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We fabricate top-gate �-Ga2O3 nanomembrane metal-semiconductor field-effect transistor
(MESFET) using a mechanical exfoliation method, and investigate its electrical performance. The
Schottky contact between top-gate metal and �-Ga2O3 (100) channel is evaluated by characteriz-
ing properties of Schottky barrier diode, exhibiting an on/off ratio of ∼106, an ideality factor of 2.8
and a turn-on voltage of 1.1 V. The proposed top-gate �-Ga2O3 nanomembrane MESFET exhibits
maximum transconductance of ∼0.23 mS/mm, field-effect mobility of 1.2 cm2/V ·s at VDS = 1 V and
subthreshold slope (SS) of 180 mV/dec with high on/off ratio of >107. These results suggest that
�-Ga2O3 nanomembrane MESFET could be a promising component toward �-Ga2O3-based high
power device applications.
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1. INTRODUCTION
Gallium oxide (Ga2O3� has attracted much attention
recently as a promising candidate for next generation
power device and deep ultraviolet (DUV) detector appli-
cation due to its superior electrical properties of gallium
oxide; Its wide bandgap of about 4.6∼4.9 eV allows
solar-blind DUV response, high-temperature and high-
voltage operation [1–4]. Among five different polymorphs
of Ga2O3, its beta(��-polymorph is the most stable form
and has been widely investigated [5]. Even with nomi-
nal electron mobility of 100 cm2/Vs at room tempera-
ture, �-Ga2O3 is estimated to possess several times higher
Baliga’s figure-of-merit (FOM) than current viable solu-
tions such as silicon carbide (SiC) and gallium nitride
(GaN) [6, 7]. In addition to these aforementioned superior
properties, a high-quality native Ga2O3 substrate from bulk
single crystal obtained from melt-growth methods, such
as Czochralski and edge-defined film-fed growth (EFG),
provides a significant cost competitiveness over other com-
peting wideband gap materials [8, 9].
On the other hand, the monoclinic structure of �-Ga2O3

has a relatively large lattice constant of 12.2 Å along
the [100] direction, compared to 3.0 Å and 5.8 Å along
[010] and [001] directions, respectively [10]. This unique
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structure allows a facile cleavage into flakes along [100]
direction, thus providing high crystal quality of �-Ga2O3

with (100) surface orientation in order to facilitate research
on its material and electrical properties [11–16]. Conse-
quently, electrical and optical properties, thermal issues,
and various device structures have been reported; How-
ever, these are mostly based on bottom-gate metal-oxide
semiconductor field-effect transistor structure (MOSFET).
In this work, we fabricate top-gate (TG) �-Ga2O3 (100)

nanomembrane metal-semiconductor field-effect transis-
tor (MESFET) and investigate its electrical performance.
Specifically, using a mechanical exfoliation method,
�-Ga2O3 (100) nanomembrane channel was obtained from
an unintentionally n-type doped bulk crystal substrate with
(−201) surface orientation. The fabricated �-Ga2O3 MES-
FET exhibits transconductance (gm� of ∼0.23 mS/mm and
field-effect mobility (�ef� of 1.2 cm2/V · s with subthresh-
old slope (SS) of 180 mV/dec. In addition to the electrical
performance of �-Ga2O3 MESFET, the quality of Schottky
and ohmic contacts known to limit the performance is also
investigated and discussed.

2. EXPERIMENTAL DETAILS
Mechanically exfoliated �-Ga2O3 nanomembranes from
an unintentional n-type doped (UID) �-Ga2O3 (−201)
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bulk substrate (Tamura Corp., Japan) by a conventional
scotch-tape method were transferred onto thermally grown
300 nm SiO2 layer on a heavily doped p-type Si substrate.
Source and drain (S/D) electrodes of Ti/Au (20/80 nm)
were then deposited by thermal evaporation and patterned
using a conventional photolithography and lift-off process.
The channel length (L� between source and drain was
18.1 �m and width (W� was 4.6 �m. In order to fabri-
cate metal semiconductor field effect transistor (MESFET)
structure, top-gate (TG) electrode of Ni/Au (20/80 nm)
was then deposited onto the top of �-Ga2O3 channel layer
by the same thermal evaporation method followed by the
lift-off. The length between gate and source (LGS� and
between gate and drain (LGD� were 2.3 �m and 11.1 �m,
respectively. Electrical properties of the fabricated MES-
FET and SBD were measured using a semiconductor
parameter analyzer (SCS-4200A, Keithley) in a dark ambi-
ent condition at room temperature. Channel thickness and
structural analysis were conducted using a high resolu-
tion transmission electron microscopy (HR-TEM, Talos
F200X).

3. RESULTS AND DISCUSSION
Figure 1 shows cross-sectional schematic with an optical
microscope image of the fabricated TG �-Ga2O3 MEFET.
We confirmed the thickness of �-Ga2O3 channel was
about 450 nm using high-resolution transmission elec-
tron microscopy (HR-TEM). The channel width (W� and
length (L� are 18.1 �m and 4.6 �m, respectively, and
oxide capacitance of 300 nm thick thermal SiO2 (COX� is
1.2×10−8 F/cm2.

Figure 2(a) presents a high-resolution transmission elec-
tron microscope (HR-TEM, Talos F200X) image. The
exfoliated �-Ga2O3 flake preserved high crystal quality
of bulk �-Ga2O3 crystal without damage or strain. The
monoclinic structure of �-Ga2O3, having a relatively large
lattice constant along the [100] direction, allows sim-
ple cleavage into flakes or nanomembranes similar to

Figure 1. Cross sectional schematic of the fabricated top-gate (TG)
�-Ga2O3 (100) MESFET. (Inset) an optical image of the fabricated
device.

Figure 2. (a) A cross-sectional high-resolution transmission electron
microscope (HR-TEM) image of the exfoliated �-Ga2O3 channel. (b) Its
selected area electron diffraction pattern with unit of 5 1/nm indicating
5 reserved nanometers, confirming the surface orientation of (100).

two-dimensional layered materials [17, 18]. The selected-
area electron diffraction (SAED) pattern in the Figure 2(b)
confirms the lattice parameters and directions of the exfo-
liated flake; A clean and facile cleavage along the [100]
direction was achieved, and so the �-Ga2O3 (100) crystal
plane formed the channel surface of the fabricated device.
Since electrical performance of the fabricated TG

�-Ga2O3 (100) MESFET is determined by the quality
of TG (Ni/Au) Schottky contact and the S/D (Ti/Au)
ohmic contact on the �-Ga2O3 (100) channel, perfor-
mance of a Schottky barrier diode (SBD) made on
the device was first evaluated; A lateral SBD structure
has the TG metal (Ni/Au) as anode and source con-
tact (Ti/Au) as cathode. The Schottky contact formation
between nickel (Ni) and �-Ga2O3 is known to be asso-
ciated with work function difference (Ni: 5.04–5.35 eV,
�-Ga2O3: 4.11 eV) [19]. Figure 3(a) shows I–V curves
of the measured SBD exhibiting a rectification behavior
with on/off ratio of about 106. Ohmic contact behaviors
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Figure 3. (a) I–V curves of the ohmic contact between (Ti/�-Ga2O3�

and the fabricated Schottky barrier diode (Ni/�-Ga2O3� on a semilog
scale. (b) I–V curve in a reverse bias region, exhibiting a breakdown
voltage (BV) of about 85 V.

between S/D electrodes and �-Ga2O3 (100) channel are
also shown. We analyzed the I–V characteristics of
the fabricated SBD using thermal emission model I =
IS �exp�qV /nkT �−1� [19], where q is a unit charge, Is is
reverse saturation current, V is a forward bias, n is ide-
ality factor, k is the Boltzman constant, T is the absolute
temperature. The built-in potential (Vbi� was extracted to
be about 1.1 V, using a linear extrapolation of the cur-
rent to x-axis, and the ideality factor (n� was about 2.8
from a linear region of forward I–V characteristics. More-
over, breakdown characteristics of the �-Ga2O3 SBD is
shown in the Figure 3(b), and a breakdown voltage (BV)
of ∼85 V was obtained. The reason of a relatively low BV
is attributed to the lateral SBD structure and/or the inter-
face quality between the Ni and �-Ga2O3 channel. Further
investigation is needed to determine both structural and
material impacts on the BV.
Figure 4(a) presents IDS–VGS transfer characteristics

of the fabricated �-Ga2O3 MESFET for VDS = 1 V; It
exhibits a high on/off ratio of >107 and sub-threshold
slope (SS) of 0.18 V/dec, which was calculated from
SS = ��VGS�/��log10�IDS��. The low SS indicates that a
high quality of the interface between Ni and �-Ga2O3 is
achieved. It can be further improved via a tight cleaning
process of the SiO2 surface prior to mechanical exfolia-
tion of �-Ga2O3. A threshold voltage (VTH� is extracted
to be about −32.6 V using a linear extrapolation of

Figure 4. (a) IDS–VGS-gm curves of the top-gate �-Ga2O3 (100)
MESFET at VDS = 1V. (b) IDS–VDS output curves of the �-Ga2O3 (100)
MESFET for VGS =−30 to 0 V with 5 V step.

the transfer curve, and the decent maximum transcon-
ductance (gm� of 0.23 mS/mm at VDS = 1 V, calculated
from gm = ��IDS�/��VGS�, is obtained in comparison with
other reported values based on similar mechanical exfo-
liation methods [18, 21]. The field-effect mobility (�ef�
of 1.2 cm2/V · s at VDS = 1 V was calculated from gm =
�W/L� · �d ·q ·Nd ·�ef�, where d is the channel thickness,
q is the elementary charge, and Nd is the carrier concen-
tration of bulk �-Ga2O3 [22]. The transconductance and
field-effect mobility can be further improved because they
dependson device dimension (W/L�, doping concentration
and drain-bias conditions. Figure 4(b) shows output curves
of IDS–VDS for VGS = −35 to 0 V with good saturation
due to a pinch-off at high VDS bias, indicating that the
thick �-Ga2O3 channel is successfully modulated via the
Schottky contacted top-gate bias.

4. CONCLUSION
In conclusion, we have demonstrated top-gate �-Ga2O3

(100) MESFET using a mechanical exfoliation of �-Ga2O3

nanomembranes from an unintentional n-type doped (UID)
�-Ga2O3 (−201) bulk substrate. A high-quality Schottky
contact between TG metal (Ni/Au) and �-Ga2O3 (100)
channel is confirmed by analyzing electrical performance
of the lateral SBD, showing an on/off ratio of ∼106, an
ideality factor of 2.8 and a turn-on voltage of 1.1 V. The
fabricated TG �-Ga2O3 nanomembranesMESFET exhibits
decent electrical performance such as SS ∼ 0�18 V/dec,
max. gm of 0.23 mS/mm at VDS = 1 V, �ef of 1.2 cm2/V · s
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and high on/off ratio of >107. Further improvement on
its electrical performance is expected via optimal device
design and bias conditions. These results demonstrate that
TG �-Ga2O3 nanomembrane MESFET is a promising
building block toward power electronics and microwave
devices applications.
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