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Abstract 

The effects of the time structure of the energy distribution in excimer laser pulse on melting and solidification of 
Si have been analyzed for pulses with the same FWHM but different tails at the fall time site. The numerical 
calculations using a nonequilibrium thermal model have shown a strong dependence of the melting threshold E t and 
melting time t m o n  the ratio of the energies distributed in the main peak and the tail. With decreasing ratio, E t 

increases and t m decreases, which is in a contradiction to the previous calculations, and a shift to the equilibrium 
conditions at the surface is predicted. 

I. Introduction 

Experimental  investigations of laser effects on 
materials in early 60's were qualitative due to the 
poor  reproducibility and beam quality. Later,  the 
development of Nd-based lasers in 70's which are 
inherently more  stable and deliver optically supe- 
rior beams brought  a bet ter  reproducibility of 
experiments and this trend continued in using 
excimer laser in 80's. Although the stability and 
homogeneity of  laser beams have been continu- 
ously improved, there are still observed fluctua- 
tions in the energy density, the duration time and 
the pulse shape depending on the working pa- 
rameters  of  the laser. These fluctuations are of- 
ten underest imated.  

In most experimental  works [1-7] pulse dura- 
tion using full width at half maximum (FWHM) 
values is repor ted without an exactly defined pulse 
shape and without being considered in fluctua- 

tions. Numerical analysis by Wood and Giles [8] 
for solid-state-laser pulse shapes showed that 
large variations in the pulse shape from rectangu- 
lar to Gaussian including various triangular 
shapes can alter the melt  front penetration. Anal- 
ogous calculation for excimer lasers [9,10] with 
trapezoidal shape and various pulse durations 
confirmed the significant influence of the pulse 
parameters  on the time evolution of the molten 
layer thickness and the value of energy density 
corresponding to the melting threshold. 

These analyses were performed as parametr ic  
studies only, with the primary aim to demonstrate  
how critical the fluctuations in laser pulse are for 
some phenomena  of the annealing process [8]. 

In this paper,  we analyze variations of the 
energy distribution in the time structure of an 
excimer laser pulse, XeC1 (308 nm), at F W H M  
approximately constant. Experimentally mea- 
sured pulse shape rise time and fall time are used 
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as input parameters in our mathematical model 
of laser-induced nonequilibrium phase changes of 
Si(100) [11,12]. The consequences of variations of 
the pulse parameters for basic characteristics of 
the laser-induced melting and solidification are 
calculated. 

2. Experimental 

In our experiments we used the experimental 
setup described in Ref. [1]. Samples cut from 0.35 
mm thick wafers of the Czochralski-grown, p-type 
Si(100) single crystals (5-12 llcm), were irradi- 
ated in a UHV chamber (the basic pressure lower 
than 10 -8 Pa) by the XeCI (308 nm) excimer 
laser LAMBDA LPX 250iC. The pulse shapes 
were analyzed depending on the working voltage 
ranging from 16 kV to 24 kV. The energy of the 
individual pulse was monitored by the Coherent 
Labmaster pyrometer equipped with the LM-P5 
measuring head. The time pulse structure of the 
excimer laser was detected with a Si-photodiode 
(rise time < 1 ns). Photodiode signals were am- 
plified by a short-range amplifier (10-100 MHz) 
and captured by the Phillips PM 3323 oscillo- 
graph and stored in a PC. 

Depending on the working voltage, three dif- 
ferent pulse structures were found. The charac- 
teristic energy distributions in pulses are shown 
in Fig. 1. 

As demonstrated in Fig. 1, the single triangu- 
lar or trapezoidal shape of the pulse with con- 
stant FWHM cannot be considered. For a model 
application, the real pulses were parametrised. 
The main parameters used for the pulse charac- 
terization are displayed in Fig. 2. The duration of 
a pulse is divided into the rise time (A), width of 
the plateau (B), fall time (C), and tail (D). The 
distribution of the energy density in a pulse is 
given by the ratio A~/A 2, where A 1 is the area 
of the peak and A 2 the area of the tail. The used 
parameters of the pulses are summarized in Table 
1. The most remarkable differences in laser pulse 
shape depending on applied voltage are laser 
pulse duration E and pulse and tail area (i.e. 
energy density) ratio A1/A 2 (see Fig. 2). As the 
"main" pulse duration (A + B + C), and conse- 
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Fig. 1. Temporal pulse shapes of XeC1 laser for various 
applied voltages. 

quently, also the FWHM value, varies nonsignifi- 
cantly, the only important variation of the pulse 
duration E - A + B + C + D is due to the changes 
in tail duration (D). 
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Fig. 2. Approximation of a real pulse for using in numerical 
analysis. 
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3. Mathematical  model 

For the theoretical simulations, the nonequi- 
librium thermal model of laser induced melting 
and solidification, which we have developed be- 
fore (see [11,12] for details), was used: 

OT O (  OT) 
-- K i + S ( x ,  t )  in PC i Ot Ox ~x ~'~i, i = l, s 

(1) 

-2--OT x=Z +-  K 0T[ P L Z ( t ) = K s o x  '-~x' ' (2) 
X Ix=Z- 

OT + 

~-x x=O = 0 ,  (3) 

T ( D ,  t)  : To, (4) 

T ( x ,  O) = T O , (5) 

where p is the density, c i is the specific heat, K i 
is the thermal conductivity, L is the latent heat, t 
time, x space variable, Z ( t )  is the location of the 
moving boundary between the solid and liquid 
phases, Z,(t) = d Z ( t ) / d t ,  12 i is the space subdo- 
main occupied by phase i, g2 l+g2 s = O ,  O = 
(0, D) .  D is the size of the spatial domain (thick- 
ness of the sample), indices 1 and s denote the 
liquid and the solid, respectively. The source term 
S(x,  t) in the Eq. (1) describes the energy absorp- 
tion of a laser pulse 

S ( x ,  t ) =  ( 1 - R ) a l o ( t  ) e x p ( - a x ) ,  (6) 

where R is the reflectivity, a the optical absorp- 
tion coefficient, Io(t) the pulse intensity profile. 

The interface response function following from 
the Jackson-Chalmers theory is chosen to ex- 

Table 1 
Influence of the applied voltage on the temporal  pulse shape 
of XeC1 laser 

U(kV)  A ( n s )  B ( n s )  C ( n s )  D ( n s )  E ( n s )  A 1 / A  2 

24 24 10 20 47 101 3.97 
22 24 10 21 44 99 3.70 
21 23 11 17 42 93 4.84 
20 21 9 23 33 86 6.13 
19 21 10 25 20 76 11.2 
18 21 10 22 20 73 10.0 
16 21 8 24 22 75 10.9 

press the dependence of the interface velocity on 
its temperature under nonequilibrium thermal 
conditions: 

Z (  Tz)  = f (  Tz)  = C, e x p ( - Q / k B T z )  

× ( 1 - e x p [ - L p [ ( 1 / T z )  

- ( 1 / T e q ) ] / k B ]  ) . ( 7 )  

Here, Q denotes the activation energy for self- 
diffusion in the liquid, Lp is the latent heat of 
fusion per particle and C 1 is a material constant. 
Then the interface temperature T z is not equal 
to Teq, hence the latent heat L in the Stefan 
condition (2) must depend on T z (to assure the 
conservation of energy): 

L ( T z )  = Leq + ( T  z - Teq)(C , - c s ) ,  (8) 

where Leq is the latent heat measured at the 
equilibrium phase transition temperature Teq. 

In the reflectivity calculation, we consider a 
system of two absorbing media 1-Si and c-Si each 
of them being optically homogeneous in the di- 
rections of y, z-axis, and in x-axis being charac- 
terised by a continuously changing complex per- 
mittivity function ~ = ~(x). The permeabilities /z 
of l-Si and c-Si are assumed to be constant and 
equal to the permeability of vacuum /x 0. Thus, 
the optical inhomogeneity is involved by tempera- 
ture dependence of the complex refraction index 
fi and by existence of the temperature gradient in 
x-direction in the sample. The system is assumed 
to border on two semi-infinite optically homoge- 
neous media by plane interfaces x = 0 and x = D, 
the interface between both inhomogeneous me- 
dia being also a plane x = Z(t) .  

In the numerical solution, we introduce Lan- 
dau's transformations 

x 
x ~ (0, Z ( t ) )  (9) 

Z ( t )  ' 
~ m 

and 

x - Z ( t )  

D - Z ( t ) '  
x ~ ( Z ( t ) ,  D)  (10) 

to convert the subdomains ~'~l, ~'~s into two fixed 
space intervals 0[,  0~. 
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Using Eqs. (9) and (10), Eqs. (1) and (2) are 
transformed into the form:  

pc,-h- z2a t  -ff 
+S(Z,  5, t) in 1 2 ~ = ( 0 , 1 )  (11) 

pCs -~ - ZD Z a~ ( D Z ) 2 0 ~  K~-~- 

+ S ( Z , ~ , t )  in 0 ~ = ( 0 , 1 )  (12) 

1 aT e=0 + 1 aT ¢=1-" PLeqZ(t) = D_zKs-~-  ~ z K , - ~  

(13) 

Then, the standard Galerkin-type finite-ele- 
ment procedure with both space and time dis- 
cretizafion results in a set of algebraic equations 
(see Ref. [11] for details) 

H (Z ,  Z ){T} ,+a  t = P ( Z ,  Z ) { T } t -  {U(Z, t)} 

- {B(Z ,  Z,)}, (14) 

where 

1 
H ( Z ,  Z )  = }H( Z ,  2 )  + ~ - P ( Z ) ,  (15) 

1 
P(Z, 2)  = ~-~-P(Z) - ½H(Z, Z) ,  (16) 

{U(Z, t)} = ½{U(Z, t)} t + }{U(Z, t)}t+a,, 
(17) 

At is the length of a time element, P(Z)  and 
H(Z, 2 )  are square matrices, column vectors {T}, 

{U(Z, t)] and {B(Z, Z,)} represent the tempera- 
ture field, source term and boundary conditions, 
respectively, {T} = ( T u , . . .  , Tl,n_l, Tsl . . . .  , Zsm )T 
Tin - T~I, n is the number of points in the liquid 
and m is the number of points in the solid. 

Conditions (2) and (7) that apply to the moving 
boundary, are treated in the following way: the 
Stefan condition (2) is involved in Eq. (14), hence 
{B(Z, Z,)} has the form 

{B(Z,  Z,)} = (0 . . . .  , 0 ,  pf(Tz)  [ Leq 
n - - 1  

+(Cs--C1)Zeq],O . . . . .  0)  T, (18) 

m - - 1  

where f (T  z) is the interface response function 
(7), the condition (7) becomes the convergence 
criterion of the iteration procedure which is de- 
signed as a successive approximation approach. 

4. N u m e r i c a l  r e s u l t s  a n d  d i s c u s s i o n  

A series of numerical calculations was per- 
formed to test the influence of varying pulse 
duration E and ratio A x / A  2 using the experi- 
mental data as input parameters in the model. In 
this analysis, Si(100) melting and solidification 
were studied. The thermodynamic and optical 
parameters of the crystalline and liquid Si were 
taken from [10,15-17] being considered as tem- 
perature dependent.  The initial sample tempera- 
ture was taken T O = 293 K. 

In the first part of our numerical simulations, 

Table 2 
Influence of the temporal pulse shape variations on the characteristic parameters of Si(100) melting and solidification 

A, JA2 t0 to tm 
(kV) (K) (ns) (ns) (ns) (nm) [ ] -~-  max [ ) ' ~  min 

(ms - 1) (ms - 1) 
24 3.97 1750 26.6 69.6 43.0 44.5 3.95 - 2.46 
22 3.70 1742 27.0 70.2 42.8 40.6 3.43 - 2.35 
21 4.84 1792 24.4 74.8 50.4 67.3 6.62 - 3.05 
20 6.13 1787 22.5 75.8 53.3 70.2 5.88 - 3.41 
19 11.2 1805 22.4 77.3 54.9 86.6 6.68 - 4.61 
18 10.0 1822 21.8 77.0 55.2 93.3 7.64 - 4.72 
16 10.9 1818 20.8 76.1 55.3 93.8 7.30 - 4.74 

- triangle 1910 20.7 76.6 55.9 144.8 11.0 - 5.87 
- trapezoid 1905 20.2 76.0 55.8 140.8 9.61 - 5.87 
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the following characteristic parameters were com- 
pared: the maximum surface temperature, T~,ma x, 
the time of melting onset, t o , the time of melting 
end ,  te, the melt duration, t m = t e - - t o ,  the maxi- 
mum thickness of the molten layer, Zmax, and the 
maximum and minimum velocities of the 
solid/liquid interface, ( d Z / d t ) m a x ,  ( d Z / d t ) m i  n. 
For all these computations, we used the value of 
energy density E = rio(t) d t =  1.0 J c m  -2.  

Numerical results summarized in Table 2 ex- 
hibit the qualitative behaviour reflecting the three 
groups of pulse shapes. Differences up to 52% in 
Zmax, 22% in tm, 4% in Ts,m~ x show that varia- 
tions in the ratio A 1 / A  2 due to the applied 
voltage cannot be neglected in any practical ap- 
plication. Two basic shapes of the pulse have also 
been considered: triangular (26 ns FWHM) and 
trapezoidal (31 ns FWHM) often used in previous 
calculations [8-12] (see Table 2). While the melt 
durations t m do not exhibit any significant differ- 
ences (< 1%) comparing the pulse with the high- 
est ratio A 1 / A  2 to the ideal triangular and trape- 
zoidal shapes, the maximum melt depths Zma x 
differ about approximately 35%. A comparison of 
results for triangular and trapezoidal pulses shows 
marked differences (about 12%) in (dZ/dt)ma , 
only, the differences in all other characteristic 
parameters being less than 3%. 

Time dependencies of the surface temperature 
T~, solid/liquid interface velocity, (dZ/dt), and 
solid/liquid interface position Z for the three 
groups of pulses represented by the different 
A1/A 2 ratios along with the triangular and 
trapezoidal pulses are shown in Figs. 3-5. The 
decreasing ratio A 1 / A  2 corresponding to the 
prolonged tail of the pulse causes a slower de- 
crease of surface temperature in the region t > 70 
ns, as shown in Fig. 3. Also, the (dZ(t)/dt) 
curves are apparently affected by the length of 
the tail, the maximum values of (dZ/dt) being 
shifted further in the time axis (see Fig. 5). Both 
melting and solidification processes get a more 
equilibrium character. 

Fig. 6 shows that a prolonged tail of the pulse 
which is characteristic for the lower ratios A 1 / A  2 
always results in a shorter melt duration t m and a 
higher value of melting threshold E t when com- 
pared to ideal pulse of the same energy density 
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Fig. 3. Surface temperature  for various temporal pulse shapes. 

[e.g., the values of E t for a triangular pulse 
( A 1 / A 2 - - * o o )  and for a "tailed" pulse with 
A1/A 2 = 4 differ by approximately 25% and t m 
up to 50%]. This is in a contradiction with theo- 
retical calculations of Wood and Jellison [9] re- 
porting that "melt duration is greatly prolonged 
by a long tail of the pulse". The calculations were 
repeated using equilibrium thermal model of 
laser-induced melting and solidification (see Refs. 
[8,9], for details) which was used for the theoreti- 
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explained by this way. Therefore, we can con- 
clude that there might be some mistake in calcu- 
lations by Wood and Jellison in Ref. [9]. 

5. Conclusions 

To summarize our numerical simulations, the 
results show that the FWHM value is not a con- 
venient parameter to characterize an excimer 
laser pulse. To obtain the correct thermodynami- 
cal parameters of irradiated surface from TRR 
curves by matching the experimental data with 
the theoretical model, which is the only reliable 
method (see Refs. [11,12]), it is necessary to con- 
sider the detailed time structure of the energy 
distribution in the laser pulse. 

cal work in Ref. [9]. Differences up to 5% be- 
tween the equilibrium and the nonequilibrium 
models have been found and there is nonsubstan- 
tional deviation in the course of trn = tin(E). The 
contradiction between our results and the compu- 
tational results from Ref. [9] cannot be simply 
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