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Cooperative phenomena in spontaneous emission may exhibit two opposite features: either an increased emission rate, 
usually called superradiance, or a decreased emission rate, which we call subradiance. It is shown that, in a specific case of 
three-level atoms, symmetry considerations permit one to find realistic initial conditions such that the system spontaneous- 
ly evolves toward a subradiant system. 

Interatomic interference is well-known to be re- 
sponsible for the appearance of superradiant emission 
[l] . In the case of N initially excited atoms, the inter- 
ference is essentially constructive, leading to the N2 
dependence of the maximum intensity of the emitted 
light pulse. Interatomic interference can also be de- 
structive. When predicting, in 1954, the existence of 
superradiant emission, Dicke [ 1 J already mentioned 
this possibility, in the example of two neutrons in a 
uniform magnetic field. Since that time, the spon- 
taneous emission of a pair of two-level systems has 
been studied in detail and the radiative trapping which 
can occur when the distance between the two particles 
becomes smaller than the wavelength of the transition 
is now well understood [2]. This radiative trapping 
can, in particular, manifest itself in the so-called mul- 
tiple scattering phenomenon. The specific role of 
interatomic interference in this phenomenon has 

been first pointed out by Barrat [3] in his study of 
“coherent multiple scattering”; subsequent predic- 
tions have been verified experimentally [3]. The con- 
nection between coherent multiple scattering and super- 
radiance has been later shown by Ernst [4]. In both 
studies, the possibility for an assembly of N atoms, 
containing one excited atom, to trap one photon is 
clearly demonstrated. However, it should be a priori 
possible that as much as N/2 photons could be trapped 
inside a volume containing N atoms. This possibility, 
although contained in most of the theoretical treat- 

ments of superradiant emission, of N two-level sys- 
tems, has been explicitely mentioned only by Freed- 
hoff et al. [5], who introduced for the first time 
the word “subradiance”, and by Stroud et al. [6]. 
However, none of these authors derived realistic con- 
ditions which would allow the observation of the 
phenomenon. It is at least clear that it does not occur 
when all the N atoms are initially excited, as it is the 
case in all superradiance experiments which have been 
performed up to now. 

When looking for realistic conditions for an eventual 
observation of radiative trapping of a large number of 
photons, the case of many-level atoms opens new 

possibilities. In this note, we study a specific case of 
three-level atoms, for which both constructive and 
destructive interatomic interferences generally play 
a role in the evolution of the system, even when all 

the atoms are initially excited. In other words, both 
superradiance and subradiance phenomena are general- 
ly present in the cooperative spontaneous evolution of 
a collection of N such atoms. Any theoretical model 
which accounts for superradiant emission should thus 
be able to describe subradiance; this will be shown in 

the particular case of the semi-classical model. However 
this model does not provide us with general laws con- 
cerning subradiance and it does not exhibit clearly the 
physical origin of the phenomenon. As for a single 
pair of two-level atoms, subradiance is due to destruc- 
tive interference and it is expected to depend upon the 
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symmetry properties of the atomic collective states. 
It is shown how the symmetry point of view can be 
introduced, in a clean way, in the study of cooperative 
spontaneous evolution of extended pencil-shaped 
samples. More specifically, symmetry considerations, 
based on group theory, allow then one to study quite 
generally the conditions in which subradiance could 
be observed. It is shown that one can find well-defined 
and realistic initial conditions giving rise to spontane- 
ously created subradiant states, which are finally de- 
stroyed, but only by non-cooperative spontaneous 
emission. 

In a first approach, the cooperative evolution of N 
three-level atoms such as represented in fig. 1 can be 
described in the semi-classical model. It is assumed 
here that all the atoms are initially excited, i.e. that 

they are either in state 11) or in state 12), and that all 
initial atomic quantities are spatially homogeneous 
inside the active volume. Initial conditions for the 

evolution of the system are thus characterized by the 
values of the populations of the two upper levels and 
by the coherence between them. When computing the 
solution of the evolution equations, it appears that, 
for large values oft, the total population of the two 
upper levels reaches a constant (and spatially homogen- 
eous) value which is generally different from zero; 
meanwhile, the coherence between these two upper 
levels tends to be complete. More precisely it is 
found that the limit value of the total population of 
the two upper levels is always zero (no subradiance) 
when the initial coherence is complete; this limit 
value can be as large as half the total population when 
the two initial populations are equal and when the 
initial coherence is zero *’ . A numerical example cor- 

*r This effect can also be understood as a quenching of the 
less probable transition by the other one [ 71. 
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Fig. 1. Levels and transitions for a three-level atom; the polari- 
zations or the frequencies of the two electric dipole transi- 
tions are assumed to be different. 
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responding to this latter situation, i.e. to a maximum 
subradiance effect, is shown in fig. 2. 

The existence of this effect could have been predict- 
ed without computing the solutions of the evolution 
equations. Let us assume that the atoms are initially 
uncorrelated *2 ; this means that the initial atomic 
state can be represented by a factorizable density 
matrix 

(1) 

pol being a monatomic density matrix. Because of the 
spatial homogeneity, 

*2 The existence of initial interatomic correlations would 
not introduce any change in the solution of the Bloch- 
Maxwell equations. 
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Fig. 2. Computed results of the semi-classical model with 
rs/l?r = 0.8 and for initial conditions corresponding to n r(O) 
= ns(0) = 0.5 and n m(O) = 0. Curves in (a) represent the 
time evolution of the populations and of the coherence 
between the two upper levels; curve in (b) represents the 
total intensity radiated on both transitions. The delay time 
td is about 30 TSR1 (characteristic time for cooperative spon- 
taneous emission on transition 1 + 0). 
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the sum running over the pairs of atomic states. In the 
non-markovian semi-clasical model, the density matix 
remains factorizable (but not homogeneous during 
the evolution of the system and eq. (1) is valid at any 
time. Furthermore, the statistical mixing does not 
change during the evolution and one has: 

.Tr [p”(t)2] = c pi(t)p = o2 = const. 
iJ 

(3) 

At t=O, 

fJ2 = P,,W2 +P22w2 + 21P,2W2, (4) 

and l/2 G o2 < 1. At the end of the evolution, 

P$)W = &J(=) = 0, 

and therefore: 

(5) 

o2 = P$~(-)~ + &W2 + P;~(=)~ + 2 IP:~(-)I~. (6) 

Unless the initial state is a pdre state (02 = l), it is 

obviously impossible to have p&j=) = 1, which ex- 
plains that the computed value of the population of 
the upper levels cannot reach zero. Moreover this 
suggests that it might exist a connection between the 
initial statistical mixing, which is characterized by 02, 
and the limit value of the population of the upper 
levels. When analyzing the numerical results, it is 
found, in effect, that the roportion T of atoms remain- 
ing excited depends on u $ only. It will be shown in the 
following that the exact relationship between 7 and (I’ 
can be obtained in a more general way. 

Let us now consider the general hamiltonian of a 
collection of N atoms (supposed, at first, to be at rest) 
interacting via blectric dipole interaction with the 
quantized electromagnetic field, 

H=HA +HF +HI; (7) 

the atomic hamiltonian HA and the interaction hamil- 
tonian HI can be written as sums over the N atoms: 

HA= C h, 
cU=lJv 

(8) 

where h is the hamiltonian‘for one isolated atom, E(z) 
is the quantized electric field, z, and d, are respective- 

ly the position and the dipole operator of the atom CL 
Let us assume that the volume occupied by the atoms 

is pencil-shaped (with the z axis as symmetry axis); 
the Fresnel numbers corresponding to the two 
atomic wavelengths, A, and h,, are assumed to be of 
the order of unity. It is then assumed that the emitted 
light consists in two plane-wave packets travelllng in 
both z directions, with frequencies centered on the 
two atomic frequencies. This approximation being, 
at first, considered as rigorously valid (the discussion 
of its validity will be done later on), it follows that 
E(z) depends on the z coordinate only. Therefore, all 
the atoms which are contained in a slice defined by 
z. < z0 < z. t AZ, with AZ of the order of the wave- 
lengths h, and X2, must be considered as undistin- 
guishable *3 for the field they can rafliate. This im- 
plies that the spontaneous evolution of the whole atom- 
field system will conserve some local symmetry proper- 
ties. precisely, let us consider the whole volume as 
formed by successive thin slices S,, whose thicknesses 
$e of the order of Xl and h2; the total hamiltonian 
is then invariant under the permutations of the in- 
dices of the atoms of a &en slice. It is to be emphasiz- 
ed that the different slices do not have independent 
evolution, but that they interact through the field 
they radiate. However, this interaction does not affect 
the local symmetry conservation. 

An important remark concerning the role of the 
slices must be done now. One knows that a necessary 
condition for cooperative emission, in the case of 
two-level atoms is [8] 

TSR s TSP (9) 

(TSR is the characteristic time for cooperative 
emission, whereas Tsp is the characteristic time for 
ordinary spontaneous emission). For pencil-shaped 
volumes, this condition can be written 

I/W/J Q 1/r, (10) 

where the form factor 1-1 is given by cc = (3/8n)X2/a2 
[9]. The number of atoms contained in a given slice 
(with thickness of the order of h) is of the order of 
n =Nx/L and condition (9) leads to 

n % (8n/3) 9 (11) 

*3 This undistinguishability is of course not absolute. On the 
contrary, it is assumed that the wavefunctions of the dif- 
ferent atoms do not overlap (see ref. [l]); this explains 
that the collective wavefunctions can have any symmetry 
type. 
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(9 = a2/LX being the Fresnel number). The generaliza- to n (unless l2 = 1, = 0, i.e. the state is fully symmetric). 
tion of this result to the considered three-level atoms In particular, the number of deexcited atoms contained 
case is straight forward; the previous assumption con- in a state with symmetry type Q1 Z2 lR} is necessarily 
cerning the Fresnel numbers associated to h, and X2 smaller than or equal to Z2 t 13. Since, as already 
implies that the number of atoms contained in a mentioned, the symmetry types of the different 
given slice Sk is n Z+ 1. Therefore, cooperative effects slices are conserved during the evolution, the knowl- 
appear only when large numbers of atoms are un- edge of these symmetry types at t = 0 fixes a mini- 
distinguishable (in the plane-wave approximation) mum value for the proportion r of atoms which remain 
for the field they radiate. excited. For instance r can be equal to zero (no sub- 

The local symmetry conservation suggests the use radiance) if the initial symmetry types are {n 0 0) 
of atomic basis states formed by products of collective (fully symmetric state); the opposite case corresponds 

states corresponding to the different slices S,, each of to the “most antisymmetric” symmetry type, 

these n-atom states having well-defined symmetry {n/3 n/3 n/3}, and one has then r > 213. More 

properties with respect to the permutation group J n. generally, r is necessarily larger than or equal to 

In effect these symmetry properties (which analogue, 
in the two-level atom case, is the cooperation number 
r) will be conserved during the spontaneous evolu- 
tion of the whole atom-field system. In the up to now where the first sum runs over the indices of slices 

published theoretical treatments of cooperative spon- and the second one runs over all possible symmetry 

taneous emission of two-level atoms, only fully sym- types;fk( {11 1, 13}) is the partial trace of the initial 

metric collective states have been explicitely written atomic density matrix corresponding to the slice S, 

[e.g. lo]. This arbitrary simplification is justified as over the space of the irreducible representation 

long as all of the atoms are initially excited, so that 61 1,231. 
the initial collective state is fully symmetric. In the In this treatment, the importance of subradiance 

considered three-level atoms case, this justification depends upon the (conserved) local symmetry prop- 

does not hold any longer and one must also consider erties of the atomic density matrix. This is easily 

partially antisymmetric states. Precisely one must understood in terms of interatomic interference, 

take into account all the collective states of the slices when remembering the case of a pair of two-level 

Sk which have well-defined symmetry properties with atoms. In the final subradiance state of the system, 

respect to J,. These states can be labeled according the photons are trapped inside given slices, because of 
to the irreducible representations of J, ; these destructive interatomic interference (the different 
representations will be called in the following “sym- slices do not radiate any longer and can therefore 
metry types” and they are characterized by partitions be considered as independant. Moreover, in analogy 

of n, written {II 1, 13) (with 2, t 1, t 13 = n and with the two-atom case, the partial antisymmetry of 
I, > I2 > 13). An example of an n-atom wavefunction the states determines the importance of the destruc- 

with symmetry type {II 1, 13) is obtained in construct- tive interferences, and therefore, the minimum value 

ing the product of: for the proportion r of atoms remaining excited. It is 

(i) 13 fully antisymmetric three-atom wavefunctions, shown hereafter that, in an important particular situa- 

containing I3 atoms in each of the three monatomic tion, 7min depends upon the initial statistical mixing 

states; only, like it does in the semi-classical model. Let us 

(ii) Z2 - 13 antisymmetric two-atom wavefunctions assume that the initial atomic state has the follow- 

involving pairs of monatomic states and containing, in ing properties: the N atoms are either in state 11) or 

all, 2(Z2 - 13) atoms; in state 12) they are uncorrelated and the atomic 

(iii) I, - Z2 monatomic states. 
It is clear that such a wavefunction *4 vanishes 

*4 The use of such a wavefunction for representing the sym- 

when the same monatomic state appears more than 
metry type {1r 22 1s) is slightly incorrect. One should, 

once in a given antisymmetric part. Therefore, the 
according to the Young tableaux theory, modify it by 
symmetrizing operators. However the present form is much 

maximum number of atoms in a given state is not equal 
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simpler and leads ,hereafter to rigorously exact results. 
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properties are spatially homogeneous. The initial 
atomic matrix is thus represented by eqs. (1) and (2). 
For such uncorrelated atoms, the symmetry proper- 
ties are in fact determined by the statistical properties. 
The possible symmetry types are (II 1, 0) *’ and a 
partial trace fk( {11 1, 0)) represents the probability 
of finding the slice 5’, in a state of symmetry type 
(II I, O}.A tedious calculation, based on Young 
tableaux theory, allows one to evaluate these probabili- 
ties and one finds that, for a given value of o2 (defined 

by eq. (4)), the most probable symmetry type is 
such that 

I, = i n(1 +&m, 

I, =+(I -JG-zj, (12) 

moreover, as n %- 1 provided that eq. (9) holds, the 
corresponding probability is found to be close to one, 
so that 

Trnh = f(l -@-5 (14) 

The way in which the system, starting from given 
initial conditions, reaches finally some subradiant 
state and the exact value of the proportion 7 of atoms 
which remain excited cannot be quantitatively studied 
in this general model. It is however clear that the initial 
state cannot be fully antisymmetric and that construc- 
tive interatomic interference must also appear. The 
partial deexcitation of the system which creates the 
subradiant state is achieved by cooperative emission, 
and, therefore, within a time-scale of the order of 
TSR. In addition, the total number of emitted photons 
tends to be as laige as possible so that 7 will always be 

equal t0 Tmin. These qualitative remarks are quantitative- 

ly confirmed by the results of the semiclassical model. 
Fig. 2 shows, in a particular example, how subradiance 
appears after the rapid emission of a superradiant pulse; 
in all the computations we have performed, the value 
of 7 is equal to the value of 7min given by eq. (14), 
to quite a good approximation. 

In the preceding treatment, simple symmetry con- 
siderations have allowed us to understand the subradi- 
ante phenomenon and to predict a minimum value for 
the proportion 7 of atoms remaining excited, which, 
in the important particular case of initially uncorrelat- 

*’ One cannot have 1s + 0 because two monatomic states 
only are occupied. 

ed atoms, depends simply on the initial statistical 
mixing. It is to be emphasized here that these results 
are based on the local symmetry conservation *’ and 
that they are fully valid only for atoms at rest, in the 
plane-wave approximation and provided that the 
threshold condition (9) is fulfilled. 

The approximations must be discussed now. First, 
the local symmetry conservation is not actually per- 

fect, even in the plane-wave approximation. The 
components along the z axis of the distances between 
the atoms of a given slice are not zero but only smaller 
than the wavelengths; therefore, the interatomic lnter- 
ference cannot be rigorously fully destructive. In addi- 

tion, it is obvious that the plane-wave approximation 
fails both at the beginning and at the end of the emis- 
sion. When the field emitted in the z direction is small, 
the emission in the other directions can be prepon- 
derant and the local symmetry conservation does not 
hold, even approximately. In other words, emission 
processes which do not conserve the symmetry types 
of the slices (which are similar to the r-non conserv- 
ing,processes [12] in the two-level atoms case) can 
become important. Concerning the beginning of the 
emission, this problem has already been discussed, 
for two-level atoms [ 121; it is expected - and observed 
-that the plane-wave approximation describes correct- 
ly the main features of the cooperative emission. Con- 

cerning the end of the emission, a direct consequence 
of the failure of the symmetry conservation is that 
the subradiant states will be destroyed by ordinary 
spontaneous emission in all but the z directions. 

Concerning the influence of the motion of the 
atoms, several remarks can be made. First it is possible 
to introduce the Doppler broadening in the semi-classi- 
cal model [8]. It appears, provided that the usual 
threshold condition [8] 

T2* +z TSR (15) 

(T$ being the Doppler characteristic dephasing time), 
holds for both atomic transitions, that the super- 
radiant emission is not seriously modified; in addition 

*6 The hamiltonian defined by eqs. (7) and (8) contains the 
dipole-dipole interaction and the counter-rotating terms. 
However the frequency shifts due to the dipole-dipole 
interaction are able to destroy the local symmetry con- 
servation. It is assumed here, as it is usually done for ex- 
tended pencil&aped samples, that this interaction is negli- 
gible. On this subject see, for instance ref. [ 111. 
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the final subradiant state is exactly the same as in 
the lack of Doppler broadening. However, in this 
treatment, the atoms are assumed to be at rest. As far 
as superradiant emission is concerned, this is approx- 
imately correct, because of condition (15). When 
dealing with subradiance, i.e. when considering an 
unrestricted time-scale, one has to be more careful. 
In fact the atoms do not remain confined in a given 
slice during periods of time much larger than T$’ and, 
then, the local symmetry conservation looses its sig- 
nification. Therefore the system actually reaches a 
subradiant state but, during its further evolution, it 
will radiate even in the z directions; however, as the 
motion of the atoms does not change the population 
inversion on the two transitions, such an emission will 
not be cooperative. Finally, in a realistic situation, the 
subradiant states are destroyed in a time which is of 
the order of the spontaneous lifetimes of the two 
upper levels. This however does not prevent one from 
observing the subradiant phenomenon, since the sub- 
radiant state is created in a time-scale which is of 
the order of the characteristic times for cooperative 
emission, i.e. much smaller than the spontaneous life- 
times. A more general and detailed study of subradiance 
will be given elsewhere [ 131. 
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