

Copyright © 2020 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology Vol. 20, 516–519, 2020 www.aspbs.com/jnn

Electrical Properties of Top-Gate β-Ga₂O₃ Nanomembrane Metal-Semiconductor Field-Effect Transistor

Jiyeon Ma and Geonwook Yoo*

School of Electronic Engineering, Soongsil University, Seoul 06938, Korea

We fabricate top-gate β -Ga₂O₃ nanomembrane metal-semiconductor field-effect transistor (MESFET) using a mechanical exfoliation method, and investigate its electrical performance. The Schottky contact between top-gate metal and β -Ga₂O₃ (100) channel is evaluated by characterizing properties of Schottky barrier diode, exhibiting an on/off ratio of ~10⁶, an ideality factor of 2.8 and a turn-on voltage of 1.1 V. The proposed top-gate β -Ga₂O₃ nanomembrane MESFET exhibits maximum transconductance of ~0.23 mS/mm, field-effect mobility of 1.2 cm²/V s at $V_{DS} = 1$ V and subthreshold slope (SS) of 180 mV/dec with high on/off ratio of >10⁷. These results suggest that β -Ga₂O₃ nanomembrane MESFET could be a promising component toward β -Ga₂O₃-based high power device applications.

Keywords: Gallium-Oxide, Nanomembrane, Top-Gate, MESFET.

1. INTRODUCTION

Gallium oxide (Ga₂O₃) has attracted much attention recently as a promising candidate for next generation power device and deep ultraviolet (DUV) detector application due to its superior electrical properties of gallium oxide; Its wide bandgap of about 4.6~4.9 eV allows solar-blind DUV response, high-temperature and highvoltage operation [1–4]. Among five different polymorphs of Ga_2O_3 , its beta(β)-polymorph is the most stable form and has been widely investigated [5]. Even with nominal electron mobility of 100 cm²/Vs at room temperature, β -Ga₂O₃ is estimated to possess several times higher Baliga's figure-of-merit (FOM) than current viable solutions such as silicon carbide (SiC) and gallium nitride (GaN) [6, 7]. In addition to these aforementioned superior properties, a high-quality native Ga₂O₃ substrate from bulk single crystal obtained from melt-growth methods, such as Czochralski and edge-defined film-fed growth (EFG), provides a significant cost competitiveness over other competing wideband gap materials [8, 9].

On the other hand, the monoclinic structure of β -Ga₂O₃ has a relatively large lattice constant of 12.2 Å along the [100] direction, compared to 3.0 Å and 5.8 Å along [010] and [001] directions, respectively [10]. This unique

structure allows a facile cleavage into flakes along [100] direction, thus providing high crystal quality of β -Ga₂O₃ with (100) surface orientation in order to facilitate research on its material and electrical properties [11–16]. Consequently, electrical and optical properties, thermal issues, and various device structures have been reported; However, these are mostly based on bottom-gate metal-oxide semiconductor field-effect transistor structure (MOSFET).

In this work, we fabricate top-gate (TG) β -Ga₂O₃ (100) nanomembrane metal-semiconductor field-effect transistor (MESFET) and investigate its electrical performance. Specifically, using a mechanical exfoliation method, β -Ga₂O₃ (100) nanomembrane channel was obtained from an unintentionally *n*-type doped bulk crystal substrate with (-201) surface orientation. The fabricated β -Ga₂O₃ MES-FET exhibits transconductance (g_m) of ~0.23 mS/mm and field-effect mobility (μ_{ef}) of 1.2 cm²/V · s with subthreshold slope (*SS*) of 180 mV/dec. In addition to the electrical performance of β -Ga₂O₃ MESFET, the quality of Schottky and ohmic contacts known to limit the performance is also investigated and discussed.

2. EXPERIMENTAL DETAILS

Mechanically exfoliated β -Ga₂O₃ nanomembranes from an unintentional *n*-type doped (UID) β -Ga₂O₃ (-201)

^{*}Author to whom correspondence should be addressed.

^{1533-4880/2020/20/516/004}

Ma and Yoo

bulk substrate (Tamura Corp., Japan) by a conventional scotch-tape method were transferred onto thermally grown 300 nm SiO_2 layer on a heavily doped *p*-type Si substrate. Source and drain (S/D) electrodes of Ti/Au (20/80 nm) were then deposited by thermal evaporation and patterned using a conventional photolithography and lift-off process. The channel length (L) between source and drain was 18.1 μ m and width (W) was 4.6 μ m. In order to fabricate metal semiconductor field effect transistor (MESFET) structure, top-gate (TG) electrode of Ni/Au (20/80 nm) was then deposited onto the top of β -Ga₂O₃ channel layer by the same thermal evaporation method followed by the lift-off. The length between gate and source (L_{GS}) and between gate and drain (L_{GD}) were 2.3 μ m and 11.1 μ m, respectively. Electrical properties of the fabricated MES-FET and SBD were measured using a semiconductor parameter analyzer (SCS-4200A, Keithley) in a dark ambient condition at room temperature. Channel thickness and structural analysis were conducted using a high resolution transmission electron microscopy (HR-TEM, Talos F200X).

3. RESULTS AND DISCUSSION

Figure 1 shows cross-sectional schematic with an optical microscope image of the fabricated TG β -Ga₂O₃ MEFET. We confirmed the thickness of β -Ga₂O₃ channel was about 450 nm using high-resolution transmission electron microscopy (HR-TEM). The channel width (*W*) and length (*L*) are 18.1 μ m and 4.6 μ m, respectively, and oxide capacitance of 300 nm thick thermal SiO₂ (*C*_{OX}) is 1.2×10^{-8} F/cm².

Figure 2(a) presents a high-resolution transmission electron microscope (HR-TEM, Talos F200X) image. The exfoliated β -Ga₂O₃ flake preserved high crystal quality of bulk β -Ga₂O₃ crystal without damage or strain. The monoclinic structure of β -Ga₂O₃, having a relatively large lattice constant along the [100] direction, allows simple cleavage into flakes or nanomembranes similar to

Figure 1. Cross sectional schematic of the fabricated top-gate (TG) β -Ga₂O₃ (100) MESFET. (Inset) an optical image of the fabricated device.

J. Nanosci. Nanotechnol. 20, 516-519, 2020

Figure 2. (a) A cross-sectional high-resolution transmission electron microscope (HR-TEM) image of the exfoliated β -Ga₂O₃ channel. (b) Its selected area electron diffraction pattern with unit of 5 1/nm indicating 5 reserved nanometers, confirming the surface orientation of (100).

two-dimensional layered materials [17, 18]. The selectedarea electron diffraction (SAED) pattern in the Figure 2(b) confirms the lattice parameters and directions of the exfoliated flake; A clean and facile cleavage along the [100] direction was achieved, and so the β -Ga₂O₃ (100) crystal plane formed the channel surface of the fabricated device.

Since electrical performance of the fabricated TG β -Ga₂O₃ (100) MESFET is determined by the quality of TG (Ni/Au) Schottky contact and the S/D (Ti/Au) ohmic contact on the β -Ga₂O₃ (100) channel, performance of a Schottky barrier diode (SBD) made on the device was first evaluated; A lateral SBD structure has the TG metal (Ni/Au) as anode and source contact (Ti/Au) as cathode. The Schottky contact formation between nickel (Ni) and β -Ga₂O₃ is known to be associated with work function difference (Ni: 5.04–5.35 eV, β -Ga₂O₃: 4.11 eV) [19]. Figure 3(a) shows *I*–*V* curves of the measured SBD exhibiting a rectification behavior with on/off ratio of about 10⁶. Ohmic contact behaviors

Figure 3. (a) I-V curves of the ohmic contact between $(Ti/\beta-Ga_2O_3)$ and the fabricated Schottky barrier diode $(Ni/\beta-Ga_2O_3)$ on a semilog scale. (b) I-V curve in a reverse bias region, exhibiting a breakdown voltage (BV) of about 85 V.

between S/D electrodes and β -Ga₂O₃ (100) channel are also shown. We analyzed the I-V characteristics of the fabricated SBD using thermal emission model I = $I_{\rm s}$ (exp(qV/nkT) – 1) [19], where q is a unit charge, $I_{\rm s}$ is reverse saturation current, V is a forward bias, n is ideality factor, k is the Boltzman constant, T is the absolute temperature. The built-in potential (V_{bi}) was extracted to be about 1.1 V, using a linear extrapolation of the current to x-axis, and the ideality factor (n) was about 2.8 from a linear region of forward I-V characteristics. Moreover, breakdown characteristics of the β -Ga₂O₃ SBD is shown in the Figure 3(b), and a breakdown voltage (BV) of \sim 85 V was obtained. The reason of a relatively low BV is attributed to the lateral SBD structure and/or the interface quality between the Ni and β -Ga₂O₃ channel. Further investigation is needed to determine both structural and material impacts on the BV.

Figure 4(a) presents $I_{\rm DS}-V_{\rm GS}$ transfer characteristics of the fabricated β -Ga₂O₃ MESFET for $V_{\rm DS} = 1$ V; It exhibits a high on/off ratio of >10⁷ and sub-threshold slope (SS) of 0.18 V/dec, which was calculated from $SS = \partial(V_{\rm GS})/\partial(\log_{10}(I_{\rm DS}))$. The low SS indicates that a high quality of the interface between Ni and β -Ga₂O₃ is achieved. It can be further improved via a tight cleaning process of the SiO₂ surface prior to mechanical exfoliation of β -Ga₂O₃. A threshold voltage ($V_{\rm TH}$) is extracted to be about -32.6 V using a linear extrapolation of

Figure 4. (a) $I_{\rm DS}-V_{\rm GS}-g_{\rm m}$ curves of the top-gate β -Ga₂O₃ (100) MESFET at $V_{\rm DS} = 1$ V. (b) $I_{\rm DS}-V_{\rm DS}$ output curves of the β -Ga₂O₃ (100) MESFET for $V_{\rm GS} = -30$ to 0 V with 5 V step.

the transfer curve, and the decent maximum transconductance (g_m) of 0.23 mS/mm at $V_{DS} = 1$ V, calculated from $g_{\rm m} = \partial(I_{\rm DS})/\partial(V_{\rm GS})$, is obtained in comparison with other reported values based on similar mechanical exfoliation methods [18, 21]. The field-effect mobility (μ_{ef}) of 1.2 cm²/V · s at $V_{\rm DS} = 1$ V was calculated from $g_{\rm m} =$ $(W/L) \cdot (d \cdot q \cdot N_d \cdot \mu_{ef})$, where d is the channel thickness, q is the elementary charge, and N_d is the carrier concentration of bulk β -Ga₂O₃ [22]. The transconductance and field-effect mobility can be further improved because they dependson device dimension (W/L), doping concentration and drain-bias conditions. Figure 4(b) shows output curves of $I_{\rm DS} - V_{\rm DS}$ for $V_{\rm GS} = -35$ to 0 V with good saturation due to a pinch-off at high $V_{\rm DS}$ bias, indicating that the thick β -Ga₂O₃ channel is successfully modulated via the Schottky contacted top-gate bias.

4. CONCLUSION

In conclusion, we have demonstrated top-gate β -Ga₂O₃ (100) MESFET using a mechanical exfoliation of β -Ga₂O₃ nanomembranes from an unintentional *n*-type doped (UID) β -Ga₂O₃ (-201) bulk substrate. A high-quality Schottky contact between TG metal (Ni/Au) and β -Ga₂O₃ (100) channel is confirmed by analyzing electrical performance of the lateral SBD, showing an on/off ratio of ~10⁶, an ideality factor of 2.8 and a turn-on voltage of 1.1 V. The fabricated TG β -Ga₂O₃ nanomembranes MESFET exhibits decent electrical performance such as $SS \sim 0.18$ V/dec, max. $g_{\rm m}$ of 0.23 mS/mm at $V_{\rm DS} = 1$ V, $\mu_{\rm ef}$ of 1.2 cm²/V·s

J. Nanosci. Nanotechnol. 20, 516-519, 2020

Electrical Properties of Top-Gate β -Ga₂O₃ Nanomembrane Metal-Semiconductor Field-Effect Transistor

Ma and Yoo

and high on/off ratio of $>10^7$. Further improvement on its electrical performance is expected via optimal device design and bias conditions. These results demonstrate that TG β -Ga₂O₃ nanomembrane MESFET is a promising building block toward power electronics and microwave devices applications.

Acknowledgments: This research was funded and conducted under the Competency Development Program for Industry Specialists of the Korean Ministry of Trade, Industry and Energy (MOTIE), operated by Korea Institute for Advancement of Technology (KIAT). (No. N0001883, HRD program for Software-SoC convergence).

References and Notes

- 1. Stepanov, S., Nikolaev, V., Bougrov, V. and Romanov, A., 2016. Gallium oxide: Properties and applications—A review. *Review on Advanced Materials Science*, 44, pp.63–86.
- 2. Higashiwaki, M. and Jessen, G.H., 2018. Guest editorial: The dawn of gallium oxide microelectronics. *Applied Physics Letters*, 112(6), p.060401.
- **3.** Pearton, S., Yang, J., Cary IV, P.H., Ren, F., Kim, J., Tadjer, M.J. and Mastro, M.A., **2018**. A review of Ga₂O₃ materials, processing, and devices. *Applied Physics Reviews*, *5*(1), p.011301.
- 4. Guo, D., Qin, X., Lv, M., Shi, H., Su, Y., Yao, G., Wang, S., Li, C., Li, P. and Tang, W., 2017. Decrease of oxygen vacancy by Zn-doped for improving solar-blind photoelectric performance in β-Ga₂O₃ thin films. *Electronic Materials Letters*, 13(6), pp.483–488.
- **5.** Roy, R., Hill, V. and Osborn, E., **1952**. Polymorphism of Ga₂O₃ and the system Ga₂O₃-H₂O. *Journal of the American Chemical Society*, *74*(3), pp.719–722.
- Baliga, B.J., 1989. Power semiconductor device figure of merit for high-frequency applications. *IEEE Electron Device Letters*, 10(10), pp.455–457.
- Mastro, M.A., Kuramata, A., Calkins, J., Kim, J., Ren, F. and Pearton, S., 2017. Perspective-opportunities and future directions for Ga₂O₃. ECS Journal of Solid State Science and Technology, 6(5), pp.356–P359.
- Kuramata, A., Koshi, K., Watanabe, S., Yamaoka, Y., Masui, T. and Yamakoshi, S., 2016. High-quality β-Ga₂O₃ single crystals grown by edge-defined film-fed growth. *Japanese Journal of Applied Physics*, 55(12), p.1021A2.
- **9.** Aida, H., Nishiguchi, K., Takeda, H., Aota, N., Sunakawa, K. and Yaguchi, Y., **2008**. Growth of β -Ga₂O₃ single crystals by the edge-defined, film fed growth method. *Japanese Journal of Applied Physics*, 47(11R), pp.8506–8509.
- Higashiwaki, M., Sasaki, K., Murakami, H., Kumagai, Y., Koukitu, A., Kuramata, A., Masui, T. and Yamakoshi, S., 2016.

Recent progress in Ga₂O₃ power devices. *Semiconductor Science and Technology*, 31(3), p.034011.

- Zhou, H., Si, M., Alghamdi, S., Qiu, G., Yang, L. and Peide, D.Y., 2017. High-performance depletion/enhancement-mode β-Ga₂O₃ on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. *IEEE Electron Device Letters*, 38(1), p.103–106.
- 12. Zhou, H., Maize, K., Qiu, G., Shakouri, A. and Ye, P.D., 2017. β -Ga₂O₃ on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. *Applied Physics Letters*, 111(9), p.092102.
- Hwang, W.S., Verma, A., Peelaers, H., Protasenko, V., Rouvimov, S., Xing, H., Seabaugh, A., Haensch, W., de Walle, C.V. and Galazka, Z., 2014. High-voltage field effect transistors with wide-bandgap β-Ga₂O₃ nanomembranes. *Applied Physics Letters*, 104(20), p.122102.
- 14. Bae, J., Kim, H.W., Kang, I.H., Yang, G. and Kim, J., 2018. High breakdown voltage quasi-two-dimensional β -Ga₂O₃ field-effect transistors with a boron nitride field plate. *Applied Physics Letters*, *112*(12), p.122102.
- **15.** Kim, J., Oh, S., Mastro, M.A. and Kim, J., **2016**. Exfoliated β -Ga₂O₃ nano-belt field-effect transistors for air-stable high power and high temperature electronics. *Physical Chemistry Chemical Physics*, *18*(23), p.15760–15764.
- Tadjer, M.J., Mahadik, N.A., Wheeler, V.D., Glaser, E.R., Ruppalt, L., Koehler, A.D., Hobart, K.D., Eddy, C.R. and Kub, F.J., 2016. Editors' choice communication—A (001) β-Ga₂O₃ MOSFET with +2.9 V threshold voltage and HfO₂ gate dielectric. *ECS Journal of Solid State Science and Technology*, 5(9), pp.468–P470.
- 17. Ahn, S., Ren, F., Kim, J., Oh, S., Kim, J., Mastro, M.A. and Pearton, S., 2016. Effect of front and back gates on β -Ga₂O₃ nano-belt field-effect transistors. *Applied Physics Letters*, 109(6), p.062102.
- Kim, J., Mastro, M.A., Tadjer, M.J. and Kim, J., 2018. Heterostructure WSe₂–Ga₂O₃ junction field-effect transistor for low-dimensional high-power electronics. ACS Applied Materials & Interfaces, 10(35), pp.29724–29729.
- Mohamed, M., Irmscher, K., Janowitz, C., Galazka, Z., Manzke, R. and Fornari, R., 2012. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga₂O₃. *Applied Physics Letters*, 101(13), p.132106.
- **20.** Suzuki, R., Nakagomi, S., Kokubun, Y., Arai, N. and Ohira, S., **2009**. Enhancement of responsivity in solar-blind β -Ga₂O₃ photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing. *Applied Physics Letters*, *94*(22), p.222102.
- 21. Higashiwaki, M., Sasaki, K., Kuramata, A., Masui, T. and Yamakoshi, S., 2012. Gallium oxide (Ga₂O₃) metal-semiconductor field-effect transistors on single-crystal β-Ga₂O₃ (010) substrates. *Applied Physics Letters*, 100(1), p.013504.
- Sze, S.M. and Ng, K.K., 2006. Physics of Semiconductor Devices. Wiley, John Wiley & Sons.

Received: 5 December 2018. Accepted: 22 March 2019.