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Abstract

Faults play an important role in recharging many geothermal reservoirs, and seismic information can
image the locations of these faults. The value of information (VOI) metric is used to objectively quantify
and compare the value of two types of seismic receiver data via a machine learning approach. The
demonstrated VOI methodology is novel by including spatial models from seismic data and obtaining
the information statistics from machine learning. Our 2D numerical experiments compare images created
from sparsely-spaced (80m), two-component geophone sampling to high spatial resolution (1 m), single-
component DAS. We used a 3-fold cross validation of a U-Net CNN to achieve average classification
statistics. The results suggest that when horizontal sources are utilized, geophones and DAS identify
reflectors and non-reflectors at roughly the same rate. The average F1 score for horizontal DAS is 0.939
and 0.931 for geophones. For images created from a vertical source, DAS performed marginally better
(F1=0.919) than geophones (F1=0.877). Our transferrable methodology can provide guidance on which
acquisition scenarios can improve images of important structures in the subsurface, and presents an
efficient method for obtaining reliability statistics from high dimensional, spatial data.

1 Introduction

Drilling decisions for geothermal development are full of uncertainty. Designing a data collection regime
is not easy given the high degree of complexity found in the heterogenous subsurface. Likewise, there is
always uncertainty associated with different data types’ ability resolve the magnitude of permeability and
temperature or the presence of fluids, all of which ultimately determine a geothermal reservoir’s capacity.
Value of Information (VOI) theory provides a powerful framework for determining the utility of informa-
tion when making decisions with uncertain outcomes [1]. The VOI metric has the potential to be extremely
useful for subsurface characterization, as new data collection is often expensive and its efficacy is uncertain.

Historically, non-dimensional probability distribution functions are used to describe the “imperfectness” of
geophysical attributes to correlate with rock properties [2; 3]. [4] introduced spatial correlation of porosity
via 2D reservoir models to demonstrate the value of combined CSEM and seismic amplitude measurements
via VOI. [5] provides an overview of VOI for oil and gas decisions, noting that up to its publishing date
most reliability assessments of the information relied on subjective expert opinion, where the reliability is
the quantitative measure of the “imperfectness” of the information source being evaluated. [6; 7; 8] are
examples of assessing geophysical data worth for aquifer management. VOI evaluations have also been
developed for geothermal exploration focusing on how inversion of magnetotelluric data affects the spatial
interpretation of clay cap locations or thickness [9; 10].
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None of the previous VOI work utilized spatial models built by seismic data. Active seismic surveys can
provide more reliable 3D and 4D measurement of the subsurface, compared to other diffusive geophysical
measurements. This paper is motivated by the active seismic source experiments from the PoroTomo project
(short for Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hy-
drology) In March 2016, PoroTomo acquired four-weeks of geodesy, interferometric synthetic aperture radar
(InSAR), hydrology, distributed temperature sensing, passive source seismology, and active source seismol-
ogy data [11; 12]. These data were jointly collected to characterize rock mechanical properties and faults,
which provide permeability for geothermal fluid movement, of Brady Natural Laboratory, an 18 MegaWatt-
producing geothermal field. Faults are a potential seismic target as they may represent geologic offsets and
thus provide seismic reflections, both of which have been previously interpreted from seismic data at Brady
[13; 14]. The survey included 238 multi-component geophones, 156 three-component (vertical and orthog-
onal horizontal) vibroseis source locations that swept from 5 to 80 Hz in 20 seconds, 300 meters of borehole
(vertical) and nearly nine kilometers of trenched, surface (horizontal) fiber-optic cable.

In this paper, we use migration to evaluate how well the faults at Brady could be located using the receiver
information from the horizontal DAS and two-component (2C) geophones. Seismic migration models are
used to construct 3D subsurface features by simulating the source and receiver wavefields [15]. Different
prestack depth migration experiments are implemented, inspired by the acquisition geometry of PoroTomo
and a priori fault information of Brady.

Figure 1 displays the PoroTomo survey geometry of the vibroseis locations, the geophones and the horizon-
tal fiber optics, which recorded both distributed acoustic and temperature sensing (DAS and DTS) data. The
geophones have an average inline spacing of 80 meters. This spacing is considered sparse for active-seismic
applications, which generally will have an average geophone spacing closer to 20 meters, and was due in
part to permitting issues around existing historical sites in the area [16].

To demonstrate our VOI methodology, we use the PoroTomo field acquisition parameters to generate syn-
thetic DAS and geophone data. We use synthetic data for two main reasons: 1) the ability to produce many,
“ground truth” training models for statistical learning and 2) issues with the real PoroTomo active source
dataset. For the statistical learning, we use convolutional neural networks (CNN) to provide classifica-
tion accuracies to compare between migration models constructed by horizontal DAS versus 2C geophones
[17; 18]. Although vertical DAS field data from the active source surveys were useful for migration [14],
and the passive horizontal DAS field data were successful in detecting regional earthquakes [19; 20], un-
fortunately, the sparse geophones and short offset of the survey (max 1,100m, see Figure 1) created spatial
aliasing and lack of moveout observed in the PoroTomo data, respectively. Noise removal thus was ex-
tremely challenging and extended beyond the capability of the original team and available resources.

The objective of this paper is to present a novel VOI methodology that uses a CNN algorithm to sta-
tistically compare spatial models (2D images) from two types of seismic data. We present 2D numerical
experiments to demonstrate how our methodology captures physical strengths and weaknesses of the multi-
component geophones and the spatially-dense DAS data, both alone and together. This is assessed through
the 183 2D reflectivity models constructed from reverse time migration of the data. As we will describe, our
synthetic simulations cannot capture all of the challenges that will encumber seismic data, especially DAS.
We emphasize that the current DAS and geophone comparison are an illustration of a methodology. This
methodology is transferable to other scenarios beyond the experiments presented in the paper; it can provide
guidance on other data types that produce spatial images of important structures in the subsurface.

The paper is organized as follows. Section 2.1 describes the posterior probability statistic needed for VOI
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Figure 1: PoroTomo survey geometry. Green dots represent source locations, red dots represent geophone
locations, and the blue line represents the surface DAS layout.

calculations and the fault model of Brady Hot Springs that serve as the decision variable and labels. Section
2.2 describes modeling that simulates the DAS and geophone measurements. This section also describes
the migration method used to reconstruct the fault locations from these seismic measurements, which are
used as the ”features” in machine learning. Section 2.3 describes how the CNN U-Net algorithm is trained
separately on the different migrations models from the DAS, geophone and the different source scenarios.
Finally, Section 3 presents the posteriors and VOI for the different receiver and source combinations.

2 Methodology

This section describes our methodology that quantifies the accuracy of fault locations in the 2D subsurface.
First, we describe the value of information metric and the fault model used. Next, we briefly introduce the
imaging approach, which accounts for the different sensitivities and spatial densities of the two sensors:
2C geophone and horizontal fiber. Lastly, the efficient and novel method for assessing the reliability of the
images obtained from different sensors via convolutional neural networks (CNN) is described.

2.1 Value of Information (VOI)

The VOI method accounts for the uncertainty of a particular information source through the posterior distri-
bution,

Pr(Θ = θi|Θint = θj)S,R =
(Pr(Θ = θi))Pr(Θ

int = θj |Θ = θi)

Pr(Θint = θj)
;∀i, j = F,NF (1)

where θ can represent the actual occurrence of a structure in the subsurface and θint represents the inter-
preted structure from the proposed (geophysical) data. For the purposes of our VOI problem definition,

JERT-20-1140 Trainor-Guitton 3

Journal of Energy Resources Technology. Received February 20, 2020;
Accepted manuscript posted July 23, 2020. doi:10.1115/1.4048051
Copyright © 2020 by ASME



the fault locations are the decision variable θ. Specifically for the PoroTomo example, the reliability will
quantify how often interpretations of faults (θintj=F ) align with the actual presence of faults (θi=F ), and vice
versa. Faults are important structures for geothermal systems: they often provide fluid conduits for both
upward and downward circulation, allowing for production and recharge of geothermal fluids [21]. There-
fore, at each location within a migrated image, there would be either a fault (F) or absence of a fault (NF).
The reliability is a conditional or posterior probability, which summarizes how frequently the interpreta-
tions from geophysical information align correctly or incorrectly with actuality and can be thought of as
capturing the “imperfectness” of the information being considered. Lastly, the subscript S and R repre-
sent the types of source and receivers used to obtain the information. As described in the next section, we
have six combinations of different S and R, two sources S = (horizontal, vertical) and three receivers
R = (geophones,DAS, both). Therefore, all combinations of S and R result in six possible posteriors
(Equation 1).

The value with imperfect information

Vimperfect S,R =
∑

j=F,NF

Pr(Θint = θj)max
a

 ∑
i=F,NF

Pr(Θ = θi|Θint = θj)S,R va(θi)

 (2)

uses the posterior (Equation 1) as a weight on utility outcomes (v) from different decision alternatives (a,
e.g. drill or don’t drill), as represented by va(θi) [9]. To quantify and compare the value of using distributed
acoustic sensing versus geophones in surface acquisitions, six reliabilities (Equation 1) can be calculated to
get six Vimperfect’s: geophone, DAS and the combination of both (3 R’s) with both a horizontal and a verti-
cal source (2 S’s). The focus of our work is to quantify the “imperfectness” or the posterior probability for
seismic images created with the different sensors R; in the Results section (Section 3), we will use nominal
utility outcomes (v) and simple possible alternatives (a), to demonstrate final Vimperfect values.

2.1.1 2D Fault / Not Faults Models: Decision variable & Labels for CNN-UNet

For all six reliabilities computed, the faults shown in Figure 2 serve as the true fault locations: θi=F . These
are the a priori locations of major faults given legacy seismic and well observations as interpreted by [22].
Some of the faults are interpreted to have up to 10 meters of displacement and thus could provide reflections
of the seismic energy [13]. Therefore, the faults both serve as a subsurface structure that will influence
geothermal production decisions (e.g. ideal locations for new wells) and as a subsurface feature that can be
mapped by reverse-time migration of geophone and/or DAS data (described in the next section).

To compare images from the geophones, DAS and a combination of the two, 183 2D slices are taken from
the 3D model (Figure 2a) along the main faults’ strikes (the PoroTomo y-axis). One example slice, which
contains a variety of structural dips, is shown in Figure 2b. The faults are used as a reflectors within a con-
stant velocity model.

Figure 3 demonstrates the Methodology workflow. This Section (Section 2.1) covered the fault model
and its importance to geothermal decision-making, which is captured in the VOI metric. The next section
(Section 2.2) will describe the sources, receivers and migration technique which creates the 2D seismic
images. Section 2.3 will describe how six CNN models, one for each source and receiver combination, will
be trained and tested to obtain the reliability statistics (Eqn 1). The labels (fault/not fault) come from our
best understanding of Bradys geothermal reservoir (Figure 2) and the migration images of Section 2.2 serve
as the “features” for the CNN U-net model.
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a) b) 

Figure 2: a) a priori fault model from [22] with source locations in green on the surface. b) One example
2D cross section from the 3D model in a, represented by150x155 pixels. The faults (in white) serve as
reflectivity boundary for seismic exploration.
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2.2 Spatial Models with Migration: Computing the Features for CNN UNet

This subsection describes how spatial models from the seismic data are constructed to assess if a fault ex-
ists or not at a certain location. Importantly, the imperfectness of the sensors will depend on the physical
limitations of the sensors to create accurate prestack depth images. Reverse time migration (RTM) is used
for the experiments to convert the synthetic seismic data into information about the fault positions in the
subsurface. First, we describe how we model the measurement for each sensor type separately.

2D elastic forward modeling is used to produce strain (as measured by DAS) and displacement (as mea-
sured by geophones) data along the surface of our 2D example excited by both horizontal and vertical forces
separately. DAS strain measurements, aligned in the X-plane εXX , are measured every one meter across
the experiment surface and integrated over a gauge length (described further below). Vertical and horizon-
tal particle displacement (uz and ux, e.g. two components) represent the geophone measurements and are
recorded every 100 meters. As seen in Figure 1, the PoroTomo survey did not include a straight fiber that
was this long. It did include, however, a maximum offset of 1,500-meters across the entire survey. A 2D
line of 1,500 meters was utilized to numerically simulate data with similar offsets as the PoroTomo survey.

Unlike the geophones, which are a point-sensor, DAS is a “linear” sensor: averaging the distributed mea-
surements (e.g. strain or more precisely differential displacement over a gauge length) along the fiber. Thus,
an attribute that needs to be modeled is the gauge-length. The gauge-length of fiber acts as a moving average
[23]. The gauge-length in the PoroTomo survey was set at 10-meters, so the modeled data is a matrix mul-
tiplication of 1

10 for the gauge length, the spatial sampling 1-meter, and the raw point strain data simulated
by the finite difference code after [24] which utilizes the Madagascar software package [25].

To produce images from the simulated seismic measurements, we use reverse time migration (RTM). In
simple terms, reverse-time migration, pioneered by [15], is a technique that numerically simulates both the
source wavefield WS (produced by the seismic vibrator) and the recorded wavefield signal WR (recorded
by the sensor, either the DAS or geophones) with the objective of constructing 2D or 3D models that locate
where prominent reflectors are in the subsurface. WS is propagated forward in time, and the observed or
synthetic data, WR, are backward-propagated in time in the same space. Both wavefields are then cross-
correlated at each time step t, and summed across all time steps to form the final image R as follows:

R(x) =
∑
k,t

WS(k, x, t)WR(k, x, t) (3)

where x is a vector of spatial coordinates and k the shot index. By computing the cross-correlation of the
two wavefields, RTM attempts to locate where reflectors are in the 3D subsurface. This zero-lag cross-
correlation is known as the imaging condition. The energy-norm imaging-condition is used to combine the
source and receiver wavefields [26]. In this work, the energy-norm creates a single elastic image that repre-
sents the measure of reflected energy; importantly for this work, it produces one final image that allows for
an easy comparison of migrated elastic data between geophone and DAS data.

Two-dimensional elastic forward modeling is used to produce two types of WR: strain (as measured by
DAS) and particle velocity (as measured by geophones). Both receiver wavefields are recorded along the
surface for our experiments. Two different sources are required to create the receiver wavefield WR, which
will be back-propagated. An acceleration force is used for back propagation of the geophone data and a
stress tensor is used for back propagation of the DAS data. Next, the source wavefield WS is generated. The
source wavefield is a forward modeled from the original source locations through a smooth velocity model.
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Ideally, to generate the combined image (DAS with geophones) the back-propagation of the two data types
(ε and u) should be done simultaneously, but this was not possible with current codes, so the data are back
propagated individually. The geophone and DAS reflectivity are normalized separately and then added to-
gether to create the combined image. We recognize that normalizing and adding together is not the ideal
method to combine the two images from the different data types. However, we contend that our goal was
to construct the entire VOI workflow, thus the improvement on combining the images can be future work.
Our objective of assessing the non-ideal combination image was to see if artifacts from the separate images
would be cancelled out.

The broadside insensitivity of DAS describes its inability to record signals which arrive perpendicular the
the DAS cable [27]. Optical fiber recording is a widely accepted for downhole VSP recording [28; 29; 30;
31; 32; 33]; the strong reflected, primary-wave signal will intercept the vertical well parallel to the fiber,
providing the highest recording sensitivity for DAS. In a borehole, the vertical fiber is insensitive to the
horizontal component of strain, εXX ; however for surface (horizontal) DAS, this is the component that is
measured. [32] and [34] represent the published studies with active-source, surface (horizontal) DAS acqui-
sitions. Daley et al. [32] experiment with a vertical vibrator (vertical-force) source. The authors concluded
that the offset-to-reflector depth ratio was not sufficient to record the reflected P-wave on the DAS fiber due
to the relatively small incidental reflected angle and low signal-to-noise ratio. Horizontal source mecha-
nisms must be investigated before such a conclusion can be made about the feasibility of using surface DAS
fiber.

For our 2D experiments, both vertical and horizontal force sources are modeled to represent a vertical and
horizontal vibe sources, which were also collected for the PoroTomo field experiment [11]. Surface DAS
data will have directional sensitivity to different types of waves. Since surface horizontal DAS is sensitive
to the horizontal component of particle differential displacement, short-offset P-wave reflections will not be
recorded on surface DAS, assuming a flat-layered earth. This is not the case for our experiments which are
modeled after the steeply dipping faults at Brady (see Figure 2).

Seismic sources in the PoroTomo experiment are not on a uniform grid, and the source spacing is as large
as 150 meters. A constant source spacing of 75 meters (which is about the average source spacing in the
PoroTomo survey) is used to minimize migration artifacts from poor illumination. Seismic illumination
describes how well the 3D subsurface is sampled and is determined by the source-receiver geometry and
velocity model [35]. The velocity model used was generated from observed Brady data and is described in
both [36] and [14].

2.3 Efficient reliability statistics via Convolutional Neural Network Analysis

This paper presents the first demonstration of VOI applied to seismic migration images; thus, the fault/no-
fault interpretations, θint, derive from these images. The interpretations are achieved efficiently via a ma-
chine learning approach to interpret the respective fault and no-fault features in the migrated image, pro-
viding a measure of the “imperfectness” of the seismic image, described by Equation 1. Next, we describe
how convolutional neural networks (CNN) are applied to detect faults within the seismic image, and return
the Bayesian statistics needed for a VOI evaluation. The common application of CNN’s to images is to
predict labels from features. In a slight contrast to the mainstream application, the role of the CNN for our
study is to compare the quality of the images across the six source and receiver combinations; we do this by
separately training the CNN on each combination.
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Neural networks are one of the most powerful machine learning algorithms that can be utilized for object
recognition in the seismic images. Convolutional Neural Networks (CNN) in particular are at the core of
most state-of-the-art computer vision solutions [17]. In particular, our goal is a semantic segmentation, in
which the machine learning algorithm classifies every pixel in our model as fault or not-fault. U-net is a
CNN originally used for biomedical image segmentation, but it is also applicable to geophysics image seg-
mentation due to the similarities between the problems of identifying cell divisions and identifying faults
[18].

U-net functions much like a typical CNN, but it utilizes additional operations that create the “U” shape ar-
chitecture shown in [18]. The seismic migration images along with their labels are inputted at the top left of
the “U” network. The images are then re-sampled, cropped or re-scaled as they travel down and across the
“U”, through various layers of convolutional filters, cropping, and pooling functions. The physical distance
represented by the space between two pixels increases as the U-net progress downward, allowing the U-net
to capture features at different scales. The U-net then expands upward on the right-hand portion of the “U”
network as the image is scaled back upward so that pixel-wise segmentation can be performed. The output
at the top right of the “U” are N probability maps, where N is the number of classes being segmented by
the neural network. In our case there are two probabilities associated with either a fault or not fault occurring.

After two convolutional layers, the seismic image is downsampled through a max-pooling operation, in
which the highest value in a sliding 2x2 filter is taken as the representative value for that window (red verti-
cal arrows). This pattern continues for several cycles until the bottom of the U-net is reached. The seismic
images are then upsampled after every two convolutional layers via a transposed convolution, otherwise
known as deconvolution [37]. The final layer is a 1x1 convolution that assigns a set of probabilities (ranging
from 0 to 1) for each pixel that represent how certain that the pixel belongs to each class.

Throughout the network, the feature maps are periodically copied and sent to the other side of the “U”.
This process serves a couple of purposes. First, it enforces regularization upon the network, preventing
the U-net from becoming too focused on a single representation of a fault. The copy layers also help with
back-propagating weight updates for the convolutional filters through the network during learning, as weight
updates can reach the earliest layers more quickly than without the copy layers.

Besides the copy layers, the network is also regularized in a few other ways. After each convolutional
layer, an activation function is used to determine which neurons actually fire based on the results of the
convolution. The activation function used is rectified linear units (ReLU), which sets the output to zero if
the output of the convolution is negative, otherwise the original value is maintained. This helps deactivate
unnecessary neurons in the network and reduce the computation cost of training and testing. Additionally,
certain neurons are deactivated independently of ReLU in a process called dropout. A dropout rate of 2.5%
is used after every max pooling or upconvolution operation. Finally, the outputs of each convolutional layer
are normalized in a process called batch normalization, which improves the learning process for the neural
network [38].

2.3.1 3-Fold Cross Validation & Accuracy Metrics

We train and test CNN models separately for the 6 groups of images: three different combinations of re-
ceivers (DAS alone, geophones alone, and the combination of the two) and the two sources (horizontal
and vertical). To ensure accuracy metrics were not specific to one particular training and test split, cross-
validation (CV) was performed using a three-fold CV. A 67/33 training-testing split was used: three sets of
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Figure 4: The confusion matrix contains all the accuracy metrics from the CNN. The rows contain the true
labels; the columns the predicted labels. Accuracy, precision, recall and F1 metrics are all derived from the
four entries in the matrix.

122 images for training and 61 for testing. The same three train/test split were used for all 6 source-receiver
models to ensure consistency. The training and testing loss were monitored during the cross-validation.
Training continued until the loss didn’t improve after 5 epochs , where our chosen loss function is the dice
coefficient [39]. Then the average of the 3 sets of evaluation metrics were used to compare the 6 source-
receiver pairs, which will be discussed in the Results Section (Section 3.3).

Each sample originally consists of 150 by 155 pixels, but is resized to 250 by 250. Data augmentation
performed via rotating the training images horizontally, vertically, and across the origin was examined but
ultimately did not improve performance compared to using only the original RTM images. All six groups of
images (geophone, DAS, and both for both sources) were standardized such that the mean of the data was
zero and the standard deviation was equal to one.

Figure 4 depicts the standard confusion matrix for the binary case that is used to assess the accuracy of a
classification algorithm. The rows hold the true class (e.g. not fault or fault), while the columns organize
the resulting interpretations. Therefore, the quantities of correct classifications are along the diagonal, True
Negatives (TN) and True Positives (TP), while the incorrect ones are on the off-diagonals: False Negatives
(FN) and False Positives (FP). All of these quantities are used to calculate the metrics in Equations 4-7; as
is usual, we compare the predicted class of the validated set, where the predictions are based on the models
developed on the training samples.

accuracy = TN+TP
TN+FP+TP+FN (4)

precision = TP
TP+FP (5)

recall = TP
TP+FN (6)

F1 = 2 precision·recall
precision+recall (7)

Accuracy (Eqn. 4), or bulk accuracy, is the percentage of correctly classified samples. Precision (Eqn. 5)
is the ratio of True Positives to all positive predictions, so it is normalized by all predictions of faults. In
other words, of all the locations that were predicted to be faults, what fraction were actually faults? Recall
(Eqn. 6), on the other hand, is normalized by the true/actual class of faults: of all the locations that actu-
ally had faults, what fraction were correctly predicted as faults? In terms of Equation 1, Recall is in the
form of the likelihood (Pr(Θint = θj=fault,not fault|Θ = θfault)) whereas Precision is in the form of the
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Figure 5: Faults located at j=20

posterior Pr(Θ = θi=faults,not faults|Θint = θfaults), for the class of faults. F1 is the harmonic mean of
Precision and Recall; harmonic means are often used to calculate the average of the ratios or rates. If
either Precision or Recall is 0 or very low, then so is F1.

In addition to the metrics in Equations 4 thru 7, we can calculate the Bayesian statistics, specifically the
likelihoods,

Pr(Θint = θfault|Θ = θfault)S,R = TP
TP+FN (8)

Pr(Θint = θnot fault|Θ = θfault)S,R = FN
TP+FN (9)

Pr(Θint = θnot fault|Θ = θnot fault)S,R = TN
TN+FP (10)

Pr(Θint = θfault|Θ = θnot fault)S,R = FP
TN+FP (11)

for each of the six different trained CNN models (S = vertical, horizontal;R = DAS, geophone, both).
The likelihoods indicate the ability of these sensors to record seismic signals that allow for the migration
algorithms to delineate the faults from non-faults. These likelihoods can be transformed into the posterior
(Eqn. 1) and used to calculate the value with imperfect information (Eqn. 2). From these comparisons, we
can quantitatively compare single-component horizontal DAS and two-component geophones.

3 Results

In this section, we present and describe example images from slice j=20, shown in Figure 5, for both sources
and for all three receivers. Next, we describe the average testing metrics for how well each CNN model per-
formed given their training dataset over 3-fold cross validation. We will demonstrate which 2D slices had
the lowest accuracy, i.e. had the highest training loss, for each source-receiver model. The testing metrics
will include the posteriors (Eqn.1), which will ultimately be used to calculate a value with imperfect infor-
mation (Eqn.2) for all 6 source-receiver combinations.
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Figure 6: Migration images with vertical source : a) Geophones (locations in red), b) DAS (locations in
blue), and c) Combined (sources in white).

3.1 Images from Vertical Force

Figure 6 contains the images produced from the elastic energy norm RTM using a vertical force with: a)
sparsely sampled two-component geophones b) single-component DAS and c) a normalized and combined
versions of a) and b). In Figure 6a spacing of geophones is represented by the red triangles; the deeper
reflector is impossible to identify in the geophone image. The image is also covered with migration artifacts
due to insufficient sampling of the wavefield. These artifacts are often called “migration smiles” for their
shape; examples of these are present all along the PoroTomoY-axis at depths ≤0.5km in Figure 6a. The
migration artifacts make it difficult for an interpreter and the CNN U-net to follow the shallow reflector.

Figure 6b is the image produced from the surface DAS fiber (a virtual horizontal-component receiver every
one meter, shown in blue). The shallow reflector in this image is sharp and continuous, allowing for easy
interpretation. Although migration artifacts are still present along the PoroTomoY-axis, there are artifacts
that are different from those shown in Figure 6a. These migration artifacts are now due to fake modes
present because the wavefield is extrapolated using only the x-component data that was recorded with DAS
fiber. These fake modes are a specific type of artifact that results from a deficient extrapolation of the re-
ceiver wavefield; this is expected, given that seismic force is excited vertically. If the faults were largely
horizontal, given the relative short offset, the majority of the reflected energy would arrive perpendicular to
the DAS fiber, not along the fiber which is its direction of highest sensitivity. However, as seen in Figure 2,
the faults have a variety of dips, including very steeply dipping. By simulating the full wavefield (e.g. not
ray-based), there may be significant reflections that do not arrive broadside to the horizontal fiber. In our
noise-free simulations, these signals are significant, which may not be the case with land-based DAS field
data.

The images in Figures 6a and Figure 6b contain two different migration artifacts: migration smiles and fake
modes. Stacking the images could reduce the noise and highlight the reflection events. The amplitudes of
both images are normalized by the maximum and then stacked to produce Figure 6c. Although the reflectors
are slightly enhanced compared to the DAS image, Figure 6c unfortunately, still has many artifacts in it. As
described earlier, the authors acknowledge that this is not the ideal way to combine the two images from the
different sensors. We propose other options in the Discussion section.
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Figure 7: Migration images with horizontal source : a) Geophones (locations in red), b) DAS (locations in
blue), and c) Combined (sources in white).

3.2 Images from Horizontal Force

Different source types can generate different polarizations of reflection events. For this reason, the second
2D experiment uses the same geometries and models as the first experiment, but now a horizontal force
is used to generate data. The image produced from elastic energy norm RTM with sparsely sampled two-
component geophones and a horizontal force is shown in Figure 7a. This image still contains migration
artifacts, but compared to Figure 6a, the reflector is much easier to follow. The receiver sampling was not
changed, so the image still contains migration artifacts due to insufficient sampling of the wavefield. How-
ever, compared to the vertical source experiment (Figure 6a), the deeper reflector is now easier to identify in
Figure 7a. A potential explanation for this improvement is that the horizontal source produces more of the
slower S-waves which have smaller wavelengths (versus P-waves) providing a better resolution of reflectors.

The image produced from elastic energy norm RTM with DAS data and an horizontal-source is shown in
Figure 7b. Compared to Figure 6b, the migration artifacts have diminished. The deeper reflector is easier to
observe and interpret , which suggests that a horizontal force is more beneficial for near-offset DAS surveys.
As described in Section 2.2, short-offset P-wave reflections will not be recorded on surface DAS at normal
incidence, so the S-wave source may provide more variety of incidence angle from the deeper reflector.
Again keeping in mind that the elastic RTM models the full wavefield, and in these synthetic cases, no noise
impedances the re-construction of deeper and weaker signals. The DAS data are sampling the reflected
wavefields well.

The images are normalized and stacked just as it was done for the previous example. The results are shown
in Figure 7c. Figure 7c shows both reflectors clearer than Figure 6c.

3.3 Reliability & Vimperfect measures from CNN Analyses

Now that spatial models from geophone, DAS and both sensor data are produced, the next step is to obtain
statistics that describe how well fault and non-faults could be interpreted from these images. The true fault
model from Ref. [22] is used as labels for the RTM models, and ultimately to train the U-net to determine
whether each pixel in the model is fault or not-fault.

Due to the class imbalance (much higher occurrence of non-fault labels versus fault labels), accuracy did
not differentiate strongly between the models. All trained models achieved over 99% accuracy, but so would
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Table 1: Vertical Source: metrics for each receiver type

Metric DAS Geophone Combined
Average F1-score 0.919 0.877 0.907

Average Accuracy 0.996 0.994 0.995
Average Precision 0.931 0.916 0.925

Average Recall 0.906 0.842 0.890
Average Loss 0.003 0.004 0.003

Table 2: Horizontal Source: metrics for each receiver type

Metric DAS Geophone Combined
Average F1-score 0.939 0.931 0.930

Average Accuracy 0.997 0.996 0.996
Average Precision 0.952 0.946 0.952

Average Recall 0.926 0.916 0.910
Average Loss 0.002 0.002 0.002

a model that predicted non-fault across all slices. F1-score, again the harmonic mean of Precision and
Recall, can highlight the difference between these models. The reported metrics were averaged over each
3-folds of cross validation. All models were run for at least 150 epochs, after which, the stopping criteria
was for when the training loss didn’t improve after 10 epochs and the testing loss didn’t improve after 5
epochs.

Table 1 contains the metrics for the vertical-source data. DAS performed best (F1=0.919), followed by the
combined data set (F1=0.907). Geophone trailed behind both (F1=0.877). This suggests that the geophone
image ultimately reduces the accuracy of the DAS image when the two images are combined. Also note that
the geophone trained model had the highest testing loss. Therefore, the quality of geophone images with the
vertical source resulted in a higher loss compared to the DAS. Recall is the likelihood for the positive case;
for our example, it is the likelihood for θ = fault (Equation 6). The best-to-worst order for the Recall
statistic for the vertical source is the same order as in the F1 score: DAS, both and geophone.

Table 2 summarizes the average metrics for the horizontal-source data, where now the order of largest to
smallest F1 score is DAS (0.939), geophones (0.931) and both (0.930). Compared to the vertical source,
the geophone-trained CNN is closer to the DAS-trained CNN: the F1 geophone score is 99% of the F1 DAS

compared to 95% in the vertical case. Recall is in the same order as the F1, with the geophone-trained CNN
model having much better Recall than the CNN trained on images combing both receivers. Overall, models
trained with horizontal-source data perform better than models trained with vertical-source data, indicating
that the horizontal data better indicate where faults are located in the subsurface.

It is important to consider the posteriors (Equation 1), as they indicate the frequency at which any of the four
situations in the confusion matrix (Figure 4) can occur. Neither F1 nor Recall consider the rate at which
true negatives occur, and that turns out to differentiate the six CNN models trained on the different images.
A posterior reliability of information can be calculated with the results from the testing data (Equations 1
and 8- 11). The posterior probabilities from the six CNN models the resulting Vimperfect are shown in
Figures 8 and 9 for the vertical and horizontal source, respectively. Consistent with their F1, Recall and
their true negative posterior value, for the vertical case, DAS, both and geophone have the most to least

JERT-20-1140 Trainor-Guitton 13

Journal of Energy Resources Technology. Received February 20, 2020;
Accepted manuscript posted July 23, 2020. doi:10.1115/1.4048051
Copyright © 2020 by ASME



Interpretation (Q int)
A

ct
ua

l (
Q

)

DAS Combined

N
o 

Fa
ul

t
Fa

ul
t

Geophone

90.04 0.23

9.96 99.77

91.42 0.21

8.58 99.79

Vimperfect =36.82

86.35 0.26

13.65 99.74

Vimperfect =27.94 Vimperfect =34.49

“No Fault” “Fault”

N
o 

Fa
ul

t
Fa

ul
t

“No Fault” “Fault”

N
o 

Fa
ul

t
Fa

ul
t

“No Fault” “Fault”

Figure 8: Posteriors & Vimperfect calculated from 3 U-net CNN’s using Vertical Source Images

Table 3: Nominal va(Θ)

Θ=No Fault Θ=Fault
a=No action 0 -100

a=Action (e.g. drill) -375 100

Vimperfect. For the horizontal case, DAS, geophone and both are the order from most to least Vimperfect,
also consistent with the rate of true negatives, F1, and Recall for those CNN models.

As seen in Equation 2, certain values must be defined to calculate Vimperfect. For demonstration purposes,
we assume a prior of 50%/50% for fault/no fault. Additionally, the two decision actions are deemed to
drill or do nothing. Table 3 contains the nominal value outcomes for all possible actions and subsurface
scenarios (fault/no fault). When one drills near a fault (a proxy for permeability), va=drill(θ = fault)=$100,
whereas if it is a dry hole va=drill(θ = no fault)=$-375. When not drilling and no fault, va=nothing(Θ =
no fault)=$0, while with a fault, we model this lost opportunity with va=nothing(Θ = no fault)=-$100.

3.3.1 Training Loss Evaluation

This section evaluates which 2D fault cross sections performed the worst, thus reducing the accuracy of the
model, and ideally, giving insight into the physics of each source-receiver combination. For this we omit
evaluating combined (DAS + geophone) images. Figure 10 contains the training loss value for each 2D cross
sections for the four CNN models trained with both sources and DAS and geophone. All training losses are
the highest on the right side of the plot, which are cross sections on the south side of the PoroTomo grid.
An example of the fault locations and dips for this area is shown in Figure 2, and the six corresponding
migration image examples are seen in Figure 3. The fault’s location and its changing dip (on the rightside
in Figure 2) do not provide adequate reflection energy to neither the geophones nor DAS.

Figure 10 also highlights the 2D cross sections, outside of the southern area, that have the highest loss for
each of the four models. The highest loss among this subgroup belongs to the vertical source with geophones
(red downward-pointing triangle), which is at index=105. The migration images and the true fault labels are
shown in 10. As seen in the fault labels, the fault locations and dips are nearly identical for these two
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Figure 9: Posteriors & Vimperfect calculated from 3 U-net CNN’s using Horizontal Source Images

locations (index values 92 and 105). The deeper fault is slightly longer than the shallow fault. Therefore,
when the source-receiver combination does not predict well the location of the deep fault, this results in a
higher loss. In this case, the horizontal source combined with the high spatial density of DAS does the best
job (cyan right-pointing triangle).

4 Discussion

Our main intent for utilizing the CNN is to obtain less subjective and computationally efficient statistics from
seismic migration models. Six CNN’s were trained separately on migration images from two sources and
three receiver groups: geophone, DAS and combination experiments. By using migration images that sim-
ulate what is measured by the horizontal-component, 1-meter-spaced DAS and the two-component, sparse
geophones, we have attempted to achieve realistic and useful reliability estimations of each. However, our
methodology does have limitations that can affect the accuracy of its Vimperfect calculations.

Field data will have challenges which were not included in our synthetic modelling. They will lead to
larger errors and be more detrimental to DAS than geophones. Ground-roll and near-surface statics (hetero-
geneities) would overwhelm a weak DAS signal in many cases. DAS interrogators, which are responsible
for sensing the distributed strain along the fiber, are noisier than geophone recording systems. Additionally,
velocity model uncertainties are always an issue with migration approaches. For elastic migrations, knowl-
edge of the S-wave velocity is imperative. Unfortunately, there is higher uncertainty in S-wave velocity
which would introduce more errors into the migration results.

As mentioned in the Methodology section, our representation of combining DAS and two-component geo-
phone is imperfect. We normalize the RTM images from geophones and DAS and adding them together.
Ideally, numerical modeling codes would be available that allow for the simultaneous imaging of displace-
ment and stress (strain). A potential improvement over our approach is to avoid combining the two images
altogether. Instead, one could provide both images as features to train a CNN with both images (geophone
and DAS). The testing validation from this type of CNN could represent added value of DAS versus geo-
phones alone.
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Figure 10: Training Loss for each of the four source and receiver combinations.

Figure 10 shows the training loss curves for four of the different CNN models. Each point shows the loss
for each profile (cross section). The middle cross sections and the southern cross sections do the poorest:
the deeper and the end of the dipping fault are not properly imaged. This is due to insufficient aperture in
the migration. One technique used in migration is compensation by source illumination, which helps where
source wavefield is weak. This could have improved images, and maybe changed our reliability measures
for the six source-receiver groups.

One of the main road-blocks to calculating VOI on geophysical models, especially seismic, is the computa-
tional time to obtain one model, and the added computation of estimating accuracy statistics. Therefore, it
is of the upmost importance to have computationally efficient VOI methodologies, to start assess the value
of information from different sensors. This is the main motivator to use the accuracy statistics from CNN’s
trained on images from the different sensors. Typically, CNN models are trained and tested with the ob-
jective of developing a model that can predict the labels. Our unconventional use of CNN’s could provide
overly optimistic reliability measures compared to what an actual interpreter could decipher from a seismic
image. Although our approach to the training and testing of the CNN model’s was identical for both geo-
phone, DAS and the combination of the two, it is possible that our stopping criteria (5 epochs without testing
loss improvement) could have influenced the results of the scenarios presented in this paper. However, the
goal was to develop an efficient methodology that includes spatial seismic models.

Other sources of over-optimistic posterior measurements could be due to 1) not including the coupling chal-
lenges of DAS and 2) not modeling in 3D. How effectively the energy of seismic waves will be recorded by
DAS depends on how well-coupled the fiber is the subsurface media. Currently, the codes available do not
include modeling capability to adjust coupling. Poor coupling will affect the fiber’s ability to record signal
that can be reconstructed into images of fault reflections. 3D modeling would more accurately test the full
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DAS fiber directionality.

This paper is the first demonstration of assessing the value of seismic data by assessing the migration models
accuracy. We have used the PoroTomo field acquisition for our experiments, but our methodology is useful
beyond this singular example. We believe this methodology may have increasing importance, as permanent
horizontal DAS measurements could become pervasive as the technology improves. Telecommunications
fibers have been proven to be capable of serving as urban sensors that can reliably define the shear-wave
velocity of the near-surface for kilometer-long transects [40].

5 Conclusions

Value of information (VOI) provides a quantitative and agnostic metric for the utility of interpretations from
different sensors. Although VOI has historically been used in oil and gas as a decision tool for data col-
lection, its application has been limited to non-dimensional data (e.g. no spatial context) or oversimplified
models from geophysical observations. This paper presents several innovations to previous VOI methodolo-
gies that 1) include the spatial structure provided by active-source seismic methods and 2) improve computa-
tional efficiency in obtaining accuracy statistics of seismic images/models by utilizing convolutional neural
networks. We believe this methodology may have increasing importance, to evaluate acquisition geometries
for any kind of sensor.

In the case of horizontal DAS, we modeled the insensitivity of DAS to broadside energy (e.g. seismic signals
that arrive perpendicular to the DAS cable) and how it affects the ability to image subsurface structures or
properties that will subsequently affect drilling or exploration decisions. Geophone spacing in the PoroTomo
survey was too sparsely arranged, and the hypothesis is that DAS, which samples the Earth’s response at a
higher spatially density, could improve images generated by sparse geophones. This hypothesis was tested
in 2D using elastic numerical modeling and elastic RTM. Both 2D experiments (vertical and horizontal
forces) concluded that DAS was marginally more successful at locating fault positions in 2D. The confusion
matrix from the CNN model trained on images utilizing both sensors’ data quantitatively confirmed that true
positives and negatives are increased when comparing confusion matrices from sparse 2C geophones alone.

We do not conclude that universally DAS will always add value to sparse geophones. However our method-
ology can provide guidance on which scenarios the high spatial density overcomes the broadside sensitivity
of DAS. Ideally, the field data will be assessed in the future with more expertise and resources in land-data
processing. The idea of using both data types in simultaneous imaging should also be explored to produce
more detailed images. Future work should include coupling effects for a more realistic representation of
what DAS can measure in the field. Imaging these faults in detail can provide information on driving factor
behind the recharge of a geothermal reservoir.
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