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Distributed acoustic sensing (DAS) is a new, relatively inexpensive technology that is
rapidly demonstrating its promise for recording earthquake waves and other seismic
signals in a wide range of research and public safety arenas. It should significantly
augment present seismic networks. For several important applications, it should be
superior. It employs ordinary fiber-optic cables, but not as channels for data among sep-
arate sophisticated instruments. With DAS, the hair-thin glass fibers themselves are the
sensors. Internal natural flaws serve as seismic strainmeters, kinds of seismic detector.
Unused or dark fibers are common in fiber cables widespread around the globe, or in
dedicated cables designed for special application, are appropriate for DAS. They can
sample passing seismic waves at locations every fewmeters or closer along paths stretch-
ing for tens of kilometers. DAS arrays should enrich the three major areas of local and
regional seismology: earthquake monitoring, imaging of faults and many other geologic
formations, and hazard assessment. Recent laboratory and field results from DAS tests
underscore its broad bandwidth and high-waveform fidelity. Thus, while still in its
infancy, DAS already has shown itself as the working heart—or perhaps ear drums—
of a valuable new seismic listening tool. My colleagues and I expect rapid growth of
applications. We further expect it to spread into such frontiers as ocean-bottom seismol-
ogy, glacial and related cryoseismology, and seismology on other solar system bodies.

Introduction
Seismic networks have existed for many decades. Each uses
groups of seismic vibration sensors deployed with a wide range
of extent or aperture, sensor density, and specific instrumenta-
tion. They have improved steadily. For example, the Southern
California Seismic Network started with sevenWood–Anderson
seismometers in the 1930s and comprises >400 high-quality
broadband stations now. Seismologists have relied on them
for answers to many questions and have gotten surprises in the
process. Achievements include mapping the core-mantle boun-
dary and charting the shallower Moho transition where crust
meets mantle. At the local level, seismic stations and networks
help chart faults and other geologic structures. These facilities
handle signals from a vast range of events, from microseismicity
the citizenry never notices out to megathrust earthquakes that
take lives, spawn tsunamis, flatten strong buildings, and send
avalanches roaring downslopes. However, networks of often
complex individual instruments are too costly to blanket the
Earth’s crust with them.

Seismology has found some shortcuts to high network den-
sity. The last decade saw a new trend to massing moderate
quality “nodes,” such as stand-alone and rather simple geo-
phones (e.g., Hammond et al., 2019). Portable nodal seismic
networks can reveal striking complexities in basin structures,
volcanoes, and fault zones (e.g., Lin et al., 2013; Schmandt and
Clayton, 2013; Ben-Zion et al., 2015; Inbal et al., 2016; Kiser
et al., 2018; learn more in a recent SRL focus section on geo-
phone array seismology prefaced by Karplus and Schmandt,
2018). In another recent effort to cut costs, seismic data from
large numbers of tiny low-cost microelectromechanical sys-
tems (MEMS) accelerometers, including smartphones with
built-in accelerometers, are now harvested by continuously
running dense networks (e.g., Cochran et al., 2009; Clayton
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et al., 2015; Kong et al., 2016; Inbal et al., 2019). Distributed
acoustic sensing (DAS), as do these examples, seeks to leverage
existing technologies and infrastructure to gather more data
despite strained budgets.

In essence, DAS provides a seismic sensor every few meters
of a long optical fiber, currently out to tens of kilometers and
limited by attenuation and nonlinearity of fibers. DAS starts by
shining laser pulses into the fiber from one end. Rather than
carrying data or other messages to a distant receiver or booster,
as is standard for fiber optics, the front-end DAS apparatus
interrogates an “echo” of the laser pulses. DAS makes it pos-
sible to deploy an ultra-dense array in dedicated fiber strands
or to leverage pre-existing but idle telecommunication fiber
strands. DAS was first employed by oil companies for explo-
ration geophysics (e.g., Mestayer et al., 2011; Daley et al., 2013;
Karrenbach et al., 2018), and in the last few years it has
expanded to serve regional and, at times, global seismological
sciences (Fig. 1). Here, I will provide an overview of DAS and
its impact on seismic networks. For pioneering use of DAS in
the oil and gas industry, I defer to two recent special issues of
The Leading Edge and Interpretation (prefaced by Willis et al.,
2017; Zhan et al., 2019) and references therein.

What is DAS and How Does it Work?
DAS belongs to a class of techniques called distributed fiber
optic sensing (DFOS; Harrison, 1976; Hartog, 1983; Bao and
Chen, 2012; Hartog, 2017), which includes variants such as

distributed temperature sensing (DTS) and distributed (static)
strain sensing (DSS).

These techniques share a fundamental characteristic—
rather than using fiber optics as passive infrastructure to trans-
mit data from and among a string of complex and costly devi-
ces, the glass fibers are the sensors. DFOS exploits interaction
of photons with intrinsic defects within a fiber, which are com-
monly fluctuations of refractive index in the glass. Each listen-
ing episode begins with a pulse of laser light sent down the
fiber. The flaws scatter some of the light back to its source.
A variety of scattering behaviors are sensitive to different kinds
of outside influence on the fiber. DSS uses Brillouin scattering,
DTS uses Raman or Brillouin scattering. A key point is that
perturbations to the fiber due to variations in temperature,
strain, or vibrations cause changes in the amplitude, frequency,
or phase of light scattered back to the source.

In particular, DAS uses Rayleigh backscattering to infer the
longitudinal strain (i.e., ϵ xx with x along the cable) or strain
change with time (ϵ̇ xx) every few meters along the fiber (Fig. 2).
The strain in each fiber section changes when the cable is dis-
turbed by seismic waves or other vibrations passing through the
network. The return signals carry a signature of the disturbance.
It takes only a slight extension or compression to a fiber to
change the distances—as measured along the fiber—between
many scattering points. The position changes are tiny, perhaps
only a few tens of nanometers. The consequent alteration of
flight return time of one point compared to others may only
be fractions of a femtosecond. But interferometric analysis
extracts how the signals from scattering points vary in timing
or phase (Fig. 2). Further processing reconstructs with good
fidelity the seismic waves behind the perturbance. DAS works
even if the cable lies loose in a larger-diameter buried conduit,
restrained only by friction with the conduit wall. As one would
expect, tight coupling such as by bolting the cable casing fast to
bed rock or packed regolith does improve the signal. DAS mea-
sures the changes by pulsing the laser thousands of times a sec-
ond for tens of kilometers long fiber. This procedure, called
phase-sensitive optical time-domain reflectometry, is the most
widely used method in DAS (Masoudi and Newson, 2016).
Several distinct system setups (e.g., dual-pulse, coherent
detection, chirp-pulse) monitor the backscattered light. The
principle is straightforward, and DAS is undergoing swift refine-
ment. Key parameters such as sensing range, frequency band,
measurement sensitivity, and gauge length vary substantially.
I refer the readers to Hartog et al. (2013), Parker et al. (2014),
Masoudi and Newson (2016), Hartog (2017), and Costa et al.
(2019) for more technical details and some recent developments.

With a single engineered instrument connected at one end,
and with natural scattering points used as seismic sensors every
few meters or so and queried via laser, DAS provides dense
arrays at low relative cost (Mateeva et al., 2014; Lindsey et al.,
2017; Martin et al., 2018). Although specially engineered fibers
may boost backscattering and signal-to-noise ratios (e.g.,
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Figure 1. Trend of publications related to distributed acoustic
sensing (DAS), according to the Web of Science (data accessed in
July 2019). While the counts are likely incomplete (e.g., not
including conference proceedings), there is a rapidly growing
interested in DAS in the last few years. In the meanwhile, the
applications of DAS in geoscience started around 2013–2014,
and its share, although still small, increases rapidly and steadily
since then (see the inset).
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Farhadiroushan et al., 2019), DAS can also use regular tele-
communication fiber cables that cost only dollars per meter.
Such commercial cables may be ruggedized for various envi-
ronments (e.g., high temperature, high abrasion). Figure 3a–c
are examples of DAS arrays in dedicated fiber cables (e.g., Ajo-
Franklin et al., 2017; Dou et al., 2017; Feigl and Team, 2017;
Lindsey et al., 2017; Zeng, Lancelle, et al., 2017). DAS can also
be applied to so-called dark fibers in pre-existing telecommu-
nication cables that are not in use. This allows us to leverage
large existing telecommunication fiber networks. This is a par-
ticularly attractive option in densely built-up urban areas as
well as the deep sea floor (e.g., fiber map at Infrapedia; see
Data and Resources). Fiber-optic cables are common in and
around installations such as universities, research facilities,
and large data centers. Figure 3d–f shows three examples of
DAS arrays built upon pre-existing dark fibers, with apertures
from 100s of meters to 10 km (e.g., Martin et al., 2018;
Ajo-Franklin et al., 2019; Yu et al., 2019).
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Figure 2. Principles of DAS and a synthetic demonstration. (a) A
DAS unit attaches to one end of a long optical fiber cable, sends
laser pulses (harmonic or chirp) to the fiber, and interrogates the
Rayleigh backscattered light from intrinsic fiber defects. The data
processing and storage occur in real time within the DAS unit.
(b) Synthetic time series of backscattering power, with the
two-way time of flight converted to distance along fiber from
the interrogator. The blue trace is the reference and the red is
after applying a uniform strain to a ∼1-kilometer-long section of
fiber starting from 10 km (gray zone in all panels). (c) The
changes in power due to the perturbation, that is, the difference
between the two time series in (b). (d,e) Zoom into a 300 m
section around 10 km, showing changes in power and phase,
respectively. The slope of the phase differences quantitatively
measures the magnitude of the applied along-fiber strain,
zero before 10 km and constant after 10 km. The steps in (e),
fading points, are caused by near-zero backscattering power
and therefore uncertain measurements of phases. Fading points
can be mitigated by multiple laser pulses with different
frequencies or a chirp instead of harmonics (e.g., Costa et al.,
2019).
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Figure 3. Recent examples of DAS arrays, using (a–c) dedicated
fiber cables or (d–f) pre-existing telecom fiber cables. (a) A 100-m
aperture “L”-shaped DAS array in Richmond, California, testing
multiple types of fiber cables (figure from Dou et al., 2017).
(b) Ajo-Franklin et al. (2017) constructed a DAS array in Alaska
with a total of 7 km of fiber cable to monitor thawing of the
permafrost layer. Inset map shows the location of the site. (c) The
PoroTomo DAS array in the Bradly Spring geothermal field with
about 8000 channels at 1 m spacing (figure from Wang et al.,

2018). (d) The Stanford DAS array using a 2-kilometer-long
telecom fiber on the Stanford campus, continuously running
since 2016 (figure from Martin et al., 2018). (e) A 20-kilometer-
long DAS array using the ESNet dark fiber near Sacramento,
California (red section; figure from Ajo-Franklin et al., 2019). (f) A
20-kilometer-long DAS array along the fiber cable connecting
radio antennas in the National Aeronautics Space Administration
Deep Space Network (red line; figure from Yu et al., 2019).
FOSSA, GSC, OCC, AFL.
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DAS Instrument Response and Data
Quality
For a straight fiber section, DAS channels are approximately
equivalent to linear strainmeters, first characterized by Benioff
in 1935. Even though the principles are different (Rayleigh
scattering in DAS vs. length changes between piers), DAS
channels and the Benioff strainmeters share remarkably sim-
ilar gauge lengths (∼10 m) and directional sensitivity (Fig. 4).
Natural seismic vibrations can have wavelengths from meters
to thousands of kilometers. When the perturbing wavelength is
much longer than the gauge length, DAS is highly sensitive
to longitudinal waves propagating along the fiber and to trans-
verse waves at 45° to the fiber. They are only weakly sensitive to
broadside waves (Benioff, 1935; Papp et al., 2017). Directional
sensitivity to wavelengths comparable to the DAS gauge length
is more complicated (Dean et al., 2017; Martin et al., 2019). To
get around the challenge of low broadside sensitivity, some
researchers propose and a few are testing helically wound
fiber-optic cables (Fig. 4c; Kuvshinov, 2016; Hornman, 2017;
Lim Chen Ning and Sava, 2018).

DAS’s bandwidth, dynamic range, self-noise level, and many
other capacities have not been as fully explored as they have for
conventional seismometers (e.g., Clinton and Heaton, 2002) or
strainmeters (e.g., Barbour and Agnew, 2011). This is due to such
factors as laser noise, coupling among components, algorithm
challenges, and the limited number of DAS seismology experi-
ments so far. In laboratories, DAS has high sensitivity and broad
bandwidth. For example, the iDAS technology from Silixa,
Parker et al. (2014) achieved an 8 mHz–49.5 kHz bandwidth
and 120 dB dynamic range from 5 nanostrain to 0.5% strain.
More recently, Costa et al. (2019) reported picostrain=
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sen-
sitivity at kHz frequencies in a well-controlled laboratory envi-
ronment, using a chirp-based DAS system design. DAS
performance in the field depends on many additional factors
(e.g., cable type, coupling, and temperature stability).

Field DAS data quality compares well to records from collo-
cated seismometers or geophones (e.g., Correa et al., 2017). For
anMw 4.3 regional earthquake recorded on the PoroTomo DAS
array at Brady Hot Springs, Nevada (its name a contraction of
poroelastic tomography), Wang et al. (2018) showed wiggle-by-
wiggle match between DAS and a nodal array, and with similar
noise levels. Lindsey et al. (2017) summarized data from three
DAS arrays and reported earthquake detections, mostly within a
few hundreds of kilometers, with high signal-to-noise ratios and
high-fidelity waveforms, and also the longer period waves from
the 13 September 2016 Mw 5.8 Pawnee, Oklahoma, earthquake
more than 2000 km away. Jousset et al. (2018) validated DAS
amplitude response between 0.1 and 100 Hz with standard
seismometers from the same locale. At even longer period and
teleseismic distances, the 20 January 2018 Mw 7.5 Honduras
earthquake produced high fidelity 0.02–1 Hz waveforms at
the Goldstone DAS array near Barstow, California (Fig. 5; Yu
et al., 2019), although the noise on the DAS data was substan-
tially higher than on a nearby broadband station. Becker et al.
(2017) reported ∼1 nm fracture displacement at milliHerz
frequencies in a borehole DAS experiment.

One challenge distinctive to DAS data processing, especially
with cables in existing infrastructure, is accurate plots of cable
route. Although the flight time of laser pulses tells distance of
measurements along fiber, the cables may have complex sags
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Figure 4. (a) Red lines show directional sensitivity of DAS, or linear
strainmeter in general, to Pwave for a straight fiber section aligned
along the horizonal axis (black lines). Solid and dashed lines mean
positive and negative, respectively. Reproduced based on Benioff
(1935). The directional sensitivity of a conventional seismometer’s
horizontal component is shown in blue lines as references.
(b) Same as (a) but for S waves. (c) A helically wound fiber-optic
cable design that can provide better broadside DAS sensitivity than
straight fibers. Figure from Lim Chen Ning and Sava (2018).
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or loops. With dedicated cables, tap tests along the cable as it is
installed (e.g., sledge hammer blows mapped with Global
Positioning System [GPS]) can provide coordinates of channels
close to the tap points (e.g., Dou et al., 2017; Feigl and Team,
2017). Even then interpolation is necessary to map the channels
between the tap points. Tap test can also be applied to portions
of DAS networks on telecom dark fibers (e.g., Martin et al., 2018;
Ajo-Franklin et al., 2019; Yu et al., 2019). But channels may be
buried and access to private property is uncertain. Recently,
Huot and Biondi (2018) applied machine learning to map DAS
array geometry based on changes in wavefield features along
cable. More accurate channel locations could improve the
array-processing capability of DAS networks.

In summary, DAS has directional sensitivity comparable to
linear strainmeters generally. It appears to have a broadband
instrument response to strain or strain rate in the usual seismic
frequency band and high-waveform fidelity. However, DAS’s
self-noise level so far has been substantially higher than that of
broadband seismometers and is more comparable to geo-
phones. Because of unknown coupling effects, the absolute
amplitude may not be as accurate as the phase information.

For high-frequency applications (e.g., >10 Hz for shallow sub-
surface with slow seismic velocities), the seismic wavelength
may be comparable or shorter than the DAS gauge length,
and the response can be strongly frequency dependent. The
quantification of DAS instrument response and data quality
would benefit greatly from having more DAS networks and
joint research efforts.

Figure 5. Broadband DAS waveforms of the 2018 Mw 7.5
Honduras earthquake on the Goldstone fiber seismic network
(Fig. 3f), with an epicentral distance of about 40°. (a) Comparison
of the radial-component waveform from a nearby broadband
seismic station (CI.GSC) and the waveform at one DAS channel
oriented in the radial direction. The P, S, and dispersive surface
waves are all clear on the single DAS channel. The relative
amplitude differences (e.g., stronger long-period surface waves
around 850 s on GSC but stronger short-period surfaces on DAS)
are due to the different sensitivities of particular motion velocity
and strain (Yu et al., 2019). (b) Comparison of spectrograms from
stacked DAS waveforms and GSC radial components shows that
DAS can capture the correct frequency content in broadband and
the dispersion too (dashed line). Figure from Yu et al. (2019).
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DAS in Local and Regional Seismology
Current DAS systems are already well suited for local and
regional seismology. I now turn to DAS applications in three
professional fields and discuss questions that DAS should help
answer.

DAS in structure imaging and monitoring
Although we know that strong lateral heterogeneities of seismic
structure (e.g., fault zones, basin edges, and Moho offsets) exist
based on commonly observed scattered waves and multipathing
effects, our current observations with traditional seismic net-
works are usually too aliased. Good maps of subsurface struc-
tures are important for understanding earthquake dynamics,
prediction of ground shaking, and the flow or rheology of the
crust and upper mantle. Capturing seismic wavefield portraits
with large arrays is key to illuminating subsurface structures.
An oil company’s nodal seismic array near Long Beach with
5200 sensors within a 5 km × 10 km area was an eye-opener.
In 2011, it revealed not only sharp velocity contrasts as seismic
waves crossed faults and strong, shallow seismic anisotropies of
other sorts, but also signs of a dramatic step in theMoho near the
coast (e.g., Lin et al., 2013; Schmandt and Clayton, 2013). Many
subsequent temporary dense arrays (e.g., the Incorporated
Research Institutions for Seismology [IRIS] community seismic
network in Oklahoma, the San Jacinto fault array, and the iMush
project on Mt. St. Helens) also demonstrated the benefits of
unaliased portraits of wavefields (e.g., Ben-Zion et al., 2015;
Hansen et al., 2016; Kiser et al., 2018; Sweet et al., 2018).

Similarly, dense DAS arrays with their 1–10 m channel
spacing can also provide unaliased sampling of seismic wave-
fields along fiber cables. The PoroTomo project surveyed sig-
nals from vibrating pads under heavy trucks, or vibroseis, with
8000 DAS channels and 200 nodes. The effort yielded high-
resolution images of the top few hundred meters of soil and
bedrock (Parker et al., 2018; Feigl et al., 2019). Monitoring
of ambient noise and other passive signals by multiple DAS
arrays has recovered high-quality lower-frequency responses
(Lancelle, 2016; Dou et al., 2017; Zeng, Lancelle, et al., 2017;
Zeng, Thurber, et al., 2017; Martin et al., 2018; Ajo-Franklin
et al., 2019). With DAS arrays near busy roads such as
PoroTomo, or in urban areas such as the Stanford array,
common seismic noise, often from traffic and trains, can image
shallow structures (e.g., Ajo-Franklin et al., 2019). To be
sure, directional sensitivity of DAS and the varied and flexible
geometry of fiber cables make DAS noise correlations substan-
tially more challenging to decipher than such data from con-
ventional seismometers (e.g., Zeng, Lancelle, et al., 2017;
Martin et al., 2019). Mitigation measures include correction
for directional sensitivity (Martin et al., 2019) and full-wave-
form inversion for both Earth structure maps and noise source
distribution (Paitz et al., 2019). Most DAS networks so far have
been temporary deployments. They have not detected enough
earthquakes for travel-time based tomography, which can

potentially resolve deep structures at a regional scale. But the
data we do have is encouraging. Examples of local and regional
earthquake detection on DAS (e.g., Lindsey et al., 2017; Wang
et al., 2018) show clean P- and S-wave onsets and complex
coda wavefield, a set of data-rich intersecting waves that may
echo and reflect inside the planet (e.g., Fig. 6). Because all the
DAS channels along one cable share one GPS clock, there is
great potential in using continuously running DAS arrays to
improve travel time (absolute or differential) tomography in
seismically active area (e.g., southern California). At longer
period, Yu et al. (2019) extracted accurate 10–50 s dispersion
curves from teleseismic, or distant-origin, surface waves cap-
tured on DAS. Yu et al demonstrated teleseismic P-wave
receiver functions on DAS by isolating the vertical component
from a nearby three-axis station. Joint inversion of surface-
wave dispersion curves, receiver functions are widely used by
conventional networks to infer crust and upper-mantle struc-
tures. Larger-scale DAS networks can potentially revolutionize
regional imaging of subsurface structures and geology.

Although some DAS arrays may not be in operation for
long, their fibers are often left in place. This permits repeated
or even permanent resumption of measurements to monitor
seismic structure changes. Such 4D capability of DAS is already
key in the petroleum industry to track fluid movements and
geomechanical changes in the overburden for deep-water oil
fields (Mateeva et al., 2013, 2014) and during hydraulic frack-
ing or wastewater injection (Byerley et al., 2018). Recently,
reflecting the widening use of DAS in research science, Dou
et al. (2016) used it to monitor passive noise during human-
induced thawing of permafrost in Alaska. They resolved
changes as small as 2%. Ajo-Franklin et al. (2019) made highly
repeatable measurements by noise interferometry for more
than three months on the Sacramento DAS array, and plan
to use it to monitor groundwater levels. Biondi et al. (2019)
use closely located earthquakes recorded on DAS to chart shal-
low Earth structural changes below or abutting the Stanford
campus. Potentially, the effort will detect a building foundation
going in next to the fiber path. Similar to vibroseis trucks as
repeating sources in 4D exploration seismology, permanent
shakers (i.e., motors with eccentric weights) can repeatedly
excite minutes to hours of harmonic waves or chirps detectable
at large distances (e.g., Ikuta, 2002; Bradford et al., 2004;
Tanimoto and Okamoto, 2014).

DAS in earthquake source studies
A central use of seismic networks is to monitor earthquakes of
all sizes. Recent years have brought large improvements
through denser networks and refinements such as template
matching—recognition from archives of familiar kinds of pat-
tern—and machine learning (e.g., Shelly et al., 2007; Peng and
Zhao, 2009; Ross, Trugman, et al., 2019). In particular, large-N
seismic arrays can now record an order of magnitude more
events than cataloged by traditional seismic networks (e.g.,
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Inbal et al., 2016; Li, Li, et al., 2018; Li, Peng, et al., 2018; Meng
and Ben-Zion, 2018). However, nodal seismic arrays last
untended for only a few weeks before batteries fade and data
fills memory capacity.

DAS arrays with even more sampling points by contrast can
run without pause for extended periods, a benefit of having all
power and data storage at the interrogator end. DAS networks
thus have great monitoring potential, especially in urban areas
with abundant fiber cables already in the ground. Lindsey et al.
(2017) and Wang et al. (2018) showed that DAS channels
clearly record seismic events at least as reliably as do conven-
tional networks. Li and Zhan (2018) at the PoroTomo array,
using templates of five cataloged events, detected 100 events in
two weeks. They found tight correlation with industrial geo-
thermal operations. Jousset et al. (2018) observed local earth-
quakes on a DAS array across faults with clear signatures of
fault zones. Biondi et al. (2019) detected several events on
the Stanford DAS array that had gone unrecorded by the local
conventional network. DAS therefore seems able to improve
sensitivity of earthquake detection by one to two magnitude
units. Full realization of such potential cannot be instant.
DAS arrays have not yet archived the years of earthquake
waveform templates needed to train machines in assessing
new events (e.g., Ross, Yue, et al., 2019). Possible new
approaches such as unsupervised machine learning and sim-
ilarity-based algorithms may lead to effective DAS arrays as
warning systems and with limited human labeling or other
hands-on requirements (e.g., Li, Peng, et al., 2018; Zhu and
Beroza, 2018; Ross, Yue, et al., 2019).

In a similar vein, DAS networks may also aid in prompt,
accurate determination of such other source parameters as
event location, focal mechanisms, and stress drop. Today,
events close to detection threshold are hard to map. Only a

handful of stations may record clear signals. Data may thus
suffer significant azimuth gaps in which events are recorded
from just one or two distinct directions. DAS channels that
are several kilometers long should substantially improve loca-
tion accuracy for nearby events. Furthermore, dense arrays are
better at recording earthquakes’ radiation patterns to suggest a
rupture’s fault geometry and direction of slip (e.g., Fan and
McGuire, 2018). Borehole DAS arrays that monitor microseis-
micity induced by hydraulic fracking have captured the nodal
planes of P and S, as they emerge from events (e.g., Cole et al.,
2018). Such near-field seismic observation is a main reason for
DAS’s strength in exact recording of such vital parameters as
radiated energy and stress drop. Along and near faults—
including the San Andreas as an example in its early planning
stages—DAS will provide invaluable data for understanding
the physics of earthquakes and perhaps provide early public
warnings as well (Karrenbach and Cole, 2016; Broderick et al.,
2019; Lapusta et al., 2019, p. 78; Lellouch et al., 2019).

DAS in hazard assessment and rapid responses
Seismic ground shaking varies widely even at equal distances
from the source. Structural damage from one block to the next
can be starkly different. Reasons include site effects in shallow
sediment layers such as riverbed sediments that amplify

Figure 6. (a) Example DAS profile of an Mw 4.5 earthquake at
regional distance, 150 km away. Data are from the PoroTomo
project (Wang et al., 2018). (b) A zoom-in of the P-wave window
(rectangle in (a)), showing coherent tracking of the complex P
wavefield along the fiber cable. This opens up the possibility of
using not only the first arrivals but also the high-frequency coda
waveform for studying the crust structures.
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shaking under a house, that amplify shaking, 3D basin effects
include reflection or conversion of waves interacting with basin
edges, and nonlinearity of ground motion. For example,
Clayton et al. (2012) measured peak ground acceleration from
an Mw 2 earthquake next to the Long Beach array. Shaking in
places was as much as five times greater than just a few hun-
dred meters away. Efforts in understanding such complexity in
seismic hazard assessment depend on dense-array observa-
tions, stochastic modeling efforts (e.g., Bowden et al., 2015;
Nakata et al., 2015; Shi and Asimaki, 2018), and supercom-
puter simulation of high-frequency wave propagations (e.g.,
Graves and Pitarka, 2016). Soon after a large earthquake first
responders urgently need to know where heavily damaged
areas are most likely. One of the best tools for displaying such
information is ShakeMap. It displays measured shaking inten-
sity based on interpolation over seismic networks coupled with
calculated site amplification estimates from shallow velocity
models such as VS30 for shear wavespeeds in the top 30 m
(Wald et al., 1999; Worden et al., 2010). However, reliability
and resolution of ShakeMaps are limited by both station spac-
ing gaps (e.g., 10–30 km for the Los Angeles area) and com-
parably sparse VS30 measurements (Yong et al., 2016).

DAS arrays with their many channels and permanent
nature are ideal for estimating shaking patterns and site
responses at 10–100 m scales in urban areas. Their value is
especially acute for key infrastructures that may already be
connected by fiber (e.g., power plants, schools, and hospitals).
With a prototype DAS array in the city of Pasadena, we
recorded an Mw 4.5 earthquake at Cabazon, California, about
120 km away (Li et al., 2019). Figure 7b shows the recorded
section of waveforms along the 5-kilometer-long fiber path
from California Institute of Technology’s (Caltech’s) campus
to Old Town Pasadena. The P and S waves are clearly visible
throughout the city, including stronger and longer shaking
near Caltech. Figure 7c compares representative DAS seismo-
grams from the transect—including a three-times-greater
amplitude under and near the campus. We believe most of

the observed contrast is rooted in basin geometry and perhaps
site amplifications. However, we are pursuing more rigorous
modeling of our DAS array to identify any artifacts due to fiber
coupling and geometry.

Similar citywide DAS arrays (e.g., Ajo-Franklin et al., 2019;
Biondi et al., 2019; Williams, Zhan, et al., 2019) have detected
many far-field moderate-size earthquakes. Seismic noise inter-
ferometry also mapped variation in site amplification, vital
data for high-resolution ShakeMaps immediately after large
earthquakes. A regional-scale DAS array, if operating when
a big earthquake strikes, can be used directly in the making
of the ShakeMap at much higher resolution, and may even
contribute to faster early warnings. Data telemetry in DAS
is near-real time and thus may trigger automated equipment
to take lifesaving measures such as slowing trains and warning
people off sidewalks and away from windows. For regions
without DAS networks, it may still be worthwhile after a large
earthquake to promptly adopt local underground fibers as DAS
networks to monitor aftershocks that can be as or more dam-
aging than an initial “mainshock” (e.g., the 2019 Mw 6.4 and
Mw 7.1 Ridgecrest earthquakes on 4 and 5 July, respectively).

New Frontiers for Fiber Seismology
DAS shows tremendous promise beyond local and regional
seismology. A short list of somewhat obvious new applications
for DAS includes observing slow-moving landslides and active

Time (s)
0  15010050

A
m

pl
itu

de

Caltech

Old Town

Channel number
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e 
(s

)

0

10

20

30

40

50

60

70

80

90

100

(a) (b)

Figure 7. (a) A ∼5-kilometer-long DAS profile of shaking within
the city of Pasadena, from California Institute of Technology
(Caltech) to Old Town Pasadena, due to the 8 May 2018Mw 4.5
Cabazon earthquake. Note that the shaking near the Caltech
end of the fiber appears to be stronger and lasts longer too. This
can be confirmed by comparing two representative DAS seis-
mograms near the two ends in (b). Shaking near the Caltech end
is about three times stronger. This difference could be caused by
sediment thickness or local basin depths, although the fiber-
ground coupling effects need to be address as well.
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volcanoes plus building low-maintenance networks in seismi-
cally quiet regions. A few exciting frontiers that await DAS
merit more extended discussion.

Ocean-bottom fiber seismic networks
Earthquakes are mostly on or near plate boundaries. The most
active plate margins are predominately in the world’s ocean
basins. They include the Cascadia subduction zone off the
U.S. Pacific Northwest shore and such spreading centers as
the Mid-Atlantic Ridge. But seismometers are mostly on land.
This hinders seismologists seeking uniformly high-resolution
global images of Earth’s core and deep mantle, which are
essential for answering fundamental geophysics questions.
Furthermore, seismic monitoring of the ocean floor is critical
to understanding how large earthquakes rupture. Many of the
largest occur in submarine settings. Current and recent efforts
to do seismology in the ocean floor use cabled observatories
(e.g., the Ocean Observatories Initiative in the Cascadia sub-
duction zone and the S-NET and DONET offshore Japan),
and acoustically telemetered systems (e.g., Frye et al., 2005;
Berger et al., 2016), and floats (e.g., Nolet et al., 2019).

Thousands of miles of submarine optical fiber cables already
cross the seafloor for telecommunication. Many have excess
capacity. DAS can employ this idle and available infrastructure
to fill many of the huge gaps in ocean-basin seismic coverage
(e.g., Hartog et al., 2018; Hammond et al., 2019). Particularly,
geophysically interesting sites such as the Hawaii and Iceland
hotspots and coastal cities next to subduction zones (e.g.,
Tokyo, Seattle, Lima) are also major onshore nodes for subma-
rine fiber networks. Their radiating cables should thus help test
important hypotheses pertaining to hot spot plumes and other
immense but largely speculative mantle structures. DAS also
could keep close watch for intimate details of great subduction
zones near land as slabs of lithosphere lurching over and under
one another generate potentially major earthquakes. Recently in
a pioneering work, Marra et al. (2018) used hundreds of kilo-
meters of seafloor fiber cables to detect submarine earthquakes,
by interrogating the round-trip travel times of laser pulses
with frequency metrology interferometric techniques. Their
approach, which is different from DAS, has superior range
and high sensitivity, but limited spatial resolution because the
entire cable is a single integrated sensor. Gutscher et al. (2018)
showed examples of DSS on the ocean floor by leveraging a
28-kilometer-long telecom fiber installed for a high-energy phys-
ics experiment. Recently, Williams, Fernandez-Ruiz, et al. (2019)
converted a 40 km submarine fiber cable in water about 40 m
deep offshore of Belgium into a DAS array with 4000 channels
and 10 m spacing. It detected both large teleseismic earthquakes
and how local ocean waves generated seismic noise at double
frequency (i.e., secondary microseism). The SEA-bottom Fiber-
Optic Observatory for Distributed measurements project, on the
other hand, recorded small regional earthquakes in water up to
2500 m deep. It also demonstrated potential applications in

physical oceanography (Sladen et al., 2019). Lindsey et al. (2019)
applied DAS to a 20-kilometer-long fiber cable at 20–50 m depth
connected to the offshore Monterey Accelerated Research
System node on the central California coast. They also reported
detection of a regional earthquake, ocean waves, and seismic
noise. These independent studies collectively show DAS starting
to provide valuable data for submarine geophysics and physical
oceanography. Although DAS may revolutionize seismology by
expanding data coverage to the oceans, challenges remain on
how to gain access to heavily used submarine cables. Also
currently unclear is how to extend DAS’ range from tens of
kilometers to 1000 km or more to gain coverage across whole
oceans.

Array seismology in planetary missions
Internal structures of the other terrestrial planets and the
Moon are key to understand their and the Earth’s formation
and evolution. Constrained by technical difficulties and cost,
planetary seismology has mostly been focusing on single devi-
ces (e.g., Viking, Mars Insight) or a few stations (e.g., Apollo).
Meanwhile, Earth seismology relies heavily on seismic net-
works for almost any deep-geology study. DAS arrays could
similarly answer many planetary seismology questions.
Seismologists could use DAS arrays to better locate seismic
events, conduct tomography of lateral variations, and inspect
coda waves to reveal small-scale heterogeneities on moons and
planets. Optical fiber cables can be made to survive harsh envi-
ronments such as heavy dust, high temperature, and high radi-
ation (e.g., Daley et al., 2013; Girard et al., 2013; Feigl and
Team, 2017). The DAS units can be in landers or other shelters.
For planets or moons with light atmosphere, a shallow burial of
fiber cable may provide enough coupling, temperature buffer-
ing, and radiation shielding. Multiple 10–100-kilometer-aper-
ture DAS arrays could revolutionize our understanding of
other planets. However, current DAS instruments are not
yet spaceproof. Just deploying fiber cable on another world
may require advances in such fields as robotics. To fulfill this
vision, we need to improve DAS sensitivity and sensing range
while trimming system size and power demand.

DAS on glaciers
Interest in glacier seismology has surged since the early 2000s
(see reviews by Podolskiy and Walter, 2016; Aster and
Winberry, 2017). Several permanent seismic networks are in
Greenland and Antarctica where seismologists also conducted
many brief seismic experiments. The remoteness and harsh
environment in glacial regions makes seismic networks par-
ticularly expensive. Therefore, continuously operating dense
seismic networks are rare. Nonetheless, the density, channel
spacing, and broadband response of DAS make it a tantalizing
way to study glaciers at different scales to explore such proc-
esses as iceberg calving, basal sliding, crevassing, and subglacial
hydrology. As in the planetary mission scenario, engineers can
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make fiber cable able to take harsh environments with power
systems, sensitive electronics, laser, and data storage bundled at
one end. We may also expect refreezing to provide coupling
between fiber and ice, better than in typical DAS using cables
loose in conduits (Castongia et al., 2017). DAS can also be
deployed down boreholes with hot-water drilling from the
ice surface nearly to bedrock below. This would provide unique
datasets to study near-field behavior of subglacial or englacial
seismic events. As a plus, other fiber sensing techniques such as
DTS (e.g., Kobs et al., 2014) and DSS (e.g., Iten, 2011, for appli-
cations to landslides) can be combined in one borehole to mea-
sure both temperature and strain. Such setups could run
continuously as observatories or be reoccupied as needed.
The remoteness of most glaciers demands interrogation systems
that can be powered by such means as batteries or solar panels.
The significant deformation and crevassing of ice may impel
use of cables that are not only very strong but also easy to
deploy and perhaps to recover.

Conclusion
DAS provides an affordable and scalable way to deploy large-
aperture, continuously running, and dense seismic arrays in
locations difficult for traditional seismic instruments (e.g., urban
areas, oceans, and planets). This opens up unprecedented
opportunities for a wide range of seismology applications.
While developed first for resource exploration and production
geophysics, it is emerging strongly in fundamental research on
earthquakes, our planet’s deep structure, and seismic hazards.
It holds promise in areas such as glaciology and planetary seis-
mology. Several DAS networks with either dedicated fiber cables
or existing telecommunication fiber cables have demonstrated
the strong potential of DAS in local and regional seismology,
such as in detection of microseismicity, mapping of shallow
basin structures, monitoring changes in Earth structure, and
seismic microzonation. In the meantime, DAS technology is
improving rapidly through new designs of interrogator units,
specialty fibers to achieve longer interrogation ranges, higher
sensitivity, and lower noise. Although there are still challenges
in storing and sharing DAS data (e.g., like what seismologists do
through IRIS) and to understand DAS instrument response,
DAS networks will inevitably become another important com-
ponent of next-generation multiscale seismic networks with
many different types of sensors (e.g., broadband, MEMs, nodes,
smartphones, and smart devices). It is seismologists’ job to
incorporate all the available information seamlessly to address
important geophysics questions.

Data and Resources
The information on Infrapedia can be found at https://live
.networkatlas.com (last accessed April 2019). A video tutorial of
DAS by Eileen Martin and Nate Lindsey is available on Youtube
(https://youtu.be/LAcQ44YRMuM, last accessed October 2019).
The PoroTomo data, including two weeks of DAS data, are openly

available on http://gdr.openei.org/submissions/980 (last accessed
October 2019) thanks to the PoroTomo team (University of
Wisconsin, 2017). Please see Wang et al. (2019) for a report on the
pre-AGU DAS workshop WS29: Distributed Acoustic Sensing:
Principles and Case Studies, with a link to the materials presented.
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