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Finite-Difference Time-Domain Simulation of Two-Dimensional
Photonic Crystal Surface-Emitting Laser Having

a Square-Lattice Slab Structure
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SUMMARY Ry imeans of the three-dimensional (3D} finite-difference
time demain (FDTD) method, we have investigated in detafl the opti-
cal properties of a two-dimensional photonic crystal (PC) surface-emitting
laser having a square-lattice structure. The 3D-FDTD calculation is carried
out for the finite size PC slab structure, The device is based on band-edge
resonance, and plural band edges are present at the cotresponding band
edge point. For these band edges, we calculate the mode profile in the PC
slab, far field pattern (FFP) and polarization mode of the surface-emitted
component, and photon lifetime. FFPs are shown to he influenced by the
finiteness of the structure. Quality (Q) factor, which is a dimensionless
quantity representing photon lifetime, is introduced. The out-plare radia-
tion loss in the direction normal io the PC plane greatly influences the total
@ factor of resonant mode_and is closely related with the band structure,
As a result, 3 factors clearly differ among these band edges. These results
suggest that these band edges include resonant modes that are‘easy to lase
and resonant modes that are difficuit to lase.

key words: photonic crystal, semiconductor surface-emitting laser, finite-
difference time-domain sinndation, far field paitern, quality Jfactor

I. Imtroduction

Light waves in a material having a periodic refractive index
change exhibit either a unique dispersion relation or a band
structure similar to an electron wave. inside a solid-state
crystal. Such a band structure is called a photonic band, and
anew optical material exhibiting this propeity, called a pho-
tonic erystai (PC), can arbitrarily control light propagation
and/or emission and has attracted much attention in recent
“ years [1]-{5]. Unique devices that have been reported ‘are
based on various engineering techniques, such as defect en-
gineering, band-edge engineering, and band engineering [6].
Among these, band-edge engineering can be utilized to re-
alize a unique semiconductor laser. Standing waves formed
at each band edge of the photonic band structure are used
as laser cavities [7]-[13]. In previous studies, we reported
a surface-emitting laser having a two-dimensional (2D} PC
and demonstrated the coherent lasing action. A single lon-
gitudinal and/or lateral mode oscillation was successfully
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achieved over a large area [7], [8]. We also demonsirated
polarization mode control in a 2D square-lattice PC laser
by controlling the geomietry of the unit cell structure {9,
[10]. In these studies we used the above-mentioned band
edge for formation of the standing wave and thus the 2D
cavity mode. Among the band edges in the band structure,
we utifize the folded (second order) T point toward the I'-X
direction (F2 point). This band edge induces not only in-
plane optical coupling, but also diffraction in fthe direction
normal to the PC surface. As a result, the device fanetions
as a surface-emitting laser. In the case of the S(uare-jattice
PC discussed in this paper, four band edges are present at
the band edge of the I'2 point. However, whether these four
band edges differ in resonant mode characteristics, such as
profiles and polarization of a surfaééiemitdng component
and photon lifetime, remains.unclear. '

In this paper, we report characteristics of resonant
modes at band edges of the [2 point in a PC of finite size.
We use the finite-difference time-domain (FDTD) method
to calculate the mode profile, far field pattern (FFP), polar-
ization mode, and photon lifetime. The FDTD method is
a widely used numerical technique for solving Maxwell’s
equations [14], [15]. It can determine optical phenomena in
a complex photonic structure such as a PC. In Sect. 2, we
describe the calculation method for the resonant mode in
the 2D PC. In Sect. 3, we describe the calculation results
of resonant mode in detail. We show the band structure,
mode profile, FFP, and polarization of the surface-emitied
component. Next, quality (Q) factor, which'is a dimension-
less quantity representing photon lifetime, is introduced. We
show that the out-plane radiation loss in the direction nor-
mal to the PC plane greatly influences the total Q factor in
the case of the resonant mode at the I'2 point and that it is
closely related to the band structure. As a result, O factors
are proven to diifer depending on band edges of the "2 point.

2. . Caleulation Model and Method ~

In this section, we explain the calculation method. We con-
sider the 2D square-lattice PC slab, having a circular unit
cell structure. Figure 1 shows the model used for the 3D
FDTD calculation, The 2D PC is formed in a dielectric slab
having a dielectric constant &, of 11.5 and a thickness of
0.24 pm (or 0.6a, where g is the lattice constant.), contain-

. ing circular air rods (g; = 1). The air rods are arranged in
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Fig.1 Schematic of 3D-FDTD calculations. 2D photonic crystal slab
consists of two dielectric materials: a background (g5 = 11.5) and circular
rods (g, = 1). Slab thickness is 0.6a. The area fraction occupied by the air
rod is 0.2 per unit cell. The cladding Iayers above and befow the slab are
air. N is the number of air rods in the T-X direction, and total aumber of air

tods in the caleulation region is N2, :

a square region as shown in Fig. 1. The area fraction occu-
pied by the air rod is 0.2 per unit cell. The cladding layers
above and below the slab are air. Mur’s second-order ab-
sorbing boundary condifion is employed. In order to es-
timate the resonant frequency at the corresponding band
edge, the photonic band structure is also calculated by the
3D-FDTD method. For this calculation, Bloch’s and Mur’s
second-order absorbing boundary conditions are emploved
for the horizontal and vertical boundary conditions, respec-
tively. The parameters used in the FDTD calculation are
Ax = Ay = Az = 1/10a, and Ar = 0.5Ax/c, where ¢ is the
speed of light in a vacuum. . BT
First, we calculate the band structure and estimate the
I'2 band edge frequency for a structuie of infinite size. We
also calculate the electromagnetic field at the band edge.
Next, electromagnetic fields of a PC slab structure of fi-
nite size are excited by the resonant frequency of each band
edge obtained by band calculation at the center of the 2D
PC slab. The excited dipole has a Gaussian pulse of a rela-
tively wide frequency bandwidth. In view that the resonant
mode is almost a Bloch wave even in the case of a structure
-of finite size, the excited dipoles are placed periodically at
antinodes according to the electromagnetic pattern of each
band edge calculated by 3D-FDTD calculation for infinite
size. We assume that the resonant mode at the band edges is
a transverse-electric (TE)-like mode, because the device is
supposed to lase in this mode. Next, the resonant frequency
is calculated by Fourier transform of the time-evolved field,
The resonant frequéncy calculated by this method differs
slightly from the resonant frequency of a structure of infi-
nite size. Therefore, we re-excite by the resonant frequency
obtained by calculation for the structure of finite size. Be-
cause the frequency separation among individual modes in
the band edges of I'2 point is small, the excitation Gaussian
pulse should have a narrow frequency bandwidth so as not
to excite other neighboring band edges. However, a Gaus-
sian pulse which has too narrow frequency bandwidth re-
sults in the Q factor of the structure being determined by the
excitation pulse width itself. We pay close attention to the
excitation pulse width. ~ S
Far Field Pattern (FFP) of the surface-emitting compo-
nent is observed in the plane parallel to the slab at a distance
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.- of 40a from the surface of the PC slab. FEP is calculated by
integrating the Poynting vector normal to the observational

plane within a proper time range. Polarization of the FFp is
evaluated by sampling the electric field at the observational
plane. Here, we note that the FFP calculated by this method
does not correspond to the FEP after lasing oscillation. In
view that the linewidth of the spectrum after lasing oscilla-
tion is muct more narrow than that determined by the cavity
mode considered here, the FFP calculated by this method
should be considered the FFP just before lasing oscillation.
Meanwhile, Near Field Pattern (NFP) may also be interest-
ing. However, NFP is difficult to define, because specifying
the emitting surface of light is impossible. When the center
of the slab is considered the emitting surface of light, the
Poynting vector has no vertical component in relation to the
slab, and therefore the profile cannot be calculated. ‘When
the surface of the slab is considered the emitting surface,
the vertical component of the Poynting vector can be cal-
culated. However, the evanescent component is dominant
in this region, and therefore the Poynting vector is not sen-

_sible. Considering the inverse Fourier transform of FFP the

NFP may be a good method. However, this requires detailed
discussion, and we will report it elsewhere,

Three different methods can be used to calculate O fac-
tor [16]. The first method is to determine Q factor from the
linewidth of the resonant spectrum; the second method is to
determine Q factor from the slopé of the exponential decay
of the stored energy vs. time relation, and the third method
is to calculate the power absorbed in the boundary and di-
vide the resutt by the energy stored in the structure. The first
method is not preferable, because when Q factor is high, it
requires a large number of time samples to calculate the Q

+ factor precisely. The second and third methods can be con-

sidered equivalent for our study. We use the second method
for calculating @ factor, but confirm that no discrepancy ex-
ists between  factor calculated by the second method and
O factor calculated by the third method. To separate the loss
of the guided mode in the PC slab and the out-plane radia-
tion loss in the direction normal to the PC plane, we decom-
pose the @ factor (D) into horizontal O factor (@;;) and
vertical Q factor (Q,) [17]. ‘

3. Calculation Results
3.1 Band Structure and Field Distribution

In this section, we show the characteristics of resonant mode

_ field distribution at the band edges. First, in Fig. 2 we show

the band diagram near the I'2 point calculated by the 3D-

FDTD method. Figure 2 shows that four bands (2nd, 3rd,

4th, and 5th Bands) exist, and that each band has a band
edge (I, IT, I, and IV) at the T point. Band edges III and IV
are doubly degenerate and the other two are non-degenerate.
The band structure calculated by the 3D-FDTD method is
the same as that calculated by the 2D plane-wave expansion
calcutation in our previous work, except for shifted frequen-

cies [9]. Next, we show the resonant field distributions of



388

T
Band Edge =1V

Frequency[c/a]
° & o
W L2 S
P
(73]
=
=
5
(=%
=
i &
/om
/
/&
;A
I BRI

e
L)
e cH

Loy o !

0.32£ —_
X — r M

-Fig.2  Detailed band structure of square lattice photonic crystal slab
around the I'2 point for the transverse-electric (TE)-like mode, as calcu-
lated by the 3D-FDTD method.

finite size PC near the I'2 point. Figure 3 shows the mag-
netic field distributions normal to the PC plane at the center
of the PC slab. The number of air rods in the I-X direction
(N) is 30. Figures 3(a)-and (b) show the ficld distributions of
band edges I and IF, respectively. Due to the degeneracy, the
field distributions of the band edges II[ and IV cannot be de-
termined concretely, and thus cannot.be shown in the figure.
The rectangular region shown by a thin dotted line indicates
the PC region. The insets of Fig. 3 are magnified field distri-
. butions near the center of the PC region, where thick black
circles indicate the locations and shapes of lattice points.
The field distributions indicated by the insets are consistent
with those calculated by 2D plane-wave expansion calcu-
Iation in our previous work, indicating that these resonant
field distributions are caused by band edge resonance. In
Fig. 3(a) magnetic field intensity decreases gradually toward
the area surrounding the photonic crystal, In contrast, a beat
"~ pattern appears in magnetic field intensity in Fig. 3(b). The
-phenomenon may be understood when, as shown in Fig. 4,
we show the wave number space (k-space) pattern of Fig. 3.
Figure 4 is obtained by thé Fourier transfarm of magnetic
field of the PC area in Fig. 3. Strictly speaking, the k-space
pattern should be obtained by the Fourier transform in both
the spatial and time domains. However, the resonant modes
of the band edges are considered to be almost standing wave
states, even in the case of a structure of finite size. There-
fore, the electromagnetic field is similar at every moment,
except the moment of node in the standing wave state. Thus,

we canconsider the Fourier transform of field distribution in .

real space at the moment to be the k-space pattern. In order
to obtain the k-space pattern precisely, attention should be
paid to the influence of the window function when Fourier
transformm is carried out. In this paper, since the PC is ar-
ranged in a square region, we can minimize the influence of
the window function. However, when the sarnpling number
of area is not an integer power of 2, the k-space pattern is
influenced by the window function when the Fast Fourier
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Fig.3  Magnetic field distributions normal to the photonic erystal plane
at the center of the photonic crystal siab. The number of air rods in the [-X
direction (N) is 30. Figures 3(a) and (b) show the field distributions of band
edges I and I, respectively. '

Transform (FFT) is employed. Thus, in this work, we em-
ploy the Discreet Fourier Transform (DFT) in order to ob-
tain the k-space pattern. The thin square dotted line in Fig.4
represents the first Brillouin zone. The k-space pattern of
resonant mode of the band edge I, as shown in Fig. 4(a}, in-
dicates that the wave number spreads in a certain regioi,
but high intensity is present only around the T’ point. This
is caused by finiteness of the structure; the wave number is
not fixed securely at the I point and it spreads in a certain
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0 " . F
(b)
Fig.4  The wave number space (k-space) patterns of Fig. 3. Figures 4(a)
and (b} show the k-space pattern of the band edges [ and II, respectively.
The figures are obtained by the Fourier transform of magnetic field of the

photonic crystal area shown in Fig 3. The thin square dotted lme in Fig. 4
represents the first Brillonin zone. :

region around the T" point. Meanwhile, the spread range of
wave number in Fig. 4(b), which shows the k-space pattein
of band edge 1l, is wider than that in Fig. 4(a). As indicated
by the white arrow in Fig. 4(b), weak intensity spots other
than the I" points are present. The weak intensity spots are
located a short distance from the I" point in the I'-X direc-

tion, and this is the reason for the beat pattern in magnetic -

field intensity seen in Fig. 3(b). These results can be under-
stood from the shape of the band around the T2 point. In
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Fig.5 (a) (b) Far field patterns (FFPs) of surface-emitted component of
band edges I and II; respectively. Annular profiles having dark centers are
obtained. :

Fig. 2, the shape of the band around band edge I is upwardly
convex, but that around band edge II is more complicated.
The band toward the I'-X direction around band edge 11 is
flatter than that around band edge 1. More specifically, in the
[-X direction the frequency decreases and then increases.
Hence, in the case of band edge II, the spread range of wave
number becomes large, and the weak intensity spot shown
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in Fig. 4(b) is the wave number that has the same energy at

- band edge IT but a different wave number than at the T poiit. -

- This wave number also influences the FFP of band edge IL.
Figures 5(a) and (b) show the FEP of band edges I and II,
respectively. In Fig.5 the white arrows indicate the local
clectric field; that is, the polarization direction of the FEP,
Both the FFP of band edge I and that of band edge II show

annular profiles. Here we note that the unit cell structure is -

circular, and the FFP of elliptical unit cell structure will be
reported elsewhere. The reason for the annular profile is as
follows. In a PC of infinite size, the eigen modes of band
edges-I and 1I do not couple to free space normal to the PC
plane, because of symmetry mismatch [18], [19]. However,
in a PC of finite size, wave number cannot be fixed securely
to the I point, and spreads around the T point as shown in
Fig.4. In this case, the wave number shifted from T point
can be coupled to free space, but the diffractive direction is
slightly offset from the direction normal to the PC plane. As
a result, we obtain an annular profile whose center is dark
as shown in Fig. 5. The wave number exists discontinuously
around the I"goint in the rescnant mode of band edge IT and
the diffractive direction is complicated, resulting in the com-
plicated FFP as shown in Fig. 5(b). This result influences the
Q factor, as we will explain in the next section,

3.2 Quality Factors of Resonant Made

First, Fig. 6 shows ( factors (Quz) of Band édges T and 11
plotted against N. Qo generally increases with N. How-
ever, the @ factor of band edge T is always larger than that
of band edge II. A high O factor as large as 5000 has been
achieved for band edge I when N is 50. Meanwhile, for
a given value of N, O of band edge 1T is half Oy of
band edge I. In Fig. 2, the band around band edge L is flatter
than that around band edge I. A flatter band edge is gener-
ally considered to have lower group velocity, and ( factor

increases with decreasing group velocity. Hence, one may
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Fig.6. Quality factor as a function of the number of air rods in the T-X
direction for band edges I and II. @ factors generally increase with N. For
a given value of N, the O factor of band edge Tis always larger than that of
band edge IT,
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" consider that a discrepancy exists between the calculated
. -factor as shown in Fig, 6 and group velocity assumed from
* band structure. This phenomenon can be understood whey

we decompese Qg into @ and O, . Figure 7 shows Q,
and @, of Band edges I and II plotted against N. In the
case of band edge I shown in Fig. 7(a), 0, is always larger
than Q. In contrast, in the case of band edge II shown
in Fig. 7(b), Oy, is always larger than Q.. However, the
difference between band edges I and 1T in Q7 is not very
large. This is caused by the wave number spread around
the T" point when the structure is of finite size. As previ-
ously mentioned, wave number of band edge II spreads (o
a much greater extent than does that of band edge 1. This is
because band edge II is flatter than band edge I If the wave .
number is fixed to the [ point, no diffraction occurs normal
to the PC plane, making Q, infinite. When the wave num-
ber is shifted from the I point, diffraction occurs nermal to
the PC plane, decreasing @,. When the wave number is
shifted much further from the I" point, the normal direction
component of diffraction decreases, thereby increasing (.
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Fig.7  (a) (b) Horizontal Q factor (/) and vertical (0 factor (Q, ) us a
function of the number of air rods in the I-X direction for band edges [ and
I, respectively. ; and (3, represent the out-plane radiation loss in the
direction_normal to the photonic crystal plane and Q) loss of guided mode
in the photonic crystal slab, respectively.
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Fig.8 @ facter of infinite size photonic crystal siab around the I'2 point.
Q-factor is infinity at the T" point for band edge I and band edge II, but O
factors of band edges Il and TV are very small.
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Fig.9  Total O factor (Q), horizontal Q factor (@), and vertical Q
factor (@) as a function of the number of air rods in the T-X direction for
band edges II and IV, y,..; is less than one-tenth Qo1 of band edge I or
IR

Thus, when the shape of band edge is flat, as in the case of
band edge II, the spread range of wave number, which corre-
sponds to the linewidth of the resonant spectrum determined
by Qromal, becomes wide, and the resonant mode of the band
edge become leaky. As a result, 0, decreases and Qrotal de-
creases accordingly. In order to confirm this, Fig, 8 shows
Oy of an PC slab of infinite size around the T2 point. The
total Q factor of infinite size is determined from the slope
of the exponential decay of the stored energy in the infinjte
size structure discussed in Sect.2 vs. time relation. When
the structure size is infinite, Q;; become infinite and Qrop is
equal to 0, . As expected, oy 18 infinite at the I point for
band edge I and band edge IT, but decreases drastically when
the wave number is shifted from the T point. In contrast,
band edges Il and IV, which are essentially leaky [18],[19],

show very small Q factor. Therefore, when the structire is

of finite size, Qi of band edges I1I and IV are considered
to.}be small. Actually, as shown in Fig. 9, when we assume

391

N * .. the proper electromagnetic field distribution for band edges
I or TV and calculate the Qi of a finite size structure,

Ororat 1s confirmed to be less than one-tenth Orotal of band
edge I or II. Even in this case, however, the decrease rate of
Q) of band edge Il or IV is not very large in comparison
with that of band edges I and I1. Therefore Q, / may depend

on structure size rather than on the band structure.

Recently, we carried out FDTD calculation on our ac-
tual manufactured device. The actual device is formed by
an active layer sandwiched by p- and n-cladding layers [7]—
[9]. The PC is embedded in the clad layer near the active
layer. In this case, the difference in dielectric constant be-
comes smtall in comparison with the PC slab. The calcula-
tion results for the actual device suggest that the difference
in Q factor among the band edges become small in compari-
son with the PC slab. Furthermore the device characteristics
such as a FEP pattern will be modified when a phase shift is
introduced to the PC or when the unit cell structure is prop-
erly designed. We will report these point elsewhere.

4. Conclusion

We have employed the 3D-FDTD method to calculate the
mode profile in a PC slab, the surface-emitting components,
and () factors of the band edge resonant modes of a square-
lattice PC slab of finite size. By exciting properly for the
band structure, 3D-FDTD method is effective for analyzing
the resonant mode of a PC structure of finite size. Both the
FFP of band edge I and that of band edge Il show an annular
profile. This is because the wave number spreads in a certain
region around the I" point when the structure is of finite size.
‘The wave number equal to the T point cannot couple to the

- free space, but that shifted from the I” point can couple to the
_ free space. From another viewpoint, both the electric field

of the FFP of band edge I and that of band edge 11 show
a whorled shape, and the electric fields interfere with each
other at the center of the FFP, resulting in disappearance of
the electric field at the center of the FFP, thereby yielding an
anmilar profile whose center is dark.

We have also shown that 3D-FDTD is valid for calcu-
lation of Q factors of resonant mode. From the result of g
calculation, a high @ factor as large as 5000 for band edge

. I has been achieved in a structure whose numiber of air rods

in the I'-X direction (N) is 50. Meanwhile, for a given N
value, @ factors of band edges II and III are one-half and
one-fiftieth, respectively, the @ factor of band edge I. The
reason why the ¢ factor of band edge II is small is that the

_ spread range of wave number is wide, because of flatness of

the band. Shifting the wave number from the I point causes
decreases vertical @ factor {Q.), resulting in a decrease of
total ( factor. In contrast, the reason why the O factors of
band edges Il or IV are small is that the eigen mode of band
edge Il or [V is essentially leaky, because of mode symme-
try. These results suggest that the resonant mode of band

edge 1 is relatively easy to lase.

Our recent calculations for our actual manufactured de-
vice suggest that the difference in @ factor among the band
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edges become small in comparison with the PC slab. Tt has'
been also pointed out that by introducing the phase shift 107
the PC or by designing the unit cell structure properly, we

can modify or improve device characteristics.
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