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Series Preface

This international series covers all aspects of theoretical and applied optics and optoelectronics. Active
since 1986, eminent authors have long been choosing to publish with this series, and it is now established
as a premier forum for high-impact monographs and textbooks. The editors are proud of the breadth and
depth showcased by the published works, with levels ranging from advanced undergraduate and graduate
student texts to professional references. Topics addressed are both cutting edge and fundamental, basic sci-
ence and applications-oriented, on subject matter that includes lasers, photonic devices, nonlinear optics,
interferometry, waves, crystals, optical materials, biomedical optics, optical tweezers, optical metrology,
solid-state lighting, nanophotonics, and silicon photonics. Readers of the series are students, scientists,
and engineers working in optics, optoelectronics, and related �elds in the industry.

Proposals for new volumes in the series may be directed to Lu Han, senior publishing editor at CRC
Press/Taylor & Francis Group (lu.han@taylorandfrancis.com).
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Preface

Optoelectronic devices have become ubiquitous in our daily lives. For example, light-emitting diodes
(LEDs) are used in almost all household appliances, in tra�c and streetlights, and in full-color displays.
Laser diodes, optical modulators, and photodetectors are key components of the Internet. Solar cells are
core elements of energy supply systems. Optoelectronic devices are typically based on nanoscale semicon-
ductor structures that utilize the interaction of electrons and photons. The underlying and highly complex
physical processes require mathematical models and numerical simulation for device design, analysis,
and performance optimization. This handbook gives an introduction to modern optoelectronic devices,
models, and simulation methods.

Driven by the expanding diversity of available and envisioned practical applications, mathematical mod-
els and numerical simulation so�ware for optoelectronic devices have experienced a rapid development in
recent years. In the past, advanced modeling and simulation was the domain of a few specialists using
proprietary so�ware in computational research groups. The increasing user-friendliness of commercial
so�ware now also opens the door for nontheoreticians and experimentalists to perform sophisticated
modeling and simulation tasks. However, the ever-growing variety and complexity of devices, materi-
als, physical mechanisms, theoretical models, and numerical techniques make it o�en di�cult to identify
the best approach to a given project or problem. This book presents an up-to-date review of optoelec-
tronic device models and numerical techniques. The handbook format is ideal for beginners but also gives
experienced researchers an opportunity to renew and broaden their knowledge in this expanding �eld.

Semiconductors are the key material of optoelectronic devices, as they enable propagation and interac-
tion of electrons and photons. The handbook starts with an overview of fundamental semiconductor device
models, which apply to almost all device types, followed by sections on novel materials and nanostructures.
The main part of the handbook is ordered by device type (LED, ampli�er, laser diode, photodetector, and
solar cell). For each device type, an introductory chapter is followed by chapters on specialized device
designs and applications, describing characteristic e�ects and models. Finally, novel device concepts and
applications are reviewed. At the end of the handbook, an overview of numerical techniques is provided,
both for electronic and photonic simulations.

I would like to thank the publisher for initiating this important handbook project and for giving me the
opportunity to serve as editor. Many years of organizing the annual international conference on Numerical
Simulation of Optoelectronic Devices (NUSOD) enabled me to attract a large number of experts from all
over the world to write handbook chapters on their research area. I sincerely thank all authors for their
valuable contributions.

Joachim Piprek
Newark, Delaware, USA
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Laser Diode
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Joachim Piprek

26.1 Introduction.........................................................................3
26.2 Optical Gain and Optical Loss ................................................3
26.3 Threshold Current and Slope E�ciency ...................................6
26.4 Temperature E�ects...............................................................7
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26.7 Basic Laser Cavity Designs ................................................... 12

26.1 Introduction

Semiconductor laser diodes are key components in optical �ber communication, data storage, sensing,
material processing, and other applications. They are based on sophisticated interactions of electrons and
photons in semiconductor nanostructures (see Chapter 3). Advanced theoretical models and simulation
tools are required for the development and analysis of future generations of laser diodes. The following
chapters describe some of these complex models in detail. This introductory chapter is aimed at readers
who are not yet familiar with basic models and parameters of semiconductor lasers. By exploring simple
analytical models, this chapter tries to develop an intuitive understanding of internal laser physics that will
help to digest the more complicated theory outlined in subsequent chapters. While these analytical models
are quite popular, they o�en have limits beyond which numerical simulations are required, as shown below.

Section 26.2 examines basic formulas for optical gain and optical losses in semiconductor lasers, fol-
lowed by the introduction of key performance parameters, threshold current, and slope e�ciency. As
practical applications o�en su�er from undesired self-heating of the laser, temperature e�ects are dis-
cussed in Section 26.4 and the resulting changes in laser e�ciency in Section 26.5. The rate equation model
for dynamic lasing processes is introduced in Section 26.6, including formulas for small signal analysis.
Section 26.7 brie�y reviews basic laser cavity designs.

26.2 Optical Gain and Optical Loss

Traveling through a semiconductor, a single photon with an energy close to the band gap is able to gener-
ate an identical second photon by stimulating the recombination of an electron–hole pair. This is the basic
physical mechanism of lasing. The second photon exhibits the same wavelength and the same phase as of
the �rst photon, doubling the amplitude of their monochromatic wave. Subsequent repetition of this pro-
cess leads to strong light ampli�cation. However, the competing process is the absorption of photons by the
generation of new electron–hole pairs (see Figure 26.1). Stimulated emission prevails when more electrons
are present at the higher energy level (conduction band) than at the lower energy level (valence band).

3
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FIGURE 26.1 Electron–hole recombination and generation mechanisms in semiconductors. (SRH, Shockley–Read–
Hall.)

This population inversion is one of the key requirements for lasing. Semiconductor lasers typically employ
pin junctions with a thin active layer of lower band gap (Figure 26.2). At forward bias, electrons and holes
are collected in the active layer to achieve inversion. Continuous current injection into the device leads
to a continuous stimulated emission of photons, but only if enough photons are constantly present in the
device to trigger this process. Thus, only part of all photons can be allowed to leave the laser diode as a las-
ing beam, the rest must be re�ected to remain inside the diode and to generate new photons (Figure 26.3).
This optical feedback and con�nement of photons in an optical resonator is the second basic requirement
of lasing.

The light ampli�cation in the active layer is described by the optical gain g(n, p,T, λ, S) as a function of
the density of electrons n and holes p inside the active layer, the optical wavelength λ (or photon energy),
the photon density S, and the temperature T. This gain function is the heart of laser physics, and a realistic
calculation may require sophisticated models (see Chapter 3 for details). We here brie�y discuss some pop-
ular analytical approximations. The linear gain approximation g(N) = a(N−Ntr) is o�en used, employing
the transparency density Ntr and assuming a �xed di�erential gain a= dg∕dN as well as identical densities
of electrons and holes (N = n= p). For N =Ntr, the absorption and gain are the same and the material is
transparent. The di�erential gain dg/dN is a key parameter for laser light modulation (which is discussed
Section 26.6). It can only be considered constant for small variations of the carrier density since dg/dN
is known to decline with increasing carrier densities (Figure 26.4). This is described by the more general
logarithmic function (Coldren and Corzine 1995)

g(N, S) =
go

1 + εS
ln
(

N + Ns
Ntr + Ns

)

(26.1)

The gain compression factor ε describes the gain saturation at high photon densities, e.g., due to carrier
depletion (go and Ns are �t parameters). All parameters in Equation 26.1 need to be extracted from
more fundamental gain models, as measurements are di�cult (Shtengel et al. 1998). However, the lack of
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experimental validation of the gain model creates a major uncertainty in any laser simulation. The analysis
of laser measurements typically only delivers the relationship gm(j) =Goln(j∕jtr) between the modal gain
gm =Γag and the current density j, with Go and the transparency current density jtr as �t parameters (see
Chapter 27). The optical con�nement factor Γa gives the overlap of the active layer and the lasing mode,
which is usually extracted from waveguide simulations (see Chapter 4).

Figure 26.4 indicates optical losses that are caused by photon emission from the laser as well as by
the internal absorption and photon scattering. For the simple Fabry–Pérot (FP) laser structure shown in
Figure 26.3, the optical loss at the two cavity mirrors is given by

αm = 1
2L

ln
(

1
RfRb

)

(26.2)

with the cavity length L and the re�ectances Rf and Rb of front and back mirrors, respectively. The internal
optical loss αi can be extracted from laser measurements (see Chapter 27) but the microscopic mechanisms
causing this loss are o�en hard to identify. They are typically approximated as

αi = αb +
∑

i
Γi
(

kn,in + kp,ip
)

(26.3)

with the background loss αb (e.g., due to photon scattering) and the sum over all free-carrier-related loss in
any individual layer i of the laser structure (where k is a free-carrier absorption parameter). The con�ne-
ment factor Γi is the ratio of the layer volume to the volume of the optical lasing mode. Photon absorption
by free carriers depends on the energy band structure of the conduction and valence bands. It is typically
stronger for holes due to intervalence band absorption (Piprek et al. 2000).

To reach the lasing threshold, the optical gain must compensate for the internal optical loss (αi) and for
photon emission from the device (αm). Both loss parameters apply to the whole lasing mode so that the
threshold gain gth is de�ned by

Γagth
(

Nth
)

= αm + αi (26.4)

with the active layer con�nement factor Γa and the threshold carrier density Nth (see Figure 26.4).

26.3 Threshold Current and Slope Efficiency

The threshold current Ith provides the threshold carrier density Nth and compensates for various carrier
loss mechanisms, some of which are illustrated in Figure 26.1. A spontaneous electron–hole recombination
is needed to provide initial photons for stimulated recombination (lasing), but most spontaneously emitted
photons are lost. In a common analytical approach, the spontaneous emission rate Rspon =BN2 is propor-
tional to the square of the carrier density. Nonradiative recombination mechanisms are either defect-related
Shockley–Read–Hall (SRH) recombinations (RSRH = AN) or Auger recombinations (RAug = CN3). The
former transfers the recombination energy to lattice vibrations (phonons) and the latter to other free
carriers. This simple but very popular ABC recombination model leads to the threshold current

Ith =
eVa
ηa

RABC(Nth) =
eVa
ηa

(

ANth + BN2
th + CN3

th
)

= ISRH + Ispon + IAug + Ileak (26.5)

with the injection e�ciency ηa giving the fraction of electrons that recombines within the active layer of
volume Va, thereby accounting for carriers that recombine outside the active layer, e.g., due to electron
leakage (see Figure 26.2). Leakage can occur by various mechanisms (Piprek et al. 2000). It is hard to asses
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FIGURE 26.5 Illustration of carrier density and lasing power as function of the injected current without self-heating.

with analytical models and typically requires full solutions of the semiconductor transport equations (see
Chapter 2). Simpler models o�en neglect leakage or use a �ctitious parameter ηa.

With a stronger current injection I > Ith, the carrier density remains constant at Nth as additional
electron–hole pairs are consumed by stimulated recombination (Figure 26.5). The stimulated recombina-
tion rate is Rstim = vggS (where vg is photon group velocity). Under ideal conditions without self-heating,
the laser power rises proportional to Istim = I − Ith as

P = ηd
hν
e
(

I − Ith
)

= ηi
αm

αm + αi

hν
e
(

I − Ith
)

(26.6)

with the photon energy hν. Note that P gives the total emission from both facets. The di�erential quantum
e�ciency ηd is the fraction of carriers injected above threshold that contributes photons to the laser beams.
It can be separated into internal di�erential e�ciency ηi and optical e�ciency ηopt. The latter is equal to
αm(αm + αi)−1 and gives the fraction of stimulated photons that leaves the laser. The internal di�erential
e�ciency ηi is o�en close to unity above threshold as there are no further recombination losses with con-
stant carrier density Nth in the active layer. However, the leakage current may rise above the threshold,
especially at higher temperatures (Piprek et al. 2000).

26.4 Temperature Effects

The current �ow through the laser diode as well as nonradiative recombination processes generate heat
inside the laser and elevate the internal temperature distribution T(x, y, z). This temperature rise more or
less a�ects all material parameters. One of the most fundamental changes occurs with the semiconductor
bandgap Eg(T), which is commonly modeled by the Varshni formula

Eg(T) = Eg(0) −
AT2

B + T
(26.7)

using the phenomenological parameters A and B (Piprek 2003). As the band gap shrinks, the lasing wave-
length increases (redshi�s). In addition, the Fermi distribution of carriers inside the energy bands broadens
with higher temperature. Both these e�ects change the gain spectrum. Figure 26.6 illustrates this change
for a �xed carrier density. The gain peak determines the emission wavelength of FP lasers, and it redshi�s
with higher temperature. But the gain peak also declines, so that more carriers are needed to maintain
the lasing threshold (cf. Figure 26.4). Consequently, the threshold current rises with higher temperature,
which is o�en described by the characteristic temperature T0 = (T2 − T1)∕ln(I2∕I1) that can be extracted
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FIGURE 26.6 Optical gain spectrum shi� with increasing temperature and constant carrier density.

from measurements of Ith(T). The decline of the slope e�ciency is calculated in a similar way. These phe-
nomenological parameters are useful in characterizing the temperature sensitivity of a given laser diode
(see Chapter 27). However, they don’t reveal the physical mechanism behind temperature e�ects and are
not suitable for predictive simulations. For instance, if the lasing wavelength is �xed by the optical cavity
design, the impact of the gain shi� very much depends on the initial di�erence between emission wave-
length and gain peak wavelength (gain o�set). An example is illustrated in Figure 26.6 (Piprek et al. 1998).
Here, the rising temperature �rst increases the gain available at the emission wavelength. The threshold
current initially declines and reaches a minimum near 60°C when the gain o�set is zero. With further
heating, the threshold current rises rapidly. Thus, T0 depends on the temperature in this case and fails
even as a descriptive parameter.

More advanced laser models don’t employ �t parameters such asT0 and describe the underlying physical
mechanisms instead, starting with the shi� of the gain spectrum (Piprek et al. 2000). An increasing carrier
density in the active layer goes hand in hand with increasing carrier losses. For instance, the Auger recom-
bination rate is not a�ected only by the increasing carrier density, but also by the temperature sensitivity
of the Auger process, which depends on its activation energy Ea: C(T) ∝ exp(−Ea∕kT). Carrier leakage
is also sensitive to temperature changes, and it may raise the threshold current and reduce the slope e�-
ciency. The slope e�ciency also depends on the free-carrier absorption, which increases with the carrier
density. All these interdependencies require advanced numerical laser models for a more reliable analysis
of the temperature sensitivity (see Chapter 27).

26.5 Efficiency Analysis

As an illustrative example for this section, Figure 26.7 shows the simulated power–current and bias–current
characteristics of a GaN-based laser diode in continuous-wave (CW) operation (Piprek 2016). Self-heating
apparently causes a decline of the slope e�ciency, which limits the maximum power achievable. Another
key performance parameter is the power conversion e�ciency ηPCE. It is de�ned as the ratio of light output
power P to electrical input power IV (where V is bias). It can be separated into electrical e�ciency ηele =
hν/eV and external quantum e�ciency ηEQE. The latter is the ratio of emitted photon number to injected
number of electron–hole pairs. Equation 26.6 leads to the following power conversion e�ciency formula:

ηPCE(I) =
hν
eV
ηi

αm
αm + αi

I − Ith
I

= ηeleηEQE = ηeleηsηth (26.8)
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FIGURE 26.7 Lasing power and bias versus current. The dashed bias line indicates the photon energy. The dashed
power lines indicate the change in threshold current for constant slope e�ciency.

including the unitless slope e�ciency ηs and the threshold current e�ciency ηth = (I− Ith)∕I. Note that ηs
is di�erent from the di�erential slope e�ciency dP/dI and from the averaged slope e�ciency P∕(I − Ith),
which are both given in W/A and not used here. However, this popular analytical model is somewhat
ambiguous when the laser experiences relevant self-heating, which causes a sublinear P(I) characteristic
as shown in Figure 26.7. Most parameters in Equation 26.8 change as the internal laser temperature rises
with increasing current. The threshold current rises together with the threshold carrier density due to
declining material gain. The slope e�ciency declines due to increasing carrier leakage and/or rising internal
absorption.

Figure 26.8 illustrates these e�ciencies as simulated for an InGaN/GaN laser diode (Piprek 2016). At
low current, ηPCE is mainly limited by the threshold current e�ciency (which is zero for I <Ith). At high
current, the strongest e�ciency limitation is caused by the decline of the electrical e�ciency due to the
increasing excess bias above the minimum required bias hν∕e (dashed bias line shown in Figure 26.7).
This excess bias is relatively high in GaN-based lasers, partially due to the low hole conductivity. However,
the in�uence of slope e�ciency and threshold e�ciency depends on the assumption made in the analysis.
The assumption of a constant, temperature-insensitive threshold current leads to the solid curves shown in
Figure 26.8, so that temperature e�ects are mainly re�ected by the slope e�ciency. This is a convenient and
common approach to extract e�ciency plots directly from the measured PI and VI characteristics, without
any simulation (Crump et al. 2013). However, with strong self-heating, the dependence on Ith(T) needs
to be considered, which is hard to extract directly from experimental results. Numerical simulations are
indicated by the dashed lines in Figure 26.8, which reveal that the threshold e�ciency is more temperature
sensitive than the slope e�ciency (Piprek 2016). For constant, temperature-insensitive slope e�ciency, an
approximate method of extracting Ith(I) directly from measurements is illustrated by the dashed power
lines shown in Figure 26.7. Starting with the measured slope dP/dI at threshold, the dashed line is shi�ed
parallel to the current axis so that each power P(I) is connected to a threshold current Ith(I).

26.6 Rate Equation Analysis

Time-dependent e�ects are o�en analyzed in terms of rate equations considering all physical processes
that change the densities of photons and carriers. We here discuss a set of two rate equations for the
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single-mode photon density S averaged over the modal volume Vm and the carrier density N averaged
over the active volume Va:

dN
dt

=
ηaI
eVa

−
[

AN + BN2 + CN3] − vgg (N, S) S (26.9)

dS
dt
= Γavgg (N, S) S + βΓaBN2 − vg

[

αi + αm
]

S (26.10)

The active layer carrier densityN(t) in Equation 26.9 is increased by current injection (�rst term, includ-
ing the injection e�ciency ηa) and is reduced by all four recombination processes (see Figure 26.1) that
limit the carrier lifetime. The photon density S(t) in Equation 26.10 is increased by stimulated emission
(�rst term) and by the small fraction β of spontaneously emitted photons that enters the lasing mode (sec-
ond term). S(t) is reduced by photon emission and internal photon losses (third term in Equation 26.10),
which limit the photon lifetime τp de�ned by τ−1

p = vg(αi + αm). The dynamic response of both densities
can be understood from these rate equations. For instance, when N(t) increases, S(t) increases due to the
rising gain g(N). But that decreases the carrier density according to the last term in Equation 26.9. N(t)
is also reduced by ABC recombination. Consequently, the photon density S(t) drops again, also due to
photon losses. Thus, the dynamic behavior of both densities is strongly in�uenced by loss mechanisms.

However, this approach neglects the nonuniform distribution of carriers and photons (Carroll et al.
1998). A nonuniform distribution of photons can result in spatial hole burning into the carrier distribu-
tion in regions with high photon density, reduce the gain, and increase the refractive index (see Chapter
27). Multiple optical modes would require multiple rate equations for calculating each photon density
(Petermann 1988). Lateral di�usion of carriers out of the active layer is partially considered by the injection
e�ciency ηa and is o�en minimized by lateral carrier con�nement.

Under steady-state conditions (dS∕dt= 0) with vanishing β, Equation 26.10 gives the relation
Γag(N, S) = αi(N) + αm describing the balance of gain and losses required for lasing (see Figure 26.4).
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The �rst equation dN/dt = 0 then yields the steady-state photon density So = ηiτp(I − Ith)(eVm)−1. The
steady-state optical power emitted through both mirrors is given by Po = vgαmhνVmSo in agreement with
Equation 26.6.

With analog modulation, sinusoidal variations are added to the steady-state input current Io. In the
simple case of just one angular frequency ω = 2πf and constant amplitude ΔI, the injection current in
Equation 26.9 becomes I(t) = Io + ΔI × sin(ωt). If the period of the modulation is much larger than any
time constant, the output power still follows the steady-state solution (Equation 26.6). But in the general
dynamic case, analytical solutions of the rate equations cannot be found and numerical methods need to
be applied.

Current modulationsΔI well below (Io−Ith) lead to variationsΔN,ΔS, andΔP, which are much smaller
than the steady-state values Nth, So, and Po, respectively. This small signal case allows the rate equations
to be solved analytically (Coldren and Corzine 1995) using the linear gain approximation illustrated in
Figure 26.4. Assuming β = 0, the small signal solution to the rate equations is

ΔP(ω) = M(ω) × ΔP =
ω2

r
ω2

r − ω2 + iωγ
× ηi

αm
αi + αm

hν
e
ΔI (26.11)

with the angular electron–photon resonance frequency ωr = 2πfr given by

ω2
r =

avgSo

τp
(

1 + εSo
)

(

1 + ε
vgaτc

)

(26.12)

including the photon lifetime τp and the gain compression factor ε from Equation 26.1. At low photon
densities (ε = 0), Equation 26.12 is reduced to ω2

r = (τstτp)−1 with the di�erential stimulated emission
time τst = dRstim∕dN = (avgSo)−1. The damping constant is given by γ = τ−1

st + τ−1
c including the

di�erential carrier lifetime τc, with τ−1
c = dRABC∕dN = A + 2BNth + 3CN2

th.
Figure 26.9 illustrates the normalized modulation response |M(ω)| as a function of modulation fre-

quency for di�erent gain compression factors ε (Piprek and Bowers 2002). At low frequencies, the photon
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density can easily follow the current modulation and the response function is quite �at. The response is
most intense near the resonance frequency ωr. The peak frequency is given by ω2

p = ω2
r − γ

2∕2. At even
faster current modulation, the photons cannot follow any more and the response function declines. The
modulation bandwidth fb is the frequency at which the response drops to |M(2πfb)| = 2−1∕2 = −3dB
(see Figure 26.9). The bandwidth rises with the steady-state current but saturates at high currents due to
increased damping, device heating, gain compression, transport e�ects, or parasitics (Kjebon et al. 1996).

26.7 Basic Laser Cavity Designs

Chapters 27 through 34 feature speci�c laser designs and applications in much more detail, we here only
give a brief overview of the main types of optical resonators. The most simple cavity design uses the re�ec-
tion at the two laser facets for optical feedback (FP laser, see Figures 26.3 and 26.10, and Chapter 27).
Constructive interference of forward and backward traveling optical waves is restricted to speci�c wave-
lengths. Those wavelengths constitute the longitudinal mode spectrum of the laser. The cavity length is
typically on the order of several hundred microns, much larger than the lasing wavelength, so that many
longitudinal modes may exist. The actual lasing modes are those receiving strong optical gain. Single-mode
lasing is hard to achieve in simple FP structures, especially under modulation. Dynamic single-mode oper-
ation is required in many applications and is achieved using optical cavities with selective re�ection. The
distributed feedback (DFB) laser is widely used in single-mode �ber optic applications (Figure 26.10).
Typical DFB lasers exhibit a periodic longitudinal variation of the refractive index within one layer of the
edge-emitting waveguide structure. This index variation provides continuous (distributed) re�ection at a
wavelength given by the variation period. Facet re�ection is not needed in DFB lasers; however, facet coat-
ing may be used to increase the light emission from one end of the cavity. Other laser resonators terminate
the optical cavity by two distributed Bragg re�ectors (DBRs) with a stepwise alternating index. More details
on DFB and DBR lasers are given in Chapters 30 and 31.

A special type of DBR laser is the vertical-cavity surface-emitting laser (VCSEL) which emits light
through the bottom and/or top surface of the layered structure (see Figure 26.10 and Chapters 34 and 45).
The light travels perpendicular to the active layer and receives optical gain only over a very short travel
distance. Thus, many more photon roundtrips and highly re�ective VCSEL mirrors with more than 99%
re�ectivity are needed for lasing.

In transversal directions, the optical wave is typically con�ned by the refractive index pro�le, using a
ridge (DFB laser) or a pillar (VCSEL) to form the waveguide. Even with restriction to one longitudinal
mode, multiple transversal optical modes may occur in all three types of lasers.

FP laser

Reflection only at facets Distributed reflection by periodic index variations

DFB laser VCSEL 

FIGURE26.10 Illustration of basic laser cavity designs. [DFB, distributed feedback; FP, Fabry–Pérot; VCSEL, vertical-
cavity surface-emitting laser. (Adapted from Piprek, J., In S. S. Sun and L. R. Dalton [eds.], Introduction to Organic
Electronic and Optoelectronic Materials and Devices, Boca Raton, FL: CRC Press, 2008.)]
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27.1 Introduction

High-power diode lasers deliver the energy to all high-performance laser systems, either as a pump source
or as a source for direct material processing. Comprehensive descriptions of their manufacturing and
applications can be found in, for example, References [1–4].

The lasers are constructed like all edge-emitting diode lasers as shown in Figure 27.1. The layer structure
grown by metal-organic vapor phase epitaxy (MOVPE) or molecular beam epitaxy (MBE) on a crystalline
substrate (e.g., GaAs, InP, GaN) consists basically of n-doped cladding and optical con�nement layers,
an active region (typically a single quantum well [QW]) and p-doped optical con�nement and cladding
layers and is completed by a highly p-doped cap (contact) layer. However, there are three peculiarities
compared to other lasers: �rst, the vertical waveguide is weak (large total thickness of con�nement layers
or small index step between con�nement and cladding lasers). Second, the emitting aperture is very broad,
ranging from tens to hundreds of micrometers, which results in a nonstationary behavior [5,6]. Third, the
cavity between the cleaved facets is very long, reaching values of several millimeters and the two facets are
extremely di�erently coated.

The lateral optical and current con�nement can be achieved by several means. In the most simple case,
there is no built-in waveguide at all so that the optical �eld is con�ned to the region below the contact

15
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FIGURE 27.1 Schematic view of a high-power broad-area semiconductor laser.

stripe by gain guiding at low power and under pulsed operation, but is strongly in�uenced by the thermally
induced waveguide created under continuous-wave (CW) operation at high power. In order to restrict the
current spreading, the electrical conductivity of parts of the p-doped region besides the contact stripe can
be reduced by ion implantation, impurity di�usion, or by implementation of a reverse-biased p-n junction.
If the semiconductor besides the p-contact is etched away up to a de�ned depth and subsequently �lled
with an insulator, the index contrast between the semiconductor below the contact stripe and the insulator
results in a lateral built-in index guide, which stabilizes the optical �eld at low power and under pulsed
operation, but increases the far-�eld divergence.

The cleaved facets located at z = 0 and z = L in Figure 27.1 are low re�ection coated on the front
side (R0 ∝ 0.01) and high re�ection coated on the rear side (RL > 0.9). If a small optical spectrum and a
reduced dri� of the wavelength with temperature and injection current are required, Bragg gratings could
be implemented into the cavity, resulting in distributed feedback (DFB) or distributed Bragg-re�ection
(DBR) lasers [7]. However, here we focus on the Fabry–Pérot (FP) type of high-power lasers where the
coated facets provide the feedback.

The simulation of broad-area lasers is challenging because of the di�erent temporal and spatial scales
involved. The timescales for the variations of the optical �eld, the carrier densities, and the temperature
are ps, ns, and μs, respectively. The spatial scales range from nanometers (active QW) and micrometers
(epitaxial layers and lateral waveguides) up to millimeters (cavity). Another di�culty arises from the highly
nonlinear behavior because of the coupling of the optical, electronic, and thermal phenomena. Therefore,
until now, no simulation tool covering all spatiotemporal scales and physical phenomena has been available.
In this chapter, we survey models with di�erent complexity for the simulation of high-power lasers [6].

This chapter is organized as follows. In Section 27.2, we present a model for high-power lasers based
on measurable parameters, which can be used to compare di�erent laser structures and to predict the
electro-optical characteristics as a function of cavity length and facet re�ectivities, for example. In Section
27.3, we investigate the pro�le of the optical power in the cavity in more detail and derive some of the
equations used in Section 27.2. Furthermore, we discuss several e�ects responsible for the saturation of the
output power with increasing injection current. The parabolic paraxial wave equation based on the slowly
varying amplitude and rotating wave approximations, taking into account gain dispersion, spontaneous
emission, and a third-order nonlinear susceptibility, is derived in Section 27.4. A balance equation for the
electromagnetic energy density will be given. In Section 27.5, we present the equations that can be used
to calculate the nonlinear lateral optical modes of broad-area lasers and discuss several root causes for the
multipeaked and not di�raction-limited lateral �eld pro�le of broad-area lasers. Finally, in Section 27.6, we
summarize a thermodynamic-based model for the transport of the charged carriers and the temperature
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�ow. Particular attention is paid to a consistent formulation with the model for the optical �eld presented in
Section 27.4.

27.2 Phenomenological Model

In this section, a model for high-power lasers based on measurable parameters is presented. The model
can be used to compare di�erent laser structures and to predict the electro-optical characteristics in
dependence on cavity length and facet re�ectivities, for example.

27.2.1 Summary of the Governing Equations

The total output power Pout of a semiconductor laser in dependence on the injection current I is given by

Pout =
ℏω
e
ηext

(

I − Ithr
)

(27.1)

where ηext is the external di�erential e�ciency, Ithr the threshold current, ω the angular lasing frequency,
ℏ the reduced Planck constant, and e the elementary charge. Here and in what follows I ≥ Ithr is assumed.
The photon energy ℏω can be written as (c vacuum speed of light, h Planck constant)

ℏω = hc
λ

(27.2)

where the vacuum lasing wavelength λ is assumed to vary linearly with the temperature T in the cavity as

λ = λref +
dλ
dT
ΔT with ΔT = T − Tref (27.3)

with Tref being the reference (heat sink or ambient) temperature. The output powers P0 at the le� (z =
0) facet and PL at the right (z= L) facet with intensity re�ection coe�cients R0 and RL, respectively, are
obtained from the total power as

P0 =
Pout

1 + (1 − RL)(1 − R0)−1
√

R0R−1
L

and PL =
Pout

1 + (1 − R0)(1 − RL)−1
√

RLR−1
0

(27.4)

(cf. Equation 27.40).
To calculate the threshold current, a model for the modal gain is required. First one should be aware that

the gain depends on both the wavelength and the current density. For a �xed wavelength λ, the dependence
of the modal gain of QW lasers on the current density can be well approximated by a logarithmic relation,

gm = G0 ln
j

jtr
(27.5)

where G0 is the gain prefactor (proportional to the di�erential gain) and jtr the transparency current den-
sity. At j = jtr the gain vanishes, i.e., a wave with the wavelength λ propagating along the QW embedded in
a nonabsorbing medium is neither absorbed nor ampli�ed (transparency). Due to the fact that FP lasers
lase at the maximum of the gain spectrum, we need the dependence of the peak gain on the current density
for which the relation Equation 27.5 can be used, too. However, one must keep in mind that the peak gain
never becomes negative, but approaches zero for vanishing current. Therefore, j ≫ jtr must be observed
and the transparency current density obtained by the analysis of the length dependencies of external di�er-
ential e�ciency and threshold current as described in Section 27.2.2 has no direct physical interpretation.
One should mention that of course any other functional dependence gm(j) that can be solved analytically
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for j, such as a linear one, could be used. However, then the procedure presented in Section 27.2.2 would
yield di�ering parameters G0 and jtr.

Assuming the logarithmic dependence of the modal gain on the current density and an exponential
dependence of the threshold current on the temperature, the threshold current can thus be written as

Ithr = WLjtre
gthr
G0 e

ΔT
T0 (27.6)

where W is the contact width, L the contact length (assumed equal to the cavity length), and T0 the char-
acteristic temperature of the threshold current. Similarly, the external di�erential e�ciency can be written
as (cf. Equation 27.44)

ηext =
αout
gthr

ηie
−ΔT

T1 (27.7)

where T1 is the characteristic temperature of the external di�erential e�ciency. The internal e�ciency ηi
gives the fraction of the total current increment that results in stimulated emission of photons. It describes
the e�ect that not all electron–hole pairs additionally injected above threshold are converted into photons
by stimulated emission. The threshold gain gthr is

gthr = αout + αi (27.8)

with the internal losses αi and the outcoupling (mirror) losses

αout = −
1

2L
ln(R0RL) (27.9)

Finally, the temperature rise can be calculated from the dissipated power Q and the thermal resistance
rth related to the contact area,

ΔT =
rth
WL

Q (27.10)

The dissipated power is given by the di�erence between electrical input power and optical output power,

Q = UI − Pout (27.11)

with the voltage–current characteristics

U = ΔU + ℏω
e
+

rs
WL

I (27.12)

where ΔU is the so-called defect voltage and rs the series resistance related to the contact area. The
main contribution to the defect voltage arises from the spacing of the quasi-Fermi potentials of electrons
and holes in the active region (Fermi voltage), which is assumed to be clamped above threshold and is
always larger than the photon energy divided by the elementary charge. The last term in Equation 27.12
is due to the Ohmic voltage drop in the bulk semiconductor layers, at the heteroboundaries, and at the
semiconductor–metal junctions.

Instead of Equation 27.11 sometimes other expressions are reported. For example, by inserting
Equations 27.1 and 27.12 into Equation 27.11 and rearranging the terms,

Q = ℏω
e

Ithr +
ℏω
e
(1 − ηie

−ΔT
T1 )(I − Ithr) +

ℏω
e
(ηie

−ΔT
T1 − ηext)(I − Ithr) + ΔUI +

rs
WL

I2 (27.13)
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is obtained. The third term can be also written as

ℏω
e
(ηie

−ΔT
T1 − ηext)(I − Ithr) = αiLP̄ (27.14)

where we have used Equations 27.7, 27.8, and 27.43. The averaged internal power P̄ is de�ned in
Equation 27.32. The dissipated power is thus the sum of the heat generated at threshold by nonradia-
tive and spontaneous recombination (�rst term in Equation 27.13), the heat generated above the threshold
due to additional nonstimulated recombination and carrier leakage (second term), the heat generated by
absorption (third term), the heat caused by the defect voltage (fourth term), and the Joule heat (last term).
It is worth to mention that in Equations 27.11 and 27.13, it is assumed that the spontaneously emitted
radiation is completely absorbed in the cavity so that Pout contains only the stimulated emission.

All equations have been written in such a manner that the geometrical scaling given by W and L is
explicitly separated. Note, however, that the dependence of rth on W cannot be neglected because the
thermal resistance Rth = rth∕(WL) is not inverse proportional to W. For example, for a rectangular-shaped
in�nitely thin heat source,

rth, 2D ≈
W
κπ

ln
(

4h
W

)

(27.15)

holds under the condition W ≪ h < Ws, where κ is the thermal conductivity of the material with thickness
h and width 2Ws separating the heat source of width W from the heat sink [8]. Only for a purely one-
dimensional heat �ow

rth, 1D =
h
κ

(27.16)

is independent of W.
For shallow-edged samples with substantial lateral current spreading, the transparency current density

obtained by the procedure presented in Section 27.2.2 depends on the p-contact width, too [9]. In order
to determine the transparency current density for an in�nite p-contact width jtr,W→∞ without current
spreading, the transparency current has to be plotted and linearly �tted in dependence on W. From the
slope dItr∕dW one obtains jtr,W→∞ and from the extrapolation W → 0 the spreading current Itr, spread
according to the relation [9]

Itr(W) = jtr,W→∞LW + Itr, spread (27.17)

The basic assumption underlying Equation 27.17 is that Itr, spread is independent of W. If di�erent cavity
lengths are considered, Equation 27.17 has to be divided by L.

For a numerical calculation of the electro-optical characteristics, Equation 27.10 is best suited because
ΔT(I) is a monotonous function (in contrast to P(I)). Knowing ΔT, the threshold current and external
e�ciency can be determined from Equations 27.6 and 27.7, respectively, and �nally the output power from
Equation 27.1.

27.2.2 Determination of the Parameters Entering the Model

In what follows we consider an asymmetric super-large optical-cavity structure published in Reference
[10]. The parameters ηi, αi, G0, and jtr are determined by measuring the power–current characteristics of
as-cleaved lasers having di�erent cavity lengths L, operated under pulsed conditions to avoid self-heating
(ΔT = 0). Thus pulse lengths below 1 μs and duty cycles below 1% are required. Note that the lasing wave-
length could substantially vary with L, which must be taken into account in the calculation of the optical
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power from the measured photovoltage of the detector by adjusting the calibration factor. The measured
P–I characteristics have to be linearly �tted to extract the slope e�ciencies and threshold currents for the
di�erent cavity lengths.

If the inverse external di�erential e�ciency is plotted versus cavity length (cf. Figure 27.2a),

η−1
ext(L) = η

−1
i

(

1 −
αi

ln(R)
L
)

(27.18)

a linear �t delivers −η−1
i αi∕ ln(R) from the slope η−1

ext(L) and η−1
i from the extrapolation of η−1

ext to L → 0.
A linear �t of the logarithm of the threshold current density versus the inverse cavity length

ln(jthr)(L−1) = ln(jtr) + G−1
0

(

αi − ln(R)L−1) (27.19)

as shown in Figure 27.2b yields −G−1
0 ln(R) from the slope ln(jthr)(L−1) and the threshold current density

for an in�nite cavity length ln(jthr,∞) = ln(jtr) + G−1
0 αi from the extrapolation of ln(jthr) to L−1 → 0. The

results of this procedure are contained in Table 27.1, where facet re�ectivities R0 = RL = 0.3 have been
assumed in the evaluation. For other cases they must be correspondingly chosen.

The cavity lengths L have to be carefully chosen to ensure linear dependencies η−1
ext(L) and ln(jthr)(L−1). If

L is too small (large threshold gain), η−1
ext could increase with decreasing L due to an increase ofαi (enhanced

free-carrier absorption) and a decrease of ηi (enhanced carrier leakage). If L is too large (small threshold
gain), the threshold gain does not depend logarithmically on the threshold current density because jth → jtr
so that the model fails, too.

The characteristic temperatures should be determined by measuring the power–current characteris-
tics at di�erent chip temperatures under pulsed conditions. The outcoupling losses (determined by cavity
length and facet re�ectivities) of the laser under investigation should coincide, nearly, with the intended val-
ues for CW operation, because T0 and T1 decrease with increasing threshold gain. The temperature range
must be correspondingly chosen, too, because T0 and T1 decrease with increasing temperature. The results
of the measurements and the linear �ts of the logarithms of the threshold current density and external
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FIGURE 27.2 Determination of internal e�ciency ηi, internal optical losses αi, gain prefactor G0, and transparency
current density jtr. (a) Inverse external di�erential e�ciency versus cavity length. Bullets indicate measurements and
solid line indicates linear �t. (b) Logarithm of threshold current density versus inverse cavity length. Bullets indicate
measurements and solid line indicate linear �t.
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TABLE 27.1 Phenomenological Laser Parameters

Parameter Symbol Value Unit

Front facet re�ectivity R0 0.012
Rear facet re�ectivity RL 0.95
Width of active region W 90 μm
Cavity length L 4000 μm
Internal e�ciency ηi 0.97
Internal optical losses αi 0.99 cm−1

Gain prefactor G0 12.6 cm−1

Transparency current density jtr 92.2 A∕cm2

Characteristic temperature of threshold current T0 98 K
Characteristic temperature of external e�ciency T1 341 K
Reference wavelength λref 899 nm
Change of wavelength with temperature dλ∕dT 0.331 nm∕K
Series resistance rs 0.767 ⋅ 10−4 Ω ⋅ cm2

Thermal resistance rth 0.936 ⋅ 10−2 K ⋅ cm2∕W
Defect voltage ΔU 0.033 V
Di�erential threshold current j′thr 5 cm−2

Saturation current density jsat 5 ⋅ 10−6 cm2∕A
Di�erential series resistance r′s −5 ⋅ 10−3 Ω ⋅ cm4∕A
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FIGURE 27.3 Determination of characteristic temperatures. Cavity length and facet re�ectivities are given in
Table 27.1. (a) Logarithm of threshold current density versus temperature rise. Bullets indicate measurements and
solid line indicate linear �t. (b) Logarithm of external di�erential e�ciency versus temperature rise. Bullets indicate
measurements and solid line indicate linear �t.

di�erential e�ciency versus temperature rise,

ln
(

jthr(T)
jthr(Tref)

)

= ΔT
T0

and − ln
(

ηext(T)
ηext(Tref)

)

= ΔT
T1

(27.20)

are shown in Figure 27.3a and 27.3b.
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The series resistance and defect voltage are obtained from a �t of the linear part of the voltage–current
characteristics above threshold:

U = U0 +
rs

WL
I and ΔU = U0 −

hc
eλref

(27.21)

The result is shown in Figure 27.4a. The voltage must be measured with care to ensure that the true series
resistance of the chip is obtained. Typically a so-called four-terminal or 4-wire sensing separating the cur-
rent and voltage electrodes has to be applied. Finally, the thermal resistance can be determined from a
linear �t of the lasing wavelength versus the dissipated power,

λ(Q) = λref +
dλ
dT

rth
WL

Q, (27.22)

where Q is calculated according to Equation 27.11
There are two possibilities to employ Equation 27.22. The �rst possibility is based on the measurement

of the center wavelength λcenter of the emission spectrum above threshold versus injection current. This
yields a correct result, if a su�ciently large number of modes is lasing and the envelope of the spectrum
exhibits a Gaussian-like shape. The shi� of λcenter is mainly determined by the temperature dependence of
the energy gap of the active region, but sometimes also by the temperature dependence of the con�nement
factor or screening of polarization �elds in GaN-based lasers, for example. The method has the advantage,
that the requirement on the spectral resolution of the optical spectrometer is modest. A disadvantage is
that a unique center wavelength cannot always be determined.

The second possibility is to trace the wavelength of a single longitudinal mode while increasing the
current, using a high-resolution optical spectrometer. The shi� of the wavelength λmode of a mode is
determined by the temperature dependence of its modal phase index, which results in a much weaker
coe�cient dλmode∕dT than for the center wavelength dλcenter∕dT of the emission spectrum. This method
yields more reliable results for the thermal resistance. In any case, dλcenter∕dT or dλmode∕dT has to be
determined in advance by measuring the functions λcenter(T) or λmode(T), respectively, where T is the chip
temperature.
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measurements. Solid line indicates linear �t. (b) Center wavelength versus dissipated power. Light grey line indicates
measurements. Straight line indicates linear �t. Cavity length and facet re�ectivities are given in Table 27.1.
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27.2.3 Comparison of Simulated and Measured CW Characteristics

In Figure 27.5 the measured P − I, U − I and ηc − I characteristics (solid lines) are compared with the
results obtained with the phenomenological model (dashed lines) presented above in Section 27.2.1. The
conversion e�ciency ηc is de�ned as

ηc =
Pout
UI

(27.23)

The bending of the power–current characteristics at high bias is caused by the temperature-induced
increase of the threshold current and decrease of the slope e�ciency (determined by the parameters T0
and T1 here) due to the power dissipation. It leads to what is commonly referred to as “thermal roll-over.”
However, the measured bending is stronger than the simulated one.

This discrepancy is caused by the fact that there are nonthermal reasons for the bending of the P–I
characteristic at high bias (also referred as “power saturation”) which cannot be addressed by the phe-
nomenological laser models based on parameters measured at low bias. For example, bending of the
conduction and valence bands and carrier accumulation e�ects occurring at large bias leading to enhanced
nonstimulated recombination and internal absorption [11] result in an increased threshold current and a
decreased external di�erential e�ciency. Other e�ects are longitudinal spatial holeburning (LSH), nonlin-
ear gain compression, and two-photon absorption as discussed in Sections 27.3.2 and 27.3.5, which result
in a saturation of the output power.

These e�ects could be modeled phenomenologically by additional explicit current dependencies Ithr(I)
and ηext(I) with parameters j′thr and jsat,

Ithr = Ithr,0 +WLj′thr
(

I − Ithr,0
)

(27.24)

and

ηext =
ηext,0

1 + I−Ithr,0
WLjsat

, (27.25)
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respectively. The proportionality factor j′thr > 0 models the increase of the threshold current due to non-
thermal e�ects with Ithr,0 given by Equation 27.6. Similarly, the parameter jsat > 0 causes a reduction of
the external di�erential e�ciency where ηext,0 is given by Equation 27.7.

Furthermore, the series resistance varies also far above threshold, either caused by carrier accumulation
(di�erential resistance r′s < 0) or temperature e�ects (r′s > 0),

rs = rs,0 +
r′s

WL
(

I − Ithr,0
)

(27.26)

With the re�ned model (dotted lines), a better match can be achieved as Figure 27.5 reveals. Note that the
used parameters j′thr, jsat, and r′s given in Table 27.1 are guess values. An even better agreement between
theory and experiment could be achieved by employing a �tting procedure, probably.

27.3 Models for the Optical Power

In this section, we investigate the pro�le of the optical power in the cavity in more detail and derive some
of the equations used in Section 27.2. Furthermore, we discuss the nonthermal e�ects responsible for the
saturation of the output power with increasing injection current.

27.3.1 Basic Relations

The total power P can be always separated into forward and backward propagating parts,

P(z, t) = P+(z, t) + P−(z, t) (27.27)

In an FP cavity, they ful�l the partial di�erential equations (∂t = ∂∕∂t, ∂z = ∂∕∂z)

∂tP± ± vg∂zP± = vg(gm − αm)P± +
Ṗsp

2
(27.28)

subject to the boundary conditions

P+(0, t) = R0P−(0, t)

P−(L, t) = RLP+(L, t)
(27.29)

Here gm − αm is the modal net gain in the cavity with gm being the modal gain and αm the modal losses,
L the cavity length, vg = c∕ng the group velocity with ng being the modal group index, and Ṗsp the rate
of spontaneous emission coupled into the lasing modes. The total output power at the facets is Pout =
P0 + PL with

P0 = (1 − R0)P−(0), PL = (1 − RL)P+(L) (27.30)

Integrating Equation 27.28 along z, adding both equations, and taking into account Equation 27.29 we
obtain the power balance

1
vg

dP̄
dt
= −

Pout
L

+ 1
L ∫

L

0
(gm − αm)P dz + 1

vgL ∫

L

0
Ṗsp dz (27.31)
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with the average internal power

P̄ = 1
L ∫

L

0
(P+ + P−) dz. (27.32)

In what follows, we consider the steady state (∂t = 0) and two special cases, namely the case around
threshold and the case above threshold.

27.3.1.1 Steady State around Threshold

Around threshold both gm − αm and Ṗsp can be assumed to be constant (z-independent). Therefore, the
solution of Equation 27.28 taking into account Equation 27.29 is

P±(z) =
Ṗsp

2vg
⋅

C±e±(gm−αm)z − 1
gm − αm

(27.33)

with

C+ =
1 − R0 + (1 − RL)R0e(gm−αm)L

1 − R0RLe2(gm−αm)L
(27.34)

C− =
1 − RL + (1 − R0)RLe(gm−αm)L

1 − R0RLe2(gm−αm)L
e(gm−αm)L. (27.35)

The ratio between the outcoupled powers at the facets is given by

PL
P0

=
1 − RL
1 − R0

⋅
1 + R0e(gm−αm)L

1 + RLe(gm−αm)L
(27.36)

If the spontaneous emission approaches zero, C± must go to in�nity to obtain a nonzero output power,
which yields the so-called threshold condition gm − αm = αout.

27.3.1.2 Steady State above Threshold

Above threshold gm − αm cannot longer be assumed to be constant due to LSH, but the spontaneous
emission can be neglected, Ṗsp = 0. Hence, the solution of Equation 27.33 is

P±(z) = P±(0)e± ∫ z
0 [gm(z′)−αm(z′)] dz′. (27.37)

In order to obey the boundary conditions Equation 27.29, the threshold condition

gthr =
1
L ∫

L

0
αm dz + αout (27.38)

must hold, where αout are the outcoupling losses Equation 27.9 and

gthr =
1
L ∫

L

0
gm dz (27.39)
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is the threshold gain. The ratio between the outcoupled powers

PL
P0

=
1 − RL
1 − R0

√

R0
RL

(27.40)

follows from the boundary conditions Equation 27.29, the general relation

∂z(P+P−) = 0 (27.41)

and from the ratio between the internal and external powers given by Equation 27.30.

27.3.1.3 External Differential Efficiency

From the threshold condition Equation 27.38, the modal threshold gain gthr can be calculated and from
that, depending on the model used, the threshold carrier density Nthr, the threshold voltage Uthr, or the
threshold current Ithr. Finally, the external di�erential e�ciency is the ratio between the energy leaving the
cavity and the energy generated by stimulated recombination (cf. Equation 27.47),

ηext =
Pout

ℏω ∫ Rst dV
=

Pout

∫ gmP dz
. (27.42)

Assuming z-independent gm − αm, the relation between the total output power and the average internal
power follows from Equations 27.31 and 27.38 to

Pout = αoutLP̄ (27.43)

and the external di�erential e�ciency is

ηext =
αout
gthr

(27.44)

27.3.2 Rigrod Model

In order to determine the variation of the modal gain along z above threshold, a model for the carrier
densities is required. The simplest model consists of a rate equation for the excess carrier density N in the
active region

dN
dt

=
j

ed
− R(N, P) (27.45)

with a constant injection current density j. The recombination rate [12]

R = Rnon-rad + Rsp + Rst (27.46)

consists of nonradiative (Shockley–Read–Hall, Auger) recombination Rnon-rad, radiative spontaneous
recombination Rsp, and radiative stimulated recombination:

Rst =
gmP

dWℏω
(27.47)
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where P = P+ + P−, gm is the modal gain, ℏω the photon energy, d the thickness of the active region, and
W the width of the active region.†

Even for the steady-state above threshold, there exists no analytical solution of Equations 27.28 and
27.45. However, if the nonstimulated recombination rate and the gain are linearized,

Rnon-rad + Rsp =
N
τN

(27.48)

and

gm = g′m(N − Ntr), (27.49)

respectively, and inserted into Equation 27.45, the excess carrier density N can be determined.
Introducing the obtained expression for N again into Equation 27.49 yields

gm =
g0

1 + P
Psat

(27.50)

with the unsaturated gain

g0 =
g′mτN

ed
(j − jtr) (27.51)

where g′m is the di�erential gain, τN the e�ective carrier lifetime, jtr = edNtr∕τN the transparency current
density, Ntr the transparency carrier density, and

Psat =
dWℏω
g′mτN

(27.52)

is the saturation power. For the typical values of d = 10 nm, W = 100 μm, g′m = 10 ⋅10−18 cm2, τN = 1 ns,
andℏω = 1.24 eV, we obtain Psat = 0.2 W, which is much smaller than the internal power of state-of-the-art
broad-area lasers operated far above threshold.

The resulting equation for the steady-state

± dP±
dz

=
⎛

⎜

⎜

⎝

g0

1 + P++P−
Psat

− αm

⎞

⎟

⎟

⎠

P± +
Ṗsp

2vg
(27.53)

has been analytically solved by Rigrod [13] neglecting spontaneous emission and modal losses (Ṗsp =
αm = 0). For the general case a numerical solution has to be employed.

For Psat ≪ P, P+ ≪ P−, gm ≈ g0Psat∕P− and the resulting equation

− dP−
dz

= g0Psat − αmP− +
Ṗsp

2vg
(27.54)

† Equation 27.47 follows from Equation 27.140 by averaging over the active region 1∕(dW)∬ dxdy, taking into account
Equation 27.106 and nm = n̄.
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FIGURE27.6 Longitudinal pro�les of the total power for the parameters in Table 27.2 based on the numerical solution
of Equation 27.53 (solid) and the analytical solution of Equation 27.55 (dashed).

has an analytical solution, too, namely

P(z) ≈ P−(z) = P−(0)eαmz +

(

g0Psat +
Ṗsp

2vg

)

(

1 − eαmz

αm

)

(27.55)

In Figure 27.6, the exact and approximate solutions are compared. Except near the right facet located
at z = 10 mm where the condition P+ ≪ P− is not ful�lled, a good agreement can be noted. Note that
according to Equation 27.55 P(z) varies linearly for vanishing modal absorption αm = 0.

27.3.3 Treat-Power-as-a-Parameter Method

The equation for the steady-state longitudinal power pro�le above threshold

± dP±
dz

=
[

gm(P) − αm
]

P± (27.56)

subject to the boundary conditions Equation 27.29 can be conveniently solved numerically by the “treat-
power-as-a-parameter” (TPP) method as introduced for the simulation of DFB lasers in Reference [14] and
applied to high-power Fabry–Pérot lasers in Reference [15]. In a �rst step, gm is calculated as a function
of an external parameter (such as injection current I or bias U) and the power P, and stored in a look-up
table, together with other quantities of interest (e.g., λ and I). In a second step, the boundary value problem
(Equation 27.56) is solved by interpolating gm in the look-up table. For given I or U, one chooses a guess
value P−(0) and integrates Equation 27.56 from z = 0 to z = L where typically the boundary condition is
not ful�lled. Therefore, the function P−(L)−RLP+(L) has to be nulli�ed by varying P−(0). It is also possible
to give P−(0) and to vary I or U to ful�l the boundary condition.

The lasing wavelength can be determined approximately by searching the maximum of integral ∫ L
0 ( gm−

αm) dz with respect to λ. LSH is included automatically via the power dependence of gm in Equation 27.56.
If gm is evaluated at the average power P̄ in the cavity, the usual model neglecting LSH is recovered.

27.3.4 LSH and the Impact of Series Resistance and Internal Loss

The assumption of a constant injection current density in Equation 27.45 results in an overestimation of
spatial hole burning. At the ohmic contacts, the quasi-Fermi potentials of electrons and holes, φn and
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φp, respectively, are �xed and given by the applied bias, φn = 0 at the n-contact and φp = U at the
p-contact. The injection current density can be set equal to the hole current density and thus proportional
to the gradient of the quasi-Fermi potential of the holes at the boundary between the active region and the
p-doped region. Assuming isothermal conditions, one-dimensional current �ow, and vanishing recombi-
nation outside the active region as well as in�nitely high electron conductivity (σn → ∞) in the n-doped
region,

j(N) =
U − φF(N)

rs
(27.57)

can be derived from Equations 27.138 and 27.149 for the region beneath the p-contact, where φF(N) =
φp(N) − φn(N) is the Fermi voltage and

rs =
∑

i

di
σp,i

(27.58)

is the area-related total series resistance of the p-doped layers with thicknesses di and hole conductivities
σp,i between the active region and p-contact stripe.

For parabolic bands the relations between quasi-Fermi potentials φn and φp and the electron and hole
densities n and p, respectively, are given by

eφn = −kBT inv
i

(

n
Nc

)

− Ec + eφ and eφp = kBT inv
i

(

p
Nv

)

− Ev + eφ, (27.59)

where Ec, Ev are the (e�ective) conduction and valence band edges, Nc and Nv the conduction and valence
band edge density of states,  inv

i the inverse Fermi integrals with i = 1∕2 for bulk and i = 0 for QW active
regions and φ the electrostatic potential. Hence, the Fermi voltage is given by

φF =
kBT

e

[

 inv
i

(

p
Nv

)

+  inv
i

(

n
Nc

)]

+
Eg

e
(27.60)

where Eg = Ec − Ev is the energy gap. In Equation 27.57, local charge neutrality p − n + pD − nA = 0 is
assumed so that the electron and hole densities are given by n = n0 +N and p = p0 +N, respectively, with
n0, p0 being the equilibrium densities and N the excess carrier density.

For rs → ∞, the usual model of a constant current density is recovered, whereas for rs → 0, the carrier
density becomes constant. This can be more readily seen by expanding φF(N) around the average carrier
density N̄ which yields

j(N) = j̄ −
φ′F
rs
(N − N̄) (27.61)

where the transition between both models (constant current density and constant carrier density, respec-
tively) is governed by the parameter φ′F∕rs.

Equations 27.56 and 27.45 with Equations 27.46, 27.47, and 27.57 assuming linear recombination and
gain models, Equations 27.48 and 27.49, respectively, have been solved using the TPP method. The parame-
ters used are given in Table 27.2. In Figure 27.7a, the in�uence of the series resistance on the power–current
characteristics is clearly visible. For rs = 10−6 Ω ⋅ cm2 almost the same characteristics as without LSH is
obtained.
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FIGURE 27.7 Power–current characteristics without (black solid) and with longitudinal spatial holeburning for dif-
ferent series resistances rs and modal losses αm. (a) In�uence of the series resistance for a modal loss of αm = 1 cm−1

and (b) In�uence of modal losses for a series resistance of rs = 10−5Ω ⋅ cm2.

TABLE 27.2 Laser Parameters Used to Investigate Power Saturation E�ects

Parameter Symbol Value Unit

Front facet re�ectivity R0 0.001
Rear facet re�ectivity RL 0.95
Width of active region W 100 μm
Thickness of active region d 10 nm
Cavity length L 1 cm
Modal losses αm 1 cm−1

Rate of spontaneous emission Ṗsp 0
Di�erential modal gain g′m 10 ⋅ 10−18 cm2

Transparency carrier density Ntr 1018 cm−3

Carrier lifetime τN 1 ns
Wavelength λ 1000 nm
Series resistance rs 10−5 Ω ⋅ cm2

Temperature T 300 K
Conduction band density of states Nc 0.4 ⋅ 1018 cm−3

Valence band density of states Nv 13 ⋅ 1018 cm−3

If there are no internal losses, LSH has no impact on the slope e�ciency at all, because from
Equation 27.31

Pout =

L

∫
0

gmP dz (27.62)

follows and Equation 27.42 gives ηext = 1 independent of the spatial pro�les of gm and P. As Figure 27.7b
reveals, the di�erence between the power–current characteristics calculated with and without spatial hole
burning increases with increasing modal losses.
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The longitudinal pro�les of forward, backward, and total power; modal gain; and injected current
density are shown in Figure 27.8 for the extreme values of rs. For a high value of rs (Figure 27.8a), the
injected current density is almost constant, so that the gain varies strongly. In contrast, for a low value of rs
(Figure 27.8b) the injected current density varies strongly so that the gain is almost constant. This results
in quite di�erent power pro�les. In particular, the averaged internal power di�ers by almost a factor of 2
(P̄ = 11 W versus P̄ = 6 W). Besides by a reduction of the internal losses, the series resistance or the
asymmetry in the facet coating (“unfolding the cavity” [16]) LSH could be mitigated by a tapered lateral
waveguide design where the contact width W increases from the rear facet toward the front facet [17,18].

27.3.5 Discussion of Further Nonthermal Power Saturation Effects

27.3.5.1 Nonlinear Gain Compression

There are a couple of e�ects that can be described by an e�ective decrease of the optical gain with increasing
photon density |u|2 or power P, described by the functions

g =
g0

1 + ϵs|u|2
or g =

g0

1 + P
Ps

(27.63)

similar to Equation 27.50. The relation between the gain compression factor ϵs and the saturation power
Ps is given by

Ps =
dWvgℏω
Γϵs

(27.64)

where Γ is the optical con�nement factor of the active region. The gain compression factor is of the order
ϵs ∝ 10−17 cm3, which results in a saturation power of Ps ∝ 150 W for typical values d = 10 nm, W =
100 μm, Γ = 0.01, ng = 4, λ0 = 1 μm. Hence gain compression e�ects are of minor importance for
CW lasers, but might result in power saturation of pulsed lasers where P = 100 W from a stripe width of
W = 100 μm can be achieved [19].

The �rst e�ect contributing to nonlinear gain compression is spectral hole burning, which arises due
to the interplay of the depletion of the carriers at the lasing wavelength due to stimulated emission and
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FIGURE 27.8 Longitudinal pro�les of forward (P+), backward (P−), and total (P = P+ + P−), power, modal gain
gm, and injected current density j for two series resistances rs at an output power of Pout = 20 W. (a) Series resistance
rs = 10−4 cm2 and (b) series resistance rs = 10−6 cm2. The horizontal line is the averaged internal (mean) power P̄.
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the relaxation of injected carriers into the depleted spectral region. At high power densities, the relaxation
processes due to intraband carrier–carrier scattering with a time scale of 50–100 fs are not su�ciently fast
to �ll the spectral hole formed by the optical transitions. This results in a reduction of the optical gain
around the lasing wavelength.

A second e�ect is the increase of the temperatures of the carrier distributions beyond the lattice temper-
ature by the removal of “cold” carriers near the band-edges due to stimulated emission or by the transfer of
carriers to high energies within the bands by free-carrier, inter-valence band and two-photon absorption.
The temperature increase results in a reduction of the optical gain, too.

Nonlinear gain compression also can be caused by lateral spatial hole burning [20] and the Bragg grat-
ing induced by the standing waves in Fabry–Pérot lasers [21]. The impact of both the gain compression
and two-photon absorption on the power–current characteristics is discussed in the next section (cf.
Figure 27.9).

27.3.5.2 Two-Photon Absorption

The two-photon absorption coe�cient β is described in more detail in Section 27.5.2. The resulting modal
absorption for a broad-area laser with a lateral top-hat intensity pro�le is given by (cf. Equation 27.121)

α2,m =
∫ nr(x, y)β(x, y)|Φ(x, y)|4 dxdy

nm(∫ |Φ(x, y)|2 dxdy)2
P ≈

∫ nr(y)β(y)|ϕ(y)|4 dy
nm(∫ |ϕ(y)|2 dy)2

P
W

=
β̄m
Am

P, (27.65)

where ϕ is the pro�le of the vertical mode, W the lateral width, nm the modal index, and Am the mode
area given by

Am =
W(∫ |ϕ(y)|2 dy)2

∫ |ϕ(y)|4 dy
(27.66)

and

β̄m =
∫ nr(y)β(y)|ϕ(y)|4 dy

nm ∫ |ϕ(y)|4 dy
(27.67)
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Approximating the intensity pro�le of the vertical mode by a Gaussian with a full width d1∕e2 at 1∕e2

maximum,

ϕ2(y) = e
−8y2∕d2

1∕e2 (27.68)

the mode area is Am =
√

π
2 d1∕e2 W ≈ d1∕e2 W. Assuming an averaged two-photon absorption coe�cient of

β̄m = 15 cm ⋅GW−1 (cf. Figure 27.12a) and d1∕e2 = 1.5 μm as appropriate for a high-power laser we obtain
β̄m∕d1∕e2 = 10−4 W−1. For W = 100 μm and P = 10 W this results in a modal absorption coe�cient
of α2,m = 0.1 cm−1. Note that the modal two-photon absorption is maximal at minimum d1∕e2 , i.e., for
a strong optical con�nement. The secondary two-photon loss mechanism due to intraband absorption
caused by the free carriers generated by two-photon absorption is strongly dependent on the carrier lifetime
and the e�ective dri�-di�usion length. In most cases, the resulting absorption coe�cient can be neglected,
except in structures where the intensity peak of the vertical mode is not located at the position of the active
layer [22].

Figure 27.9 shows the impact of nonlinear gain compression and two-photon absorption on the power–
current characteristics using the model presented in Section 27.3.4 with the parameters given in Table 27.2.
The following conclusions can be drawn: First, a gain compression factor ϵs = 10−17 cm3 (saturation power
Ps = 150 W) or a two-photon absorption coe�cient β̄∕Am = 0.01 (Wcm)−1 act very similar. Second, at
a current of I = 15 A, which is typical for lasers operating in CW mode, the combination of both e�ects
results in a reduction of the optical power by 10% (2 W; cf. Figure 27.9a). However, at a current of I = 125 A,
which can be reached under pulsed operation [19], the power is reduced from 100 to 60 W, which seems
a little bit too large, considering that leakage currents are not accounted for at all. Hence, either the gain
compression factor or the two-photon absorption coe�cient or both are smaller in reality than assumed
here.

27.3.5.3 Leakage Currents

Leakage currents caused by the transport of carriers into regions without stimulated recombination can be
divided into vertical and lateral ones. Vertical leakage currents are minority currents caused by the accu-
mulation and subsequent recombination of electrons and holes in the p-doped and n-doped, respectively,
optical con�nement layers. This e�ect results in an increased free-carrier absorption, too. An analytical
investigation of the carrier accumulation in the con�nement layers and its impact on the power–current
characteristics can be found in Reference [23] and an exact treatment based on the numerical solution of
the dri�-di�usion equations has been given in Reference [11,24].

The electron current �owing into the p-doped region can be obtained by integrating the continuity
equation for the electron current density (Equation 27.137) over the p-doped region between the upper
boundary of the active region y = yp and the p-metallization for the steady state,

∫∂(p-region)
jn ⋅ ndS = e ∫p-region

R dV (27.69)

where ∂ (p-region) denotes the surface of the p-doped region with n being the normal vector. Assuming
that the normal components of the electron current density vanish at the outer boundaries including the
p-contact, we obtain the electron leakage current

In,leak = ∬ jn,y|y=yp
dxdz. (27.70)

Hence, the electron leakage current can be calculated either from the electron current density at the
boundary between active region and p-doped region or by integrating the recombination rate over the
corresponding volume.
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Figure 27.10a and b shows the vertical pro�les of the current densities and the recombination rate of the
asymmetric super-large optical-cavity structure published in [10] at a current of I = 15 A. Figure 27.10a
reveals that for a properly designed structure the hole current �owing into the n-doped region can be
neglected. The leakage current calculated from the electron current density at y = 1.9μm is In,leak = 0.44 A,
which is also obtained from the integration of the recombination rate. The relative fraction of the leakage
current is (I − In,leak)∕I = 0.97, which coincides with the internal e�ciency ηi = 0.97, obtained from the
length-dependent measurement of the external di�erential e�ciency as described in 27.2.

With increasing bias the leakage current increases due to the bending of the band edges as shown in Ref-
erence [11], which contributes to the roll-over of the power–current characteristics. The electron leakage
current can be reduced by an increase of the energy gap and doping level or a decrease of the thickness of
the p-doped optical con�nement layer as it is the case in extreme-asymmetric super large optical cavities.
However, one should keep in mind that an increase of the energy gap results in a decrease of the electrical
conductivity in the AlGaAs material system, an increase of the doping results in an increase of the free-
carrier absorption and an increase of the waveguide asymmetry results in a decrease of the �eld intensity
at the position of the active region.

The lateral leakage current Ip,spead caused by current spreading in the p-doped region can be reduced by
an insulation of the highly doped p-contact and p-cladding layers beyond the p-metallization by implan-
tation, di�usion of impurities, or etching as indicated in Figure 27.1 or by implementing a reverse-biased
p-n junction. The lateral leakage current due to the di�usion of the carriers along the active region is more
di�cult to mitigate.

An approximate expression for Ip,spead has been derived in Reference [25],

Ip,spead

L
≈ −2

∂φF
∂x

|

|

|x=W∕2

∑

i
σp,idi (27.71)

where φF is the Fermi voltage given in Equation 27.60, σp,i the hole conductivity of layer i and di the corre-
sponding thickness. The derivative has to be taken at the edge of the p-contact stripe, and the summation
includes all p-doped continuous semiconductor layers above the active region.

27.3.5.4 Carrier Capture

As it is well known [26–30], the carriers belonging to bound states in the QW(s) of the active region
are not necessarily in thermal equilibrium with the carriers resulting from the continuum states located
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energetically above the QWs. It can be assumed that both types of carriers coexisting in the QW region are
in quasi-equilibrium among themselves described by Fermi–Dirac statistics with independent quasi-Fermi
potentials and transferred into each other by capture-escape processes. The transport of both types of car-
riers in the in-plane directions (x, z) can be described by classical dri� di�usion. Most conveniently the
bound carriers are described by sheet densities (unit 1∕m2) and appear in the rhs of the Poisson equation
(27.141) as interface states.

An expression for the capture–escape rate that ful�ls universal conditions such as the balance between
capture and escape in case of equal quasi-Fermi potentials and no capture but �nite escape in case of a fully
occupied bound states has been given in [30]. For electrons (similarly for holes) it reads

Qn =
dnf
τc

[

1 −
nb
Nb

] [

1 − e
e(φf−φb)

kT

]

(27.72)

where nf and nb are the free and bound, electron densities, respectively; φf and φb are the corresponding
quasi-Fermi potentials; d is the thickness of the QW(s); τc is the capture time; and Nb is the max-
imum bound electron density (φb → −∞). Whereas the quasi-Fermi potentials of the free carriers
depend directly on the bias applied to the contacts, the quasi-chemical potentials of the bound carriers
are determined by the capture-escape rates.

The impact of the nonequilibrium between con�ned and uncon�ned carriers in high-power lasers on
the power–current characteristics as a function of the hole capture time has been investigated in Reference
[28], using, however, a capture-escape rate that di�ers from the one given in Equation 27.72.

27.4 Model for the Optical Field

We derive the parabolic paraxial wave equation based on the slowly varying amplitude and rotating wave
approximations, taking into account gain dispersion, spontaneous emission, and a third-order nonlinear
susceptibility. A balance equation for the electromagnetic energy density will be given.

27.4.1 Basic Three-Dimensional Equations

We start with the homogeneous Maxwell equation for the electric �eld E and the magnetic �eld H:

( ⋅ D = 0 (27.73)

( ⋅H = 0 (27.74)

( × E + μ0∂tH = 0 (27.75)

( ×H − ∂tD = 0 (27.76)

where D = ε0E + P denotes the electric displacement and P the macroscopic polarization density of the
material. The �elds E, H, D depend on three spatial variables r = (x, y, z) and the time t. By applying (×
to Equation 27.75, ∂t to Equation 27.76, and using Equation 27.73 we get the wave equation

1
ε0
((( ⋅ P) + (2E = 1

c2 ∂ttE + μ0∂ttP (27.77)

The polarization density P contains a linear convolution of the electric �eld history E(t − τ), τ ≥ 0, with a
susceptibility function χ(r, τ) and a second-order part which models dispersion (Pdisp), nonlinear e�ects
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(PNL), and spontaneous emission (Psp):

P(r, t) = ε0

∞

∫
0

χ(r, τ)E(r, t − τ) dτ + Pdisp(r, t) + PNL(r, t) + Psp(r, t) (27.78)

The spontaneous emission is modeled by introducing a spontaneous current density,

∂tPsp(r, t) = Jsp(r, t) (27.79)

We assume that P either is slowly varying in space, so that ( ⋅ P ≈ 0 holds, or has discontinuities at
boundaries between di�erent materials. At these boundaries E and H have to ful�ll certain continuity rules
that can be derived from Maxwell equations. Due to the nearly planar geometry of edge-emitting lasers
de�ned by the epitaxial layer structure, the electromagnetic �eld is either mainly transverse electric (TE)
or transverse magnetic (TM) polarized. By assuming TE polarization and choosing a reference frequency
ω0, we have

E(r, t) = ex
1
2

E(r, t)eiω0t + c.c.

Pdisp(r, t) = ex
1
2

Pdisp(r, t)eiω0t + c.c.

PNL(r, t) = ex
1
2

PNL(r, t)eiω0t + c.c.

Jsp(r, t) = ex
1
2

jsp(r, t)eiω0t + c.c.

(27.80)

where ex denotes the unit vector in x direction, c.c. stands for complex conjugation, and E, Pdisp, PNL, jsp
are scalar complex-valued functions. In the slowly varying amplitude approximation the corresponding
derivatives are given by

∂ttE ≈ −ex
1
2
(

ω2
0E − 2iω0∂tE

)

eiω0t + c.c.

∂ttPdisp ≈ −ex
1
2
ω2

0Pdispeiω0t + c.c.

∂ttPNL ≈ −ex
1
2
ω2

0PNLeiω0t + c.c.

∂ttPsp ≈ ex
1
2

iω0jspeiω0t + c.c.

(27.81)

Let χ(r,ω) denote the Fourier transform of χ(r, t) evaluated at frequency ω. First we insert Equation 27.80
into Equation 27.78 and replace E(r, t − τ) by its �rst-order approximation E(r, t) − ∂tE(r, t)τ. Then we
insert the result and Equation 27.80 into Equation 27.77 taking into account Equation 27.81. Finally, we
multiply by e−iω0t and neglect the rapidly varying terms containing e−i2ω0t (rotating wave approximation)
and get

ΔE = −
ω2

0
c2 E +

2iω0
c2 ∂tE −

ω2
0

c2 χ(r,ω0)E +
iω0
c2

(

2χ(r,ω0) + ω0∂ωχ(r,ω)∣ω=ω0

)

∂tE

− μ0ω2
0
(

Pdisp + PNL
)

+ iμ0ω0jsp (27.82)
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Consistent with the neglection of ∂ttE(r, t) we approximate in front of ∂tE(r, t):

2χ(r,ω0) + ω0∂ωχ(r,ω)∣ω=ω0
≈ 2χ̄(ω0) + ω0∂ωχ̄(ω)∣ω=ω0

(27.83)

where χ̄ is an averaged real-valued susceptibility of the medium. This means that the spatial variation and
the imaginary part of χ is considered to be a �rst-order correction, which can be neglected in front of the
time derivative.

Introducing the complex refractive index n2(r,ω) = 1 + χ(r,ω), the real-valued reference index n̄2 =
1 + χ̄, the real-valued group index ng = n̄ + ω0∂ωn̄(ω)∣ω=ω0

and k0 = ω0∕c, we get

ΔE = 2ik0
n̄ng

c
∂tE − k2

0n2E − μ0ω2
0
(

Pdisp + PNL
)

+ iμ0ω0jsp (27.84)

Next we remove the rapid oscillations along the longitudinal z direction with the Ansatz

E(r, t) = E+(r, t)e−in̄k0z + E−(r, t)ein̄k0z (27.85)

Inserting Equation 27.85 into Equation 27.84, neglecting ∂zzE±, multiplying the result with e±in̄k0z ,
dropping rapidly varying terms containing e±2in̄k0z , and dividing by 2in̄k0, we get

1
vg
∂tE±(r, t) ± ∂zE±(r, t) = 1

2in̄k0

[

(∂x)2 + (∂y)2
]

E±(r, t) − ik0
n2(r,ω0) − n̄2

2n̄
E±(r, t)

+
μ0ω2

0
2in̄k0

[

Pdisp(r, t) + PNL(r, t)
]

e±in̄k0z −
μ0ω0
2n̄k0

jsp(r, t)e±in̄k0z (27.86)

where vg = c∕ng .
Equation 27.86 must be supplemented by appropriate boundary conditions. At the plane facets of the

laser located at z = 0 and z = L

E+(x, y, 0, t) − r0E−(x, y, 0, t) = 0

E−(x, y, L, t) − rLe−i2n̄k0LE+(x, y, L, t) = 0
(27.87)

hold. We should mention that in the paraxial approximation, the amplitude re�ection coe�cients r0 and
rL are input parameters, which have to be calculated in advance.

At the transverse boundary denoted by Γ one can assume, for example, decaying �elds or a perfect
electric wall,

lim
|rt|→∞

E± = 0 or E±|rt∈Γ = 0, (27.88)

respectively. If only a part of the cross section of the cavity is simulated, a nonre�ecting or transparent
boundary condition has to be used, which models the fact that only outgoing waves should be present. A
very popular method to implement a boundary condition of this type is the introduction of a so-called
perfectly matched layer (PML) [31]. However, in the frequency domain, it results in a large number of
spurious modes [32]. Within the slowly varying approximation discontinuities of n can only be treated by
employing corresponding transition conditions, except for resonant Bragg waveguide gratings, which can
be described by extra terms coupling the forward and backward propagating waves.
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27.4.2 Ansatz for Dispersion, Nonlinear Susceptibility, and Spontaneous
Emission

27.4.2.1 Dispersion

We use the following Ansatz for Pdisp(r, t):

Pdisp(r, t) = −i
nr(r, t)gr(r, t)k0

ω2
0μ0

[(r, t) − E(r, t)] (27.89)

where the electric �eld E is subtracted to ensure that the contribution to the dispersion vanishes at the gain
peak. We model dispersion via the following response function in the frequency domain [33–35]

(r,ω) = L(r,ω)E(r,ω) (27.90)

with

L(r,ω) =
γ(r)

i[ω − ω0 − (ωp(r) − ω0)] + γ(r)
(27.91)

The Lorentzian L(r,ω) achieves its maximum value 1 at the frequency ωp. The imaginary part ImL(r,ω)
has a half width γ at half of the maximum. The approximation is valid only within a small frequency region
aroundω0 corresponding to the frequency range of optical transitions in the active material. By multiplying
Equation 27.90 with the denominator and taking the inverse Fourier transform with respect to ω − ω0 we
get the ordinary di�erential equation

∂t(r, t) =
[

i(ωp(r) − ω0) − γ(r)
]

(r, t) + γ(r)E(r, t) (27.92)

We use similar decompositions for the polarization (r, t) as for the electric �eld E(r, t),

(r, t) = +(r, t)e−in̄k0z + −(r, t)ein̄k0z (27.93)

Inserting Equations 27.93 and 27.85 into Equation 27.92, multiplying with e±in̄k0z , and again neglecting
e±2in̄k0z we get

∂t±(r, t) = i(ωp(r) − ω0)±(r, t) + γ(r)
[

E±(r, t) − ±(r, t)
]

(27.94)

Dispersion can also be taken into account with higher order time derivatives [36], on a microscopic level
[37–39], by means of a digital �lter [40], or by a convolution integral [41].

27.4.2.2 Nonlinear Susceptibility

Considering a third-order nonlinearity and assuming an isotropic medium the nonlinear polarization
density reads [42–44]

PNL(r, t) = ε0
3
4
χ(3)xxxx(r, t)|E(r, t)|2E(r, t) (27.95)
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with the third-order susceptibility χ(3)xxxx(ω0; −ω0,−ω0,ω0). The optical Kerr coe�cient ñ2 and the two-
photon absorption coe�cient β̃ are de�ned as

ñ2 − i
β̃

2k0
= 3

8nr
χ(3)xxxx ≡ Δñ. (27.96)

The connection with the commonly used coe�cients n2 and β related to the time-averaged intensity I =
ε0n̄c|E|2∕2 and discussed in Section 27.5.2 is given by

n2 − i
β

2k0
=

2Δñ2
ε0n̄c

≡ Δn2 (27.97)

where n2 has the unit m2∕W and β the unit m∕W.

27.4.2.3 Spontaneous Emission

The stochastic forces

F±sp(r, t) = −
μ0ω0
2n̄k0

jsp(r, t)e±in̄k0z (27.98)

in Equation 27.86 have the properties

⟨F+sp(r, t)⟩ = ⟨F−sp(r, t)⟩ = 0 (27.99)

⟨F+sp(r, t)F+∗sp (r, t′)⟩ = ⟨F−sp(r, t)F−∗sp (r
′, t′)⟩ =

2ℏω0nr(r, t)g(r, t)nsp(r, t)
n̄2ε0c

δ(r − r′)δ(t − t′) (27.100)

where ⟨⟩ denotes ensemble average and δ(x) is the Dirac delta function. Equation 27.100 is not suited
for a numerical evaluation, because in dependence on the carrier densities the inversion (or spontaneous
emission) factor nsp has a singularity when the gain g changes its sign (transparency) so that the product
g ⋅ nsp is unde�ned. One possibility to circumvent this is to take the second moment (Equation 27.100)
proportional to βspRsp where Rsp given in Equation 27.139 is the rate of spontaneous emission into all
modes and the dimensionless factor βsp is chosen such that at threshold the correct values of the second
moments are obtained [8].

27.4.3 Final Field Equation and Balance of Radiative Energy

Summarizing the results of the previous subchapter, the paraxial wave equation can be written as

1
vg
∂tE±(r, t) ± ∂zE±(r, t) = − i

2n̄k0

(

∂xx + ∂yy

)

E±(r, t)

−
ik0
2n̄
Δn2(r, t)E±(r, t) −

nr(r, t)gr(r, t)
2n̄

[

E±(r, t) − ±(r, t)
]

−
ik0nr(r, t)

n̄
Δñ2(r, t)

[

|E+|2 + |E−|2
]

E±(r, t) + F±sp(r, t) (27.101)
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where

Δn2(r, t) ≡ n2(r, t,ω0) − n̄2 = Δn2
r + i

nr
(

g − α
)

k0
(27.102)

Here Δn2
r is the real part of Δn2, nr the real part of n, g the coe�cient of optical gain originating from the

emission or absorption of photons due to transitions between the conduction and valence bands, and α the
coe�cient of absorption of photons due to transitions within the conduction and valence bands (such as
free-carrier absorption and intervalence band absorption). Optical losses due to scattering on waveguide
imperfections could be included in α, too.

Multiplying Equation 27.101 with the complex conjugate E±∗, multiplying the complex conjugate of
Equation 27.101 with E± and adding all equations results in

1
vg

d‖E‖2

dt
= 1

n̄k0
Im

[

∂x(E+∗∂xE+ + E−∗∂xE−) + ∂y(E+∗∂yE+ + E−∗∂yE−)
]

+ ∂z
[

|E−|2 − |E+|2
]

+
nr(g − α)

n̄
‖E‖2 +

nrgr
n̄

[

Re(E+∗+ + E−∗−) − ‖E‖2]

−
nrβ̃
n̄

‖E‖4 + 2Re(E+∗F+sp + E−∗F−sp)

(27.103)

with ‖E‖2 = |E+|2+ |E−|2. This equation can be interpreted as a balance equation for the radiative energy
density

urad(r, t) =
ε0n̄ng

2
‖E(r, t)‖2 (27.104)

Integrating Equation 27.103 over the device volume V and using the boundary conditions Equations 27.88
and 27.87 leads to

d ∫V urad dV
dt

= −Pout +
ε0c
2 ∫V

nr(g − gr − α)‖E‖2 dV

+
ε0c
2 ∫V

nrgr
[

Re(E+∗+ + E−∗−)
]

dV −
ε0c
2 ∫V

nrβ̃‖E‖4 dV

+
ε0c
n̄ ∫V

Re(E+∗F+sp + E−∗F−sp) dV (27.105)

which is a generalization of Equation 27.31. The output power Pout = P0 + PL is given in Equation 27.30
where R0 = |r0|

2 and RL = |rL|
2. The optical power is

P±(z) =
ε0n̄c

2 ∬ |E±(x, y, z)|2 dxdy. (27.106)

Thus the �rst term in Equation 27.103 is the divergence of the transverse energy �ux density, which is
assumed to vansish on the transverse surface of the device. The second term gives the radiation leaving
the cavity. The third and fourth terms describe the increase or decrease of the energy due to stimulated
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emission or absorption, respectively, and the last two terms due to two-photon absorption and spontaneous
emission.

27.4.4 Cavity Modes, Beam Propagation Method, and Roundtrip Operator

The cavity modes are time-periodic solutions of the form E±mexp(iΩmt), ±exp(iΩmt) and obey the linear
equations

± i∂zE±m(r) =

[

Ωm
vg

+H(r, z)

]

E±m(r) (27.107)

subject to the boundary conditions (Equations 27.87 and 27.88). The operator H is given by

H(r, z) = 1
2n̄k0

(

∂xx + ∂yy

)

+
k0
2n̄
Δn2(r) + i

nr(r)gr(r)
2n̄

[

γ(r)
iΩm − i(ωp(r) − ω0) + γ(r)

− 1

]

(27.108)

The nontrivial solutions of (Equation 27.107) may depend on time via the dependence of the complex-
valued refractive index on temporally varying carrier densities and temperature. The complex-valued
relative mode frequencies Ωm are the eigenvalues and the mode pro�les E±m are the eigenfunctions of
Equation 27.107. The real parts of Ωm give the wavelengths relative to the reference wavelength λ0,

Δλm = dλ
dω

|

|

|λ0
Re(Ωm) (27.109)

and the imaginary parts describe the damping of the modes. For a passive cavity, Im(Ωm) > 0 must hold.
Lasing modes of an active cavity are distinguished by vanishing damping, Im(Ωm) = 0, due to the balance
of the outcoupling and internal losses and the gain.

It can be shown that the cavity modes ful�l an orthogonality relation which does not de�ne a scalar
product because of the non-Hermitian character of Equation 27.107. Due to the dispersion term in
Equation 27.107 the orthogonality relation di�ers from that given in [6], but can be derived in the same
manner.

If the operator H depends only on the transverse coordinates rt, the solution of Equation 27.107 can be
formally written as

E±m(rt, z′) = e
∓i(Ωm

vg
+H)(z′−z)

E±m(rt, z) (27.110)

The numerical evaluation of Equation 27.110 is the basis of what is known as the beam propagation method
(BPM) [45–47]. For the case of a spatially and temporally constant index, n = const., Equation 27.110 can
be evaluated exactly to yield

E±m(r
′
t , z′) = e

∓i(Ωm
vg
+ k0

2n̄Δn2)(z′−z)

∫ G±(r′t − rt, z′ − z)E±m(rt, z) dxdy (27.111)

with

G±(r′t − rt, z′ − z) = Θ
(

± (z′ − z)
)

⎡

⎢

⎢

⎣

√

±
in̄k0

2π(z′ − z)

⎤

⎥

⎥

⎦

2

e∓
in̄k0|r′t−rt|

2

2(z′−z) (27.112)
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where Θ denotes the Heaviside step function. The integral equation (Equation 27.111) together with the
propagator Equation 27.112 is known as Huygen’s integral in the Fresnel approximation.

Based on Equation 27.110 and the boundary conditions (Equation 27.87), it is possible to construct
roundtrip operators M±. One starts at some position z = z0 within the cavity and performs a full
roundtrip. Depending on whether we start into forward (+) or backward (−) directions, the eigenvalue
problems

M±(Ωm)E±m(rt, z0) = e
i 2Ωm

vg
L
E±m(rt, z0) (27.113)

are obtained. Note that the roundtrip operators M± depend on the eigenvalues Ωm if dispersion is taken
into account. The eigenfunctions of M± are the mode distributions E±m(rt, z0) at the position z0. A very
popular method for solving Equation 27.113 is based on the Fox–Li approach, cf. [48] and the references
therein. The idea is to choose a normalized, more or less arbitrary start distribution E±m(rt, z0) and to
apply the roundtrip operator M± recurrently until one arrives (hopefully) at a steady state. It is known
that the algorithm fails if there are cavity modes having identical or nearly identical damping Im(Ωm), as
it is the case in broad-area lasers. The association of the nonconvergence of the Fox–Li iteration with an
dynamically unstable laser behavior should be done with care. Instead, for multimode high-power lasers, a
time-dependent approach based on Equation 27.101 should be preferred, although it is numerically more
challenging.

27.5 Models for Nonlinear Modes and Filamentation

The multipeaked and not di�raction-limited lateral �eld pro�le of wide-aperture semiconductor lasers
has been a long-standing problem and has been investigated in the past by numerous authors [49–55].
Although the broadening of the far �eld of CW operating lasers with increasing power (also called far-
�eld blooming) can be at least partially attributed to the thermal lensing e�ect [56–58], a complete picture
of the origin and mechanism has not revealed yet.

One mechanism is believed to be due to carrier-induced antiguiding, i.e., the reduction of the refractive
index with increasing carrier density. This leads to a self-focusing mechanism because the index increases
in regions of high intensity due to a depletion of the injected carrier density and can result in the formation
of what is sometimes called lasing �laments.

Another mechanism that could explain the multipeaked structure and the broadening of the far�eld is
the simultaneous lasing of a large number of waveguide modes, originating from a built-in or thermally
induced waveguide. Indeed, recent experiments reveal, that even at currents several times above threshold
the lateral modes can be clearly identi�ed by spectrally resolved near- and far-�eld measurements [58,59].
However, with increasing current, a broadening of the individual modes and the appearance of new modes
with broad near and far �elds can be observed [60].

Here, we derive the equation for the description of the lateral �eld pro�le and discuss two basic
nonlinearities due to the virtual transitions and due to lateral spatial hole burning.

27.5.1 Longitudinal–Lateral Approximate Projected Equations

First we project the basic equations onto the dominant vertical mode using the Ansatz

E±(r, t) =

√

2dℏω0
ε0n̄ng

ϕ(y, x, z)u±(x, z, t) (27.114)
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where the mode pro�le ϕ(y, x, z) is normalized according to ∫ |ϕ|2 dy = 1. The scaling in Equation 27.114
is chosen such that |u±|2 is a photon density (unit m−3). The power is given by

P± = ℏω0vgd ∫ |u
±
|

2 dx (27.115)

where d is the thickness of the active region.
For each (x, z), ϕ(y, x, z) is a solution of a vertical waveguide equation with a real-valued index pro�le

n0 not dependent on carrier densities and temperature,

∂yyϕ(x, y, z) + k2
0n2

0(x, y, z)ϕ(x, z, y) = k2
0n2

e�,0(x, z)ϕ(x, y, z) (27.116)

where the real-valued e�ective index ne�,0 is the eigenvalue of Equation 27.116. Inserting Equation 27.114
into Equation 27.101, multiplying with ϕ, and integrating along y yields the equations

1
vg
∂tu±(x, z, t) = − i

2n̄k0
∂xxu±(x, z, t) ∓ ∂zu±(x, z, t) −

ik0
2n̄

[

n2
e�(x, z, t) − n̄2] u±(x, z, t)

− ik0Δn2,e�(x, z, t)ℏω0vgd‖u(x, z, t)‖2u±(x, z, t) (27.117)

where we omitted the dispersion and spontaneous emission terms for simplicity and

n2
e� = n2

e�,r + i
n̄
(

ge� − αe�
)

k0
, (27.118)

n2
e�,r = n2

e�,0 + ∫ (n
2
r − n2

0)|ϕ|
2 dy, (27.119)

ge� − αe� =
∫ nr(g − α)|ϕ|2 dy

n̄
(27.120)

and

Δn2,e� =
∫ nrΔn2|ϕ|4 dy

n̄
≈
Δn̄2
d1∕e2

(27.121)

The second term in Equation 27.119 treats e�ects, which are not included in n0 and thus ne�,0, for example,
the dependence of the real and imaginary parts of nr on the carrier densities or the temperature. The vertical
mode size d1∕e2 has been introduced in Equation 27.68. The approach sketched is called the “e�ective index
method” in the semiconductor laser community. Inserting Equation 27.114 into the rate of stimulated
recombination Equation 27.140 and averaging over the active region 1∕d ∫ d

0 dy yields

Rst = vg ge�‖u‖2 (27.122)

with ‖u‖2 = |u+|2 + |u−|2.
Equation 27.117 together with correspondingly projected equations for the polarization (Equation 27.94)

and a lateral di�usion equation for the excess carriers have been successfully applied to the simulation of a
large variety of high-power laser structures [61–66]. A discussion on numerical issues can be found in [67].
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27.5.2 Nonlinearities due to Virtual Transitions

The energy gaps of the con�nement and cladding layers of a laser structure are larger than the energy of
the photons generated by stimulated emission. In this situation, the photon energy is too small to allow
absorption of single-photons due to transitions of electrons between the valence and conduction bands, as
intended. However, virtual transitions involving two photons are still possible, which result in a third-order
susceptibility de�ned in Equation 27.96. An approximate expression for the dispersion of the two-photon
absorption coe�cient β for direct transitions has been given in [68]:

β(ω) = K

√

Ep

n2
r E3

g
F2

(

ℏω
Eg

)

(27.123)

where Ep is the energy equivalent of the momentum matrix element for direct transitions between the
valence and conduction bands, Eg is the (direct) energy gap and

F2(x) =
(2x − 1)1.5

(2x)5
for 2x > 1 (27.124)

The factor K can be considered to be a free parameter. The two-photon absorption coe�cient β =
260 m∕TW experimentally determined for GaAs at a wavelength of λ = 1064 nm [44] is obtained with
K = 41, 200 m∕TW × eV3∕

√

eV, using Eg = 1.42 eV, Ep = 26.1 eV, and nr = 3.48. Note the E−3
g

dependence of β.
Two-photon absorption as well as Raman and Stark e�ects result also in an intensity-dependent

contribution to the real part of the refractive index expressed as the optical Kerr coe�cient n2,

n2(ω) = K̃
ℏc
√

Ep

2n2
r E4

g
G2

(

ℏω
Eg

)

(27.125)

where the function G2(ℏω∕Eg) given in [68] is shown in Figure 27.11 together with the function F2(ℏω∕Eg).
It can be seen, that G2 is maximal around ℏω = 0.5Eg and changes its sign at ℏω = 0.7Eg, where F2 is

0.0 0.5 1.0
–0.10

–0.05

0.00

0.05

F 2, G
2

ħω/Eg

G2 F2

FIGURE 27.11 Functions F2 and G2 used in Equations 27.123 and 27.125.
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FIGURE 27.12 Nonlinear coe�cients calculated by Equations 27.123 and 27.125 versus wavelength for di�erent Al
compositions x in AlxGa1−xAs. (a) Two-photon absorption coe�cient and (b) Optical Kerr coe�cient.

maximal†. The factor K̃ can again be considered as a free parameter. The optical Kerr coe�cient n2 =
−4.1 ⋅ 10−17 m∕W experimentally determined for GaAs at a wavelength of λ = 1064 nm [44] is obtained
with K̃ = 7.212 ⋅ 1011 m∕W × 1∕(Ws m) × eV4∕

√

eV.
The dependencies of β and n2 of AlxGa1−xAs on λ are shown in Figure 27.12a and 27.12b, respectively.

The two-photon absorption increases from β ∝ 10 cm∕GW to β ∝ 25 cm∕GW if the Al composition is
decreased from x = 0.4 to x = 0 due to the decrease of Eg. It shows a nonmonotonous dependence on the
wavelength given by F2(λ). The optical Kerr coe�cient decreases with increasing x and changes its sign
in dependence on λ at higher Al compositions within the wavelength range investigated. For smaller Al
compositions and wavelengths n2 is negative, but for larger Al compositions and wavelengths n2 is positive.
For λ = 980 nm and relevant compositions |n2|<2 ⋅ 10−4 cm2∕GW. Under CW operation, the maximum
power density of broad-area lasers, which are state of the art during the writing of the book is of the order
10−2 GW∕cm2. Hence the resulting index change |Δn|<4⋅10−6 should not have a big impact on the optical
�eld.

It should be noted that in nonisotropic media the relation between the nonlinear polarization and the
electric �eld is more complicated than given in Equation 27.95. Hence the two-photon absorption and
the optical Kerr e�ect depend on the crystallographic orientation and on the polarization direction of the
optical �eld.

27.5.3 Nonlinearity Induced by Lateral Spatial Hole Burning

We now derive equations for the right and le� traveling �elds alone, eliminating the carrier density. This
is only possible for a (hypothetical) steady state. To this end, the real and imaginary parts of Δn2

e� are lin-
earized around a reference carrier density Nref, which is typically set to the transparency carrier density
Ntr were ge�(Ntr) = 0. Other possible choices could be the carrier density for waveguide transparency
(solution of ge�(Nref) = αe�) or the threshold carrier density of a laterally in�nite laser (solution of
ge�(Nthr) = αe� + αout).

For the steady state, linearizing the recombination rate as in Section 27.3.2, neglecting dri�-di�usion,
and assuming a constant injection current density the rate equation can be solved for the excess

† The functions F2 and G2 due to indirect transitions behave di�erently [69]: The maximum of F2 occurs slightly above the
indirect bandgap, and G2 is positive throughout the transparent wavelength range and crosses zero only above the indirect
gap. The two-photon absorption coe�cient is dominated by direct transitions for ℏω > Eg,direct∕2 if Eg,indirect > Eg,direct∕2.
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carrier density,

N − Ntr =
jτN
ed − Ntr

1 + vg g′e�τN‖us‖
2 . (27.126)

From Equation 27.126 it can be seen that N → Ntr for ‖us‖
2 → ∞, i.e., the carrier density cannot be

depleted below the transparency carrier density. Inserting Equation 27.126 into Δn2
e�,r(N), ge�(N), and

αe�(N) yields

ge�(j) =
g′e�τN(j − jtr)

ed(1 + ϵsat‖us‖
2)
, (27.127)

αe�(j) = αe�(Ntr) +
α′e�τN(j − jtr)

ed(1 + ϵsat‖us‖
2)
, (27.128)

n2
e�,r(j) = n2

e�,r(Ntr) +
αHn̄g′e�τN(j − jtr)

edk0(1 + ϵsat‖us‖
2)

(27.129)

with the saturation parameter

ϵsat = vg g′e�τN (27.130)

and Henry’s α-factor

αH = 2k0n′e�∕g′e�. (27.131)

For typical values ng = 4, g′e� = 10 ⋅ 10−18 cm2, and τN = 1 ns we obtain εsat = 7.5 ⋅ 10−17 cm3. In general,
g′e� > 0 and n′e� < 0 and hence αH < 0 for frequencies around the gain peak. Typical values of αH range
from −1 to −10.

The stationary states correspond to time-harmonic solutions

u±(x, z, t) = u±s (x, z)eiΩt (27.132)

of Equation 27.117 with Im(Ω) = 0. Inserting Equations 27.132, 27.127, and 27.129 into Equation 27.117,
we obtain

±i∂zu±s =
1

2n̄k0
∂xxu±s (x, z, t) + Ω

vg
u±s +

k0
2n̄

[

n2
e�,r(Ntr) − n̄2

]

u±s −
i
2
αe�(Ntr)u±s

+
τN

[

(i + αH)g′e� − iα′e�

]

(

j − jtr
)

2ed(1 + ϵsat‖us‖
2)

u±s + k0Δn2,e�ℏω0vgd‖us‖
2u±s (27.133)

For εsat‖u‖2 ≪ 1 we can expand

(1 + ϵsat‖us‖
2)−1 ≈ 1 − ϵsat‖us‖

2 (27.134)

so that the second-last term in Equation 27.133 resembles the last term with

Δn2,SHB = −
τN

[

(αH + i)g′e� − iα′e�

]

(

j − jtr
)

ϵsat

2ek0ℏω0vgd2 (27.135)
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For typical values αH = −2, g′e� = 10 ⋅ 10−18 cm2, j = 10 kA∕cm2, d = 10 nm, τN = 1 ns, jtr =
0.16 kA∕cm2 (corresponding to Ntr = 1018 cm−3), λ0 = 1 μm, ng = 4, εsat = 75 ⋅ 10−18 cm3 we obtain
Real(Δn2,SHB) = 5⋅10−4 cm∕W, which is several orders of magnitudes larger than the absolute value of the
e�ective optical Kerr coe�cient due to non-resonant virtual transitions Real(Δn2,e�) ≈ −7 ⋅ 10−10 cm∕W
for n̄2 = −10−13 cm2∕W (cf. Figure 27.12b) and d1∕e2 = 1.5 μm (cf. Equation 27.121).

Due to the fact that Real(Δn2,SHB) is positive, two basic instabilities sometimes termed “�lamentation”
arise [44]. First, a local intensity maximum induces a variation of the real part of the e�ective index with
a larger value at the position of the intensity peak than outside. Thus a local index waveguide is created
(self-focusing) [49]. However, at the position of the intensity peak the e�ective gain is decreased which
results in an reduced ampli�cation in the local-waveguide core and an enhanced ampli�cation outside
(self-defocusing).

The other instability, �rst described by Bespalov and Talanov [70], is the breakup of a laser beam with
a homogeneous intensity distribution into a beam with a random intensity distribution as a consequence
of the growth of irregularities initially present on the laser wavefront. For a mathematical description of
the e�ect, the forward and backward propagating waves have to be expressed as a sum of three plane-wave
components each [44,71].

In [51,72] the mean-�eld approximation, ū±s = 1∕L ∫ L
0 u±s dz has been applied to Equation 27.133

and the resulting nonlinear second-order ordinary di�erential equation has been solved numerically. In
both references, the case of a purely gain-guided laser is considered, i.e., any impact of a built-in or
thermally induced index guide has not been investigated. In [72], a zoo of solutions of di�erent types,
including asymmetric ones, has been found. The basic stationary states are the linear modes with the
wavelengths

Δλνk = −
λ0

Lk0ng

[

φ0 + φL
2

+ πk − Lk0n̄ −
Lk0
2n̄

Re(n2
ν − n̄2)

]

(27.136)

where k denotes the longitudinal mode, nν is the modal index of the νth lateral mode, φ0 and φL are the
phases of the re�ectivities. The other types of modes exist only due to the nonlinearity in the complex
e�ective index and arise above the thresholds of the linear-guided modes.

There are a number of shortcomings of the theory presented so far. The assumption of a constant injec-
tion current density, i.e., an in�nite series resistance as in Section 27.3.2 discussed, and the neglect of
dri�-di�usion result in an overestimation of spatial hole burning. A local variation of the complex e�ective
index is not only caused by its dependence on the carrier density but also on the temperature (∂n∕∂T > 0).
Furthermore, in all analytical investigations, we are aware of no built-in or thermally induced index waveg-
uides have been taken into account. These waveguides stabilize the linear guided modes, which are thus
observable even far above threshold [60].

Based on an expansion of the optical �eld on the linear-guided modes and a numerical solution of
the dri�-di�usion equations in the mean-�eld approximation the far-�eld blooming of an index-guided
broad-area laser has been investigated in [73]. The simulations revealed that a substantial part of the far-
�eld blooming is not caused by self-heating but by increasing gain nonuniformity due to lateral spatial
holeburning and laterally varying hole injection into the QWs. A discussion of �lamentation e�ects based
on a numerical solution of Equation 27.117 can be found in [53–55].

27.6 Thermodynamic-Based Energy-Transport Model

In high-power lasers operated in CW mode the transport of the charged carriers (electrons and holes)
and the photons must be consistently formulated with the temperature �ow in order to describe self-
heating e�ects such as thermal roll-over and thermal lensing properly. A derivation of such a self-consistent
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energy-transport model by applying fundamental thermodynamic principles has been given in [74] using
Boltzmann statistics. The model ful�ls the �rst and second laws of thermodynamics as well as Onsager’s
reciprocity relations for the current densities. We note, that in this model electron, hole, and lattice tem-
peratures are assumed to be equal, opposed to other energy-transport models [29,75]. A more general
energy-transport model for semiconductor devices has been derived in [76] taking into account Fermi
statistics and di�erent temperatures for the charged carriers and the lattice, but disregarding optical �elds.
Previous formulations have been also given in [77,78], for example. In what follows we will summarize
the energy-transport model paying particular attention to a consistent formulation with the model for the
optical �eld presented in Section 27.4.

27.6.1 Basic Equations

The particle current �ow is governed by the continuity equations for electrons and holes,

(jn = +e
(

R + ∂tn
)

(27.137)

(jp = −e
(

R + ∂tp
)

(27.138)

were jn and jp are the current densities for electrons and holes, respectively. The recombination rate R given
in Equation 27.46 consists of nonradiative recombination Rnon-rad, radiative spontaneous recombination
Rsp, and radiative stimulated recombination Rst. The rate of radiative spontaneous recombination is o�en
written as

Rsp = B(np − n0p0) (27.139)

with the equilibrium electron and hole densities n0 and p0, respectively. In the case of Boltzmann statistics,
the coe�cient B is constant whereas in the general case of Fermi statistics B decreases with increasing
carrier densities.

The rate of stimulated recombination is the rate by which the energy density of the optical �eld changes
by stimulated emission or absorption of a photon due to transitions between the conduction and valence
bands, divided by the energy of the emitted or absorbed photon and follows from Equations 27.104 and
27.103 to

Rst =
ε0cnr
2ℏω0

[

g‖E‖2 + gr
∑

ν=+,−
Re

(

Eν∗ν − Eν∗Eν
)

]

(27.140)

The electrostatic �eld itself is a�ected by the charge distribution of mobile (n and p) and �xed (nA and pD)
carrier densities. The corresponding electrostatic potential φ solves the Poisson equation

− ((ε0εs(φ) = e(p − n + pD − nA) (27.141)

with the relative static dielectric constant εs. For parabolic bands the relations between quasi-Fermi
potentials φn and φp, electrostatic potential φ and carrier densities n and p are given by Equation 27.59.
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In what follows we introduce the entropies per particle†

sn = kB

[

1 + Rn −
∂TEc

kB
+

eφn + Ec − eφ
kBT

]

(27.142)

sp = kB

[

1 + Rp +
∂TEv

kB
−

eφp + Ev − eφ
kBT

]

(27.143)

and the energies per particle

un = kBTRn − T∂TEc + Ec = T(sn − kB) + e(φ − φn) (27.144)

up = kBTRp + T∂TEv − Ev = T(sp − kB) + e(φp − φ) (27.145)

The functions Rn and Rp are given by the temperature derivatives of the inverse Fermi integrals,

Rn = −kBT∂T inv
i

(

n
Nc

)

(27.146)

Rp = −kBT∂T inv
i

(

p
Nv

)

(27.147)

For the bulk case (i = 1∕2), Boltzmann statistics, parabolic bands, and temperature-independent electron
and holes masses Rn and Rp are equal to 3∕2.

The electron and hole current densites are given by

jn = − σn((φn − Pn(T) (27.148)

jp = − σp((φp + Pp(T) (27.149)

where σn and σp are the electrical conductivities and Pn and Pp are the Seebeck coe�cients or thermoelec-
tric powers being the entropies per particle divided by the elementary charge e,

Pn =
sn
e

and Pp =
sp

e
(27.150)

If the coe�cients in front of the temperature derivatives in Equations 27.148 and 27.149 are derived from
the Boltzmann equation in relaxation time approximation, then the factorization σn ⋅Pn and σp ⋅Pp is only
possible for parabolic bands and Boltzmann statistics. The same holds for the factorization of the electrical
conductivities into products of carrier-density independent mobilities and carrier densities, σn = eμn ⋅ n
and σp = eμp ⋅ p. Furthermore, the magnitudes of Pn, Pp similarly as μn, μp depend on the scattering
processes involved [79]. For example, if the dependence of the relaxation time on the energy is given by
τ0[E∕(kBT)]r where r ranges typically between−3∕2 and+3∕2, then Rn = Rp = 3∕2+r in Equations 27.142
and 27.143. Thus Rn = Rp = 3∕2 holds only for an energy-independent relaxation time. The temperature
derivatives ∂TEc and ∂TEv of the conduction and valence band edges are o�en not included in the de�nition
of the Seebeck coe�cients.

According to Reference [74] the heat �ow equation reads

ch∂tT − (κL(T = h (27.151)

† The entropies can be also written as sn = e∂T(φn)(n,p) + kB, sp = −e∂T(φp)(n,p) + kB, where n, p are kept constant in the
di�erentiation.
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with the thermal conductivity of the crystal lattice κL, the heat capacity

ch = cL + n∂Tun + p∂Tup (27.152)

with cL being the heat capacity of the lattice and the heat source density

h =
kBT

e
((jn − jp) + T(jn(Pn − jp(Pp)

+ 1
σn

j2n +
1
σp

j2p + (un + up)R − ∂turad − γrad (27.153)

The �rst term in Equation 27.153 is related to thermodi�usion and can be written as

kBT
e

( ⋅ (jn − jp) = 2kBTR + kBT(∂tn + ∂tp) (27.154)

taking into account Equations 27.137 and 27.138. The second term describes Thomson–Peltier heat,

hTP = T(jn(Pn − jp(Pp) = hThomson + hPeltier (27.155)

which is generated by a current �ow along the gradients of the Seebeck coe�cients ∇Pn and ∇Pp. By
applying the chain rule to the gradients, the contributions due to Thompson heat and Peltier heat can be
separated,

hThomson = T(T
(

jn∂TPn|(n,p) − jp∂TPp|(n,p)

)

(27.156)

hPeltier = T
(

jn∂nPn|T(n − jp∂pPp|T(p
)

(27.157)

The third and forth terms correspond to Joule heat:

hJ =
1
σn

j2n +
1
σp

j2p (27.158)

generated by scattering of the carriers on phonons resulting in a energy loss to the lattice. The last term is
due to contributions of the recombination of electron–hole pairs which sets free the energy un + up that
is either transferred to the lattice as heat or transferred to the radiative �eld. The latter part is described
by the term ∂turad, which has to be subtracted from the source term, like the term γrad, which denotes the
energy loss from the cavity. Inserting Equations 27.154, 27.155, and 27.158 into Equation 27.153 gives

h = kBT(∂tn + ∂tp) + hTP + hJ + hrec+abs (27.159)

with the recombination and absorption heat

hrec+abs = e(TPn + TPp + φp − φn)R − ∂turad − γrad (27.160)

where R = Rnon-rad + Rsp + Rst. Likewise the rate of radiative recombination, the radiative energy den-
sity urad and the radiative energy loss γrad have contributions from spontaneous and stimulated emission,
urad = usp + ust and γrad = γsp + γst. Here, usp is the energy density and γsp the corresponding cavity
loss of the radiation generated by spontaneous emission into all modes (i.e., spatial directions, polarization
directions of the �eld and frequencies) not included in E± given by Equation 27.101.
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The balance equation for the energy density of the radiation generated by stimulated emission is given by
Equations 27.103 and 27.104. As it has been stated before the �rst term on the rhs of Equation 27.103 gives
the divergence of the transverse energy �ux density and the second term the radiation leaving the cavity
in propagation direction. Both terms combined give the total stimulated-energy loss from the cavity −γst,

−γst =
ε0c
2k0

Im
[

∂x(E+∗∂xE+ + E−∗∂xE−) + ∂y(E+∗∂yE+ + E−∗∂yE−)
]

+
ε0n̄c

2
∂z
[

|E−(r, t)|2 − |E+(r, t)|2
]

(27.161)

and hence

∂tust =
ε0cnr

2

(

(g − gr − α)‖E‖2 + grRe(E+∗+ + E−∗−)
)

−
ε0cnrβ̃

2
‖E‖4 − γst. (27.162)

Inserting Equations 27.162 and 27.140 into Equation 27.160 gives

hrec+abs = e(TPn + TPp + φp − φn)Rnon-rad +
ε0cnrα

2
‖E‖2 +

ε0cnrβ̃
2

‖E‖4

+
[

e(TPn + TPp + φp − φn) − ℏω0

]

Rst

+ e(TPn + TPp + φp − φn)Rsp − ∂tusp − γsp (27.163)

with the rate of stimulated recombination Equation 27.140. Equation 27.163 is the net heat source caused
by recombination and absorption. The �rst term is the heat generated by nonradiative recombination. The
second and third terms describe the heat due to absorption of the stimulated radiation. The fourth term
is caused by a possible incomplete energy transfer from the carrier ensemble to the radiation �eld during
stimulated emission, also referred to as quantum defect energy. The last terms describe the heat due to
the absorption of the spontaneous radiation, which could be treated similarly as the stimulated radiation
but approximations have to be employed because the �eld generated by spontaneous emission is more
challenging to calculate.

27.6.2 Spatial Distributions of the Heat Sources

The pro�les of the heat sources of an asymmetric super-large optical-cavity structure similar to that pub-
lished in [10] are shown in Figure 27.13a through 27.13d for the steady state for an output power of
Pout = 18 W and an averaged internal power of P̄ = 8 W. Some of the parameters are given in Table 27.1.
The one-dimensional simulation (along y) has been performed with the simulator WIAS-TeSCA [80]. The
absorption heat

habs = (fc,nn + fc,pp)P̄
|ϕ|2

W
(27.164)

with ϕ(y) being the vertical normalized mode pro�le is shown in Figure 27.13. The cross sections for free-
carrier absorption are fc,n = 4 ⋅ 10−18 cm2 and fc,p = 12 ⋅ 10−18 cm2. The main contributions arise in the
active layer located at y ≈ 1.9 μm due to the high nonequilibrium electron and hole densities and in the
adjacent p- and n-doped con�nement layers where the optical mode resides. The recombination heat

hrec = (5kBT + Eg)
(

Rnon-rad + Rsp
)

(27.165)
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in Boltzmann approximation is maximal in the active layer as expected. Note that the temperature depen-
dencies of Ec and Ev were not taken into account. The recombination of leaky electrons and holes in the
p-con�nement layer (cf. Figure 27.10b) generates heat, too. The quantum defect heat

hdefect = (5kBT + Eg − ℏω0)
gP̄|ϕ|2

ℏω0W
(27.166)

in a Boltzmann approximation, not shown here, is nonvanishing only in the active region and has the
same order of magnitude like the recombination heat there (hdefect ≈ 8 ⋅ 1014 W∕m3). The Joule heat
(Equation 27.158) shown in Figure 27.13c is mainly generated in the p-con�nement layer due to its low
doping and the small mobility of the holes. Finally, Thomson heat

hThompson =
3
2

kB
e

dT
dy

(

jn,y − jp,y
)

(27.167)

and Peltier heat

hPeltier = −
kBT

e

[

d ln(n)
dy

jn,y −
d ln(p)

dy
jp,y

]

(27.168)

in Boltzmann approximations are shown in Figure 27.13d. The Thompson heat is negative due to the tem-
perature gradient. The Peltier heat is positive or negative corresponding to the signs of the gradients of the
carrier densities. Except in the p-cladding layer (y > 3 μm) it dominates over the Peltier heat. Note that the
Peltier heat results in a cooling of the p-con�nement layer. The integrated heat powers are QJoule = 10.2 W,
Qabs = 2.7 W, Qrec = 1.3 W, and Qdefect = 1.9 W. Hence Joule heat amounts to more than 50% of the
total heat.
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FIGURE 27.13 Vertical pro�les of the heat sources of a high-power laser. (a) Absorption heat, (b) recombination
heat, (c) Joule heat, and (d) Thomson–Peltier heat. Heteroboundaries are indicated by dotted vertical lines.
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27.6.3 Energy Conservation

Inserting Equations 27.149 and 27.148 into the heat sources (Equations 27.155, 27.158 through 27.160)
and integrating over the device volume V leads to

∫V
ch∂tT dV − ∫V

(κL(T dV = kB ∫V
T(∂tn + ∂tp) dV

+∫V
jn((TPn − φn) dV −∫V

jp((TPp + φp) dV +∫V
eR(TPn − φn) dV

+ ∫V
eR(TPp + φp)dV − ∂t ∫V

urad dV − ∫V
γrad dV (27.169)

Using a Green’s identity we can convert

∫V
jn((TPn − φn) dV = ∫∂V

(TPn − φn)jn ⋅ ndS − ∫V
(TPn − φn) (jn

⏟⏟⏟
e(R+∂tn)

dV (27.170)

and

− ∫V
jp((TPp + φp) dV = − ∫∂V

(TPp + φp)jp ⋅ ndS + ∫V
(TPp + φp) (jp

⏟⏟⏟
−e(R+∂tp)

dV (27.171)

where ∂V denotes the surface of the device with n being the normal vector. Hence the terms containing
the recombination rate cancel, and a�er rearranging we obtain

∫V
ch∂tT dV − ∫∂V

κL(T ⋅ ndS

= ∫V
(TkB − eTPn + eφn
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

−un+eφ

)∂tn dV + ∫V
(TkB − eTPp − eφp
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

−up−eφ

)∂tp dV

+ ∫∂V
(TPn − φn)jn ⋅ ndS − ∫∂V

(TPp + φp)jp ⋅ ndS

− ∂t ∫V
urad dV − ∫V

γrad dV (27.172)

From the Poisson equation (Equation 27.141) we can derive the relation

e ∫V
φ(∂tn − ∂tp) dV = ε0 ∫∂V

φεs∂t(φ ⋅ ndS −
ε0
2 ∫V

εs∂t|(φ|2 dV (27.173)

where we applied again a Green’s identity. Using this relation and the expression for the heat capacity
Equation 27.152 we obtain the energy balance equation

d ∫V u dV
dt

= − ∫∂V
ju ⋅ ndS − ∫V

γrad dV (27.174)
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where u is the total energy density (sum of electro-static, internal, and radiative energy)

u =
ε0εs

2
|(φ|2 + cLT + unn + upp + urad, (27.175)

and ju is the energy current density,

ju = −ε0εsφ∂t(φ − κL(T − (TPn − φn)jn + (TPp + φp)jp (27.176)

both already introduced in [74]. The �rst term in Equation 27.176 is related to the displacement current
density. The other terms can be reduced to the entropy current density multiplied by T and the particle
�ux multiplied by the respective quasi-Fermi potentials.

In what follows, we consider the steady state (d∕dt = ∂t = 0) and evaluate the surface integral in
Equation 27.174. We assume no �ow of electrical current through the surface, except at the n-contact
located at y = 0 and the p-contact at y = H:

jn ⋅ n = 0

jp ⋅ n = 0

}

for y ≠ 0 and y ≠ H (27.177)

Between the contacts a forward bias U is applied, so that

φn|y=H = φp|y=H = U and φn|y=0 = φp|y=0 = 0 (27.178)

hold. The normal components of the electron current density at the p-contact y = H and the hole current
density at the n-contact y = 0 are assumed to vanish,

jn,y|y=H = jp,y|y=0 = 0 (27.179)

Similarly, we assume no heat �ow through the surface, except at the surface, located at y = H, attached to
the heatsink where

κL∂yT|y=H =
Tref − T|y=H

rth
(27.180)

with rth being the thermal transmission resistance (unit Km2/W). By inserting the boundary conditions
into Equation 27.174 we get for the steady state

∬
T|y=H − Tref

rth
dxdz = UI − ∫V

γrad dV +∬ [(TPp)|y=H − (TPn)|y=0]j dxdz (27.181)

with j = jn,y|y=0 = −jp,y|y=H and I = ∬ j dxdz. The lhs of Equation 27.181 is the heat �ow to the heatsink.
The �rst term on the rhs is the electric input power UI and the second term is the optical power that leaves
the cavity. The last term can be considered as Peltier power, which is generated between the electric con-
tacts in the presence of a current �ow and results into heating or cooling. Assuming that the spontaneous
emission is absorbed in the cavity so that γrad = γst, using Equation 27.161 and the boundary conditions
Equations 27.88 and 27.87, the second term can be shown to be (cf. Equation 27.105)

∫V
γrad dV = Pout (27.182)
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Thus in the steady state the total heat generated in the cavity is given by the electrical input power UI minus
the optical output power, which coincides with Equation 27.11, minus or plus the Peltier heat.
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28.1 Introduction

The brightness of an optical source is commonly de�ned as the emitted power per unit of emitting area and
per unit of the solid angle into which the power is emitted (Walpole 1996). Therefore, a high-brightness
source requires not only a high value of the emitted power but also a high “beam quality” in terms of a low
product of the beam size and the beam divergence. The product of the beam radius at waist and the beam
divergence half angle is called “beam parameter product” and based on it, the most widely used �gure
of merit for beam quality, the beam propagation ratio M2, is de�ned as the ratio of the beam parameter
product of the beam of interest to the beam parameter product of a di�raction-limited, perfect Gaussian
beam (TEM00) of the same wavelength λ (ISO 2005; Siegman et al. 1998). Therefore, a value M2 = 1
represents an ideal di�raction-limited source, while values higher than unity indicate a degradation of the
beam quality.

Semiconductor lasers are optical sources with very well-known advantages over other types of optical
sources: small size, high conversion e�ciency, and low cost. There are many applications of semiconduc-
tor lasers demanding high brightness: material processing, optical pumping of solid state and �ber lasers,
medical treatments, optical wireless communications, and in general all applications requiring high power
launched into an optical �ber. However, the brightness of a semiconductor laser is usually limited due to
two counteracting requirements: a large emitting area is required to produce high power with reduced bulk
and surface heating, while reduced dimensions are required to maintain a single spatial mode and thus a
high-quality beam. High-power semiconductor lasers are based on broad-area (BA) devices, with a poor
beam quality along the lateral axis, while devices with reduced lateral dimensions and good beam quality,
such as ridge waveguide (RW) lasers, su�er from a limited maximum output power.

As a consequence, an important research e�ort has been devoted to improve the brightness of semicon-
ductor lasers during the last years and various new approaches have been proposed, including lasers with
a tapered gain region (Walpole 1996; Wenzel et al. 2003; Sumpf et al. 2009), the master-oscillator power
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ampli�er con�guration (O’Brien et al. 1993; Spreemann et al. 2009), and the angled grating distributed
feedback laser (Lang et al. 1998; Paschke et al. 2003). Tapered lasers, also called �ared unstable cavity
lasers, are possibly the best choice to achieve high brightness at moderate cost, due to the technological
simplicity of their fabrication process.

The schematic of a typical tapered laser is shown in Figure 28.1a. It is similar to the tapered semiconduc-
tor optical ampli�er (SOA) described in Chapter 22 of this book (Tijero et al. 2017). In brief, it is composed
of a straight and narrow index-guided (IG) section, usually an RW structure, and a gain or IG tapered
section where the beam is ampli�ed. Ideally, the optical beam of a taper laser is a single lateral mode that
di�racts at the exit of the RW section and is ampli�ed in the tapered section while preserving its shape. The
main di�erence with the tapered SOA is that the re�ectivities of the facets are modi�ed to provide laser
oscillation at a reasonable value of the injection current. The output facet is usually antire�ection (AR)
coated while the back facet is coated to provide a high re�ectance (HR) in order to decrease the threshold
current and to maximize the output power. In many cases, the designs include beam spoiler elements in
the form of trenches located in the neighborhood of the border between the RW and the tapered section
(Figure 28.1a) (Kintzer et al. 1993). The main role of these elements is to �lter the backward propagating
�eld out of the RW. Most of the tapered lasers are based on a standard Fabry–Pérot cavity and therefore
they present multiple longitudinal mode spectra. Some designs include a distributed Bragg re�ector (DBR)
at the end of the RW in order to provide narrow and stable emission spectra (Hasler et al. 2008).

In comparison with other semiconductor lasers, the speci�c design of tapered lasers leads to an optical
beam with strong astigmatism. The virtual source for the vertical (y) axis (sometimes referred to as fast
axis) is located at the output facet of the laser from where the beam di�racts in air. However, in the lat-
eral (x) axis (sometimes referred to as slow axis), the beam di�racts from the exit of the RW section in
the semiconductor medium and therefore, at low power, the separation between the two virtual sources
(astigmatism) is approximately given by the taper section length LTAP divided by the e�ective index ne�.
This is illustrated in Figure 28.1b. In the vertical axis, the beam can be considered as di�raction limited
no matter the power. However, in the lateral axis the beam o�en degrades losing its di�raction-limited
character when the power increases. As mentioned earlier, this degradation is usually characterized by the
beam propagation ratio M2. Referring to Figure 28.1c, the beam parameter product, bpp, and M2 in the
lateral axis are, respectively, given by

bpp =W0xθx and M2 = π
λ

bpp (28.1)

AR

RW
section

Tapered
section

x
x

(a) (c)

(b)

z
z

z0x

W0x
Wx(z)

z0y

z0x z0y
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α

FIGURE 28.1 (a) Schematics of a gain-guided tapered laser. The shaded area is the contact region. Grooves acting as
beam spoilers are also depicted. (b) Schematics showing the far �eld distribution of a tapered laser as a consequence of
astigmatism. (c) Evolution of the beam size in the lateral direction along the propagation axis z.
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(λ∕π being the bpp of a Gaussian beam of wavelength λ). In Equation 28.1, W0x is the beam half width at
the virtual source position (beam waist half width), and θx is the beam divergence half angle (far-�eld half
width) given by

θx = lim
z→∞

Wx(z)
(z − z0x)

(28.2)

where Wx(z) is the beam half width at the z position and z0x the virtual source location. It is important
to point out here that the beam sizes in Equations 28.1 and 28.2 (and therefore the beam divergence) are
de�ned in terms of the second-order moment (variance) of the power density distribution by Wx(z) =
2σx(z) where

σ2
x(z) =

∞
∫
−∞

∞
∫
−∞

P(x, y, z)(x − x̄)2dx dy

∞
∫
−∞

∞
∫
−∞

P(x, y, z)dx dy
(28.3)

and x̄ is the �rst order moment of the power density distribution (x coordinate of the centroid) (ISO
2005). When Wx(z) is de�ned in this way, and only in this case, the evolution of the beam lateral size
along the propagation axis z for any simple astigmatic beam can be described by the hyperbola depicted in
Figure 28.1c and given by

Wx(z) =W0x

√

1 +
(

M2λ(z − z0x)
π(W0x)2

)2
(28.4)

The �tting of the measured Wx(z) to this expression is a method for the experimental determination of
M2, W0x, and z0x (ISO 2005).

Nevertheless, it is a common practice in the research groups having developed tapered lasers in the last
years to characterize the beam quality by the parameter M2(1∕e2) (Krakowski et al. 2002; Sumpf et al.
2002), using the expression

M2(1∕e2) = π
λ
θx(1∕e2)W0x(1∕e2) (28.5)

where θx(1∕e2) and W0x(1∕e2) are the half widths of the divergence and virtual source at 1∕e2, respectively.
For Gaussian beams M2(1∕e2) = M2 = 1 and in general M2(1∕e2) is a useful parameter to compare di�er-
ent lasers and to estimate the e�ciency of the source to couple power into a reduced area device, such as a
single mode �ber. However, M2(1∕e2) for non-Gaussian beams is usually much lower than M2 and it is not
actually a beam propagation ratio in the sense that it is not an invariant of the beam when it propagates in
air or across passive, nonaberrating optical elements as required by a real beam propagation ratio. There-
fore, the reader should be aware of this when interpreting the real relevance of this parameter. An example
of the severe discrepancies between M2 and M2(1∕e2) for a non-Gaussian beam will be commented in
Section 28.3.5.

Two clearly di�erent types of tapered lasers have been reported to date: gain-guided (GG) and IG lasers.
The GG tapered lasers feature a relatively large full taper angle, αtap, electrically de�ned in the p-contact
layer. In these lasers, αtap is designed to match the free di�raction angle (typically 4◦–8◦, depending on
wavelength), as we will describe later. In the IG tapered lasers a small taper angle (αtap < 1◦) is de�ned both,
electrically in the p-contact layer and optically by an e�ective index step created by removing a fraction of
the upper epitaxial layers. The beam properties of the two kind of tapered lasers are signi�cantly di�erent
(Borruel et al. 2004a). GG tapered lasers with a taper angle close to the free di�raction angle have been
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fabricated at many di�erent wavelengths from red (Blume et al. 2012) to around 2μm (Pfahler et al. 2006).
A review of previous work on these devices can be found in Wenzel et al. (2003) and Sumpf et al. (2009).
GG tapered lasers have demonstrated good beam quality and continuous wave (cw) output powers higher
than 10 W at 980 nm (Fiebig et al. 2009), 1060 nm (Sumpf et al. 2009), and 1030 nm (Müller et al. 2016).
Narrow IG tapered lasers have achieved more than 1 W at 980 nm (Krakowski et al. 2003) and 915 nm
(Michel et al. 2005). Narrow IG lasers are usually combined in parallel arrays in high-power laser bars
(Auzanneau et al. 2003; Wilson et al. 1999).

It is well known that the interaction between the optical �eld and the semiconductor gain media pro-
motes a complex spatial-spectral dynamics in semiconductor lasers. In the case of tapered lasers, nonlinear
e�ects, such as spatial hole burning (SHB) and thermal lensing add complexity to the physical phenomena
involved and make the high power behavior to signi�cantly deviate from the ideal low-power performance.
E�cient and accurate modeling approaches are thus necessary to analyze and predict the beam properties
of tapered lasers in order to design new geometries with improved performance. During last 20 years, dif-
ferent approaches have been applied to the modeling and simulation of tapered lasers and ampli�ers. For
a review see (Tijero et al. 2017) in this book.

Our group at the Universidad Politécnica of Madrid, in collaboration with the University of Nottingham,
developed CONAN (Borruel et al. 2002, 2004a; Sujecki et al. 2003), a sophisticated simulator for tapered
lasers that solves the electrical, optical, and thermal equations for these devices. Despite the assumptions
needed to reduce the model complexity (steady state, single frequency, two-dimensional [2D] propagation
of the optical mode), the simulations showed good qualitative and quantitative agreement with experi-
mental results in tapered lasers with di�erent geometries and based on di�erent materials (Sujecki et al.
2003; Borruel et al. 2004a; Odriozola et al. 2009; Esquivias et al. 2010). Furthermore, the simulator demon-
strated to be a useful tool to predict the behavior of novel designs prior to their fabrication (Borruel et al.
2005; Michel et al. 2009). Other models in literature (Williams et al. 1999; Mariojouls et al. 2000), based
on similar approaches, have also reproduced the main trends observed experimentally.

In this chapter, we present a didactic overview of how the main beam characteristics of high-brightness
tapered lasers can be accounted by simulation approaches with speci�c detail devoted to our simulation
tool, and provide illustrative examples representative of some of the most typical behaviors of these devices.
A�er this introduction, Section 28.2 presents a brief description of our simulation model and our proce-
dure to calibrate the model in comparison with experimental results; in Section 28.3, we apply the model
to three devices representative of some of the most common geometries and guiding mechanisms and ana-
lyze how geometry and guiding determine the beam characteristics. The chapter ends with a summary in
Section 28.4.

28.2 Simulation Model

28.2.1 Model Overview

Our quasi-3D (three-dimensional) model (Borruel et al. 2002, 2004a; Sujecki et al. 2003) solves self-
consistently the complete steady-state electrical, thermal, and optical equations for the tapered laser,
assuming single-frequency operation. The laser simulator includes a 3D electrical solver of the Poisson
and continuity equations coupled to a 3D thermal solver of the heat-�ow equation with the local heat
sources provided by the electrical solution. The optical �elds in the tapered laser are solved using a 2D
wide-angle �nite-di�erence beam propagation method (WA-FDBPM) making use of the e�ective index
approximation (Hadley 1992). Further details of the model can be found in Chapter 22 of this book, which
is devoted to tapered SOAs (Tijero et al. 2017). Here, we brie�y describe the model for completeness, in
order to emphasize the di�erences when applying it to tapered lasers instead of tapered ampli�ers. In fact,
the main di�erence is that in the simulator for tapered ampli�ers the WA-FDBPM is applied for the prop-
agation of the optical solution only in the forward direction, while in the case of tapered lasers, the optical
solution has to be propagated in both, the forward and then in the backward direction taking into account
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the corresponding re�ectivities of the front and rear facets as corresponds to an optical resonator (Fox and
Li 1961). Table 28.1 summarizes the main physical e�ects included in the model and how their dependence
on temperature, wavelength, or carrier densities has been considered.

The simulator �ow is shown in Figure 28.2. The solution procedure is initialized by a one-dimensional
(1D) laser simulator (Harold, 3.0) which provides for each bias current the lasing wavelength, the bias
voltage, and the average photon density in the laser cavity. The tapered laser is divided into 2D slices per-
pendicular to the z-axis at positions zi where i = 1,… ,N. The 1D average photon density is used to de�ne
an initial guess optical �eld at the �rst slice, at the rear facet of the device. The photon density of this �eld
is used as input for the electrothermal solver to calculate the lateral gain and refractive index perturbation
pro�les in the �rst slice. With these inputs, a 2D WA-FDBPM making use of the e�ective index approxi-
mation propagates the optical �eld through the �rst slice and provides the electrothermal solver with the
photon density pro�le corresponding to the next slice. This procedure is repeated until arriving to the front
facet of the device, i = N. A�er applying the electrothermal solver to the last slice, the output power Pout
and the excess power Pexc are calculated (Tijero et al. 2017) and used as inputs for a 3D thermal solver
that is applied to the entire cavity and provides a new temperature pro�le. The whole process is repeated
backward, i.e., propagating the solution from the front to the rear facet. A�er a number of round trips or
iterations, the steady state for all the electrical, thermal, and optical variables is found.

TABLE 28.1 Main Physical E�ects Included in the Model

Physical E�ect or Parameter Included Comments

Temperature dependence of energy gap YES Empirical Varshni form
Band-gap renormalization NOT
Contribution to current density from thermal
gradients

YES De�ned by the electron and hole thermoelectric
powers

Carrier capture/escape processes in the
quantum well (QW)

YES De�ned by electron and hole capture times

Thermionic emission in heterojunctions NOT
Fermi–Dirac statistics in bulk materials NOT
Dependence of electron and hole mobilities on
dopant concentration

YES Electric �eld and temperature dependencies not
included

Auger recombination YES Temperature-dependent Auger parameters
Shockley–Read–Hall (SRH) nonradiative
recombination

YES Complete SRH formula, dependent on both electron
and hole carrier concentrations, and on trap
properties (density, energy, and degeneration factor
of the trap, considering a temperature-dependent
capture cross section)

Wavelength dependence of refractive index YES Temperature dependence not included
Free-carrier absorption YES Linear with local carrier concentration, de�ned by

electron and hole free-carrier absorption coe�cients
Nonconstant linewidth enhancement factor YES Calculated in QW region from a carrier-dependent

di�erential refractive index, and carrier and
wavelength-dependent di�erential gain

Gain broadening YES Lorentzian function
Coulomb enhancement of the gain NOT
Spontaneous emission noise NOT
Detailed calculation of local heat sources YES Local heat sources: Joule e�ect, nonradiative

recombination, free-carrier absorption
Temperature dependence of thermal
conductivities

YES Included in semiconductor layers
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FIGURE 28.2 Main �ow of the quasi-3D simulator for tapered lasers CONAN.

The convergence criterion is based on the stability of the optical �eld at the rear facet a�er consecutive
iterations, both in shape and power. It can be expressed in terms of a parameter ε as

ε =

⟨

|

|

En(x) − En−1(x)|| , ||En(x) − En−1(x)||
⟩

⟨

|

|

En(x) + En−1(x)|| , ||En(x) + En−1(x)||
⟩ (28.6)

where En(x) is the optical �eld at the rear facet a�er n iterations and ⟨,⟩ denotes the scalar product. The
iterative process �nishes when ε is lower than a threshold value supplied by the user, typically 5 × 10−5.

As commented previously, in order to �lter the front facet back-re�ected optical �eld reaching the ridge
section, some tapered devices include beam spoilers (Walpole 1996). The beam spoilers are modeled by
setting the optical �eld to zero at the beam spoiler locations (Mariojouls et al. 2000).

It should be noticed that our algorithm uses a �xed lasing wavelength provided by the 1D simulator. In
a more rigorous approach, the lasing wavelength should be recalculated during the quasi-3D algorithm in
order to take into account the spatial e�ects on it. Nevertheless, the comparison with experimental results
has proven the approximate validity of our approach.

In some cases, the tapered lasers are fabricated with separate contacts for each section (Paschke et al.
2005; Odriozola et al. 2009; Michel et al. 2009). The model takes into account this possibility and allows
the di�erent sections to have di�erent bias voltages. This is implemented as follows: a�er the initialization,
the 1D simulator provides the laser wavelength, the initial photon density, and a bias voltage V0. Then,
for each section i, the applied bias voltage is recalculated as Vi = V0 + ΔVi, where ΔVi can be positive or



9781498749565_C028 2017/8/31 11:54 Page 65 #7

High-Brightness Tapered Lasers 65

negative. With these voltage inputs, the simulator proceeds normally and �nally, the current at each section
is calculated by integration of the current density.

The model can also be applied to the simulation of tapered lasers under patterned injection current
(Borruel et al. 2004b). This is an interesting strategy aimed at counteracting the detrimental e�ects of the
SHB. For this, a prede�ned function that laterally scales the epilayer material conductivities is introduced
in the simulator. In this way, the local resistance is modi�ed and therefore the current density pro�le is also
modi�ed according to the conductivity pro�le.

28.2.2 Model Options Regarding Symmetry

Our simulation procedure is based on launching a trial optical �eld and solving the forward and backward
propagation until convergence (Fox and Li 1961). Depending on the symmetry of the initial trial optical
�eld, the model has three versions:

• Half-cavity (HC) model: This is the basic version of the model. In this version, as in similar
models (Williams et al. 1999; Mariojouls et al. 2000), the trial optical �eld is the fundamental mode
of the passive RW section (an even function), although we have checked that the �nal optical �eld
is independent of the shape of the initial �eld, provided it is an even function. Since the beam prop-
agation method (BPM) preserves the parity of the �eld and the device is symmetric, only half of the
cavity needs to be explicitly solved, thus reducing the computational e�ort. However, this version
cannot take into consideration the e�ect of the odd components of the �eld and fails in reproduc-
ing some experimental features of the beam properties of IG tapered lasers, such as the excitation
of secondary lateral modes. Therefore, the model was upgraded and two versions including optical
�elds with both odd and even components were created (Esquivias et al. 2010).

• Full cavity coherent coupling (FCCC) model: In this version, the equations are solved in the full
cavity and the initial trial �eld is an asymmetric �eld Ea(x), containing odd and even components,
i.e., Ea(x) = Ee(x) + Eo(x). The photon density is taken as proportional to |

|

Ea(x)||
2 with Ea(x) being

the optical �eld a�er the propagation by the BPM through the previous slice. This photon density
is in general asymmetric, although it can result in a �nal symmetric solution, depending on the
particular device under study. This version o�en produces a snake-like intensity pro�le in the plane
of the active layer. The corresponding near-�eld (NF) and far-�eld (FF) pro�les are asymmetric
and the intensity pro�le is not stable a�er subsequent roundtrips. This kind of behavior has been
experimentally observed and attributed to the coherent coupling of frequency-locked lateral modes
(Guthre et al. 1994).

• Full cavity incoherent coupling (FCIC) model: As in the FCCC version, the equations are solved in
the full cavity and the initial trial �eld is an asymmetric �eld Ea(x), but in this case, the photon den-
sity is calculated as proportional to |

|

Es(x)||
2, the addition of the �eld intensities of the even and odd

components of Ea(x):||Es(x)||
2 = |

|

Ee(x)||
2+|

|

Eo(x)||
2. In this way, the photon density is symmetric, and

consequently also the carrier and temperature pro�les. This approach is equivalent to the simulta-
neous propagation of an even and an odd �eld with slightly di�erent frequencies and therefore only
coupled through its interaction with the gain medium, i.e., incoherently coupled. This version is
more appropriate than the HC model for IG lasers supporting higher order lateral modes besides
the fundamental mode.

28.2.3 Model Calibration and Comparison with Experiments

A critical point in all sophisticated laser models is the high number of relatively unknown material
parameters. Some of them (energy band parameters, refractive index, etc.) are speci�c of the di�erent
semiconductor materials used in the device. These are usually well known only for the most common
binary materials (GaAs, InP), relatively well known for some ternary alloys and relatively unknown for
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many other alloys. Even for the best known materials, the temperature or wavelength dependence of some
parameters has not been reported. In addition, other important parameters (scattering losses, trap char-
acteristics, etc.) depend on the particular fabrication process, and can be di�erent for nominally identical
materials. As a consequence, it is always necessary to calibrate the model parameters with experimental
results in order to reproduce the experiments and to predict the trends of the device performance when
modifying the material composition or the device geometry.

The main idea is to �nd, if possible, a set of simulation parameters such that the model reproduces the
main trends of relevant experimental results, such as power–voltage–current characteristics, FF and NF
patterns, and evolution of M2 and FF and NF patterns with current. If these simulation parameters con-
veniently account for the main physical e�ects causing the observed beam properties, then the model will
predict qualitatively, and even quantitatively, the performance of new devices based on the same materials
but with di�erent design. In other words, it is not so important to use a complete set of correct material
parameters, but rather to �nd out those parameters relevant for the model and related to the main internal
process limiting the maximum power or degrading the beam quality.

Our calibration process includes three steps, the �rst one at theoretical level, the second one by compar-
ing with experimental results in BA lasers, and the third one by comparing with results in tapered lasers.
Prior to the calibration, it is important to consider the entire epilayer structure and �nd out in the liter-
ature as many material parameters as possible, especially in the most standard references (Adachi 1992;
Vurga�man et al. 2001). Unfortunately, as stated above, many important parameters, such as refractive
index, Auger, and free-carrier absorption coe�cients, have never been measured for new materials or alloy
compositions, in which case we use judicious guess values based on the parameter values in other alloys
with similar gap or composition.

The �rst step of the calibration procedure is the �tting of the parameters used to calculate the material
gain spectra gmat(λ) and the spontaneous recombination rate Rsp, as a function of the electron and hole
quasi-Fermi energies. As it is described in Tijero et al. (2017), the simulation tool operates with a parabolic
band model for the calculation of these functions but takes into account band mixing e�ects by the fol-
lowing �tting procedure: �rst, we use a valence band (VB) mixing model (Coldren and Corzine 1995), to
calculate the quantum well (QW) energy levels and the maximum gain and the spontaneous recombina-
tion rate versus carrier concentration, gmax(n), and Rsp(n). Then, these calculations are �tted by the results
provided by the simulation tool using same formulation but considering parabolic valence subbands. The
�tting parameters are the QW energy levels, the e�ective mass of each level, and two scaling parameters
(multiplying factors) for gmat(λ) and for Rsp. Finally, the tool is fed with the parameters that best �t gmax(n)
andRsp(n) obtained by the VB mixing model. Very good agreement was achieved for a wide range of carrier
densities.

The second step in the calibration procedure is to compare 1D simulations with experimental results in
BA lasers fabricated with the same epitaxial material than the tapered lasers. It is important to include
power–current (P–I) characteristics for lasers with di�erent cavity lengths measured at di�erent tem-
peratures, as well as the FF patterns along the vertical axis. The goal of this step is to determine those
simulation parameters related to the material quality (scattering losses and Shockley–Reed–Hall recombi-
nation parameters), and also to modify those relevant parameters, which are not well known, such as the
Auger coe�cient and its temperature dependence. The comparison is made between measured and simu-
lated results in terms of the threshold current density (Jth) dependence on the cavity length L, internal
quantum e�ciency, internal losses, and characteristic temperature T0. The comparison between mea-
sured and calculated FF patterns provides a method to modify the refractive indices, especially that of
the QW, which is very important for the calculation of the optical con�nement factor in the simulations.
The comparison between experimental and simulated current–voltage characteristics provides informa-
tion on the total resistance of the device, which is relevant for a correct estimation of the Joule heating in
the simulations.

The �nal stage of our calibration procedure includes two parameters: one to account for the carrier-
induced refractive index change, and the other one to account for the heat transfer e�ciency. For the �rst
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one, we focus on its e�ect on the beam divergence and �t the experimental value of the beam divergence at a
�xed output power to the simulated value. This can be achieved by using as �tting parameter the coe�cient
n1 that relates the index change and the carrier density assuming a square root dependence (Borruel et al.
2004a). Regarding heat transfer, in order to avoid extending the thermal simulation region, we arti�cially
consider a heat-sink area equal to the device area and use the heat-sink thickness as �tting parameter. We
use it to �t the experimental average temperature increase when increasing the current to the simulated
temperature increase (on average). The experimental average temperature increase is estimated from the
shi� of the lasing wavelength when increasing the current, assuming a standard dependence. We have
checked that by changing the heat sink thickness, the average value of the temperature changes without
important modi�cations in the lateral and longitudinal temperature pro�les.

This procedure was applied to 975 nm (IG and GG with beam-spoilers) and to 735 nm (GG without
beam spoilers) tapered lasers in Borruel et al. (2004a). We found a good agreement in the P–I characteris-
tics, shape of the NF and FF patterns, and especially in the evolution of beam properties (M2, astigmatism,
widths of NF at waist and FF patterns) with the injection level. Furthermore, we also found a good agree-
ment between the maximum measured power in the 975 nm GG devices and the maximum power with
numerical convergence in the simulations, indicating that the physical mechanism limiting the power was
correctly reproduced. This good agreement provided the basis for a new geometrical design, the clarinet
laser (Borruel et al. 2005), which showed beam properties similar to those predicted by the simulations.
Our model was also applied to simulate the 915-nm IG lasers described in Michel et al. (2005), but in this
case the experiments showed a double peak in the NF and FF which was not reproduced by the simulations
and gave rise to the upgraded FCIC version of the model previously described. Additional comparisons
between experiments and simulations can be found in Odriozola et al. (2009), Michel et al. (2009), and
Esquivias et al. (2010).

28.3 Simulation Examples

In order to illustrate the capabilities of the simulation tools for accounting for the behavior of typical
tapered laser geometries and guiding mechanisms, we have selected three representative geometries and
guiding mechanisms sharing the same epitaxial structure. In this section, we analyze with our simulation
tool CONAN the e�ect of these design parameters on the device performance. We devote speci�c atten-
tion to the comparative analysis of the e�ects on the beam properties of the device geometry and injection
conditions. Since this analysis is presented here mainly for illustrative purposes, some interesting e�ects
will be just overviewed without a detailed study. The half-cavity version of the simulator was used in the
three examples. The simulations were performed under isothermal conditions to concentrate the focus in
carrier-related e�ects, since thermal e�ects are strongly dependent on the value of some relatively unknown
material parameters. A detailed discussion on the role of thermal e�ects in tapered lasers can be found in
Esquivias et al. (2010).

28.3.1 Device Geometries and Simulation Parameters

The epitaxial structure of the simulated devices corresponds to that of the 1060 nm GG tapered lasers
reported in Ruiz et al. (2009). In brief, it consists of a strained InGaAs QW embedded in a large InGaAsP
symmetric optical cavity with AlGaAs cladding regions. We will compare the beam properties of three
devices: (1) a GG tapered laser with beam spoilers (GG-BS), (2) a GG tapered laser without beam spoilers
(GG-NBS), and (3) a narrow IG laser without beam spoilers (IG).

The geometrical and material parameters used in the simulations are identical for the three devices
except for the taper angle and guiding mechanism in the tapered section. The total cavity length is 3 mm
and the taper angles are 6◦ and 1◦ for the GG and IG devices, respectively. Table 28.2 shows these param-
eters as well as a brief summary of the most in�uential material and device parameters used in the
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TABLE 28.2 Geometrical Parameters of the Tapered Lasers and Summary of the Most Relevant
Material and Device Parameters Used in the Simulation

Symbol Parameter Value Units

LRW Length of the RW section 1 mm
WRW Width of the RW section 2.5 μm
LTAP Length of the taper section 2 mm
Rf Front facet re�ectivity 0.025
Rb Back facet re�ectivity 0.95

Full aperture of beam spoilers 17 μm
Distance from beam spoilers to back facet 1 mm

αtap Full taper angle 6 (GG); 1 (IG) ◦

Δne� E�ective index step of the RW section 4.7 × 10−3

THS Heat sink temperature 20 ◦C
Γ Con�nement factor 0.0084
αscat Scattering losses coe�cient 0.5 cm−1

Cn(Cp) Electron (hole) Auger recombination coe�cient 2(2) × 10−30 cm6s−1

ke, (kh) Electron (hole) free-carrier absorption coe�cient 3(7) × 10−18 cm2

nI Di�erential refractive index coe�cient 4.5 × 10−11 cm3∕2

simulation. These parameters were extracted from standard references or �tted a�er applying the cali-
bration procedure described in Section 2.3 to the GG-BS device (Esquivias et al. 2010). The taper angle
of the GG devices was selected so as to �t the calculated free di�raction angle assuming an index step
Δne� = 4.7 × 10−3.

28.3.2 GG Tapered Laser with Beam Spoilers

The GG-BS device presented here is representative of GG tapered lasers with beam spoilers. At low power,
these devices show single-lobed NF and FF patterns and low values of M2. Figure 28.3a and b illustrates the
evolution of the pro�le of the forward and backward optical �eld intensities along the cavity at low power
(slightly above threshold). A more detailed view of the beam pro�les at di�erent longitudinal positions is
provided in Figure 28.4a and b. The shape of the fundamental lateral mode of the RW section entering the
gain section (see curve A in Figure 28.4a) can be approximated by a Gaussian function. In this example,
the calculated full width of the mode at 1∕e2 (Wmode) is 4 μm.

When entering the tapered section, the mode is subjected to two di�erent e�ects: (1) ampli�cation by
the gain medium and (2) free di�raction if the full taper angle is larger than the free di�raction full angle
θD (at 1∕e2). The free di�raction angle of an ideal Gaussian beam is given by

tg
(

θD∕2
)

= 2 ⋅ λ
π ⋅ ne� ⋅ wmode

(28.7)

where ne� is the e�ective index of the vertical waveguide. In the case of the GG-BS device under analysis,
the full taper angle (6◦) has been chosen to match the value of θD. Figure 28.4a shows the lateral intensity
pro�le of the forward traveling light at cross sections taken at several positions along the cavity (curve A
at z = 1 mm, curve B at z = 2 mm, and curve C at z = 3 mm, z = 0 and z = 3 mm being the back and
the output facet, respectively). The beam expands smoothly as it propagates along the tapered section and
reaches the output facet keeping its Gaussian-like pro�le (curve C), although the wave front has a convex
shape, and therefore the phase at the facet is far from being uniform. The re�ected (or backward) �eld
continues di�racting in its way back but now the freely di�racting beam does not overlap any more with
the gain region and therefore the beam becomes narrower as it propagates backward. This evolution is
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FIGURE 28.3 (a) Forward and (b) backward optical �eld intensity inside the cavity for the GG-BS tapered laser, when
operated at low power (Pout = 38 mW).
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illustrated in Figure 28.4b, where curves D and E show the intensity pro�les at an intermediate position in
the tapered region (z = 2 mm) and at the entrance of the RW section, respectively. As the beam entering
the RW section is wider than the fundamental mode of this section (70 versus 4 μm at 1∕e2), a substantial
part of the power is not coupled producing the so-called coupling losses (Walpole 1996) or taper losses.
The beam propagating along the RW section is �ltered by the single-mode waveguide, with the help of the
beam spoilers. Curves F and G are the pro�les at the middle of the RW section and at the back facet of the
device, respectively. The side lobes of curve F reveal that the �ltering e�ect is still imperfect at the middle of
the RW section (see also Figure 28.5b). However, at the back facet, the lobes have virtually disappeared and
the beam is as narrow as the fundamental mode of the waveguide revealing that in this case the �ltering
e�ect is fully accomplished at the back facet. In other cases, the �ltering could be still accomplished in the
subsequent forward propagation along the RW and the second pass through the beam spoilers a�er the
re�ection at the back facet.

Even more insight into the evolution of the beam inside the cavity can be gained by the gray-scale plots
in Figure 28.5. In these plots, the forward (Figure 28.5a) and backward (Figure 28.5b) photon densities
in each slice perpendicular to the longitudinal axis have been normalized to their maximum value in the
slice and white lines have been drawn at the border of the injected region and at the position of the beam
spoilers. In comparison with the smooth and homogeneous expansion of the photon density pro�le of the
forward �eld in the tapered section, the width of the backward �eld photon density pro�le increases from
z = 3 mm to about z = 2.5 mm and decreases a�erward due to the gain guiding in the narrower part
of the tapered region. Nevertheless, at the entrance of the RW section, the photon density pro�le of the
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backward �eld still expands far beyond the limits of the injected area. At this point, the �ltering role of the
beam spoilers is crucial and only tiny di�raction lobes survive a�er entering the RW section.

To complete the picture, the evolution along the cavity of the total powers carried by the forward and
backward beams is shown in Figure 28.6. These powers were obtained by integration of the forward and
backward photon densities in the lateral direction at each longitudinal position. In the logarithmic scale
of Figure 28.6, an exponential growth of the power is represented by a straight line in which slope is pro-
portional to the e�ective modal gain, de�ned as the di�erence between the modal gain and all the losses
occurring in the beam propagation. At low power (Figure 28.6a), the forward �eld e�ective gain is con-
stant in both sections. In this case, it is slightly lower in the RW section due to a lower material gain and
a slightly worse overlapping with the optical mode in the RW section (not shown). The backward beam
power shows initially an exponential growth up to about z = 2.5 mm due to the good overlapping with
the gain region. The progressively worse overlapping makes the beam ampli�cation to decreases down to
negative values at the entrance of the RW section. At this point, the power drops down due to the �ltering
e�ect of the beam spoilers. The subsequent evolution of the backward propagating power is the result of
the competing mechanisms of �ltering and gain in the RW section, the balance being slightly positive at
the back facet. The evolution of the forward and backward propagating powers at high power is illustrated
in Figure 28.6b and is mentioned later in this section.

The nearly ideal behavior of the GG-BS device observed at low power changes dramatically when
increasing the output power. The main reason for this is the mutual interaction in the semiconductor
material between photons and carriers in a feedback loop leading eventually to power saturation and self-
focusing at high output powers. Let us start with the optical mode pro�le. At high injection the mode
narrows, thus concentrating a high photon density in the cavity axis. This high photon density depletes
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the carrier density along the cavity axis due to the higher stimulated recombination in this region, the
so-called SHB e�ect. Figure 28.7a shows the simulated carrier density for the GG-BS device at the output
facet for increasing output powers. The initially �at pro�le of the carrier density evolves when the injection
increases to a “batman-ears” like pro�le, with maxima at the sides and minimum at the center. This pro�le
has been experimentally observed through spontaneous emission measurements (Pagano et al. 2011). The
carrier density minimum is limited by the transparency carrier density, 1.2 × 1018 cm−3 in our example.
The initial simpli�ed approach by Walpole (1996) suggested that the local gain saturation in the cavity
axis caused by the SHB would induce an increase of the photon density in the side regions, leading to a
top hat shape. But in semiconductor materials, a change of the carrier density produces simultaneously
changes in the gain and in the refractive index, which are related by the linewidth enhancement factor.
Figure 28.7b and c shows the corresponding gain and index pro�les at the power levels of Figure 28.7a.
The gain decreases at the cavity axis and the refractive index increases. The shape of the index pro�le pro-
duces a parasitic waveguide for the beam, with more important consequences on the beam shape than the
gain pro�le. The carrier-induced waveguide produces a convergent lens e�ect during the beam propaga-
tion along the tapered region, which concentrates the power density at the center of the beam, thus closing
the feedback loop (see Figure 28.4d).

At high power density, the strong feedback induces self-focusing of the beam, leading to saturation of
the output power. This e�ect can be visualized with the help of Figure 28.8, where (as in Figure 28.5) we
have plotted the forward (Figure 28.8a) and backward (Figure 28.8b) normalized photon densities at a
high power level. In comparison with Figure 28.5a, the forward beam is much narrower, showing clearly
the self-focusing. More di�cult is the interpretation of the backward beam shape in the tapered section
(Figure 28.8b). The expansion of the backward beam beyond the limits of the injected region adds to the
gain guiding and the induced index guiding a new degree of complexity making the beam shape extremely
di�cult to interpret in simple terms. Again, the �ltering role of the beam spoilers is apparent in the RW
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section. The small di�raction lobes surviving at low power are now more noticeable and can even reach
the back facet from where they are re�ected as can be (hardly) seen in Figure 28.8a.

The evolution of the integrated forward propagating power at high injection (Figure 28.6b) shows also
clear di�erences with respect to the low injection behavior. The nearly homogeneous e�ective gain for the
forward �eld at low power (Figure 28.6a) becomes clearly di�erent in the RW and tapered sections at high
power. In the RW section, the e�ective gain vanishes revealing a strong gain saturation con�rmed by a
carrier density in this section slightly higher than the transparency value (not shown). As the total round-
trip gain should be constant, the absence of gain in the RW section is compensated with the high values
of the e�ective gain at the beginning of the tapered section. Further in the tapered section, the forward
e�ective gain decreases slowly due once more to gain saturation. In contrast, the evolution of the backward
propagating power at high injection is not signi�cantly di�erent from the low-injection behavior. In the
RW section, a�er the sudden drop of the power due to the beam spoilers, the modal gain remains constant
at a value close to zero as for the forward beam.

The SHB and self-focusing of the beam at high injection not only limit the maximum power, but also
degrade the beam quality. Figure 28.9 shows the FF pattern and the NF patterns at waist and at the facet,
at three power levels. Under simplifying ideal assumptions, the expected value of the FF width can be esti-
mated by applying Snell’s law to the beam at the output facet. In this case, this yields a full beam divergence
angle θout (at 1∕e2) ∼ ne� ⋅θD = 20◦ (ne� = 3.34). The simulated value at low power is θout = 16.5◦, not far
from the previous estimation. It is clear how the shape of the beam is modi�ed by the carrier-induced con-
vergent lens when increasing the power: the NF patterns at waist and at the front facet develop shoulders
and the FF patterns evolve into a narrower central lobe together with the apparition of side lobes. These
e�ects produce also an increase of the astigmatism and the value of M2 is shown in Section 3.5.
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28.3.3 GG Tapered Laser without Beam Spoilers

The GG-NBS device presented here is representative of GG tapered lasers without beam spoilers. In spite
of the advantages of the use of beam spoilers, they have also drawbacks due to the additional processing
steps and also to the possible introduction of defects close to the active region. In fact, very high power
levels have been reported for tapered lasers without beam spoilers (Sumpf et al. 2009; Müller et al. 2016).
In this case, the �ltering properties of the RW section had been improved by increasing its length, a�er
a careful balance to optimize this design parameter (Wenzel et al. 2003). The main characteristic of the
beam experimentally observed in tapered lasers without beam spoilers is a multilobed FF pattern, with an
increasing number of lobes together with an increase of the peak to valley ratio when increasing the output
power (Borruel et al. 2004a; Fiebig et al. 2009; Sumpf et al. 2009; Müller et al. 2016).

Figure 28.10 shows the simulated evolution of the FF and NF pro�les of the GG-NBS device as a function
of the output power. The relatively smooth pro�les of the FF and NF at low power evolve when the injection
increases to a more structured pro�le with an increasing number of more and more distinguishable lobes.
The FF width at 1∕e2 decreases slightly when the power increases, while the 1∕e2 NF width at waist remains
almost invariant, in agreement with what has been experimentally observed (Fiebig et al. 2009). These
behaviors yield an almost invariant low value of M2(1∕e2). However, the value of M2 (second moment)
signi�cantly increases with the power, mainly due to the tiny side lobes below the 1∕e2 level in the NF at
waist (see inset in Figure 28.10b). These di�erences will be commented later in Section 3.5. The agreement
between the appearance and the evolution of the FF and NF lobes in simulation and experiments provides
support for the use of the simulation tool to provide a physical understanding of the origin of these lobes
in devices without beam spoilers.

Aiming at this, for an output power level of 0.26 W, Figure 28.11 shows gray-scale plots of the forward
(Figure 28.11a) and backward (Figure 28.11b) propagating photon densities, normalized to their maximum
value at each cavity position. The side lobes that are already apparent at the beginning of the tapered section,
propagate toward the front facet, and �nally result in the multilobed NF pattern shown in Figure 28.10c.
During the backward propagation (Figure 28.11b), the highest intensity side lobes run away the tapered
region where they extinguish without reaching the RW section. However, the backward �eld entering the
RW section is not perfectly �ltered and a fraction of it is di�racted by the RW section aperture producing
side lobes in the �eld that reaches the back facet. This residual �eld at the sides of the RW section is re�ected
by the back facet and interferes in the tapered section with the forward �eld arising directly from the RW
section, thus producing the multiple peaks observed in the beam characteristics.

The lack of a complete �ltering in the RW section is more important at high power, as the intensity
of the backward �eld increases and optically pumps the sides regions around the RW, thus reducing the
absorption. This e�ect is further illustrated in Figure 28.12, where we have plotted the forward and back-
ward photon densities (Figure 28.12a) and the carrier density (Figure 28.12b) at the interface between the
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magni�cation emphasizing the side lobes far from the axis appearing at Pout = 260 and 393 mW.
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RW and tapered sections at two power levels. At low power, the side lobes of the forward �eld are around
40 dB below the main lobe in the RW (Figure 28.12a) and therefore, this results in a single-lobed NF at
the facet (see Figure 28.10c). The backward �eld at the sides of the RW is low and therefore the induced
carrier density (Figure 28.12b) is far below transparency; in consequence, this region is highly absorbent.
However, at medium and high injection levels, the backward �eld intensity is high enough for pumping
the sides of the RW to a carrier concentration close to transparency (Figure 28.12b), thus decreasing their
absorption. As a result, the forward �eld intensity at the side lobes becomes only around 20 dB lower than
the maximum (Figure 28.12a) giving rise to the multilobed pro�le obtained at medium and high power
level.

Our previous simulations of GG tapered lasers without beam spoilers have shown the same trends as
the experimental results (Borruel et al. 2004a; Odriozola et al. 2009), but the quantitative agreement is not
as good as we have found in tapered laser with beam spoilers. Furthermore, the maximum output power
with numerical convergence in the simulations is usually lower than the measured maximum power. We
attribute these discrepancies to the limitations of our steady-state single-frequency model. We think that in
the real device, there is a complex dynamics of the di�erent lateral modes giving rise to rapidly varying NF
and FF patterns. As the measured NF and FF patterns are temporal averages, it is expected that the narrow
and pronounced lobes would average resulting in smoother pro�les. In fact, the lack of convergence in the
simulations is due to di�erent shapes and positions of the lobes a�er subsequent round-trips, yielding a
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stable output power but a di�erent �eld pro�le a�er each iteration. This is illustrated in Figure 28.13, where
we have plotted the NF at the facet a�er two consecutive round-trips for simulation conditions in which a
stable solution is not found. The averaging of the �eld intensity a�er di�erent roundtrips would produce
less pronounced lobes as they appear in the experimental results.

28.3.4 Narrow Index-Guided Tapered Laser

The IG device analyzed in this section is representative of narrow IG tapered lasers. Signi�cant di�erences
with respect to the behavior of large angle GG devices arise from the fact that the single lateral optical
mode launched by the RW section does not just expand by free di�raction into an injected tapered region
designed to match the free di�raction angle. Instead, the beam is guided in a narrow tapered section de�ned
by the refractive index step, where injection takes place.

The gray-scale plots of Figure 28.14 are illustrative of the forward and backward beam propagation
in the IG device at low power (notice the di�erent lateral dimension with respect to the corresponding
plots for GG devices). The forward beam expands preserving its shape, with most of the power (99.8% at
z = 2 mm) inside the guiding region (Figure 28.14a). The propagation of the backward �eld is determined
by a combination of competitive phenomena: di�raction, gain and index guiding, and re�ections at the
waveguide interface, resulting in a multilobed pro�le (Figure 28.14b). The index guiding, as well as the
relatively small taper angle, produces a beam entering the RW which is narrower than that of the GG
devices, hence reducing the taper losses. The RW section acts again as a spatial �lter, and the beam recovers
its original single-mode shape a�er a complete round trip.
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GG-NBS device under conditions in which a stable solution is not found.
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The main e�ect degrading the beam quality of IG tapered lasers is carrier-induced lensing and self-
focusing, similar to the e�ect analyzed in Section 28.3.2 for GG devices, but with important di�erences.
Figure 28.15 shows the simulated evolution of the FF and NF pro�les of the IG device as a function of the
output power. Both the pro�les as well as the evolution with power are completely di�erent than those of
the GG devices shown in Figures 28.9 and 28.10. At very low power (40 mW), since the beam expands in
the tapered section covering almost all the guiding region, the simulated FF width at 1∕e2 is θout = 3.28◦,
close to 3.34◦, the value resulting from applying Snell’s law to the taper angle. In consequence, the beam is
clearly astigmatic (204 μm). But the picture changes dramatically when increasing the power: the carrier
lensing reduces the width of the beam at the output facet down to sizes for which di�raction e�ects become
relevant, and consequently, the angular width of the FF patterns increases with the output power while
the NF at waist and the NF at the facet narrow. In addition, the carrier lensing also produces an almost
collimated beam inside the cavity (see Figure 28.16). Therefore, the virtual source position shi�s toward
the output facet and even beyond, giving rise to a fast decrease of the astigmatism to zero or even to negative
values. The evolution of the beam inside the tapered region, as a consequence of the carrier-induced graded
index pro�le (Figure 28.16), resembles that of a graded-index lens or an optical �ber. The strong SHB at
high power produces a self-focusing of the beam leading to saturation of the output power, as will be shown
in the next section.

28.3.5 Comparison between Devices

In this section, the main performance parameters of the three simulated devices are comparatively ana-
lyzed. Figure 28.17a shows the P–I characteristics, and Table 28.3 summarizes the main parameters
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TABLE 28.3 Parameters Extracted from the Simulated P–I
Characteristics of the Three Devices

GG-BS GG-NBS IG

Threshold current (A) 0.43 0.43 0.066
Threshold current density (A/cm2) 198 197 156
Slope e�ciency at threshold (W/A) 0.625 0.625 0.85
Taper losses (cm−1) 8.6 8.6 5.4

extracted from these results: the threshold current and threshold current density, the slope e�ciency, and
the taper losses. The threshold currents of the GG-BS and GG-NBS devices are similar and much higher
than that of the IG device, as expected from the comparison of the device area; however, the threshold
current density of the IG device is lower, due to the lower taper losses. The taper losses at threshold can
be estimated from the simulation results by considering the threshold current density and the modal gain
versus current density characteristic, and taking into account the mirror and the internal losses. Values of
8.6 and 5.4 cm−1 are obtained for the GG and IG devices, respectively, the lower value for the IG device
due to the better matching of the backward �eld. This di�erence in the taper losses is also the reason for
the higher slope e�ciency of the IG device. However, the strong narrowing of the beam in this device due
to carrier lensing makes the slope e�ciency to decrease when the injection increases (see Figure 28.17a).

Figure 28.17b and c shows the evolution of the widths of the FF and of the NF at waist (at 1∕e2), respec-
tively, for the three simulated devices. At low power, the FF widths of the GG and IG devices are 16.5◦ and
3.3◦, respectively, not far from the expected value for a Gaussian beam applying Snell’s law, as previously
discussed. On the contrary, the NF at waist is much wider in the case of the IG device, as expected from
its lower divergence. The astigmatism at low power (Figure 28.17d) is also quite di�erent, with the virtual
source (or beam waist) located at a distance behind the front facet zvs = 590 μm and zvs = 204 μm for the
GG and IG devices, respectively. The former value is close to Ltap∕ne� = 599 μm, the expected value for
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the free di�raction of a beam at the output of the RW; the latter is lower, even at very low power, due to the
index-guiding mechanism.

As previously mentioned, the devices show clear di�erences in the evolution of their beam characteristics
when power increases. In summary: in the GG-BS device, the FF width at 1∕e2 is approximately constant
and the waist increases, in the GG-NBS the waist is constant and the FF width decreases, and in the IG
device the FF broadens and the waist remains constant. These di�erences are also re�ected in the behavior
of the astigmatism (Figure 28.17d), which increases with the power for the GG devices while decreases for
the IG laser. Finally, the evolution of M2(1∕e2) and M2 (second moment) for the three devices is compared
in Figure 28.17e and f, respectively. The best beam quality is obtained for the IG device with a M2 (second
moment) close to the unity, indicating a di�raction-limited beam. When power increases, the increase of
the value of M2 (second moment) is much faster for the GG-NBS device than for the GG-BS laser due to
the fact that the multiple lobes in both the FF and the NF at waist of the �rst one strongly a�ect the second
moment widths. On the contrary, the value of M2(1∕e2) is very low, close to the unity, for the GG-NBS
device, even at the highest power in the simulations. Similar discrepancies between M2 (second moment)
andM2(1∕e2) have been reported experimentally for GG devices without beam spoilers (Fiebig et al. 2009).

28.4 Summary

We have presented an overview of the current state of the art in the modeling of high-power tapered
lasers, with a detailed description of our steady-state single frequency quasi-3D simulation tool. We have
explained the calibration procedure required for making meaningful comparisons with experiments and
using the simulator as a predictive tool. The capabilities of the model have been illustrated by comparing
the beam properties of three di�erent types of tapered lasers emitting at 1060 nm: GG with beam spoilers,
GG without beam spoilers, and narrow IG. The simulations reproduce the di�erent behaviors experimen-
tally observed in the three types of device and can be used for a better understanding of the interaction
between carriers and photons that determines the operation of tapered lasers.
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High-power laser diodes �rst gained interest as pump sources for solid-state lasers, with cost/watt and
reliability as the primary market drivers. In recent years, new markets have been opened by increases in
the brightness of the laser diode sources and by advances in the optical systems for beam shaping and
combining. The work in this chapter is motivated by the development of high-brightness laser diodes for
direct-diode laser systems targeting industrial applications and a desire to illustrate the important role of
laser simulation tools at both the device and system level. Traditionally, welding and sheet metal cutting are
the most lucrative industrial laser markets, but they are also the most demanding in terms of brightness.
Laser additive manufacturing processes, such as selective laser melting, are also quickly becoming a reality
and allow the fabrication of structures that cannot be made by traditional means. Their automated nature
is opening the door to new manufacturing paradigms.

Direct-diode laser systems for industrial applications combine the beams from many individual laser
diodes (or diode arrays) to couple them into an optical �ber for delivery to the target. The role of the
optical system is to combine the individual beams without losing their brightness. High-power direct-diode
lasers rely on multiple beam-combining methods, including incoherent or “side-by-side” beam combining,
polarization multiplexing, and spectral beam combining. The �rst commercial kW-class direct-diode laser
system used an external cavity to stabilize the wavelengths of, and spectrally combine, the beams of a large
number of broad-area (BA) lasers to couple a 1 kW beam into a 200 μm �ber (Huang et al., 2011). The
brightness of the �nal system is ultimately limited by the brightness of the individual sources.
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All beam-combining techniques couple light back into the laser diodes—deliberately, as in external
wavelength stabilization and spectral beam combining, or accidentally due to re�ections o� the optics.
This optical feedback is known to a�ect both the beam quality and the degradation of the laser diodes
(Hempel et al., 2013), but little has been published on how this feedback a�ects the operation of the laser.
As the power and performance requirements increase, the role of external optical feedback is becoming
increasingly interesting.

This chapter focuses on the impact of external optical feedback on high-brightness laser diodes. We
start by introducing the common beam quality metrics used for lasers and brie�y review the diode laser
technologies most commonly considered for high-brightness direct-diode laser systems, before focus-
ing on the tapered laser and showing why they are strong contenders for future high-power direct-diode
laser systems. We then describe the coupling of our continuous wave (CW) simulation tool, Speclase, to
commercial optical design tools to self-consistently simulate high-brightness diode lasers with external
optical feedback. We conclude with a case study exploring the impact of unintentional feedback on the
excitation of higher order vertical modes and lateral beam quality in a large optical cavity (LOC) tapered
laser.

29.1 Power Scaling and the Role of Beam Quality

The purpose of the beam-combining optics in a direct-diode laser is usually to couple the highest amount
of power from the individual laser diode sources into the end of an optical �ber. The brightness of the
combined beam (units = W cm−2 sr−1) limits the power that can be coupled into the delivery �ber and
depends on the brightness of the individual diode sources.

Metrics such as the beam parameter product (BPP) Q or beam propagation factor M2 are common
metrics used by manufacturers and industries to specify the beam quality of both the individual laser diode
and direct-diode laser systems. The BPP is the product of beam radius (measured at the beam waist) and
the half-angle beam divergence:

Q = ω0 × θdiv, (29.1)

whereω0 is the beam radius measured in millimeter and θdiv measured in milliradian and Q is the BPP mea-
sured in mm⋅mrad. The BPP allows optical designers to determine the number of individual beams that
can be imaged onto the end of a �ber with a �xed diameter (physical aperture) and maximum acceptance
angle (numerical aperture). The power coupled into the �ber also depends on the power of the combined
beam (and hence of the individual emitters). The brightness (units: W cm−2 sr−1) is de�ned as

B = P
π2Q2 =

P
λ2M2 =

P
λ2M2

xM2
y
, (29.2)

where P is the laser output power, Q is the BPP, λ is the wavelength and M2 is the beam propagation factor.
M2 is another measure of beam quality as de�ned by ISO 11146. The beam quality metrics, M2 and Q are
related by Equation 29.2, as shown in Table 29.1 for λ = 975 nm. (A detailed discussion of beam quality
metrics is in Chapter 28.)

Figure 29.1 shows the power and beam quality needed for di�erent industrial laser applications. The
dashed lines show the improvement in laser diodes (and direct-diode laser systems based on them) between
2000 and 2014. A laser with a power of 20 W and M2 ∼ 20–30 (e.g., a good BA laser diode [Thestrup et al.,
2003]) is suitable for printing and material processing, but not for additive manufacturing, welding, or
cutting. Conversely, a laser with a power of 10 W and M2 < 1.5 (e.g., a good tapered laser diode [Fiebig
et al., 2008]) is suitable for sheet metal drilling, marking, additive manufacturing, welding, and cutting of
metal.
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TABLE 29.1 Correspondent Values
of M2 and Q

M2 Q mm⋅mrad

1.0 0.31
1.5 0.47
2.0 0.62
3.0 0.93
5.0 1.6
10.0 3.1
20.0 6.2
30.0 9.3
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FIGURE 29.1 Beam parameter product versus laser power for di�erent applications.

29.2 High-Brightness Laser Diode Sources

Laser diodes for the most demanding industrial applications should have high brightness (e.g., P ≥ 10 W,
Q < 1 mm⋅mrad, or M2 < 3) and high-power conversion e�ciency (PCE) (e.g., PCE ≥ 55%). The sources
(and their performance) should be reliable and insensitive to re�ections.

29.2.1 Vertical Cavity Design

The vertical cavity design of a laser diode for e�cient, high-power operation in an external cavity is more
complicated than that of an isolated high-power laser diode. First, a wide vertical mode pro�le (vertical
near-�eld pattern) is needed for e�cient external cavity coupling and reduced alignment tolerance. This
also increases the tolerance to “smile” (a bend in the horizontal axis of a laser bar, which introduces pointing
errors in the slow axis) across a laser array and allows the use of simpler, less costly optics. Second, the exci-
tation and lasing of higher order vertical cavity modes by external optical feedback must be suppressed;
photons coupled from external cavity will lead to stimulated emission. Third, a narrow vertical far-�eld
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divergence is needed to minimize the impact of optical aberrations, thereby improving the cost and per-
formance of the optical system. Finally, the need for high-PCE means that Joule heating and free-carrier
absorption (FCA) play critical roles in the vertical cavity design (Larkins et al., 2014).

High-brightness laser diodes typically use LOC waveguides to produce a wide vertical near-�eld pattern
and narrow far-�eld divergence pattern. The LOC cavity reduces the power density at the facet (increasing
the mirror damage threshold) and reduces the vertical con�nement factor (reducing carrier-induced lens-
ing). The con�nement factor is the ratio of modal power contained in the active area to that contained in
the structure. Below is the de�nition of the vertical con�nement factor:

Γ(y) =
∫

+d∕2

−d∕2
E(y)2dy

∫

+∞

−∞
E(y)2dy

. (29.3)

The LOC waveguide also facilitates external cavity feedback (e.g., for wavelength stabilization and/or
lateral mode �ltering), but also makes the device more sensitive to parasitic re�ections.

As the LOC waveguide thickness increases beyond a certain point, the in�uence of the cladding layer
diminishes and the waveguide is formed by the index contrast of the active region and the waveguide.
Further increases in waveguide thickness raise the Joule heating and FCA losses, but do not signi�cantly
increase the near-�eld width or reduce the far-�eld divergence. Wider near-�eld patterns can be achieved
(with thinner, more e�cient waveguides) using other methods, including low-index quantum barriers to
reduce the index contrast between the active region and the waveguide (Wang et al., 2013); or high-index
optical traps to draw the �eld pro�le out into the waveguide (Buda et al., 1999).

LOC waveguides support multiple vertical modes, but, in the absence of external feedback, lasing is lim-
ited to the mode that reaches threshold �rst. When operated in a system with external feedback, however,
back coupling to higher order modes can cause them to lase. Even if the higher order modes do not lase, the
additional stimulated emission and FCA can reduce the laser’s e�ciency and increase self-heating. Exter-
nal feedback also a�ects the reliability of high-power laser diodes (Tomm et al., 2011). Thus, feedback is
becoming important as diode laser systems grow in power and complexity.

The suppression of higher order vertical modes becomes more challenging when the laser is operated
in an external cavity, where the optical feedback also excites the higher order vertical modes. First, as
little power as possible must couple into the higher order vertical modes. Second, the higher order vertical
modes must be prevented from reaching threshold. This can be achieved by engineering the laser cavity to
make the con�nement factors of higher order modes much lower than that of the fundamental mode, so
that their modal gain is lower. Accordingly, we de�ne a new �gure of merit for modal discrimination (MD):

MD = Γ(1)∕Γ(n), (29.4)

whereΓ is the optical con�nement factor and n refers to the higher order mode with the largest con�nement
factor. MDn can also be used to describe the MD of a particular mode n. (Note: Propagation loss is neglected
in MD, as it depends on the doping pro�le and operating bias—which are usually optimized a�er the initial
cavity design.)

Power from the external cavity can be coupled into the higher order modes, even if they do not reach
threshold. The modal gain of the higher order modes can also be reduced by increasing their propagation
loss—either by FCA or by substrate leakage. Damping of the higher order vertical modes also reduces the
total ampli�ed spontaneous emission (ASE) from these parasitic modes. ASE and gain of light coupled
into these modes do not contribute to the fundamental mode. Instead, they act as current leakage paths,
contributing to self-heating and reducing the PCE.

LOC laser structures based on both the low-index quantum barrier and the high-index optical trap
approaches were optimized (optically and electrically) for operation with external optical feedback (Larkins
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FIGURE 29.2 Vertical mode pro�les in the ELoD2 LOC laser structure.

TABLE 29.2 Con�nement Factor and MD Values for All Vertical
Modes in ELoD2 Structure

Mode Number Con�nement Factor (Γ) Modal Discrimination (MD)

1 0.0163 1
2 0.00376 4.33
3 0.000282 57.72
4 0.00856 1.90
5 0.00390 4.17
6 1.090E-05 1491.39
7 0.00130 12.58
8 0.00424 1.92

et al., 2014). The tapered lasers in this chapter are based on the ELoD2 vertical cavity with low-index quan-
tum barriers (Crump et al., 2013c). This structure supports eight vertical modes, as shown in Figure 29.2.
Their con�nement factors and MD are given in Table 29.2.

29.2.2 Lateral Cavity Design

State-of-the-art high-power lasers need a large output power, high PCE, and excellent beam quality. Ridge
waveguide (RW) lasers can produce a di�raction limited beam (single lateral mode), but have only achieved
output powers of 1.6 W (Yang et al., 2004). Flared RW lasers have achieved a maximum power of 3 W and
kink-free power of 2.2 W (Sverdlov et al., 2013). To achieve higher output powers, the laser diode needs
a larger gain volume (energy reservoir). This can be most easily achieved by increasing the emitter width,
which has the added bene�t of lowering the power density at the facet—thereby increasing the catastrophic
optical mirror damage (COMD) threshold.

Slab-coupled optical waveguide laser (SCOWL) diodes (Donnelly et al., 2003) use a shallower RW etch
to allow the beam pro�le to expand laterally in the “slab” below. They have been used as high-brightness
sources for power scaling by spectral beam combining (Huang et al., 2009). SCOWLs have good beam qual-
ity and low astigmatism, but their limitations are similar to those of the �ared RW laser and comparatively
low power (2.8 W) (Huang et al., 2007) limits their single-emitter brightness.

BA diodes have achieved powers of 29 W, reliable operation at 20 W, and record PCE (76%) at
0◦C. BA lasers have simultaneously achieved high power and high PCE at 300 K (14.5 W, PCE >60%)
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(Crump et al., 2009, 2013a). Their main limitation is their poor slow-axis beam quality (M2 ∼ 20–30)
(Knigge et al., 2005).

Lim et al. used simulations to investigate the dependence of the beam quality of BA lasers on cavity
length and width as a function of power (Lim et al., 2005). Lim’s work showed that the brightness of gain-
guided BA lasers improved with reduced cavity width and increased cavity length—establishing a new
basis for the development of narrow broad-area (NBA) laser diodes. Since then, NBA laser diodes have
received increasing attention (Crump et al., 2013b; Decker et al., 2014; Skidmore et al., 2016), with powers
of 7.5 W with Qslow axis = 1.8 mm⋅mrad and high e�ciency (PCE = 57%) (Crump et al., 2013b). Despite
the impressive performance of NBA laser diodes, they still fall short of the desired performance for the
most demanding applications.

The beam quality of BA lasers can also be improved using asymmetric feedback to reduce the threshold
of a particular higher order lateral mode (Pillai and Garmire, 1996; Thestrup et al., 2003; Wol� et al.,
2003; Lang et al., 2008), exploiting a concept previously demonstrated for phase-locked laser arrays ().
However, the usefulness of asymmetric feedback stabilization for high-brightness operation still needs to
be demonstrated—in particular, whether they can maintain their high beam quality and PCE at high power

Tapered laser diodes have received great interest, since they combine the lateral mode con�nement/
�ltering of the RW laser and the large gain volume of the BA laser. Thus, tapered lasers are able to
produce a high output power (12 W) with high beam quality (M2 < 1.2) and exceptional brightness
(B = 1.1 GW⋅cm−2 sr−1) (Walpole et al., 1992; Kelemen et al., 2005; Sumpf et al., 2010). This comes
at the expense of lower PCE (43%–55%) and power-dependent “wandering” astigmatism (Dittmar et al.,
2006; Fiebig et al., 2008). Thus, the tapered laser is promising for high-brightness direct-diode laser sys-
tems. The main challenges are to control their beam quality degradation at high power and to understand
the role of optical feedback.

29.2.3 Evolution of Lateral Beam Quality of High-Brightness Tapered
Laser Diode

The tapered laser diode comprises RW and tapered ampli�er (TA) sections. The RW supports a single
lateral mode, to inject a di�raction-limited beam into the ampli�er. It also �lters out higher order lateral
modes from the backward traveling �elds it receives from the tapered section. The TA provides a large gain
volume with a large output aperture. The taper angle is chosen to match the di�raction angle from the RW
(Pearson et al., 1969; Walpole et al., 1992), allowing the �eld to expand in the taper to produce a smooth
output �eld pro�le, as illustrated in Figure 29.3.

A nearly di�raction-limited lateral beam is obtained from conventional tapered lasers at low to mod-
erate power, but the beam quality degrades rapidly at high power. This beam quality degradation reveals
degradation of the RW �lter performance due to gain saturation inside the RW and absorption bleaching
by the backward traveling �elds outside of it (Sujecki et al., 2003; Kaunga-nyirenda et al., 2014; Larkins
et al., 2014, 2016). The absorption bleaching (due to band �lling by the generated carriers) renders the
material transparent and allows the backward traveling �elds outside the RW to reach the rear facet, where
they are re�ected and reenter the TA, as shown in Figure 29.4

TaperRW θT

FIGURE 29.3 Schematic diagram of a tapered laser, showing the adiabatic expansion of the beam in the taper.
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TaperRW θT

FIGURE 29.4 The beam outside the ridge waveguide (RW) bleaches the absorption in these regions, allowing the
re�ected beam from the back fact to travel back and couple into the tapered ampli�er (TA)

These un�ltered �elds create high-spatial-frequency features in the near-�eld pattern. These high-
frequency features or �laments are caused by the propagation and di�raction of the backward-traveling
�elds in the absorption bleached regions outside the RW (Lim et al., 2012; Larkins et al., 2014). This di�rac-
tion is primarily due to the di�raction of the backward propagating �elds that are not coupled into the RW.
Figure 29.5a shows the back propagating �eld in a 975 nm-tapered laser at I = 15A. The backward prop-
agating �elds are ampli�ed in the taper and gain guided at the edges of the taper to form a high-intensity
spot where the RW joins the TA. The �elds di�racting from this spot are clearly visible alongside of the RW.
Figure 29.5b shows the backward propagating �elds from this high-intensity spot in the absence of index
and gain-guiding e�ects. The �eld pattern agrees with the corresponding region in Figure 29.5a (inside
the white box)—except that the central lobe widens due to the absence of index guiding by the RW. In
Figure 29.5c, only the central �eld lobe (the lobe that couples into the RW) was back propagated, while in
Figure 29.5d only the outer lobes of the spot were propagated. Figure 29.5c and d shows that only the �elds
not coupled into the RW give rise to the di�raction pattern—and thus, for the absorption bleaching and
beam quality degradation.

Finally, spatial hole burning at the center of the taper and electrical over-pumping at the edges creates
high carrier densities and gain at the edges of the taper, as seen in quantitative intracavity spontaneous
emission imaging measurements (Bull et al., 2004, 2006). Ampli�cation and carrier-induced waveguiding
in these regions cause the “batman” ears in the near-�eld pattern and amplify/guide the backward �elds
that degrade the RW �lter performance (Williams et al., 1999; Sujecki et al., 2003) Di�erent techniques
have been suggested to overcome the degradation of beam quality, such as reducing the front facet re�ec-
tivity, using beam spoilers or using a longer RW section. Figure 29.6 shows the impact of reducing front
facet re�ectivity on the total photon density distribution (i.e. the sum of densities of both the forward
and backward traveling waves). These techniques all reduce the backward traveling �eld and associated
absorption bleaching. At the emitter powers sought for high-brightness direct-diode lasers (>10 W), how-
ever, these techniques are insu�cient. (Beam quality degradation in tapered lasers is also discussed in
Chapter 28.)

An integrated distributed Bragg re�ector (DBR) mirror at the end of the RW provides a solution with
better high-power performance. The rear facet of the laser must be antire�ection (AR) coated for the
DBR to work properly. The DBR (and AR-coated facet) act a spatial �lter, allowing the backward traveling
�elds in the regions outside the RW to exit the rear facet, as illustrated in Figure 29.7. In order to study
the spatial �ltering performance of the RW section, and understand how the DBR RW section improves
the spatial �ltering performance of the conventional tapered laser, we de�ne the RW �lter response as the
ratio of the forward and backward propagating �eld distributions at the interface between RW and TA
sections:

HRW = log10

[

Pforward
Pbackward

]

. (29.5)
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FIGURE29.5 (a) Backward propagating �eld in 975 nm tapered laser (I = 15 A) for converged simulation. Backward-
propagated photon distribution in the RW section for transparent, uniform index material for: (b) the total �eld;
(c) the central lobe coupled into the RW; and (d) the �elds not coupled into the RW.
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FIGURE 29.6 Impact of front facet re�ectivity on the shape of forward and backward traveling waves. Both �gures
(a and b) show the total photon density distribution (forward + backward).

TaperRWDBR

AR coating

FIGURE 29.7 Schematic diagram of the DBR-tapered laser, showing how the back-propagating beams outside of the
RW are allowed to leave the structure, instead of coupling back into the TA.
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FIGURE 29.8 RW �lter performance comparison of conventional (a) and DBR (b) tapered lasers.

Figure 29.8 compares the RW �lter responses of DBR and conventional tapered lasers with dual contacts
for a constant taper current as a function of RW current. In the conventional tapered laser, the �elds in the
RW are not ampli�ed at the lowest RW current, but those outside the RW propagate and are re�ected—
reducing the performance of the RW �lter. In the DBRtapered laser, these �elds are not re�ected and exit



9781498749565_C029 2017/8/31 15:08 Page 90 #10

90 Handbook of Optoelectronic Device Modeling and Simulation

1.4

1.2

1.0

0.8

0.6 REL = 150 nm
I = 10.1 A
I = 5.1 A
I = 1.6 A

Lateral position (μm)
(a)

N
F 

in
te

ns
ity

 (a
.u

.)

0.4

0.2

0.0
–150 100500–50–100 150

1.0

0.8

0.6

REL = 150 nm
I = 10.1 A
I = 5.1 A
I = 1.6 A

Lateral position (μm)
(b)

N
or

m
ali

ze
d 

FF
 in

te
ns

ity

0.4

0.2

0.0
–20 10 1550–5–10–15 20

100000
10000

1000 I = 10.1 A
I = 5.1 A
I = 1.6 A

Lateral position (μm)

RW
 fi

lte
r r

es
po

ns
e 100

10

1E–6
1E–5
1E–4
1E–3
0.01

1
0.1

100 150500

(c)

–50–100–150

FIGURE 29.9 Evolution of near-�eld (a), far-�eld (b) and RW �lter response (c) with current.

through the AR-coated rear facet. Thus, the �lter performance of the DBRtapered laser remains good up
to higher powers.

Despite the large performance improvement of the DBR-tapered laser at high powers, M2
2nd moment still

increases with power. To understand this, we studied the evolution of the near- and far-�eld patterns and
the RW response with current, as shown in Figure 29.9.

As the current increases, high spatial frequency features appear in the near-�eld pattern and grow in
strength, causing degradation of the far-�eld pattern. The appearance of these features correlates with a
sudden reduction in the RW �lter performance. Furthermore, the RW width and etch depth have little
impact on beam quality as seen in Figure 29.10. (Figure 29.10 also shows that M2

e −2 [beam radius w0
in Equation 29.1 is measured at 1∕e2] is independent of current, while M2

2nd moment [beam radius w0 in
Equation 29.1 is measured using second moment of area de�nition, as de�ned in Chapter 29] provides a
more sensitive measure of the changes in the near and far-�eld patterns.)

Figure 29.11 shows the forward propagating �eld at the junction of the RW and TA sections. Although
the �elds outside the RW are small, they will be strongly ampli�ed.

The �elds outside the RW section explain the degradation of the �lter function (and the changes in
the near- and far-�eld patterns), but there is a problem: If the backward propagating �elds outside the RW
all escape through the AR-coated rear facet, then where do these forward propagating �elds come from? The
answer lies in the forward propagating photon distribution in Figure 29.12, which reveals a single aperture
di�raction pattern—as con�rmed by the positions of the nodes in the pattern. Although these simulations
assume a simple patterned rear facet re�ectivity, the DBR will also produce aperture di�raction.
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FIGURE 29.12 (Continued) 2D forward propagating photon density with a perfect AR-coating on the rear facet (a)
and with an AR-coating with a power re�ectivity of 0.1% (b).

29.3 External Cavity Laser Simulation

New simulation tools are needed to address the problems posed by high-brightness diode lasers operating
in a system context with external optical feedback. The laser diode and the external cavity pose di�er-
ent modeling challenges and require the use of di�erent modeling approaches and so�ware tools. These
approaches and tools must be brought together to model the laser diode and the external optical system
self-consistently.

29.3.1 Laser Diode Simulation Tool “Speclase”

The simulation of high-brightness laser diodes is a challenging task, which requires self-consistent model-
ing of the electrical, optical, and thermal processes throughout the device (Williams et al., 1999; Lim, 2003;
Sujecki et al., 2003; Lim et al., 2009). LOC devices with external feedback bring the additional challenge of
simulating �elds with di�erent vertical mode pro�les and their competition for the available gain.

The simulation of the laser diode is performed with an in-house laser simulation tool, Speclase (Lim et al.,
2009), for the self-consistent quasi-3D optical, electrical, and thermal simulation of high-brightness laser
diodes. Speclase uses the two-dimensional (2D) wide-angle �nite-di�erence beam-propagation method
(WA FD-BPM) for the optical �eld propagation in the longitudinal and lateral directions (x–z plane).
Bipolar electrical simulations are performed in a series of planes orthogonal to the optical axis (x–
y planes), neglecting heat and carrier �ow in the z-direction. The electrothermal and optical solvers
are coupled through the stimulated emission/absorption and ASE processes and refractive index per-
turbations (calculated from perturbations of the gain/absorption spectra using the Kramers–Kronig
relations).

The optical solver models the spectral behavior of the device by propagating multiple wavelengths and
their competition through the spectral-spatial gain distribution. Figure 29.13 shows the �ow diagram of
Speclase. The electrothermal and optical models are solved self-consistently, using an accelerated Fox–Li
iterative approach (Agrawal, 1984).

In order to model the excitation and competition of �elds with di�erent vertical mode pro�les, Speclase
calculates each of the vertical �eld distributions and their vertical con�nement factors. This allows Speclase
to calculate the e�ective index and FCA distributions needed for the 2D propagation of the �elds with each
of the allowed vertical mode pro�les. Figure 29.14 describes the �ow diagram of Speclase for the simulation
of a high-brightness LOC laser diode coupled to an external cavity.



9781498749565_C029 2017/8/31 15:08 Page 93 #13

High-Brightness Laser Diodes with External Feedback 93

Initial optical field

Refractive index
perturbation

Refractive index
perturbation

(External optics module)

2D Electro-thermal slice solver
2D FD-BPM propagation

2D FD-BPM propagation
2D Electro-thermal slice solver

and Spontaneous emission

and Spontaneous emission

Photon
distribution

••• •••

••• •••λ–n

λ–n

λ–1

λ–1 λ0 λ1 λn

λ0 λ1 λn

FIGURE 29.13 Flow diagram of stand-alone (SA) Speclase with multiple wavelengths.

Initial optical field

2D FD-BPM propagation

2D FD-BPM propagation

2D electro-thermal slice solver

and spontaneous emission

and spontaneous emission

Refractive index
perturbation

Refractive index
perturbation

2D electro-thermal slice solver

Photon
distribution

External cavity

λ0

TE01

λ0

TE0n

λ0

TE01

λ0

TE0n
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29.3.2 External Cavity Simulation Tool

The modeling of the external cavity requires modeling of free-space optical propagation, including the
transmission, re�ection, and scattering e�ects. The optical models used inside the laser diode are not well
suited to free-space optical propagation, where Fourier optics (FO) and coherent ray tracing methods are
more appropriate. FO models preserve the wave nature of the optical propagation, but the underlying
paraxial approximation is best suited to low-divergence beams. Coherent ray tracing is better suited for
external cavity laser diodes with large beam divergence. Coherent ray tracing methods are also fast and
�exible, making them attractive for modeling complex optical systems. We describe an external cavity
modeling tool (OpticStudio) based on coherent ray tracing. FO models are also used in this chapter, but do
not need wave-ray transformation and are not discussed here.
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29.3.3 Coupling of the Laser Diode Simulation Tool and Coherent Ray Tracing
Tools

The coupling of the laser simulator and the coherent ray tracing tool for the external cavity is not straight
forward, since the light is treated as a wave inside the laser diode, but as rays in the external cavity. Careful
analysis of the output beam of the laser diode is needed to produce the input rays for the external cavity
model, while maintaining all of the properties of the beam emitted from the laser diode (e.g., near- and
far-�eld patterns, astigmatism). Bidirectional coupling is even more challenging, requiring conversion of
the rays back into an optical �eld distribution, which contains both intensity and phase information.

First, the �eld data produced by Speclase (near-�eld, far-�eld and wavelength) must be converted into
rays, which represent the laser source in OpticStudio. These rays each have a set of attributes: launching
coordinates, direction cosines and intensity.

Speclase simulates the lateral �eld distribution at the facet using 2D WA FD-BPM, so the lateral near-�eld
pattern is multiplied by the associated vertical �eld pro�le. The horizontal and vertical far-�eld patterns
are calculated by Fourier transformation:

ψ
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where ψ is far-�eld pro�le, θ is the divergence angle, E is the electric �eld, and k0 is the wavenumber.
Due to the astigmatic nature of the laser beam, the output rays appear to originate from two virtual line
sources (nonastigmatic sources have a virtual point source). The output rays must intersect both of these
line sources—one for the vertical beam divergence and the other for the horizontal beam divergence. The
longitudinal positions of these line sources are obtained by FO back propagation (horizontal line source)
and by back tracing the rays (vertical line source). Their transverse positions are the �rst moments of the
near-�eld patterns

The second challenge is to convert the rays returning to the laser facet back into complex �eld distribu-
tions, taking the ray phases into account. A fraction of the optical energy returned to the laser facet at each
lateral position (x) is coupled into the laser for each of the vertical modes supported by the LOC structure,
as determined by the overlap integral:
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where Eext is the distribution of the external �eld incident on the facet at this lateral position, TEn is the
nth vertical �eld pro�le, and ηn is the percentage of the re�ected power coupled into cavity mode n. The
phase of the coupled �eld at each position can be calculated by

φ = tan−1
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FIGURE 29.15 Schematic of coupling Speclase to OpticStudio.

This process is repeated for the vertical �eld distributions at each lateral position along the facet. The
resulting one-dimensional (1D) �eld distributions are coherently added to the internally re�ected �elds and
propagated backward within the laser diode using 2D WA FD-BPM. The entire external cavity simulation is
repeated using Fox–Li iterations until it converges. Figure 29.15 shows a schematic diagram of the coupling
of Speclase and OpticStudio

29.4 Case Study: The Impact of Unintentional Reflections on a
DBR-Tapered Laser

High-brightness tapered lasers are usually characterized and simulated in isolation, without back re�ec-
tions to degrade the slow-axis beam quality or couple into higher order vertical modes. In this section,
we simulate the simple scenario of an LOC tapered laser with fast- and slow-axis beam collimation lenses
with the light incident on the end of an uncoated optical �ber (R = 5%), as illustrated in Figure 29.16. The
purpose of this study is to:

1. Observe how the feedback a�ects the power, PCE, and beam quality
2. Observe the impact of the feedback on the excitation of other vertical modes
3. Reveal the impact of self-heating from the excitation of other vertical modes
4. Investigate approaches for suppressing the impact of higher order vertical modes

The laser diode in this study is a 975-nm LOC DBR-tapered laser based on the ELoD2 structure (Crump
et al., 2013c), with a 2-mm RW and a 3-mm gain-guided ampli�er with a 6◦ taper. The DBR is represented
by a patterned re�ectivity (R = 31% inside the RW, R = 0.1% adjacent to it). The front facet re�ectivity is
1%. Stray external cavity re�ections are included using ray splitting and scattering. Figure 29.17 shows the
simulated and experimental power and PCE versus current behavior of an ELoD2 BA laser.

High-power laser diodes are o�en fabricated as linear bar arrays or laser “bars.” Laser bars o�en bend
slightly when they are soldered to a heatsink, so that the emitter near-�eld patterns deviate from a straight
line—an e�ect referred to as “smile.” Figure 29.18 shows how “smile” of packaged laser bars displaces the
emitters (±0.5 μm) from the axis This displacement causes the beam to propagate through the external
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FIGURE 29.16 External cavity setup used in the simulation consists of a fast-axis collimation (FAC) lens, a slow-axis
collimation (SAC) lens, and a �ber. Rays splitting and scattering turned o� (le�). Rays splitting and scattering turned
on (right).

70

1413121110

Experiment, WG = 4.8 µm
Simulation, WG = 4.8 µm

9876
Current (A)

543210

60

50

40

30

20

10

0

14
BALaser
100 × 4000 µm
d = 4.8 µm
Rf = 1%
Rb = 98%

12

10

8

6

4

2

Po
we

r (
W

)
Power conversion efficiency

0

16

15

FIGURE 29.17 Simulation versus experiment for ELoD2 structure.

1 µm

FIGURE 29.18 “Smile” of a linear laser array or bar, which is caused by bending as the bar is soldered to a heatsink.

optics at an angle to the optical axis, a phenomenon known as “pointing error” To emulate the impact of
“smile” and “pointing error,” the emitter position is shi�ed vertically with respect to the external optical
system.

Two external cavity simulations were performed (on- and o�-axis) and compared to a stand-alone (SA)
simulation (no external feedback). The overlap integrals of the re�ected �eld of the fundamental mode
(from the SA simulation) and the cavity modes were calculated to estimate the coupling coe�cients ver-
sus displacement, as shown in Figure 29.19. These curves show how displacement a�ects the feedback
coupling to the vertical modes. The o�-axis simulation was performed for a displacement of +0.5 μm,
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FIGURE 29.19 Impact of smile on external cavity coupling coe�cients. Modes 1–4 (a) have coupling >10%, while
modes 5–8 (b) have coupling <5%. An o�-axis point of interest is displacement = +0.5μm.

where the fundamental mode coupling coe�cient (29.5%) approaches that of a higher order mode (19%,
mode 2).

29.4.1 Parasitic Reflections with On-Axis Alignment

Simulations were performed for two di�erent external feedback conditions: no feedback; and feedback
to the �elds for all of the vertical mode pro�les. Simulations were performed at bias currents of 2.5, 5.0,
10, 15, and 20 A. Figure 29.20 shows the power versus current and PCE versus current characteristics to
compare the performance of the laser for these two feedback conditions. Our discussion will focus on
the performance at a bias current of 15 A, since this produces an output power in the range of interest
(10–12 W) for the targeted application.
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FIGURE29.20 Simulated power (a) and power conversion e�ciency (b) of the tapered laser with and without on-axis
feedback.

Figure 29.20 shows that the optical feedback reduces the output power and the PCE. At I = 15 A, the
on-axis feedback caused the fundamental mode power (mode 1) to drop from 11.67 to 9.49 W, while the
PCE fell from 47.1% to 38.4%.

Figure 29.21 compares the near-�eld patterns (le�) and far-�eld patterns (right) of the on-axis laser for
the two feedback conditions. The feedback reduces the output power and increases the modulation depth
of the high spatial frequency components in the near-�eld pattern, as observed experimentally (Hempel
et al., 2013; Leonhäuser et al., 2014). The feedback may also lead to excitation and lasing of higher order
modes—in this case mode 4.

Figure 29.22 shows the current dependence of the beam propagation parameter M2 (both the e−2 and
second moment de�nitions) for the on-axis external cavity feedback conditions. At I = 15 A, the feedback
had little e�ect on M2

e−2 , but M2
2nd moment increased from 6.32 to 12.03. This shows that aperture di�raction

from the DBR dominates the beam quality degradation.
The total photon distributions (forward and backward propagating) with on-axis feedback are shown in

Figure 29.23 for the �rst four vertical modes. Only modes 1 and 4 are lasing, but light is also coupled into
the other modes. Although they do not lase or produce an output beam (and are di�cult to characterize and
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FIGURE 29.24 Self-heating due to Joule heating by each vertical mode at I = 15 A.

easy to overlook), they a�ect the laser through optical pumping (absorption bleaching), parasitic current
leakage, and heat generation.

Figure 29.24 shows the Joule heating distributions caused by the currents supporting stimulated emis-
sion of the di�erent modes at I = 15 A—as well as how the di�erent vertical modes share/compete for the
available gain. These distributions show where the stimulated emission occurs within the device for each
of the vertical modes. For the higher order modes, this occurs solely because of the power fed back into
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FIGURE 29.25 Self-heating due to optical pumping by each vertical mode at I = 15 A.
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FIGURE 29.26 Self-heating due to free-carrier absorption by each vertical mode at I = 15 A.

them from the external cavity. Figure 29.25 shows the self-heating distributions due to optical pumping
(absorption) at I = 15 A. This pumping causes the absorption bleaching, which plays a critical part in
the degradation of the RW spatial �lter performance. These distributions show the spatial distribution and
relative contributions of the vertical modes to the absorption bleaching. The fundamental mode clearly
plays a dominant role in the optical pumping, but the other modes also contribute. Figure 29.26 shows the
spatial distributions of self-heating due to FCA. The drop in FCA to the le� of the RW–TA interface is due
to the RW etch. The higher order modes lose much more power due to FCA than to optical pumping.
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TABLE 29.3 Impact of External Cavity Feedback on the Laser Perfor-
mance (Power, E�ciency, and Beam Quality) for Coupling to All Modes
and for Coupling Just to the Fundamental Mode

Simulation Output Power (W) PCE (%) M2
2nd moment

Stand-alone 11.67 47.13 6.32
External cavity (all modes) 9.49 38.39 12.04
External cavity (mode 1 only) 9.46 38.13 12.3

The excited higher order modes clearly play a role in the operation of the device, but their overall power
is small compared to that of the fundamental mode (which also has the greatest feedback power). The
question is, whether the degradation in PCE and beam quality is primarily controlled by feedback to the
higher order vertical modes or to the fundamental mode. Table 29.3 compares the output power, PCE,
and M2

2nd moment for the laser in isolation (SA), with on-axis feedback to all vertical modes and with on-
axis feedback to just the fundamental mode. It is clear that the feedback to the fundamental mode has
the greatest e�ect on both PCE and beam quality, while feedback to higher order vertical modes plays a
smaller role. This can be understood in the context of an increased output facet re�ectivity, which reduces
the output power and PCE. At the same time, the optical feedback into the fundamental mode increases
the absorption bleaching adjacent to the RW and also the power incident on the DBR re�ector inside the
RW, as discussed in Section 29.2.2. Both of these e�ects contribute to the beam quality degradation—the
�rst by reducing the absorption �ltering of the di�racted light outside the RW and the second by increasing
the power in the side lobes of the di�raction from the DBR re�ector.

29.4.2 Parasitic Reflections with Off-Axis Alignment

External feedback couples to the vertical modes di�erently, when its alignment to the waveguide changes.
Here, we explore the impact of a vertical emitter shi� of+0.5 μm due to “smile.” Table 29.2 shows that modes
2 and 4 have moderate (MD2 = 4.33) and low (MD4 = 1.90) values of MD. Figure 29.19 shows they now
have large (19%) and moderate (4.8%) coupling coe�cients. The performances of these two modes should
reveal the relative importance of the MD and the coupling coe�cient. The coupling to fundamental mode
also decreases from 42.15% (on-axis) to 29.5% (o�-axis).

Figure 29.27 shows the power versus current and PCE versus current characteristics of the LOC tapered
laser. With the o�-axis feedback, the output power and PCE at I = 15 A dropped from 11.67 to 9.22 W,
while the PCE fell from 47.1% to 37.3%. The coupling into mode 2 increased by a factor of ∼11, allowing
both modes 2 and 4 to lase.

Figure 29.28 shows the current dependence of the beam propagation parameter M2 (both the e−2 and
second moment de�nitions) for the o�-axis external cavity feedback condition. At I = 15 A, the o�-axis
feedback did not change M2

e−2 , but M2
2nd moment increased from 6.32 to 11.72.

29.4.3 Analysis and Discussion

In this section, we analyze and discuss what happens to the power fed back into the higher order modes
and how it a�ects the performance of the laser. We are particularly interested in how the feedback e�ects
depend on parameters that can be in�uenced during the design of the laser: MD, coupling coe�cient, and
FCA. We are also interested in how the external cavity optics can be designed to minimize feedback e�ects.

Tables 29.4 and 29.5 summarize a range of power-related performance metrics for each of the vertical
modes at a bias current of 15 A. This bias was selected, as it produces an output power of 11.7 W in the
absence of external feedback and is within our desired range of 10–12 W. Table 29.4 is for the on-axis
simulation. Table 29.5 is for the o�-axis simulation when the emitter is vertically displaced by 0.5μm. Modes
in boldface font are lasing. Hstm is the Joule heating power of the current needed to support the stimulated
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FIGURE29.27 L–I curves of all lasing modes for tapered lasers in the SA and o�-axis external cavity feedback (ECOF)
con�gurations.
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TABLE 29.4 Summary of Impact of MD on Optical Metrics of All Modes for On-Axis Simulation for a Current
of 15 A.

Mode MD Coupling
Coe�cient (%)

Coupled External
Power (mW)

Output Power (W) Hstm (W) Habs (W) HFCA (W) Istm (A)

1 1.00 42.15 155.3 9.5 3.86 0.95 3.2 11.2
2 4.34 1.68 6.2 3.1e-3 2.4e-3 3.14e-4 4.2e-3 7.1e-3
3 57.7 10.4 38.6 2.6e-3 5.8e-4 4.43e-5 27.7e-3 1.7e-3
4 1.90 6 22.2 80.1e-3 47.7e-3 1.7e-3 124.6e-3 138.1e-3
5 4.17 1.2 4.6 1e-3 1.5e-3 9.48e-5 10.9e-3 4.5e-3
6 1491. 2.2 8.4 4e-6 3.6e-6 4.83e-8 8e-3 7.6e-6
7 12.58 2.2 8.3 1.6e-4 4.6e-4 3.94e-6 11e-3 1.3e-3
8 1.92 0.65 2.4 5.9e-3 4.6e-3 2.43e-5 22.2e-3 13.4e-3

Total for higher order modes 90.7 92.9e-3 57.2e-3 3e-3 208.6e-3 166.1
Total for all modes 246.0 9.59 3.92 0.953 3.41 11.37

Note: Values in boldface font signify that the mode is lasing

TABLE 29.5 Summary of Impact of MD on Optical Metrics of All Modes for O�-Axis Simulation for a Current
of 15 A.

Mode MD Coupling
Coe�cient (%)

Coupled External
Power (mW)

Output Power (W) Hstm (W) Habs (W) HFCA (W) Istm (A)

1 1.00 29.5 142.6 9.22 3.71 0.96 3.03 10.96
2 4.34 19 92 42.3e-3 26.5e-3 2.7e-3 38.5e-3 76.6e-3
3 57.7 5.23 25.28 1.5e-3 4.13e-4 3.81e-5 13.3e-3 1.2e-3
4 1.90 4.8 23.2 48.2e-3 38.4e-3 4.7e-3 81.4e-3 111.2e-3
5 4.17 1.73 8.4 1.4e-4 2.5e-3 2.62e-4 17.1e-3 7.1e-3
6 1491. 3.28 15.88 1.94e-6 4.12e-6 1.08e-7 13.3e-3 1.2e-5
7 12.58 1.44 6.97 5e-5 4.58e-4 1.08e-5 8.8e-3 1.3e-3
8 1.92 0.83 4 1.8e-3 4.6e-3 4.35e-4 31.8e-3 13.4e-3

Total for higher order modes 175.7 94.0e-3 72.9e-3 13e-3 204.2e-3 210.8
Total for all modes 318.3 9.31 3.78 0.973 3.23 11.17

Note: Values in boldface font signify that the mode is lasing

emission of the mode, Istm. Habs is the total heat power due to band-to-band absorption outside the gain
regions and is responsible for absorption bleaching. HFCA is the total heat power due to FCA. For the
case of on-axis feedback, 91 mW of light is coupled into the higher order modes, which consume 166
mA of current and produce 93 mW of light and 269 mW of heat. For the case of o�-axis feedback, 176
mW of light is coupled into the higher order modes, which consume 211 mA of current and produce
94 mW of light and 290 mW of heat.

The previous section showed that external feedback can cause higher order vertical modes to lase. For
the laser diode and external cavity simulated here, only the fundamental mode lases without feedback,
while mode 4 also lases in the case with on-axis feedback. For the case of o�-axis feedback, two higher
order vertical modes also lase (modes 2 and 4). The feedback reduces the power and PCE of the funda-
mental mode, which can be attributed partly to higher order mode lasing and partly to an increase in the
e�ective facet re�ectivity by feedback to the fundamental mode. For the device and cavity investigated here,
Tables 29.4 and 29.5 suggest that modes with MD of MD < 2 are able to start lasing with comparatively
small external cavity coupling coe�cients of <5%, while modes with MD∼ 4 require larger coupling coef-
�cients (e.g., 10%–20%). Additional simulations showed that the feedback required for higher order mode
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lasing also depends on the coupling of the re�ected beam into the RW (i.e., into the RW aperture at the
RW–TA interface). This is also apparent from the photon distributions in Figure 29.23.

As higher order modes began to lase more strongly, they began to compete with the fundamental
mode for the spatial gain distribution and modal power oscillations were observed in the simulations.
Although these are not true dynamic simulations, the oscillations have some relation to mode beating and
mode partition noise. Despite that the higher order mode powers were small, they appear to a�ect spa-
tial �lamentation and contribute to the near- and far-�eld patterns of the fundamental mode—consistent
with experimental observations (Hempel et al., 2013; Leonhäuser et al., 2014). For stable operation, M2

e −2

remains below 1.5 and is insensitive to feedback, while M2
2nd moment ∼ 6 for SA operation and nearly dou-

bles with feedback (As discussed in Section 29.4.1, increased feedback to the fundamental mode has the
greatest impact on beam quality, but excitation of higher order modes also a�ects M2

2nd moment). For astable
operation (modal power oscillations), there is signi�cant degradation in both M2

e−2 and M2
2nd moment.

The optical power back-coupled into the higher order vertical modes also creates heat. This occurs even
if the modes are not lasing, but increases dramatically if they are. The heat power of the higher order
modes is dominated FCA, followed by Joule heating associated with the current supporting stimulated
emission into these modes. The heat generated per feedback photon decreases with MD. This shows the
importance of both MD and FCA for suppressing feedback ampli�cation and thus, heating by the higher
order modes. At this bias level (15 A), the total heat generation in the higher order modes is 0.269–0.290 W
(depending on the alignment of the laser diode), corresponding to a 3.2%–3.6% increase in heat power.
The heat generation by the higher order modes alone is responsible for a ∼2.3%–2.4% drop in PCE, which
increases to ∼2.5% if their optical output power is also considered. (This is ∼20%–25% of the total drop
in PCE.) The heat generated by the excitation of these higher order vertical modes is distributed along the
entire cavity—irrespective of the MD. Thus, although the excitation of higher order modes a�ects the beam
quality, it is probably not responsible for observed increases in device degradation. Instead, as shown by
Kissel et al. (2016), the observed increase in degradation is probably due to feedback that is not coupled
into the waveguide (i.e., into the substrate)—particularly when the substrate is strongly absorbing (i.e.,
Eg_substrate < Ephoton).

We have shown that external feedback can cause lasing of higher order vertical modes, resulting in self-
heating, mode partition instabilities, and beam quality degradation. The question is How can we design the
laser diode and optical system to reduce the impact of optical feedback? For the design of the laser diode,
MD and FCA are key parameters for suppressing the impact of higher order modes. The external cavity
coupling coe�cients play a smaller role, but are still important. The stray light from aperture di�raction
by the DBR at the back of the RW must be suppressed. For the design of the external cavity, the re�ected
power must be minimized—for example, by using good AR coatings and, perhaps, tilted facets to eliminate
specular re�ections. For high powers, however, other approaches may also be required, such as o�-axis
optical alignment to prevent re�ected beams from coupling into the RW �lter. Finally, care must also be
taken to minimize the power coupled into the substrate—particularly if the substrate is absorbing.

29.5 Conclusions

This chapter discussed how, for many applications that employ high-brightness diode lasers, it is necessary
to scale the output power through beam combination techniques, while maintaining an excellent beam
quality. All beam combination techniques cause light to be fed back into the laser cavity. In some instances,
this feedback can be exploited, such as in the wavelength stabilization of diode lasers and arrays. However,
any laser placed in an external system will also su�er from unintentional feedback (parasitic re�ections).
This chapter describes a detailed method of modeling external cavity lasers with both intentional and
unintentional feedback. This model, developed at the University of Nottingham, consists of an advanced
laser simulation tool coupled to commercial optical design so�ware.
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In large vertical cavity lasers, as required to reach the highest output powers, the vertical cavity must
be carefully considered. The structure must be designed to minimize the coupling of parasitic feedback
to higher order modes. The e�ects of parasitic feedback on the performance (output power, PCE, and
beam quality) of a tapered laser in a simple optical system are studied. The excitation and propagation of
higher order modes increases the FCA causing self-heating, eventually causing degradation of the output
power and e�ciency. Moreover, the parasitic feedback causes more absorption bleaching, leading also to
degradation of the lateral beam quality. Therefore, the inclusion of external parasitic feedback in the design
process is highly signi�cant. Coupling coe�cients and MD values can be used to engineer a laser structure
that is less a�ected by feedback. This can be accomplished by ensuring that modes with low-to-moderate
MD values have the lowest coupling coe�cients, thereby minimizing the light coupled into them.

The lateral cavity design also has a signi�cant impact on brightness and the tapered laser is a strong
contender for high-brightness laser systems. Tapered lasers o�er, to a certain extent, the beam quality
advantages of an RW laser and the high power advantages of a BA laser. However, despite this and even
without external parasitic feedback, tapered lasers still su�er from beam quality degradation at higher pow-
ers. Investigations into the cause of this beam quality degradation reveal that di�raction of light at the back
aperture leads to regions adjacent to the RW section becoming bleached from carriers—thereby, degrading
the beam quality.
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30.1 Introduction

30.1.1 What Is a Single Longitudinal Mode Laser?

Laser is a light source that emits photons described by a “near coherent” optical �eld. By “coherent optical
�eld,” one means the monochromatic electromagnetic �eld at optical frequency (ω0) with constant ampli-
tude (A) and phase (θ). Therefore, a coherent optical �eld can be expressed as A cos(ω0t+θ), with phase θ
determined by a reference starting time. Any laser built as an oscillator must take spontaneously emitted
photons as its initial driven seed, since a laser doesn’t have any coherent light as its input. Knowing the fact
that the spontaneous emission is a random process, one therefore cannot expect that the laser will give an
ideal coherent optical �eld output. Rather, the laser emits photons described by the ideal coherent opti-
cal �eld, driven by spontaneously emitted photons, for a certain amount of time τ0 until the emerging of
another group of spontaneously emitted photons. Consequently, its output �eld will experience a sudden
change on its amplitude and phase at time τ0 and this sequence keeps repeating inde�nitely. As such, one
can express the laser output as a “quasi-monochromatic” electromagnetic �eld at optical frequency ω0 as
[A+ δa(t)] cos[ω0t + θ(t)], with δa(t) as a random process with zero mean and θ(t) also a random process
with uniform distribution between 0 and 2π. Once a laser is operated under a bias beyond its threshold,
A >> |δa(t)| is satis�ed. Hence the only nonideality of a laser output from a coherent optical �eld lies in

109
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its random phase. The di�erence becomes more apparent if one observes the output optical spectrum of a
laser. Actually, as the Fourier transform of an ideal coherent optical �eld, its frequency-domain spectrum is
a delta function that appears at ω0 with an amplitude of |A|. The quasi-monochromatic �eld, however, has
its averaged spectrum in the shape of a “broadened” delta function still peaked atω0, but with an amplitude
in
√

1∕2π|A|τ0 and a width of Δω = 2π∕τ0. This is because the averaged duration between two consecu-
tive abrupt phase changes is τ0, which means the quasi-monochromatic �eld can be described as a series
of truncated ideal coherent �elds known as a wave train, with τ0 as the truncation window or the averaged
length of the wave train. The Fourier transform of a single truncated coherent �eld piece corresponds to
the convolution between a delta function and a sampling function in the form of sin(ωτ0∕2)∕(ωτ0∕2) as
the Fourier transforms of the ideal coherent �eld and the �at window function (i.e., 1 for t inside τ0 and 0
elsewhere), respectively, which gives the result as the aforementioned broadened delta function. Since dis-
tinct truncated coherent �eld pieces in the wave train di�er by a time shi� only, their Fourier transforms
di�er just by a phase. Hence, the frequency-domain amplitude spectra of the quasi-monochromatic �eld
as a wave train composed of all these pieces are overlapped as a single peak as shown in Figure 30.1.

It is worth mentioning that the above description is in a “phenomenological” sense, as an accurate
treatment of spontaneously emitted photons with a classical electromagnetic �eld theory is not possible.
A physics-based description can be given by exploiting the full quantum mechanics theory, but it will have
to involve the quantization of the electromagnetic �eld and is beyond the scope of this chapter.

The optical frequency ω0 of the quasi-monochromatic �eld as the laser output is called the “lasing” fre-
quency. Consequently, the aforementioned spectral peak is called the “lasing” mode or the “longitudinal”
mode in order to make a distinction from the “transverse” mode that refers to a spatial �eld distribution.
The term longitudinal comes from the fact that the lasing frequency is determined by the laser reso-
nant cavity. In edge-emitting semiconductor laser diodes, the cavity is set along the longitudinal direction
with its geometrical dimension signi�cantly larger than any size in the cross-sectional area. The light is
con�ned inside the cross-sectional area by a waveguide and is only allowed to propagate along the lon-
gitudinal direction, or along the cavity. Upon resonance, the lasting longitudinal optical �eld distribution
gives the surviving pattern and determines the lasing frequency. Hence, we have the term longitudinal
mode, as opposed to the transverse mode, indicating the con�ned optical �eld by the waveguide in the
cross-sectional area. Because of the one-to-one correspondence between the optical spectral peak and the
lasting longitudinal optical �eld distribution, conventionally the term longitudinal mode can be referred
to either as the spectral peak (or simply as the lasing frequency) or as the spatial �eld pattern in the cavity

(a)

(c)(b)

Amplitude

Intensity

ω0ω0 – π
τ0

ω0 + π
τ0

Intensity

Δω = 2π
τ0

Fourier transform

τ0 τ0 τ0 τ0

FIGURE 30.1 (a) The quasi-monochromatic �eld as a wave train in the time domain and a single piece of the trun-
cated coherent �eld, (b) the frequency-domain amplitude and intensity spectra as the Fourier transform of the wave
train (with di�erent pieces all overlapped), and (c) the intensity spectrum with the peak indicating a single (spectral)
longitudinal mode.
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(longitudinal) direction, whereas the term transverse mode can only be referred to as the spatial �eld
pattern in the cross-sectional area, without any spectral meaning.

Generally, a cavity can support multiple resonant patterns and consequently bear with multiple res-
onant frequencies. Without exception, a laser can also have multiple longitudinal modes, with multiple
peaks shown in its output optical spectrum and multiple lasting optical �eld patterns inside its cavity. With
special designs, however, one is able to leave only one surviving longitudinal mode by eliminating all other
resonances inside a cavity. A laser with such a cavity is therefore called a single longitudinal mode (SLM)
laser.

30.1.2 Why SLM Laser?

When used as the light source in �ber-optic communication systems, a semiconductor laser operated with
multiple longitudinal modes su�ers the mode partition noise (MPN) [1,2], which stands as the dominant
limiting factor to the transmission span of the optical signal in �ber, as the MPN jeopardizes the signal
by introducing the intersymbol interference (ISI) among the pulses in the stream—an e�ect that cannot
be simply suppressed through increasing the laser output power. If a multiple longitudinal mode laser is
directly modulated, the power allocated to each of its mode �uctuates in a random manner due to the mixed
homogeneous and inhomogeneous gain broadening nature of direct bandgapped semiconductors, with the
randomness originated from the spontaneous emission noise. Since the signal components carried by dif-
ferent longitudinal modes propagate at di�erent speed due to �ber dispersion, these components won’t
arrive at the destination at the same time, which results in the pulse spreading over and spilling out of its
allocated time slot, and consequently causes ISI. Such ISI bears a random nature due to the random power
�uctuation of the multiple longitudinal modes as the signal carriers. Hence, it cannot be eliminated through
linear equalization or phase delay compensation. Also, because the random �uctuation is in proportion to
the total power, increasing the laser output power won’t solve the problem, if doesn’t make it worse. Nor-
mally, the power penalty soars even starting from a moderate MPN level. For example, at ∼1550 nm (the
center of the C-band), the maximum transmission capacity–distance product is only 5 Gbps-km, which
means by using a typical multiple longitudinal mode Fabry–Pérot (FP) laser, the 2.5 and 10 Gbps optical
signal can only be transmitted for 2 km and 500 m, respectively.

The only viable solution to this problem, therefore, lies in the replacement of the light source with the
SLM laser where the MPN naturally disappears.

30.1.3 Current Application Status

Over the past three decades, many SLM laser structures have been proposed and demonstrated; a few
dominant structures survived and became popular products on today’s market. The super star of the
SLM laser is no doubt the distributed feedback (DFB) laser as it takes over 99% shares of the SLM laser
market—the throughput of DFB lasers have reached 10 million per year in the recent few years just by one
supplier (Wuhan Telecommunication Device Co., Wuhan, China) among the few largest semiconductor
laser manufactures.

30.1.4 Why Simple FP Laser Won’t Work

It is well known that a piece of straight and smooth optical waveguide with its two mirror-like ends forms a
simplest resonant cavity, and semiconductor laser diodes exploiting such a cavity are the FP lasers. A semi-
conductor optical waveguide, like the typical dielectric waveguide, has the high-pass �lter characteristic
that cuts o� the guiding wave with wavelength longer than some critical value but imposes no constraint
on the guiding waves with shorter wavelengths. Although such waveguide does only support discrete space
distribution patterns in its cross section and each individual space distribution pattern is also called a
transverse mode, one shouldn’t mess up it (the transverse mode) with the concept of the longitudinal mode
that corresponds a speci�c �eld distribution along the cavity and bears a discrete wavelength. Namely, a
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(dielectric) waveguide picks up the guided transverse mode, but doesn’t select a single wavelength from
a continuous spectrum of wavelengths that all takes the same transverse mode, except for cutting o� the
wavelengths below a lower bound. One can also understand it as a given waveguide structure only de�nes
a continuous dispersion relation between the wave propagation constant (β) and the wavelength (λ), which
means that, staying with a transverse mode represented by a continuous β–λ curve, one will always manage
to �nd a β indicating a guiding (propagating along the waveguide) wave for a given wavelength λ. Never-
theless, an optical waveguide that only supports a single transverse mode stands as a necessary condition
for achieving the SLM operation. As otherwise, each of the multiple nondegenerated transverse modes
having its own nonidentical longitudinal mode will have to bear a di�erent wavelength, which makes the
SLM operation impossible. We are not going to dig out the waveguide concept further as the focus of this
chapter is on the SLM laser. The interested readers can refer to, e.g., References [3,4].

With mirrors on the waveguide ends, the otherwise not interfered forward and backward propagating
waves are coupled through the partial re�ection. The waves retained inside the waveguide (i.e., the cavity)
forms a standing wave pattern that corresponds to a possible longitudinal mode, as the standing wave pat-
tern (other than a homogenous coe�cient) doesn’t change with time by satisfying the boundary condition
at the waveguide ends and consequently bears with a static wavelength. However, in the case where the
cavity length (L) is much longer than the wavelength (λ), the boundary condition can be satis�ed simulta-
neously by multiple longitudinal modes. This is because the boundary condition of a simple FP cavity can
be equivalent to a round-trip phase condition on aggregate, which reads as follows [5]:

2βL = 2πm (30.1)

with m as any integer, β = 2πne�∕λ denoting the wave propagation constant and ne� the e�ective index
of the waveguide. In Equation 30.1, the facet (end mirror) phase delay has been set to zero as usually the
cavity has an e�ective index higher than that of the surrounding medium, so that the wave experiences
the internal (from high refractive index to low refractive index medium) rather than the external (from
low refractive index to high refractive index medium) re�ection in which the phase delay is indeed zero
on re�ection. From Equation 30.1, it is apparent that the number of allowed longitudinal modes in an FP
cavity is directly proportional to the cavity length scaled by the wavelength, i.e., L/λ. To build an edge-
emitting laser with acceptable coherence required by many applications, as well as for obtaining su�cient
optical gain for achieving superior laser performance, one has to leave L ≫ λ, hence multiple longitudinal
modes exist in such FP cavities.

Other than the aforementioned phase condition, the amplitude condition still needs to be satis�ed by
the longitudinal mode that survived the phase condition to make it lase. One can therefore consider using
the latter mechanism to eliminate the extra longitudinal modes. Unfortunately, the optical gain spectrum
of the semiconductor material is much broader (∼60 nm) than the FP longitudinal mode spacing that can
readily be derived from Equation 30.1 as follows [5]:

Δλ =
λ2

0
2ngL

(30.2)

with λ0 as the center wavelength and ng = ne� + (dne�∕dλ)λ0 denoting the group index. For example,
for typical InGaAsP/InP or AlGaInAs/InP semiconductor laser diodes, ng ∼ 3.4, their mode spacing vary
from 0.6 to 1.2 nm in the O-band (λ0 ∼ 1300 nm), and from 0.9 to 1.8 nm in the C-band (λ0 ∼ 1550 nm),
respectively, when the cavity length changes from 400 to 200 μm. As such, multiple longitudinal modes
with their wavelengths closely packed adjacent to the material gain peak will share almost the same gain.
Since the partially inhomogeneous gain in a semiconductor material cannot be fully clamped, small gain
di�erences among these longitudinal modes won’t be su�cient to e�ectively suppress the side modes,
which eventually excites multiple longitudinal lasing modes. This is the main reason that the material gain
dispersion in general cannot be used for longitudinal mode selection, not to mention that in the case of
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direct modulation, any dynamic gain change will disrupt the gain pro�le and consequently jeopardize any
attempt of using the gain to discriminate longitudinal modes.

One therefore understands why conventional semiconductor FP laser diodes operate in multiple longi-
tudinal modes. Above analysis also shed some light on the direction one needs to follow in the e�ort of
developing SLM lasers, i.e., the simple FP cavity needs to be replaced by more complicated ones or modi�ed
with added structures with further built-in wavelength selectivity.

30.1.5 Classification of SLM Lasers

Canonically, there are three main approaches for semiconductor laser diodes to achieve SLM operation,
all by introducing wavelength-selective cavities. These three categories of SLM lasers can be classi�ed as
the grating-assisted lasers that exploit the grating in their cavities, the coupled-cavity lasers that have extra
optical (band-pass) �lters in their cavities, and the external cavity lasers that use either one of the above-
mentioned con�gurations, or the injection locking mechanism to purify the lasing spectrum but by placing
the extra components outside of the main FP cavity through hybrid packaging. Theoretically, lasers in the
latter category makes no di�erence from their counterparts in the �rst two categories, other than some
quantitative di�erence on the coupling strength between the main FP cavity and the added wavelength
selection components. Since they never become the mainstream product except in a few speci�c applica-
tions where the cost is not a concern, SLM lasers in this category are not discussed. The interested readers
can refer to, e.g., References [6–8].

30.1.6 Organization of this Chapter

Sections 30.2 and 30.3 will be dedicated to discuss the grating-assisted lasers and the coupled-cavity lasers,
respectively, covering their structures and working mechanisms, governing equations describing the device
physics processes, and numerical simulation results on device performance.

The following section brie�y describes the recent development on this topic, by showing a few advanced
structures for emerging demands, their operating principles, the measured prototype device performance,
in contrast to numerical simulation results.

30.2 Grating-Assisted SLM Laser Diodes

30.2.1 Grating Analysis

Noticing that a normal facet mirror formed by a dielectric (semiconductor)—dielectric (air) interface
doesn’t have wavelength dependence, which makes the FP cavity formed by a straight and smooth waveg-
uide with such facet mirrors on both ends lacking the ability to select a single lasing wavelength, one would
naturally think of exploiting a wavelength-selective re�ector to replace the end facet mirror, which directly
leads to the birth of distributed Bragg re�ector (DBR) laser. This idea can logically be extended to turn
the entire or part of the original straight and smooth waveguide inside the cavity into a corrugated waveg-
uide (i.e., the waveguide grating) for lasing wavelength selection, which leads to the innovation of a whole
family of DFB lasers, although the original idea of the DFB laser was independently proposed [9]. In all
such grating-assisted SLM lasers, the grating obviously plays a center role. We therefore start this section
by analyzing the grating itself.

A uniform (passive) grating with periodΛ in any shape can be viewed as a linear superposition of many
sinusoidal gratings with harmonic periods Λ∕m, m = 1, 2, 3,…, according to the Fourier expansion, sim-
ply because the refractive index change along the grating follows a periodic function. A phase-matching
condition can therefore be found as follows [10]:

ki cos θi = ±
2π

(Λ∕m)
+ kom cos θom (30.3)
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with ki and kom indicating the incident and mth order di�racted (by the mth order sinusoidal grating)
wave numbers, respectively, θi and θom the incident and mth order di�racted wave angles as shown in
Figure 30.2, respectively.

In this application, the incident light is propagating along the laser waveguide, θi = 0 and ki = β =
2πne�∕λ. What one wants is to have the incident wave turn around by 180◦, propagating along the waveg-
uide in the opposite direction, which requires θom = π and kom = β = 2πne�∕λ, hence one has, from
Equation 30.3,

2β =
4πne�
λ

= 2πm
Λ

, or Λ = mλ
2ne�

(30.4)

as the rule to select the grating period for coupling the forward and backward propagating waves in the
waveguide at a given wavelength (λ), with ne� still indicating the e�ective index of the waveguide. The
wavelength that satis�es condition (Equation 30.4) is conventionally called Bragg wavelength. It is self-
evident that for a given grating with �xed Λ, any wavelength deviated from λ wouldn’t satisfy the phase-
matching condition (Equation 30.4), consequently at such wavelength there won’t be any coupling between
the forward and backward propagating waves. As such, an ideal grating (with in�nite length) would indeed
select a single wavelength to re�ect, which makes a perfect mirror as required by an SLM laser cavity. In
reality, the grating cannot be made in�nitely long. One would therefore expect some residue re�ection at
deviated wavelengths. Nevertheless, by making the grating su�ciently long, one can always expect a mirror
with su�cient wavelength selection required by the SLM operation.

Yet another design consideration is how to choose the grating order. By choosing a sinusoidal grating
component with order m = M to be satis�ed by Equation 30.4, one understands that those sinusoidal
grating components with orders beyond M won’t take any e�ect, simply because if λ = 2ne�Λ∕M, for any
grating orders in M + n, n = 1, 2, 3,…, their di�raction angles according to Equation 30.4,

θo(M+n) = arccos
(

1 + 2n
M

)

(30.5)

o�er no real solution at all. Physically, the distance between the two consecutive re�ections of the grating
in order M + n is Λ∕(M + n) shorter than half of the equivalent wavelength in waveguide λ∕(2ne�) =
Λ∕M, therefore, constructive addition of the waves on its re�ection is impossible because there is no phase-
matching condition (i.e., two identical phases) that can possibly be found within 2π. This can be seen more
clearly if we show the round-trip phase delay between the two consecutive re�ections explicitly by

2
2πne�[Λ∕(M + n)]

λ
= 2

2πne�[Λ∕(M + n)]
2ne�Λ∕M

= 2π M
M + n

< 2π.

Λ/m

x

z
θi

θom

⃑kom⃑ki

FIGURE 30.2 An illustrative diagram showing the light di�raction by a grating, with Λ∕m indicating the mth order
harmonic period, θi and θom the incident and mth order di�racted wave angles in respect to the grating plane, respec-

tively,
⇀

ki and
⇀

kom the incident and mth order di�racted wave vectors, respectively; they must be in the same plane as
required by the matching tangential �eld condition at the grating boundary.
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Therefore, those sinusoidal grating components with orders higher than M virtually take no e�ect, because
all the re�ected waves by these higher order grating components cannot be added in a constructive way,
rather, they all tend to be cancelled out.

For sinusoidal grating components with orders n = 1, 2,… ,M − 1, they will make the incident wave
di�ract into di�erent directions, with their angles speci�ed, according to Equation 30.4:

θon = arccos
(

1 − 2n
M

)

(30.6)

For example, if one chose the Bragg wavelength to match the second-order sinusoidal grating component
M = 2 and λ = ne�Λ. The second-order sinusoidal grating component therefore couples the forward
going wave in the waveguide into the backward going wave, which o�ers the e�ect one needs, whereas
the �rst-order sinusoidal grating component couples the forward going wave in the waveguide into a wave
going along the vertical direction (θo1 = 90◦). The latter appears to be a vertically radiating wave that
leaves away from the waveguide. The rest sinusoidal components with their orders higher than 2 all take
negligible e�ect.

In this speci�c application, one usually doesn’t want to create any accompanying radiation that will likely
bring in unwanted loss, hence one should align the Bragg wavelength with the �rst-order sinusoidal grating
component M = 1 and λ = 2ne�Λ. As such, the forward and backward waves are coupled at the lowest
grating order and consequently it leaves no lower order grating components for the guided waves to be
coupled to the radiating wave. Again, those higher order grating components (M > 1) virtually bring in
no e�ect.

From the above qualitative analysis, one also knows that it is the period, rather than the shape, that
dominates the grating characteristics. And the above analysis is valid under the assumption that the grat-
ing is su�ciently long. The required grating length to achieve certain performance, however, can only be
evaluated in connection with the grating coupling strength in unit length through numerical approach.
Also known as the grating coupling coe�cient (κ), the unit length grating coupling strength is determined
by the grating shape and the refractive index contrast, or the e�ective index contrast (Δne�) on aggregate.
In the most general case, one needs to use the mode-matching method (MMM) [11,12] to calculate the
re�ection, transmission, and loss spectra of a given waveguide grating. A good approximation is to chop
the waveguide grating into many short pieces along the guiding direction. By solving the mode in each
piece as an eigenvalue problem de�ned in the local waveguide cross section, one will be able to extract the
e�ective index in each piece as the eigenvalue solution. One can therefore use the one-dimensional (along
the guiding direction) transfer matrix method (TMM) [13,14] to solve for the aforementioned grating
spectra.

While numerical approaches would o�er us an accurate result, one sees little physics and it is also
hard to link the grating design parameters to its characteristics. For this reason, one usually uses the full
numerical solver as a simulation tool only to validate or con�rm a design. One therefore still needs an ana-
lytical or semi-analytical tool for the grating design purpose. For this reason, we will show following the
expressions [15]. Actually, the refractive index distribution of a waveguide grating can be written in the
Fourier series:

n2(x, y, z) = n2
0(x, y) +

∑

m≠0
Δn2

m(x, y)e jm 2πz
Λ (30.7)

due to its periodicity along z (the guiding direction), where n2
0 and Δn2

m indicate the DC and mth order
coe�cient of the square refractive index in the expansion, respectively, and can readily be found by tak-
ing the overlap integral (along z within one period Λ) between the square refractive index (n2) and the
respective sinusoidal grating order (in its complex form e jm2πz∕Λ, m = 0,±1,±2,…) normalized by the
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period Λ. The cross-sectional (x, y) dependence of the refractive index re�ects the waveguide structure.
Consequently, the coupling coe�cient of the mth order sinusoidal grating component can be found by

κm = π
λne�

∫∫
Σ
Δn2

m(x, y)|φ(x, y)|2dxdy

∫∫
Σ
|φ(x, y)|2dxdy

(30.8)

where ne� and φ(x, y) denote the e�ective index and optical �eld distribution of the waveguide de�ned by
the background refractive index distribution (i.e., the DC component in the Fourier expansion) n2

0(x, y),
respectively, and can be found by solving the following eigenvalue problem (with ne� and φ taken as the
eigenvalue and eigenfunction, respectively):

(

∂2

∂x2 +
∂2

∂y2

)

φ(x, y) +
(2π
λ

)2
[n2

0(x, y) − n2
e�]φ(x, y) = 0 (30.9)

In Equation 30.8, the integration areaΣ extends to whereφ can reach. In following discussions, we will stay
with the �rst-order Bragg grating unless otherwise speci�ed. Hence we will use κ± to indicate κM = κ±1.
One also needs to note that Equation 30.7 is only valid for an in�nitely long grating, consequently the
grating coupling coe�cient (κ±) given in Equation 30.8 is subject to the same assumption. Practically for
ne�L∕λ > 500, such extracted κ± in conjunction with the analytical spectrum expression (shown below)
provides no appreciable di�erence from the accurate result obtained by the full numerical approaches (e.g.,
MMM or TMM).

For a fully con�ned guided mode (hence φ is real), both the grating symmetry and the nature of the
complex material refractive index change dictate the coupling complexity. For a purely refractive index-
coupled grating with real n2 − n2

0, one may easily �nd from Equation 30.7 that Δn2
−1 = (Δn2

+1)
∗, hence

κ− = κ∗+ according to Equation 30.8. One may conclude that, if the grating has a center symmetry, n2

is an even function of z and Δn2
±1 are real, κ± are real and κ− = κ+, whereas if the grating has a center

antisymmetry, n2 is an odd function of z and Δn2
±1 are imaginary, κ± are imaginary and κ− = −κ+. For a

purely gain- or loss-coupled grating with imaginary n2 − n2
0, one �nds, however, Δn2

−1 = −(Δn2
+1)

∗ from
Equation 30.7, hence κ− = −κ∗+ following Equation 30.8. One therefore knows that, if the grating has a
center symmetry, n2 is an even function of z and Δn2

±1 are imaginary, κ± are imaginary and κ− = κ+,
whereas if the grating has a center antisymmetry, n2 is an odd function of z and Δn2

±1 are real, κ± are real
and κ− = −κ+. Generally, for a complex-coupled grating with complex n2 − n2

0, or for a grating structure
that is neither symmetric nor antisymmetric, Δn2

±1 are complex so are κ±.
For a waveguide grating with a length of L without any extra end facet re�ection [which can practically be

realized by, e.g., antire�ection (AR) coating on the end facet], one �nds the amplitude re�ection spectrum
(de�ned as the ratio of the backward and forward going guided wave at the input port) and the amplitude
transmission spectrum (de�ned as the ratio of the forward going guided wave at the output and input port)
as [16]:

R±DBR(λ) =
jκ∓ sinh(γL)

γ cosh(γL) − (α + jδ) sinh(γL)
(30.10)

T±DBR(λ) =
γ

γ cosh(γL) − (α + jδ) sinh(γL)
(30.11)

where γ2 = (α + jδ)2 + κ+κ− and δ = 2π[ne�∕λ − 1∕(2Λ)], with λ now indicating the wavelength vari-
able and α the amplitude modal loss (< 0) or gain (> 0) variable of the waveguide grating. Figure 30.3
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FIGURE 30.3 Re�ection spectra of the Bragg grating under di�erent normalized coupling coe�cients κ±L = 1, 3, 4
without gain or loss αL = 0, and under κ±L = 1 with gain αL = 0.5 and loss αL = −0.5.

shows respectively the amplitude and phase of the re�ection spectrum of a purely refractive index-
coupled grating, under di�erent normalized (real) grating coupling coe�cient (κ±L) and normalized
modal loss/gain (αL).

As can be seen from the spectrum, the maximum re�ection happens at the Bragg wavelength. A Bragg
stop-band can be identi�ed by the main lobe with its width de�ned as the di�erence between the two zero-
re�ection wavelengths. Zero-re�ection happens to the wave at the wavelength with its re�ections from two
adjacent grating teeth completely canceled out due to a phase delay of π, which makes the further cancel
out of all re�ections through the entire grating due to the equal tooth distance (i.e., the grating period Λ).
Obviously, the wave at the zero-re�ection wavelength will pass through the grating with 100% transmissiv-
ity as if the waveguide grating o�ers nothing more than a phase delay unit. For a purely passive, refractive
index-coupled grating (κ+κ− = κ+κ∗+, hence κ+κ− is real and can be written as |κ|2) without any modal
gain or loss (α = 0), zero-re�ections (maximum transmission) happen at γL = jkπ, k = ±1,±2,±3,…, or
δL = ±

√

(|κ+|L)2 + (kπ)2. The Bragg stop-band width is therefore given by [16]

2δL = 2
√

(|κ|L)2 + π2 or ΔλB =
λ2

B
ne�L

√

(|κ|L∕π)2 + 1 (30.12)

with λB = 2ne�Λ indicating the Bragg wavelength (center of the Bragg stop-band) given by the phase-
matching condition (Equation 30.4) for the �rst-order Bragg grating. It is apparent that the Bragg stop-band
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width (ΔλB) increases with the normalized coupling coe�cient almost linearly if |κ|L >> π, or quadrat-
ically if |κ|L << π. It is worth mentioning that the measured stop-band width of the lasing spectrum in
the DFB lasers is always smaller than the Bragg stop-band width, and the former approaches ΔλB as |κ|L
increases. We explain the underlying physics later in discussion of DFB lasers.

In the near infrared �ber-optic communication wavelength range, the �rst-order Bragg grating has its
period in the submicrometer range (e.g., ∼200 nm in the O-band centralized at 1300 nm and ∼240 nm
in the C-band centralized at 1550 nm). It is impossible to fabricate the waveguide surface-relief grating
by the standard photolithography technique. Rather, one has to exploit more complicated technologies
such as the holographic lithography [17] or the electron-beam lithography (EBL) [18]. While the former
doesn’t need expensive facility and �ts the mass production mode, it can hardly create any nonuniform
grating pattern. The latter, conversely, can create arbitrary user-de�ned grating pattern but needs expensive
machine and doesn’t �t the production mode for the long hours it needs to scan-write the whole wafer. A
newly emerged technique, nano-imprinting [19], seems to be very promising as the ultimate solution to the
fabrication of the waveguide grating. With the imprinting mask written by EBL with complicated patterns,
one can use the mask repeatedly to transfer its pattern onto wafers by a pressing-and-developing process
through the spin-coated pressure-sensitive deforming-resister on the wafer surface. As such, the expensive
EBL writing just needs to be done once on the mask, the later pattern transfer process from the mask to
wafers (imprinting) is fast and reliable, with an even better quality compared to the widely used holographic
lithography technique [20]. It is also worth mentioning that the invention of the “�oating” grating idea [21]
solves the problem in the precise control of the grating coupling strength and guarantees its repeatability
in the mass production mode, as the depth of the grating teeth is now determined by the grating layer
thickness which can be made accurate (to sub-10 nm range) in material growth, as opposed to be given
by the etching depth which is not only hard to control down to 10∼20 nm but also hardly repeatable. This
invention sets a milestone on the mass production as well as the cost reduction of DFB lasers.

30.2.2 Distributed Bragg Reflector Laser

A typical DBR laser has a structure shown in Figure 30.4. With the �rst-order Bragg grating placed on one
or both ends of an FP laser as the re�ector, the coupling between the forward and backward going waves
inside the cavity becomes wavelength dependent.

Similar to the lasing condition derived for the FP laser [5], one can readily �nd the resonance
condition for the DBR laser by following an approach of matching the traveling wave with itself a�er a

FIGURE 30.4 The DBR laser structure.
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round trip inside the cavity:

Rl(λ)Rr(λ)e
2[g−αi+j 2πne�

λ ]Lar = 1 (30.13)

with Rl and Rr denoting the wavelength-dependent amplitude re�ectivity of the Bragg grating re�ector on
the le� and right end of the active region, respectively, given in the form of (Equation 30.10), g the modal
gain, αi the modal internal loss, and Lar the active region length. One can further split the lasing condition
(Equation 30.13) into the amplitude and phase condition as

g = gth ≡ αi + αc ≡ αi +
1

2Lar
ln 1

|Rl(λ)||Rr(λ)|
(30.14)

and

4πne�Lar
λ

+ ϕl(λ) + ϕr(λ) = 2πm, m = 1, 2, 3, ... (30.15)

where ϕl and ϕr indicate the phase of the amplitude re�ectivity of the Bragg grating on the le� and right
end, respectively. It is clear that, following Equation 30.14, only the wave at the Bragg wavelength sees the
highest re�ection and consequently has the smallest cavity loss de�ned by αc ≡ −(0.5∕Lar) ln(|Rl||Rr|),
since at least one of the end re�ectors will o�er the highest re�ection (i.e., either Rl, or Rr, or both will take
the largest value) at the Bragg wavelength following the grating re�ection spectrum shown in Figure 30.3. It
then requires the smallest modal gain to reach the threshold in the neighborhood of the Bragg wavelength.
It is not as clear though, following Equation 30.15, that one can �nd a solution to λ in the neighborhood of
the Bragg wavelength, not going beyond λ2

B∕(2ne�Lar), with λB indicating the Bragg wavelength (2ne�Λ).
Actually, if one takes λ = λB + Δλ (Δλ ∼ λ2

B∕(2ne�Lar) << λB) in Equation 30.15 to obtain

2πΔλ

(

2ne�Lar

λ2
B

)

=
4πne�Lar
λB

+ ϕl(λ) + ϕr(λ) − 2πm (30.16)

and also to notice that the total phase on the right hand side of Equation 30.16 is a slow-varying function
of λ in the neighborhood of λB following Figure 30.3, one immediately �nds that as Δλ changes from 0
to λ2

B∕(2ne�Lar), the total phase on the le�-hand side of Equation 30.16 sweeps over an entire range of
2π, which means that the phase on the two sides of Equation 30.16 will have a matching point within
the interval between λB and λB ± λ2

B∕(2ne�Lar), given the fact that the phase takes 2π as its modulo. One
therefore reaches the conclusion that the phase condition (Equation 30.15) always has a solution in a close
neighborhood of the Bragg wavelength bound by λ2

B∕(2ne�Lar). Consequently, one knows that the ampli-
tude condition (Equation 30.14) and the phase condition (Equation 30.15) jointly select a single lasing
wavelength near the Bragg stop-band center of the end grating re�ector. This explains why the DBR laser
operates under the SLM.

The main advantage of the DBR laser lies in the separation of its gain and wavelength selection (i.e., the
passive Bragg grating) region. Since the grating region is not biased, the wavelength selection mechanism
su�ers little change with the injection current in the gain region. One then expects a stable SLM operation
with high side-mode-suppression-ratio (SMSR) and small wavelength chirp, which is evidenced by many
publications [22,23]. It is also quite convenient to introduce a lasing wavelength tuning in DBR laser, as
one can readily bias the grating region by a separate electrode from the gain region. As such, the current
injection in the grating region introduces an e�ective index change, since the carrier-induced gain/loss
change will have an accompany refractive index change following the Kramers–Kronig relation. Therefore,
the peak re�ection wavelength (the Bragg wavelength) given by Equation 30.4 will change with the current
injected in the grating region, which causes the lasing wavelength change accordingly. Usually, a phase
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adjustment section needs to be inserted between the gain and the grating region to separately tune the
phase for matching the lasing condition, as otherwise the DBR laser may cease lasing or experience a lasing
mode hopping due to the mismatch of the phase condition. However, since the grating region has to be
made transparent to the lasing wavelength, as otherwise the light will be absorbed by the unbiased passive
grating region if it has the same band-gap with the active region, the fabrication of DBR lasers inevitably
involves the monolithic integration technique that still stands as an unsolved problem up to today, for its
low yield. With the birth of silicon photonics in the recent decade, it is quite promising to make the Si
photonics DBR laser by bonding a direct band-gaped III-V compound semiconductor gain block on top
of the silicon-on-insulator (SOI) waveguide, with the Bragg grating engraved on SOI. There is a hope that
the DBR laser will be reborn with the booming Si photonics.

30.2.3 Distributed Feedback Lasers

A typical pure refractive index-coupled uniform-grating DFB laser has a structure shown in Figure 30.5.
Unlike the DBR laser with a gain region made of smooth waveguide separated from the passive grating
region, the DFB laser has these two regions merged into one, which makes the laser cavity substantially
di�erent from the aforementioned FP or DBR structures in the sense that the forward and backward going
waves are constantly coupled in a distributive manner inside the cavity rather than in a lumped sum man-
ner at the two ends of the cavity only. A wavelength discrimination mechanism is therefore brought in by
such distributed coupling, since only the waves at the phase matched wavelength(s) will possibly add con-
structively to establish a standing wave pattern (i.e., a longitudinal mode) inside the cavity, which imposes
a stringent condition that may likely puri�es the lasing spectrum by cutting o� most of the cavity modes
otherwise allowed in the FP cavity.

An immediate �nding is that this structure won’t have its lasing wavelength at the Bragg wavelength any-
more. This is because the wave near the Bragg wavelength sees the highest re�ection. It therefore cannot
travel far along the waveguide grating that also provides the gain. Consequently, it cannot obtain su�cient
gain as required for the lasing to happen. On the contrary, at the Bragg stop band edge where the grat-
ing o�ers zero-re�ection as shown in Figure 30.3, a maximum transmission through the grating region
is obtained. Although the wave at this particular wavelength experiences the highest single-pass gain as
it sees the entire length of the grating (with gain), it cannot be the lasing mode either since no re�ection
happens to it so that no resonance can be established. In this sense, the lasing should happen somewhere
in between, i.e., the traveling waves at the lasing wavelength should be partially re�ected by the grating to

FIGURE 30.5 The DFB laser structure.
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establish the resonance. It should be partially transmitted in order to experience the gain in the grating
region as well. As such, the phase matching and amplitude sustenance (gain) conditions must be mixed.

Following the same thought, i.e., searching for the consistent condition between the wave and itself a�er
a round trip inside the cavity, one can still obtain the resonance condition for the DFB cavity [24], which
will stand as the lasing condition of the DFB laser. In the general case, however, one cannot expect to have
analytical expressions for such lasing condition, so that we will cover the general case by the full numerical
model introduced later. To gain an insight into the DFB laser, we will analyze a simple case with both of
the end facet re�ections and longitudinal spatial horn burning (LSHB) e�ect neglected. Actually, the lasing
condition of such a simple DFB laser can be found by setting the denominator of Equation 30.10 and/or
Equation 30.11 equal to zero. The associated in�nite re�ection and transmission indicate that the device
can o�er output without input—a feature must be carried by an oscillator. Hence one has

γ coth(γL) = α + jδ, γ2 = (α + jδ)2 + κ+κ− (30.17)

Usually, for a given κ±L as the grating design parameter, one solves for γL from

(γL)2 coth2(γL) = (γL)2 − κ+κ−L2 (30.18)

which has the same solution set as Equation 30.17. Hence the normalized gain (αL) and detuning (δL) can
be found by

αL + jδL = ±
√

(γL)2 − κ+κ−L2 (30.19)

from which one will be able to obtain the lasing modal threshold gain (from gth ≡ αi+α, αi the modal inter-
nal loss) and the lasing wavelength (by solving δ = 2π[ne�∕λ − 1∕(2Λ)] for λ). The normalized gain (αL)
and detuning (δL) for di�erent normalized grating coupling coe�cient (κ±L) are plotted in Figure 30.6, as
the solution to Equations 30.18 and 30.19 obtained by a numerical root searching program built on Muller’s
algorithm [25].

The threshold gain solution indicates that, in a similar role as αc = −(0.5∕L) ln(|Rl||Rr|) to the FP or
DBR cavity, α, as the cavity loss to the DFB cavity, is in proportion to 1∕(κL). For a DFB grating design
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FIGURE 30.6 αL ∼ δL for di�erent κ±L as solutions to Equations 30.18 and 30.19.
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with a higher κ±, the cavity is more closed as an FP or DBR cavity with a higher end re�ection R, and with
the cavity length scaled in the same way. This conclusion, together with the above discussion on its lasing
wavelength position, stands as the most basic design guidance for the DFB laser. Also for the DFB laser
with high κ±L design, its cavity loss reduces so as the required modal gain to reach the lasing threshold,
the lasing wavelength will therefore approach more closely to the zero-re�ection wavelengths, as the wave
may have su�cient gain to reach its threshold through fewer passes, and consequently less re�ection is
necessary. Namely, as the threshold gain approaches to zero, the lasing will happen near the Bragg stop-
band edge. Hence one �nds that the lasing wavelength of the DFB laser with higher κ±L should be closer
to the zero-re�ection wavelength of the unbiased grating, i.e., the Bragg stop-band edge.

A serious issue with the purely refractive index-coupled uniform-grating DFB laser is, however, its dual-
mode operation nature originated from the double degeneracy caused by the center mirror-symmetry (or
antisymmetry) of the cavity. It is quite obvious that, from Equation 30.18, for any real κ+κ−, once γ is a
solution, −γ and ±γ∗ are all solutions. Hence for any solution set (α, δ), (±α,±δ) are all possible solutions
according to Equation 30.19, which means that for any modal gain required to reach the lasing threshold,
also known as the DFB laser cavity loss (α as a solution to the lasing condition), there is a double degeneracy
of the lasing wavelength corresponding to ±δ, respectively. These two lasing wavelengths sit on each side
of the Bragg wavelength, and approach to the Bragg stop-band edges as κ±L increases, in consistency with
previous analysis. Physically, this e�ect can be explained by the two equally possible standing wave patterns
shown in Figure 30.7a. In a DFB laser cavity with the center mirror-symmetry (L∕Λ = n + 1∕2, n is an
integer) or center mirror-antisymmetry (L∕Λ = n is an integer) and with zero end facet re�ections (the
latter condition can actually be further relaxed to identical end facet re�ections), there exist two possible
standing wave patterns as a result of the constructive addition of the distributively coupled forward and
backward going waves. They share the same gain inside the cavity and have the identical cavity loss. The
only di�erence between the two patterns is that one of them has its intensity peak aligned with the high
refractive index region in every period, whereas the other one has its intensity peak aligned with the low
refractive index region in every period. As such, the former and latter pattern will see the cavity mainly in
high and low refractive index, respectively. Consequently, the former and latter will take the longer (red)
and shorter (blue) lasing wavelength, respectively, on each side of the center Bragg wavelength. The double
degenerated longitudinal mode with di�erent standing wave pattern at di�erent lasing wavelength but with

(a)

Index perturbation Gain perturbation
Loss perturbation

(b)

(c)

(d)

(g)

(e)

(f )

FIGURE 30.7 Schematic diagrams for (a) purely refractive index-coupled uniform-grating DFB, (b) partially gain-
coupled in-phase DFB, (c) partially gain-coupled antiphase DFB, (d) partially loss-coupled in-phase DFB, (e) partially
loss-coupled antiphase-grating DFB, (f) purely gain-coupled DFB, (g) quarter-wavelength phase-shi�ed (QWPS) DFB;
the blue and red dashed lines in (a)–(e) show the intensity standing wave patterns of the longitudinal modes bearing
the short and long wavelength (on the blue and red side of the Bragg wavelength), respectively; the black dashed line
in (f) and (g) shows the intensity standing wave pattern of the longitudinal mode bearing the Bragg wavelength.
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the same threshold gain breaches the SLM operation condition, which makes the purely refractive index-
coupled uniform-grating DFB with a perfect center mirror-symmetric (or antisymmetric) cavity not a SLM
laser.

This conclusion can also be generalized to any cavity with the perfect center mirror-symmetry or center
mirror-anti-symmetry, once its re�ection (or transmission) spectrum is symmetric, a necessary condition
to reach the SLM operation is to have its lasing wavelength right in the center of the spectrum. Otherwise,
dual-mode operation is inevitable. By recalling the lasing condition for the DBR laser, one may conclude
that, in order to ensure its SLM operation with high SMSR, one has to either somehow break the symmetry
(or anti-symmetry) of the cavity by, e.g., introducing two slightly di�erent end re�ection gratings (usually
with slightly misaligned Bragg wavelengths) or use the grating re�ector on one end only, or to ensure that
the solution to the phase condition (Equation 30.15) is at the Bragg wavelength so that the lasing will
happen exactly in the re�ection spectrum center.

Since it is impossible to make the purely refractive index-coupled uniform-grating DFB lase at the Bragg
wavelength, a conclusion not only drawn from the analysis at the beginning of the discussion on DFB lasers,
but also known by the lasing condition (Equation 30.18). This is because for real κ+κ−L2, real γL cannot
be a solution as otherwise, the right-hand side is smaller than γL whereas the le�-hand side is bigger than
γL, hence γL must be complex, which leaves δ ≠ 0. The only viable way to reach the SLM operation for
such DFB laser is then to break the cavity symmetry (or antisymmetry) by introducing asymmetric facet
coatings on the two ends, usually a combination of the AR coating for the front facet and the high-re�ection
(HR) coating for the rear facet, respectively. However, the SLM yield with high SMSR for such DFB laser
is still low since the grating phase at the two ends is usually random, given the condition that the grating
period is in 1/5∼1/4 of a micrometer whereas the uncertainty of the facet cleaving position is in a range of
±(2 ∼ 3)μm. Particularly for those DFB lasers with high κ±L designs, they usually su�er from very poor
SLM yield (only∼15% for SMSR > 30 dB with κ±L > 3) [26]. This is because the DFB laser with high κ±L
tends to have the envelope of the standing wave pattern piled up in the middle, rather than at the two ends,
of the cavity, due to the strong coupling, which makes the cavity less a�ected by the end facet condition as
the waves inside the cavity simply don’t “feel” much about the existence of the cavity ends. As a result, the
end facet asymmetry applied on a strongly coupled DFB cavity is not su�cient to break the degenerated
threshold gain between the two modes. Hence one �nds that high κ±L o�en triggers dual mode lasing
in DFB lasers. Figure 30.8 shows the standing wave envelope distributions inside the DFB cavity under
di�erent coupling strengths, from which one �nds that the �eld stays at the two ends, or piles up in the
middle of the cavity, corresponding to the weak (with κ±L < π∕2), or strong (with κ±L > π∕2) coupling
condition, respectively. And the �eld takes almost an even distribution along the cavity under the critical
condition κ±L = π∕2, as it has to be.

To thoroughly solve the dual-mode operation problem associated with the purely refractive index-
coupled uniform-grating DFB laser, one can have di�erent approaches along with the thought of breaking
the cavity symmetry, or forcing the lase at the Bragg wavelength. While the former led to the invention of
various complex-coupled DFB lasers [27–30], the latter resulted in the popular product of the QWPS DFB
laser [31].

Figure 30.7b shows the working principle of the in-phase partially gain-coupled DFB laser. As an extra
gain is introduced periodically inside the high refractive index region, the longitudinal mode with its
intensity peak in its standing wave pattern located in the high refractive index region in each period
obtains more gain than the other mode, hence the degeneracy between the two longitudinal modes breaks
and only the mode with the longer wavelength (on the right/red side of the Bragg wavelength) will lase,
which makes such DFB laser operate under SLM. Figure 30.7c shows the working principle by taking the
other option to boost the longitudinal mode bearing the shorter wavelength (on the le�/blue side of the
Bragg wavelength). Known as the antiphase partially gain-coupled DFB laser, the structure has an extra
gain introduced periodically inside the low refractive index region, which again breaks the degeneracy
between the two longitudinal modes since the longitudinal mode with its intensity peak in its stand-
ing wave pattern located in the low refractive index region in each period has more gain than the other
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FIGURE 30.8 Field envelope distributions inside the DFB cavity for κ±L = 1.0(< 1.57), κ±L ∼ 1.57, and κ±L =
3.0(> 1.57).

mode. As a result, only the shorter wavelength mode will lase, which again makes such DFB laser operate
under SLM.

Figure 30.7d and e shows the working mechanisms of the partially loss-coupled in-phase and antiphase
DFB lasers, respectively. If an extra loss is introduced periodically inside the high (or low) refractive index
region, the longitudinal mode with its intensity peak in its standing wave pattern located in the high (or low)
refractive index region in each period su�ers from more loss than the other mode, hence the degeneracy
between the two longitudinal modes breaks and only the mode with the shorter (or longer) wavelength on
the le�/blue (or right/red) side of the Bragg wavelength will lase, due to the suppression of its counterpart
on the other side of the Bragg wavelength, which makes such DFB laser operate under SLM.

One can also understand why the degeneracy breaks in such partially gain- or loss-coupled DFB lasers
by the lasing condition (Equation 30.18). For complex-coupled DFBs, κ+κ−L2 is also complex or κ+κ−L2 ≠
(κ+κ−L2)∗. As such, if γ is a solution, γ∗ is not necessarily a solution. Following Equation 30.19, one then
�nds that ±δ cannot share the same α as the solutions.

Figure 30.7f shows the working principle of the purely gain-coupled DFB laser. Since the purely gain-
coupled laser has a purely negative κ+κ− (κ− = −κ∗+, κ+κ− = −κ+κ

∗
+ ≡ −|κ|2), which makes the lasing

condition (Equation 30.18) turn into

(γL)2 coth2(γL) = (γL)2 + (|κ|L)2 (30.20)

a real solution of γ is then possible which forces the lasing happen at the Bragg wavelength according to
Equation 30.19, or

αL + jδL =
√

(γL)2 + (|κ|L)2 (30.21)

from which one readily achieve δ = 0 for the right-hand side is real. The dual mode lasing in purely gain-
coupled DFB laser is not possible as one cannot �nd two di�erent standing wave patterns inside the cavity
that share the same gain. It is obvious that only a single standing wave pattern is allowed inside the cavity
with itself completely aligned with the gain grating. Any standing wave pattern in di�erent shape with the
gain grating will naturally be suppressed. Therefore, one knows that Equation 30.20 cannot have a complex
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γ as its solution associated with the longitudinal mode with the lowest cavity loss (α). As otherwise, γ∗ will
be an allowed solution as well, according to Equation 30.21, one will then be able to have a pair of lasing
wavelengths corresponding to the doubly degenerated solutions (α,±δ), which is in con�ict against our
previous physics-based analysis on the purely gain-coupled DFB laser cavity. Namely, solution (α, 0)must
take the smallest cavity loss α = αmin, while any other possible doubly degenerated solutions in the form
of (α,±δ) with δ ≠ 0 must have a higher cavity loss α > αmin hence cannot be the lasing modes. This
conclusion has been evidenced by a numerical searching for all possible solutions of Equation 30.20 [32].
Finally, one may conclude that the purely gain-coupled DFB laser will lase at the Bragg wavelength and
naturally stands as the SLM laser.

Figure 30.7g shows the working mechanism of the QWPS DFB laser. The only di�erence from the
uniform-grating purely refractive index-coupled DFB is that there is an extra half period of the grating
inserted right at the cavity center. An extra half period of the grating is equivalent to a quarter-wavelength
phase shi� in the �rst-order grating following the relationship between the grating period and the Bragg
wavelength Λ = λB∕(2ne�), which therefore introduces a π phase shi� to the re�ected wave or a π phase
shi� to the round trip wave. As such, the wave will have to make two round trips to recover its status,
which leads to its resonance. This feature suggests us to fold back the cavity from the center to equivalent
the original structure to a uniform-grating DFB with half of its original length and with a perfect facet
with 100% re�ectivity at one end (the original cavity center). In such a half cavity equivalent structure, if
the standing wave pattern has its intensity peak originally aligned with the high refractive index region in
every period, upon the 100% re�ection at one end, the peak will have to be aligned with the low refrac-
tive index region in every period, and vice versa. As such, none of the two original standing wave patterns
inside the uniform-grating DFB can exist inside the modi�ed cavity with a quarter-wavelength phase shi�
introduced at the cavity center. Rather, only a standing wave pattern with its peak aligned at the edge of the
grating tooth (i.e., the interface of the high and low refractive index region) in every period can stay. This
standing wave pattern is unique inside the cavity and corresponds to the longitudinal mode at the Bragg
wavelength, for it sees an averaged refractive index between the high and low index region in every period,
which happens to be the e�ective index of the unperturbed waveguide by the grating. Also physically, a
longitudinal mode with its envelope piled up in the middle of the cavity will see the highest re�ection from
both sides if it bears the Bragg wavelength. Hence this mode will be most tightly con�ned inside the cavity
and sees the most gain. Consequently, it should have the lowest cavity loss and becomes the lasing mode.
The numerically calculated longitudinal mode distribution along the cavity of such structure con�rms this
conclusion [33] as one �nds that, with its lasing mode always at the Bragg wavelength, the QWPS DFB
laser has a sharp longitudinal mode distribution peak at the center of the cavity. In a uniform-grating DFB
without a phase-shi�ed center inside the cavity, this scenario can never happen, as the maximum re�ection
at the Bragg wavelength can only be possibly seen by the wave from one side rather than from both sides.
Hence the wave at the Bragg wavelength cannot stay long inside the cavity to obtain su�cient gain for las-
ing, a same conclusion drawn earlier for the uniform-grating purely refractive index-coupled DFB laser.
It is worth mentioning that a more detailed analysis would have to have a new lasing condition involved
as Equation 30.17 is no longer valid for either a nonuniform grating (the grating with a phase shi�) or
a uniform grating with nonzero end facet re�ection (the equivalently folded cavity with a uniform grat-
ing plus 100% re�ection at one end). From the newly derived lasing condition for this structure, one will
be able to �nd that δ = 0 is indeed an allowed solution that has the minimum cavity loss (α = αmin)
[34]. Therefore, the QWPS DFB laser always operates under the SLM and has its lasing mode at the Bragg
wavelength.

30.2.4 Governing Equations for Design, Modeling, and Simulation

The following one-dimensional (along the propagation direction, z) traveling wave model is o�en
used as the optical governing equation for the edge-emitting semiconductor lasers with various



9781498749565_C030 2017/8/31 12:00 Page 126 #18

126 Handbook of Optoelectronic Device Modeling and Simulation

waveguide-grating structures [16]:

(

1
vg

∂
∂t
+ ∂
∂z

)

e f (z, t) = [ j
(

2πne�
λ0

− π
Λ

)

+ j 2π
λ0
ΓΔn(z, t,ω0)

+ 1
2
Γg(z, t,ω0) −

1
2
αL]e f (z, t) + jκ+eb(z, t) + s f (z, t)

(

1
vg

∂
∂t
− ∂
∂z

)

eb(z, t) = [ j
(

2πne�
λ0

− π
Λ

)

+ j 2π
λ0
ΓΔn(z, t,ω0)

+ 1
2
Γg(z, t,ω0) −

1
2
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(30.22)

where e f ,b denote the slow-varying envelopes of the forward and backward going traveling wave �eld,
respectively, g and Δn the material gain and refractive index change, respectively, αL the non-interband
optical modal loss, ω0 the reference optical frequency, λ0 = 2πc∕ω0 the reference optical wavelength (i.e.,
the vacuum wavelength of the reference optical frequency), vg = c∕ng the group velocity, ne� and Γ the
e�ective index (of the waveguide) and con�nement factor (of the active region), respectively, Λ and κ±
the period, the backward-to-forward (+), and the forward-to-backward (−) coupling coe�cient of the
�rst-order waveguide Bragg grating, respectively, s f = sb ≡ s̃ the spontaneous emission contributions.

The associated optical �eld can be expressed as

⇀

E(x, y, z, t) = 1
2

⇀sφ(x, y)[e f (z, t)e j πΛ z + eb(z, t)e−j πΛ z]e−jω0t + c.c. (30.23)

with ⇀s indicating the unit vector of along the (linear) �eld polarization direction, φ the �eld distribution of
the waveguide mode as the solution of Equation 30.9. For a given waveguide-grating structure, one needs
to solve Equation 30.9 �rst to �nd the e�ective index (ne�) and the guided mode �eld distribution (φ). The
coupling coe�cients (κ± =κ±1) can then be obtained from Equation 30.8 and the con�nement factor is
given as

Γ = ∫
A.R.

|φ(x, y)|2dxdy∕ ∫
Σ

|φ(x, y)|2dxdy (30.24)

with the integration areas A.R. and Σ indicating the active region (quantum wells) only and the whole area
where the optical �eld extends.

Equation 30.22 is obtained from the optical wave equation under the slow-varying envelope approxi-
mation with the second-order derivatives of the envelope (∂2e f ,b∕∂z2 and ∂2e f ,b∕∂t2) all ignored, whereas
the optical wave equation is directly obtained from the Maxwell equations with the coupling among the
�eld polarization components ∇(∇ ⋅

⇀

E) ignored. The former is true for the edge-emitting device with
its cavity length L much longer than the operating wavelength λ (usually L is in a few hundreds to a
thousand of λ∕ne�), in which the optical wave is propagating along the cavity with its traveling wave factors
ϕ± = e j(±πz∕Λ−ω0t) varying much faster as z and t, hence:

|∂2e f ,b∕∂z2∕e f ,b
| << |∂2ϕ±∕∂z2∕ϕ±| = (π∕Λ)2

|∂2e f ,b∕∂t2∕e f ,b
| << |∂2ϕ±∕∂t2∕ϕ±| = ω2

0

(30.25)

The latter assumption holds for the weakly con�ned waveguide, which is generally true of most of the III–V
compound semiconductor laser diodes with either ridge waveguide or buried heterojunction structures.
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In the �eld expansion (Equation 30.23), the single-guided-mode assumption has been invoked as a
necessary condition for the SLM operation. As di�erent guided modes have di�erent e�ective indices,
for the same grating period Λ, di�erent wavelengths will be chosen to satisfy the phase-matching condi-
tion (Equation 30.4). As a result, multiple longitudinal modes in di�erent lasing wavelengths, with each
of them corresponding to a guided mode in a di�erent e�ective index, will be excited, which breaches the
SLM condition. A single polarization component is assumed for the same reason, but this is not necessary
as the di�erence between the two e�ective indices corresponding to the two orthogonally polarized com-
ponents in a guided mode is usually very small in weakly con�ned waveguides. As a result, the di�erence
between their corresponding lasing wavelengths can hardly be appreciable. Actually, for most of the III–V
compound semiconductor laser diodes, the active region is made of the compressively strained multiple
quantum wells (CS-MQW). The compressively strained quantum well can only provide the optical gain
in the (100) plane [35], which means only the TE mode with its optical E-�eld polarized in parallel to the
slab waveguide interfaces, i.e., the interfaces of the layer stack grown in the usual <100>direction, can see
the gain whereas the other polarization component, i.e., the TM mode with its E-�eld polarized in the
perpendicular direction, will be completely suppressed. Therefore, it is usually su�cient to study the TE
mode with its E-�eld horizontally polarized in parallel with the device top and bottom surfaces.

The material gain of semiconductors can generally be calculated by the physics-based �rst-principles
model [16]. For performance simulation of the SLM laser, however, the following model that phenomeno-
logically links the gain to the (minority) carrier density inside the active region is su�cient:

g(z, t,ω0) = a(ω0) ln
N(z, t)
Ntr(ω0)

∕[1 + ε(|ef (z, t)|2 + |eb(z, t)|2)] (30.26)

with a(ω0) and Ntr(ω0) indicating the gain coe�cient and the transparent (minority) carrier density for the
active region comprising (strained-layer) multiple quantum wells, ε the nonlinear gain saturation factor.
These parameters are usually extracted in the neighborhood of the reference optical frequency (ω0) from
the physics-based material gain model or measured experimentally.

The refractive index change and the material gain, corresponding to the real and imaginary part of
the material susceptibility, are connected by the Kramers–Kronig relation. Actually, if one views the sus-
ceptibility as the frequency-domain transfer function of the material system in responding to the optical
E-�eld as the input signal, the polarization excited by the optical E-�eld then becomes the output signal.
Following the linear system theory, the time-domain polarization is given as the convolution of the time-
domain optical E-�eld and the inverse Fourier transform of the susceptibility. Since a real physical system
must be causal, which means the polarization at any time instant t can only be dependent on the optical
E-�eld given before t, it imposes a strong constraint between the real and imaginary part of the suscepti-
bility and is mathematically given in the form of the Kramers–Kronig transform. By noticing that the SLM
laser is a typical narrow-band device with its lasing frequency in the neighborhood of the reference optical
frequency (ω0) and the Kramers–Kronig relation is linear, one can readily express the refractive index
change as a linear function of the material gain:

Δn(z, t,ω0) = αLEFg(z, t,ω0) (30.27)

with αLEF denoting the linewidth enhancement factor.
Finally, the carrier density inside the active region can be described by the following rate equation

[16,36]:

∂N(z, t)
∂t

=
I(z, t)

qV
− [AN(z, t) + BN2(z, t) + CN3(z, t)]

−
ne�

2ℏω0

√

ε0
μ0

LΓ
V

g(z, t,ω0)[|e f (z, t)|2 + |eb(z, t)|2]
(30.28)
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where I represents the bias current; q the unit electron charge; V the active region volume; A, B, and C the
minority carrier Shockley–Read–Hall (SRH); bimolecular and spontaneous emission, and Auger recom-
bination coe�cients, respectively; ℏ Plank constant;

√

ε0∕μ0 ≈ 1∕377[S] the vacuum admittance; and
L the active region length (along the cavity direction). Given the fact that the active region of the laser
diode has a low (unintentional) doping concentration and the potential drop across it is usually negligible,
a quasi-neutrality condition holds and consequently the electrons and holes have the same density inside
the active region—we therefore don’t have to distinguish the electron and hole density and simply use the
term “carrier density” to indicate both.

As the seed of the lasing process, the spontaneous emission contribution cannot be ignored at the begin-
ning as otherwise Equation 30.22 becomes homogenous and only the trivial zero solution exists. Once the
lasing starts, i.e., for the device operated under a bias beyond the threshold, however, the contribution from
the spontaneous emission becomes negligible, which is re�ected as a fact that the self-consistent solution
of the above set of equations always converges to the same value regardless of the excitation method of
the spontaneous emission, as long as the spontaneously emitted noise power is self-consistently described.
The spontaneous emission contribution is usually assigned as a Gaussian distributed zero-mean random
variable with its autocorrelation function normalized by the spontaneously emitted noise power [16]:

< |s̃(z, t)||s̃(z′, t′)| >=
2ℏω0
ne�

√μ0
ε0
γΓnspg(z, t,ω0)δ(z − z′)δ(t − t′) (30.29)

where γ denotes the dimensionless coe�cient of the coupling from the spontaneous emission to the entire
spatial sphere and over the whole frequency spectrum to the waveguide mode at the reference optical
frequency, nsp the dimensionless ratio of the spontaneous emission to stimulated emission gain, and δ the
Dirac function.

Equations 30.22, and 30.26 through 30.29 form a closed loop for one to �nd a set of self-consistent
solution on the (minority) carrier density inside the active region (N), the material gain (g), and the slow-
varying envelopes of the forward and backward going traveling wave �eld (e f ,b), for any given bias (I),
with Equations 30.9, 30.8 and 30.24 presolved for a given SLM laser structure. Consequently, the optical
�eld inside the laser can be found through Equation 30.23 and other physics quantities for characterizing
the laser, such as the output optical power and the lasing wavelength, can readily be found [16,37]. An
e�cient solution technique for solving Equation 30.22 is to use the time-domain split-step method [38],
with Equation 30.28 solved by the well-known Runge–Kutta method [39].

To describe the thermal e�ect, one still needs to add on the thermal di�usion equation [40] and to modify
the empirical formulas for the material gain and refractive index change by considering their temperature
dependence [16]. However, we will exclude the thermal description in this model to focus our study on the
SLM operation aspect of semiconductor laser diodes.

30.2.5 Examples of SLM Laser Characteristics

By exploiting the aforementioned model, one can calculate the device performance for SLM DFB lasers
with a few di�erent types of grating structures as discussed in Section 30.2.3, shown in Figures 30.5 and
30.7. Figures 30.9 through 30.14 show the numerical simulation results of the output optical power and
lasing wavelength as functions of the bias, the optical spectra at a �xed bias, the normalized optical �eld
intensity and (minority) carrier density distributions along the cavity, and the small-signal intensity modu-
lation responses for the purely refractive index-coupled uniform-grating DFB, partially gain/loss-coupled
in/antiphase DFB, purely gain-coupled DFB, and QWPS DFB, respectively, with those device parameters
involved in the model summarized in Table 30.1.

From Figure 30.9, one �nds that while all DFB lasers have similar threshold current, the loss-coupled
and QWPS DFB lasers have lower slope e�ciency. This is expected for loss-coupled DFB lasers as their
loss-coupling coe�cient introduces an extra contribution equivalent to the non-interband optical modal
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FIGURE 30.10 Relative lasing wavelength shi�–bias current curves for di�erent DFB lasers. IC = (purely refrac-
tive) index-coupled (uniform grating), PGC = partially gain-coupled, PLC = partially loss-coupled, GC = (purely)
gain-coupled, QWPS = quarter-wavelength phase-shi�ed; the relative lasing wavelength shi� is de�ned as λ-λl, with λ
indicating the lasing wavelength at any bias current > 20 mA and λl the lasing wavelength at bias current = 20 mA for
di�erent DFB lasers under comparison.
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loss (αL). As shown in Table 30.1, the assumed non-interband optical modal loss is 10/cm, the normal-
ized loss-coupling coe�cient 0.5 would give an extra optical loss around 0.5∕L = 0.5/(0.03 cm) ∼17/cm.
The total optical loss 27/cm indicates a signi�cant increase as compared the original value in 10/cm. Since
the slope e�ciency is inversely proportional to the optical modal loss, higher loss would certainly cause
a lower e�ciency. The low slope e�ciency of the QWPS DFB laser, however, is not caused by the high
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QWPS = quarter-wavelength phase-shi�ed.

optical modal loss, but by the low cavity loss. Since this structure has its �eld intensity mostly concentrated
in the middle of the cavity, such a �eld pattern tends to retain more photons inside the cavity and conse-
quently leads to a low output power by the low �eld distribution at both facets. This is consistent with our
understanding on QWPS DFB as a high Q (quality)-factor laser with low cavity loss. Still because the slope
e�ciency is determined by the cavity loss over the summation of the cavity loss and the optical modal loss,
apparently a low cavity loss will lead to a low slope e�ciency once the optical modal loss is a nonvanishing
positive value.
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TABLE 30.1 Model Parameters

Model Parameter Value

Cavity length L (μm) 300
Thickness of the quantum well (nm) 5
Number of quantum wells 6
Re�ectivity of both laser facets 0, 0
Group index ng 3.6
E�ective index ne� 3.2
Con�nement factor Γ 0.06
Ridge width (μm) 2
Normalized index coupling coe�cient 2.5
Normalized gain coupling coe�cient 0.5
Normalized loss coupling coe�cient 0.5
Grating period Λ (nm) 204.7
Gain coe�cient a (cm−1) 1800
Transparent carrier density Ntr (1018 cm−3) 0.8
Linewidth enhancement factor αLEF −3
Nonlinear gain saturation factor ε (10−2 V−2) 9
SRH recombination coe�cient A (109 s−1) 1
Bimolecular and spontaneous emission recombination coe�cient B (10−10 cm−3s−1) 2
Auger recombination coe�cient C (10−29 cm−6 s−1) 4
Non-interband modal loss αL (cm−1) 10
Spontaneous emission coupling coe�cient γ 10−4

Spontaneous emission over stimulated emission rationsp 1.7
Reference wavelength λ0 (μm) 1.310

As ideal laser characteristics, the carrier density as well as the averaged gain should be clamped a�er las-
ing, but this is true only when the carrier density and optical �eld intensity both have uniform distributions
along the cavity. In DFB lasers, however, the carrier density and optical �eld intensity have nonuniform
distributions in “opposite” shapes as shown in Figure 30.12. Also, following the Schwartz nonequality, one
knows the fact that the overlap integration between two functions with di�erent shapes must be smaller
than that between two functions in a similar shape. Under higher bias current, stronger LSHB makes the
carrier density and optical �eld intensity distribution shapes more unlike. As a quantity directly in pro-
portion to the overlap integration of the carrier density and optical �eld intensity distributions along the
cavity, the averaged gain will be smaller. To maintain the lasing status, i.e., to balance the cavity loss plus the
optical non-interband modal loss, the carrier density will have to increase with the bias current in order to
compensate the “lost” averaged gain due to the enhanced LSHB. The increased carrier density will there-
fore cause a refractive index reduction of the active region following the Kramers–Kronig relation, which is
simpli�ed as Equation 30.27 with the negative linewidth enhancement factor (αLEF). The reduction of the
active region refractive index brings down the e�ective index of the waveguide and consequently makes the
Bragg wavelength as well as the whole Bragg stop-band shi� toward the shorter wavelength side, according
to Equation 30.4 (λB = 2ne�Λ). This e�ect is indeed re�ected in Figure 30.10 by the blueshi� with the
increased bias current of the lasing wavelengths of the QWPS DFB and GC DFB lasers, located right in the
center of the Bragg stop-band (or at the Bragg wavelength).

Figure 30.10 also shows that, without the thermal e�ect considered in simulation, the lasing wavelengths
of the DFB lasers on the le� (blue) side the Bragg stop-band (i.e., the IC DFB, the antiphase PGC DFB, and
the in-phase PLC DFB; see Figure 30.11) have redshi� toward the longer wavelength side with increased
bias current, whereas the lasing wavelengths of the DFB lasers on the right (red) side (i.e., the in-phase
PGC DFB and the antiphase PLC DFB; see Figure 30.11) take blueshi� toward the shorter wavelength
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side. This is brought in by the shrinkage of the Bragg stop-band width due to the enhanced LSHB with
the increased bias current, which further suggests an e�ective normalized coupling coe�cient reduction
or a more opened (lower Q-factor) cavity in accompanying with the stronger LSHB under higher injection
level.

Figure 30.11 clearly shows that the QWPS and purely gain-coupled DFB lasers lase at the Bragg wave-
length, whereas the in-phase and antiphase partially gain-coupled DFB lasers have their lasing wavelengths
at the right (red) and le� (blue) side of the Bragg stop-band, respectively. The in-phase and antiphase
partially loss-coupled DFB lasers have their lasing wavelengths located the other way around, at the
le� (blue) and right (red) side of the Bragg stop-band, respectively. Finally, the purely refractive index-
coupled DFB laser picks the le� (blue) side wavelength rather randomly, with a relatively poor SMSR as
expected. All these �ndings are consistent with previous analysis on these DFB lasers with di�erent grating
designs.

From Figure 30.12, one �nds that the QWPS DFB laser has its �eld intensity mostly gathered in the
middle of the cavity, as opposed to the purely gain-coupled DFB laser with its �eld intensity largely con-
centrated at both edges. The former cavity obviously bears the highest Q-factor or smallest cavity loss,
whereas the latter one must correspond to the lowest Q-factor or highest cavity loss. Since the threshold
current is proportional to the cavity loss, and the slope e�ciency also increases with the cavity loss, the
high Q-factor QWPS DFB laser bearing a low cavity loss has a low threshold current and a low slope e�-
ciency. On the contrary, the low Q-factor purely gain-coupled DFB laser bearing a high cavity loss has a
high threshold current as well as a high slope e�ciency. This result has been con�rmed by Figure 30.9
exactly. Other DFB lasers have their �eld intensities more evenly distributed and have their cavity losses in
between. Consequently, they have their threshold current and slope e�ciency values in between as shown
in Figure 30.9. It is also worth mentioning that the sharp �eld turning in the middle of the QWPS DFB
laser cavity is brought in by the half grating period shi� exactly at the same location.

All carrier density distributions take the opposite shape as compared to their optical �eld intensity
distributions. This result is expected as the carriers inside the cavity are consumed to generate photons,
indicating a low carrier density wherever the optical �eld intensity is high, and vice versa.

Simulation result shows that there is no signi�cant di�erence in terms of the 3 dB small-signal inten-
sity modulation bandwidth among di�erent DFB lasers once they are set to output the same optical
power. This is quite di�erent from the result obtained in References [41,42], in which the antiphase
partially gain-coupled DFB laser shows a signi�cantly broader 3 dB small-signal intensity modulation
bandwidth in comparison with its in-phase counterpart. The inconsistency might come from the di�erent
selection on device parameters and further investigation is still needed before a �nal conclusion can be
achieved.

30.3 Coupled-Cavity Single Longitudinal Mode Laser Diodes

30.3.1 A General Optical (Band-Pass) Filtering Model

The conventional FP cavity supports many closely packed longitudinal cavity modes with their spacing
given in the form of Equation 30.2. For the edge-emitting laser with its cavity length (L) much longer
than the center wavelength (λ0), the mode spacing is much smaller than the full width at half maximum
(FWHM) of the material gain peak. As such, multiple longitudinal modes can lase simultaneously, which
makes a typical edge-emitting FP laser operate under the multiple longitudinal mode lasing scheme. Other
than the aforementioned grating-assisted methods by introducing the wavelength-selective end re�ectors
(DBR), or by exploiting various DFB cavities, to achieve the SLM operation, one can still take an alternative
approach by inserting an optical (band-pass) �lter into the FP cavity to eliminate all other longitudinal
cavity modes but leave only one for lasing. This approach is generally known as the coupled-cavity laser that
forms the other category of SLM lasers, if we don’t count in various external cavity SLM laser con�gurations.
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For a coupled-cavity laser generally presented in the form of an FP cavity with an inserted OBPF shown
in Figure 30.15, we have [43]:

[

Aout
Bout

]

= 1
T 2

[

1 −R
−R 1

] [

e jφ2 0
0 e−jφ2

]

1
t21

[

t12t21 − r12r21 r21
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] [

e jφ1 0
0 e−jφ1

] [

1 R
R 1

] [

Ain
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]

(30.30)

with Ain,out and Bin,out denoting the optical �eld amplitude of the forward and backward propagating waves,
with their subscript “in” and “out” indicating the assumed input and output port on the le�- and right-hand
sides, respectively. One should note that the optical �eld is polarized in the cross-sectional plane perpen-
dicular to the cavity direction. The arrows associated with them in Figure 30.15 indicate their propagation
direction, not their polarization direction. Also in Equation 30.30, R and T indicate the amplitude re�ec-
tivity and transmissivity of the end facets when looking from inside of the FP cavity, r12,21 the amplitude
re�ectivities when looking from the FP cavity to the OBPF on the le�- and right-hand sides, t12,21 the ampli-
tude transmissivities from le� to right and from right to le� when staying inside the FP cavity, respectively.
Finally, φ1,2 are the phase delays of the wave traveling through the two sections (L1,2) of the FP cavity
separated by the OBPF.

Equation 30.30 can readily be simpli�ed to
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, (30.31)

where

δ ≡ t12t21 − r12r21 and A22 ≡ e−j(φ2+φ1) − r12Re−j(φ2−φ1) − r21Re j(φ2−φ1) − δR2e j(φ2+φ1) (30.32)

The lasing condition is therefore obtained as Ain = Bout = 0, but Aout and Bin are not zero, which requires
A22 = 0, or:

[r12e−j(φ2−φ1) + r21e j(φ2−φ1)]Re j(φ2+φ1) + δR2e2j(φ2+φ1) = 1 (30.33)

L2L1

Ain

Bin

Aout

Bout

r21

t12

t12

r12
R R

FIGURE 30.15 An illustrative diagram showing the FP cavity with an inserted optical band-pass �lter (OBPF), with
Ain and Bin, Aout and Bout indicating the optical �eld amplitudes of the forward and backward propagating waves at the
input and output port, respectively; r12 and t12 the amplitude re�ectivity and transmissivity from the le� section to the
inserted OBPF; r21 and t21 the amplitude re�ectivity and transmissivity from the right section to the inserted OBPF;
L1,2 the lengths of the le� and right section, respectively; R the end facet amplitude re�ectivity of the FP cavity.
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1. FP cavity
It is obvious that once we remove the OBPF by letting r12 = r21 = 0 and δ = 1, Equation 30.33
reduces to the well-known lasing condition of the FP laser:

R2e2j(φ2+φ1) = 1 (30.34)

2. Bidirectional symmetric �lter
Once the OBPF has the bidirectional symmetry, by letting

r12 = r21 = jre jθ (30.35)

and

t12 = t21 = te jθ (30.36)

we have

δ = (t2 + r2)e2jθ ≡ (1 − l)e2jθ (30.37)

where θ and l stand for the single pass phase and loss of the �lter, respectively. Hence we �nd from
Equation 30.33:

2jrR cos(φ2 − φ1)e j(φ2 +φ1 +θ) + (1 − l)R2e2j(φ2 +φ1 +θ) = 1 (30.38)

It is apparent that Equation 30.38 can be rewritten as

R̄2e2j(φ2 +φ1 +θ) = 1, with R̄ ≡

√

1 − l
1 − 2rR cos(φ2 − φ1)e j(φ2 +φ1 +θ+π∕2)

R (30.39)

Unlike in Equation 30.34 where the amplitude re�ectivity of the end facets R is a constant for a
conventional FP laser, a coupled-cavity laser comprising an FP cavity with an inserted bidirectional
symmetric �lter has a wavelength-dependent e�ective amplitude re�ectivity in its lasing condition,
which, conceptually similar to the lasing condition of the DBR laser given as Equation 30.13, pro-
vides an extra wavelength selection mechanism to make a conventional FP laser single-moded. For
example, if the inserted �lter is lossless (l = 0), Equation 30.39 shows that the modi�cation on
the lasing condition from the original FP cavity is determined by the re�ection (r) and length (θ)
of the �lter and its position inserted inside the FP cavity (φ1 and φ2). It is possible that, within
the wavelength range set by the gain spectrum bandwidth, there is a single wavelength that makes
1 − 2rR cos(φ2 − φ1)e j(φ2+φ1+θ+π∕2) = 1 − 2|r|R, and 2(φ1 + φ2 + θ) = 2mπ, with m as an integer.
Hence R̄ will be the maximum with the round trip phase-matching condition satis�ed at this wave-
length. As a result, the lasing will only happen at this wavelength and such a general coupled-cavity
structure supports SLM operation.

In the fabrication of real-world coupled-cavity lasers, the OBPF is usually formed by an equivalent FP
etalon. The �lter re�ectivity and transmissivity in Equations 30.35 and 30.36 can then be derived from
Equation 30.30 itself with the inserted �lter removed from the FP cavity in Figure 30.15. By doing so, we
�nd that Equation 30.30 reduces to

[
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with the prime symbols added to the variables and parameters to di�erentiate them from those being used
in Equation 30.30 for the most outside FP cavity in Figure 30.15. In the absence of the incident light coming
from the le�-hand side, B′out = 0, we have

Rf ≡
B′in
A′in

= j
2R′ sinφ′e jφ′

1 − R′2e2jφ′
, and Tf ≡

A′out

A′in
= T′2e jφ′

1 − R′2e2jφ′

Since the common factor 1∕(1 − R′2e2jφ′ ) in abovementioned expressions can be expanded in a form of

1 + R′2e2jφ′ + (R′2e2jφ′ )2 + ...

which means that j2R′ sinφ′e jφ′ and T′2e jφ′ are the single pass re�ectivity and transmissivity, respectively,
Equations 30.35 and 30.36 are valid once we take

r = 2R′ sinφ′ (30.40)

t = T′2 (30.41)

and

θ = φ′ (30.42)

Equations 30.35 through 30.37 and Equations 30.40 through 30.42 therefore link the model parameters to
the design parameters of the physical structure.

30.3.2 Cleaved-Coupled-Cavity (C3) Laser

A typical cleaved-coupled-cavity (C3) laser has a structure shown in Figure 30.16.
Following the general coupled-cavity laser model derived in Section 30.3.1, we have

R′ = (ne� − 1)∕(ne� + 1) (30.43)

T′2 = 4ne�∕(ne� + 1)2 (30.44)

φ′ = 2πd∕λ (30.45)

FIGURE 30.16 The C3 laser structure.
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with ne� denoted as the laser waveguide e�ective index and d the air gap spacing between the pair of
coupled cavities. By noting

φ1,2 = [2πne�∕λ − j(g − αi)]L1,2 (30.46)

and using Equations 30.40 through 30.42, one can express the lasing condition (Equation 30.39) in terms
of the C3 laser design parameters (ne�, d, g, αi, L1,2). The SLM lasing condition can therefore be found by
a proper combination of the two cavity lengths (L1,2) and the air gap spacing (d).

A major issue in the fabrication of the C3 laser is the optical alignment between the two cavities, if
the air gap will be formed by cleaving. One can certainly think of using the etching technology to form
the air gap, the quality of the facet; however, cannot be guaranteed unless the chemically assisted ion beam
etching (CAIBE) is exploited [44]. With CAIBE, the precise control of the air gap spacing becomes di�cult,
especially when the required spacing is no more than a few micrometers. An elegant approach to form
the C3 laser with a narrow air gap is the microcleaving technique [45]. In this technique, a�er the air
gap section is de�ned, a selective wet (chemical) etching step is applied �rst to remove the material (InP)
surrounding the active region (InGaAsP or AlGaInAs) inside the air gap, which leaves the latter as a thin
bridge hanging over in the middle. The wafer or bar is then soaked inside some liquid and placed inside an
ultrasonic cleaning bath for breaking down the active region bridge inside the air gap. The facet formed by
this approach has a quality equivalent to the one obtained by the conventional cleaving technique. Since
the etching of the air gap won’t go very deep a�er passing though the active region, there is no optical
alignment problem as the pair of coupled cavities still sits on top of the same substrate.

Despite its readiness in fabrication [46], the C3 structure never becomes a popular SLM laser product
for its low single-mode yield and the reliability concern. The low yield comes from the sensitive phase-
matching condition, which requires precise control on cavity geometrical dimensions, including both
cavity lengths and the air gap spacing, as well as the e�ective index of the waveguide. Since the latter
depends not only on the material composition and cross-sectional geometrical dimension design, but also
on operating conditions such as the ambient temperature and injection current, it naturally has a very low
probability to hit the stable SLM operation condition with a high SMSR over an entire bias range. The relia-
bility concern comes from the extra pair of facets appeared in the C3 structure, especially when it is di�cult
to get them protected with dielectric coating layers, for the coating is not only di�cult to be applied to the
narrow air gap, but also changes the lasing condition.

Figure 30.17 shows the simulated optical spectrum of a typical SLM C3 laser, with its structural
parameter given in Table 30.2, and other parameters the same as those given in Table 30.1.

30.3.3 Etched Slotted Laser

An alternative version of the coupled-cavity structure is the etched slotted SLM laser [47–50] with its typical
structure shown in Figure 30.18. The main di�erence lies in that the coupled cavities in such structure are
formed by one or multiple etched slots across the waveguide without passing through the active region. As
such, there is no optical alignment issue as the coupled-cavity device still stays as a whole piece. There is no
reliability concern either as no extra active region cross section is exposed other than the usual end facets.
The major drawback of this structure as compared to the C3 laser is its much reduced re�ectivity (r) of the
equivalent OBPF as appeared in Equation 30.39 as the general lasing condition for coupled-cavity lasers.
For an individual slot, its re�ectivity is given by

R′ = (ne� − n′e�)∕(ne� + n′e�) (30.47)

with ne� and n′e� as the e�ective indices of the normal section and the waveguide inside the etched slot,
respectively. As compared to the normal section, the etched slot only has its waveguide cladding layer
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FIGURE 30.17 The simulated lasing spectrum of a typical SLM C3 laser, with its parameters given in Table 30.2 and
Table 30.1, respectively.

TABLE 30.2 C3 Laser Parameters

Parameter Value

Cavity lengths L1, L2 (μm) 136, 121 [46]
Gap between cavities d (μm) 5
Cleaved facet re�ectivity r 0.565

FIGURE 30.18 A typical etched slotted laser structure.

thinned to some extent, one then cannot expect a signi�cant di�erence between ne� and n′e�. Therefore,
R′ given by Equation 30.47 is usually much smaller than the corresponding re�ectivity in the C3 laser
given by Equation 30.43. From Equations 30.39 and 30.40, one knows that the contrast of the e�ective
re�ectivity R̄ of the coupled-cavity laser at di�erent wavelength will be reduce with a decreasing re�ectivity
R′, Consequently, its ability on selecting the SLM drops signi�cantly for the etched slotted laser.

To solve the poor mode selection problem, multiple etched slots have been introduced. A cascade of the
structure in Figure 30.15 can be exploited to model such coupled-cavity laser with multiple etched slots.
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A modi�ed lasing condition similar to Equation 30.39 can also be derived with its e�ective re�ectivity
shown as a multiplication of multiple wavelength-dependent factors, with each of the factor corresponding
to a single slot. As such, the wavelength spectral contrast of its e�ective re�ectivity will be raised and its
mode-selection ability will be improved. However, the multiple slotted coupled-cavity laser usually su�ers
an even lower single-mode yield, for the associated phase-matching condition becomes more complicated
due to the introduction of multiple slots and the chance for it to be satis�ed becomes rare.

30.3.4 Discrete Mode Laser

As shown in Figure 30.19, the discrete mode laser [51,52] can be viewed as a speci�c type of multiple slot-
ted coupled-cavity laser with its slot’s spacing properly designed to satisfy the phase-matching condition.
As such, its single-mode yield can be signi�cantly improved. With its general design rule given in Ref-
erence [52], the discrete mode laser is actually an SLM device between the grating-assisted laser and the
coupled-cavity laser. It is apparent that, starting from a pair of coupled FP sections (i.e., the C3 laser), as
one increases the number of coupled FP sections with reduced re�ectivities from section to section, and
arranges the length of each FP section to satisfy certain phase-matching condition, one readily obtains
various of grating-assisted lasers. As a special case, for a design with a uniform unit length from one FP
section to another (Λ) selected to match the round trip phase-matching condition 4πne�Λ∕λ = 2π, one
obtains a DFB laser with the �rst-order Bragg grating, as the uniform unit length design forms a periodic
structure (i.e., a grating) with its periodicity (Λ) speci�ed exactly the same as Equation 30.4, the phase-
matching condition for the �rst-order Bragg grating. Therefore, the concept of the discrete mode laser
actually bridges the grating-assisted lasers and the coupled-cavity lasers as the two main categories of SLM
lasers.

30.3.5 New Aspects in Governing Equations and the Solution Technique

In general, the governing Equations 30.22 through 30.29 can still be used in modeling the coupled-cavity
lasers. Since there is no grating involved, π∕Λ should be replaced by 2πne�∕λ with the grating coupling
coe�cients (κ+,−) set to zero.

FIGURE 30.19 A typical discrete mode laser structure.
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To treat the uniform sections in the coupled-cavity structure, the gain spectral dispersiveness must be
considered to make sure that the lasing will happen in the neighborhood of the gain peak, as otherwise
there will be no speci�c wavelength can be referred but the lasing cannot possibly happen at an arbitrary
wavelength. Actually, the �rst term on the right-hand side of Equation 30.22 should be a time-domain con-
volution between the material gain and the �eld envelope, rather than be a product of them [53]. This term
in its current form in Equation 30.22 is obtained under the assumption that the gain spectral bandwidth
is much broader than the �eld envelope bandwidth, so that the time-domain gain performs as a Dirac
δ-function in the convolution, which takes away the integration. For an SLM laser, the latter is usually
determined by its linewidth or the modulation signal base bandwidth, whichever is broader, if the laser
is under direct modulation. As the gain spectral bandwidth is usually in the range of 60 nm, whereas the
�eld envelope bandwidth of an SLM laser usually is no more than 1 nm, the aforementioned assumption is
indeed valid. To restore the gain dispersiveness in the coupled-cavity laser, however, this assumption has
to be removed and a special solution technique will have to be introduced in dealing with the time-domain
convolution between the material gain and the �eld envelope. An e�cient way to treat the convolution in an
initial value problem speci�ed by a set of time-domain di�erential equations (or more accurately, a mixed
initial-boundary value problem speci�ed by a set of time-space domain partial di�erential equations) is
the digital �ltering method [16,54]. In this method, the material gain spectral pro�le is �rst calculated by
the physics-based model within a limited wavelength range [16]. Its shape is then duplicated in the entire
wavelength domain to form a periodic function, with nothing changed in its original wavelength range.
The time-domain material gain can therefore found by taking the inverse Fourier transform of its spectral
function. Since the latter function is turned into a periodic one, the time-domain gain therefore becomes a
summation of a set of Dirac δ-functions, weighted by factors obtained as the corresponding coe�cients in
its Fourier expansion. Consequently, the convolution is reduced to a summation of a set of �eld envelopes,
shi�ed in time domain and weighted by the said factors. For a given laser structure, these factors just need to
be calculated once a�er the material gain spectral pro�le is obtained. The digital �ltering method is, there-
fore, very e�cient in handling the convolution in conjunction with the time-domain solution techniques,
such as the split-step method, for solving Equation 30.22 [38,55].

Yet another problem o�en appearing in modeling the coupled-cavity laser is the involvement of the
passive sections without injection. It is obvious that the material gain, the refractive index change, and
the noise contribution in Equation 30.22 all need to be taken away for the passive sections. By noticing
that Equation 30.22 become completely decoupled with the rest governing equations, one can solve these
in frequency domain only for once to extract the re�ectivity and transmissivity of the �eld envelope for
these sections. In the rest (active) sections, the set of governing equations will be solved in time domain
as described previously. Upon the propagating waves reach the boundary at the passive section, how-
ever, the re�ected and transmitted �eld can be computed by taking the time-domain convolution between
the incident �eld and the inverse Fourier transform of the re�ectivity and transmissivity, respectively, as
the re�ectivity and transmissivity are both de�ned in frequency domain. Once again, the digital �ltering
approach can be employed in dealing with the time-domain convolution [56]. Since the re�ectivity and
transmissivity only need to be calculated once for a given structure, the convolution handled in such a
way is very e�cient. Generally, the mixed domain method, i.e., treating Equation 30.22 in time domain for
active sections and in frequency domain for passive sections, is much more e�cient compared with the full
time-domain method, especially for passive units with long section lengths, because the frequency-domain
treatment links the input and output �elds of the passive section directly through transfer functions (i.e.,
the re�ectivity and transmissivity, respectively) in a single step, without any step-by-step marching along
the wave propagating direction as required by time-domain approaches.

30.3.6 Performance Comparisons among Coupled-Cavity SLM Lasers

The simulated performance of a few di�erent types coupled-cavity SLM lasers is summarized in Table 30.3.
A general tendency is that as the SMSR increases with the number of slots (i.e., the number of coupled
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TABLE 30.3 Performance Comparison among Di�erent Coupled-Cavity SLM Lasers

Laser Structure SMSR (dB) SLM Yield (SMSR> 15 dB) SLM Yield (SMSR> 25 dB)

C3 laser 12–32 60% 20%
Etched slotted laser (2 slots) 6–19 27% 0%
Discrete mode laser (5 slots) 11–29 73% 13%
Discrete mode laser (9 slots) 9–36 60% 40%
Discrete mode laser (19 slots) 7–49 (42, measured value in [52]) 47% 33%

Note: The experimentally measured SMSR for a discrete mode laser with 19 slots is given in the brackets.

cavities), the SLM yield decreases. This result agrees with our conclusion drawn by the general OBPF
model for the coupled-cavity structures, since the increased slot number enhances the wavelength spec-
tral contrast of the e�ective re�ectivity, thereby enhances the structure’s mode selection ability, whereas it
simultaneously introduces a more complicated phase-matching condition that is increasingly di�cult to
be satis�ed.

30.4 Recent Development on Single Longitudinal Mode Laser
Diode

30.4.1 Open Problems in SLM Lasers

Current SLM lasers are not yet ideal. Grating-assisted lasers generally su�er problems like high fabrica-
tion cost and highly sensitive to external feedback. The DBR laser needs the technology to monolithically
integrate the active region with the passive grating section in di�erent material compositions. The uniform-
grating purely refractive index-coupled DFB laser has a relatively low single-mode yield, whereas the
QWPS DFB laser has even poorer immunity to external feedback and wastes half of its output power, and
complex-coupled DFB lasers usually have reliability issues. A variety of the grating-assisted laser structures
have been proposed, but all as compromised approaches with none of them seeming to be able to solve all
the aforementioned problems. Coupled-cavity lasers usually have low fabrication cost and less sensitive to
external feedback. However, they all have low single-mode yield and su�er relatively low SMSR. Therefore,
it still remains as an open problem on how to obtain reliable SLM lasers with high single-mode yield, high
SMSR, high immunity to external feedback, and low fabrication cost.

In the past decade, some progress has been made toward the �nal solving of the remaining problems in
SLM lasers, although most of the recent e�orts on laser development have their targets on new applications
found in data communication systems and telecommunication access networks with emphases on multiple
wavelength accessibility and tunability, and high-speed direct modulation. E�ort has also been put on
developing SLM lasers with narrow linewidth to meet the strong demand in high-speed long-haul coherent
telecommunication systems in advanced modulation-detection schemes with higher spectral e�ciency.
A thorough description on all these new developments is beyond the scope of this chapter, so that we will
only give a brief introduction on the new structures that are closely relevant to SLM lasers.

30.4.2 Bragg Waveguide SLM Laser

A schematic structure of the Bragg waveguide SLM laser [57,58] is shown in Figure 30.20. Unlike the
conventional SLM lasers that all utilize their cavity structure to select the single lasing mode, this structure
exploits the waveguide itself to eliminate the unwanted modes in an FP cavity.

The working principle of the Bragg waveguide can be understood by a simpli�ed model described in
Figure 30.21. By exploiting the e�ective index method, one reduces the wave vector of an arbitrary plane
traveling wave into a two-dimensional plane as shown in Figure 30.21. It can then be decomposed into
a pair of orthogonal components, with the one along the waveguide direction (β) as the required wave
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FIGURE 30.20 The Bragg waveguide SLM laser structure.
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FIGURE 30.21 An illustrative diagram showing the concept of the dielectric waveguide, with 2πn1,2,3∕λ indicating
the conceptual free-propagating plane wave numbers inside the core, the top cladding, and the bottom cladding layer,
respectively, β their corresponding wave vectors’ projection along the propagation (z) direction, k1,2,3 their correspond-
ing wave vectors’ projections along the cross (x) direction in the core, the top cladding, and the bottom cladding layer,
respectively, Rt,b the amplitude re�ectivities between the core and the top cladding layer, and between the core and the
bottom cladding layer, respectively; RtRbe j2k1d = 1 gives the resonance condition along the cross direction with d as
the core layer thickness, which stands as the necessary and su�cient condition for guided waves in general waveguides.

propagation constant, the other along the cross direction (k1) as the wave vector needs to be con�ned.
For the wave component that propagates in the cross direction, a round trip travel would make the initial
�eld E0 become E0RtRbe j2k1d, with Rt,b denoting the amplitude re�ectivity between the core and the top
cladding layer, and the core and the bottom cladding layer, respectively, and d the core layer thickness.
Therefore, once the resonance happens in the cross direction, i.e.,

RtRbe j2k1d = 1 (30.48)

the �eld distribution along the cross direction remains the same at any cut along the waveguide direction,
which means the wave is guided and propagates with β along the waveguide. This is actually a necessary
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and su�cient condition for a general waveguide, i.e., if and only if the wave resonates in the cross section,
it will be guided by the waveguide. Consequently, the guided wave will form a standing wave pattern inside
the core area of the waveguide, and will be either zero (for metallic waveguide) or evanescent (for dielectric
waveguide) outside of the core. The guided wave’s cross-sectional distribution doesn’t change as the wave
propagates along the waveguide. The only change on the wave as it propagates is its phase, scaled by βz−ωt,
with z and t indicating the space coordinate along the waveguide (i.e., in the wave propagation direction)
and the time variable, respectively.

For the conventional dielectric waveguide that utilizes the total internal re�ection e�ect, one �nds that

k1,2,3 =
√

n2
1,2,3(2π∕λ)2 − β2 (30.49)

for the wave vector components along the cross direction in the core (with subscript 1), the top cladding
(with subscript 2), and the bottom cladding (with subscript 3) layer, respectively, with n1,2,3 denoting the
refractive indices of these three layers. The propagation constant β, i.e., the wave vector component along
the propagation direction (z), must be the same for the same guided wave distributed in di�erent layers,
as otherwise the guided wave would be split apart along with its propagating in z. Under the total internal
re�ection scheme, the refractive indices are chosen in such a way to make k1 real (2πn1∕λ > β) but k2,3
imaginary (2πn2,3∕λ < β). By noticing that Rt,b = (k1 − k2,3)∕(k1 + k2,3) for the TE wave with its electric
�eld polarized in parallel with, and Rt,b = (1∕k1−1∕k2,3)∕(1∕k1+1∕k2,3) for the TM wave with its electric
�eld polarized perpendicularly to, the boundary between di�erent layers, respectively, one has |Rt,b| = 1
as the re�ectivity at the boundary always takes the form of (a − jb)∕(a + jb). Consequently, the resonant
condition (Equation 30.48) in the cross direction is reduced to

φt + φb + 2k1d = 2mπ (30.50)

with φt,b indicating the phase of Rt,b, i.e.,

φt,b = −2 arctan(|k2,3|∕k1) (30.51)

for the TE wave and

φt,b = −2 arctan(k1∕|k2,3|) (30.52)

for the TM wave, respectively. Equations 30.49 through 30.51 or Equation 30.52 de�nes the dispersion
relation of the guided wave, which tells that, for a given waveguide structure and operating wavelength
λ below a maximum value known as the cuto� wavelength, one always manage to �nd at least one real β
within the range between 2πmax(n2, n3)∕λ and 2πn1∕λ as the solution. Therefore, the conventional dielec-
tric waveguide has no wavelength selection ability as the dispersion relation of its guided wave shows a
high-pass �lter feature that supports the wave propagation with any wavelength shorter than the cuto�
value, which also echoes the same statement we made at the beginning of this chapter. It is not surpris-
ing for one to reach this conclusion, once one notices that as the total internal re�ection condition is
satis�ed, |RtRb| is always 1 regardless of the associated wavelength. The cross-directional resonant con-
dition, as the indication of the wave being guided, is therefore reduced to a phase-matching condition (i.e.,
the dispersion relation) that is too loose to select a discrete set of wavelengths, not to mention a single
wavelength.

If, however, a grating-based re�ection is utilized to substitute the total internal re�ection, as shown in
the structure given by Figure 30.20, it will be possible to make RtRb wavelength dependent. Once not only
the phase-matching condition in the form of Equation 30.50, but also a wavelength-dependent amplitude
condition in the form of |Rt(λ)Rb(λ)| = 1, will jointly be derived from the general resonant condition
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(Equation 30.48), it is possible that only a single wavelength can be found for the guided wave to satisfy
both constraints imposed on the phase and amplitude.

The Bragg waveguide laser is such a device that exploits the grating re�ection, rather than the total
internal re�ection, in its waveguide in conjunction with the FP cavity to reach the SLM operation. With
a structure similar to the DBR laser arranged in the cross direction perpendicular to the waveguide for
wave con�nement, even a simple FP cavity makes an SLM laser [58]. A unique feature of the Bragg waveg-
uide lies in that it allows its core layer to have a lower refractive index than that of its cladding. As such,
the selection on the gain medium to build the active region for the Bragg waveguide laser will be more
�exible.

30.4.3 Double-Trench Resonant Tunneling SLM Laser

As concluded by Section 30.3, the concept of the coupled cavity can generally be understood as the
insertion of an OBPF into a conventional FP cavity, for purifying the lasing spectrum by eliminating all
unwanted FP cavity modes. An accompanying issue is that both the transmitted light passed through the
OBPF and the re�ected light experienced the complementary optical band-reject �lter (OBRF) stay inside
the FP cavity, which add up to give no appreciable mode selection mechanism once their gains are the
same, since the added spectrum of the complementary OBPF and OBRF turns out to be �at. Although
the additionally introduced phase condition by the equivalent �lter and any possible gain discrimination
between the transmitted and re�ected waves will help to eliminate the unwanted FP cavity modes, the
single-mode yield and SMSR for such structures are usually low. And the SLM lasing is usually not very
stable in the entire laser operating range. For example, the lasing mode o�en hops or the SMSR deteri-
orates as the bias current or ambient temperature changes. This can be attributed to the phase-sensitive
lasing condition shown as Equation 30.33 or Equation 30.39, since the phase not only varies with any geo-
metrical dimension deviation of the structure in the fabrication process, but also changes with the laser
operating condition.

To ensure the SLM operation with an intensi�ed SMSR with high yield, one needs to e�ectively eliminate
the re�ected light from the aforementioned OBPF inside the FP cavity. As shown in Figure 30.22, a double-
trench structure has been proposed [59] to introduce dual re�ections that cancel out the re�ected light at
a speci�c wavelength determined by the gap between the two trenches, an e�ect known as the resonant
tunneling. As such, the transmission spectrum of the double trenches resembles that of an OBPF, which
selects one of the many cavity modes in a conventional FP laser for single-mode operation. The most
important design in this structure, which signi�cantly improves the SLM laser performance, is to make the
double trenches slanted so that the re�ected waves with unselected wavelengths by the OBPF will escape

FIGURE 30.22 The double-trench resonant tunneling SLM laser structure.
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from the cavity, in order to avoid jeopardizing the single-mode lasing condition, as otherwise the re�ected
and transmitted light in di�erent wavelengths will compete to each other inside the cavity.

By eliminating the re�ection brought in by the OBPF made of the double trenches, i.e., by letting
r12, r21 ∼ 0, δ = t12t21, the lasing condition (Equation 30.33) derived for general coupled-cavity lasers
reduces to

t12t21R2e2j(φ2+φ1) = 1 (30.53)

which indicates that the lasing will be determined by the transmission spectrum of the inserted OBPF. More
speci�cally, the lasing will happen at the wavelength in the neighborhood of the transmission spectrum
(|t12t21|) peak. Actually, once the transmission spectrum of the �lter resembles that of an OBPF, the lasing
condition shown in Equation 30.53 is the same as that of the DBR laser (Equation 30.13).

The simulated and measured lasing spectrum and SLM yield of a typical double-trench resonant tun-
neling SLM laser are given in Figures 30.23 and 30.24, respectively. The simulation result also shows, and
experimental data veri�es that, with varying positions of the double trenches inside the FP cavity, the
slanted trench pair can always select and lock in one and only one of the many FP modes in the full laser
operating range [59]. This can be attributed to the fact that, with the re�ection from the double trenches
e�ectively eliminated and consequently with the lasing condition determined by Equation 30.53 rather
than Equation 30.33 or Equation 30.39 for the device, its mode selection mechanism is no longer phase
sensitive. Hence the precise control of the geometrical dimension in the structure is not required in the
fabrication process for such a device, which greatly enhances the single-mode yield, the SMSR, and the
single-mode stability in operation, as compared to other existing coupled-cavity lasers.
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FIGURE 30.23 The (a) simulated and (b) measured lasing spectra of a typical double-trench resonant tunneling SLM
laser, with its design parameters given in Reference [59].
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FIGURE 30.24 The SLM yield as a function of the trench depth, with device design parameters given in
Reference [59].

30.4.4 Horn Ridge Waveguide (HRW) DFB Laser

With its structure shown in Figure 30.25, the horn ridge waveguide (HRW) DFB laser [60] improves the
single-mode yield by breaking the inherent dual-mode degeneracy in the uniform-grating purely refractive
index-coupled structure.

In a straight-waveguide purely refractive index-coupled DFB laser with uniform grating, the two longi-
tudinal modes with their respective wavelengths located at each side of the Bragg stopband have the same
re�ection everywhere along the cavity due to the symmetry in the re�ection spectrum, so that they have
the degenerated �eld distribution. The longitudinal modes at the two wavelengths with the degenerated
�eld distribution will then have the same modal gain, which causes either dual-mode operation or SLM
lasing with poor SMSR if the degeneracy is somehow removed by the uncontrollable LSHB e�ect. In the
HRW DFB laser, however, an e�ective chirp to the uniform grating is introduced. As such, the �eld of the
longitudinal mode with the wavelength on the blue side will concentrate in the right section with the wider
ridge width, as a consequence of the strong re�ection it sees from the le� section with the narrow ridge
width, where the local Bragg wavelength takes a relative shi� toward the shorter wavelength side due to the
reduction on the local e�ective index. On the contrary, the �eld of the longitudinal mode with the wave-
length on the red side will concentrate in the le� section with the narrower ridge width, as a consequence
of the strong re�ection it sees from the right section with the wider ridge width, where the local Bragg
wavelength shi�s relatively toward the longer wavelength side due to the enhancement on the local e�ec-
tive index. Therefore, the major e�ect of the e�ectively chirped grating is to remove the degeneracy of �eld
distributions of the two symmetrical modes on each sides of the Bragg stopband. With the help of such
e�ectively chirped grating, the two longitudinal modes at the Bragg stop-band will take di�erent distribu-
tions and have their associated �eld intensities spatially localized in di�erent sections along the cavity. With
the further help of the nonuniform modal gain simultaneously generated by the horn waveguide, the �eld
distribution having a larger overlap with the modal gain turns out to be the only dominant lasing mode.
In this particular structure, the modal gain is higher on the wide ridge side due to the larger con�nement
factor associated. Hence the wavelength at the blue side of the Bragg stop-band, i.e., the shorter wavelength,
will be selected to lase, whereas the wavelength at the red side, i.e., the longer wavelength, will be e�ectively
suppressed.
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FIGURE 30.25 The horn ridge waveguide (HRW) DFB laser structure.
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FIGURE 30.26 Comparison on the SLM yield (SMSR >30 dB) between the HRW DFB and the conventional ridge
waveguide (RW) DFB with di�erent κ ± L; other device design parameters are given in Reference [60].

Simulation result shows, and experimental result demonstrates, that the SLM yield can be drastically
raised (by more than threefolds) with an optimized HRW design, especially for the uniform-grating purely
refractive index-coupled DFB laser with high normalized coupling coe�cient (κL) [60]. This is further
evidenced by the comparison result in Figure 30.26. Finally, measured lasing spectra of a typical HRW
DFB laser under di�erent bias current are shown in Figure 30.27.
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31.1 Introduction

Semiconductor lasers, and a narrow waveguide edge-emitting semiconductor lasers, in particular, are
attractive devices for di�erent applications. Among others, these are high-speed all-optical signal process-
ing, optical data storage, thermal and xerographic printing, scanning, directional lighting, secure commu-
nications, random number generation, frequency conversion, or various interferometric, spectroscopic,
instrumentation, and other quantum-optical experiments.

A typical solitary narrow waveguide (single transversal mode) semiconductor laser exhibits a single-
wavelength emission required in di�erent applications. In many cases, however, small �uctuations of the
operation conditions impose a signi�cant phase noise which, in turn, causes an unwanted broadening of
the emission linewidth. Moreover, the stable performance of the laser can be easily violated by optically
reinjected light, and there is a huge number of studies devoted to the analysis of the nonlinear dynamics
in lasers with a delayed optical feedback.

A properly designed optical feedback, however, can also play a constructive role when seeking to improve
an operation of the solitary laser, or create a new dynamical regime. For example, an external cavity with
a di�ractive grating can be used for emission linewidth reduction or tuning of the lasing wavelength

153
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[1]. Or, on the contrary, specially designed external cavities allow realizing a chaotic emission usable for
cryptography [2] or random number generation [3].

Multisection semiconductor lasers (MSLs) in linear or ring con�gurations and coupled laser devices
provide even more possibilities to tailor laser dynamics for certain applications. For example, a variety of
important functionalities of the optical data communications [4], such as pulse generation, clock recovery,
and fast switching can be realized by specially designed and di�erently interconnected MSLs. Several exam-
ples of theoretically investigated and experimentally veri�ed dynamic performance of MSLs considered in
our previous works are excitability [5], high-frequency mode-beating pulsations [6], and modulation band
enhancement [7] in distributed feedback (DFB) lasers with an integrated passive phase tuning section (pas-
sive feedback lasers); passive [8] or hybrid [9] harmonic and sub-harmonic mode-locking in lasers with
saturable absorber, and pulse broadening in quantum dot (QD) mode-locked lasers [10]; tunable high-
frequency pulsations in the detuned grating DFB lasers with an integrated phase tuning section (phase
controlled mode-beating lasers) [11,12]; stationary, pulsating, and irregular regimes and their bifurca-
tions in DFB lasers with integrated phase tuning and amplifying sections (active feedback laser) [6,13];
Joule heating–induced transitions between steady states in distributed Bragg re�ector (DBR) lasers [14] or
external cavity diode lasers (ECDLs) [15].

All these examples con�rm the practical importance of modeling, simulations, and analysis of MSLs for
designing new devices with a particular dynamical behavior. The most precise models usually are given by
2+1 or 3+1 dimensional systems of partial di�erential equations (PDEs) [16,17]. The numerical simulations
in this case, however, are time consuming, whereas application of analytic methods for the analysis of
the nonlinear dynamics is very limited. Unfortunately, numerical simulations of such models are time
consuming, whereas an application of analytic methods for the model analysis is very limited. For this
reason, we prefer to use simpler approaches which, may be, fail to reproduce a quantitative-, but still allow
to get a qualitative agreement between theory and experiments.

For some MSLs, already simple ordinary di�erential equation (ODE) or delay di�erential equation
(DDE) systems (rate equations) admit a reasonable description of the laser dynamics. An advantage of
these models is their simplicity allowing fast numerical simulations and application of advanced analytic
methods, such as asymptotic analysis, stability analysis, or numerical continuation and bifurcation analy-
sis. These models, however, usually are based on mean-�eld approximations, i.e., neglect inhomogeneity of
laser parameters and dynamical variables along the laser cavity, take into account only a few fundamental
characteristics of the considered lasers, or are suited to describe particular MSL con�gurations [18–20].

The 1+1-dimensional traveling wave (TW) model considered in this chapter is a compromise between
simplicity and precision. It is a �rst-order PDE system having a single spatial dimension corresponding
to the longitudinal (z-) direction along the laser cavity and describing dynamics of the slowly varying
optical �eld amplitudes, polarization functions, and carrier density [21–23]. Comparing to ODE and DDE
models mentioned earlier, the TW model is computationally more demanding but still enables an advanced
analysis, which is hardly possible in the case of the multidimensional PDE models.

By taking into account or neglecting di�erent physical e�ects, one can derive a whole hierarchy of TW
models of di�erent complexities. The standard part of all such models is a pair of TW equations govern-
ing the evolution of the complex forward- and back- propagating �eld amplitudes, E+(z, t) and E−(z, t).
These equations originate from the decomposition of the dominant fundamental transverse electric (TE)
component of the electromagnetic wave,

E(r, t) = Φ(x, y)
[

E+(z, t)e−ik0z + E−(z, t)eik0z
]

eiω0t .

Here, ω0 is the central reference frequency and k0 the corresponding wave vector. Whereas the transversal
waveguide mode pro�le,Φ(x, y), is an eigensolution of the waveguide equation, the related complex eigen-
value of the same problem de�nes the propagation factor β [24], which determines the evolution of the �eld
amplitudes E±. In general, the propagation factor depends on the complex interaction of carriers and pho-
tons. In our modeling approach, we apply a phenomenological dependence of this factor on the real carrier
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FIGURE31.1 Schematic representation of �ve semiconductor laser devices, which can be considered by our modeling
approach: (a) three-section laser, (b) laser with a trivial external cavity, (c) laser with a dual external cavity, (d) master–
slave laser system, (e) optically injected ring laser with an outcoupling waveguide. Shaded and white frames represent
active and passive sections (S∗) of the MSL. Thick black segments and thick hatched arrows indicate junctions (interfaces
of these sections, J∗) and optical injections (o∗), respectively. Thin arrows show optical �eld transmissions and re�ections
at the interfaces of the laser sections.

density function N, which can represent dynamics of the spatially distributed carrier density, N(z, t), or
the section-wise averaged density, N(t). The evolution of N itself is governed by a single or several rate
equations.

One can use the TW modeling approach for consideration of various di�erently interconnected linear
and curved, active and passive semiconductor waveguiding parts, taking into account optical injections,
�eld re�ections, and transmissions at the interfaces of di�erent laser parts, as well as delayed feedback of
the optical �elds from the external cavities. For simulation and analysis of the MSLs, we apply our so�ware
LDSL-tool [25], which is suited to investigate the longitudinal dynamics of multisection semiconductor
lasers. This so�ware allows considering a large variety of MSL devices or coupled laser systems which can
be represented by a set of mutually interconnected sections and junctions, see the schematic representations
of several laser devices in Figure 31.1. Besides of numerical integration, LDSL-tool can �nd longitudinal
optical modes and analyze their dynamics [23,26]. In some cases, it locates stable and unstable stationary
states of the system [15,27], constructs the reduced ODE models based on a �nite number of the optical
modes [28], and, together with the so�ware package AUTO [29], performs numerical continuation and
bifurcation analysis of these reduced models [7].

In following, we shall introduce a basic TW model for the solitary laser, and present several model exten-
sions allowing to take into account initially neglected physical e�ects. Next, we shall discuss a possibility
to join several laser sections into a single multisection laser or a coupled laser device. For an illustration of
the available device complexity, we shall present simulations of a ring laser with four branches of �ltered
feedback. At the last part of this chapter, we shall brie�y introduce the concept of the instantaneous optical
modes, discuss the mode analysis, the location and semi analytic continuation of the stationary states, the
model reduction, and the numerical bifurcation analysis.

31.2 Basic TW Model in the Solitary Laser

In this section, we formulate the simplest TW model suitable for simulations of a solitary semiconductor
laser. Let us consider an edge-emitting narrow-waveguide semiconductor laser (see Figure 31.2a). Accord-
ing to our notations, the “interior” part of this laser is referred as section S1. The longitudinal coordinates
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FIGURE 31.2 Schematic representation of the single section lasers in (a) linear and (b) ring con�gurations. Thin
arrows indicate directions of the counter-propagating �elds and their re�ections/transmissions at the laser facets [J1
and J2, panel (a)] or point outcoupling interface [J1, panel (b)]. Thick hatched arrows represent optically injected �elds.

of the section edges and the length of this section are z = a1, z = b1, and |S1| = b1 − a1, respectively. The
front and the rear laser facets (junctions J1 and J2), in this case, correspond to the le� and the right edges
a1 and b1 of S1.

The backbone of the TW model of this laser is the linear system of partial di�erential (TW) equations
describing an evolution of the slowly varying complex amplitudes E+(z, t) and E−(z, t) of the counter-
propagating optical �elds:

⎧

⎪

⎨

⎪

⎩

ng
c0
∂tE+ + ∂zE+ = −iβE+ − iκE− + F+sp

ng
c0
∂tE− − ∂zE− = −iβE− − iκE+ + F−sp

, z ∈ S1. (31.1)

Here, c0 is the speed of light in vacuum, F±sp are the Langevin noise source contributions to the optical
�elds, and ng is the group velocity index. The real and the imaginary parts of the complex coe�cient κ
represent the distributed index and gain/loss coupling of the counter-propagating �elds, respectively. κ is
nonvanishing in the laser sections containing Bragg grating and is set to zero in the straight sections without
the grating. Without an additional scaling of the �eld functions E±, |E(z, t)|2 = (E,E) = |E+|2 + |E−|2
represents the photon density and is proportional to the local �eld power,

(z, t) =
σc0
ng

hc0
λ0

|E(z, t)|2.

Here, σ is the cross-section area of the active zone, λ0 the central wavelength, and h the Planck constant.

Active Sections:

The propagation factor β in the TW equations above can be de�ned as

β = δ0 + ñ(N) +
i(g(N) − α)

2
, (31.2)

where the peak gain and refractive index change functions g(N) and ñ(N) are given by the simple linear
relations

g(N) = Γg′
(

N − Ntr
)

, ñ(N) =
αHg(N)

2
. (31.3)

Here, N is the carrier density. The parameters δ0, α, Γ, g′, and αH are the internal �eld loss, the initial
�xed detuning from the central frequency, the con�nement factor, the di�erential gain, and the linewidth
enhancement (Henry) factor evaluated at the transparency carrier density Ntr, respectively.
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To de�ne the evolution of the spatially averaged carrier density N(t), we use a single rate equation

d
dtN = I

qσ|S1|
−(N) − (N,E±). (31.4)

Here, q is the electron charge, I is the injected current into the active zone of the section, whereas 
and  are spontaneous and stimulated recombination functions, respectively. We use a cubic spontaneous
recombination function,

(N) = AN + BN2 + CN3, (31.5)

which can be simpli�ed by assuming vanishing recombination parameters B and C and de�ning A = τ−1
N ,

where τN denotes the carrier lifetime. Function  in the carrier rate equation 31.4 represents the spatially
averaged stimulated recombination:

(N,E±) = c0
ng
g(N)‖E‖2

1. (31.6)

Here, ‖E‖2
1 is the spatial average of the local photon density along the section S1,

‖E‖2
1 = ⟨(E,E)⟩1, ⟨η⟩1 =

1
|S1|

∫S1
η(z)dz, (ζ, ξ) = ζ+∗ξ+ + ζ−∗ξ−,

and ∗ denotes the complex conjugate.
To complete the system, we still need to de�ne the incident forward- and backward-propagating �elds at

the section edges z = a1 and z = b1, respectively. For the solitary laser, these incident �elds can be de�ned
by the following re�ection/transmission conditions:

E+(a1, t) = −r∗1E
−(a1, t) + o1(t), E−(b1, t) = r2E+(b1, t) + o2(t). (31.7)

Here, r1 and r2 are the complex �eld amplitude re�ectivity coe�cients at the laser facets (junctions J1 and
J2), whereas complex functions o1,2(t) represent optical injections at these junctions.

One can also use Equations 31.1 through 31.6 for simulations of narrow-waveguide semiconductor ring
lasers with the �eld in- and out-coupling concentrated in the single point of this laser. Figure 31.2b shows
a schematic representation of such single-section ring laser device. According to this scheme, we assume
that both, “le�” and “right” edges a1 and b1 of the section S1, are connected at the single junction J1. The
boundary conditions (Equation 31.7), in this case, should be replaced by the following �eld transmission-
re�ection conditions at J1:

E+(a1, t) = t1E+(b1, t) − r∗1E
−(a1, t), E−(b1, t) = t1E−(a1, t) + r1E+(b1, t). (31.8)

Here, t1 is the real �eld amplitude transmission factor back into the ring section S1 at the outcoupling point
J1, whereas the complex factor r1 represents the localized �eld backscattering at J1.

To perform simulations of the basic TW model determined by Equations 31.1 through 31.6 and 31.7 or
31.8, one still needs to choose some initial conditions E±(z, 0) and N(0). For the �rst run of simulations,
one can use any small distribution of the optical �elds E±(z, 0) and a small positive value of N(0). A�er
some transient, the computed trajectory will be attracted by one of the few regular or irregular attractors
of the considered dissipative system. To keep tracing the same attractor during the following parameter
continuation calculations, one should better use previously obtained carrier density and �eld distributions.
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Passive Sections:

It is noteworthy that one can also use the TW equations 31.1 for a description of the �eld propagation
in the passive sections, such as gratings, free space between the laser and the external mirror, etc. Here,
carriers are absent, do not couple to the emission wavelength (the material gain band of these sections
does not support the lasing frequencies), or are just kept at transparency level by an appropriately adjusted
bias current. In all such cases, g(N) = ñ(N) = 0, the carrier rate equations 31.4 are decoupled from the
�eld equations 31.1 and, therefore, are irrelevant.

In the case of the passive section Sk containing no grating (κ = 0), simple analytic relations of the �eld
function values on the both sides of Sk,

E+(bk, t) = ηeiφ∕2E+(ak, t − τk), E−(ak, t) = ηeiφ∕2E−(bk, t − τk), where

τk =
|Sk|ng
c0

, η = e−α|Sk|∕2, φ′ = −2δ0|Sk|,
(31.9)

can replace the �eld equations 31.1.
In the case of the passive grating (κ ≠ 0), the analytic solution of the �eld equations 31.1 in the frequency

domain is given by the 2 × 2-dimensional transfer matrix M [23,26,28],

Ê(z,ω) = M(β, κ,ω; z, ak)Ê(ak,ω). (31.10)

Here, β = δ0 − iα∕2, ω is the relative frequency, Ê(z,ω) =
(

Ê+, Ê−
)T

, T denotes the transpose vector,

whereas Ê± are the frequency domain representations of the �eldsE±(z, t). Within any interval [z′, z]where
parameters β and κ are constant, the matrix M is de�ned by

M(β, κ,ω; z, z′) =

(

cos η(z−z′) − i
η sin η(z−z′) − iκ

η sin η(z−z′)
iκ
η sin η(z−z′) cos η(z−z′) + i

η sin η(z−z′)

)

,

(ω) = β +
ωng
c0

, η =
√

2 − κ2.

(31.11)

Once the parameters β or κ are peacewise constants, i.e., constant within each small subinterval [zs, zs−1],
z′ = z0 < z1 < ⋯ < zn = z, the transfer matrix M is the superposition of the corresponding transfer
matrices over these small subintervals:

M(β, κ,ω; z, z′) = Mn ×⋯ ×M1, Ms = M(β(zs−1∕2), κ(zs−1∕2),ω; zs, zs−1). (31.12)

31.3 Model of Material Gain Dispersion

The relations (Equation 31.3) introduced in Section 31.2 are simple linear approximations of the gain and
refractive index functions G and Ñ. In general, these functions depend not only on the carrier density N,
but also on the optical frequency ω, �eld intensities |E+|2 and |E−|2, and some other physical e�ects, such
as temperature, not considered in our modeling approach. In this section, we introduce the model of the
gain dispersion of the semiconductor material, which restricts the gain band in the frequency domain and
is the primary optical frequency selection mechanism in Fabry–Pérot (FP) lasers.

Before switching to the modeling of the gain dispersion, let us �nd out the expression of the laser
response Fl(b1,ω) to the incident plane wave eiωt applied to the right edge of the device (see Figure 31.3a).
For this reason, we freeze the propagation factor β and substitute the ansatz E±(z, t) = Ê±(z,ω)eiωt into
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show �eld propagation directions and incident/emitted optical �elds. (b) Response intensity of the solitary FP laser:
parameters λ0 = 1.57 μm, |S1| = 0.25 mm, ng = 3.6, δ0 = 0, α = 20 cm−1, αH = −4, Γ = 0.15, g′ = 4 ⋅ 10−16 cm2,
Ntr = 1018 cm−3, r1 = r2 =

√

0.3, κ = 0. (c) Response intensity of the solitary DFB laser: parameters are the same
as in (b), only κ = 130 cm−1 and r1 = r2 = 0. Solid and dashed curves in panels (b) and (c) represent models with
(ḡ = 100 cm−1, λ̄ = 0, γ̄λ = 40 nm) and without (ḡ = 0) gain dispersion.

the �eld equations 31.1. The solution of the resulting system of ODEs within S1 can be represented by
Equation 31.10, where the transfer matrix M is de�ned in Equation 31.11. The ratio of the outgoing and
incident waves at z = b1 together with the (noninjective) boundary condition (Equation 31.7) at z = a1
de�ne the function Fl(b1,ω), which shows the laser response dependence on the optical frequency of the
injected �eld†. In two simple cases of FP and DFB lasers with vanishing facet re�ectivity, the response
function is given by

Fl(b1,ω) =
Ê+(b1,ω)
Ê−(b1,ω)

=

{

−r∗1e
−2iβ|S1|e−i2ωng|S1|∕c0 , κ = 0, r1 ≠ 0 (FP laser)

κ
iη(ω)cot[|S1|η(ω)]−(ω)

, κ ≠ 0, r1 = 0 (DFB laser)
. (31.13)

Figures 31.3b and c show the intensities of these response functions in FP and DFB lasers calculated for
di�erent values of carrier densities N. Note also, that the abscissa axis in these �gures represents relative

wavelengths λ related to the relative frequencies ω by formula λ ≈ − λ2
0

2πc0
ω.

The �at laser response curves in Figure 31.3b indicate an absence of frequency selection mechanisms
for FP lasers in our fundamental TW model. Thus, this simple model is not suitable for simulations of FP
lasers. In contrast, the wavelength selection in DFB lasers is mainly determined by the Bragg grating, and
numerical integration of the TW model can provide reliable information. One should note, however, that
the index-coupled DFB laser (characterized by a real coupling factor κ) can emit at one of two resonance
wavelengths located at both sides of the stopband, see a solid dark gray curve in Figure 31.3c, and the
parameter tuning implied jumping between these two resonances can be expected in simulations. The
gain dispersion, in this case, can be exploited for the suppression of one of the resonances [12,21].

Lorentzian Approximation of the Material Gain Function:

There are several methods for introduction of the frequency-selective gain dispersion into the time-domain
TW model. Many of these approaches use an additional digital �ltering of the numerically calculated opti-
cal �eld time series [30–34]. In some cases, these digital �lters are equivalent to the numerical schemes
obtained by discretization of some additional integrodi�erential operators or di�erential equations. For

† In the same way, one can also de�ne the response function Fr(a1,ω) at the le� side of the laser.
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the purpose of the analysis of the model equations, it is preferable to introduce the frequency band limiting
elements directly into the model equations. For example, the TW model extensions admitting Lorentzian
approximation of the material gain dispersion curves can be given by convolution integrals [34] or by an
equivalent set of the linear �rst-order ODEs [21,35]. Another approach to model more sophisticated gain
function pro�les within the TW modeling frame by including nonlinear polarization equations was used,
e.g., in References [22,36,37].

In this chapter, we follow the strategy proposed in References [12,21]. For this reason, we approxi-
mate the gain pro�le in the frequency domain by a Lorentzian with the amplitude ḡ, the full width at
the half maximum γ̄ = 2πc0

λ2
0
γ̄λ, and the detuning of the peak frequency ω̄ = − 2πc0

λ2
0
λ̄. Here, γ̄λ and λ̄ are

the wavelength representations of the Lorentzian width and its peak position. In the time domain, this
approximation is represented by the additional linear operator  in the TW �eld equations, and a pair of
linear di�erential equations for polarization functions P±(z, t):

ng
c0
∂tE± = ∓∂zE± − i (β − i)E± − iκE∓ + F±sp, z ∈ S1,

E± = ḡ
2

(

E± − P±
)

, ∂tP± =
γ̄
2

(

E± − P±
)

+ iω̄P±, z ∈ S1.
(31.14)

The introduction of operator  also implies the following modi�cation of the stimulated recombination
function  entering the carrier rate equation 31.4:

(N,E±) = c0
ng
ℜ⟨

(

E, [g(N) − 2]E
)

⟩1. (31.15)

To understand the impact of the operator , we consider the laser response function Fl(b1,ω) again
according to the modi�ed TW equations 31.14. When repeating the procedure described at the beginning
of this section, the factor  entering Equation 31.11 takes the form

(ω) = β +
ωng
c0
+ χ(ω), where χ(ω) = ḡ

2
(ω−ω̄)

γ̄∕2+i(ω−ω̄) , − iÊ(z,ω) = χ(ω)Ê(z,ω). (31.16)

Thus, an introduction of the linear dispersion operator implies modi�cations of both, gain and refractive
index change functions. The total gain (twice the imaginary part of β−(δ0−iα∕2)+χ(ω)) and the refractive
index change function (real part of the same factor), in this case, are given by the expressions

G(N,ω) = g(N) − ḡ(ω−ω̄)2

(γ̄∕2)2+(ω−ω̄)2 , Ñ(N,ω) = ñ(N) + ḡ
4

γ̄(ω−ω̄)
(γ̄∕2)2+(ω−ω̄)2 . (31.17)

The dashed curves in Figures 31.3b and c illustrate the impact of the introduced gain dispersion. Whereas
these corrections in the case of DFB lasers (panel [c]) are small, for the FP lasers they provide an e�cient
wavelength selection mechanism.

It is noteworthy that vanishing factor κ in the �eld equations 31.2 and 31.14 implies the following simple
expression of the monochromatic �eld transmission through the laser section:

Ê+(b1,ω) = e−i(ω)|S1|Ê+(a1,ω), Ê−(a1,ω) = e−i(ω)|S1|Ê−(b1,ω),

where (ω) is de�ned in Equation 31.16. Thus, the TW equations 31.2 and 31.14 with vanishing functions
g(N) and ñ(N), large Lorentzian amplitude ḡ, and small Lorentzian width γ̄ can be e�ectively used for
modeling of the optical �lters, i.e., for extracting �eld frequency components located close to the relative
frequency ω̄.
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Further Modifications of the Model for Material Gain Dispersion:

The gain peak g(N) and the simple Lorentzian dependence on the optical frequency determined by three
�xed parameters ḡ, γ̄, and ω̄ de�ne the material gain pro�le G(N,ω) in Equation 31.17. To improve �tting
of the gain pro�les obtained by calculations of microscopic models for various values of N, one can replace
these three factors by appropriately selected carrier-dependent functions ḡ(N), γ̄(N), and ω̄(N). In the cases,
when the gain spectrum has two and more peaks or the asymmetry of the single peak is important, one
can also introduce an additional set or several sets of polarization functions Pj±(z, t). The gain dispersion
operator  and corresponding total gain and refractive index functions, in this case, read as

(s)E± =
s
∑

j=1

ḡj
2

(

E± − Pj±
)

, ∂tPj± =
γ̄j
2

(

E± − Pj±
)

+ iω̄jPj±, z ∈ S1,

G(N,ω) = g(N) + 2ℑχ(s)(ω), Ñ(N,ω) = ñ(N) +ℜχ(s)(ω), χ(s)(ω) =
s
∑

j=1

ḡj
2

(ω−ω̄j)
γ̄j∕2+i(ω−ω̄j)

,

where s is the number of polarization function sets. Since the maximal value of 2ℑχ(ω) is, in general,
smaller than zero, one should also correct the function g(N).

Concluding the discussion of this section, we note that a proper numerical resolution of the gain and
refractive index functions (Equation 31.17) for the broad frequency band when simulating the time-
domain TW mode requires a careful selection of the numerical algorithm and temporal discretization
steps. The size of the frequency band that can be represented by calculated discrete time series is inversely
proportional to the time step, whereas the precision of the numerical simulations when approaching bor-
ders of this band are rapidly degrading. Thus, a suitable time discretization step should ensure that all
important frequency regions (Bragg resonances, surrounding of a gain peak frequency, a frequency of
optically injected beams, if present) are within the central part of the allowed frequency band.

31.4 Thermal Detuning

Let us switch now to the consideration of the thermal e�ects. An increase of the bias current implies
changes of the device temperature and, consequently, changes in the refractive index and the lasing wave-
length. To model these thermal tuning e�ects in our device, we supplement the propagation factor β from
Equation 31.2 with an additional thermal detuning term ñT [14,38]:

β = δ0 + ñ(N) + ñT(I) +
i(g(N)−α)

2 , ñT =
2πng

λ2
0
ν1

1I. (31.18)

The linear thermal detuning function ñT(I) determines the impact of the injection current I to the refrac-
tive index change. The factor ν1

1 in solitary lasers determines an approximate red shi� of the lasing
wavelength due to increased bias current:

ν1
1 ≈

Δλ
ΔI
,

Here,ΔI is the bias current tuning interval, whereasΔλ is the (continuous) lasing wavelength change during
this current tuning.

Figures 31.4a and c show the simulated wavelength change with the increased bias current in the soli-
tary FP and DFB lasers, respectively. Here, besides the dominant optical modes shown in white, one can see
other slightly excited optical modes which are (almost) equidistant in the FP case (a) or indicate the DFB
laser resonance located on the other side of the stopband. The estimated wavelength shi� Δλ

ΔI
≈ 3.14 nm/A

obtained for the FP laser and 3.09 nm/A for the DFB laser slightly di�ers from the factor ν1
1 = 3.2 nm/A
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FIGURE31.4 Mapping of the optical spectra (a), (c), and mean emitted power and carrier density (b), (d) as functions
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and c in the case of nonvanishing gain dispersion. White lines and light shading in (a) and (c) represent main and side
peaks of the calculated optical spectra. Solid black and gray curves in (b) and (d) show time-averaged emission intensity
and carrier density, respectively. Dashed black lines indicate minima and maxima of the emission intensity.

used in our simulations. We attribute this slight discrepancy to the additional contribution of the full
refractive index change function Ñ(N,ω) de�ned in Equation 31.17. Namely, the dependence of the car-
rier density N and the relative lasing wavelength λ on the bias current I (see gray curves in Figures 31.4b
and d and wavelength shi�s in Figures 31.4a and c, respectively) implies nonvanishing changes of the
function Ñ(N,ω) = Ñ(N,−λc0∕λ2

0) that counteracts the thermal detuning term ñT(I) and slightly reduces
the redshi� of the lasing wavelength.

It is noteworthy that an introduction of the thermal detuning term ñT in our still simple TW model
of the solitary laser implies, in general, only a continuous tuning of the lasing frequency. Once achiev-
ing threshold, the carrier density changes only slightly (gray curves in Figures 31.4b and d), whereas the
emitted �eld intensity increases linearly without a visible saturation (black curves in the same panels),
which is still not taken into account in our model. This linear growth of the lasing wavelength can be
correctly understood when analyzing TW �eld Equation 31.1 with the propagation factor β de�ned by
Equation 31.18 and neglected gain dispersion. Due to the transfer matrix formalism (Equations 31.10 and
31.11) and the expression of  in Equation 31.11, the extension of β by the nonvanishing real term ñT
is equivalent to the change of the relative frequency ω by −ñTc0∕ng, or, alternatively, the change of λ by
−λ2

0
2πc0

−ñTc0
ng

= ν1
1I.

The unique, more complicated feature in Figure 31.4 is the transition between two states in the FP
laser at I ≈ 40 mA, see panels (a) and (b). Figure 31.4a shows that in the vicinity of the transition,
these two states are determined by two optical modes belonging to the opposite slopes of the wavelength-
dependent gain pro�le with the peak wavelength at λ̄ = 0. Due to the redshi�, all optical modes located
on the falling (increasing) slope of this gain pro�le undergo an increase (decrease) of the detuning from
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the gain peak wavelength and, consequently, a slight rise (fall) in the mode threshold N; see the gray
curves in panel (b) for I < 40 mA (I > 40 mA). A similar increase of the dominant falling-gain-slope mode
threshold can also be seen in Figure 31.4d. At the position of the state transition, the wavelengths of two
involved modes are symmetric with respect to the gain peak wavelength and, what is more important,
their thresholds become equal. Due to a further tuning of the bias current, the previously suppressed mode
at the increasing gain pro�le slope becomes the minimal threshold mode, is ampli�ed and, �nally, turns
to be the dominant one. See References [14,15,26] for more details on similar and more complex mode
transitions.

Modeling of Cross-Talk Heating Effects in Multisection Devices:

In MSLs devices, one can also use a more advanced model for thermal detuning function ñT which takes
into account local and nonlocal cross-talk heating e�ects [38]:

ñT|z∈Sk = ñT,k =
2πng,k

λ2
0

∑m
r=1 ν

r
kIr. (31.19)

Here, m is a number of sections in the considered MSL. The coe�cients νrk of the linear thermal detun-
ing function ñT(I) determine the impact of the injection currents Ir attributed to the sections Sr on the
refractive index change within each laser section Sk.

The e�ect of the thermal detuning in MSLs is much more complicated than that one of the solitary
laser. Besides of the red shi� of the lasing wavelength, the MSLs can also exhibit periodically or almost
periodically reappearing transitions between di�erent states. The change of mean carrier density in various
sections during each such period between state changes can be signi�cant and cannot be explained by
simple gain saturation or detuning from the gain peak e�ects. In some cases, a measured variation of the
lasing wavelength with an increase or decrease of the injection current in di�erent laser sections, together
with the analysis of the �eld equations provide good estimates of thermal detuning coe�cients including
cross-talk e�ects [14,15,38].

Another well-known e�ect occurring with the heating of the semiconductor laser is the red shi� of the
gain peak wavelength [39]. If required, these changes can be accounted by the relation [38]

λ̄|z∈Sk = λ̄k = λ̄
0
k +

∑m
r=1 ν̄

r
kIr, (31.20)

which is quite similar to the thermal detuning relation (Equation 31.19). Here, λ̄0
k denotes an injection-

independent part of the gain peak wavelength in the section Sk, and ν̄rk are linear thermal gain peak
detuning coe�cients. When applying these expressions, one should be aware that a proper numerical time-
domain resolution of a signi�cant (tens or even hundreds of nanometers) gain peak shi� requires very small
time and, consequently, space discretization steps.

31.5 Spatially Inhomogeneous Carrier Density

Another important extension of the basic TW model takes into account sectionally inhomogeneous dis-
tributions of carrier density N. Namely, in this case, the sectionally averaged carrier density function N(t)
is replaced by the spatially distributed function N(z, t), z ∈ S1. This model extension can be especially
important in the situations admitting localization of the high-intensity �elds within the laser cavity, which
takes place, e.g., during propagation of ultrashort optical pulses in mode-locked lasers, or DBR lasers with
a high coupling factor κ. Due to stimulated recombination, the high-intensity �elds at these localized
regions can signi�cantly deplete the carrier distribution causing a spatial hole burning (SHB) of the carriers
[12,40].
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To achieve a quantitative description of SHB, we replace simple carrier rate Equation 31.4 by the
following equation for spatially distributed carrier density:

∂tN(z, t) =  (I,N) −(N) − (N,E±), z ∈ S1,

 (I,N(z, t)) = 1
qσ|S1|

[

I +
U′F
rS

(

⟨N⟩1 − N(z, t)
)

]

.
(31.21)

Here,  is the inhomogeneous injection current density [12,41,42], N and ⟨N⟩1 are spatially distributed
and sectionally averaged carrier densities, U′F and rs denote the derivative of the Fermi level separation
with respect to N and the series resistivity, whereas  is the spatially distributed stimulated recombination
function,

(N,E±) = c0
ng
ℜ
(

E, [g(N) − 2]E
)

. (31.22)

In the case of the limit rs → 0, the spatially distributed carrier density, N(z, t), at each position z converges
to the sectional average, N(t) = ⟨N⟩1. Since the sectional averaging of the relations 31.21 and 31.22 yields
expressions 31.4 and 31.15, the TW models with and without spatial distribution of carriers in this limit
case are equivalent.

Figure 31.5 shows some e�ects occurring due to the SHB of carriers in solitary DFB lasers. The impact
of the SHB depends on the injection level. Just above the lasing threshold, the �eld intensity is small, and
the carrier density remains nearly homogeneous, having only a small dip in the center of the laser. With
raising injection, this dip increases, but, due to a simultaneous increase of the carrier density at the facets,
the mean density remains nearly constant: see only slightly increasing ⟨N⟩1 for I ≤ 90 mA in panel (b)
of the same �gure. At these small-to-moderate bias current levels, the carrier density remains symmetric
with respect to the laser centrum (dashed curve in panel [d]), and emission at the both facets is the same
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(see coinciding solid gray and black dashed curves in panel (a) for I ≤ 90 mA and panel (f) at I = 70 mA).
The inhomogeneous carrier density (dashed curve in Figure 31.5d) causes a corresponding longitudinal
variation of the index of refraction. The Bragg resonance of the grating thus has not the identical spectral
position along the section but varies over a considerable portion of the stopband [12]. As a consequence,
the symmetry of the stopband is lost, and the laser preferably operates on the short wavelength side of
its stopband (see Figure 31.5f). The preference of the short-wavelength mode is also shown by the laser
response functions Fl(b1,ω) and Fr(a1,ω) (see Figure 31.5e) calculated for spatially distributed carrier
density pro�le (dashed curve in Figure 31.5d) at I = 70 mA according to the formulas 31.10 through 31.12
and the algorithm explained in Section 31.3.

At I ≈ 90 mA, the symmetric solution loses its stability in symmetry breaking pitchfork bifurcation [43].
According to References [12,43], the supercritical pitchfork bifurcation of the stable symmetric steady state
in DFB lasers generates a pair of new stable steady states with asymmetric density pro�les (each one the
mirror of the other). In our case, the pitchfork bifurcation seems to be of the subcritical type. Instead of
�nding two asymmetric stable steady states, we immediately jump to the pulsating state with di�erent emis-
sion at both laser facets and larger mean carrier density (see panels [a] and (b) for I > 90 mA, respectively).
The spatial distribution of the carrier density, in this case, is strongly asymmetric, see a solid curve in panel
(d). This asymmetry together with noncommuting intermediate transfer matrices Ms from Equation 31.12
implies di�erences in DFB laser response functions estimated at the front (Fr) and the rear (Fl) sides of the
laser, see Figure 31.5g. The optical spectra of the emission at the both sides of the laser (Figure 31.5h) also
reveal these di�erences. Like the response functions of the panel (g), the le� (thick gray curves) and the
right (thin dashed curves) facet emissions have more pronounced contributions at the shorter and longer
wavelength sides of the stopband, respectively.

31.6 Nonlinear Gain Saturation

Until now, our phenomenological models for peak gain and refractive index change (Equation 31.3) were
taking into account their dependence on the sectionally averaged or local carrier density N. It is known,
however, that the high-intensity optical �elds saturate the gain function. To account for such saturation,
one can introduce the following modi�cations of the gain and refractive index functions, which should be
used for the de�nition of the propagation factor β in Equations 31.2 or 31.18 and stimulated recombination
function  in Equations 31.6, 31.15, or 31.22:

g(N,E±) = g(N)ρG(E±), ñ(N,E±) = ñ(N)ρI(E±),

where ρj =

⎧

⎪

⎨

⎪

⎩

(

1 + εj|E|2
)−1

, if N = N(z, t)
(

1 + εj‖E‖2
)−1

, if N = N(t)
, j = G, I.

Two di�erent parameters, εG and εI, separately de�ne the nonlinear gain and refractive index dependence
on the local or spatially averaged optical �eld intensity. A typical assumption εG = εI relates the gain and
refractive index functions by the linewidth enhancement factorαH . Another reasonable assumption εI = 0,
εG > 0 [44] used for modeling of high power ampli�ers considers the nonlinear compression of the gain
function alone.

The importance of the nonlinear gain compression is best visible in high-power lasers and optical
ampli�ers showing several Watt emission intensity [44]. Some impact of the gain compression in small-
to-moderate (≤100 mW) intensity regimes can also be observed when operating in the vicinity of various
bifurcations, where a small change of parameters implies qualitative changes of the operating states. We
should note, however, that the gain compression, in this case, implies only small shi�s of the bifurcation
positions, but has no signi�cant impact on the qualitative description of laser dynamics in a large parameter



9781498749565_C031 2017/8/31 16:04 Page 166 #14

166 Handbook of Optoelectronic Device Modeling and Simulation

domain. An analysis of simple TW model Equations 31.1 and 31.4 can explain the little in�uence of the
gain compression in these regimes. A nonvanishing gain compression depletes the gain function g(N)what
implies a growth of the carrier density needed to reach threshold gain condition gth. In solitary lasers, this
growth is given by factor gthεG|E|2∕(g′Γ), which for typical gain compression coe�cients and small-to-
moderate �eld intensities is not exceeding a few percents of threshold carrier density. Consequently, a
similar (up to a few percent) decay of the emission intensity can be observed.

A somehow di�erent situation occurs in semiconductor ring lasers [19,22,23,45], where a proper intro-
duction of nonlinear gain compression is crucial when deciding the type of operation states. In this case,
one should distinguish the gain compression implied by co- and counter- propagating �elds:

g±(N,E±) = g(N)ρ±G(E
±), ñ±(N,E±) = ñ(N)ρ±I (E

±),

where ρ±j =

⎧

⎪

⎨

⎪

⎩

(

1 + εjs|E±|2 + εjc|E∓|2
)−1

, if N = N(z, t)
(

1 + εjs⟨|E±|2⟩ + εjc⟨|E∓|2⟩
)−1

, if N = N(t)
, j ∈ {G, I},

(31.23)

whereas parameters εjs and εjc, j = G, I, determine self- and cross-saturation of the gain and refractive
index functions. In the ring lasers, usually is assumed that εGc > εGs, and εIc > εIs. A detailed analysis
based on the Maxwell–Bloch equations showed that the cross-saturation factor for two resonant modes in
the ring cavity is twice larger than the self-saturation one [46].

The generalized functions g± and ñ± enter the de�nition of the propagation factor β = β± and the
stimulated recombination function  :

β± = δ0 + ñ±(N,E±) + ñT(I) +
i(g±(N,E±)−α)

2 ,

(N,E±) =

⎧

⎪

⎨

⎪

⎩

c0
ng
ℜ
∑

ν=± Eν∗[gν(N,E±) − 2]Eν, if N = N(z, t)
c0
ng
ℜ
∑

ν=±⟨Eν∗[gν(N,E±) − 2]Eν⟩1, if N = N(t)
.

(31.24)

It is noteworthy that di�erences in parameters εjs and εjc, j = G, I, imply di�erences in the propagation
factors β+ and β− determining the evolution of the �elds E+ and E−, respectively. These di�erences are
crucial when determining type and stability of operating states in the ring laser, see References [19,23,45]
for more details.

To illustrate how an asymmetry of the self- and cross-gain saturation implies di�erent operation states
in the ring laser (see Figure 31.2b), we have simulated the TW model equations 31.14, 31.21, 31.8, 31.5,
31.23, 31.24, 31.3 for vanishing εIs and εIc, �xed nonvanishing sum εGc + εGs = C > 0 and tuned di�er-
ence εGc − εGs. Figure 31.6 shows the results of these simulations. Solid gray and dashed black curves in
all panels of this �gure represent clockwise (CW) and counter-clockwise (CCW) propagating �eld func-
tions E−(b1, t) and E+(a1, t) at the point scattering source J1, respectively (see Figure 31.2b). Panel (a) of
this �gure gives an overview of all obtained states when tuning εGc − εGs from −C (full self-saturation
with vanishing εGc) up to +C (full cross-saturation with vanishing εGs). Panels (b)–(e) of the same �gure
represent four di�erent observed dynamic regimes. The �rst three regimes occurring with a consequent
increase of the cross-gain saturation are the bidirectional stable stationary state (b), the alternate oscilla-
tions (c), and the unidirectional bistable state (d). These three regimes can be observed experimentally and
recovered theoretically using a simple two-mode ODE model [19]. An analysis of the TW model performed
in Reference [23] has explained the relation between the asymmetry of the gain compression factors, εGc
and εGs, and stability of the bidirectional steady state (regime b) or unidirectional bistable states (regime
d). It was also shown, how the di�erence β+ − β− and localized backscattering r1 determine the frequency
of alternating oscillations (regime c).
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minimal intensities of the optical �elds at J1 for changing values of εGc − εGs but �xed εGs + εGc = 20 ⋅ 10−24 m3.
(b)–(e) Typical representatives of the observed regimes. Thick gray and dashed black curves indicate clockwise (CW)
and counter-clockwise (CCW) propagating �elds. Parameters are similar to those of Figures 31.4a and b, only |S1| =
1000 μm, αH = −2, α = 2 cm−1, ν1

1 = εIs = εIc = 0, I = 100 mA. U′F and rS are the same as in Figure 31.5, whereas the
�eld transmission and localized backscattering parameters at J1 are t1 =

√

0.7 and r1 = 0.007, respectively.

The last simulated regime (e) was observed for the dominant cross-gain saturation. Like usual mode-
locking pulsations, this regime is characterized by large short pulses occurring with the round-trip period.
However, in contrast to the mode-locking observed in multisection ring lasers [47], this state is uni-
directional and does not require any fast saturable absorption. Similar mode-locked pulsations in a
single-section ring laser were found and discussed theoretically in Reference [45].

31.7 Further Modifications of the TW Model

There exist a vast number of further possible modi�cations of the TW model for MSLs. Each of these
modi�cations, however, requires a few new not very well-known parameters and, therefore, should be
used with the great care. On the other hand, some of these modi�cations being crucial when analyzing a
particular group of MSLs can be irrelevant for simulations and analysis of di�erent type MSLs. Later we
present several modi�cations of the TW model used for investigation of speci�c types of MSLs.

Multiple Carrier Rate Equations in QD Lasers:

When modeling QD lasers, one should take into account carrier exchange processes between a carrier
reservoir (CR) and discrete levels in QDs.

One of the simplest ways to account for all these transitions within the TW modeling frame is provided
by the rate equations for the normalized carrier density Ncr(z, t) (scaled by the factor ΘN) within the CR,
and occupation probabilities Ngs(z, t), Nes(z, t) of the ground state (GS) and the �rst excited state (ES) of
QDs, respectively [10,48,49].

To keep the structure of the TW �eld equations 31.14 unchanged, we neglect the inhomogeneous spec-
tral broadening e�ect due to QD nonuniformity and consider a simple single-Lorentzian gain spectrum
pro�le, which limits the material gain bandwidth. Besides, we assume that the laser operates at the GS
transition only. In this case, the propagation factor β depends on the ground state occupation probability
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Ngs(z, t) only. The expression of β(Ngs) is equivalent to that one given by Equations 31.2 and 31.3 with
spatially distributed occupation probability Ngs(z) ∈ [0, 1] and factor 1∕2 instead of the carrier density
N(z, t) and transparency carrier density Ntr, respectively.

To describe carrier exchange processes between the CR, GS, and ES of the QDs in the active section (see
Figure 31.7a), we use the following set of rate equations:

d
dtN

gs(z, t) = −Ngs

τgs
+ 2

(

Nes(1−Ngs)
τes→gs

− Ngs(1−Nes)
2τgs→es

)

− 1
θE
(Ngs,E±),

d
dtN

es(z, t) = −Nes

τes
−
(

Nes(1−Ngs)
τes→gs

− Ngs(1−Nes)
2τgs→es

)

+
(

Ncr(1−Nes)
4τcr→es

− Nes

τes→cr

)

,

d
dtN

cr(z, t) = I
q|S1|θI

− Ncr

τcr
− 4

(

Ncr(1−Nes)
4τcr→es

− Nes

τes→cr

)

.

(31.25)

Here, (Ngs,E±) is de�ned by Equation 31.22, whereas τ−1
a and τ−1

a→b, a, b ∈ {gs, es, cr}, denote sponta-
neous relaxation and transition rates between GS, ES, and CR, respectively. Factors (1−Ngs) and (1−Nes)
represent the Pauli blocking, factors 2 and 4 account for the spin degeneracy in the QD energy levels. Note
that here we neglect direct transitions between CR and GS. θI and θE =

2hc0θI
λ0

are scaling factors relating
the injection current I, the �eld intensity |E|2, the CR scaling factor θN , the di�erential gain g′, and the
QD density in the active zone.

In the saturable absorption sections (see Figure 31.7b), there is no pumping, I = 0, so that the transitions
from CR to ES can be neglected, τcr→es →∞, and the last of the equations 31.25 can be ignored. The carrier
transition from ES to CR can be added to similar spontaneous recombination term: τ̄−1

es = τ−1
es + τ

−1
es→cr .

Following Reference [48], one can model the carrier transitions in the negatively driven saturable absorber
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by assuming an exponential decay of τ̄es with growing negative voltage U, whereas all other relaxation rates
remain unchanged.

Figures 31.7c and d presents an example of simulated mode-locked QD laser containing an amplifying
and a saturable absorber sections S1 and S2. Panel (c) of this �gure gives an evidence of strongly asymmetric
pulses with a broad trailing edge plateau. Our theoretical analysis has shown that such pulses arise mainly
due to noninstant carrier transitions between the CR, ES, and GS of the QD laser shown in panel (d) of the
same �gure. The presence of these transitions exert a smoothening e�ect on all spatial/temporal carrier
and �eld intensity distributions and, in turn, imply a broadening of the trailing edge of the pulse. We
have also found that an increase of the intradot transition rates leads to a reduction of the �ltering e�ect
and, hence, to a growth of the pulse peak intensity and narrowing of the pulse and its trailing edge. More
details on our analysis as well as experimental demonstration of such asymmetric pulses can be found in
Reference [10,49].

Further modi�cations of the TW model can be used for more precise simulations of QD lasers. For
example, one can improve the model of carrier transitions (Equation 31.25) by separate consideration of
electrons and hole densities [50]. To allow a simultaneous radiation on the spectrally well-separated ground
and ES, one can introduce another pair of TW equations for optical �elds [51]. An inhomogeneous spec-
tral broadening and an accompanying description of the radiation at GS and ES can also be modeled by
an introduction of multiple sets of carrier rate and polarization equations representing carrier transitions
within the QDs of di�erent size and their impact on the laser emission at di�erent wavelengths [52].

Nonlinear Gain and Refractive Index Functions:

In the earlier discussion, the gain and the refractive index dependence on the carrier density N was mod-
eled by linear functions related to each other by the linewidth enhancement factor αH. This modeling
approach is reasonable for small and slow variation of carrier density N, but can fail once N exhibits some
signi�cant changes, see, e.g., Figure 31.5d, where a variation of the spatially distributed N(z, t) was of the
order of the mean value of the carrier density. In such situations, one should better use nonlinear peak
gain functions, g(N), which can better represent measured or precalculated gain spectra pro�les. For this
reason, the following logarithmic gain peak function dependence on the carrier density is frequently used:

g(N) = Γg′Ntr ln
(max{N,N∗}

Ntr

)

, ñ(N) = αHg(N)
2 . (31.26)

Here,N∗ indicates a cuto� carrier density value, which prevents the convergence g(N) → −∞with carriers
N → 0. These expressions for the gain and index change functions replace the relations 31.3 used in the
TW models discussed earlier.

Another issue is related to the linewidth enhancement factor αH . Initially, this factor was used to relate
gain and refractive index functions at a �xed value of N. Such approach implies a rather simple model for
propagation factor, β, and can be quite useful when performing an advanced analysis of model equations. In
reality, however, the ratio between the gain and refractive index is not a constant, but a function depending
on carrier density, temperature, and several other factors not discussed in this chapter. Thus, an experimen-
tal estimation of this factor in the semiconductor laser operating at di�erent conditions or using di�erent
methods can lead to rather di�erent values of αH. For this reason, it can be preferable to use separately
de�ned nonlinear peak gain and index change functions g(N) and ñ(N). These functions depend on the
properties of the semiconductor material and the design of the device, and, therefore, should be adjusted
individually for each considered laser.

A satisfactory description of these functions for a broad class of semiconductor lasers is given by the
logarithmic, and the square-root-like expressions [38]

g(N) = Γg′Ntr ln
(max{N,N∗}

Ntr

)

, ñ(N) = ñ + αH Γg′
√

N ⋅ Ntr. (31.27)
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Here, ñ represents the o�set of the refractive index change function, Γg′ =∂Ng(Ntr), and αH = 2∂N ñ(Ntr)
/

∂Ng(Ntr) is the linewidth enhancement factor evaluated at the transparency carrier density Ntr.
We should admit, however, that linear formulas 31.3 with slightly corrected factors g′, αH, Ntr, and a

proper selection of δ0 can be used for approximation of nonlinear functions 31.27 not only in the vicinity
of Ntr but also over a larger range of densities N including the threshold density Nth. In many cases, the
simpli�cations of the gain and refractive index functions still imply qualitatively the same results when
performing simulations of MSLs with varying parameters [53].

31.8 Multisection Lasers and Coupled Laser Systems

A vast variety of MSLs and coupled laser systems can be represented as a set of di�erently interconnected
laser sections, each characterized by its material and geometry parameters. To distinguish these parameters
or functions attributed to di�erent laser sections, we shall use the lower indices. For example, αk, gk(N),
and ak denote the �eld losses, the gain function and the le�-edge coordinate of the section Sk. Note also
that for unique identi�cation of longitudinal coordinate z within all laser sections, di�erent sections of our
device are represented by nonoverlapping intervals (ak, bk).

According to our laser device construction, for any edge of all sections Sk, we can attribute a unique
junction Jl. On the other hand, each junction has, at least, one section joining it from one or another side,
see, e.g., Figure 31.1, where MSLs are represented as sets of laser sections mutually interconnected through
di�erent junctions. To explain the relations between section edges, corresponding junctions, and applied
optical injections, we use the following notations in the sequel of this chapter. By l we denote the index
of the junction Jl, as well as optical �elds and the section edges attributed to this junction. l′ (l′′) is the
vector of length |l′| (|l′′|) containing indices of the sections connected to Jl by their le� (right) edge al′j
(bl′′j ); see Figure 31.8a. le = |l′| + |l′′| ≥ 1 is a total number of such section edges connected to Jl. By ol(t)
and Eout

l (t) we denote the applied optical injection and the recorded emission at the same junction, see
solid and dashed thick light gray arrows in Figure 31.8a. When the injection or emission at Jl is absent, the
corresponding function is simply set to zero.

General �eld scattering conditions at the arbitrary junction Jl are de�ned by the le × le dimensional
complex �eld scattering matrix l, le × 1 dimensional injection distribution matrix  i

l , and 1 × (le + 1)
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dimensional outcoupling matrix  o
l :

o
l = l i

l +  i
l ol, Eoutl =  o

l

(

 i
l
ol

)

, where

o
l =

(

E+
l′1
(al′1 , t),… ,E+

l′
|l′|
(al′

|l′|
, t),E−

l′′1
(bl′′1 , t),… ,E−

l′′
|l′′|
(bl′′

|l′′|
, t)

)T
,

 i
l =

(

E+
l′′1
(bl′′1 , t),… ,E+

l′′
|l′′|
(bl′′

|l′′|
, t),E−

l′1
(al′1 , t),… ,E−

l′
|l′|
(al′

|l′|
, t)

)T
.

(31.28)

The vector functions  i and o (see black and dark gray arrows in Figure 31.8a) denote the internal optical
�elds, which are incident into the junction from all adjacent sections and are scattered from the junction
back into these sections, respectively.

In most cases, the interfaces between the sections are much simpler. For example, the scattering matrices
at the facets of the solitary laser (Figures 31.8b and c as well as junctions J1 and J2 in Figure 31.2a) are
determined by the boundary conditions (Equation 31.7), i.e.,

⎧

⎪

⎨

⎪

⎩

l = −r∗l ,  i
l = 1,  o

l = (tl, 0), single "le�" edge al′ , |l′| = 1, |l′′| = 0

l = rl,  i
l = 1,  o

l = (tl, 0), single "right" edge bl′′ , |l′′| = 1, |l′| = 0
, (31.29)

where rl and tl are �eld re�ection and transmission coe�cients,

|rl| ≤ 1, tl ≤
√

1 − |rl|2. (31.30)

Another frequently used case in MSLs is the interface of two adjacent sections (Figures 31.8d through g).
At such interfaces, we have no optical injections and �eld emission, so that we can set  i

l = (0, 0)T and
 o
l = (0, 0, 0). The scattering of the �eld at Jl, in this case, is entirely de�ned by the 2 × 2 dimensional

matrix

l =
(

tl −r∗l
rl tl

)

, (31.31)

where tl and rl satisfy the conditions 31.30 (see Figure 31.8d and, e.g, J3 in Figure 31.1a). Here, the non-
vanishing re�ections rl can appear, e.g., due to di�erent heterostructure of the adjacent sections. In the
simplest case of rl = 0 and tl = 1, l is an identity matrix, and the interface admits a full transmission of
the optical �elds (see Figure 31.8e and J2 in Figure 31.1a).

When modeling the master–slave laser system (S1 and S2 in Figure 31.1d), only one-directional �eld
propagation should be allowed in the air gap between two lasers (section S3 in the same �gure). This e�ect
can be achieved by modi�cation of otherwise standard scattering matrices l (Equation 31.31) at one of the
gap section edges. One can model a full absorption of the backward incident beam at the interface of the
master laser and the gap section (see Figure 31.8f and J2 of Figure 31.1d), or prohibit the �eld backscattering
into the air gap at the interface of the slave laser and the gap section (Figure 31.8g and J3 of Figure 31.1d).
Formally, both these situations can be de�ned by the scattering matrices

j =
(

tj 0
rj 0

)

(master-gap interface), j =

(

tj −r∗j
0 0

)

(gap-slave interface).
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More complicated situations occur at the junctions connecting more than two section edges of the MSL.
For example, Figure 31.8h and J1 of Figure 31.1e represent an interface connecting two “le�” and two
“right” section edges. This situation is used for modeling of a localized coupling of the ring laser (section
S1 in Figure 31.1e) and the outcoupling waveguide (S2 and S3 in the same �gure).

Similarly to the previously discussed case, the optical injection- and �eld emission-relevant matrices can
be de�ned by  i

l = (0, 0, 0, 0)T and  o
l = (0, 0, 0, 0, 0). By assuming a nonvanishing �eld re�ection rl at the

ring laser part of this junction (section edges bl′′1 , al′1 in Figure 31.8h or b1, a1 in Figure 31.1e), we model a
localized linear backscattering of the �elds [23,37]. The 4× 4 dimensional scattering matrix l, in this case,
can be de�ned as

l =
⎛

⎜

⎜

⎜

⎝

tl it̃l −r∗l 0
it̃l tl 0 0
rl 0 tl it̃l
0 0 it̃l tl

⎞

⎟

⎟

⎟

⎠

, t2l + t̃2l + |rl|2 ≤ 1. (31.32)

Here, tl is a real �eld amplitude transmission factor within the same (ring or outcoupling) waveguide and
it̃l is an imaginary coe�cient representing part of the �eld amplitude, which is outcoupled from the ring
or transmitted into the ring from the external waveguide. It is noteworthy that a proper estimation of the
transmission–re�ection–outcoupling matrix l in the ring laser case requires some appropriate measure-
ments or an advanced modeling. Such modeling should take into account the curvature of the ring cavity,
the length of the coupling regions, the �eld di�raction, and the overlapping of the lateral modes in the
coupling region [54]. Moreover, the coe�cients of the scattering matrix are, in general, frequency depen-
dent. In our TW modeling approach, we use constant coe�cients describing �eld scattering at the central
reference frequency.

31.9 Simulations of Nontrivial MSL Device

The concept of di�erently interconnected sections and junctions allows modeling rather complicated MSLs.
One of such nontrivial con�gurations is a semiconductor ring laser with four separate branches of the
�ltered optical feedback, see Figure 31.9a. The multichannel feedback scheme of this laser admits a fast
switching between steady states determined by the resonances of the ring laser and the wavelengths of the
activated �ltering channels [55].

The gray-shaded frames in Figure 31.9a represent device sections of di�erent types. Namely, we distin-
guish here the amplifying sections SA⋅, where the �eld and carrier dynamics is governed by the full TW
model (Equations 31.5, 31.14, 31.21, 31.23, 31.24, 31.26), and two kinds of passive sections, SP⋅ and SF⋅,
where gain and refractive index functions are set to zero, allowing to ignore the carrier rate equations at
all. The notations of all sections in the section indexes are made according to the cardinal directions “n,”
“e,” “s,” and “w”.

Almost all parameters of the TW model in all sections of our MSL are the same as in Figure 31.6. A few
exceptions are parameters αH = −4 and γ̄λ = 100 nm. In the passive waveguiding sections, SP⋅ (medium
gray), we assume |SPe| = |SPw| = 330 μm, |SPne| = |SPnw| = 50 μm, |SPse| = |SPsw| = 2500 μm, and
neglect the gain dispersion, ḡ = 0. In the passive �ltering sections, SF⋅ (light gray), we assume |SF⋅| =
530 μm and signi�cantly modify the pro�le of Lorentzian gain dispersion by setting ḡ = 5 ⋅ 104 m−1 and
γ̄λ = 4 nm. The relative peak wavelengths of four �ltering branches (sections SFwj and SFej, j = 1,… , 4)
are λ̄ = −2, −0.67, 0.67, and 2 nm, respectively. Finally, in the amplifying sections (dark gray) within the
primary ring laser, SAjk, j = n, s and k = e,w, we use |SA⋅| = 380 μm, εGs = 6 ⋅ 10−24 m3, εGc = 2εGs,
and the bias currents I = 26 mA, which is 1.5 times higher than the lasing threshold in the laser without
feedback. In the amplifying sections belonging to the four �ltering branches, SAsj, j = 1,… , 4, we assume
|SA⋅| = 190 μm and εGc = εGs = 9 ⋅ 10−24 m3. Once the bias current in these sections is zero, I = 0 mA,
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FIGURE 31.9 (a) Scheme of the semiconductor ring laser with four branches of �ltered and ampli�ed unidirectional
optical feedback. Black segments and gray-shaded frames indicate junctions and di�erent sections of the MSL. Solid
light-gray and dashed black arrows show propagation directions and the emission of the �elds E+ and E−, respectively.
(b) Transmission spectra of four �ltering branches. Maximal transmission at IAsj = 10 mA, j = 1,… , 4 is approximately
1.6. (c) Stabilization of the multimode behavior of the ring laser (black) by the single-branch �ltered feedback (gray).
(d) Dependence of the lasing wavelength on the feedback phase once the second �ltering branch is activated.

the feedback branches are e�ciently absorbing the optical �elds. To activate one of the feedback branches,
we set the corresponding injection I = 10 mA.

The �eld transmission and re�ection conditions at Jn and Js are given by the conditions 31.32 with r = 0,
t =

√

0.8, and t̃ =
√

0.2. At Jse and Jsw, we neglect all possible re�ectivity, admit full-�eld transmission
from �ltering branches to the passive waveguide sections SPsw or SPse, equally distribute the intensity of the
optical �eld E+ propagating from SPse to the �ltering branches, and fully absorb E− at Jsw:

E−(bPse, t) =
∑4

j=1 E
−(aFej, t), E+(aFej, t) =

√

1
4 E

+(bPse, t), j = 1,… , 4;

E+(aPsw, t) =
∑4

j=1 E
+(bFwj, t), E−(bFwj, t) = 0, j = 1,… , 4.

At Jw and Je, the �elds E+ and E− are emitted from our MSL. Here, the �eld re�ection–transmission con-
ditions are given by (Equation 31.29) with the re�ectivity factors rw = re = 0.1. All other junctions of this
MSL are trivial, i.e., the optical �elds cross the interfaces according to the relations 31.31 with rl = 0 and
tl = 1.

A series of simulations represented in the remaining panels of Figure 31.9 are in good agreement with
the experimental results reported in Reference [55]. First of all, panel (b) shows the transmission spectra
(modulus of the wavelength-dependent complex transmission function) of the optical �elds E+ propagat-
ing through each of four optical feedback branches activated by the injected current into the corresponding
amplifying section. For 10 mA injections used in these simulations, the peak amplitude transmission is
around 1.6.
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Panels (c) and (d) of Figure 31.9 show simulated optical spectra of the emitted �eld at the “west” facet
Jw of the MSL for di�erent operation conditions. An upper black curve in panel (c) represents the opti-
cal spectrum in the case of deactivated feedback branches. Multiple signi�cant spectral peaks with the
mode separation corresponding to the �eld round-trip time in the ring laser indicate a multimode las-
ing of the laser. An optical �eld E+ propagating along the �ltering branches, however, is not entirely
absorbed. For higher ring laser injections, we observed the steady states determined by a single ring reso-
nance mode. In these cases, the ampli�er within corresponding �ltering branch was optically pumped, and
the related peak amplitude transmission was around 0.2. The competition between nominally equivalent
unpumped �ltering branches, however, does not allow predicting the lasing wavelength of such a steady
state.

The four lower spectra in Figure 31.9c represent switching between di�erent optical modes by activation
of the corresponding �lter and deactivation of the remaining ones. A close inspection of these spectra
shows, that whereas the �rst and the fourth �lters select the resonance modes which are closest to the �lter
peak position, the third, and, especially, the second �lter prefers modes admitting smaller optical feedback.
We have found, that this mode selection is related to the phase of the optical �eld within the �ltering branch.
Figure 31.9d demonstrates, how tuning of the feedback phase within the second �ltering branch (realized
by variation of the detuning factor δ0,Fw2) implies changes between the resonant modes located within the
�ltering band.

In conclusion, we have simulated the MSL consisting of 22 sections interconnected at 18 junctions. Our
theoretical �ndings were in a good qualitative agreement with experimental observations of similar ring
laser device reported in Reference [55].

31.10 Beyond Numerical Simulations of the TW Model

In the previous sections, we have introduced di�erent modi�cations of 1+1 dimensional TW model suited
for simulations of various MSL devices and coupled laser systems. In the remaining part of this chapter, we
introduce the concept of instantaneous optical modes and present several applications of these modes for
an advanced analysis of MSLs. In all these cases, we consider MSLs without optical injection and neglect a
contribution of Langevin noise term F±sp, which is of minor importance in the lasers operating well above
threshold.

Instantaneous Optical Modes:

The concept of optical modes plays a signi�cant role in understanding laser dynamics in general. They
represent the natural oscillations of the electromagnetic �eld and determine the optical frequency and the
lifetime of the photons contained in the given laser cavity. The instantaneous optical modes correspond to
a �xed instant distribution of the propagation factor β [26].

In general, compared to a variation of the optical �elds, the changes of the carrier densityN are slow. The
change of N is mainly determined by the carrier relaxation time which, typically, is measured in nanosec-
onds (or tens of picoseconds when considering saturable absorbers). On the other hand, picosecond or
sub-picosecond time windows are su�cient for signi�cant changes of the photon densities. Since the gain
compression for small and moderate �eld intensities is also small, the propagation factor β experiences
only minor modi�cations in the picosecond range. For this reason, in the remaining part of this chap-
ter we analyze the �eld equations for the frozen distribution of the propagation factor β(z, t0) at the time
instant t0.

The instantaneous optical modes of MSLs are pairs (Ω(β),Θ(β, z)) of complex frequencies Ω and
vector-functions Θ= (Θ+E ,Θ

−
E ,Θ

+
P ,Θ

−
P )

T , where imaginary and real parts of Ω(β) are mainly de�ning the
angular frequency and the damping of the mode, whereasΘ(β, z) determines the spatial distribution of the
mode.
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Complex frequencies Ω and vector-functions Θ(β, z) solve the linear system of algebro-di�erential
equations

⎧

⎪

⎨

⎪

⎩

d
dzΘ

+
E = −i(Ω)Θ

+
E − iκΘ−E

d
dzΘ

−
E = i(Ω)Θ−E + iκΘ+E

Θ±P (β, z) =
γ̄∕2

γ̄∕2+i(Ω−ω̄)Θ
±
E (β, z)

, z ∈ Sk|nk=1, θol (β) = lθil(β)
|

|

|

m

l=1
, (31.33)

obtained by assuming a nonvarying in time propagation factor, ∂tβ = 0, and substituting the expressions

E±(z, t) = Θ±E (β; z)e
iΩ(β), P±(z, t) = Θ±P (β; z)e

iΩ(β)

into the �eld equations 31.14 within each of n sections Sk, and boundary conditions 31.28 at each of m
junctions Jl. Similarly to the vector functions o

l and  i
l in Equation 31.28, complex vectors θil(β) and θol (β)

in Equation 31.33 represent functions Θ±E (β, z) at the section edges z = al′j or z = bl′′j connected by the
junction Jl. The function (Ω) entering Equations 31.33 is de�ned in 31.16.

Each pair of linear ODEs in Equation 31.33 can be solved by the transfer matrix† 31.11 with the
coe�cients nonlinearly depending on still unknown complex frequency Ω. These matrices de�ne 2n
homogeneous linear equations relating 4n components of the complex vector  = (s1,… , s4n)T repre-
senting �eld functionsΘ±E (β, z) at both edges of all sections Sk. Another 2n homogeneous linear equations
relating the same complex numbers are given by the �eld scattering matrices l at all junctions Jl. In such
a manner, we build a linear 4n dimensional algebraic system

(β, κ;Ω) = 0,

determined by a sparse 4n × 4n dimensional matrix . Nontrivial solutions  (i.e., nontrivial func-
tions Θ of the problem 31.33) are available only for those Ω which are the complex roots of the complex
characteristic equation

det(β, κ;Ω) = 0. (31.34)

The �nite number of these roots can be found using Newton iterations and the homotopy method; see
Reference [26] for more details.

It is noteworthy that linear con�gurations of MSLs admit rather simple expressions of the character-
istic equations 31.34 involving the response functions Fl(z,Ω) and Fr(z,Ω) de�ned at some longitudinal
position z of the MSL:

det(β, κ;Ω) = 0 ⇔ F−1
l (z,Ω) = Fr(z,Ω). (31.35)

For example, for the solitary lasers considered in Figure 31.3b and c, Fl(b1,Ω) is de�ned in Equation 31.13,
whereas Fr(b1,Ω) = r2. In the general case, functions Fl and Fr are de�ned by a consequent superposition
of the sectional transfer matrices M(β, κ,Ω) and the le�-to-right or right-to-le� junction-transfer matrices

 −1
j,22

(

det j j,12
−j,21 1

)

or  −1
j,11

(

1 −j,12
j,21 det j

)

;

see References [23,26,28] for more details.

† In the case of nonvanishingΔβ =
β+−β−

2
, the transfer matrix in each section Sk should be constructed for β̄ = β++β−

2
and later

multiplied by the factor e−i⟨Δβ⟩k |Sk | [23].
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The calculated optical �eld function Ψ(z, t) = (E+,E−, P+, P−)T can be represented as a superposi-
tion of the suitably normalized vector functions Θ(β, z) which are slowly changing with a variation of the
propagation factor β(z, t):

Ψ(z, t) =
∞
∑

j=1
fj(t)Ψj(β(z, t), z). (31.36)

Here, fj(t) is the complex amplitude of the mode, which can denote the mode contribution to the �eld
emission at the laser facet ak once normalization of mode functions assumes Θ−E (β, ak) = 1. According
to our notations, index 1 denotes the most signi�cant mode having a largest (instant) amplitude |f | or a
lowest damping ℑΩ. An increasing index means a decreasing importance of the mode. This numbering
does allow us to achieve good approximations of the �eld function Ψ(z, t) already by low-dimensional
truncated mode expansions 31.36.

Calculation of optical modes and expansion of the �eld function into the modal components can give a
broad understanding of di�erent operating regimes in MSLs and explain parameter change-induced transi-
tions between these states observed in simulations and experiments. We have applied our mode analysis for
interpretation of experimental observations in di�erent MSLs. Namely, we have explained a stable oper-
ation of ring lasers at alternating oscillation or bi- and unidirectional steady state regimes [23]; almost
periodically reappearing state transitions and estimation of thermal tuning parameters in master-oscillator
power-ampli�er device [38,56], DBR laser [14], or ECDL [15]; and strongly asymmetric pulse shapes in QD
mode-locked laser [49]. More theoretical examples of our mode analysis can be found in Reference [26].

Steady States:

Any stationary (rotational wave) state of the MSL is determined by an optical mode with a real mode
frequency

(Ψ(z, t),N(z, t)) =
(

f̂ Θ(β̂, z)eiω̂t , N̂(z)
)

, where Ω(β̂) = ω̂ ∈ ℝ,

and β̂(z) is a constant in time spatially distributed propagation factor. Let us consider the TW model with
sectionally averaged carrier density and neglected nonlinear gain compression given by Equations 31.4,
31.5, 31.14, 31.18, 31.15, and 31.28. In this case, all steady states are fully de�ned by a set of na+2 real num-
bers

(

ω̂, |f̂ |2, N̂1,… , N̂na

)

, which are a mode frequency, a mode intensity, and sectionally averaged carrier
densities within all na “active” sections having nonvanishing functions g and ñ. The rotational invariance
of the TW model implies freedom in selection of the phase of the complex mode amplitude f̂ . The set of
these real numbers is a root of a nonlinear algebraic system of one complex characteristic equation and na
real steady-state carrier rate equations:

det
(

β(N̂), κ; ω̂
)

= 0,
Ir

qσr|Sr|
−(N̂r) − |f̂ |2 c0

ng
G(N̂r, ω̂)⟨

(

ΘE,ΘE
)

⟩r = 0, r = 1,… , na.
(31.37)

Here, the frequency-dependent gain functionG is de�ned in Equation 31.17, whereas the sectional average
⟨

(

ΘE,ΘE
)

⟩r can be expressed as a function of ω̂ and N̂ [28].
In the case of the single active section, na = 1, the steady state frequency ω̂ and threshold carrier den-

sity N̂1 can be directly found from the characteristic equation, whereas the remaining equation determines
the value of |f̂ |2. Assume that the single active section S1 of linear MSL is located on the le� side of the
device (see Figure 31.1b), and the optical �elds within the adjacent passive section S2 are governed by the
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simple relations 31.9. For an illustration of this situation, we have considered a three section passive dis-
persive re�ector laser consisting of the active DFB, passive DBR, and another passive phase tuning section
in between. Due to the relation 31.35, we can replace the complex characteristic equation by a couple of
real-valued equations,

F−1
l (a2, ω̂) = Fr(a2, ω̂) = e−α2|S2|ei(φ−2ω̂τ2)Fr(b2, ω̂) ⇔

{

̃α(N̂1, ω̂) = eα2|S2|

2ω̂τ2 − ̃φ(N̂1, ω̂) = φ
, where ̃(N̂1, ω̂) = ̃αe

i̃φ = Fl(a2,ω)Fr(b2, ω̂)
. (31.38)

This formulation suggests a simple way for �nding the steady states. Namely, each of these equations for
�xed parameters α2 and φ de�nes one or several curves in frequency ω – carrier threshold N1 domain, see
solid and dashed curves in Figure 31.10. The intersections of these lines determine the steady state pairs
ω̂, N̂1 (hollow bullets in the same �gures). It is noteworthy that to any point in the ω − N1 domain one
can attribute a unique triple of loss, phase, and mode power parameters α2, φ, and |f̂ |2. ω and N1 within
the gray shading regions of Figure 31.10 represent the unphysical steady states corresponding to negative
damping in the passive section (α2 < 0) and negative mode intensity (|f̂ |2 < 0) due to insu�cient pumping
of the active section.

The �xed level lines of̃α determined by larger losses α2=30 and 40/cm (thin solid-line ellipses located
inside of thick solid curves in Figure 31.10) are shrinking toward central points, which are resonances of
the solitary DFB laser. Accordingly, the (odd) number of steady states on each ellipse is also reduced. The
saddle-node bifurcation that is responsible for creation or annihilation of the steady state pair, occurs at
those φ and α2, where corresponding �xed level lines of ̃φ and ̃α become tangent to each other. The
last condition formally given by

SN(ω̂, N̂1)
def
= ∂ω̃α∂N1

̃φ − ∂ω̃φ∂N1
̃α = 0

is satis�ed on the dotted lines of Figure 31.10.
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along the �xed loss lines for growing φ. All parameters as in Reference [26].
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In general, the interpretation of the steady states for large α2 (small feedback) is in good agreement
with the analysis of the external cavity modes in the Lang–Kobayashi (LK) model of lasers with delayed
feedback [18,27]. A decrease of α2 leads to blowing up and collision of di�erent ellipses. This scenario
involves multiple modes of the solitary DFB laser and can be no more explained by the LK model.

Mode Approximation Systems:

For some MSL devices, the TW model (Equations 31.2 through 31.5, and 31.14, 31.15, 31.28) with section-
ally averaged carrier densities, linear gain and index change functions, and neglected gain compression
terms can be reduced to the �nite-dimensional system of ODEs describing an evolution of q complex
mode amplitudes f and real sectionally averaged carrier densities N within na active sections of MSL:

ḟk = iΩk(N)fk +
q
∑

l=1

( na
∑

r=1
Kr
k,l(N)Ṅr

)

fl, k = 1,… , q;

Ṅr =
Ir

q|Sr|σr
−(Nr) −ℜ

q
∑

k,l=1
Lrk,l(N)f

∗
k fl, r = 1,… , na.

(31.39)

This mode approximation (MA) system follows from the substitution of the truncated �eld expansion
(Equation 31.36) into the TW model equations and projection of the resulting �eld equations onto the
linear subspace de�ned by each of q modes. The nonadjoint nature of the �eld evolution operator and
small but nonvanishing time derivatives of propagation factor β(N) imply the appearance of the mode
coupling terms Kr

k,lṄr . For the derivation of the MA equations and analytic expressions for carrier and
mode frequency Ω-dependent mode-coupling functions, Kr

k,l and Lrk,l, see Reference [28].
To check the precision of our MA system, we have performed simulations of the TW model and two

related MA systems describing the evolution of a mode-locked laser consisting of a saturable absorber
and an amplifying section (case of na = 2). The solid black curve and hollow bullets in Figures 31.11b
and c show typical optical spectrum and time trace of the mode-locking pulsations obtained by numer-
ical integrations of the TW model. To determine the most relevant complex mode frequencies Ω(N)
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three-section phase-controlled mode-beating DFB laser [12,28]. Solid and dashed curves indicate stable and unstable
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(Figure 31.11a) and the coe�cients f in the �eld expansion 31.36 (bullets in panel [b]), we have used
the carrier densities N = (N1,N2), optical �elds E, and polarization functions P obtained as a result of
the numerical integration of the TW model. For the construction of the 40MA and 50MA systems, we
have used the modes indicated by full black and a bit smaller gray bullets in Figures 31.11a and b. Solid
gray and black dashed curves in Figure 31.11c represent the numerical integration of these MA systems.
One can see that whereas 40MA system fails to reproduce the stable periodic regime, the 50MA system
provides a perfect approximation of the TW model. We note that a signi�cant number of excited optical
modes in the example considered above does not allow achieving a low dimensional approximation of
the TW model. The number of active modes usually is much smaller in MSLs containing one or more
DFB sections. In this case, already three or four appropriately selected optical modes are su�cient for a
good approximation of the TW model [7,28].

An integration of the MA system (Equation 31.39) remains a nontrivial task, because for each actual
set of carrier densities N = (N1,… ,Nr), one should �nd the corresponding mode frequencies Ωk(N),
k = 1,… , q by solving the characteristic Equation 31.34 numerically. Since the required computation
time of the MA systems grows quadratically with the increasing number of modes, one can integrate the
TW model faster than the 50MA system. The usefulness of the MA approach starts to be visible when
combining our model reduction technique with the numerical continuation and bifurcation analysis tools
[29] suited for investigation of nearly arbitrary systems of ODEs. Figure 31.11d presents an example of
numerical bifurcation analysis of 3MA (gray) and 4MA (black) systems describing dynamics of the three-
section laser consisting of two active DFB sections and a passive phase tuning section in between (n = 3 and
na = 2 in this case). Here, solid and dashed curves represent stable and unstable branches of the periodic
orbit implied by beating of two closely located resonances, supported by each DFB section. Empty bullets
in the same �gure represent the continuation of the stable periodic state by direct integration of the TW
model. By comparing the bullets and curves, one can see that both MA systems were able to reproduce the
stable branch of the periodic orbit, and identify torus and saddle-node bifurcations where this state have
lost its stability. The deviation of the solid gray curve from the bullet positions in Figure 31.11d, however,
indicates the insu�ciency of the 3MA system to reproduce the orbit shape. More detailed analysis of this
laser including a continuation of bifurcations in two parameter domain can be found in Reference [28].

31.11 Conclusions

In this chapter, we introduce a hierarchy of TW models describing nonlinear dynamics in individual semi-
conductor lasers, various MSLs, and coupled laser systems. To simulate these laser devices, we use our
so�ware package LDSL-tool, which treats MSLs as a set of di�erently interconnected laser sections. At
the end of the chapter, we introduce several advanced techniques allowing detailed analysis of the model
equations. These methods include computation of optical modes, a study of the mode spectra, expansion of
electric �elds into modal components, a semianalytic location of all steady states of the MSLs, model reduc-
tion, numerical continuation, and bifurcation analysis of the reduced system. Altogether, these advanced
possibilities of our so�ware tool allow to achieve a thorough understanding of the processes observed both,
in the direct integration of model equations and experiments.
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32.1 General Principles of Mode Locking, the Important Features
of Mode-Locked Semiconductor Lasers, and the Role of
Theory and Modeling

In the most general sense, mode locking (ML) is a regime of laser operation that involves emitting light in
several modes with a time-independent relation between them, i.e., with constant and precisely equidistant
frequencies. Usually, the term is used more speci�cally, referring to what is, rigorously speaking, amplitude-
modulation (AM) ML, meaning that the phase di�erences between of adjacent modes are approximately
equal. In time domain, this corresponds to the laser’s emitting a train of ultrashort optical pulses at a
repetition frequency F near the cavity round-trip frequency or its harmonic:

F ≈ Mhvg∕(2L). (32.1)
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Here, vg denotes the group velocity of light in the laser resonator and L is the Fabry–Pérot resonator cavity
length. In the case of the ring resonator, 2L in Equation 32.1 is substituted by the ring cavity length. The
harmonic number Mh corresponds to the number of pulses coexisting in the cavity; in the simplest and
most usual case, Mh = 1. The pulse duration is then of the order of 2L∕(NMvg), with NM being the number
of lasing modes in the spectrum.

In most cases (some important exceptions will be mentioned below), ML does not occur spontaneously
and requires a special laser construction and/or operating conditions. Namely, it is usually achieved either
by modulation of the laser net gain at a frequency F or its (sub)harmonic (known as active ML) or by
exploiting nonlinear properties of the medium to shorten the propagating pulse (known as passive ML,
PML); in both cases, the pulse shortening mechanism needs to be strong enough to counter the broaden-
ing e�ects of gain saturation and dispersion e�ectively. PML, in turn, is usually achieved by introducing a
saturable absorber (SA) into the laser cavity. The SA both facilitates a self-starting mechanism for ML and,
most importantly, plays a crucial role in shortening the duration of the circulating pulses. As a variation of
this principle, refractive index nonlinearities approximately equivalent in their action to saturable absorp-
tion have been intensely studied in the last decades; salient examples are additive pulse ML and Kerr lens
ML in solid-state lasers, see, e.g., Haus (2000) for more detail.

A combination of active and passive methods of ML is known as hybrid ML; if the external modulation
is in the form of short pulses, the corresponding regime is referred to as synchronous ML.

Mode-locked solid-state lasers, o�en diode pumped, have allowed sub-100 femtosecond pulses to be
generated (Brown et al., 2004; Ell et al., 2001; Innerhofer et al., 2003), with peak powers in the range of
many kilowatts (partly due to the relatively low repetition rates, typically in the megahertz range or below).

In semiconductor diode lasers, the most basic physical mechanisms underlying the generation of short
pulses are fundamentally similar to those of other types of lasers, but a number of features are very di�erent,
as regards both technology and physics.

From the practical and technological point of view, diode lasers have a number of advantages: They rep-
resent the most compact and e�cient sources of picosecond and subpicosecond pulses. They are directly
electrically pumped, and the bias current can be easily adjusted to determine the pulse duration and the
optical power, thus o�ering, to some extent, electrical control of the characteristics of the output pulses.
These lasers also o�er the best option for the generation of high-repetition rate trains of pulses, owing to
their small cavity size L in Equation 32.1 and hence the large values of F, well into multigigahertz range.
Being much cheaper to fabricate and operate than most other types of lasers, ultrafast semiconductor lasers
also o�er the potential for dramatic cost savings in a number of applications that traditionally use solid-
state lasers. The deployment of high-performance ultrafast diode lasers could therefore have a signi�cant
economic impact by enabling ultrafast applications to become more pro�table and even facilitate the emer-
gence of new applications. At the moment, actual and potential applications of mode-locked lasers include
time- and wavelength-multiplexed communications, metrology, biomedical applications, etc.; see Avrutin
and Rafailov (2012) for an overview.

From the point of view of physics, which underlies the technology, most of the distinct features of
semiconductor lasers, including mode-locked ones, lie in the energy spectrum of semiconductors that con-
sists in continuous bands of energy with relatively high density of states, as opposed to discrete levels in
solid-state lasers. Most mode-locked semiconductor lasers operate on fundamental interband transitions
(though there has been some work on active ML of intersubband quantum cascade lasers; see, e.g., Revin
et al., 2016 and references therein). Semiconductors thus have both a higher gain per unit length (which is
one of the reasons of the short cavity length being possible) and a higher nonlinear refractive index than
other gain media (the relation between carrier density dependences of gain and refractive index in semi-
conductor lasers is o�en quanti�ed via Henry’s linewidth enhancement factor αH that, as discussed below,
plays an important role in the theory of ML). The interaction of the pulse with the gain and saturable
absorption and the resulting large changes in the nonlinear refractive index lead to signi�cant self-phase
modulation, imparting a noticeable chirp to the ML pulses, usually up-chirp in the case of passively mode-
locked lasers and down-chirp in actively mode-locked ones. This increases the time-bandwidth product of
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the pulse and has been one of the important limitations in obtaining pulse durations of the order of 100
fs directly from the diode lasers, with picosecond pulses being the norm. Furthermore, a strong saturation
of the gain also results in stabilization of the pulse energy, which limits the average and peak power to
substantially lower levels than in vibronic/solid-state lasers. Output average power levels for mode-locked
laser diodes are usually between 0.1 and 100 mW, while peak power levels remain between 10 mW and
1 W. Only with additional ampli�cation/compression setups, can the peak power reach the kW level (Kim
et al., 2005). Another distinction of semiconductor lasers is that the typical scales of carrier recombination
times in semiconductor materials are of the order of hundreds of picoseconds, comparable to the ML rep-
etition time, leading to a rich variety of dynamic instabilities in the laser behavior, some of which, as will
be discussed later, determine the lower limit for stable ML frequency (and therefore the longest possible
laser cavity) for given material parameters.

There has been a large variety of semiconductor laser designs used for ML, from external cavity ones
operating at sub-GHz rates to monolithic ones reaching terahertz repetition frequencies (Avrutin et al.,
2000), with laser design strongly a�ecting, not just the laser performance, but the relative importance of
the underlying physical e�ects in determining this performance.

This combination of practical promise, versatility, and scienti�c challenge has made mode-locked semi-
conductor lasers an important topic of research for more than two decades; they have arguably attracted
considerably more attention than all other methods of ultrashort pulse generation taken together. The
most recent years have seen considerable progress in both improving the theoretical understanding of ML
in semiconductor lasers and using this understanding to improve their performance in terms of power,
pulse duration/chirp, stability, repetition rates accessible, and integrability issues.

This progress has been partly summarized in previous reviews on ML in semiconductor lasers, with
some of them (Avrutin et al., 2005) explicitly concentrating on modeling and simulation and others
(Avrutin et al., 2000; Avrutin and Rafailov, 2012) paying signi�cant attention to it. Here, we shall partly
follow the logic and layout of the previous paper (Avrutin and Rafailov, 2012), but will attempt to present
a more modern perspective and cover the recent results by ourselves and other researchers.

32.2 ML Techniques in Laser Diodes: The Main Features

The main advantages of ML over other methods of generating ultrafast pulses by laser diodes are the higher
repetition rate pulses and shorter pulse durations. To realize these advantages to the fullest, a variety of ML
techniques and device structures have been investigated and optimized (Vasil’ev, 1995). All three main
forms of ML—active, passive, and hybrid—have been extensively studied for semiconductor lasers.

Purely active ML in a semiconductor laser can be achieved by direct modulation of the gain section
current with a frequency very close to the pulse repetition frequency in the cavity or to a subharmonic
of this frequency. Alternatively, an electroabsorption segment of a multielement device can be modulated
to produce the same e�ect, or a separate modulation section introduced. The main advantages of active
ML techniques are the resultant low jitter (essentially determined by the electrical generator imposing the
modulation) and the ability to synchronize the laser output with the modulating electrical signal, which is a
fundamental attribute for optical transmission and signal processing applications. However, high repetition
frequencies are not readily obtained through directly driven modulation of lasers because fast microwave
modulation, particularly of current, becomes progressively more di�cult with increase in frequency.

PML of semiconductor lasers typically utilizes an SA region in the laser diode. Upon start-up of laser
emission, the laser modes initially oscillate with relative phases that are random; in other words, the tempo-
ral radiation pattern consists of irregular bursts. If one of these bursts is energetic enough to provide energy,
or more accurately �uence (energy per unit area) of the order of the saturation �uence of the absorber, it will
partly bleach the absorption. This means that around the peak of the burst where the intensity is higher, the
loss will be smaller, while the low-intensity wings become more attenuated. The pulse generation process
is thus initiated by this family of intensity spikes that experience lower losses within the absorber carrier
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lifetime. The dynamics of absorption and gain play a crucial role in pulse shaping. In steady state, the
unsaturated losses are higher than the gain. When the leading edge of the pulse reaches the absorber, the
loss saturates more quickly than the gain, which results in a net gain window, as depicted in Figure 32.1.
The absorber then recovers from this state of saturation to the initial state of high loss, thus attenuating the
trailing edge of the pulse. It is thus easy to understand why the saturation �uence and the recovery time of
the absorber are of primary importance in the formation of mode-locked pulses.

In practical terms, the SA can be monolithically integrated into a semiconductor laser by electrically
isolating one section of the device (Figure 32.2a). By applying a reverse bias to this section, the carriers
photogenerated by the pulses can be more e�ciently swept out of the absorber, thus enabling the SA to
recover more quickly to its initial state of high loss. An increase in the reverse bias serves to decrease the
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FIGURE 32.1 Schematic illustration of the mechanism of passive mode locking: (a) the loss and gain dynamics that
lead to (b) pulse generation.

Amplifier section SA

Absorption

Q(t)ˆ ˆ

ˆ ˆ

ˆG(t)

I(+)

(a)

(b)

(c)

V0(–)

D

Gain Dispersion

Y(t)

Delay Trt

g (z, t)

Y+(z, t)

Y–(z, t)

α+(z, t)

Δz

FIGURE 32.2 Schematic of (a) the simplest design of an edge-emitting passively mode locked laser, and its represen-
tation in (b) the lumped model of Sections 32.3.1 and 32.3.3, and (c) the traveling-wave model (TWM) of Section 32.3.4.
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absorber recovery time, which will have the e�ect of further shortening the pulses (a faster absorber may act
to shorten the trailing as well as the leading edge of the pulse). Alternatively, an SA can also be implemented
through ion implantation on one of the facets of the laser, thus increasing the nonradiative recombination
(Delpon et al., 1998).

PML provides the shortest pulses achievable by all three techniques, albeit at the expense of somewhat
larger pulse jitter and radio frequency (RF) linewidth than in active or hybrid ML. It can be intuitively
understood in the following way: Active ML generates a �xed AM of the gain while PML induces a modu-
lation that is proportional to the pulse energy, meaning potentially more e�cient mode coupling. Besides,
the absence of an RF source simpli�es the fabrication and operation considerably. PML also allows for
higher pulse repetition rates than those determined solely by the cavity length, by means of harmonic ML
(Mh > 1 in Equation 32.1; some means of achieving this are considered in more detail below).

Hybrid ML can be achieved by applying RF modulation either to gain or to the SA section. It has been
shown, however, that the more e�cient method is the latter one, in which case the SA doubles as an
electroabsorption modulator. In this case, the pulse generation may be seen as initiated by a modulation
provided by the RF signal, while further shaping and shortening are assisted by the SA. This process results
in high-quality pulses, synchronized with an external source.

32.3 Theoretical Models of ML in Semiconductor Lasers

Any model of mode-locked laser dynamics should account for pulse shortening by modulation (active/
hybrid ML) and/or saturable absorption (passive/hybrid ML) and for pulse broadening by saturable gain
and cavity dispersion (including gain/loss dispersion and group velocity/phase dispersion), as discussed
above. In addition, if spectral properties are to be accounted for accurately, self-phase modulation needs to
be included in the model. In this section, we shall cover general principles of the possible approaches, con-
centrating on the relatively recent advances in ML theory that have underpinned the signi�cant progress
in understanding the details of ML dynamics.

32.3.1 Small-Signal Time-Domain Models and Self-Consistent Pulse Profile

Conceptually the simplest, and historically the oldest, models of mode-locked lasers are time-domain
lumped models (Figure 32.2b), based on the approximation that the pulsewidth is much smaller than the
repetition period, and treating a hypothetic ring laser with unidirectional propagation. The ampli�cation
and gain/group velocity dispersion (GVD), which in reality are experienced by the pulse simultaneously,
may then be approximately treated in two independent stages. This allows the representation of the dis-
tributed ampli�er in the model by a lumped gain element performing the functions of ampli�cation and
self-phase modulation. Mathematically, this element can be described by a nonlinear integral or integro-
di�erential operator acting on the complex pulse shape function (complex slow amplitude) Y(t), t being
the local time of the pulse. The model was originally designed for solid-state and gas lasers, whose long
lengths make for a round-trip time many orders of magnitude longer than the pulse duration, so sepa-
rate timescales are introduced explicitly for the pulse (the short timescale) and relaxation period between
pulses (the long timescale).

The gain operator takes the form

ĜY(t) = exp
(1

2
(1 − iαHg)G(t)

)

Y(t), (32.2)

with αHg the Henry linewidth enhancement factor in the ampli�er and G(t) = Γ ∫ g(z − vgt, t)dz the total
gain integrated over the length of the amplifying region (vg being the group velocity of light). Further
analytical progress can be made by using spatially resolved rate equations for the carrier density Ng in the
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gain region
dNg(z,t)

dt
= −g(Ng)

P(z,t)
ℏωAx

−
Ng
τg

, where P is the power of light, ℏω the photon energy, Ax the
cross section of the optical beam (mode) in the gain section, and τg the gain recovery time. A number
of approximations are then made. Those involve neglecting dispersion and fast nonlinearities, assuming
(which is a safe assumption in semiconductor active media) that τg ≫ τp(τp being the pulse duration), so
gain relaxation during the pulse can be neglected, and assuming a linear dependence of gain on the carrier
density: g(Ng) ≈ σg(Ng − Ntr), σg = dg∕dN being the gain cross section (the derivative of the gain on the
carrier density) and Ntr the transparency carrier density. With these assumptions, an approximate explicit
expression for G(t) on the short timescale commensurate with the pulse duration can be obtained. In the
case of G ≪ 1, it takes the form

G(t) = G− exp(−U(t)∕Ug). (32.3)

Here, U(t) = ∫ t
−∞ P(t′)dt′ = vgℏωAX ∫ t

−∞ |Y(t′)2dt′ is the pulse energy up to the time t, G− =
Γ ∫ g(z, t → −∞)dz is the total ampli�cation in the gain element at the time before the arrival of the pulse,
and

Ug =
ℏωAX
σg

(32.4)

is the saturation energy of the ampli�er.
The SA, if any, is also considered as a lumped element, described, in the simplest case, by an operator

similar to Equation 32.3:

Q̂SY(t) = exp
(

−1
2
(1 − iαHα)QS(t)

)

Y(t), (32.5)

with the absorber linewidth enhancement factor αHα, and the dimensionless slow saturable absorption
QS = Γ ∫ α(z − vgt, t)dz, in the ideal slow absorber approximation and with Q ≪ 1, given by

QS(t) = Q− exp(−U(t)∕Uα). (32.6)

Here, again, the total initial absorption Q− = Γ ∫ α(z, t → −∞)dz, and the absorber saturation energy is

Uα =
ℏωAXα
σα

, (32.7)

where σα = |dα∕dN| is the SA cross section, and, depending on the construction, the cross section of the
beam AXα in the SA may be di�erent from that of the amplifying section; as shown below, it is usually
advantageous to have AXα < AX .

Equation 32.6 is obtained in the same way as Equation 32.3 by using the spatially resolved rate equation
for the carrier density in the absorber region dNα(z,t)

dt
= α(Nα)

P(z,t)
ℏωAXα

− Nα
τα

, with τα the absorber relaxation
time and, and making the same assumptions: assuming a linear dependence of the absorption on the SA
carrier density α(Nα) ≈ α0 − σαNα, with α0 the unsaturated absorption, and neglecting the SA relaxation
during the pulse. The latter is known in the theory of ML as the ideal slow absorber approximation, meaning
that the SA recovery time τα, like that of gain τg, needs to be much longer than the pulse duration τp. How-
ever, while the assumption τg ≫ τp is readily ful�lled in semiconductor lasers (τg ∼ 1 ns), the assumption
τα ≫ τp may be strained (τα ∼ 10 ps), which may necessitate some modi�cations to the model, described
below, to improve its accuracy.
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Absorption in semiconductor SAs tends, in addition, to contain a subpicosecond component that acts
as a “fast” SA (recovery time ≪ τp) even for short pulses (τp ∼ 1 ps), typically generated by semiconductor
lasers. Some lumped time-domain models (Haus and Silberberg, 1985) also include “fast” e�ects in
the SA (SA nonlinearities) as an equivalent fast absorber characterized by an operator Q̂FY(t) =
exp

(

− 1
2 QF(t)

)

Y(t) and with an equivalent absorption:

QF(t) = QiF(1 − εα |Y(t)|2). (32.8)

Then, the total absorption is

Q̂Y(t) = Q̂SQ̂FY(t). (32.9)

Gain nonlinearities may, in principle, be included in the same way, although a more accurate account of
dynamics may be preferable, particularly in the case of quantum dot (QD) materials.

Finally, in the traditional form of a lumped model, the dispersion of material gain and refractive index,
together with any arti�cial dispersive elements present in the cavity, such as a distributed Bragg re�ector
(DBR), are combined in a lumped dispersive element. In the frequency domain, its e�ect on the pulse may
be written as

D̂YT(ω) = eiφ0

[

1
1 − i(ω − ωp)∕γ

+ D(ω − ω0)2
]

YT, (32.10)

where YT is the Fourier transform of the complex pulse shape Y(t), ωp and γ≪ ωp are the peak frequency
and the bandwidth of the dispersive element (de�ned by the gain curve of the ampli�er and the frequency
selectivity of a grating element, if it is present in the cavity), and ω0 is the reference frequency as in the
analysis of ampli�ers. The value of ωp may change during the pulse (due to gain curve variation with car-
rier density, most importantly the gain peak shi�); this modi�es the dispersive operator (Leegwater, 1996),
although in the majority of papers on the subject, the e�ect is not included.ϕ0 denotes the phase shi� intro-
duced by the element and D is the equivalent dispersion (including the GVD of the passive waveguide and
the e�ective dispersion of the external grating element, if any). To rewrite the operator (Equation 32.10)
in the time domain, one may expand the �rst term around the reference frequency ω0 noting that
|ωp − ω0| ≪ ω0. Then, a�er a standard transformation, (ω − ω0)YT ÷ id∕dt Y (Equation 3.7) becomes a
di�erential operator; if the exponential is expanded keeping the �rst two terms, the operator is reduced to
second order.

The dynamics of ML process are then described by cascading the operators and setting:

Yi+1(t) =
(

√

κĜQ̂D̂
)

Yi(t), (32.11)

where i is the number of the pulse round-trip (determining the “slow” evolution of the ML pulse), the
time t is on the fast timescale commensurate with the pulse duration, and the dimensionless parameter
κ < 1 introduces the total (integrated) unsaturable intensity losses in the cavity, both distributed and due to
outcoupling. The model re�ects the balance of the main processes a�ecting the pulse in a mode-locked laser
in that the saturable absorption operator Q̂ acts to narrow the pulse down, whereas the gain saturation Ĝ
and the dispersion operator D̂ act to broaden it. The stationary ML equation is thus obtained by writing out
the condition that the broadening and narrowing cancel each other, and the shape of the pulse is conserved
from one repetition period to the next. In the operator notation introduced above, this means

(

√

κĜQ̂D̂
)

Y(t) = eiδψY(t + δT), (32.12)
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where δT is the shi� of the pulse or detuning between the repetition period and the round-trip of the “cold”
cavity (or its fraction in case of locking at harmonics of the fundamental frequency), and δψ is the optical
phase shi� induced by the round-trip. In between the pulses, on the slow timescale commensurate with the
round-trip time, gain and SA are allowed to recover with their characteristic relaxation times, according to
the rate equation for carrier density with S = 0. This allows one to calculate the values of gain and saturable
absorption at the onset of the pulse, given the pulse energy and repetition period (the only point at which
this latter parameter enters a lumped time-domain model).

In the approximation of no dispersion (D̂ = 1), the broadening of the pulse by gain saturation alone in
the lumped model cannot compensate for the shortening by the absorption. The model in this approxima-
tion thus predicts the steady output in the form of a series of in�nitely short (delta function-like) pulses;
neither the pulse shape nor the duration can be analyzed in this approximation. However, it is possible to
determine the total pulse energy and also analyze the stability of the solutions by requiring that net gain
both immediately before the pulse and immediately a�er the pulse is smaller than one that translates into

G− − Q− − ln κ < 0

G+ − Q+ − ln κ < 0.
(32.13)

Here G−, Q− are the total (integrated) gain and absorption immediately before the pulse, and G+,Q+ are
the values immediately a�er the pulse. This is known as New’s theory of ML (strictly speaking, G. New’s
original 1970s paper (New, 1974) related to nonsemiconductor lasers in which ln(1∕κ) ≪ 1; however,
Equation 32.13 is also applicable in the generalized version of the theory proposed by Vladimirov et al.
(2004) and Vladimirov and Turaev (2005) and covered in more detail below).

Analytical approximations for the pulse shape and duration have been originally obtained in the case
of weakly nonlinear analysis, that is to say if the pulse energy is smaller than UG,A and the gain and loss
(saturable and unsaturable) during one round-trip are small (ln(1∕κ),G,Q ≪ 1). Then, the exponentials
in the formulas for the gain and loss operators may be expanded in Taylor series keeping terms up to the
second order in Equations 32.3 and 32.6 (weak to moderate saturation of gain during the pulse):

exp

(

−
U(t)
Ug,α

)

≈ 1 −
U(t)
Ug,α

+ 1
2

(

U(t)
Ug,α

)2

, (32.14)

and to the �rst order in Equations 32.2 and 32.5 (small gain and loss):

exp
(1

2
(1 − iαHg)G(t)

)

≈ 1+ 1
2
(1− iαHg)G(t); exp

(

−1
2
(1 − iαHα)Q(t)

)

≈ 1− 1
2
(1− iαHα)Q(t) (32.15)

(the accuracy of the model can be improved by expanding these equations, too, to the second rather than
�rst order).

Then, following the route pioneered by H. Haus in the �rst papers on ML in lasers of an arbitrary type
(Haus, 1975) and later adapted speci�cally to diode lasers (Koumans and vanRoijen, 1996; Leegwater,
1996), the ML Equation 32.12 is rewritten as a complex second-order integro-di�erential equation known
as the master equation of ML, which permits an analytical solution of the form

Y(t) = Y0 exp(iΔωt)

(

cosh t
τp

)−1+iβ

, (32.16)

known as the self-consistent pro�le (SCP). The corresponding theoretical approach is known as the SCP, or
Haus’s ML theory, as applied to semiconductor lasers (in lasers of other kind, for instance, the account
for both slow and fast absorbers is typically not necessary). Assembling the terms proportional to the
zeroth, �rst, and second power of tanh(t∕τp) in the ML equation, one obtains three complex, or six real,
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transcendental algebraic equations (Koumans and vanRoijen, 1996; Leegwater, 1996) for six real variables:
pulse amplitude |Y0|, duration measure τp, chirp parameter β, optical frequency shi�Δω = ω−ω0, repeti-
tion period detuning δT, and phase shi� arg (Y0) (which is not a measurable parameter, so in reality there
are �ve meaningful equations). These equations, being nonlinear and transcendental, generally speaking,
cannot be solved analytically, but still allow for some insight into the interrelation of pulse parameters.
For example, it can be deduced (Leegwater, 1996) that the pulse duration may be considerably shortened
by the presence of a fast (instantaneous) component in the saturable absorption and the achievable pulse
durations are estimated about 10 times the inverse gain bandwidth, decreasing with increased pulse energy.

By requiring the net small-signal gain before and a�er the pulse to be negative (Equation 32.13) so that
noise oscillations are not ampli�ed, the SCP approach also allows the parameter range of the stable ML
regime to be estimated.

Some conclusions from the SCP approach are borne out by more precise models (see below). In
particular, it highlights the role of the gain-to-absorber saturation energy ratio:

s =
Ug

Uα
=
σαAXg

σgAXα
(32.17)

in the ML laser performance. A minimum value of s > 1 is needed to achieve ML at any range of parameters
at all and the range of stable ML operation broadens with an increased s. Colliding pulse mode-locked
con�gurations, linear or ring, increase the pulse stability and also lead to shorter pulses by increasing the
parameter s.

The SCP model also predicts, correctly, that increasing the dispersion parameter D also increases the
parameter range for ML, at the expense of broadening the pulses, and that the slight variation of the
frequency F around the estimate (Equation 32.1) shows a minimum in its dependence on current or
unsaturated gain.

When applied more quantitatively, however, the SCP model is not too accurate and cannot adequately
describe details of pulse shape and spectral features. Indeed, the pulse shape given by the expression
(Equation 32.16) is always symmetric, which, in general, needs not, and o�en is not, the case in practice.
Nor are the dynamic regimes of ML faithfully reproduced by the classic SCP model. The reason for this is
a large number of approximations involved in the SCP approach, which have been progressively removed
by various researchers at the expense of making the model more complex and, in some cases, requiring
numerical rather than semianalytical analysis of the pulse pro�le, even if the model is still lumped.

First, achieving the SCP requires that the relaxation of gain and absorber during the pulse is negligible so
that the gain and absorber operators can be written in the form of Equations 32.3 and 32.6. As mentioned
above, this is a safe assumption in semiconductor lasers as regards gain media, but not necessarily the
SA. The obvious upgrading to the model is then to include the dynamics of the saturable absorption Q
by a characteristic recovery time τα. If at the same time we abandon the approximation Q≪ 1, then the
necessary equation will take the form

dQ(t)
dt

= −X(Q)Q
P(t)
Uα

−
Q0 − Q
τα

;

X(Q) =
1 − exp (−Q)

Q
.

(32.18)

Here, Q0 = α0−Lα (Lα being the absorption region length) is the unsaturated total absorption (at repetition
periods Trep ≫ τα, Q- = Q0), and X is the geometric factor that stems from averaging the absorption over
the length of the absorber area for traveling-wave absorption (in the case of small absorption (Q0,Q ≪ 1)
treated above, we obtain a constant X = 1).

Equation 32.18 is then used with Equation 32.5 instead of Equation 32.6, which it obviously reproduces
in the limiting case of X = 1, and τα ≫ τp, or τα → ∞ on the short timescale t ∼ τp. Unfortunately,
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even this apparently minor modi�cation to the model means that a closed-form solution in the form
of Equation 32.16 is no more possible even with Q0,Q≪ 1(X= 1), and the iteration-type procedure
(Equation 32.11) has to be repeated numerically until a steady-state pro�le that satis�es Equation 32.12
is found.

Studies with such a modi�ed SCP model found that even with X = 1 in Equation 32.18 (small gain/ab-
sorption case) and even with absorber recovery times a few times greater than the pulse duration, the �nite
τα makes some di�erence to the results, noticeably shortening the pulse, making its shape less symmetric,
and a�ecting boundaries of stable ML regime (Dubbeldam et al., 1997).

32.3.2 Frequency and Time-Frequency Treatment of ML and Dynamic
Modal Analysis

An approach conceptually alternative to the time-domain analysis of ML, but to an extent sharing the
small-signal nature of the model discussed above, is o�ered by the technique of modal analysis, static or
dynamic (as in Avrutin et al., 2003 and references therein and also in Nomura et al., 2002 and Renaudier
et al., 2007). In this approach, instead of analyzing the pulse shape dynamics, a modal decomposition is
used and the dynamics of mode amplitudes and phases are analyzed. The advantage of the modal expansion
is that the time steps can be much longer than in the spatially distributed models of ML (such as the ones
described the following section). Indeed, the sti�ness of the dynamics in the modal approach is governed
by the temporal evolution of the modal amplitudes, and as PML consists in a steady-state regime for those,
one foresees that a modal representation of PML may give rise to smooth solutions—this indeed was shown
to be the case (Avrutin et al., 2003). In comparison, spatially distributed models naturally need the time
step to be much shorter than the pulsewidth, as discussed in more detail in the following section. Besides,
the number of variables can be smaller in the modal analysis, particularly in the case of laser designs with
a spectrally selective element where only a few modes are excited, making this approach particularly e�-
cient in analyzing, say, long-scale dynamics of external locking of DBR hybridly mode-locked lasers. It
also has the logical advantage of describing steady-state ML as a steady-state solution and, conceptually,
allows considering the emergence of stable PML as an order–disorder phase transition in a dissipative
system, highlighting the fundamental physical features of PML in addition to its technological implica-
tions. Frequency domain analysis can be used as supplementary to time-domain models for some speci�c
problems, as for example the analysis of harmonic operation in a coupled-cavity structure (Yanson et al.,
2002), where it actually gives some analytical insight into the modal selectivity of the cavity. Frequency, or
time-frequency, modal expansion-based approach to ML is also extremely useful (Kim and Lau, 1993) for
analyzing the noise and linewidth properties of the ML signal, as the noise can be seen as exciting higher
order supermodes (combination of modes) in addition to the fundamental order supermode that is actually
realized in ML.

However, the modal expansion approach has a major intrinsic limitation in that it relies on the inherent
assumption of weak to modest nonlinearity and modulation, meaning that the results obtained using this
method agree reasonably well with time-domain simulations only for the case of high ML frequencies,
typically above 100 GHz (short or harmonic cavities) and/or at relatively small currents above threshold.
Large-signal instabilities, such as the chaotic leading edge instability, are not predicted accurately, and the
accuracy of the frequency-domain models at high amplitudes cannot be guaranteed. In addition, �nding
the modal structures of complex multisection photonic devices can be cumbersome. Therefore, though
the frequency and time-domain analysis of ML originally was introduced approximately simultaneously
(re�ecting the two major representations of ML, the sequence of periodic pulses and a comb of locked
modes), in the context of semiconductor lasers the work on frequency-domain models remains limited.
Instead, theoretical progress has been mainly associated with the time-domain models, as they permit a
large-signal approach (large modulation of population inversion, or alternatively large nonlinearity) that
we cover in the next sections.
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32.3.3 Large-Signal Time-Domain Approach and Delay-Differential
Equation Model

Both the assumption of weak to moderate pulse saturation during the pulse and, even more so, that of small
gain and absorption per pass, as used in small-signal time-domain models discussed in Section 32.3.1, may
become even more tenuous in semiconductor lasers than the assumption of an ideally slow absorption—in
fact, in edge-emitting lasers, the small-gain assumption is almost always completely inapplicable since at
least one of the laser facets is usually uncoated (or even AR-coated to reduce the re�ectance to 0.05%–
0.1%) to increase the output power, so the outcoupling losses are by necessity signi�cant, making for
large gain per pass even with small saturable absorption. Then, it makes sense to abandon the expan-
sions (Equations 32.14 and 32.15) in the fully numerical procedure and use the full exponential form of
Equations 32.2 through 32.8, as well as the more accurate full expression for X in Equation 32.18, thus
moving from a small-signal SCP model to a large-signal iterative model (see, e.g., Khal�n et al., 1995). This
also means that the fast nonlinearities of gain and absorption, and possibly part of the dispersion, may be
included directly into the gain and absorber operators.

Even in its large-signal form and with the �nite absorber (and gain, if necessary) relaxation time taken
into account, the iterative procedure (Equation 32.11) is still somewhat arti�cial in that it requires a trial
pulse shape to start with, and explicitly separates the timescale into the short timescale of the pulse and the
long timescale of the repetition period. Moreover, if the time window of the pulse is taken as much smaller
than the repetition period (which is the standard thing to do if the repetition period is much longer than the
pulse), any instabilities related with secondary pulses arising far away from the main pulse may be missed
by the model. In semiconductor lasers, neither of these assumptions is well justi�ed, as the pulse may be
only about an order of magnitude shorter than the repetition period, so that the separation of scales is not
as justi�ed as in lasers of other types, and the chaotic instabilities with several competing pulse trains are
a very real threat.

An elegant solution to these modeling limitations is o�ered in the form of the most sophisticated and the
most realistic of the lumped models of mode-locked lasers. In this form of the lumped approach, the two
di�erent scales for pulse analysis are, in general, abandoned, and the iteration procedure (Equation 32.11)
is substituted by a delay one. In a general form, this procedure may be written as

Y(t) =
(

√

κĜQ̂D̂
)

Y(t − TRT), (32.19)

where TRT is again the round-trip of the cold cavity, and t is still the local time of the pulse.
A particularly useful form of this model is obtained if the dispersion operator D̂ is expanded as a di�er-

ential one. An e�cient form of such an expansion has been derived by Vladimirov et al. (Vladimirov et al.,
2004; Vladimirov and Turaev, 2005) who showed that for a bandwidth limiting element with a Lorentzian
spectrum similar to Equation 32.10:

D̂ ⋅ YT(ω) =

[

1
1 − i(ω − ωp)∕γ

]

YT (32.20)

(i.e., neglecting GVD), assuming without much loss of generality that the peak gain frequencyωp coincides
with one of the laser resonator modes, and taking it as the reference optical frequency, we can rewrite
Equation 32.19 as

Y(t) = −γ−1 ∂Y(t)
∂t

+
(

√

κĜQ̂
)

Y(t − TRT). (32.21)

Equation 32.21 is a delay-di�erential one, and the model thus becomes the delay-di�erential equation, or
DDE, model of ML in semiconductor lasers. The development of this model has been arguably the greatest
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advance in the theoretical analysis of mode-locked lasers since the original papers by Haus and New (of
which it is a rigorous generalization and which it reproduces in limiting cases). It allows a full self-contained
treatment of mode-locked operation, including a possibility of some (if by necessity limited) analytical
progress with a platform for a full large-signal numerical analysis, which gives a complete, and qualitatively
correct (if not necessarily completely accurate), picture of all possible regimes of ML laser dynamics and
allows a number of important trends to be identi�ed. Therefore, we shall present it here in some detail,
following the original papers (Vladimirov et al., 2004; Vladimirov and Turaev, 2005).

The operators Ĝ and Q̂ can be calculated using Equations 32.2 through 32.6 (in this version of the DDE
model, no fast absorption is present); the integrated absorption Q is found in Equation 32.18, and for the
integrated gain G, a similar equation is written. Assuming that the pulse in the unidirectional cavity treated
by the model passes the absorber before the ampli�er, the equation takes the form

dG(t)
dt

= −
[

exp (G(t)) − 1
]

exp(−Q(t))
P(t)
Ug

+
G0 − G(t)

τg
. (32.22)

Here, G0 is the unsaturated gain determined by the pumping conditions.
Equations 32.21, 32.18, and 32.22 are a closed system suitable for a detailed numerical simulation of both

stationary and dynamic behavior of PML. They can also be fairly easily adapted to allow numerical analysis
of hybrid ML behavior. As shown in Vladimirov and Turaev (2005), the DDE model also allows for signi�-
cant analytical progress, similar to one achieved with classical New’s and Haus’s models as described above,
but for a more general case of large single-pass gain and absorption, more relevant for most semiconduc-
tor laser constructions than the classical SCP. In the analytical procedure, the slow absorption and gain
approximation have to be reintroduced, and the slow (relaxation of gain and absorption between pulses)
and fast (evolution during the pulse) stages of laser dynamics are, as in the traditional SCP model, treated
separately. Considering the slow stage results in equations connecting the gain and absorption before and
a�er the pulse, we get

G− = G0 − (G0 − G+) exp(−TRT∕τg), (32.23)

and

Q− = Q0 − (Q0 − Q+) exp(−TRT∕τα). (32.24)

At the fast stage, as usual in the theory of short pulses in lasers and ampli�ers, the relaxation terms are
omitted, and so Equations 32.18 and 32.22 take the form

dG(u)
du

= −
[

exp (G(u)) − 1
]

exp(−Q(u));
dQ(u)

du
= −s

(

1 − exp (−Q(u))
)

, (32.25)

where u is the dimensionless energy within the pulse, u(t) =U(t)∕Ug, and U(t) = ∫ t
−∞ P(t′)dt′ =

vgℏωAXg ∫
t
−∞ |Y|2(t′)dt′. Introducing up = Up∕Ug,Up = U(t → ∞) as the total dimensionless pulse

energy (the time of minus in�nity on the short timescale meaning the time before the pulse, and plus in�n-
ity, covering the entire time of substantial pulse energy, i.e., the entire pulse duration), one can integrate
Equation 32.25 to get another set of equations connecting the prepulse and postpulse gain and absorption:

Q+ = Q(up) = ln
[

1 + exp(−sup)(exp(Q−) − 1)
]

, (32.26)

G+ = G(up) = − ln
⎡

⎢

⎢

⎣

1 −
1 − exp(−G−)

[

exp(−Q−)
(

exp(sup) − 1
)

+ 1
]1∕s

⎤

⎥

⎥

⎦

. (32.27)
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The pulse energy itself may be calculated from Equation 32.21 by taking the modulus square of both sides
of the equation and integrating over the pulse. The result can be expressed as

γ−2vgσg

∞

∫
−∞

|

|

|

|

∂Y
∂t

|

|

|

|

2
dt + up = κ ln

exp(G−) − 1
exp(G+) − 1

. (32.28)

In general, the integral of the le�-hand side cannot be calculated analytically. Two particular cases when
this is possible have been analyzed in Vladimirov and Turaev (2005).

The �rst is the case of a model without spectral �ltering when the integral can be set to zero. As noted
by Vladimirov and Turaev (2005), this is a fairly crude approximation, as in fact the value of the integral
does not disappear even in the limit of in�nitely wide gain dispersion curve (γ→∞). Indeed, the integral
is over the time of the pulse, and as such roughly proportional to the pulse duration. In the theories of ML,
this duration scales as γ−1 meaning that ||

|

∂Y
∂t
|

|

|

2
∝ γ2Y2, so that the integral remains �nite as γ→ ∞. In fact,

as mentioned above, the theory with γ → ∞ cannot predict the pulse shape or duration, leading to pulses
collapsing to a delta-function shape. The total pulse energy, however, can be estimated approximately by
neglecting the integral in the le�-hand side of Equation 32.28 and thus obtaining an equation for up in the
form

up = κ ln
exp(G−) − 1
exp(G+) − 1

. (32.29)

Equations 32.23, 32.24, and 32.26 through 32.29 form a closed system of �ve (nonlinear and transcenden-
tal) equations for the �ve unknowns: G±, Q±, and up. Vladimirov and Turaev (2005) identi�ed this system
as the generalized New’s model, as it does not include spectral �ltering (as the original New’s model) but,
unlike this model, does include arbitrarily large gain and absorption per pass, which are both essential
features of diode lasers. The (numerical) solution gives the dependence of pulse energy (though neither
duration nor peak power) on pulse parameters, represented by the unsaturated gain (which is related to
pumping current) and absorption (which is related to the reverse bias applied to the absorber and the
bandgap detuning between the gain and absorber sections). The other fundamental absorber parameter
also dependent on the reverse bias, the absorber lifetime, only enters the calculations through the relax-
ation Equation 32.24 and does not in�uence the results from this model at all if τα ≪ TRT (in which case,
obviously, Q− ≈ Q0).

The solution to this nonlinear algebraic equation system can then be substituted into the inequalities
(32.13) to analyze the stability boundaries of the ML operating range with respect to the leading-
edge and trailing-edge instability. The curves, in general, can only be calculated numerically; however,
Vladimirov and Turaev (2005) noted that the leading-edge and trailing-edge instability boundaries met at
the codimension-2 point lying on the linear threshold line (G0-Q0-lnκ = 0). This point can be calculated
explicitly as

Q0 = ln
κ(s − 1)
sκ − 1

; G0 = ln s − 1
sκ − 1

. (32.30)

This means that the condition s > 1 for any range of successful ML to be present, derived in the traditional
SCP approach for the case of small gain and loss per period, needs to be generalized in the case of arbitrary
losses in the cavity as

sκ > 1. (32.31)

In a more realistic construction, an extra geometric factor could also be required to take into account the
fact that the absorber may be saturated by both the forward and reverse propagating wave simultaneously,
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which is not taken into account by a unidirectional ring laser model on which the approach above is
based.

In the case of G0,Q0,lnκ ≪ 1, Equations 32.26 and 32.27 simplify to Equations 32.3 and 32.6, such that
the equation for the pulse energy simpli�es to Q−

exp(sup)−1
s − G−

(

exp(up) − 1
)

− up ln κ = 0, which is
the equation for up featured in the original New’s theory of ML.

The second case when full (semi) analytical solution of the DDE model (with relaxation terms dur-
ing the pulse neglected) is possible is when the dispersion is taken into account, but the saturation of
gain and absorption during the pulse is assumed to be small, as in the Haus model of ML (though the
gain and absorption themselves are not necessarily small, unlike the case of the traditional Haus model).
Vladimirov and Turaev (2005) called this the generalized Haus model. In this case, a steady-state solution
is sought in the form similar to Equation 32.12 in our notations, Y(t+TRT) = e−iδψY(t−δT). Then, from
Equation 32.21,

γ−1 ∂Y(t − δT)
∂t

+ Y(t − δT) = F(u(t))Y(t), (32.32)

where

F(u) =
√

κ exp
(

G(u)(1 − iαHg) − Q(u)(1 − iαHq) − iδψ
)

(32.33)

is the “complex net gain,” which can be written out explicitly, substituting the expressions (Equations 32.26
and 32.27) (with u instead of up) for G(u) and Q(u).

Next, assuming that the single-pass pulse shi� is signi�cantly smaller than the pulse duration and that
the saturation of both the gain and absorption during the pulse is weak enough (u(t) < up << 1∕s)—the
latter being the underlying assumption of Haus’s theory—both sides of Equation 32.32 can be expanded in
Taylor series up to the second-order terms in their respective arguments:

Y(t − δT) ≈ Y(t) − ∂Y
∂t
δT + 1

2
∂2Y
∂2t

δT2,

and, generalizing the expansions (Equations 32.14 and 32.15) of the original Haus’s theory:

F(u) ≈ F0 + F′ou + 1
2

F′′o u2; F0 = F|u=0; F′o =
∂F
∂u

|

|

|

|u=0
; F′′o =

∂2F
∂u2

|

|

|

|u=0
. (32.34)

Then, the equation governing the pulse evolution is obtained in the form

δT
(δT

2
− γ−1

) ∂2Y
∂2t

−
(

γ−1 − δT
) ∂Y
∂t
+
(

F0 − 1 + F
′

ou(t) + 1
2

F′′o u2(t)
)

Y = 0. (32.35)

Recalling the de�nition of u ∝ ∫ |Y|2dt, one identi�es this second-order nonlinear di�erential equation as
the generalization of the master equation of ML in Haus’s theory, which admits solutions of the same form
(Equation 32.16) as the original master equation. Six equations are then obtained for six real parameters:
peak pulse power, duration, time shi� δT, optical frequency shi� Δω, phase shi� per round-trip δψ, and
the chirp parameter β.

The stability limits in the generalized Haus’s form can be obtained by substituting these solutions into
the conditions (Equation 32.13). In general, they depend on the linewidth enhancement factors; however,
for direct comparison with other models, the case of αHg = αHα = 0 is useful. Results of such analysis,
reproduced from Vladimirov and Turaev (2005), are plotted in Figure 32.3. In the plot, the subscript N
refers to results from New’s model, generalized (solid lines) or standard (dashed lines); and the subscript
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FIGURE32.3 Stability boundaries of mode locking (ML) with respect to leading (L) and trailing (T) edge instabilities,
calculated semianalytically in the DDE approach using traditional and generalized New’s (N) and Haus’s (H) models.
In the calculations, s = 25, TRT∕τα = 1.875, τα∕τg = 0.0133, κ = 0.1; g0 = (τα∕τg )G0 as in text; q0 corresponds to Q0
in text. (From Vladimirov AG, Turaev D, Phys Rev A, 72, 033808, 2005. Reproduced with permission).

H to those from Haus’s model (calculated with zero linewidth enhancement factors). The �lled/empty
dots are the leading/trailing instability boundary calculated by numerical integration of the model. In this
numerical integration, the gain and absorber operators are treated on a continuous timescale, without the
need to introduce separate timescales for pulse and the free relaxation period as in the iterative procedure.
As seen in the �gure, standard Haus’s and New’s models are extremely inaccurate in predicting the insta-
bility boundaries of ML in a typical diode laser (with the range predicted by New’s model being too wide,
and that from Haus’s model, too narrow, as noted also in Dubbeldam et al., 1997). The generalized Haus’s
model gives good agreement within its validity limits at low currents/unsaturated gain values, while the
generalized New’s model gives very good agreement with numerical simulations at all parameter values
(there are some modest deviations that are discussed in more detail below), the reason being that the spec-
tral �ltering term neglected in New’s approach simply happens to be small in typical diode lasers. Thus,
the large-signal nature of the DDE model is proven to be a very important advantage over the classical ML
theories.

Apart from allowing some analytical progress in the limiting cases, the DDE model also allows the use
of numerical techniques that have been developed for the analysis of DDEs, in particular of numerical
packages that allow a full bifurcation analysis of DDEs. Such a study was indeed performed in Vladimirov
and Turaev (2005), comprising the full (in)stability analysis of the stationary solution of the DDE. The
stationary solution (the steady-state light-current characteristic of the laser) itself is found by seeking
the steady-state light output in the form of Y(t) = Y0sexp(iΔωst). Substituting this into the original
Equations 32.21, 32.18, and 32.22 gives the steady-state amplitude and frequency in the parametric form

κ exp
(

Gs(Y0) − Qs(Y0)
)

− Δω2
s = 0,

Δωsγ−1 + tan
[

ΔωsTRT +
(

αHgGs(Y0) − αHαQs(Y0)
)

∕2
]

= 0
. (32.36)

Equation 32.36 is a transcendental trigonometrical equation and thus has an in�nite set of formal solutions,
corresponding to the cavity modes. The steady-state solution, as usual in the laser theory, is the one with the
lowest value of the threshold gain Gs(Y = 0), in other words, the closest to the peak of the gain spectrum.
Figure 32.4, a�er Vladimirov and Turaev (2005), shows the results of a numerical bifurcation analysis of
this solution. The line H1 indicates the Andronov–Hopf bifurcation (transition from a steady state to a peri-
odically oscillating solution with an amplitude smoothly increasing from zero as the controlling parameter,



9781498749565_C032 2017/8/31 12:03 Page 198 #16

198 Handbook of Optoelectronic Device Modeling and Simulation

1 4320

0

Stable CW

–2

–4

–3

–1 H2

H1

H3

H4

Hq

g0

–q
0

FIGURE 32.4 Bifurcation analysis of the steady-state solutions of the DDE model. Parameters used: γτα = 33.3;
αHg,α = 0, the rest as in Figure 32.3. The notations H1, H2, etc. refer to di�erent harmonic numbers Mh; Hq is the
boundary of the Q-switching instability. (From Vladimirov AG, Turaev D, Phys Rev A, 72, 033808, 2005. Reproduced
with permission).

for example, the unsaturated gain in this case, increases beyond a critical value) corresponding to oscil-
lations at the fundamental ML frequency. ML is predicted for a certain range of conditions regarding the
values of the unsaturated gain and absorption, above threshold, whereas at high enough unsaturated gain
(or current) and low enough absorption, continuous wave (CW) lasing is expected to be stable. The line
Hq indicates the Andronov–Hopf bifurcation corresponding to passive Q-switching instability, also known
as self-sustained pulsations, which essentially corresponds to the well-known relaxation oscillations in the
laser. The positive feedback provided by the SA, which essentially favors pulsed operations, transforms
the relaxation oscillations from damped to self-sustained pulsations. The frequency of these oscillations is
determined mainly by the unsaturated gain, the gain cross section, the gain relaxation time, and the losses
in the cavity, and is typically of the order of 1 GHz, or about an order of magnitude below the ML fre-
quency. Thus, at low frequencies and with high enough amount of saturable absorption in the cavity, the
ML pulse train is expected to be modulated by the self-pulsing envelope. The lines Hm, m > 1, show the
bifurcations corresponding to a solution oscillating at the mth harmonic of the fundamental ML frequency.
At high enough values of unsaturated absorption, there are ranges of G0 (or current) in which ML at higher
harmonics is predicted to be stable, but ML at fundamental harmonic is not.

These predictions are con�rmed by a full numerical integration of the DDE model (Figure 32.5), show-
ing the extrema of the laser intensity time dependence calculated for di�erent values of the pumping
parameter g0 = (τα∕τg)G0. For each unsaturated gain, the initial transient is omitted before the start of
registering signals. At low values of g0 (and thus current), the laser exhibits a regime when the ML pulse
power is modulated by a passive Q-switching envelope, originally with nearly 100% modulation depth
(Figure 32.6a). As the pumping parameter increases, the Q-switching modulation gradually decreases in
amplitude and eventually the modulation regime undergoes the backward bifurcation, moving to a stable
ML regime (this corresponds to the border of the trailing-edge instability in Figure 32.3). Within the area
of stable ML, the fundamental round-trip frequency, a train of short pulses, is observed as in Figure 32.7a,
whose amplitude increases with G0. At higher still pumping, the laser dynamics see areas of harmonic
ML at the second and third harmonic of the fundamental ML frequency (see Figure 32.7b and c), sepa-
rated by narrow areas of unstable operation. Finally, the ML breaks up completely with the onset of chaotic
modulation of the pulse power, with multiple pulse trains competing in the cavity, as in Figure 32.6b (the
regimes separating fundamental frequency ML and harmonic ML areas are similar). Eventually, the system
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FIGURE 32.6 Illustration of the aperiodic regimes in Figure 32.5: combined mode-locking/Q-switching regime at
G0 = 50 (a) and chaotic pulse competition regime at G0 = 350 (b). |A2
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| is the normalized output intensity, τ= t∕τα

the normalized time. (From Vladimirov AG, Turaev D, Phys Rev A, 72, 033808, 2005. Reproduced with permission).

undergoes a transition to CW single-frequency operation in agreement with the bifurcation diagrams of
Figure 32.3.

An interesting result obtained in Vladimirov and Turaev (2005) is that, while the conditions
(Equation 32.13) of negative net gain before and a�er the pulse are useful indications of the stability ranges
of mode-locked operation, the onset of instabilities in numerical simulations does not coincide with those
limits exactly. This may be caused in part by the omission of gain dispersion in the analytical study and in
part by the neglect of absorber relaxation during the pulse. However, there is also a genuine physical reason
for the discrepancy, in that not all small �uctuations in a ML laser were found to grow into full-scale insta-
bilities even if a window of positive gain preceded the ML pulse. Instead, stable ML operation was shown
to be possible for a range of parameter (unsaturated gain and absorption) values such that before the pulse,
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FIGURE 32.7 Illustration of the periodic regimes in Figure 32.5: fundamental frequency ML at G0 = 150 (a) and
�rst and second harmonic ML G0 = 225 (b) and 270 (c). |A2
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normalized time. (From Vladimirov AG, Turaev D, Phys Rev A, 72, 033808, 2005. Reproduced with permission).

the fast absorption had recovered to its unsaturated value, but the slower gain continued recovery, leading
to a window of positive net gain preceding the pulse (it may be worth noting that some previous studies,
using modi�cations of Haus’s model for semiconductor lasers, indicated the possibility of positive net gain
at the trailing edge of a stable ML pulse as well; see, e.g., Vladimirov and Turaev, 2005). The possibility
of stable ML operation despite a positive net gain window is con�rmed by more accurate traveling-wave
simulations. One of the consequences of this e�ect is that the onset of instabilities may be expected to
be sensitive to perturbations such as spontaneous noise. The e�ect of spontaneous emission was indeed
studied analytically and numerically in Vladimirov and Turaev (2005), with the noise introduced as a delta-
correlated random term in the right-hand side of Equation 32.21. It was concluded that, while the onset
of Q-switching oscillations (trailing pulse edge instability) is a dynamic process independent of noise, the
onset of the chaotic envelope instability (leading edge instability) is strongly a�ected by the noise, with an
increase in the noise narrowing the window of stable ML. This is fully con�rmed by the more complex
traveling-wave models (TWMs) described below.

The DDE model, when used as a numerical tool is, not only fully large-signal, but also self-starting:
It does not require a trial pulse to start with and can reproduce the emergence of ML pulse train from
randomly pulsing light output that is seen as the laser crosses the threshold condition. Thus, the model
removes most of the shortcomings traditionally associated with lumped models of mode-locked lasers and
presents a relatively simple yet very powerful tool for analyzing the qualitative tendencies of their behavior.
As illustrated above, it combines analytical possibilities and numerical methods very naturally within the
same framework and, as will be discussed in more detail later, predicts correctly virtually all the dynamic
regimes and tendencies observed in a real laser.

An important advantage of the DDE model is that, although strictly speaking derived for the arti�cial
unidirectional ring geometry, it captures enough of the main features of ML to be applicable, with some
caution, to predict—at least qualitatively—the phenomena in mode-locked lasers of all types and designs.

An important example is the work presented in Marconi et al. (2014) where the DDE was used to analyze
the behavior of mode-locked lasers with long delays (cavity round-trip times), comparable to, or even
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exceeding, the lifetime of carriers in the gain section (TRT >∼ τg, unlike the analysis in Vladimirov and
Turaev (2005) where the typical situation was τα < TRT < τg). Marconi et al. (2014) used a bifurcation
analysis similar to that discussed above and presented in Figure 32.3 to analyze the stability of various cavity
con�gurations. The results are shown in Figure 32.8, similar to that presented in Marconi et al. (2014).
It was found that the Andronov–Hopf bifurcation mathematically describing the onset of fundamental
harmonic ML as discussed above, which is supercritical in the case of a short resonator so that ML exists
only above its bifurcation point, becomes subcritical for a certain value of TRT∕τg > 1. This means that
the (fundamental) ML operation regime can exist below its bifurcation point, coexisting with the CW
solution. At longer delays still, the area of stable ML extends below the CW threshold, meaning that ML
can coexist with the o� solution, thereby implying a bistability between them. Interestingly, during this
folding phenomenon, the fundamental ML branch eventually disconnects from the CW solution, meaning
that the ML appears for long delays through a saddle-node bifurcation of limit cycles instead of a nascent
Andronov–Hopf bifurcation of the CW solution, making this scenario impossible to analyze by any weakly
nonlinear analysis such as dynamic modal analysis (Section 32.3.2).

The change in dynamical scenario that occurs in Figure 32.8c has a profound consequence on the mode-
locked solutions, as it can be seen in Figure 32.8c and d: The fundamental PML solution becomes stable
even in the limit TRT∕τg ≫ 1. Moreover, a very large number of pulsing solutions with di�erent number of
pulses per round-trip and di�erent arrangements become stable for the same parameter values. The authors
reconstructed analytically some of these solutions, using the generalized New’s approximation discussed
above, for TRT/τg = 1 and restricting the analysis to equally spaced pulses solutions (harmonic PML), as
presented in Figure 32.8d. Clearly, all these branches of solutions extend well below the laser threshold,
where they stably coexist among them and with the o� solution (although the authors noted that New’s
approximation of neglecting spectral �ltering leads to an overestimation of the breadth of the ML region
below threshold). This means that the harmonic mode-locked solution of maximal order that exists below
threshold becomes fully decomposable, since essentially any pulse of this solution can be set on or o�,
which the authors con�rmed by injecting a digitally modulated sequence of optical pulses into the cavity,
which remained stable a�er a large number of round-trips, meaning that the laser worked as an active
version of an optical bu�er memory.

The model used in Marconi et al. (2014) was a DDE in its classical form of Vladimirov and Turaev (2005),
derived for a hypothetical unidirectional ring laser with large gain and absorption per round-trip (and with
the linewidth enhancement factors set to zero as the dynamic e�ects studied did not signi�cantly depend
on them), but the theoretical predictions of the paper were realized experimentally (Marconi et al., 2014)
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using a vertical external cavity surface-emitting laser (VECSEL). A laser of this type consists of an amplifying
(gain) chip and a semiconductor saturable absorber mirror (SESAM) chip, separated by an unguided free-
space propagation path (with collimating optics to direct the beam and control the ratio of the spots over
the two facets). Various harmonic regimes were realized with this laser, with the number of pulses between
0 and 19 successfully coexisting at high enough currents. The authors then went on (Marconi et al., 2015)
to realize the multistability in the long laser to generate individually addressable pulses and sequences of
pulses, all very well reproduced by the same DDE model.

This work is an important testament to the generality, power, and versatility of the DDE models: The
experiments were stimulated by the theoretical predictions which in turn relied on the analytical capabil-
ities (bifurcation analysis using analytical continuation techniques) unique, among semiconductor laser
ML theories, to the DDE approach.

It can be pointed out that VECSELs, in fact, are the one class of mode-locked semiconductor lasers
for which a delay-di�erential model, although of a somewhat di�erent form to that used in Vladimirov
and Turaev (2005), may be expected to give a fully quantitative, as well as qualitative, description of the
behavior of a speci�c and realistic laser construction. As both the gain chip and SESAM are very short
asymmetric resonators, with the gain section “length” much shorter than the spatial pulse duration, the
lumped-element formalism is a very natural one for their description. The fact that no integration over
length is needed for calculating G and Q allows the use of generic nonlinear g(N) and α(N) dependences
with no loss of accuracy, as well as introduction of fast gain and absorption saturation omitted in the orig-
inal DDE of Vladimirov and Turaev (2005). A model based on an approach of this type was successfully
used to analyze the dynamics of external-cavity VECSELs in a simple linear cavity (with the laser and SA
chips facing each other and the output being from a partially re�ecting mirror located between them). The
predicted dynamic regimes, pulse durations, and stability ranges matched the ones previously reported in
experimental papers, not only qualitatively, but with a reasonable numerical agreement (Mulet and Balle,
2005).

The mathematical distinction of the DDE model usable for quantitative and rigorous description of
realistic VECSELs, such as the one used in Mulet and Balle (2005), from the one reported in Vladimirov
and Turaev (2005) is, �rst, that gain and absorption operators, as well as the rate equations for the carriers,
need to be modi�ed to take into account the resonator nature of the ampli�er and absorber sections and the
short length of their active parts. Second, given the Fabry–Pérot rather than ring nature of the resonator,
rather than having a single DDE for the light amplitude with the delay time equal to the cavity round-trip,
the model for VECSELs in a linear geometry needs separate equations for the dynamics of light amplitudes
in the gain and absorber chips, each of them containing a delayed term with a delay equal to half of the
cavity round-trip.

With further delayed terms introduced, a model of this type can describe di�erent VECSEL geometries,
including a folded (rather than linear) cavity one and a colliding pulse operating VECSEL (Avrutin and
Panajotov, in preparation).

More advanced constructions known as MIXCELs (standing for mode-locked integrated external cavity
surface emitting laser) with the quantum well (QW) gain and QD absorber layers located in one chip, could
be described by a similar, possibly even somewhat simpler, model, with the single chip re�ectance operator
containing the e�ects of both the gain and the absorption; the model for such a design would therefore be
even closer to that of Vladimirov and Turaev (2005).

In the case of edge-emitting lasers, the application of a DDE model to a speci�c, realistic design is some-
what more tenuous. First of all, the DDE model as studied in Vladimirov and Turaev (2005) does not
account for fast gain and saturable absorption nonlinearities due to interband processes. Although it could
be possible to include them in the QD case, at least in some approximation, the explicit introduction of fast
nonlinearities is not necessarily the best strategy. Instead, separate rate equations for dot and reservoir pop-
ulations can be used. Second, Equations 32.18 and 32.22 for the gain G and absorption Q integrated over the
length of the ampli�er/absorber element are only accurate if both the gain and absorption have a simple lin-
ear dependence on the carrier densities in the corresponding elements, which is in itself an approximation
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(or if G,Q ≪ 1). Third, the geometry of the system analyzed in a DDE model in the form presented in
Vladimirov and Turaev (2005) is, as in most lumped models, somewhat arti�cial in that Equations 32.2 and
32.5 are, strictly speaking, valid only in a hypothetical unidirectional ring cavity. In a real laser, the pulse
passes through both the ampli�er and absorber twice, not once, with the re�ected pulse traveling through
areas in which gain or absorption has been already partially saturated by the incident pulse, and possibly
partially recovered.

An attempt at taking into account a realistic edge-emitting tandem laser geometry in a large-signal
lumped iterative (not DDE) model, with an end re�ector by introducing averaging of gain/absorption over
the corresponding sections, with re�ections at facets taken into account, was made in a relatively early
paper by Khal�n et al. (1995); the model gave good qualitative predictions of the laser performance; how-
ever, such an approach has its own inaccuracies as discussed in Avrutin et al. (2000), since it implicitly
assumes pulse duration greater than the round-trip time, which by de�nition is not the case in mode-
locked lasers and the results of Khal�n et al. (1995) were never compared to predictions of more accurate
models to ascertain their accuracy.

More recently, a study speci�cally investigating modeling a Fabry–Pérot edge-emitting laser using a
DDE model, importantly with a detailed comparison to the more rigorous and accurate model of a trav-
elling wave type (see the next section), has been presented (Rossetti et al., 2011b). The simulations were
performed for the special case of QD mode-locked lasers; however, the results appear to be quite generic.
Rossetti et al. (2011b) improved the accuracy of the DDE approach by separating the laser into a number Fs
of longitudinal sections (e.g., Fs = 28 sections were used in the calculations presented in the paper), some
of which belong to the gain region and others to the SA, which results in what the authors termed a multi-
section DDE approach. Essentially, in the notations used here (the formalism of Rossetti et al., 2011b was
somewhat more complicated because of account for two-level transitions peculiar to QDs), in a multisec-
tion DDE model, Equation 32.21 is rewritten with the single product

√

κĜQ̂ substituted by a concatenation
of gains and losses in individual segments:

Y(t) = −γ−1 ∂Y(t)
∂t

+

( Fs
∏

k=1

√

κkĜk

)

Y(t − TRT). (32.37)

Here, the loss
√

κk includes both the distributed losses inside the segment and any lumped scattering/out-
coupling loss between the segments k and k+1. The complex gain operator Ĝk for each section is calculated
in the way similar to Equation 32.2 if the section is within the gain region and similar to Equation 32.5 if
it belongs to an SA, with the length used being the length of the section. The gain (or loss) in each seg-
ment is calculated from a local rate equation for population inversion. The use of a number of segments
gives the model some longitudinal resolution and allows for a more accurate modeling of the outcoupling
losses; although not explicitly done in the model of Rossetti et al. (2011b), it can also include fast gain and
absorption saturation in addition to the slow processes described by rate equations. The model, however,
still contains a single delay term helping maintain the calculation e�ciency that is one of the main advan-
tages of the DDE approach. To account for bidirectional propagation, the Fabry–Pérot resonator had to
be represented, somewhat arti�cially, by an equivalent ring resonator twice the length of the Fabry–Pérot
one, with the SA length also doubled, and the distributed losses allocated carefully to represent the loss in
the realistic cavity. With these approximations, the laser performance simulated by the multisection DDE
approach was in good (though not perfect, e.g., the pulse amplitude was accurate to typically within about
10%) agreement with the traveling wave one as regards the pulse shapes, amplitudes, durations, and sta-
bility of the results with respect to a chaotic envelope instability. As in most QD mode-locked lasers, the
design simulated did not show Q-switching instability, owing to the large damping of the relaxation oscilla-
tions, so it is not certain whether the multisection DDE model would accurately predict its limits in a laser
in which Q-switching could occur. It can be said that the multisection DDE approach has some similarity
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to the decimated traveling wave one considered below, though unlike it still retains the unidirectional ring
cavity assumption.

The DDE model also has been used recently to investigate the performance of a number of laser cav-
ity designs and operating regimes more complex than purely PML in a simple tandem cavity, whether
monolithic or VECSEL type.

In Arkhipov et al. (2013), the DDE model was used to analyze the performance of hybridly, rather than
passively, mode-locked lasers. As in the experiments with which the calculations were compared, and as
in previous simulations using a TWM (Avrutin et al., 1996), the hybrid ML was implemented by voltage
modulation at an approximately resonant frequency applied to the SA. Within the DDE approach, this
requires the modi�cation of Equation 32.18 in the form

dQ(t)
dt

= −
Q0 − Q
τα

(

1 + amod(1 + Fmod(t)
)

−
(

1 − exp (−Q)
) P(t)

Uα
. (32.38)

Here, amod is the amplitude of absorption modulation, Fmod(t) is a periodic function of time, and Fmod
is a periodic function of time de�ned so as to vary within the limits −1< Fmod(t)< 1. The authors
investigated various modulation pro�les, the most straightforward of which was sinusoidal modulation
Fmod(t) = cos(2πfmodt). The modulation frequency could be near resonance with the fundamental ML
frequency, with fmod = fP + Δfmod,Δfmod ≪ 1∕Trt, with fP ≈ 0.9723/Trt being the free-running PML
frequency, or at its second harmonic fmod = 2fP + Δfmod, or second subharmonic fmod = fP∕2 + Δfmod.

Note that Equation 32.38 captures an important feature of voltage modulation of an SA: Both the
unsaturated absorber and the relaxation time are modulated simultaneously.

The e�cient DDE model allowed, �rst and foremost, for very e�ective numerical search for the lock-
ing range of hybrid ML (the range of frequency detunings δf = ΔfmodTrt within which stable hybrid ML
was observed for a given modulation amplitude). This was done by long-time (3000 periods, with the last
200 periods stored) direct numerical simulation of the system (Equations 32.18, 32.21, and 32.22). For
improved accuracy, the authors used dual characterization of the locking range, using, �rst, a straightfor-
ward bifurcation diagram with the �eld maxima and minima plotted, and, second, a stroboscopic diagram
where, for each considered δfmod, �eld intensities separated from each other in time by the interval 1∕fmod
were collected. Once locking was achieved and the period of the �eld intensity time trace became equal to
1∕fmod, all stroboscopic map points had the same value; otherwise, multiple values of the stroboscopic map
at a given δf were observed. Figure 32.9 (reproduced from Arkhipov et al., 2013 with permission) illus-
trates both procedures, as illustrated in Figure 32.9a and b, as well as the calculated locking tongue (locking
range borders in the coordinates δf , amod), shown in Figure 32.9c. The latter was in very good qualitative
agreement with the observed values. The �gure shows the fundamental harmonic locking range (the sec-
ond harmonic one was very similar as could be expected); however, the simulations also predicted, for the
�rst time and in agreement with the experiments published in the same paper, that a narrower range of
subharmonic locking was also present due to internal nonlinearities in the laser.

In addition to numerical analysis, the DDE allowed an analytical asymptotic model for the calculation of
the locking range to be developed, which was in very good qualitative agreement with the numerical sim-
ulations up to the modulation amplitude of amod ∼ 0.5–0.6. Most importantly, it was shown, in agreement
with numerical results, that the magnitude of the locking range was directly proportional to the modula-
tion amplitude, a fact also seen in other numerical simulations but only proven analytically in Arkhipov
et al. (2013). Explicit, if rather complex, expressions for the proportionality coe�cient between the locking
range and amod were derived using perturbative analysis of the periodic ML solution.

Finally, Arkhipov et al. (2013) addressed the issue of the asymmetry of the locking range (it is easier to
speed the laser up than to slow down), long known for hybrid ML and shown by both experiments and
previous simulations; the authors attributed it to the variation of the absorber relaxation time and hence
the average absorption value with modulation.
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FIGURE 32.9 Numerical DDE estimate of the locking range of a hybrid ML laser. (a) Local maxima of the intensity
time trace and (b) 1/fm periodic stroboscopic map points of emitted �eld intensity time trace at �xed modulation
amplitude a = 0.5. In the locking range (gray), all ML pulses have the same peak intensity. (c) Locking tongue in the
plane of two parameters: frequency detuning δf and modulation amplitude a. (From Arkhipov A. et al., IEEE J Sel Top
Quantum Electron, 19, 1100208, 2013. Reproduced with permission).

The DDE was also used for modeling the dynamics of mode-locked lasers under the more special condi-
tions of optical injection with a single (Rebrova et al., 2011) or, most recently, dual (Arkhipov et al., 2016c)
optical lines, as well as under the condition of external optical feedback (Jaurigue et al., 2015, 2016; Otto
et al., 2012). In all of these conditions, the versatility of the DDE allowed analytical insight into operating
conditions, as well as direct numerical simulations.

Interestingly, the somewhat abstract nature of the DDE model led to the fact that two very di�erent forms
of the model could be used successfully to analyze the situations that in the experiment can be quite similar.
In Jaurigue et al. (2015) and Otto et al. (2012), a model with multiple delays (as in the generalized Lang-
Kobayashi model of a single-frequency laser with optical feedback from a strong external re�ector) was
used to analyze ML under external optical feedback, whereas in Arkhipov et al. (2015b), harmonic ML in
a compound cavity consisting of an active laser subcavity and a passive one formed by an external re�ector
(which is very similar to optical feedback) was investigated by modeling both cavities as unidirectional ring
ones as in the traditional form of the DDE; mathematically, the compound cavity was represented by two
coupled DDEs. Both models showed, and were used to estimate the ranges of, fully or partially rendered
harmonic regimes given an integer rational relation between the cavity lengths, and stressed the importance
of the subwavelength variations in the cavity length (represented by phase shi�s of light amplitude). All of
these had been previously independently investigated for Fabry–Pérot laser geometries using frequency-
domain and/or traveling wave time-domain models (see the next section), e.g., in Avrutin and Russell
(2009). However, the advantage of the DDE model was, �rst, the possibility of e�cient and instructive
analysis of the bifurcation diagrams of the laser and, second, the generality as the results apply not just to
Fabry–Pérot resonators but to other designs such as ring lasers.

A special version of the DDE model was developed (Viktorov et al., 2006) for analyzing QD mode-
locked lasers. Detailed description of the properties of QDs as an active medium is beyond the scope of
this chapter; the reader is referred to a specialized monograph (Rafailov et al., 2011) or the relevant chapters
in the current handbook. In brief, there are two major (interrelated) features that distinguish the QDs
from other semiconductor active media, particularly in the context of ML. The �rst of these is the complex
carrier kinetics which in the case of the gain media involves the relatively slow (∼5–10 ps) capture of
carriers (electrons and holes) into the QDs and subsequent interlevel relaxation, and in the SA sections,
the relatively complex nature of carrier escape involving intermediate levels (Viktorov et al., 2009). The
second speci�c feature of QDs as an active medium is the noticeably nonequilibrium distribution of carriers
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between dots of di�erent sizes and compositions (which therefore have di�erent energy levels resulting in
the inhomogeneous broadening of the laser line), and the possibility of dual-wavelength lasing due to the
existence of (at least) two electron levels in each dots, the ground and excited state.

The original DDE model of QD mode-locked lasers (Viktorov et al., 2006) ignored inhomogeneous
broadening and the excited-level transitions, and thus captured the �rst of these characteristic features but
not the second. The equation for light �eld in the model was thus essentially the same as in the standard
DDE but the equations for gain and absorber dynamics were changed more signi�cantly to re�ect the
speci�c features of QDs. Still, even in this simpli�ed form, the model allowed an explanation for a number
of features of QD mode-locked lasers, such, �rst, as the suppressed Q-switching instability (Viktorov et al.,
2006) due to the slow carrier capture in the gain section and, second, the enhanced ML at high temperatures
due to faster SA relaxation (Cataluna et al., 2006, 2007). Later, more advanced versions of DDE for QD ML
lasers have been developed with inhomogeneous broadening and lasing from di�erent levels taken into
account, e.g., Cataluna et al. (2010) and also Rossetti et al. (2011b) already mentioned above.

To summarize, DDE models are a very powerful tool capable of predicting, qualitatively describing,
and giving unique analytical insight into all the main features and many of the peculiarities of ML in a
semiconductor laser. With some caution, models of this type can be used for quantitative description of the
performance of a speci�c laser design, but the reliability and accuracy of such a procedure may be limited
in the case of realistic, multisection edge-emitting laser designs, particularly as they o�en comprise, in
addition to the gain and absorber section, elements such as Bragg mirrors, phase-tuning sections, etc.

For these purposes, TWMs are preferable; they will be considered in the next section.

32.3.4 TWMs: The General Considerations

The most accurate and realistic, though usually the most computationally intensive, approach to simulating
edge-emitting mode-locked lasers is o�ered by distributed time-domain, or TWMs (shown schematically
in Figure 32.2c), which treat the propagation of an optical pulse through a waveguide medium with spatial
as well as temporal resolution. The model then starts with decomposing the optical �eld in the laser cavity
into components propagating forward (subscript “+”) and backward (subscript “–”) in the longitudinal
direction (say, z):

Y(r, t) = Φ(x, y)
(

Y+ exp(iβref z) + Y− exp(−iβref z)
)

exp(−iωref t), (32.39)

withΦ being the transverse/lateral waveguide mode pro�le and ωref and

βref = n(ωref)kref = n(ωref)ωref∕c

being the reference optical frequency and the corresponding wave vector, respectively. This results in a
reduced equation for slowly varying amplitudes Y±, which has the form

±
∂Y±
∂z

+ 1
vg

∂Y±
∂t

=
(1

2
(ĝmod − αint) + ikrefΔ̂ηmod

)

Y± + iK±,∓Y∓ + Fspont(z, t). (32.40)

The equation is directly solved numerically without the partially analytical integration involved in deriving
(Equations 32.2 and 32.5).

The gain and saturable absorption coe�cients are most o�en parametrized as functions of the carrier
density and, through the gain and absorption compression coe�cients εg and εα, on the photon densities,
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which is most e�ciently implemented using simple relations:

g =
glin(N)
1 + εgS

; α =
αlin(N)
1 + εαS

, (32.41)

where S = |Y+|2+|Y−|2. Note that taking the total intensity in the denominator of Equation 32.41 for both
le�- and right-traveling waves, although o�en used, may be an oversimpli�cation for some problems as it
assumes identical cross- and self-saturation coe�cients between le�- and right-traveling waves. A more
accurate analysis may be important, in particular, in ring lasers (see Chapter 31 for more details).

The carrier density dependences of the linear gain and absorption glin(N) and αlin(N) are, in the sim-
plest version of the model, taken in the standard linear glin(N) = σg(N − Ntr) or logarithmic glin(N) =
σgNtr ln N+N1

Ntr+N1
forms typical for semiconductor laser modeling in general (Coldren et al., 2012) (Ntr being

the transparency carrier density and σgcharacterizing the gain cross section near transparency as shown
in Sections 3.1 and 3.2; for the absorption, the linear approximation αlin(N) = α0 − σαN, also as shown in
Sections 32.1 and 32.2, is most o�en used). In more accurate implementations (e.g., Javaloyes and Balle,
2010b), absorption glin(N) and αlin(N) are calculated microscopically with varying degrees of rigor; some
of these implementations will be discussed in more detail in Section 32.5. The compression factors εg,α
also may be either introduced phenomenologically or calculated microscopically for the two main types of
optical nonlinearities in bulk and QW lasers: spectral hole burning and dynamic carrier heating. As pulse
duration decreases and particularly for multi-GHz ML, the �nite (subpicosecond) relaxation times τ(g,a)

nl of
the nonlinearities become important. To take those into account, Equation (32.41) can be substituted by

phenomenological relaxation equations: dα
dt

= 1
τ(a)nl

(

αlin
1+εαS − α

)

; dg
dt
= 1

τ(g)nl

(

glin
1+εgS − g

)

(Martins et al.,

1995). Some authors choose not to introduce εg,α due to carrier heating at all, instead including microscopic
analysis of carrier temperature dynamics (Bischo� et al., 1997) and gain-carrier temperature dependence
into the model. In QD lasers, with their strong spectral hole-burning e�ects (nonequilibrium carrier dis-
tribution in energy, with the energy levels resonant with the photon energy preferentially depleted), and
relatively slow intradot relaxation, kinetic processes are o�en treated explicitly without introducing εg,α
(see Section 32.5.1).

The dynamic correction Δβ=Δηmodkref to the propagation constant, in bulk and QW lasers, is o�en
approximated as related to the gain variation by means of a single parameter, the Henry’s linewidth
enhancement factor αH (with di�erent values used for the gain and absorber sections), e.g., using a rela-
tion Δβ = ΔβSPM = −αH(g − gth), the latter parameter being the threshold (or any other reference) value
of peak gain. This phenomenological approach, although the simplest and the most traditional, ignores
the fact that the spectral dependence of gain and carrier-induced refractive index correction can be dif-
ferent, so the linewidth enhancement factor should be, generally speaking, spectrally and carrier density
dependent.

The gain dispersion represented by the operator nature of gain ĝmod (and to a certain extent GVD, rep-
resented by the operator nature of the modal refractive index Δ̂ηmod) is very important in determining the
stability range of ML (unless there is a dispersive element in the laser construction such as a DBR). As men-
tioned before, in the lumped model, no stable ML with a �nite pulsewidth can be simulated in the absence of
dispersion. In the distributed model, most models not including gain dispersion cannot predict stable ML
either. Some authors (Bischo� et al., 1997) reported stable ML with �nite pulsewidths simulated without
the dispersion term, but the model of Bischo� et al. (1997) included �nite relaxation times of nonlinearities,
which may have had a side e�ect of introducing e�ective dispersion. As regards the numerical implementa-
tion of dispersion, in mode-locked laser constructions realized so far, the spectrum of mode-locked lasers,
although quite broad, is still usually signi�cantly narrower than that of gain/absorption, meaning that only
the top of the gain curve needs to be represented accurately. Therefore, in most studies reported so far, the
dispersion has been approximated in frequency domain, i.e., as function of Δω = ω − ωref, as a simple,
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Lorentzian curve in complex numbers (similar to Equation 32.10 with D = 0), or Equation 32.20, equiva-
lent to approximating the spectral properties of the material by those of an equivalent two-level medium
with homogeneous broadening:

PT
± (Δω) = −îg ⋅ YT

± (Δω) = −i
g(N, S)

1 − i
(

Δω − Δωp(N)
)

∕γ(N)
YT
± (Δω) , (32.42)

where the superscript T means Fourier transformed variable in frequency domain; γ(N) is the gain spectral
width parameter as in Equations 32.10 and 32.20; Δωp(N) is the spectral shi� of the gain peak from the
reference frequency, and g(N, S) can be implemented as in Equation 32.41 (for the absorption, the same
method can be used). In time domain, this can be implemented numerically by two alternative but largely
equivalent methods. The �rst one, used in a number of papers (e.g., Bandelow et al., 2001), and traceable to
early work on pulse generation in lasers with active media with homogeneously broadened gain spectrum
(Fleck, 1968), consists of introducing a separate di�erential equation for gain polarization, as in the DDE
approach. With the gain spectrum centered at the reference frequency (ΔΩ′′ = 0), it takes a particularly
simple form, similar to that of Equation 32.21 in the DDE approach:

∂P±(z, t)
∂t

= −γ
(

Pf,b(z, t) − i
g
2
(N, S)Yf,b(z, t)

)

. (32.43)

The second method of introducing gain dispersion involves using digital �lters of varying complex-
ity (Avrutin et al., 2000, 2005; Heck et al., 2006). In the case of a simple Lorentzian gain, the �lter is
straightforwardly represented as an in�nite impulse response (IIR) one of the form of

P± = −iĝY± = −i
γ
2

∞

∫
o

g(z, t − τ)Y±(z, t − τ) exp
(

−γ̃pτ
)

dτ; γ̃p = γ − iΔωp. (32.44)

In practice, the integral requires only storing one iteration in the computer memory: For small integration
stepsΔt it is easily implemented using a slight generalization of the formula given originally in Schell et al.
(1991) as

P±(t) = exp
(

−γ̃pΔt
)

P±(t − Δt) − i
(

γ∕γ̃p
) (

1 − exp
(

−γ̃pΔt
)) g(t)

2
Y±(t).

This method of gain dispersion implementation is more tolerant to the simulation time step than the sep-
arate di�erential equation (Equation 32.43), but may be not very accurate if the steps are not small enough
(Avrutin et al., 2005; Schell et al., 1991). A more complex, but also somewhat more robust, form of a digital
�lter implementation of dispersion was described in Carroll et al. (1998) and applied to ML (see, e.g., Jones
et al., 1995).

In a recent paper (Javaloyes and Balle, 2010b), a more complex digital �lter, representing a more accurate
model of the spectra of the complex dielectric permittivity (gain/absorption and refractive index), derived
from a microscopic approach and allowing for the realistic fundamental absorption edge spectrum to be
modeled, has been implemented; this will be discussed in Section 32.5.

The dispersive nature of the correction Δ̂β = krefΔ̂ηmod to the (real part of) the propagation con-
stant is usually less important than gain dispersion. In cases when very short (subpicosecond) pulses may
be expected in the simulation, the operator Δ̂β may include an additional term describing GVD of the
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structure (Avrutin et al., 1996)

Δ̂βY = krefΔ̂ηmodY = Δ̂βSPMY −
β2
2
∂2Y
∂2t2 , (32.45)

where the �rst term describes the self-phase modulation e�ects, and the second, the GVD, with β2 =
1
c

dng

dω
the �rst-order GVD coe�cient, ng being the group velocity refractive index of the laser waveguide.
Numerical simulations (Avrutin et al., 1996) show that GVD a�ects the parameters of picosecond pulses
signi�cantly for the dispersion values of dng∕dω ∼ 10−14 s. Thus, this term is usually negligible in most
QW lasers (where the GVD magnitude is estimated as dng∕dω = 10−16–10−15 s) and indeed is omitted in
most models of mode-locked laser diodes published to date. In the microscopic or semimicroscopic imple-
mentations of TWM (Section 32.5), the dynamic and spectral variation of real, as well as imaginary, part of
the dielectric permittivity of the material, and thus the active layer contribution to GVD, is implemented
self-consistently. The dispersion (material and waveguide) of the passive waveguide structure is neglected
but is believed to be weaker.

The terms containing the forward-back and back-forward propagating coupling constants K±,∓ need be
included in the model only if a Bragg grating is present at the position z (and time t); the constants K± and
K∓ = K∗± are, in general, complex due to both refractive index and gain/absorption grating being possible.
In the context of a mode-locked laser, accounting for a grating may be needed either if the laser construc-
tion contains a DBR section, or to account for standing wave-induced gratings, or short-scale spatial hole
burning that is important if pulses propagating in opposite directions collide in the active medium (coher-
ent colliding pulse e�ect). The standing wave-induced grating exists due to the carrier population being
increased in the antinodes of the standing wave. Within the SA, where ML pulses are typically engineered
to collide, this decreases the local absorption (Martins et al., 1995) and forms an absorption (and possibly
refractive index, due to self-phase modulation) grating, to which the fast nonlinearities responding to the
standing wave also contribute. The magnitude of the periodic carrier density modulation is then given by
the equation (Martins et al., 1995)

d
dt

Ngrat(z, t) = −
Ngrat(z, t)
τgrat

+
vg

2
(Y∗+α̂Y− + Y∗−α̂Y+), (32.46)

where α̂ = −ĝ is the saturable absorption operator; the grating relaxation time in QW materials is mainly
determined by ambipolar di�usion with the coe�cient Da:

1
τgrat

= 1
τα
+

16π2Dan2
g

λ2 , (32.47)

where λ is the lasing wavelength in vacuum. An estimate gives a value of ∼1 ps for the ambipolar di�usion
coe�cient of 2×10−4 m2∕s typical for III–V materials. From the magnitude of carrier density modulation,
the coupling in QWs can be estimated as K� ≈ i ∂α∂N Ngrat(z, t)(1− iαHα). Assuming the Henry factor of the
absorber is small, as was done in Martins et al. (1995), the grating becomes a purely absorption grating,
smoothed down by di�usion. Equation 32.46 is written in terms of SA rather than gain section parameter
since in ML lasers designed to utilize the colliding pulse e�ects, pulses traveling in di�erent directions
collide in the SA rather than the gain sections (the former, as will be discussed in the following section,
assists ML, the latter impedes it). However, a TWM should contain the grating population in all type of
sections; in gain sections, the gain operator ĝ = −α̂ is used.

The �nal term in Equation 32.40 is the random noise source that leads to the self-starting of the model
and is essential for modeling of noise and pulse jitter. At the laser facets, standard re�ection/transmission
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boundary conditions are imposed on Y±; thus, unlike the delay-di�erential model, the traveling wave one
accounts accurately for the laser geometry.

The traveling-wave equations are coupled with coordinate-dependent rate equations for the relevant
populations. In the context of QW and bulk lasers:

d
dt

N(z, t) =
J(z, t)

eda
− N

(

BN + 1
τnr

+ CN2
)

− vgRe
(

Y∗+ĝY+ + Y∗=ĝY−
)

, (32.48)

with J/ed as the pumping term, J being the current density, e the elementary charge, da the active layer
thickness, τnr the nonradiative recombination rate, and B and C are usually identi�ed as the bimolecu-
lar recombination constant and the Auger recombination rate, respectively. Carrier capture dynamics is
sometimes taken into account by adding an extra equation for carrier densities in the contact layers, but
its signi�cance for most mode-locked lasers (with the exception of QD active media and possibly some
specially engineered QW constructions) tends to be modest, except where direct current modulation is
involved.

TWMs are very powerful and general and their use is not restricted to ML edge-emitting lasers (see
Chapter 31).

The main limitations of TW models are, �rst, the absence of any analytically solvable cases—the
approach is by its very essence numerical, though some analytical insight is given by the modal decomposi-
tion of the traveling wave solution (see Chapter 31). Second, there is the fact that, in their traditional form,
TWMs pose considerably higher requirements on the computing time and memory compared to delay-
di�erential models. This is mainly due to the fact that, in the traditional implementation of the TWMs, time
and space steps are usually related asΔz = vgΔt, meaning that the computational timescales as 1∕Δt2 and
need to be su�ciently short (a typical spatial step being 1–5 μm) to reproduce the pulse characteristics
faithfully (the problem is mathematically sti�). However, with the development of computer resources,
this limitation has become progressively less important; and the numerical technique of decimation has
allowed e�cient decoupling of time and space steps (see Section 32.5.2). Several commercial or free so�-
ware simulators of laser diodes include traveling-wave approach of some form as the core of their solver;
some of those are directly applicable and have indeed been applied for the analysis of ML lasers; see, e.g.,
Avrutin and Rafailov (2012), Section 32.5.2 Avrutin and Rafailov (2012), and Chapter 31.

32.4 The Main Predictions of Mode-Locked Laser Theory

In this section, we shall overview some of the main results of ML modeling that can be obtained on a mainly
phenomenological level.

32.4.1 Operating Regime Depending on the Operating Point

The most basic result of all the modern ML theories, con�rmed by the experiments, is that the dynamics
of semiconductor lasers intended for ML can be quite rich and can show, apart from stable ML near the
fundamental round-trip frequency, a number of other dynamic regimes. Here, we shall brie�y discuss the
general trends in their dependence on the laser parameters.

One of the most important features in the dynamic map of operating regimes of a mode-locked laser is
the self-sustained pulsations, or passive Q-switching instability at low currents. As shown in Figure 32.5,
produced by the DDE model, the range of currents, or unsaturated gain, values in which this regime is
observed increases with the amount of saturable absorption in the laser (which, in a given laser construc-
tion, either QW or QD, may be varied to some extent with reverse bias, due to electroabsorption). The other
model parameter a�ected by the reverse bias is the absorber lifetime τα, which is known to decrease approx-
imately exponentially with the reverse bias in QW materials (see Nikolaev and Avrutin, 2003 and references
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therein) and to some extent in QDs too (Malins et al., 2006). The dependence of the Q-switching range on
τα is not straightforward; the Q-switching range tends to be broadest at a certain absorber recovery time,
of the order of the round-trip time though somewhat longer, as can be seen for example in Figure 32.10. At
longer τα values, the SP range slightly decreases. However, it also decreases as τα is decreased, and when τα
reaches a certain value, of the order of a fraction of the round-trip, the Q-switching instability disappears
completely, leaving a broad area of stable ML. This is illustrated in Figure 32.10, which is produced using a
TWM and shows approximate borders of di�erent dynamic regimes for a representative laser with a short,
relatively broadband (length 50 μm, coupling coe�cient κ = 120 cm−1) DBR section similar to that real-
ized in Bandelow et al. (2006) and with a cavity length designed for the fundamental ML frequency either
near 80 GHz (Figure 32.10a) or near 40 GHz as in the experimental study (Figure 32.10b).

The importance of both τα and the unsaturated absorption in determining ML properties means, �rst,
that care needs to be taken when interpreting the bias voltage e�ects on the performance of either QW
or QD mode-locked laser, as the unsaturated absorption, the saturable absorption cross section, and the
SA recovery time τα are all likely to be a�ected. The e�ect on the latter is probably the most signi�cant
though, as the dependence of τα on voltage is quite strong (exponential), while the e�ect on the unsaturated
absorption appears, from measured threshold currents, to be more modest. Second, it means that for the
same absorber parameters, longer lasers with longer repetition periods are less likely to su�er from the
Q-switching instability, which needs to be kept in mind when analyzing the dynamics of QD lasers (due to
the relatively low gain, these o�en have to be quite long if stable operation at the ground level wavelength
band is desired).

The lower current (or unsaturated gain) limit of the self-pulsing instability may be positioned either
below or above the low boundary of ML itself, depending on the gain and absorber saturation energies
(s-parameter) and the absorber recovery time. If the boundary for ML is below that for self-pulsing (which
tends to happen in longer lasers, when τα is signi�cantly smaller than TRT but not small enough to com-
pletely eliminate self-pulsing), then the stable ML range is split in two by the self-pulsing area, with an
area of stable ML seen below the Q-switching limit at currents just above the threshold. The area is nar-
row, however, and the pulse powers generated in this regime are typically rather low. If, on the other hand,
the boundary for ML is above that for self-pulsing (which tends to be the case for shorter lasers or longer
absorber relaxation time, when TRT > τα), then an area of pure self-pulsing, with noisy/chaotic �lling
of pulses, is seen at small to modest excess currents above threshold, as in Figure 32.5; as the current is
increased, the pulses acquire a regular structure and the combined ML/SP regime develops.
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80 GHz (a) and 40 GHz (b), calculated using a phenomenological TWM.
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Comparing Figure 32.10a and b, we notice that the dynamics of the laser become richer with the increase
of the cavity round-trip time, or, equivalently, of the number of modes in the laser spectrum. Indeed, the
dynamic behavior of the short-cavity laser in Figure 32.10a displays only regular deterministic regimes
(Q-switching, ML, CW) and only the fundamental frequency ML (Mh = 1 in Equation 32.1). In contrast,
the dynamics of the longer laser in Figure 32.10b contain a range of currents corresponding to stable har-
monic ML with Mh = 2, as in the DDE model. It is separated from fundamental frequency ML by a band of
currents in which the laser shows the second (a�er Q-switching) main type of instability of ML: the leading
edge, or chaotic, instability. As was shown by the DDE model, the onset/lower border of this instability is
pushed somewhat toward higher currents by the increased amount of absorption in the laser. In addition,
as illustrated in Figure 32.10b, shortening absorber relaxation time also somewhat decreases the risk of this
instability.

At high currents, the unstable operating regime gradually evolves into some type of (irregular) quasi-
CW operation (few modes present), which for some parameter values, with higher currents still, gives way
to single-frequency, stable CW operation, as shown in Figure 32.10 (for longer τα) and predicted also by
DDE. Whether or not this true single-frequency CW operation is achieved at a practically feasible cur-
rent depends on the length of the laser and the gain bandwidth; longer lasers (with a repetition frequency
∼10 GHz and below) with broader gain spectrum tend to not reach true CW under any realistic pumping
current, instead operating in a chaotic quasi-CW regime with a narrow spectrum including only a few
modes.

In shorter lasers, as in Figure 32.10, a direct transition from stable ML, fundamental (Figure 32.10a) or
harmonic (Figure 32.10b), to CW operation is also possible. This takes the form of a Hopf bifurcation, with
the ML pulses acquiring a constant background with increased current and then their amplitude gradually
reducing to zero resulting in CW operation.

32.4.2 The Main Parameters That Affect Mode-Locked Laser Behavior

In addition to determining the operating regime of the laser as discussed in the previous section, the the-
oretical models allow also the e�ects of the operating point on the main parameters of the optical pulse
to be analyzed. Here, we shall concentrate mainly on the PML regime, in which case the most important
parameters whose e�ect on the laser behavior the modeling can allow us to investigate are as follows:

32.4.2.1 The Pumping Current

The pulse amplitude grows with pumping current, as illustrated in Figure 32.11, calculated by a traveling-
wave simulation of the laser of Figure 32.10b. Notice that qualitatively the behavior of the pulse amplitude
shown in Figure 32.11a is quite close to the bifurcation behavior seen from Figure 32.5, except that in the
TWM, and with the inevitably di�erent set of parameters, only the second rather than third harmonic oper-
ation is predicted (it was also noted by some authors (Vladimirov et al., 2009) that the dynamics of an ML
laser in the TWM can predict stable or unstable trailing pulses at di�erent time detuning from the prevalent
pulse stream, whereas the DDE simulation gives only harmonic operation even in unstable regimes).

As regards the pulse duration shown in Figure 32.11b, it has been predicted by early frequency-domain
theories (Lau and Paslaski, 1991) to reach a minimum near the area of Q-switching instability; this has been
later con�rmed by both experiments and time-domain simulations and can be also seen in Figure 32.11b.
The pulse duration thus tends to grow with current within the stable ML range above the upper boundary of
Q-switching. On the other hand, if an area of stable ML below the Q-switching range is observed (which, as
discussed above, is sometimes the case in longer resonators), then a decrease of pulse duration with current
can be expected within this area.

32.4.2.2 The Absorber Relaxation Time

The dependence of the pulse duration on τα (and this on the absorber bias) within the stability range is
shown in Figure 32.12. As seen in the �gure, to achieve stable ML, the absorber relaxation time needs to be
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simulations using a phenomenological TMW. Laser design same as in Figure 32.10b.

within a certain range. Values of τα above a certain value produce instabilities of either leading or trailing
edge type, and may mean switching to harmonic ML. Within the stable ML range, a decrease in τα tends
to shorten the pulses, due to both the e�ects of partial absorber relaxation during the pulse and, probably
more signi�cantly, to the fact that the slow relaxation of the absorber leads to the absorber being always
partially saturated, thus reducing the initial absorption Q−. This trend can sometimes be reversed for very
short τα, of the order of a few picoseconds, when the absorber may not be saturated e�ciently; therefore,
there may be an optimum τα for shortest pulse generation, though for some laser parameter values this
optimum τα may be so small as to be technologically unattainable.

The requirement of small τα in ML has been recognized from the early days. The methods of reduc-
ing τα in experiments included, �rst, ion implantation in early work (Deryagin et al., 1994; Zarrabi et al.,
1991), second, choosing QW materials for faster sweepout, e.g., AlGaInAs rather than InGaAsP quater-
naries (Green et al., 2011; Hou et al., 2010a,b, 2013) or even QD materials in which SA dynamics is known
to be fast (Erneux et al., 2009; Rafailov et al., 2011; Viktorov et al., 2009), third, engineering the QW pro-
�le to include steps or oblique rather than vertical walls (Nikolaev and Avrutin, 2004), and fourth, using
unitraveling carrier absorbers (Scollo et al., 2005, 2009); see Avrutin and Rafailov (2012) for more detail.
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32.4.2.3 The s-Factor, or the Absorber to Gain Saturation Energy Ratio

While it is well known that the increase in s (determined by Equation 32.17) facilitates ML, it is not imme-
diately intuitively clear whether an increased s helps ML stability, as it is known (Kuznetsov, 1985) that the
passive Q-switching regime, which is one of the instabilities a�ecting ML, is also facilitated by an increase
in s. However, the results from both DDE and traveling-wave simulations (Bandelow et al., 2006) show that
in fact it is the stable ML range that is increased with s at the expense of the Q-switching (or self-pulsing)
range.

In VECSELs, the most straightforward way of increasing the s parameter is manipulating the spot ratio
of the gain module and the SESAM. For instance, the fast absorption saturation, or the high ratio s, was
crucial in achieving the bistability between the o�-state and the ML state necessary for low-repetition rate
ML and addressable pulse generation studied in Marconi et al. (2014, 2015); this was achieved by placing
the SESAM in the Fourier plane of the focusing lens so that the spot area AXα was determined only by
the di�raction limit. In monolithic diode lasers, a similar strategy can be pursued to some degree by taper-
ing the laser waveguide so that the absorber region is narrower than the gain region. Used originally for
Q-switching QW lasers in a “bow-tie” construction with the narrow SA in the middle of the cavity and
the two ampli�er sections tapering outward (Williams et al., 1994), this strategy has later been realized
most convincingly in QD mode-locked lasers (Nikitichev et al., 2011a,b; Thompson et al., 2006, 2009); see
Avrutin and Rafailov (2012) for an overview of results achieved. More o�en, monolithic structures use the
same waveguide structure in the gain and absorber sections for ease of fabrication and �ber coupling, and
so AXα = AXg. The parameter s is then equal to the absorber-to-gain cross section ratio s = σa∕σg. QWs,
with their sublinear (approximately logarithmic) dependence of gain on carrier density (population inver-
sion) have long been seen as superior to bulk material for ML performance, since the sublinear g(N) helps
achieve σa∕σg > 1. Vladimirov et al. (2004) and Vladimirov and Turaev (2005) used their DDE analysis
to conclude further that when designing a QW laser for ML purposes, a structure with a smaller number
of QWs was preferable to one with a larger number—indeed, the smaller number of QWs means a smaller
con�nement factor, hence a higher threshold carrier density and therefore a smaller dg/dN at threshold
due to the sublinear g(N), which in turns gives a higher value of the ratio s. These considerations in�uenced
the choice of structures with just two to three QWs for realizing DBR ML lasers capable of generating very
stable pulses about 2-ps long at 40 Gb/s (Bandelow et al., 2006). It may be argued that the same logic also,
in part, accounts for the success of QD mode-locked lasers, in which the dependence of gain on the (total)
carrier density in the active layer is even more sublinear than in QWs; however, it has to be borne in mind
that the concept of total carrier density is somewhat misleading in QDs; a more accurate picture is given by
more complex analysis, considering separately the population of the dots themselves and of the reservoir
that supplies them with carriers.

32.4.2.4 Gain and Group Velocity Dispersion Parameters

Most models of mode-locked laser operation predict that without gain dispersion, stable ML with a �nite
pulse duration is impossible, and so the gain dispersion, or width of gain curve, represented by the param-
eter γ in the DDE or ωL in the TWM, should play an important role in determining the pulsewidth and
stability. Within the range of gain dispersion typical in mode-locked semiconductor lasers, which usually
corresponds to ℏωL of the order of tens of meV (or the wavelength range of tens of nm) and does not
change too much with operating conditions or construction, gain dispersion is not the most drastic factor
limiting the pulsewidth. However, achieving a broad gain spectrum is still desirable. This may be one of
the advantages of QD active media, as discussed below.

GVD, like gain dispersion, acts to broaden the pulses in the case of normal dispersion, which is the
usual situation in semiconductor lasers. As discussed above, the e�ect of this parameter is modest in
most semiconductor lasers since the pulse durations at which it would become important (∼100 fs) are
never achieved; however, with stronger GVD possible in QD lasers, some account for this e�ect may be
necessary.
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32.4.2.5 The Gain and Absorber Compression Coefficients

Pulses generated by ML lasers tend to be of picosecond duration. This is below the critical pulsewidth at
which the fast gain saturation, rather than the average carrier density dynamics, begins to dominate the
pulse ampli�cation and shaping, at least in the gain section; this critical pulse duration has been estimated
(Mecozzi and Mork, 1997; Mork and Mecozzi, 1997) to be of the order of

εg

vg
dg

dN

. With typical semiconductor

parameters, this estimate gives values of the order of 10 ps. Thus, the gain compression (and, similarly,
absorber compression) e�ects and the coe�cients that describe them (if introduced) may be expected to
play a signi�cant part in ML properties.

In practice, the e�ect of nonlinearities is twofold. First, gain compression tends to broaden ML pulses,
with absorption compression having the opposite e�ect. Second, and in some regards more important, an
increase in gain compression stabilizes ML operation, suppressing the Q-switching instability (the latter can
be easily shown by rate equation analysis of Q-switched lasers (Avrutin et al., 1991). Again, fast absorber
saturation has the opposite e�ect.

32.4.2.6 The Self-Phase Modulation in the Gain and Absorber Sections

Within the simplest phenomenological approach, the linewidth enhancement factors have a relatively mod-
est e�ect on pulse energy for a given current and absorption, but a more noticeable one on amplitude and
duration. They do not signi�cantly a�ect the onset of the Q-switching instability (the lower current or
unsaturated gain limit of ML stability), but have a stronger e�ect on the upper limit of ML stability asso-
ciated with the irregular envelope and pulse competition. Mode-locked behavior is the most stable when
the gain and absorber linewidth enhancement factors are not too di�erent from each other. According
to the DDE model predictions, the most stable operating point (which also corresponds to the highest
pulse amplitude and lowest duration) is for αHg =αHα. Traveling-wave and modal analysis predicts that
the best-quality ML is achieved with αHg > αHα, see, e.g., Salvatore et al. (1996); the discrepancy is likely
to be caused by the di�erent geometry of the long ampli�er and the shorter absorber. The main parameter
determined by the linewidth enhancement factors is the chirp (dynamic shi� of the instantaneous fre-
quency) of the pulse. Passively mode-locked pulses tend to be up-chirped (with the instantaneous optical
frequency increasing toward the end of the pulse) when the absorber saturation factor αHα is small and
the chirp is mainly caused by αHg. With a certain combination of αHg and αHα (typically αHg > αHα), an
almost complete compensation of chirp is possible; with αHα > αHg, the pulse is typically down-chirped
(Salvatore et al., 1996). As up-chirp is observed more frequently than down-chirp in experiments, one
may conclude that typical values of αHα are smaller than αHg. In active ML, down-chirp is typically
observed, while hybrid ML allows the chirp to be tuned to some extent, and there is typically a combi-
nation of bias and current or voltage modulation amplitude for which the chirp is minimized and close to
zero, if only in a very narrow range of operating parameters. In a more detailed semimicroscopic model
discussed in Section 32.5, the linewidth enhancement factor is not introduced explicitly, with gain and
refractive index correction being implemented as imaginary and real part of the same complex dielectric
permittivity, respectively, but the tendencies would appear to be general enough to merit being taken into
account.

32.4.2.7 The Laser Geometry and Saturable Absorber Location

All the results discussed above could be obtained using either DDE or TWMs, though the latter usually give
slightly more realistic predictions (e.g., both types of models predict harmonic operation at high currents,
but in the case of multi-GHz PML (Trt ≪ τg), operation at harmonics above the second one, predicted
by the DDE model, is usually not observed experimentally; TWMs tend to predict only fundamental and
second harmonic operation, which agrees with the experiment (Bandelow et al., 2006). The e�ects of a real-
istic laser cavity geometry (Fabry–Pérot versus ring cavity, absorber position and length, facet re�ectances,
etc.) on the ML characteristics are one area where the TWMs have an obvious advantage. They are, for
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example, highly suitable for analyzing the e�ects of specialized harmonic ML designs for high-frequency
generation. These fall into two categories.

The �rst is colliding pulse mode-locking (CPM), including multiple (MCPM) (Martins et al., 1995;
McDougall et al., 1997) and asymmetric (ACPM) (Shimizu et al., 1995, 1997) colliding-pulse ML con-
structions. These achieve ML at the Mh-th harmonic by positioning one SA (in CPM or ACPM) or several
SAs (in MCPM) at fraction(s) M′

h∕Mh of the laser cavity length, where M′
h < Mh is an integer, and M′ (or

at least some of the values of M′
h in case of MCPM) and M are mutually prime. The standard CPM corre-

sponds to Mh = 2 (and obviously M′
h = 1) with the SA in the center of the cavity. Constructions of this

type have produced ML operation at rates of up to 860 GHz (Shimizu et al., 1997) (in that particular case,
λ = 1.55 μm ACPM construction used M′

h = 5,Mh = 12). A more detailed review is given in Avrutin et al.
(2000). The alternative harmonic ML technique is the use of a spectrally selective laser cavity. This may be
in the form of a compound cavity, which has one or several intracavity re�ectors (ICRs) positioned at frac-
tions M′

h∕Mh of the laser cavity length, rather like the SAs in the MCPM or ACPM technique. The highest
ML repetition rates reported to date have been achieved by GaAs/AlGaAs (λ ≈ 0.89 μm) lasers with the
ICRs in the shape of deeply etched slots, either single or multiple in a 1-D photonic-bandgap (PBG) mir-
ror arrangement (Yanson et al., 2002). A 608-μm long cavity used ICRs at 1/33 of the cavity lengths, giving
F = 2.1 THz (similar structures with lower Mh values produced ML at bit rates of the order of hundreds
of GHz depending on Mh and L).

TWMs have been long since been used for detailed analysis of the CPM (highlighting the importance
of incoherent colliding pulse e�ect, the fact that the SA is saturated simultaneously by pulses propagating
in both directions, as described by Equation 32.48, as opposed to coherent CPM e�ect, the self-induced
grating described by Equation 32.46, which in semiconductors is less important than in other active media
due to di�usion smoothing of the grating). All studies also predict higher stability and shorter pulses with
CPM than with ordinary PML, in good agreement with experiment. A version of TWM was also used to
explain and analyze the �rst realization of MCPM (Martins et al., 1995).

In terms of compound-cavity harmonic ML, TWM can help analyze the e�ects of the slot re�ectances
and positions (Yanson et al., 2002; Hou et al., 2010b, 2013) and bias current (Hou et al., 2013), with very
good qualitative, and good quantitative, agreement with experiments. A TWM study was also used to pro-
pose and analyze the use of an alternative method of harmonic selectivity in a mode-locked laser resonator,
a sampled grating re�ector (Kim et al., 1999), later successfully realized experimentally, see, e.g., Hou et al.
(2014) and references therein.

In principle, qualitative analysis can also be possible with DDE models (in fact, CPM can be analyzed,
and ACPM predicted, in VECSEL structures using a DDE model (Avrutin and Panajotov, in preparation)),
but this requires a customized model for each design whereas TWMs adapt to new design through a sim-
ple change of parameters. Harmonic ML is also one area where the time-frequency domain approaches
(Section 32.3.2), despite their limitations, can give some insight into the cavity geometry required for suc-
cessful harmonic operation (Martins et al., 1995; Yanson et al., 2002); however, TWM is still preferable for
full quantitative description of the regime.

In addition to CPM, TWM modeling was also used to highlight another possibility allowing for a better
saturation of the SA, which consists in placing the absorber close to antire�ection-coated laser facet. This
design is termed anticolliding mode-locking (ACML) and is inverse to that used for solid-state lasers where
the absorber is usually placed close to a high re�ection mirror, leading to self-colliding pulse mode-locking
(SCML). In this latter situation, the pulse is allowed to interfere constructively with its own re�ection onto
the mirror leading to an improved absorber bleaching. For semiconductor laser diodes, however, such
interferometric e�ects are rather weak due to the large value of the carrier di�usion coe�cient which,
in turn, reduces the coherent population grating created by the pulse self-interference as illustrated by
Equation 32.47. The analysis of the ACML (Javaloyes and Balle, 2011) showed that this design leads to a
substantial increase in output power, a reduction in amplitude and timing jitter, and an enlargement of the
range of currents where stable PML can be obtained. The reason is a consequence of the strong increase
of the laser �eld along the cavity axis and as it propagates toward the anti-re�ection facet, yielding a more
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intense saturation of the absorber, and comparatively a weaker saturation of the gain. These regimes where
the �eld is widely nonuniform along the cavity is one of the cases where a proper analysis demands using
a TWM approach.

TWM was also used for analysis and optimization of the geometry of a number of other ML laser designs.
Simulations of long-cavity (Frep ∼ 10 GHz) actively, passively, and hybridly mode-locked DBR lasers pre-
dicted that the optimal hybrid and PML performance could be achieved by placing the SA near the facet
rather than at the DBR (Hasler et al., 2005), probably largely due to the more e�cient absorber saturation
as discussed above (Javaloyes and Balle, 2011). TWM studies were also used to predict, in agreement with
experiment, that extended cavity laser designs containing a passive section were preferable to all-active
ones in terms of pulse duration and chirp (Camacho et al., 1997).

32.5 Microscopic and Semimicroscopic Approaches in
Mode-Locked Laser Modeling

32.5.1 The Basics of Microscopic Input in Mode-Locked Laser Simulations

As discussed above, phenomenological models of ML, either of delay-di�erential or traveling wave types,
can be successfully used to predict a number of qualitative tendencies and, to a degree, qualitative param-
eters of the ML process. However, for detailed comparison with experiments, some microscopic input
regarding the gain and SA section material is highly desirable. Some attempts at adding elements of micro-
scopic analysis to models of the type described in the previous section has been undertaken for some time,
see, e.g., Bischo� et al. (1997) for a relatively early example. The main challenge, and the main need for
microscopic input, arguably, is the accurate modeling of interplay of the spectral and temporal properties
of the material and laser dynamics. Most importantly, in most QW and, in some cases, QD lasers, the
operating wavelength is at the sharp edge of the SA absorption spectrum. As the absorber is saturated, the
absorption edge shi�s, which lead to a change in the operating point, variation in the absorber saturation
parameters a�ects self-phase modulation, etc. Likewise, due to the absorber selectivity, the operating point
can be detuned from the gain peak in the ampli�er section. In particular, this makes it di�cult to con-
struct a simulated map of regimes in the plane of “gain section bias current/absorber bias voltage,” since
the voltage a�ects simultaneously the absorber recovery time (relatively easy to model semimicroscopi-
cally as discussed below) and, more importantly, the spectral position of the absorption edge hence the
unsaturated absorption and the cross section. This complex interplay of e�ects is di�cult to capture with
Equation 32.42 or any of its time-domain implementations, for the SA in particular, and to a degree for the
gain section too. A more accurate (and thus ideally microscopically informed) model of gain and, partic-
ularly, saturable absorption spectrum as function of population (carrier density), and ideally temperature,
is thus required.

The di�culty with this problem is that a realistic microscopic evaluation of gain/absorption in semicon-
ductors is a formidable problem. To do so rigorously requires a many-body quantum mechanical approach
(Chow and Koch, 1999), which is a task so complex from the point of view of the various physical e�ects at
work, and so computationally resource-intensive that, at the time of writing, only a handful of research
teams worldwide have both the expertise and the computer capacity to attempt it, and to our knowl-
edge only one (the partnership between the Philipps-Universität Marburg and the University of Arizona)
is performing this task routinely. The approach has been applied to some mode-locked laser problems,
notably single-pass pulse modi�cations (Bottge et al., 2014) and steady-state ML pulse formation (Kilen
et al., 2016) in ultrashort-pulse mode-locked VECSELs, and has informed some work on edge-emitting
ML lasers, but to the best of our knowledge not yet been integrated into full analysis of high-bit-rate ML
dynamics.

Even in the simpler single-particle approximation ignoring many-body e�ects, microscopic evaluation
of the gain/absorption spectrum in a semiconductor material is, in general, rather nontrivial. For the
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case of a QW, or, with some reservations, QD active medium, the gain in the single-particle approach
is calculated as

g(ℏω) = A
∑

μ,ν ∫
|

|

|

M2
μν
|

|

|

(Ee−h)ρμν(Ee−h)
(
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(μ)
e ) + fh(E

(ν)
h ) − 1

)

L′
(

ℏω − Ee−h
)

dEe−h. (32.49)

Here, A is a proportionality coe�cient, Ee−h is the electron–hole energy separation, E(μ)e and E(ν)h are the
energies of the electron in the conduction subband (in the case of a QW material) or level (in the case of
QD material) μ and the hole in the valence subband/level ν, which are fully de�ned by the subband/level
numbers and energy separation. Furthermore, M2

μν and ρμν are the squared matrix element of the transi-
tion and the reduced density of states, respectively (each of which, in general, varies with energy and is,
in general, calculated from a transcendental equation in the case of nonparabolic QW subbands), fe and
fh are the electron and hole distribution functions (which in the case of QW materials are very close to
Fermi distributions given by the carrier density N and temperature T, and for QDs, in general, need to be
calculated from separate kinetic equations), and L′′ is the bell-shaped linewidth broadening function.

For a bulk semiconductor material (rarely used in mode-locked diode lasers), the summation over μ and
ν is not necessary as there are no multiple subbands in the valence and conduction bands, and the reduced
density of states and the matrix element are simple analytical functions of energy.

Still, the expression for the gain/absorption spectrum, in general, can only be evaluated numerically
in all cases. The refractive index modulation, needed to consider self-phase modulation in mode-locked
lasers, is then reconstructed using Kramers–Kronig relations.

The results are rather di�cult to parametrize and to implement in a time-domain model. Simple linear
or logarithmic approximations of the microscopic results, o�en used in the phenomenological models
described in the previous section, capture the carrier density dependence of the gain peak and the saturated
absorption, but not the spectrum.

The �rst step toward simplifying the problem is to approximate the linewidth broadening function L′′
(which in the general case of a non-Marko�an phase relaxation characteristic of a highly populated semi-
conductor has quite a complex shape) by a simple Lorentzian form, which follows from a density matrix
analysis with a Marko�an phase relaxation with a constant decay rate γT and is thus essentially identical
to the function describing homogeneous broadening in a two-level system (Equation 32.42):

L′ (Δω) = ReL (Δω) = 1
π

γT

γ2
T + Δω

2
; L (Δω) = 1

π
1

γT − iΔω
. (32.50)

This form of L′ is advantageous because the dynamic correction to the refractive index or the real part of the
dielectric permittivity (“imaginary gain”) is then calculated using the same equation as Equation 32.49 but
using the complementary linewidth broadening function L′′ (Δω) = ImL (Δω) = 1

π
Δω

γ2
T+Δω

2 , eliminating
the need for Kramers–Kronig transformation and allowing both gain and refractive index variation to be
implemented in time domain as discussed below.

Two main routes can then be successfully followed for using the results of Equation 32.49 in time-domain
analysis required for ML simulations.

The �rst one consists in using a number of approximations in order to simplify the expression
(Equation 32.49) (and its imaginary counterpart for the refractive index variation) to a level that per-
mits the integration in energy to be performed analytically, and thus can be realistically parametrized
as a (analytical) function of carrier density N and photon energy ℏω. This has been achieved (Balle,
1998; Javaloyes and Balle, 2010a) by considering a QW material with a single, parabolic subband for
both electrons and holes (hence constant reduced density of states), ignoring the energy dependence of
M2 (and γT) and considering (at least in the original version of the model) a very low (mathematically,
zero) temperature. In the frequency domain (Balle, 1998), this results in a complex dielectric permittivity
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correction (with the refractive index correction as the real part and the gain as the imaginary part) in the
form

χ(ω,N) = −χ0

[

2 ln
(

1 − D
u − i

)

− ln
(

1 − b
u − i

)]

. (32.51)

Here, χ0 is a constant proportional to the matrix element M2 (Balle, 1998) (which in practice can
be used as a �tting parameter in the model), D= πdQWℏ

mγT
N is the reduced carrier density, dQW and

m=
(

m−1
e +m−1

h

)−1
≈ me being the QW thickness and the reduced mass of the electron–hole pair;

b = ℏk2
m

2mγT
, km being the maximum wave vector in the �rst Brillouin zone of the semiconductor crystal; and

the frequency of the optical transition is parameterized as u=
ℏω−Eg
ℏγT

, where the bandgap Eg includes N-
and T-dependent renormalization.

This result was used, among other applications, in the work in DDE modeling of mode-locked VECSELs
(Mulet and Balle, 2005) discussed in Section 32.3.3. In such lasers, the operating frequency and the spectral
selectivity of the laser cavity are mainly determined by the resonator properties of the gain chip. A full
time-domain implementation of the gain spectrum was thus not required; instead, the complex dielectric
permittivity was linearized around the spectral point of operation which, as mentioned in Section 32.3.3,
was su�cient to achieve very good qualitative, and good quantitative, agreement with previously reported
experiments.

In time domain, the general form of polarization has the same form as Equation 32.44

P± =

∞

∫
o

χ(τ)Y±(t − τ)dτ. (32.52)

The time-domain version of Equation 32.51 results (Javaloyes and Balle, 2010a) in an integration kernel
more complex than the simple exponential of Equation 32.44, speci�cally of the form

χg(τ,N) = χ0e−
(

γT+i
(

ωg−ωref

))

τ 2e−iγT Dτ − 1 − e−iγT bτ

τ
. (32.53)

Here, ωg = Eg∕ℏ; the rest of parameters are the same as in Equation 32.51 and the normalized carrier
density D is, strictly speaking, evaluated at the time t − τ; however, since the carrier density even in the
faster recovering SA, let alone the gain section, does not change noticeably on the timescale of 1∕γT, using
the value at time t is usually accurate enough (Javaloyes and Balle, 2010a). Despite being, strictly speaking,
only applicable for very low temperatures such that κBT ≪ ℏγT , the kernel (Equation 32.53) is a reasonable
approximation for the highly degenerate gain medium. Its accuracy can be further improved to include the
�nite temperature, though this results in a more complex expression including special functions.

For the case of SAs, an alternative kernel expression was derived (Stolarz et al., 2011) with a �nite temper-
ature taken into account from the start, but with the Fermi distribution functions substituted by Boltzmann
exponentials, which is usually a safe approximation for the weakly degenerate SA material; in this case,

χα(τ,N) = χ0e−
(

γT+i
(

ωg−ωref

))

τ
{

D
[

ac
ac + iγTτ

+
av

av + iγTτ

]

− 1 − e−iγT bτ

iγTτ

}

, (32.54)

where ac,v =
m

mc,v

ℏγT
κBT and the rest of the parameters are as in Equation 32.53. Unlike the simple purely

Lorentzian kernel of Equation 32.44, neither of the functions (Equations 32.53 and 32.54) allow for a simple
iterative solution using only the previous point in time; instead, the integral must in practice go to an
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integration limit in τ of about τlim ∼ (3–6)/γT, making the number of previous points necessary for the
integration τlim∕Δt.

Despite being managed/mitigated in part by the e�cient numerical implementation (Javaloyes and Balle,
2010a), this approach is still quite taxing on the computer resources if implemented straightforwardly in a
TWM, since the need for numerical integration in the dispersion operator adds to the general limitations of
the TWM approach (the sti�ness of the problem requiring a small time step, and computational timescaling
as 1∕Δt2 due to the Δz = vgΔt condition). Its e�ciency can, however, be improved drastically with the
decimation technique discussed in Section 32.5.2.

The semimicroscopical approach in this form was successfully used to model a number of mode-locked
laser designs, including a “straightforward” two-section laser with an SA at a facet (Javaloyes and Balle,
2010b), a colliding-pulse mode-locked laser (Tandoi et al., 2013), and a specialist ring laser with an intra-
cavity �lter for spectral �attening and pulse duration reduction (Moskalenko et al., 2013); we shall consider
the results of Tandoi et al. (2013) here in somewhat more detail as an illustration of the possibilities and
certain limitations of the model.

While the quantitative agreement with experimental results is still not entirely accurate, microscopic
models of this type have allowed a number of new possibilities compared to purely phenomenological
approaches. The �rst of these is a much more meaningful, and directly comparable with experiments,
prediction of the map of regimes in the “gain section current/absorber bias” plane. Indeed, in QW materials,
the voltage applied to the SA has a double e�ect. First, it decreases the absorber recombination time. To a
good accuracy, this is described with an exponential dependence, e.g., in Tandoi et al. (2013), an expression

τSA ≈ τ0 exp[−F∕(f F0)] (32.55)

was used, with F0 = (κBT)∕(edQW) being the activation �eld predicted by the simple thermionic excitation
theory (Cavailles et al., 1992), and a correction factor f is introduced heuristically to take into account the
interplay between tunneling and thermionic processes (and possibly any well pro�le distortion). The val-
ues f = 0.5 and τ0 = 50 ps were given by �tting the measured τ(V0) but agreed well with estimates from
more sophisticated theory (Nikolaev and Avrutin, 2003). Second, in materials where the quantum-con�ned
Stark e�ect (QCSE, absorption shi� with voltage) is signi�cant, a voltage variation changes the bandgap,
thus a�ecting the operating point of the laser (unsaturated absorption and saturation cross section), which
the microscopic model successfully captures. This tends to be more pronounced in InGaAsP than in
aluminum-containing quaternaries. Strictly speaking, QCSE a�ects also the shape of the absorption spec-
trum, but this is as yet to be included in the model, since to the best of our knowledge there is as yet no
accurate calculation of absorption in a QW with both carriers and electric �eld present.

Finally, analysis of CW ML behavior requires, in addition to models of absorption spectrum and the
recovery time, also a model of the current heating in the absorber. Indeed, the material bandgap that fea-
tures in the kernels (Equations 32.53 and 32.54) is the renormalized temperature- (and carrier density-)
dependent one, and the absorber can get signi�cantly (up to about 10◦) heated by the photocurrent �owing
through it. This can be modeled (Tandoi et al., 2013) using a separate equation for the absorber bandgap:

dE(SA)
g

dt
= −γtherm

(

E(SA)
g − E(SA)

g0 + 2πRthjSA
(

|

|

VSA|| + Vbi
)

)

. (32.56)

Here, Rth is the thermal resistance of the SA, the photocurrent density can be estimated as jSA = eNSAdQW∕
τSA, and the voltage seen by the active region in the SA is a sum of the built-in potential drop Vbi = E(SA)

g0 ∕e
and the applied reverse bias |

|

VSA||. The parameters of the model were �tted in Tandoi et al. (2013) with the
experimental measurements, and then the thermal relaxation rate γtherm, which in reality is of the order
of inverse microseconds, sped up to 108 s−1, still slower than all characteristic times of laser dynamics but
within the possibilities of the model.
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Several features observed from the experimental results were well reproduced by the model, e.g., the
optimal pulses around 600 fs long were found in the case of a SA occupying 4% of the cavity; some deviation
from the best experimental results (430 fs) can be attributed to the approximate nature of the �tting of the
gain curve with the two-band model (Equation 32.53).

With the microscopically informed gain and SA models as well as the voltage dependence on the SA
recovery time, we constructed in Tandoi et al. (2013) maps of major characteristics of laser behavior in
the “ampli�er section current—absorber voltage” plane (Figure 32.13). The evolution of the ML quality
as a function of the current followed the predictions of the DDE and TWM theories, with a minimal bias
current to obtain the ML. The inspection of the time traces indicates that the degradation at high currents is
due to the leading-edge instability and to the competition with other harmonics ML solutions, where three
or four pulses propagate within the cavity. The evolution of the dynamical regimes as a function of the
reverse bias was more subtle. In the AlGaAs materials studied in Tandoi et al. (2013), QCSE was weak and
only the SA recovery time varied. This was, however, su�cient to capture the essential physical e�ects at
work and to reproduce the output power decrease and the photocurrent density increase with VSA. A faster
SA has enough time to recover its full absorption between pulses and, therefore, presents the full amount
of its unsaturated absorption to the pulse, which allows increased losses and photocurrent. Additionally,
the photocurrent generated in the SA induces a detuning of the SA bandgap, which eventually hinders
ML and decreases the output power. This is due to the fact that the SA can e�ciently be modulated only
within a limited spectral region around the bandgap and that the absorption increases on the blue side of
the spectrum.

The alternative approach to including microscopically informed gain and absorption spectra into a
mode-locked laser model has been so far implemented mainly in the context of QD lasers. In QD media,
carriers are localized in individual dots and so the global carrier–carrier collisions that establish a com-
mon quasi Fermi level in a bulk or QW material are not present. QD lasers still show inhomogeneous
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FIGURE 32.13 Parameter maps as a function of the SA reverse bias and of the gain section currently calculated using
a TMW with decimation and analytical gain dispersion spectrum, for (a) output power Pout, (b) photocurrent density
jSA �owing out of the SA section, (c) bandgap of the SA section −E(SA)

g /h, and (d) pulsewidth τpulse. The SA was 4%
of the cavity length (optimal case, in agreement with measurements). (From Tandoi G. et al., IEEE J Sel Top Quantum
Electron, 19, 1100608, 2013. Reproduced with permission).
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broadening described mathematically by an equivalent of the reduced density of states in Equation 32.49,
but the nature of this broadening is di�erent from the case of bulk or QW materials and stems, not
from a continuous energy spectrum of electrons and holes at each point in the material, but from the
presence of a large number of dots, with �uctuating dot size and composition, and thus energy lev-
els, in any microscopically large material sample, as already mentioned in Section 32.3.3. The Fermi
energy distribution among the carriers occupying the multiple energy levels is established, not by the
fast carrier–carrier collisions as in bulk and QW, but by slower processes of capture and escape and is
thus only approximate at room temperatures and nonexistent at cryogenic temperatures. The gain thus
cannot always be parameterized as a function of the total carrier density N. Instead, the populations of
multiple individual levels need to be determined dynamically by solving rate equations including the
kinetic processes of capture, interlevel relaxation, and escape, as well as spontaneous and stimulated
recombination (see Rafailov et al., 2011 and the corresponding chapter in this handbook for a detailed
description). In this case, trying to obtain an integral in Equation 32.49 analytically is problematic (some
approximate methods have been discussed in Rafailov et al. (2011) for the room temperature case, but
their accuracy has not been tested). Instead, a number of dynamic variables representing population
of levels, or slices of the energy spectrum of the carriers in the material (di�erent values of Ee-h in
Equation 32.49), at each point in time and space are introduced; the problem thus becomes not two,
but (at least) three-dimensional: time, space, and transition energy. To reproduce a spectrum faithfully,
the width of the slice should be smaller than, or at least comparable to, the homogeneous broadening
γT . This approach to QD ML laser modeling is much more complex than the simpler one ignoring the
inhomogeneous broadening as presented in Viktorov et al. (2006), but is also much more accurate. Its com-
putational e�ciency is comparable to that of using the analytical dielectric permittivity (Equations 32.52
through 32.54). Indeed, on the one hand, the number of variables characterizing carrier polarization
(gain and refractive index modulation) at each point is not just the carrier density but the popula-
tions of the individual levels, but on the other hand, polarization relaxation of each individual level is
Lorentzian (Equation 32.50), so an easy and e�cient integration kernel of the type of Equation 32.44 can be
implemented.

The resulting model has been used for mapping stability limits in a mode-locked laser and analysis of
pulse shape and chirp (Rossetti et al., 2011a,b), as well as the analysis of the e�ects of laser cavity geometry
(absorber location, cavity re�ectivities) (Simos et al., 2013; Xu and Montrosset, 2013), in particular �nding
the optimum SA length (Xu and Montrosset, 2013).

The microscopic approach of this type can be implemented both in the traveling-wave formalism as in
the papers above (particularly with decimation to improve the otherwise problematic numerical e�ciency)
and in a DDE model, particularly the multisection version (MS-DDE) as discussed in Section 32.3.3 (Ros-
setti et al., 2011b). With inhomogeneous broadening included, an MS-DDE model was used for the analysis
of problems including the peculiarities of ML operation involving both ground- and excited-level transi-
tions (Xu et al., 2012), as well as for modeling-tapered laser structures (Nikitichev et al., 2012), the latter
in agreement with both a TWM simulation by the same authors and with experiments.

In Pimenov and Vladimirov (2014), a multilevel approach was presented for a TWM of a “generic” inho-
mogeneously broadened medium, not necessarily QD. It can be foreseen that potentially, it can be used for
lasers with QW and bulk active layers, for example for a short-cavity QW laser where transitions from both
�rst and second electron levels (disregarded in Equations 32.52 through 32.54) can become important. In
principle, it could allow an arbitrary set of carrier density-dependent spectra, possibly calculated using a
many-body approach and/or using realistic QW parameters such as multiple-level transitions, strain, etc.,
by necessity omitted in Equations 32.52 through 32.54, to be approximated and reproduced in the time-
domain model. To a degree, the analytical spectrum approach (Equations 32.52 through 32.54) o�ers such
an approximation possibility as well by treating the e�ective masses of carriers and matrix elements as �t-
ting parameters, which has the advantages of involving much fewer parameters, but may be somewhat less
�exible.
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32.5.2 Improving the Numerical Efficiency of TWMs:
Decimation/Space–Time Folding

So far, we have considered, on the one hand, the DDE models (Section 32.3.3) which are simple, e�cient,
instructive, and allow automated bifurcation analysis by numerical continuation and in the simplest cases
also analytical insight, but are not always accurate in reproducing the behavior or realistic edge-emitting
laser constructions, and, on the other hand, full TWM models (Section 32.3.4) which are potentially
very accurate in representing a realistic laser, but rather computationally intensive and incompatible with
automated bifurcation analysis.

The numerical technique of decimation presented below, which builds on an earlier model for laser
designs where gain and SA dispersion are negligible compared to the e�ect of a lumped dispersive element
(re�ector) such as a DBR (Vladimirov et al., 2009) to apply to the general case of signi�cant gain and SA
dispersion (Javaloyes and Balle, 2012b), allows the advantages of both models to be combined to a large
degree.

The starting point for the technique is a TWM in the general form of Equation 32.40, which can be
compactly rewritten (keeping only the deterministic part so far) as

±
∂Y±
∂z

+ 1
vg

∂Y±
∂t

= Z± = Pt
± − αfY±, (32.57)

where αf = αint∕2 is the “�eld” internal loss, and the “total” polarization Pt
± includes the dynamic coupling

terms:

Pt
± =

(1
2

ĝmod + ikrefΔ̂ηmod

)

Y± + iK̂±,∓Y∓. (32.58)

(Note that the dynamic coupling terms can include dispersion in the same way as the “copropagat-
ing” polarization terms, as is indeed the case in the semimicroscopic model used in Javaloyes and Balle
(2010a,b), though this is not likely to have a major e�ect as the dynamic coupling is usually weak anyway.)
The formal solution of Equation 32.51 is obtained in the form

Y±(z, t) = Y±(z ∓ vgτ, t − τ) + Ξ±(z, t); Ξ±(z, t) =

τ

∫
o

Z±(z ∓ vg(τ − ϑ), t − τ + ϑ)dϑ. (32.59)

Then, assuming that the time interval is su�ciently short for the variation of the �eld along the traveling
coordinate ξ∓ = z ∓ vgt to be modest (crucially, no such requirement is made to the variations in z and
t separately—in short-pulse ML, these can be quite strong due to the steep pulse fronts, but the evolution
in the pulse shape as it propagates is relatively gentle meaning that variation along ξ∓ remains gentle), it is
possible to approximateΞ±(z, t) =

vgτ
2 (Z±(z∓vgτ, t−τ)+Z±(z, t)). Then, using a (1,1) Padé approximation

exp(x) ≈ (1+x∕2)∕(1−x∕2), one obtains a �nal formula relating the �elds and polarizations at the previous
and current points:

(

1 +
αfτ
2

)

Y±(z, t) =
(

1 −
αfτ
2

)

Y±(z ∓ vgτ, t − τ) +
vgτ
2
(Pt
±(z ∓ vgτ, t − τ) + Pt

±(z, t)). (32.60)

This formula can be, and is, implemented directly in a numerical solver, in which a laser is separated into
a number of segments nsect with a length vgτj, j = 1,… , nsect.

Accurate calculation of the polarization with the spectrum taken into account still requires a small tem-
poral integration step Δt (commensurate with 1∕γT); however, crucially, when using Equation 32.59 as a
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basis of the numerical procedure, the spatial step vgτj is limited only by the degree of uniformity with the
�eld (roughly speaking, the requirement that vgτj

|

|

|

g mod j
|

|

|

<< 1, gmodj being the characteristic value of the
modal gain (or absorption) in the section of the laser with the length vgτj). This is a much less stringent
requirement, meaning that the space and time steps are essentially decoupled and the computational time
therefore scales, not as 1∕Δt2 as in the straightforward TWM, but only approximately as 1∕Δt.

From the numerical point of view, it is important to have an integer relation between the time and space
steps:

τj = ndjΔt, (32.61)

where the integer number ndj is the decimation factor of the spatial section j. It is not necessary (nor advis-
able) for all the sections to have the same decimation factor; e.g., typically, in the SA part of a passively
or hybridly mode-locked laser (where the �eld is less uniform), it is advisable to set the decimation factor
smaller than in the more uniform gain sections. For numerical simplicity, identical decimation factors are
typically used in all gain sections and in all SA sections, e.g., nd(gain) = 71 and ndSA = 8 were used in
Tandoi et al. (2013). This implies that the computation time required in a model with decimation is only
a few percent of the time needed for the same calculation with a straightforward TWM model, which is
indeed the case.

Mathematically speaking, a model with decimation is a set of nsect delayed algebraic equations (DAEs)
with the delay of τj = ndjΔt in each section j. This section replaces having to deal with ndj spatial steps
which would be the case in a straightforward TWM analysis, which is why the alternative (original) term for
the decimation technique is folding space into time delay. As the number of the DAEs in a typical simulation
is not large (<∼10), the decimated model, unlike a straightforward TWM, is compatible with the numerical
tools for bifurcation analysis.

The decimation/space-time folding technique of Tandoi et al. (2013) was not the �rst attempt at improv-
ing the e�ciency of the traveling-wave solver. For example, this was attempted, with some degree of success,
in the semianalytical TWM technique by Carroll et al. (Jones et al., 1995; Carroll et al., 1998), in which,
however, the (homogeneous broadening type) digital �lter was explicitly incorporated into the solver and
the conditionΔz = vgΔt, eliminated in the decimated TWM, still stood. The decimation technique is thus
both much more powerful and more versatile in that it can be used with any arbitrary method of calculat-
ing the polarization Pt

±, including either of the two microscopic approaches discussed in Section 32.5.1, or
indeed a phenomenological two-level type dispersion representation of Equation 32.44.

However, the decimation technique is both particularly useful and particularly instructive with the ana-
lytical kernel technique of Equations 32.54 and 32.57, for which it was originally derived and used (which is
the reason we have chosen to place the description of the model within the section on microscopic input).
Figure 32.14 illustrates the “stencils” showing the time and space points required for propagating the �elds
in three major cases: (1) the TWM with a homogeneously broadened line (Figure 32.14a), (2) a straight-
forwardly implemented TWM with the analytical kernel (Figure 32.14b), and (3) the decimated model
with the same analytical kernel and nd(gain) = 8, ndSA = 2 (Figure 32.14c). The sparsity of the stencil
clearly shows how the decimation allows the sophistication of the microscopic model to be retained while
drastically improving the e�ciency of the calculation.

We note, following Javaloyes and Balle (2012b), that the decimated TWM contains as particular cases the
two other major model types discussed in previous sections. Indeed, with nd(gain) = ndSA = 1, it reduces
to a straightforward TWM of Section 32.3.4. For a unidirectional ring cavity (and particularly for a homo-
geneously broadened line), it reproduces the DDE approach of Section 32.3.3 (Javaloyes and Balle (2012b)
noted also that for a single-frequency laser, their model can, in principle, reduce to a generalized complex
rate equations formalism, but that is by de�nition not relevant for ML). A decimated TWM with an ana-
lytical kernel technique for gain/refractive index dispersion has been implemented to include a number of
laser geometries including but not restricted to mode-locked lasers, and is available online as free so�ware
(MATLABⓇ toolkit) under GPL license (Javaloyes and Balle, 2012a).
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FIGURE 32.14 Calculation “stencils” illustrating �eld propagation in traveling wave modeling. (a) TWM with
homogeneous broadening (Lorentzian gain spectrum), (b) analytical gain spectrum in a straightforward TWM, and
(c) analytical gain spectrum in a TWM with decimation.

32.6 Some Novel Problems and Challenges in Mode-Locked Laser
Modeling

32.6.1 Coherent Population Effects as a Possible Saturable Absorption
Mechanism

One of the most important developments in mode-locked semiconductor laser technology in the recent
years has been the direct generation of ultrashort (tens to a couple of hundreds of femtoseconds) pulses
that until recently have been the domain of solid-state lasers only. Only one type of semiconductor lasers
has been reported to produce such pulses so far, namely an optically pumped VECSEL, with the gain and
SESAM chips in a folded (V-shaped) external cavity arrangement (Klopp et al., 2009, 2011; Quarterman
et al., 2009; Wilcox et al., 2008). One of the teams that produced the femtosecond ML pulses attributed



9781498749565_C032 2017/8/31 12:03 Page 226 #44

226 Handbook of Optoelectronic Device Modeling and Simulation

their results to coherent e�ects in the SESAM elements, namely the optical (ac) Stark e�ect. This e�ect,
related to self-induced transparency, has the relaxation rate equal to the inverse of the dephasing (coherence
decay) time. In semiconductors, this time is determined by carrier–carrier (and carrier–phonon) collisions
and is of the order of 50–100 fs. This belongs to the fast, rather than slow, absorber regime, when the
SA recovery time is shorter than the pulse duration. Indeed, theoretical analysis (Mihoubi et al., 2008;
Wilcox et al., 2008), based on iterative small-signal time domain approach not dissimilar to that covered
in Section 32.3.1 for a standard SA, showed that the pulse duration possible with this mechanism is about
twice the dephasing time, which agrees well with the experiments. Further developments of this work are
ongoing and are likely to rely not only on the experimental progress but also achieving better understanding
of the limits and the requirements on the laser model through improved modeling.

There has also been work recently on the theoretical analysis of (so far, hypothetical) coherent ML
through self-induced transparency e�ects in an edge-emitting class B (possibly semiconductor) laser geom-
etry (see, e.g., Arkhipov et al., 2015a, 2016a,b), which promises femtosecond pulses but relies on extending
the phase relaxation time, possibly by working under cryogenic conditions.

32.6.2 Spontaneous ML in Single-Section Lasers

Most of the discussions above concerned passive or hybrid ML constructions including an SA. However,
in recent years, a very interesting development in ML laser technology occurred, when several teams have
observed—and utilized—ML in single-section lasers without SA sections and without any external mod-
ulation either. The ML in this case was not of a pure AM ML type and the laser output only acquired
short-pulse characteristics a�er external chirp compensation.

This e�ect has been observed in quantum dash (see, e.g., Duan et al., 2009; Gosset et al., 2006; Ros-
ales et al., 2011), QD (Lu et al., 2011; Renaudier et al., 2005), QW (Sato, 2003; Yang, 2011), and even bulk
materials (Yang, 2011), as well as in intersubband, far-infrared quantum cascade lasers (Faist et al., 2016
and references therein) showing that the e�ect is fairly generic. Further optimization of these lasers may
partly depend on the establishment of full understanding of their behavior, yet at the time of writing, a
full, universally agreed, theoretical explanation for ML in single-section lasers is still pending, and it is not
impossible that di�erent e�ects can play the main part in di�erent constructions. In the past, some authors
(Shore and Yee, 1991; Yee and Shore, 1993) used frequency-domain models with postulated, and di�er-
ing, self- and cross- nonlinearity coe�cients to show that nonlinearities in single-section semiconductor
lasers could lead to a steady-state regime with �xed phases; this was predicted to produce, not the AM
ML that corresponds to short-pulse emission, but the so-called frequency modulation ML, in which the
phases of adjacent modes di�er approximately by π, and the outcome is a CW-like regime with periodic
carrier frequency oscillation. More recent works (Nomura et al., 2002; Renaudier et al., 2007), also using
frequency-domain analysis with microscopically calculated (Nomura et al., 2002) or phenomenological
(Renaudier et al., 2007) description of linear and nonlinear gain, predicted a possibility of ML-type signal
generation, including AM ML for certain cavity lengths and active layer parameters, in a single-section
laser with three modes involved in lasing, due to mode coupling by population pulsations/four-wave mix-
ing e�ects. This appears to agree with traveling-wave modeling (Section 32.3.4) analysis for the case of a
DBR laser without an SA (Bardella and Montrosset, 2005); Bardella and Montrosset (2005) also identi�ed
the role of four-wave mixing in their construction. Recently, a microscopic TWM analysis of a QD single-
section laser has been presented (Gioannini et al., 2015), relying on both the nonequilibrium occupation of
multiple levels due to inhomogeneous broadening and an additional phenomenological gain compression
coe�cient. The authors concluded that the suppressed carrier di�usion and the fast ground state (GS) gain
recovery, typical of quantum dashes and QDs, were the mechanisms behind the phase-locking among the
laser modes. Time-domain modeling on single-section ML (comb generation) in quantum cascade lasers
has also been reported (Tzenov et al., 2016), though it has to be noted that the short upper state lifetime in
those lasers makes their dynamics very di�erent to that of other semiconductor lasers.
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Further work extending the understanding achieved this far to other active media is desirable and
hopefully forthcoming.

32.7 Concluding Remarks

We have attempted to review the most important developments in semiconductor mode-locked laser mod-
eling. The topic is very dynamic and fast developing, so the choice of emphasis in this review was by
necessity subjective; we apologize to those authors whose work may not have been given due prominence.
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