31). 

8.3.4 TRANSIENT DECAY 

When the externally provoked generation rate gE in Eq. (830.1) is 
terminated, this equation can be integrated to describe the relationship 
of ne and t during the ensuing decay. It seems more natural to express ne 
as a function of time, but the form of (830.1) requires the integral to be 
performed in a manner which expresses time as a function of ne. The 
procedure is then quite straightforward, and yields 

Tno(po +pi) + rpo(no + ni) 
I = i n 

(no+po) m 
Tno(no-pi) + TPo(po-ni) [neo + n0+pol /nnA 1X _l i n (834.1 ) 

(no+po) I rie+no+poi 
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where neo denotes the excess density at the origin of the time scale. 
Using Eqs. (831.1) and (832.1), this is simply 

t = TO In + (TOO - TO) In (834.2) 
L ne J L ηβ + ηο+Ρο J 

Thus the decay is not usually a simple exponential from start to 
finish. When the excess carrier density at the start of the decay is large 
compared with (no+po), there is an early region of exponential decay: 

i Γ Ή I 
* To° u T J while ne > ^ o + ^ ° ) <834·3) 

ne « ne0 exp( - t/τοο) ) 

Of course, this region cannot be seen if decay starts from a more modest 
amplitude. 

The final stages of decay, once ne has become small compared with 
{no+po), are again exponential: 

i Γ^οΐ / M [neo + no+pol 
t K TO In + (TOO - TO) In 

L ne J L no+po J 
Γ no+po 1(1-Τ«>/ΓΟ> I . . . - . - , 

ne » ne0 . exp( - i/r0) -——— (834.4) 
lneo + no+po\ ) 

Under most circumstances, a plot of h\{ne) as a function of time will 
exhibit a curvature as the effective time constant, — ne{atjane)y 
approaches its small modulation value TO. 

This curvature fails to develop only if the positions of the Fermi level 
and flaw level are related in such a way that TO = Too. There are two 
positions for the flaw level which make this occur : 

(a) When Ef = ξ. For this position of the flaws, yb = 1, or 
TnOpl = T ^ O J τηο^Ο = τροΠι. 

(b) When Ef = (2φί—φ). Under these circumstances a = 1, or 
n± = po , n0 = pi. 
Then in either of these circumstances 

( if Ef = i 
ne = tfeoexpl 1, j (834.5) 

vTno + Tpo/ I or Ef = (2(f>i-(f>) 
Otherwise, the decay either speeds up or slows down as it proceeds. 

- ) when ne <ξ (n0+po) 
1 Vl 7"oo /Tn) 
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When the flaw levels lie towards the center of the energy gap, 
ξ < Ef < (2<f>i—(f>)9 the infinite modulation lifetime Too is larger than 
TO; decay then becomes more rapid as it proceeds. 

0 20 40 60 80 100 120 
( t / r n 0 ) 

FIG. 83.10. Transient decay of excess carriers according to the S-R model, 
for a Glass II situation of a p-type semiconductor with donor-like flaws 
(y = 0-2) in the upper half of the gap. The curves follow Eq. (834.1) for 

various values of m, assuming both pi and no to be negligibly small. 

For flaw levels rather close to one band or the other, Ef < ξ or 
Ef > (2φΐ—φ), we have Too < TO; the decay then slows down as it 
proceeds. 
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Examples of both forms of behavior are shown in Fig. 83.10. This 
supposes a Class II situation of a />-type semiconductor with donor­
like flaws (y = 0-2) in the upper half of the gap. Curves are drawn 
for various values of the parameter a = («i/j&o)· The curve for a = 1 is 
completely linear, indicating a pure exponential decay of time constant 
6τηο( = τηο + τρο). The most rapidly descending curve, that for 
n\ = 0·1 po, has a final time constant of only 1-5 TWO· In contrast, the 
curve for a = 1 0 must eventually reach a limiting slope characteristic 
of TO = 5\τηο. 

Decay curves for Class I conditions show the same qualitative 
features. 

8.4 STEADY STATE C O N D I T I O N S FOR ARBITRARY 
FLAW D E N S I T Y 

When generation of hole-electron pairs is externally provoked at a 
steady rate, the terms dne/dt and dpejdt in Eqs. (812.6) and (812.7) can 
be dropped. Thus 

ne pe 1 [(no + ni + ne)(ne-pe) nen\ 1 
g E = 77 + τη τν TWo L Mf no + ni J 

=
 1 [(Po+Pl+Pe)(Pe-ne) + pepi 1 

Tpol Mf pQ+pi\ 

Nf can be eliminated by substitution from one of the expressions on the 
right into the other. This gives 

ne pe pone + nope + nepe / n .Λ η. 
gE = - = — = (840.2) 

τη τρ Tpo(no + n\ + ne) + rno(po +pi+ pe) 
If attention is focused on the electron lifetime for the present, then we 
have 

Tpoino+nx + Uei + Tnoipo+pl+pe) , Q . n 
rn = — (oW.j ) 

(nopelne)+po+pe 
By utilizing Eq. (811.7) and working through an extensive reorganiza­
tion, this can be expressed in the form 

_ τρο(ηο + ni + ne) + rno(po+pi + ne) + TnoNfPe{Ef) 

which is the source of a number of well known equations. 
19 
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Thus when JV/ is sufficiently small, Eq. (840.4) reduces to the form 
(830.2) of the S-R model. For this model, of course, /2g Ä pe and τη « Tp. 
The bulk of Shockley and Read's paper (1952:7) was concerned with 
the model for small flaw density, and only in an appendix did they 
permit the generalization to large values of JV/. Even then, they re­
stricted the discussion to infinitesimal modulation. A number of more 
recent papers on steady state and transient phenomena [e.g. (1957:18, 
1957:24, 1960:14)] indicate a fascination with the simplification 
which results for sufficiently small modulation. This is not altogether 
warranted, since for steady state conditions a solution is possible for 
modulation of any magnitude (and even transient conditions for ar­
bitrary ne and JV/ are not wholly intractable). 

It is still, however, useful to start with consideration of a very small 
steady state generation rate. 

8.4.1 SMALL-MODULATION LIFETIME 

When the externally provoked generation rate is sufficiently small, 
not only can terms in Eq. (840.4) involving ne be dropped, but also 
Pe{Ef) simplifies t o / ( £ / ) , or (l+po/pi)'1 [see Eq. (811.6)]. Then the 
electron lifetime is 

Tpoino + nu + Tnoipo+pu + TnoNfil+polpi)-1 

τη = , ne->u (841.1) 
no+po + W+hlM-Hl+Polpi)-1 

The corresponding hole lifetime is 
TpO^O + ^ + r ^ O + ^ + T p o J V X l + ^ l / ^ o ) - 1

 A n /O.I ON 
τν = , &?->0 (841.2) 

V *o+A> + JV>(1 +/>i/A))-1(l+ Polpi)'1 F V ; 

Eqs. (841.1) and (841.2) are identical with (A7) of Shockley and Read. 
It might at first seem that τη of Eq. (841.1) is a function of JV/ apart 

from the dependence of rno and rpo on JV/. However, when electrons 
are the minority carriers in />-type material, the terms in JV/ drop out or 
cancel out (except for the hypothetical case of almost intrinsic material 
with JV) > po or n\ or pi). The terms in JV) do remain when we consider 
majority electron lifetime in w-type material. This is illustrated by the 
set of expressions in Table 84.1. A corresponding table can readily be 
prepared for the hole lifetime under Class I and Class I I rc-type and 
/>-type conditions; the most involved expression for the low-modulation 
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Table 84.1. Small modulation electron lifetime for steady state conditions 

Minority electrons in 
/>-type material 

po > ni > no 

Majority electrons in 
/i-type material 

no > ni > po 

Flaw levels in 
upper half of gap 
ni> m > pi 

Class II 

Tn ~ Tno + Tpo(ni/po) 

Class I 

τΜΙ+ηιΙηο)\γηοΝί+{η° + ηΐ)2] 
[ rciJV>+(wo+m)2J 

Flaw levels in lower 
half of gap 
pi>rii > m 

Class II 

TpO + TnO (*?) 
lifetime is then found for jfr-type Class I conditions. Thus Eqs. (841.1) 
and (841.2) can be readily assimilated, for the supposition of small 
disturbance of equilibrium. 

8.4.2 FINITE MODULATION 

When the excess carrier densities are finite, the electron lifetime of 
Eq. (840.4) presents more of a problem. It is still possible to obtain 
an expression for rn with ne as the only variable, but this expression is 
by no means compact. 

It is useful at this point to recall the dimensionless notation set out in 
Sub-section 8.1.3. In terms of this notation, the conditions of steady 
state equilibrium can be described by the two cubic equations of (814.1) 
and (814.2). Eq. (814.1) yields the small-modulation lifetime of 
Eq. (841.1) when all terms in x3, x2, XGE and GE2 are dropped; and 
Eq. (814.2) similarly contains Eq. (841.2) as its limiting case. 

For modulation of arbitrary magnitude, it is not exactly a simple 
proposition to find the real positive roots of the cubics (814.1) and 
(814.2) which give the values of x and y corresponding with a given 
generation coefficient GE- On the other hand, these equations can be 
written as quadratic equations for G E in terms of A: and y: 

GE2N- GE{[x + a{\ + b)][x(l + l/y) + (l +£)(1 + a/y)] + 
+ JV[ab + x(2 + b)l(l+b)]} + 

+ x{[x + a{\+b)][x+\ + ab] + N{x + ab)l{\+b)} = 0 (842.1) 



2 8 0 RECOMBINATION T H R O U G H MONOVALENT FLAWS 

and 

G Ä 2 J V - y G Ä { | > + l + * ] | X l + y ) + (l+A)(u + y)] + 

+ .ΛΓ[1+χΐ+24)/(1+*)]} + 
+ yZy{[y+\+b][y+\ + ab] + Nb{y+\)l{\+b)} = 0 (842.2) 

These become linear as JV -> 0, with ratios (GE/X) and (GEIJ) in con­
formity with Eq. (830.2). For non-zero JV, the solutions of Eqs. (842.1) 
and (842.2) are obvious in form but complicated so far as the actual 
terms go. Thus if as a temporary abbreviation we denote 

A = {[Ä + a ( l + * ) ] W l + l/y) + (l+Ä)(l + e/y)]+ Ì 
+ N[ab + x(2 + b)/(l + *)]} / ( 8 4 2 · 3 ) 

B = {[X + Ö(1 + Ä ) ] [ Ä + 1 + α*] +JV(x + a*)/(l +*)} J 

the solution of the excess electron equation (842.1) is 

2Bx 
GE = (842.4) 

A + ^/{A*-4NBx) K } 

The positive sign preceding the square root in the denominator is 
appropriate for the physically required condition that there will be no 
excess generation when x = 0. From Eq. (842.4), a simple step takes us 
to the expression for excess electron lifetime under any steady state 
conditions. For (GE/X) is equal to (TWO/TW). Thus 

Tn -™(i)=™(4)iW(i-^)) <*«·»> 
The leading terms of the expression for rn can be expressed in more 
familiar language as 

(A\ L(«o + »l + ne) (po+pi) 
TnO~ Q-

. Ar \pi{n0 + m + ne) + 2p0ne-\ 
Tpoino+ni + He) +Tno{po+pi + ne) +TnoJVf\ — -

ΐ{ηο + η1 + ηβ)(ΡοΛ-Ρι) J 
/ , x ΑΓ Γ Po{no + ne) l 
(no+po + ne) + Wf\f ^ ^ .. ^ J 

L{no + ni + ne)(po+pi)] 
(842.6) 

Now the factor {£ + \ / (έ '~^BxjA 2 )} converges on unity for small 
modulation; rno(AIB) is then the electron lifetime itself, and it will be 
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seen that Eq. (842.6) reduces under such conditions to the form of 
Eq. (841.1). For very large modulation also, {i + V(i~NBx/A2)} will 
be very close to unity; indeed it never departs very far from unity for 
any intermediate modulation unless flaws are extremely numerous. 
Then it may be assumed that the right side of Eq. (842.6) is in itself 
usually quite a good approximation to the electron lifetime. Conditions 
will occasionally require the general and laborious expansion of 
Eq. (842.5) to be used. 

A completely similar treatment can be used for expressing the hole 
lifetime rv corresponding to any arbitrary values of ne and jV). When 
the secondary factor for this case is assumed to be essentially unity, we 
have 

i, [Po(Po +pl +Pe) + 2plpe] 
Tpo(n0 + m +pe) + rn0(po+pl +pe) + rvoNf 

^ l(po+pi)(po+pi+pe) J 
rv ~ - Pijpo+Pe) 1 

(no+po+pe)+Jvf\-, Γ7 r 
l(po+pi)(po+pi+pe)i 

(842.7) 
which is the expected elaboration of Eq. (841.2). 

It is obvious that there must be an expressible relationship between 
ne and pe. When the two expressions on the right side of (840.1) are 
equated, the result can be expressed using the previously introduced 
dimensionless notation : 

x = x + Yj + (l+b)(a + Y)+Ybiïl{l+b) 
y x + Yy + {l+b)(a + y) + NI(l+b) 

This emphasizes that there is no trapping (x =y) when by = 1. The 
solution of Eq. (842.8) is 

> - {*[(i+*)(.+r)+j<i+rf+ ( Γ ^ Γ - - ^ ( τ Ϊ τ ) Γ -
-l[(l+4)(i+r)-j.(l-y)+—^L·] (842.9) 

or a similar result forjy in terms of x. 
It is instructive to illustrate this by a numerical example. Consider 

a /?-type Class I situation involving donor-like flaws, when b = 1, 
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y = 0-05, a « 0. Then 
x = {[0-05 + 0-525j> + 0-25 JV]2 - 0-475 Ny}1/2 - [0-05 - 0475j> + 0-25JV] 

(842.10) 
Curves illustrating this relationship for various values of JV are shown 
in Fig. 84.1. Since yb < 1 with the parameters selected, this is a situa­
tion of electron trapping. When flaws are present in very small quan­
tities, x « y at any level of modulation. For more numerous flaws, 

io3 io2 io1 i io 
x = (ne/p0) 

FIG. 84.1. Interdependence of steady state excess hole and electron densities 
for a markedly extrinsic />-type Glass I situation. It is supposed that 
b = (Pilpo) i s unity, and that the flaws are donors for which y = (τηο/τρο) 
= 0·05. Curves for several values of JV = (Nfjpo) are shown, which 

satisfy Eq. (842.10). 

the disparity of ne to pe becomes progressively more marked, particu­
larly for small modulation. The figure shows the limiting case of 
infinite flaw density, for which x = byy with any finite excess concentra­
tions of carriers. 
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8.5 TRANSIENT DECAY FOR ARBITRARY FLAW DENSITY 
When excess electrons and holes are present in a semiconductor as a 

result of some excitation which has terminated, ne and pe will usually be 
different and have different temporal dependences. However both tend 
to fall towards zero. According to Eqs. (812.6) and (812.7), these decay 
schemes satisfy 

ne _ dne _ 1 r(n0 + ni + ne)(ne-pe) neni 1 
rn dt rnol Nf flo + fliJ 

and 

τρ dt Tpol Nf pQ+pi\ 

We shall find it useful to refer to the decay equations when they are 
written in the dimensionless notation of Sub-section 8.1.3, viz. 

and 

(x-y)[x + a(l + b)] x 
JV l + b K J 

y(y — x)\y+l+b] yby _ y = Z ^ — > ± L i + lZ- 850.4) 
J JV l+b K J 

Eqs. (850.1)-(850.4) present a far from simple problem, and it will 
be necessary to consider the varir as attributes of the decay process one 
by one. As noted in Sub-section 8.1.4, the separate non-linear equations 
(814.4) and (814.5) can be obtained from Eqs. (850.3) and (850.4), but 
analytic solutions are known only for restrictive values of the parameters 
JV, y, b and a; or when x andjy are either very large or very small. 
Perturbation methods fail when the variables x or y are comparable in 
magnitude to the normalized flaw density JV, for then all terms in 
Eqs. (814.4) and (814.5) are of importance. 

A number of approaches have been followed by previous writers on 
this subject. Sandiford (1957:18), Adirovich and Goureau (1956:16), 
Clarke (1957:24) and van Roosbroeck (1960:14) consider only the 
solutions for very small excess carrier densities (thus removing the 
nonlineari ties in the differential equations). This small modulation 
solution is certainly of interest, and it is discussed in Sub-section 8.5.2, 
but it is important to observe at the outset that it is often satisfactory 
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for the excess minority carriers when their density has become extremely 
small. Wertheim (1958:14) concentrates primarily on this c'zero-
modulation" solution, but does consider an extension to moderate 
modulation when flaws are numerous. 

Goureau (1957:19) allows for arbitrary densities of excess carriers, 
but places a restriction on the value of JV. Isay (1953:14) has used a 
rather different approach in permitting any values of the variables and 
parameters, but requiring the solution to be in terms of specific func­
tions. This is not always satisfactory. 

Nomura and Blakemore (1958:13, 1961:1) concede that no general 
analytic procedure is likely to be wholly successful, but show how 
Eqs. (850.3) and (850.4) reveal the form which will be taken by the 
decay in various ranges. The information which can be extracted is 
sufficient to build up a picture of how ne andjfre should vary with time 
for Class I and Class I I decay. 

Eqs. (850.3) and (850.4) are of a type which can be solved numeri­
cally by a digital computer for any desired set of the parameters 
JV, y, έ, and a, and of the initial carrier disturbances xo andjo. Curves 
obtained by computation were used by Nomura and Blakemore to 
verify their conclusions about the courses of* and y during decay. Such 
computed curves for particular values of the parameters are not a 
substitute for analytic examination of the differential equations, but a 
supplement to them. Several computed curves are used to illustrate the 
remarks of the following pages. 

8.5.1 T H E INITIAL STAGES OF DECAY 

In this section, transient decay is deemed to start at the moment 
when externally inspired excess generation stops. The initial values 
KeOypeO of the excess electron and hole densities! depend on the intensity 
and duration of the previous generation. If this duration has been 
finite, neo and peo will be unequal (unless yb = 1 and/or JV <̂  |JV|) 
since either electrons or holes will have been trapped during the 
excitation period. For a delta function pulse of generation, neo = peo, 
and the initial stages of the decay are likely to resemble the pattern 
shown in Fig. 85.1. This figure is shown for a situation of electron 
trapping, yb < 1. Part (A) of the figure shows a semilogarithmic plot 

t The corresponding dimensionless notation given is xo for (neolpo) and yo for 
(peo/po). 
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of excess carrier densities against time, and part (B) the corresponding 
time constants. 

The reasons for the behavior shown are as follows. Before any trap­
ping has commenced, a fraction (1 + è ) - 1 of the flaws are empty and a 

time 

FIG. 85.1. General appearance of the initial stages of electron and hole 
decay when n€o = peo. (A) The variation of the excess densities with 
time. (B) The corresponding time constants. Drawn for an electron trapping 

case, yb < 1, so that TPO(1 + l/£) > (τηο + τρο) > τηο(1 +b). 

fraction (l + l/è)"1 full [see Eqs. (811.6, 811.7)]. From the definitions 
(811.10) and (811.12) of τηο and rpo, it follows that the initial decay of 
ne must correspond with a time constant rno(l +b). Such behavior is 
extended as the steepest dashed line in Fig. 85.1 (A). Similarly, the initial 
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decay of pe is characterized by a time constant TVQ{\ + 1/A), which is 
extended as the gently sloping dashed line in Fig. 85.1 (A). Note that in 
this initial region, (τ η /τ ρ ) = yb. 

The time constants become modified from their initial values when 
(pe — ne) has become a large enough fraction of Nf to exert an influence 
on Eqs. (850.1) and (850.2). It will be seen that these equations provide 
for the above-mentioned time constants whenever ne = pe, but for a 
modification of the decay scheme when ne and pe have become suffi­
ciently unbalanced to make the first terms on the right side of the equa­
tions important. 

The termination of this initial phase is not so much a matter of ne 
and pe becoming different as it is a sign that the fraction of empty flaws 
has shifted considerably from ( 1 + i ) - 1 . When JV/ is extremely large, 
the behavior 

ne 

Pe 

persists for a long time ; though as will be seen in the next sub-section, 
both carrier densities eventually have the longer of the two time con­
stants TWO(1 +b)9 Tpo(l + l/b) when the decay is far advanced. 

Fig. 85.1 is drawn supposing the initial value of ne to be rather large, 
so that when the initial transient has subsided, both ne and pe have time 
constants not far short of the infinite modulation valuef τ^ = (τηο + τρο) 
[see Eq. (832.1)]. The trapped electron density (pe — ne) has reached its 
maximum value [which obviously cannot exceed jV / ( l+ i ) _ 1 ] within 
the first third of the time range in the figure, and (pe — ne) gradually 
declines again as time goes on. When the initial value of ne is rather 
small, the maximum of (pe — ^e) is likely to be considerably less than 
JVf(l+b)-h 

For the latter part of the time range in Fig. 85.1, the behavior of ne 
and pe does not depend on the initial conditions, but follows a course 
which would have resulted for any other starting conditions at some time 

f The infinite modulation lifetime Too is larger than τη0(1 + b) but smaller than 
Tpo[l + l/b) when the electron trapping condition yb < 1 holds. For the hole trap­
ping situation of yb < 1, τ2,ο(1 + 1/^)< Too < τηο(1+£). The three time constants 
are identical when Ef = ξ and trapping disappears. 

neo exp 

neotxp\ 

Lno(l+*)J 

Lo(l + l/£)J 

(851.1) 
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in the past. This statement can be confirmed by examining the curves 
of Fig. 85.2, obtained by Nomura and Blakemore through computer 
solutions of the differential equations. The dimensionless variables 
x and y are plotted as functions of the dimensionless time variable 

o 
Q. 0.6 

FIG. 85.2. Decay of excess holes (solid curves) and electrons (broken curves) 
for a/?-type Class II situation of donor flaws (JV = 0-5, y = 0-1, a = 0-02, 
Ì A O ) . Note that decay starting from#o = yo = 1 at time &~ = 4 rapidly 
coalesces with the curves which originate from xo =yo = 100 at time 

F = - 4 0 . After Nomura and Blakemore (1961:1). 

y = t/τηο for a given set of values for the parameters jV, y, a and b. 
The figure shows decay from a supposed initial condition xo =yo = 1 
at time &~ = 4; it will be seen that following an initial rapid separation 
of the curves for x andjy, they coalesce with curves of the same variables 
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for decay which has started from xo = j o = 1 0 0 at time ST — —40. 
Thus only a trivial change in the origin of the time scale is required to 
bring all decay curves for the same parameters into alignment. When 
decay starts from a condition neo φ />e0? the curves show a similar 
brief transient and then join the universal curves. 

8.5.2 T H E FINAL STAGES OF DECAY 

When the excess carrier densities have become sufficiently small, the 
terms which make Eqs. (850.3) and (850.4) non-linear can be dropped. 
Under the worst circumstances, this can be done when/>e 4, {po+pi) 
and ne <ξ (ηο + η{)> though the condition for the kind of carrier which 
becomes trapped can be less stringent when JV/ is not too large. At any 
rate, when x and y are sufficiently small, the linearized forms of Eqs. 
(850.3) and (850.4) yield identical second-order linear differential 
equations for x a n d j : 

x" + OLX'+βχ = 0 ) H (852.1) 
y" + oiy'+ßy =0 I V J 

where 

and 

The solution of Eq. (852.1) is well known to be of the form 

x = ^lexpi | + i ? e x p | 1 

y = Cexpl l+Z>expl 1 
(852.4) 

The integration constants A, B, C, D depend on the previous 
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conditions. The two time constants τ± are given by 

/ l + vb\ 
Tp0(l+b)(a + Y)+rp0JV ——-

\ 1 + 0 i 11 ± 

Mb 
l + ab + 

V(i--R) 

(1+έ)2 

Τ,Λ[«Ο + »Ι + Λ>(1 +^Ι/ / 'Ο)-1] +τ„ο[>ο+/Ί + ̂ ν>(1 +/Ό//Ί)-1] 
A> + »o + Λ>(1 +pilPo)-1(l +P0IP1)-1 

• I ± V ( I - A ) Ì (852.5) 

where 
Γ JV* 1 

Ä = r TW2 ( 8 5 2 · 6 ) 

It is obvious that the decay of both x andjy must eventually be controlled 
by the longer of the two time constants, r+. That the two types of excess 
carrier must always decay with the same final time constant is dictated 
by the result (823.5) that the ratio (x/y) eventually assumes a steady 
value, 

S = lim (x/y) 

[(y - «) - (y + a)NlßT\ + V{[(y - «) - (y + a ) W ] 2 + 4ay} 

(852.7) 

2y 
2« 

[(« - y) + (e + y)JV/JV] + V([(« - y) + (« + y) JV/jVT]2 + 4 f l y } 

The sign and magnitude of ß relative to that of JV determines which 
of the two expressions for S is more useful. 

As observed by Sandiford (1957:18), the two time constants τ+, τ_ 
are widely separated when R -4 1, since then 

i + V ( i - Ä ) i .. j 
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whereas 

[^ψ^] < 1 

For a set of parameters which make R small, if decay is initiated from a 
small value of xo = Jo> the curves for x and y will diverge only during 
an exceedingly brief period, comparable with r_ (which will be <̂  TUQ 
and <̂  Tpo). Following this extremely brief adjustment, both x a n d j 
will decay with time constant r+ . 

Sandiford remarks that the situation of R <̂  1 will "nearly always be 
the case", a statement which is not supported by more detailed 
scrutiny of the form of R. As may easily be verified, R can be much 
smaller than unity only when JV <̂  |N\ ; but for such small flaw densi­
ties the simple S-R model suffices. I t is for flaw densities comparable 
with or larger than jfro|JV! that trapping produces a marked disparity of 
the two excess carrier densities, and R can then never be neglected by 
comparison with unity. 

It is useful to review some of the simplified forms taken by r + and S 
for certain ranges of the parameters. 

(a) Very Large Flaw Density 
When JV/ is very large, R simplifies to « 4yè(l + b)~2. Two possible 

values must be quoted for the final decay time constant of electrons 
and holes, since the larger value of r+ in Eq. (852.5) now depends on 
whether electrons are trapped (yb < 1) or holes trapped (yb > 1). 
These values are 

T+ » T+i = Tno{l+pilpo) for yb > 1 \ 
n , /. / * N f A i l a r S e j V > ( 8 5 2 · 8 ) 

T+ « T+2 =T3*)(1+ polpi) lor yb < 1 J 
Similarly, two values must be specified for the ratio of electron density 
to hole density during this final decay : 

\ 
for yb < 1 

fl(l+Ä)2 

N{\~yb) 
N{yb-\) 
y(l + i ) 2 

large JV> (852.9) 
for yb > 1 

Since Cn = 1/TWO and Cv = 1/τρο are proportional to JV/, the time 
constants of Eq. (852.8) are inversely proportional to the flaw density, 
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an entirely natural result. Such proportionality is also obeyed when 
Nf is small; but as shown below, there can be an intermediate range 
of flaw density for which the zero-modulation time constant is relatively 
insensitive to Nf. 

(b) P-type Class I Situation 
This is a situation for which the Fermi level and flaw level are both in 

the lower half of the intrinsic gap. The parameter b = (pi/po) may be 
either larger or smaller than unity, but a = {rii/po) <̂  1. For this form 
of simplification of the problem 

4yN[Nb + (l+b)*] 
R = — : — (852.10) 

[N(yb+l)+y(l+b)^ K J 

so that 
N(yb-l)+y(l+b)* 

V ( l - Ä ) = — —^ (852.10) 
V ^ ; N(yb+l)+y(l + b)* ^ > 

It is interesting to note that for electron trapping situations (yb < 1), 
the right side of (852.10) changes sign when N passes through the value 
y(l +£)2/(l — yb) [which a comparison with Eq. (823.3) will show is 
just N ïor Class I conditions]. In hole trapping situations all values of 
N correspond with y/{\—R) > 0. Then the description of the final 
time constant must be given in two forms : 

( yb > \ 
T+ =τ+ι =rno{l+b) for 

I or yb < 1 but N < N 
(852.11) 

while 

T+ = T+3 = 
T+i 

yb + (NIN)(l-yb) 
rpoN(l+b) 

for yb < 1, N> N (852.12) 

JVé + (l + £)2 

For majority hole trapping situations the situation is very simple, 
and the zero-modulation lifetime is inversely proportional to Nf over 
the entire range. The lifetime of Eq. (852.11) is completely unchanged 
from that of an S-R model when a Class I jfr-type semiconductor is 
considered. 
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The behavior is less simple when the flaw energy is far enough from 
the valence band to provoke electron trapping. The S-R result is then 
obeyed for small flaw densities, but when the quantity 7+3 becomes 
appropriate, lifetime is relatively insensitive to flaw density while 
N< N < NKyb)'1— 1]. For a sufficiently large flaw density, r+ 3 ap­
proaches the form of τ+2 and is again inversely proportional to JV/. 
This behavior is illustrated in Fig. 85.3, shown for a/Mype Class I case 

0.1 I 10 100 1000 

Normalized Flaw Density N 

FIG. 85.3. Variation of the final decay time constant τ+ with flaw density 
for a />-type Class I situation involving donor-like flaws. Plotted for the 

parameters a » 0, b = 5, y — 0·02. 

when a » 0, b = 5, and y = 0-02. This choice of parameters makes 
(T+I/T+2) = yb = 0 - 1 , and N = 0-8 for the normalized flaw density 
at which the lifetime breaks away from the pattern of τ+ι . 

When Ef < ξ and majority holes tend to be trapped, the ratio 
(fte/pe) will not usually become much larger than unity even in the final 
stages of decay. As flaw energies closer and closer to the valence band 
are considered, the flaw density which can be tolerated without serious 
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trapping becomes progressively larger, as indicated in Fig. 82.2. The 
situation is more acute when Ef is high enough to induce minority 
electron trapping. Nomura and Blakemore (1958:13) have suggested 
that the terms "weak" and "strong" be applied to electron trapping 
depending on whether N is less than or greater than N. In the latter 
case, the limiting ratio S of ne to pe will be very much smaller than 
unity for an extrinsic semiconductor. 

One expression for S can be used in hole trapping and weak electron 
trapping Class I situations, but a different expression applies for strong 
trapping situations. These come from the two expressions for S in 
Eq. (852.7) when the Class I simplification of a <̂  1 is applied: 

N(yb — 1) l for hole trapping, yb > 1 
y(l +b)2 \ for weak electron trapping, yb < 1, JV < N 

(852.13) 
whereas 

J = *(l+6)2 

j \ f ( l -yô) -y( l + ô)2 

aß 
^yiN-ß) 

When jVis actually equal to JV, S « (#/y)1/2, which is already rather 
small, but as will be noted from the form of (852.14), S is exceedingly 
small for a markedly extrinsic semiconductor if JV > N. 

The final time constant τ+3 of strong trapping situations becomes 
effective for holes whence ^ (po +pi), but not for the minority electrons 
until ne is much smaller than the very small quantity (no + ni). 

Strong electron trapping is impossible if N < y, but for any larger 
value of the normalized flaw density, strong trapping can be expected 
at low temperatures, disappearing above a certain temperature. The 
influence of temperature comes in through the parameter 

b = (fr/fr) = e x p ( ^ ) 

which increases with temperature. Fig. 85.4 shows the variation of τ+ 
with b for a />-type Class I model involving donor-like flaws like those 
of the preceding figure ( y= 0·02). Curves for several values of N are 

20 

for strong electron trapping, 
yb < land JV> JV5 (852.14) 
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shown, some too small to permit strong trapping and others which 
provide for strong trapping when b is less than a critical value. In the 
weak trapping regions, the time constant is τ+i = rno(l + b), and this 
behavior makes a marked contrast with the strong trapping regions, 
for which the time constant r+3 decreases with increasing b. 

b = (ρ,/ρ0) 

FIG. 85.4. Variation of the final time constant τ+ with the parameter b for 
several values of the normalized flaw density. Drawn supposing />-type 

Class I conditions {a Ä 0) with donor-like flaws (γ = 0·02). 

When b reaches the value y_ 1 = 50 (just off to the right of Fig. 
85.4), trapping must automatically be non-existent for any flaw density: 
there will be very weak hole trapping for larger values of b. 

Class I conditions have been described here for a p-type semicon­
ductor; b finite but a « 0. These arguments can easily be inverted to 
discuss a Class I w-type semiconductor for which b is finite but a*1 « 0. 
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(c) P-type Class II Situation 
With a jfr-type semiconductor containing flaw levels in the upper half 

of the gap, a = (nijpo) may be larger or smaller than unity but 
b = (pilpo) <̂  1. For this simplification of the problem, the quantity 
R in Eq. (852.6) reduces to 

4yJV 
R « (852.15) 

{α + γ + Νψ V ; 

Then the small-modulation lifetime r + of Eq. (852.5) is 

TPo{(a + y + JV) + ^/[(a-y + JV)2 + 4ay]} 

2(1+ WV) 
(852.16) 

The apparently insignificant quantity bJV is retained in the denomina­
tor in order that the lifetime should tend to rpo{polpi) for sufficiently 
numerous flaws, as required by Eq. (852.8). For any reasonable flaw 
density this refinement can be dispensed with, leaving the lifetime as 

T+4 =|Ti?0{(ö + y + JV) + V [ ( ö - r + ^ ) 2 + 4öy]} 

= 4r3JO{(fl + y + JV) + V[(e + y + J ^ 2 - 4 y ^ ] } (852.17) 
From Eq. (852.7), the corresponding final ratio S of excess electrons 
to excess holes is 

S = ( 2 r ) - i { ( r - a - j V ) + V [ ( y - ^ - ^ ) 2 + 4ßy]} (852.18) 

I t is evident that r+ 4 cannot be larger than [τηο + τρο(α + Ν)]> nor 
can it be smaller than rno. Where it lies between those limits depends 
on the relative magnitudes of the parameters a, JV and y. Whereas the 
excess carrier ratio S depends primarily on the flaw density, the func­
tional behavior of the time constant is very sensitive to the ratio of a to y. 
The value of this ratio is significant in differentiating between what 
has been called temporary and permanent trapping (1961:1). 

With Class I conditions, a trapped minority electron has virtually 
no chance of re-excitation to the conduction band. Thus in this sense, 
Class I electron trapping is always "permanent", the proceedings 
being terminated by the subsequent capture of a hole. With Class I I 
conditions, the flaw levels are much closer to the conduction band, and 
electron capture can be followed either by hole capture or electron 
emission. As Shockley (1958:16) points out, the four processes of 
electron and hole capture and emission all go on at the same rate in 
thermal equilibrium when the flaw energy Ef coincides with the 
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position χ, which Shockley calls the "level of equality" and Rose 
(1957:20) the "demarcation level". This is the condition that y = a. 

When conditions depart from equilibrium, the ratio of electron 
emission to hole capture rates is a/y(l+y); thus for any reasonably 
small modulation the rates of these two processes are the same when 
Ef = χ. Nomura and Blakemore (1961:1) think of trapping as a 
temporary phenomenon when flaws are closer to the conduction band 
than χ, since then an electron is likely to be trapped and re-excited 
several times before a free hole can be procured with which to annihi­
late it. This is particularly prone to happen with very asymmetric 
flaws for which y 4, 1 (1955:36). 

For lower lying flaws, a < y, the probability of electron re-emission 
is less than 50%. The trapping of an electron is then usually "perman­
ent"^—until the flaw captures a hole and fulfils its function as a recom­
bination center. 

8.5.3 T H E COURSE OF CLASS I DECAY 

The character of the very early and very late stages of Class I decay 
has been exposed in the two previous sub-sections. The intermediate 
region of the decay can less easily be described in analytic terms, and 
the general course of decay is illustrated here by some of the computed 
curves of Nomura and Blakemore (1958:13). 

(a) Majority Hole Trappings yb> 1 
When decay is initiated from a position of equal excess densities, 

Keo = peo, the electron decay must have a time constant τ+ι = τη0(1 + b) 
for a very short initial period. The corresponding initial hole lifetime 
is T+2 = Tpo(l + 1/*)· The sequence of time constants is τ+ι > τ^ > τ+2 
whenever yb > 1, and this requires holes to become trapped in the 
early stages of decay. For the electron and hole decay curvesf of 
Fig. 85.5, this period of initial adjustment is too brief to be clearly 
visible, but the disparity of ne and pe which is produced during that 
period establishes the pattern for the remaining decay. 

t Note that the abscissa is expressed in units of τηο, i.e. it is a scale of F rather than 
t. This permits a comparison of curves for differing flaw densities with the provisions 
of the S-R model. The S-R curve for the same values of y and b does in fact lie be­
tween the inner pair of curves for x and_y. Thus, compared with an S-R model, hole 
decay is speeded up and electron decay slowed down when flaws are numerous. 
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The figure confirms previous remarks that even with rather numerous 
flaws, the ratio {nejpe) does not become much larger than unity, and 
that the form of the decay does not deviate seriously from Eq. (834.1) 
of the S-R model. 
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FIG. 85.5 Decay showing majority hole trapping. For donor-like flaws well 
below ξ so that y = 0-05, b = 100, a < 1. 

(b) Minority Electron Trapping, yb < 1 
The decay of excess populations is a rather more complicated matter 

when yb < 1. This is especially true of the final stages, when the time 
constant becomes either r+ i (for JV < N) or T+S (for N > ß). 
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Fig. 85.6 shows the course of electron and hole decay for several 
flaw densities when the flaw properties are appropriate for electron 
trapping. The parameters selected make N =0-21; thus the pair of 

0 20 40 60 80 
Time in units of r n 

FIG. 85.6. Electron and hole decay when minority electron trapping occurs, 
supposing various densities of flaws for which y — 0·05, b = 1, a = 5 x 10~7. 

curves shown for N =0-1 conform reasonably well to the S-~R model, 
with a final time constant rwo(l +b). As larger values of jV are con­
sidered, the disparity of pe and ne becomes more pronounced. It will 
also be noted that the final hole lifetime for N = 0-3 is perceptibly 
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larger than r+i5 while for JV = 3, r+3 is considerably larger than the 
small-modulation lifetime of an S-R model. 

For strong trapping cases, the final electron lifetime must also be 
T+3, but there is no sign of this in Fig. 85.6. When the curves for JV = 3 
are extended to very much smaller modulation, as is done in Fig. 85.7, 
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FIG. 85.7. Extension towards smaller modulation of the curves for N = 3 in 
Fig. 85.6 (y = 0-05, b = 1, a = 5 x 10-7). Showing how electrons as well 
as holes eventually have the time constant τ+3. The single curve of the 

S-R model is shown for comparison. 
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it will be seen that the electron decay does indeed assume the expected 
form when x <̂  a{l+b). The value of S is extremely small with the 
parameters chosen, in accordance with Eq. (852.14). 

(c) Variation with Temperature 
For some kinds of flaw, TWO and rpo are functions of temperature. This 

cannot be taken into account in any generally useful fashion, since the 

0 10 20 30 40 50 60 70 
Time in units of r « 

FIG. 85.8. Variation of x and j> with time for Glass I situations (N = 0-1, 
y = 0·05, a <̂  1) with various values for the temperature-dependent 

parameter b. 

possible forms of cross-section temperature dependence are rather 
varied. 

However, as a first approach to the problem of temperature variation, 
it may be supposed that the variation of b is the most important for a 
Class I process. Fig. 85.8 shows how the shape of the decay changes as 
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successively larger values of b are considered. The pair of curves for 
b =0-1 represent a strong trapping situation, but this changes to weak 
trapping for b > 0-4. Weak trapping is the rule for the curves of b = 1 
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FIG. 85.9. Class II decay with acceptor-like flaws (γ = 10, ab <; 1). Showing 
the decay prescribed by the S-R model for three values of ay and the 

separate behavior of x and y when flaws are numerous \N = 20]. 

and b = 5, and of course there is no trapping at all for b = 20 = y_1. 
The final curve of b =100 should show extremely mild hole trapping. 
The variation of the final time constant with b follows a pattern which 
has already been described (see the discussion concerning Fig. 85.4). 
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8.5.4 T H E COURSE OF CLASS I I DECAY 

When equal numbers of excess electrons and holes are created in a 
p-type semiconductor with flaws in the upper half of the intrinsic gap, 

ιό3 

i 1 1 r 

N =0.5 

10 20 30 40 
Time in units of Tn 0 

FIG. 85.10. The shape of decay in a Glass II situation involving donor-like 
flaws (γ = 0-1, a = 0-02, ab <ζ 1). For a small flaw density, when the 
decay is little different from the S-R model; and for a much larger flaw 

density. 

no hole capture is possible until some electrons have been trapped— 
since the flaws must start out completely empty. This can be seen in 
the initial shapes of the curves in Fig. 85.2. 
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The final behavior of both ne and pe is dictated by the lifetime r+4 
of Eq. (852.17), which depends on the values of the quantities jV, y 
and a. It is convenient to consider the decay associated with acceptor­
like and donor-like flaws separately. 

0 50 100 150 
TIME IN UNITS OF T n n 

FIG. 85.11. The transformation from permanent to temporary electron 
trapping when the density of donor-like flaws is moderate (JV"=0*1, 

y = 0-1, ab<^\). 

(a) Decay when Flaws are Acceptor-like 
The essential features of Class II decay via acceptor-like flaws can be 

seen in Fig. 85.9. One trio of curves shows the result for the S-R model 
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(small flaw density) when three values for a are considered (correspond­
ing with différent temperatures). An increase of a changes the situation 
from one of "permanent trapping" into the "temporary trapping" 
range, the borderline being for a = y =10. 

As expected from Eqs. (852.17) and (852.18), the inclusion of a large 
flaw density results in a separation of the decay curves for x andj , and 
in making r+4 a larger multiple of rno. Thus for flaws at the level of 
equality, the final time constant is 2τ^ο when JVis small, but it becomes 
3-4TnoforJV =20. 

The separation between curves of x andjy diminishes as larger values 
of a are considered, since trapping always becomes less effective when 
the temperature rises. 

(b) Decay through Donor-like Flaws 
Fig. 85.10, based on a Class II model of donor-like flaws (y = 0-1, 

a = 0-02, ab <̂  1) demonstrates that the S-R model is satisfied rather 
well when JV< (α + γ), but not for larger flaw densities. The curves 
for JV = 0-5 have a resemblance to those of Fig. 85.7 for Class I decay 
with many flaws. The main difference is that the excess electron curve 
assumes its final slope without waiting for ne to become less than the 
very small quantity wo· For of course Eq. (852.1) becomes valid when 
ne is small compared with («o + wi). This is not a severe restriction for 
Class II decay, since n\ may be quite large. 

The effect of increasing temperature can be simulated by consider­
ing successively larger values of a. The typical form of result is shown 
in Fig. 85.11. For the parameters used in this figure, the borderline 
between permanent and temporary trapping occurs when a =0-1 = y. 
As expected, the electron-hole ratio approaches unity for large values 
of a. 



Chapter 9 

MORE COMPLICATED EXAMPLES OF 
FLAW RECOMBINATION 

T H E model discussed in Chapter 8 was highly idealized in that only one 
type of flaw (and that a monovalent variety) was presumed to contri­
bute to the recombination. Neglect of band-to-band recombination is 
probably justifiable under conditions which make the ratio (E{jkT) 
rather large. But the flaw recombination which then dominates may 
receive significant contributions from several kinds of center. Moreover, 
some interesting kinds of flaw (copper in germanium, for example) are 
multivalent. This chapter comments on these and other complications 
of flaw recombination. 

9.1 MULTIVALENT FLAWS 
A multivalent flaw may be said to "contain" anywhere between 

zero and a maximum of m electrons. If JVe denotes the number of flaws 
with s electrons, then 

m 
J V > = 2 ^ · (910.1) 

5=0 

The recombination rate when excess free carriers are present depends 
on the distribution of flaws between the various possible states of charge, 
and on the capture and emission coefficients for increasing or decreasing 
j by unity. 

Sah and Shockley (1958:11) have studied this problem extensively 
for a semiconductor containing only one type of multivalent flaw, when 
external stimulation maintains a condition of steady state non-equili­
brium. They point out that the non-equilibrium distribution of the 

305 
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various JVS cannot be characterized by a flaw "quasi-Fermi level" or 
electrochemical potential, in contrast to the situation for monovalent 
flaws, f 

Thus the treatment of Landsberg (1957:22), in which a common 
value of Φ/ is taken to indicate the occupation probability of the whole 
series of flaw states, is likely to be strictly correct only when the depar­
ture from thermal equilibrium is very small. Landsberg (1960: i) 
later removed this restriction in a generalized treatment which also 
allows for degeneracy of the distributions in the bands. 

Sah and Shockley's approach should be valid for any departure from 
equilibrium provided that the distribution in the bands follows the 
Boltzmann form. Their paper (1958:11) is recommended for a com­
prehensive treatment of the subject, of which the following remarks 
provide merely a summary sketch. 

Four series of capture and emission coefficients must be used to 
describe the probabilities of various transitions. Sah and Shockley set 
the rate of electron capture by flaws already holding s electrons as 

f In thermal equilibrium, the Fermi level φ indicates the values of no and po. It also 
characterizes the occupancy of all levels within the gap. Thus for monovalent flaws 
at energy £>, we noted in Chapter 8 that 

/m 
no 

no + ni 
1 +exp 

Ef-φ 

kT 

It was shown in Section 3.3 that the distribution of electrons over a set of multivalent 
or amphoteric impurities conformed with the same φ. 

Now when conditions depart from equilibrium, the quantities φη and φν describe 
the conduction and valence band densities. The treatment of Chapter 8 referred to 
the fraction of "fuir* flaws as 

Pe(Ef) = 
n0 

pe —ne 

no + ni N, 

but this may be taken as defining an electrochemical potential φ/ for the flaws 
through 

1+expj-Pe(Ef) 
\ kT 

However, when multivalent flaws are in non-equilibrium, there is in general no 
value φ/ which can be substituted for φ in the thermal equilibrium expressions to 
describe the distribution of the various jV*. 
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nJVsc(n9s). In the nomenclature of the capture coefficient c(n9s)9 n 
denotes that an electron is being captured while s indicates the initial 
condition of the flaw. (The final condition for the reaction discussed 
obviously has s + 1 electrons on the flaw.) 

Transitions between the states s and s + 1 of a flaw involve addition 
or removal of a bound electron at an energy E(s + %). The index here is 
the average of s and s + 1 since the energy is associated with the transition 
between the two conditions but independent of the direction. In terms 
of E(s +1) two useful densities can be defined 

n(s+i) = m expl — 1 
(910.2) 

P(s+i) = m e x P[ -j^f J 

which are analogous to the quantities n\ and p\ of the monovalent flaw 
model (see Chapter 8). The rate at which flaws undergo the transition 
s + 1 -> s by electron emission can be written as Ns+\e(n9 *+ 1)? in terms 
of an "emission coefficient" e(n, s+l). However, detailed balance 
requires that 

e(n9 s+ 1) = n(j+i) . c{n9 s) (910.3) 

Hole capture for the transition s +1 -> s is expressed in terms of a 
capture coefficient c(p, s+l). The inverse process involves an emission 
coefficient e(p, s) which must equal p(s + %) .c(p9s+l) in order to 
satisfy the requirements of detailed balance. The four processes which 
contribute to transitions s <-> s+ 1 are listed in Table 91.1. 

Sah and Shockley consider steady-state non-equilibrium conditions. 
Then the rate of s -+ s + 1 transitions equals that of s + 1 -> s transitions, 
since the numbers of flaws in each of the possible charge conditions is 
time-invariant. Carrier lifetimes are defined in terms of the steady 
state recombination rate : 

_ ! = : * = 2 " ( * + i) (910.4) 

where 
u(s + ¥) = c(n>s)[nNs-n(s + %)Ns+i] ] (910.5) 
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Table 91.1. Transition rates between conditions s and s + I for 
multivalent flaws 

Process 

Electron capture 

Electron emission 

Hole capture 

Hole emission 

Flaw condition 
Initial 

s 

s+l 

s + l 

s 

Final 

s+l 

s 

s 

s+l 

Rate 

nNsc(nf s) 

N8+ie(n, s+l) =n(s+%)N8+ic(n, s) 

pNs+ic{pys+\) 

N8e{p, s) = p(s+i)Nsc(p} s +1) 

From Eq. (910.5), no great difficulty is involved in reaching Sah and 
Shockley's result 

u(s + %) = ■ 
(Ns + Ns+i)(np-nopo) 

[p+p(s + i)l \n + n(s+\) 
L c(n9 s) 

1 rn+ji^ + m 
\ lc(p9s+l)i 

(910.6) 

This equation clearly adopts the proper form for the monovalent 
flaw model [see Eq. (840.2)] when the flaw is monovalent and only the 
charge conditions s and s+l exist. For multivalent flaws, it will still 
usually happen that most states of the flaw will be either too high or 
too low in energy to make an appreciable contribution to the recom­
bination rate; then the summation (910.4) usually contains two or three 
terms only. 

Let u*(s + %) denote the value taken by u(s + J) when the numerator 
on the right of Eq. (910.6) is JVf(np — nopo). Suppose that a fraction a of 
the flaws are in the condition s and substantially all the remainder in 
the condition s+l. Then from Eqs. (910.4) and (910.6), 

n* ôp 
— = £ 1 = a t t * ( j - i ) + ii*(j + i ) + ( l - a ) i i * ( j + t) (910.7) 

This reduces to u*(s — \) + u*(s + J) when almost all flaws are in a single 
condition s (which is frequently likely to be the case). 

The presence of many excess free carriers (electrons and holes) can 
tend to change the average occupancy of a flaw very considerably. It 
will depend on the relative magnitudes of electron and hole capture 
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coefficients whether the flaw occupancy will tend to be guided by the 
electrochemical potential φη for free electrons, or the quantity φρ for 
holes. If there is much asymmetry of capture coefficients, every flaw 
may change its charge by one or two units in attempting to respond to 
the situation. When this is the case, successive terms in the summation 
(910.4) assume importance in turn as the carrier modulation is in­
creased. 

9.2 MORE THAN ONE KIND OF FLAW 
Suppose that a semiconductor contains JVi flaws of type 1, JV2 of 

type 2, and so on up to Nk of type k. Each set of flaws would (in the 
absence of the rest but with the Fermi level unchanged) provide a 
lifetime n , Τ2, ... τ&. A question of obvious interest is: what lifetime τ 
results when the several sets of flaws act in concert ? 

Kalashnikov (1956:34) has considered this question for conditions of 
small modulation and steady state stimulation. His conclusion must 
be expressed that in general 

1 Jc 1 

- = 2 "« (920.1) 

where vm represents the mutual effect of the flaws. For large modula­
tion (or small total flaw density) such that ne « pe > Σ ^ , it can 
reasonably be expected that vm will be unimportant, but for conditions 
of small modulation, vm will vanish only in favorable circumstances. 

The theoretical problems associated with simultaneous recombination 
by two or more kinds of flaw have been considered by several other 
authors, including Landsberg (1957:22), Wertheim (1958:14) and 
Rose (1955:16, 1957:20). The last author considers localized states 
distributed over a wide range of energies throughout the forbidden 
gap—a model which is capable of explaining the various complications 
of insulating photoconductors (superlinearity, quenching effects, etc.). 

An important point which Kalashnikov brings out is that the develop­
ment of a considerable term vm depends very much on the cross-section 
asymmetry of the various kinds of flaws present. He notes that when free 
carriers are trapped by one kind of flaw, the remaining flaws must 
attempt to carry out their recombinative duties in the face of a consider­
able imbalance of ne and pe. The absolute magnitudes of the capture 

21 
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cross-sections for the flaws which cause all the trouble may both be 
small; it is their ratio which determines by how much the recombinative 
action of the other flaws can be hindered. 

This aspect of the composite effect of recombination mechanisms is 
amplified in the next section, which considers the competition between 
a purely recombinative process and a set of flaws which are so asym­
metric that they can be deemed not to capture one kind of carrier at 
all. 

9.3 THE HAYNES-HORNBEGK TRAPPING MODEL 
Chapter 8 described how flaws can engage in both recombination and 

trapping. Haynes and Hornbeck (1955:36, 1955:37) have considered 
the model of a semiconductor in which recombination proceeds via 
some unspecified mechanism (at a rate ne\rr) while a set of flaws is 
active in trapping but very weak in recombination (y <ξ a). They 
developed this model to describe the behavior of very asymmetric flaws 
found in some kinds of silicon. The model should be of interest for any 
semiconductor containing flaws for which y is either very large or very 
small. Fan (1953:16) has discussed a similar type of trapping model. 

9.3.1 FLAWS W H I C H Do N O T CAPTURE HOLES 

As an initial simplification, suppose that the semiconductor is jfr-type 
and contains flaws for which y is so small that they capture virtually 
no holes at all. Then the attenuation rate of excess holes after the 
cessation of any excess generation follows 

àpe ne 

dt Tr 

For excess electrons under the same conditionsf 

dne ne ne \ m nt~\ (no + ni)nt 

(931.1) 

- U * J?Q (*> + * ) * 
dt rr τηοΙηο + ηι jV/J Tnç)Nf 

Here rtt denotes (pe — ne), the excess density of occupied flaws. The first 
term on the right of Eq. (931.2) is the recombination rate, the second 

f The adaptation of Eq. (931.2) from Eq. (812.6) should need no explanation. 
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is the rate of trapping, and the third is the rate of release from flaws. 
Haynes and Hornbeck use the symbol rg for JV/THOCWO + WI)"1, t n e 

mean time an electron spends trapped at a flaw.f They further use n 
to signify TWO(1 +^o/^i)5 the time taken (for small modulation) to trap 
an electron. 

When trapping is rather vigorous, it will often happen that 
nt ~ pe > ne. An observed quantity such as photoconductive response 
is then dominated by the behavior of pe « nt free holes. This provides 
an impetus for studying the time-dependence of nt itself. From Eqs. 
(931.1) and (931.2). 

ant _ nt(no+ni) neV ηχ nt 1 
d / TnoNf mo I no + n\ Nf\ 

Second-order non-linear equations in terms of one dependent 
variable and its time derivatives can be obtained by simultaneous 
solution of Eqs. (931.2) and (931.3). Thus: 

d2ne x /dne\2 / dne\ [(no + ni) ni (ηο + ηι + ηβ)2' 5 ίάηβγ ίάηβ\\ 

dt2 \ dt I \ dt J L 7> Tw0 TnoNf + 

+ ne(n0 + n1 + ney =Q ^ ^ 

TrTnüNf 

A similar type of equation describes the decay of nt. Eqs. (931.2)-
(931.4) can be made to yield some useful approximate solutions. The 
necessary procedures depend on the excess densities and on the relative 
magnitudes of rr, rg and τ^. 

9.3.2 SMALL-MODULATION DECAY 

Eq. (931.4) can be linearized when ne <̂  (fto + wi). This may appear 
to be a severe restriction for a />-type semiconductor with flaws rather a 
long way below the conduction band—but such a configuration tends 
to make ne small rather rapidly, with nt considerably larger. The cri­
terion for linearizing the second-order equation in nt is that 

nt < Nfil + no/ni)-1, 
the density of normally empty flaws. 

f The product JV/TWO is of course independent of flaw density, being the reciprocal 
of the electron capture coefficient <VW>. Thus (Ι/τ^) = <cn)(wo + ni). 
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For appropriately small modulation, the decay schemes are 

d2ne dne 

d*nt ant 
(932.1) 

with 

+ 
«1 

+ 
(w0 + ^ i ) l 

Tr Tw0(^0 + ^ l ) T W V " / J 

and 

0 = 
(«o + »i) 1 

(932.2) 

(932.3) 

The complete solution for an equation with the form of (932.1) is the 
sum of two exponentially decaying terms, but the important term after 
a sufficiently long time is always the one with the longer time constant, 
TO. The standard procedure for Eq. (932.1) shows that 

TO 
α-ν(α2-4£) 

2 l L r r Tt Tgj V L\T r Tt Tgf TrTg\) 
(932.4) 

Three characteristic modes of behavior for the small-modulation 
region of the decay can be distinguished. 

(a) Decay Limited by Recombination, TO « r r 

I t is possible for a small density of asymmetric flaws to be present, yet 
not intrude appreciably on the final decay; provided that the flaw 
properties satisfy two conditions. These are that 

(«o + »i) > 
1 

(cny rr 
[rg < rr] (932.5) 
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and that 

(no + ni)2 

Nf < — — [rg < Tt] (932.6) 
«1 

The first oi these conditions means that the flaw level and/or Fermi 
level must not be too far below the conduction band. The limit on flaw 
density placed by Eq. (932.6) is again dependent on the relationship 
of flaw energy to Fermi level. 

I t is a general rule that trapping is more pronounced for small 
modulation than for large ; then it may be concluded that flaws which 
satisfy Eqs. (932.5) and (932.6) will cause negligible interference for 
any excess densities. This enables us—when we are considering S-R, 
radiative or some other recombination mechanism in a semiconductor— 
to ignore levels lying very close to the minority carrier band. For 
example, in semiconductors such as jfr-type Gè or Si, the donor levels 
introduced by Group V elements are too close to the conduction band 
(ni too large) for appreciable trapping effects. It further follows that 
such levels will not be effective in recombination either (especially 
when, as in the case of donor centers, the hole capture cross-section is 
small). 

For TO to approximate to τΓ, it makes no difference whether rr is larger 
or smaller than Tt, though naturally the mechanics are different in the 
two cases. With a very small flaw density located such that rt > τν, only a 
minor fraction of the excess electrons can ever be trapped. If the flaws 
are more numerous but very close to the conduction band, making 
Tt < Tr, most excess electrons will be trapped at least once and perhaps 
several times. But the release rate from flaws is then so rapid that the 
overall decay is not appreciably affected. 

For flaws which are low lying and numerous—or competing with a 
more vigorous recombination system—trapping must influence the 
final time constant. It will depend on whether Eq. (932.5) or Eq. 
(932.6) fails first as to whether single or multiple trapping develops. 

(b) Single Trapping, TO Ä TQ 

When the flaw energy is far below the conduction band> then against 
the background of any reasonable recombination rate it is impossible 
to disguise the fact that flaws are withholding electrons for a consider­
able time. The final time constant TO will approximate to TQ (the time 
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an electron has to wait before release from a flaw) if 

(/10 + Λ1) < — — — [rr < Tg] (932.7) 
<%> rr 

yet flaws are not very numerous, so that 

(1 +nolni) 
Λ> < 7 N [rr < n] (932.8) 

< W rr 

The latter provision ensures that only a minor fraction of the excess 
electrons are ever trapped, and re-trapping is unlikely; yet the period 
for which these few are held is long enough to impede the decay. 

It might at first seem a paradox that the final decay time constant is 
now independent of flaw density, yet these flaws are supposed to be 
controlling the behavior. This is not in fact a paradox, since the ability 
of a flaw to release an electron is not contingent on the presence of 
other flaws. For flaws of such a character that rr < rg, then some 
trapping will occur for appropriately low modulation no matter how 
small Nf may be. But this is only required to be noticeable when nt 
becomes small compared with the empty flaw density. If Nf is small, 
then the "single trapping" phenomenon is preceded by a lengthy 
period of pure recombination. 

An increase of flaw density eventually forces a failure of the con­
dition (932.8), bringing on multiple trapping. 

(c) Multiple Trapping, TO « (τΓτ^/τ^) 

When flaws are sufficiently numerous, both the conditions (932.6) and 
(932.8) fail; n is shorter than both rr and rg. An excess electron is 
then likely to be trapped several times before it is accepted for recom­
bination, and the detention time in the flaw can be rather long. The 
flaws now exert a profound influence on the decay, particularly for 
small modulation, where the appropriate simplification of Eq. (932.4) 
is 

^ ~ = r r ^ 1 (932.9) 

Of course, there is no formal boundary between single and multiple 
trapping. Provided that rg is long enough to make the effect of the 
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flaws noticeable, Eq. (932.4) provides for a small-modulation time 
constant 

TO = Tg[l +ΤΓ/Τί] if Tg^Tr ΟΓ Tt (932.10) 

This contains rg and (τ^τΓ/τ<) as limiting forms. 
The next sub-section illustrates an approximate solution for moderate 

modulation which approaches the time constant of Eq. (932.10) at 
very long times. 

9.3.3 FINITE MODULATION TRAPPING SOLUTION 

An approximate solution which should be valid for moderate densities 
of trapped electrons is again due to Haynes and Hornbeck. They point 
out that if rg is large compared with either rr or rt (or both), then the 
term {dnejdt) in Eq. (931.2) will be very small compared with the other 
terms of that equation. Thus if the right side of Eq. (931.2) is set as 
zero, 

fj— + —[1 -(«*/JV»(l + no/rn)]} « η%\τ9 (933.1) 
\rr rt ) 

This may be used to express Eq. (931.3) as an equation involving only 
nt and its first derivative : 

~dnt He nt (933.2) 
àt rr rg{\ + (τΓ/τί)[1 - (Hf/JV»(l + nolm)]} 

Such a procedure is obviously not valid when the modulation is large 
enough to fill almost all the normally empty flaws [nt -> Nf(l + wo/^i)-1] ; 
but for more moderate excess populations it should satisfactorily des­
cribe trapping situations. Note from Eq. (933.2) that at any stage 
of decay, the time constant for further decay is 

1 / dt\ 
- - . ( — I = V J + (ΤΓ/Τ«)[1 - (*/JV»(l + no/«i)]} (933.3) 

m \dnt/ 
which approaches the result (932.10) for very small modulation. 

9.3.4 SOLUTION W H E N THERE IS SOME H O L E CAPTURE 

It was pointed out in Section 7.3 that any kind of flaws must have 
some kind of interaction with both bands, even though the cross-section 
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for interaction with one band may be many orders of magnitude 
smaller than that for the other band. When the trapping flaws do have 
a non-zero (but small) probability of capturing free holes, the equations 
for (dpe[dt) and (dntjdt) contain additional terms. Eq. (931.1) must be 
generalized to 

-dpe ne pe \ pi , ^ 1 , (Po+Pi)nt ] - ^ + * 1 + ν*+*>« (934.1) 
dt rr Tpo Lpi+po Nfi TpoNf 

Our present interest is in flaws for which y = (rnolrpo) is quite small, 
since trapping disappears when y-> (polpi)· Let us concentrate on a 
case for which trapping is still very much in evidence, so that 
nt « pe > ne. Then Eq. (934.1) can be approximated by 

~dpe - * + - * (934.2) 
dt rr TJI 

where the hole capture time τ^ is quite long. 
These conditions again permit (dnefdt) to be neglected in Eq. 

(931.2). When ne is substituted from Eq. (933.1) into the revised 
equation for (dnt/dt), it follows immediately that the free excess hole 
and trapped excess electron populations decay with a rate constant 

1 1 1 
_ — 1 (934 3) 
r rh r , { l+ ( r r /T , ) [ l - ( ^ / jV»( l+W^l ) ]} 

When multiple trapping is the vogue (rt <̂  r r ) , the last term of Eq. 
(934.3) varies essentially as [1 — (nt[Nf)(l 4-wo/wi)]-1; then a plot of 
T_1 against this quantity should be linear, with intercept and slope 
given by r ^ - 1 and (η/τ,-τ^), respectively. This method was used by 
Haynes and Hornbeck in their studies of trapping flaws in silicon 
(1955:36, 1955:37) ; their discovery that r ^ - 1 for the deep flaws varied 
as the square of the majority density showed that the very weak capture 
was of an Auger type. 

9.4 RECOMBINATION AND TRAPPING AT 
DISLOCATIONS 

A considerable weight of experimental evidence attests to the recom-
binative action of dislocations in semiconductors. Such observations 
have been made for instance with germanium and silicon (1957:35, 
1957:37), lead sulfide (1957:36) and tellurium (1960:20). 
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An edge-type dislocation marks the termination of a half-plane in 
the crystal lattice, j Read (1954:22) has pointed out that this kind of 
dislocation in some structures (including the zincblende structure) will 
present a line source of "dangling bond" acceptor levels. If there are 
d such levels per unit length, then a dislocation will represent a line 
charge of — q\d per unit length when the Fermi level is sufficiently high 
to ionize every acceptor. In general, the number of ionized dislocation 
acceptors per unit length may be written Z ^ ( W ) · The occupancy 
factor ZA cannot be described by a Fermi-Dirac probability function 
since the occupancy of a dangling bond site depends on the charge 
condition of neighboring sites. (This happens since d may be in excess 
of 107 cnv1.) However, some calculations (1954:22, 1960:21) suggest 
that the departure from a Fermi-Dirac occupancy factor is not a very 
large one. 

Morrison (1956:35) has suggested a simple model for recombination 
by this kind of dislocation in an τζ-type semiconductor, which contains 
a uniform volume density of isolated impurity atoms [effectively, 
Nr = (Nd — Nay\ in addition to ND c m - 2 dislocations. Under these 
conditions, each dislocation line is likely to be appreciably charged, 
producing a cylindrically symmetric space-charge region which sets 
up a potential barrier against electron capture. The radius r$ of this space-
charge region will be ro = (Z!7T^'r)1/2, and the height F of the potential 
barrier is 

V* (qZI2nK)\n(rolX) (940.1) 
from solution of Poisson's equation, where λ is a small quantity related 
to the electron wavelength. If (qV/kT) is denoted as bZ, then Morrison 
suggests that the electron capture rate by dislocations (in the face of 
this potential barrier) should be of the form 

Re = —[n exP( - bZ) - no exP( - *£<,)] (940.2) 

This disappears at thermal equilibrium when n = no, Z = Zo- An 
analogous (but not equivalent) expression for hole capture is 

Rn = -{P-Po exp[è(£o- Z)]} (940.3) 

Strictly speaking, the time constants in Eqs. (940.2) and (940.3) should 

f See any modern textbook on physical metallurgy. Dislocations are discussed 
extensively by Gottrell (1953:17). 
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not be the same, but Morrison points out that the important effects are 
still demonstated by a simplified model in which a common τ# is used 
for the two equations. 

The essential result of this model is that the dislocations will have 
a primarily recombinative effect if è£o is small, but will introduce 
trapping when b£o is large. The conditions may be summarized as 
Θ < 1 for recombination (lifetime ~ τ#) but Θ > 1 for trapping; 
where 

» . * . tail + — ■* ) - ̂ Zl± „„M, 
bpe \ JVrexp(-*3))J A 

When Θ p 1, the effective lifetime is approximately θτο. 



Chapter 10 

SPATIAL DISTRIBUTION OF EXCESS 
CARRIERS 

T H E recombination models of Chapters 5 through 9 were developed 
assuming that ne and pe were spatially invariant. It was noted in 
Section 4.2 that such a procedure was idealistic, but that it would be 
followed for the sake of simplicity. 

At this point it is recognized that continuity equations usually 
contain terms describing the movement of carriers in a semiconductor. 
These terms cannot be completely ignored in a realistic discussion, 
since neither the manner of excess carrier introduction nor of recom­
bination is indifferent to spatial considerations. 

This chapter obviously cannot discuss contact or junction aspects of 
the spatial problem with any measure of completeness, and Section 
10.2 merely gives reference to one or two of the more extensive accounts 
of these complicated subjects. The main part of the chapter is still 
concerned with homogeneous semiconductors—for which the equili­
brium densities no and po are spatially invariant. 

10.1 APPROACH TO THE SPACE-DEPENDENT 
PROBLEM 

10.1.1 T H E CONTINUITY EQUATIONS 

The kinetics of electrons and holes are expressed by a pair of con­
tinuity equations. These equations were developed in Section 4.2 and 
are repeated here: 

dne ne 
- r f = * * - — + ? - x V . I» (1011.1) 

01 Tn 

~-=gE---q-1v.ip (1011.2) 
at Tp 

319 
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The electron current density In can be written as the sum of a diffusion 
term (proportional to \/n) and a drift term (proportional to the electric 
field E = q~lT7<f>ì)· Alternatively this can be expressed as a single term 
[see for instance (1950:1) or (1953:8)] controlled by the gradient of 
the electron electrochemical potential: 

In =[ημηνφί + ςΙ)ηνη] = ημηνφη (1011.3) 

Similarly for the hole current 
lv = [ M P W < - qDpVp] = ΡμΡνφρ (1011.4) 

When departures occur from electrical neutrality, Poisson's equation 
requires that V2(/>?; cannot vanish, but must satisfy 

ν2φί = — [ Λ β - ^ β + Δ»/] (1011.5) 
κ 

where Δ/ζ/ denotes the number of flaw levels occupied in excess of that 
required for equilibrium and neutrality. 

Whenever excess carrier populations are spatially dependent, the 
problem must be solved using Eqs. (1011.1) through (1011.5), with 
the nature of surfaces and contacts setting the boundary conditions. 
Since several recombination mechanisms operate simultaneously 
inside many semiconductors, it is obvious that any attempt at a general 
treatment will usually become hopelessly lost in a maze of mathematics. 
Greater insight can be gained by a careful examination of the solutions 
obtained when the less vital parts of the problem are simplified. 

It was for this reason that spatial effects were deliberately excluded 
in Chapters 5-9. When now it is required to consider carrier flow, some 
compromise is called for in the description of the recombination 
process. 

10.1.2 ASSUMPTION OF A CONSTANT LIFETIME 

When the spatial variations of ne have certain forms, it is possible to 
solve Eq. (1011.1) for some specific and rather simple variation of 
rn with ne\ however, this does not happen too frequently. In a much 
larger number of cases, it is possible to examine the phenomena of 
spatial dependence only on the basis of a very simplified model, for 
which τη does not depend on carrier densities at all. 
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When this simplified model is adopted, an attempt may subsequently 
be made to fuse the results of the enquiry (assuming constant r) with 
knowledge about the behavior of the bulk lifetime (when there is no 
spatial dependence problem.) Such attempts will not be too satisfactory 
if carrier densities change drastically through a sample and the dominant 
recombination mechanism is very sensitive to carrier density. But it 
may work out quite well if either of the following extremes is the case. 

(1) The important problem is the distribution of carriers in space 
and the current carried by them—allowance for the concentration 
dependence of lifetime slightly perturbs this result. 

(2) Spatial effects have a small perturbing influence on the study 
of the recombination mechanism. 

The first of these alternatives is likely to be the case for the situations 
mentioned briefly in Section 10.2, but the subsequently discussed 
situation of homogeneous material affected by surface recombination 
and non-uniform generation does not necessarily fall into one camp or 
the other. 

10.2 SITUATIONS INVOLVING JUNCTIONS AND 
CONTACTS 

10.2.1 INHOMOGENEOUS SEMICONDUCTORS 

When the equilibrium carrier densities no and po are themselves 
functions of the spatial variables, it is reasonable to expect complica­
tions in the description of excess carriers. Section 2.5.2 comments on 
displacements of the bands with respect to the Fermi level for a semi­
conductor (in thermal equilibrium) throughout which accidental 
variations of Na and JVa occur. Now the fluctuations due to purely 
random placement of impurities should not usually be severe, but 
problems of an entirely different magnitude arise when there is a 
massive and systematic progression of doping through a crystal. 

The arch-typical result of such a deliberate change of doping within 
a crystal is a p-n junction—or the arrangement of neighboring p-n 
junctions which forms a junction transistor. The consequences of 
carrier injection across junctions form an immense subject which it is 
impossible to give justice to in a few words. Since Shockley outlined 
his junction theory (1949:5, 1950:1), this has been elaborated and 
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expounded in a very large number of papers and more than a few 
books (e.g. 1957:34, 1960:17). 

The p-n junction is a good example of category (1) in Sub-section 
10.1.2. Its behavior is keenly sensitive to the spatial distribution of 
impurities, and depends in a less drastic fashion on the details of the 
dominant recombination mechanism. That the recombinative be­
havior does influence junction properties to some extent is well exempli­
fied by the work of Hall (1951:18) with germanium/?-^ junctions. Hall's 
analysis of the forward characteristic indicated that a constant lifetime 
was enjoyed for a wide range of large injected carrier densities. This 
showed that flaw recombination must dominate over band-to-band 
processes in germanium, contrary to the ideas previously current. 

10.2.2 CONTACT EFFECTS 

Even when no and po have the same values throughout a crystal of 
semiconducting material, the distribution of excess carriers will be 
highly non-uniform when current is applied from an external circuit 
by means of contacts. Rectifying contacts can inject or extract minority 
carriers (depending on the polarity of the current) ; the density of 
excess carriers falls off with increasing distance from the place of 
injection. A comprehensive account of rectifying contact behavior 
has been given by Henisch (1957:32). As with the p-n junction problem, 
complexities in the behavior of rn are likely to be of secondary importance. 

Rittner (1956:13) has considered a number of rather different end 
contact problems. These occur when excess carriers are created (by 
illumination) within the body of a sample of homogeneous material, 
but are influenced by an appreciable voltage applied between the 
two end contacts. When this voltage is sufficiently large, many of the 
optically created excess carriers will be swept out of the sample before 
they have time to experience recombination in the bulk. These c'sweep-
out" problems have been discussed also by Stöckmann (1956:33). 
For any of these problems, the differential equations which must be 
solved assume a very intractable form (even for one-dimensional 
geometry) when allowance is made for any influence of ne on τ. 

10.3 RESIDUAL SPATIAL INFLUENCES IN HOMOGENEOUS 
SAMPLES 

It might be supposed that spatial effects would be at a minimum for 
a sample of homogeneous semiconducting material with essentially 
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no electrical current externally impressed upon it.f Yet even though 
no and po may be constant throughout the volume, the same can never 
be said of the excess populations. The two reasons for this are (a) that 
recombination occurs on all the surfaces of a sample as well as in the 
bulk, and (b) that the creation of an excess population in the first place 
can never be completely freed from problems of spatial non-uniformity. 

10.3.1 SURFACE RECOMBINATION 

The earliest experiments on the motion of excess minority carriers 
in a single crystal [summarized in Shockley's book (1950:1)] indicated 
that electron-hole recombination occurs on crystal surfaces. This sur­
face recombination is associated with localized surface flaw levels, and 
the kinetics can be described (1954:20) in the same manner as for a 
bulk S-R model. Thus the surface recombination rate depends on the 
relationship of the Fermi level to the surface flaw energy, which in turn 
depends on whether a surface barrier exists or not (1947:3). These 
properties of the surface are sensitive to both the physical condition 
of the surface region and the chemical nature of its environment. J 
Reports of two international conferences (1957:33, 1960:18) probably 
bring together the most complete reviews available of these properties 
of semiconducting surfaces. 

When recombination is going on at a semiconductor surface, there 
is a flow of electrons and holes towards the surface (a current Ip 
towards the surface and a conventional current In away from the surface). 
Shockley (1950:1) defines a quantity with dimensions (length/time) 
as the surface recombination velocity s (*, jy, £, t), which is related to the 
surface-directed current of excess minority carriers and their density at 
the surface. Thus for jb-type material, 

\n — —qne& at the surface (1031.1) 

For w-type material the important boundary condition is 1^ = qpes. 
Excess carriers recombine immediately upon colliding with a surface 

in very poor mechanical or chemical condition, when the surface state 

f A very small current might be used to record the photoconductance of excess 
carriers. If this current is sufficiently small, it will not perturb the carrier distribution 
to any important extent (1955:39). 

J The nature of the environment determines what types of atoms or atomic group­
ings are likely to be adsorbed, influencing the electronic equilibrium. 
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density (1947:3) is very large. Since the flow towards the surface 
remains finite even under these circumstances, such a surface is said to 
have an infinite recombination velocity. 

For a less voracious surface, the numerical value of s depends on 
no, po, the height of the surface barrier, and the density of surface states. 
In germanium at room temperature, values from ~ 50 cm/sec up to 
more than 105 cm/sec have been reported. 

This recombinative behavior of any semiconductor surface—to a 
greater or lesser extent, dependent on the magnitude of s—means that 
even when excess carrier pairs are created reasonably uniformly 
through the volume of a sample, the outer regions become preferentially 
depleted. Diffusion from the heart of the sample towards active surfaces 
persists so long as any excess carriers remain. 

The kind of distribution which becomes set up can be illustrated 
rather simply by considering a sample in the form of a large sheet, 
whose principal faces are the planes x = 0, x = 2A. The continuity 
equation (1011.1) can be simplified if: 

(a) The sample is well on the p-type side of extrinsic. Carrier flow is 
then controlled by the diffusion rate of electrons. 

(b) Excess generation occurs at a rate which is independent of time 
or of position in the sample. Then diffusion maintains a steady state 
profile, which occurs exclusively in the ^-direction. 

With these assumptions, the terms remaining in the continuity 
equation are 

d2ne ne 
Dn-rir- — +gE = 0 (1031.2) 

άχι τη 

It is not necessary to assume that τη is completely independent of 
ne in order to solve Eq. (1031.2). Nomuraf has shown that when the 
lifetime is of the form rn = ^ ( l + jS^g)-1 (which is the case for direct 
radiative recombination and is essentially correct for some conditions 
of flaw recombination), Eq. (1031.2) can be solved in terms of the 
Weierstrassian elliptic function. 

However, a good deal of mathematical detail can be obviated by 
assuming a concentration-independent bulk lifetime rn. The solution 
of (1031.2) can then be written in general as 

». - ^ Ι - β ^ ^ ] - * . ^ ^ ] ) (1031.3) 

f Private communication from K. G. Nomura. 
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where the quantities G and H depend on the boundary conditions at 
x = 0, 2^4. For surfaces which are completely inactive in recombination, 
G = H = 0 and ne = rngE throughout. 

The quantity (Dnrn)1/2 has the dimensions of length, and is often 
referred to in the literature as the electron diffusion length Ln. A com­
panion quantity Lv = (Dvrv)112 is used in equations describing the 
movement of holes. 

Another useful quantity is the so-called "diffusion velocity", which for 
electrons may be designated van = {ΒηΙτη)ν2. 

In terms of these parameters, the solution of Eq. (1031.2) subject to 
the boundary conditions s = si at x = 0 and s = s2 at x = 2A is 

ne = rngE{l- Gexp(xlLn)-Hexp(-xlLn)} (1031.4) 
with 

n s2 ( van + si) exp (2 AjLn) + si ( vdn - s2) 
(jr = 

(van + si)(van + s2) exp(4i4/Zn) -(van-si)(vdn-S2) 
„ s2(vdn-si) exp(2AILn) +si(üdn + S2) e x p ( 4 J / i n ) 
ti = 

(van + si)(vdn + s2) exp(4A\Ln) -(vdn-si)(vdn-s2) 
Simplifications occur in the expressions for G and H when s becomes 
infinite at either surface (or both). 

Fig. 103.1 shows how ne (expressed in units oïrngE) varies with x when 
the diffusion length is one quarter of the sample thickness 2A. For each 
of the curves it is assumed that s2 = 00 on the rear surface ; the curves 
correspond with three values for the front surface recombination 
velocity. Note that even when ^1 « 0, the carrier density is smaller than 
TngE near to the front face. This occurs because there is a continuous 
and vigorous diffusion of carriers towards the rear of the sample f ; 
however, most of the carrier adjustment to surface conditions occurs 
within a diffusion length of a surface. 

It should be remembered that the curves seen in this figure will have 
rather different shapes if rn is a function of ne. When rn increases with 
ne (as happens for some kinds of flaw recombination), the curve for 
s = 00 on both faces will be more sharply peaked at x = A. Other 
consequences of variable rn on the depth distribution of carriers can 

t It is conceded that such an effect would be much less severe if the sample were 
supposed to be ten or twenty diffusion lengths thick. The thickness considered here, 
four diffusion lengths, will be 0*4 cm for//-type germanium in whichτ n ~ 100 /xsec. 

(1031.5) 

22 
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easily be predicted—at least semiquantitatively; and as noted, some 
cases can be solved in closed form. 

Before going too far with such predictions, and corresponding ones 
for different geometric arrangements, it is well to remember that 
spatially uniform generation is an ideal which can be but imperfectly 
approached. 

0 0.5 1.0 

(X/2A) or (x/4l_n) 

FIG. 103.1. Excess carrier density as function of depth in a plate-like sample 
of thickness 2 A. Supposed that generation occurs at a rate g E independent of 
time or position, and that τ η is a constant. Curves are drawn for a sample four 
diffusion lengths thick, (a) si = 0, s2 = oo. (b) si = van, S2 = oo. 

( c ) Si = S2 = 0 0 . 

10.3.2 SPATIAL DISTRIBUTION OF GENERATION 

Excess carriers may appear in a semiconductor either because they 
have been injected electrically or because the material has been exposed 
to an ionizing influence. In neither case is it possible to set up an 
initial distribution which is completely uniform through any volume. 
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It was noted in Sub-section 10.2.2 that the density of carriers injected 
at a contact decreases with increasing distance from the contact. 
Similarly, when carrier pairs are "photo-injected" by the use of ionizing 
radiation (photons or atomic particles), the generation rate decreases 
with increasing thickness of semiconductor penetrated. 

Suppose that a flux Jo (cm - 2 sec-1) of photons is incident on the 
front face (x = 0) of a semiconducting slab 2A thick. Let K (cm- 1) 
denote the absorption coefficient and R the reflection coefficient. Then 
the excess generation rate at depth x is 

«w -"-^• f°"- f cn- i -^U[-4^ } (Ι032·1) 

when allowance is made for multiple reflections. This can be simplified 
to (1 —R)JoKexp(-Kx) if there is no reflection from the rear surface. 

In either case it is apparent that gE can be made independent of 
x only if K <̂  (2-4)-1 for the incident photons. But almost none of 
this type of radiation is absorbed by the sample—the generation rate, 
though uniform in depth, is vanishingly small. This is the case when 
hv < Ei. 

For photons of progressively higher energy, K becomes larger than 
(2-4)-1, and most incident photons create hole-electron pairs. I t would 
seem from Eq. (1032.1) that the number of excess pairs maintained 
per unit area of sample by unit photon flux should reach an upper 
limiting value 

2A 2Λ 
Γ ne{x) .àx T» f 

= — gE[x) . d* 
J Jo Jo0J 

- > T W ( 1 - Ä ) as K->ao (1032.2) 

for large photon energies. As deVore (1956:32) has pointed out, this 
objective is frustrated when there is any surface recombination—for the 
high-energy (readily absorbed) photons create hole-electron pairs in 
large numbers close to the front surface, and the surface has an oppor­
tunity to promote rapid recombination. 

Fig. 103.2 shows schematically how the integral of Eq. (1032.1) 
might vary with photon energy when s is zero, rather small or quite 
large. The actual shapes of such curves depend of course on what 
function K is of hv, and on whether the bulk lifetime varies with ne 
(a factor not taken into account by deVore). 
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FIG. 103.2. The ordinate is the number of excess carriers maintained per 
unit area of a plate-like sample for unit of photon flux incident on one face. 
The curves show how this should vary with photon energy for zero, small 

or large recombination velocity on the front face. 
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FIG. 103.3. Schematic decay of total excess population (a) when bulk life­
time T increases with ne; (b) when τ is independent of nt; (c) when τ 
decreases for increasing we. Solid curve applies when ne is spatially uniform. 
Broken curve applies when most carriers have been created in a thin 

frontal layer of the sample. 
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Effect of Concentration-Dependent Bulk Lifetime 
It is useful to consider the consequences of creating excess carriers 

within a thin frontal zone, rather than more uniformly through the 
volume of a sample, in terms of any possible change of bulk recom­
bination rate. When generation is concentrated in a shallow region 
(and the excess density there made rather large), the surface recom­
bination rate is necessarily increased, but the bulk rate may be either 
decreased, increased, or not affected at all. These possibilities are 
indicated by the decay curves of Fig. 103.3. 

This figure supposes a given number of excess carriers at time t = 0, 
distributed either uniformly in space (subsequent decay marked by a 
solid line) or in a thin frontal region (decay shown by a broken curve). 
In part (b), rn is supposed constant. When the carriers are clustered 
near the front surface, only the surface recombination rate is affected, 
and this is greatly speeded in the initial stages. 

In part (c) of the same figure (for a semiconductor in which τη 
decreases as ne increases), both surface and bulk recombination are 
speeded when electrons are constricted to a shallow surface zone. In 
part (a) it is assumed that rn increases with ne; then the bulk recombin­
ation is slowed when a given number of electrons is confined to a small 
part of the total sample volume. The figure is drawn as though this 
bulk slow-down is only partly compensated by an increase of surface 
recombination, but it can easily happen that the acceleration of surface 
recombination will outweigh all other factors (1958:17). 

Polychromatic Radiation—the Use of Filters 
The generation rate of Eq. (1032.1) may be applicable when a semi­

conductor is exposed to monochromatic radiation, but more usually a 
light source will provide an output over a considerable range of photon 
energies. 

Some of the preceding discussion indicates that it is often desirable 
to filter out those spectral components which are most heavily absorbed 
near to the front surface. One of the most useful kinds of filter is a 
polished slice of the semiconductor itself. This kind of filter stops all 
photons for which hv is much more than Εχ ; admits a fraction of the 
useful photons with hv « E%\ and passes all the longer wavelength 
radiation which has no effect on the sample. 

The resultant form of the generation function depends on the shape 
of the intrinsic absorption edge—but not to a very marked degree. 
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When a filter of thickness W precedes the sample and multiple re­
flection effects are ignored, the generation rate at depth x in the sample 
takes the form 

gE(x) oc (W+x)~m 1 ^ m ^ 3 (1032.3) 
Moss (1959:18) notes that the absorption edge for a number of well 
known semiconductors is essentially exponential in form.t Whenever 
this is the case, m = 1. A larger value of m is found when K varies as 
some finite power of (hv — Et); indeed Eq. (1032.3) is consistent with 
absorption behavior K oc (hv — i ^ ) 1 ^ - 1 ) . 

When measuring the bulk lifetime in a semiconductor sample by the 
photoconductive decay method (1955:39), a filter of the same semi­
conductor is often used in an attempt to make excess generation more 
nearly uniform in depth. Unfortunately, such filters are often much 
too thin to do the required job. As this author has warned previously 
(1958:17), a filter should be at least as thick as the sample; and if the 
absorption edge is of such a nature that m > 1, a filter several times as 
thick as the sample is not out of order. This conclusion has subsequently 
been re-emphasized by Sim (1959:17). 

The varying influences of surface recombination and non-uniform 
generation are considered further in the next section, where the 
transient decay of a population is considered as an eigenfunction 
problem. 

10.4 L I F E T I M E IN F I L A M E N T S 

The general solutions of the time-dependent differential equations 
can be handled most readily by supposing a material in which 

(a) no andjbo are everywhere the same; 
(b) there is no trapping, ne = pe; 
(c) the bulk recombination rate vt, = (l/rw) = (l/rp) does not 

depend on ne. 
Then the inhomogeneous partial differential equation 

8ne 
— = gE-vbne + q-1^ - In (1040.1) 
at 

is linear and separable, and has a solution which can be written as 

f Absorption coefficient proportional to exp(Cu), where the constant C controls 
the steepness of the edge. 
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products of separate functions of space and time. As has been shown 
by Shockley (1950:1) and Stevenson and Keyes (1955:39), the assump­
tion of a constant electric field does not create any analytic difficulties, 
but since it gives no additional insight into the problem we shall assume 
here that E = 0. A substantially p-type material is assumed, so that 
Dn is the important diffusion constant. Then 

Sne 
— =gB-vbne + DnV*ne (1040.2) 

10.4.1 HOMOGENEOUS EQUATION. DECAY MODES 

At any moment in time when the generation rate gE is zero through­
out the sample, Eq. (1040.2) becomes a well known homogeneous 
equation : 

dne 
— = -vbne+DnV2ne (1041.1) 
ot 

Çhian turn-mechanical problems (1949:9) and situations of heat con­
duction (1947:4) are concerned with this same type of equation, whose 
solutions are discussed extensively by Morse and Feshbach (1953:15). 
This is an eigenvalue problem; the solution subject to any required 
initial distribution of ne and to any boundary conditions (set by surface 
recombination velocity on the various sample faces) can always be 
written as a linear combination of eigenfunctions. 

Any set of separable co-ordinates may be used for this purpose. Thus 
excess carrier problems for a sample which is finite in only one direction 
have been considered by Visvanathan and Battey (1954:21), by Ridley 
(1958:12) and by Sim (1958:24). Sim also considered the problem of 
cylindrical symmetry, as did McKelvey (1958:18) and Kennedy 
(1960:5). Shockley (1950:1) first discussed carrier decay as an eigen-
function problem, using the normal three-dimensional Cartesian co­
ordinate system; this system has been preserved in the subsequent 
discussions of Stevenson and Keyes (1955:39) and of Blakemore and 
Nomura (1960:4), and will be used here. Consider then a sample in the 
form of a rectangular parallelepiped, bounded by the planes x = 0, 
x = 2A\y = 0,jy = 2B; z = 0, z = 2C. Suppose that while generation 
may have been going on at some time in the past, it ends completely at 
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the time £*. The most general type of solution for Eq. (1041.1) is 

ijk 

= 2aWe xP[~( i~ i*)(^ + vw)] x 
ilk 

* * M KfêH KfêH 
t ^ t* (1041.2) 

where 

r£*2 ?H2 ifc2i 

^=D»de+ik+%] (1 0 4 1 ·3) 
The quantities &, % £# and the phase angles δ ,̂ δ;, δ# are determined 
by the condition Ό^ηε = &ne at the various boundaries. Thus the 
boundary conditions on the xz faces of the sample require that 

tanÔ; = - t a n ( 2 w + 8j) = ΌηηφΒ (1041.4) 

and entirely analogous conditions must be met for the other eigen­
values. There is a solution for ^ (and also for & and £#) between zero 
and 7T/2, another between π/2 and ττ, and so on. 

In Eq. (1041.2), η^ denotes the portion of the excess carrier density 
(dependent on position) which is described by a given eigenfunction 
or "mode". The total number of excess electrons in the sample associ­
ated with this mode can be signified as 

2A 223 2C 

Naie = ί f ( riijjcdxdydz (1041.5) 
0 0 0 

Both Nijjc and ηχ^ decrease as time goes on, characterized by the decay 
rate (ν^ + ν^). This is the sum of the bulk recombination rate vi, (the same 
for all modes) and a surface recombination rate v^ [which depends in 
accordance with Eq. (1041.3) on the eigenvalues characterizing the 
mode]. Thus the 111 mode (fundamental mode), which has the smallest 
possible set of values for the eigenvalues &, 77/, ζ#, is characterized by 
a surface recombination rate vm which is smaller than that of any of 
the "higher order modes". 
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The coefficients α ^ of the various modes must be chosen so that 

ijk 
fits the required form of ne(t*) throughout the sample at the moment 
decay begins. As time goes on, the fundamental mode will become 
progressively more important than other modes, since it decays less 
rapidly. For some spatial distributions of generation, the fundamental 
mode is pre-eminent even in the initial stages of decay; but with less 
ideal spatial distributions which require large α ^ for certain high-
order modes, the 111 mode must still eventually dominate. 

When the photoconductance of a complete sample is measured by 
monitoring a small applied current, the signal will be proportional to 

m 
The decay rate may be expressed as (v& + vs), where vs represents the 
composite effect of all surviving modes on the speed of surface recom­
bination. The measured time constant r/ = (VÔ + I/6.)_1 is often referred 
to as the "filament lifetime" for photoconductive decay. Then 

2A 2B 2C 

j j j (dne/dt) dxdydz 
I o o o 

= (vb + vs) = 
Tf 2A 2B 2C 

J J J we dxdydz 
0 0 0 

- 2(3JVW30 
m , t> t* (1041.6) 

ijk 
For the consideration of excess carrier decay in finite samples, it has 
proved convenient (1960:4) to define the quantity 

2 Nijk{t) 
F(t) =expM*- f» ) ]g* t> ** (1041.7) 

ijk 
This is the fraction of all the excess carriers present at time t* which 
have been spared by surface recombination up to the time t. It is 
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evident from Eqs. (1041.6) and (1041.7) that vs is the logarithmic 
decrement o(F(t) : 

- 1 dF(t) 
vJt) = . — L i . 1041.8) 

W F{t) àt V ; 

When the interior of the sample is completely devoid of recombination 
mechanisms, F(t) describes completely the course of the excess popula­
tion (attenuated only by the surface recombinative action of the various 
modes). There is customarily some bulk recombination as well, but 
this is the same for every mode and can be described in a separate 
term outside the summation sign. 

Consideration of the fate of excess carriers which are created in some 
(not necessarily spatially uniform) fashion in a sample can best be 
accomplished by following the progress of F(t) and its logarithmic 
decrement vs. As already remarked, at a sufficiently late stage of the 
decay, high-order modes will become of negligible importance by 
comparison with the fundamental mode, and the right side of Eq. 
(1041.6) will reduce to {vb + mi)· For some kinds of experiment—such 
as those involving measurement of bulk lifetime—suppression of the 
high-order modes is very desirable. The important question then is, 
how long must the decay go on before (v& + vs) is satisfactorily close to 
(*Ί> + *Ίΐι)? This is controlled by the relative magnitudes of the mode 
coefficients α^#, which as discussed in the next sub-section depend on 
the pattern of generation. 

Many samples studied in experimental work are very long compared 
with the transverse dimensions. Then the actual length 2A has little 
bearing on the value of vm, which may in these circumstances be 
abbreviated t o n i · Fig. 104.1 reproduces the result of Shockley (1950:1) 
for the dependence of this minimum surface decay rate vn on s for a 
long sample of square cross-section (2B = 2C) ; the behavior varies 
between the limiting forms 

2* 

irWn 

o I 
(1041.9) 

i>n » , s -> oo 
2 5 2 ' 

Apropos the result quoted above for infinite recombination velocity, 
it is interesting to note the specific forms taken by Eqs. (1041.2)-
(1041.4) for a sample of arbitrary dimensions 2A, 25 , 2C, when all the 
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FIG. 104.1. Variation with surface recombination velocity s of the funda­
mental mode surface decay rate vn for a long sample of square cross-

section. After Shockley (1950:1). 

surfaces are extremely active in recombination. The boundary con­
ditions (1041.4) are then satisfied by 

δί, Sj, h = 0 
77 377 

ft> Vh L· = - , 7Γ, —, 2π. 
s -> oo (1041.10) 

Accordingly, the excess carrier density can be described at any moment 
during the decay and at any position in the sample by 

ne = 2 nffî 
ijk 

= Σ *M e*p[-(t- t*)(vb + vijk)] x 
ijk 

x sin sin sin 
\2AJ I 25 / \2C7 s 
i, j9 k = 1, 2, 3, 4, ... i 

oo, t > t* (1041.11) 
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where 

ifiDnTi2 j 2 *2Ί ì 

v w = - _ | _ + _ + _ j \ s_+œ ( 1 0 4 L 1 2 ) 

i, 7, * = 1, 2, 3, 4, ... ' 
It will be observed that the eigenfunction series has for the case of 
infinite s become a Fourier series. This offers a hope for analytic 
solution of a number of problems which are intractable for the eigen­
function series corresponding to a finite surface recombination velocity. 
The subject matter of the next sub-section demonstrates one such 
simplification. 

10.4.2 T H E AMPLITUDES OF DECAY MODES 

The coefficients α ^ of the various modes of Eq. (1041.2) must 
satisfy the initial boundary condition that there is a certain distribution 
ne{x,y, Z, t*) of excess electrons at time £*. When ne(x,y, z, t*) is 
known as an analytic function of the spatial variables, it may be possible 
to determine each of the α ^ in turn by Fourier's method, giving each 
coefficient as a ratio of triple integrals : 

2A 2B 2C 

j j j ne(x,y, Z, t*) sin[(f,*/4) +8 | ] x 
0 0 0 

x sin[faiylB)+8j] sin[(£j*/C) +8k]dxdydz) 
«4Jk = (1042.1) 

(2A 2B 2C 

j j f sm*[tfixlA)+8i]sm*[(ViylB)+8j]x 

xsm*[fazlC)+8k]dxdjdz 

The method is usually computationally very tedious if s is finite, re­
quiring the roots of a series of transcendental equations. 

However, a valuable simplification occurs in the limit of infinite 
surface recombination velocity. The triple integral in the denominator 
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of Eq. (1042.1) reduces to ABC, and 

2A 2B 2C 
1 2A 2B 20 

ABC 
o o 

. finx\ . /jny\ . tkirz\ 
sin sin sin dmjd-ζ. 

\ 2 i l / \ 2 5 / \2Cj J 
x\zÄ) \~ZB) \~2CJ dxdydz> s ~* °° (1042·2) 

Fourier integrals of this form have been studied extensively, and the 
solution for α ^ can be written down immediately when ne(x,y, z, t*) 
takes any one of several simple analytic forms. 

The simplest case of all occurs when ^ne(t*) vanishes; this will 
happen if generation is spatially uniform and a delta function 8{t — t*) 
of time.f For this very simplified situation an elementary integration 
of (1042.2) yields 

/4\3 ne[f) 
&ijk 

/ 4 \ 3 ne{t*) 
- . ——— when i, j , k are all odd integers 

\777 ijk 
&ijk = 0 if any of i, j , k are even integers 

(1042.3) 

It has been pointed out (1960:4) that recombination is usually 
assisted by modes for which i,j, and k are all odd integers. Some spatial 
distributions of the generative process cause certain odd modes to have 
<*ijk < 0> a n d these modes will be generative in character.$ For the 
example of spatially uniform generation which produces Eq. (1042.3), 
all odd numbered modes have α ^ > 0 ; thus in this case they all con­
tribute to the recombination. 

That Eq. (1042.3) should prohibit all modes involving even integers 
need come as no surprise, since these modes are antisymmetric and 
are required to assist in the description of an initial distribution only 
when one-half of the sample contains more carriers than the other. Even 
when the pattern of generation is of such a form that even numbered 
modes are brought into being, their role consists entirely of describing 

f The supposition of spatially uniform generation and of a delta function genera­
tive pulse are both idealized, but the simple result which follows is adequate for the 
purposes of illustration. 

Î When auk < 0, then the total mode content JVy* for an odd numbered mode is a 
negative quantity whose absolute magnitude decreases as time goes on. This is tantamount 
to a decaying generative effect. 

file:///~2cJ
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diffusive tendencies, trying to make an excess carrier distribution more 
symmetrical. Even numbered modes do not contribute to the photo-
conductance of a sample and do not influence the photoconductive 
decay, since their Nijk are zero at all times. This can readily be seen 
since 

/ ίπΧ\ ljny\ (kTTZ\ 
nw = *ijkexp[-[t-t*)(vb + viik)] sm\^j) sin\^j Un\2Cj 

S -> 00 
for (1042.4) 

t ^ t* 

When riijfc is integrated over the volume of the sample in accordance 
with Eq. (1041.5), the result is 

ΑγΑΒΟ 
Nijk = - ··, *Wc exp\ ~{t- t*)(vb + vijk)], i,j, k all odd 

\π ijk . , J Ì (1042.5) 
Nijk = 0, any of i, j , k even 

The second result of Eq. (1042.5) demonstrates the remark just made 
that even numbered modes do not contribute to the photoconductance 
of a sample at any time. The first result, for odd modes, can be com­
bined with the answer of Eq. (1042.2) to give the overall influence of 
each mode in a sample. 

Thus for an initially uniform carrier distribution, Eqs. (1042.3) and 
(1042.5) can be combined to yield 

I t > t* 
s -> 00 (1042.6) 

V*(**) = 0 
In this particularly simple case, 

2 (y*) - 2 e x p [ - vw(t- /*)] 
Fit) = — -= (1042.7) 

ijk 

and 

2 vw(ÌJk)~2 cxp[-vm{t- i*)] 
v8 =—%, (1042.8) 

ijk 
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Fig. 104.2 shows how F(t) of Eq. (1042.7) varies with (t-t*) for a 
filament which is supposed to be of square cross-section (2B = 2C) 
and of very great length. The surface decay rate for the fundamental 
mode is then 

vn = h^Dn/B* (1042.9) 
2B = 2C < 2A 
S - > 00 

which is used to normalize the time scale of Fig. 104.2. The surface 
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FIG. 104.2. Progression of F(t) with time following a delta function pulse 
of generation which is uniform through the filament. (Calculated for a 
filament with square cross-section 2B x2B of semi-infinite length.) After 

Blakemore and Nomura (1960:4). 

decay rate vs due to all modes is shown for the same normalized dura­
tion in Fig. 104.3. It will be seen that the fundamental mode initially 
comprises about two-thirds of all the excess carriers, and describes a 
progressively larger fraction as time goes on. The surface recombination 
rate vs is initially infinite, but does not take very long to approach its 
limiting value n i · Even so, attempts to measure v& from the decay of 



3 4 0 SPATIAL DISTRIBUTION OF EXCESS CARRIERS 

photoconductance can be frustrated by departure of vs from vn both 
when vb is comparable to vn and when it is much larger than vn 
(1960:4). 

An assumption of initially uniform excess density is the simplest 
which can be made. The evaluation of mode amplitudes is less straight­
forward when the initial distribution takes other forms. Provided that 
generation is a delta function of time, the spatial distribution of ne(t*) 

FIG. 104.3. Variation of v8 with time for the decay of Fig. 104.2. After 
Blakemore and Nomura (1960:4). 

is identical with that of gE\ this might for example have the form of 
Eq. (1032.1) or of (1032.3) with certain types of illumination, though 
more difficult problems are easy to imagine. 

The difficulty of describing ne(x,y, z, /*) in analytic terms is of a 
much higher order when generation has been going on for some time. 
Diffusion, bulk recombination and surface recombination combine to 
ensure that ne{t*) will be a different function of position than gs. The 
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situation is ameliorated to some extent when the generation has been 
of constant intensity for a long time, for then ne(x,y9 z) at t ^ t* can 
nominally be obtained by solving the steady state equation 

DnV2ne-vbne+gE{x,y, Z) = 0 (1042.10) 

10.4.3 INHOMOGENEOUS EQUATION. GREEN'S FUNCTION METHOD 

The situation of lengthy generation which results in Eq. (1042.10) 
will not usually lead to a very agreeable form for ne{x9y, z, t*) to be 
substituted into Eq. (1042.1). The most general kind of case which 
must be considered, however, involves generation which varies with 
both space and time up until the instant t*. It is then necessary to solve 
the inhomogeneous equation 

dne ] 
— +vbne-DnV2ne = gE(x,J>, z, 0 , t < t* (1043.1) 
at 

= 0, t > t* ) 
subject to the condition DnT/ne = sne at the various boundaries. 

The most convenient method of solution is that of Green's functions, 
whereby the effect of each elementary act of generation is allowed for 
appropriately in terms of the time the generation occurred and the 
location of that generation relative to the locus point. The solution of 
(1043.1) in terms of a Green's function is 

2A 2B 2C t 
Ue = ! ! ! ! gE(xoyoZoto)G(xjzt\xoyoZoto)dx0dyodzodto (1043.2) 

o o o o 

where 
G = ΤΈ^ Σ w i W w i i ^ w j ^ w i ^ o l w j f c t ^ ^ ) exp[(to-t)(vb + vijk)] 

ABLi aie 
1 (1043.3) 

where again n \&2 V)2 ί*21 /ιηΛΟ λ. 
nik=Dny— + — + — j (1043.4) 

The o>'s and &, t]j9 ζ^ are, respectively, the eigenfunctions and eigen­
values of the homogeneous part of Eq. (1043.1). As previously discussed 
in Sub-section 10.4.1, the co's can be expressed as sine functions, which 
have an integral number of lobes within the sample dimension for the 
simplifying case of s = oo. 

23 
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The Green's function approach to equations with the form of ( 1043.1) 
has the advantage that boundary conditions are incorporated auto­
matically. The coefficients of the eigenfunctions can in principle always 
be found by integration, even though the process may be rather 
laborious when gE is a complicated function of space and time. A full 
treatment of this type of mathematical problem is given by Morse and 
Feshbach (1953:15), and some results have been applied to the question 
of excess carrier build-up and decay by Blakemore and Nomura 
(1960:4). The latter paper indicates the kinds of solution which occur 
(for infinite s) when g E takes undesirable and desirable spatial forms; 
and examines the effect of a finite tail to the generative process. 



Appendix A 

THE FERMI-DIRAG DISTRIBUTION LAW 

T H E Fermi-Dirac form of quantum statistics is appropriate for particles 
which are indistinguishable and which occupy states in accordance with 
the Pauli principle—that is to say, a state characterized by three 
quantum numbers and a spin quantum number may be occupied by 
not more than one particle. Since we are interested in situations in­
volving very large numbers of particles, the states of interest must also 
range from small to very large quantum numbers. 

Let us now group these states according to their energy. Suppose 
that there are gi states each characterized by an energy £$, and that 
ni of these are occupied (and hence (gi — nt) empty). There are a large 
number of ways the particles could be distributed over the states, but 
not so large as may at first appear—since the particles are supposed 
to be indistinguishable from each other, and two distributions which 
differ from each other only by the interchange of pairs of particles 
must be regarded as equivalent. Thus the number of distinguishable 
distributions is 

ni\{gi-ni)\ 

Comparable with our set of gi states at the energy Ei are other sets of 
states at higher and lower energies helping to make up the whole 
system. Thus the total number of distinguishable distributions for the 
system as a whole is 

œ=Uœr= Π gA (A.2) 
r rnrl(gr-nr)l 

When particles undergo transitions between states, this must occur 
343 
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subject to the condition that the total number of particles 

n = 2 nr (A.3) 

remains constant. Also, for a system in thermal equilibrium, transitions 
can only occur subject to the further condition that the total energy 

nE = 2 KrEr (A.4) 

remains constant. 
We should like to find the most probable distribution of the particles 

over all the states, for this corresponds to the average behavior of a 
system in thermal equilibrium. This means that we should set up a 
distribution for which 

dœ 
— = 0 (A ·5) 
anr 

subject to the conditions (A.3) and (A.4). Actually, it is more convenient 
to work in terms of In ω rather than ω itself. For we are dealing sup­
posedly with very large numbers and can use Stirling's approximation 

lnjy! « ylny — y, y > 1 (A.6) 

Using (A.6) and (A.2), we can express Ιηω as 

In ω = 2 k r ln£r - nr In nr - (gr - nr) In (gr - nr)] (A.7) 
r 

In finding the maximum of Ιηω subject to the conditions (A.3) and (A.4) 
we adopt the method of Lagrangian undetermined multipliers. Thus 
we wish to have 

[In ω + α[« - 2^r ] + β[ηΕ- ^nrEr]} = 0 (A.8) 
dnr 

In view of (A.7), this requirement is that 

-[*?]-■ + ßEr (A.9) 

This means that for any of the gr states at energy Er, the probability 
that a state will be occupied is 

^Er) = \Jr ) = l +exp ( a + j8£.) ( A ' 1 0 ) 

Now at sufficiently large energies when f < 1, this must approach a 
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classical Maxwell-Boltzmann distribution. This will be the case if one 
of the Lagrangian multipliers has the value ß = \jkT. If we make the 
further substitution a = —(φ/kT), Eq. (A.10) assumes the familiar 
form 

f(E) = L ,, (A.11) 
1 +exp m 

which we use in discussions of electronic equilibrium. 



Appendix B 

TABLES OF THE FERMI-DIRAG INTEGRALS 

EXTENSIVE computations of the Fermi-Dirac integrals of order (3/2) 
and (1/2) were made by McDougall and Stoner (1938:2), who pre­
pared tables for intervals of 0-1 in η over the range — 4 ^ η < +20 . 
Rhodes (1950:3) has given tabulations of the integrals whenj is a small 
positive integer, as have Wright (1951:3) and Johnson and Shipley 
(1953:3). Beer et al. (1955:4) extended the work of McDougall and 
Stoner to higher half-integer values of j and Dingle (1956:2) has 
increased the scope of tabulations for the integrals when j is an integer. 

Several of these authors did not tabulate the 
oo 

1 r ei.de 
Γ0+1) J l+exp(e-ij) 

0 
but rather quoted values of 

FM =YU+l)PM (B.2) 
However, there are several reasons which make it preferable to 

tabulate in terms of <^/, as Dingle (1956:2) noted in his paper of 
tabulations for integer orders. Dingle observed that, unlike Fj9 the ^j 
exist even for negative integer orders; and that in the classical limit 
of η <t 0, ^^(η) is independent of the order j [in fact is just equal to 
exp(^)]. This facilitates interpolation between orders as well as that 
between arguments. 

Since the previously published tabulations are so scattered and 
expressed in such diverse forms, it was thought desirable to include a 
fairly comprehensive table of the more important J ^ . This information 
is collected in Tables B.l and B.2, for the range of arguments 

- 4 ^ η ^ +10 
346 
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The former table is for integer orders from j = — 1 to 7 = + 4 , while 
Table B.2 covers half-integer orders from j = — f toj = + § . 

It may be queried at this point why functions other than ^if 2(77) 
should be tabulated. As discussed in Appendix C, a number of other 
integral and half-integral values of j are required for a discussion of 
transport phenomena in bands of standard form, while carrier statistics 
involve Fermi integrals of order j Φ \ when the bands are of non-stand­
ard form. 

When a Fermi integral ^(77) is desired of any order 7, it is useful to 
have tables of SF$-\ and «^-2 for interpolation. I t was shown by 
McDougall and Stoner (1938:2) that 

*'M ~ ^ i f o ) =*>ifo) (B.3) 
as a relation between successive orders. Accordingly, if we want to 
know ^Fj (770 + Δ77) when the closest tabulated value is for 770, an expan­
sion can be written in terms of «^(770) a n d its derivatives, i.e. of lower 
order integrals. Thus 

^(770 + Δ77) * ^(770) + Δ77 .Fy-ifoo) + IW^_2(τ7ο) (Β.4) 

will prove accurate at least as far as the fourth significant figure for 
any part of the range, with the intervals of tabulation we have employed 
in Tables B.l and B.2. Needless to say, Eq. (B.4) is valid both for 
positive and negative values of Δ77. 

For the process of inverse interpolation, when we require to know 
the 77 = (770 + Δ77) corresponding with an untabulated ^ ^ ο + Δτ?), the 
series of which Eq. (B.4) forms the first terms can be inverted. This 
yields 

77 = 770 + Δ77 

^(77ο + Δ τ 7 ) - ^ ο ) ^ - 2 ( τ 7 ο ) [ ^ ^ ο + Δτ7)-^(77ο)]2 

« Tin H — ■ (B.5) 

taken to second order. It will not usually be necessary to consider terms 
of higher order, in view of the comparative closeness of spacing in 
Tables B.l and B.2. 

Table B.l is based essentially on the tabular material of Dingle 
(1956:2) and Rhodes (1950:3). Table B.2 is derived from portions of 
the tables given by McDougall and Stoner (1938:2) and by Beer et al. 
(1955:4). 



Table B.l. Fermi-Dirac integrals of integer orders for 
negative arguments 

(The digit in parentheses is the power of ten by which an entry must be multiplied.) 

V 

-4 .0 
- 3 . 9 
- 3 . 8 
-3 .7 
-3 .6 

- 3 . 5 
- 3 . 4 
- 3 . 3 
-3 .2 
-3 .1 

-3 .0 
- 2 . 9 
- 2 . 8 
—2.7 
-2 .6 

- 2 . 5 
- 2 . 4 
- 2 . 3 
-2 .2 
-2 .1 

- 2 . 0 
- 1 . 9 
- 1 . 8 
-1 .7 
- 1 . 6 

- 1 . 5 
- 1 . 4 
- 1 . 3 
-1 .2 
-1 .1 

- 1 . 0 
- 0 . 9 
- 0 . 8 
-0 .7 
- 0 . 6 

- 0 . 5 
- 0 . 4 
- 0 . 3 
-0 .2 
- 0 . 1 

0.0 

&-1 

1.799 ( -2 ) 
1.984 ( - 2 ) 
2.188 ( - 2 ) 
2.413 ( - 2 ) 
2.660 ( - 2 ) 

2.931 ( -2 ) 
3.230 ( -2 ) 
3.557 ( -2 ) 
3.917 ( - 2 ) 
4.311 ( - 2 ) 

4.743 ( - 2 ) 
5.215 ( - 2 ) 
5.732 ( - 2 ) 
6.297 ( - 2 ) 
6.914 ( -2 ) 

7.586 ( - 2 ) 
8.317 ( - 2 ) 
9.112 ( - 2 ) 
9.975 ( - 2 ) 
1.091 ( -1 ) 

1.192 ( - 1 ) 
1.301 ( -1 ) 
1.419 ( - 1 ) 
1.545 ( -1 ) 
1.680 ( - 1 ) 

1.824 ( - 1 ) 
1.978 ( - 1 ) 
2.142 ( - 1 ) 
2.315 ( - 1 ) 
2.497 ( -1 ) 

2.689 ( -1 ) 
2.891 ( - 1 ) 
3.100 ( -1 ) 
3.318 ( - 1 ) 
3.543 ( - 1 ) 

3.775 ( - 1 ) 
4.013 ( - 1 ) 
4.256 ( - 1 ) 
4.502 ( - 1 ) 
4.750 ( -1 ) 

5.000 ( - 1 ) 

^ 0 

1.815 ( -2 ) 
2.003 ( - 2 ) 
2.213 ( - 2 ) 
2.442 ( - 2 ) 
2.696 ( - 2 ) 

2.975 ( - 2 ) 
3.283 ( -2 ) 
3.625 ( - 2 ) 
3.995 ( - 2 ) 
4.407 ( - 2 ) 

4.858 ( - 2 ) 
5.356 ( -2 ) 
5.904 ( - 2 ) 
6.504 ( - 2 ) 
7.164 ( -2 ) 

7.889 ( -2 ) 
8.684 ( -2 ) 
9.555 ( - 2 ) 
1.051 ( - 1 ) 
1.155 ( - 1 ) 

1.269 ( - 1 ) 
1.394 ( - 1 ) 
1.530 ( - 1 ) 
1.678 ( -1 ) 
1.839 ( - 1 ) 

2.014 ( - 1 ) 
2.204 ( -1 ) 
2.410 ( - 1 ) 
2.633 ( - 1 ) 
2.873 ( - 1 ) 

3.133 ( - 1 ) 
3.412 ( - 1 ) 
3.711 ( -1 ) 
4.032 ( -1 ) 
4.375 ( - 1 ) 

4.741 ( -1 ) 
5.130 ( - 1 ) 
5.544 ( - 1 ) 
5.981 ( - 1 ) 
6.444 ( -1 ) 

6.932 ( -1 ) 

^ 1 

1.8232 ( - 2 ) 
2.0140 ( - 2 ) 
2.2247 ( - 2 ) 
2.4572 ( -2 ) 
2.7139 ( - 2 ) 

2.9972 ( - 2 ) 
3.3099 ( - 2 ) 
3.6549 ( - 2 ) 
4.0354 ( - 2 ) 
4.4552 ( - 2 ) 

4.9181 ( -2 ) 
5.4284 ( - 2 ) 
5.9910 ( -2 ) 
6.6109 ( - 2 ) 
7.2938 ( -2 ) 

8.0459 ( - 2 ) 
8.8740 ( -2 ) 
9.7852 ( -2 ) 
1.0788 ( - 1 ) 
1.1890 ( - 1 ) 

1.3101 ( - 1 ) 
1.4432 ( - 1 ) 
1.5893 ( - 1 ) 
1.7496 ( - 1 ) 
1.9253 ( -1 ) 

2.1178 ( - 1 ) 
2.3286 ( -1 ) 
2.5592 ( - 1 ) 
2.8112 ( - 1 ) 
3.0863 ( - 1 ) 

3.3865 ( - 1 ) 
3.7135 ( - 1 ) 
4.0695 ( -1 ) 
4.4564 ( - 1 ) 
4.8766 ( - 1 ) 

5.3322 ( -1 ) 
5.8255 ( - 1 ) 
6.3590 ( - 1 ) 
6.9350 ( -1 ) 
7.5561 ( -1 ) 

8.2247 ( - 1 ) 

^ 2 

1.8274 ( -2 ) 
2.0191 ( -2 ) 
2.2309 ( -2 ) 
2.4648 ( -2 ) 
2.7231 ( - 2 ) 

3.0084 ( - 2 ) 
3.3235 ( -2 ) 
3.6715 ( - 2 ) 
4.0557 ( - 2 ) 
4.4800 ( - 2 ) 

4.9482 ( - 2 ) 
5.4651 ( - 2 ) 
6.0356 ( - 2 ) 
6.6652 ( - 2 ) 
7.3599 ( - 2 ) 

8.1263 ( - 2 ) 
8.9716 ( -2 ) 
9.9038 ( -2 ) 
1.0932 ( - 1 ) 
1.2065 ( - 1 ) 

1.3313 ( - 1 ) 
1.4689 ( - 1 ) 
1.6204 ( -1 ) 
1.7872 ( -1 ) 
1.9708 ( - 1 ) 

2.1728 ( - 1 ) 
2.3950 ( - 1 ) 
2.6392 ( - 1 ) 
2.9075 ( - 1 ) 
3.2022 ( -1 ) 

3.5256 ( - 1 ) 
3.8804 ( - 1 ) 
4.2693 ( -1 ) 
4.6953 ( - 1 ) 
5.1617 ( - 1 ) 

5.6718 ( - 1 ) 
6.2294 ( -1 ) 
6.8382 ( - 1 ) 
7.5026 ( - 1 ) 
8.2267 ( - 1 ) 

9.0154 ( -1 ) 

^ 3 

1.8295 ( - 2 ) 
2.0216 ( - 2 ) 
2.2340 ( - 2 ) 
2.4686 ( - 2 ) 
2.7277 ( - 2 ) 

3.0141 ( - 2 ) 
3.3304 ( - 2 ) 
3.6799 ( - 2 ) 
4.0659 ( - 2 ) 
4.4924 ( - 2 ) 

4.9634 ( - 2 ) 
5.4836 ( -2 ) 
6.0582 ( - 2 ) 
6.6927 ( -2 ) 
7.3934 ( -2 ) 

8.1671 ( - 2 ) 
9.0213 ( -2 ) 
9.9643 ( - 2 ) 
1.1005 ( - 1 ) 
1.2154 ( -1 ) 

1.3422 ( - 1 ) 
1.4821 ( - 1 ) 
1.6364 ( - 1 ) 
1.8067 ( - 1 ) 
1.9944 ( - 1 ) 

2.2015 ( - 1 ) 
2.4297 ( - 1 ) 
2.6812 ( -1 ) 
2.9583 ( - 1 ) 
3.2636 ( -1 ) 

3.5997 ( -1 ) 
3.9698 ( - 1 ) 
4.3770 ( - 1 ) 
4.8249 ( -1 ) 
5.3174 ( -1 ) 

5.8587 ( -1 ) 
6.4533 ( - 1 ) 
7.1063 ( - 1 ) 
7.8228 ( - 1 ) 
8.6088 ( - 1 ) 

9.4703 ( - 1 ) 

&4 

1.8305 ( - 2 ) 
2.0229 ( -2 ) 
2.2355 ( - 2 ) 
2.4705 ( - 2 ) 
2.7301 ( - 2 ) 

3.0169 ( - 2 ) 
3.3339 ( - 2 ) 
3.6841 ( - 2 ) 
4.0711 ( - 2 ) 
4.4986 ( - 2 ) 

4.9710 ( -2 ) 
5.4929 ( -2 ) 
6.0695 ( - 2 ) 
6.7066 ( - 2 ) 
7.4103 ( -2 ) 

8.1877 ( -2 ) 
9.0464 ( -2 ) 
9.9949 ( -2 ) 
1.1042 ( -1 ) 
1.2200 ( -1 ) 

1.3477 ( - 1 ) 
1.4888 ( -1 ) 
1.6446 ( -1 ) 
1.8166 ( -1 ) 
2.0066 ( -1 ) 

2.2162 ( - 1 ) 
2.4476 ( - 1 ) 
2.7029 ( - 1 ) 
2.9846 ( -1 ) 
3.2955 ( -1 ) 

3.6384 ( - 1 ) 
4.0166 ( - 1 ) 
4.4336 ( -1 ) 
4.8933 ( - 1 ) 
5.4000 ( -1 ) 

5.9584 ( -1 ) 
6.5736 ( -1 ) 
7.2510 ( - 1 ) 
7.9969 ( -1 ) 
8.8179 ( -1 ) 

9.7212 ( -1 ) 
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Table B.2.—Fermi-Dirac integrals of half-integer orders for negative arguments 



Table ΒΛ 

V 

4.0 
4.2 
4.4 
4.6 
4.8 

5.0 
5.2 
5.4 
5.6 
5.8 

6.0 
6.2 
6.4 
6.6 
6.8 

7.0 
7.2 
7.4 
7.6 
7.8 

8.0 
8.2 
8.4 
8.6 
8.8 j 

9.0 
9.2 
9.4 
9.6 
9.8 

10.0 

SF-

9.820 
9.852 
9.879 
9.901 
9.918 

9.933 
9.945 
9.955 
9.963 
9.970 

9.975 
9.980 
9.983 
9.986 
9.989 

9.991 
9.993 { 
9.994 
9.995 
9.996 ( 

9.997 ( 
9.997 ( 
9.998 ( 
9.998 ( 
9.999 ( 

9.999 ( 
9.999 ( 
9.999 ( 
9.999 ( 
9.999 ( 

9.999 ( 

. (contd.)—Fermi-Dirac integral 

1 

( -1 ) 
( -1 ) 
( -1 ) 
( -1 ) 
( -1 ) 

( -1 ) 
("1) 
( -1 ) 
( -1 ) 
( -1) 

: - i ) 
: - i ) 
: - i ) 
: - i ) 
: - i ) 

: - i ) 
: - i ) 
; - i ) 
: - i ) 
: - i ) 

' - 1 ) 
- i ) 
- i ) 
- i ) 
- i ) 

- i ) 
- i ) 
- i ) 
- i ) 
-1 )1 

- i ) 

^ 0 

4.0181 (0) 
4.2149 (0) 
4.4122 (0) 
4.6100 (0) 
4.8082 (0) 

5.0067 (0) 
5.2055 (0) 
5.4045 (0) 
5.6037 (0) 
5.8030 (0) 

6.0025 (0) 
6.2020 (0) 
6.4017 (0) 
6.6014 (0) 
6.8011 (0) 

7.0009 (0) 
7.2008 (0) 
7.4006 (0) 
7.6005 (0) 
7.8004 (0) 

8.0003 (0) 
8.2003 (0) 
8.4002 (0) 
8.6002 (0) 
8.8002 (0) 

9.0001 (0) 
9.2001 (0) 
9.4001 (0) 
9.6001 (0) 
9.8001 (0) 

1.0000 ( + 1) 

&1 

9.6267 (0) 
1.0450 ( + 1) 
1.1313 ( + 1) 
1.2215 ( + 1) 
1.3157 ( + 1) 

1.4138 ( + 1) 
1.5159 ( + 1) 
1.6220 ( + 1) 
1.7321 ( + 1) 
1.8462 ( + 1) 

1.9643 ( + 1) 
2.0863 ( + 1) 
2.2123 ( + 1) 

1 2.3424 ( + 1) 
2.4764 ( + 1) 

2.6144 ( + 1) 
2.7564 ( + 1) 
2.9024( + l) 
3.0524 ( + 1) 
3.2065 ( + 1) 

3.3645 ( + 1) 
3.5265 ( + 1) 
3.6925 ( + 1) 
3.8625 ( + 1) 
4.0365 ( + 1) 

4.2145 ( + 1) 
4.3965 ( + 1) 
4.5825 ( + 1) 
4.7725 ( + 1) 
4.9665 ( + 1) 

5.1645 ( + 1) 

s of integer order for positive arguments 

&2 

1.7265 ( + 1) 
1.9272 ( + 1) 
2.1447 ( + 1) 
2.3799 ( + 1) 
2.6336 ( + 1) 

2.9065 ( + 1) 
3.1994 ( + 1) 
3.5131 ( + 1) 
3.8485 ( + 1) 
4.2062 ( + 1) 

4.5872 ( + 1) 
4.9922 (4-1) 
5.4220 (4-1) 
5.8774 ( + 1) 
6.3592 (4-1) 

6.8682 (4-1) 
7.4052 ( + 1) 
7.9711 (4-1) 
8.5665 (4-1) 
9.1923 (4-1) 

9.8493 (4-1) 
1.0538 (4-2) 
1.1260 (4-2) 
1.2016 (4-2) 
1.2805 (4-2) 

1.3631 (4-2) 
1.4492 (4-2) 
1.5389 (4-2) 
1.6325 (4-2) 
1.7299 (4-2) 

1.8312 (4-2) 

^ 3 

2.5702 (4-1) 
2.9353 (4-1) 
3.3422 (4-1) 
3.7944 (4-1) 
4.2954 (4-1) 

4.8491 (4-1) 
5.4593 (4-1) 
6.1302 (4-1) 
6.8660 (4-1) 
7.6711 (4-1) 

8.5500 (4-1) 
9.5076 ( + 1) 
1.0549 (4-2) 
1.1678 (4-2) 
1.2901 (4-2) 

1.4224 (4-2) 
1.5650 (4-2) 
1.7188 (4-2) 
1.8841 (4-2) 
2.0616 (4-2) 

2.2520 (4-2) 
2.4558 (4-2) 
2.6737 (4-2) 
2.9064 (4-2) 
3.1546 (4-2) 

3.4189 (4-2) 
3.7001 (4-2) 
3.9988 (4-2) 
4.3159 (4-2) 
4.6520 (4-2) 

5.0081 (4-2) 

^ 4 

3.3674 (4-1) 
3.9173 (4-1) 
4.5443 (4-1) 

1 5.2572 (4-1) 
6.0653 (4-1) 

6.9788 (4-1) 
8.0087 ( + 1) 
9.1666 (4-1) 
1.0465 (4-2) 
1.1918 (4-2) 

1.3539 (4-2) 
1.5343 (4-2) 
1.7347 (4-2) 
1.9568 (4-2) 
2.2025 (4-2) 

2.4735 (4-2) 
2.7721 (4-2) 
3.1003 (4-2) 
3.4604 (4-2) 
3.8547 (4-2) 

4.2859 (4-2) 
4.7564 (4-2) 
5.2691 (4-2) 
5.8269 (4-2) 
6.4327 (4-2) 

7.0898 (4-2) 
7.8014 (4-2) 
8.5710 (4-2) 
9.4022 (4-2) 
1.0299 (4-3) 

1.1264 (4-3) 



Table B.2.—Fermi-Dirac integrals of half-integer orders for negative arguments 

V 

—4.0 
—3.9 
-3.8 
-3.7 
-3.6 

—3.5 1 
-3.4 
-3.3 
-3.2 
-3.1 

-3.0 
-2.9 
-2.8 
-2.7 
-2.6 

-2.5 
-2.4 
-2.3 
-2.2 
-2.1 

-2.0 
-1.9 
-1.8 
-1.7 
-1.6 

-1.5 
-1.4 
-1.3 
-1.2 
-1.1 

-1.0 
-0.9 
-0.8 
-0.7 
-0.6 

-0.5 
-0.4 
-0.3 
-0.2 
-0.1 

0.0 

«^-3/2 

1.78 (-2) 
1.96 (-2) 
2.17 (-2) 
2.38 (-2) 
2.63 (-2) 

2.89 (-2) 
3.18 (-2) 
3.50 (-2) 
3.85 (-2) 
4.23 (-2) 

4.65 (-2) 
5.10 (-2) 
5.60 (-2) 
6.13 (-2) 
6.71 (-2) 

7.35 (-2) 
8.02 (-2) 
8.76 (-2) 
9.55 (-2) 
1.040 (-1) 

1.132 (-1) 
1.229 (-1) 
1.331 (-1) 
1.442 (-1) 
1.558 (-1) 

1.680 (-1) 
1.808 (-1) 
1.941 (-1) 
2.080 (-1) 
2.222 (-1) 

2.367 (-1) 
2.517 (-1) 
2.667 (-1) 
2.820 (-1) 
2.971 (-1) 

3.121 (-1) 
3.268 (-1) 
3.410 -1) 
3.548 (-1) 
3.677 (-1) 

3.800 (-1) 

«^"-1/2 

1.808 (-2) 
1.995 (-2) 
2.203 (-2) 
2.429 (-2) 
2.681 (-2) 

2.956 (-2) 
3.260 (-2) 
3.595 (-2) 
3.962 (-2) 
4.367 (-2) 

4.810 (-2) 
5.298 (-2) 
5.831 (-2) 
6.417 (-2) 
7.059 (-2) 

7.762 (-2) 
8.529 (-2) 
9.369 (-2) 
1.0284 (-1) 
1.1280 (-1) 

1.2366 (-1) 
1.3546 (-1) 
1.4826 (-1) 
1.6213 (-1) 
1.7712 (-1) 

1.9330 (-1) 
2.1074 (-1) 
2.2948 (-1) 
2.4958 (-1) 
2.7108 (-1) 

2.9402 (-1) 
3.1845 (-1) 
3.4438 (-1) 
3.7181 (-1) 
4.0077 (-1) 

4.3123 (-1) 
4.6318 (-1) 
4.9657 (-1) 
5.3137 (-1) 
5.6750 (-1) 

6.0490 (-1) 

«^1/2 

1.8199 ( 
2.0099 ( 
2.2195 ( 
2.4510 ( 
2.7063 ( 

2.9880 ( 
3.2986 ( 
3.6412 ( 
4.0187 ( 
4.4349 ( 

4.8933 ( 
5.3984 ( 
5.9545 ( 
6.5665 
7.2398 

7.9804 
8.7944 
9.6887 
1.0671 
1.1748 

1.2930 
1.4225 
1.5642 
1.7193 
1.8889 

2.0740 
2.2759 
2.4959 
2.7353 
2.9955 

3.2780 
3.5841 
3.9154 
4.2733 
4.6595 

5.0754 
5.5224 
6.0022 
6.5161 
7.0654 

7.6515 

-2) 
-2) 
-2) 
-2) 
-2) 

-2) 
- 2 ) ! - 2 ) | 
-2) 
-2) 
-2) 
-2) 

r-2) 
; -2 ) 
: -2 ) 

: - 2 ) 
(-2) 
: - 2 ) 
(-1) 
[-1) 

(-1) 
(-1) 
(-1) 
(-1) 
(-1) 

(-1) 
(-1) 
(-1) 
(-1) 
(-1) 

(~1) 
(-1) 
(-1) 
(-1) 
(-1) 

(-1) 
(-1) 
(-1) 
(-1) 
(-1) 

(-1) 

«^"3/2 

1.8256 ( 
2.0170 ( 
2.2283 ( 
2.4617 ( 
2.7193 ( 

3.0037 ( 
3.3179 ( 
3.6645 ( 
4.0473 ( 
4.4696 ( 

4.9356 ( 
5.4498 ( 
6.0170 ( 
6.6425 ( 
7.3323 ( 

8.0927 
8.9309 
9.8544 
1.0872 
1.1992 

1.3225 
1.4581 
1.6074 
1.7714 
1.9517 

2.1497 
2.3671 
1 2.6055 
2.8669 
3.1533 

3.4667 
3.8096 
4.1844 
4.5936 
5.0400 

5.5265 
6.0561 
6.6321 
7.2577 
7.9365 

8.6720 

-2) 
-2) 
-2) 
-2) 
-2) 
-2) 
-2) 
-2) 
- 2 ) | 
-2)j 
-2) 
-2) 
-2) 
~2) 
-2) 

: -2 ) 
: - 2 ) 
: - 2 ) 
: - i ) 
: - i ) 

(-1) 
(-1) 
(-1) 
(-1) 
(-1) 

(-1) 
(-1) 
(-1) 
(-1) 
(-1) 

(-1) 
(-1) 
(-1) 
(-1) 
(-1) 

(-1) 
(-1) 
(-1) 
(-1) 
(-1) 

(-1) 

«̂ 5/2 1 

1.8287 ( 
2.0206 ( 
2.2327 ( 
2.4670 ( 
2.7259 ( 

3.0118 ( 
3.3276 ( 
3.6764 ( 
4.0617 ( 
4.4872 ( 

4.9571 ( 
5.4759 ( 
6.0488 ( 
6.6813 ( 
7.3795 ( 

8.1501 ( 
9.0006 ( 
9.9391 ( 
1.0975 ( 
1.2117 

1.3377 
1.4766 
1.6297 
1.7986 
1.9846 

2.1895 
2.4152 
2.6636 
2.9370 
3.2378 

3.5686 
3.9321 
4.3316 
4.7702 
5.2515 

5.7795 
6.3583 
6.9923 
7.6863 
8.4455 

9.2755 

-2) 
-2) 
-2) 
-2) 
-2) 
-2) 
-2)1 -2) 
-2) 
-2) 
-2) 
-2) 
-2) 
-2) 
-2) 
»2) 
-2) 
-2) 

: - i ) 
: - i ) 

: - i ) 
; - i ) 
; - i ) 
[-1) 
("1) 

(-1) 
(-1) 
(-1) 
(-1) 
(-1) 

(-1) 
(-1) 
(-1) 
(-1) 
(-1) 

(-1) 
(-1) 
(-1) 
(-1) 
(-1) 

(-1) 

^ 7 / 2 

1.8301 (-2) 
2.0224 (-2) 
2.2349 (-2) 
2.4697 (-2) 
2.7291 (-2) 

3.0158 (-2) 
3.3325 (-2) 
3.6824 (-2) 
4.0690 (-2) 
4.4961 (-2) 

4.9679 (-2) 
5.4891 (-2) 
6.0649 (-2) 
6.7009 (-2) 
7.4033 (-2) 

8.1791 (-2) 
9.0360 (-2) 
9.9822 (-2) 
1.1027 (-1) 
1.2181 (-1) 

1.3454 (-1) 
1.4860 (-1) 
1.6412 (-1) 
1.8125 (-1) 
2.0015 (-1) 

2.2099 (-1) 
2.4401 (-1) 
2.6938 (-1) 
2.9736 (-1) 
3.2822 (-1) 

3.6222 (-1) 
3.9970 (-1) 
4.4098 (-1) 
4.8646 (-1) 
5.3653 (-1) 

5.9164 (-1) 
6.5229 (-1) 
7.1899 (-1) 
7.9234 (-1) 
8.7294 (-1) 

9.6148 (-1) 



Table B.2.—(contd.). Fermi-Dirac integrals of half integer orders for small positive 
arguments 

V 

0.0 
0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2.0 
2.1 
2.2 
2.3 
2.4 

2.5 
2.6 
2.7 
2.8 
2.9 

3.0 
3.1 
3.2 
3.3 
3.4 

3.5 
3.6 
3.7 
3.8 
3.9 

4.0 

^ - 3 / 2 

3.800 ( 
3.915 ( 
4.019 ( 
4.114 ( 
4.196 ( 

4.269 ( 
4.328 ( 
4.378 ( 
4.415 ( 
4.441 ( 

4.457 ( 
4.463 ( 
4.459 ( 
4.447 
4.427 

4.398 ( 
4.365 ( 
4.325 ( 
4.281 ( 
4.233 ( 

4.182 ( 
4.126 ( 
4.070 
4.013 
3.954 

3.893 
3.833 
3.772 
3.712 
3.654 

3.595 
3.537 
3.481 
3.425 
3.370 

3.319 
3.267 
3.216 
3.167 
3.120 

3.075 

- i ) 
- i ) 
- i ) 
- i ) 
- i ) 

- i ) 
- i ) 
- i ) 
- i ) 
- i ) 

- i ) 
- i ) 
- i ) 

( -1) 
[-1) 

- i ) 
- i ) 
- i ) 
- i ) 
- i ) 

- i ) 
- i ) 

: - i ) 
: - i ) 
: - i ) 

: - i ) 
: - i ) 
: - i ) 
; - i ) 
: - i ) 

: - i ) 
[-1) 
[-1) 
( -1) 
i - i ) 

(-1) 
(-1) 
(-1) 
(-1) 
(-1) 

(-1) 

^ - 1 / 2 

6.0490 ( - 1 ) 
6.4348 ( - 1 ) 
6.8317 ( - 1 ) 
7.2384 ( - 1 ) 
7.6540 ( - 1 ) 

8.0774 ( - 1 ) 
8.5074 ( -1 ) 
8.9429 ( - 1 ) 
9.3826 ( - 1 ) 
9.8255 ( - 1 ) 

1.0271 (0) 
1.0717 (0) 
1.1163 (0) 
1.1608 (0) 
1.2052 (0) 

1.2493 (0) 
1.2931 (0) 
1.3366 (0) 
1.3796 (0) 
1.4222 (0) 

1.4643 (0) 
1.5058 (0) 
1.5468 (0) 
1.5872 (0) 
1.6271 (0) 

1.6663 (0) 
1.7049 (0) 
1.7430 (0) 
1.7804 (0) 
1.8172 (0) 

1.8535 (0) 
1.8891 (0) 
1.9242 (0) 
1.9588 (0) 
1.9927 (0) 

2.0262 (0) 
2.0591 (0) 
2.0915 (0) 
2.1235 (0) 
2.1549 (0) 

2.1859 (0) 

^ 1 / 2 

7.6515 ( - 1 ) 
8.2756 ( - 1 ) 
8.9388 ( - 1 ) 
9.6422 ( - 1 ) 
1.0387 (0) 

1.1173 (0) 
1.2003 (0) 
1.2875 (0) 
1.3791 (0) 
1.4752 (0) 

1.5756 (0) 
1.6806 (0) 
1.7900 (0) 
1.9038 (0) 
2.0221 (0) 

2.1449 (0) 
2.2720 (0) 
2.4035 (0) 
2.5393 (0) 
2.6794 (0) 

2.8237 (0) 
2.9722 (0) 
3.1249 (0) 
3.2816 (0) 
3.4423 (0) 

3.6070 (0) 
3.7755 (0) 
3.9480 (0) 
4.1241 (0) 
4.3040 (0) 

4.4876 (0) 
4.6747 (0) 
4.8653 (0) 
5.0595 (0) 
5.2571 (0) 

5.4580 (0) 
5.6623 (0) 
5.8699 (0) 
6.0806 (0) 
6.2945 (0) 

6.5115 (0) 

^ 3 / 2 

8.6720 ( -1 ) 
9.4680 ( - 1 ) 
1.0328 (0) 
1.1257 (0) 
1.2258 (0) 

1.3336 (0) 
1.4494 (0) 
1.5738 (0) 
1.7071 (0) 
1.8497 (0) 

2.0023 (0) 
2.1650 (0) 
2.3385 (0) 
2.5232 (0) 
2.7194 (0) 

2.9278 (0) 
3.1486 (0) 
3.3823 (0) 
3.6294 (0) 
3.8903 (0) 

4.1654 (0) 
4.4552 (0) 
4.7600 (0) 
5.0803 (0) 
5.4164 (0) 

5.7689 (0) 
6.1380 (0) 
6.5241 (0) 
6.9277 (0) 
7.3491 (0) 

7.7886 (0) 
8.2467 (0) 
8.7237 (0) 
9.2199 (0) 
9.7357 (0) 

1.0271 ( + 1) 
1.0827 ( + 1) 
1.1404 ( + 1) 
1.2001 (4-1) 
1.2620 ( + 1) 

1.3260 ( + 1) 

^ 5 / 2 

9.2755 ( - 1 ) 
1.0182 (0) 
1.1171 (0) 
1.2250 (0) 
1.3425 (0) 

1.4704 (0) 
1.6095 (0) 
1.7606 (0) 
1.9246 (0) 
2.1023 (0) 

2.2948 (0) 
2.5031 (0) 
2.7282 (0) 
2.9712 (0) 
3.2332 (0) 

3.5155 (0) 
3.8192 (0) 
4.1456 (0) 
4.4961 (0) 
4.8719 (0) 

5.2746 (0) 
5.7055 (0) 
6.1662 (0) 
6.6580 (0) 
7.1827 (0) 

7.7419 (0) 
8.3371 (0) 
8.9700 (0) 
9.6425 (0) 
1.0356 ( + 1) 

1.1113 ( + 1) 
1.1915 ( + 1) 
1.2763 ( + 1) 
1.3660 ( + 1) 
1.4608 ( + 1) 

1.5608 ( + 1) 
1.6662 ( + 1) 
1.7774 ( + 1) 
1.8944 ( + 1) 
2.0175 ( + 1) 

2.1469 ( + 1) 

^ 7 / 2 

9.6148 ( - 1 ) 
1.0587 (0) 
1.1654 (0) 
1.2824 (0) 
1.4107 (0) 

1.5513 (0) 
1.7052 (0) 
1.8736 (0) 
2.0577 (0) 
2.2589 (0) 

2.4787 (0) 
2.7184 (0) 
2.9799 (0) 
3.2647 (0) 
3.5747 (0) 

3.9120 (0) 
4.2786 (0) 
4.6766 (0) 
5.1085 (0) 
5.5767 (0) 

6.0838 (0) 
6.6325 (0) 
7.2258 (0) 
7.8668 (0) 
8.5585 (0) 

9.3044 (0) 
1.0108 ( + 1) 
1.0973 ( + 1) 
1.1903 ( + 1) 
1.2903 ( + 1) 

1.3976 ( + 1) 
1.5127 ( + 1) 
1.6360 ( + 1) 
1.7681 ( + 1) 
1.9094 ( + 1) 

2.0605 ( + 1) 
2.2218 ( + 1) 
2.3939 ( + 1) 
2.5774 ( + 1) 
2.7730 ( + 1) 

2.9812 ( + 1) 



Table B.2.—(contd.). Fermi-Dirac integrals of half integer orders and 
positive arguments 

&. 3/2 ^ - 1 / 2 ^ 1 / 2 ^ 3 / 2 ^ 7 / 2 

3.08 
2.99 
2.90 
2.82 
2.75 

2.69 
2.62 
2.56 
2.51 
2.46 

2.40 
2.36 
2.31 
2.27 
2.23 

2.20 
2.16 
2.13 
2.10 
2.07 

2.04 
2.01 
1.99 
1.96 
1.94 

1.91 
1.89 
1.87 
1.85 
1.83 

-1) 
-i) 
-i) 

-i) 

-i) 
-i) 
-i) 
-i) 
-i) 

-i) 
-i) 
-i) 
-i) 
-i) 

-i) 
-i) 
-i) 
-i) 
-i) 

-i) 
-i) 
-i) 
-i) 
-i) 

~i) 
-i) 
-i) 
-i) 
-i) 

1.81 (-1) 

2.1859 (0) 
2.2465 (0) 
2.3054 (0) 
2.3627 (0) 
2.4186 (0) 

2.4730 (0) 
2.5261 (0) 
2.5780 (0) 
2.6288 (0) 
2.6784 (0) 

2.7272 (0) 
2.7748 (0) 
2.8216 (0) 
2.8677 (0) 
2.9128 (0) 

2.9573 (0) 
3.0009 (0) 
3.0439 (0) 
3.0862 (0) 
3.1280 (0) 

3.1691 (0) 
3.2097 (0) 
3.2497 (0) 
3.2892 (0) 
3.3282 (0) 

3.3667 (0) 
3.4048 (0) 
3.4425 (0) 
3.4796 (0) 
3.5164 (0) 

3.5528 (0) 

6.5115 (0) 
6.9548 (0) 
7.4100 (0) 
7.8769 (0) 
8.3550 (0) 

8.8442 (0) 
9.3441 (0) 
9.8546 (0) 
1.0375 ( + 1) 
1.0906 ( + 1) 

1.1447 ( + 1) 
1.1997 ( + 1) 
1.2556 ( + 1) 
1.3125 ( + 1) 
1.3703 ( + 1) 

1.4290 ( + 1) 
1.4886 ( + 1) 
1.5491 ( + 1) 
1.6104 ( + 1) 
1.6725 ( + 1) 

1.7355 ( + 1) 
1.7993 ( + 1) 
1.8639 ( + 1) 
1.9293 ( + 1) 
1.9954 ( + 1) 

2.0624 ( + 1) 
2.1301 ( + 1) 
2.1986 ( + 1) 
2.2678 ( + 1) 
2.3378 ( + 1) 

2.4085 ( + 1) 

1.3260 ( + 1) 
1.4607 ( + 1) 
1.6043 ( + 1) 
1.7572 ( + 1) 
1.9195 ( + 1) 

2.0914 ( + 1) 
2.2733 ( + 1) 
2.4653 ( + 1) 
2.6676 ( + 1) 
2.8804 ( + 1) 

3.1039 ( + 1) 
3.3383 ( + 1) 
3.5838 ( + 1) 
3.8406 ( + 1) 
4.1089 ( + 1) 

4.3888 ( + 1) 
4.6806 ( + 1) 
4.9843 ( + 1) 
5.3003 ( + 1) 
5.6286 ( + 1) 

5.9693 ( + 1) 
6.3228 ( + 1) 
6.6891 ( + 1) 
7.0684 ( + 1) 
7.4609 ( + 1) 

7.8666 ( + 1) 
8.2859 ( + 1) 
8.7187 ( + 1) 
9.1654 ( + 1) 
9.6259 ( + 1) 

1.0101 (+2) 

2.1469 ( + 1) 
2.4254 ( + 1) 
2.7317 ( + 1) 
3.0677 ( + 1) 
3.4352 ( + 1) 

3.8361 ( + 1) 
4.2725 ( + 1) 
4.7462 ( + 1) 
5.2593 ( + 1) 
5.8139 ( + 1) 

6.4121 ( + 1) 
7.0561 ( + 1) 
7.7482 ( + 1) 
8.4904 ( + 1) 
9.2852 ( + 1) 

1.0135 (+2) 
1.1041 ( + 2) 
1.2008 ( + 2) 
1.3036 ( + 2) 
1.4129 (+2) 

1.5288 ( + 2) 
1.6517 ( + 2) 
1.7818 (+2) 
1.9194 (+2) 
2.0646 (+2) 

2.2179 (+2) 
2.3794 (+2) 
2.5494 ( + 2) 
2.7282 (+2) 
2.9161 ( + 2) 

3.1134 (+2) 

2.9812 ( + 1) 
3.4379 ( + 1) 
3.9532 ( + 1) 
4.5326 ( + 1) 
5.1824 ( + 1) 

5.9089 ( + 1) 
6.7192 ( + 1) 
7.6204 ( + 1) 
8.6203 ( + 1) 
9.7268 ( + 1) 

1.0949 (+2) 
1.2295 ( + 2) 
1.3774 ( + 2) 
1.5397 (+2) 
1.7174 (+2) 

1.9115 ( + 2) 
2.1232 ( + 2) 
2.3536 ( + 2) 
2.6039 ( + 2) 
2.8754 (+2) 

3.1695 (+2) 
3.4874 ( + 2) 
3.8307 ( + 2) 
4.2007 (+2) 
4.5989 (+2) 

5.0271 (+2) 
5.4867 ( + 2) 
5.9794 (+2) 
6.5070 ( + 2) 
7.0713 ( + 2) 

7.6741 (4-2) 



Appendix G 

SOME APPLICATIONS AND PROPERTIES OF 
THE FERMI-DIRAC INTEGRALS 

I N this appendix we give a brief indication of how the Fermi-Dirac 
integrals of various orders can become important. The widest range of 
orders is encountered in discussions of transport phenomena, but 
orders other than J are required for an understanding of carrier statistics 
in bands of non-standard form. 

The asymptotic forms taken by the various functions for non-
degenerate and highly degenerate cases are reviewed, and some simple 
approximate expressions attempted, particularly for ^ΐβ{η). 

C.I FERMI-DIRAC INTEGRALS AND TRANSPORT PROPERTIES 

When the Boltzmann transport equation is solved on the assumption 
that a scattering time exists, the result for the current density is the 
sum of terms which depend on applied electric, magnetic and thermal 
fields, and their gradients, in various fashions. Each of these terms can 
be associated with a macroscopic effect, such as conductivity, Hall 
effect, magnetoconductivity, Nernst effect, etc. Many of these terms 
involve one or more of the integrals 

Im = - J (E-EC)™X{E)^-. άΕ (CU) 
Ec 

where λ is the mean free path for an electron of energy E, f(E) is the 
Fermi probability factor of Eq. (122.4), and m is an integer. Electrical 
conductivity, for example, depends on I\ for bands of standard form ; 
while the thermoelectric power is controlled by h and h, and the 
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electronic thermal conductivity is determined by the values of Λ, Ι2 
and I3. 

Now for many kinds of scattering, the mean free path can be ex­
pressed as λ = X0(E — Ec)r over the limited range of energies which 
decides the fate of conduction phenomena. In this, λο may be a function 
of temperature but not of energy (1951:4). When the mean free path 
can legitimately be expressed in this way, then 

f 3/(6) UMkVr» = - em+r · ~ · de (Cl.2) 
J 0€ 
0 

Integrating by parts, 
00 

ImIXo(kT)™+r = [ €m+r . y ( € ) ] ^ + (m + r) .j>+r-l ./(e) . de 
0 

= 0 + r (m + r + l ) .^m+r-i(v) (C1.3) 
This permits the expression of any transport quantity which involves an 
integral Im in terms of a Fermi-Dirac integral SF$ with order 

j = (m + r _ i ) 

Transport effects associated with magnetic fields involve one or more 
integrals of the series 

Λ = - J (E-Ec)n+uW . J±-L . dE (C1.4) 
0 

It will readily be seen by the same approach that each Jn can be 
associated with a Fermi-Dirac i n t e g r a l ^ of order j = (w + 2r—-J). 

The widespread interest in transport effects of semiconductors 
provides ample justification for providing data of Fermi-Dirac integrals 
of orders other than | in Tables B.l and B.2. There is in fact a further 
justification even in the more limited sphere of carrier statistics, as 
noted in the next section. 

C.2 FERMI-DIRAC INTEGRALS FOR NON-STANDARD BANDS 

In the preceding discussion it has been seen that the number of 
charge carriers in a band of standard form is related to the Fermi level 
by the Fermi-Dirac in teg ra l J^ i^^ ) . This ceases to be rigorously true 
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if the band is non-standard, i.e. if energy does not increase as the square 
of wave-vector. A simple hypothetical example will serve to demonstrate 
the point. 

Suppose a conduction band for which the behavior near the extre-
mum may be described by 

tflk* 
E = Ec + ——[1 - a * * ] , (E-Ee) < Ηψτη* (C2.1) 

2 m* 

This is not unlike the manner in which the conduction band develops 
for InSb. The effective mass at the very bottom of the band is quite 
small, but since energy increases less rapidly than the square of wave-
vector, higher energy states must be described in terms of a larger 
effective mass. 

Eq. (C2.1) is a quadratic in k2. The standard form of solution then 
gives 

2a*2 = l - [ l - 8am*(£ -£ c ) / / *2 ] i / 2 (C2.2) 

From this we can write approximately that 

(2m)i/2(£-£c)i/2 
k « - — — — [1 -2am*(£-£ c ) /Ä2 + ...]i/25 * k < or™ (G2.3) 

h 

for states close to the bottom of the band. From Eqs. (C2.1) and (C2.2) 
it is evident that 

àE fflk tßk 
— = — [ 1 -2α**] = — [ 1 -8am*(£-^c)/Ä2]i/2 (C2.4) 
d* m* m* 

This result and (C2.3) can be applied to the basic expression for the 
density of states 

g(E) = (kln)*(dk/dE) (G2.5) 
to yield 

r l -2am*(£-£ c ) /Ä2- i i /2 

Since we are considering only energies quite near to the base of the 
band, this can be approximated by 

g(E) » 4ir(2m*lhZ)3'2(E-Ee)V2[l+3am*(E-Ec)lh2], 

(E-Ee) < W\v.m* (C2.7) 
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When the number of occupied states in such a band is to be related to 
the Fermi level by application of 

no =]f(E)g(E).dE (C2.8) 

it is obvious that the result will involve terms in both ^Ίβ{η) and 
«^3/2(1?). Other forms of departure from standard form in a band can 
similarly lead to the use of ^jij]) with orders other than J in the 
description of carrier density <->Fermi level equilibrium. 

C.3 ANALYTIC PROPERTIES OF THE FERMI INTEGRALS, AND ASYMPTOTIC 
EXPANSIONS FOR NON-DEGENERATE AND DEGENERATE CASES 

Physicists first became aware of the integrals we now know as the 
Fermi-Dirac integrals through the work of Sommerfeld (1928:1) on 
the free electron theory. At that time Sommerfeld discussed asymptotic 
series for the set of integrals, which are still of value today. McDougall 
and Stoner (1938:2) in addition to tabulations, explored a number of 
analytic aspects of the functions and appear to have been the first to 
make the observation previously quoted as Eq. (B.3), that 

This differentiation formula is a valuable tool in obtaining one order 
from another. Thus Beer et al. (1955:4) used the inverse process of 
integration to calculate and tabulate « "̂5/2, <^Ί/ 2, ^9/2 and ^Ίΐ/2 from 
McDougall and Stoner's values of J ^ and ^3/2. In the same con­
nection we should note that each entry in Table B.l or Table B.2 is the 
first derivative of the next entry to the right (i.e. the entry for the same 
η and for j larger by unity). 

The expansion for ^^(77) when η is negative or zero is 

&m = 2 > v < ° (C3-2) 

The so-called "classical" or completely non-degenerate approximation 
is that ^ί(η) « exp (77) ; which we can see from Eq. (C3.2) will be correct 
when η is sufficiently large and negative. This approximation will be 

24 
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adequate for many situations, but is admittedly of limited accuracy 
when —η is rather small. (As an example, note that exp(^) is 1% 
larger than^"i / 2(^) for η = - 3 - 5 , 5 % high at η = - 2 and 30% high 
at η = 0.) The error can be reduced by using additional terms of Eq. 
(C3.2), but this series is not very strongly convergent for small negative 
η and small j . 

McDougall and Stoner noted that the integrals for η = 0 may be 
expressed in terms of the ordinary Riemann zeta function, 

*>(0) = Σ ^ - 7 7 - = [1-2-TO+1) (C3.3) 

A Taylor series expansion for ^)(η) when |^| is small has been derived 
by Dingle (1956:2) on the basis of Eqs. (C3.1) and (C3.3). Such an 
expansion is useful for highly precise calculations, but is unnecessarily 
cumbersome when computations of moderate accuracy are to be made. 
Fortunately, simpler expressions of tolerable validity can be contrived. 

Let us concentrate on expressions for ^Ί^η), since this is the im­
portant member for carrier statistics with bands of normal form. The 
correct expansion for this quantity is 

^1/2(iy) = exp(7;)-2-3 /2exp(27?)+3-3 /2exp(37?)..., η ^ 0 (C3.4) 

Instead of taking the first few terms of this expansion as they stand, it 
is preferable to modify the coefficients of higher order terms. In this 
manner it is possible to minimize the error over a desired range of η. 
Thus the simple expression 

exp(77)-0-25exp(277) (C3.5) 

does not depart from ^i/2{η) by more than ± 2 % for any negative 
value of 77, as may be seen from Fig. C.l . This figure shows that a 
better approximation still is 

exp(r?) - 0-3 exp(2^) + 0-06 exp(3r?) (C3.6) 

which has an error of less than ±0-75% for negative η and is acceptable 
up to η = +0-9. 

There are some occasions when the expressions (C3.5) and (C3.6) 
prove useful, but solutions of this form are decidedly inconvenient for 
many types of problem. For in solving the equations which relate the 
numbers of carriers in impurity levels and electron bands to the Fermi 
energy, it is necessary to solve a cubic equation for exp(ry) when (C3.5) 
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1 

- 2 - I 

V 
FIG. C.l . Error involved in attempting to describe .̂ 1/2(17) as exp(ij) or by 
the expressions of Eqs. (C3.5) and (G3.6), when η is negative or only very 

slightly positive. 
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FIG. G.2. Error involved in attempting to describe ^"1/2(17) as the expres­

sion in Eq. (G3.8) when η is negative or slightly positive. 
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is used, and a quartic when (C3.6) is employed. It is of course much 
more desirable to deal with a quadratic equation, and this can be 
done if an expression of the form 

■ 1̂/2(1?) « , J ^ , x <C3·7) 
l + Cexpfo) 

is used, as suggested by Ehrenberg (1950:4). Landsberg et al. (1951:5) 
remarked that differing values of C optimize the fit for various ranges 
of η ; but for the whole range from classical conditions up to a small 
positive value of η probably the best compromise is effected with the 
value C = 0-27 proposed by the present author (1952:2). As shown by 
the curve of Fig. C.2, the quantity 

e X p W (C3.8) 
l+0-27exp(7?) 

lies within ± 3 % of J ^ i ^ ^ ) for η < +1-3 , and an error no greater 
than this can almost always be tolerated in carrier density discussions. 

Having noted these attempts to make the non-degenerate form of 
expression more palatable in semi-degenerate situations, we must now 
turn to the asymptotic forms which are specific for degenerate systems. 
Eventually we shall again wish to concentrate on 3F\ß[y\)^ but it is 
informative to review a broader field at first. 

Sommerfeld (1928:1) found that the various ^j{r\) could be ex­
pressed in the form 

MJ + O 
where Rj(y]) is a series in negative powers of η. Rhodes (1950:3) noted 
that when j is an integer, the expression (C3.9) omits a term which can 
not be described in powers of 77, and showed that this term was 
( — l ) i ^ ( —77). This analysis was extended by Dingle (1956:2) to 
arbitrary^ ; he found the residue to be cos(jn) ·8Ρ${ — η) (which includes 
Rhodes' result as a special case for integral / ) . Thus in general we have 
that 

&,(η) = C O S ( > ) . ^ ( - r ; ) + - ^ ^ [ l + Ä y W ] , V > 0 (C3.10) 
Γ0 + 2) 

Sommerfeld's expansion for Rjfa) is 

f — 
r=iv2r ' Γ ( / ' + 2 - 2 Γ ) 

flfa)-f-- Γ°' + 2) (C3.ll) 

http://C3.ll
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Each of the quantities ar can itself be expressed as an infinite series, 
whose sum is related to a Bernoulli number of order r or to an ordinary 
zeta function of order 2r: 

«r = 22(-l) / i + 1./^2 r = 
(2π)^[1-21"2Γ]ΑΓ 

Γ ( 2 Γ + 1 ) 

= -2[l-21-^K(2r) 
The first four membersf of this set are given in Table G.I. 

r 

1 

2 

3 

4 

Table CA 

Br 

1/6 

1/30 

1/42 

1/30 

i (2r) 

π2/6 

π4/90 

7Γ«/945 

7τ8/9450 

αΓ 

π2/6 

7π4/360 

31^/15,120 

127^/604,800 

Table C.2 

&Ί(η) for integral j 

(C3.12) 

[ l+expi -T/ ) ] - 1 

lnfl+expfo)] 
- ^ ΐ ( - ^ ) + (>72/2) + (πν6) 

- j r 8 ( _^ ) + (^4/24) + ( ^2 /12 ) + (7*4/360) 
+^4( -η) + (ι?5/120) + (TTV/36) + (7^/360) 
- ^ s ( -1?) + (W720) + (TTV/144) + (7^2/720) + (31π6/15,120) 

Whenj is an integer, Rj(v]) is a polynomial rather than an asymptotic 
expansion, and the relation between ^(77) and ̂ ^( — η) can be ex­
pressed exactly. Forj = 1 orj = 2, Rjfa) has but a single term involving 
ai. The polynomial has two terms forj = 3 or 4, three terms forj = 5 
or 6, and so on. Expressions for «^(77) when j is a small integer are 

f ao, which is unity, is not properly a member of the set. All members beyond 0C4 
are very close to the value 2*000. 
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summarized in Table C.2. It will be noted that these entries are con­
sistent with the differentiation formula Eq. (C3.1). 

When 7 is not an integer, the series (C3.l l) does not terminate, and 
is at best an asymptotic approximation. Gamma functions of negative 
quantities can be avoided by using the property 

1 sin(7T£) 
— — . Γ ( 1 - ^ ) (C3.13) 

Γ(*) 

[e.g. Whittaker and Watson (1927:2)] and writing (C3.l l) as two 
summations, 

rti rpr(j+2-2r) 
- sinQV) a r . r Q - + 2 ) r ( 2 r - i - l ) 

+ 2, · £ (ΙΛ.14) 

The notation here indicates that [ i ( i + l ) ] is the largest integer con­
tained within i C / + 1). 

A highly unsatisfactory feature of Eq. (C3.14) is that the terms of 
the second summation begin to increase when r is larger than ~ \{j' + η). 
Dingle (1956:2) shows that when a finite number of terms in this sum­
mation are included, the remainder of Rj{r)) can be expressed in con­
vergent form, but the necessary series are far from simple. When η is 
sufficiently large, there is little problem; the difficulty is as usual in 
expressing ^(77) for small positive 77. 

Having said this much on the general case, we now focus our atten­
tion on the particular function^Ίβ(η). One useful simplification which 
occurs whenever j = \ plus integer is that the term cos(jn) #«^V( — η) 
in Eq. (C3.10) vanishes. Thus 

■ 1̂/2(1?) = W2IW*)[l+R1/2{v)l η > 0 (C3.15) 
where 

Ä1/2M ~ (πψν2) - (7H4/6401J4) + (31ΤΓ6/3072Τ76)... (C3.16) 

according to Eq. (C3.14). 
We know that in attempting to describe &Ίρ(η) for small positive 77, 

it will not profit us to retain many terms of the series (C3.16); indeed 
for the region η < 3, every term beyond the first is a distinct liability. 

http://C3.ll
http://C3.ll
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Rather surprisingly, the simple expression 

(4^/2/3πι/2)[! +7Γ2/8^2] (C3.17) 

provides a reasonable approximation to the behavior of ^/^{η) for 
η > 1-25. The percentage error involved is indicated in Fig. C.3. 

It may be queried at this point whether the range can be usefully 
extended to smaller values of η by replacing the coefficient (π2/8) in 

4% 

27c 

- I N 

^ 0 
c 

o 
ώ -2%h 

- 4 % 

£λ(η)*{4ηΙ /ϊτττ^+π^βη2]· 

£Αη)*(4ψ /3πζ)[\ + \.\5/η2]_ 

FIG. C.B. The error involved in attempting to express ^1/2(17) by approxi­
mate expressions of the forms of Eqs. (C3.17) or (G3.18), when η is positive 

and rather small. 

Eq. (C3.17) with a slightly smaller number. If it is desired that an 
error of not more than ± 3 % ίη^Ίβ^) should be incurred through the 
range of 77, then the smallest permissible value for this coefficient is 
1.15. As the appropriate curve of Fig. C.3. shows, 

(4^3/2/3771/2) . [ i + 1-15/772] (C3.18) 

lies within about ± 3 % of^i/2(r?) for η ^ 1-0. 
An alternative procedure for extending the range to smaller values 

of η is based on the observation! that the first two terms of Eqs. (G3.15) 

t This observation was made by Mr. L. Lewin and was used by the present author 
in an earlier discussion of this topic (1952:3). 
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and (C3.16) are identical with the first two terms of 

(4/3πΐ/2) . [̂ 2 + ^/633/4 (C3.19) 

yet the succeeding terms of Eq. (C3.19) are considerably smaller than 
their counterparts in the other series. Numerical investigation confirms 
that Eq. (C3.19) satisfactorily describes the behavior of ^ι,^η) for 
η ^ 0-7, as shown by the appropriate error curve in Fig. C.4. The 

4% 

2% 

c 

o 

ui - 2 % 

-4% 

0 1 2 3 4 5 
V 

JPIG. G.4. The error involved in attempting to express 1̂/2(̂ 7) by an approxi­
mate expression having the form of Eq. (G3.19) or (G3.20), when η is 

positive and rather small. 

maximum negative error can be reduced by replacing π2/6 with a 
slightly larger number, but this of course automatically restricts the 
range of η. Thus 

(4/3771/2)^2+1.7]3/4 (C3.20) 

is nevermore than 2 % smaller t h a n # i / 2 (77), but becomes unacceptably 
large when η < 0-9. 

I t will depend on the form of the problem to be solved whether it is 
preferable to express ^\ß[r\) in weakly degenerate systems by Eq. 

J I I L 
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(C3.18), or by one of the expressions (C3.19), (C3.20). Certainly any 
of these three will permit calculation of free carrier densities or Fermi 
level with reasonable accuracy whenever η ^ 1. Since Eq. (G3.8) can 
be used for any smaller value of η, the entire range from complete 
degeneracy to complete non-degeneracy is covered. 



REFERENCES 

1853:1 WiEDEMANN and FRANZ, Ann. Physik 89, 497. 
1904:1 DRUDE, Ann. Physik l , 566. 
1909:1 LORENTZ, The Theory of Electrons. Teubner, Leipzig. 
1917:1 EINSTEIN, Z· Physik 18, 121. 
1926:1 FRENKEL, Z> Physik 35, 652. 
1926:2 BORN, £ . Physik 38, 803. 
1927:1 PAULI, £ . Physik 41, 8. 
1927:2 WHITTAKER and WATSON, Modern Analysis. Cambridge University Press. 
1927:3 HEITLER and LONDON, Z- Physik 44, 455. 
1928:1 SOMMERFELD, Z- Physik 47, 1. 
1928:2 HARTREE, Proc. Cambridge Phil. Soc. 24, 89. 
1928:3 BLOCH, Z> Physik 52, 555. 
1930:1 FOCK, £ . Physik 61, 126. 
1930:2 KRONIG and PENNEY, Proc. Roy. Soc. London A 130> 499. 
1930:3 LANDAU, Z> Physik 64, 629. 
1930:4 DE HAAS and VAN ALPHEN, Leiden Comm. 208d, 212a. 
1931:1 WILSON, Proc. Roy. Soc. London A 133, 458. 
1931:2 WILSON, Proc. Roy. Soc. London A 134, 277. 
1931:3 FRENKEL, Phys. Rev. 37, 17, 1276. 
1931:4 HEISENBERG, Ann. Physik 10, 888. 
1931:5 WAGNER and SCHOTTKY, Z· Phys. Chem. Leipzig B 11, 163. 
1932:1 TAMM, £ . Physik 76, 849. 
1933:1 LANDAU, J. Exptl. Theoret. Phys. U.S.S.R. 3, 664. 
1933:2 PEIERLS, Z· Physik 80, 763. 
1933:3 BETHE, Handbuch der Physik vol. 24.1. Springer, Berlin. 
1934:1 BAUMBACH and WAGNER, £ . Phys. Chem. B 24, 59. 
1934:2 ZENER, Proc. Roy. Soc. London A 145, 523. 
1935:1 DE BOER and VAN GEEL, Physica 2, 286. 
1936:1 Μοττ and JONES, Theory of the Properties of Metals and Alloys. Oxford Uni­

versity Press. 
1936:2 VON HIPPEL, Z> Physik 101, 680. 
1937:1 WANNIER, Phys. Rev. 52, 191. 
1937:2 DE BOER and VERWEY, Proc. Phys. Soc. London 49 (extra part), 59. 
1937:3 GURNEY and Μοττ, Proc. Phys. Soc. London 49 (extra part), 32. 
1938:1 MOTT, Proc. Roy. Soc. London A 167, 384. 
1938:2 MCDOUGALL and STONER, Phil. Trans. Roy. Soc. London A 237, 67. 
1939:1 NIJBOER, Proc. Phys. Soc. London 51, 575. 

366 



R E F E R E N C E S 367 

1939:2 RIEHL and SCHÖN, Z- Physik 114, 682. 
1940:1 SEITZ, Modern Theory of Solids. McGraw-Hill, New York. 
1940:2 KRÖGER, Physica 7, 1. 
1941:1 VERWEY and HAAYMAN, Physica 8, 979. 
1942:1 BORN, Proc. Phys. Soc. London 54, 362. 
1944:1 SHIFRIN, J. Phys. U.S.S.R. 8, 242. 
1946:1 BRILLOUIN, Wave Propagation in Periodic Structures. McGraw-Hill, New York. 
1946:2 PEKAR, J. Exptl. Theoret. Phys. U.S.S.R. 16, 341. 
1947:1 VERWEY and HEILMANN, J. Chem. Phys. 15, 174. 
1947:2 GOODMAN, LAWSON and SCHIFF, Phys. Rev. 71, 191. 
1947:3 BARDEEN, Phys. Rev. 71, 717. 
1947:4 GARSLAW and JAEGER, Conduction of Heat in Solids. Glarendon Press, Oxford. 
1948:1 VONSOVSKY, Izvest. Akad. Nauk. SSSR 12, 337. 
1948:2 Μοττ and GURNEY, Electronic Processes in Ionic Crystals, 2nd Ed. Glarendon 

Press, Oxford. 
1948:3 VERWEY, HAAYMAN and ROMEYN, Chem. Weekblad 44, 705. 
1949:1 SHOCKLEY and BARDEEN, Phys. Rev. 77, 407. 
1949:2 BOGOLYUBOV and TYABLIKOV, J. Exptl. Theoret. Phys. U.S.S.R. 19, 251. 
1949:3 PEKAR, J . Exptl. Theoret. Phys. U.S.S.R. 19, 796. 
1949:4 PEARSON and BARDEEN, Phys. Rev. 75, 865. 
1949:5 SHOCKLEY, Bell System Tech. J. 28, 435. 
1949:6 Μ ο τ τ , Proc. Phys. Soc. London A 62, 416. 
1949:7 WRIGHT and ANDREWS, Proc. Phys. Soc. London A 62, 446. 
1949:8 Μοττ and MASSEY, Theory of Atomic Collisions, 2nd Ed. Glarendon Press, 

Oxford. 
1949:9 SCHIFF, Quantum Mechanics. McGraw-Hill, New York. 

.1950:1 SHOCKLEY, Electrons and Holes in Semiconductors. D. Van Nostrand, New York. 
1950:2 FRÖHLICH, PELZER and ZIENAU, Phil. Mag. 41, 221. 
1950:3 RHODES, Proc. Roy. Soc. London A 204, 396. 
1950:4 EHRENBERG, Proc. Phys. Soc. London A 63, 75. 
1950:5 HUTNER, RITTNER and DUPRÉ, Philips Research Repts. 5, 188. 
1950:6 VERWEY, HAAIJMAN, ROMEIJN and VAN OOSTERHOUT, Philips Research 

Repts. 5, 173. 
1950:7 BARDEEN and SHOCKLEY, Phys. Rev. 77, 407. 
1950:8 ERGINSOY, Phys. Rev. 80, 1104. 
1950:9 FRÖHLICH and O ' D W Y E R , Proc. Phys. Soc. London A 63, 81. 
1951:1 ANSEL'M, J. Tech. Phys. U.S.S.R. 21, 489. 
1951:2 VOL'KENSHTEYN, J. Tech. Phys. U.S.S.R. 21, 1544. 
1951:3 WRIGHT, Proc. Phys. Soc. London A 64, 350. 
1951:4 WRIGHT, Proc. Phys. Soc. London A 64, 984. 
1951:5 LANDSBERG, MACKAY and M C R O N A L D , Proc. Phys. Soc. London A 64, 476. 
1951:6 CASTELLAN and SEITZ, Semiconducting Materials (Edited by Η. K. Henisch). 

Butterworths, London. 
1951:7 PINCHERLE, Proc. Phys. Soc. London A 64, 663. 
1951:8 PUTLEY, Proc. Phys. Soc. London B 65, 736, 992. 
1951:9 LUTTINGER, Phys. Rev. 84, 814. 
1951:10 GOESTER, Phys. Rev. 84, 1259 
1951:11 SLATER, Phys. Rev. 82, 538. 



368 R E F E R E N C E S 

1951:12 H O G A R T H , Proc. Phys. Soc. London B 64, 691 
1951:13 LARK-HOROVITZ, Semiconducting Materials. Butterworths, London. 
1951:14 JAMES and LEHMAN, Semiconducting Materials. Butterworths, London. 
1951:15 LEHOVEC and KEDESDY, J. Appi. Phys. 22, 65. 
1951:16 M C A F E E , RYDER, SHOCKLEY and SPARKS, Phys. Rev. 83, 650. 
1951:17 ROSE, R.C.A. Rev. 12, 362. 
1951:18 H A L L , Phys. Rev. 83, 228. 
1951:19 PLESSNER, Proc. Phys. Soc. London B 64, 671. 
1952:1 RAYNOR, Repts. Progr. Phys. 15, 173. 
1952:2 BLAKEMORE, Proc. Phys. Soc. London A 65, 460. 
1952:3 BLAKEMORE, Elee. Commun. 29, 131. 
1952:4 LANDSBERG, Proc. Phys. Soc. London A 65, 604. 
1952:5 FULLER and STRUTHERS, Phys. Rev. 87, 526. 
1952:6 FULLER, T H E U R E R and VAN ROOSBROECK, Phys. Rev. 85, 678. 
1952:7 SHOCKLEY and R E A D , Phys. Rev. 87, 835. 
1952:8 H A L L , Phys. Rev. 87, 387. 
1952:9 DUNLAP, Phys. Rev. 85, 945. 
1952:10 K A T Z , Phys. Rev. 85, 495. 
1952:11 K U B O , Phys. Rev. 86, 929. 
1953:1 BÖHM and PINES, Phys. Rev. 92, 609. 
1953:2 KITTEL, Introduction to Solid State Physics. John Wiley, New York. 
1953:3 JOHNSON and SHIPLEY, Phys. Rev. 90, 523. 
1953:4 WILSON, The Theory of Metals, 2nd ed. Cambridge University Press. 
1953:5 LANDSBERG, Proc. Phys. Soc. London A 66, 662. 
1953:6 GUGGENHEIM, Proc. Phys. Soc. London A 66, 121. 
1953:7 SCANLON, Phys. Rev. 92, 1573. 
1953:8 BLAKEMORE, D E B A R R and GUNN, Repts. Progr. Phys. 15, 160. 
1953:9 PEKAR, Uspekhi Fiz. Nauk. 50, 197. 
1953:10 TANENBAUM and BRIGGS, Phys. Rev. 91 , 1561. 
1953:11 LOGAN, Phys. Rev. 91 , 757. 
1953:12 MAYBURG and ROTONDI, Phys. Rev. 91 , 1015. 
1953:13 Moss, Proc. Phys. Soc. London B 66, 993. 
1953:14 ISAY, Ann. Physik 13, 327. 
1953:15 M O R S E and FESHBACH, Methods of Theoretical Physics. McGraw-Hil l , New 

York. 
1953:16 FAN, Phys. Rev. 92, 1424. 
1953:17 GOTTRELL, Dislocations and Plastic Flow in Crystals. Clarendon Press, Oxford 
1954:1 HERMAN, Phys. Rev. 93, 1214; 95, 847. 
1954:2 DEBYE and CONWELL, Phys. Rev. 93, 693. 
1954:3 M O R I N and M A I T A , Phys. Rev. 94, 1525. 
1954:4 M O R I N and M A I T A , Phys. Rev. 96, 28. 
1954:5 ELLIOTT, Phys. Rev. 96, 266, 280. 
1954:6 PEARSON and HERRING, Physica 20, 975. 
1954:7 SMITH, Phys. Rev. 94, 42. 
1954:8 SMITH, Physica 20, 910. 
1954:9 AUSTIN and M C C L Y M O N T , Physica 20, 1077. 
1954:10 BURSTEIN, Phys. Rev. 93, 632. 
1954:11 MOSS, Proc. Phys. Soc. B 67, 775. 



R E F E R E N C E S 369 
1954:12 GIBSON, Physica 20, 1058. 
1954:13 K I T T E L and M I T C H E L L , Phys. Rev. 96, 1488. 
1954:14 NUSSBAUM, Phys. Rev. 94, 337. 
1954:15 VAN ROOSBROECK and SHOCKLEY, Phys. Rev. 94, 1558. 
1954:16 NEWMAN and T Y L E R , Phys. Rev. 96, 882. 
1954:17 BURSTEIN, DAVISSON, BELL, T U R N E R and LIPSON, Phys. Rev. 93, 65. 
1954:18 TOYAZAWA, Progr. Theoret. Phys. Kyoto 12, 421. 
1954:19 H A K E N , Physica, 20, 1013. 
1954:20 STEVENSON and KEYES, Physica 20, 1041. 
1954:21 VISVANATHAN and BATTEY, J. Appi. Phys. 25, 99. 
1954:22 R E A D , Phil. Mag. 45, 775, 1119. 
1955:1 PINES, Revs. Modern Phys. 28, 184. 
1955:2 HUBBARD, Proc. Phys. Soc. London A 68, 441. 
1955:3 LÖWDIN, Phys. Rev. 97, 1474 
1955:4 BEER, CHASE and CHOQJUARD, Helv. Phys. Ada 28, 529. 
1955:5 BROOKS, Advances in Electronics and Electron Physics. Academic Press, New York. 
1955:6 HROSTOWSKI, M O R I N , GEBALLE and W H E A T L E Y , Phys. Rev. 100, 1672. 
1955:7 HERMAN, Proc. I.R.E. 43, 1703. 
1955:8 DRESSELHAUS, K I P and K I T T E L , Phys. Rev. 98, 368. 
1955:9 L A X and MAVROIDES, Phys. Rev. 100, 1650. 
1955:10 DASH and NEWMAN, Phys. Rev. 99, 1151. 
1955:11 K A H N , Phys. Rev. 97, 1647. 
1955:12 DRESSELHAUS, K I P , K I T T E L and WAGONER, Phys. Rev. 98, 556. 
1955:13 ROBERTS and QUARRINGTON, J. Electronics 1, 152. 
1955:14 NIKOLSKYA and R E G E L , J . Tech. Phys. U.S.S.R. 25, 1352. 
1955:15 ROSE, Proc. I.R.E. 43, 1850. 
1955:16 ROSE, Phys. Rev. 97, 322. 
1955:17 LUTTINGER and K O H N , Phys. Rev. 97, 869. 
1955:18 MACFARLANE and ROBERTS, Phys. Rev. 97, 1714. 
1955:19 Low, Proc. Phys. Soc. B 68, 310. 
1955:20 CONWELL, Phys. Rev. 99, 1195. 
1955:21 NISHIZAWA and WATANABE, Repts. Sei. Inst. Elect. Comm., Tohoku, 7, 149. 
1955:22 K O H N and LUTTINGER, Phys. Rev. 97, 1721; 98, 915. 
1955:23 K O H N and SCHECHTER, Phys. Rev. 99, 1903. 
1955:24 HEIKES, Phys. Rev. 99, 1232. 
1955:25 WOODBURY and T Y L E R , Phys. Rev. 100, 659. 
1955:26 T Y L E R , NEWMAN and WOODBURY, Phys. Rev. 97, 669. 
1955:27 T Y L E R , NEWMAN and WOODBURY, Phys. Rev. 98, 461. 
1955:28 BOWERS and MELAMED, Phys. Rev. 99, 1781. 
1955:29 FRITZSCHE, Phys. Rev. 99, 406. 
1955:30 SCLAR and BURSTEIN, Phys. Rev. 98, 1757. 
1955:31 PINCHERLE, Proc. Phys. Soc. London B 68, 319. 
1955:32 K N O T T , COLSON and YOUNG, Proc. Phys. Soc. London B 68, 182. 
1955:33 M I L L E R , Phys. Rev. 99, 1234. 
1955:34 GUMMEL and L A X , Phys. Rev. 97, 1469 
1955:35 PEIERLS, Quantum Theory of Solids. Clarendon Press, Oxford. 
1955:36 HORNBECK and HAYNES, Phys. Rev. 97, 311. 
1955:37 HAYNES and HORNBECK, Phys. Rev. 100, 606. 



370 REFERENCES 

1955:38 NEWMAN, Phys. Rev. 99, 465. 
1955:39 STEVENSON and KEYES, J. Appi. Phys. 26, 190. 
1956:1 SCHULTZ, Solid State Group Tech. Report No. 9 (M.I.T.) (unpublished). 
1956:2 DINGLE, J. Appi. Res. B 6, 225. 
1956:3 Μοττ, Can. J. Phys. 34, 1356. 
1956:4 K A N E , J. Phys. Chem. Solids 1, 82. 
1956:5 DEXTER, ZEIGER and LAX, Phys. Rev. 104, 637. 
1956:6 POTTER, Phys. Rev. 103, 861. 
1956:7 EWALD and KOHNKE, Phys. Rev. 102, 1481. 
1956:8 GHAMPNESS, Proc. Phys. Soc. London B 69, 1335. 
1956:9 MEYER, Physica 22, 109. 
1956:10 BURGESS, Electrochem. Soc. Meeting, San Francisco, May 1956. 
1956:11 DRESSELHAUS, J. Phys. Chem. Solids 1, 15. 
1956:12 BARDEEN, BLATT and H A L L , Photoconductivity Conference. John Wiley, New 

York. 
1956:13 RITTNER, Photoconductivity Conference. John Wiley, New York. 
1956:14 LANDSBERG, Proc. Phys. Soc. London B 69, 1056. 
1956:15 BLAKEMORE, Can. J. Phys. 34, 938. 
1956:16 ADIROVICH and GOUREAU, Soviet Physics: Doklady 1, 306. 
1956:17 BURSTEIN, PICUS, HENVIS and WALLIS, J. Phys. Chem. Solids 1, 65. 
1956:18 Picus, BURSTEIN and HENVIS, J. Phys. Chem. Solids 1, 75. 
1956:19 NEWMAN, Phys. Rev. 103, 103. 
1956:20 SCHECHTER, Thesis, Carnegie Institute of Technology. 
1956:21 PRICE, Phys. Rev. 104, 1223. 
1956:22 YAFET, KEYES and ADAMS, J. Phys. Chem. Solids 1, 137. 

•1956:23 KEYES and SLADEK, J. Phys. Chem. Solids 1, 143. 
1956:24 TYLER and WOODBURY, Phys. Rev. 102, 647. 
1956:25 MORTON, H A H N and SCHULTZ, Photoconductivity Conference. John Wiley, New 

York. 
1956:26 SCANLON, BREBRICK and PETRITZ, Photoconductivity Conference. John Wiley, 

New York. 
1956:27 KRÖGER and VINK, Solid State Physics, vol. 2. Academic Press, New York. 
1956:28 KOSHINO, J. Phys. Soc. Japan 11, 608. 
1956:29 CONWELL, Phys. Rev. 103, 51. 
1956:30 KAMKE, Differentialgleichungen Lösungsmethoden und Lösungen. Akad. Verlogs. 

Geest und Portig, Leipzig. 
1956:31 HAYNES and WESTPHAL, Phys. Rev. 101, 1676. 
1956:32 DEVORE, Phys. Rev. 102, 86. 
1956:33 STÖCKMANN, Photoconductivity Conference. John Wiley, New York. 
1956:34 KALASHNIKOV, J. Tech. Phys. U.S.S.R. 26, 241. 
1956:35 MORRISON, Phys. Rev. 104, 619. 
1957:1 BORN, Atomic Physics, 5th ed. Blackie, Glasgow. 
1957:2 KOHN, Phys. Rev. 105, 509. 
1957:3 DEKKER, Solid State Physics. Prentice-Hall, Englewood Cliffs, N.J. 
1957:4 GOLD, J. Electronics and Control 2, 323. 
1957:5 K A N E , J. Phys. Chem. Solids 1, 249. 
1957:6 HERMAN, Report of Second Symposium on Physics of Semiconductors. 

J. Phys. Chem. Solids 2 , 72. 



R E F E R E N C E S 371 

1957:7 MACFARLANE, M C L E A N , QUARRINGTON and ROBERTS, Phys. Rev. 108, 1377. 
1957:8 ZWERDLING and LAX, Phys. Rev. 106, 51. 
1957:9 DUMKE, Phys. Rev. 108, 1419. 
1957:10 K O H N , Solid State Physics, vol. 5. Academic Press, New York. 
1957:11 HERMAN, GLICKSMAN and PARMENTER, Progress in Semiconductors, v o l . 2 . 

Heywood, London. 
1957:12 GHYNOWETH and M C K A Y , Phys. Rev. 106, 418. 
1957:13 BURSTEIN and Picus, Phys. Rev. 105, 1123. 
1957:14 HEINE, Proc. Roy. Soc. London A 240, 340. 
1957:15 DUMKE, Phys. Rev. 105, 139. 
1957:16 ELCOCK and LANDSBERG, Proc. Phys. Soc. London B 70, 161. 
1957:17 BESS, Phys. Rev. 105, 1469. 
1957:18 SANDIFORD, Phys. Rev. 105, 524. 
1957:19 GOUREAU, J. Exptl. Theoret. Phys. U.S.S.R. 33, 158. 
1957:20 ROSE, Progress in Semiconductors, vol. 2. John Wiley, New York. 
1957:21 SHOCKLEY and LAST, Phys. Rev. 107, 392. 
1957:22 LANDSBERG, Proc. Phys. Soc. London Β 70, 282. 
1957:23 OKADA, J. Phys. Soc. Japan 12, 1338. 
1957:24 CLARKE, J. Electronics and Control 3, 375. 
1957:25 RIDOUT, Report of the Meeting on Semiconductors. Physical Society, London. 
1957:26 BLAKEMORE, Bull. Amer. Phys. Soc. 2, 153. 
1957:27 CRAWFORD and CLELAND, Progress in Semiconductors, vol. 2. Heywood, 

London. 
1957:28 DUNLAP, Progress in Semiconductors, vol. 2. Heywood, London. 
1957:29 PRICE, J. Phys. Chem. Solids 2, 282. 
1957:30 KOENIG and GUNTHER-MOHR, J. Phys. Chem. Solids 2, 268. 
1957:31 BUBE, J. Phys. Chem. Solids 1, 234. 
1957:32 HENISCH, Rectifying Semiconductor Contacts. Oxford University Press. 
1957:33 KINGSTON (Ed.), Semiconductor Surface Physics. Pennsylvania University Press, 

Philadelphia. 
1957:34 MIDDLEBROOK, An Introduction to Junction Transistor Theory. John Wiley, New 

York. 
1957:35 M C K E L V E Y , Phys. Rev. 106, 910. 
1957:36 SCANLON, Phys. Rev. 106, 718. 
1957:37 BELL and HOGARTH, J. Electronics and Control 3, 455. 
1957:38 SHAW, HUDSON and DANIELSON, Phys. Rev. 107, 419. 
1958:1 HERMAN, Revs. Modern Phys. 30, 102. 
1958:2 LAX, Revs. Modern Phys. 30, 122. 
1958:3 MACFARLANE, M C L E A N , QUARRINGTON and ROBERTS, Phys. Rev. I l l , 1245. 
1958:4 MACFARLANE, M C L E A N , QUARRINGTON and ROBERTS, Proc. Phys. Soc. London 

B 71, 863. 
1958:5 ESAKI, Phys. Rev. 109, 603. 
1958:6 BLAKEMORE, Proc. Phys. Soc. London 71, 692. 
1958:7 T E R H A A R , Introduction to the Physics of Many-Body Problems. Intersciencc, 

New York. 
1958:8 KITTEL, Elementary Statistical Physics. John Wiley, New York. 
1958:9 EHRENBERG, Electric Conduction in Metals and Semiconductors. Clarendon Press, 

Oxford. 



372 R E F E R E N C E S 

1958:10 LANDSBERG, Semiconductors and Phosphors. Interscience, New York. 
1958:11 SAH and SHOCKLEY, Phys. Rev. 109, 1103. 
1958:12 RIDLEY, J. Electronics and Control 5, 549. 
1958:13 NOMURA and BLAKEMORE, Phys. Rev. 112, 1607. 
1958:14 WERTHEIM, Phys. Rev. 109, 1086. 
1958:15 BEMSKI, Proc. I.R.E. 46, 990. 
1958:16 SHOCKLEY, Proc. I.R.E. 46, 973. 
1958:17 BLAKEMORE, Phys. Rev. 110, 1301. 
1958:18 M C K E L V E Y , I.R.E. Trans, on Electron Devices ED-5, 260. 
1958:19 YAMASHITA and KUROSAWA, J. Phys. Chem. Solids 5, 34. 
1958:20 HROSTOWSKI and KAISER, J. Phys. Chem. Solids 4, 148. 
1958:21 PRICE, I.B.M. Journal, 2, 123. 
1958:22 KASUYA and K O I D E , J. Phys. Soc. Japan 13, 1287. 
1958:23 KLASENS, J. Phys. Chem. Solids 7, 175. 
1958:24 SIM, J. Electronics and Control 5, 251. 
1959:1 SLATER, J. Phys. Chem. Solids 8, 21 . 
1959:2 LUTTINGER, J. Phys. Chem. Solids 8, 123. 
1959:3 K O H N , J. Phys. Chem. Solids 8, 45. 
1959:4 SMITH, Semiconductors. Cambridge University Press. 
1959:5 W E L K E R , J. Phys. Chem. Solids 8, 14. 
1959:6 BLAKEMORE, Phil. Mag. Ser. 8, 4, 560. 
1959:7 K A H N and FREDERIKSE, Solid State Physics, vol. 9. Academic Press, New York. 
1959:8 L A X , R O T H and ZWERDLING, J. Phys. Chem. Solids 8, 311. 
1959:9 BURSTEIN, PICUS, WALLIS and BLATT, Phys. Rev. 113, 15. 
1959:10 Moss, SMITH and TAYLOR, J. Phys. Chem. Solids 8, 323. 
1959:11 L A X , J. Phys. Chem. Solids 8, 66. 
1959:12 TWOSE, Thesis, Cambridge University. 
1959:13 LONG and M Y E R S , Phys. Rev. 115, 1119. 
1959:14 FRITZCHE, J. Phys. Chem. Solids 8, 257. 
1959:15 LANDSBERG and BEATTIE, J. Phys. Chem. Solids 8, 73. 
1959:16 BEATTIE and LANDSBERG, Proc. Roy. Soc. London A 249, 16. 
1959:17 SIM, Proc. I.E.E. B 106, Supplement 15, 308. 
1959:18 Moss, Optical Properties of Semiconductors. Butterworths, London. 
1960:1 LANDSBERG, Solid State Physics in Electronics and Telecommunications. Academic 

Press, London. 
1960:2 SCHOENBERG, Phil. Mag. Ser. 8, 5, 105. 
1960:3 HARMAN, Bull. Am. Phys. Soc. Ser. I I , 5, 152. 
1960:4 BLAKEMORE and NOMURA, J. Appi. Phys. 31 , 753. 
1960:5 KENNEDY, J. Appi. Phys. 31 , 954. 
1960:6 FRITZSCHE, Phys. Rev. 120, 1120. 
1960:7 KOENIG and BROWN, Phys. Rev. Letters, 4, 170. 
1960:8 GUBANOV, KRIVKO and REINOV, J. Exptl. Theoret. Phys. 38, 341. 
1960:9 ATKINS, DONOVAN and WALMSLEY, Phys. Rev. 118, 411. 
1960:10 BUBE, Photoconductivity of Solids. J o h n Wiley, New York. 
1960:11 BLAKEMORE, International Semiconductor Conference, Prague. 
1960:12 BEATTIE and LANDSBERG, Proc. Roy. Soc. London A 258, 486. 
1960:13 ASCARELLI and BROWN, Phys. Rev. 120, 1615. 
1960:14 VAN ROOSBROECK, Phys. Rev. 119, 636. 



R E F E R E N C E S 373 

1960:15 L A X , Phys. Rev. 119, 1502. 
1960:16 KALASHNIKOV, International Semiconductor Conference, Prague 
1960:17 JONSCHER, Principles of Semiconductor Device Operation. Bell, London. 
1960:18 ZEMEL (Editor), Proceedings of the Second Conference on Semiconductor 

Surfaces. J. Phys. Chem Solids 14· 
1960:19 ZIMAN, Electrons and Phonons. Clarendon Press, Oxford. 
1960:20 BLAKEMORE, SCHULTZ and NOMURA, J . Appi. Phys. 31 , 1901. 
1960:21 BROUDY and M C C L U R E , J . Appi. Phys. 31 , 1511. 
1960:22 J O F F E and R E G E L , Progress in Semiconductors, vol. 4. Heywood, London. 
1960:23 M I L L E R and ABRAHAMS, Phys. Rev. 120, 745. 
1961:1 NOMURA and BLAKEMORE, Phys. Rev. 121, 734. 
1961:2 FRITZSCHE, Bull. Am. Phys. Soc. 6, 136. 
1961:3 BREBRICK, J. Phys. Chem. Solids 18, 116. 
1961:4 FALICOV and H E I N E , Advances in Physics 10, 57. 
1961:5 LANDSBERG, Thermodynamics. Interscience, New York. 
1961:6 POKROVSKY and SVISTUNOVA, International Photoconductivity Conference, Ithaca. 

*5 



INDEX 

Absorption 
by non-vertical optical transition 55 
by vertical optical transition 54 
connection with generation rate 197 

Acceptor impurity or flaw 29 
Amorphous solids 35 
Amphoteric impurities or flaws 29, 73, 

160-161 
Anisotropie energy surfaces 42^46, 53, 

58-70, 76, 100 
Anisotropie strain 150 
Atomic energy levels 23-26 
Auger recombination 194—195 

band-to-band 214-237 
band-to-flaw 242-249,271 
effect of small intrinsic gap 235-236 

Band structure 
germanium 64-68 
indium antimonide 68-71 
silicon 58-64 

Band theory of solids 16-35 
validity of 30-35 

Bands 
arising from Bloch approach 17-20 
Auger transitions between 194, 214-

236 
density of states 44-46, 52, 76-78,87, 

356 
effective density of states 79-81 
filling of 26 
impurity 166-176 
in some real solids 56-71 
non-conducting when full 26 
non-parabolic 42, 63, 68-69, 356 
overlap 25, 105 
*5Φ 

Bands—continued 
radiationless transitions between 193, 

203 
radiative transitions between 180-

183, 193, 195-202 
transitions to and from bound states 

194, 237-244, 248-249 
Bloch functions 18, 21, 36-37, 47 
Bloch's model 17-20 
Bohm-Pines plasma oscillation approach 

31 
Boltzmann distribution 4 
Boltzmann transport equation 14, 35, 

354 
Bombardment-induced levels 73, 164— 

166 
Brillouin zone 21-25 

diamond and F.C.G. structures 22, 
57 

hexagonal structures 23 
reduced 36-39 

Capture coefficient 188, 240-243 
Capture coefficient ratio 254, 266, 309, 

310 
Capture cross section 189, 240, 242, 

249, 309 
Class I situation defined 259 
Class II situation defined 259 
Compensation 

effect on extrinsic statistics 132-139, 
143, 148, 153-156, 158, 162-166, 
169-172 

effect on impurity conduction 175 
Conduction 

absence for full band 26 
classical theories 3-5 



378 INDEX 

Heitler-London approach 
to impurity overlap 174 
to nickel oxide 34 

"Hole", reality as a particle 27 
Hole statistics 81 
Hydrogenic model for impurity 47, 72, 

140-146, 148, 151, 240, 243, 248 

Impact ionization 214, 216, 243 
Impact recombination, see Auger re­

combination 
Imperfections 20, 71-74 

see also Flaws, Impurities 
Impurities 20, 29 

amphoteric 29, 73, 160 
interaction of 166-176 
multivalent 29, 72, 73. 156-160 
source of free carriers 29 
spatial dependence of 114-116, 168, 

321 
see also Flaws 

Impurity band 168 
Impurity metal 169-174 
Impurity states 

effect of anisotropie strain 149-150 
effect of magnetic field 151 
excited 140-146, 148, 156, 158 
in germanium 72, 140, 146, 159-162, 

165, 168, 248 
in nickel oxide 73 
in silicon 72, 146-149, 166, 249, 316 
in zinc sulphide 73 
occupancy factor 117-120 
overlap between 167-176 
split in crystal field 148 

Indium antimonide 
band structure 68-71 
effect of magnetic field 93 
intrinsic conditions in 100-104 

Inhomogeneous semiconductors 113— 
116, 321-322 

Intrinsic carrier density 
degenerate case 102-105 
non-degenerate case 94-102 

Intrinsic gap 27 
germanium 67, 99 
gray tin 105, 236 

Intrinsic gap—continued 
indium antimonide 69, 101 
lead sulphide 100 
mercury selenide 105, 236 
silicon 60 

Ionization energies 
donors and acceptors 28, 72, 140-

149, 151, 166-169 
multivalent flaws in Ge 72, 160, 161 
possible errors in determining 130 

Irradiation effects 73, 164-166 

Junctions 321-322 

k-space 5-9, 19, 36-46 
Kirchhoff's Law 181 
Kronig-Penney model 21 

Landau levels 48, 87 
Lattice defects 20, 71-74, 162-166 

see also Flaws 
Lattice vibrations 32, 61 

see also Phonons 
Lead sulfide, intrinsic gap in 100 
Level of equality 260, 266, 296 
Lifetime 192, 204, 255 

Auger 220-236,243,247 
doping dependence, 205-207, 223, 

228-234, 244, 247, 263-265, 279 
extrinsic 237, 239, 244-247 
modulation dependence 205-207, 

224, 232-234, 244-247, 269-271, 
279-282 

radiative 202-213,239 
S-R model 262-277, 290, 296-298, 

304 
small-modulation 205, 222, 244, 246, 

263, 278, 289-296 
temperature dependence 211-213, 

227-236, 244, 266-269, 293, 300, 
303 

Liquid semiconductors 35 
Localized levels, see Impurities, Flaws 
Lorentz model 4-5 



INDEX 379 

Magnesium, overlapping bands in 27 
Magnetic field, effect on impurity states 

151 
Magnetic sub-bands 48, 87 

density of states for 52, 87 
occupancy of 88-92 

Mass renormalization 46 
Maxwell-Boltzmann distribution 4 
Mean free path 15-17, 20, 35, 354 
Microscopic reversibility, principle of 

180 
Minority carrier density in equilibrium 

108-110 
Minority carrier lifetime, see Lifetime 
Momentum space 6 
Multi-electron approaches to solids 31 
Multi-phonon processes 193, 203, 241-

242, 249 
Multiple band ex trema 53, 58, 64, 70, 

76, 100, 196 
Multivalent flaws 29, 72 

electron distribution over 156-161 
recombination through 305-309 

w-type semiconductor 29 
Nearly free electron approximation 41 
Nickel oxide 33-34, 73 
Non-degenerate limit 

for extrinsic semiconductor 121-127, 
133-139, 143 

for intrinsic semiconductor 94—102 
Non-equilibrium carrier distributions 

183-189 
Non-parabolic bands 42 

effect on carrier statistics 70, 356 
Fermi integrals for 355-357 
impurity metals 173 
indium antimonide 68-70 
silicon 62-64 

Nonstoichiometry 33, 74, 162-164 
Non-vertical transitions 55, 193, 196-

198 

Optical transitions 54-56, 182, 196-
197, 240, 248 

p-space 5 
/»-type semiconductor 29 
p-n junction 321-322 
Pauli exclusion principle 10, 343 
Pauli paramagnetism 14 
Permanent trapping 266, 295, 303 
Phonons 16 

assisting optical transitions 55, 193 
liberated in capture by flaw 237, 239, 

241-242, 248, 249 
receiving energy of interband transi­

tion 193, 203 
source of inelastic scattering 17 

Planck radiation law 183, 197 
Plasma oscillation method 31 
Polaron 32 

Quantum statistics 5, 343 
Quasi-Fermi levels 184 

see also Electrochemical potentials 
Quasi-par tides 31 

Radiation effects 73, 164-166 
Radiative transitions 180-183, 195-

202, 237, 239-241, 248 
Reciprocal lattice vector 38, 39, 65, 217 
Recombination center 249, 256 
Recombination processes 193-195 

Auger 194-195, 214-237, 242-244, 
246-249, 271 

band-to-band 193,196-203,215-220 
band-to-flaw 194, 239-244 
impact 194 

see also Auger recombination 
phonon-aided 193, 203, 237, 241-

242, 249 
radiationless 193, 203 
radiative 181, 193, 196-202, 237, 

239-241, 248 
relative magnitudes 195, 243 248-

249 
three body 194 

see also Auger recombination 
Recombination radiation 181, 201 
Reduced wave-vector 37 
Reduce zone 36-39 


