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Superlattice  and  Negative  Differential  Conductivity 
in  Semiconductors* 

Abstract: We consider a one-dimensional  periodic  potential, or “superlattice,”  in  monocrystalline  semiconductors  formed by a periodic 
variation of  alloy  composition or of impurity  density  introduced  during  epitaxial  growth. If the  period of a superlattice, of the  order 
of 100A, is shorter than the electron  mean  free path, a series  of  narrow  allowed and  forbidden  bands is  expected  due to the subdivision 
of the Brillouin  zone into a series  of  minizones. If the scattering  time of electrons  meets a threshold  condition,  the  combined  effect of the 
narrow  energy band and the  narrow  wave-vector  zone  makes  it  possible  for  electrons to be  excited  with  moderate  electric  fields to an 
energy and momentum  beyond an  inflection  point  in  the E-k relation; this  results  in a negative  differential  conductance  in  the  direction 
of the superlattice.  The  study of  superlattices and  observations of quantum mechanical  effects on a new  physical  scale  may  provide a 
valuable  area of investigation in the fieId  of  semiconductors. 

Introduction 
We consider theoretically a one-dimensional periodic po- 
tential, or “superlattice,” in monocrystalline semiconduc- 
tors. This superlattice potential would be obtained by a 
periodic variation of alloy composition or of impurity 
density introduced  during epitaxial growth. This technique 
would enable  one to vary arbitrarily the amplitude and 
periodicity of the superlattice potential over a range of 
values, although one period probably could not be made 
much shorter  than l O O A  (about 20 times as long as  the 
lattice  constant of the host crystal). If this distance, which 
is comparable to the junction width in a tunnel diode,’ is 
shorter  than  the electron  mean  free path,  one may 
expect to observe strong energy dispersion effects in  the 
proposed  structure.  These effects would allow observation 
of familiar quantum mechanical properties in a new domain 
of physical scale, due  to very narrow allowed and for- 
bidden energy bands associated with a series of minizones 
in  the Brillouin zone, not seen in  the host crystal. It should 
be possible to  obtain a novel class of man-made semicon- 
ductor materials, at least as  far  as electronic properties 
are concerned, and  one expects the properties to depend 
not only on  the  band parameters of the  host crystal, but 
also  on  the characteristics of the superlattice. 

We have analyzed the dynamics of conduction electrons 
in a superlattice  structure which, we think, is realizable 
with techniques described here. Although the one-dimen- 
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sional  lattice  per se is an elementary subject, the results 
contain important implications for  the direction of experi- 
mental effort. We have found  that, in the direction of the 
superlattice (perpendicular to  the superlattice planes), the 
narrow wave-vector zones and  the  narrow energy bands 
make it possible for electrons to be excited beyond the 
energy corresponding to an E-vs.-k inflection point with 
moderate electric fields. The resulting negative conduc- 
tance could lead to new ultra-high-speed devices.? These 
devices would have virtually no frequency limitation except 
when the energy quantum  for  the frequency involved is a 
significant fraction of the width of the  narrow energy band. 
Since the potentials envisioned are small compared with 
band  gap energies of the host semiconductors, and since 
the properties  depend on a sustained periodic  variation, 
the structure  should be viewed as a perturbed bulk crystal 
rather  than as a series of junctions. 

Materials 
The achievement of a well-defined superlattice structure 
with a period of, say, lOOA will require  considerable effort 
even with the use of the most advanced epitaxial thin-film 
technologies. The materials  should  be well-known semi- 
conductors and their alloys; for examples, Ge, Si, Ge-Si 
alloys, 111-V compounds and their alloys, 11-VI com- 

semiconductors for a negative mass amplifier. wherein transverse effective 
t H. Kromer proposed using the heavy hole band in  Ge,  Si  and other 

masses were said to  become negative for excited electrons (actually holes) 
[Phys.  Reu. 109, 1856 (195811. Application of the effect, however, has not 
turned out  to be practical. 61 
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Figure 1 Electron  energy  in the valence  and  conduction 
bands  as a function of distance in the direction of the 
superlattice for (a) alternation of donor and  acceptor im- 
purities and (b) periodic variation of  alloy composition. 
Solid  and  dashed  lines  represent  sinusoidal  and  periodic 
square-well  potentials,  respectively. The E ,  are the mag- 
nitudes of the energy  gap  in the semiconductor materials 
used and VI is the  amplitude of the  periodic  superlattice 
potential. 

pounds and their alloys, etc. There may  be a number of 
ways to form a superlattice structure.* We considered 
two methods: (1) a periodic  variation of donor  or acceptor 
impurities, alternately,  in a single semiconductor; and (2) a 
periodic  variation of alloy composition,  introduced  during 
the crystal growth. Both methods  could  be used simul- 
taneously and it would be advantageous to carry out  the 
epitaxial  growth at a relatively low  temperature' to mini- 
mize the  thermal diffusion of impurities or alloy constit- 
uents, which would tend to wash out  the desired potential 
profile. In this  context, it is more desirable to apply method 
(2) because of the lower diffusion coefficients in alloys. 

forms known as polytypes, in which one sees a kind of one-dimensional 
* Some crystals such as hexagonal SIC have a number of different structural 

type of crystal. The potential amplitude and resulting  energy gap are  probably 
superlattice structure. The periods range from 15 to 53A, depending on the 

too small to demonstrate any of the effects described here. 62 
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In  the alternating  impurity system (Fig. la),  the peak- 
to-peak  amplitude of the periodic  potential  can  be chosen, 
in principle, as any value up to that of the energy gap, 
whereas, in  the alternating alloy composition system (Fig. 
lb),  the value would be limited to  about half of the differ- 
ence between the energy gaps of the  two materials involved. 
It would not  be possible to  obtain  the desired superlattice 
structure (with a 100-A period and a 0.1-eV potential 
amplitude) with relatively light doping because of space 
charge effects. 

We considered two potential  functions, a sinusoidal wave 
and a periodic square wave, as illustrated in Fig. 1, and 
two typical values of  effective mass, 0.025mo and 0.07m0, 
which are applicable to  the InAs-based alloy and  GaAs- 
based alloy systems, respectively. The Ge-GeSi system is 
also  attractive,  particularly from  an experimental point of 
view. We would choose relatively pure elemental or binary 
compound  semiconductors as  the narrower gap semicon- 
ductor,  corresponding to  the valleys in  the potential profile, 
to  obtain a favorable electron scattering time. 

Band structure 
We are concerned with the energy bands in a one-dimen- 
sional  superlattice represented by a periodic  potential 
V(x) = V(x f nd) with a period d typically 10 to 20 times 
greater than  the lattice  constant a in  the host crystal. The 
usual Brillouin zone will be subdivided into minizones as 
shown in Fig. 2a. Since we are interested only in  the first 
minizone, because of low carrier  concentrations we may 
assume that  the E-k relation in  the directions parallel to 
the superlattice planes is parabolic as usual. For  the sinu- 
soidal  potential V(x) = Vl [cos (27rxld) - 11, the wave 
equation  in  the direction of the superlattice,  denoted by x, 
has the  form of Mathieu's  equation and  has been studied 
in great  detail by Slater.3 

The reduced energy and amplitude of the  perturbing 
periodic  potential are defined by 7 = q(k,) = (E, - Vl)/Eo 
and y = V,/Eo, respectively, where VI is the amplitude of 
the periodic  superlattice potential  and Eo = ktk:/2m; here 
kd = 7r/d and m is the effective mass. In Fig. 2b we plot 
r]  vs. y for the sinusoidal  potential, using a parameter 
/3 = k,/kd. The allowed solutions of the wave equation 
are represented by the non-shaded regions, while the for- 
bidden  solutions  fall in  the shaded regions. For  the case of 
y = 0.5, 7 vs. 6 is plotted in Fig. 2a. 

We also calculated the energy-momentum relation for 
the periodic square-well p~ ten t i a l ,~  using the expression 
given by Smith.5 A comparison of the E-vs.-k curves 
for  the  two potentials is shown in Fig. 3, where d = loo& 
VI = O.leV, and m = 0.025mo (Fig. 3a) and o.07m0 
(Fig. 3b). The zeros of the energy scales in Fig. 3 are 
set at the  bottom of the conduction band  in  the narrower 
energy-gap material.  Therefore the first band is moved 
up by an  amount slightly less than Vl. In  the case of 
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alternating impurities, the energy gap  is narrowed slightly 
by the introduction of the superlattice structure. 

The energy band width El = E(?r/d) - E(0) decreases 
as y increases from 0.667 to 1.85; i.e., electrons are pro- 
gressively more localized in  the direction of the super- 
lattice as the periodic perturbing potential increases. At 
y = 4, El is only one-tenth the unperturbed energy band 
width in  the first minizone, which means that  the effective 
mass in  the superlattice direction is ten times greater than 
the unperturbed value. This trend leads to virtually a two- 
dimensional electron gas system.6 

For large y, and particularly for  the periodic square- 
well potential, the E-k relation can be approximated by a 
sinusoidal form, E, = $E1(l - cos k,d); the inflection 
point is located at  the center, ?r/2d, of the first minizone. 
In general, each carrier with a definite  effective mass 
interacts with the superlattice and generates a correspond- 
ing set  of  energy bands. Therefore, whenever more than 
one effective mass is involved, the  total population of 
carriers is redistributed among the respective bands. 

Transport properties 
We  used a simplified path integration method7 to obtain  a 
relation between the applied field F i n  the direction of the 
superlattice and the average drift velocity u,. The equations 
of motion are 

-hkz = eF and u, = h"dE,/dk,; (1) 

the velocity increment in a  time interval dt is 

du, = eFh-2(d2E,/ak~) dt. (2) 

The average drift velocity, taking into account the scat- 
tering time T ,  is written as 

ud = lm exp (- t / r )  du, 

= eFh-' lm (d'E,/dk;) exp (- t / r )   d t .  (3 1 

Using the sinusoidal E-k approximation, we obtain 

Od g( l ) [hkd/m(o)]  (4) 

and 

dl) = E / ( 1  + T212>, ( 5 )  

where = eFr/hkd = k,/kd; the effective mass m(0) is 
determined by the curvature of E(k) and is equal to 
2h2/E1d2. The function g(4) (shown as  the dashed curve 
in Fig. 4) has  a maximum at = l/?r and thereafter 
decreases, corresponding to a decreasing average drift 
velocity,  which results in  a negative differential conduct- 
ance because the current is proportional to vd. At high 
fields the current is  proportional to (FT) -~ .  The value 

= l/r corresponds to eFrd/h = 1 .  This threshold 

( j  =,  9 "; -""- "" """_ 
, x  :R "4 """" "-----" 

Figure 2 Reduced energy as  a  function of (a )  wave 
vector k, or reduced wave vector p for y = 0.5 and (b) 
reduced amplitude y of the sinusoidal superlattice  potential; 
7 '= ( E ,  - VI) /Eo,  y '= VJE0 and p k,/ka. 

Figure 3 Electron energy E, as a function of wave vector 
k, in  the direction of the superlattice. Solid curves are  for 
the sinusoidal potential,  long-dash  curves are  for  the periodic 
square-well potential, and  the short-dash  curves are for the 
unperturbed cases. The arrows  refer to the  points of inflec- 
tion. Values of the  parameters are VI = 0.1 eV and (a) 
rn = 0.025rno, y = 0.667; (b) rn = 0.07rno, y = 1.85. 
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Figure 4 Drift velocity  amplitudes as functions of the 
reduced parameter E = 2 e F ~ d / h  k,/kd: (a) sinusoidal 
potential; (b) periodic  square-well  potential for k , / k d  = 
0.5; and (c) periodic  square-well potential for ki /kd  = 
0.82. Here ki is the wave vector at the inflection  point of 
the E-k curve.  Arrows  indicate  the  peaks of the drift 
velocity  functions. 

condition  can be achieved with an electric field strength 
F = lo3 V/cm and a scattering  time T = 0.67psec. 

For small y, when E(k) is not a  sinusoidal  function, 
the E-k relation was approximated by sections of two 
parabolas of opposite  curvature,  joined at  the inflection 
point (E i ,   k i ) .  For  the average drift velocity in this case 
we obtained 

and 

The functionf(() is plotted in Fig. 4 for k i /kd  = 0.82 (y = 
0.667) and 0.50 (y = 1.85). These curves also indicate the 
existence of negative conductance, but  the threshold value, 
4 2 0.4 or eFrd/A 2 1.26 for  the  top curve, is slightly 
greater than  for  the sinusoidal E-k relation. Since the 
inflection point  is shifting toward  the minizone boundary, 
it is understandable that higher fields or longer  scattering 
times are required to obtain negative conductance. 

As the applied voltage is increased, however, effects such 
as Zener  tunneling,  avalanching and impact  ionization  set 
in; eventually the negative conductance would be offset 
by these effects. The possibility of Zener  tunneling to the 

64 second minizone when electrons  reach the first minizone 
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boundary  could  be a dominant  factor  in  the case of small 
amplitude of the periodic  potential.  If, however, the ampli- 
tude VI is of the  order of 0.leV and  the applied field is 
of the  order of lo3 V/cm, the tunneling  probability can 
be kept negligibly small. If the electron  scattering time is 
sufficiently long,  electrons will undergo  rf  oscillation due 
to  the reflection at  the minizone boundaries, the so-called 
"Bloch oscillation." This  occurs for eFrd/A > 27r, which 
is several times the threshold value for negative conduct- 
ance. The frequency of the Bloch oscillator is eFd/h = 250 
GHz for F = 103V/cm and d = l O O A .  The scattering 
time  then  should be greater than 4 psec. 

Discussion 
In obtaining the solutions for  the average drift velocity, 
Eqs. 4 and 6,  we made two  assumptions; namely, that 
k, = eFf/A and  that T is time-independent. The  former 
assumption implies that k ,  = 0 at t = 0, which is justifiable 
in relatively lightly doped semiconductors.' The  latter 
assumption is a reasonable approximation in the case in 
which the allowed band width is  made narrow. In the  two 
examples, m = 0.025m0 and o.07m0, the smaller  mass 
case  requires an electron temperature close to 1000"K, 
whereas the larger mass case requires  only 100"K, to 
reach the negative differential conductivity region. This 
electron  temperature, which is also  a  function of the ampli- 
tude  and  the profile of the periodic  potential,  could  be 
kept very low with proper design of the structure. In such 
cases the specimen could be operated with low electric 
fields at cryogenic temperatures;  lower  temperatures are 
helpful in obtaining  longer  scattering times. 

Using the Heisenberg uncertainty principle we estimated 
the values of electron  scattering  time T and  the mean  free 
path I that  are required for these quantum mechanical 
effects. For AE = O.lE, = 0.003 eV and Ak = O.lkd = 
3 X lo5 cm-', the inequalities are I2 330A and r 2 0.22 
psec. This indicates that  the mean  free path should  be at 
least three times as long as  the superlattice spacing. The 
scattering  time  here is  about one-third of that previously 
estimated for obtaining  a negative differential conductance. 

The scattering  time is an  important factor in  the effects 
described and more-detailed calculations are being made 
to verify the model. If the superlattice were perfect, the 
scattering  time would be infinite, as is the case with an 
ideal  crystal lattice. Small deviations from  the perfect 
periodic  potential, even when the long-range order  is pre- 
served, act  as localized scattering centers. If the super- 
lattice structure is prepared by a periodic  variation of 
alloy composition, there will be  unavoidable random varia- 
tions in  the magnitude of  the thereby  introduced  super- 
lattice  potential maxima (at x = d/2,3d/2, . . . ). However, 
the probability density of conduction  electrons in  the 
superlattice structure of the sinusoidal  potential indicates 
that electrons  in the conduction band would be bunched 
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in the potential minima at x = 0, d,   2d,  . . . . Therefore, 
small variations in  the magnitude of the potential maxima, 
where the electron probability  distribution has minima, 
would have little effect. 

If the deviation from  an ideal  superlattice becomes so 
large that  the long-range order  is  no longer preserved, a 
disordered system will be  obtained, which might be called 
a disordered one-dimensional superlattice. Even this  struc- 
ture, however, may provide a testing  ground for mathe- 
matical models used in  the study of one-dimensional 
disordered systems.' Correlation between theory and exper- 
iment on a disordered  superlattice would lead to better 
understanding of a three-dimensional disordered system, 
i.e., an  amorphous substance. Although it may be a for- 
midable task to construct the proposed superlattice, we 
believe that efforts directed to this  end will open new areas 
of investigation in  the field  of semiconductor physics. 
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