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Abstract

Distributed Acoustic Sensing (DAS) networks promise to revolutionize observational seismol-

ogy by providing cost-effective, highly dense spatial sampling of the seismic wavefield, especially

by utilizing pre-deployed telecomm fiber in urban settings for which dense seismic network

deployments are difficult to construct. However, each DAS channel is sensitive only to one

projection of the horizontal strain tensor and therefore gives an incomplete picture of the hori-

zontal seismic wavefield, limiting our ability to make a holistic analysis of instrument response.

This analysis has therefore been largely restricted to pointwise comparisons where a fortuitious

coincidence of reference three-component seismometers and co-located DAS cable allows. We

evaluate DAS instrument response by comparing DAS measurements from the PoroTomo ex-

periment with strain-rate wavefield reconstructed from the nodal seismic array deployed in the

same experiment, allowing us to treat the entire DAS array in a systematic fashion irrespective

of cable geometry relative to the location of nodes. We found that, while the phase differences

are in general small, the amplitude differences between predicted and observed DAS strain-rates

average a factor of 2 across the array and correlate with near-surface geology, suggesting that

careful assessment of DAS deployments is essential for applications that require reliable assess-

ments of amplitude. We further discuss strategies for empirical gain corrections and optimal
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placement of point sensor deployments to generate the best combined sensitivity with an already

deployed DAS cable, from a wavefield reconstruction perspective.

KEYWORDS: Inverse Theory; Joint Inversion; Wavelet Transform; Site Effects; Earthquake

Ground Motions

1 Introduction

Distributed Acoustic Sensing (DAS) networks utilize time-of-flight interferometry of Rayleigh backscat-

ter from natural imperfections within fiber optic cables to obtain spatially resolved strain measure-

ments. Current technological standards allow a single DAS interrogator unit to produce meters

spaced channels along cables of length ∼20-100km; in other words, creating a distributed strain net-

work of many thousands of sensors. While most original application of DAS was in industry, where

the spatial resolution and high environmental tolerance of fiber-optic cable makes DAS eminently

suitable for borehole deployment, the falling costs of the interrogator units and the increasing utiliza-

tion of “dark fiber” (already laid inactive telecom fiber) have made surface deployments an attractive

proposition for fundamental research purposes. Recent studies have shown that onshore DAS can

detect both teleseismic (Lindsey et al., 2017; Yu et al., 2019) and local (Wang et al., 2018; Kar-

renbach et al., 2020; Zhan, 2020) earthquakes with waveforms that match colocated seismometers.

Several studies utilizing offshore cables have also reported success in observations of both earth-

quakes and ambient environmental seismology (Lindsey et al., 2019; Sladen et al., 2019; Williams

et al., 2019; Spica et al., 2020; Ide et al., 2021; Matsumoto et al., 2021). DAS also promises to be one

of the key data sources in the nascent field of social seismology, with recent success in monitoring

parade traffic in an urban setting (Wang et al., 2020) and real time monitoring of rail-traffic (e.g.

Ferguson et al. (2020); Wiesmeyr et al. (2020)). Mixed networks of DAS and point sensors have

also proven to be a successful combination for fine scale monitoring of seismic properties associated

with hydrothermal fields (Feigl, 2017; Feigl & Parker, 2019), and hold promise in integration into

traditional ambient-noise tomography workflows (Nayak et al., 2021).

While DAS presents great opportunities for very dense deployments, it also comes with several

notable challenges. The signal-to-noise ratio of DAS data is typically poorer than that of conventional
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seismometers, and the instrument response in realistic deployments is also not fully understood,

leading to a generally less informative single-channel observations. DAS measures the integrated

strain-rate or strain in a particular direction over a finite gauge length, meaning that individual

stations or straight lengths of cable do not have access to the full horizontal particle motion as

would be obtained from a 3-component point sensor. Finally, the huge volumes of data produced by

DAS are highly redundant except at very high frequency, and storing and analysing them poses a

great computational challenge. Many of these challenges can be overcome, or better understood, by

treating the DAS sensor array as a means of accessing a single underlying wavefield, rather than as

a collection of individual channels — that is, seeking a representation of the data as u(x, y, t) rather

than ui(t) where x and y are spatial components and i is a channel number. Such a representation

allows us to study in detail the spatial response of the array, including gradient terms, which are

essential for strain based measurements like DAS. The wavefield representation offers a simple and

coherent mechanism for converting between strains and displacements, which makes it especially

well suited for studying the lateral variations of DAS amplitude response. Characterisation of this

response will be essential for realizing the promise of DAS as a spatially dense sensing modality for

strong ground motions and earthquake early warning (Karrenbach et al., 2020).

In the preceding paper (Muir & Zhan, 2021), we developed a framework for combining an irreg-

ular network of spatially distributed sensors into a single unified data product by using wavefield

reconstruction. In this study, we apply our compressive framework to the combined DAS and nodal

array deployed during the PoroTomo Experiment at Brady, NV (Feigl, 2016a, 2017; Feigl & Parker,

2019). Nodal arrays are constructed from self-contained cable-free instruments that sense the con-

ventional wavefield (i.e. time derivatives of the particle displacement). Nodal arrays have proven

highly successful in temporary dense deployments (i.e. Lin et al. (2013); Jia & Clayton (2021)).

Nodes strongly complement DAS arrays in the burgeoning earthquake rapid-response space by pro-

viding extra spatial coverage to supplement dark-fibre DAS deployments. We perform a comparison

between the strain-rates recorded on the DAS array and those predicted by reconstructing the ve-

locity wavefield recorded on the nodal array. While this analysis has been performed for individual

DAS segments using co-located seismometers (e.g. Wang et al. (2018); Lindsey et al. (2020); van

den Ende & Ampuero (2021)), our framework allows us to evaluate the DAS array using the entire
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recorded nodal data volume simultaenously, allowing for non-optimally aligned segments, without

favorable reference seismometers, to be studied. The wavefield approach also sidesteps the need

to apply fk rescaling (or similar methods that rely on estimating a reference phase velocity which

become unstable for small wavenumbers k (Lindsey et al., 2020)) when converting from strain-rate

to velocity. This aids in the simplicity of application and the robustness of the results. We further

develop methods for simultaenously reconstructing DAS and nodal data, correcting DAS data using

the observed nodal field, and optimal design strategies for mixed arrays.

2 Inversion of DAS records for particle velocity

DAS measurements are performed by observing the change in back-scattering characteristics from

laser pulses sent into a fiber-optic cable. Measurements ideally correspond to the strain or strain-rate

averaged along a gauge-length at some point in the fiber. The strain εc along a cable is given by the

projection of the horizontal strain tensor along the cable azimuth α

εc =

[
sinα cosα

]εxx εxy

εxy εyy


sinα

cosα

 = sin2 αεxx + sin 2αεxy + cos2 αεyy. (1)

with the strain components given as usual by εij =
ui,j+uj,i

2 . The theoretical DAS strain-rate

response εDAS is in turn given given by averaging the strain or strain-rate (Bakku, 2015; Wang

et al., 2018) over a gauge length L

εDAS =
1

L

∫ L/2

−L/2
εc(l)dl, (2)

where l indexes the length along the gauge length. Typical gauge lengths are on the order of ∼10m.

Work to characterise the phase and amplitude response of DAS cables is rapidly progressing. If a

DAS array is deployed such that it has sensitivity to both components of the horizontal wavefield,

the general framework of Muir & Zhan (2021) may be employed to cast the recovery of the horizon-

tal wavefield from DAS records as an inverse problem — we develop the necessary inverse problem

machinery in Appendix A1. Qualitatively, the framework of Muir & Zhan (2021) creates a sparse

4



representation of the wavefield using a reweighted curvelet basis (Candes & Demanet, 2005), scaled

to promote continuity of the wavefield Laplacian. This rescaling, coupled with the use of a curvelet

representation which is natively well-suited towards representing wave propagation, promotes inter-

polations that satisfy the seismic wave equation and result in smooth derivatives that can be used

to calculate the predicted DAS strain-rate based on the observed velocity field.

While most extant DAS deployments are typically linear or loop-shaped, the PoroTomo ex-

periment deployed at the Brady, Nevada thermal field in 2016 has a suitable space-filling zig-zag

deployment geometry for wavefield reconstruction using DAS (Feigl, 2017). This suitability has

also separately lead to analysis of the beamforming capabilities of the PoroTomo DAS array (van

den Ende & Ampuero, 2021), where the authors discovered issues with coherence within the array

inhibited beamforming performance. The lack of coherence was interpreted to be variously due to

the cable geometry, coupling, and the effects of small-scale scattering. By integrating DAS strain

records, the beamforming issues highlighted by (van den Ende & Ampuero, 2021) were largely ame-

liorated, with these results highlighting the potential utility of wavefield reconstruction for improving

the spatial continuity of the seismic waveform, thereby making it more suitable for spatial techniques

such as beamforming.

The seismic component of the PoroTomo experiment ran for 15 days in March 2016, with the

instrumentation consisting of 8700m of fiber optic cable filling a rectangle with approximately 4:1

aspect ratio, and additionally instrumented with 238 three-component seismic nodes. The distribu-

tion of nodes and the geometry of the DAS cable are shown in Figure 1. An additional 400m of

cable was deployed in a borehole, which we do not utilize in our wavefield reconstruction. Wang

et al. (2018) showed that by appropriately differencing co-deployed nodal seismic instruments and

comparing them to the average strain-rate along cable segments, quantitatively similar strain-rate

waveforms could be observed for a ML 4.3 that occurred March 21, 2016 approximately 150km SSE

of the PoroTomo experiment. The methodology proposed in this study allows us to perform similar

quantitative analysis on the entire DAS array, using a robust wavefield recorded on the entire nodal

array, as well as the reverse experiment — to invert for the velocity field perturbations given the

strain-rates.

The PoroTomo team has provided data for the Fairfield ZLand 5 Hz three component nodal
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Figure 1: Deployment of DAS cable (blue lines ) and nodal seismic stations (grey crosses) during
the PoroTomo experiment at Brady, Nevada. The orange box shows the reconstruction domain, and
pink stations are used for comparison in Figure A1
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Figure 2: Comparisons between DAS channels (blue) and reconstructed strain-rate from nodes
(orange) at the seven stations highlighted in Figure 1. Waveforms are bandpass filtered at 1–2.5 Hz,
and nodal data has been corrected using a nominal Fairfield ZLand 3C instrument response.
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seismometers, corrected for instrument gain to give units of coil-case velocity in µm s−1 (Feigl,

2017). Ringler et al. (2018) found that a collection of similar instruments can be well characterised

by assuming a damped oscillator instrument response, with a mean free oscillation frequency of

4.87 Hz and a damping factor of 0.98 (averaged across all three channels for a collection of three

instruments). We use these parameters to correct the nodal data to give ground velocity. DAS

records were cleaned by removing channels for which the DAS gauge length included a corner (10 m

for the PoroTomo deployment), and by removing traces below the 1st or above the 99th percentile

of maximum log amplitude.

To begin with, we first emulate Wang et al. (2018)’s experiment using the compressive sensing

framework developed in this study. Utilizing all nodes within the orange study area shown in

Figure 1, we inverted for a 32× 128 pixel curvelet decomposition of the discrete wavelet transform

(DWT) of the nodal ground velocity records. We then projected these results onto the DAS cable,

and inverse transformed to give the predicted strain-rate. Both nodes and DAS were bandpass

decimated to a 10 Hz sampling rate, and a 1–2.5 Hz bandpass filter was applied. 2.5 Hz was chosen

as an upper limit based on experimentation, which found it to be the highest frequency able to

be reasonably reconstructed using DAS only data as seen in Appendix A2. The Daubechies db12

wavelet with 5 levels was used for the time domain transform (the optimal wavelet was determined

by experimentation), and the compressive sensing optimization used pure L1 regularization. The

PoroTomo deployment is known to suffer from clock timing mismatches between the nodes and DAS

(Wang et al., 2018). We estimated a best-fit uniform clock correction by minimizing the least squares

misfit between the reconstructed DAS strain-rate data and the true DAS strain-rate records as a

function of lag time. This resulted in a best relative time shift of 17 samples, or 1.7 s, with the DAS

clock being faster. We plot the results (including time shift) for seven cable locations (labelled in

Figure 1) in Figure 2. We see that the recovered strain-rate typically match the phase and relative

amplitudes of the DAS records well. Absolute amplitudes are normally well recovered for the P wave.

The machinery of Muir & Zhan (2021) can also be used to perform the reverse operation of predicting

nodal data using the observed DAS strain-rate without recourse to a plane-wave assumption and

the consequent difficulties in obtaining a representative phase velocity, and also to jointly invert

DAS and nodal data into a unified data product. The results of these experiments are shown in
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Appendices A2 and A3 respectively — notably the framework of wavefield reconstruction allows for

a conversion of DAS strain-rates to particle velocity without relying on an inferred horizontal phase

velocity that may depend on local constitutive properties and that becomes difficult to stabilize for

near-vertical incidence ground motions or where cable segments are insufficiently short for adequate

k-space (wavenumber) resolution.

In Appendix A3, we perform a five-fold cross validation experiment to compare the reconstruction

performance of a mixed network of DAS and nodes to the node only network. The low prediction

error in the nodes-only cross-validation experiment shown in Figure A3 illustrates that the nodal

sensors at Brady are essentially able to fully capture the major details of ML 4.3 Hawthorn NV

wavefield within the 1-2.5 Hz frequency band, an argument that has also been made on the basis of

beamforming coherence by van den Ende & Ampuero (2021). The average root-mean-square-error

when using 80% of the nodes as a training set to predict the remaining 20% left-out test data is 0.13.

This suggests that we should be able to predict the DAS strain-rate data from the reconstructed

velocity wavefield derived from the nodal sensors with a high degree of accuracy. While the results of

Figure 2 indicate that we can capture many features of the DAS data, there still remain substantial

discrepancies to be explained. Sources of these discrepancies must relate either to incorrect metadata

(imprecisions in the locations of the DAS channels, for example), unexplained errors in the ability of

the DAS data to accurately record the true wavefield (i.e. instrument-ground coupling), or theory

errors in the prediction of strain from the observed velocity. Given that strain measurements are

acutely sensitive to very small-scale structure, the distinction between true instrument response,

coupling between the instrument and the ground, and very local path effects are less distinct for

DAS (and other strain-sensing modalities) than they are for point seismometers acting at typical 1

Hz frequencies (e.g., King et al. (1976); Ringler et al. (2019); Capdeville et al. (2020)). Attempting to

ascribe the apparent response of the cable to any one of these factors using only the predicted ground

motions is difficult, however by studying the characteristics of response across the whole array it

may be possible to build a hypothesis as to the predominant factors by searching for a correlation

(or lack of correlation) with other datasets, such as tomographic models of the subsurface.

We now look at the characteristics of errors in the predicted wavefield in more detail. While

the PoroTomo experiment unfortunately recorded only one earthquake source suitable for wavefield
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reconstruction, which precludes analysis of the DAS transfer-function in detail as was performed for

the FOSSA experiment by Lindsey et al. (2020), the areal coverage characteristics of the PoroTomo

experiment offer a unique opportunity to investigate the spatial behavior of the gross-scale metrics

of instrument response. We computed zero-lag normalized cross correlations between observed DAS

strain-rates and those predicted from the reconstructed nodal field as a metric of waveform shape

matching or phase fidelity. We used the default settings for normalized cross-correlation in the

ObsPy library (Beyreuther et al., 2010) (i.e. demeaning and normalization of the signals in running

windows). Averaged over the entire DAS array, we saw a median normalized zero-lag cross correlation

of 0.69, with a histogram of cross-correlation values plotted in Figure 3, showing that the majority of

the array is clustered at high cross-correlation values, indicating a good overall phase fit, with a long

tail of poor cross-correlations, including some with reversed polarity. In order to assess the match

in amplitudes, we took the log of the waveform envelopes, obtained using the Hilbert transform

method, and compared their normalized root-mean-square-error (RMSE, normalized by division by

the interquartile range of the observed log-envelope to provide a robust assessment of the scale of

improvement irrespective of the original scale of amplitudes). The log-envelope metric gives a holistic

view of the amplitude fit throughout the waveform, including low and high amplitude sections, with

a RMSE ∼ 0 under this metric indicating that the amplitude scale is matched throughout the

waveform and an RMSE ∼ 1 indicating amplitude errors on the scale of the interquartile range of

the observations — the median RMSE for this amplitude metric was was 0.61, and the histogram

of RMSE values across the array is also plotted in Figure 3.

To look at the amplitude fits in greater detail, we performed a time-frequency analysis by cal-

culating the continuous wavelet transform (CWT) of the observed and predicted DAS strain-rate

signals using a Morelet wavelet, and then used these to calculate the RMS amplitude of both dur-

ing the P-wave (16–21 s) and S-wave (36–41 s), for three frequency bands (1.0-1.5 Hz, 1.5–2.0 Hz,

2.0–2.5 Hz, and also the full 1.0–2.5 Hz), with the results plotted in terms of log-amplitude ratios

in Figure 4. We observe spatially coherent patterns of mispredicted amplitudes across both P and

S phases and across frequency bands. The most obvious features are the two red areas of overpre-

dicted amplitude in the lower left and upper right of the array. These areas are coincident with

quaternary alluvial surface geology and particularly low near-surface VP , as reported by (Parker
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et al., 2018), which together with the large spatial scale of the amplitude response features and the

fact that the PoroTomo cable was buried directly in a fresh trench (Feigl, 2017) suggests that the

geological conditions encountered by the DAS cable are substantively responsible for the differences

between observed and predicted waveforms. In particular there are significant areas in which the

observed amplitude of the DAS waveforms is substantially less than what one would expect based

on the data recorded on the nodes. This implies that future studies that utilize DAS for amplitude-

critical applications, such as earthquake early-warning, must carefully evaluate the fidelity of DAS

amplitudes to expected values corresponding to the true displacement ground motions. Observing

that the features in Figure 4 are relatively independent of frequency band and wavetype, a naive

correction method for amplitude response is to simply take the median amplitude ratio from the

6 rightmost panels and multiply the predicted waveforms; doing this improves the median RMSE

log-amplitude fit from 0.61 to 0.54, with the histogram of corrected values also shown in Figure 3

showing significant improvement. We note that the two definitions of amplitude fit (RMS ratio for

the P and S wave first arrivals vs log-amplitude RMSE for the entire waveform) are quite different

so that this naive correction is not just simply curve-fitting. Of course, the naive correction does

not improve the normalized cross-correlation values whatsoever, as it does not affect the shape of

the waveforms, and as such we are motivated to develop more detailed correction methods that

may result in further improvements. Given our previous observation that the spatial distribution of

amplitude responses suggest that the strains observed by the DAS for the Porotomo experiment are

affected by near-surface geology, we will develop an approach that models the DAS waveforms as a

perturbation of the predicted long-wavelength strain-wavefield using homogenization theory.

3 Towards correcting DAS amplitude response using two-

scale homogenization theory

Homogenization theory (Capdeville et al., 2010a,b) gives a framework for understanding the differ-

ences between observed strain-rates and those calculated from the reconstructed velocity field as

observed by the nodes. The tutorial study by Capdeville et al. (2020) shows the potential issue

starkly — material property distributions which produce smooth displacement waveforms and stress
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Figure 3: Histograms of the normalized zero-lag cross-correlation (after clock-correction) and nor-
malized root-mean-square-error in log amplitudes between the observed DAS strain-rates and strain-
rates predicted from the reconstructed nodal-seismic data, both before and after empirical correction
based on two-scale homogenization theory.
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Figure 4: RMS amplitude ratios between the observed DAS data and the DAS strain-rates predicted
from the nodal data reconstruction, for the P (upper row) and S (lower row) energy packets of the
ML 4.3 Hawthorn NV earthquake, both for the full 1–2.5 Hz range of the reconstruction and in
1.0–1.5, 1.5–2.0 and 2.0–2.5 Hz bands. The pattern of ratios shows clear spatial patterns that cut
across frequency bands, with the most coherent features being the two overpredicted red patches in
the lower left and upper right of the array, which is apparent in the median amplification across the
six time-frequency bands.
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fields may produce counterintuitively complicated strain fields, which will complicate the study of

the resulting DAS measurements which sense the integrated strain along a gauge length. Singh et al.

(2019) studied means to correct for this effect, using the theory of two-scale homogenization, and

applied it to rotation measurements recorded using the G-ring laser at Wetzell, Germany. They

found substantial improvements could be made to the predicted rotation measurements calculated

using PREM by making an additional first order correction, with coefficients trained using observed

rotation seismograms. A similar procedure may be used to obtain corrections for DAS seismograms,

which we will outline here. For a full description of the theory, we refer the reader to the exten-

sive development presented in Capdeville et al. (2020). We begin with the first-order expansion of

the true displacement gradients ∇u(x,y, t) in terms of reference displacements u0(x, t) and strains

ε0(x, t), where x is the “large scale” space variable and y is the “microscale” space variable:

∇u(x,y, t) = ∇xu0(x, t) + (∇yχ(y)) : ε0(x, t) (3)

The reference displacements and strains are calculated using suitably averaged properties, while the

term χ(y) is the first-order correction operator, which is a degree-three tensor. Equivalently, in

Einstein-summation notation, and for notational convenience dropping the dependence of the fields

on x, y and t we have

ui,j = u0i,jx + χinm,jyε
0
nm. (4)

Inserting this relationship into Equation 1 and assuming that we have no coupling between the

vertical and horizontal components of the wavefield, we have

εc = sin2 α(u01,1x+χ1nm,1yε
0
nm)+

sin 2α

2
(u01,2x+u02,1x+(χ1nm,2y+χ2nm,1y )ε0nm)+cos2 α(u02,2x+χ2nm,2yε

0
nm),

(5)

where the numerical indices are not summed over and represent the two orthogonal horizontal

components and α is the clockwise azimuth relative to component 2. Averaging this equation along
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the DAS cable over a gauge length L gives us the DAS strain

εDAS = ε0DAS+
1

L

∫ L/2

−L/2
sin2 αχ1nm,1y (l)ε0nm(l)+

sin 2α

2
(χ1nm,2y (l)+χ2nm,1y (l))ε0nm+cos2 αχ2nm,2y (l)ε0nm(l)dl,

(6)

where we have assumed a straight cable about the reference location at l = 0. If we further assume

that we are in a regime such that the reference strains ε0nm are approximately constant over a gauge

length, which we would expect to be true in the regime where displacements are well modelled and

which allows the scale separation required by homogenization theory to be valid, then we can write

εDAS ≈ ε0DAS + J11ε
0
11 + J12ε

0
12 + J22ε

0
22, (7)

where

J11 =
1

L

∫ L/2

−L/2
sin2 αχ111,1y (l) +

sin 2α

2
(χ211,1y (l) + χ111,2y (l)) + cos2 αχ211,2y (l)dl, (8)

etc. The coupling coefficients J are time independent and thus constant both within a particular

recorded strain-rate time series, and between records. This analysis depends on assumptions that

seem well justified (scale separation allows us to remove the reference strains from the gauge inte-

grand), as well as those that are potentially less so (lack of coupling between vertical and horizontal

strains), but does serve as a starting point for the correction of DAS records to local heterogeneity

using the theory of two-scale homogenization. The coefficients J can be obtained for each DAS

channel by computing

J = (E0T

E0)−1E0T

δ (9)
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where for signal sample times t = t1, t2, . . . , tn

J =

[
J11 J12 J22

]T
, (10)

E0 =



ε011(t1) ε012(t1) ε022(t1)

ε011(t2) ε012(t2) ε022(t2)

...
...

...

ε011(tn) ε012(tn) ε022(tn)


, (11)

δ =



εDAS(t1)− ε0DAS(t1)

εDAS(t2)− ε0DAS(t2)

...

εDAS(tn)− ε0DAS(tn)


. (12)

When multiple records are used for the inversion, the different ti need not be from the same record as

J is time independent, assuming that the local heterogeneity is not changing. While the PoroTomo

experiment only recorded one significant event, which is insufficient to perform a robust analysis

similar to Singh et al. (2019), we can solve for J by using the nodal reconstructed wavefield of

the Hawthorn NV event to compute the reference strain-rate and see what sort of improvements

can be made using the assumptions developed in this section. It is worthwhile to note that the

DAS records used here have significantly more high-frequency detail than the long-period rotation

measurements in Singh et al. (2019), so the danger of overfitting is lessened. In figure 5, we show

the corrected strain-rates calculated from the nodal reconstructed wavefield. In five out of seven of

the example waveforms, we see a significant improvement in this amplitude metric. Because of the

requirement for clock-corrections, these error metrics are calculated using the time range of 15–55

s. Averaged over the entire DAS array, we saw the median normalized zero-lag cross correlation

increase from 0.69 to 0.76, and the median normalized RMSE in log amplitude decrease from 0.61

to 0.56 — the average gain in waveform shape accuracy is significant, with the tail of negative

zero-lag cross-correlations eliminated completely. However, the improvment in RMSE amplitude fit

is not as good as the naive amplitude correction. Histograms showing the distributions of these

values across channels are shown in Figure 3, with the histogram of homogenized RMSE showing
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a secondary hump that may be due to the prioritization of the L2 metric of fitting phase over

amplitude, which can result in the “best-fit” corrected amplitude (in the L2 sense) having very

small amplitude. Further advancements of homogenization-theory based corrections may allow for

more accurate matching of recorded DAS strains to predicted waveforms, which may substantially

improve the efficacy of DAS arrays for studying source processes. Additionally, there is potentially

scope for further inversion of the correction term J for small scale structure, although the requisite

theory has yet to be developed.

4 Optimal Design of Mixed Networks

In this study, we have so far explored the potential of wavefield reconstruction to characterize a

combined DAS and point-seismometer network, with the view that such deployments will become

increasingly common in the future. Given that new arrays offer new opportunities for deployment

design, a natural extension of our study of wavefield reconstruction is how to best design such mixed

networks to maximise their reconstruction performance and ability to correct for DAS gain, and in

particular how we might use our mathematical framework to formalize the array design. Within the

general framework of Muir & Zhan (2021), the final, spatially resolved step of the wavefield analysis

is a linear inverse problem, utilizing a L1 regularization to promote sparse solutions. Procedures for

how to make optimal measurements for linear inverse problems have been widely studied for over a

century, and have been collectively termed methods for Optimal Experimental Design (OED). While

OED is a well established concept, methods for OED within the context of compressive sensing have

only been recently developed. In the following, we use an algorithm proposed in Ravi et al. (2017)

to determine optimal mixed network designs and evaluate their performance for improving wavefield

reconstruction relative to unoptimized networks.

Following Ravi et al. (2017), the information matrix M ′ is defined by the product GTG. For

compressive sensing problems, M ′ is not full rank, so is regularized by M = M ′ + εI. Using the

D-optimal design criterion, which minimizes the confidence ellipsoid of the estimate for the inverted

curvelet coefficients, good designs will minimize log detM−1. We introduce a selection vector s,

such that each element si ∈ {0, 1}. We can write the matrix M∗ =
∑
i sig

T
i gi+ εI where gi are the
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Figure 5: Comparisons between DAS channels (blue) and reconstructed corrected strain-rate from
nodes (orange) at the seven stations highlighted in Figure 1. Corrections are obtained from applying
a first order expansion of the observed DAS signal in terms of the predicted DAS signal and predicted
strain-rates, as described in the text. Changes to the observed zero-lag normalized cross correlation
∆CC and log-amplitude error ∆RMSE show substantially improved fits compared to Figure 2 in
almost all cases.
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row vectors of G — each row vector corresponds to a candidate measurement location. The optimal

design problem asks, given a budget of B stations, what the best s with sum(s) ≤ B is, such that

the solution of the compressive sensing problem ||Diag(s)(Gm− d)||2 + ||m||1 is similar to that of

the unrestricted problem ||Gm− d||2 + ||m||1.

Ravi et al. (2017) proposed a design criterion for compressive-sensing problems based on com-

bining D-optimal design with an additional term designed to minimize the coherence of the se-

lected stations. The coherence is defined as the maximum diagonal term of the hat matrix H∗ =

Diag(s)GM∗−1GTDiag(s) (this criterion is also known in the literature as G-optimal design). The

full objective function to be minimized is therefore given by

f(s) = − log det(M∗) + λmax [Diag(H∗)] , (13)

for some regularization parameter λ > 0, and where the max is the maximum element of the diagonal

of the hat matrix H∗. Minimizing coherence tends to produce better solutions for compressive

sensing, so combining these two criteria promotes a balance of solutions that allows for good sparse

signal recovery (from the incoherence condition) while also maintaining overall sensitivity (from the

D-optimal condition). Solving this problem for binary s is an NP-hard nonlinear mixed-integer

problem and is thus generally intractable as a polynomial time solution is not known, leading to two

solution strategies. The first is to obtain an approximate solution via sequential optimization by

finding the minimum of f for an initial station, then fixing that station and subsequently optimizing

for the second station, etc. This sequential approach is computationally tractable and will often give

a good solution but is not guaranteed to find the optima of f(s) — this approach has been commonly

used for geophysical optimal design problems (e.g. see Bloem et al. (2020) for a recent overview

including fully nonlinear design principles for small networks) and has the additional advantage that

the same scheme can be also used to study the variant in which the candidate locations are allowed

to vary, although we will not consider that possibility in this study. The second approach is to work

with a relaxation 0 ≤ s ≤ 1, and then minimize f(s) simultaneously for all stations; this approach

was advocated by Ravi et al. (2017). The resulting relaxed weights give some indication of favorable

designs; for instance they could be used as probabilistic weights for random network designs, or
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further schemes can be used to round the relaxed weights into a binary solution. We implemented

the relaxed scheme using the JuMP interface (Dunning et al., 2017) to ipopt (Wächter & Biegler,

2006), which utilizes a log-barrier term to relax the constraints into the objective function.

For our mixed network problem, we have s = [sDAS ; sx; sy]. Typically DAS networks will either

use existing dark-fiber instrumentation, or if using a greenfield deployment, will require complex

constraints on the geometry due the required continuity of the cable, attempts to minimize corners,

obstacles etc. — consequently, we will restrict our discussion to the case that the DAS cable geometry

is known and we wish to optimize the locations of deployed point seismometers to supplement the

cable. In that case, we have the additional restriction that sx = sy = sSeismometers, sDAS = 1,

and the restriction on the number of sensors is then sum(sSeismometers) ≤ BSeismometers. With

these changes, the problem statement conforms to that in Ravi et al. (2017), and can be solved as

described above.

To test both the sequential and relaxed methods of network design, we utilize a square syn-

thetic array consisting of 384 DAS channels arranged in a cross-hatch formation, with 5m channel

spacing and 10m gauge length, along with 64 candidate two-component horizontal seismometer lo-

cations evenly spaced over a central square. The geometry of the synthetic setup is shown in Figure

6. To determine reconstruction performance, we generated a synthetic Rayleigh-wave propagating

across the array by simulating the acoustic wave equation with a point source for a weakly varying

checkerboard velocity model (average velocity ∼ 1810 ± 90 m/s ), and then taking the gradient to

determine horizontal motions. We calculate the synthetic traces at each DAS channel and candidate

seismometer location, including 10% added Gaussian noise, and also at 256 evenly spaced validation

locations within the central square of the DAS array where we expect to be able to achieve adequate

reconstruction results. All performance metrics reported are given by the per-trace normalized RMS

misfit of the reconstructed wavefield at the validation stations.

For the relaxed analysis, we drew 10 lots of 1000 designs by sampling without replacement

using the weights obtained by optimizing Equation 13. We set they hyperparameters to λ = 1 and

ε = 10−2, with the latter motivated by the cutoff of the eigenvalue spectrum of the design matrix

for a DAS array of totally random sensor locations and azimuths, which we would expect to have

the best potential reconstruction performance — although that design is certainly not achievable
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in practice. The choice of λ was then made to give the incoherence term a similar scale to the

typical range of perturbations to the D-optimal design term in Equation 13. For each of the 10 lots,

we then chose the design with the lowest value of Equation 13 amongst the 1000 candidates, and

performed a wavefield reconstruction on the data. We also performed a wavefield reconstruction on

10 designs chosen by unweighted random selection without replacement. We tested designs with 4,

8, 16, 32 and 64 stations (with 64 being the complete set of potential locations, so that only 1 design

was in fact tested). We also performed wavefield reconstructions for the sequential optima for those

numbers of stations. Figure 7 shows the relaxed design weights, sequentially optimized design, and

example resultant fits to the true synthetic waveform for the tested designs up to 32 included nodes.

Overall performance at the example station is quite good, and unsurprisingly gets better as the

number of included stations increases. The weights generally prefer stations that are further away

from the DAS cable, particularly the outer crossing, which is somewhat intuitive as those areas

already have provided information; it is however interesting to note that the center of the array

is always weighted at least moderately despite the presence of a DAS crossing, presumably as the

strong improvement to the D-optimal design term from occupying the center location outweights the

coherence penalty there. Figure 8 shows the per-trace-normalized root-mean-square-error (RMSE)

for this synthetic experiment as a function of the number of included nodes. In this case, despite

there being no guarantee that the sequential design is particularly performant, it consistently has

significantly lower RMSE than both the weighted and unweighted random designs, potentially as the

regular, dense DAS array design makes choosing the locations of the next element of the sequence

simple. For low node density, the weighted design slightly outperforms outperforms the unweighted

design on average, while it confers no advantage once one quarter of the nodes are included.

5 Conclusions

DAS networks promise a paradigm shift within observational seismology by making large-N, highly

spatially dense networks financially and logistically feasible for the research community. However, the

strain based measurement procedure is highly susceptible to the effects of local heterogeneity and is

furthermore sensitive to only one projection of the horizontal strain tensor. Using a wavelet-curvelet
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Figure 6: Network geometry used for synthetic optimal network design. DAS cable channel locations
are shown as circles colored by cable azimuth. Red triangles show the locations of candidate stations,
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we should expect to be able to achieve good recovery of the wavefield.
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Figure 7: Array designs and reconstruction performance for different numbers of included nodes.
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23



4 8 16 32 64
Number of Nodes

0.0

0.1

0.2

0.3

0.4

0.5

RM
SE

Sequential Insert
Random Weighted
Random Unweighted

Figure 8: Per-trace normalized reconstruction root-mean-square-error (RMSE) calculated using the
256 validation stations shown in 6 as a function of number of utilized nodes in the design. The pink
line shows the sequentially optimized design, while blue squares and orange circles show results from
unweighted and weighted randomized designs respectively. The error bars show the maximum and
minimum RMSE across the 10 samples used for each randomized design.

24



compressive sensing based wavefield reconstruction, we have developed a method for simultaenous

spatial assessment of DAS array response using a theory that does not require potentially unstable

fk rescaling, when a colocated but potentially off-cable point sensor array is available. We have

shown that the DAS phase response in the 1-2.5 Hz range is relatively accurate to true ground

motion for the ML 4.3 Hawthorne, NV earthquake recorded on the Porotomo DAS array, but

that there are however significant amplitude errors that correlate with near-surface geology. These

amplitude errors can be well characterized by a single empirical gain coefficient within the studied

frequency band, and further detailed studies using the framework of homogenization theory may

yield corrections that improve both phase and amplitude response. Furthermore, we have shown

that wavefield reconstruction permits a cohesive framework for combining DAS with point sensors

such as 3D nodes, with the combined DAS and nodes network outperforming the nodal network

by itself for low node density using the PoroTomo array geometry. With a view to generalizing

the applicability of these results beyond the PoroTomo deployment, we have investigated an optimal

design strategy for improving the efficiency of mixed DAS and point sensor deployments for wavefield

reconstruction. While at this stage we have focused on the relatively simpler task of deciding the best

locations for point sensors given a fixed DAS deployment, as this is computationally more tractable

and also corresponds to the common case of utilizing pre-existing dark fiber deployments, the general

concept of optimizing network sensitivity while also promoting the incoherence of measurements,

will allow for optimal design of general DAS networks in the future. As DAS becomes increasingly

prevalent and further integrated with traditional seismic networks, wavefield reconstruction therefore

represents a flexible framework for overcoming the weaknesses of DAS as a single component large-N

array, instead optimizing its strength as a single unified areal sensor.
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A1 Wavefield Reconstruction Theory

In Muir & Zhan (2021), we proposed a wavelet decomposition in the time domain, coupled with a

compressive-sensing based preconditioned curvelet decomposition in the spatial domain. Mathemat-

ically this involves a transform w(jw, s) = WT (u(t)), operating trace-by-trace, from the collection

of time-domain signals u to the wavelet domain indexed by scale jw and time-position variable s,

followed by the solution of an L1 regularized linear inverse problem Gĉ(jw, s) = w(jw, s) expressing

the spatial behavior of the wavelet coefficients w(jw, s) in terms of the curvelet coefficients ĉ(jw, s).

Individual curvelet coefficients are indexed by a scale jc, as well as rotation and translation in-

dices. The design matrix G = ΨΦP in our formulation includes both the spatial behaviour of the

curvelet basis functions, Φ, the spatial sampling matrix Ψ and a variable preconditioning matrix

P = Diag(2−jc
n

) that allows us to promote smooth wavefields by penalizing the scale factor jc of

the curvelets.

We now develop the theory further to include DAS measurements of the strain field. As indicated

in Equation 2, DAS strain metrics are calculated by averaging the true strain or strain-rate over a

gauge length L. As such, we can invert for the horizontal wavefield curvelet coefficients by solving

[
1
L

∫ L/2
−L/2A1

∂G
∂x +A2

∂G
∂y dl

1
L

∫ L/2
−L/2A2

∂G
∂x +A3

∂G
∂y dl

]cx(jw, s)

cy(jw, s)

 = wεDAS
(jw, s) (A1)

[
GDAS,x GDAS,y

]cx(jw, s)

cy(jw, s)

 = wεDAS
(jw, s), (A2)

where A1 = Diag(sin2α), A2 = Diag( sin 2α
2 ) and A3 = Diag(cos2α). The integrals are applied to

each row, each of which corresponds to a single measurement for a cable segment with gauge length

L and cable azimuth α. This inversion process is unable to recover static components of the velocity

field due to the derivatives involved, but given the normally oscillatory characteristics of solid earth

ground motion, this is unlikely to be an issue in practice. Once the curvelet components are found,

the ground velocity wavelet coefficients may be recovered by applying the undifferentiated curvelet

basis matrix giving wux(jw, s) = Gcx(jw, s) and wuy (jw, s) = Gcy(jw, s). The ground velocities in

time domain can then be recovered by the inverse wavelet transform. In the reverse process, the
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horizontal components ux and uy of 3C seismic deployments may be inverted using an appropriate

design matrix G, and the above equations used to obtain the predicted DAS signal. Finally, we may

simultaneously invert both 3C seismometers and DAS deployments by forming the block matrix

equation 
GDAS,x GDAS,y

GSeismometers 0

0 GSeismometers


cx(jw, s)

cy(jw, s)

 =


wεDAS

(jw, s)

wux
(jw, s)

wuy
(jw, s)

 , (A3)

which in the compressive sensing framework is given by L1 regularization

ĉx(jw, s)

ĉy(jw, s)

 = arg min
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1

 ,
(A4)

solved using the Lasso.jl Julia module (a fast reimplementation of the R code glmnet (Friedman

et al., 2010)), with the regularization parameter λ determined automatically using the corrected

Akaike information criterion or AICc (Burnham & Anderson, 2004), or via 5-fold cross-validation

where computationally feasible.

A2 Reconstruction of nodal data using DAS

Having shown that the dense nodal deployment is able to well-recover the DAS strain-rate, we then

performed the opposite procedure - recovery of both horizontal components of the wavefield using

only the DAS cable. We note that this is a significantly more challenging task than the previous

nodes-to-DAS experiment, as we can only access the horizontal wavefield through its derivative.

In order to stabilize the selection of curvelets when only using DAS, we use mixed L1 and L2

regularization (i.e. Elastic Net Regression) of the form α||c||1 +(1−α)||c||2 with α = 0.95. We have

found that this small additional amount of L2 regularization is not necessary when any nodal data

is included. Figure A1 shows the resulting horizontal components at three node locations, using

timing lags optimized for the P wave on each instrument — individually calibrated time corrections
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were used for this figure as the overall DAS to nodal reconstruction is not of sufficient accuracy to

calculate a global correction. In this case, the fit to the phases and amplitudes of the initial P wave

is generally good, and performance declines throughout the P wave coda. Waveform fits improve on

the East components during the initial S wave, but fits to the North component are generally poor.

Sensitivity analysis following Martin et al. (2018) is shown in Figure A2 assuming a near surface

VP of 1300 m/s and a Poisson solid relationship for VS indicates that relative sensitivities for P ,

SV and SH motions are almost independent of frequency across the frequency band studied here.

The cable geometry, near surface velocity structure and earthquake source location combine to give

highest sensitivity to P , followed by SH, with little sensitivity to SV . The overall better fit of the

P wave data is therefore unsurprising, as the effective wavelength of this low-slowness phase is large

across the array, and the relative sensitivity to P motions is large, allowing the CS inversion scheme

to better integrate the P wavefield. In the case of the S wave, the higher amplitude of the East

vs North nodal channels suggests that the SH component of the S wavepacket is dominant (given

that the earthquake is south-southeast of the aray). The higher sensitivity to SH, combined with

higher SH component, explains the better fit to the East components of the motion at the nodes.

In general, however, it is apparent that the DAS cable is by itself insufficient to recover the wavefield

to a desirable accuracy within the frequency range of this study.

A3 Joint reconstruction of DAS and nodes

Finally, we study the performance of a mixed deployment of horizontally sensitive point sensors

(nodes in this case) and DAS cable. We performed a five-fold cross validation experiment to obtain

standardized mean square error (MSE) paths for nodal horizontal component reconstruction as a

function of nodal instrument density. Specifically, we split the nodal dataset into five folds. With

each of these folds acting as a validation dataset, we used between 20% and 100% of the remaining

four folds as a training dataset. We then calculated the MSE of the reconstruction both with and

without including the DAS data in the reconstruction. We also calculated the MSE of the DAS

for each validation fold with no nodal data included. The results are shown in Figure A3. With

the exception of one poorly performing fold, we see that the inclusion of DAS data substantially
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Figure A1: Comparisons between nodal seismic channels (blue) and reconstructed ground velocity
from DAS (orange) at the three stations highlighted in Figure 1. Waveforms are bandpass filtered
at 1–2.5 Hz, and nodal data has been corrected using a nominal Fairfield ZLand 3C instrument
response.
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Figure A2: DAS cable sensitivity of the PoroTomo experiment at Brady, NV, at a frequencies of
1.0, 1.75 and 2.5 Hz to motions originating from the ML 4.3, March 21, 2016 studied in Wang et al.
2018. Notably, the relative sensitivity of the DAS cable is independent of cable azimuth across this
period band
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improves the MSE performance of reconstruction for low station densities. As the station density

increases, the performance of the mixed network saturates whilst the performance of the nodal only

network continues to improve. We interpret this saturation effect to be due to the inconsistencies

between the nodal and DAS data due to clock errors and uncalibrated DAS-ground coupling - with

a mixed network designed from the outset for joint wavefield reconstruction, improved performance

at all station densities seems likely. This result highlights the potential of a mixed deployment to

act as a unified areal sensor via wavefield reconstruction, even while utilizing a small number of

three component seismometers. A network designed and calibrated with wavefield reconstruction

in mind from the outset would likely have strongly improved performance when compared to the

Porotomo experiment. This style of mixed network would be especially powerful for long-term or

permanent deployment, where the costs of installing and maintaining dense three component arrays

are substantial.
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Figure A3: Mean Square Error (MSE) paths for a 5-fold cross-validation experiment. Blue lines
show paths trained using only the remaining four-fifths of nodal data. Orange lines show paths with
the addition of the full processed and quality-controlled DAS dataset.
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