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Abstract
A random laser is a non-conventional laser whose feedback mechanism is based
on disorder-induced light scattering. Depending on whether the feedback
supplied by scattering is intensity feedback or amplitude feedback, random
lasers are classified into two categories: random lasers with incoherent
feedback and random lasers with coherent feedback. A brief survey of random
lasers with incoherent feedback is presented. It is followed by a review
of our recent experimental work on random lasers with coherent feedback,
including measurement of the lasing threshold, lasing spectra, emission pattern,
dynamical response, photon statistics, speckle pattern and the investigation of
relevant length scales. Large disorder leads to spatial confinement of the lasing
modes, that is the foundation for the micro random laser. Some theoretical
models of random lasers with coherent feedback are briefly introduced. The
study of random lasers improves our understanding of the interplay between
light localization and coherent amplification.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Both localization and laser theory were developed in the 1960s. Light scattering was
traditionally considered detrimental to laser action because such scattering removes photons
from the lasing mode of a conventional laser cavity. However, in a strongly scattering gain
medium, light scattering plays a positive role: (i) multiple scattering increases the path length
or dwell time of light in the active medium, thus enhancing light amplification by stimulated
emission; (ii) recurrent light scattering provides coherent feedback for lasing oscillation.
Lasing in disordered media has been a subject of intense theoretical and experimental studies.
It represents the process of light amplification by stimulated emission with feedback supplied
by disorder-induced scattering. There are two kinds of feedback: one is intensity or energy
feedback; the other is field or amplitude feedback. The former feedback is incoherent and
non-resonant, the latter is coherent and resonant. Based on the feedback mechanisms, random
lasers are classified into two categories: (1) random lasers with incoherent (or non-resonant)
feedback, also called incoherent random lasers, (2) random lasers with coherent (or resonant)
feedback, also called coherent random lasers. This paper summarizes the research works on
both types of random laser, with an emphasis on our recent experimental study of random
lasers with coherent feedback.

In an amplifying random medium, light waves are multiply scattered and amplified. The
relevant length scales that describe the scattering process are the scattering mean free path ls

and the transport mean free path lt . The scattering mean free path ls is defined as the average
distance that light travels between two consecutive scattering events. The transport mean free
path lt is defined as the average distance a wave travels before its direction of propagation is
randomized. These two length scales are related:

lt = ls

1 − 〈cos θ〉 . (1)

〈cos θ〉 is the average cosine of the scattering angle, which can be found from the differential
scattering cross section. Rayleigh scattering is an example of 〈cos θ〉 = 0 or lt = ls , while
Mie scattering may have 〈cos θ〉 ≈ 0.5, or lt ≈ 2ls .

Light amplification by stimulated emission is described by the gain length lg and the
amplification length lamp. The gain length is defined as the path length over which the intensity
is amplified by a factor of e. The amplification length is defined as the (rms) average distance
between the beginning and ending point for paths of length lg . In a homogeneous medium
without scattering, light travels in a straight line, thus lamp = lg . In the diffusive regime,
lamp = √

Dt , where D is the diffusion coefficient, t = lg/v and v is the speed of light. In a
three-dimensional (3D) system, D = vlt/3, thus

lamp =
√

lt lg

3
. (2)
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The gain length is the analogue of the inelastic length defined as the travel length over which
light intensity is reduced to 1/e due to absorption. Hence, the amplification length lamp is
analogous to the absorption length labs = √

lt li/3.
A random medium is characterized by its dimensionality d and size L. There are three

regimes for light transport in a 3D random medium: (i) the ballistic regime, L � lt ; (ii) the
diffusive regime, L � lt � λ, and (iii) the localization regime, ke · ls � 1 (ke is the effective
wavevector in the random medium) (John 1991).

2. Random laser with incoherent feedback

2.1. Laser with scattering reflector

The two essential components of a laser are gain medium and cavity. The gain medium
amplifies light through stimulated emission, and the cavity provides positive feedback. A
simple laser cavity is a Fabry–Perot cavity made of two mirrors in parallel. Light returns to
its original position after travelling one round trip between the mirrors. The requirement of
constructive inference determines the resonant frequencies, namely

kLc + φ1 + φ2 = 2πm, (3)

where k is the wavevector, Lc is the cavity length, φ1 and φ2 represent the phases of the
reflection coefficients of the two mirrors and m is an integer. Light at the resonant frequencies
experiences minimum leakage loss owing to destructive interference of light leaking out of
the cavity. Thus only light at the resonant frequencies spends a long time in the cavity. The
long dwell time in the cavity facilitates light amplification. When the optical gain balances
the loss of a resonant mode, lasing oscillation occurs in this mode. The threshold condition is
(Siegman 1986)

R1 R2e2gLc = 1, (4)

where R1 and R2 represent the reflectivities of the two mirrors and g is the gain coefficient of
dimension 1/length.

In 1966, Ambartsumyan et al realized a different type of laser cavity that provides non-
resonant feedback (Ambartsumyan et al 1966). They replaced one mirror of the Fabry–Perot
cavity with a scattering surface. Light in the cavity suffers multiple scattering; its direction
is changed every time it is scattered. Thus light does not return to its original position after
one round trip. The spatial resonances for the electromagnetic (EM) field are absent in such a
cavity. The dwell time of light is not sensitive to its frequency. The feedback in such a laser
is used merely to return part of the energy or photons to the gain medium, i.e., it is energy or
intensity feedback.

The non-resonant feedback can also be interpreted in terms of ‘modes’. When one end
mirror of a Fabry–Perot cavity is replaced by a scattering surface, escape of emission from
the cavity by scattering becomes the predominant loss mechanism for all modes. Instead
of individual high-Q resonances there appear a large number of low-Q resonances which
spectrally overlap and form a continuous spectrum. This corresponds to the occurrence of
non-resonant feedback. The absence of resonant feedback means that the cavity spectrum
tends to be continuous, i.e., it does not contain discrete components at selected resonant
frequencies. The only resonant element left in this kind of laser is the amplification line of
the active medium. With an increase of pumping intensity, the emission spectrum narrows
continuously towards the centre of the amplification line. However, the process of spectral
narrowing is much slower than in ordinary lasers (Ambartsumyan et al 1967a). Since many
modes in a laser cavity with non-resonant feedback interact with the active medium as a whole,
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the statistical properties of laser emission are quite different from those of an ordinary laser.
As shown by Ambartsumyan et al (1968), the statistical properties of the emission of a laser
with non-resonant feedback are very close to those of the emission from an extremely bright
‘black body’ in a narrow range of the spectrum. The emission of such a laser has no spatial
coherence and is not stable in phase.

Because the only resonant element in a laser with non-resonant feedback is the
amplification line of the gain medium, the mean frequency of laser emission does not depend on
the dimensions of the laser but is determined only by the centre frequency of the amplification
line. If this frequency is sufficiently stable, the emission of this kind of laser has a stable mean
frequency. Ambartsumyan et al (1967b) proposed using the method of non-resonant feedback
to produce an optical standard for length and frequency. To realize it, they built continuous
gas lasers with non-resonant feedback based on the scattering surface (Ambartsumyan et al
1970).

2.2. Photonic bomb

In 1968, Letokhov took one step further and proposed self-generation of light in an active
medium filled with scatterers (Letokhov 1968). When the photon mean free path is much
smaller than the dimension of scattering medium but much longer than the optical wavelength,
the motion of photons is diffusive. Letokhov solved the diffusion equation for the photon
energy density W (�r , t) in the presence of a uniform and linear gain.

∂W (�r , t)

∂ t
= D ∇2W (�r , t) +

v

lg
W (�r , t). (5)

v is the transport velocity of light inside the scattering medium, lg is the gain length and D is
the diffusion constant given by

D = vlt

3
. (6)

The general solution to equation (5) can be written as

W (�r , t) =
∑

n

an�n(�r)e−(DB2
n −v/lg )t . (7)

�n(�r) and Bn are the eigenfunctions and eigenvalues of the following equation:

∇2�n(�r) + B2
n�n(�r) = 0 (8)

with the boundary condition that �n = 0 at a distance ze beyond the physical boundary of
the scattering medium. ze is the extrapolation length. Usually ze is much smaller than the
dimension of scattering medium and it can be neglected. Hence, the boundary condition
becomes that �n = 0 at the boundary of the random medium.

The solution of W (�r , t) in equation (7) changes from an exponential decay to an
exponential increase in time when crossing the threshold

DB2
1 − v

lg
= 0. (9)

B1 is the lowest eigenvalue. If the scattering medium has the shape of a sphere of diameter
L, Bn = 2πn/L, and the smallest eigenvalue B1 = 2π/L. If the scattering medium is a cube
whose side length is L, the smallest eigenvalue B1 = √

3π/L. Regardless of the shape of the
scattering medium, the lowest eigenvalue B1 is on the order of 1/L. Substituting B1 ≈ 1/L
into equation (9), the threshold condition predicts a critical volume

Vcr ≈ L3 ≈
(

lt lg

3

)3/2

. (10)
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With the fixed gain length lg and transport mean free path lt , once the volume of the scattering
medium V exceeds the critical volume Vcr , W (�r , t) increases exponentially with t .

This can be understood intuitively in terms of two characteristic length scales. One is
the generation length Lgen , which represents the average distance a photon travels before
generating a second photon by stimulated emission. Lgen can be approximated by the gain
length lg . The other is the mean path length L pat that a photon travels in the scattering medium
before escaping through its boundary. L pat ∼ vL2/D. When V � Vcr , L pat � Lgen . This
means on average every photon generates another photon before escaping the medium. This
triggers a ‘chain reaction’, i.e. one photon generates two photons, two photons generate four
photons etc. Thus the photon number increases with time. This is the onset of photon self-
generation. Because this process of photon generation is analogous to the multiplication of
neutrons in an atomic bomb, this device is sometimes called a photonic bomb.

In reality the light intensity will not diverge (there is no ‘explosion’) because gain
depletion quickly sets in and lg increases. Taking into account gain saturation, Letokhov
calculated the emission linewidth and the generation dynamics. If the scattering centres are
stationary, the limiting width of the generation spectrum is determined by the spontaneous
emission. Otherwise, the Brownian motion of the scattering particles leads to a random
variation (wandering) of the photon frequency as a result of the Doppler effect on the
scattering particles. He also predicted damped oscillation (pulsation) in the transient process
of generation. Letokhov’s predictions were experimentally confirmed 26 years later (Genack
and Drake 1994).

2.3. Powder laser

In 1986, Markushev et al reported intense stimulated radiation from the Na5La1−xNdx(MoO4)4

powder under resonant pumping at low temperature (77 K) (Markushev et al 1986). When
the pumping intensity exceeded a threshold, the Nd3+ emission spectrum was narrowed to
a single line, and the emission pulse duration was shortened by approximately four orders
of magnitude. Later on, they reported similar phenomena in a wide range of Nd3+-activated
scattering materials, including La2O3, La2O2S, Na5La(MoO4)4, La3NbO7 and SrLa2WO7

(Markushev et al 1990). The powder was pumped by a 20 ns Q-switched laser pulse. When
the pump energy reached a threshold (in the range 0.05–0.1 J cm−2), a single emission pulse
of 1–3 ns duration was observed. With a further increase of pump energy, the number of
emission pulses increased to three or four. At a constant pumping intensity, the number of
pulses, their duration and the interval between them were governed by the properties of the
materials. The emission spectrum above the threshold was related to the particle shape. In
a powder of shapeless particles there is only one narrow emission line at the centre of a
luminescence band, while in a powder of shaped particles the emission spectrum consists of
several lines in the range of the luminescence band (Ter-Garielyan et al 1991a). In all cases,
the spectral width of the emission lines above the threshold is on the order of 0.1 nm. The
observed emission was very much like laser emission. Because the particle size (∼10 µm) was
much larger than the emission wavelength, Markushev et al (1990) speculated that individual
particles served as effective resonators and lasing occurred in the modes formed by total internal
reflection at the surface of a particle. However, there might be some weak coupling between
the neighbouring particles. In a mixture of two powders with slightly shifted luminescence
bands (e.g. Na5La1−zNdz(MoO4)4 powders with significantly different Nd3+ concentrations),
the emission wavelength depended on the relative concentrations of components in the mixture
and the excitation wavelength (Ter-Garielyan et al 1991b). Briskina et al set up a model of
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coupled microcavities to interpret the experimental result (Briskina et al 1996, Briskina and Li
2002). They treated the powder as an aggregate of active optically coupled microcavities and
calculated the modes formed by total internal reflection (in analogue to the whispering-gallery
modes). They found the quality factor of a coupled-particle cavity in the compact powder
could be higher than that of a single-particle cavity due to the optical coupling. To confirm
their model, they measured the spot of laser-like radiation from powders of Al3Nd(BO3)4 and
NdP5O14 (Lichmanov et al 1998). The minimum spot size was 20–30 µm. The particle size
was between 4 and 20 µm, thus the laser-like radiation was from a single particle or a few
particles.

Later, a powder laser was realized with non-resonant pumping at room temperature
(Gouedard et al 1993, Noginov et al 1996). The gain materials were extended from Nd3+-
doped powder to Ti:sapphire powder (Noginov et al 1998b), Pr3+-doped powder (Zolin 2000)
and pulverized LiF with colour centres (Noginov et al 1997). Although the material systems
are different, the observed phenomena are similar: (i) drastic shortening of the emission
pulse and spectral narrowing of the emission line above a pumping threshold; (ii) damped
oscillation of the emission intensity under pulsed excitation and (iii) drifting of the stimulated
emission frequency and hopping of the emission line from one discrete frequency to another
within the same series of pulses. Gouedard et al (1993) analysed the spatial and temporal
coherence of the powder laser. From the contrast of the near-field speckle pattern, they
concluded that the powder emission above the threshold is spatially incoherent. This result was
explained by incoherent superposition of uncorrelated speckle patterns. Their time-resolved
measurement showed the speckle pattern changed rapidly in time. The estimated coherence
time ∼ 10 psi, indicating low temporal coherence of the powder emission. Noginov et al (1999)
also performed quantitative measurement of the longitudinal and transversal coherence with
interferometric techniques. Using a Michelson (Twyman–Green) interferometer, they found
the longitudinal coherence time of Nd0.5La0.5Al3(BO3)4 powder (ceramics) emission was 56 ps
at a pumping energy of twice the threshold. This value corresponded to 0.7 Å linewidth, in
agreement with the result of direct spectroscopic linewidth measurement. They also examined
the transversal spatial coherence using Young’s double-slit interferometric scheme. The
transversal coherence was not noticeable when the distance between two points on the emitting
surface was approximately 85 µm.

Despite detailed experimental study of the powder laser, the underlying mechanism was
not fully understood. Gouedard et al (1993) speculated that the grains of the powder emit
collectively in a subnanosecond pulse with a kind of distributed feedback provided by multiple
scattering. Auzel and Goldner identified two processes of coherent light generation in powder:
(i) amplification of spontaneous emission by stimulated emission and (ii) synchronized
spontaneous emission, namely superradiance and superfluorescence (Auzel and Goldner 2000,
Zyuzin 1998, 1999). Noginov et al (1996) noticed the role played by photon diffusion in
stimulated emission when comparing the powder laser with the single-crystal laser. The
diffusive motion of light led to long path length of emission in the powder and helped to
reduce the threshold. Wiersma and Lagendijk proposed a model based on light diffusion with
gain (Wiersma and Lagendijk 1997a). They considered an incident pump pulse and probe
pulse onto a powder slab. The active material was approximated as a four-level (2, 1, 0′, 0)

system with the radiative transition from level 1 to 0′ and the pumping from level 0 to 2.
Fast relaxation from level 2 to 1 and from level 0′ to 0 made both level 2 and 0′ nearly
unpopulated, thus the population of level 1 can be described by one rate equation. The whole
system was described by three diffusion equations for the energy densities of the pump light
WG(�r , t), the probe light WR(�r , t) and the (amplified) spontaneous emission (ASE) WA(�r , t),
and one rate equation for the population density N1(�r , t) of level 1.
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∂WG(�r , t)

∂ t
= D∇2WG(�r , t) − σabsv[Nt − N1(�r , t)]WG(�r , t) +

1

lG
IG(�r , t), (11)

∂WR(�r, t)

∂ t
= D∇2WR(�r , t) + σemvN1(�r , t)WR(�r , t) +

1

lR
IR(�r, t), (12)

∂WA(�r , t)

∂ t
= D∇2WA(�r , t) + σemvN1(�r , t)WA(�r , t) +

1

τe
N1(�r , t), (13)

∂ N1(�r , t)

∂ t
= σabsv[Nt − N1(�r , t)]WG(�r , t) − σemvN1(�r , t)[WR(�r , t)

+ WA(�r , t)] − 1

τe
N1(�r , t). (14)

σabs and σem are the absorption and emission cross sections, τe is the lifetime of level 1,
IG(�r , t) and IR(�r , t) are the intensities of the incoming pump and probe pulses, lG and lR are the
transport mean free paths at the pump and probe frequencies and Nt is the total concentration
of four-level atoms. Wiersma and Lagendijk numerically solved the above coupled nonlinear
differential equations. Their simulation result reproduced the experimental observation of
transient oscillation (spiking) of the emission intensity under pulsed excitation.

In the slab geometry, the critical volume predicted by Letokhov is reduced to the critical
thickness Lcr = π

√
lt lg/3 = πlamp. For the fixed slab thickness L, there exists a critical

amplification length lcr = L/π . At the beginning of the pump pulse, the average amplification
length lamp decreases due to an increasing excitation level. Once lamp crosses lcr , the gain
in the sample becomes larger than the loss through the boundaries and the system becomes
unstable. This leads to a large increase of the ASE energy density. The characteristic timescale
corresponding to the build-up of ASE is lg/v. The large ASE energy density will de-excite the
system again, which leads to an increase of lamp. This de-excitation continues as long as the
large ASE energy density is present. The characteristic timescale on which the ASE energy
density diffuses out of the medium through the front or rear surface is given by L2/D. On one
hand, an overshoot of the excitation takes place because the de-excitation mechanism needs
some time to set in. On the other hand, once the ASE has built up considerably, the ASE
energy density can disappear only slowly due to the presence of multiple scattering, which
leads to an undershoot below the threshold. These two processes result in transient oscillations
of the outgoing ASE flux. The oscillations are damped because the increase of lamp during the
de-excitation is opposed by re-excitation owing to the presence of pump light. Therefore the
system reaches the equilibrium situation lamp = lcr = L/π after a few oscillations.

Both models based on light diffusion and intra-particle resonances reproduced the
experimental phenomena. It is hard to tell whether the feedback in powder laser is provided
by multiple scattering or total internal reflection, because the gain medium and scattering
elements are not separated in the powder. Lawandy et al (1994) separated the scattering and
amplifying media in liquid solutions. This separation allowed the scattering strength to be
varied independently of the gain coefficient, and facilitated a systematic study of the scattering
effect on feedback.

2.4. Laser paint

In 1994, Lawandy et al observed laser-like emission from a methanol solution of rhodamine
640 perchlorate dye and TiO2 microparticles (Lawandy et al 1994). The dye molecules
were optically excited by laser pulses and served as a gain medium. The TiO2 particles,
with a mean diameter of 250 nm, were scattering centres. The (input–output) plot of the
peak emission intensity versus the pump energy exhibited a well defined pumping threshold
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for the slope change. At the same threshold, the emission linewidth (full width at half
maximum (FWHM)) collapsed rapidly from 70 to 4 nm, and the duration of emission pulses
was shortened dramatically from 4 ns to 100 ps. The threshold behaviour suggested the
existence of feedback. The relatively broad and featureless emission spectrum above the
threshold indicated the feedback was frequency insensitive or non-resonant. In the solution, the
feedback mechanism based on morphology-dependent resonance can be ruled out because the
gain was outside the scatterer and individual scatterers were too small to serve as morphology-
dependent resonators. It was found experimentally that the threshold was reduced by more than
two orders of magnitude when the density of scattering particles was increased from 5 × 109

to 2.5 × 1012 cm−3 at the fixed dye concentration of 2.5 × 10−3 M (Sha et al 1994). The
strong dependence of the threshold on the transport mean free path revealed that the feedback
was related to scattering (Lawandy and Balachandran 1995, Zhang et al 1995b, Balachandran
and Lawandy 1995).

However, multiple scattering or light diffusion is negligible unless the smallest dimension
of the scattering medium is much larger than the transport mean free path. Experimentally when
a spatially broad pump pulse was incident on a dye cell, a disc-shaped amplifying region was
formed near the front window (Wiersma et al 1995a). The thickness of the disc was determined
by the penetration depth L pen of the pump light. In Lawandy’s experiment, L pen was close to
the transport mean free path. However, the actual sample thickness (i.e., the thickness of the
entire suspension) was much larger than the transport mean free path. Hence, light transport in
the suspension was diffusive. Nevertheless, the emitted photons could easily escape from the
thin amplifying region. Some of them escaped through the front surface into the air; the rest
went deeper into the unpumped region of the suspension. After multiple scattering (or random
walk), some of these photons returned to the active volume for more amplification. This
return process provided energy feedback. When scattering was stronger, the return probability
was higher, thus the feedback was stronger. However, incomplete feedback (less than 100%
return probability) gave rise to loss. The lasing threshold was set such that the photon loss
rate was balanced by the photon generation rate in the amplifying region. On one hand, the
total amount of gain or amplification was the product of the amplification per unit path length
and the path length travelled through the amplifying volume. The frequency dependence of
the amplification per unit path length gave the highest photon generation rate at the peak of
gain spectrum. On the other hand, owing to the weak frequency dependence of the transport
mean free path, the feedback was nearly frequency independent within the gain spectrum; so
was the loss rate for photons. Therefore, with an increase of the pumping rate, the photon
generation rate in the spectral region of maximum gain first reached the photon loss rate, while
outside this frequency region the photon generation rate was still below the loss rate. Then the
photon density around the frequency of gain maximum built up quickly. The sudden increase
of photon density near the peak of the gain spectrum resulted in an collapse of the emission
linewidth.

A model based on the ring laser in the random phase limit was proposed by Balachandran
and Lawandy (1997) to quantitatively explain the experimental data. The amplifying volume
was approximated as a sharply bounded disc with homogeneous gain coefficient. In a Monte
Carlo simulation of random walk of photons, they calculated the return probabilities Rt1 and
Rt2 of photons to the gain volume after being launched inward and outward, and the average
total path length L pat . The threshold gain gth is determined by the steady-state condition

Rt1 Rt2egth L pat = 1. (15)
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This condition is analogous to the threshold condition of a ring laser. Note that a typical ring
laser has a second condition on the round-trip phase shift: kL pen = 2πm, which determines
the lasing frequencies. In the scattering medium the phase condition can be ignored, because
the diffusive feedback is non-resonant, i.e., it requires only light return to the gain volume
instead of to its original position. In fact, the probability of emitted light returning to its
original position is so low in the diffusive regime that the interference effect on the feedback
is negligible. Therefore this kind of laser is a random laser with non-resonant or incoherent
feedback. It is also called a painted-on laser or photonic paint (Lawandy 1994, Wiersma and
Lagendijk 1997b).

The discovery of Lawandy et al triggered many experimental and theoretical studies that
can be summarized as follows.

(1) Lasing threshold. The dependence of lasing threshold on the dye concentration and the
gain length was investigated (Zhang et al 1995a). Usually the threshold was reached at the
point at which the pump transition was bleached. Such bleaching increased the penetration
depth of the pump and consequently led to a longer path length for the emitted light within
the gain region, which resulted in a reduced threshold (Siddique et al 1996). The influence
of the excitation spot diameter on the threshold was also examined (van Soest et al 1999).
In a suspension of TiO2 scatterers in sulforhodamine B dye, the threshold pump intensity
increased by a factor of 70 when the excitation beam diameter got close to the mean free
path. This is because the large pump beam spot produced a large amplifying volume.
The emitted light could travel a long path inside the active region and experienced more
amplification before escaping. After the light went into the passive (unexcited) region,
there was a large probability that it would return to the amplifying region because of
the large pumped area. For a small excitation beam diameter, the emitted light would
very likely leave the active volume after a short time, with a small chance of returning.
This gave larger photon loss rate and higher threshold. The amplification by stimulated
emission was found to be the strongest when the absorption length of the pump light and the
transport mean free path had approximately the same magnitude (Beckering et al 1997).
A critical transport mean free path was identified for each beam diameter, below which
the threshold was almost independent of the mean free path (Totsuka et al 2000). These
results can be explained in terms of the spatial overlap of the gain volume and the diffusion
volume. By solving the coupled rate and diffusion equations, Totsuka et al calculated the
spatial distribution of the excited state population (gain volume) and the spatial spreading
of the trajectory for the luminescence light (diffusion volume). When the gain volume
was smaller than the diffusion volume of the luminescence light, the amplification was
not efficient as the light propagated mostly through the gainless region. If the gain volume
was larger than the diffusion volume of the luminescence light, the excitation pulse energy
was not used efficiently for amplification. There existed an optimized condition under
which the pulse energy was used most efficiently for stimulated emission.

(2) Emission spectra. The stimulated emission spectrum was shifted with respect to the
luminescence spectrum. This spectral shift was explained by a simple ASE model
accounting for absorption and emission at the transition between the ground and first singlet
excited states of the dye (Noginov et al 1995). Bichromatic emission was produced in a
binary dye mixture in the presence of scatterers (Zhang et al 1995c). The dye molecules
were of the donor–acceptor type, and the energy transfer between them gave double
emission bands. The relative intensity of stimulated emission of the donor and the acceptor
depended on the scatterer density in addition to the pumping intensity and the concentration
of the dyes. The narrow-linewidth bichromatic emission was also observed in the single
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dye solution with scatterers at large pumping intensity or high dye concentration (Sha et al
1996, Balachandran and Lawandy 1996). John and Pang (1996) explained the bichromatic
emission in terms of dye molecules’ singlet and triplet transitions. Using the physically
reasonable estimates for the absorption and emission cross section for the singlet and triplet
manifolds and the singlet–triplet intersystem crossing rate, they solved the nonlinear rate
equations for the dye molecules. This leads to a diffusion equation for the light intensity in
the scattering medium with a nonlinear intensity-dependent gain coefficient. Their model
could account for most experimental observations, e.g. the collapse of emission linewidth
at a specific threshold pump intensity, the variation of the threshold intensity with the
transport mean free path, the dependence of peak emission intensity on the transport mean
free path, the dye concentration and the pump intensity.

(3) Dynamics. One surprising result about the dynamics of stimulated emission from colloidal
dye solutions is that the emission pulses can be much shorter than the pump pulses when the
pumping rate is well above the threshold. For instance, 50 ps pulses of stimulated emission
were obtained from the colloidal solution excited by 3 ns pulses (Sha et al 1994). The
shortest emission pulses were ∼20 ps long and produced by 10 ps pump pulses (Siddique
et al 1996). Berger et al (1997) modelled the dynamics of stimulated emission from
random media using a Monte Carlo simulation of the random walk of pump and emitted
photons. They tracked the temporal and spectral evolution of emission by following the
migration of photons and molecular excitation as determined purely by local probabilities.
Their simulation results revealed a sharp transition to ultrafast, narrow linewidth emission
for a 10 ps incident pump pulse and a rapid approach to steady state for longer pump
pulses. With a different approach van Soest et al (2001) also studied the dynamics of
stimulated emission. They numerically solved the coupled diffusion equations for the
pump light and the emitted light and the rate equation for the excited population. Their
simulation result illustrated that the slow response of the population, compared to the light
transport, starts a relaxation oscillation at the threshold crossing.

(4) β factor. Compared with the traditional laser theory, the spontaneous emission coupling
factor β was introduced for the random laser (van Soest and Lagendijk 2002). In a
conventional laser, β is defined as the ratio of the rate of spontaneous emission into the
lasing modes to the total rate of spontaneous emission. Its value is determined by the
overlap in the wavevector space between the spontaneous emission and laser field. In
conventional macroscopic lasers, the spontaneous emission is isotropic while the cavity
modes occupy small solid angles. The directional mismatch contributes to a small β value
(less than 10−5). In the scattering medium, the diffusive feedback is non-directional,
thus the spatial distinction between lasing and non-lasing modes vanishes, and the only
criterion is the spectral overlap of the spontaneous emission spectrum with the lasing
spectrum. This gives a large β value (∼0.1).

(5) Control and optimization. Liquid solutions are awkward to handle, e.g. the sedimentation
of scattering particles in the solvent causes instability. Thus liquid solvents were
replaced by polymers as host materials (Balachandran and Lawandy 1996). The polymer
sheets containing laser dyes and TiO2 nanoparticle scatterers were made with the cell-
casting technique. The lasing phenomenon in solid dye solutions was similar to that in
liquid dye solutions, despite the fact that the different embedding environments affect
the fluorescence characteristics of the dye (Zacharakis et al 1999). Many techniques
developed for traditional lasers were exploited to optimize and control random lasers. For
example, external feedback was introduced to control the lasing threshold. de Oliveira
et al (1997) placed a mirror close to the high-gain scattering medium, and measured the
spectral line shapes of the emitted light as a function of the distance between them. The
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main effect of the feedback from the mirror is to increase the lifetime of the photons inside
the pump region, resulting in a reduction of the threshold pump energy. The injection-
locking technique was also utilized to control the emission wavelength. Introducing a
seed into the optically pumped scattering gain medium resulted in an intense isotropic
emission whose wavelength and linewidth were locked to the seeding beam properties
(Balachandran et al 1996). Moreover, multiple narrow linewidth emission was obtained by
pumping one laser paint with output from another laser paint (Martorell et al1996). Lately,
temperature tuning has been employed to turn on and off random lasers. Liquid crystal
was infiltrated into macro-porous glass, and the diffusive feedback was controlled through
a change of refractive index of the liquid crystal with temperature (Wiersma and Cavalieri
2001). In a different approach, a lower critical solution temperature mixture, which could
be reversibly transformed between a transparent state and a highly scattering colloid with
small temperature change, was used to tune the lasing threshold with temperature (Lee
and Lawandy 2002).

3. Random laser with coherent feedback—experiment

In 1998, we demonstrated a different kind of lasing process in disordered semiconductor
powder and polycrystalline films (Cao et al1998, 1999c). The feedback is supplied by recurrent
light current. It is coherent and resonant in contrast to the diffusive feedback. Frolov et al
also observed similar lasing phenomena in luminescent π-conjugated polymer films, organic
dye-doped gel films, opal crystals saturated with polymer and laser dye solutions (Frolov et al
1999a, 1999b, Yoshino et al 1999). This kind of laser is called a random laser with coherent
(or resonant) feedback.

3.1. Lasing oscillation in ZnO powder

Random lasing with coherent feedback was realized in many kinds of random medium.
Although the materials are different, the phenomena are similar. In this section, the behaviour
of a coherent random laser is illustrated in one of the random media used in our experiment:
ZnO powder. The ZnO nanoparticles were fabricated either by physical vapour synthesis or
wet chemical reaction. The particles were polydisperse with an average particle size ∼100 nm.
The ZnO particles were either deposited onto ITO-coated substrate by electrophoresis or simply
cold-pressed to form a pellet. The sample thickness varied from 10 µm to 1 mm. The filling
factor is around 50%.

The transport mean free path lt was characterized in a coherent backscattering (CBS)
experiment (Kuga and Ishimaru 1984, van Albada and Lagendijk 1985, Wolf and Maret 1985).
ZnO has a direct bandgap of 3.3 eV. Strong absorption makes it very difficult to measure lt at
photon energy equal to or above the bandgap. To avoid absorption, the probe photon energy
was set at 3.0 eV. The probe beam was the second harmonic (λ = 410 nm) of a mode-locked
Ti:sapphire laser (76 MHz repetition rate, 200 fs pulse width). The angular width (FWHM)

θ of the backscattering cone is determined by the transport mean free path lt :


θ � 0.7ne(1 − R)

kelt
, (16)

where ne is the effective refractive index of the ZnO powder sample, ke is the effective
wavevector of the probe light in the sample and R is the diffusive reflectivity of the sample–air
interface. From 
θ , we estimated lt ∼ λ. Such short transport mean free path indicated very
strong optical scattering in the ZnO powder. Note that the probe frequency was lower than the
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ZnO emission frequency. lt for the emitted light should be shorter than the measured value,
because the refractive index of ZnO increases as the photon energy approaches the bandgap.

The ZnO samples were optically excited by the third harmonic (λ = 355 nm) or the fourth
harmonic (λ = 266 nm) of a pulsed Nd:YAG laser (10 Hz repetition rate, 20 ps pulse width).
The pump beam was focused to a spot or a stripe on the sample surface. Electrons in the ZnO
valence band absorbed pump photons and jumped to the conduction band. They subsequently
relaxed to the bottom of the conduction band before radiative decay. The spectrum of ZnO
emission was measured by a 0.5 m spectrometer with a liquid-nitrogen-cooled CCD array
detector. The spectral resolution was about 1.3 Å. Simultaneously, the spatial distribution of
the emitted light intensity at the sample surface was imaged by an ultraviolet (UV) microscope
onto a UV sensitive CCD camera. The amplification of the microscope was about 100 times.
The spatial resolution was ∼0.3 µm. A bandpass filter was placed in front of the microscope
objective lens to block the pump light.

Figure 1 shows the evolution of the emission spectra with the pump intensity. At low
excitation intensity, the spectrum consisted of a single broad spontaneous emission peak. As the
pump power increased, the emission peak became narrower owing to preferential amplification
at frequencies close to the maximum of the gain spectrum. When the excitation intensity
exceeded a threshold, discrete narrow peaks emerged in the emission spectra. The linewidth of
these peaks was less than 2 Å, which was less than 1/30 of the linewidth of the ASE peak below
the threshold. When the pump intensity increased further, more sharp peaks appeared. The
frequencies of the sharp peaks depended on the sample position. As we moved the excitation
spot across the sample, the frequencies of the sharp peaks changed. This phenomenon suggests
that the discrete spectral peaks result from spatial resonances for light in the ZnO powder, and
such resonances are related to the local configurations of ZnO particles. Since individual ZnO
nanoparticles are too small to serve as morphology-dependent resonators, the possibility of
intra-particle resonances formed by total internal reflection at particle surface can be ruled
out. Thus the origin of the spatial resonances lies in the inter-particle scattering. Due to
very strong scattering, recurrent light scattering events arise, i.e., after multiple scattering light
returns to a scatterer from which it has been scattered before. The interference of the return
light is constructive only at certain frequencies. Therefore, the requirement for constructive
interference of backscattered light selects the resonant frequencies.

Figure 2 is a plot of the integrated emission intensity versus the excitation intensity. A
threshold behaviour was observed: above the pump intensity at which discrete spectral peaks
emerged, the emission intensity increased much more rapidly with the excitation intensity.
Figure 3 exhibits the emission patterns below and above the threshold. Below the threshold,
the spatial distribution of the spontaneous emission intensity was smooth across the excitation
area. Due to the pump intensity variation across the excitation spot, the spontaneous emission
in the centre of the excitation spot was stronger. Above the threshold, as soon as the discrete
spectral peaks emerged, spatially separated regions of intense radiation appeared in the image of
the emitted light distribution on the sample surface. Each region consisted of a few bright spots
whose size was between 0.3 and 0.6 µm. This phenomenon can be explained as follows: due to
local variation of particle density and spatial distribution, there exist small regions of stronger
scattering. Light can be trapped in these regions through multiple scattering and interference.
For a particular configuration of ZnO nanoparticles, only light at certain frequencies can be
confined, because the interference effect is frequency sensitive. In a different region of the
sample, the particle configuration is different, thus light at different frequencies is confined. In
other words, there are many resonant cavities formed by recurrent scattering and interference.
Incomplete trapping of light gives rise to cavity loss. When the optical gain reaches the cavity
loss, laser oscillation occurs in the cavity modes, that gives discrete lasing peaks in the emission
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Figure 1. Spectra of emission from ZnO powder when the excitation intensity is (from bottom to
top) 400, 562, 763, 875 and 1387 kW cm−2.

spectrum (figure 1). Due to the presence of a large number of defects in the ZnO particles, non-
radiative recombination of the excited carriers is significant below the lasing threshold. Above
the lasing threshold, the fast stimulated emission process makes the radiative recombination
of the excited carriers dominate over the non-radiative recombination. This results in a rapid
increase of emission intensity (figure 2).

The temporal evolution of emission was measured by a streak camera (Soukoulis et al
2002). The temporal resolution is 2 ps. Figure 4 shows the time traces of emission below
the threshold (a), just above the threshold (b) and well above the threshold (c). Below the
threshold, the decay time of the emission was 167 ps. When the pump intensity exceeded
the threshold, the emission pulse was shortened dramatically. The initial decay of emission
intensity was very fast. The decay time was 27 ps. After ∼50 ps, the fast decay was replaced
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Figure 2. The integrated intensity of emission from the ZnO powder versus the excitation intensity.
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Figure 3. The spatial distribution of emission intensity in ZnO powder. The incident pump pulse
energy is 5.2 nJ for (a) and 12.5 nJ for (b).

by a slow decay. The later decay time was 167 ps, which was equal to the decay time below the
threshold. The initial fast decay was caused by rapid stimulated emission, and the later slow
decay resulted from spontaneous emission and non-radiative recombination. As the pump
intensity was increased further, the initial stimulated emission became much stronger than the
later spontaneous emission. The drastic shortening of the emission pulses provides additional
evidence for lasing in the ZnO powder. Next we investigated the dynamics of individual lasing
modes. The emission from the sample was directed to the entrance slit of a 0.5 m spectrometer.
The output port of the spectrometer was connected to the streak camera whose entrance slit
was perpendicular to that of the spectrometer. By combining the spectrometer with the streak
camera, we were able to separate different lasing modes and obtain the time trace of each lasing
mode. Figure 5 is a spectral–temporal image taken by the streak camera. The horizontal axis
is the time, and the vertical axis is the wavelength. We noticed that lasing in different modes
was turned on and off at different times. The unsynchronized temporal behaviours of these
lasing modes suggest that they originate from different cavities that have different quality
factors. When the pump intensity was near the lasing threshold, relaxation oscillation was
observed for some of the lasing modes. The oscillation period varied from mode to mode.
This again indicates that the lasing modes are from different cavities with different photon
lifetimes.
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Figure 5. The spectral–temporal image of ZnO emission taken by the streak camera. The incident
pump pulse energy is 4.5 nJ.

Finally the quantum statistical property of laser emission from the ZnO powder was probed
with the spectrometer–streak camera set-up (Cao et al 2001). The streak camera operated in
the photon counting mode. To measure the photon statistics of a single lasing mode, we drew
a box around the centre of an emission peak on the spectral–temporal image (figure 5). One
side of the box corresponds to the wavelength interval 
λ = 0.12 nm; the other side is the
time interval 
t = 3.9 ps. The number of photons inside this box was counted for each pulse.
After collecting photon count data for a large number of pulses, the probability P(n) of n
photons within the wavelength interval 
λ and the time interval 
t was obtained. Because
the sampled radiation field was within a frequency interval 
ν � c
λ/λ2, its relaxation must
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occur on the timescale longer than 1/
ν. We set the sampling time 
t < 1/
ν so that it was
shorter than the coherence time of the radiation field. From another point of view, because

ν · 
t = 0.95 < 1, the counting area corresponded to a single EM mode. For single-mode
coherent light, the photon number distribution P(n) satisfies the Poisson distribution

P(n) = 〈n〉ne−〈n〉

n!
(17)

where 〈n〉 is the average photon number. For single-mode chaotic light, the photon number
distribution P(n) satisfies the Bose–Einstein (B–E) distribution

P(n) = 〈n〉n

[1 + 〈n〉]n+1
. (18)

Note that the above distribution holds only for a single mode. For multimode chaotic light, the
photon number distribution approaches the Poisson distribution. From the measured P(n), we
obtained the normalized second-order correlation coefficient G2

G2 = 1 +
〈(
n)2〉 − 〈n〉

〈n〉2
. (19)

For the Poisson distribution, G2 = 1. For the B–E distribution, G2 = 2.
Figure 6(a) shows the measured P(n) of ZnO emission at the threshold where discrete

spectral peaks appear. The measured photon count distribution was almost identical to the
B–E distribution of the same count mean. The value of G2 was 1.94. As we increased the
pump intensity, the photon statistics of ZnO emission started deviating from the B–E statistics.
As shown in figure 6(b), when the pump intensity was 1.5 times the threshold, the measured
photon count distribution was between the B–E distribution and the Poisson distribution. G2

became 1.51. When the pump intensity increased to three times the threshold, the photon count
distribution of ZnO emission got closer to the Poisson distribution (figure 6(c)). G2 reduced
to 1.19. Eventually, when the pump intensity was 5.6 times the threshold, the photon count
distribution was nearly identical to the Poisson distribution (figure 6(d)). The corresponding
G2 was 1.06. Figure 7 is a plot of the second-order correlation coefficient G2 versus the pump
intensity. As the pump intensity increased, G2 decreased gradually from two to unity. Because
we took only a finite number of pulses in the measurement, the rms error in G2 was equal to
(2/K 〈n〉2)1/2, where K was the number of pulses. The sampling error for G2 was calculated
and plotted for each data point in figure 7. Figures 6 and 7 illustrate that the photon statistics
of the emitted light from the ZnO powder changes continuously from B–E statistics at the
threshold to Poisson statistics well above the threshold.

The photon statistics of the random laser with coherent feedback is similar to that of a
traditional laser, but very different from the photon statistics of the random laser with incoherent
feedback (Zacharakis et al 2000). In a random laser with coherent feedback, the photon number
fluctuation in each mode is quenched by gain saturation well above the threshold. For a random
laser with incoherent feedback, only the fluctuation of the total number of photons in all modes
of laser emission is suppressed by gain saturation, while the photon number fluctuation in a
single mode is not affected. This difference will be explained in the next section.

3.2. Transition between two types of random laser

The previous section illustrates that the behaviour of the random laser with coherent feedback
is quite different from that of the random laser with incoherent feedback. To understand
their difference, we studied the transition between them by varying the amount of scattering
in the gain medium (Cao et al 2000a). The random media used in this experiment are
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Figure 6. The solid columns are the measured photon count distribution of the emission from the
ZnO powder. The dotted (dashed) columns are the B–E (Poisson) distribution for the same count
mean. The incident pump intensity is (a) 1.0, (b) 1.5, (c) 3.0, (d) 5.6 times the threshold intensity
where discrete spectral peaks appear.

rhodamine 640 dye solutions containing ZnO nanoparticles. The advantage of the solutions is
that the scattering length can be varied continuously through the change of particle density in
the solutions.

The frequency-doubled output (λ = 532 nm) of a pulsed Nd:YAG laser (10 Hz repetition
rate, 20 ps pulse width) was used to excite the dye molecules in the solution. The emission
spectrum was captured after a single pump pulse. Figure 8 shows the evolution of the emission
spectra with the pump intensity when the particle density was ∼2.5 × 1011 cm−3. The dye
concentration was fixed at 5 × 10−3 M. When the pump intensity crossed a threshold, a drastic
spectral narrowing occurred. As shown in the insets of figure 8, once above the threshold, the
emission linewidth collapsed to ∼5 nm. Simultaneously, the peak emission intensity increased
dramatically. This phenomenon was identical to what Lawandy et al (1994) had observed. It
corresponded to lasing with non-resonant feedback occurring in the colloid.

Next the ZnO particle density was increased to 5 × 1011 cm−3 while the dye concentration
was kept constant. Figure 9 reveals two thresholds. As the pump intensity increased, it reached
the first threshold where the emission spectrum quickly narrowed to about 5 nm. As the pump
intensity increased further, it reached the second threshold where discrete spectral peaks of
linewidth less than 0.2 nm emerged. The phenomenon above the second lasing threshold was
similar to that in the ZnO powder. It corresponded to lasing with coherent feedback. Because
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the ZnO particles were mobile in the solution, the random cavities constantly changed their
configurations. Thus the frequencies of the lasing modes are different for each pump pulse.
The spectra shown in figures 8–10 were taken after single pump pulse.

Finally, the ZnO particle density was increased to 1 × 1012 cm−3. As shown in figure 10,
with an increase of the pump intensity, the discrete spectral peaks appeared before the collapse
of the emission linewidth. This indicates the threshold for lasing with coherent feedback
become lower than the threshold for lasing with incoherent feedback in the strong scattering
medium.

The above phenomena can be understood in terms of the eigenmodes of the Maxwell
equations in a random medium. Owing to the finite size of the random medium, the
eigenenergies are complex numbers, whose imaginary parts represent the decay rates. Through
the coupling to the outside reservoir (i.e., to the EM modes outside the random medium), the
eigenmodes interact with each other. Photons can hop from one mode to another through
scattering at the boundary. In the delocalization regime, the average decay rate of an eigenmode
is larger than the mean frequency spacing of adjacent modes. Hence, the eigenmodes are
spectrally overlapped, giving a continuous emission spectrum. When scattering is weak, the
eigenmodes are strongly coupled. Due to photon exchange among the modes, the photon loss
rate for a set of interacting modes is much lower than that for a single mode. In an active
random medium, when the optical gain for a set of interacting modes at the frequency of gain
maximum reaches the loss of these coupled modes, the total photon number in these coupled
modes builds up. This process is lasing with incoherent (or non-resonant) feedback. The
quick increase of photon number at the frequency of gain maximum results in sudden spectral
narrowing (figure 8). Well above the threshold, gain saturation quenches the total photon
number fluctuation. However, strong coupling of the eigenmodes (e.g., photon hopping among
the modes) prevents stabilization of the photon number in a single mode.

With an increase in the amount of optical scattering, the dwell time of light in the
random medium increases. The decrease of their coupling to the outside reservoir weakens the
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Figure 8. Spectra of emission from the rhodamine 640 dye solution containing ZnO nanoparticles.
The ZnO particle density is ∼3×1011 cm−3. The incident pump pulse energy is (from bottom to top)
0.68, 1.5, 2.3, 3.3, 5.6 µJ. The upper inset is the emission intensity at the peak wavelength versus
the pump pulse energy. The middle inset is the emission linewidth versus the pump pulse energy.

interaction among the modes. When the optical gain increases, it first reaches the threshold
for lasing in a set of coupled modes at the frequency of gain maximum. As the optical gain
increases further, it reaches the loss of a single mode with long lifetime. Then, lasing occurs in
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Figure 9. Spectra of emission from the rhodamine 640 dye solution containing ZnO nanoparticles.
The ZnO particle density is ∼6 × 1011 cm−3. The incident pump pulse energy is (from bottom to
top) 0.74, 1.35, 1.7, 2.25 and 3.4 µJ.

a this mode. A further increase of optical gain leads to lasing in more low-loss modes. Laser
emission from these modes gives discrete peaks in the emission spectrum (figure 9).

When the scattering strength increases further, the decay rates of the eigenmodes and the
coupling among them continue decreasing. There are a small number of eigenmodes with
extremely long lifetime and nearly decoupled from other modes. The threshold gain for lasing
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Figure 10. Spectra of emission from the rhodamine 640 dye solution containing ZnO nanoparticles.
The ZnO particle density is ∼1 × 1012 cm−3. The incident pump pulse energy is (from bottom to
top) 0.68, 1.1, 1.3 and 2.9 µJ.

in these individual modes becomes lower than the threshold gain for lasing in a set of coupled
modes. Then lasing with coherent feedback occurs first (figure 10). Because of weak coupling
of the lasing modes, the photon number fluctuation in each mode is quenched by the gain
saturation effect well above the threshold.
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Figure 11. (a) The incident pump pulse energy at the lasing threshold versus lt /λ. (b) The number
of lasing modes as a function of lt at the fixed incident pump pulse energy of 1.0 µJ.

3.3. Characteristic length scales for random laser

Despite different feedback mechanisms, the relevant length scales for the coherent random
laser are the same as those for the incoherent random laser: the transport mean free path, the
gain length, the size of the random medium and the gain volume. A detailed study on the
dependence of the lasing threshold and the number of lasing modes on these length scales can
be found in (Ling et al 2001).

The random media used in this study were PMMA sheets containing rhodamine 640
perchlorate dye and TiO2 particles. The sample thickness was between 200 and 500 µm.
The mean diameter of TiO2 particles was 400 nm. The TiO2 particle density in PMMA was
varied from 8 × 1010 to 6 × 1012 cm−3. The transport mean free path was characterized in
the CBS experiment. The output from a He:Ne laser was used as the probe light, since its
wavelength was very close to the emission wavelength of rhodamine 640 perchlorate dye. To
avoid absorption of the probe light, the PMMA samples used in the CBS experiment contained
only nanoparticles and not dye.

The PMMA sheets containing dye and nanoparticles were optically excited by the second
harmonic of a pulsed Nd:YAG laser. The pump beam was focused to a spot of 50 µm on the
sample surface. Figure 11(a) is a plot of the incident pump pulse energy at the lasing threshold
versus the transport mean free path. The dye concentration was fixed at 5 × 10−2 M. As the
TiO2 particle density in the PMMA sheet increases, the transport mean free path decreases,
and the lasing threshold also decreases. The strong dependence of the lasing threshold on
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Figure 12. The incident pump intensity at the lasing threshold versus the area of the pump beam
spot on the sample surface. lt are 0.9 µm (circles), and 9 µm (crosses), respectively.

the transport mean free path confirms the important contribution of scattering to lasing. With
an increase in the amount of optical scattering, the feedback provided by scattering becomes
stronger. In other words, the resonant cavities formed by recurrent light scattering have lower
loss. Hence, the lasing threshold is reduced. Figure 11(b) shows the number of lasing modes
in the samples with different transport mean free paths at the same pump intensity. The shorter
the transport mean free path is, the more lasing modes emerge. This is because, in a sample
of stronger scattering, there are more low-loss cavities formed by recurrent scattering. At a
fixed optical gain, in more cavities the loss is balanced by gain, and lasing oscillation occurs.
One surprise in figure 11(a) is that lasing with resonant feedback occurs in samples of lt � λ.
Despite the fact that the coherent feedback provided by scattering is rather weak (in other
words, the cavities formed by recurrent scattering are lossy), lasing can still occur as long as
the dye concentration and the pump intensity are high enough. Another interesting feature
in figure 11 is that when the transport mean free path approaches the optical wavelength,
the lasing threshold pump intensity drops quickly, and the number of lasing modes increases
dramatically. This result agrees with the prediction by John and Pang of a dramatic threshold
reduction in the regime lt → λ of incipient photon localization (John and Pang 1996).

The lasing threshold also depends on the pump area. The PMMA sheet was initially
placed at the focal plane of a lens. Then the lens was moved away from the sample to increase
the size of the pump beam spot on the sample. The incident pump intensity Ith at the lasing
threshold was recorded as a function of the area A of the pump spot on the sample surface.
Figure 12 shows the data for two samples with lt of 0.9 and 9 µm. As the pump area increased,
the lasing threshold first decreased then saturated. There existed a critical pump area above
which the lasing threshold was nearly independent of the pump area. The shorter the transport
mean free path, the smaller the critical area. In order to understand this result, we need to find
out how big the lasing modes are. Unfortunately, it is impossible to measure the distribution
of the laser field inside the random medium. Owing to the short penetration length of the
pump light, optical gain is confined to a region next to the sample surface. Only the modes
located close to the sample surface have spatial overlap with the gain volume and experience
amplification. Therefore, the lasing modes are located close to the sample surface, and we can
probe the spatial distribution of the lasing modes at the sample surface.

We developed a spectrally resolved speckle technique to map the spatial profile of
individual lasing modes at the sample surface (Cao et al 2002). Previous speckle measurement
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Figure 13. (a) Schematic experimental geometry for the spectrally resolved speckle measurement
of laser emission from the random medium. (b) Part of a spectral image of the emission from the
polymer containing dye and microparticles. The incident pump pulse energy is 0.98 µJ.

revealed an increase of path length of an external probe light travelling in an amplifying random
medium (van Soest et al 2002). We measured the speckle of coherent laser emission from
the random medium. The experimental geometry is shown schematically in figure 13(a).
The pump beam was focused by a lens (5 cm focal length) onto the polymer sheet at normal
incidence. The pump spot at the sample surface is about 50 µm in diameter. The emission
from the sample was collected by the same lens and directed to a 0.5 m spectrometer with
a cooled CCD array detector. The distance from the lens to the spectrometer’s entrance slit
was nearly equal to the focal length of the lens. Because the polymer sheet was placed at the
focal plane of the lens, the emission from the polymer sheet was collimated before entering
the spectrometer. The spectrometer imaged its entrance slit onto the two-dimensional (2D)
CCD array detector with 1:1 ratio.

Figure 13(b) is part of a spectral image taken by the CCD array detector above the lasing
threshold. The horizontal axis is the wavelength, and the vertical axis is the angle. Below the
lasing threshold, the emission spectrum had a single broad spontaneous emission peak. The
spontaneous emission intensity was invariant with the angle. Above the threshold, discrete
lasing peaks emerged in the emission spectrum. For each spectral peak, the emission intensity
fluctuated randomly with the angle. The emergence of speckle is a direct evidence of coherent
emission from the sample. As shown in figure 13(b), different spectral peaks exhibited different
speckle patterns. When the pump intensity was increased further, the contrast of speckle
pattern, i.e., the amplitude of intensity variation, increased as the emission became more
coherent.

The far-field speckle pattern of a lasing state is determined by its field pattern at the sample
surface. The angular distribution of the outgoing field E(q) is the Fourier transform of the
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field pattern E(x) at the surface,

E(q) =
∫

E(x)ei2πqxdx, (20)

where q ≡ sin θ/λ, θ is the angle between the emission direction and the normal of the
sample-air interface and x represents the transverse coordinate at the sample surface. The
angular distribution of the emission intensity I (q) ≡ |E(q)|2 can be obtained experimentally
from the far-field speckle pattern. The spatial field correlation function at the sample surface
CE (x) ≡ ∫

E∗(x ′)E(x + x ′) dx ′. According to equation (20), CE (x) and I (q) form a Fourier
transform pair, namely,

CE (x) =
∫

I (q)e−i2π xq dq. (21)

Therefore, the speckle pattern of a lasing state gives its spatial field correlation function.
From the 2D spectral image in figure 13(b), we obtained the angular dependence I (q)

of the emission intensity for the lasing peak at λ = 622.8 nm (marked by an arrow). I (q)

was normalized: 〈I (q)〉 = 1. The discrete Fourier transform of I (q) gave the spatial field
correlation function, whose amplitude is plotted in figure 14(a). The spatial resolution δx for
CE (x) is determined by the angular range 
q of I (q), i.e., δx = 1/
q . Because the diameter
of the lens is larger than the width of the CCD array detector, the maximum collecting angle
for the emission θm = arctan(D/2 f ) = 0.066, where f = 50 mm is the focal length of the
lens and D = 6.6 mm is the width of the CCD array detector. Since θm � 1, sin θ ≈ θ ,
and q ≈ θ/λ. 
q ≈ 2θm/λ ≈ D/ f λ ≈ 0.21 µm−1. δx ≈ 4.7 µm. The spatial range

x for CE (x) is determined by the angular resolution δq , i.e., 
x = 1/δq . Because the
emitted light is collimated by the lens, the angular resolution depends on the size s of each
CCD pixel. s = 26 µm. δq ≈ s/ f λ = 0.832 mm−1. 
x ≈ 1.2 mm. As a result of
Fourier transform in the finite range of q , the value of CE (0) is inaccurate and should be
discarded.

As shown in figure 14(a), the profile of |CE (x)| has some peaks and valleys. It reflects
the field pattern E(x). The integration of |CE (x)| gives

S(x) ≡
∫ ∞

x
|CE (x ′)| dx ′ �

∫ 
x/2

x
|CE (x ′)| dx ′. (22)

Experimentally |CE (x)| falls to nearly zero when x approaches 
x/2. Hence, we replaced
∞ by 
x/2 for the upper limit of the integral in equation (22). Figure 14(b) is a plot of S(x)

obtained by integrating |CE (x)| in figure 14(a). S(x) is a smoother function of x than |CE (x)|.
The dotted curve in figure 14(b) represents the fit of S(x) with an exponential decay function,
S(x) = A0 exp(−x/ ld), where A0 and ld are the fitting parameters. S(x) fit very well with the
exponential decay function, the chi squared χ2 = 0.0026. The decay length ld = 131.8 µm.
We also fitted S(x) with an algebraic decay function S(x) = c1/xc2 , where c1 and c2 are the
fitting parameters. The fit was very bad, χ2 = 0.46. The above speckle analysis was applied
to other lasing peaks in figure 13(b). Their spatial field correlation functions were different.
Nevertheless, S(x) always fitted well with an exponential decay function, but not an algebraic
decay function. The decay length varied from peak to peak. The exponential decay of S(x)

suggests that the envelope of the spatial field correlation function falls exponentially with x ;
namely, |CE (x)| ∼ exp(−x/ ld).

We measured the spatial field correlation functions over a wide range of pump intensity,
from the threshold where discrete spectral peaks appear to well above the threshold.
Figure 15(a) is a plot of the decay length ld versus the pump intensity for one lasing mode.
The pump intensity Ip was normalized to the threshold value Ith where this lasing peak just
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Figure 14. (a) The amplitude of the spatial field correlation function |CE (x)| for the lasing peak
at λ = 622.8 nm in figure 13(b) (marked by an arrow). (b) The solid curve is S(x) obtained by
integrating |CE (x)| in (a). The dotted curve represents the fit with an exponential decay function.

emerged in the emission spectrum. S(x) was fitted with an exponential decay function. The
fitting error χ2 is plotted in figure 15(b). Just above the threshold, the exponential fit of S(x)

was not good, as indicated by the relatively large value of χ2. The decay length ld = 365 µm.
With an increase of the pump intensity, χ2 decreased, suggesting the exponential fit became
better. The decay length also decreased. Eventually, S(x) fitted very well with an exponential
decay. The decay length did not change with the pump intensity any longer. The behaviour of
the decay length can be explained as follows. When the lasing peak just appears in the emission
spectrum, its intensity is lower than the ASE intensity. The large decay length indicates the
ASE is spread over a large region. As the pump intensity increases, the emission intensity of
the lasing state increases more rapidly than the ASE intensity. When the emission intensity of
the lasing state becomes much higher than the ASE intensity, the wavefunction of the lasing
state dominates the spatial field correlation function. The independence of the decay length
from the pump intensity suggests the wavefunction of the lasing mode does not change with
the pumping rate.
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Figure 15. (a) The decay length as a function the pump intensity Ip normalized to the threshold
value Ith . (b) The fitting error χ2 versus the normalized pump intensity Ip/Ith .

The decay length of a lasing mode is also independent of the excitation area. We varied the
diameter of the pump spot at the sample surface from 50 to 400 µm by adding two lens and an
aperture to the optical path of the pump beam. When the incident pump power was fixed and
the excitation area was reduced, some modes with longer decay length stopped lasing, while
other modes with shorter decay length started lasing. This is because the smaller modes have
more spatial overlap with the gain volume when the diameter of the pump spot is smaller than
the decay length. The effective gain for the smaller states is higher, thus it is easier for them
to lase. However, some states kept lasing as the pump area was varied. Their decay lengths
did not change with the pump area.

Therefore, the decay length reflects the spatial extent of a lasing mode. As the transport
mean free path decreases, the average decay length gets shorter, and the lasing modes become
smaller. Now we can understand the critical pump area observed in figure 12. When the pump
area is smaller than the size of the lasing mode, the lasing state and the excitation volume have
incomplete overlap in the transverse direction (parallel to the sample surface). Enlarging the
pump area increases the spatial overlap of the gain volume and the lasing mode. The increase of
the effective gain for the lasing mode leads to a reduction in the lasing threshold. Once the pump
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Figure 16. Spectrally integrated intensity of emission from the ZnO cluster versus the incident
pump pulse energy. The inset is the SEM image of the ZnO cluster.

area covers the entire lasing mode, the effective gain for the lasing mode no longer increases
with the pump area, thus the lasing threshold does not depend on the pump area any longer.
In the samples with shorter lt , the lasing modes are smaller; so are the critical pump areas.

3.4. Micro random laser

After improving the spatial resolution of the spectrally resolved speckle technique, we found
the dimension of lasing modes can be as small as a couple of microns in closely packed
ZnO nanoparticles (1 < kelt < 10). Therefore, when the random system moves toward
the localization threshold (kelt = 1), the size of the lasing states approaches the optical
wavelength. This result illustrates that strong optical scattering not only supplies coherent
feedback for lasing, but also leads to spatial confinement of laser light in a micrometre-sized
volume. Utilizing this mechanism of optical confinement, we fabricated microlasers with
disordered media (Cao et al 2000c).

To fabricate a micrometre-sized random medium, ZnO nanoparticles were agglomerated
to form clusters whose size varied from half a micron to a few microns. The inset of figure 16
is the SEM image of a typical ZnO cluster. The size of the cluster was about 1.7 µm. It
contained roughly 20 000 ZnO nanoparticles. The ZnO cluster was optically pumped by
the third harmonic of a pulsed Nd:YAG laser. The pump light was focused by a microscope
objective lens onto a single cluster. We simultaneously measured the spectrum of emission from
the cluster and imaged the spatial distribution of the emitted light intensity across the cluster.

At low pump intensity, the emission spectrum consisted of a single broad spontaneous
emission speak (figure 17(a)). Its FWHM was 12 nm. The spatial distribution of the
spontaneous emission intensity was uniform across the cluster (figure 17(b)). When the pump
intensity exceeded a threshold, a sharp peak emerged in the emission spectrum (figure 17(c)).
Its FWHM is 0.2 nm. Simultaneously, a couple of bright spots appeared in the image of the
emitted light distribution in the cluster (figure 17(d)). When the pump intensity was increased
further, a second sharp peak emerged in the emission spectrum (figure 17(e)). Correspondingly,
additional bright spots appeared in the image of the emitted light distribution (figure 17(f)).

The curve of the total emission intensity as a function of the pump intensity in
figure 16 exhibits a distinct slope change at the threshold where sharp spectral peaks and
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Figure 17. (a), (c) and (e) are the spectra of emission from the ZnO cluster shown in figure 16.
(b), (d) and (f) are the corresponding spatial distributions of emission intensity in the cluster. The
incident pump pulse energy is 0.26 nJ for (a) and (b), 0.35 nJ for (c) and (d) and 0.50 nJ for (e)
and (f).

bright spots appear. Well above the threshold, the total emission intensity increases almost
linearly with the pump intensity. These data suggest lasing oscillation in the micrometre-sized
cluster. The incident pump pulse energy at the lasing threshold is ∼0.3 nJ. Note that less than
∼1% of the incident pump light is absorbed. The rest is scattered.

Since the cluster is very small, optical reflection from the boundary of the cluster might
have some contribution to light confinement in the cluster. However, the laser cavity is not
formed by total internal reflection at the boundary. Otherwise the spatial pattern of laser light
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would be a bright ring near the edge of the cluster (Taniguchi et al 1996). We believe the 3D
optical confinement in a micrometre-sized ZnO cluster is achieved through disorder-induced
scattering and interference. Since the interference effect is wavelength sensitive, only light
at certain wavelengths can be confined in a cluster. In another cluster of different particle
configuration, light at different wavelengths is confined. Because optical confinement is not
caused by light reflection at the surface of a cluster but by scattering inside the cluster, we
achieved lasing in clusters with irregular shapes and rough surfaces.

Let me compare the micro random laser with other types of microlaser. Over the past
decade, several types of microlaser have been developed. The key issue for a microlaser is to
confine light in a small volume with dimension on the order of optical wavelength. In the ver-
tical cavity surface emitting laser, light is confined by two distributed Bragg reflectors (Jewell
et al 1991). The microdisc laser utilizes total internal reflection at the edge of a high-index
disc to form whispering-gallery modes (McCall et al 1992). In the 2D photonic bandgap de-
fect mode laser, light confinement is realized through Bragg scattering in a periodic structure
(Painter et al 1999). The fabrication of these microlasers requires expensive crystal growth
and nanofabrication facilities. In the micro random laser, the optical confinement is achieved
through disorder-induced scattering and interference. The fabrication of the micro random laser
is much easier and cheaper than that of most microlasers. The frequencies of micro random
lasers cannot be well controlled as compared to other types of microlaser. In fact, the lasing fre-
quencies, depending on random particle configurations, are fingerprints of individual clusters.

3.5. A different type of random laser cavity

In the last few sections, the formation of random laser cavities is attributed to the recurrent
scattering and interference effect. This mechanism applies to random media with discrete
scatterers and strong short-range disorder. A different type of resonant cavity can be formed
by smooth long-range inhomogeneity in a weakly disordered medium (Polson et al 2002).

Vardeny and co-workers conducted extensive experimental studies on random lasing in
weakly disordered media such as π-conjugated polymer films (Frolov et al 1999a, Polson
et al 2001b), organic-dye-doped gel films (Frolov et al 1999b) and synthetic opals infiltrated
with π-conjugated polymers and dyes (Frolov et al 1999b, Yoshino et al 1999, Polson et al
2001a). They performed the power Fourier transform (PFT) of the laser emission spectrum
to obtain the typical length of lasing cavities (Polson et al 2002). In the weakly disordered
polymer films (lt � λ), the cavity length was much longer than the transport mean free path.
Although the PFT of individual random lasing spectra exhibited position-specific multipeak
structures, averaging the PFTs over the sample positions did not smear these features, but
on the contrary yielded a series of distinct transform peaks. Moreover, the shape of the
averaged PFT was universal, i.e., increasing the disorder and correspondingly reducing lt

did not change this shape: the average of the PFT spectra at different lt scaled with lt to a
universal curve. Polson et al (2002) suggested that the large resonators are formed due to the
long-range inhomogeneities of the refractive index. A plausible microscopic origin of these
inhomogeneities is the fluctuation of the polymer film thickness. Light is trapped in a high-
index region, which is much larger than lt and λ, by total internal reflection at the boundary of
this region. The ability of most random resonators to trap light is suppressed by the short-range
disorder. The dramatic consequence of this suppression is that the resonators that ‘survive’
the short-range disorder are sparse, and consequently almost identical. Raikh et al developed
a theory based only on the assumption that the random resonators are exponentially sparse
without specifying the shape of the resonators. They showed that this assumption was enough
to reproduce the universal shape of the averaging PFT.
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4. Random laser with coherent feedback—theory

Obviously the theoretical models set up for the random laser with incoherent feedback cannot
be applied to the random laser with coherent feedback. What is calculated in those models is
light intensity instead of EM field. The phase of the light field is neglected, thus these models do
not include the interference effect which is essential to coherent feedback. In order to model the
random laser with coherent feedback, we must replace the diffusion equation for light intensity
by the Maxwell equations for EM field (Cao et al 2000b). Lately, several theoretical models
have been set up for the random laser with coherent feedback, e.g., the time-dependent theory
(Jiang and Soukoulis 2000), the collective modes of resonant scatterers (Burin et al 2001), the
prelocalized modes in diffusive media (Apalkov et al 2002), the Anderson model (Patra 2003)
etc. In this section, a brief introduction to some of the theoretical work is presented.

4.1. Chaotic laser theory

The chaotic cavity laser is a special kind of random laser. In a chaotic cavity, the dynamics
is chaotic due to the irregular shape of the cavity and/or scatterers placed at random positions
inside the cavity. A typical chaotic cavity has one or a few openings whose dimension is
smaller than the wavelength. Photons are trapped inside the cavity long enough to ergodically
explore the entire cavity volume. Misirpashaev and Beenakker (1998) calculated the statistical
distribution of the lasing threshold in chaotic cavities. The mean value of pumping rate at the
lasing threshold is well below the pumping rate needed to compensate the average cavity loss.
The average number of non-competing lasing modes is proportional to the square root of the
pumping rate. However, mode competition reduces the number of lasing modes because of the
spatial hole burning. The laser linewidth is enhanced above the Schawlow–Townes value by
the Petermann factor K , owing to the non-orthogonality of the cavity modes (Patra et al 2000,
Frahm et al 2000, Schomerus et al 2000). Beenakker (1998) computed the statistics of the
emitted radiation by the input–output relation below the lasing threshold where gain saturation
is negligible. The ASE exhibits excessive noise, which increases with optical gain and diverges
at the lasing threshold. The origin of the excessive noise lies in the presence of a large number
of overlapping cavity modes and a broad distribution of the corresponding scattering strengths.
Taking into account gain nonlinearity above the lasing threshold, Hackenbroich et al (2001)
derived the photon statistics of a single-mode chaotic laser. The distribution of the mean
photocount over an ensemble of modes changes qualitatively at the lasing transition, and
displays up to three peaks above the lasing threshold. Patra (2002) studied the effect of mode
competition on noise of a multi-mode chaotic laser. The amount of photon number fluctuation
is increased above the Poissonian value by an amount that depends on the number of lasing
modes. Despite extensive theoretical studies, experimental work is sparse due to the difficulty
in fabricating chaotic cavities with openings smaller than the optical wavelength. A recent wave
chaos experiment in a macroscopic open resonator brings hope for the experimental realization
of a chaotic cavity laser (Dingjan et al 2002). Nevertheless, most random laser experiments
have been performed on open systems with strong coupling to the outside reservoir. The
emitted light can no longer explore the entire random medium ergodically before escaping
through the boundary. Several theories were developed to deal with such random systems.

4.2. Time-dependent theory

The time-dependent theory for the random laser couples the Maxwell equations with the rate
equations of electronic population (Jiang and Soukoulis 2000). The gain medium is the four-
level electronic material. Electrons are pumped from level 0 to 3, then relax quickly (with time
constant τ32) to level 2. Levels 2 and 1 are the upper and lower levels of the lasing transition at
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frequency ωa . After radiative decay (with time constant τ21) from level 2 to 1, electrons relax
rapidly (with time constant τ10) from level 1 back to level 0. The populations in four levels
(N3, N2, N1, N0) satisfy the following rate equations:

dN3(�r , t)

dt
= Pr (t)N0(�r , t) − N3(�r , t)

τ32
,

dN2(�r , t)

dt
= N3(�r, t)

τ32
+

�E(�r , t)

h̄ωa
· d �P(�r , t)

dt
− N2(�r , t)

τ21
,

dN1(�r , t)

dt
= N2(�r, t)

τ21
− �E(�r , t)

h̄ωa
· d �P(�r, t)

dt
− N1(�r , t)

τ10
,

dN0(�r, t)

dt
= N1(�r , t)

τ10
− Pr (t)N0(�r , t).

(23)

Pr (t) represents the external pumping rate. �P(�r , t) is the polarization density that obeys the
equation

d2 �P(�r , t)

dt2
+ 
ωa

d �P(�r , t)

dt
+ ω2

a
�P(�r , t) = γr

γc

e2

m
[N1(�r , t) − N2(�r , t)] �E(�r , t). (24)

ωa and 
ωa represent the centre frequency and linewidth of the atomic transition from level 2
to 1. γr = 1/τ21, γc = e2ω2

a/6πε0mc3, where e and m is electron charge and mass. �P(�r , t)
introduces gain to the Maxwell equations:

∇ × �E(�r , t) = −∂ �B(�r, t)

∂ t
, (25)

∇ × �H (�r , t) = ε(�r)
∂ �E(�r , t)

∂ t
+

∂ �P(�r , t)

∂ t
, (26)

where �B(�r , t) = µ �H(�r , t). The disorder is described by the spatial fluctuation of the dielectric
constant ε(�r). The Maxwell equations are solved with the finite-difference time-domain
(FDTD) method (Taflove 1995) to obtain the EM field distribution in the random medium.
The Fourier transform of �E(�r, t) gives the local emission spectrum. To simulate an open
system, the random medium has a finite size and it is surrounded by air. The surrounding
air is terminated by strongly absorbing layers, e.g. the uniaxial perfectly matched layers that
absorb all the light escaping through the boundary of the random medium (Sacks et al 1995).
Within a semiclassical framework, the spontaneous emission can be included in the Maxwell
equations as a noise current.

Jiang and Soukoulis simulated the lasing phenomenon in a 1D random system with the
time-dependent theory. A critical pumping rate exists for the appearance of lasing peaks in
the spectrum. The number of lasing modes increases with the pumping rate and the length
of the system. When the pumping rate increases even further, the number of lasing modes
does not increase any more, but saturates to a constant value, which is proportional to the
system size for a given randomness. This saturation is caused by spatial repulsion of lasing
modes that results from gain competition and spatial localization of the lasing modes. When a
mode lases, it depletes local gain and only those modes far enough from it can lase. Because
every lasing mode dominates a local region and is separated from other lasing modes, only a
limited number of lasing modes can exist in a finite-sized random medium. This prediction
was later confirmed experimentally (Ling et al 2001). The time-dependent theory is especially
suitable for the simulation of laser dynamics. Soukoulis et al (2002) simulated the dynamic
response and relaxation oscillation in random lasers. The simulation reproduced most of
the experimental observations and provided an understanding of the dynamic response of the
random laser.
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Vanneste and Sebbah calculated the spatial profile of lasing modes in 2D random media
with the above method (Vanneste and Sebbah 2001, Sebbah and Vanneste 2002). They
compared the passive modes of a 2D random system with the lasing modes when gain is
activated. In the strong-localization regime, the lasing modes are identical to the passive modes
without gain. When the external pump is focused, the lasing modes change with the location
of the pump, in agreement with the experimental observation. Therefore, local pumping of the
system allows selective excitation of individual localized modes. Jiang and Soukoulis (2002)
also showed that a knowledge of the density of states and the eigenstates of a random system
without gain, in conjuction with the frequency profile of the gain, can accurately predict the
mode that will lase first.

The advantage of the time-dependent theory is that it can simulate lasing in a real sample
after inputting the structure and material information. The numerical simulation gives the
lasing spectra, the spatial distribution of lasing modes and the dynamic response that can be
compared directly with the experimental measurement. The problem is that simulation of large
samples requires too much computing power and the running time cannot be too long. So far
the numerical simulations have been carried out only in 1D and 2D systems, even though the
method can be applied to 3D systems. Furthermore, the simulation must be done for thousands
of samples with different configurations before any statistical conclusion can be drawn.

4.3. Analytical approach

Analytical approaches were taken to derive the conditions for coherent steady-state laser
oscillation in random media (Herrmann and Wilhelmi 1998, Burin et al 2002, Jiang and
Soukoulis 2002). In analogy to the Fabry–Perot laser, the threshold conditions for coherent
lasing in a 1D random system include both the steady-state round-trip gain condition and the
round-trip phase shift condition.

The semiclassical laser theory can be generalized to the random laser (Jiang and Soukoulis
2002). The slowly varying approximation gives E(�r , t) = E(t)φ(�r) exp(−iωt). The real and
imaginary parts of the Maxwell equation of E(�r , t) become

∇2φ(�r) + µ0[ε(�r) + ε0χ
′(�r , ω)]ω2φ(�r) = 0, (27)

dE(t)

dt
=

(
−〈χ ′′(ω)〉 − 1

Q

)
ε0ωE(t)

2〈ε〉 , (28)

where 〈ε〉 and −〈χ ′′〉 represent the spatially averaged dielectric constant and gain.
Equation (27) determines the lasing frequency ω, the field distribution φ(�r ) and the quality
factor Q. The term ε0χ

′(�r , ω) causes a shift of the lasing frequency from the eigenfrequency
of the passive system (the pulling effect). When Q is large, a small gain is needed to reach the
lasing threshold. Then χ ′(�r , ω) � 1, the pulling effect is very weak. The lasing frequency
is almost the same as the eigenfrequency, and the wavefunction of the lasing mode is nearly
identical to the eigenfunction of the passive system. Equation (28) is the time-dependent
amplitude equation; it sets the threshold condition −〈χ ′′(ω)〉 = 1/Q. Equation (28) also
gives the stable amplitude of the field above the lasing threshold.

4.4. Quantum theory

Quantum theory is needed to understand the quantum statistical properties of random lasers.
Standard quantum theory for lasers only applies to quasi-discrete modes and cannot account
for lasing in the presence of overlapping modes. In a random medium, the character of lasing
modes depends on the amount of disorder. Weak disorder leads to a poor confinement of light
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and to strongly overlapping modes. Statistics naturally enters the random scattering theory
pioneered by Beenakker (Beenakker 1998, Patra and Beenakker 1999, 2000, Mishchenko
et al 2001), but that approach is restricted to linear media and cannot describe the random
laser above the lasing threshold. Hackenbroich et al (2002) developed a quantization scheme
for optical resonators with overlapping modes. Feshbach’s projector technique, previously
applied to condensed matter physics, was employed to quantize the EM field. The EM field
Hamiltonian of open resonators reduces to the well known system-and-bath Hamiltonian of
quantum optics. Upon including an amplifying medium, it could serve as a starting point for
the quantum theory of the random laser.

5. Interplay of light localization and coherent amplification

The study of the random laser is closely related to that of light localization. The interplay of
light localization and coherent amplification has attracted much interest and study.

The effect of gain on CBS (weak localization) was studied both theoretically (Zyuzin
1994, Deng et al 1997, Tutov and Maradudin 1999) and experimentally (Wiersma et al 1995b,
de Oliveira et al 1996). The shape of the backscattering cone is determined by the transport
distance of light in the medium. The intensity in an amplifying medium grows exponentially
with the path length. Consequently, gain enhances the long path lengths that constitute the
top of the backscattering cone. Thus, a larger contribution of long paths yields a sharper and
narrower cone as compared to the passive medium.

The effect of amplification on light reflection and transmission in a random system has
been extensively investigated and compared with the effect of absorption (Pradhan and Kumar
1994, Zhang 1995, Zyuzin 1995, Beenakker 1996, Paasschens et al 1996, Burkov and Zyuzin
1996, 1997, Freilikher et al 1997, Jiang and Soukoulis 1999a, 1999b). These studies were
carried out mostly in 1D or quasi-1D systems with time-independent theory. Optical gain is
introduced through the imaginary part of the refractive index. Below the lasing threshold,
coherent amplification enhances not only light reflection but also transmission at resonant
frequencies. However, non-resonant transmission is suppressed. Moreover, amplification
leads to an increase in the fluctuation of the transmissivity T and reflectivity R. On approaching
the lasing threshold, both the mean value and the variance of T and R diverge. Above the
threshold, the time-independent theory no longer works, and it must be replaced by time-
dependent theory. The lasing threshold is related to transmission in a 1D random system
(Burin et al 2002). More specifically, in the localization regime, the lasing threshold is defined
by the transmission through the passive system. Thus, the average lasing threshold depends
exponentially on the size of the random system. Moreover, the lasing threshold fluctuates
strongly from configuration to configuration.

So far, the numerical simulation on a coherent random laser has been conducted only in
1D or 2D random systems (Li et al 2001, Jiang and Soukoulis 2000, Burin et al 2001, Vanneste
and Sebbah 2001, Patra 2003). The characteristics of lasing modes in 3D random media are
not fully understood. Theoretically, for a 3D random medium when lt > λ, the system is
delocalized and the eigenmodes are expected to extend over the entire sample. However, the
experimental measurement shows that the size of individual lasing modes was much smaller
than that of the entire sample even when lt � λ. Thus, the lasing modes do not seem to be
extended states. One possible explanation is that there exist some prelocalized modes with
anomalously low loss (Apalkov et al 2002). These modes are very rare in the diffusive regime
(kelt � 1). They are analogous to the prelocalized electronic states in diffusive conductors
that are responsible for the long-time asymptotics of the current relaxation (Altshuler et al
1991). Apalkov et al (2002) calculated the likelihood of prelocalized modes and found it
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depends crucially on the size of the scatterers, or, more precisely, on the correlation radius of
the disorder. Since the number of prelocalized modes is much less than that of the extended
modes, the transport properties are dominated by extended modes. Therefore, it is hard to
probe the prelocalized modes in the transmission measurement. However, when optical gain
is introduced to a random medium, the prelocalized modes are preferentially amplified because
of their long lifetime. Photons in the prelocalized modes stay longer in the gain medium, thus
they experience more amplification. As optical gain increases further, the prelocalized modes
lase first because of their lower decay rates. Once the prelocalized modes lase, their intensities
are much higher than those of the extended modes. Thus, they dominate the emission spectrum
and the field pattern. The lasing peaks in the emission spectrum reveal the frequencies of the
prelocalized modes, while the lasing threshold pumping rates reflect their lifetimes. The spatial
distribution of laser intensity tells the positions and spatial profiles of the prelocalized modes.
Therefore, by introducing optical gain to induce lasing in the prelocalized modes, we can
directly probe them for the first time (Cao et al 2002).

It is well known that optical absorption hinders photon localization because it suppresses
the interference of scattered light. Optical amplification, which has the opposite effect of
absorption, should facilitate Anderson localization of light. So far, the studies of light
localization have been conducted on passive random media. The proximity of a random
system to the localization threshold is described by the Thouless number δ ≡ δν/
ν, where
δν is the level width and 
ν is the level spacing. The Thouless criterion, δ = 1, marks the onset
of Anderson localization (Thouless 1977). However, it is not clear what the criterion is for
Anderson localization in an active random medium. The average level width δν is identified
with the field correlation width (Genack 1990). In the presence of gain, the level width is
reduced; so is the Thouless number. However, when the gain exceeds the threshold of lasing
with coherent feedback, the spectral field correlation function is dominated by the lasing modes
with extremely narrow linewidth. The drastic decrease of the field correlation width δν would
bring the Thouless number below unity. This seems to suggest that the Thouless criterion for
Anderson localization cannot be used in the case of lasing. Recently a new criterion has been
developed for photon localization in an absorbing random medium (Chabanov et al 2000).
Chabanov et al showed that the variance of transmission fluctuation accurately reflects the
extent of localization. Unfortunately this criterion does not seem to hold for active random
media, because the variance of transmission fluctuation diverges at the lasing threshold. Of
course, gain saturation would prevent the divergence;nevertheless, the transmission fluctuation
increases dramatically above the lasing threshold. Hence, the criterion for light localization in
an active random medium remains to be developed.

6. Applications of the random laser

The random laser is a non-conventional laser whose feedback mechanism is based on random
scattering, as opposed to the reflective feedback by the mirrors of a conventional laser. This
alternative feedback mechanism has important application to lasers in the spectral regime
where an efficient reflective element is not available, e.g., UV laser, x-ray laser. The UV
random laser has already been realized with ZnO powder, polycrystalline films and nanowire
arrays (Cao et al 1998, 1999c, Mitra and Thareja 1999, Thareja and Mitra 2000, Huang
et al 2001). Furthermore, the low fabrication cost, sample specific wavelength of operation,
small size, flexible shape and substrate compatibility of random laser lead to many potential
applications. For example, a thin layer of laser paint can be coated on screws, nuts, bolts
and manufactured parts for machine-vision application (Lawandy 1994). In the area of search
and rescue, the painted-on laser may provide a rugged and low-cost method of identification
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for downed ships, aircraft and satellites. In the medical arena, the random laser has potential
application to photodynamic therapy and tumour detection. The micro random laser may play
the crucial role of an active element or miniature light source in integrated photonic circuits
(Wiersma 2000). It can also be used to monitor the flow of liquids by adding a small number of
nanoparticle clusters to the liquid and detecting their laser emission over a large flow distances.
The specific wavelength of operation, depending on the configuration of scatterers, makes the
random laser suitable for document encoding and material labelling.

For some applications, the current threshold of the random laser is too high. Zacharakis
et al (2002) explored two-photon pumping for the random laser to reduce the threshold. Weak
two-photon absorption allows deeper penetration of the pump light into the random medium,
and results in better confinement of the emitted light (Burin et al 2003). We proposed another
scheme to reduce the lasing threshold: incorporating some degree of order into an active
random medium (Chang et al 2003, Yamilov and Cao 2003). Shkunov et al (2001) observed
both photonic lasing and random lasing in dye-infiltrated opals. However, random lasing had
a higher threshold than photonic lasing. We numerically simulated lasing in a random system
with a variable degree of order. When disorder is introduced into a perfectly ordered system,
the lasing threshold is reduced. At a certain degree of disorder the lasing threshold reaches a
minimum (Chang et al 2003). In other words, there exists an optimum degree of order/disorder
for lasing, where the lasing threshold is comparable (within a factor of two) to the threshold
of a single-defect photonic bandgap laser. We mapped out the transition from full order to
complete disorder, and identified five scaling regimes for the mean lasing threshold versus the
system size L (Yamilov and Cao 2003). For increasing degree of disorder, the five regimes
are (a) photonic band-edge, 1/L3, (b) transitional super-exponential, (c) bandgap-related
exponential, (d) diffusive, 1/L2, and (e) disorder-induced exponential. These predictions
remain to be confirmed experimentally.

Unlike the conventional lasers with directional output, laser emission from the random
media can be observed in all directions (Cao et al 1999b). The isotropic output of a random
laser is useful for some applications like displays, but in other applications directional output is
desired. Shukri and Armstrong (2000) observed directional emission in the backward direction
of the pump beam in a dye solution. Alencar et al (2001) exploited the enhancement of
directionality due to surface plasmon excitation provided by the contact of the polymer sample
with a thin metallic film. We utilized external feedback to reduce the lasing threshold and
control the output direction of laser emission (Cao et al 1999a).

So far most random lasers are pumped optically. Some applications such as flat-panel,
automotive and cockpit displays require electrical pumping. Recently, electrically pumped
continuous-wave laser action was reported in rare-earth-metal-dopeddielectric nanophosphors
and Nd-doped δ-alumina nanopowders (Williams et al 2001, Li et al 2002).

Last, but not least, the research on the random laser also benefits other research fields. For
example, adding optical gain to a random medium creates a new path to study wave transport
and localization. Because the random lasing modes are eigenstates of a random system, the
interaction of the lasing modes reflects the interaction among the eigenstates. Lately, we
have observed the coupling of random lasing modes (Cao et al 2003). From this we gained
information on the interaction among eigenmodes of a random system. Such knowledge is
crucial to understanding the escape channels for photons in an eigenstate, that is important
to the localization theory. Moreover, the random laser offers an opportunity to study the
interplay between nonlinearity and localization. Nonlinear optical effects are significant in the
random laser owing to its high intensity and resonance enhancement. Noginov et al (1998a)
demonstrated second-harmonic generation in a mixture of powders of laser and frequency
doubling materials. Our recent study on the dynamic nonlinear effect in a random laser
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illustrates that the third-order optical nonlinearity modifies both the eigen-frequency and eigen-
wavefunction of a random system (Liu et al 2003). As Letokhov’s work showed, the study
of the random laser improves our understanding of galaxy masers and stellar lasers whose
feedback is caused by scattering (Letokhov 1972, 1996).
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