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Intersubband Coulomb Scattering Effect
on Transport in semiconductor

Low-dimensional Systems

Abstract

The effect of the inersubband electron-electron Coulomb interaction on the
linear and nonlinear transport properties in GaAs-based low-dimensional sys-
tems in the case of multisubband occupied is investigated systematically by
means of the Lei-Ting balance-equations approach using a model with multiple
types of carriers (MTCM). A clear signature of the intersubband electron-
electron Coulomb interaction in the linear mobility is demonstrated. At the
high electric field regime, enough high electon density can enhace drastically the
intersubband Coulomb interaction and hence make electrons among different
subbands reach rapidly equilibrium state, in which electrons within different
subbands can be treated as one type of carriers. The thermal noise temper-
ature is evaluated for quasi-two-dimensional heterojunctions considering two
subbands occupied. By employing the developed balance-equations theory for
Bloch miniband transport, we invesitgate in detail the hole vertical transport
in superlattices including the effect of heavy-hole-light-hole mixing, exhibiting
novel density-dependence of linear mobility and break-down of the negative
differential velocity in velocity-field curves.
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Chapter 1

Introduction

Recent progress in crystallographic growth techniques makes the two-dimensional electron gas (2DES)
in high mobility GaAs-AlGaAs heterostructure and quantum well become an especially suitable system
for studying electron-election interaction effects, because of the reduced effect of impurity scattering
arising from the modulation-doping technique. Electron-electron interactions play an important role
in systems of this reduced dimensionality. They are, for example, responsible for the existence of
the fractional quantum Hall effect and Wigner solid states of the 2DES. Artifacts of electron-electron
interactions-can also be observed in other way in the 2DES, such as the negative magnetoresistance
often seen in magnetic fields around 1 T, the oscillatory behavior of the g factor, valley splitting,
Landau-level width and the negatlive density of states (negative compressibility of electrons). Besides,
(121 and theoreti(‘ally[S' 4], is the effect of
electron-election interactions on transport and/or the Coulomb inelastic-scattering time (quasiparticle
lifetime)5=31 in bulklike systers of various dimensionalities.

an area of active research to this day, both experimentally

It is well-known!® 101 that in the case of semiconductors with a single isotropic parabolic band,
electron-electon scattering should not directly affect the trausport properties of bulklike systems
(purely quantum effects such as weak-localization corrections excepted) since in the absence of Umk-
lapp processes an electron-electron scattering event only redistributes the momentum of the electron
gas and conserves its total value in the systemn due to the translation invariance of the phase-space.
Of course, on the other hand, this fact suggests us that the effect of electron-electon interaction can
be direcily observed in transport experiments if the translational invariance of phase-space is broken
down in the system. There are two ways to do this. One is to change the single band structure of the
system to a profound and extremely nonparabolic band. 1t is should he noted that this way is easy to
understand in physical concept but difficult to manipulate in technique. Recently, Messica el ol 111
have experimentally confirmed the idea. They have presented transport measurenients on surface su-
perlattices fabricated on a GaAs-AlGaAs 2DES and observed a direct contribution of electron-electron
scattering on the resistance due to the loss of translational invariance and the formation of minibands.

The othier way is to add other system so close to the original system that the charges in two
respective systerns experience the Coulomb forces, which leads to momentuin trausfer between the
two systerns. Even though the total value of momentum still keeps constant because of the nature of
electron-electron scattering, momentum of electrons in a system can be transter to another by inter-
systert Coulomb interaction and the transport properties of the individual systemn can be influenced.
Tlius this causes changiug of transport. properties. It has been appreciated for a long thine that the re-
sistivity beliaving as 7 for a three-dimensional electron ;_,,.AS[IZ-] and as T% In 7" at two dimensionstd 14
indeed results from Coulomb coupling of conduction s electron to a narrow d baud in transition metals.
Negative minority-carrier mobility in GaAs-AlGaAs gquantun wells11. 1951 experimentally observed by
Hopfel and collaborators is attributed to the associated carrier-drag eHect between the electron sub-
band and hole subband iu an eleciric field. In a flurry of recent experiments and theoretical works,



drag between two spatially separated and coupled 2DES systems due to Counlomb interactions between
carriers have been intensively investigated19=191. If a current is driven through one of the systems,
then an induced current is dragged in the other system. Moreover, even for a single low-dimensional
systems, the formation of subbands due to confinment opens new scattering channels, inter-subband
scatterings, including inter-subband carrier-carrier Coulomb interactions, to affect transport proper-
ties. The abave mentioned Hopfel’s experimnent about carrier-drag effect is an example. However,
different from the large disparity of effective masses between electron and hole, electrons populated in
different subbands have a common effective mass, hence are assumed to possess a common energy even
under a strong electric field in the literature and inter-subband Coulomb interactions do not directly
affect transport. In fact, the presumption is based upon enough large intersubband electron-electron
Coulomb interaction to induce rapid thermalization of the carriers and its validity in linear and non-
linear cases is still a question to be deliberately explored. Nevertheless, so far, the inter-subband
thermalization due to Coulomb interaction has been less investigated. Goodnick et al120] simulated
the intra- and intersubband electron-electron scatterings on nonequilibrium transport in quantum-well
systems unsing ensembel Monte Carlo approach and argued that intersubband energy exchange due
to Coulomb scattering largely depends on the carreir density and is strong enough to equalize the
subband energies for the simulated systems. This pure numerical method 1s not only large time con-
suming, but also lack of intuitively clear approximation scheme. And these shortcomings pronounced
more in dealing with electron-electron scatterings, which invoke one to develop a computationally
more effective and physically more intuitive approach.

The conventional treatment of transport properties is based on Boltzmann equation in which the
electron-electron scattering can be intuitively treaed as Boltzmann’s collision term. The Boltzmann
equation for the single particle distribution function f(k,r,t) of the electrons can be written in the
usual form

0 : o [ O0f(k,x, i)
[(,)i—i—v(k)-vr—eE-Vk} flkor,t) = <—__(7t >c

where v(k) = Vizy is electron group velocity and E is applied electric field. The introduction of the
concept of an electron state of wavevector k indicates that the one-electron approximation is used,

closely connected with this approximation is the energy ¢k ol the state k as a function of k. The
collisional term (9f/0t). is given by

<()f(k1t>c Z{Fk/ ) — (k. k)},

where

Pk. k") = Wk, k) f(k) [1 = f(K)]
is the transition rate from from the state k to the state k' and 1V(k. k') is transition probability as
a result of scatterings by tipurities. phonons. However. in contradistinction to the elastic scattering
of electrons by impurities and to the emission and absorption of phouons, electron-electron Interac-
tions give rise to fwo-particle scallering processes. The transition rate and the collision term can be

(10]

generalized to the case of two-particle collisions as the respective form,
[kp. k'p’) = Wk, K)f(k)[1 = f(K)] f(p)[1 = f(p")].
and

) f(k. .t L .
(ﬂ(d—/l—)> = > {r(k'p' kp)—[(kp. k'p')}.

k'pp’

Then by solving the linearized Boltziann equation. the Coulomb iuteraction induced resistivity tensor



can be derived as

Pap X Z IVC((I)lgf(ek).f(fp) (1~ .f(€k+q)) (1~ f(‘sp—q)) b (ex + £p — €k4q — 5p—q)
kpq
X (Vi + Vp = Vikq = Vp-a)q (Vi + Vp = Victq =~ Vp-al -

where f(ey ) is the Fermi-Dirac distribution function for energy ex. It follows immediately from the one-
band resistivity formula that for a single parabolic band vy o« k, the Coulomb interaction gives zero
resistance in absence of Umklapp processes. But this is not the case for the lateral surface superlattice,
in which the energy and velocity are a nontrivial function of k. The results are in agreement with
above qualitative discussions. In the standard two-band mode‘l,[lo] Boltzmann equation yields the
inter-band Coulomb interaction induced resistivity tensor of systern 1 as

Pglﬁ) & Z Ve(@) 2 f(enc) fe2p) (1 = fletktq)) (1 — fleap—q)) 6 (€1 + €2p — €1k4q — €2p—q)
kpq
X (V1 + Pap — Yiktq — Yop—q) o (V1 + Y2p = Yiktq — Y2p—a)s

and similarly for pgﬁ), where the deviation function ¥ is defined by f — f% = fo(1 — f%). This

model has been used in the literature to calculate the transresistivity in coupled quantum wells.[19]
The theoretjcal results is in significant agreement with experiments, which showes that the two-band
formula is a applicable model for the Coulomb-drag phenomena. However, it does not work for the
intersubband electron-electon collision in a single quantum well. Meanwhile, Boltzmann equation is
believed to be formidable to deal with transport beyond linear regime.

A decade of years ago, Lel and Ting[?‘l] developed a new balance-equations approach to nonlinear
electric transport for an electron-phonon-impurity system, which is believed to be valid for systems
with strong electron-election interactionsin contrast to the Boltzrann equation for the weak electron-
electron interactions 1'egime.[22' 23] Basing on the separation of the center-of-mass motion from the
relative motion of electrons in Hamiltonian and in density matrix, the system can be considered to
have two parts: the center-of-mass, which is a single particle having an enormous mass, and the
relative electron systern, which contains a large number of electrons forming a statistical ensemble.
The fact that external electric field acts only on the center-of-mass and the relative electron system
coulpes with the center-of-mass and the lattice only through the electron-impurity and electron-phonon
interactions make it possible to treat the center-of-mass as a classical particle with a constant velocity
vy and to introduce an electron temperature T, for the decoupled nonequilibrium relative electron
system as a measurement of its internal energy. To the first order of electron-lmpurity and electron-
phonon interactions a set of force and energy balance equations are derived. Although the original
balance-equations approach is derived {or one type of carriers moving in a single parabolic band, it has
been extended to the systems with nouparabolic energy band(24] and/or rnultivalleypa 26). Treating
the intervalley Coulomb scattering as a perturbation along with the electron-imipurity and electron-
phonon interactions, the force fi5 and energy transfer rate wys due to intervalley Coulomb interaction
can be easily determined as the {ollowing forms!29]

OO0

. . dw w Wo— Wi . 9
fi, = Zl\a(q)rq‘/ 7Hﬂ—n[,—ml—Hu&”(q,wms (qow —wia). (1.1)
q B -

—ou

and



Uiy = E

q

“ e /.u W 0
\/'c(q)|'/ & o ln - HE“,”(q:w)ﬂf_,"(q,w' —wi2),

S T Tl(,

with wis = q - (vy — va), respectively.

Applying the balance-equations approach for several types ol carriers systeins, Lel et al 27 have
investigated the steady-state nonlinear de and linear high frequency transport properties of type-
Il superlattices, focusing on the electron-hole scattering mechamsi. This approach has been also
employed to analyze carrier transport for a two-component ptasma consisting of minority electrons
and majority-holes (N. < Np) in a GaAs-AlGaAs quantnm well23] Numerical results for Ohmic
mobilities as functions of lattice temperature and for nonlinear mobilities as functions of applied
electric field strength are in good agreement with the expernnental data of Hopfel ¢7 al.. The recent
hot-focused Coulomb drag effec is another exarmple which this balance-equations approach can deal
with29. The tranresistivity can be readily recognized {rom the low velocity limit of the Eq.(1.1)

]

1 9 e g [Tdwr o LoTwe)? 2
pla = ———’Vl Vo] E q” 1Via(q)| / — [p T [—[—H ”fjl)(q?w)ﬂg )(q._u —wia),
Ny Nye q 0 1

which is completely identical to the formula derived from other inethods, for example, the two-band
model of Boltzimann equation above mentioned. Moreover. the Coulomb drag effect between two
quantum wells and two laterally confined quantum wells in the presence of a large magnetic field has
been studied by the means of the extended {ormation of this approach with magnetic fields.301 The
theoretical results that the Landau quantization ol electron energy can greatly enhance the drag effect
are proved by a recent experimeut.w“ where a strong magnetic field mcreases the drag effect by 50-100
times.

The main aim of this thesis is to extend the balance-cquatious approach for several types of carriers
systemns to low-dimensional systems with multi-subbaud occupancy and to investigate the effect of
intersubband electron-electron Coulomb interaction on hinear and nonlinear transport properties in
the case of different electron densities and confinements. We can find that, differen from the two-band
model of Boltzmann, the Coulomb force Eq.(1.1) can directly contribute to the linear mobility of a
single quantum well, which enable us to incorporate electron-electron scattering in linear mobility.
Meanwhile, we can use the approach to study the detail of mntersubband thermalization resulted from
intersubband electron-electron Coulomb interaction and to find out its decisive factors.

The balance-equations theory has been applied in many areas of transport in semiconductors], for
example, thermal noisel??: 031, which is au important problem in semiconductor and a crucial factor
of the reliability of the devicel®0: D11 The famous Nyquist relation of thermal noise is based on the
linear response theory and is invalid at high-field region. Because the balauce-equations theory bears
no relation to the strength of the applied electric field. not only the Nyquist relation is re-obtained
at low fields, but a modified expression can be derived at high fields from the theory. Tu Chap.3.
we calculate the lougitudinal and transverse low-frequency thermal noise temperatires at different
electric fields in quasi-two-dimensional heterojunctious considering two subbauds occupied.

Miniband transport in superlattice is another hot locus in recent literature. Years ago, Esaki and
TsulPb] predicted that the existence of ininibands results in Bloch oscillation and a negative differential
velocity (NDV) at electric-field values that can he easilv achieved experinentallv. Recently, the
balance-equations theory has been successfully developed by Let to stady the miniband lr;msp()rt[‘r)'()}.
In Chap. 4. employing the developed balance-equations theory for Bloch miniband transport. we
invesitgate in detail the liole vertical trausport in superlattices including the eftfect of lieavy-hole-
fight-hole mixing. We find that the mobilities and velocity-lield enrves are drastically modified by the

profonnd energy specirun. exhibiting a hreak-down of NDV

6



Chapter 2

Effects of Inter-subband Coulomb
Interaction on Electron Transport
in Low-dimensional Systems

2.1 Background

Recently there has been a resurgence of interest in the propertites of high carrier density two-
dimensional electron gas systems, looking at the manner in which the second subband is populated,
the relative mobilities and scattering times of electrons in the two subbands, and the nature of the in-
tersubband scattering. Much experimental and theoretical attention has been payed to the transport
properties of low-dimensional systems, such as quantum wells and quantum wires, under multisubband
occupations of carriers because the design of optimised high mobility and high carrier-density devices
needs the detailed information about the scattering rate associated with intersubband transitions. [32)

In as early as 1979, Mori and Ando33! studied the intersubband scatterings eflect on the linear
mobility of a Si(100) iversion layer at low temperature. Fletcher et al 34 reported on simultaneous
measurements of mobility and presented evidence of a mobility edge in the second subband of a GaAs-
based heterojunction. Recently, Hamilton et al. (35] have presented experimental investigations of the
transition from one- to two-subband occupancy in the two-dimensional electron gas (2DES) of back
gated modulation-doped GaAs-AlGaAs heterostructures. Their experiment has clearly demonstrated
that when only one subband is occupied, the mobility is limited by remote ionized impurity scat-
tering and increase monotonically with increasing carrier density. However, when the Fermi energy
approaches the bottom of the second subband , an additional (intersubband) scattering channel 1s
opened up, which causes the 2DES mobility to drop sharply. Subsequently, as the second subband be-
comes populated, the mobility resumes its monotonic increase with increasing carrier density. Tsuchiya
and Andol36! have theoretically demonstrated a wave-function modulation induced by insertion of sev-
eral thin barrier layer inside a quantumn well can enhance the electron mobility for appropriate values
of the parameters for which intersubband scattering proccesses are suppressed. In high electric field,
electrons begin to occupy higher subbands and naturally intersubband scattering becomes a important
factor to influence the hot electron transport. Lei has extended the Lei-Ting balance equations theory
to study nonlinear electron transport in GaAs-AlGaAs lletel()]uu(tlons[w]. taking into account the
occupation of the lowest and next lowest subbands and the intrasubband and intersubband Coul fomb
interactions through RPA dielectric function!®8l. Monte Carlo simulations have been performed for
hot electron transport in GaAs-based quasi-two-dimensional systems in the case of multivalley and
multisubband by many authors39.
transport in quantum wire systems, as demonstrated by Wang. He has systeratically studied sub-

The intersubband scattering plays also a great role in electron



band effects on hot electron transport i GaAs-based quantimn wires by 1mieans of Lel-Ting balance
equations theory.mo]

However, in most of investigations on the problem of mtersubband scattering, interests are focused
on the intersubband electron-phonon interactionst®=441 [ addition. there is a presumption in the
literature that electron populated in different subbands share a common energy even at the nonlinear
transport regime, which is based on the rapid thermalization of electrons among different subbands.
In principle, if intersubband Coulomb scatterings, which eflectively transfer energy between different
subbands, are strong enough that carriers are thermalized within a vcli more shorter time than the
average momentuin relaxation tune under an external electric field, tlie validity of the presumption
can be established for these systerms M9 Most of authors believed it to be true without proving
because the carriers in different subbands have the same mass and charge. For example, in most
balance-equations investigations on transport, electrons in different subbands are assuined to be one-
type-of-carriers, 1.e., to share a common electron temperature, chernical potential and average drift
velocity, even though an external electric field is added8 401 Goodnick and Lugli[zo] have studied
the effect of electron-electron scattering on nonequilibrium trausport i gquatum well systems using
ensemble Monte Carlo simulation of the full multisubband systemns. Their calculation has shown that
the intrasubband electron-electron Coulomb interaction can exchauge energy between carriers thus
redistributing the energy gained by an electric field and driving the electron steady-state distribution
function towards a equilibrium-type distribution. Therelore, it is reasonable that electrons in each
subband share a unique energy, respectively. Furthermore, their results for the carrier evolution under
laser excitation have demonstrated that the electron-electron scattering rate depends substantially on
the electron density. That is to say, the above presumption may be invalid if the electron density is
not high enough and needs detailed investigation.

Recently, C. Guillemot et al 42 studied the electron-longitudinal-optical-phonon coupling and in-
tersubband scattering in modulation-doped quantuin wells by means of Lei-Ting balance-equations
approach, assuming that electrous in the two subbands share a common electron temperature and
average drift velocity but Lave different chemical potentials. Wi and his coworks 0] analyzed trans-
port in quantum-wire systerm considering the lowest two subbands 0, | and its degenerate subband
—1 occupied, using a description which is similar to the two-types-of-carriers model (TTCM) used
to solve the transport problem of multi-valley bulk materials 2% i which of model electrons within
different valleys and subbands are assumed to have their own electron temperatures. drift velocities
(energies) and chemical potentials respectively. Their calculation displayed a little difference from
that of the one-type-of-carriers model (O'TCM), such are attributed 1o the intersnbband Conlomb
interaction included in their literature. This manifested that the intersnbband Coulomb iuteraction
is really strong enough to nmake the subband energies tend to equilibtate for the quantum wires at
the carrier density investigated. H tlis is generally true, the QTCN would be a mimch more attractive
model for the low-dimensional device simulation 71 thau the T'TCM because the latter requires a
much heavier CPU cost. However. the above favorite result is for aspecial system with a special carrier
densities. The systematic theoretical investigation on the validity of the QTCAN for low-dimensional
multisubband systems i1 linear and nonlinear transport regine. i= still lacking.

Therefore it is desirable to systematically mnvestigate the effect of tntersubband scatterings. espe-
cially the intersubband electron-electron Coulomb interaction. on the hinear and nonlinear transport
properties for systems of different dimensionality and having ditfercut carrer densities of quasi-two-
dimensional and guasi-one-diimensional electron systems.

Wel48] employ the Lei-Ting balance-equations approach ol two-ty pes-of-carriers model (TTCM )[25]
to treat the GaAs-based model svstemns having two subbands and composed of two types of carriers.
The theoretical {ramework on the Lei-Tiug balance-cquation approach will be fornlated in Sec.2.
and we will apply the approach 1o quasi-two-dimensional quantin wells. and quasi-one-dimensional
quanturn wires in the following =ections. Finally. the wwnerical ealeulation and discussion will be

presented.



2.2 Balance Equation Theory for Electron Transport in Semi-
conductor Systems with Two Types of Carriers

Consider a model low-dimensional system, having N electrons under the influence of a uniform ap-
plied electric field E. For simplicity, we assume that only the ground and the first excited subbands
are occupied in the low-dimensional system and electrons in the two subbands have a common effec-
tive electron mass under the effective mass approximation. Those electrons within a subband share
a common temperature, average drift velocity and chemical potential due to strong enough intra-
subband electron-electron Coulomb interactions. But for electrons dewelling in different subbands,
temperatures, average drift velocities and chemical potentials are different. Therefore we have a sys-
tem composed of two types of carriers. The numbers of carriers in the ground and the first excited
subbands are N7 and N3 respectively. So, the total number of these carriers is N = Ny + Ny, which is
.assumed to be constant. However, the numbers of carrier particles of systems 1 and 2, Ny and Ny, are
variable in the presence of a uniform electric field since the carriers in systems 1 and 2 can exchange
with each other. We introduce the coordinate R. for the center of mass of the whole system, and R,
and R for systems 1 and 2:(25] ‘

1 2
R:% [Zru+zrzi] = (Ni/N)R;1+ (N2/N)Ro, (2.1)

and momenta P; and P5 for systems 1 and 2:

2

1
Py =) pi, Py = szi- (2.2)

2
Here 114, p1; (r2i, P2i) are coordinates and momenta of the 4th particle in system 1 (2), which satisfy
the well-known corumutation relation [rﬁ,p@] = i6ij 008, [rg'i,p'gi] = 16;;6a3. We also introduce the

velocities v; and vy for the centers of mass of the systems 1 and 2:

P, = Nymvy, P, = Nymvsy. (2.3)

The relative coordinates and momenta for the carrier systems 1 and 2 are defined as

ry; = ri; — Ry, ry; = v — Ro, (2.4)

Pi = P1i —mv1, PY = P2i — MV3. (2.5)

According to definitions (1) and (2), [N1Riq, P1p] = iN16qp. Therefore it is consistent to consider
R, P as canonical variables of the center of mass satisfying

[Ria, P1g) = ibap, (2.6)

and Ny, the particle number of system 1, as a variable of the relative electron system 1, which
commutes with c.m. variables. It is easily seen that to the order of O(1/N) the relative electron
variables r{; and p/; obey the canonical commutation relation

' . 1
[r’lg,p’fi} = ibup [&,j +0 [E” : (2.7)

Therefore, most of the discussions in Ref. [25] can still apply in the present case. In terms of these
new variables the total Hamiltonian of the system in the presence of a uniform electric field E can be
written as follows:



H = Home+ Hemr + Hie + Hye + [{ph + Hy, (2 8)

CHi = Hipt Hiei b Bt Hiopn o Haoopnot HiZpy B2
Here
Hompe=—-NeE R, . (2.9)
and
HemT = émNW% + %MNQV;:’ (2.10)

are the center-of-mass part of the Hamiltonian. Particle numbers Ny and N, can be expressed in the
second quantization representation of the relative carrier systems 1 and 2 as
1 2
Ny = Z C{chlko; Ny = Z Cgkac’zkaa (211)
k,o k.o

where c}ka (cixo) are creation (annihilation) operators of wave vector k for the ith (i = 1,2) type of
carriers relative to their respective center of mass. Hi. and Hy are the relative part of the Hamiltonian
for the first and the second carrier systems, including their ( “intrasubband”) Coulomb interaction:

1

Hie :Z Elkcikgclka + ?12' z Vl':((l)(;{k_{_qac{k,_q_glclkufl Cika, (212)
k,o k;l,(;;q
: 1
H2e :Z 52kcgk062ka + 72_ 2 VQC(q)Cgk+qUC£kl—q—’71C2k1”1(;2ka’ (213)
k,o k.k,,q
LN

in which Vi.(q) and Va,(q) are the intra-the-first-subband and intra-the second-subband Coulomb
potentials respectively. In Eq.(2.8) Hie-i, Hic—pn, Hoe—i: and Hye_pp are electron-impurity and
electron-phonon couplings for type-1 and type-2 carriers, respectively:

Hies = 3 w(q)ed®Rap, (2.14)
q,a
Hyeos = 3 un(@)ef @ RamRe) gy (2.15)
q,a
Hremon = 3 M1(a ) (bar 400 ) @9 g, -~ (216)
q.A
H'_’e—ph = Z "\/[2((1: /\) (bq)\ + [)L)\> eiq'R""P'z(;-, (217)
QA
in which
1
Plq = Z(jg,k-l-qacl»k’]’ (2.18)
k,o

and
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9

P2q = Z cg,k+qacz,kﬂv (2-19)‘
k,o
are density operators for type-1 and type-2 carriers, u;(q) and M;(q, A) are intrasubband electron-
impurity potentials and electron-phonon matrix elements for system ¢ (i = 1,2), and b:rl/\ (bgr) are
creation (annihilation) operators for phonons with wave vector q and frequency 2qx. The phonon
part of the Hamiltonian is

th = Zqu\bL,\bq)\- (220)
q,Ar

In Eq.(2.8) His stands for the Coulomb interaction between different types of carriers (intersubband
Coulomb interaction):

Hys = Z Via(q)eld B Ra)py oy g (2.21)
q
Finally, H}Z , and HZ | are intersubband electron-phonon interactions:
Helzph = Z A412((I; /\) (bq,\ + bll)\> Veiq‘R'l Z fiiqA(Rl_RZ)CI’k_‘”qac‘z,kav (222)
QA k,o
HZ = Z Msi(q,A) (qu + bZM) et Rz Z e’:‘l'(R”fR")c;k+qac1,ka, (2.23)
QA k,o

with Mi2(q, A) = M21(q, A) being matrix elements for intersubband electron-phonon scattering. Here,
intersubband electron-impurity scatterings are neglected.

Basing on the Hamiltonian (2.8), one can determine the rates of changes of the center-of-mass
momenta P, and P, the relative electron energies Hi. and Hy., and the subsystem particle number
Ni from the general relation

O =—il0, H]. (2.24)

The derivation of balance equations requires calculation of the statistical averager of the time deriva-
tives of the related quantities with respect to the appropriate density matrix of the system. Here the
Liouville equation for the statistical density matrix p of the relative electron-phonon system takes the
form '

.Op .
i% = [Hemr + Hic + Hac + Hi.g]. (2.25)
And the initial condition for the density matrix p is chosen as
— — 1 —th/T_l_ _([[le_/lll’vl)/rrlrzi —(Hye—paN2)[Toe bID
Pliz—co = po = 7t 7 ¢ 7. : (2.26)
“ph 1 a4

Therefore, using the Green’s function method, balance equations for forces, eneigles, and particle
numbers are derived for the steady state transport under a uniform electric field

NieE + Fy(v1) + Fil)g('l)l, vy) + Fro(ug — vy) =0, (2.27)

NoeE + Fy(vs) + F;l(‘ul Jv9) — Fra(op — va) =0, (2.28)
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vy Fy(o)) + Wi(o) + l/l"[}‘“’('l;l. vo) 4 W sy — py) = 0, (2.29)

vy Fo(va) 4+ (v — va)  Fraley —ea) + W) + H'];_’l(“l, vy) — Wiy —us) =0, (2.30)

N{wr, T, prsva, Toeo i) = 0. (2.31)

Here vy and v4 are the average drift velocities, 77, and T4, are the electron temperatures, Ny, p,
and Na pig are theparticle numbers cheinical potentials of the type-1 and type-2 carriers respectively.
F,, F.. IV, and Wy denote the frictional forces and energy-loss rates for carrier systems 1 and 2 due
to intra-system interaction. Fiy and Wy are the force experienced by the center of mass and the
energy-loss rate of carrier systemn 1 due to mter-systemn Coulomb interaction. F]‘"’ and [/Vpl‘“’ or Fgl and
erI;“ represent the frictional force and energy-loss rate of the carrier system 1 or 2 due to iner-systerm
electron-phonon interactions, respectively. Finally, X' is the rate of changes of the particle number of
the carrier system 1 due to inter-systemn electron-phonon couplings. Eqs.(2.27)~(2.31), together with
the constraint

/\]1 + IV'_) =N (232)
and the relations
Ne =Y fllene—m) /Ti) (= 1.2) (2.33)
ko
(f(x) = 1/(exp(x) + 1) represents the Ferm-Dirac distribution function) form a complete set of

equations to determine the steadv-state values of vy vo. T, Tueo prpo s for given electric field E.
lattice temperature 1" and total electron density N,

In the limit of weak applied electric field strength. the balance equations (2.27)-(2.31) can be
expanded to linear order in the carrier-drift velocites. [n this situation the energy-balance equations
(2.29) and (2.30) and the particle nuniber equation (2.31) mandate that 1, = Ty =T and gy = pu,
while the momenturn-force balance equations (2.27) and (2.28) take thie form along the electric field
direction

Nrel 4 ey 4oy [P oo [FPY) 4 (o = ) Fly = 0. (2.34)
Noe I 4 v+ vy (2] 4 o [F2] = (o = 02) ]y = 0, (2.35)

. - Y - i . e

where F/ = (0/dv;) (i), =0 {/‘l’,-l]} = (J/dvi) (s Cidle ze, =0 and Iy = (9/ 01 — v1)) Fra(v) —
t))u, —vu=0 (1. j = 1.2). The drvift velocities vy and vy can be obtatued by straightly solving this group
of linear equations (2.34) and (2.35). The total dnft velocity ¢ of the systemn is defined as

o [\’] ) + }\"_;I"_r

r X (2.36)

and the total mmobihity is obtained
v o
jo= = (2.3



2.3 Electron Transport in Quantum Wells

Consider a GaAs quantwin-well of width d embedded in AL .Ga;_,As as a model gnasi-two-dimensional
systems. Assumning infinitely deep wells. we can write the electron wave functions and energies as:

. | .
2D Lk
Lhk = -«‘/-_;LN(“)': .

Wik
“nk = Zp D

2,2 . . . . . .
where ¢, (= 5—=7) is the nth subband energy due to the quantized motion in the = direction and m*

the electron effective mass, 5 is the area of the 2D plane. k = (k. k) the two-diensional plane wave
vector and ry = (z,y) the 2D coordinate. (,(z) denotes the nth subband envelope wave function. For

the lowest two subbands we have

2. T
(()(3) gb‘lll ((—)
(o (2.38)
(=) oS ;

In second quantization representation the systein can he described by the following Hamiltonian:

1 . g«
f]e :Z 571](,_7(_7:“(‘7()”[{,7 + E Z "’m’m,n.’n(([)(::r”/k_{,q,](»‘l:kl_q_,,(bnk,rr, Cinko (239)
nko m! ot n
k.ky.q
0.0y
with
r "_) v

‘/H"’III,H/IL(([) - T*_*[[m’m,u’u,(’[)- (240)

zeahd
[i”I,’TI'I,H,’H((I) = / (/:](l:‘_'g;,/(:l)(m(:l)(,’:/(:‘_’)(/:(:2)‘/_’”:‘-:J (241)

where £ 1s the dielectric constant of GaAs: q = (gr.qy). i e, 15 the form factors of the electron-
electron Coulomb interactions Vi, i, s describing the collision between an electron in subband » and
an electron in subband m, which are scatrered into subband n” and subband /. respectively. They can
be divided into three classes. The first class terins, Vo oo and Viy . are the intrasubband Coulomb
interactions of subbands 0 and 1. The second class terms. Vo yy and Vig oo (Vavay = Vi1 oe), describe
the behavior of the intersubband Coulomb scattering but no exchanging of electrons between different
subbands. “All other terms constitute the third class, which involve exchiangiug and transferring
of electrons between the two subbands. Due to the orthogonality of the wave functions. the third
class terms are small, as cau be seen in Fig.2-1. where the square of form factors {//,,,/,,,.,,/,,(q)|2 are
plotted as function of ¢. The thick lines represent the square ol the forimer 1w elasses Coulomb
form factors and thin lines correspond 1o those of the third class. The square of forin factors of the
third class are at least one order of miagnitude simaller than those of other twa elasses (here Hyg o,
and Hoy 1y = 0). Therefore. we consider only the first and second classes Coulomb interactions in
our present calenlation. The mitrasubband interactions Voo po and Vi are sesiimed strong enough
to establish a unique electron temperature within each subbaud, and their furiher roles are treated
through the dynamical screening. Our main interest is (ocused on the effect of the iutersnbband
interactions Voo 11 and Viq 00 on liot-electron transport properties. We will see 1l it s these terms
that make each subband of the systemn approach a conunon electron teinperature although we assume
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Figure 2-1: Form factors of e-e Coulomb interactions for Al.Gaj_As-GaAs quasi-2D quantum-well
with width 50 um versus the plane wave vector ¢ are plotted. The thick solid line stands for !Hnn,(m(f[ﬂl,

the dashed line {or |/'[11,11(q)|"] and the dotted-dashed line for {II””M((/)F‘ Ihin solid curves denote
form factors of the third class of the e-e Conlomb interactions.

that different subbands possess different electron temperatures within the theoretical framework when

the electron.deusity 1s enough high.
Basing on this approximation, the Haimniltionian of the system can be rewritten, approximately. by

H. = Hoe + Hyo + Hoy . (2.42)
S cench ! ST 1 A . . 9 4
Hy, = ko Cy, (ks + 5 | un_ur)((/)’~r1k+qn(nk,,(l_,,‘()k,al Ciko (2.43)
ko T kk, g
o
. = - % I | - coy Lt R ) . 9 4
o= ;1k,,(,1kgr1kn+j ll.ll(‘l)‘1k+(1,7’|kl_(1_,7(«lk1n1(1krf- (2.44)
ko - k.k,.q
ooy
i _ 1 . / Fq iR, -y T Al .
0y = 5 Vanon (g)e " ’{”k+‘l’7('lkl—(1’7’{ 1kio' Cokao
- kk'q
7:7/ . r
i . (2.45)
. / qiRO-Ray . . .
+ = E ! ool e’ et Y '1k+(l,,f/|1)k/_(l,,,(.nk/a/‘ lka -
kk'q

Further. we can rewrite it in terms of density operator:

| . I . «
= 2 Z Vi 11(fl)f:“”R"‘7R" poari—g + B Z Vivonlg)e (R‘_R"'/'m/’«:f(x
. " | ¥ (2.46)
= Z ! 00.g ':{.‘/)"HI (I, -T ’/’Hq/’l —q-
q



Now, according to the treatment of above section, in the presence of a uniform electric field E parallel
to the interface of the quantum well, we can treat electrons dwelling in the ground subband and the
first excited subband as two different types of carriers. It is natural that, due to the enough strong
intrasubband Coulomb interactions, we can assume electrons within each subband having unique
averaged drift velocities, electron temperatures and chemnical potentials. So the total Hamiltonian of
the system can be written as:

H = Hc.m,E+Hc.m.T+[{(J5+H15+HP]"+HI’ (2 47)
Hr = Ho+HX, + L+ HL + H2, + HY , + HL , + HYL, + H '
where
HE = N Unin(g, 20)e V0l e (2.48)
k,q,a,0
gﬁ;)h. = Z Man(a,qz, )\)eiq.R. <bQ/\ + bT—Q/\) Z CL.'k-l—ngnka, (2.49)
q,9:.A k,o
with Unin(q, 24) = 2”5521771./”((1, zq) and Mypm(q,¢:,A) = M (q,q., A) 1%, (ig. ),
Fn'n(q) Za) = / e_qlz_zqlC;’(z)@.n(;’)di’: (2~50)
0
Inim = / e M2 () (2)dz. (2.51)
0

Thus the same procedure as above section leads to the force, energy, and particle number balance
equations, in a steady-transport state. In the quasi-2D systeins the frictional forces and energy-loss
rates of electrons within the subband 7 are given by

F20 = oy fugg(a)Pally) (q,w)+
. ,
2 ) Q2 fwi + Qaa
2 > IMi(Q NP ally (q, w0 + Qaqa) {n[ ;1 ]_.,,,[ T,-eQ ” 252
Q9:,A o o
WP = 2 3 [Mig(Q. N Qaally (a0 + Qqa) {,,. { }2*] —n ['1{}7@”
q,9:,A
with w; = ;l'Vi('i = 0,1). The force and energy-loss rate of electrons within subband 0 due to

inter-subband Coulomb interaction are

7

, S [ dw : w—w , \
it = ?%”'“(“)'“/ - { [ri}‘ [%H“2"’(q,w>ﬂ§‘/<q,w—wm,

B 9 oo l’w ) w o—
Fi? ZWOU,U(Q)]H(I/ = [" [ ] —n {—MH M7 (q, @) (@, 0 — wor),
. J -0 T‘Ue Tlc i
! (2.53)

— o0

with wo1 = q - (v, — vy1),

In these equations H.(;)(q, w) and I’lgi](([;,w) are the imaginary parts of the electron density-density
correlation functions of the subband i at temperature Tj, for quasi-2D systems. Under random-phase
approximation the density-density correlation functions can be written as
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B 7 (q, )

O q.w
T {aw) = 1= Vi) m D (qw)

in which
Z 51k+q Fli /Tm - /((57k /U)/Tie) (2 55)
K +-lk+q Zik +’(S '
are the density-density correlation functions of the carrier systems in the al)sence of intra-subband
istribution f = 1/(exp(a) — 1)).

Coulomb interaction. n(x) is the Bose distribution function (n{a)
The friction force experienced by electrons within the subband 0 ( and the energy-loss rate of electron

due to mnter-subband electronu-phouou interaction are

of the same subband

—dr > IMo(Q PR (S /Toe) = T (Eiiera /T )]

PO, =
k,q,9:.2
Q . i -
X { I:n I: ;)‘] —-n {g’l‘:: _ fljlfl-{jl}] (S(Iblk+q — Eog + QQ,\) (2.56)
_QQ)‘ £1k+q g()l\ C
[u{ T ] Tlc T“F ( 1k+q Nk Q,/\) ‘
HIS]I’D = Am Z |A/7()1(Q-,/\)]25nk U(fuk /Toe ) — _/'(glkqu/]]r ]
k dq.4..a
QQ/\ Eok £1k+(l o
B || P E -k 2.57
{{ [ ] [T(]C T,. ( lk+q — Pox + Qqn) ( )
" { [QQA] - [€¥+(l - Ei—H\H g (E1k+q — Eyk — QQA)} »
le (e

i which &y, = Fik — 11, Eik = sik + %1”*1);" +k-v;,
The expressions for F1% and W9 can be obtained from Eqs.(2.56). (2.57) by exchanging all the

indices (0 — 1, respectively.
Finally tlu rate of change of the particle number of the electrons within the subband 0 1s due to

imter-subband electron-phonon coupling

ST Mo QNP (Eox /T ) = [ (Ekerq /Tic)

1\_"3[) - _dr
k.q.q..
OQ/\ ok Eiksaq|l o) - .
gy | X T4 S(F o — B 0 2.58
{[ [ ] 1 [T(]e . O (Lixqq ok + 2qa) ( )
¢
[ {"QA} — 61,1(|+q — tl(,]k” M (E kg — Eox — Qqn)
Lie L {)e

2.4 Electron Transport in Quantum Wires

We choose a cylinder GaAs gnantin wire of radius p embedded i Al Ga (Z, As as model quasi-1D
ath L. are

systen. The wave function and the energy of the quantiung wire of tength L
10 _ | ak.z -
Lnnrl - l/'_{ £ Kulu\~)-
L:
A,‘.’
Samk, = T B
: 2
due to the confinement. In the

Com (2) 1s the envelope wave functions and £, 1s the subband cnergy
ground subband n = 0. = 1 and next two degenerate subbands

following. we consider only the

16



n=1 m=1and n=—1, m =1, having wave [unctions and ecigeneuergies

Con(ry) = Vo (%H() . o
: o (o | (2.59)
Cenlyy) = FCT (7”’11) e,
(1)
Snain = W (2()0)
where (7 = 1/(/myhp) is the normalization factor, 221 s the mth zero of the nth-order Bessel

function, i.e. Ju(z),)) = 0 and ¥, = JI,,,IH(J:',,',',"). The difference from the quasi-2D systems 1s that
the n = 1 subband has a degenerate one n = —1. Since mn = 1 for these three subbands, we omit this
subscript for simplicity. In the framework of balance-equation approach of TTCM, the two degenerate
subbands share a unique electron temperature, drift velocity and Ferini energy which may be different
from those of the subband n = 0. The electron Hamiltonian reads

=3 A 1 . 1 t : . .
H, = Enk,oCh_ sCnk.o + E [\m’m.n’n(I‘[z|)(-m/kz+q:,,C“:k/:_qz_,:,:(«n_l\:l:qltmkz,;, (Z()l)
nk.o m! mn’n
kz okl gz

o,o!

where )
o2

Ko nm(lq:]) = / (Ir||rlrf|§f”,(r||)(,,,v(r”)C,’f,(rh)(,,,(rf[)[\'(,( gz ey — 1) (2.62)

4megk
is the Coulomb interaction. Kg(2) is the modified Bessel function of zeroth order. As in the case of
the quasi-2D systems, the inter-subband Coulomb scatterings Koo 11(= Nyg 1) are our main concern
terts (see Fig.2-2). The equations of force, energy, and particle number balance in quanturmn wire
systemn under a uniforin electric field E along the =-direction are as follows:

NyeE + Fo(vy) + QFSI(“(% py) 4 2F0 (g — vy) = 0, (2.63)
2N eE + 2F 1 (v1) 4 2F, (vy. v1) = 2F i (vo — v1) = 0, (2.64)
vy - Fa(ve) + Wolve) + 2"'1",()”(”(1- vy} 20 (og — ) = 0. (2.65)

Vi - ZF] (l)l) + (V() - V]) - ZF(”(’UU — ) + 'ZH’YI(‘!" ) -+ 2”;}”(1'(]A 1‘1) — 2"""7[]](1‘[) — Ty ) = U, (26())

,\'(l'(].,[;)(.,ll().17],’lv|,./l|) = (). (Z(ST)
and
Ny +2NV =N (2.68)

Here. F.W and X functions have the same meaning as those of above section. The frictional forees

and energy-loss rates of electrons within the subband 7 are given. respectively. as:
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Figure 2-2: Form factors of e-e Coulomb interactions for Al;Ga;_;As-GaAs quasi-1D quantum-wire
with radius 9 nm versus the plane wave vector |¢,|p are plotted. The solid line stands for IHgg)ll((])lz.
The dotted-dashed curve denotes form factors of the third class of the e-e Coulomb interactions.

P = niZ|“‘ii(Q)|2(1:Hgi)(f]z>(Iz'Ui)—l-

q.,9:

y 2 ) . Qaa|  [ezvi + Qaqa
2 ZAIM“'(Q’A)' felly (0 v+ o) H T ] "[ T. H (2.69)
9,9z,
9 s Q ,’,‘

WiP = 2 5 M@ Qa0 0o + R [ [—;3*] —n {—_—‘ ;QQ*H

9,9z,

The force and energy-loss rate of electrons within subband 0 due to inter-subband Coulomb nter-

action are

i ; *® dw w w—w
RP = qZ“ioo,ll(l(Izl)Vflz /_m — [n [Tne] —n [TOJH M5 (g, )15 (g2, w — wor),
N 5 [ dw ; w = ’
I/VollD = _;lh()(l,il(lfhl)r /_oo —ﬂ_—w [" [Q:Ze] —-n [““#H Hg())(qz,w)ﬂgl)(qz,w —wm),

(2.70)
with wy; = ¢ (vo — v1).
In Egs.(2.69), (2.70) Hg)(qz,w) are the imaginary parts of the electron density-density correlation
functions of the subband i at temperature T;, for quasi-1D systermns.
The friction force experienced by electrons within the subband 0 aud the energy-loss rate of electron
of the same subband due to inter-subband electron-phonon interaction are
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in which ik = Eix — 1, Eax = i+ L?rl*'l)3 + k-v;.

The expressions for £ p and W, ,“;D can be obtained {rom Eqs.(2.71), (2.72) by exchanging all
the indices 0 « 1, respectively.

Finally, the rate of change of the particle number of the electrons within the subband 0 is due to
inter-subband electron-phonon coupling:

NP = dn ST [Ma(Q AT o, /Ton ) = F(Expge /Th ]

keqg:.a
‘ {[ P_] . [é_ _ f_+_H S (Eveos. — Bob. + Oan) (2.79)
T De []c
Qqa Eik,49.  Cok. . .
- H T ]_"[ T | | B = Bk = Saa) ¢

2.5 Discussion

Just as we mentioned in the first section, the intersubband scatterings. mainly arributed to the
electron-clectron Coulomb interactions, which effectively transler energy between different subbands
and thermalize electron dwelling in different subbands. depend strongly on the dimnensionality of the
system and the density of the carriers. So. in this section. detailed numerical calculations have been
performed for GaAs-based quasi-2D quantuim-well and quasi-1D gnantnm-wire systeins with several
different electron densities and confinement, quantuin-well widths and quantuni-wire radin, at lat-
tice temperature T = 80 K. Contributions of electron-impurities scattering. intra- and inter-subband
electron-phonon scatterings (including polar-optical-phonon. deformation potential and piezoelectric
couplings) and the inter-subband Coulomb interaction are included in the calenfations.

2.5.1 Dependence on Carrier Density

Iy Figs.2-3. we plot the calculated electron temperatiures 1, and drift velocities vy and vy of 1wo
subbands as functions of the electric lield for Al.Gay_,As=GaAs quantum well systeimns of a well
width 50 mm having carrier sheet densities N, = 0.1, 0.5. 1.0, 5.0 and 10> 10" con™2 vespectively.
The solid curves are the values of the ground subband 0. long-dashed curves are those of the lirst

excited subband 1 and shot-dashed lines correspoud to the average drift velocitios ¢

Ny 4+ Ny
N '

va =
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Figure 2-4: Calculated electron temperature and drift velocity are shown as a function of electric field
at T = 80 K for the Al,Ga;_,As-GaAs quasi-1D quantun-wire of radius 9 nin with several electron
line densities 1.0, 2.0, 3.5 and 5.0 x 10% =1, respectively. The solid curves denote the results of
electrons in the lower subband. the dashed lines in the upper subband. and the dotted lines is the
averaged drift velocity.

Generally, the electron temperatures and drift velocities in different subbands are not equal due
1o finiteness of the carrier iutersubband Coulomb interaction. The difference of these quantities of

different subbands depends on the gap between the ground and first excited subbands and on the

electron density. In these figures. we focus our attention on the effeets of the electron density. It s

believed that the higher the electron density the strouger the intercarrier Coulomb interaction. It is
easily seen from Fig.2-3(a) that in the case of electron density Vo = (] 10T a2 there are great

disparities of both the electron remperatures and drift velocities between two subbauds. When the

electron density gradually becoine more aud more high. the temnperature aud deift velocity of electrons

within the first exeited snbbaud are more and more close to those of electrons dwelling i the ground
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subband. These figures apparently show that in the case of higher electron density, No = 5.0 and
10 x 10'! em=2, these disparities are largely reduced. Similar conclusion can be drawn from the results
of quantumm-wire systems. In Figs.2-4 we plot electron temperatures and drift velocities of separate
subbands, as well as the average drift velocity vg defined by

by = Ny +,2N1 o

N
for quasi-1D quantum wires with radius p = 9 nm having electron line densities Ny = 1.0, 2.0, 3.5 and
5.0 x 105 ™!, respectively. Significant change of electron temperatures and drift velocities behavior
oceurs in the quasi-1D case when the electron line density increases from \p = 1.0 x 10° cin~! to
Ny =5.0x%x 10% e~ L.

All these figures demonstrate that the intersubband Coulomb interaction plays a decisive role in
transport of systems having two occupied subbands. If the electron density is low, the intersubband
Coulomb interactions are not strong enough to rapidly thermalize electrons among the different sub-
bands. It is thus natural that electrons in different subbands possess different electron temperatures,
drift velocities and chemical potentials when an external electric field is applied. This implies that the
presumption of the OTCM is invalid for the case and the TTCM must be used to solve the transport
problems for systerns of low electron density. On the contrary, in the case of the high electron den-
sity, the electrons thermalization between the first and second subbands is so rapid due to the strong
intersubband Coulomb scatterings that clectrons dwelling within different subbands share a conumon
electron temperature after the system comes to a stationary state under a uniform external electric
field. Obviously, OTCM is a good approximation for such systems. Therefore. it is the electron density
that is the decisive factor of the validity of the simplified OTCM for a given low-dimentional system.

2.5.2 Dependence on the Confinement

Figure 2-5: Calculated electron temperature and drift velocity are shown as a function of electric
field at T = 80 K for the Al Gaj_rAs-GaAs quasi-2D guantunewell of a electrou sheet density
10 x 10" ern—2 with two different well widths d = 35 aud 20 nm, respectively. The solid curves denote
the results ol electrons in the fower subband, the dashed lines in the upper subband, and the dotted

lines is the averaged drift velocity.
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In this subsection, we will investigate the dimensionality dependence of the validity of OTCM for
low-dimensional systerns. It is well-known that the confinement of a low-dimensional system is more-
strong, the gap between the ground and the first excited subbands is wmore great. Then, more strong
inter-subband scatterings are needed to make electrons dwelling within different subbands thermalize
for the systermn with a given carrier density. In other words, for a systemn with a given carrier density,
as the confinment become stronger, the disparity of transport properties of electrons between the two
lowest subbands become more obvious. The numerical calculatious, depicted i Fig.2-5 for quasi-two-
dimensional quantum wells and Fig.2-6 for quasi-one-dimensional quantum wires. prove this argument.
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Figure 2-6: Calculated electron temperature and drift velocity are shown as a function of electric field
at T = 80 I for the Al,Ga,_,As-Gads quasi-1D quantuni-wire of a clectrou tine density 1.0x10%cm™!
with two different wire radiu p = 15 and 20 nm, respectively. The solid curves denote the results of
electrons in-the lower subband, the dashed lines in the upper subbaud, and the dotted lines is the
averaged drift velocity.

In Fig.2-5, we calculate the drift velocities and electron temperaties for the two fowest subbands
of the quatum wells with electron density N, = 10 x 10" cin™ and two different well-width d = 20,
35 min at the lattice temperature of 80 K, respectively. We can deduee, fromn above subsection, that
for the quatum well with well-width d = 50 wm (g0 = ¢y — 20 = 6.7 me\) the electron density
No = 10 x 10! cmn=2 is enough high to make electrons between the two lowest subbands nearly share
a common drift velocity aud electron temperature. However. when the well width become thiner,
for example. d = 35 (gj0 = 13.7 meV) and 20 nm. diference bhetween the two lowest subbands grow.
It is clear that for the quantum well with & = 20 n (219 = 40 meV) the OTCOM s no more valid.
Simnilar results for quatiin wires can be obtained from Fig.2-6. in which the drift velocities and electron
temperatures are plotted as functions of external electric fields for quatum wires with electron density
Ny =1x10% cin™!and p = 15 (210 = 22,5 meV) and 20 nin (54 = 127 me\).

2.5.3 Chemical Potential and Subband Occupancy under External Electric
Fields

In above two subsections, we pay our main attention to the two cocflicients. the center-of-inass av-

eraged drift velocity and the electron teruperature. whicl are the fundamental phvsical quantities
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the nonlinear transport field of semiconductor. [n low-dimeusional systerus. due to size quantiza-
tion, the quantized energy levels, subbauds, are forimed and one can focus interest upon the electron
occupancy of each subband under external electric fields. Here we use the Lel-Ting balance equa-
tions to investigate the electron population, i.c., the chemical potentials of each subband which are
used as auxiliary coeflicients in the Lei-Ting balance-equation theory. in the two lowest subbands in
quasi-two-dimensional guantum well systeins.

Figs.2-7 illustrate our numerical results for d = 50 nim quantum wells with a series of electron
densities. The electron populations in the two subbands of O'TCM are also plotted in these figures
in comparison with those of TTCM. It is surprising that the chemical potentials of the two subbands
keep still regular dissimilarity, instead of becoming identical just as the drift velocities and electron
temperatures do in Figs.2-3, as the electron density increases gratually from low to high. In the case
of electron densities N, = 0.1, 0.5 and 1 x 10" cm™?, the uper-subband chemical potential 1s higher
than the lower-subband one at the whole range of electric fields. Correspondingly, the lower-subband
electrons are continuously transfered to the uper-subband by the electric field. We can interpret this
behavior as following. The corresponding Fermi energies above the bottoni of the lowest subband at
absolute zero ternperature are 0.4, 4.3 and 5.2 meV, respectively. all of which are smaller than the
spacing between the lowest and uper subbands, 6.7 meV for the d = 50 nm quantum well. Most of |
electrons populate in the lowest subband and only few electrons dewell in the uper subband at thermal
equilibrium state. When the external electric field is applied. the lower- and uper-subbands begin to
transfer electrons each other. However. the uper-subband can uot supply enough electrons to offset
those it gain from the lower-subband although the electron temperatures become lower than the lattice
temperature at low electric field. Therefore, electrons are always pmnped from the lower-subband to
the uper-subband as the electric field increases. It is obvious that this behavior is inconsistent with
that of OTCM. In the case of OTCM, the electron population. i.e., the chemical potential, only is
the function of electron temperature 7, . \; :Z F (g — ) /T2). due to the constant total electron

ko
sheet density N.. Then the electron occupancy in the lower-subband always rises due to cooling effect

at low electric fields in the case of three considered electron densities.

The situation is different in Figs.2-7 (d) aud (e). For electron densities N = 5.0 and 10 x 101
cmn—2, the Fermi levels at absolute zero temperature are 12.3 and 21.2 eV, respectively. both of which
are greater than the spacing between the lower- and uper-subbands. Therelore. there are still a lot of
electrons populated in the uper-subband even at very low temperatures and then the electrons in the
uper-subband are more enough to sustain transfering to the lower-subband due to the cooling effect
at low electric fields, such is in quanlitative agreement with the OTCM. Yet. the chemical potential of
the uper-subband does not become quantitatively closer to that of the lower-subband as the clectron

vV

lower-subband rises above that of the uper-subband befor the electric field crosses around 0.3 kV /e

2]

.= 5.0 x10Y e 2, the chemical potential of the

density increases. In the case of electron density J

\While the chemical potential of the lower-subband keepes always lower than that of the uper-subband
at the whole range of electric fields for electron density N = 10 x 10 a2

This series of figures indicate that the OTCM can not well desceribe the beliavior of electron
occupancy in subbands for quantuni wells with well width d = 50 nin in the case of higher electron
density than 1.0 x 10" e~ 2, although the meticnlons model (TTCNY showes that different subbands
tend to a cominon drift velocity and electron temnperatire. It seeimns that the approach extended by
Guillemot”” based on the Lei-Ting balance-equation theory. assinning that different subbands share
a unique drift velocity and electron temperatnre but posses different chenieal potentials, 1s more
appropriate for investigation of transport in quantuny wells i the mabisubband populated case than

the OTCM.
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Figure 2-7:  Electron population and Calos-
lated electron chemical potential above the bot-
tom ol the ground subband are plotted as a
function of clectric field at T° = 80 K for
the Al.Ga, . As-GaAs quasi-2D quantum-weif of
well width 50 i with several electron sheet de
sities 0.1, 0.5, 1.0, 5.0 and 10> 10 M em™? respac-
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and OTCOM, respectively.
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2.5.4 Intersubband Coulomb Scattering in Linear Mobility in Quantum
Wells
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Figure 2-8: Mobilities g, up and gy, are plotted as a funcr ion of lattice temperature in a Al,Gag_,As-

Gads quasi-2D quantum-well of well width 50 nm with clectron sheet density 2 x 10 ein=?, and

distance s = 10 num of the remote impurity layer from the center of the well. The solid curve
denotes pp, the dashed line j¢, and dotted line py,. Inset: yi/pp (solid line), ¢/ pp (dashed line) and
(0 — p1)/ (s — pn) (solid line) as a function of lattice ternperature.

In this subsection, we invesitgate the effect of intersubband electron-clection Coulomb interaction on
the linear trausport, i.e., the mobility. The Eq.(2.37) evidently tell us that the intersubband Coulomb
interaction has a direct contribution to the total mobility of ynantum wells i the case of two subbands
occupled.

Here we are interested in two limit cases: weak and stroug intersubband Coulomb interactiont 2.
For the sake of simiplicity, the intersubband electron-phonon scatterings are neglected in the following
formulae. However, in practical evaluation, these scattering mechanisin should be included. First, for
the weak intersnbband Coulomb interaction case Fis — 0. in which the Boltzinann equation is valid.

—c (N} N Ny
3= — | —= — .
SN AT T

which is identical to the result of two-band model of Boltzmaun vqunli()l'l{'“] and hence is ealled

the mobility ju is sunplified as

(2.7

Boltzmann wmobility g, On the contrary. for the strong intersubband Coulonib interaction case
o — oo, we can find that only if vy = uy the group of cquations (2.34) and (2.35) arc solvaldls
and this is consistent with physical concept that the enough strong intersubband electron-clectas
interaction can induce intersubband rapid thermalization. {n this situation electrons dewelling in
different subbands are handled as a whole aud OTCM i~ valid. And the mobility o tends o the
Lei-Tiug mobility g, of OTCM:
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The two definitions Eqs.(2.74) and (2.75) are apparently different and represent two extreme cases of
the intersubband electron-electron interaction strength in quantum wells. Unfortunately, the strength
of the intersubband Coulomb interaction is neither zero nor infinity and the real mobility must be
calculated from Eq.(2.37). Nevertherless, the disparity among three mobilities can demonstrate that
how the intersubband Coulomb scattering can affect transport properties and give a hint for further

simplification.
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Figure 2-9: Mobilities y, up and pi, are plotted as a function of impurity distance from the center of
the well of well width 50 nm with electron sheet density 2 x 10! em=? at the temperature of 30 K.
The solid curve denotes up, the dashed line g, and dotted line pr,. Inset: (¢ — pr)/(us — po) (solid

line) as a function of impurity distance fron center of well.

In Fig.2-8, we evaluate the real mobility y, Boltzmann mobility up and Lei-Ting mobility p1, as
a funciton of the lattice temperature in a quantum well, width d = 50 nm, electron sheet density
N = 2 x 101! ¢m~2, for distance s = 10 nm of the remote impurity layer from the center of the
well. At the whole range of the lattice temperature, the overall bahaviour of u is similar with pg.
1, has a completely different temperature-dependence at extremely low temperature and with the
increasing of temperatures it tends close to the others. The inset shows the behaviour more clearly.
This means that at the extremely low temperature, the intersubband electron-electron scattering is
significantly weaker than the impurity scattering and with the increasing of temperature the impurity
scattering becomes lower, while the electron scattering higher. So the temperature is another factor
which can affect the intersubband Coulomb interaction. We cau deduce that for a very clean sample,
the impurity scattering is always weak in comparison with the electron scattering, then the i, has
a similar behaviour with the up at the whole rauge ol tempertures. Fig.2-9 illustrates the three
mobilities as a function of remote impurity distance s from the center of the quantum well. The up is
generally larger than the g, because electron-electron scattering tends to scatter “runaway” electrons
with large velocities (where the irmpurity scattering rate is sinall) back into lower velocity states. As
s becomes larger, the electron-election scattering dominates over all other scattering mechanisms and
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i« — pp,. Conversely, for small s, the impurity scattering is relatively large compared to the electron-
L Y : J ) b )

electron scattering, and g is closer to the pp than pp,. The crossover {rom pp to jig, 1s also shown in

this figure.

2.6 Conclusion

In this chapter, a systematically investigation about the effects of the inter-subband Coulomb in-
teraction on the linear and nonlinear transport in quasi-two-dimensional quantum well and quasi-
one-dimensional quantum wire systerns with different electron densities and confinments has been
performed by using the two-types-of-carriers model of Lei-Ting balance-equations theory. We have
found that, when the electron density rises, the enhanced inter-subband Coulomb scattering can make
the electrons among different subbands thermalize and achieve a comunon drift velocity and elec-
tron temperature. This gives a judgement which decides whether or not the OTCM is validity for
invesitgation of transport in low-dimensional multisubband systems. In addition, the effect of the
confinement on the inter-subband interactions in low-dimensional systems has also been discussed.
By analyzing the linear mobility in quantum wells, we can demonstrate the effect of temperatures on
the inter-subband interactions and a well-defined crossover from pup to pi..

Moreover, taking quasi-two-dimensional quantum wells as example, we have researched into the
electron occupancies and chemical potentials in each subbands under external electric fields. We find
that the chemical potentials between the two lowest subbands always keep distinguishable from low to
high electron densities and this distinguishable can not be removed by the enchanced inter-subband
Coulornb interaction. However, it should be noted that the T'TCM extended by us in this paper include
only the dominant inter-subband Coulomb interaction term, in which the two electrons dewelling in
different initial subbands scatter but keep staying within their respective subbands after scattering.
This inelastic scattering between subbands allows energy to he transferred from hot subbands to
cold subbands so that a uniform energy is quickly reached between different subbands. Those results
obtained in Secs.2.5.1 and 2.5.2 are qualitatively cousistent with this conceptual viewpoint. Due to
not involve exchange of particles between different subbands, this inter-subband Coulomb interaction
term can not directly contribute to the rate of change of particle number. The exchange of particles
between different subbands is caused only by inter-subband electron-phonon interactions. It is well-
known that, the electron-phonon interactions are no related to the electron density and weaker than the
electron-election interactions. Therefore, it is easy nnderstood that the calculated chemical potentials
in the two lowest subbands always keep disparity even though the electron density rises (Iigs 2-7).
On the other hand, in order to more careful inspection of electron occupancy in subbands, we must
investigate those profound inter-subband Coulomb interaction terms involving exchange of particles
between different subbands. The further topic how to include these profound inter-subband Coulomb
interactions in Lei-Ting balance-equations theory is our task in the future.



Chapter 3

Electron Noise Temperature in
Heterjunction

3.1 Background

Thermal noise is an important problem in Semiconductor l’hysics[’—’(]' ol Especially, when the size of
the device is small and the electric field across the terminals becones strong, thermal noise 1s a crucial
consideration which can determine the reliability of the device. Unfortunately, even thougl the noise
problem in a low electric field has been intensively studied, its knowledge in high-field region is still
very poor. In recent years, a quasianalytical method on the thermal-noise problem in steady-state
transport in the presence of a dc electric field has been derived through the Langevin-type equation
for the fAluctuation center-of-ass velocity operator by Hu“"”fml Lni[i’z], separatedly. Both of their
works are based on the Lei-Ting balance-equation appl'oa('l'l.["‘ 1 Their theory bears uo relation to the
strength of the applied de electric field. Hence, they can use it to investigate the thermai-noise problen
under high electric fields. From their equations, the same result as Nyquist relation is re-obtained =t
low fields, but at high-field region a modified expression for the fluctuation-dissipation theorem uiust
be produced to replace the standard one. Furthermore, their method can be extended to discuss the
effect of nonequilibrium phonon occupation (hot-phonon effect) on the thermal noise.

[u recent yvears, thanks to the technological advance, it becomnes possible the real application of the
low-dimensional devices. As mentioned in the previous paragraph. thermal noise 1s a great nnportant
limitation for these small size devices. One of authors(29! has systematically discussed the thermal-
noise temperature in steady-state nonlinear transport in GiaAs-AlGaAs single-layer and multifayer
heterosystems with and without hot-phonon effect. However. they considered the contribution of
clectrons occupying only the lowest subband in their evaluation. Unfortunately. the occupation of
more than the lowest subband in low-dimensional systeius has a great influence on transport properties
of electrons. of course on the thermal-noise problem. Thns it ix necessary to extend the method of
nvestigating the thermal-noise problem of low-dimensional systems to the case ol mnlti-subband
oceupations of carriers.

Recently, many authors studied electron transport properties of low-dinensional syvstems constd-
ering multi-subband occupied cases. ln most balance-equation investigations on these problens, elee
trons in different subbands are assumed to share a common electron temnperature. chemical potentiag
and average drift velocity based on the presminption of sufliciently rapid thermalization of elecirons
arong different subbands. In our recent |>;\pcr[45] and Chapter 2 of the thesis, a systematic tieoretica!
investigation on the validity of this presumption for low-ditensional nlti-subband systems has heen
carried out by means of the balauce-equation approach ol the 1wo-types-ol-carriers tmodel (TTTCM).
We can draw conclusion fromn the paper that the validity of the presumption is crucially dependant



upon the electron density and thie confinement of low-dimensional systers and if the electron density is
high enough, how high the density is needed is related to the confinement of low-dimensional systerms;
the one-type-of-carriers model (OTCM) is a good approximation for low-dimensional multi-subbad
systems. In this chapter, we will first use the same approach to detailedly study electron transport
heterojunctions with two electron densities Ny = 1.9 and 5.7 x 101" cin=* at the lattice temperature of
30 K and to show that in the case of densities OTCM is applicable to describing electron transport in
Heterojunctions. Therefore, we can apply the much more simple model, i.e., OTCM, to study thermal
noise of quasi—two-dimensional heterojunction systems having multi-subband occupations. A brief
discussion about the thermal noise problem in quasi-two-dimensional case is provided. In the follow-
ing, it is extended to apply to the case of muli-subband occupied, detailed numerical investigation is
carried out for Heterojunction and the current results are compared with those of only considering
one-subband occupied case.

3.2 Electron Transport in Heterojunctions for the Two-Sub-
band Occupied Case

First, we are intend to use the approach given in above chapter to investigate electron transport
in heterojunctions. Consider a single Al Gaj_,As-GaAs heterostructure systern and use the Fang-

Howard-Stern variation wave function:24]
N b3 by = ‘
Coz) = [ =2 ] zexp - (3.1)
and
‘ 5 1/
3 b3 by + b by =
G(z) == )———1———, 2l - “—]— =] exp ShaS (3.2)
’ 2 \ b — baby + b7 6 2
as the envelope wave functions for the n = 0 and n = 1 subbauds, respectively. The variational

parareters by and b; and subband energies ¢, =1 due to the guantized motion in the = direction are
determined by a variational calculation??] Tle electron subband energy can be expressed as:

L2 . (3.3)

VAT

Fig.3-1, which depicts the square of form factors of intra- and inter-subband Coulomb interactions i
heterojunction as a function of ¢, showes that the square of the form factors of the third class are
nearly two orders of magnitude sinaller than those of other two classes. Therefore, the same balance
equations for the force. energy and particle numnber are obtained as those derived in quantum wells
given in above chapter. except for the form factors involved due to the different wave functions in
Lieterojunctions.

In Fig.3-2 and 3-3. we plot the calculated normalized electron temperatures and drift velocities of
two subbands as [unctions of external electric fields for a Al Gay_p As-CGlads heterostructure systein

with carrier sheet densities N = 1.9 and 5.7 x 101" cm™2, respectively. All solid curves arve the values
of electrons within the ground subband 0. all dash curves are those of electron dwelling in the first

excited subband 1 aud dash-dotted lines correspond to the average dnft velocities iig:

Nyrg 4+ Ny
iy = —————————.

N
1 these calculations, we assuine the rernote nnpurity densities are a half of the electron densities. For
comparison, we have also perforined unmmnerical calenlations for the same systems using the OTCM

balance-equations, i.e. assinuing a connuon center-of niass velocity, asingle clectron temperature and
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Figure 3-1: Form factors of e¢-e Coulomb interactions for AL.Gay_.As-GaAs heterostructure with

electron sheet density N = 5.7 x 10" ¢m™? versus the normalized wave vector q/kp (kr is the

absolute zero temperature Ferimi wave vector) are plotted. The thick solid line stands for |Hog,00(q)
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the dashed line for {Hy {q))? and the dashed-dotted line for |H[m.11(q)]2. All thin solid curves denote
form factors of the third class of the e-¢ Coulomb interactions.
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averaged drift velocity. The dotted curves represent those results of OTCM.



220

250.0 F _ -
subband 1 - - }{_ 200
2000 L ~ —subband 2 _-" =5
-7 180
~ 150.0 | P 4 160
—
g i /A o
> / 7 4140 =
— 1000 Yy
= %
s _ 4120
50.0 T=80K
n -2 7100
. N=57x10" cm
: ! ; L s 80
0'%.0 0.2 0.4 0.6 0.8

E (kV/cm)

Figure 3-3: The same as Fig.3-2 except for the electron sheet density of 5.7 x 10" e~

a unique Fermi level for all the electrons in different subbands. which are shown by dots in these figures.
Generally speaking, the electron temperatures and drift velocities of electrons in different subbands
obtained by using TTCM 1method are not equal at. the whole electric field region for various electron
sheet densities and they are also different from those obtained by using OTCM method. Figs.3-2 and
3-3 clearly indicate that, for the calculated electron deusities N = 1.9 and 5.7 x 10 em™?, there are
great difference between the drift velocities of the grouund subband and the upper subband even at
the weaker electric fields. However. frome the two figures, we can also evidently see that the averaged
drift velocities for the two heterojunction systems are nearly equal to the drift velocities of OTCM
at the whole electric fields. Moreover, the difference for the electron temperatures hetween the two
subbands is only a little when the electric field is not very strong. Especially in the case of the electron
density 5.7 x 10'" cm™2, the behavior of electrons of OTCM is approximately ideutical to electrons
within the ground subband of TTCM. From this poiut in view, we can conclude that OTCM can
well describe the behavior.of electron transport in lieterjunction systems with carrier sheet densities
of 1.9 and 5.7 x 10'' ¢m~2. Therefore, for the sake of simplicity, OTCM is a enough good mode]
to investigate more profound transport properties in heterjunction systerus, such as thermal noise
tetnperature, which is the main topic concerned in the following sections.

3.3 Balance Equation Theory for Thermal Noise Tempera-
ture

Consider an electron-phonon systein. composed of NV interacting electrons in the preseuce of a uniforn
electric field. As the procedure in section 2 of the lirst chiapter. we can separate the electronic degrees of
freedont into a center-of-mass part. (.) and a relative electron part (11,). With the help of Hesenberg
equation. the rate of change of the center-of-mass iomentum P is given by

P = P U+ H. +H,y+ Hil=NE+F, (:.4)

i
h



where F = f‘z+f‘p is the frictional-force operator with ¥; and ﬁ‘pc01‘1'esl)odi1'1g to impurity and phonon
contributions, respectively. Similarly, the Licuville equation for the statistical density matrix p of the-
relative electron-phonon system takes the form

0
1‘0_5 =[H,+H.+Hy,pl, (3.5)
and the initial condition for the density matrix p is chosen as
Pliz—co = po = ie‘”’i/nie‘”?”’ T, (3.6)
B Ze th, ’

However, the center-of-mass, being a single particle of enormous mass performing Brownian motin,
can be described classically by its instantaneous position and velocity. In order to investigate the
thermal noise and diffusion problem, the drift velocity of center-of-mass can be written as the sum of
a constant drift velocity v4 and a small fluctuation part 5\7(1.) in steady transport state

V(t) = vq + 6V (1), (3.7)

instead of only the constant drift velocity as done in the above chapter. Obviously, the ensemble
average-of §V (1) is

<5\7(t)> =0. (3.8)

Considering the rate of change of the center-of-rnass P(t) = NmdV(t)/dt = Nmd§V(t)/dt, we can
rewritten the Eq.(3.4) in the Hersenberg representation:

i
Nm%éV(t) = NeE+f+F(t) + Nm/ Kt —s) -6V (s)ds, (3.9)
-_00
in which f is a time-dependent force operator and A(t) is a time-dependent tensor operator. To the
lowest order of (electron-impurity and electron-phonon) interactions, the operator f and £(t) in the
Eq.(3.9) can be replaced by their ensemble average f and K(t). F(1) is the fuctuation force along the
same direction as the random velocity §V ().
Taking the ensemble average of Eq.(3.9), the force balance equation

NeE + 1 =0, (3.10)

can be derived, which determines the dc bias point: drift velocity v4 and electron temperature 7Tp
, together with the energy balance equation, in the presence of a dc field E. With this in view,
Eq.(3.9) becomes a Langevin-type equation connecting the random velocity 6V (t) and the fluctua-
tion force F(t), which are resolved into two components of parallel to (longitudinal component) and
perpendicular to (transverse component) the external de electric field E, ‘

d . 1 b : .

We can solve this equation by Fourier transformation, yielding
-, I q s
bV {w) = ——0, (w)F(w). (3.12)
Nne

where n is the carrier number density and 6V (w) and F(w) are the Fourier transforms of the random
velocity 6V (t) and the fluctuation force F(t), and o, (w) is a dynamic conductivity defined by
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.ne” 1

Zﬁm (3.13)

on(w) =
Here m is the effective mass of electron and M (w) is the memory function consisting of an impurity
and a phonon contributions.
From the generalized Einstein relation between the generalized diffusion coefficient D, (w) (Dp(w) =
54— |0 (w)[25(w)) and the thermal noise temperature Tn(w)

Dp(w) = T—)—Re [on(w)], (3.14)

Tn(w

o2
the noise temperature which means that the maximum available noise power in the frequency range
w — w + dw of a passive two-terminal network made of the material with noise temperature Tn(w) is

T (w)dw [25] can be simply defined as

S(w)

Tn(w) = 2mMsy(w)’

(3.15)
where S(w) is the Fourier transform of the symmetrized fluctuation-force correlation function, which
is also composed of an impurity and a phonon contributions.

3.4 Electron Noise Temperature in Heterojunction for the
Two-subband Occupied Case

Consider a single GaAs-AlGaAs heterojunction system and suppose electron transport parallel to the
heterojunction plane (z-y plane). According to the balance-equation approach, a force and energy
balance equations for the steady state in the presence of an electric field E along the z-direction are
obtained:

NeE + F(v) =0, (3.16)

v -F(v)+W(v) =0, (3.17)

where v is the center-of-mass velocity, or the average drift velocity of the electrons, and e and N
are, respectively, the charge and the sheet density of the electrons. In these equations, F(v) is
the frictional force experienced by the center-of-mass due to electron-impurity and electron-phonon
interactions and W(v) the energy transfer rate from the electron system to the phonon system. The
detailed expressions for F and W are standard formulation for quasi-two-dimensional systems within
the framework of the balance-equation approach, considering multi-subband structures, and will not
be repeated here. The electron-electron Coulomb interaction is fully described in these expressions
through the function Ilz(nn’, ¢,w), the imaginary part of the density-density correlation function for
relative electrons I(nn’, ¢,w), in which n and n’ are subband indices and q is the plane wave vector
q = (g2, qy)- Under the random-phase approximation it can be expressed as

(nn', q,w) = N%nn', ¢,w) [1 + Vant mn (¢, 0) 1% (nn’, ¢, w) (3.18)

with the renormalized Coulomb potentials Vnn/,mm,(q,w), which satisfy the following equations:

Vnn’,mm’((bw) = Vnﬂ.’,n’z.m’(q) + Z Vnn/,u:(q)ﬂo(ll’, q,w){/[uymm/(q,w), (319)
g
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where T1%(nn’, ¢,w) is the density-density correlation function for electrons in the n and n’ subbands
in the absence of Coulomb interaction between them and Vi, ,,m/(¢) the matrix elements of the bare-
Coulomb coupling[37' 381,

According to the treatment of the above section, the noise temperature T, (w) is

S(w)

Ta(w) = 20
() 2m My (w)

(3.20)
for quasi-two-dimensional multi-subband systems. In the equation. S(w) and My(w) are the Fourier
transform of the symmetrized fluctuation-force correlation function and the imaginary part of the
mernory function, respectively. Both of the two functions are composed of an impurity contribution
and a phonon contribution denoted by superscript i and ph respectively:

Sw) = S (w) + SPh(w), N
Msy(w) = Mi(w)+ My (w). (3.21)
which may be determined, without hot-phonon effect for simplicity, as
4 1 2 ,

SHw) = —5g Z L U (@ [Ma(nn’, g wy) — Ha(nn’, q,wo + w)]
]VS qnn’ q | (r$ 22)

X [271 “"-“2) + 1} -,

Te
SPh(w) = _.——.2]\1,5 Z 4% [ M (Q, /\)|2 {H'_:(nn’. i, Qa4 wo +w) [(:oth (W) x

qq:Ann’

Q Qox +wo — Q
coth < _2(%)‘) — 1} —y(nn', ¢, Qgr +wo — w) {(‘.Olll <—Q—%—w> coth (%) — I:I } \

: (3.23)

. 1 2 9
Mi(w) = T Z (573- VU ()17 (Mo, q.wo) — Ma(nn' q,wo + w)}. (3.24)
qnn!
ph _ 1 29 M \ 2 1l S ) . QQ)\ + wp +w
]\/[2 (Lu)— m Z (10,11/“”/((2,/)] ‘_)(ILH .(1._h(2)\+.u“+w) T —i"—
T Qg Annd €
Q wp — W
-1 <Q—¥i>] — a(nn’, q. Qoa +wo ~ &) [H <Q—A+7{n—> —n <%>]} ,

(3.25)
with wg = ¢yvq and the area of the junction 5. In these equations. o = x (or y) corresponds to the
longitudinal (or transverse) component. T and Qgx are lattice temperature and phonon energy of
wave vector Q (three-dimensional wave vector (q, ¢z)). branch A, respectively. Upni (@) and Mpn (Q, A)
denote the matrix elements of the electron-impurity and electron-phonon interactions l'espectively.['%]

Employing above formulation, we have taken the GaAs-AlGaAs heterojunction system with only
the lowest and next lowest subbands occupied as an example to calenlate the thermal-noise tem-
perature as a function of de¢ bias points in the lattice temperature 77 = 80 . Thus the random
phase approximation BEq.(3.19) can be truncated by taking v, n’. mom’ =0, T only. In thie evalu-
ation, we neglect the contribution of the electron-itnpurity scattering for the sake of shmplicity and
it would not lose the qualitative understanding about the thernmal-noise problem. Moreover, both
the electron-acoustic-phonon interaction (via piezoelectric coupling aund deformation potential) and
electron-polar-optical-phonon interaction (via Frohlich conpling) are considered in the caleulation and
the electron-phonon matrix elements M, (Q, A) are given as:

"'\’Ilu,u’((zs/\) — A\[(Q-/\)Inn’(’-’/:)-

M(Q, A} is the matrix element of the electron-phonon interaction in the three-ditensional plane-
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Figure 3-4: The electron temperature T¢ (solid curves) and the longitudinal (dashed curves) and
transverse (dotted curves) noise temperatures Ty and Ty at w ~ 0 are depicted as functions of bias
de fields for a GaAs-AlGaAs heterojunction with electron sheet density N¢ = 1.9 x 10" em~? at

Jattice temperature T = 80 K for the cases of one- and two-subband occupation. In the inset, the
same quantities are replotted at low electric field range in order to display them in detail.

wave representation, and [,ns(ig:) the form factors of the electron-phonon interaction of quasi-two-
dimensional heterojunction systems which can be determined by: 137

[nu’('iq.z) :/e—iqZ (.n( )( ( )d~

In Figs.3-4 and 3-b we present the longitudinal and transverse noise temperatures T (dashed
lines) and T, (dot,t.ed lines) at w ~ 0, as well as the electron temperature T, (solid lines), as functions
of the bias dc fields E for samples with different electron sheet densities N = 1.9 and 5.7 x 10M em~?,
respectively, whose typical energy gaps between the lowest and the next lowest subbands (g7 — £q)
are 8 meV and 31 meV by means of the variational calculation, respectively. For comparison, those
results corresponding to the same samples assumed only the lowest subhand occupied are also plotted
in the figures. First of all, we can see easily from the two figures that occupation of nore than the
lowest subband reproduces the features for the case of one-subband occupation that the cooling effect,
all T,. Ty and Ty, can be lower than the lattice temperature T, shows up over wide ranges of de
bias, and at lower de bias T, is lower than Ty, whereas at higher de bias T;,; is higher than 77,,, as
well as To; or Tay is respectively higher or lower than the electron temperature T, at strong electric
field range. However, the difference between the results of the oune- and two-subband occupation 1s
obvious. especially for the case of higher electron density. it is very clear in the Fig.3-H that a large
decrease of the electron temperature and noise temperatures by a nearly half of mdgml.ude of those
of the one-subband occupation at the strong electric field region attributes to including the next
lowest subbaud in spite of a considerable great energy gap. On the contrary. only slight deviation
is Tound for the low electron density N = 1.9 x 10! cin™? (Fig.3-4) even under high electric fields.
This is because the system with high electron density possesses high Ferin energy level and electrons
can easily be excited into the next lowest subband even though a weak external electric field
added. Thus we can draw conclusion {rom the numerical result that higher the clectron density is.
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Figure 3-5: The same as Fig.3-4 except for electron density of 5.7 x 104 cin=?

greater disparity is found and that it is necessary to cousider occupation of multiple subbands for
sufficiently high electron densities in order to properly investigate the transport properties of quasi-
two-dimensional ieterojunction systetns. In addition. the insets in the two figures demonstrate clearly

another interesting feature that including the next lowest subband inclines to reduce the cooling effect.



Chapter 4

Hole Perpendicular Transport of
Superlattice Systems

4.1 Background

Since Esaki and Tsuld0l proposed the concept of superlattice structure more than twenty years ago,
there has heen an intensified interest in theoretical and experimental studies of the carrier transport in
a direction perpendicular to the quantwin-well layers because of the prospect of a negative differential
conductance (NDC). In recent years. the NDC lias been experimentally observed by Sibille et al. (57
and Grahn el alB8 in de perpendicular transport in GGaAs superlattices (SL’s) having wide range of
miniband widths, and attributed to Bloch electron conduction through the superlattice miniband as
predicted by Esaki and Tsul®0] At the same time. superlattice miniband transport has been further
studied theoretically using balance—equatioll["r)g] and Boltzinann equation[m" G1] approaches.
However, most of these studies were aimed at the electron transport. although several experiments
have vindicatéd the truth that holes play a great role in the carrier transport properties of superlattices.
For exatnple. by measuring subpicosecond luininescence spectra, Deveaud et al. (62] have found that
the perpendicular transport of electrons and holes is Bloch transport for 20/20 and 10/10 SL’s, and
observed a dramatic decrease in mobility in the 30/30 SL compared to that in the 20/20 SL resulting
from an order-of-inagnitude reduction in the hole miniband width. Furthermore, Fujiwara and his
coliaboratorsl”! have studied the correlation between the temperature-dependent transport processes
in superlattices and the miniband width by varying only the barrier thickness. Their experimental
results have clearly shown that the ambipolar transport is operalive al carrier densilies in excess of
1015 — 107 =3, Unfortunately. the profound energy spectrum caused by the complex nature of
hole wave functions hinders the theoretical investigation of the transport of holes in the SL’s and
nurerical caleulations for the perpendicular transport of holes in other structures (such as double-
barrier and double-quantum-well structures) have proved the fact that the effects of heavy-hole-light-
hole mixing are very important. In order to overcone the difficnlties. an atnalvtical approach basing
on the strong difference between the lieavy-hole (hh) and hight-hole (Ih) eflective masses has recently
been developed by Raichov0H and an approximation expression for the energy spectrum of the holes
in the lowest miniband which can describe the effects of hli-lh imixing has been obtained. Usiug this
hole spectruni, he evalnated the linear conductivity and diffusion coeflicients of the hole in SL's with
different superlattice periods within the Kubo formalisni. assinming that holes are scattered only by
the static disorder impnrity potential. The purpose of the paper is to exanine this problem by means
of the extended balance equation appmach[m}]. which enables us to analyze the transport behavior of
holes in SL’s under strong de electric fields and 1o take into accoum realistic seattering mechanisins

{(i.e.. the hole-tmpurity and hole-phonon interaction).
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First, a brief discussion about the extended Lei-Ting balance equation approach for an arbitrary
energy band and its application to investigation of miniband transport of electron in superlattices has
been performed. In the following, we have derived an analytical expression for the energy spectrum of
holes in the lowest miniband. Finally, numerical calculations about the miniband transport of holes
in superlattices have been carried out and remarked.

4.2 Balance Equation Theory for an Arbitrary Energy Band

For nonparabolic bands, the motion of center-of-mass can not he separated cormpletely {from the
relative motion of the electrons due to the nonparabolicity of energy bands. However, cousidering the
great difference of masses between the center-of-mass and relative electrons, we can separated thern
approximately following the spirit of the adiabatic &])plo‘(llll&lloll as we deal with electrons and rons
in solids. The center-of-mass momentum is used to describe the iotion of the (911191 of-mass in the
presence of the external fields. With this in mind. the density matrix is chosen as24. DY)

NP4l (4.1)

Here |Pg4) is a single particle (center-of-mass) state bearing an average c.an. momentum Py in the
presence of the electric field.

po ="

H. = Zs(k — P,j)CL,,Cka + H,, (4.2)
k.o )
is the relative electron Hamiltonian. The center-of-rmass momentuin Py = Npy. and the electron

temperature T, are used as fundamental parameters.

In nonparabolic band case, the effective mass is function of the clectron energy. An ensemble-
averaged effective-mass tensor, K, Is introduced to carry the major part of the nonparabolic effect on
transport, which is defined by

== Zvv f((k). T2). (4.3)

Nouparabolicity also showes up through the energy function (k) and the velocity function v(k) =
Ve(k). The average drift velocity of the electron system is given by

2 N
va= 3o Vak)[(E(K). 1), (4.1)
Yk

The force and energy balance equations for a nonparabolic band rake the {form

(K + A, + A, =0 (4.5)

(E vy W =0. (4.6)

The accelerations due to impurity and phonon scatterings. A, aud A, and the energy dissipation
rate 1V, arc-respectively:
27 Y .
A, = & Z[u QP gk ik + ) = vik) stk + ql—z(ky)
k. KT - (4.7)
fetk). 1) = Jle(k+q). 1)
e(q.i(ki—z(k + q)]*
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T
with £(k) = e(k — py) being the relative electron energy. Now the steady-state balance equations
(4.5) and (4.6), together the condition that the total number of the electrons equals N:

N =2 f(&(k),T.), (4.10)
k

can determine the dc drift velocity and the electron temperature under the influence of a constant
electric field.

Applying the balance equations for an arbitrary energy band system, we can investigate the Bloch
electron conductivity in a superlattice miniband, the extremly nonparabolic case. Assuming that
the conducting carriers of the superlattice are free to move in layers (z-y plane), but are subject
to a periodic potential in the z direction, with the single-electron state described by a wave vector
k = (ky, k), —7/d < k, < 7/d, d being the period of the superlattice. A tight-binding model is
employed for the energy dispersion relation (k) = kﬁ/‘Zm + e1(k,) with

1
gy = §A(l—cos(k;(l)). (4.11)
A being the miniband width. Under the influence of a uniform electric field along the =z direction, the
ensemble-averaged inverse-effective-mass tensor K becomes Kqp = Kyy = 1/m, Kiz; =0, and
. 2 d?ey(k;) . _ Ad? _ )
K,, = NYIL; W_f(s(k),z;) == ] cos(k,d) f(E(k), Te), (4.12)

where £(k) = £k, + €1(k, — pq) is the energy of the relative electrons. Moreover, the average drift
velocity of the carrier system in the z direction equals

Vg = %d > sin(k.d) f(E(k), T )- (4.13)
k

The balance equations (4.5) and (4.6) have been solved numerically for pg and Te as functions of
the electric field [7 at various lattice temperatures T, carrier sheet densities Ny, superlattice periods
d, and miniband widths A with parameters pertinent to the I-valley electrons in the GaAs/AlAs
superlattice. Scatterings due to impurities, polar-optic phonons, and acoustic phonons (including de-
formation potential and piezoelectric couplings) are taken into account. At first, the dependence of
drift velocity vq and electron temperature T, on the external electric field has been investigated for
several different miniband widths and all the velocity-field curves exhibit negtive differential conduc-
tance with peak velocities v, at critical fields E, as expected by Esaki and Tsu. However, different
from the single electron model of Esaki and Tsu which predicts that the same dependence of (veg/v,) as
a function of (E/E.) is independent of the superlattice period d, miniband width A, and temperature
T, the balance equation method has found that miniband width A playes a great role in determining
the peak velocity v,. To compare with the experiments of Sibille et al., the peak velocities v,/d and
critical fields E.d are calculated for different minthand widths A and the theoretical results are in
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Figure 4-1: Potential diagram of the superlattice. a and b are the well and barrier widths, respectively.

d is the superlattice period.

remarkably good agreement with the experimental data. Moreover, the temperature dependence of
linear mobility and velocity-field behavior has been studied. The balance equation theory predicts
widely varying temperature- and miniband-width-dependent nonlinear velocity-field behavior.

4.3 Hole Bloch Transport in Superlattices

In order to study hole transport in a superlattice (SL). we st first investigate the spectrum of
the hole energy band. Assmine that the conducting carriers of the GaAs-AlGaAs SL’s are free to
move in layers (z—y plane), but are subject to a periodic potential (z) (Kronig-Penney potential)
in the = direction as depicted in Fig.4-1 (e and b stand for the well and barrier widths, respectively.
d is the superlattice period.). According to the treatinent of Raichev04 (he isotropic Luttinger
Hamiltonian® is used to describe hole states in this system. The isotropic Luttinger Hamiltonian is

used to describe hole states in superlattices:
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where x = (z,y), ks = —i(8/0y) £ (8/dy), mu and my are the heavy-hole (hh) and light-hole (Ih)
effective masses, respectively. Transmission the (x,z) representation to the mixed (k) z) (ky is the
two-dimensional plane wave vector and k = (k” ,k)) representation, considering the strongly different
‘effective masses between the Ll mjp and the lh my (mu /[y, < 1) and restricting k” to satisfy the
following requirements:

2
0 oy
e —— 4.1
I my, d2’ (4.16)
we can write the hole wave function as following:
1 : b AN
Ua(ky,2) = —== > Fiyp.(z — dN)e =N (4.17)
/No = i

where N number the SL periods and Ny is the total number of periods. Fk“,k:(z) is defined in the
interval z € [—a, b]. Finally, we obtain that the function _goﬁ“ i, satisfies

[e(ky, k2) — €] goﬁ”,kz =0. (4.18)
Here e(ky, k;) is the unperturbed energy spectrum of holes in the lowest miniband of the SL’s.
Considering. the case of samll under-barrier penetration of the hole wave functions, 1.e., (v0)* > 1
['y = (2my, U)l/z} , an approximate expression for the hole spectrum of the lowest miniband is obtained
in the following form: [66]

A .‘%kﬁ

5(1(“,/(?2) = B) [1 — COS(ICZ(I)] + m, (419)

where A ~ (872 /myya®) exp (—7b) is the miniband width at kj = 0. Function R(k.) is defined as

R(k,) = Ro [1 — avcos (k. d)], (4.20)

in which Ry = 1 + 2coth(xb)/ka and o = 2/Rgrasinh (xb) [n“’ = 27I’L1U]. [t is obvious that the
derived hole spectrum is different from the conventional tight-binding energy spectrum and that the
kj-dependent part of the energy spectrum also depends on the transverse wave nurmber k,, which
describes the effect of admixture of hh-lh on the energy spectrum. In the limit of & = 0, this energy
spectrum Eq.(4.19) reduces to the conventional electron-like dispersion relation, i. e. neglects the
effect of the hh-lh mixing.

The force and energy balance equations for steady-state transport when a uniform electric field B
is applied along the z direction arel24]

eE/ml + A+ A, =0, (4.21)
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eBvg — W = 0. (4.22)

Here A; and A, represent the frictional accelerations due to impurity and phonon scatterings and
W is the hole energy-loss rate (per carrier) due to hole-phonon interaction. Two parameters, the
center-of-mass momentum Py = Npg and the hole temperature Ty are used to describe the transport
state of the system. The statistically averaged inverse effective mass is

dZ k”
;73 N Z . (5(kl|1kz —pa), Th) (4.23)
and the drift velocity is given by
5 .
va = 5 Z‘U(k)f (e(ky, k2 — pa), Th) (4.24)
k

where v(k) = de(ky, k:)/dk. is the velocity function in the z direction, and all the other physical
quantities are functions of pg and Tj. In the above equations

I (e(ky, k.), Tn) = [exp ((e(ky, k2) —‘,u,)/Th) + 1]_1 (4.25)

is the Fermi distribution function at the hole temperature T}, g is the chemical potential determined
by the total number of particle N = 23", f ( e(ky, k. ), Th). The expressions for A;, A, and W are
the same as those given in the above section except for T, being replaced by T},.

4.4 Discussion

Numerical investigation of the perpendicular transport properties of holes are presented in the follow-
ing for GaAs-AlGaAs SL’s with and without the effect of hh-lh mixing, which are obtained by solving
Eqs.(4.21) and (4.22). In the calculation, hole-impurity, hole-polar-optic-phonon, and hole-nonpolar-
optic-phonon interactions are taken into account and hole-acoustic-phonon {deformation potential and
piezoelectric) scatterings are neglected because of their tiny contributions at the considered tempera-
ture. For simplicity, phonon modes are assumed to be three dimensional. The material constants are
typical values of GaAs. The valence-band offset in the GaAs-Alg 3Gag 7As heterostructure is chosen
as U = 0.16 eV. In our theory, the only adjustable parameter involved is the impurity scattering rate
or the impurity density. At low temperature, the mobility of SL’s is impurity-limited, so that we
can define this parameter. Deveaud ef al. have deduced in Ref.[62] that the hole weak-field mobility
in the measured 20/20 SL is 900 cm?/Vs at the lattice temperature of 15 K. Here we adjust the
uupuuty density to fit the experimental data for the same family of SL’s with hole density 1 x 1017
em~3 at 15 K. Using the same aterial constants and impurity density, we calculate the hole mobility
for the 30/30 SL with the common hole density to be 42 emn?/Vs, which is very close to Deveaud’s
measured 50 cmz/\7~s[62]. On the contrary, if we neglect the effect of hh-lh mixing by setting « = 0 in
the Eq.(4.20), a calculated hole mobility which is nearly two times as high as the experimental data
for the 30/30 SL is obtained through the same procedure. This comparison show that neglecting the
effect of hh-lh mixing is inconsistent with available experimental data.

First we study the linear transport. Figs.4-2 describes the dependence of impurity-limited hole
mobility on the hole density at 15 K for the 20/20 (d = 4 mn) and the 30/30 (d = 6 nm) SL’s, assuming
the hole mobility at 1 x 1017 cin= to be 900 cmn?/V-s for the 20/20 SL and 42 cm?*/V-s for the 30/30
SL respectively. In this and following figures, the solid lines represent the calculations which take into
account the effect of hh-1h mixing on the hole transport, while the dashed lines correspond to the case
of neglecting this effect (o = 0). There is only trivial difference between the calculations at o = 0.618
and the calculations at a = 0 for the 20/20 SL within the whole range of densities, but this disparity
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Figure 4-2: The dependence of the weak-field hole mobility on the hole density is shown for the (a)
20/20 (d = 4 nm) and (b) 30/30 (d = 6 nm) GaAs-AlGaAs SL’s at the lattice temperature of 15
K, including (o = 0.685 for 20/20 SL and « = 0.518 for 30/30 SL) and excluding (« = 0 for both
SL’s) the effect of hh-1h mixing. Assume the weak-field hole mobilities of the 20/20 and 30/30 SL’s
at density 1 x 1017 cm~32 is 900 cm?/V's and 42 cm?/V's, respectively,

becomes evident for the 30/30 SL, such is consistent with Raichev’s results of the conductivity and the
diffusion coefficient versus the hole density at zero t,empera.t.ure.[m] In the 20/20 SL, the hole mobility
increases monotonously with increasing density due to its wide miniband if the effect of hh-lh mixing
is not considered. However, if taking into account hh-lh mixing the calculated result exhibits a peak
of mobilities at about 4 x 1017 cm~3. On the contrary, the electron-like mobilities for the 30/30 SL
with a narrow miniband arrive at a peak at about 1 x 1017 ¢m~3 and decrease slowly with the increase
of the densities. The calculated mobilities with considering hh-lh mixing increase rapidly when the
density is higher than 1.5 x 1017 em™3.

In Figs.4-3, perpendicular velocities and hole temperatures in the 20/20 and the 30/30 SL’s with
hole concentration 1 x 1017 cm~2 are illustrated as functions of electric fields at the lattice temperature
of 140 K. In order to satisfy the requirement Eq.(4.16), we restrict the electric fields less than 20
and 15 kV/cm, respectively, to ensure that more than 80% of the total holes dwell in the states of
k% < 0.2 (my/my) (x?/d?). A significant result is that the negative differential conductance (NDC)
disappears for the hot-hole perpendicular transport in both types of SL’s due to the effect of hh-lh
mixing in comparison with the electron-like calculated results (@ = 0), where NDC shows up for both
systems. Another feature is that the hole temperature is generally much lower in the case considering
hh-lh mixing than in the case without mixing at small to medium strengths of the electric field. In
the 20/20 SL systern, an appreciable cooling (T}, < T') shows up around £ ~ 6 kV/cm.

Summing up, the effect of hh-1h mixing plays a significant role in both linear and nonlinear hole
transport in SL’s. And the negative differential conductance of perpendicular transport of holes is
broken down due to this effect.

44



10.0

P -~ T T Te=-e _/ .
s =
30} o =0518 (b)
() 7 Va 4
8.0} /" bio —m g = 160
/ Vd
/
. /
v 60t ! V4 / ~~
E ; v 220}
<2 / &g Ty
o ! o5 -
st 1 / 180 = |/ o emme===T
= 40} 1 = = Sy A -—-—4140
> 1 o - v, (x100)
! “1or 7 ‘
2.0 k1 /
) /
! 150 ) Ty
f
0.0 = : 0.0 1 L 120
0 10 15 20 e} 5 10 15
E (kV/cm) E (kV/cm)

Figure 4-3: The calculated drift velocities and hole temperatures of hot-hole in the (a) 20/20 (d = 4

nm) and (b) 30/30 (d = 6 nm) GaAs-AlGaAs SL with hole density 1 x 10 cm=3

are shown as

functions of the electric fields at lattice ternperature of 140 K. Both the results with (o = 0.685 in (a)
and o = 0.518 in (b)) and thoese without (« = 0) the effect of hli-Ih mixing are plotted.
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Chapter 5

Summary

Multivalley or multisubband occupations of carriers are believed to play au nnportant role i de-
termining high field transport propertites of bulk and low-dimensional seniiconductor systems. In
low-dimensional systerns, the scattering rates assoiated with intersubband transition, such as niter-
subband electron-impurity, electron-phonon and electron-electron interactions. have been enormously
discussed. In these literature, carriers populated in different subbands have been assumed to share a
common energy due to the unique electron effective mass in different subbands and treated as a single
type of carriers. Some authors have argued that the inelastic scattering. i.e.. intersubband electron-
electron Coulomb interaction, allows energy to be transferred from hot subbands to cold subbands so
that a uniform energy is quickly reached between different subbands under an external electric field.
This presumption is worth deliberately consulting becanse the intra- and iuter-subbunad electron-
electron Coulomb iuteractions depend strongly on the dimensionality of the systern and deusity of
carriers.

Unfortunately, a detailed proof of this presmmption is lacking. Uherefore in the thesis, a system-
atically investigation of the effect of intersubband scatterings. especially the intersubband electron-
electron Coulonth interaction, on the linear and nonlinear transport properties for systems of dif-
ferent dimensionality and having different carrier densities of quasi-two-ditensional and quasi-one-
dimensional electron systems has been performied by employing the Let-Ting balance-equations ap-
proach of two-types-of-carriers model (TTCM) to treat the GaAs-based model systems having two
subbands. According to TTCM of Lei-Ting balance-cquations approach. which is developed to deal
with the high field transport properties of semiconductors with minlti-valley occupancy, electrons
within the same subband are treated as a single type of carriers due 1o cnough strong intrasubbatid
electron-election Coulotmnb interactions, but electrons in different subbands are taken as two types of
carriers and posses different drift velocities, electron temperatures and chiemical potentials. Thus we
can focus our attention on the role of the dominate intersubband electron-clectron Coulomb interac-
tion in transport. Numerous investigations show that clectrons between the different subbands can
not generally acliieve a conunon energy under an external elecrric field 1 spite of inter-subband euergy
exchange. When the electron density rises, the inter-subband Coulomb interaction, Le., inter-subband
energy exchange. is euhanced and does make the electrons dwelling in different subbands thermalize
and reach a common drift velocity and electron temperature. Hence electrons in different subbands can
be considered as a single type of carriers and OTCM s a good approximation for this low-dimensional
systets with high electron densities. Moreover. confinement of low-dinensional systems can alter the
threshold ol electron density for the validity of O'TCNL By analyzing the linear mobility i gquantin
wells. we dentonstrate that the real mobility tends to the result gy of the two-hand model of Boltz-
mann equation i the limit of weak intersubband clectron-clectron Conlomb interaction, aud ou the
contrary, it tends to the Lei-Ting mobility g of O'TCM in the regime of strony intersubband electron-

electron seattering. n addition, we argue that teiperatures can alier tlie relative strength between
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the electron-impurity and the inter-subband electron-election interactions and hence determine the
validity of OTCM. It is a direct deduction that for a clean sample the pp and the up are equal even
at extrermely low temperature. Finally, we point out that the dominate intersubband Coulomb inter-
action can not make electrons in different subbands achieve a conunon chemical potential because of
the interaction term not involving exchange of particles between different subbands.

Thertaal-noise of hot electrons in semiconductors are kuown to be sensitive to details of band
structure and scattering mechanisins. The same is true for electrons in a quasi-two-dimensional system.
ln the thesis. we have extended the theory of hot-electron thermial noise in guasi-two-dimensional
systems based on the OTCM of the balance-equations to the case of multi-subband occupations
and calculated the thermal-noise temperature of GaAs-GaAlAs heterjunction systems at different de
electric fields including the contributions of the lowest and next lowest subbands. We have found that,
in cornparison with the results of the one subband theory, the inclusion of a higher subband yields an
electron density-dependent decrease of the electron temperature aud the thermal-noise temperature
“and a reduction of the cooling effect.

Both linear and nonlinear hole perpendicular miniband transport in GaAs-based superlattices
have been investigated by employing the balance equtions theory for miniband transport. Because
of the profound energy spectrumn resulting from the mixture of heavy-hole and light-hole, same novel
transport properties have been discovered in comparison with electrons.



Appendix

The following table lists the material parameters of GaAs used in this thesis.

Parameter value
optical dielectric constant Ko 10.8
low-frequency dielectric coustant kg 12.9
effective mass of electron m” 0.067m,
effective mass of light hiole ny 0.08n.
effective mass of heavy hole my, 0.5m,

mass density d

5.31 g/en®

longitudinal sound velocity vy

5.29 x 107 cmi/s

transverse sound velocity vy,

2.48 x 10% cin/s

longitudinal optic phonon energy wro

35.4 meV

acoustic deformation potential =

8.5 eV

optic deformation potential D

3.0 x 108 eV/em

piezoelectric constant ¢4

[41 % 10° V/m




