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Raman fiber lasers (RFLs) have been widely utilized in 
long-haul optical transmission systems as pump sources 
for distributed Raman amplification (DRA) to increase 
transmission distance and capacity. However, RFLs with 
relatively large temporal intensity fluctuations would 
deteriorate signal quality due to the transfer of relative 
intensity noise (RIN). In this letter, a low-noise high-
order RFL common-cavity pumped by an ytterbium-
doped random fiber laser (YRFL) is proposed and 
demonstrated, for the first time. Stable 4th-order random 
Raman lasing operating at 1365 nm is generated with 8.9 
W of output power, without use of a multi-stage master 
oscillation power amplification (MOPA) system. Thanks 
to the YRFL common-cavity pumping where a wavelength 
division multiplexer (WDM)-assisted fiber-loop mirror is 
used to generate stable 1090 nm ytterbium-doped 
random lasing and cascaded random Raman lasing 
simultaneously, the RIN of the 1365 nm RFL is 
suppressed as low as -120 dB/Hz without any peak over 
0-100 MHz span. Furthermore, the output power and 
lasing wavelength of this RFL can be flexibly tuned by 
adjusting LD pump power, high reflectivity fiber Bragg 
grating (HR FBG) center wavelength and single-mode 
fiber (SMF) length. Hence, such a low-noise high-order 
RFL paves a way for development of novel tunable RFLs 
with stable temporal output, leading to potential 
replacement of conventional RFLs for DRA in long-haul 
optical transmission systems to achieve better 
performances. © 2020 Optical Society of America 

http://dx.doi.org/10.1364/OL.99.099999 

In recent years, long-haul unrepeatered optical transmission technologies have been widely used in the fields of optical fiber communication and sensing, such as submarine communication, 

island connection and border security, et al [1-3]. To achieve hundreds of kilometers point-to-point transmission without any in-line repeaters, high-quality optical amplification is essential. Compared with lumped amplifiers, such as erbium-doped fiber amplifiers, DRA technology has become a key solution in long-haul unrepeatered systems with obvious advantages in terms of noise figure, nonlinear damage and gain bandwidth, which has successfully enhanced optical signal-to-noise ratio and avoid or mitigate nonlinear effects in optical transmission systems for many years [4]. Raman fiber lasers (RFLs) with good wavelength agility and power scalability are preferred as pump sources of DRA. Besides conventional cavity-based RFLs, random Raman fiber laser (RRFL) based on distributed Rayleigh scattering and Raman gain in long passive fiber with no resonant cavity has been reported as a novel RFL in 2010 [5]. Due to their intrinsic modeless property and structural simplicity [6], random fiber lasers have attracted extensive attentions in the past decade, and have been used as a new platform for designing a series of new laser sources with low noise [7, 8], high power/efficiency [9, 10], ultrawide wavelength tunability [11, 12], low spatial coherence [13, 14] and good temporal stability [15, 16], respectively. With these unique features, RRFLs have already found important applications as pump sources for DRA of optical communication and sensing systems [17, 18], mid-infrared fiber lasers [19, 20], speckle free imaging [21, 22] and laser frequency doubling [23], et al. Compared to conventional RFLs with resonant cavities, RRFLs offer much better flexibility to realize laser emission in the wavelength region from 1.2 μm to 1.4 μm without needs of a series of fiber Bragg grating (FBG) pairs used to reflect the intermediate Stokes wavelengths [24]. In order to construct high-order RRFLs, ytterbium-doped fiber lasers (YFLs) formed by FBG pairs are normally acted as pump sources [25, 26]. However, the lasing output of this kind of high-order RRFLs suffers from relatively large temporal intensity fluctuations [25, 27], which is not favorable in DRA since the RIN transfer may seriously influence the signal quality in long-haul optical systems [25, 27-29]. 
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respectively. With increase in the LD pump power, the YRFL stimulates random Raman lasing in the SMF and the cascaded operation for random Raman lasing simultaneously. The center wavelengths of the 1st to 4th-order random Raman lasing are located at 1150 nm, 1210 nm, 1280 nm and 1365 nm, respectively. Figure 2(c) depicts -3 dB bandwidths of the 1090 nm YRFL and each order random Raman lasing measured with the same LD pump power to that in Fig. 2(a) and (b). The -3 dB bandwidth of the 1090 nm YRFL and the 1150nm, 1210 nm, 1280 nm and 1365 nm random Raman lasing are 0.62 nm, 0.91 nm, 1.84 nm, 4.95 nm and 6.98 nm, respectively.  The output power evolution of the 1090 nm YRFL and the 1st to 4th-order random Raman lasing versus the LD pump power is shown in Fig. 3. The 1090 nm YRFL pump output power increases linearly with the LD pump power in the initial stage. The threshold power of the LD pump for the 1150 nm, 1210 nm, 1280 nm, and 1365 nm random Raman lasing generation is measured as 3.63 W, 6.63 W, 13.75 W and 19.92 W, respectively. The random Raman lasing power grows nonlinearly after reaching the threshold, and the maximum output power increases with the Raman Stokes order. When the 1st-order random Raman lasing occurs, the 1090 nm YRFL pump power starts to deplete in the SMF. Then, the output power of the lower order random Raman lasing decreases with the similar behavior when the higher order random Raman lasing occurs. The highest output power of the 1365 nm random Raman lasing is 8.9 W at 27.73 W LD pump power, and the optical conversion efficiency from the 976 nm LD to the 1365 nm high-order RFL is ~32%. The maximum output power and conversion efficiency can be further improved by optimizing the length of the SMF and the reflectivity of the fiber-loop mirror [5].  

 Fig. 3.  Output power of the 1090 nm YRFL pump and 1st to 4th-order random Raman lasing versus LD pump power.  In our case, the 1090 nm YRFL is the direct pump for random Raman lasing generation. Since pump temporal dynamics will influence temporal stability of random Raman lasing, we measured the temporal performances of both the 1090 nm YRFL pump and the 1365 nm random Raman lasing. The temporal characteristics of the lasing output are measured by a photodetector (PD) with 400 MHz bandwidth and an oscilloscope with 1 GHz bandwidth. Figure 4(a) and blue line in Fig. 5(a) show the normalized time domain traces of the 1090 nm YRFL pump at 2.93 W LD pump power and the 1365 nm random Raman lasing at 27.73 W LD pump power in 50 ms span. It can be seen that both the 1090 nm YRFL pump and the 1365 nm random Raman lasing exhibit quasi-continuous wave output behavior with good 

temporal stability. The standard deviations versus mean values of the stable 1090 nm YRFL pump and the 1365 nm random Raman lasing are 3.6% and 4.41%, respectively. Meanwhile, the RIN of the 1090 nm YRFL pump at 2.93 W LD pump power and the 1365 nm random Raman lasing at 27.73 W LD pump power are also measured by employing an electrical spectrum analyzer. Since RIN transfer in Raman amplification mainly exists within tens of megahertz bandwidth, the RIN spectrum in this work is measured in a span of 0-100 MHz [32]. The results are shown in Fig. 4(b) and the blue line in Fig. 5(b). For the RIN spectrum measurements, the resolution bandwidth is set as 1 kHz. One can see that the radio frequency (RF) spectrum of the 1090 nm YRFL pump has the modeless feature. This means that the temporal intensity of the YRFL pump shows stochastic fluctuations without regular high contrast pulses caused by stationary mode beating in conventional cavity-based YFL [33]. Pumping by the modeless 1090 nm YRFL, the 1365 nm RRFL also inherits modeless spectrum property in frequency domain (see in the blue line of Fig. 5(b)). Moreover, the blue line in the insert of Fig. 5(b) shows that there is no longitudinal mode beating corresponding to 4.15 km SMF length, verifying that there is no resonance frequency in the YRFL pumped high-order RRFL proposed. The measured RIN value of the 1090 nm YRFL pump and the 1365 nm random Raman lasing are both ~-120 dB/Hz. Although the operation principle of such a low-noise RFL has been verified by experiment, further theoretical work still needs to be done to analyze the RIN of the YRFL and RRFL, and the RIN transfer properties from the YRFL to the cascaded RRFL [29, 34]. 

 Fig. 4.  (a) Time domain trace of the 1090 nm YRFL pump. (b) RIN of the 1090 nm YRFL pump.  

 Fig. 5.  (a) Time domain traces of the 1365 nm random Raman lasing and the commercial 1365 nm pump. (b) RIN of the 1365 nm random Raman lasing and commercial 1365 nm pump. Insert: Enlarged view in 



0-0.05MHz span. Blue line: 1365 nm random Raman lasing; Red line: commercial 1365 nm lasing. As comparison, we also measured the temporal stability of a commercial 1365 nm RFL (Keopsys KPS-CUS-BT-RFL-1366) with 5 W maximum output power. The commercial RFL is formed in a conventional cavity-based configuration pumped by YFL. As shown in the red line of Fig. 5(a), the intensity fluctuation in the commercial RFL is severe, as the measured standard deviation versus mean value is 13.5%. It can be seen from the red line of Fig. 5(b), there are periodical peaks with the RIN of -100 dB/Hz in RF spectrum of the commercial RFL, which is ~20 dB higher than the RIN of the RFL demonstrated in this work. These peaks corresponding to the cavity length of the YFL pump, confirming that the power fluctuation of the pump laser (YFL) is transferred directly to the Raman outputs through cascade Raman scattering process [23, 34]. The temporal dynamics of conventional YFLs commonly suffer from self-pulsing, self-mode locking and turbulence-like pulsing, resulting in relatively large intensity fluctuations [35, 36], which will deteriorate temporal stability of cascaded RFLs considerably. The red line in the insert of Fig. 5(b) shows the existence of longitudinal mode with ~21 kHz spacing, corresponding to the cavity length of the commercial RFL. We should note that for YFL-pumped RRFL, RIN transfer from YFL to high-order random Raman lasing still exists, and would cause poor temporal stability of high-order RRFL [23, 25, 27, 34].  In conclusion, a temporally stable high-order RFL with YRFL pumping is reported, for the first time. By employing a common-cavity with feedback from a WDM-assisted fiber-loop mirror, the generated 1090 nm ytterbium-doped random fiber lasing acts as the RFL pump. The 4th-order random Raman lasing at 1365 nm has been experimentally obtained with output power of 8.9 W. Moreover, with the modeless YRFL pump, the proposed high-order RFL shows peak-less feature with much better temporal stability where its RIN is measured as low as -120 dB/Hz. In contrast, the RIN spectrum of a commercial 1365 nm RFL pumped by a cavity-based YFL shows periodical peaks with RIN that is 20 dB higher than that of the 1365 nm RFL demonstrated in this work. Thus, such a type of novel low-noise high-order RFL, offering advantages of high-power, low-RIN, good-stability, excellent cost-effectivity, flexible tunability, et al, may become the best candidate as an ideal pump source for DRA applications in long-haul optical fiber communication and sensing systems.   
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