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Preface 

The technology of crystal growth has advanced enormously during the past 
two decades. Among these advances, the development1 and refinement 
of molecular beam epitaxy (MBE) has been among the most important. 
Crystals grown by MBE are more precisely controlled than those grown by 
any other method, and today they form the basis for the most advanced 
device structures in solid-state physics, electronics, and optoelectronics. 
As an example, Figure 0.1 shows a vertical-cavity surface emitting laser 
structure grown by MBE. 

Broadly stated, MBE is simply crystallization by condensation or reac
tion of a vapor in ultra-high vacuum (UHV). The extremeness of the UHV 
environment, however, has several important consequences, both for the 
device physicist interested in the properties of the grown material, and for 
the materials or surface scientist interested in the growth process itself. 

First, MBE surfaces are extremely clean (even cleaner than those com
monly studied by surface scientists). Base pressures are typically « 5 x 
10 - 1 1 Torr, near the background-x-ray-induced « 2 x 10 - 1 1 Torr detection 
limit of conventional ionization gauges. Even then, the residual gas is com
posed mainly of H2, which is largely benign. Partial pressures of hydrocar
bons, which are less benign, are typically less than the « l x 10 - 1 4 Torr de
tection limit of common quadrupole mass spectrometers, particularly when 
augmented by the now-standard liquid-nitrogen-cooled cryoshrouds. As a 
result, the device physicist can grow very-high-purity crystals of controlled 
composition, and the materials/surface scientist can study intrinsic crystal 
growth apart from extrinsic effects due to impurities or contamination. 

Second, crystal growth occurs via the reaction and condensation of 
molecules that arrive at the surface via molecular, rather than viscous or 
diffusive, flow. In other words, molecules don't collide with one another 
enroute to the substrate, and molecules that miss or leave the substrate 

1A.Y. Cho and J.R. Arthur, "Molecular beam epitaxy," Prog. Solid State Chem. 10, 
157 (1975). 

XI 



Xll PREFACE 

2μπι 
Figure 0.1: Vertical-cavity surface emitting laser structure grown by MBE. 
The structure is composed of a set of electrically pumped light-emitting 
GaAs/AlxGai_xAs quantum wells sandwiched between two sets of layered 
AlAs/AljGai-ccAs superlattice interference mirrors.0 

aPhoto courtesy of T.M. Brennan and B.E. Hammons, Sandia National Laboratories, 
Albuquerque, NM 87185-5800. 

are pumped away nearly immediately. As a result, the device physicist 
can grow multilayered structures with extremely abrupt interfaces, and the 
materials/surface scientist can study microscopic processes occuring on the 
surface apart from the diffusion-controlled mass and /o r heat t ransport to 
and from the surface tha t complicate other forms of crystal growth. 

Third, the growing surface is accessible to observation using powerful 
real-time surface-science diagnostics which require high vacuum. For exam
ple, reflection high-energy electron diffraction (RHEED) is routinely used 
to monitor the structure and microstructure of growing surfaces,2 reflec
tion mass spectrometry (REMS) and modulated beam mass spectrometry 
(MBMS) can be used to monitor the chemistry of growing surfaces, and 
reflectance difference spectroscopy (RDS) can be used to monitor the com
position and optical properties of growing surfaces. As a result, the device 
physicist can control and reproduce the state of the surface (and the subse-

2By structure we mean the crystallography of defect-free surfaces; by microstructure 
we mean the distribution of point and line defects that interrupt that otherwise perfect 
crystallography. 
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quent quality of the grown crystal) very precisely, and the materials/surface 
scientist can study directly the real-time evolution of surface structure, mi-
crostructure, and composition. 

For all these reasons, MBE is interesting both to device physicists as 
well as to materials and surface scientists. We do not exaggerate when 
we note, however, tha t historically it has been more interesting to device 
physicists. Device physicists have provided, and continue to provide, most 
of the impetus for research in MBE. As a result, today's MBE practitioners 
have an enormous number of device "customers" to satisfy. Often, they are 
hard-pressed to keep abreast of the latest advances in technology, much less 
explore more fundamental aspects of their craft. Indeed, the technology 
of MBE is itself rapidly evolving, as is evident from recent monographs 
reviewing its current s tate of the ar t . 3 Figure 0.2 shows, for example, a 
schematic of a modern commercial MBE system with all of the advanced 
hardware required for operation in a production environment. 

This book is intended to begin to bridge the gap separating MBE prac
titioners from the more fundamental aspects of their craft by gathering 
together in a coherent manner the basic materials science principles tha t 
apply to MBE. It has two aims. First, it aims to show how the various as
pects of MBE "fit" into the perspective of materials science. For this reason, 
this book may be a useful supplement to intermediate or advanced courses 
in materials science. Second, it aims to t reat the most important aspects 
of MBE in such depth as to benefit both advanced graduate students as 
well as professional researchers. It does not aim to discuss superficially all 
aspects of MBE, but rather comprehensively the most basic materials sci
ence aspects of MBE, and particularly those aspects tha t add richness and 
insight into other methods of crystal growth. Because MBE is the simplest 
and most basic method of crystal growth, an appreciation of MBE adds 
richness and insight into virtually all other methods. For this reason, this 
book may also be a useful supplement to intermediate or advanced courses 
in crystal growth. 

The book lays heavy emphasis on the statistical and thermodynamic as
pects of MBE, although some kinetic aspects are also treated. This choice 
of emphasis has been unavoidably colored by my own personal preferences 
and interests, and circumscribed by limits to my own knowledge and tech
nical competence. For example, I have deliberately steered clear of many 
important topics related to the microscopic physics and chemistry of sur-

3E.H.C. Parker, ed., The Technology and Physics of Molecular Beam Epitaxy 
(Plenum Press, New York, 1985); E. Kasper and J.C. Bean, Eds., Silicon Molecular 
Beam Epitaxy, Vols. I and II (CRC Press, Boca Raton, 1988); and M.A. Herman and H. 
Sitter, Molecular Beam Epitaxy: Fundamentals and Current Status (Springer-Verlag, 
Berlin, 1989). 
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Figure 0.2: Commercial MBE system manufactured by Instruments SA, Riber 
Division.0 The system is intended to perform epitaxial growth simultaneously on 
multiple wafers via evaporation of elemental sources in ultra-high vacuum (UHV). 
Some of the major parts of the system are labeled: (A) a UHV growth chamber, 
(B) a shutter for an evaporation source, (C) an evaporation source, (D) a rotating 
platten station for mounting multiple wafers, (E) a preparation station for wafer 
degassing, (F) a shuttle mechanism for transporting wafer plattens, (G) a load-
locking chamber for transferring plattens between atmosphomeric pressure and 
UHV, (H) rack-and-pinion mechanisms for transfer of plattens, (I) cryopumps for 
maintaining UHV, (J) an ion pump, also for maintaining UHV, (K) a sublimation 
well, (L) another cryopump, and (M) a rectanguhir gate valve. 

α Photo courtesy of Riber Division, Instruments SA, 6 Olsen Avenue, Edison, NJ 
08820-2419. 

faces, such as atomic bonding configurations and reconstructions or atomic 
mechanisms for adatom migration. However, I t reat in great detail the 
macroscopic materials science principles governing surface morphology and 
its evolution during MBE. 

The book assumes an understanding of solid-state physics and materials 
science at the introductory graduate level. It is by no means "easy reading," 
and will need to be supplemented, at times, by intermediate or advanced 
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textbooks in materials science such as those by Haasen4 or Christian.5 This 
unfortunately appears so despite my efforts to make liberal use of clarifying 
footnotes, exercises, and case studies of technologically important materials 
systems. Most readers will find the barrier to entry into this book somewhat 
high, but hopefully will exit from it very nearly at the forefront of current 
research. 

Unlike many other books, this one attempts to cite important original 
articles. I have two reasons for doing so. First, such citations are the sci
entist's only formal way of respecting intellectual debts. Hence, I apologize 
in advance for oversights. They are not intentional, but are caused either 
by ignorance or by the "obliteration by incorporation" phenomenon,6 in 
which the origin of a piece of knowledge becomes obscured as it is incorpo
rated into the existing body of common knowledge. Second, such citations 
make it easier for students to enter new research areas. Through the use 
of citation indices,7 novices in a particular research area can usually bring 
themselves up to date fairly quickly by searching for current articles which 
cite in common a few important original works. My experience is that such 
bibliographic searching, which goes forward in time, is an important com
plement to the usual form of bibliographic searching, which goes backward 
in time. In a sense, original articles define current research areas, do so 
better than current articles, and become outdated much less quickly. 

Throughout, I have imposed on the book my own peculiar organizational 
structure. The book is not arranged according to the type of crystal that 
is being grown (e.g., according to whether the crystal is IV-IV, III-V, II-
VI, or metallic), the way an advanced "users" manual might be. Rather, 
it is arranged according to whether the materials science concepts involve 
mainly bulk phase equilibria, thin film structure and microstructure, or 
surface morphology and composition. 

Part I contains most of the thermodynamic foundations of MBE, al
though thermodynamic arguments and ideas will also be sprinkled liberally 
throughout the rest of the book. Crystal growth is, of course, simply a 
phase transformation (albeit delicately controlled), and hence the thermo
dynamics of MBE is in large part the thermodynamics of bulk phase equilib
ria. Chapter 1 provides an introduction to basic thermodynamic concepts; 
Chapter 2 discusses equilibria between elemental phases and Chapter 3 

4 P . Haasen, Physical Metallurgy (Cambridge Univ. Press, Cambridge, 1978). 
5 J.W. Christian, The Theory of Transformations in Metals and Alloys, 2nd ed. (Perg-

amon Press, Oxford, 1975). 
6R.K. Merton, Social Theory and Social Structure (The Free Press, New York, 1968), 

pp. 26-28, 35-38. 
Citation indices, now quite common and easy to use, were pioneered by E. Garfield; 

see, e.g., E. Garfield, Citation Indexing — Its Theory and Application in Science, Tech
nology and Humanities (John Wiley L· Sons, New York, 1979). 
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discusses equilibria between alloy phases. 
Par t II gives elementary descriptions of thin films grown either homoepi-

taxially, on substrates of the same material , or heteroepitaxially, on sub
strates of a different material .8 In particular, it describes how the structure 
and microstructure of such films depend on substrate, through what are 
called "epitaxial constraints." Chapter 4 discusses short- and long-range 
ordering and phase decomposition in epitaxially constrained thin film al
loys, and Chapter 5 discusses the coherency/semicoherency transition dur
ing lattice-mismatched epitaxy. 

Par t III deals with surfaces. Chapter 6 discusses the morphology of 
surfaces, both equilibrium (in the absence of growth) and nonequilibrium 
(in the presence of growth). Chapter 7 discusses the composition of surfaces, 
again both equilibrium and nonequilibrium. 

On a more technical note, this book was generated on an IBM-compatible 
personal computer using mostly the following software: Epsilon9 for pro
gramming and text editing, IATj^X10 for formatting and typesetting, and 
Genplot1 1 for numerical calculations and graphics. I highly recommend all 
three. They have enabled me to "program" virtually every aspect of this 
book, and to make both slight and massive changes easily and quickly. 

Finally, it gives me great pleasure to acknowledge: colleagues and friends 
too numerous to list who have either indirectly, through what they have 
taught me, or directly, through thoughtful comments, contributed so much 
to this book; colleagues who read and criticized early chapter drafts, Harry 
Atwater, Dave Biegelsen, Scott Chalmers, Ben Freund, Kevin Horn, Tom 
Klitsner, J im Mayer, Leo Schowalter, Brian Swartzentruber, and Professor 
David Turnbull; an understanding and supportive management at Sandia 
National Laboratories, Paul Peercy, Tom Picraux, Harry Weaver, and Del 
Owyoung; my loving parents, Ching and Matilda Tsao; Frances Koenig, 
who taught me to value; and my wife Sylvia and son Emil, who taught me 
value. 

Jeffrey Y. Tsao 
Albuquerque, New Mexico 

June, 1992 

8See, e.g., E.G. Bauer, B.W. Dodson, D.J. Ehrlich, L.C. Feldman, C.P. Flynn, M.W. 
Geis, J.P. Harbison, R.J. Matyi, P.S. Peercy, P.M. Petroff, J.M. Phillips, G.B. Stringfel-
low and A. Zangwill, "Fundamental issues in heteroepitaxy - a Department of Energy, 
Council on Materials Science Panel Report," J. Mater. Res. 5, 852 (1990). 

9Lugaru Software Ltd., 5740 Darlington Road, Pittsburgh, PA 15217. 
1 0L. Lamport, ßTßK: A Document Preparation System (Addison-Wesley, Reading, 

MA, 1986); and D.E. Knuth, The TßXBook (Addison-Wesley, Reading, MA, 1984). 
11 Computer Graphic Service, 221 Asbury Road, Ithaca, NY 14850. 
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Part I 

Bulk Phase Equilibria 

In this first par t , we describe the thermodynamic properties of bulk 
condensed and vapor phases. Those properties determine the pressures 
and temperatures at which various phases or phase mixtures are more or 
less stable with respect to each other, and ultimately define the window 
in growth conditions within which MBE is preferred over condensation of 
unwanted phases. The windows are often sharp and unforgiving, and are 
nearly always the primary consideration in choosing growth conditions. 
During GaAs MBE, e.g., AS4 or AS2 overpressures must be higher than a 
critical, temperature-dependent value, because otherwise the surface readily 
decomposes into Ga liquid and As2 vapor. 

We begin, in Chapter 1, with a concise, general description of free en
ergies. Free energies are the metrics tha t determine the relative stability of 
phases when these phases are "open" with respect to exchange with their 
environment of extensive quantities such as heat, volume or mass. Then, in 
Chapters 2 and 3, we show how to calculate free energies for elemental and 
alloy bulk and vapor phases. For elemental phases, discussed in Chapter 2, 
the free energies determine directly the relative stabilities of the phases. 
For alloy phases, discussed in Chapter 3, the free energies determine the 
relative stabilities both of phases and of phase mixtures through what is 
known as the common tangent construction. 



Chapter 1 

Free Energies and Open 
Systems 

From a thermodynamics point of view, MBE is ultimately just an exceed
ingly precise, controlled phase transformation from a vapor to a crystalline 
solid. As with other phase transformations, there are two basic questions 
we would like to answer. 

The first question is: why does the transformation occur — why is the 
crystalline solid phase favored over the vapor phase as well as over other 
possible competing solid or liquid phases? In other words, what quantities 
are maximized or minimized for the system to be in equilibrium? We shall 
find tha t the answer depends on whether the system is closed or open to 
its external environment: in a closed system, the energy of the system is 
minimized, while in an open system, one of a number of free energies is 
minimized. 

The second question is: by how much does the transformation want to 
occur — what is the "driving force" for the transformation? In other words, 
if the system is not in equilibrium, by how much is it not in equilibrium? 
This question is especially important for transformations, such as MBE, 
tha t occur very far from equilibrium. We shall find, again, tha t the answer 
depends on whether the system is closed or open with respect to its envi
ronment. If a closed system is not in equilibrium because its energy can be 
decreased, then its deviation from equilibrium is the amount by which its 
energy can be decreased. If an open system is not in equilibrium because 
its free energy can be decreased, then its deviation from equilibrium is the 
amount by which its free energy can be decreased. 

In nearly all situations of interest to MBE, the system we are concerned 

3 
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Figure 1.1: Thermodynamic system embedded in a large, closed environment. 

with will be open. Therefore, the metric that will be appropriate to quanti
fying relative thermodynamic stability will be a free energy, usually what is 
known as the Gibbs free energy. In this first chapter, we will introduce that 
metric. We begin, in Sections 1.1 and 1.2, with descriptions of the equilib
rium thermodynamics of closed and open systems. Then, in Section 1.3, we 
illustrate the distinction between the two kinds of systems with a concrete 
example: an electrical capacitor. When disconnected from a battery, the 
capacitor represents a closed system with respect to exchange of electrical 
charge; when connected to a battery, it represents an open system with 
respect to exchange of electrical charge. Finally, in Section 1.4, we discuss 
the nonequilibrium thermodynamics of closed and open systems. 

1.1 Closed Systems 
Consider, as illustrated in Figure 1.1, a system embedded in a large environ
ment. The system and its environment are each characterized by internal 
energies (Usys and £/env), entropies (Ss y s and Senv) and volumes (F s y s and 
Ve n v). Let us first treat, in this section, closed systems. Closed systems are 
simpler to understand, although they are not as appropriate in describing 
MBE as are open systems. 

If a system is closed, i.e., isolated in all respects from its external envi
ronment, then, with one exception, its "extensive" quantities are conserved. 
By extensive quantities, we mean those that scale with the size of the sys
tem, such as internal energy (t/sys) or volume (Vsys). The one extensive 
quantity not conserved is the entropy (5s y s). Indeed, from the second law 
of thermodynamics, we know that a closed system (in which energy is con
served) will evolve in such a way as to increase and eventually maximize 
its entropy. 

U e n v 

s env 
yenv 
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Entropy, however, is not as physically intuitive a concept as is energy, 
and so it is often useful to rephrase mathematically this entropy maximiza
tion principle in terms of an energy minimization principle. Tha t principle 
is: if entropy were conserved, the system would evolve in such a way as to 
decrease and eventually minimize its energy.1 It is important to keep in 
mind, however, tha t this energy minimization at constant entropy principle 
is really only a mathematical trick for telling us the correct direction in 
which the system will evolve, and tha t it has no physical basis. After all, 
energy is conserved, and hence cannot be minimized. 

To clarify this idea, consider the closed system illustrated at the left 
of Figure 1.2, in which a rock sits at the top of a slide. The system has 
two kinds of internal energy — the potential energy of the rock and the 
thermal energy stored in the rock and the slide. Suppose the rock has mass 
m and the slide has a vertical height h, so tha t the potential energy is 
mgh, where g is the gravitational acceleration. Furthermore, suppose the 
heat capacity (Cy) of the rock and the slide is constant above a certain 
temperature T0 , so tha t the thermal energy increases linearly above tha t 
temperature according to Q0 + Cy(T — T0), where Q0 is the thermal energy 
at T0. Then, as illustrated in the middle panel of Figure 1.2, if the rock is at 
the position marked A at the top of the slide, the temperature-dependent 
internal energy is Usys = mgh + Q0 + Cy(T — T0) , while if the rock is at the 
position marked B at the bo t tom of the slide, the temperature-dependent 
internal energy is only Usys = Q0 + CV(T -T0). 

Note tha t although the internal energy depends on whether the rock 
is at the top or bot tom of the slide, the entropy does not. The entropy 
is purely thermal in origin, and increases with temperature according to 
TdSsys = CydT. Then, as illustrated in the right panel of Figure 1.2, the 
temperature-dependent entropy is Ssys = S0 + Cy\n(T/T0), where S0 is 
the entropy at T0. 

Now, suppose we allow the rock to slide down. The potential energy 
decreases, so on the energy-temperature diagram we drop from point A to 
point Βχ, i.e., Usys decreases. Moreover, suppose tha t we could somehow 
prevent the energy tha t was released from becoming thermal energy. Then, 
since the thermal energy (and hence temperature) would be constant, points 
A and Bi on the entropy-temperature diagram would overlay each other. 
Therefore, if entropy could somehow be kept fixed, the system would evolve 
in such a way as to decrease and eventually minimize its internal energy. 

Note, though, tha t we really cannot prevent the energy tha t was released 
from becoming thermal energy, since energy must be conserved. In fact, on 

1H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd Ed. 
(Wiley & Sons, New York, 1985). 
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Figure 1.2: Temperature dependence of the internal energies and entropies of 
a closed thermodynamic system composed of a rock on a slide. In the middle 
panel, the upper internal energy curve corresponds to the rock at the top of the 
slide; the lower internal energy curve corresponds to the rock at the bottom of 
the slide. Point A corresponds to the rock on top of the slide, at a particular 
temperature. Point Bi corresponds to the rock having slid to the bottom of the 
slide, assuming conservation of entropy. Point B2 corresponds to the rock having 
slid to the bottom of the slide, assuming conservation of energy. 

the energy-temperature diagram, the system will really evolve laterally from 
point A to point B2, i.e., energy is constant but the temperature increases. 
At the same time, on the entropy-temperature diagram, the entropy rises 
from point A to point B2. Therefore, at constant internal energy, the system 
will actually evolve in such a way as to increase and eventually maximize 
its entropy. 

Nevertheless, in telling us the direction in which the system would like to 
evolve, the two principles are the same. Entropy maximization at constant 
energy and energy minimization at constant entropy, though physically 
inequivalent, are mathematically equivalent. 

1.2 Open Systems 
In Section 1.1, we treated closed systems whose extensive quantities, such 
as Usys or F s y s , are conserved. In this section, we treat open systems. 
Such systems are not fully isolated from their external environments, and 
so their extensive quantities need not be conserved. If the environment is a 
reservoir of heat at a fixed temperature , T, then entropy will be exchanged 
so as to keep the system at the same fixed temperature . If the external 
environment is a reservoir of "volume" at a fixed pressure, p , then volume 
will be exchanged so as to keep the system at the same fixed pressure. 
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In such an open system, it is well known, but perhaps not physically 
intuitive, that the equilibrium state of the system is that for which one of a 
number of "free energies" is minimal. For example, at constant temperature 
the equilibrium state of the system has a minimimal Helmholtz free energy, 

jpsys _ jjsys _ J^gsys^ (1Λ) 

At constant pressure it has a minimimal enthalpy, 

Hsys = Usys+pVsys. (1.2) 

At constant temperature and pressure it has a minimimal Gibbs free energy, 

Qsys = jjsys _ j^sys + pysys ^ ^ 

Note that the free energies differ from the internal energy by the addition 
or subtraction of terms involving extensive quantities, which the system is 
free to exchange with its environment, and their conjugate intensive param
eters. Those terms arise because the equilibrium state of an open system 
is that which minimizes the internal energy of the system combined with 
that of its environment; they account for possible changes in the internal 
energy of that environment. Because changes in the internal energy of the 
external environment are due solely to exchange of extensive quantities with 
the system, they can be conveniently expressed in terms of those extensive 
quantities. 

Suppose, for example, that a system can freely exchange entropy and 
volume with its environment, and hence is at constant temperature and 
pressure. If, due to some transformation, the entropy or volume of the 
system changes, then there must be equal and opposite changes in the 
surrounding environment — heat must flow or volume must be exchanged. 
But by energy conservation, the internal energy of the environment must 
then also change, by 

djjenv = TdSenv _ pdyenv = _T^sys + pdysys ^ 

Therefore, the change in the combined energies of the system and its envi
ronment is 

d(Usys + *7env) = dUsys - TdSsys + pdVsys, (1.5) 

or, since temperature and pressure are constant, 

d(Usys + £/env) = d(Usys - TSsys + PVsys). (1.6) 

In other words, minimizing the internal energy of the system combined 
with its environment, Usys + £/env, is the same as minimizing the Gibbs free 



8 Chapter 1. Free Energies and Open Systems 

energy given by Equation 1.3, of the system alone. The extra terms in the 
free energies are merely a convenient way of accounting for thermodynamic 
changes in the environment, via thermodynamic variables that have only to 
do with the system itself 

1.3 Thermodynamics of a Capacitor 
In Sections 1.1 and 1.2, we gave general, but abstract , t reatments of the 
equilibrium thermodynamics of closed and open systems. In this section, 
we concretize the t reatments by applying them to the two simple systems 
shown in Figure 1.3. Both systems consist of a capacitor whose capacitance 
is C, and a dielectric whose incremental motion toward the capacitor incre
mentally increases the capacitance by dC. Given a charge, Q = CV, tha t 
is initially placed on the capacitor, we ask whether or not the dielectric will 
be a t t racted to the capacitor. 

The system on the left in Figure 1.3 is "closed": charge, which is the 
relevant extensive quanti ty in this system, is not free to enter or leave the 
capacitor. Then, if entropy were constant, the energy of the system, Q2/2C, 
would decrease as the capacitance increases according to 

_d_ 
~dC 

1Q2 

2 C 2 C 2 " 2 ' 
(1.7) 

In other words, the dielectric is attracted to the capacitor. 
The system on the right in Figure 1.3 is "open": charge is free to leave 

the capacitor, so as to maintain a constant voltage, V, which is the relevant 
intensive parameter in this system. Then, if entropy were constant, the 
energy of the system would increase as the capacitance increases according 
to 

1, d 
dC 

1 9 
-CV2 

2 J V 
= +-VZ 

9 
(1.8) 

At first glance the dielectric would seem not to be a t t racted to the capacitor. 
However, we have neglected the flow of charge from the bat tery to the 

capacitor, which, at constant voltage, has decreased the energy stored in the 
external bat tery by VdQ = d(QV) = d(CV2). If we include tha t energy, 
then the energy of the system combined with its environment does decrease 
as the capacitance increases: 

dC 
CV2 - CV2 

2 
-V. 
2 

(1.9) 

In both systems, then, the dielectric is a t t rac ted to the capacitor. In the 
closed system, the metric tha t gives us tha t answer is the internal energy 
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Closed System Open System 
i 1 

V 

I I 

Figure 1.3: Thermodynamic systems consisting of capacitors and movable di
electrics. The system on the left is "closed," in that charge on the capacitor is 
conserved. The system on the right is "open," in that charge can be exchanged 
with the external battery in order to maintain a constant voltage V on the ca
pacitor. 

of the system, Usys . In the open system, however, the metric tha t gives us 
tha t answer is the free energy of the system, Usys — QsysV. 

1.4 Driving Forces for Transformations 
Thus far, in discussing the direction in which systems evolve, we have elabo
rated on the mathematical rule tha t systems tend to decrease and eventually 
minimize their energy at constant entropy. In doing so, we have implicitly 
couched our arguments in the language of so-called "reversible," or equilib
rium, thermodynamics, for which entropy is conserved. In all real systems, 
including the capacitor example just considered in Section 1.3, transforma
tions are to some extent irreversible, in tha t entropy is not conserved, but 
increases. Therefore, to quantify not just the direction in which the system 
will evolve, but the "driving force" for tha t evolution, we return, in this 
section, to the physical rule tha t a system will evolve in such a way as to 
increase and eventually maximize its entropy at constant energy. 

Since transformations will generally have some degree of irreversibility 
and reversibility, it is convenient to write changes in the entropy of the 
system as dSsys = dS**r

s + dS*y*. The irreversible par t of the entropy change 
(dS[rr) must be positive, and is not compensated by any corresponding 
entropy decrease in the environment. The reversible part (dS*y^) may be 
positive or negative, but must be compensated exactly by a corresponding 
change in the entropy of the surrounding environment, i.e., dSenv = —dS*y*. 

< j> 

Q 
1 1—> 

< > 
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In this language of irreversible thermodynamics, the most basic defini
tion of the stability of a system is that there should not exist some transfor
mation for which dS^* > 0, since otherwise it would be possible to increase 
the combined entropy of the system and its environment. Hence, dS*** is 
a measure of the degree to which the system deviates from equilibrium. 

For example, in a closed system, for which dSeny = —dS*%* = 0 and 
dssys = dusys/T, 

dUsys 

dSg- = - ^ _ . (1.10) 

If the internal energy of a closed system would have decreased in a hy
pothetical system for which entropy is conserved, then the irreversible en
tropy is what would actually increase in a real physical system for which 
energy must be conserved. Hence, in a closed system the deviation from 
equilibrium is exactly the amount by which the internal energy would have 
decreased were entropy to have been conserved. Thus, the deviation from 
equilibrium can be evaluated in terms of the physically more intuitive con
cept of energy, rather than in terms of the physically less intuitive concept 
of entropy. 

In an open system, for which dSenv = -dS*y* φ 0, 

dS^ = (dS^ + dS^)-(dSs£) (1.11) 

= (dSsys) - (^dUsys - ^dVsy*\ 

= ~idGsys. 
T 

If the Gibbs free energy of an open system decreases, then the irreversible 
entropy of the system increases. Note that, unlike the internal energy, the 
Gibbs free energy need not be conserved, because it includes the entropy of 
the system, which may increase irreversibly. Hence, in an open system the 
deviation from equilibrium is exactly the amount by which the Gibbs free 
energy can decrease. 

In an open system, therefore, Gibbs free energies measure the rela
tive stability of different phases, by telling us how much entropy would be 
created if the transformation were to occur. They tell us how far from 
equilibrium a given transformation is, and its degree of reversibility. Near-
equilibrium transformations are those for which dGsys is approximately 
zero. Consequently, dS^r

s is also approximately zero, entropy is conserved, 
and the transformations are reversible. Far-from-equilibrium transforma
tions are those for which dGsys differs substantially from zero. Then, dS^r

s 

also differs substantially from zero, entropy is not conserved, and the trans
formations are irreversible. 
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Suggested Reading 
1. H.B. Callen, Thermodynamics and an Introduction to Thermostatis-

tics, 2nd Ed. (Wiley L· Sons, New York, 1985). 

2. L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon Press, 
Oxford, 1969). 

Exercises 
1. Suppose that , instead of the single slide shown in Figure 1.2, there 

are many (N) slides all arranged in a circle facing outwards. They 
each have their own distinct upper levels, but they all share a common 
lower level. Assuming tha t there is still only a single rock, the entropy 
of the system is greater if the rock is on an upper level than if it is on 
the lower level, by a configurational entropy term, S^onf = k\n(N). 
For what temperatures will the equilibrium state of the system be 
tha t for which the rock is on one of the upper levels, rather than on 
the lower level? 

2. Suppose tha t the closed single-rock single-slide system shown in Fig
ure 1.2 were open, in tha t it exchanges heat with its environment so 
as to maintain constant temperature T. How do the entropies and 
internal energies of the system and its environment change as the rock 
slides down? How does the Gibbs free energy of the system change 
as the rock slides down? 

3. Imagine a system divided into two identical halves, each of whose 
internal energies are purely thermal in origin. Each half has the same 
heat capacity, CV, hence their internal energies Ui^ = U0 + CyT 
and entropies S\^ — So + Cy ln (T/T 0 ) depend on temperature in 
the same way. Suppose one half is at temperature 7 \ , but the other 
half is at temperature T2. Wha t is the total entropy of the system? 
Suppose heat flows between the two halves, until each half has the 
same temperature . Wha t is the new temperature? Wha t is the new 
total entropy of the system? Show tha t the entropy has increased, 
and calculate by how much. Illustrate the changes graphically on an 
S vs. T plot. 



Chapter 2 

Elemental Phases 

In Chapter 1, we showed tha t the metrics tha t govern the relative stabil
ity of phases contained in open systems are free energies of various kinds. 
For MBE and most other forms of crystal growth, both volume and heat 
are exchanged with the external environment so as to keep pressure and 
temperature constant throughout the system and its environment. Hence, 
the metric tha t measures the relative stabilities of different phases is the 
Gibbs free energy defined by Equation 1.3. Describing how to calculate 
the Gibbs free energies of different kinds of solid, liquid, and vapor phases 
is therefore the essence of this and the next chapter. In this chapter, we 
consider elemental phases; in the next chapter we consider alloy phases. 

We begin, in Section 2.1, by introducing a s tandard nomenclature. In 
our experience, an inconsistent and complex nomenclature can make ther
modynamics unnecessarily difficult, and so we have tried to make ours as 
simple and self-explanatory as possible. In particular, we focus at tention 
on molar quantities, such as molar Gibbs free energies, molar entropies and 
enthalpies, and molar heat capacities. 

Then, in Sections 2.2 and 2.3, we describe how to calculate the molar 
Gibbs free energies of various elemental phases. In doing so, it will be use
ful to distinguish between condensed and vapor phases. In Section 2.2, we 
treat condensed phases for which practical calculations are usually based 
on thermodynamic heat capacities. In Section 2.3, we treat vapor phases, 
for which calculations are usually based on first-principles statistical me
chanical parti t ion functions. 

Finally, in Section 2.4, we present detailed case studies of the phases 
of two simple but important elements: Si and Ge. These case studies il
lustrate nearly all the essential features of the calculation of molar Gibbs 
free energies of elemental phases. In particular, we will calculate the mo-

13 
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lar Gibbs free energies of the condensed crystalline, amorphous and liquid 
phases, as well as of the vapor phase, which is composed of a mixture of 
monomers and dimers. In a sense, Figure 2.3 at the end of Section 2.4 is 
the main result of this chapter. 

2.1 Nomenclature and Preliminaries 
Let us first introduce, in this section, a standard nomenclature. Consider 
a phase, a, composed exclusively of 7Va moles (or atoms) of a single com
ponent, a. The Gibbs free energy of such a phase is the difference between 
two terms: 

Ga(p,T,Na) = Η"(ρ,Τ,ΝΆ) -TSa(p,T,Na). (2.1) 

The first term, the enthalpy, 

Ηα(ρ,Τ,ΝΆ) = υα(ρ,Τ,ΝΆ)+Ρνα(ρ,Τ,ΝΆ), (2.2) 

is itself actually the free energy at constant pressure. The second term, as 
discussed in Chapter 1, is a constant-temperature correction due both to 
reversible heat flow into and out of the system and to irreversible entropy 
creation. The Gibbs free energy can, in a sense, be thought of as the free 
enthalpy at constant temperature. 

From the Gibbs free energy of a is derived the molar Gibbs free energy 
(the Gibbs free energy per mole or per atom) of a, 

<·Μ = 53ίρ, (2-3) 
and the chemical potential of a in a, 

Both ga(p,T) and μ"(ρ, Τ) have the same units, namely, energy per 
mole (or per atom). However, they have very different physical interpre
tations: ga(p,T) is a property of a phase and is used to compare relative 
stabilities of different phases, while μ" (ρ, Τ) is a property of a component in 
a phase, and is used to compare relative propensities of that component to 
incorporate into different phases. Later on in this book, when we consider 
two-component phases, the distinction between the two will be important. 
However, for the single-component phases discussed in this chapter, they 
have the same magnitudes, and the distinction is not important. Never
theless, even in this chapter we will for consistency use molar Gibbs free 
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energies in comparing relative stabilities of phases, even though we could 
just as well use chemical potentials. 

Throughout this book we will adopt the chemist 's language, in which 
ga is referred to as a molar quanti ty and μ% is referred to as a partial 
molar quantity. However, we will not a t tach to these two quantities ei
ther the chemist 's preferred units of kcal/mole or the materials scientist's 
preferred units of kJ /mole . Instead, we will a t tach to them the physi
cist's preferred units of eV/a tom. The reason is tha t ultimately we would 
like to understand the energetics of large aggregrates of atoms in terms 
of the energetics of individual a toms. Nevertheless, the units are inter
changeable; the conversion factors are 23.061 (kcal /mole) / (eV/atom) and 
96.487 (kJ /mole ) / ( eV/a tom) . 

We will also adhere strictly to the following nomenclature. Extensive 
quantities, such as the Gibbs free energy, will be denoted by uppercase 
symbols, such as G. Extensive quantities tha t have been normalized by 
some number of moles (or atoms), such as the molar Gibbs free energy, will 
be denoted by the equivalent lowercase symbols, such as g.1 

Using this nomenclature, the molar entropies and molar enthalpies of a 
are then writ ten as 

sa(p,T) 

ha(p,T) 

in terms of which the molar Gibbs free energy is 

ga(p,T) = ha(p,T) - Ts<*(p,T). (2.7) 

To deduce the molar Gibbs free energy of a , then, we first need to 
calculate the molar entropies and enthalpies of a. There are two gen
eral approaches to tha t calculation: a semi-empirical "thermodynamic" 
approach usually applied to complex phases such as condensed phases, and 
a first-principles "statistical mechanical" approach usually applied to sim
ple phases such as monoatomic or diatomic vapor phases. An approach 
intermediate between the two may be used for phases of intermediate com
plexity, such as polyatomic vapor phases. 

1Ύο keep our language from becoming cumbersome, though, we will sometimes only 
refer to a quantity as a molar quantity if an ambiguity not resolved by context might 
otherwise arise. For example, we will occasionally refer to molar Gibbs free energies 
simply as Gibbs free energies. 

g"(p ,T,JV a ) 

Ηα(ρ,Τ,ΝΆ) 

(2.5) 

(2.6) 
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2.1.1 Heat Capacities and Thermodynamics 
First, let us consider the semi-empirical thermodynamics approach to cal
culating the molar entropies and enthalpies of a . In this approach a semi-
empirical heat capacity plays the central role; its integrals define the molar 
entropy and enthalpy. To see how, suppose an amount of heat, Tdsa, is 
added (per mole or per atom) to a. Since the constant-pressure molar heat 
capacity is defined as the amount of heat thcit produces unit temperature 
rise, Cp = Tdsa /dT, the molar entropy is 

iT ca(O Tf) 
s°(p,T) = s«(p,T0) + J ^γτ^άΤ'. (2.8) 

As heat is added to the system, the molar enthalpy of the system must 
of course also increase, by dha = Tdsa, so tha t the constant-pressure mo
lar heat capacity could equally well have been defined as c" = dha/dT. 
Therefore, the molar enthalpy is 

Λ > , Τ ) = Λβ(ρ,Τ0) + [ c«{p,T')dT'. (2.9) 

Note tha t although dha/dT = Tdsa/dT, and at constant tempera ture 
dga = dha — Tdsa, the molar Gibbs free energy need not be constant. The 
reason is tha t the temperature is not constant, but is increasing as heat is 
added. Indeed, we can also write 

dga = d(ha - Tsa) = dha - Tdsa - sadT = -sadT, (2.10) 

the constant-pressure form of the Gibbs-Duhem relation. It tells us tha t 
for positive entropy, the molar Gibbs free energy decreases with increasing 
temperature . Since entropies are always positive, all phases are stabilized 
at higher temperatures, although higher entropy phases are stabilized more 
than are lower entropy phases. 

Equations 2.7, 2.8 and 2.9 determine the molar enthalpies, entropies 
and Gibbs free energies of a phase completely in terms of a temperature-
dependent heat capacity per atom, and a pair of molar enthalpy and entropy 
"offsets" at a particular reference temperature T0. Hence, in the thermo-
dynamic approach, the main task is to calculate molar heat capacities and 
enthalpy and entropy offsets for particular phases. 

2.1.2 Par t i t ion Functions and Statistical Mechanics 
Second, let us consider the first-principles stcitistical mechanical approach 
to calculating the molar entropies and enthalpies of a . In this approach the 
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partition function plays the central role; its derivatives define the entropies 
and enthalpies. To see how, consider an ideal gas composed of TV particles 
contained in a volume V. Denote the quantum mechanical energy levels of 
the gas as a whole as ε^(Τν, V), and the degeneracies of those levels as U{(N). 
The partition function, Q, is the sum over the occupation probabilities of 
those levels, weighted by their degeneracies: 

Q = J2u;i(N)e-^N>vVkT. (2.11) 

The "thermodynamic" internal energy is the ensemble average of the level 
energies, and can be written as a first derivative of the partition function, 

ΣΟΟ 

u = i=oui£ie -ti/kT 

NET=o^-'i/kT = kT2 dlnQ 
NdT 

(2.12) 
N,V 

Likewise, the pressure of the system is the ensemble average of the change in 
the level energies with volume, and can also be written as a first derivative 
of the partition function, 

P r^(Y1 _ n.rri K 1 

«=o< 
-Si/kT 

dlnQ 
Ndv 

(2.13) 
N,T 

Hence, for an ideal gas obeying v = kT/p = T[dv/dT]p, the molar enthalpy 
can be written as 

h = u + pv 

= kT 

= kT 

2 

2 

"dlnQ" 
NdT 

'dlnQ' 
NdT 

N,V 

N,p 

dT' 
ßf -hibT2 

P 

dlnQ' 
Ndv N,T 

dv 
dT P 

(2.14) 

Note that this formulation for the molar enthalpy is strictly true only for 
an ideal gas, and that it requires that the partition function be considered 
a function of TV, p, and T rather than of TV, V, and T. 

The constant-pressure molar heat capacity is the derivative of the molar 
enthalpy, 

~d2\nQ] dh 
dT 

= kT2 

NdT2 + 2kT 
N,p 

dlnQ 
NdT N,p 

in terms of which the molar entropy can be deduced to be 

= Γ %dT' = 
Jo T> kT NdT + k InQ 

N ' 

(2.15) 

(2.16) 
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and the molar Gibbs free energy can be deduced to be 

g = h-Ts = -kT^Q. (2.17) 

Note tha t the expression for g is much simpler than those for s, h, or 
cp. Therefore, it is often easier in practice to first calculate g, and then 
numerically differentiate to get s, h, and cp: 

h = 
d 

d(l/T) 
-d 

g(T) (2.18) 

dT [9(T)} (2.19) 

cP = -T^r2[g{T)}. (2.20) 

Equations 2.18, 2.19 and 2.17 determine the molar enthalpy, entropy, 
and Gibbs free energy of a phase completely in terms of a temperature-
dependent parti t ion function. Hence, in the statistical mechanical ap
proach, the main task is to calculate the part i t ion function for particular 
phases. 

2.2 Condensed Phases 
In Subsection 2.1.1 we showed how, given a semi-empirical molar heat ca
pacity, the other thermodynamic quantities of interest (molar entropies, 
enthalpies and Gibbs free energies) could be calculated. In this section, 
we describe how to estimate such semi-empirical molar heat capacities for 
condensed phases. In general, molar heat capacities of condensed phases 
depend negligibly on pressure at the subatmospheric pressures usually as
sociated with MBE. Therefore, although in Equations 2.8 and 2.9 we ex
plicitly allowed for the possibility of a pressure-dependent heat capacity, for 
condensed phases at subatmospheric pressure we can assume tha t the heat 
capacity is pressure- independent. 

There are a number of well-established theories for this pressure-indepen
dent heat capacity. At constant volume, e.g., the contribution from lattice 
vibrat ions often obeys quite closely the Debye theory. In tha t theory, 

the excitation of a spectrum of harmonic lattice vibrations is calculated as 
a function of temperature . The heat capacity is near-zero at temperatures 
so low tha t nearly all lattice vibrational modes are quantum-mechanically 
"frozen out." Then, it increases rapidly with tempera ture as successively 
higher frequency lattice vibrational modes become excited. Finally, it sat
urates at temperatures beyond a characteristic Debye tempera ture θ ρ at 
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which the highest frequency lattice vibrational mode becomes significantly 
excited. At those temperatures, energy becomes "equipartitioned" in units 
of kT/2 into each of the six (three potential and three kinetic) degrees of 
vibrational freedom per atom, and the constant-volume heat capacity per 
atom approaches the classical Dulong-Petit value of d(6kT/2)/dT — 3k. 

In practice, however, experimental constant-volume heat capacities do 
not always agree perfectly with the Debye theory. The theory is only ap
proximate and does not treat, e.g., anharmonicities in lattice vibrations at 
high temperature, or electronic contributions at low temperature. Further
more, the heat capacity at constant pressure, which is of greatest interest 
to us, differs in a temperature-dependent way from the heat capacity at 
constant volume: 

cp = cv{l+javT). (2.21) 

In this equation, a variation of what is known as the Nernst-Lindemann 
equation, the isobaric volume expansion coefficient is av = [d(\nv)/dT]p 
and the isothermal compressibility is κχ = — [d(\nv)/άρ]τ- The Gruneisen 
constant, 7 = ανν/κ,του, is a nearly temperature-independent dimension-
less constant typically between one and two. 

Because of these deviations, in numerical calculations involving heat 
capacities it is common to use semi-empirical formulas fit to experimen
tal data in a particular temperature range. Usually, these are algebraic 
polynomials of the form2 

cp = a + bT + c/T2. (2.22) 

The constant a is positive and usually nearly equal to the Dulong-Petit 
value expected for the heat capacity at high temperatures. The constant b is 
also positive, as from Equation 2.21 there is a slight tendency for constant-
pressure heat capacities to increase at high temperatures. The constant 
c is usually negative, because at low temperatures lattice vibrations are 
quantum mechanically frozen out and heat capacities decrease. 

For thermodynamic calculations in a restricted range of medium-to-high 
temperatures, such polynomials are usually sufficiently accurate. However, 
for calculations over a wider range of temperatures, and particularly at the 
low to medium temperatures at which MBE often occurs, some inaccuracy 
is introduced. Our experience has been that for many solids, the following 
semi-empirical formula3 fits experimental data over a significantly wider 

2C.G. Maier and K.K. Kelley, "An equation for the representation of high-temperature 
heat content data," Amer. Chem. Soc. 54, 3243 (1932). 

3J .Y. Tsao, "Two semi-empirical expressions for condensed-phase heat capacities," 
J. Appi Phys. 68, 1928 (1990). 
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temperature range: 

C p =(r^ + e^) (co + ClT + - - - ) · ( 2 · 2 3 ) 

The first, "trigonometric" part of the formula describes the low-temperature 
region near a semi-empirical critical temperature θ χ within which the heat 
capacity is rising sharply. The second, "polynomial" part of the formula 
describes the high-temperature region in which the heat capacity is ap
proximately constant. In practice it is usually sufficient to truncate the 
polynomial to linear order, so that only Co and c\ are nonzero. 

Importantly, each of the parameters in the formula can be estimated 
through simple physical arguments. Such estimates are particularly useful 
if the heat capacity of the phase of interest has not been measured (or is 
difficult to measure) in the temperature range of interest. Indeed, as we 
shall see, the art of calculating phase equilibria is to a large extent the art 
of estimating thermodynamic quantities in temperature ranges over which 
they are inacessible to measurement. 

For example, the semi-empirical critical temperature, θ χ , is the tem
perature at which the heat capacity rises to half its saturation value, and 
is thus related to the Debye temperature. In fact, it is numerically equal to 
approximately one-fourth the Debye temperature. The reason it is such a 
small fraction of the Debye temperature is that at the Debye temperature, 
which corresponds to the energy of the highest frequency vibrational mode, 
all lower frequency vibrational modes are excited, and so the heat capacity 
has already nearly saturated at the Dulong-Petit value. 

The constant CQ is the approximate saturation value of the heat ca
pacity, and is thus closely related to the Dulong-Petit value for the heat 
capacity at constant volume, 3k = 0.258 meV/(atom · K). The constant c\ 
determines the high-temperature increase in the heat capacity, and is thus 
related to the constant-pressure correction to the heat capacity given in 
Equation 2.21, α%ν/'κχ- However, it may also contain contributions due to 
lattice vibrational anharmonicities. In order of magnitude, the ratio ci/co 
typically varies from 10~ 5K _ 1 to 10~3K_ 1 . 

As a semi-empirical expression, Equation 2.23 is a significant improve
ment over Equation 2.22, but it is far from perfect. In particular, it im
plies that the very-low-temperature heat capacity approaches zero as T2 , 
rather than as T3 as the Debye theory predicts and as is generally observed. 
However, such low temperatures are usually outside the region of interest 
even for MBE, and in any case the very-low-temperature region contributes 
(nearly) negligibly to the integrals in Equations 2.8 and 2.9 when evaluated 
at higher temperatures. 
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Finally, an especially useful feature of Equation 2.23 is that, like Equa
tion 2.22, it defines a heat capacity for which both cp and cp/T are an
alytically integrable. Hence, temperature-dependent molar entropies and 
enthalpies can be conveniently calculated via Equations 2.8 and 2.9: 

s = s(T0) + ^[\n(T'2 + e2
T)]T

To+c1 T' - θ τ arctan ( — ) (2.24) 
θ τ / I <r 

and 

h = h(T0) + co T' — θ τ arctan 
θ τ 

+ ^ [ Τ , 2 - θ ^ 1 η ( Τ ' 2 + θ ! ) ] ! ; 
2 ° 

(2.25) 
Throughout this book, then, condensed-phase heat capacities will be ap

proximated semi-empirically by Equation 2.23, and entropies and enthaplies 
will be approximated semi-empirically by Equations 2.24 and 2.25. 

2.3 Vapor Phases 
In Subsection 2.1.2, we showed how, given a statistical mechanical partition 
function, the other thermodynamic quantities of interest (molar entropies, 
enthalpies, and Gibbs free energies) could be calculated. In this section, 
we show how to estimate such partition functions for vapor phases. For 
simplicity, we restrict ourselves to low-density vapors at the subatmospheric 
pressures associated with MBE, and hence which behave as ideal gases. 

Consider, then, an ideal gas composed of N identical, non-interacting 
molecules occupying a system of volume V. Each molecule considered sepa
rately will have its own spectrum of quant urn-mechanical energy levels, and 
hence its own partition function q. The energies of those levels will be all 
the possible sums of the energies of its translational, rotational, vibrational, 
and electronic quantum-mechanical energy levels. The degeneracies of those 
levels will be the corresponding products of the degeneracies of the trans
lational, rotational, vibrational, and electronic energy levels. From Equa
tion 2.11, we see that the partition function of an individual molecule can 
therefore be written, conveniently, as the product of the translational, ro
tational, vibrational and electronic partition functions, q = <7tra<7rot<7vib</eie· 

Now, the total partition function for all N atoms is itself the product of 
the partition functions for each molecule (less overcounting of permutations 
of identical molecules): Q = qN/N\. Therefore, I n Q « (JVlng) - (NlnN), 
and we can write 

- ^ « MVtrjN) + ln(grot) + ln(gvib) + ln(gele). (2.26) 
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In other words, the logarithm of the partition function of the vapor as a 
whole is essentially a simple sum of the logarithms of the translational, 
rotational, vibrational, and electronic partition functions of the individual 
molecules themselves. The only deviation is the extra factor of JV, which, as 
we shall see, converts the volume dependence of the translational partition 
function into a pressure dependence. 

Note that since only (l/N)\nQ enters into Equations 2.16, 2.14 and 
2.15, the molar entropy, enthalpy, and heat capacity may themselves be 
taken to be a simple sum of translational, rotational, vibrational, and elec
tronic contributions: 

Cp = Cpytra(p,T) + C p ? r o t (T ) + Cp5Vib(T) + Cp? ele(^) (2 .27) 

s = stra(p,T) + srot(T) + sv[h{T) + sele(T) (2.28) 

h = M^o) + K a ( T O + /lrot(TO + ^ v i b ( n + /lele(T,)]?o. (2.29) 

Here, we have assumed that, according to the third law of thermodynamics, 
the overall entropy offset at zero temperature is zero. In other words, 
nonzero entropies at zero temperature arise exclusively from ground-state 
degeneracies in the translational, rotational, vibrational, or electronic levels, 
and hence are already accounted for. The overall molar enthalpy offset, 
however, need not be zero, and can only be determined relative to the 
molar enthalpy offsets of other phases. 

To concretize this discussion, let us consider in the following two sub
sections two kinds of vapor: one composed purely of monomers and one 
composed purely of dimers. 

2.3.1 Monomeric Vapors 
As a first example, consider the simplest vapor, composed of single atoms. 
Such a vapor, having no internal nuclear degrees of freedom, will have only 
translational and electronic contributions to its thermodynamic functions. 

For the translational contribution, the partition function, in the clas
sical limit, is known4 to be qtra = (2nmkT/h2)3/2V, or, normalized by 
N, qtv^/N = (2nmkT/h2)3/2kT/p. Using Equation 2.16, the translational 
contribution to the molar entropy can then be shown to give what is known 
as the Sackur-Tetrode equation,5 ssacTet = (5&/4) 1η(Τ2/θ^ t r a ) , where 
the critical temperature, B^tra, is determined by the pressure, p, and the 

4 The partition function is the sum over (nondegenerate) translational quantum levels 
whose energies are e n x , n y , n z = (h2/8mV2/3)(nl+nl+nl) where nx,ny,nz G { 1 , 2 , . . . } . 
In the classical limit, the discrete sum is approximated by a continuous integral. 

5 0 . Sackur, Ann. Physik 36, 598 (1911) and H. Tetrode, Ann. Physik 38, 434 (1912). 
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atomic mass, m: 

3 / 5 , ^ v 2 / 5 / i ~ ™ , \ 3 / 5 / x P2lb ( h2 Ylb / p \2/5/lamu 
θ τ , „ ( ρ ) = ^ - ( ^ ) = ΐ . 5 9 3 κ ( ^ ) ( — 

(2.30) 
Therefore, the heat capacity, again in the classical limit, is constant and 
given by cPisacTet = TdssacTet/dT = 5fc/2, which is what is known as the 
Dulong-Petit value for an ideal gas. Physically, it arises because energy 
is equipartitioned in units of kT/2 into each of the three translational di
rections. Therefore, the const ant-volume heat capacity is c^sacTet = 3fc/2. 
Since pv = kT for an ideal gas, the constant-pressure heat capacity can 
then be deduced from Equation 2.21 to be cp?sacTet = cv?sacTet + k = 5fc/2. 

Note tha t the Sackur-Tetrode equation is in nearly the same logarithmic 
form as Equation 2.24, with ci? t ra = 0 and c0,tra = 5fc/2. It can be brought 
into exactly the same form by making two simple assumptions. The first 
assumption is tha t the heat capacity is not constant, but decreases to zero 
at (very) low temperatures according to Equation 2.23: 

Cp,tra(p,T) = C0, t ra ( χ2 + Q 2 1 · (2.31) 

In fact, heat capacities must decrease to zero at zero temperature , lest 
the entropy integrand in Equation 2.8 become infinite at zero temperature . 
The Sackur-Tetrode equation does not hold at temperatures less than θ χ ^ 
(where it predicts negative entropies, in violation of the third law of ther
modynamics) because it was derived classically, not quantum mechanically. 
Quantum mechanically, even translational degrees of freedom must ulti
mately be frozen out at temperatures tha t are low compared to the spacing 
of translational energy levels. 

The second assumption is tha t the third law of thermodynamics holds, 
viz., stTa(T0 = 0) = 0, so tha t , from Equation 2.24, the translational con
tribution to the molar entropy is 

W r ) = ̂ l n f T a + ^ t ~ V (2.32) 
* \ w T , t r a / 

The translational contribution to the molar enthalpy, in turn, is 

htra(T) — C0itra T — θ χ tra arctan 
VÖT.traJJ ' 

(2.33) 

where the arbitrary integrating constant has been omitted because it 
may be incorporated into tha t already present in Equation 2.29. 
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In practice, the semi-empirical Equation 2.32 is nearly indistinguishable 
from the Sackur-Tetrode equation, due to difficulties in measuring the ther-
modynamic properties of vapors at extremely low temperatures. However, 
Equation 2.32 is physically more satisfying, because it obeys the third law 
of thermodynamics, and is mathematically more satisfying, because it is 
defined at all positive temperatures. Therefore, we will use Equations 2.31, 
2.32 and 2.33 to describe the translational contributions to the molar heat 
capacities, entropies and enthalpies of vapor phases just as we will use 
Equations 2.23, 2.24 and 2.25 to describe those of condensed phases. The 
only difference is that for the vapor phase θχ^™ is not semi-empirical and 
can be calculated from first principles according to Equation 2.30, while for 
condensed phases θ χ is semi-empirical and is independent of pressure. 

For the electronic contribution, the partition function cannot in general 
be summed analytically. However, in practice usually only a few excited 
electronic levels have low enough energies to contribute significantly to the 
heat content. Then, the partition function can be summed over a finite 
number of levels, 

qele = J2u^{ee-£^/kT, (2.34) 
and the molar enthalpies, entropies and heat capacities calculated numer
ically from Equations 2.26, 2.17, 2.18, 2.19 and 2.20. Note that if the 
ground electronic level is degenerate, then, according to Equation 2.16, the 
zero-temperature molar entropy does not vanish, but rather is A:ln(u;o,eie)· 

2.3.2 Dimeric Vapors 
As a second example, consider the next simplest vapor, composed of dimer 
pairs of atoms. For these vapors, the translational and electronic contri
butions to the thermodynamic functions can be described in the same way 
as those for the monomeric vapor, with two differences. First, the dimer 
mass, rather than the monomer mass, must be used in Equation 2.30 for 
calculating O^tra- Second, all thermodynamic quantities must be halved 
in order for their units to be per atom rather than per dimer. 

In addition, the thermodynamic functions for dimer atoms contain con
tributions from rotational and vibrational motion. The rotational con
tribution can be treated in nearly exactly the same way as the transla
tional contribution was treated. In the rigid-rotor approximation, the ro
tational partition function can, in the classical limit, readily be evaluated.6 

6 The partition function is the sum over rotational quantum levels whose degeneracies 
are (2J + l ) / 2 and whose energies are J(J + 1)&θχ ) Γ ο ί , where J £ {0,1, 2 , . . . } . In the 
classical limit, the discrete sum is approximated by a continuous integral. 
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Then, Equation 2.16 gives the molar entropy. Finally, to "fix" the zero-
temperature catastrophe, the molar entropy is recast into the semi-empirical 
form of Equation 2.24, giving 

Cp,rot\-*- / 

Srot(T) 

Ärot(T) 

<B*J?±*> 

Co,rot 

Θ 2 

^T, ro t 

T — θ χ rot arctan 
V©T,rotJ 

(2.35) 

(2.36) 

(2.37) 

where the arbitrary integrating constant in the molar enthalpy has again 
been omitted, as it may be incorporated into tha t already present in Equa
tion 2.29. In these equations, 

h 
6T,rot = ^ = 2 3 . 9 3 K (Ψ) (v) 

is the critical temperature below which rotational motion freezes out, and 
c0,rot — k/2. The critical temperature decreases with increasing rotational 
inertia of the molecule, / = μτ·2, because the spacing of rotational energy 
levels decreases. Here, μ is what is known as the "reduced" mass of the 
dimer (half the mass of each a tom of the dimer, one-fourth the mass of the 
dimer itself), and r is the dimer bond length. 

The vibrational contribution can in principle also be fit by a similar 
semi-empirical form. However, in the simple harmonic oscillator approxi
mation, the thermodynamic functions are straightforward to describe ex
actly, not just semi-empirically7: 

Svib(T) 

Kib(T) 

— C0 v j b 

— C0,vib 

— Co.vib 

/Θτ , , fty peT ,v ib/T 

V T ) (e0T,vib/T _ χγ 

eT,vib/^__ln^_e_eTjVib/Ty 

©T,vib €>T,vib 
+ ,eT ,vib/T _ ι 

(2.39) 

(2.40) 

(2.41) 

7 The partition function is the sum over (nondegenerate) quantum levels whose ener
gies are (n+ ^)/c0T\vib/2, where n £ {0,1, 2 , . . . } . The partition function can be summed 
analytically, without approximation by a continuous integral. Therefore, the result is 
fully quantum mechanical, not classical, and Equation 2.39 correctly describes the heat 
capacity's approach to zero at low temperature. It essentially reproduces Einstein's 
calculation of the heat capacity of solids. 
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In these equations, 
BT,vib = hvjk (2.42) 

is the temperature associated with a vibration at frequency v and c0iVib = 
k/2. The leading term in the equation for /ivib is due to the zero-point hv /2 
vibration of the oscillator. 

Note tha t θχ) Γ Ο ί and θτ,νίΒ, unlike GT,tra? are independent of pressure, 
having only to do with internal degrees of freedom of the molecule. Also 
note tha t at typical MBE pressures, θχ,νΐΒ is much higher than ΘΤ,ΓΟ^ 
which in turn is much higher than O^tra- In fact, both θχ5 Γ θ ί and θχ^™ 
are usually so low as to be experimentally unobservable. At all normal 
temperatures and pressures, the translational and rotational contributions 
to the heat capacity (per atom, not per dimer) are constant and equal to 
5k/4 and k/2, respectively, giving a total of 7fc/4. 

2.4 Two Simple Elements: Si and Ge 
In Sections 2.2 and 2.3, we presented general analytic expressions for the 
molar heat capacities, entropies, and enthalpies of condensed and vapor 
phases. These expressions are characterized by either semi-empirical or 
first-principles parameters of various kinds, each of which must ultimately 
be estimated or calculated for a particular phase. 

In this section, we illustrate such estimations and calculations by con
sidering as case studies the various phases of Si and Ge. For bo th of these 
elements, four phases occur at normal (subatmospheric) pressures: two 
solid (amorphous and crystalline), one liquid, and one vapor. Following 
Kubaschewski's notat ion,8 we denote the liquid phases by braces ({Si} and 
{Ge}) and the vapor phases by parentheses ((Si) or ( | S i 2 ) and (Ge) or 
( |Ge2) ) . We denote solid phases by angled brackets, and by subscripts 
outside the brackets if multiple solid phases need to be distinguished ((Si)a , 
(Si)c, (Ge)a , and (Ge)c) . The components themselves, Si and Ge, are not 
enclosed by brackets, braces, or parentheses of any sort. 

We divide the discussion into three subsections. In Subsection 2.4.1, 
we estimate the molar heat capacities of the various condensed and va
por phases. These molar heat capacities determine the tempera ture de
pendences of the molar entropies and enthalpies, up to an "integrating 
constant," or offset. Then, in Subsection 2.4.2, we estimate those molar 
entropy and enthalpy offsets. Finally, in Subsection 2.4.3, we gather to
gether all of these estimates and use them to calculate the molar Gibbs free 
energies as functions of pressure and temperature . 

8 0 . Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 5th Ed. (Perg-
amon Press, Oxford, 1979). 
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2.4.1 Molar Heat Capacities 
Let us begin, in this subsection, by estimating the molar heat capacities of 
all of the phases listed above as functions of temperature and, for the vapor 
phases, also of pressure. Throughout , we will make liberal use of estimates 
based on physical arguments. The reason is tha t the molar heat capacity 
of a phase can often only be measured if tha t phase is the equilibrium one, 
since otherwise the phase will have a tendency to transform to a new one 
during the measurement. Therefore, it is important to develop methods for 
estimating heat capacities in temperature regimes in which they have not 
been measured. 

Figure 2.1 shows estimated temperature dependences of the heat capac
ities of the various phases of Si and Ge. For the condensed phases, heat 
capacities were calculated using the semi-empirical Equation 2.23. For the 
monomer and dimer vapors, heat capacities were calculated using Equa
tion 2.27. The numerical values for the heat-capacity parameters are given 
in Tables 2.1, 2.2 and 2.3, and were estimated in the following ways. 

C o n d e n s e d P h a s e s 

For (Si)c and (Ge)c, the heat capacity parameters were deduced by nonlin
ear least-squares fits to experimental data . It can be seen from Figure 2.1 
tha t the experimental da ta are fit by the semi-empirical forms exceedingly 
well. In fact, only at very low temperatures (for (Si)c less than 50 K and 
for (Ge)c less than 30 K) does the percentage deviation become significant, 
and even then the absolute deviation is, for our purposes, negligible. 

As expected, the semi-empirical critical temperatures for (Si)c and (Ge)c 

are nearly equal to one-fourth their respective Debye temperatures, θ ^ « 
640K and θ ^ e ' c « 374K. For both (Si)c and (Ge)c , the Co parameters are 
essentially equal to the Dulong-Petit value of 3k = 0 .258meV/(a tomK). 
The c\ parameters, however, are about one order of magnitude greater 
than those ( « 2.4 x 1 0 - 6 e V / ( a t o m K 2 ) ) tha t would be calculated from 
Equation 2.21, probably due to vibrational anharmonicities in the diamond-
cubic lattice.9 

For (Si)a and (Ge)a , the experimental heat capacities are not accu
rately known, largely because of the difficulty of forming large thermal 
masses of very pure (Si)a and (Ge)a . High-purity thin films of amorphous 
material may be prepared either by MBE at very low temperatures or by 
ion-implantation, but usually only on thick substrates whose thermal mass 

9P.C. Trivedi, H.O. Sharma and L.S. Kothari, "Lattice anharmonicity of diamond-
structure crystals," J. Phys. C: Solid State Phys. 10, 3487 (1977). 
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F i g u r e 2 . 1 : Measured and es t imated t e m p e r a t u r e dependences of the heat 
capacities of the various phases of Si (left) and Ge (r ight) . Exper imenta l d a t a 
(open circles) for (S i ) c

a and (Ge) c are also shown. 

"Data below 90 K are from H.-Matsuo Kagaya and T. Soma, Properties of Silicon, 
EMIS Datareviews Series No. 4 (INSPEC, 1988); data above 90 K are from D.R. Stull 
and H. Prophet, JANAF Thermochemical Tables, 2nd Ed., N S R D S - N B S 37 (U.S. 
National Bureau of Standards, June 1971). 

6R. Hultgren, P.D. Desai, D.T. Hawkins, M. C41eiser, K.K. Kelley, and D.D. Wagman, 
Selected Values of the Thermodynamic Properties of the Elements (American Society 
for Metals, Metals Park, Ohio, 1973), pp. 204-209. 

would dominate the measurement. Therefore, estimates of various kinds 
must be made. 

To first order, we expect the heat capacities of the amorphous phases to 
be fairly similar to those of the crystalline phases. For example, we expect 
the Co parameters for the amorphous phases to be very nearly the Dulong-
Petit values, just as they were for the crystalline phases. Here, we estimate 
tha t they are in fact the same as those for the crystalline phases. 

To second order, though, we expect differences. Although the amor
phous phases retain the overall te t rahedral coordination and sp3 bonding 
of the crystalline phases, their bond lengths and angles nevertheless deviate 
locally from those of perfect te t rahedra. Therefore, we expect their vibra-
tional properties to be somewhat different. Indeed, both low-temperature 
calorimetry1 0 and room-temperature sound velocity measurements1 1 indi-

1 0M. Mertig, G. Pompe and E. Hegenbarth, "Specific heat of amorphous silicon at low 
temperatures," Solid State Communications 49, 369 (1984). 

11 S.I. Tan, B.S. Berry and B.L. Crowder, "Elastic and anelastic behavior of ion-
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Phase 

(Si)c 
(Si)a 
{Si} 

(Ge)c 

(Ge)a 

{Ge} 

θ χ 
(K) 
149 
134 
82 
87 
78 
48 

Co 
(meV/(a tomK)) 

0.241 
0.241 
0.241 
0.246 
0.246 
0.246 

C\ 
( 1 0 - 5 m e V / ( a t o m K 2 ) ) 

3.85 
5.25 
3.85 
3.95 
5.91 
3.95 

Table 2.1: Heat capacity parameters for the condensed phases of Si and Ge. 

cate Debye temperatures tha t are somewhat reduced from those of the crys
talline phases. The reduction factor is only « 10% for the clean and dense 
films prepared by ion implantation, while it exceeds « 30% for sputter-
deposited films. Since we expect the cleanest and densest films to be most 
representative of the fully relaxed amorphous phases, we estimate the semi-
empirical critical temperatures of the amorphous phases to be reduced from 
those of the crystalline phases by only 10%. 

Perhaps the most difficult parameters to estimate are the c\ parameters . 
At medium to high temperatures , however, limited measurements1 2 indi
cate tha t the heat capacity of (Ge)a exceeds tha t of (Ge)c by an amount tha t 
depends linearly on temperature , « 3.92 x 1 0 - 5 T m e V / ( a t o m K ) . Those 
measurements, however, were made on films deposited from the vapor under 
non-ultra-high-vacuum conditions. For clean, dense films we would expect 
the excess to be less. Indeed, by analogy to the reductions in sound veloci
ties discussed above, we might expect them to be less by one-half or more. 
Here, we estimate them to be less by one-half, and hence estimate tha t the 
c\ parameters for the amorphous phases are greater than those for the crys
talline phases by the tempera ture coefficients 1.96 x 1 0 - 5 meV/ (a tomK) 
for Ge and, through scaling with the melting temperatures , by 1.40 x 
10" 5 meV/ (a tomK) for Si. 

For {Si} and {Ge}, experimental heat capacities are only known above 
the melting temperature , because it is experimentally very difficult to achieve 
significant supercoolings of those two liquids below their freezing tempera
ture. For both liquids, though, the heats capacities just above the melting 
temperature are simple extrapolations of those of the crystalline solids just 

implanted silicon," Appl. Phys. Lett. 20, 88 (1972). For a recent review, see I.R. Cox-
Smith, H.C. Liang and R.O. Dillon, "Sound velocity in amorphous films of germanium 
and silicon," J. Vac. Set. Technol. A 3 , 674 (1985). 

1 2H.S. Chen and D. Turnbull, "Specific heat and heat of crystallization of amorphous 
germanium," J. Appl. Phys. 40, 4214 (1969). 
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Phase 

(Si) 
(*Si2) 
(Ge) 

gCea) 

®T,tra co,tra 
(K) 

0.215 (p/760Torr)U4 5k/2 
0.142 (p/760 Torr)0 '4 5k/4 
0.122 (p/760 Torr)0 4 5k/2 
0.080 (p/760 Torr)0 4 5k/4 

®T,rot Co,rot 
(K) 

0 
0.338 fc/2 

0 
0.110 k/2 

©T,vib Co,v'ib 

0 
735 k/2 

0 
532 k/2 

Table 2.2: Heat capacity parameters for the vapor phases of Si and Ge. 

below the melting temperature . Hence, in both cases, it is reasonable to 
use the same values for the CQ and c\ parameters as those for the crystalline 
solids. 

However, the vibrational properties of the liquid phases differ substan
tially from those of the crystalline phases, and so we expect their semi-
empirical critical temperatures to be different. To first order, we can guess 
tha t the semi-empirical critical temperatures , just as the Debye tempera
tures, will scale as the velocity of sound in the phase. Since sound velocities 
in the liquid are approximately 0.55 of the velocities in the crystals,1 3 we 
estimate tha t the semi-empirical critical temperatures of the liquids are 
approximately 0.55 of the critical temperatures of the crystals. 

Vapor P h a s e s 

For the vapor phases (Si), (Ge), ( | S i 2 ) and ( | G e 2 ) , the parameters tha t 
enter into the translational, rotational and vibrational contributions to the 
heat capacities are given in Table 2.2. The translational critical tempera
tures follow from Equation 2.30 using masses of 28.08 amu and 56.16 amu 
for Si and Si2, and masses of 72.6 amu and 145.2 amu for Ge and Ge 2 . 
The rotational and vibrational temperatures follow from Equations 2.38 
and 2.42 using bond lengths and vibrational frequencies of 2.246 A and 
510 .98cm- 1 for Si2 ,1 4 and of 2.44Ä and 3 7 0 c m " 1 for Ge 2 . 1 5 

The parameters tha t enter into the electronic contributions to the heat 
capacities, viz., the energies and degeneracies of the lowest lying electronic 
levels, are listed in Table 2.3. For the Si and Ge monomers, the values were 

13V.V. Baidov and M.B. Gitis, "Velocity of sound in and compressibility of molten 
germanium and silicon," Sov. Phys. Semicond. 4, 825 (1970). 

14From measurements by R.D. Verma and P.A. Warsop, "The absorption spectrum of 
the Si2 molecule," Can. J. Phys. 4 1 , 152 (1963). 

15 From ab initio pseudopotential self-consistent-field calculations by G. Pacchioni, 
"Theoretical investigation of the electronic structure and of the potential energy curves 
for the lowest lying states of Ge2 ," Mol. Phys. 49, 727 (1983). 
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Molecule 

Si 

Ge 

Si2 

Ge2 

Level 
( ( 2 S + l ) L j ) 

aPo 
3 P i 
3P2 
aPo 
3 Pi 
3 P 2 
■3y-
3n 
' Δ , 
'π« 
'Κ 
% ~ 3Π 
*A. 
Jnn 
*Σί 

Degeneracy 
(^i,ele) 

1 
3 
5 
1 
3 
5 
3 
6 
2 
2 
1 
3 
6 
2 
2 
1 

Relative energy 
(eV) 

0 
0.00956 
0.02769 

0 
0.069 
0.175 

0 
0.13 
0.48 
0.66 
0.85 

0 
0.06 
0.48 
0.64 
0.57 

Table 2.3: Energies and degeneracies for the lowest lying electronic levels of Si, 
Ge, S12 and Ge2. 

taken from the standard experimental tables of Moore.16 For the S12 and 
Ge2 dimers, the values were taken from theoretical calculations.17 In all 
cases, the usual notation ^ 2 5 + 1 ^Lj , where 5, L and J are the spin, orbital 
and total angular momentum quantum numbers, has been used to denote 
the individual electronic levels. Note that the lowest lying electronic levels 
of (Si) and (Ge) have unusually low (fractions of an eV) energies. As a 
consequence, their low-temperature heat capacities are unusually high, as 
can be seen from Figure 2.1. 

1 6C.E. Moore, Atomic Energy Levels Vols. I-III, Circular of the National Bureau of 
Standards 467 (June 15, 1949). 

1 7The calculation for S12 is by A.D. Mclean, B. Liu and G.S. Chandler, "Second row 
homopolar diatomic molecules. Potential curves, spectroscopic constants, and dissocia
tion energies at the basis set limit for SCF and limited CI wave functions," J. Chem. 
Phys. 80, 5130 (1984). The calculation for Ge2 is by G. Pacchioni, "Theoretical investi
gation of the electronic structure and of the potential energy curves for the lowest lying 
states of Ge2," Mol. Phys. 49, 727 (1983). 
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2.4.2 Molar Entropy and Enthalpy Offsets 
In Subsection 2.4.1, we estimated the molar heat capacities of the various 
phases of Si and Ge. These estimates are summarized in Tables 2.1, 2.2 and 
2.3, and allow one to deduce the relative t empera ture dependences of the 
molar entropies and enthalpies of the various phases of Si and Ge through 
Equations 2.24 and 2.25. However, to deduce the absolute temperature 
dependences, we also need to know molar entropy and enthalpy offsets for 
each phase at particular temperatures . In this subsection, we estimate 
these offsets. They are summarized in Table 2.4, and were deduced in the 
following ways. We will first consider the condensed phases and then the 
vapor phases. 

C o n d e n s e d P h a s e s 

For the crystalline phases, the third law of thermodynamics states tha t the 
entropy at absolute zero of a perfect crystalline substance is zero. There
fore, we can use as the entropy offset the entropy at 0 K, namely zero. The 
enthalpy scale, however, is not fixed by an equivalent law, so, as is custom
ary, we arbitrarily fix the enthalpy of the equilibrium phases of Si or Ge at 
s tandard tempera ture and pressure (298 K and 760 Torr) to be zero. Since 
both (Si)c and (Ge) c are the equilibrium phases of Si or Ge at s tandard 
temperature and pressure, we set their enthalpies to zero at 298 K. 

For the amorphous solid phases, we can estimate fairly well the molar 
enthalpy offsets relative to the molar enthalpies of the crystalline phases. 
In particular, the molar enthalpies of the amorphous phases relative to the 
molar enthalpies of the crystal phases are fixed by the latent heats of crys
tallization, which have been measured1 8 to be 0.139 eV/a tom at « 950 K 
for Si and to be 0.119 e V / a t o m at « 720 K for Ge. The molar entropy off
sets, however, can only be tentatively estimated. Based on model-building 
studies, Spaepen1 9 has calculated tha t the configurational entropy due to 
lattice disorder in the amorphous phases is approximately 0.2A:. Since at 
zero temperature tha t should be the only contribution to the entropy (the 
vibrational contribution should be frozen out) , we estimate tha t the zero-
temperature molar entropy for the amorphous phases is 0.2A:. 

For the liquid phases, we can deduce experimentally both molar entropy 
and enthalpy offsets relative to the molar entropies and enthalpies of the 
crystalline phases. In particular, the molar enthalpies of the liquid phases 

1 8E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate and D.C. Jacobson, "Calori-
metric studies of crystallization and relaxation of amorphous Si and Ge prepared by ion 
implantation," J. Appl. Phys. 57, 1795 (1985). 

1 9 F . Spaepen, "On the configurational entropy of amorphous Si and Ge," Phil. Mag. 
30, 417 (1974). 
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Phase 

<Si)c 
(Si)a 
{Si} 
(Si) 

(*Si2) 
(Ge)c 

(Ge)a 

{Ge} 
(Ge) 

(^Ge2) 

T0 

(K) 
298 
950 

1685 
0 
0 

298 
720 

1213 
0 
0 

h(T0) 
(eV/a tom) 

0 
/i<Si>c + 0 . 1 3 9 
/i<Si>c + 0.525 
ft<Si>c + 4>62 
/*<Si>c + 3.07 

0 
/i<Ge>c + 0 . 1 1 9 
/i<Ge>c + 0.382 
/i<Ge>c + 3.81 
h<Ge)c + 2 > 4 3 

1 ^~ 
(K) 

0 
0 

1685 
0 
0 
0 
0 

1213 
0 
0 

s(To) 
(eV/(a tomK)) 

0 
0.2* 

s<Si>c + 0.525/1685 
0 
0 
0 

0.2k 
s(Ge)c +0 .382 /1213 

0 
0 

Table 2.4: s and h offsets for the various phases of Si and Ge. 

relative to the molar enthalpies of the crystal phases are fixed by experimen
tal measurements of the latent heats of fusion at the freezing temperatures . 
As summarized in Table 2.4, the latent heats of fusion and freezing tem
peratures for Si are 0.525 eV and 1685 K and for Ge are 0.382 eV and 
1213K. 

Note tha t exactly at the melting temperature , the crystal and liquid 
phases coexist, and so their molar Gibbs free energies must be the same. 
Hence, if the crystal and liquid phases have different molar enthalpies, they 
must also have different molar entropies, in exactly offsetting amounts . 
Therefore, exactly at the melting temperature, T0 = T0c{}? the entropies of 
fusion can be deduced from the molar enthalpies of fusion via 

.(»(r.)_.o.(r.).ii!sa^aa. (14S) 

It is important to keep in mind tha t we have now fixed the liquid molar 
entropy and enthalpy offsets relative to the crystal molar entropies and 
enthalpies at the melting temperature . However, the crystal molar entropies 
and enthalpies were themselves fixed at different temperatures , namely, 
0 K for the entropy and 298 K for the enthalpy. Therefore, to deduce 
the absolute molar entropies and enthalpies of the liquid we must first use 
Equations 2.8 and 2.9 (along with the heat capacity of the crystal) to deduce 
the change in the molar entropy of the crystal between 0 K and the melting 
temperature and the change in the molar enthalpy of the crystal between 
298 K and the melting temperature . Because of this, our estimates of the 
absolute molar entropies and enthalpies of the liquid depend both on the 
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measured molar entropies and enthalpies of fusion as well as on the assumed 
molar heat capacity of the crystal. 

Vapor P h a s e s 

For the vapor phases, the entropy offsets are fixed at zero at 0 K by the 
third law of thermodynamics . 2 0 The molar enthalpy offsets can be fixed 
relative to the enthalpies of either the crystal or liquid phases. For example, 
the molar enthalpies of the vapor phases relative to the molar enthalpies 
of the crystal can be fixed by experimental measurements of the latent 
heats of sublimation. Equivalently, they can be fixed relative to the molar 
enthalpies of the liquid by experimental measurements of the latent heats 
of evaporation. 

The complication, though, is tha t experimental determinations of la
tent heats of sublimation or evaporation are usually not based directly on 
calorimetry, but rather indirectly on measurements of the equilibrium va
por pressure or of its tempera ture dependence. To see how, note tha t if, at 
a particular temperature , either the crystal or the liquid is in equilibrium 
with a certain pressure of vapor, then the molar Gibbs free energies of the 
crystal or liquid must equal the molar Gibbs free energy of vapor at tha t 
pressure. For example, if we consider sublimation of the crystal, we can 
write 

<?<>c = gO (2.44) 

h()c_Ts()c = Λ 0 _ Τ β 0 . (2.45) 

For bo th the monomer and dimer vapors, we see from Equations 2.32 
and 2.30 tha t the translational contributions to the entropies separate into 
the sum of (nearly) pressure-independent and temperature-independent 
parts : 

ί ° ( ρ , Γ ) = « ° ( ρ „ , Γ ) - | c o , t r a l n ( - £ - ) , (2.46) 

where the reference pressure, p 0 , is arbi trary and can be taken, e.g., to 
be 760 Torr, and the reference temperature , T0, has been taken to be 0. 
Therefore, the pressure dependence can be separated from the molar Gibbs 
free energy of the vapor: 

gU(P,T) = g{)(Po,T) + ^ c 0 , t r a T In ( £ \ . (2.47) 

2 0Except, as noted above, for a possible degeneracy in the ground electronic level. 
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In other words, the equality between the molar Gibbs free energies of 
the crystal and the vapor becomes 

h(>).«°-m-ffi.r). (2.4S) 
\p0J 2c0?tra-//5 

This equation, when expanded into its entropy and enthalpy components, is 
the basis for what is known as the Rankin-Kirchoff semi-empirical equation, 

ln(p) = α + δ In T - ψ + 7 T , (2.49) 

often used to describe vapor pressures.2 1 

Since from the heat capacities we know the relative t empera ture de
pendences of the molar entropies and enthalpies of both the vapor and 
the crystal, Equation 2.48 defines the equilibrium vapor pressures in terms 
of the molar entropy and enthalpy offsets between the vapor and crystal. 
Therefore, those relative molar entropy and enthalpy offsets (essentially the 
latent entropies and heats of sublimation) can be deduced from a compar
ison between Equation 2.48 and experimental measurements. 

In making tha t comparison, two methods are commonly used. In the 
first method, known as the "third-law" method, one assumes tha t the third 
law of thermodynamics holds. Then, the 0 K entropies of the crystal and 
vapor are taken to be zero, except for a possible degeneracy of the ground 
electronic state. 

The difference between the molar enthalpies of the crystal and the vapor 
at a reference temperature T0 is then used to fit the absolute magnitude 
of the equilibrium vapor pressure at a particular temperature . Such fits 
are illustrated in Figure 2.2, which shows experimental measurements of 
the equilibrium vapor pressures of the crystals (below the freezing tem
peratures) and of the liquids (above the freezing temperatures) , along with 
monomer and dimer vapor pressures calculated using Equation 2.48 and the 
molar enthalpy offsets listed in Table 2.4. The fits are extremely sensitive to 
those molar enthalpy offsets: the higher the latent heat of vaporization, the 
lower the equilibrium vapor pressure. Note tha t the dimer vapor pressures 
for both Si and Ge are only a fraction of the monomer vapor pressures, and 
hence for practical purposes may be neglected. 

It should be noted tha t the offsets listed in Table 2.4 are the heats of 
sublimation at 0 K. At any other tempera ture those heats will be slightly 
different, due to heat capacity differences between the crystal and vapor, or 

2 1 An extensive tabulation of empirical values for the coefficients in this equation for a 
number of semiconductors may be found in O. Kubaschewski and C.B. Alcock, Metal
lurgical Thermochemistry, 5th Ed. (Pergamon Press, Oxford, 1979). 
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and Ge2. 
a J .L . Souchiere and V.T. Binh, "The evaporation rate of silicon," Surf. Sei. 168, 

52 (1986); and R.L. Batdorf and F.M. Smits, "Diffusion of impurities into evaporating 
silicon," J. Appl. Phys. 30, 259 (1959). 

6A.W. Searcy and R.D. Freeman, "Measurement of the molecular weights of vapors 
at high temperature. II. The vapor pressure of germanium and the molecular weight of 
germanium vapor," J. Chem. Phys. 23, 88 (1955). 

CJ. Drowart, G. De Maria, and M.G. Inghram, "Thermodynamic study of SiC utilizing 
a mass spectrometer," J. Chem. Phys. 29, 1015 (1958). 

d J. Drowart, G. De Maria, A. J.H. Boerboom, and M.G. Inghram, "Mass spectrometric 
study of inter-group IVB molecules," J. Chem. Phys. 30, 308 (1959). 

between the liquid and vapor. For example, the temperature dependence 
of the heat of sublimation is given by 

Ah<>c()(T) = Ah<>e()(T0)+ / &c(Jc0(T')dT'. (2.50) 
JTo 

In the second method, known as the "second-law" method, the latent 
heat of sublimation is deduced from the variation with temperature of the 
equilibrium vapor pressure, rather than from the absolute magnitude of 
the equilibrium vapor pressure. Indeed, using Equations 2.18 and 2.48, 
the temperature variation of the equilibrium vapor pressure is seen to be 
related to the latent heat of sublimation, 

d Hi) Λ<>«(Γ)-Λ«(ρο,Τ). (2.51) 
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As illustrated in Figure 2.2, Equat ion 2.48, using the molar enthalpy off
sets listed above, reproduces reasonably well both the absolute magnitudes 
as well as the temperature variations of the equilibrium vapor pressures. 
Therefore, the two methods agree, and tha t agreement gives confidence in 
the experimental measurements themselves. 

2.4.3 Molar Gibbs Free Energies 
In Subsection 2.4.1, we estimated the molar heat capacities summarized in 
Tables 2.1 and 2.2; in Subsection 2.4.2, we estimated the molar entropy and 
enthalpy offsets summarized in Table 2.4. In this subsection, we combine 
the two to deduce the absolute temperature dependences of the molar en
tropies, enthalpies, and Gibbs free energies of the various phases of Si and 
Ge. For the condensed phases we use Equations 2.7, 2.24 and 2.25, and for 
the vapor phases we use Equations 2.7, 2.27, 2.28 and 2.29. 

The top four panels of Figure 2.3 show the molar entropies and en
thalpies. Note tha t the molar entropies and enthalpies behave quite differ
ently as functions of temperature . The molar enthalpies are initially flat 
at the lower temperatures where the molar heat capacity is low, then in
crease linearly at the higher temperatures where the molar heat capacity 
is high and approximately constant. The molar entropies, in contrast, rise 
more quickly at the lower temperatures , then saturate at the higher tem
peratures due to the inverse temperature dependence of the integrand in 
Equation 2.8. However, this saturat ion of the entropies at high temper
atures does not imply tha t entropy becomes increasingly unimportant at 
high temperatures . Rather , entropy enters into the molar Gibbs free energy 
multiplied by T, and so continues to be of major importance in determining 
phase stability. 

As one might expect, the magnitudes of the molar enthalpies and en
tropies of the solid phases are quite similar, those of the liquid phases are 
somewhat higher, and those of the vapor phases are very much higher. In 
other words, the difference between solid phases is less than tha t between 
liquid and solid phases, which in tu rn is much less than tha t between vapor 
and liquid phases. 

Note tha t the zero-temperature molar entropies of the liquid phases do 
not vanish. Instead, they are approximately 3K. Such residual entropies 
arise from the configuration^ disorder present even in the "frozen" liquid. 
Tha t disorder is analogous to, though much larger than, tha t of the amor
phous solids, whose zero-temperature molar entropies were estimated to be 
only « 0 . 2 K . 

The bot tom two panels of Figure 2.3 show the molar Gibbs free energies. 
At any temperature , the stablest phase is tha t whose molar Gibbs free 
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energy is lowest, and the least stable phase is tha t whose molar Gibbs free 
energy is highest. Therefore, in these examples, the crystalline phases are 
the stablest ones at low temperature and the vapor phases are the stablest 
ones at high temperature . In between, depending on the pressure of the 
vapor, there may be a tempera ture window in which the liquid is stablest. 

The reason for this t rend is tha t , as mentioned earlier, at any particular 
temperature the slope of a molar Gibbs free energy curve is the negative of 
the molar entropy, and its zero-temperature intercept is the molar enthalpy. 
Therefore, since all phases have positive entropy, molar Gibbs free energies 
must decrease with increasing temperature , i.e., all phases are stabilized 
at higher temperature . However, the molar Gibbs free energies of higher 
entropy phases decrease faster than those of lower entropy phases, and so 
higher entropy phases ultimately become stabler than lower entropy phases 
at high temperature . 

Note tha t the amorphous phases are never the stablest phases. At low 
temperatures the crystalline phases are more stable; at high temperatures 
the liquid phases are more stable. Despite this, the amorphous phases may 
be observed and studied, because at room tempera ture they transform into 
the crystalline phases exceedingly sluggishly. It has even been possible, 
through pulsed-laser-annealing experiments, to deduce tha t the melting 
temperature of (Si)a is lower t han tha t of (Si)c by « 225 K.22 From Fig
ure 2.3, such a reduction is expected: the molar Gibbs free energies of 
the amorphous phases lie above those of the crystalline phases, and must 
intersect those of the liquid phases at lower temperatures . 

Note tha t the tempera ture at which the molar Gibbs free energies of the 
vapor intersect those of the various condensed phases depends on pressure. 
Tha t dependence is what determines the vapor pressure of the condensed 
phase. Note tha t above the melting temperature , the vapor and liquid 
molar Gibbs free energy curves intersect at a higher tempera ture than the 
vapor and crystal molar Gibbs free energy curves intersect. Hence, to be in 
equilibrium with a given vapor pressure, the liquid must be hotter than the 
crystal. Equivalently, for a given tempera ture above the melting tempera
ture, the liquid has a lower vapor pressure than the (superheated) crystal. 
Note tha t such a lowering of the vapor pressure upon melting is difficult to 
observe experimentally, because crystals usually melt at only slight over
heatings above their melting temperature . 

Finally, once we know the molar Gibbs free energies of the various phases 
of Si and Ge, we can calculate the "driving force" for MBE. As can be seen 
from Figure 2.3, the driving force can be quite large. For example, a typical 

2 2M.O. Thompson, G.J. Galvin, J.W. Mayer, P.S. Peercy, J.M. Poate, D.C. Jacob-
son, A.G. Cullis, and N.G. Chew, "Melting temperature and explosive crystallization of 
amorphous silicon during pulsed laser irradiation," Phys. Rev. Lett. 52, 2360 (1984). 
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growth temperature for Si MBE is 800 K, cind a typical effective pressure 
for the impinging atoms is 10 - 6 Torr. Under those conditions the difference 
between the molar Gibbs free energies of the vapor and crystal is approxi
mately 2.5 eV/atom. At that same temperature, the difference between the 
molar Gibbs free energies of the liquid and crystal is only approximately 
0.25 eV/atom, about one order of magnitude less. The vapor, in a sense, is 
much more supercooled than the liquid with respect to the crystal. 

Suggested Reading 
1. O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 

5th Ed. (Pergamon Press, Oxford, 1979). 

2. D.A. McQuarrie, Statistical Mechanics (Harper L· Row, New York, 
1976). 

3. R.A. Swalin, Thermodynamics of Solids, 2nd Ed. (Wiley-Interscience, 
New York, 1972). 

Exercises 
1. Using Equation 2.21, show, for an ideal gas that obeys pv = kT, that 

cp = cv + k. Explain, physically, why cp is greater than cv. 

2. We calculated, using Equation 2.43, molar entropy offsets in terms 
of measured molar enthalpy offsets for {Si} and {Ge} relative to the 
crystalline phases (Si)c and (Ge)c. Could we have calculated, in a 
similar way, the molar entropy offsets for the amorphous phases (Si)a 
and (Ge)a relative to the crystalline phases (Si)c and (Ge)c? 

3. Show, using Equations 2.8 and 2.9, that dg/dT is —s, and hence that 
Equation 2.19 is correct. Show that [d/d(l/T)][g/T] is h, and hence 
that Equation 2.18 is correct. 

4. Expand the right side of Equation 2.48 into molar enthalpy and en
tropy components, and deduce explicit forms for the coefficients in 
Equation 2.49. 

5. Assuming Dulong-Petit heat capacities (neglecting electronic contri
butions), and given the latent heats of sublimation listed in Table 2.4, 
what are the zero-temperature molar enthalpies of formation of (|Si2) 
and ( |Ge2) from (Si) and (Ge), respectively? 
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6. Although, at 800 K, the difference between the molar Gibbs free en
ergies of (Si) at 10 - 6 Torr and (Si)c is large (« 2.5eV/atom), the 
difference between the molar enthalpies of (Si) and (Si)c is larger still 
(« 5 eV/atom). That enthalpy is "liberated" when a Si atom impinges 
on and sticks to a Si substrate and ultimately becomes thermal en
ergy. How does that liberated thermal energy compare to the thermal 
energy per atom (« 3kT) of the Si substrate at 800 K? 



Chapter 3 

Alloy Phases 

In Chapter 2, we described how to calculate the molar Gibbs free energies of 
phases composed of a single component or element. For condensed phases it 
was sufficient to understand the tempera ture dependence; for vapor phases 
it was necessary to understand both the pressure and temperature depen
dences. 

In this chapter, we introduce alloy phases, i.e., phases composed of more 
than one component or element. For these phases, the molar Gibbs free 
energies depend on yet another parameter: composition. Therefore, we 
begin, in Section 3.1, by introducing a simple and consistent nomenclature 
for alloy phases tha t includes composition. At the same time, we will ask 
the general question: given a pressure, temperature , and composition, what 
is the equilibrium mix of phases of the system? The answer is determined, 
again, by minimizing the Gibbs free energy. We shall find tha t under some 
conditions, the Gibbs free energy is minimized when only a single phase is 
present. Under other conditions, though, the Gibbs free energy is minimized 
when two phases are present in a particular proportion. 

Then, in Section 3.2, we describe the commonly used semi-empirical 
expressions for the composition dependence of the molar Gibbs free energies 
of various phases. The expressions are classified according to whether they 
apply to "perfect" solutions (mixtures of ideal gases), "ideal" solutions 
(condensed-phase mixtures of chemically similar components), or "regular" 
solutions (condensed-phase mixtures of chemically dissimilar components). 

Finally, Sections 3.3 and 3.4 are devoted to detailed case studies of 
two particular alloy systems, selected because they are both of current 
interest and importance in MBE, and because they each illustrate different 
but important aspects of molar Gibbs free energy calculations. In order 
of increasing complexity, we consider, in Section 3.3, the alloy phases of 

43 
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Si i_ x Ge x , and then, in Section 3.4, the stoichiometric compound and other 
phases of G a i _ x A s x . 

3.1 Nomenclature and Preliminaries 
Let us start by introducing a s tandard nomenclature. As in Chapter 2, 
we have tried to make ours as simple and self-explanatory as possible. We 
begin, in Subsection 3.1.1, by describing the properties of the phases them
selves. Then, given an understanding of those properties, we discuss, in 
Subsection 3.1.2, under what conditions two (or more) phases can coexist. 

3.1.1 One Phase, Two Components 
Consider a phase, a , this t ime composed of N£ moles (or atoms) of com
ponent a and Ng moles (or atoms) of component b . The total Gibbs free 
energy of such a phase is denoted Ga(p,T,N£,Ng). From it are derived 
the molar Gibbs free energy of the a phase, 

Ga(v T Na N?) 
ga(p,T,xa) = \ l ' V h \ (3.1) 

and the chemical potentials of the two components in the a phase, 

-θαα(ρ,Τ,Ν?,ΝζΥ 
μ2(ρ,Τ,χα) = 

μζ(ρ,Τ,χα) = 

dN2 

dGa(p,T,N?,N£) 
dN£ 

(3.2) 

Notice tha t the atomic fractions of the two components, x% = N£/(N£ + 
Ng) and zg = Νξ/(Ν£ + JV£), are not independent of each other, but 
sum to unity. Therefore, the molar Gibbs free energies and the chemical 
potentials can be writ ten as functions of only one of the atomic fractions. 
As is customary, we arbitrarily choose xg, which we write as xa. 

As before, it is important to keep in mind tha t ga is a property of a 
phase and is used to compare relative stabilities of different phases. In 
contrast, μ^ and μ£ are properties of components in a phase, and are used 
to compare relative propensities of those components to incorporate into 
different phases. 

Often, it is convenient to express the two chemical potentials in terms 
of the molar Gibbs free energies, rather than the Gibbs free energies: 

μ:(ρ,Τ,χα) = g°(p,T,xa)-(xa) 9 (P
dxJ } (3.3) 
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Mg(p,I>") = ^ ( ρ , Τ , χ - ) + ( 1 - ^ ) ^ α ( ^ χ α ) . (3.4) 

These two Equations can be derived from Equations 3.2 (see Exercise 1 at 
the end of this chapter) through use of the identity 

Ga(p, T, K,N£) = {N? + N£)g(NZ/[N: + Νξ]). (3.5) 

Mathematically, they imply that the intercepts of the tangent to the molar 
Gibbs free energy vs. composition curve with the x = 0 and x = 1 axes 
are the chemical potentials themselves. The two Equations thus form the 
basis for what is known as the tangent construction for graphically deducing 
chemical potentials. 

That construction is illustrated in Figure 3.1. Notice that for the hy
pothetical molar Gibbs free energy curve drawn, as xa approaches 0 (so 
that a becomes poor in component b), the chemical potential of b in α, μ£, 
becomes very negative. In other words, the less of component b the phase a 
has, the more that component is attracted to the phase. In real materials 
at commonly encountered temperatures, this will often be the case; it is 
due to the entropy, described later, gained by mixing the two components 
a and b. 

Using these equations, the molar Gibbs energy and the slope of the 
molar Gibbs free energy can in turn be expressed in terms of μ% and μ£: 

ga(p,T,xa) = (1-χα)μϊ(Ρ,Τ,χα) + (χα)μΖ(ρ,Τ,χα) (3.6) 
dga(p,T,xa) 

dxa = μζ(ΡιΤ,χα)-μ^(ρ,Τ,χα). (3.7) 

Equation 3.6 tells us that the molar Gibbs free energy is the sum of the 
chemical potentials of each component, weighted according to the atomic 
fraction of those components. Equation 3.7 tells us that the derivative of 
the molar Gibbs free energy with respect to composition is the difference 
between the two chemical potentials. 

3.1.2 Two Phases, Two Components 
Suppose, now, that there are two phases: a, an a-rich phase, and /?, a b-rich 
phase. Are there conditions under which these two phases can coexist in 
equilibrium? The equilibrium condition, of course, is that the total Gibbs 
free energy, 

Gtot = Ga(p, T, N:, Νζ) + G?(p, T, JVf, < ) , (3.8) 

be minimized with respect to transfer of atoms from one phase to the other. 
If so, then the change in the total Gibbs free energy should vanish if we 
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Figure 3.1: The tangent construction for deducing chemical potentials. On the 
left, a hypothetical molar Gibbs free energy for a phase, ga, is plotted versus 
composition, x. The intercepts of the tangent at x = xa with the x = 0 and 
x = 1 axes are the two chemical potentials μ%{χα) and μζ(χα). As xa varies, 
the tangents sweep around the arc of the molar Gibbs free energy curve, and the 
intercepts of those tangents trace out the chemical potentials at the various xa. 
On the right, the two chemical potentials obtained in this way are plotted versus 
composition, xa. 

increase N" while decreasing N& so tha t the overall number of a atoms is 
constant: 

dGh 

dN? 
dGa dGß 

+ dN° dN° 
dGa dGP 

■ « 

ß - 0. (3.9) 

Similarly, the change in the total Gibbs free energy should vanish if we 
increase iV£ while decreasing Νζ so tha t the overall number of b a toms is 
constant: 

dGu 

dNP 
dGa dGß 

ΘΝ-
dGa 

dNS ßb ύ = ο. (3.10) 

In other words, the chemical potentials of a in the two phases must be 
equal, as must the chemical potentials of b in the two phases. To see why, 
remember tha t the chemical potentials measure the propensity for atoms 
to incorporate into a phase. If those propensities were not the same for two 
phases, then there would be a tendency for atoms to transfer between the 
two phases, and the two phases could not have been in equilibrium. 

Now, we know from Equations 3.3 and 3.4 tha t the chemical poten
tials are the intercepts of the tangents to the Gibbs free energy curves. 
Hence, if the two phases a and ß are to be in equilibrium with each other, 
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Θ 

Figure 3.2: Hypothetical molar Gibbs free energies for two phases, a and ß, 
plotted versus composition, x. Their (common) tangent defines the compositions 
#o and Xo at which the two phases are in equilibrium with each other. The 
intercepts of their (common) tangent with the x = 0 and x — 1 axes are their two 
(common) chemical potentials. For overall system compositions and molar Gibbs 
free energies indicated by the various solid circles, the two phases will be present 
in the proportions indicated schematically in the various surrounding panels. 

their compositions x% and χζ must be such tha t the tangents to ga and g& 
at those compositions have the same intercepts. In other words, as illus
t ra ted in Figure 3.2, the two phases must share a common tangent.1 Tha t 
simple geometric construction can be deduced mathematically by equating 
Equation 3.3 for μ% with the analogous equation for ^f, and by equating 
Equation 3.4 for μ£ with the analogous equation for μζ: 

dga(p,T,xa) 
dxa 

dx? 

/ ( ρ , Τ , ^ ) - ^ ( ρ , Γ , Ο 

9Ρ(ρ,Τ,χξ)-9
α(ρ,Τ,χϊ) 

rpß rpOt 
X 0 X „ 

(3.11) 

Equations 3.11 are the central equations of this section. Their simul
taneous solution determines the compositions, x% and x%, at which two 
phases are in equilibrium with each other, in terms of the composition-
dependent molar Gibbs free energies of each phase. If those dependences 
are simple, then the equations may sometimes be solved analytically, at 
fixed temperature and pressure, for those equilibrium compositions x% and 

1 J .W. Gibbs, "On the equilibrium of heterogeneous substances," The Collected Works 
of J. Willard Gibbs, Vol. I: Thermodynamics (Yale University Press, New Haven, 1957), 
pp. 55-353. 
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x@. More commonly, however, the equations must be solved numerically.2 

Once we know the equilibrium compositions x% a n d #o> then w e a ^ s o 

know, for a given overall system composition, x, what fraction 1 — f0 of 
the system is a and what fraction f0 is β. As illustrated in Figure 3.2, 
if x < x% or x > x@ (the two extreme solid circles in the center panel of 
Figure 3.2), then the system will either be pure a or pure β, respectively. 
In other words, pure a at a composition x < x% has a lower molar Gibbs 
free energy than any mixture of a at composition xa and β at composition 
χβ = 2x — xa. Likewise, pure β at a composition x > x% has a lower 
molar Gibbs free energy than any mixture of β at composition x@ and a at 
composition xa = 2x — x@. 

If, however, x > x% and x < x% (the two middle solid circles lying on 
the tangent in the center panel of Figure 3.2), then the equilibrium state 
of the system will be a mixture of the a and β phases, whose fractions are 
given by what is known as the lever rule, 

1 - f0 = χζ - x 
fo X-X% 

In other words, the ratio between the β and a fractions of the system is 
equal to the ratio of the differences between the system composition x and 
the equilibrium compositions χζ and x„. In terms of these fractions, the 
overall molar Gibbs free energy of the system is then 

9T = (1 - fo)9a{xa
0,T) + (fo)A4,T). (3.13) 

It is important to keep in mind tha t two phases need not necessarily be in 
equilibrium with each other. Indeed, they will often not be in equilibrium, 
particularly if the migration rate of various components between phases is 
slow. Then, the overall molar Gibbs free energy of the system will be 

9tot = (1 - f)9a(xa,T) + l / W , T ) . (3.14) 
2 The simplest algorithms are based explicitly on the common tangent construction. 

For example, in the algorithm implemented by M.O. Thompson and L.R. Doolittle in 
PHASE5: A Program for Calculating Binary Phase Diagrams (Cornell Research Foun
dation, Computer Graphic Service, 221 Asbury Rd., Ithaca, NY 14850), the composition-
dependent molar Gibbs free energies of all the phases of interest are calculated. Then, 
their minimal envelope is determined. That minimal envelope will be characterized, in 
general, by various maxima and minima separated by points of inflection. Straddling 
the leftmost point of inflection must lie the leftmost pair of equilibrium compositions. 
That pair is found by numerically searching for the common tangent nearest that point 
of inflection that lies below all other points on the minimal envelope. Then, working 
rightward, successive pairs of equilibrium compositions are found straddling successive 
points of inflection. 

(3.12) 
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The actual fraction of the system tha t is in the ß phase, / , need not be 
tha t given by the lever rule, and the actual compositions xa and x$ of those 
phases need not be those determined by Equations 3.11. When this is so, 
gtot will be greater than ^ o t , and the amount by which it is greater is a 
measure of the deviation of the system from equilibrium. 

Another way of looking at this is to note tha t if two phases are not in 
equilibrium with each other, then Equations 3.9 and 3.10 are, by definition, 
not satisfied. Then, either the chemical potential of a in a differs from tha t 
of a in /?, or the chemical potential of b in a differs from tha t of b in ß (or 
both) . Hence, there will be a driving force for a or b atoms (or both) to 
transfer between the a and ß phases, and the two phases could not have 
been in equilibrium with each other. 

3.2 Models of Solutions 
In Section 3.1, we discussed how, given dependences of the molar Gibbs 
free energies of two (or more) phases on composition, various quantities of 
experimental interest could be calculated. For example, the compositions 
of phases in equilibrium with each other can be calculated using the com
mon tangent construction, and the degree to which a mixture of phases 
at a given composition deviates from equilibrium is the difference between 
Equations 3.13 and 3.14. 

In this Section, we discuss how the molar Gibbs free energies of various 
phases depend on composition. This question has long occupied a promi
nent place in materials science and solid-state physics. Ultimately, rapid 
advances in theory and computational hardware may allow it to be an
swered by first-principles calculations. Indeed, in many cases it is already 
possible to predict the order of magnitude of alloy heats of formation.3 Ex
cept in a few model systems, however, such calculations are not yet accurate 
enough for quanti tat ive work. Therefore, it is common to describe experi
mentally determined composition dependences of the molar Gibbs free en
ergies of alloys by simple semi-empirical expressions. These expressions are 
usually algebraic, and contain parameters fit either to experimental da ta 
or, occasionally, to first-principles calculations. 

The various expressions currently in common use are summarized in 
Table 3.1. In discussing them, we will find it convenient to classify them 
according to the strength of the interaction between the two components. 
"Perfect" solutions are those in which the two components do not inter
act at all with each other, and are discussed in Subsection 3.2.1. "Ideal" 

3See, e.g., A.R. Miedema, P.F. de Chätel, and F.R. de Boer, "Cohesion in alloys -
fundamentals of a semi-empirical model," Physica 100B, 1 (1980). 
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Type of 
Solution 

Perfect 
Ideal 
Strictly 
Regular 

Quasi 
Regular 

Sub 
Regular 

*^mix 

0 
0 

Ωχ(1 — x) 

n h ( i -x ) 

^h,sym«E(J- — 

i ^ 'h ,asy yE 

-x) 
- 0 . 5)x(l -i£L 

^mix 

0 
^mix,ideal 

^mix,ideal 

^mix,ideal 
+Ω8χ(1 — x) 

^mix,ideal 

+ 0 s , a s y ( ^ - 0 . 5 ) x ( l -i£L 
Table 3.1: Molar enthalpies and entropies of mixing for various semi-empirical 
models of solutions. The ideal entropy of mixing, smix,ideal, is given by Equa
tion 3.24, and the molar Gibbs free energy of mixing is <7mix = hmix — Tsmix. Ω, 
Qh and i\ are regular solution parameters, as discussed in the text. 

solutions are those in which the two components interact with each other 
in the same way as they do among themselves, and are discussed in Sub
section 3.2.2. "Regular" solutions are those in which the two components 
interact differently with each other than they do among themselves, and 
are discussed in Subsection 3.2.3. 

3.2.1 "Perfect" Solutions 
We start , in this subsection, by considering alloy phases for which the two 
components do not interact at all with each other. Then, as we might 
expect, the molar Gibbs free energy of the solution phase is the average 
of the molar Gibbs free energies of the pure-component phases, weighted 
according to mole fraction. 

For example, for an ideal-gas mixture, ( a i _ x b x ) , of noninteracting monorrn 
components a and b , we have 

9 ( a i - W = ( l - z ) s ( a V a \ m ( z ) 5 ( b ) ( P ( b ) , T ) 
= (l-x)g^([l-x]p/r) + (x)g^(xp,T). (3.15) 

where we have made use of the proportionality between the partial pressures 
and mole fractions, p^ = (1 — x)p and p^ = xp, where p is the total 
pressure. If the pressure dependences of the molar Gibbs free energies are 
factored out through use of Equation 2.48, then we have the explicit form 
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+(*) 9ih)(Po,T) + lc^LTln(^) (3.16) 

For an ideal-gas mixture, ( a i - ^ b ^ ) , of noninteracting nonmonomeric 
components, the proportionality between the partial pressures and mole 
fractions is somewhat more complicated. For example, suppose component 
a is monomeric, but component b is dimeric. The total pressure is still the 
sum of the partial pressures, p = p^ + p(h2\ but the mole fractions are 

x = 
2p(h' n(a) 

p(a) _j_ 2p(b2) 

and the partial pressures are 

1-x 

l - x = p(a) + 2 p ( b 2 ) ' 

p^ = p ( b 2 , = 
x/2 

-,p-

(3.17) 

(3.18) 
1 - x/2' * 1 - x / 2 

Hence, the molar Gibbs free energy of the mixture becomes 

g(^-xbx) = (i _ x)g(*) Ua\T) + (x)g^h2) (p (ba),r) 

- <'-^(^-r)+<**iw(£M· 
(3.19) 

If the pressure dependences of the molar Gibbs free energies are factored 
out through use of Equation 2.48, then, just as in Equation 3.16, we have 
the explicit form 

( a i _ x b x ) 
= ( i -x){g{a)(Po, T) + U$nT]n 

+ (χ)Ι[9^\ρ0,Τ) + ΐφΆ
)Τ\η 

( i - s ) p ~ 
Po . 

(x /2)p 

Po 
}■ (3.20) 

Note tha t the translational heat capacity parameter for b dimers, c0*trl , is 

half tha t for b monomers, cj, t r a . 
To deduce the chemical potentials of a and b, we must begin with the 

total Gibbs free energy. For example, for monomeric components, we have 

G(ai-«b x) =N^-*h*)g^\pia\T) + N^1-xhx)gih\p{h\T), (3.21) 

where the partial pressure of a, p^ = (1 — x)p, is independent of the 
number of b atoms, Ν^Άι~χ , and the partial pressure of b, ρ^ = χρ, is 
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independent of the number of a atoms, N& x . From Equation 3.2, the 
chemical potentials of a and b in (ai-^b^) are then found to be 

o 

M(a!-.b,) = ^(b) (p(b)>T)=^(b)^r)+2c(b)ra ln 

( i - χ)ρ 
Po 

xp~\ 

.Po\ 
(3.22) 

where c0?tra = 5/2 for monomeric components, and we have identified the 
molar Gibbs free energies of the pure-component phases g^\p0,T) and 
g{h){Po,T) with μί*\ρ0,Τ) and μ£\Ρο,Τ), respectively. 

It can be seen that the chemical potentials of each component are pro
portional to simple logarithms ofthat component's partial pressure, and are 
independent of the presence or absence of the other component. It is impor
tant to note, though, that they can be indirectly dependent on the presence 
or absence of the other component if instead of considering the two partial 
pressures to be the independent variables, the total pressure and the mole 
fraction are considered to be the independent variables. Then, for a fixed 
total pressure, increasing the mole fraction increases the partial pressure of 
one component, but decreases the partial pressure of the other component, 
thereby changing both chemical potentials. 

3.2.2 "Ideal" Solutions 
In Subsection 3.2.1, we considered alloy phases for which the two compo
nents do not interact at all with each other. In this subsection, we consider 
alloy phases for which the two components do interact with each other. 
Then, the molar Gibbs free energies will not be the average of the molar 
Gibbs free energies of the pure-component phases, weighted according to 
mole fraction. For example, for a solid-phase solution (ai_xbx) of compo
nents a and b, we must write 

2< a i -* M = (1 - Χ)9{Ά} + (x)9{b) + ώ Γ Μ , (3-23) 

where g^-^x is the additional molar Gibbs free energy associated with 
the mixing. 

Such a molar Gibbs free energy of mixing will exist even if the two 
components interact with each other in the same way that they interact 
with themselves. At minimum, even if they are chemically identical, each 
component will, when confined to a condensed phase, exclude the other 
component from occupying the same atomic volume. Unlike the compo
nents of ideal gases, the components of condensed phases cannot, upon 
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mixing, occupy the same volume. Condensed-phase volumes are additive 
upon mixing, while vapor-phase volumes are not. Therefore, component 
a, previously confined to an initial volume V^\ is, upon mixing, free to 
diffuse into a larger volume V^ + V^. The partition function associ
ated with the mixing is the degeneracy of the system, i.e., the number of 
ways ΝΆ "a" atoms can position themselves on ΝΆ + JVb lattice sites, less 
overcounting for permutations among the (indistinguishable) "a" atoms: 
(ΝΆ + iVb)!/(iVa!iVb!). In the absence of a temperature dependence, the en
tropy is, from Equation 2.16, proportional to the logarithm of the partition 
function. Hence, using Stirling's approximation, 

NJNh\ J 

= AT ΙΛΓ [(N* + Nb)HN* + Nb)-Na\nNa-Nh\nNh} 
iVa + iVb 

= - i f e [ ( l - a : ) ln ( l -x )H-a ; lnx ] . (3.24) 

Equation 3.24 is the configurational entropy associated with the random 
mixing of two components into a condensed-phase. For an ideal condensed-
phase mixture, then, the molar Gibbs free energy of mixing is given by 

<?mix~xbx) = -Ts m i X | i d e a l . (3.25) 

Note that ln(x) and ln(l — x) are negative quantities, so that the entropy 
of mixing is positive. 

From Equations 3.3, 3.4, 3.23 and 3.24, the chemical potentials of a and 
b in (ai-^b^) are then found, after some algebra, to be 

μ[Άι-χ^\χ,Τ) = g{a)(T) + fcTln(l - x) 

^h
ai-xhx)(x,T) = g(h\T) + kT'ln(x). (3.26) 

Note that Equations 3.26, which apply to components in condensed phases, 
are quite similar to Equation 2.47, which applies to components in vapor 
phases. Physically, the reason is that in both cases the logarithmic parts of 
the chemical potentials arise from entropies of mixing, one due to mixing 
of a component into a condensed-phase lattice, the other due to mixing of 
a vapor into the vacuum. 

3.2.3 "Regular" Solutions 
In Subsection 3.2.2, we considered alloy phases for which the two compo
nents interact with each other, but in the same way that they interact with 

s mix,ideal — Na + Nh 
In 
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themselves. In this subsection, we consider the more usual case: condensed-
phase alloys for which the two components interact with each other substan
tially and differently from the way they interact among themselves. Then, 
the molar Gibbs free energy of mixing will contain contributions additional 
to that due to the ideal entropy of mixing. For these alloys, it is common 
to represent those additional contributions with semi-empirical formulas fit 
to experimental data. Usually, these are algebraic polynomials of the form4 

(a i_ x b x ) 
"mix 

-Tsm i x , i d e a i + x(l -x)[b + c(2x - 1) + d(2x - l ) 2 + · · ·] .(3.27) 

The x(l — x) factor in the second term on the right side of Equation 3.27 
guarantees that that term will vanish in the absence of mixing, i.e., for the 
pure-component phases at x = 0 and x = 1. The polynomial factor in 
that term consists of even and odd powers of 2x — 1 that are, respectively, 
symmetric and antisymmetric with respect to x = 0.5. In its most general 
form, the 6, c, and d coefficients in the expansion may also depend on 
temperature. 

Strictly and Quasi-Regular Solutions 

If only the first term (6) is nonzero, then Equation 3.27 reduces to what is 
known as the regular solution expression,5 

< f c e g X > = - r * m i x , i d e a l + Ω χ ( ΐ - x). (3 .28) 

For such a regular solution, the chemical potentials of a and b can then be 
deduced, again using Equations 3.3 and 3.4 (and again after some algebra), 
to be 

^£ai-*b*>(x,T) = g{a)(T) + ifeTln(l - x) + Ωχ2 

/ 4 a i - * M ( x , T ) = g(h\T) + kT\n(x) + n(l-x)2. (3.29) 

If, furthermore, the interaction parameter Ω is independent of tempera
ture, then Ωχ(1 — x) may be considered a mixing enthalpy, and the solution 
is sometimes called "strictly" regular. Physically, strictly regular solutions 
are those in which the two components are chemically only slightly dissimi
lar. Then, they will mix very nearly randomly, and the mixing entropy will 

4 0 . Redlich and A.T. Kister, "Algebraic representation of thermodynamic properties 
and the classification of solutions," Ind. Eng. Chem. 40, 345 (1948). 

5J .H. Hildebrand, J.M. Prasnitz and R.L. Scott, Regular and Related Solutions: The 
Solubility of Gases, Liquids, and Solids (Van Nostrand Reinhold, New York, 1970). 
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be very nearly the ideal entropy of mixing itself. In fact, for a truly ran
dom mixture, it is straightforward to calculate the composition-dependent 
probability that an atom of one component will be surrounded by various 
numbers of atoms of the other component. Then, if the atoms interact only 
with their nearest neighbors, Ω can be shown to be the difference between 
nearest-neighbor interactions between like (eaa + £bb) and unlike (sab) com
ponents, Ω = £ab — |(^aa + £bb)· Note, though, that atoms rarely interact 
only with their nearest neighbors, and so this simple interpretation of Ω can 
be at best qualitative. However, Ω is still a useful semi-empirical measure 
of the chemical "dissimilarity" between two components of an alloy. 

If, instead, the interaction parameter depends linearly on temperature, 
Ω = Ω^ — ΤΩθ, then the solution is sometimes called "quasi-regular," or 
"simple."6 The temperature-independent part of the Gibbs free energy 
of mixing can still be considered an enthalpy of mixing. However, the 
temperature-dependent part must now be considered an entropy of mixing 
over and above the ideal entropy of mixing, in part due to non-neglible 
deviations from randomness. 

If the interaction parameter depends nonlinearly on temperature, then 
the enthalpic and entropic contributions to the molar Gibbs free energy of 
mixing are difficult to distinguish. One way of doing so is to assume that 
the heat capacity of the solution deviates from the weighted average of the 
heat capacities of the pure-component phases predicted by what is known 
as the Neumann-Kopp rule. That deviation defines a "heat capacity of 
mixing," 

cP,mix = c^-b*Hx,T) - [(1 - *)c<a>(T) + (x)4b>(T)] , (3.30) 

which, in the regular solution approximation, would be written as 

cp,mix = x(T)x(l - x). (3.31) 

If χ(Τ) were independent of temperature, then the temperature-dependent 
entropy and enthalpy of mixing would be, by analogy to Equations 2.8 and 
2.9, 

*mix = [5mix(T0) + X l n (T /T 0 ) ]x ( l - a : ) (3.32) 
/ W = [ftmix(To) 4- X(T - T0)} x(l - x). (3.33) 

If, instead, χ(Τ) has the more general temperature dependence given by 
Equation 2.23, then the entropy and enthalpy of mixing take the more com
plicated forms given by Equations 2.24 and 2.25. Notice that the entropies 
and enthalpies of mixing may both be negative or positive, depending on 
the sign of the heat capacity of mixing. 

E.A. Guggenheim, Thermodynamics (North-Holland, Amsterdam, 1959). 
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Sub-Regular Solutions 

Finally, return to Equation 3.27, if the first two terms (b and c) are nonzero, 
then that equation reduces to what is known as the sub-regular solution 
expression,7 

i f e u t l g = Ph , sym - T t t s , s y m ) + (X - 0.5)(t th , a s y - Tfi s > a s y)] X(l - x). 
(3.34) 

This equation is also sometimes referred to as Margules' equation. It is 
the simplest expression for which the interaction parameter depends on 
composition. Physically, such a composition dependence might arise if the 
two components had different atomic sizes, if that size mismatch led to 
long-range elastic strains in the mixture, and if those strains were the dom
inant contribution to the heat of mixing. Then, if the elastic properties of 
the mixture were a weighted average of the elastic properties of the pure-
component phases, the interaction parameter would itself be expected to 
be a weighted average of the pure-component interaction parameters.8 

3.3 A Nearly Ideal Solution: SiGe 
In Section 3.2, we discussed the various commonly used semi-empirical ex
pressions for the composition dependences of the molar Gibbs free energies 
of alloy phases. In this and the next Section, we illustrate that discussion 
through two detailed case studies of the thermodynamic equilibria between 
the various alloy phases based on Si and Ge and on Ga and As. 

We begin, in this Section, with Si and Ge alloys. In particular, we 
consider the equilibria between the (monomeric) (Sii_xGex) vapor phase, 
the {Sii-^Ge^} liquid phase, and the (Sii-^Ge^) crystal phase. We will 
start, in Subsection 3.3.1, by discussing the composition and temperature-
dependent molar Gibbs free energy functions of these phases. Then, in 
Subsection 3.3.2, we discuss the x-T phase diagrams deduced from these 
molar Gibbs free energy functions using the common tangent construction. 
Finally, in Subsection 3.3.2, we discuss x-p phase diagrams deduced in a 
similar way, and use them to understand the kinetic competition between 
condensation and sublimation of SiGe alloys. 

7H.K. Hardy, "A 'sub-regular' solution model and its application to some binary alloy 
systems," Acta Met. 1, 202 (1953). 

8A.W. Lawson, "On simple binary solid solutions," J. Chem. Phys. 15, 831 (1947). 
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3.3.1 Free Energies 
Let us start by estimating the composition, pressure, and temperature 
dependences of the molar Gibbs free energies of the (Sii-^Ge^) vapor, 
{Sii_xGex} liquid, and (Sii_xGex) crystal alloy phases of Si and Ge. 

The (Sii_xGex) vapor phase is just a mixture of two ideal gases, and 
hence can be considered to be a "perfect" solution. Therefore, its molar 
Gibbs free energy is the weighted sum of the molar Gibbs free energies of 
the pure-component vapors: 

g^-*G°*\x,p,T) = (1 - x)g™ ((1 - x)p,T) + (x)g^ (χρ,Τ). (3.35) 

In this expression, the molar Gibbs free energies of the pure-component 
vapor phases can be taken to be those calculated in Chapter 2. 

The {Sii-zGe^} liquid and (Sii-^Gez) crystal phases are somewhat 
more complicated. From the "shapes" of the experimentally measured 
boundaries between those phases, it has long been known9 that both phases 
are nearly, but not quite, ideal. To describe their small degree of nonide-
ality, it is common to use a strictly regular solution model for their molar 
Gibbs free energies of mixing, so that 

0{Sii-.Ge,} ( a . )T) = ( l - X ) ^ } ( T ) + (x )^ G e >(T) -T 5 m i x , i d e a l 

+ tt{Sil-*Ge*}:r(l-x) (3.36) 
0 < S i i - . G e . > ( a . > T ) = (l-X)^Si>c(T) + ( x ) ^ G e > c ( T ) _ r e m i X ) i d ^ 

+ n{Sil-*Ge*)x(l-x). (3.37) 
In fact, experimental data have thus far not been sufficient to deter

mine uniquely both of the regular solution interaction parameters. There
fore, here we use the crystal interaction parameter estimated from ab initio 
calculations,10 ft(Sii-*Gex) = Q 0 4 5 e v / a t o m . Then, a value for the liquid 
interaction parameter of ^^Sl l-xGea;^ = 0.069 eV/atom is found to fit the 
experimental liquid-solid phase diagram quite accurately,11 as illustrated 
in the left half of Figure 3.3. Note that these interaction parameters are 
comparable to thermal energies at rather modest (« 300°C) temperatures, 
and hence are quite small. 

9 C D . Thurmond, "Equilibrium thermochemistry of solid and liquid alloys of germa
nium and of silicon. I. The solubility of Ge and Si in elements of Groups III, IV and V," 
J. Phys. Chem. 57 827 (1953). 

10 A. Qteish and R. Resta, "Thermodynamic properties of Si-Ge alloys," Phys. Rev. 
B37, 6983 (1988). We neglect the slight dependence of the interaction parameter on 
composition and temperature found in those calculations. 

11These values are numerically very nearly those ( Ω ' δ ΐ 1 - χ x ' = 0.067 eV/atom 
and Q(s'li-xGe*) = 0.037 eV/atom) found empirically in R.W. Olesinski and G.J. Ab-
baschian, "The Ge-Si (germanium-silicon) system," Bull. Alloy Phase Diagrams 5, 180 
(1984). 
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3.3.2 Phase Equilibria 
In Subsection 3.3.1, we estimated the composition, pressure, and temper
ature dependences of the molar Gibbs free energies of the various alloy 
phases of Si and Ge. From these molar Gibbs free energies, we can calcu
late, using the common tangent rule, which phase or combination of phases 
minimizes the total Gibbs free energy (and hence represents the equilib
rium configuration of the system) for a given overall system composition. 
Usually, if a particular combination of phases minimizes the total Gibbs 
free energy at one overall system composition, it will also do so within a 
range of overall system compositions. Of special interest then are the crit
ical compositions tha t separate the compositions for which one or another 
combination of phases is the equilibrium configuration of the system. Like 
the molar Gibbs free energies, those critical compositions change with tem
perature and pressure, thereby defining "phase boundaries" in x-T-p space. 
For ease of presentation, it is usually convenient to illustrate those bound
aries on x-T phase diagrams at fixed p, or on x-p phase diagrams at fixed 
T. 

In this subsection, we consider x-T phase diagrams at fixed p. Fig
ures 3.3 and 3.4 illustrate such phase diagrams at fixed pressures ranging 
from 10° Torr to 1 0 - 9 Torr. To make the derivation of the diagrams more 
concrete, we also show the molar Gibbs free energies of the three phases of 
interest at 1600 K and 1300 K, and the common tangents at those temper
atures. 

At the highest pressure, 10° Torr, there are three distinct regions in 
which, at equilibrium, the system contains only one phase (vapor, liquid, 
or crystal). At high temperatures the vapor is stablest, at intermediate 
temperatures the liquid is stablest, and at low temperatures the crystal is 
stablest. 

Between these one-phase regions lie two regions in which, at equilib
rium, the system contains two phases (liquid plus vapor and crystal plus 
liquid). In these two-phase regions, the molar Gibbs free energies of none 
of the phases lie completely below the others. Instead, the molar Gibbs free 
energies of two of the phases intersect. When this is the case, there will 
always be a range of compositions around tha t intersection within which 
the molar Gibbs free energy is minimized if the two phases coexist. Tha t 
range is bounded by the critical compositions given by the common tangent 
construction described algebraically by Equations 3.11. Two of the critical 
composition boundaries have special names: tha t dividing the pure liquid 
from the two-phase liquid plus crystal region is called the liquidus, and tha t 
dividing the pure crystal from the two-phase liquid plus crystal region is 
called the solidus. 
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Figure 3.3: x-T phase diagrams for Sii_xGex at pressures of 10° Torr (left) 
and 10~3 Torr (right). Above and below each phase diagram are also shown the 
molar Gibbs free energies of the various phases at 1600 K and 1300 K, their com
mon tangents, and the critical compositions (open circles) determined by those 
common tangents. The solid circles in the left diagram represent experimental 
measurements.0 

a H . Storh and W. Klemm, "Über zweistoff Systeme mit germanium. I." Z. Anotr. 
Chem. 241 , 305 (1939); and F.X. Hassion, A.J. Goss and F.A. Trumbore, "On the 
germanium-silicon phase diagram," J. Phys. Chem. 59, 1118 (1955). 

At all pressures, there is also a two-phase crystal plus crystal region at 
very low temperatures . The reason is tha t at low enough temperatures , 
the contribution of the entropy of mixing to the molar Gibbs free energy 
of mixing [Equation 3.28] becomes negligible. Then, a positive interaction 
parameter causes the molar Gibbs free energy of mixing of the crystalline 
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Figure 3.4: x-T phase diagrams for Sii_xGex at pressures of 1 0 - 6 Torr (left) 
and 10~9 Torr (right). Above and below each phase diagram are also shown 
the molar Gibbs free energies of the various phases at 1600 K and 1300 K, their 
common tangents, and the critical compositions (open circles) determined by 
those common tangents. 

solid to bow upward at intermediate compositions. The molar Gibbs free 
energy will then be minimized if the crystal decomposes into two crystals (c' 
and c") of different compositions. At higher temperatures , the contribution 
of the entropy of mixing outweighs tha t of the mixing enthalpy, causing the 
molar Gibbs free energy of mixing to bow downward, and this "miscibility" 
gap vanishes. The critical tempera ture at which the miscibility gap vanishes 
therefore occurs when d2gmix/dx2 = 0, or when 

T — 
2k' 

(3.38) 
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For an estimated interaction parameter of fj(Sli-xGex) _ 0.045 eV/a tom, 
the miscibility temperature is approximately 261 K. Note, though, tha t the 
phase separation would be extremely slow and difficult to observe at those 
temperatures, due to the sluggishness of solid-state diffusion. 

As the pressure decreases, the vapor becomes increasingly stable relative 
to the liquid and crystal. Consider the top panels of Figures 3.3 and 3.4, 
which show the molar Gibbs free energies of the various phases at 1600 K. 
At 10° Torr the molar Gibbs free energy of the vapor is so high tha t it is off 
the scale of the figure. At 10~3 Torr it has moved downward far enough to 
intersect the molar Gibbs free energies of the crystal; a two-phase vapor plus 
crystal region then opens up at compositions straddling tha t intersection. 
At 1 0 - 6 Torr it lies well below the molar Gibbs free energies of the crystal 
and the liquid, so tha t only the vapor phase is stable. Finally, at 1 0 - 9 Torr, 
it has moved so low tha t it is again off the scale of the figure. 

A similar behavior can be seen in the bo t tom panels of Figures 3.3 
and 3.4, which show the molar Gibbs free energies of the various phases at 
1300 K. At this temperature , the molar Gibbs free energies of the vapor are 
all higher than they were at 1600 K, both absolutely, and relative to the 
molar Gibbs free energies of the crystal and liquid. Only at 10~6 Torr has 
it decreased enough to intersect the molar Gibbs free energy of the crystal, 
and by 1 0 - 9 Torr although it lies well below the molar Gibbs free energies 
of the crystal, it is still visible on the scale of the figure. 

The consequence of this increasing stability of the vapor at lower pres
sures is tha t the vapor-phase regions in the x-T diagrams move downward in 
temperature with decreasing pressure, impinging first on the liquid-phase 
regions, and then on the crystalline-phase regions. In fact, at pressures 
below 1 0 - 6 Torr, as shown in Figure 3.4, the liquid-phase regions vanish 
entirely. Then, as the temperature of the system is raised or lowered, crys
tal sublimes directly into vapor,1 2 and vapor condenses directly into crystal, 
bypassing the liquid phase. 

3.3.3 Condensation and Sublimation 
In Subsection 3.3.2, we discussed x-T phase diagrams at fixed p in the SiGe 
alloy system. There, we found tha t , at low enough pressures, the liquid 
phase is absent entirely from the phase diagram: crystal sublimes directly 
into vapor, and vapor condenses directly into crystal. In this subsection, we 

12 A sampling of the vapor (e.g., through a small orifice in an effusion cell) under such 
"Knudsen" conditions is a classic method for indirectly measuring the thermodynamic 
properties of condensed phases. The method depends on the thermodynamic properties 
of the vapor being well understood, and on the vapor and condensed phases being truly 
in equilibrium with each other. 
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Figure 3.5: x-p phase diagrams for Sii_a;Gex at temperatures of 1300 K (left) 
and 1600 K (right). On the left diagram, the open circles correspond to stable 
(A and B) and unstable (C and D) vapors at various pressures. The filled circles 
indicate the compositions of the crystals that would condense from those vapors, 
and the compositions and pressures of the vapors that would then sublime from 
those crystals. 

examine these sublimation and condensation processes in more detail. To 
do so, let us consider the x-p diagrams at fixed T illustrated in Figure 3.5. 
In particular, consider a system at a tempera ture of 1300 K, so tha t the 
phase diagram on the left of Figure 3.5 applies. 

First suppose the system to be composed of vapor at a composition and 
pressure corresponding to the point labeled A in tha t Figure. Since tha t 
point lies clearly in the one-phase vapor region, the vapor is stable with 
respect to the crystal. 

Now suppose we increase the pressure of the vapor, so tha t the vapor 
has a composition and pressure corresponding to the point labeled B in 
Figure 3.5. The system is now just on the boundary of the two-phase 
crystal plus vapor region. The vapor can now coexist with crystal. However, 
if the crystal is to neither grow nor shrink at the expense of the vapor, 
its composition and pressure would have to correspond to a point on the 
leftmost boundary of the two-phase region. In other words, the composition 
of the crystal would not be the same as tha t of the vapor, but would instead 
be much more Si-rich. 

Now suppose we increase the pressure even further, so tha t the vapor 
has a composition and pressure corresponding to the point labeled C in 
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Figure 3.5. Since the system is now clearly in a two-phase crystal plus va
por region, the pure vapor is unstable with respect to decomposition into a 
mixture of crystal and vapor, and the system would not be in equilibrium. 
To understand how this decomposition will actually occur, it is helpful to 
adopt a kinetic point of view, in which the equilibrium between crystal and 
vapor is considered to be a balance between simultaneous, independent pro
cesses of condensation and sublimation. At equilibrium, condensation and 
sublimation are balanced; but away from equilibrium, they are imbalanced, 
and net condensation or sublimation occurs. 

That view is illustrated in Figure 3.6, which also shows an expanded 
(and linearized) portion of the x-p diagram around point C of Figure 3.5. 
In a sense, decomposition of vapor into crystal plus vapor can be thought 
of as occurring by sequential condensation and sublimation. First, vapor 
condenses out into crystal. If the sticking coefficients are unity for both 
species, as they are for Si and Ge, then the composition of the crystal will 
initially be (nearly) the same as that of the vapor.13 Then, the crystal 
sublimes partially back into vapor. Because of the higher vapor pressure of 
Ge, the vapor that sublimes will be Ge rich, and so the crystal left behind 
will be Ge poor. The steady-state composition of the net condensing crystal 
is therefore determined by a competition between congruent condensation 
of vapor and incongruent sublimation of crystal. 

If we denote the compositions and pressures of the incoming (condens
ing) and outgoing (subliming) vapors as x\n, pm, x j u t , andp o u t , respectively, 
and denote the steady-state composition of the growing crystal as xc, then 
that competition can be written mathematically as 

^ΓηΡίη - ^outPout = Χ°(ρ\η ~ Pout) · (3 .39) 

The left side of the equation is proportional to the net rate at which Ge 
atoms are transferred from the vapor to the crystal, i.e., the condensation 
rate minus the sublimation rate. The right side of the equation is pro
portional to the net rate at which the crystal grows, weighted by the Ge 
fraction in the crystal. In the limit xc —> 0, so that pure Si is condens
ing, this equation states that x\nP\n = ^outiW? i-e-, Ge condensation just 
balances Ge sublimation. 

Note that there is only one "unknown" in this equation: the sublimation 
pressure, pout- Given pouto the phase diagram determines uniquely the 
compositions, xc and x j u t , of the crystal and vapor that are in equilibrium 
with each other. Therefore, the problem is to find the sublimation pressure 
that self-consistently satisfies Equation 3.39, or its slightly more convenient 

1 3In this semi-quantitative treatment, we neglect the mass (and hence composition) 
dependence of the conversion factor between pressure and incident flux. 
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Figure 3.6: Kinetic (and expanded) view of the decomposition, depicted in Fig
ure 3.5, of vapor (point C) into Si-rich crystal (point C ) and Ge-rich vapor (point 
C"). 

form, 
Pout 

Pin 
(3.40) 

An example of such a self-consistent solution is shown graphically on the 
right side of Figure 3.6. As pout decreases, the left side of Equation 3.40 
decreases. At the same time, #out, ^ n e equilibrium composition of the vapor 
at Pout > approaches x^n, so the right side of Equation 3.40 increases. At the 
Pout shown in Figure 3.6, Equation 3.40 just balances, and the compositions 
of the growing crystal and the subliming vapor are given by the points C' 
and C". 

For a vapor initially at the composition and pressure corresponding to 
point C in Figures 3.5 and 3.6, then, the growing crystal is much more Si rich 
than the condensing vapor itself. However, as the ambient pressure of the 
vapor increases through the sequence of points B, C, and D on Figure 3.5, 
the composition of the growing crystal approaches increasingly closely tha t 
of the condensing vapor. The reason is tha t pQut becomes increasingly 
neglible compared to pm, and the left side of Equation 3.40 approaches 
zero. Then, xc must approach χ^η, and the transformation from vapor to 
crystal becomes increasingly "congruent.'1 In practice, MBE of Si and Ge 
nearly always occurs under those conditions. 
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3.4 A Stoichiometric Compound: GaAs 
In Section 3.3, we presented a detailed case study of alloy phases based on 
Si and Ge. In tha t case, there were only three phases of interest, vapor, 
liquid and crystal, all of which are continuous solutions throughout the 
entire composition range. 

In this Section, we present a detailed case study of the thermodynamic 
equilibria between the various alloy phases based on Ga and As. In particu
lar, we consider five phases: the { G a i _ x A s x } liquid phase, the (Gai -xAs^) 
vapor phase, the ( G a i _ x A s x ) 7 nearly pure-Ga orthorhombic crystalline 
phase, the (Ga i_ x As : c ) a nearly pure-As rhombohedral crystalline phase, 
and the (Gai_xAs : E) c nearly stoichiometric zincblende-structure compound 
phase.1 4 

Note tha t , unlike in the Si-Ge system, in the Ga-As system only the 
vapor and liquid phases form continuous solutions throughout the entire 
composition range. For the crystalline phases we must consider not just 
one, but three phases. The reason is tha t orthorhombic crystalline Ga and 
rhombohedral crystalline As have different lattice structures and symme
tries. Since the two structures are inequivalent, and cannot be transformed 
one into the other by changing composition, the two phases must be consid
ered distinct. In fact, Ga is only very slightly soluble in crystalline As, and 
As is only very slightly soluble in crystalline Ga. Instead, when "forced" to 
mix, Ga and As form a nearly stoichiometric compound crystalline phase. 
This phase has yet another lattice structure and symmetry, and hence must 
be considered yet another distinct phase. 

We will s tart , in Subsection 3.4.1, by discussing the composition, pres
sure and temperature-dependent molar Gibbs free energy functions of these 
five phases. Then, in Subsection 3.4.2, we discuss the x-T phase diagrams 
deduced from these free energy functions using the common tangent con
struction. In Subsection 3.4.3, we use both x-T as well as x-p diagrams to 
define an "MBE window," the window in temperature and As-overpressure 
within which the stoichiometric compound coexists solely with the vapor, 
and not with any other unwanted phase. Then, in Subsection 3.4.4, we use 
p-T diagrams to understand what is known as the congruent sublimation 
temperature , below which the stoichiometric GaAs compound sublimes di
rectly into the vapor, bypassing the liquid. Finally, in Subsection 3.4.5, we 

14 Vapor-solid-liquid equilibria in ternary III-III-V or III-V-V alloys, such as AlGaAs or 
InAsSb, are somewhat more difficult to treat; see, e.g., R. Heckingbottom, "Thermody-
namic aspects of molecular beam epitaxy: high temperature growth in the GaAs/GaAlAs 
System," J. Vac. Sei. Technol. B 3 , 572 (1985), and H. Seki and A. Koukitu, "Thermo-
dynamic analysis of molecular beam epitaxy of III-V semiconductors," J. Cryst. Growth 
78, 342 (1986). 
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discuss in more detail the vapor pressures of Ga and As2 over the various 
condensed phases and phase mixtures, both above and below the congruent 
sublimation temperature . 

3.4.1 Free Energies 
Let us begin, in this subsection, by asking what the thermodynamic prop
erties of these five phases are. Just as we did for the Si-Ge system, here we 
follow the usual prescription of characterizing the thermodynamic proper
ties of the various phases first at their end point compositions, and then at 
intermediate compositions. 

E n d P o i n t C o m p o s i t i o n s 

At its end point composition, the zincblende phase is the exactly stoichio-
metric (Gao.sAso.s^ compound. At their end point compositions, the va
por, liquid, and rhombohedral and orthorhombic crystalline phases become 
the three phases of pure Ga [(Ga), {Ga}, and (Ga)7] and the three phases 
of pure As [ ( | A s 2 ) , {As}, and (As) a ] . 

Note tha t for the Ga vapor phase, we consider only the most significant 
species: monomeric Ga. For the As vapor phase, however, we consider only 
the second most significant species: dimeric As. Although tetrameric As 
should, at commonly encountered MBE temperatures , be much more abun
dant than dimeric As in equilibrium, in fact As is found experimentally to 
sublime preferentially as dimeric As from GaAs surfaces under normal MBE 
conditions.1 5 Therefore, dimeric and tetrameric As are not in equilibrium 
with each other during GaAs MBE, and we cannot t reat the vapor phase 
as if it were composed mainly of tetrameric As. Instead, we consider here 
the opposite extreme, in which tetrameric As is absent entirely. 

Note tha t such "constrained" equilibria can only be an approximate 
description of GaAs MBE. It will, e.g., describe GaAs MBE in which the 
As source is tetrameric only to the extent tha t the tempera ture dependence 
of the incorporation rate of incident AS4 into growing GaAs is similar to 
tha t of incident As2- In fact, this approximation is not a bad one. The 
incorporation rates of both species depend mainly on Ga surface coverage, 
and their saturated (high Ga surface coverage) incorporation rates differ by 
at most a factor of two.1 6 

15 An upper bound of 1% has been placed on the As,j to As2 ratio in vapors sublimed 
from GaAs; see, e.g., C.T. Foxon, J.A. Harvey and B.A. Joyce, "The evaporation of GaAs 
under equilibrium and nonequilibrium conditions using a modulated beam technique," 
J. Phys. Chem. Solids 34, 1693 (1973). 

1 6C.T. Foxon and B.A. Joyce, "Interaction kinetics of AS4 and Ga on {100} GaAs 
surfaces using a modulated molecular beam technique," Surf. Sei. 50, 434 (1975); and 
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Phase 

(Ga)7 

{Ga} 
(Ga0.5Aso.5)c 

(As)a 

{As} 

θ τ 

(K) 
66 
66 
82.6 
84 
84 

Co 

(meV/(at-K)) 
0.276 
0.276 
0.250 
0.257 
0.257 

C\ 
(10-5meV/(atomK2)) 
0.00 
0.00 
4.22 
4.23 
4.23 

Table 3.2: Heat capacity parameters for the condensed phases of Ga and As at 
their end point compositions. 

Such constrained equilibria will also describe GaAs MBE only in the 
absence of other condensed phases tha t might "catalyze" the formation 
of AS4.17 Therefore, a general t reatment of phase equilibria during GaAs 
MBE would need to include tetrameric As as a constituent of the vapor 
phase in the presence of these other condensed phases, but exclude them 
(as we do here) in their absence. 

To estimate the thermodynamic properties of these seven phases, we fol
low the procedure outlined in Chapter 2. Each phase is characterized both 
by a temperature-dependent heat capacity, and by enthalpy and entropy 
offsets at particular temperatures . 

For the condensed phases, the heat capacities can be described by our 
s tandard form [Equation 2.23], using the parameters listed in Table 3.2. 
For (Ga) 7 and {Ga} the parameters are an approximate combined fit to 
experimental values for both phases from 40 K to 302.92 K1 8 and from 
302.92 K to 2476 K.19 For (As) a and {As} the parameters are an approx
imate combined fit to experimental values for both phases from 57.2 K to 
291 K2 0 and from 298.15 K to 1200 K.2 1 For (Ga0.5Aso.5)c, the parameters 

C.T. Foxon and B.A. Joyce, "Interaction kinetics of AS2 and Ga on {100} GaAs surfaces," 
Surf. Sei. 64, 293 (1977). 

17Bulk (As)a is known to sublime preferentially as AS4; ( G a i _ x A s x ) a epitaxially 
oriented to a (Gao.5Aso.s)c substrate may or may not sublime preferentially as AS4. 

1 8Y.S. Touloukian and E.H. Buyco, Thermophysical Properties of Matter Vol. 4, Spe
cific Heat of Metallic Elements and Alloys (IFI/Plenum, New York, 1970). 

1 9M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald and 
A.N. Syverud, JANAF Thermochemical Tables, 3rd Ed., Part II, Cr-Zr, J. Phys. Chem. 
Ref. Data 14, Suppl. No. 1 (1985), p. 1204. 

2 0Y.S. Touloukian and E.H. Buyco, Thermophysical Properties of Matter, Vol. 4> 
Specific Heat of Metallic Elements and Alloys (IFI/Plenum, New York, 1970). 

2 1R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley and D.D. Wagman, 
Selected Values of the Thermodynamic Properties of the Elements (American Society 
for Metals, Metals Park, Ohio, 1973), pp. 204-209. 
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Phase 

(Ga) 
gAs2) 

®T,tra C0,tra 
(K) 

0.125 (p/760Torr)U4 5k/2 
0.079 (p/760 Torr)0 4 5k/4 

@T,rot co,rot 
(K) 

0 
0.144 k/2 

©T,vib C0,vib 
(K) 

0 
618 k/2 

Table 3.3: Heat capacity parameters for the vapor phases (Ga) and (|As2). 

are a fit to experimental values from 4 K to 1500 K.22 In all cases, the 
usual caveat applies — the heat capacities of nonequilibrium phases (e.g., 
crystals above their melting temperatures or liquids below their freezing 
temperatures) are estimates only. 

For the vapor phases, the translational, rotational, and vibrational con
tributions to the heat capacities can be described by Equations 2.31, 2.35 
and 2.39, using the parameters listed in Table 3.3. The parameters for 
As2 are based on a bond length of 2.104 Äand a ground-electronic-state 
vibrational stretching frequency of 429.55 c m - 1 . 2 3 The electronic contri
butions can be described by Equations 2.34 and 2.20, using the energies and 
degeneracies listed in Table 3.4. As always, care must be taken to halve 
thermodynamic quantities having to do with dimers, in order for their units 
to be per atom ra ther than per dimer. 

For all the phases, we use the enthalpy and entropy offsets listed in 
Table 3.5. Most of the values are those recommended by Tmar and co-
workers.24 Some, though, have been modified slightly according to the 
methods used in the Si-Ge system discussed in Chapter 2. The principal 
modification is to the enthalpy of formation of ( | AS2). We find tha t it must 
be approximately 3% lower than Tmar ' s value in order for the congruent 
sublimation tempera ture of GaAs, described later in this section, to agree 
with its approximate experimental value of 898 K. 

I n t e r m e d i a t e C o m p o s i t i o n s 

Just as it was in the Si-Ge system, in the Ga-As system the vapor phase is 
just a mixture of two ideal gases, and hence can be considered a "perfect" 
solution. However, in this system the vapor phase is somewhat more com
plicated, as we assume tha t it is composed of monomeric Ga and dimeric 

2 2 J.S. Blakemore, "Semiconducting and other major properties of gallium arsenide," 
J. Appi Phys. 53, R123 (1982). 

2 3S.N. Suchard and J.E. Melzer, Eds., Spectroscopic Data Vol. 2: Homonuclear Di
atomic Molecules (IFI/Plenum, New York, 1976), p. 43. 

2 4 M. Tmar, A. Gabriel, C. Chatillon, and I. Ansara, "Critical analysis and optimiza
tion of the thermodynamic properties and phase diagrams of the III-V compounds. II. 
The Ga-As and In-As systems," J. Cryst. Growth 69, 421 (1984). 
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Molecule 

Ga 

As2 

Level 
( ( 2 S + l ) L j ) 

3 P l / 2 

^3 /2 
2s1/2 

3Σ+ 

Degeneracy 
(^z,ele) 

2 
4 
2 
3 
3 

Relative energy 
(eV) 

0 
0.102 
3.07 

0 
1.81 

Table 3.4: 
and As2. 

Energies and degeneracies of the lowest lying electronic levels of Ga 

As. Therefore, its molar Gibbs free energy is tha t given by Equation 3.20: 

(Gai_ x Asa ; ) 

(1 -*){ 5 Po } 
+ (x) {9^(Po,T) + I c ^ T l n ψΐ^] } . (3.41) 

Exactly at their end point compositions (x = 0 for (Gai_ x As i C ) 7 , x = 1 
for ( G a i - ^ A s ^ a , and x — 0.5 for ( G a i _ x A s x ) c ) , the molar Gibbs free 
energies of the three crystalline phases can be readily calculated from the 
parameters in Tables 3.2, 3.3, 3.4 and 3.5. Away from those end point 
compositions, however, the molar Gibbs free energies increase extremely 
rapidly — in other words, compositional "defects" in these three phases 
are energetically quite costly. Therefore, we will t reat these three phases, 
as illustrated in Figures 3.7 and 3.8, as if their Gibbs free energies rise so 
steeply tha t their compositions are essentially "pinned" at those end point 
compositions. 

Finally, from the shape of the experimental liquidus boundary dividing 
{ G a i _ x A s x } from a two-phase mixture of { G a i _ x A s x } and (Gai_a rAs: c)c , 
the { G a i _ x A s x } liquid has long been known to be fairly well represented 
by a quasi-regular (or "simple") solution model.2 5 More recent analyses in
dicate tha t a sub-regular solution model improves the representation some
what, especially in the extremely As-rich portion of the phase diagram.2 6 

For our purposes, then, we assume such a sub-regular solution model, 

{Ga!_zAsx} 

2 5M.B. Panish, "A thermodynamic evaluation of the simple solution treatment of the 
Ga-P, In-P and Ga-As systems," J. Cryst. Growth 27, 6 (1974). 

2 6A.E. Schultz, The relationship between (gallium, indium) arsenic and its melt for 
the bulk and thin film cases, Ph.D Thesis (U. of Wisconsin-Madison, 1988). 
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Phase 

(Ga)7 

{Ga} 
(Ga) 

(Ga0.5As0.5)c 
(As) a 

{As} 
(^As2) 

± O 

(K) 
298 

302.9 
0 

298 
298 
1090 

0 

h(T0) 
(eV/at) 

0 
/i<Ga>^ + 0.0578 

ft<Ga>^ + 2.70 
-0.424 

0 
^(As)« + 0.2533 
^(As)« + 0.952 

T 
-L O 

(K) 
0 

302.9 
0 
0 
0 

1090 
0 

s(To) 
(eV/(at-K)) 

0 
5<GaK + 0.0578/302.9 

0 
0 
0 

5<As)« + 0.2533/1090 
0 

T a b l e 3 .5 : s and h offsets for the various phases of G a and As. 

(1 _ x ) f l {Ga> + W 5 { A s } _ T s m . x . d e a l 

+ x(i - *)(* -1) (nj^-*-» - raj^-^). (3.42) 

Following Brebrick,27 we note that of the four interaction parameters 
(two symmetric and two antisymmetric), only one may be chosen freely 
to fit the "shape" of the phase boundaries to experimental data. The 
other three are then determined by the known enthalpy (Ahm) and entropy 
(Asm — Ahm/Tm) of fusion of the zincblende compound, and by the known 
eutectic temperature (Te = 1079 K) and composition (xe = 0.976) at which 
the As-rich liquid coexists in equilibrium with the zincblende compound 
and As-rich solid: 

£Q{Gai_ x As x } 
4 h,sym 

,(Gao,5As0.5)c + A/lm-o.5f4Ga>+4As}) 
1 /0{Gai_xAsx} _ T QJGa^ .As .A _ 
^ \^h,sym im"s,syra J ~ 

fl(Ga0.5ASo.5>c + T m S m i x idea l( ().5) - 0.5 [ 5 ^ a } + g{£s}] (3.43) 

0{Gai_xAsx} _ T 0{Ga!_xAsx} 
^h,asy ^e^s^sy xe(l -xe)(xe - - ) = 

2(l-xe)g^^^+2{xe-^ V A s > ° (3.44) 

2 7 R.F . Brebrick, "Quantitative fits to the liquidus line and high temperature thermo-
dynamic data for InSb, GaSb, InAs and GaAs," Met. Trans. 8A, 403 (1977). 
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0{Gai_xAsx} 0{Gai_xAsx} 0{Gai_xAsx} 0{Ga1_xAsxj 
^h,sym "s,sym ^h,asy "s,asy 

(eV/atom) (meV/(a tomK)) (eV/a tom) (meV/(a tomK)) 
0.031 0 2 7 -0.011 0 

Table 3.6: Mixing enthalpies and entropies for liquid {Gai_xAsx}. 

" [Ω&-Α"} " ΤβΩ^-Α->] xe(l - xe) 
+ ^e5mix,ideal(^e) ~ ( ^ e ) ^ + (X ~ Xe)dT^ · (3Λ5) 

The values found for the four interaction parameters are listed in Ta
ble 3.6. It was not found necessary to invoke a nonzero i2s,asy~x in order 
to reproduce the experimentally measured liquidus boundaries dividing the 
one-phase liquid from the two-phase liquid plus solid regions, as can be seen 
in the left side of Figure 3.7. 

From these molar Gibbs free energies, we can now calculate, using the 
common tangent construction, which phase or combination of phases min
imizes the total Gibbs free energy (and hence represents the equilibrium 
configuration of the system) for a given overall system composition, pres
sure and temperature . As is customary, we will illustrate the resulting 
phase diagrams as x-T cuts at fixed p, as x-p cuts at fixed T, and as p-T 
cuts at fixed x.2 8 

3.4.2 Phase Equilibria 
In Subsection 3.4.1, we estimated the composition, pressure, and tempera
ture dependences of the molar Gibbs free energies of the various alloy phases 
of Ga and As. In this subsection, we discuss the x-T phase diagrams tha t 
are deduced from those free energy functions using the common tangent 
construction. For example, Figures 3.7 and 3.8 illustrate x-T phase dia
grams at four fixed pressures ranging from 1.5 x 103 Torr to 1 0 - 9 Torr. To 
make the derivation of the diagrams more concrete, we also show the molar 
Gibbs free energies of the five phases of interest at 1000 K and 850 K, and 
the common tangents at those temperatures . 

At the highest pressure, 1.5 x 103 Torr, there should, for each of the five 
phases, be a distinct region in which, at equilibrium, the system contains 
only tha t phase ( (Ga i -^As^) , { G a i _ x A s x } , ( G a i _ x A s x ) c , ( G a i ^ A s ^ a or 
( G a i _ x A s x ) 7 ) . As expected, the ( G a i _ x A s x ) phase can be seen in Fig
ure 3.7 at the highest temperatures , and the { G a i ^ A s ^ } phase can be 

28J. van den Boomgaard and K. Schol, "The p-T-x phase diagrams of the systems 
In-As, Ga-As and In-P," Philips Res. Rep. 12, 127 (1957). 
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Figure 3.7: x-T phase diagrams for Gai_xAsx at pressures of 1.5 xlO3 Torr (left) 
and 10_ 1 Torr (right). Above and below each diagram are also shown the mo
lar Gibbs free energies of the various phases at 1000 K and 850 K, and their 
common tangents. The solid circles in the left diagram represent experimental 
measurements.0 

α J.C. DeWinter and M.A. Pollack, "Ga-As liquidus at temperatures below 650 C," J. 
Appl. Phys. 58, 2410 (1985); R.N. Hall, "Solubility of III-V compound semiconductors 
in column III liquids," J. Electrochem. Soc. 110, 385 (1963); and V.W. Köster and B. 
Thoma, "Aufbau der Systeme Gallium-Antimon, Gallium-Arsen and Aluminium-Arsen," 
Z. Metallkd. 46, 291 (1955). 

seen at intermediate temperatures . The three crystalline phase regions, 
however, are infinitesimally narrow, as we have forced their compositions 
to be pinned at their end point compositions.2 9 The ( G a i _ x A s x ) 7 single-

On the scale of Figures 3.7 and 3.8, the three crystalline phase regions would have 
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Figure 3.8: x-T phase diagrams for Gai_xAsx at pressures of 10~6 Torr (left) 
and 10 - 9 Torr (right). Above and below each diagram are also shown the molar 
Gibbs free energies of the various phases at 1000 K and 850 K, and their common 
tangents. 

phase "region" is essentially a vertical line at x = 0 from 0 K to 302.9 K (the 
melting temperature of (Ga) 7 ) . The (Ga 1 _ x As a : ) a single-phase "region" is 
essentially a vertical line at x = 1 from 0 K to approximately 1090 K (the 
melting temperature of (As)Q). The (Gai_ x As : c ) c single-phase "region" is 
essentially a vertical line at x = 0.5 from 0 K to 1513.5 K (the melting 
temperature of (Ga0.5Aso.5)c)· 

As we saw in the Si-Ge system, as the pressure decreases, the vapor 

appeared infinitesimally narrow even had we not forced their compositions to be pinned 
at their end point compositions, but had instead used realistic composition dependences 
for their molar Gibbs free energies. 
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becomes increasingly stable relative to the liquid and crystalline phases. 
Then, the vapor-phase regions in the x-T diagrams move downward in 
temperature with decreasing pressure, impinging first on the liquid-phase 
regions and then on the crystalline-phase regions. 

To see how, consider the top panels of Figures 3.7 and 3.8, which show 
the molar Gibbs free energies of the various phases at 1000 K. At 1.5 x 
103 Torr the molar Gibbs free energy of the vapor is so high tha t it is 
visible only in the upper right portion of the figure. At 1 0 _ 1 and 10~5 Torr 
it has moved downward far enough to intersect the molar Gibbs free energy 
of the liquid; a two-phase compound plus vapor region then opens up at 
compositions straddling tha t intersection. Below 1 0 - 5 Torr, it lies just 
below the molar Gibbs free energies of both compound and liquid, so tha t 
only the vapor phase is stable. 

A similar behavior can be seen in the bo t tom panels of Figures 3.7 and 
3.8, which show the molar Gibbs free energies of the various phases at 
850 K. At this temperature , though, the molar Gibbs free energies of the 
vapor are all higher than they were at 1000 K, both absolutely, and relative 
to the molar Gibbs free energies of the crystal and liquid. Therefore, the 
equivalent intersections between the molar Gibbs free energies of the vapor 
and the liquid occur at lower pressures. 

3.4.3 The MBE "Window" 
In Subsection 3.4.2, we discussed x-T phase diagrams in the Ga-As alloy 
system. In this subsection, we use these as well as x-p and p-T diagrams 
to understand the preferred environmental conditions for GaAs MBE. 

To do so, we note tha t , by definition, GaAs MBE is condensation of the 
vapor into (Gao.5Aso.5)c. At the same time, however, condensation of the 
vapor into other condensed phases such as {Ga i -^As^} or (Gai -^As^)« 
must be avoided. Avoiding such condensation can only be guaranteed, 
however, if the two-phase mixture of (Gao.5Aso.5)c and (Gai-^Asa^), both 
of which must be present during MBE, actually minimizes the molar Gibbs 
free energy. Otherwise, another mix of phases will have some tendency to 
form. In other words, MBE will be thermodynamically preferred if it occurs 
at an overall system composition, temperature and pressure for which the 
equilibrium mix of phases is (Gao.5Aso.5)c and (Ga i -^As^ ) . 

These compound plus vapor two-phase "windows" in which MBE is 
preferred are shown as shaded regions in Figures 3.7 and 3.8. Consider, 
e.g., the 10~5 Torr diagram shown in the left half of Figure 3.8. The MBE 
window is bounded on the left by a Ga-rich liquid plus GaAs compound two-
phase region. In other words, the overall system must be As rich; otherwise 
it will tend to "decompose" into a Ga-rich liquid and GaAs compound, as 
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Ga droplets 

Ιΐμπι 

Ιμπι 
Figure 3.9: In situ scanning electron microscope image of Ga 
droplets (black ovals) formed0 during GaAs MBE under Ga-rich growth condi
tions at 610°C. The gray ovals are GaAs mounds formed by previous experimental 
sequences. The image is foreshortened by about 20 times in the vertical direction. 

a N . Inouye, "MBE monolayer growth control by in-situ electron microscopy," J. Cryst. 
Growth 111, 75 (1991). 

illustrated in Figure 3.9, into Ga-rich liquid plus As-rich vapor. The reason 
is tha t at these temperatures the vapor pressure of Ga over liquid Ga is so 
low tha t excess Ga cannot re-evaporate into the vapor. Note, though, tha t 
since the compound is very nearly stoichiometric, a Ga-rich overall system 
can be avoided by maintaining an overpressure of As-rich vapor. 

The MBE window is bounded on the bo t tom by a GaAs compound plus 
As-rich crystal two-phase region. The reason is tha t at temperatures so low 
tha t the vapor pressure of (As) a is lower than the impinging As pressure, 
excess As will tend to condense into crystalline As, rather than sublime 
from the growing surface,30 as illustrated in Figure 3.10. Finally, the MBE 
window is bounded on the top by a Ga-rich liquid plus As-rich vapor two-
phase region. The reason is tha t at temperatures so high tha t the vapor 
pressure of Ga over the GaAs compound is higher than the vapor pressure 
of Ga over the Ga-rich liquid, the GaAs compound, even as it grows, will 
itself tend to decompose. 

These MBE windows can also be seen in x-p phase diagrams. Consider, 
e.g., the 1000 K diagram shown in the right half of Figure 3.11. Again, 

3 0 Note, though, that this low-temperature boundary to the MBE window is not as 
well defined as the others, due to the possibility that the As-rich crystal sublimes as As 
tetramers, which we have disallowed. Because ( |As4) is more stable than (^As2), the 
boundary will move down in temperature, and the MBE windows would be even wider 
than those shown. 
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Figure 3.10: Plan-view transmission electron micrograph of hexagonal As 
precipitates formed*1 after a 20 min. 620°C anneal of a GaAs layer grown by MBE 
at 190°C. 

a Z . Liliental-Weber, G. Cooper, R. Mariella, Jr., and C. Kocot, "The role of As in 
molecular-beam epitaxy GaAs layers grown at low temperature," J. Vac. Sei. Technol. 
B9, 2323 (1991). 

the MBE window is bounded on the left by a Ga-rich liquid plus GaAs 
compound two-phase region. The reason is the same as tha t given above: 
at these high pressures, excess Ga condenses into Ga-rich liquid, rather than 
reevaporating into the vapor. The origins of the top and bot tom boundaries 
are also the same as before, but reversed: the window is bounded on the 
top by a GaAs compound plus As-rich crystal two-phase region, and on the 
bo t tom by a Ga-rich liquid plus As-rich vapor two-phase region. 

Notice tha t the MBE windows in this system are actually quite large. 
As illustrated in Figure 3.8, at a typical overpressure of 10~5 Torr, the 
temperature may range from roughly 350° C to 730° C. As illustrated in 
Figure 3.11, at a typical growth tempera ture of « 577°C, the overpressure 
may range from roughly 3 x 1 0 - 7 Torr to 3 x 1 0 _ 1 Torr. In terms of MBE 
growth windows, GaAs is a relatively forgiving compound, a fact tha t is 
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Figure 3.11: x-p phase diagrams for Gai_xAsx at temperatures of 850 K (left) 
and 1000 K (right). 

in part responsible for the ease and success with which it can be grown. 
Other III-V compounds alloys are not so forgiving. For example, the MBE 
growth window for InSb epitaxy is much narrower,3 1 due to the lower vapor 
pressure of solid Sb than of solid As, and the higher vapor pressure of liquid 
In than of liquid Ga. 

Consider, finally, the p-T phase diagram shown in Figure 3.12 for a fixed 
overall system composition of x = 0.51. Note tha t although the overall sys
tem composition is just slightly As rich, the composition of the equilibrium 
vapor at the various phase boundaries is nearly unity, and the vapor can 
be considered nearly pure As2. In other words, the phase boundaries are 
essentially the critical As2 overpressures at which various phase mixtures 
coexist. These p-T diagrams can therefore be of great practical use to the 
crystal grower, because substrate temperature and As2 vapor overpressure 
can both be directly and readily controlled. 

As in the other diagrams, the MBE window is the GaAs compound 
plus As-rich vapor shaded region of the diagram. The upper a + c/c + v 
boundary defines the As2 overpressure beyond which solid As will tend to 
form. As illustrated in the upper left part of Figure 3.12, tha t boundary is 
defined by the pressure at which the molar Gibbs free energy of the vapor 
just intersects tha t of the solid at the As-rich side of the diagram. Tha t 

3 1J .Y. Tsao, "Phase equilibria during InSb molecular beam epitaxy," J. Cryst. Growth 
110, 595 (1991). 
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Figure 3.12: p-T phase diagram for Gai_xAsx at an overall system composition 
of x = 0.51. To the left are the molar Gibbs free energies at the pressures and 
temperatures indicated by the open circles. 

boundary is the vapor pressure of As2 over (As) a . 
The lower c + v/l + v boundary defines the As2 overpressure below 

which Ga-rich liquid will tend to form. As illustrated in the lower left 
part of Figure 3.12, tha t boundary is defined by the pressure at which 
all three phases coexist, and hence share a common tangent. Below tha t 
critical pressure, the molar Gibbs free energy of the vapor decreases below 
tha t of the compound, and the equilibrium state of a system at x = 0.51 
becomes a mixture of Ga-rich liquid and As-rich vapor. Above tha t critical 
pressure, the molar Gibbs free energy of the vapor increases above tha t of 
the compound, and the equilibrium state of a system at x = 0.51 becomes 
a mixture of GaAs compound and As-rich vapor. 

Finally, the lower c + υ/ν boundary defines the As2 overpressure above 
which the GaAs will tend to grow by condensation from the vapor, rather 
than shrink by sublimation into the vapor. 

3.4.4 Congruent and Incongruent Sublimation 
In Subsection 3.4.3, we discussed the window in tempera ture and As2 over
pressure within which the GaAs compound coexists stably with an As-rich 
vapor. On the p-T diagram of Figure 3.12, the window is bounded at the 
bot tom either by a liquid plus vapor region above 898 K, or by a pure vapor 
region below 898 K. This critical tempera ture is known as the congruent 
sublimation temperature. 

In this subsection, we discuss the origin of this critical tempeature . We 
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Figure 3.13: Vapor pressures of (Ga) over (Ga0.5Aso.5)c and {Ga}. Molar Gibbs 
free energies of the subliming vapor over the compound at 1200 K (top left) and 
810 K (bottom left). 

begin by supposing tha t growth is terminated, the usual overpressure of 
vapor As is taken away, and the GaAs compound is held at constant tem
perature in ultra-high-vacuum. We then ask whether, under such nonequi-
librium, "Langmuir" evaporation conditions, it is still possible to apply 
equilibrium phase diagrams. 

In fact, it is possible. Recall our arguments at the end of our discus
sion of the Si-Ge system. There, we adopted a kinetic point of view, in 
which the equilibrium between crystal and vapor was considered to be a 
dynamic competition between simultaneous, independent processes of con
densation and sublimation. At equilibrium, condensation and sublimation 
are balanced; but away from equilibrium, they are imbalanced, and net 
condensation or sublimation occurs. 

Imagine tha t our system is at 810 K, bathed in an ambient As2 pressure 
of 10~9 Torr, so tha t , as indicated in the lower left panel of Figure 3.13, 
the molar Gibbs free energies of the compound and the vapor at x = 0.5 
are equal, and the compound and vapor are in equilibrium with each other. 
Then, the "condensation" and "sublimation" pressures are just balanced, 
and no net growth occurs. Importantly, though, the two pressures are inde
pendent of each other. If we suddenly remove the "condensation" pressure, 
the "sublimation" pressure persists, and the compound will shrink. If we 
suddenly decrease the temperature to decrease the "sublimation" pressure, 
the condensation pressure persists, and the compound will grow. For ex
ample, Figure 3.14 shows direct measurements of GaAs sublimation after 
GaAs condensation is terminated. 

Here, we imagine removing the condensation pressure. Then, under such 
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Figure 3.14: Reflection high-energy electron diffraction (RHEED) intensity 
measurements during a GaAs MBE growth and sublimation sequence0 at 938 K. 
In the presence of a Ga flux, the oscillations in time indicate bilayer-by-bilayer 
condensation; in the absence of a Ga flux, the oscillations indicate bilayer-by-
bilayer sublimation (see Chapter 6 for a discussion of RHEED oscillations). An 
As flux was maintained throughout the growth and sublimation sequence. Note 
that at this temperature and growth rate sublimation is much slower than growth. 

α J.M. Van Hove and P.I. Cohen, "Mass-act ion control of AlGaAs and GaAs growth 
in molecular beam epitaxy," Appl. Phys. Lett. 47, 726 (1985). 

Langmuir, free evaporation conditions, the sublimation pressure persists, 
and will be the same as the condensation pressure at which the compound 
and vapor would have been in equilibrium. The molar Gibbs free energy of 
the vapor tha t sublimes is the same as tha t of the vapor tha t would have 
condensed in equilibrium, and, as indicated in the left panels of Figure 3.13, 
just touches tha t of the compound. 

At 810 K, it can be seen tha t at the sublimation pressure ( 1 0 - 9 Torr) for 
which the vapor is in equilibrium with the compound, the molar Gibbs free 
energy of the vapor lies safely below tha t of the liquid. Therefore, at this 
temperature , the compound will sublime congruently into the stoichiometric 
vapor. 

At 1200 K, however, it can be seen tha t at the sublimation pressure 
(3 x 1 0 - 3 Torr) for which the vapor is in equilibrium with the compound, 
the molar Gibbs free energy of the vapor intersects tha t of the Ga-rich 
liquid, and on the Ga-rich side lies above it. Tha t means tha t the vapor, 
once formed by sublimation from the compound, itself is unstable with 
respect to decomposition into a Ga-rich liquid and an As-rich vapor. At 
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this temperature , the compound will not sublime congruently, but rather 
will decompose "incongruently" into Ga-rich liquid and As-rich vapor. 

Notice tha t at higher temperatures , the molar Gibbs free energy of the 
liquid decreases relative to tha t of the crystal, because of its higher entropy. 
Therefore, at higher temperatures the molar Gibbs free energy of the vapor 
subliming from the compound will always cut across tha t of the liquid, and 
sublimation will always be incongruent. At lower temperatures, however, 
the molar Gibbs free energy of the liquid increases relative to tha t of the 
crystal. Therefore, at lower temperatures the molar Gibbs free energy of 
the vapor subliming from the compound will never cut across tha t of the 
liquid, and sublimation will always be congruent. The critical temperature 
below which sublimation is congruent is what is known as the congruent 
sublimation temperature, Tcs. 

Another way to understand the origin of the congruent sublimation tem
perature is to consider the temperature-dependent sublimation pressures of 
Ga over {Ga} liquid and over the (Gao.5Aso.5)c compound, as shown in the 
right half of Figure 3.13. The sublimation pressure of Ga over {Ga} is de
termined by the pressure at which the molar Gibbs free energy of the vapor 
just intersects tha t of the liquid on the Ga-rich side. From Equation 2.48, 
tha t pressure can be writ ten as 

In 
„(Ga) 
P ( G a } 

Po 

giG*}(T)-gW(p0,T) 
kT 

(3.46) 

The sublimation pressure of Ga over (Gao.sAso.sJc is determined by the 
pressure at which the molar Gibbs free energy of the vapor just intersects 
tha t of the stoichiometric GaAs compound. Therefore, using Equation 3.20, 

(Ga0.5As0.5)c kT 

+ 

In 
(Ga) 

^(Gao.5Aso.s)c 

Po 
kT. 

+ T l n 

(Ga) 
P(Gao,5Aso,5)c 

2po 

9iG*\po,T)+g^A^(p0,T)\, (3.47) 

where we have made use of the fact tha t for stoichiometric sublimation, 
p(Ga) _ 2p/3 and p(As2) = p / 3 . Solving for the Ga vapor pressure then 
gives 

In 
„(Ga) 
^(Ga0,5Aso,5)c 

2 ! / 3 p 0 

9 < G a o . 5 A s 0 , ) c ( T ) _ I [ f f (G- ) (p O J T) + 5 ( 5 A s 2 ) ( i , o ) T ) 

3kT/4 

(3.48) 
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At high temperatures Ga has a higher vapor pressure over (Gao.5 Aso.s)c 

than over {Ga}; therefore, (Ga), once formed by sublimation from the com
pound, will have a tendency to condense into the liquid. At low temper
atures, Ga has a lower vapor pressure over (Gao.sAso.5)c t han over {Ga}; 
therefore, (Ga), once formed by sublimation from the compound, will not 
have a tendency to condense into the liquid. Physically, the reason is tha t 
disordered {Ga} has a higher entropy than ordered (Gao.sAso.s)^ Con
sequently, #{ G a *, which enters into Equation 3.46, decreases faster with 
increasing tempera ture than does ^(Gao.5Aso.5>c? which enters into Equa
tion 3.48. 

Finally, to determine quantitatively the congruent sublimation temper
atures, we can equate Equations 3.46 and 3.48, giving, after some algebra, 

A:Tcsln(21/3) = -[g{Ga}(T) + g{*As2)(Po,T) - 2<7<G a°-5A s°^(T)] 
ό 

+ \[9{θ!ί](Τ)-9{αΆ)(Ρο,Τ)}. (3.49) 

This equation determines the congruent sublimation tempera ture in terms 
of the molar Gibbs free energy of evaporation of {Ga}, and the molar Gibbs 
free energy of formation of (Gao.5As0.5)c from {Ga} and (^As 2 ) . 

The practical significance of the congruent sublimation temperature is 
illustrated in Figure 3.15. There, we show experimental measurements of 
the ratio between the As and Ga fluxes leaving a GaAs (001) surface under 
Langmuir evaporation conditions. At temperatures below the congruent 
sublimation temperature , Ga and As leave the surface in equal amounts; 
therefore, the surface does not need to be bathed in an As ambient to avoid 
formation of Ga-rich liquid. At temperatures above the congruent subli
mation temperature , however, As preferentially leaves the surface, leaving 
behind Ga-rich liquid droplets; therefore, the surface must be bathed in an 
As ambient to avoid formation of Ga-rich liquid. 

Note tha t bo th the pressure of the subliming vapor [essentially the va
por pressure of ( G a i _ x A s x ) along the Ga-rich part of the { G a i _ x A s x } + 
(Gao.5As0.5)c liquidus] and its composition can be calculated fairly straight
forwardly. At a given temperature , one draws the common tangent between 
the molar Gibbs free energies of the Ga-rich liquid and the GaAs compound. 
Then, the pressure of the vapor is adjusted so tha t the molar Gibbs free 
energy of the vapor shares this common tangent . At tha t pressure, all three 
phases can coexist in equilibrium. The composition, #oU t , of the vapor is 
then given by the composition at which the common tangent just touches 
the molar Gibbs free energy of the vapor, and the ratio between the As 
and Ga fractions in the vapor is x^ut/(l — #out)· The results of such a 
calculation, as shown in Figure 3.15, agree with measurements within the 
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Figure 3.15: Left: Ratio between As and Ga fluxes desorbing from GaAs (001) 
during Langmuir evaporation. The open circles are from mass spectrometry 
measurements;0 the dashed line is the prediction of equilibrium thermodynamics. 
The sizes of the data points reflect uncertainties in the relative sensitivities of the 
mass spectrometer to Ga and As2 fluxes. Right: Schematic illustrations of con
gruent sublimation of GaAs compound into pure vapor (bottom) and incongruent 
sublimation of GaAs compound into Ga-rich liquid and As-rich vapor (top). 

aC.T. Foxon, J.A. Harvey, and B.A. Joyce, "The evaporation of GaAs under equi
librium and nonequilibrium conditions using a modulated beam technique," J. Phys. 
Chem. Solids 34, 1693 (1973). 

uncertainty of the data . 

3.4.5 Vapor Pressures 
In Subsection 3.4.4, we discussed the vapor pressures of (Ga) over the pure 
compound (Gao.5Aso.5)c and pure liquid {Ga} phases. At temperatures 
higher than the congruent sublimation temperature , (Ga) subliming from 
(Ga0.5Aso.5)c, if uncompensated by incoming As, will condense into {Ga}. 
At temperatures lower than the congruent sublimation temperature , (Ga) 
subliming from (Gao.5As0.5)c, even if uncompensated by incoming As, will 
not condense into {Ga}. 

In this subsection, we discuss the equilibrium vapor pressures of both 
As2 and Ga over various mixtures of phases, i.e., along the the phase bound
aries shown in Figure 3.12. The phase boundaries of particular interest 
are those tha t bound the MBE window. The vapor pressures along those 
boundaries are shown in Figure 3.16. We plot in all cases the pressures 
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Figure 3.16: Vapor pressures of (AS2) and (Ga) along the phase-coexistence 
lines bounding the MBE window. The molar Gibbs free energy diagrams on 
the left correspond, from top to bottom, to conditions for which the equilibrium 
mix of condensed phases are: (As)a and (Gao.sAso.s)^ (Gao.sAso.s)^ As-rich 
{Gai-xAsaJ and (Gao.sAso.s)^ and Ga-rich {Gai-xAs*} and (Gao.5Aso.5)c. The 
small dots in the lower right panel are experimental measurements of Arthur" and 
Panish.6 

a J .R . Arthur, "Vapor pressures and phase equilibria in the Ga-As system," J. Phys. 
Chem. Solids 22, 2257 (1967). 

6M.B. Panish, "A thermodynamic evaluation of the simple solution treatment of the 
Ga-P, In-P and Ga-As systems," J. Cryst. Growth 27, 6 (1974). 

p(As2) a n c j Ip(Ga)^ rather t r i a n p(As2) a n d p(Ga)^ s o a s t o D e t t e r illustrate 

tha t p(As2) = | / / G a ) at (and below) the congruent sublimation tempera
ture. 

For example, the vapor pressures over the two-phase mixture a + c are 
indicated by the solid lines in the top right panel, and were determined by 
the graphical constructions shown in the top left panel. In order for pure 
(^As2) to be in equilibrium with (nearly) pure (As) a , their molar Gibbs 
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free energies must be equal: 

Then, through use of Equation 2.47, the As2 vapor pressure must be 

0<Α->.(Γ)-0<4Α*>(ρΟΙΤ) 

(3.50) 

In 
„(As2) 
Pg+c 

Po 2 (^As2) 
5co,tra ± 

(3.51) 

To deduce the Ga vapor pressure, consider the common tangent between 
the molar Gibbs free energies of nearly pure (As)Q and stoichiometric 
(Gao.5Aso.5)c· The intersection of that common tangent with x = 0 must 
be the molar Gibbs free energy of pure (Ga): 

7(As)c (Ga0.5As0.5)c (Gao.5Aso.5)c .(Ga) 
(3.52) 

1.0-0.5 0 .5 -0 .0 

Then, again through use of Equation 2.47, the Ga vapor pressure must be 

In 
„(Ga) 
Pot+c 

Po 

2£<Ga0.5Aso.5>c _ 0 < A s ) e ( T ) _ g(G*)(p0,T) 
2 ( G a ) T 
5Co,tra^ 

(3.53) 

Likewise, the vapor pressures over the two-phase mixture c + / are in
dicated by the solid lines in the bottom right panel, and were determined 
by the graphical constructions shown in the lower left two panels. Con
sider again the common tangent, this time between the molar Gibbs free 
energies of the {Gai_xAsx} liquid and stoichiometric (Gao.sAso.s)^ The 
intersections of that common tangent with x = 0 and x = 1 must be the 
molar Gibbs free energies of pure (Ga) and (^As2): 

^(^As2) _ g(Gao.5As0.5)c 

1.0-0.5 
{Gai_xAsx} _ 

„(Ga0.5Aso.5)c _ ^{Gai_xAsx} 

0.5 — x {Ga i_ x As x } 

7(Ga) 7(Ga0.5As0.5)c 7{Gai_xAsx} 

x {Ga i_ x As x } _ o.O 0 . 5 - X < G a i — As*> 
(3.54) 

Then, again through use of Equation 2.47, the Ga and As2 vapor pressures 
must be given by 

fc^Tln 
„(As2) 
Pl+c 

Po 

(Ga0.5As0.5)c _j_ 0.5 [g (Gao.5As0.5)c _ „{Gai_xAsx}l 

0 . 5 - x i G a i — A s -> y KP } 
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JGa)^ 
(Ga)^ 

Pl+c 
5 « T l n

V Pi 

(Gao.5As0.5)c _i 
0.5 (q{Gal-*Asx} — Q(Ga0.5As0.5>c>) 

0.5 — x { G a i _ x A s x } 
7(Ga) (Ρο,Τ). 

(3.55) 

Below the congruent sublimation temperature , it is no longer possible for 
(Ga i -^As^) to be in equilibrium with both (Gao.5Aso.s)c and { G a i _ x A s x } . 
Instead, { G a i _ x A s x } , if formed, will have a tendency to evaporate, leaving 
only (Gao.5Aso.5)c· If the vapor has the same composition as the stoi-
chiometric compound, then the two vapor pressures are determined by the 
intersection of the molar Gibbs free energy curves of (Gao.sAso.s^ and 
(Ga i -xAs^) , as illustrated in the graphical constructions shown in the sec
ond panel on the left of Figure 3.16. Therefore, 

0 ( G a ) + 0 ( £ A e a ) 
= 9 (Ga0.5As0.5)c (3.56) 

Together with Equation 2.47 and the condition p(G a) = 2p^As2^ for congru
ent sublimation, the Ga and As2 vapor pressures can then be deduced to 
be 

In 
■ ( A s 2 ) -
Pc 

Po 
= ln Pc 

2p0 

29<Gao.5Aso.5>e _ 5 ( G a ) ( p o ; T ) _ 3 ( l A S 2 ) ( p o ! T ) _ | c g » > T l n ( 2 ) 

,(Ga) , ( |As 2 ) 
"o,tra + c, o,tra 

(3.57) 

and are indicated by the dashed lines in the top right panel. 
If the vapor does not have the same composition as the stoichiometric 

compound, then the vapor may still be in equilibrium with the compound, 
although its overall pressure will be different. Indeed, inside the MBE win
dow shown in Figure 3.12, and away from the phase coexistence boundaries, 
there will be a range of partial pressures of (Ga) and (AS2) with which the 
pure compound can coexist. The compound can coexist with every pair of 
partial pressures determined by the tangents tha t pass through the min
imum of g(Gao 5Aso.5)c^ provided those tangents lie below all other molar 
Gibbs free energy curves. As illustrated in Figure 3.17, as these tangents 
pivot around the minimum of the molar Gibbs free energy of (Ga0.5Aso.5)c, 
their intercepts with the x = 0 and x = 1 axes trace out the relationship 
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Figure 3.17: Vapor pressures of (AS2) and (Ga) over (Gao.sAso.s)^ As the com
mon tangent between (Gai_xAsx) and (Gao.5Aso.s)c pivots around the minimum 
of the molar Gibbs free energy of (Gao.5Aso.s)c, the intercepts of the common 
tangent trace out the relationship between the molar Gibbs free energies (and 
vapor pressures) of (AS2) and (Ga). 

between the molar Gibbs free energies (and vapor pressures) of (AS2) and 
(Ga). 

Algebraically, the constraint on the allowed tangents is 

( iAs 2 ) ^. JGa) _ 2ö(Gao.5Aso.5>c> (3.58) 

Combined with Equation 2.47, this constraint forms the basis for what is 
known as the "law of mass action:" 

ln< 
„( A S 2) 

Po 

(JA82) 
, (G a) 

Po 

.(Ga) Ϊ 

2^(Ga0.5Aso.5)e _ L ( i A e 2 ) ( p 0 , T ) + ^ G a ) ( p 0 , T ) 
(3.59) 

Finally, the As2 vapor pressures along the various phase boundaries 
can also be interpreted as the critical As2 overpressures at which various 
phase mixtures become stable. Therefore, those vapor pressures can be 
used to plot an As2-overpressure/ temperature phase stability diagram, as 
shown in Figure 3.18. Tha t diagram is analogous to the p-T phase diagram 
of Figure 3.12, except tha t it is in terms of the As2 overpressure rather 
than the total pressure. As discussed above, the diagrams are very nearly 
identical except near and below the congruent sublimation pressure. 
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Figure 3.18: p-T (left) and p-l/T (right) plots of critical As2 overpressures at 
which various phase mixtures are stable. 
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Exercises 
1. Verify the derivation of Equations 3.3 and 3.4 from Equations 3.2 and 

3.5. 

2. Derive the molar Gibbs free energy of a perfect solution consisting 
of a mixture of monomeric and tetrameric ideal gases. By factoring 
out the pressure dependences of the molar Gibbs free energies, de
rive an explicit form for the molar Gibbs free energy analogous to 
Equation 3.16. 
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3. A positive entropy of mixing (over and above the ideal entropy of 
mixing) might arise if the two components of a binary condensed-
phase alloy did not mix fully randomly. How might a negative entropy 
of mixing arise? 

4. Suppose the equilibrium vapor pressures of Si and Ge had been mea
sured over the high-temperature {Sii_xGex} liquid. Show how such 
a measurement could be used to deduce the interaction parameter for 
{Sii_xGex}. Suppose this measurement were made through a small 
hole in a 1" diameter, 3" long Knudsen cell. How small would the 
hole need to be for the measurement itself not to perturb the pres
sure in the cell? How long could the measurement go on before the 
composition of the alloy in the cell itself began to change significantly? 

5. Verify Equations 3.26 and 3.29 for the chemical potentials of the com
ponents of ideal and regular solutions. 

6. Verify Equation 3.38 for the critical temperature at which the misci-
bility gap of a strictly regular solution vanishes. 

7. Strictly speaking, condensation and sublimation pressures are only 
equivalent up to a correction factor that depends on the sticking co
efficient, i.e., the probability that an impinging molecule from the 
vapor will actually " stick" to the solid. What are those correction 
factors for elemental and alloy vapors? 

8. How might the congruent sublimation temperature (or measurements 
of the congruent sublimation temperature by Langmuir free evapora
tion studies) depend on the orientation of the surface? 

9. Along which of the phase boundaries shown in Figures 3.12 and 3.18 
will the total pressure deviate most from the As2 pressure, and by 
how much? 

10. The usual form for the law of mass action is 

p(Ga)- p(As2)-

where Kp(T) is a temperature-dependent equilibrium constant. Using 
Equation 3.59, derive an expression for that equilibrium constant. 



Part II 

Thin Film Structure and 
Microstructure 

In Part I, we described the thermodynamic properties of bulk condensed 
and vapor phases. These properties determine whether epitaxy will occur 
at all, and are of primary importance in choosing growth conditions. 

In this part, we describe modifications to the thermodynamic properties 
of bulk phases when the phases are constrained to grow as epitaxial thin 
films. These modifications are of secondary importance in choosing growth 
conditions, but are nevertheless crucial in determining the detailed struc
ture and microstructure of the epitaxial phases as they condense. Indeed, 
even if a coarse view reveals only that the desired phase is condensing, a 
finer view may reveal a wide range of properties. 

We begin, in Chapter 4, by discussing the tendency of epitaxial alloy 
phases to order and cluster. Then, in Chapter 5, we discuss the tendency 
of lattice-mismatched epitaxial phases to at first grow coherently with their 
underlying substrate, but then later to grow semi-coherently, through the 
introduction of misfit dislocations. 



Chapter 4 

Ordering and Clustering 

In this chapter, we discuss the tendency of alloy phases, constrained to 
grow as epitaxial thin films, to order and cluster. We would like to know 
whether, during MBE of alloy phases, the individual components will tend 
on a microscopic scale to a t t rac t or repel each other, so tha t there is short-
range order. We would also like to know whether the individual components 
will tend on a macroscopic scale to cluster into ordered or disordered phases 
of particular stoichiometries. 

For concreteness, our discussion will center on "pseudobinary" I I I /V 
alloys — alloys composed of binary mixtures of two distinct I I I /V com
pounds. These alloys are exceedingly useful to device engineers because 
their lattice constants and electronic properties can be tuned continuously 
by adjusting the relative fractions of the two I I I /V compounds. These al
loys are also characterized by positive enthalpies of mixing, and hence have 
a tendency to "unmix." l Those enthalpies of mixing originate mainly from 
microscopic strain caused by the different bond lengths of the two I I I /V 
compounds. Therefore, we begin the chapter by describing, in Section 4.1, 
how to estimate the strain in microscopic clusters using what are known 
as "valence force field" (VFF) models. If these microscopic clusters are 
embedded in an epitaxial thin film on a substrate with a different lattice 
constant, then they will also be "externally" strained. In Section 4.2, we 
discuss how to estimate tha t external strain. 

In Section 4.3, we introduce a powerful technique, the cluster variation 
method, for building a macroscopic description of alloy thermodynamics 
from statistical combinations of such microscopic clusters. In Section 4.4, 
we apply this method in an approximate way to I n i - ^ G a ^ A s , a pseudobi-

1E.K. Müller and J.L. Richards, "Miscibility of III-V semiconductors studied by flash 
evaporation," J. Appl. Phys. 35 , 1233 (1964). 

93 
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nary alloy of current technological interest. We will find tha t the thermo-
dynamic properties of I n i _ x G a x A s depend greatly on whether the alloy is 
coherent or incoherent with the substrate, i.e., on whether the interface 
between the epitaxial film and the substrate is crystallographically perfect 
or not.2 If the alloy is incoherent with the substrate , then it is free to 
adopt the in-plane lattice constant tha t minimizes its free energy. If the 
alloy is coherent with the substrate, then it must adopt the in-plane lattice 
constant of the substrate; the resulting elastic strain energy can increase 
its overall free energy significantly. 

In fact, such coherency constraints greatly suppress the tendency for 
alloys to separate into their pure-component "endpoint" phases, and at the 
same time greatly enhance their tendency to form ordered compounds at 
certain stoichiometric compositions. These tendencies can be understood 
quantitatively from the full cluster variation method calculation, but they 
can also be understood semiquantitatively through simpler semi-empirical 
models. We end the chapter, therefore, with a simple analytical t reatment 
in Section 4.5 of coherency-constrained clustering and ordering. 

4.1 Microscopic Strain 
Let us s tar t , in this section, by discussing microscopic strain in pseudobi-
nary I I I /V alloys. We begin, in Subsection 4.1.1, by introducing a simple 
bond stretching and bond bending force field model for calculating the equi
librium atomic positions of a small alloy cluster. Then, in Subsection 4.1.2, 
we use those atomic positions to estimate the strain energy, which is the 
dominant contribution to the enthalpy of mixing. 

4.1.1 Virtual Crystals and Covalent Radii 
Let us begin, in this subsection, by calculating the microscopic bond distor
tions tha t occur when two I I I /V compounds are mixed. For concreteness, 
let us consider GaAs and InAs. Bulk alloys in this system are known to 
obey Vegard's law quite accurately: their overall lattice constants are the 
averages of the bulk GaAs and InAs lattice constants, weighted by mole 
fraction. If we imagine the alloy to be a "virtual crystal," in tha t each 
atom sits on geometrically perfect zincblende lattice sites,3 then its lattice 

2D.M. Wood and A. Zunger, "Epitaxial effects on coherent phase diagrams of alloys," 
Phys. Rev. B40 , 4062 (1989). 

3L. Nordheim, "Electron theory of metals," Ann. Phys. (Leipzig) 9, 607 and 641 
(1931). 



4.1. Microscopic Strain 95 

constant can be expressed as 

«VC = (1 - ^)öGaAs,o + #ainAs,o, (4.1) 

where x is the InAs fraction in the alloy, and aQaAs,o and ainAs,o are the 
equilibrium lattice constants of (unstrained) bulk GaAs and InAs, respec
tively. Indeed, measurements4 show tha t the second-nearest-neighbor dis
tances between group III a toms (or between group V atoms) in the lattice 
are very nearly those — a v c / \ / 2 — expected for such virtual crystals. 

In contrast, however, first-nearest-neighbor distances between group III 
and group V atoms deviate significantly from those — v^3avc/4 — expected 
for such virtual crystals. Instead, Ga-As bonds are shorter, and In-As 
bonds are longer, than the virtual crystal bonds. Tha t this is so is not 
unexpected, since the Ga-As bond in bulk GaAs is shorter than the In-As 
bond in bulk InAs, so in some sense the As "prefers" to be nearer to Ga 
than to In atoms. Indeed, one might imagine tha t , instead of occupying 
virtual crystal lattice sites, the atoms would occupy sites such tha t the bulk 
Ga-As and In-As bond lengths, and the associated "covalent radii" of the 
Ga, As, and In atoms, were preserved.5 

To see which extreme of behavior is closer to the t ru th , consider the 
5-atom Ino.5Gao.5As tetrahedron at the right of Figure 4.1. This tetrahe
dron is one of the five distinct t e t rahdra shown at the top of Figure 4.2 
from which, as discussed in Section 4.4, an I n i _ x G a x A s alloy of arbitrary 
composition may be constructed. On the one hand, if the central As a tom 
occupies the geometric center of the tetrahedron, then the tetrahedral bond 
angles associated with the sp3 hybridized bonds can be preserved, but at 
the expense of InAs bonds tha t are too short and GaAs bonds tha t are too 
long. On the other hand, if the central As a tom moves down slightly, then 
the InAs and GaAs bonds can approach their bulk equilibrium values, but 
at the expense of In -As- In bond angles tha t are too acute and G a - A s - G a 
bond angles tha t are too obtuse. 

The "elastic" energies associated with these kinds of distortions are often 
quantified using what are known as valence force field (VFF) models,6 in 
which the energies of individual bonds and bond angles are considered to be 
independent of each other. In the most popular representation for diamond-

4 J.C. Mikkelsen, Jr., and J.B. Boyce, "Extended x-ray-absorption fine-structure study 
of GalnAs random solid solutions," Phys. Rev. B28, 7130 (1983). 

5L. Pauling and M.L. Huggins, "Covalent radii of atoms and interatomic distances 
in crystals containing electron-pair bonds," Z. Kristallogr. Kristallgeom. Kristallphys. 
Kristallchem. 87, 205 (1934). 

6M.J.P. Musgrave and J.A. Pople, "A general valence force field for diamond," Proc. 
Roy. Soc. London A268, 474 (1962). 

http://Ino.5Gao.5As
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Figure 4.1: Valence force field potential energies versus As position within a 5-
atom Ino.5Gao.5As tetrahedron. Left and right panels show contributions due to 
bond bending and bond stretching forces; center panel shows the sum of the two 
contributions. The geometric center of the tetrahedron is at z = 0; the actual As 
position is shifted downward toward the Ga atoms. The predictions of the virtual 
crystal (VCA) and covalent radius (CRA) approximations discussed in the text 
are also shown. 

structure semiconductors, the "Keating potential ,"7 the stretching energy 
associated with bond i is proportional to the squared deviations of the 
squared actual bond length from the squared equilibrium length, 

w s t r , i — &i ,2 (4.2) 

and the bending energy associated with adjacent bonds i and j is pro
portional to the squared deviations of the dot products of actual adjacent 
bonds from the dot products of the equilibrium bonds, 

^bnd,2?' — 0 

3 ßi + ßj (dj · dj - dio · dj>0) 
^i,o^*j,o 

(4.3) 

The two microscopic stretching and bending force constants, a and ß, are 
assumed sufficient to characterize completely the microscopic elastic behav
ior of both the pure and mixed III-V compounds. Moreover, they can be 
used to predict various macroscopic elastic phenomena, and hence can be 
deduced from bulk elastic constants. The most commonly used values are 
listed in Table 4.1 for a number of diamond-structure materials. 

7P.N. Keating, "Effect of invariance requirements on the elastic strain energy of crys
tals with application to the diamond structure," Phys. Rev. 145, 637 (1966). 

http://Ino.5Gao.5As
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Material 

C 
Si 
Ge 
AlSb 
GaP 
GaAs 
GaSb 
InP 
InAs 
InSb 
ZnS 
ZnSe 
ZnTe 
CdTe 
CuCl 

α β ß/a 

(N/m) (N/m) 
129.33 84.76 0.655 
48.50 13.81 0.285 
38.67 11.35 0.294 
35.35 6.77 0.192 
47.32 10.44 0.221 
41.19 8.95 0.217 
33.16 7.22 0.218 
43.04 6.24 0.145 
35.18 5.50 0.156 
29.61 4.77 0.161 
44.92 4.78 0.107 
35.24 4.23 0.120 
31.35 4.45 0.142 
29.02 2.43 0.084 
12.60 1.00 0.079 

C\\ C12 C44 
(1010 (1010 (1010 

N/m2) N/m2) N/m2) 
107.6 12.50 57.68 
16.57 6.39 7.96 
12.89 4.83 6.71 
8.94 4.43 4.16 

14.12 6.25 7.05 
11.81 5.32 5.92 
8.84 4.03 4.32 

10.22 5.76 4.60 
8.33 4.53 3.96 
6.67 3.65 3.02 

10.40 6.50 4.62 
8.10 4.88 4.41 
7.13 4.07 3.12 
5.35 3.68 1.99 
2.72 1.87 1.57 

Table 4.1: Microscopic bond stretching (a) and bond bending (β) force 
constants deduced from macroscopic elastic constants (Cn, C12, and C44) of 
various cubic semiconducting materials.0 

a R .M. Martin, "Elastic properties of ZnS structure semiconductors," Phys. Rev. B l , 
4005 (1970). 

To calculate the stretching energy of te t rahedra such as tha t shown at 
the right of Figure 4.1, we sum Equation 4.2 over the four bonds to the 
central As atom, divide by two because each bond is shared by two atoms, 
then multiply by two because there is a pair of atoms per tetrahedron: 

4 

^str = 5 ^ ^ s t r , i . (4.4) 
i=\ 

To calculate the bending energy of the tetrahedron, we sum Equation 4.3 
over each distinct pair of adjacent bonds, and multiply by two because we 
have only accounted for the bonds centered on the group V atoms, but not 
those centered on the group III atoms: 

4 

b̂nd = 222Δ2 Uhnd^J' (4*5) 
i=l j<i 
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For the particular te t rahedron shown at right in Figure 4.1, the total 
elastic energy, per atom-pair, is then 

U(A) = ^str + ^bnd 
2̂ 

(^GaAs ^GaAs,o) . (^InAs ^InAs,o) 
«GaAs 10 + aInAs 

+ 4 

, 2 - « i n A s , 2 
aGaAs,o aInAs,o 

Γ / ,n 
Ά (dGaAs C O s 2 ^GaAsGa ~ ^GaAs,o C O s 2 θτΫ 
PGaAs -J2 

"GaAs,o 

, o « A s C O s 2 ^InAsIn " d?„As,o C O s 2 θτ) ' Ί 

+ PlnAs -J2 
dInAs,o 

(4.6) 

In this equation, the actual and equilibrium GaAs and InAs bond lengths 
are denoted C/QaAs? ^GaAs,o5 ^inAs a n d c/inAs,o5 the actual Ga—As-Ga and 
In-As- In bond angles are denoted #GaAsGa a n d ^inAsini and the ideal te-
trahedral bond angle is ΘΎ = 2 t a n _ 1 ( l / \ / 2 ) « 109.47°. Note tha t we 
have used the symmetry of the te t rahedron to set #GaAsGa = #AsGaAs> 
#InAsIn = #AsInAs and #GaAsIn = #InAsGa ~ #T-

In terms of the vertical displacement, z, of the As atom from the geo
metric center of the tetrahedron, the actual GaAs and InAs bond lengths 
can be writ ten as 

4.,, = (a)2+(T-r 

and the actual G a - A s - G a and In -As- In bond angles can be writ ten as 

( a v c / 4 ) + z 
COs(0GaAsGa/2) 

(x /3a V C /4 ) + z/Vz 

cos(0InAsIn/2) « (JaVC% Ζ,π (4.8) 
( V 3 a v c / 4 ) - z/y/3 

where a v c / 2 is the length of an edge of the cube circumscribing the tetra
hedron. 

Then, substi tut ing back into Equation 4.6, we can calculate, as shown 
in the left three panels of Figure 4.1, the distortion energies as a function of 
z. The left and right panels show only the bending and stretching energies, 
respectively; the center panel shows their total . Those panels illustrate how 
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the actual position of the As atom at the center of the tetrahedron is deter
mined by a competition between bending and stretching forces. Given only 
bending forces, the virtual crystal approximation (VCA) holds, and bond 
angles are nearly ideally tetrahedral.8 Given only stretching forces, the co-
valent radius approximation (CRA) holds, and bond lengths are undistorted 
from the bulk pure component compounds. Given both forces, neither holds 
exactly, but, as can be seen, the CRA is the better approximation. In this 
pseudobinary III/V system, bending forces are about 5 times weaker than 
stretching forces, and bond lengths are very nearly preserved upon mixing. 
They deviate slightly, however, due to the "steric" constraints provided by 
bending forces. 

To obtain an analytic form for the position of the As atom, we can 
expand Equations 4.6, 4.7, and 4.8 to second order in z, giving 

U{A) -CtGaAs —— a y e — «GaAs,o H 7= 
4 y/3 

3 
+ - a i n A s 

3 
+ "fcaAs 

3 
+ ~An As 

x/3 z 
-—aye - «InAs,o 7= 
4 V3 

- 2 (V3 . \ 2 
T | — a v C - < * G a A s , o l + ^ 

T 2 

- 2 / v/3 \ 2 
T l T a V C i „ A s , o l - ^ f 

Ί 2 

(4.9) 

Then, solving for du^/dz = 0, the equilibrium position can be deduced 
to be 

- V 3 \ «GaAs + ainAs ~ /^GaAs/3 + A n A s / 3 
^equ , R x a (^InAs,o ~ ^GaAs,o)· 

K
 Z J a GaAs + »InAs ~ PGaAs + PlnAs 

(4.10) 
In the limit ß —> 0, zequ —> — (y/3/2)(d\nAs,o — ^GaAs,o)7 and the VCA holds; 
in the limit a —► 0, zequ —> — (dinAs,o — ^GaAs,o)/(2\/3), and the CRA holds. 

To see how the bond lengths in these alloys depend on composition, 
similar calculations can be performed for 5-atom GaAs, Ino.25Gao.75As, 

8 The angles are not exactly tetrahedral because the Keating representation of the 
"valence forces" does not cleanly separate stretching from bending motions, since Equa
tion 4.3 consists of deviations of dot products (rather than of angles) between adjacent 
bonds. Other representations do, but at the expense of not appearing to predict distor
tion energies as accurately [W.A. Harrison, Electronic Structure and the Properties of 
Solids (W.U. Freeman, San Francisco, 1980), pp. 193-197]. 

http://Ino.25Gao.75As
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Figure 4.2: Measured and calculated Ga-As and In-As bond lengths in 
Ini_xGaa;As alloys. Experimental data are from (open circles) X-ray-absorption 
fine structure (EXAFS)a measurements; calculations are based on valence-force-
field potentials using either bond bending forces in the virtual crystal approxima
tion (dashed line), bond stretching forces in the covalent radius approximation 
(dotted lines), or both (solid lines). 

α J.C. Mikkelsen, Jr., and J.B. Boyce, "Extended x-ray-absorption fine-structure study 
of Gain As random solid solutions," Phys. Rev. B28, 7130 (1983). 

T. Fukui, "Calculation of bond length in InGaAs ternary semiconductors," Jpn. J. 
Appi Phys. 23, L208 (1984). 

Ino.75Gao.25As and InAs te t rahedra, which are the most probable tetrahe-
dra in the corresponding GaAs, Ino.25Gao.75As, Ino.75Gao.25As and InAs 
alloys. The results are shown in Figure 4.2. The dot ted and dashed 
lines are the stretching-force-only (CRA) and bending-force-only (VCA) 
bond lengths; the solid lines are the stretching-force plus bending-force 
bond lengths. The predictions agree extremely well with the measurements 
shown as open circles. Tha t agreement indicates tha t , consistent with more 
complete calculations,9 elastic energies dominate chemical energies in this 
alloy system. Indeed, this dominance appears to hold for most isovalent, 
though not for heterovalent, mixtures of semiconductors.1 0 

9T. Ito, "A pseudopotential approach to mixing enthalpies of III-V ternary semicon
ductor alloys," Jpn. J. Appl. Phys. 26, 256 (1987). 

10W.A. Harrison and E.A. Kraut, "Energies of substitution and solution in semicon
ductors," Phys. Rev. B37, 8244 (1988). 

http://Ino.75Gao.25As
http://Ino.25Gao.75As
http://Ino.75Gao.25As


4.1. Microscopic Strain 101 

4.1.2 Mixing Enthalpies 
In Subsection 4.1.1, we calculated the microscopic distortions tha t minimize 
the sum of the bond stretching and bond bending energies of an As-centered 
cluster containing both Ga and In. In this subsection, we make use of those 
distortions to calculate the strain energy associated with the cluster, and 
then to estimate the mixing enthalpy associated with the alloy as a whole. 

To obtain a simplified formula for the energy of the Ino.5Gao.5As tetra
hedron, we insert the equilibrium position of the As atom given by Equa
tion 4.10 into Equation 4.9. Then, approximating the individual bond 
stretching and bending force constants by their averages, a = («GaAs + 
c*inAs)/2 and ß = (/fcaAs + AnAs)/2, we obtain, after some algebra, 

■"> - AiA")2· <4ii) 

where 
4 

Δ α 0 = a i n A s , o - ÖGaAs,o = ~^=(^InAs,o ~ ^GaAs,o)· (4-12) 

The distortion energy of the tetrahedron calculated in this way is listed 
in Table 4.7 on page 132. The energy is proportional to the square of 
the difference, Δ α 0 , between the lattice parameters of the component com
pounds, precisely what one expects from a model based on linear elasticity. 
The effective spring constant, l / [ ( l / a ) + (1//?)], is the "parallel" sum of 
the individual stretching and bending force constants. Since, as mentioned 
above, β is approximately 5 times weaker than c*, the effective spring con
stant is dominated by ß. In other words, as with all coupled spring systems, 
most of the energy is stored in the weaker and more deformed spring. 

If we now imagine building a lattice solely out of Ino.5Gao.5As tetrahe-
dra, then Equation 4.11 can also be used to estimate the enthalpy of mixing 
of the Ino.sGao.s As alloy. On the one hand, it will be an overestimate: our 
simple calculation did not account for relaxation of the corner group III 
atoms of the tetrahedron away from their virtual crystal positions, which 
would decrease the tetrahedron energy. On the other hand, it will be an 
underestimate: as discussed later in Section 4.4, a real Ino.5Gao.5As alloy 
at finite temperature would also contain some fraction of more highly de
formed te t rahedra of other compositions, which would increase the energy 
of the alloy as a whole. 

To see how well this estimate works, let us approximate the alloy as a 
strictly regular solution, and identify its interaction enthalpy at x = 1/2 
with the V F F elastic energy of the Ino.5Gao.5As tetrahedron: Ωγρρ ~ 

http://Ino.5Gao.5As
http://Ino.5Gao.5As
http://Ino.5Gao.5As
http://Ino.5Gao.5As
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Material 

C 
Si 
Ge 
a-Sn 
SiC 
BN 
BP 
AIP 
AlAs 
AlSb 
GaN 
GaP 
GaAs 
GaSb 
InP 
InAs 
InSb 
ZnO 
ZnS 
ZnS 
CdS 
CdS 
CdTe 
CdSe 
PbS (Galena) 
PbTe (Altaite) 

Crystal a0 or a/c 
Structure (Ä or Ä/Ä) 
Diamond 3.56683 
Diamond 5.43095 
Diamond 5.64613 
Diamond 6.48920 
Wurtzite 3.086/15.117 
Zincblende 3.6150 
Zincblende 4.5380 
Zincblende 5.4510 
Zincblende 5.6605 
Zincblende 6.1355 
Zincblende 3.189/5.185 
Zincblende 5.4512 
Zincblende 5.6533 
Zincblende 6.0959 
Zincblende 5.8686 
Zincblende 6.0584 
Zincblende 6.4794 
Rock Salt 4.580 
Zincblende 5.420 
Wurtzite 3.82/6.26 
Zincblende 5.8320 
Wurtzite 4.16/6.756 
Zincblende 6.482 
Zincblende 6.050 
Rock Salt 5.9362 
Rock Salt 6.4620 

aT = d In aQ/dT 
( lO^K" 1 ) 
0.87 + 0.0092(T - 273) 
3.08 + 0.0019(T - 273) 
6.05 + 0.0036(T - 273) 

3.40 + 0.0064(T - 273) 

5.81 
5.35 + 0.0080(T - 273) 
6.7 

4.33 + 0.0038(T - 273) 

6.70 + 0.0128(T - 313) 

18.81 + 0.0074(T - 273) 
19.80 

Table 4.2: Crystal structures, room-temperature lattice parameters and 
thermal expansion coefficients of various semiconductors.0 

"Adapted from S.M. Sze, Physics of Semiconductor Devices, 2nd Ed. (John Wiley 
L· Sons, New York, 1981), and R.S. Krishnan, R. Srinivasan and S. Devanarayanan, 
Thermal Expansion of Crystals (Pergamon Press, Oxford, 1979). 

4tx(A). Then 

nVFFn^S=(Aa0)2. (4.13) 
OL + ß 

This equation can be used to estimate the elastic part of the regular so
lution interaction parameter for any pseudobinary mixture whose micro-
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scopic elastic constants and lattice parameters are known. Its predictions 
are shown in Figure 4.3 for a number of alloys, using the lattice parameters 
listed in Table 4.2 and the bond stretching and bending force constants 
listed in Table 4.1. Within the (fairly large) uncertainty in the values 
deduced from experimental measurements, the equation predicts the regu
lar solution parameters surprisingly accurately. It represents the physical 
basis1 1 for what is known as the Delta-Latt ice-Parameter (DLP) model, 
originally based on the empirical observation tha t heats of mixing are ap
proximately proportional to the squared mismatches between the lattice 
parameters of the constituent components.1 2 

4.2 Macroscopic Strain 
In Section 4.1, we noted tha t , from a microscopic point of view, pseudobi-
nary III-V alloys can be viewed as a collection of elementary te t rahedra such 
as those shown in Figure 4.2. Except for the pure-component te trahedra, 
none are perfectly tetrahedral: their bond lengths and angles deviate from 
the CRA lengths and VCA angles, respectively. These internal distortions 
give rise to the elastic strain energies listed in Table 4.7 on page 132 even 
in te t rahedra embedded in bulk alloys of the same overall composition as 
the te t rahedra themselves. 

Superimposed on these internal distortions, however, are distortions 
due to externally imposed constraints on the dimensions of the tetrahe
dra. These constraints arise because the te trahedra, each with an "ideal" 
dimension or shape, are all embedded in a macroscopic lattice whose unit 
cells have their own (and possibly different) average dimension or shape. 
In this section, we discuss these externally imposed distortions. Concep
tually, they can be decomposed into two components: one tha t is mainly 
volumetric and one tha t is mainly distortional. 

The volumetric component comes about either when alloys are grown 
in bulk form, or when epitaxial films are grown coherently on a lattice-
matched substrate. Consider such an alloy, whose overall composition is 
#epi = 0.5, and whose mean (or virtual crystal) lattice parameter is given, 
using Equation 4.1, by 

aepi,o = 0.5aGaAs,o + 0.5aInAs,o· (4-14) 
11 P.A. Fedders and M.W. Müller, "Mixing enthalpy and composition fluctuations in 

ternary III-V semiconductor alloys," J. Phys. Chem. Solids 45 , 685 (1984); J.L. Martins 
and A. Zunger, "Bond lengths around isovalent impurities and in semiconductor solid 
solutions," Phys. Rev. B30 , 6217 (1984) 

1 2G.B. Stringfellow, "Calculation of regular solution interaction parameters in semi
conductor solid solutions," J. Phys. Chem. Solids 34, 1749 (1973). 
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Figure 4.3: Regular solution parameters for various pseudobinary alloys. 
Values plotted along the bottom axis were calculated using Equation 4.13; values 
plotted along the left axis are experimental measurements0; values plotted along 
the right axis are the critical temperatures, deduced from Equation 3.38, above 
which the constituent components are fully miscible. 

α Adapted from G.B. Stringfellow, "Calculation of ternary and quaternary III-V phase 
diagrams," J. Cryst. Growth 27, 21 (1974). 

The only te t rahedron whose "ideal" dimension is also given by Equation 4.14 
is the Ino.5Gao.5As tetrahedron, which will not be externally strained, and 
whose excess energy will be due solely to internal distortions. All other 
te t rahedra will have "ideal" dimensions different from tha t given by Equa
tion 4.14. If embedded in the xepi = 0.5 alloy, they will be constrained 
to occupy volumes different from their ideal volume, and will have addi
tional energies due to the externally imposed volumetric distortions. For 
example, an Ino.75Gao.25As tetrahedron has an ideal dimension (neglect
ing relaxations of corner atoms) of 0.25aGaAs,o + 0.75ainAS,o, and must be 
compressed before it can fit into a Ino.5Gao.5As lattice. 

The distortional component comes about when epitaxial films are grown 
coherently on a lattice-mismatched substrate. Suppose, for example, tha t 
the substrate is a single (unstrained) crystal of bulk Ini_X s u bGaX s u b As itself, 
whose In composition is xs ub and whose mean (or virtual crystal) lattice 

http://Ino.5Gao.5As
http://Ino.75Gao.25As
http://Ino.5Gao.5As
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parameter is a weighted average of the two endpoint lattice parameters, 

« s u b = ( 1 — # s u b ) ö G a A s , o + # s u b a i n A s , o ( 4 · 1 5 ) 

As illustrated in the right half of Figure 4.4, if the epitaxial film is coherent 
with the substrate, then its lattice parameter parallel to the interface must 
be the same as that of the substrate, independent of the composition of the 
epitaxial film itself: 

^epi , | | — ^ s u b — v-L *^sub]^GaAs,o ~r ^ s u b ^ I n A s , o · 

In other words, there will be a parallel strain in the film of 

(4.16) 

c ep i , = 2-
xepi ,o 

^epi , | | · Öepi,o 

where 
&epi,o — \± ^ e p i J ^ G a A s , o ι ^ e p i ^ I n A s 

(4.17) 

(4.18) 

is the equilibrium (unstrained) lattice parameter of the epitaxial film. 
As illustrated in the left half of Figure 4.4, however, its lattice parameter 

in a direction perpendicular to the interface will not be the same as the 
equilibrium lattice parameters of either the substrate or the epitaxial film. 
If the film is locked to a substrate with a smaller lattice parameter, then 
the in-plane compressional "squeezing" will force its perpendicular lattice 
parameter to increase in order to preserve (approximately) its unit cell 
volume. If the film is locked to a substrate with a larger lattice parameter, 
then the in-plane tensile "stretching" will force its perpendicular lattice 
parameter to decrease, again in order to preserve (approximately) its unit 
cell volume. 

To understand both the volumetric and distortional components of the 
externally imposed strains quantitatively, we write what is known as the 
generalized Hooke's law for cubic crystals,13 

/ σχ \ 

°z 
7V 

V Tzx ) 
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C l 2 
C l 2 
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\ tzx / 

(4.19) 

1 3 Se e , e.g., A . J . Durel l i , E .A . Ph i l l ips , a n d C.H. T s a o , Introduction to the Theoret
ical and Experimental Analysis of Stress and Strain (McGraw-Hi l l , New York, 1958), 
C h a p . 4. 
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Figure 4.4: Perpendicular (left) and parallel (right) lattice parameters of 
Ini_xGaxAs at composition xepi grown coherently on substrates having the lattice 
parameters of bulk Ini_ xGa xAs at composition xsub· The filled circles represent 
Ini_xGaxAs grown on substrates with compositions xsub = 0 ,1 /2 ,1 . The open 
circles represent Ini_xGaxAs grown on "lattice-matched" substrates with com
positions xsub = xepi, or, alternatively, to incoherent growth. 

where the e^'s and a^s are the normal strains and stresses, respectively, and 
the 7ij 's and Tj/s are the shear strains and stresses, respectively. 

If the epitaxial film and its substrate are oriented along one of the (100) 
cubic symmetry directions, then this equation reduces to 

σβΡΐ,|| \ _ ( C11+C12 c12 \ ( €epi,|| \ (420) 

σβρί,χ ) " V 2C 1 2 C n ) \ 6 e p i ,± ) ' ^ U j 

If, in addition, the epitaxial film has a free surface, such tha t perpendicular 
stresses vanish, then 

0"epi,_L = 2C1 2e e p i i | | + Cii€epi,_L = 0, (4-21) 

and the perpendicular strain and lattice parameter of the film are 

- 2 C 1 2 
^epi,_L 

^_L v*^epi 5 *^sub / 

C C ePM 

l + €, epi,_L /2 
xepi ,o l - € e p i , ± / 2 " 

(4.22) 

On average, then, the unit cell of the epitaxial film has parallel and per
pendicular dimensions given by Equations 4.16 and 4.22, respectively. 
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Now consider the microscopic te t rahedra tha t are embedded within this 
epitaxial film. On average, they must be constrained to the same dimen
sions as the unit cell.14 However, each individual tetrahedron has its own 
"ideal" size, given approximately by Vegard's law: 

a i ? 0 = (1 - Xi)a G a As,o + ^ a i n A s , o , (4.23) 

where X{ is the composition of the i th elementary tetrahedron. If they are 
all constrained to the average dimension of the unit cell of the epitaxial 
film, then they will be strained, according to 

0
a e p i , | | ~~ ai,o 

6i,\\ = λ T 
^epi,|| i ^t,o 

eh± = 2 a e p i ' X ~ üi'°. (4.24) 
^epi,_L I &i,o 

The resulting strain energies of the various te t rahedra (per a tom pair) 
due to these external constraints can then be approximated, through use 
of Equation 4.20, by1 5 

1 r , 
Wi,ext = - L2<7^lle^ll + °"i,-L€i,-Lj 

= (Ci,ll + Ci,12)ci,|| + 2Ci5i2^,±^, | | + ο^«,11€ί,±» (4.25) 

where the elastic constants of the individual te t rahedra can be taken to be 
Vegard's law averages of the elastic constants of the pure component binary 
alloys: 

C i , l l — (1 — ^ i )^GaAs ,o , l l + ^ί^ΙηΑΒ,ο,ΙΙ 

Ci,12 = (1 - #i)CGaAs,o,12 + aJiCinAs,o,12 (4.26) 

4.3 The Cluster Variation Method 
In Sections 4.1 and 4.2, we explored the origin of elastic distortion ener
gies in small microscopic te t rahedra such as those shown in Figure 4.2. In 

14 Note that the tetrahedra with more In atoms will be somewhat larger than the 
average, and those with fewer will be somewhat smaller. Nevertheless, we make the 
simplifying approximation, as we did in Section 4.1.1, that the virtual crystal approx
imation holds for second-nearest-neighbor distances, and that all tetrahedra have the 
same dimensions. 

15We neglect, in this simple treatment, the strain-induced-splitting of the degeneracies 
of tetrahedra differing only by permutations of group III atoms, and treat all tetrahedra 
having the same number of In and Ga atoms to be the same. 
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this section, we ask: how can we use such microscopic information to de
duce macroscopic quantities of interest, such as enthalpies and entropies of 
mixing, or tendencies toward short- and long-range ordering? 

One classic approach to this problem is the cluster variation method 
(CVM),1 6 in which solids are built by statistically combining a finite num
ber of independent, elementary clusters. In principal, the method may be 
made arbitrarily accurate by choosing arbitrarily large clusters. In prac
tice, actual implementations of the method represent trade-offs between 
accuracy and speed.1 7 The larger the clusters, the less important the in-
tercluster interaction energies are relative to intracluster energies, and the 
more accurate the assumption of cluster independence becomes. However, 
the larger the clusters, the more types of elementary clusters (of different 
composition) there will be, and the more time-consuming the combinatorics 
become. 

In this section, we give a brief introduction to the cluster variation 
method. The method can be viewed as an increasingly accurate sequence 
of approximations, and so it is convenient to illustrate it by applying it to 
successively more complex structures: first alloys on ID linear (in Sub
section 4.3.1), then 2D triangular (in Subsection 4.3.2) and finally 3D 
zincblende (in Subsection 4.3.3) lattices. 

The introduction given in this section is somewhat lengthy, both be
cause the cluster variation method gives insight into so many aspects of 
alloy thermodynamics and because a comparable introductory t reatment 
does not appear to exist elsewhere. However, it will not be necessary to 
understand the cluster variation method in detail in order to follow its appli
cation in Sections 4.4 and 4.5 to I n i - ^ G a ^ A s , a prototypical pseudobinary 
I I I /V alloy. The casual reader is advised to begin with Section 4.5. 

4.3.1 ID Linear Lattice 
We start , in this subsection, by illustrating the cluster variation method 
using a simple one-dimensional linear lattice. We consider, in turn , two 
possible ways of constructing this lattice. In the first way, the lattice is 
constructed from uncorrelated "points" of atoms, as shown in Figure 4.5. 
In the second way, the lattice is constructed from correlated "pairs" of 
atoms, as shown in Figure 4.6. 

1 6R. Kikuchi, "A theory of cooperative phenomena," Phys. Rev. 8 1 , 988 (1951). 
1 7D.M. Burley, "Closed form approximations for lattice systems," in C. Domb and 

M.S. Green, Eds., Phase transitions and critical phenomena (Academic Press, London, 
1972), Vol. 2, Chap. 9. 
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x0n A's 
Xjn B's 

• • • • • • • • • • O 

Figure 4.5: Construction of a ID linear chain of points by the addition of a new 
node (open circle) to an existing lattice (filled circles). 

P o i n t s 

Consider first the lowest order "point" approximation, in which the largest 
clusters are the individual atoms themselves. We imagine building an en
semble of n linear chains, each composed of nodes which are either type A 
or type B atoms. If the overall fractions of A and B atoms in the ensemble 
of chains are XQ and x\ = 1 — xo> then each node of the ensemble of chains 
will have x0n A atoms and X\n B atoms. 

Now suppose we wish to add another node to this ensemble of n chains. 
Since the nodes are all independent, we are free to add A atoms to x0n 
nodes of the ensemble in any order, and then to add B atoms to the rest 
of the X\n nodes of the ensemble, again in any order. The number of 
distinguishable ways the atoms may be added is W = n\/[(xon)\(xin)\]. If 
we introduce the CVM notation shown in Table 4.3, 

() = n! (4.27) 

(.) = Π(^)!> (4·28) 
then we have the compact expression 

W = ( ) / ( · ) . (4.29) 

The entropy per node and per chain in the ensemble can then be calcu
lated, using Stirling's formula, to be 

s = -\nW = -kS^Xilnxi. (4.30) 
n ^—' 

As expected, this equation reproduces the entropy of a random mixture of 
noninteracting components. 

Since, by assumption, the nodes do not interact, the energy per node 
and per chain in the ensemble is just a weighted sum of the energies of the 
individual A and B atoms: 

u = 2^xiui- (4-31) 
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Largest Combinatorial Uncorrelated 
cluster Factor cluster Identity 
Space () = n\ — 
Point ( · ) = l\{xin)\ — 
Pair (-) = Ute")!* V) = (·)7() 
Triangle ( Δ ) = Π ( * " ) ! 7 ΐ ( £ ) = ( · ) 7 ( ) 2 

Tetrahedron (A) = Π(™»")!* (ft) = ( · ) 4 / ( ) 3 

Table 4.3: Heirarchy of CVM approximations showing combinatorial factors and 
uncorrelated cluster identities. 

Note, though, tha t although we have assumed tha t the nodes do not in
teract directly, we may still allow them to interact indirectly by allowing 
the energies Ui to depend on the mean composition. For example, if u0 

is proportional to the average concentration of B, uo = Ωχχ/2 , and u\ is 
proportional to the average concentration of A, u\ = Ωχ0/2, then the molar 
energy becomes 

u = Ωχο^ι , (4.32) 

which reproduces the strictly regular solution model for alloys. 
Finally, the free energy of the system, / = u — Ts, can be seen to 

be a function of two parameters , XQ and x\. Only one can be chosen 
freely, however, since, as listed in Table 4.4, they must together obey the 
constitutive "space" relationship 

zo + a?i = l . (4.33) 

Therefore, given the overall composition, x = χχ, the free energy is given 
directly by Equations 4.30 and 4.31. 

Pairs 

Consider now the next CVM approximation, in which the largest clusters 
are pairs of atoms. Again imagine building an ensemble of n linear chains, 
whose nodes have x0n A atoms and x\n B atoms. This t ime, however, we 
include only those chains for which the overall fractions of A A, AB, BA, 
and BB atom pairs (or bonds) assume particular values, say, yo, t/i, 2/1, and 
2/2-

Note tha t we have assumed tha t yi is, by symmetry, the number of 
both the AB and the BA atom pairs. Then, as listed in Table 4.4, the 
degeneracies of the configurations are βχ = 2 and βο = βι — 1. Also note 
tha t the a tom pair fractions yi are not independent of the a tom fractions 
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Configuration 

0 
( · ) Λ 

( · ) Β 
(-)Λ2 

(-)ΛΒ 
(~)Β2 

( Δ ) Λ , 

( Δ ) Λ 2 Β 

( Δ ) Λ Β 2 

( Δ ) Β , 

( Α ) Λ 4 

( Α ) Λ 3 Β 

(&)ΑΒ3 

( Α ) 5 4 

Fraction Degeneracy 

1 — 
χο — 
Χχ — 

I/o βο = 1 
2/ι A = 2 
2/2 #2 = 1 
2ο 7ο = 1 
ζ\ 7ι = 3 
22 72 = 3 
23 73 = 1 
wo <$o = 1 
wi όι = 4 
W2 ^2 = 6 
W3 ^ 3 = 4 
W4 64 = 1 

Constitutive 
Relation 
1 = χ0 + ^ ι 
^ο = 2/ο + 2/ι 
a?i = 2/ι + 2/2 
2/0 = Zo + 2ι 
2/ι = ζλ + ζ2 

2/2 = 22 + Ζ3 

20 = WO + wl 
Ζι =Wi+ W2 

ζ2 = w2-l· w3 

z3 = w3 + w4 

Table 4.4: Configurations, fractions, degeneracies and constitutive relations for 
empty, point, pair, triangular and tetrahedral clusters. 

Xi, but must obey the constitutive "point" relations 

xo = Vo + 2/1 
xi = 2/1+2/2· (4.34) 

These relations arise because all AA and AB pairs are associated on the 
left with an A atom, and all BA and BB pairs are associated on the left 
with a B atom. 

Now suppose we wish to add another node to this ensemble of n chains. 
In this case, the nodes are not independent, so we are not free to add A 
atoms to xon nodes of the ensemble in any order, nor to add B atoms to 
the rest of the x\n nodes of the ensemble in any order. Instead, we must 
add them in such a way tha t the fractions of new atom-pairs are also yo, 
2/1, 2/1, and y2. 

A convenient way of doing this is illustrated in Figure 4.6. To the 
xon chains in the ensemble having A atoms as their last node we add yon 
A atoms and y\n B atoms. The number of distinguishable ways these 
additions can be done is (^o^)V[(2/o^)K2/in)']· Then, to the remaining 
X\n chains in the ensemble having B atoms as their last node we add y\n 
A atoms and 2/2™ B atoms. The number of distinguishable ways these 
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y0n A's x0n A's^ · 7 0 
υ ^ y i n Bs 

_, .Yin A's x ^ Bsc^ _, 1 \ y 2 n B's x.^ 
Figure 4.6: Construction of a ID linear chain of pairs by the addition of a new 
node (open circle) to an existing lattice (filled circles). 

additions can be done is (xin)\/[(yin)\(y2n)\]. The total number of ways is 
the product , or W = [(x0n)\(xin)\]/[(yon)\(yin)\2(y2n)\]. 

If we introduce the CVM notation 

(-) = Πκ*η) ! ΐΑ ' <4·35) 
then we can again write more compactly 

Equations 4.29 and 4.36 are now seen to take the same form, which by 
induction can be writ ten 

The part already filled 
The whole to be completed 

This rule generalizes and simplifies the calculation of combinatoric factors 
for even the most complicated lattice and cluster topologies. 

The entropy per node and per chain in the ensemble can now be deduced, 
again using Stirling's formula, to be 

s = - ]nW = k fexihixi - 5^ /? i2 / i lnyi ) . (4.38) 

Note tha t if the a tom pairs were randomly distributed, then yo = XQ-, 
2/i = XQX\, and y2 = x\. Then, we would have ^ β ^ ΐ η ^ = 2 ^ # ; 1 η χ ; , 
and Equation 4.38 would reduce to Equation 4.30, the entropy of mixing 
in the point approximation. In a more compact notation, we can write 

V) = (·)2/0, (4-39) 
where (-/■) denotes a pair of "uncorrelated" points. Then, 

w = 0 O = _ H _ = _0_ ( 4 4 0 ) 
(■/) (·)70 (·)' [ ] 
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which again is the point approximation result. 
Since, by assumption, individual atoms do interact in the pair approx

imation, the energy per node and per chain in the ensemble is writ ten as 
a weighted sum of the energies of the various kinds of pairs of A and B 
atoms: 

u = Y^ßiyiUi. (4.41) 

The free energy of the system, / — u — T s , is then seen to be a function 
of five fractions, xo, # i , 2/o, 2/i, and 2/2· As before, of the two "point" 
fractions, at most one can be chosen freely, due to the constitutive "space" 
relationship of Equation 4.33. In addition, of the three "pair" fractions, only 
one as well can be chosen freely, due to the constitutive "point" relationships 
of Equation 4.34. 

Now, if the overall composition, x = x\, were free to vary, then the 
equilibrium value of the free energy would be determined by minimizing / 
with respect to both x and one of the pair probabilities, say, y\. This might 
be the case, e.g., if the lattice were composed not of atoms whose overall 
numbers we know, but of spins which are free to flip, as in an Ising model. 
Then, x would play the role of the overall magnetization. 

For problems in alloy thermodynamics, however, x = Xi is usually fixed, 
and is not free to vary. Then, the equilibrium value of the free energy is 
determined by minimizing / with respect to one of the pair probabilities, 
usually taken to be the unlike pair probability, 2/1. In other words, we wish 
to minimize 

/ = 2/0^0 + 22/1^1 + 2/2^2 

+ kT[y0\ny0 + 22/1 In 2/1 +2/2 In 2/2 - (1 - x ) l n ( l - x) - x l n ( x ) ] 
(4.42) 

with respect to 2/1, where 2/0 — 1 — x — V\ a n d 2/2 — χ ~ 2/ι· Taking the 
derivative and setting it equal to zero then gives 

-ϊ- = 2ui -u0-u2 + kT\n( - ^ - ) =0. (4.43) 
oyi \y0y2J 

This expression can be recast, again using the constitutive point rela
tions of Equation 4.34, into the form 

^1 _ e -(2t i i -uo-t i 2) /*7\ (4.44) 
2/02/2 

If each atom pair is considered, in a loose sense, to be a molecule, then 
the equilibrium ratio between the number of AB or BA molecules and the 

file:///y0y2J
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product of the numbers of AA and BB molecules is seen to be given by a 
Boltzmann factor. This is exactly the "mass-action" law expected for the 
chemical reaction 

AA + BB ^ 2AB, (4.45) 

which can be derived by equating a forward rate, proportional to the prod
uct of the concentrations of the AA and BB species, to a backward rate, 
proportional to the concentration of the AB or BA species. In this way, 
the pair approximation is equivalent18 to what is known as the "quasi-
chemical" t rea tment 1 9 of alloy thermodynamics, for which Equation 4.44 is 
the central assumption. 

Equation 4.44 has two limiting behaviors. On the one hand, if 2u\ <C 
^o + ^2> then AB pairs are highly favored over AA and BB pairs, the A 
and B atoms tend to arrange themselves next to each other, and the pair 
probability y\ approaches (1/2) — y/(\/4) — x(l — x). On the other hand, 
if 2u\ ^> i/o + tX2» then A A and BB pairs are highly favored over AB pairs, 
the A and B atoms tend to segregate away from each other, and the pair 
probability y\ approaches 0. In between, if 2u\ — u0 + u2, then AB pairs 
are neither favored nor unfavored over AA and BB pairs, the A and B 
atoms tend to arrange themselves randomly, and the pair probability y\ 
approaches x(l — x). 

Often, it is useful to characterize these behaviors by a short-range "order 
parameter," 

TSRO = Vi ~ yTn
 = y i - x ( l - x ) 

yorä _ yran ( l / 2 ) _ ^ { l / 4 ) _ χ { ΐ _ χ ) _ χ { ΐ _ χ ) ' 
σ δ ΐ ι ο _ j n y_i = yi ^ +j_ ( 4 Λ 6 ) 

- . o r d . . r a n /-· / ^ \ / / - . / A \ 7Z \" /-. \ ' V / 

which is zero if the atoms are arranged randomly, one if the atoms are 
ordered, and minus one if the atoms are "anti-ordered." For the special 
case of x = 1/2, Equations 4.38 and 4.41 can be recast, after some algebra, 
into the forms 

= -k 
1 - 7 ? 

l n ( l^) + i±.ln(i±.) 
1 a S R O 

u = - (u0 + 2ui + u2) H — ( 2 u i - u0 - u2). (4.47) 

If the resulting free energy is minimized with respect to 77, then one finds 

σ 
SRO 

I _ e(2ui-u0-u2)/2kT 

I _|_ e(2ui—u0-u2)/2kT ' (4.48) 

18R. Kikuchi, "Theory of ternary III-V semiconductor phase diagrams," Physica 103B, 
41 (1981). 

19E.A. Guggenheim, "The statistical mechanics of regular solutions," Proc. Roy. Soc. 
(London) A148, 304 (1935). 
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For negative 2u\ — UQ — u<i, <jS R O > 0, and A and B atoms order on a 
microscopic scale; for positive 2u\ —u0 — U2, aSRO < 0, and A and B atoms 
anti-order on a microscopic scale. 

4.3.2 2D Triangular Lattice 
In Subsection 4.3.1, we illustrated the cluster variation method using a 
simple ID linear lattice. In this subsection, we illustrate the cluster vari
ation method using the more complicated 2D triangular lattice shown in 
Figure 4.7. This lattice may be constructed either from points, pairs or 
triangles. 

In the lowest order point approximation, the entropies and energies are 
the same as those for the ID linear lattice, and Equations 4.30 and 4.31 for 
the entropies and energies can be carried over without modification. In the 
pair and triangle approximations, however, the topology of the lattice must 
be taken into account, because it imposes correlations between the various 
pairs and triangles of atoms. We consider, in turn , these two possible ways 
of constructing this lattice. 

Pairs 

Consider first the pair approximation. As before, we assume tha t individual 
atoms interact pairwise, so tha t the energy per node and per chain in the 
ensemble can, as in Equation 4.41, still be writ ten as a weighted sum of the 
energies of the various kinds of pairs of A and B atoms. Also, as before, 
we imagine building a large ensemble of n lattices, whose nodes have x0n 
A a toms and χχη Β atoms, and for which the overall fractions of A A, AB, 
BA, and BB atom pairs are τ/ο> 2/i? Vi·, a n d 2/2· 

Suppose we wish to add another node to this ensemble of lattices, in 
such a way tha t the node contains XQU A atoms and X\n B atoms, and 
each new ensemble of bonds, a-6, a-c and α-d, contains yo A A pairs, y\ 
AB pairs, y\ BA pairs, and y<i BB pairs. This we can do in three steps. 

First, add node a with respect to node b without regard to correlations 
with nodes c and d. The number of ways this can be done is the same as 
tha t for the ID linear lattice, namely, 

W' = ^ . (4.49) 

Second, correct (approximately) for the correlation between a and c by 
multiplying by the factor 

»"'»w· (450) 
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Figure 4.7: Construction of a 2D triangular lattice by the addition of a new node 
(open circle) to an existing lattice (filled circles). 

This factor is the ratio between the number of ways atoms should have been 
placed on node a with respect to node c, ( · ) / ( - ) , and the number of ways 
atoms actually were placed on node a with respect to node c, ( ) / ( · ) . Third, 
correct (approximately) for the correlation between a and d by multiplying 
by the same factor 

( · ) / ( - ) W" 
() /( ·) 

(4.51) 

Another way to look at these two correction factors is to use Equa
tion 4.39 to rewrite them as 

W" = W" (* ) / ( - ) 
() /( ·) 

in 
( - ) ' 

(4.52) 

so that, in the spirit of Equation 4.37, they carry the physical meaning that 
correlated pairs are being built from uncorrelated pairs. Indeed, the first 
combinatorial factor can itself be rewritten as 

W 
( - ) 

"01 
.(•)J L(-). (4.53) 

which carries the physical meaning that an uncorrelated point is first added, 
and then a correlated pair is built from an uncorrelated pair. 

The overall number of ways of adding atoms to node a then becomes 

W = W'W'W'" = 0_ 
(·) ( - ) 

Ί 3 
(·)5 

(-)302 (4.54) 

In other words, again in the spirit of Equation 4.37, we first add an uncor
related point, then correlate the resulting three uncorrelated pairs. 

The entropy per node and per chain in the ensemble can now be calcu
lated, using Stirling's formula, to be 

s = -\nW = k (5^2xi\nxi - 3^ßi j j i InyA . (4.55) 
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Aside from the different numerical factors for the point and pair sums in 
Equations 4.38 and 4.55, all the arguments in Section 4.3.1 hold. 

Triangles 

Consider now the triangle approximation. In this case, we assume tha t 
the energies of atoms can be expressed as sums over triangular triplets of 
atoms, so tha t the energy per node and per chain in the ensemble can be 
writ ten as a weighted sum of the energies of the various kinds of triangles: 

-Σ JiZiUi, (4.56) 

Here, the overall fractions of A3, A<iB, AB2 and B3 triplets are 70^0, 7izi> 
7222 and 7323, with the degeneracies, 7;, listed in Table 4.4 on page 111. 

Now suppose we wish to add another node to this ensemble of n lattices, 
in such a way tha t (1) the node contains XQU A atoms and χχη Β atoms, 
(2) each new ensemble of pairs, a-6, α-c and α-ef, contains 2/0 AA pairs, 
2/1 AB pairs, 2/1 BA pairs and 2/2 BB pairs, and (3) each new ensemble of 
triangles, a-b-c and a-c-d, contains 70^0 As triangles, 712:1 Α2Β triangles, 
7222 AB2 triangles, and 73Z3 B3 triangles. Again, we proceed in steps. 

First, we add node a with respect to the pair b-c without regard to 
correlations with node d. In the spirit of Equation 4.37, the number of 
ways this can be done is 

where 
( Δ ) Ε Ε Π ( ( ^ ) ! Ρ . (4.58) 

Second, correct for the correlation within the triangle a-c-d by multi
plying by the factor 

(-)/(A) 
(·)/(-) · { ' 

The numerator of this factor is the ratio between the number of ways atoms 
should have been placed on node a with respect to the pair c-d. The 
denominator is the number of ways atoms actually were placed on node a 
with respect to the pair c-d, namely, the number of ways the correlated 
pair a-c forming one side of the correlated triangle a-b-c could be formed 
from the point c. 

Again, it is useful to rewrite W and W" as 
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W" ( - ) / ( Δ ) ( - ) 
Ί * Γ 

where 

(·)/(-) W)\ 

r·)3 

M 
L(A)J ' 

(4.60) 

(4.61) 

generalizes Equation 4.39 to uncorrelated triangles. 
The physical meaning of W can now be seen to be the addition of an 

uncorrelated point, the decorrelation of the previously correlated pair 6-c, 
and the correlation of the now uncorrelated triangle a-b-c. The physical 
meaning of W" is seen to be the decorrelation of the pairs a-c and c-d, 
which had been previously correlated, followed by the correlation of the 
now uncorrelated triangle a-c-d. 

Finally, then, the overall number of ways of adding atoms to node a 
becomes 

W = W'W" = _0_ 
(·) L 

"(-)(£)] 
.(TO(A)J 

Γ(-)2(ΔΤ 
ί(Λ2(Δ). 

R3 

(Δ)2(·)' 
(4.62) 

In other words, we first form an uncorrelated point, then for each of the two 
triangles tha t the point belongs to, we uncorrelate all previously correlated 
pairs in the triangles and then correlate the triangles. 

The entropy per node and per chain in the ensemble can now be calcu
lated, using Stirling's formula, to be 

s = -\nW = k\3^2 ßiVi m Vi ~ 2 5Z ΊίΖϊ ln Zi ~ Σ Xi ln Xi) ' (4·63) 
The free energy of the system, / = u — T s , is a function of nine param

eters, #0, # i , I/o, 2/i» 2/2, ^o, z\, Z2, and 23. As before, however, of the two 
point parameters , only one can be chosen freely, due to the constitutive 
space relationship. In addition, none of the three pair parameters can be 
chosen freely, because they must obey the constitutive pair relationships 

2/0 = zo + zx 

2/1 = 21 + Z2 

y2 = z2 + z3. (4.64) 

These equations express the fact tha t each A3 or A2B triangle is formed by 
coupling an a tom to an A2 pair, tha t each A2B or AB2 triangle is formed 
by coupling an a tom to an AB pair, and tha t each AB2 or B3 triangle is 
formed by coupling an a tom to a B2 pair. 

Finally, of the four triangle parameters , only two can be chosen freely, 
because of the constitutive point relations listed in Table 4.4 on page 111. 
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Therefore, for a fixed overall composition, x = xl 9 the equilibrium value 
of the free energy is determined by minimizing / with respect to two of 
the triangle probabilities, which can be taken to be the mixed triangle 
probabilities, z\ and Z2· 

4.3.3 3D Zincblende Lattice 
In Subsections 4.3.1 and 4.3.2, we illustrated the cluster variation method 
using first a ID linear lattice and then a 2D triangular lattice. In this 
subsection, we illustrate the cluster variation method using a 3D zincblende 
lattice, whose projection onto an (001) plane is shown in Figure 4.8. For 
a III-V semiconductor, such a lattice would be built from a superposition 
of two face-centered-cubic sublattices, one containing group III species and 
the other containing group V species. Since we are ultimately interested in 
treating pseudobinary III-III-V alloys, we are interested in the entropy of 
mixing of group III species on the group III sublattice. Note, though, that 
these group III species do not form nearest-neighbor bonds with each other; 
instead, they form next-nearest-neighbor bonds mediated by the group V 
atoms on the group V sublattice. Therefore, two, three, or four group III 
atoms can be considered to form a pair, triangle, or tetrahedron if and only 
if they are all bonded to the same group V atom. 

Triangles 

Consider first the triangle approximation, in which we assume that the 
energies of atoms can be expressed as sums over triangular triplets of atoms, 
as given by Equation 4.56. Suppose we wish to add another node to an 
ensemble of zincblende lattices, in such a way that all the point, pair and 
triangle probabilities are preserved. To do so, we use the following simplified 
rules,20 generalized from Section 4.3.2: 

1. Add an uncorrelated point via the combinatorial factor () / ( · ) . 

2. Enumerate all the largest clusters created by adding that point, re
gardless of overlap. 

3. For each such cluster: (a) uncorrelate all (previously correlated) sub-
clusters via the combinatorial factors ( Δ ) / ( ^ ) , ( — )/(■/)> e^c-> starting 
from large to small; and (b) correlate the cluster itself via the combi
natorial factors (jk)/(A), ( £ ) / ( Δ ) , (■/)/(-), e t c · 

2 0 The rules are not exact, but must be made recursive when clusters overlap in sub-
clusters larger than pairs. 



120 Chapter 4. Ordering and Clustering 

We start, then, by adding an uncorrelated point a, via the combinatorial 
factor 

W = ( ) / ( . ) . (4.65) 

Then, we note that by adding point a, we have formed three new trian
gles, a-b-c, α-b-d, and a -e - / , and one new pair, a-g. We do not include 
the triangles a-d-g and a-f-g, because these clusters of group III atoms 
are not all bonded to a common group V atom. Within triangle a -e - / , 
we must uncorrelate the pair e-f and then correlate the triangle via the 
combinatorial factor 

W" = 
.(TOJ 

IW 
L(A). 

(4.66) 

Similarly, within triangle a-b-c, we must uncorrelate the pair b-c and then 
correlate the triangle via the combinatorial factor 

W" .Mi 
| W 
ί(Δ). 

(4.67) 

Within triangle a-b-d, we must now uncorrelate two pairs, a- b (which we 
just correlated in correlating the triangle a-b-c) and b-d, before correlating 
the triangle: 

W"" = 
(A)" 

(4.68) 

Finally, we must correlate the pair a-g via the combinatorial factor 

W'"" = ( T O / R - (4-69) 

Altogether, the number of ways of adding an atom at a is 

( - )3 ( · )2 

w = w'w"w'"w""w (Δ)3()2 

and the entropy is 

s = ̂  ( 3 Σ @iyi m yi + 2 Σ Xi m;c* ~ 3 Σ 7iZi m Zi) 

(4.70) 

(4.71) 

As before, the free energy of the system, / = u — Ts, is a function of 
nine parameters, x0, χχ, y0, 2/i, 2/2, ZQ, Z\, Z2 and Z3. However, for a fixed 
overall composition, x = χχ, the constitutive relations eliminate all but two. 
The equilibrium value of the free energy is then determined by minimizing 
/ with respect to two of the triangle probabilities, e.g., the mixed triangle 
probabilities z\ and 22· 
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Figure 4.8: Top view of the construction of a 3D zincblende lattice by the 
addition of a new node (open circle) to an existing lattice (filled circles). For a 
III-III-V alloy, the filled circles and squares would correspond to group III and 
group V atoms, respectively. The atoms in each (001) sheet are represented by 
symbols of the same size; the smaller the symbol the deeper the sheet. The solid 
lines represent next-nearest-neighbor bonds between group III atoms mediated 
by group V atoms. 

Tetrahedra 

In the tetrahedron approximation we assume tha t the energies of atoms can 
be expressed as sums over tetrahedral quadruplets of atoms, 

Σ* WiUi, (4.72) 

Here, the overall fractions of A4, A%B, A<iB2, A\B?>, and B4 quadruplets 
are <$ο^ο, # ι ^ ι , <$2̂ 2» ^3^3? a n d 64^4, respectively, with the degeneracies, 
<$i, listed in Table 4.4 on page 111. 

Suppose we wish to add another node to this ensemble of lattices, in 
such a way tha t all the point, pair, triangle, and te trahedron probabilities 
are preserved. To do so, we again use the rules outlined in Section 4.3.3. 

We start by adding an uncorrelated point a, via the combinatorial factor 

W = ()/(. (4.73) 

Then, we note tha t by adding point a, we have formed one new tetrahedron, 
a-b-c-d, one new triangle, a - e - / , and one new pair, a-g. Again, we include 
neither the tetrahedron a-d-g-f nor the triangles a-d-g and a-f-g, because 
these groups of atoms are not all bonded to a common group V atom. 

Within tetrahedron a-b-c-d, we must uncorrelate the triangle b-c-d and 
then correlate the tetrahedron via the combinatorial factor 

W" "(Δ)1 
1(A) (4.74) 
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where 

(A) ~ ( # ) 4 (4.75) 

generalizes Equation 4.39 to uncorrelated te t rahedra. Within triangle o-e-
/ , we must uncorrelate the pair e-f before correlating the triangle: 

W'" = 
( A ) J ' 

(4.76) 

Finally, we must correlate the pair α-g via the combinatorial factor 

W"" = ( T 0 / ( - ) . (4.77) 

Altogether, the number of ways of adding an a tom at a is 

( . ) 3 
W = W'W'W'W 

( A ) ( ) 2 ' 

and the entropy is 

= k ( 3 2^ xi m xi — / . Öiwi In i#i) . 

(4.78) 

(4.79) 

Note tha t , for the peculiar topology of the zincblende lattice, the free energy 
of the system, 

/ = ^^SiWiUi + kT (S^öiWilnWi - 3 ^ ^ 1 η χ Π , (4.80) 

contains no pair and triangle probabilities. If it had, though, they could 
have beeen eliminated either through the constitutive pair relations listed 
in Table 4.4 on page 111 or the constitutive "triangle" relations 

zo 
Z\ 

Z2 

Z3 

= 
= 
= 
= 

W0 + Wi 

Wi + W2 

w2 + w3 

w2 + w3. (4.81) 

The equilibrium value of the free energy is determined by minimizing 
/ with respect to the five te t rahedron probabilities Wi and the two point 
probabilities X{, subject to the three constraints embodied in the two con
stitutive pair relations and the constitutive space relation. In general, this 
minimization can be performed through s tandard techniques based on La-
grange multipliers, one of which can be identified with the chemical po
tential for species B. This leads to a set of seven nonlinear equations tha t 



4.3. The Cluster Variation Method 123 

can be solved through a compact procedure called the "natural iteration 
method."21 In essence, that method begins by guessing values for the point 
probabilities, using those guesses to calculate the tetrahedron probabilities, 
from which the point probabilities can be recalculated, etc. 

For the zincblende lattice, however, it is simpler to eliminate directly 
two of the five tetrahedra probabilities using the constitutive pair and space 
relations. Taking these to be the "pure" cluster probabilities, we then have 

w0 = 1 — x - (3wi + 3w2 + w3) 
w4 = x- (w1 + 3w2 + 3w3) (4.82) 

Therefore, for a fixed overall composition, x = χχ, the equilibrium value of 
the free energy is determined by minimizing / with respect to the remaining 
three "mixed" tetrahedron probabilities w\, w2 and w3. 

Taking derivatives of Equation 4.80 with respect to wi, w2, and w3 
gives, after some algebra, 

w1 

WQW4 
4 

w2 

4 
^ 3 

WQW\ 

= 

= 

= 

— (4^1—3^0—^4)/^^ 

e-(4u2-2u0-2u4)/kT 

— (4u3—u0 — 3u4)/kT (4.83) 

Note that Equations 4.83 are in exactly the "mass-act ion" form expected 
for chemical reactions between "molecular" tetrahedra: 

\A3B ^ 3A4 + B4 

AA2B2 ^ 2 A4 + 2£4 

4AB3 ^ A4 + 3£ 4 , (4.84) 

and are therefore equivalent, as were Equations 4.44, to a "quasi-chemical" 
treatment, though of tetrahedra rather than of pairs. In general, chemical 
reactions between pairs, triplets, and quadruplets form the basis for what 
are known as the first, second and third quasi-chemical approximations.22 

The tetrahedron approximation of the CVM, applied to a zincblende lattice, 
is therefore equivalent to the third quasi-chemical approximation. It should 
be emphasized, though, that CVM calculations are not always equivalent to 

2 1R. Kikuchi, "Superposition approximation and natural iteration calculation in 
cluster-variation method," J. Chem. Phys. 60, 1071 (1974). 

2 2 E. A. Guggenheim, "Statistical mechanics of regular mixtures," Proc. Roy. Soc. (Lon
don) A206, 335 (1951). 
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quasi-chemical approximations; in this case the equivalence is a consequence 
of the peculiar topology of the zincblende lattice, whose combinatorial fac
tor of Equation 4.78 contains no intermediate subclusters such as triangles 
or pairs. Otherwise, an equivalence can only be established by the addi
tional assumption tha t those intermediate subclusters are uncorrelated. 

Equations 4.83, together with Equations 4.82, form a set of coupled 
nonlinear equations which can be solved for the te t rahedra probabilities, t ^ , 
in terms of the te t rahedra energies, U{. To do so, it is convenient to make use 
of their equivalence to a quasi-chemical t reatment by reformulating them 
as chemical rate equations tha t can be solved by numerical simulation. 

If we rewrite Equations 4.84 in terms of reactions between te t rahedra 
differing by only the exchange of one atom, then we have 

4A3B 

4A2B2 

4AB3 

k l 

k2 

k2 

k3 

k3 

2A4 + 2A2B2 

2A3B + 2AB3 

2A2B2 + 2B4. 

cward reaction rates can be con\ 

fc+ = 
k~ = 

k2 = 

k2 = 

k3 = 

k3 = 

w0w2e~ 
2 - ( 2 

W\W3e~ 

2 - ( 2 
w2e K 

w2w±e~ 
2 - ( 2 

-{2u\ —uo—U2,)/kT 

u\-2u1)/kT 

-(2^2— u\ —U3)/kT 

Uj —2u-2)/kT 

-(2ti3 —U2—u^)/kT 

ul~2u3)/kT 
1 

(4.85) 

(4.86) 

where u\, u2, and ^3 are activation energies tha t can be chosen to match 
the time-step of the numerical simulation. In practice, the choices 

u\ = max{(w0 + u2)/2,iii} 
u2 = max{(ui+u3)/2,u2} 
u3 = max{(w2 4- η4)/2,ζι3} (4.87) 

give convergence to steady-state in a reasonable number of time-steps. Note 
also tha t these choices of rate constants guarantee tha t in the steady-state, 
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defined by setting k^ = k^, k£ — k2 and k£ — k% , Equations 4.83 will be 
satisfied. 

In terms of these rates, the time evolution of the te t rahedra probabilities 
can be writ ten as 

7o^o = ~{kf-ki) 
7iii)i = 2(fĉ ~ — k^) — (k2 — k2) 
l2w2 = _(fc+_fc-) + 2(k+-k-) - (k+-k~) (4.88) 

73^3 = (k2 ~ k2~) + 2(fe3~ - ks) 
74ii}4 = - ( * 3 * - * 3 ~ ) 

Note tha t these rate equations are conservative, so tha t an initial prob
ability distribution will remain correctly normalized, and an initial overall 
composition, x = w\ + 3u>2 + 3u;3 + 1^4, will remain constant. In practice, 
two convenient initial probability distributions are the completely random 
Bernoullian distribution, 

«i1üi,ran = ( 4 Λ Χ 1 ( 1 - Xf~\ (4.89) 

and the completely nonrandom linear distribution, 

£tWt,ord = max{0,1 - 4 \x - Xi\}, (4.90) 

where X{ is the composition of the zth cluster. 

4.4 A Pseudobinary III-V Alloy: "InGaAs" 

In Section 4.3, we described how, given the energies of various elementary 
tetrahedra, their occupation statistics could be calculated using the cluster 
variation method, and the free energy of an alloy as a whole could be de
termined. In this section, we apply this procedure in an approximate way 
to the pseudobinary alloy In i - ^GaxAs . The t reatment is only semiquanti
tative, but will include all the most interesting and important features tha t 
have been observed in alloys of this type, such as short- and long-range 
ordering.2 3 Tables 4.5 and 4.6, e.g., list the ordered alloys tha t have been 
observed thus far in I I I /V compound semiconductors. 

2 3 H. Nakayama and H. Fujita, "Direct observation of an ordered phase in a disordered 
I n i _ x G a x A s alloy," Inst. Phys. Conf. Ser. 79, 289 (1985); H.R. Jen, M.J. Cherng and 
G.B. Stringfellow, "Ordered structures in GaAsSb alloys grown by organometallic vapor 
phase epitaxy," AppL Phys. Lett. 48, 1603 (1986); T.S. Kuan, W.I. Wang and E.L. 
Wilkie, "Long-range order in In i -^Ga^As," Appl. Phys. Lett. 5 1 , 51 (1987); and M.A. 
Shahid and S. Mahajan, "Long-range atomic order in G a x I n i _ x A s y P i _ y epitaxial layers 
[(x,y) = (0.47,1), (0.37,0.82), (0.34,0.71) and (0.27,0.64)]," Phys. Rev. B38 , 1344 (1988). 
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Alloy 
GaPAs 

InPAs 

GaPSb 

Growth 
Tech
nique 
MOVPE 

MOVPE 

MOVPE 

Sub
strate 
(001) 

(001) 

(001) 

Struc
ture 
Lli 

Lli 

Ll i 
(weak) 

Reference 
H.R. Jen, D.S. Cao and G.B. 
Stringfellow, Appl. Phys. Lett. 54, 
1890 (1989). 

D.H. Jaw, G.S. Chen and G.B. 
Stringfellow, Appl. Phys. Lett. 59, 
114 (1991). 

J.R. Pessetto and G.B. Stringfel
low, J. Cry st. Growth 62, 1 
(1983). 

G a A s S b M O V P E (001) L l 0 

(110) E l i 
(221) 
(311) 

H.R. Jen, M.J. Cherng and G.B. 
Stringfellow, J. Cryst. Growth 48 , 
1603 (1986). 

G a A s S b M B E (001) L l i I.J. Murgatroyd, A.G. Norman 
and G.R. Booker, J. Appl. Phys. 
67, 2310 (1990); and Y.E. Ihm, N. 
Otsuka, J .F. Klem and H. Morkog, 
Appl. Phys. Lett. 5 1 , 2013 (1987). 

InPSb 

InAsSb 

MOVPE (001) 

MOVPE (001) 

Lli 

Lh 

J.R. Pessetto and G.B. Stringfel
low, J. Cryst. Growth 62, 1 
(1983). 

H.R. Jen, K.Y. Ma and G.B. 
Stringfellow, Appl. Phys. Lett. 54, 
1154 (1989). 

T a b l e 4 .5 : Ordered I I I / V - V alloys observed to da te in layers formed by 
any epitaxial growth technique. 0 T h e growth techniques referred to are molecular 
beam epi taxy (MBE) , metal-organic vapor phase epi taxy ( M O V P E ) , l iquid-phase 
epi taxy ( L P E ) , and vapor-levitat ion epi taxy (VLE) . T h e s t ruc tures referred to 
are i l lustrated in Figures 4.9 and 4.10. 

aAdapted from G.B. Stringfellow and G.S. Chen, "Atomic ordering in III /V semicon
ductor alloys," J. Vac. Sei. Technol. B9 , 2182 (1991). 
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Alloy 

Growth 
Tech
nique 

Sub
strate 

Struc
ture Reference 

G a l n P M O V P E (001) L l i J.P. Goral, M.M. Al-Jassim, J.M. 
Olsen and A. Kibbler, Mat. Res. 
Soc. Symp. Proc. 102, 583 (1988); 
T. Suzuki, A. Gomyo, and S. 
Iijima, J. Cryst. Growth 93 , 
396 (1988); and O. Ueda, M. 
Takikawa, J. Komeno, and I. 
Umebu, Jpn. J. Appl. Phys. 26, 
L1824 (1987). 

AlGalnP 

AlGaAs 

MOVPE 

MOVPE 

(001) 

(001) 
(110) 

Ll i 

Llo 

G.S. Chen, T.Y. Wang, and G.B. 
Stringfellow Appl. Phys. Lett. 56, 
1463 (1990). 

T.S. Kuan, T.F. Kuech, W.I. 
Wang, and E.L. Wilkie, Phys. 
Phys. Lett. 54, 201 (1985). 

A l I n A s M O V P E (001) L l 0 A.G. Norman, R.E. Mallard, I.J. 
Murgatroyd, G.R. Booker, A.H. 
Moore, and M.D. Scott, Inst. 
Phys. Conf. Ser. 87, 77 (1987). 

InGaAs 

InGaAs 

InGaAs(P) 

InGaAs(Sb) 

LPE 

MBE 

VLE 

MOVPE 

(001) 

(110) 

(001) 

(001) 

Llo 
E l i 
D02 2? 
Llo 

Ll i 

Llo 
Eh 

H. Nakayama and H. Fujita, Inst. 
Phys. Conf. Ser. 79, 289 (1985). 

T.S. Kuan, W.I. Wang, and E.L. 
Wilkie, Appl. Phys. Lett. 5 1 , 51 
(1987). 

M.A. Shahid and S. Mahajan, 
Phys. Rev. Lett. B38, 1344 (1988). 

H.R. Jen, M.J. Cherng, and G.B. 
Stringfellow, Inst. Phys. Conf. 
Ser. 83, 159 (1987). 

T a b l e 4 .6 : Ordered I I I - I I I /V alloys observed to da te in layers formed by 
any epitaxial growth technique. 0 T h e growth techniques referred to are molecular 
beam epi taxy (MBE) , metal-organic vapor phase epi taxy ( M O V P E ) , l iquid-phase 
epi taxy (LPE) and vapor-levi tat ion epi taxy (VLE) . T h e s t ruc tures referred to are 
i l lustrated in Figures 4.9 and 4.10. 

"Adapted from G.B. Stringfellow and G.S. Chen, "Atomic ordering in III /V semicon
ductor alloys," J. Vac. Sei. Technol. B9 , 2182 (1991). 
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We begin, in Subsection 4.4.1, by estimating the composition-dependent 
energies of the various elementary te t rahedra. Then, in Subsection 4.4.2, 
we apply the cluster variation method to est imate the composition and 
temperature dependent probabilities of the various elementary tetrahedra. 
Then, in Subsection 4.4.3, we estimate from these te t rahedra energies and 
probabilities the composition and temperature dependent molar Gibbs free 
energy of the alloy as a whole. Finally, in Subsection 4.4.4, we discuss the 
tendency of these alloys to order, i.e., for the te t rahedra probabilities to be 
peaked at film compositions tha t match those of the te t rahedra themselves. 

4.4.1 Tetrahedra Energies 
Let us start , in this subsection, by describing the energetics of the ele
mentary te t rahedra of which such an alloy is composed. Those energies 
can be thought of as arising from the two kinds of distortions discussed in 
Sections 4.1 and 4.2. The first kinds are distortions internal to the tetrahe
dra due to the different equilibrium Ga-As and In-As bond lengths. The 
second kinds are distortions of the te t rahedra as a whole due to external 
constraints imposed by coherency of the epitaxial film with a substrate. 
Strictly speaking, these two kinds of distortions are not independent, be
cause various externally imposed distortions may be more or less compatible 
with particular internal distortions.2 4 In this simplified t reatment , however, 
we neglect interactions between the two. 

C o h e r e n c y a n d E x t e r n a l D i s t o r t i o n s 

First, consider the energies of te t rahedra due to external distortions. These 
distortions arise, as discussed in Section 4.2, because of macroscopic strains 
imposed by coherency with a substrate. The additional energy due to these 
distortions is given by Equation 4.25. 

Order ing and Internal D i s t o r t i o n s 

Second, consider the energies of te t rahedra due to internal distortions. 
Those energies were estimated in Section 4.1, in a calculation which as
sumed tha t the corner group III a toms were pinned at their virtual crystal 
positions. In fact, those corner group III a toms will have a tendency to re
lax away from their virtual crystal positions, thereby decreasing the cluster 
energy. 

2 4A.A. Mbaye, D.M. Wood and A. Zunger, "Stability of bulk and pseudomorphic 
epitaxial semiconductors and their alloys," Phys. Rev. B37 , 3008 (1988). 
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Two extremes of behavior can be imagined. On the one hand, if the 
various tetrahedra were distributed randomly, as in a disordered alloy, then 
the relaxations of the various corner group III atoms will themselves tend 
to be random. Then, since each group III atom belongs to four tetrahedra, 
relaxations that decrease the energy of one tetrahedron will just as likely as 
not increase the energy of the other three. For this reason, the incoherent 
superposition of relaxations of group III atoms characteristic of a disordered 
alloy is not expected to greatly reduce the internal distortional energy from 
those estimated in Section 4.1 and listed in the first row of Table 4.7. 

On the other hand, if the various tetrahedra were distributed in an or
dered arrangement, then the relaxations of the various corner group III 
atoms will themselves tend to be ordered. Relaxations that decrease the 
energy of one tetrahedron may be exactly the relaxations required to re
duce the internal distortion of the adjacent tetrahedra, and so on. For 
this reason, the coherent superposition of relaxations of group III atoms 
characteristic of an ordered alloy is expected to reduce the internal distor
tional energy from those estimated in Section 4.1. For example, for the 
GaAsSb alloy, calculations indicate that the chalcopyrite and famatinite 
structures illustrated in Figure 4.10 may be the least distorted,25 although 
the layered tetragonal and layered trigonal ordered compounds are experi
mentally more commonly observed (see Tables 4.5 and 4.6). Note also that 
surface thermodynamics and kinetics effects not taken into account here 
may influence which of the ordered structure actually appears.26 

For the disordered alloy, then, we would like to use the cluster energies 
calculated in Section 4.1 and listed in the first row of Table 4.7; for the 
ordered alloys, we would like to use the reduced values listed in the second 
row of Table 4.7; and for partially ordered alloys, we would like to use values 
somewhere in between. To incorporate these ideas in a semiquantitative 
way, we assume that the energies of the various tetrahedra depend on the 
occupation probability of the tetrahedra themselves: 

^i,int — ̂ i,int,dis "I" (^i,int,ord — ^i,int,dis)(o^i) . (4-91) 

In other words, as the probability of particular clusters increases, their 
tendency to interact coherently and lower their energy also increases. At low 
enough temperatures, this kind of cooperative interaction ultimately leads 
to long-range ordering into stoichiometric structures. Note, though, that 
only a few of the "wrong" kind of tetrahedra might be expected to destroy 

2 5A.A. Mbaye, D.M. Wood and A. Zunger^ "Stability of bulk and pseudomorphic 
epitaxial semiconductors and their alloys," Phys. Rev. B37 , 3008 (1988). 

26See, e.g., S. Froyen, and A. Zunger, "Surface-induced ordering in GalnP," Phys. Rev. 
Lett. 66, 2132 (1991). 
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Figure 4.9: Examples of ordered fee (or pseudobinary zincblende) structures 
and their space groups.0 

"Reprinted from L.G. Ferreira, S-H Wei and A. Zunger, "First-principles calculation 
of alloy phase diagrams: the renormalized-interaction approach," Phys. Rev. B40 , 3197 
(1989). 
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Figure 4.10: Examples of ordered fee (or pseudobinary zincblende) structures 
and their space groups.0 

aReprinted from L.G. Ferreira, S-H Wei, and A. Zunger, "First-principles calculation 
of alloy phase diagrams: the renormalized-interaction approach," Phys. Rev. B40, 3197 
(1989). 
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^0,int ^l , int ^2,int ^3,int ^4,int 
Disordered 0 0.023 0.031 0.023 0 

Ordered 0 0.017 0.016 0.017 0 

Table 4.7: Estimated internal distortion energies (in eV per atom pair) 
of the elementary InGaAs tetrahedra shown in Figure 4.2. The energies listed 
in the first row were estimated for a disordered arrangment of tetrahedra, whose 
corner atoms, on average, are bound to virtual crystal sites.0 The energies listed 
in the second row are those (very roughly) estimated for an ordered arrangement 
of tetrahedra, whose corner atoms can relax "in-phase" with the corner atoms of 
adjacent tetrahedra. 

a M . Ichimura and A. Sasaki, "Short-range order in III-V ternary alloy semiconduc
tors," J. Appl. Phys. 60, 3850 (1986); A. Sher, M. van Schilfgaarde, A.-B. Chen and W. 
Chen, "Quasi-chemical approximation in binary alloys," Phys. Rev. B36, 4279 (1987). 

°Estimated very roughly by scaling the results of calculations in the GaAsSb system 
by L.G. Ferreira, S-H Wei, and A. Zunger, "First-principles calculation of alloy phase 
diagrams: the renormalized-interaction approach," Phys. Rev. B40, 3197 (1989). 

the coherency of the tetrahedron relaxations. Therefore, we expect the 
ordering energy to be a highly nonlinear function of the cluster probability 
itself. In this t reatment , we take λ, the nonlinearity parameter , to be eight. 

In a sense, we have augmented the te t rahedron approximation of the 
CVM, which allows different te t rahedra to have different energies, with a 
point, or mean-field approximation of the CVM to allow each tetrahedron's 
energy to depend also on the average te t rahedra populations. We must em
phasize, though, tha t this simple, mean-field t reatment of long-range order 
is only a semiquantitative one. To treat long-range order quantitatively 
within the CVM, it is necessary to distinguish between the (up to) four 
group III sublattices in the ordered structures, and to account explicitly 
for the occupation statistics on each sublattice of the (up to) 16 kinds of 
te t rahedra . 2 7 

Total Energ ie s 

The internal and external strain energies can now be summed to give 

u% = UiMt + Ui,ext. (4 .92) 

2 7W.L. Bragg and E.J. Williams, "The effect of thermal agitation on atomic arrange
ment in alloys" Proc. Roy. Soc. (London) A145, 699 (1934); H.A. Bethe, "Statistical 
theory of superlattices," Proc. Roy. Soc. (London) A150, 552 (1935); C M . van Baal, 
"Order-disorder transformations in a generalized Ising alloy," Physica 64, 571 (1973); 
and D. de Fontaine, "Configurational thermodynamics of solid solutions," Solid State 
Physics 34, 73 (1979). 
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These energies cannot be evaluated directly, since, through Equation 4.91, 
they depend on the te t rahedron probabilities, which in turn depend (self-
consistently) on the energies themselves. However, we can get an approxi
mate idea of how the te t rahedra energies depend on the compositions, xepi 

and xSub, of the epitaxial film and the substrate by calculating the energies 
of a completely disordered alloy, so tha t the te t rahedra probabilities con
tr ibute negligibly to Equation 4.91, and Ui^nt —+ ?/i,int,dis· Those energies 
are plotted in the right column of Figure 4.11 as functions of xepi and x s ub· 

Consider first the type 0 tetrahedron at the bo t tom of tha t column. All 
of its group III atoms are Ga, and so its externally imposed strain energy 
is zero when it is embedded in a film of pure GaAs grown undistorted and 
lattice-matched to a substrate of pure GaAs. Moreover, its internal distor-
tional strain energy is also zero, since the central As a tom is symmetrically 
situated within a te trahedron of equivalent Ga atoms. Therefore, its total 
strain energy is zero at xepi = x s ub = 0. 

If now we increase xepn then the average lattice parameter of the epi
taxial film increases, and the unit cell of the epitaxial film grows. At the 
same time, the size of the te t rahedra embedded in the film are tied to those 
of the unit cell. Therefore, the type 0 te t rahedra themselves must grow, 
even if they would "prefer" not to, and their strain energies must increase. 

Note tha t even as xepi increases, we can choose either to increase the 
substrate lattice parameter at the same rate (xsub — #epi) or to keep it fixed 
(^sub = 0)· If w e increase it at the same rate (open circles in Figure 4.11), 
then the unit cell of the epitaxial film remains an undistorted, albeit larger, 
cube. The energy of the type 0 te t rahedra increases due to tha t volume 
mismatch. If, however, we keep it fixed (filled near circles in Figure 4.11), 
then the unit cell of the epitaxial film is not only larger, but distorted as 
well. The energy of the type 0 te t rahedra is therefore also quite high when 
xepi = 1 and x s ub = 0. 

Suppose, now, tha t we fix xepi at zero, but increase xsub- Then, the 
unit cell of the epitaxial film remains approximately the same size, but it 
distorts, as its parallel lattice parameter increases and its perpendicular 
lattice parameter decreases. Therefore, its energy increases, reaching a 
maximum at xsuh = 1. If xep\ is now increased, then the volume of the unit 
cell increases, but the distortion in the unit cell decreases. Initially, the 
strain energy in the type 0 te t rahedra decreases as the unit cell distortion 
decreases, but eventually it increases as the volume mismatch between the 
type 0 te t rahedra and the film unit cell increases. 

Similar arguments can be used to understand the dependences of the 
energies of the other types of te t rahedra on xepi and x sub- In general, the 
energy minima for the various te t rahedra occur when both xepi and xsub 
are equal to the composition of the cluster itself. The reasons are tha t when 
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Type 4 

Type 3 

Type 2 

Type 1 

Type 0 

Figure 4.11: Energies of various tetrahedra embedded in disordered Ini_xGaxAs 
of composition xepi grown coherently on substrates having the lattice parameters 
of bulk Ini_xGaxAs at composition xsub· 
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Xi = #epi > the volume of cluster i is best matched to the volume of the unit 
cell of the epitaxial film, and when xepi = xsu\> the unit cell of the film 
is least distorted. Deviations from xepi = xsu\> = X{ along the xepi = xsu^ 
diagonal lead to volume mismatches and relatively large increases in energy. 
Deviations from xepi = xsuh = x\ through changes in xsu\y lead to distortions 
and somewhat smaller increases in energy. Deviations from 

*Eepi — *£sub — %i 
through changes in xepi lead to some of both, and intermediate increases in 
energy. 

Note tha t Equation 4.92 includes only the elastic potential energy con
tribution to the energies of each cluster. In principle, the temperature 
dependences of the molar energies and entropies could also be determined 
by heat capacity functions for each cluster, via Equations 2.9 and 2.8. How
ever, in this simple t reatment , we make the approximation tha t the various 
te t rahedra all have the same heat capacities. Then, the temperature de
pendences to their molar energies and entropies are all the same. Since 
te t rahedra probabilities depend only on the relative energies, we can ne
glect those temperature dependences. 

4.4.2 Tetrahedra Probabilities 
In Subsection 4.4.1, we estimated the energetics of the various elemen
tary te t rahedra from which the InGaAs alloy may be constructed. In this 
subsection, we use these elementary te t rahedra energetics to calculate the 
te t rahedra probabilities using the rate equation method outlined in Sec
tion 4.3.3. These are shown in Figure 4.12 as functions of xepi and xsu\> 
at fixed temperatures of 100, 600, and 1100 K. Two opposing tendencies 
determine the probability distributions. 

The first tendency is energy minimization. For a given composition 
of the epitaxial film, the two te t rahedra whose compositions just straddle 
Xepi will be the least volume mismatched, and will usually have the lowest 
energies. The film energy will then be minimized if it is composed of a 
weighted combination of only those two tetrahedra. For example, if xepi — 
3/8, then the type 1 (x\ — 1/4) and type 2 (x2 = 1/2) te t rahedra will have 
the lowest energies, and the lowest energy film will be tha t composed of 
half type 1 and half type 2 te trahedra. Therefore, at 100 K (left column 
of Figure 4.12), where energy minimization is most important , only two 
kinds of te t rahedra are ever significantly populated, and the probability 
distribution approaches the linear ramp given by Equation 4.90. 

The second, opposing, tendency is entropy maximization. As can be 
seen in Figure 4.12, as temperature increases and entropy becomes an in
creasingly important component of the molar Gibbs free energy, the prob
abilities "diffuse" away from the te t rahedra whose compositions straddle 
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tha t of the epitaxial film. The probabilities cannot diffuse too far away, 
however, since the overall composition of the film is still constrained to 
be Y^PiXi = xep[. Ultimately, at 1100 K, the probability distribution ap
proaches the Bernoullian distribution given by Equation 4.89. 

4.4.3 Free Energies 
In Subsections 4.4.1 and 4.4.2, we estimated the energetics and probabilities 
of the various elementary te t rahedra from which the InGaAs alloy may be 
constructed. In this subsection, we use these energetics and probabilities 
to calculate the molar Gibbs free energy of the film as a whole using Equa
tion 4.80. These free energies are shown in Figure 4.13 as functions of xepi 

and x s ub, again for three fixed temperatures: 100, 600, and 1100 K. These 
temperatures are representative of three distinct regimes of behavior. 

At the highest temperature , 1100 K, the molar Gibbs free energy is 
everywhere and in every direction concave up. Therefore, films cannot 
lower their molar Gibbs free energies by decomposing spatially into local 
regions, some having higher xep\ and others having lower xep\. Epitaxial 
films at this tempera ture are stable against such macroscopic compositional 
clustering. 

At the intermediate temperature , 600 K, the molar Gibbs free energy 
is concave up with respect to horizontal fluctuations in xepi (at fixed xSub), 
but concave down with respect to diagonal fluctuations in xepi (mimicked 
by identical flucations in x s ub)· Therefore, films cannot lower their molar 
Gibbs free energies by composition fluctuations tha t preserve xsub, but can 
by fluctuations tha t do not preserve x s ub· In other words, fluctuations in 
which the local regions remain coherent with the substrate are suppressed, 
while fluctuations in which the local regions are incoherent (and hence free 
to adopt their equilibrium lattice parameter) are not. Epitaxial films at this 
temperature are stable against coherent macrosopic clustering, but unstable 
against incoherent macrosopic clustering. 

At the lowest temperature , 100 K, the molar Gibbs free energy is, for 
some combinations of xepi and xSub, concave down with respect to both 
horizontal and diagonal fluctuations in xepi- Therefore, these films can 
lower their molar Gibbs free energies both by composition fluctuations tha t 
preserve xsub, as well as by fluctuations tha t do not preserve xSub- These 
films at this temperature are not stable against either coherent or incoherent 
macroscopic compositional clustering. 

Note tha t the downward concavity of the molar Gibbs free energy at 
100 K is most exaggerated at those special compositions (1/4, 1/2, 3/4) for 
which we have assumed ordering may take place. The sharpness of those 
cusps is a consequence of the cooperative nature of the ordering process. 



4.4. A Pseudobinary III-V Alloy: "InGaAs" 137 

100 K 600 K 1100 K 

Figure 4.12: 100, 600, or 1100 K probabilities of various tetrahedra embedded 
in Ini_a;GaxAs of composition xepi grown coherently on substrates having the 
lattice parameters of bulk Ini_xGaxAs at composition xsub· 
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In the Ino.25Gao.75As alloy, for example, the more Ino.25Gao.75As tetrahe-
dra there are, the closer W\ approaches unity, the lower the energy ^i,int 
becomes, and the more favored the Ino.25Gao.75As tetrahedra become. At 
higher temperatures or at compositions slightly offIno.25Gao.75As, there are 
never enough I1io.25Gao.75As to "get the process going," and the tetrahedra 
energies are dominated by their disordered values. 

Also note that with respect to horizontal fluctuations, the resulting 
cusps are even, for intermediate substrate compositions, global minima in 
the molar Gibbs free energies. Therefore, films that are constrained to be 
coherent with a substrate are unstable against clustering into ordered alloys. 
With respect to diagonal fluctuations, however, the cusps are only local 
minima. Therefore, films not constrained to be coherent with a substrate 
are unstable against clustering into ordered compounds, but those ordered 
compounds are themselves unstable against further clustering into (nearly) 
pure GaAs and (nearly) pure InAs. 

To understand these three temperature regimes more concretely, con
sider an epitaxial film at xep\ = 0.6 grown on a substrate also at xsub = 0.6. 
Because the film is lattice-matched to the substrate, it is free from macro
scopic elastic strain. It is, however, also composed preferentially of type 
2 and type 3 tetrahedra. Those tetrahedra are internally distorted, and 
hence, on a microscopic scale, contain a significant amount of internal dis-
tortional elastic energy. 

Suppose we force the film to decompose into macroscopic clusters, of 
which in some xepi = 0 and in others xepi = 1. These clusters are composed 
preferentially of type 0 and type 4 tetrahedra, respectively. Neither type 
of tetrahedron is internally distorted, and hence both are free of internal 
distortional elastic energy. However, they may or may not be externally 
distorted, and hence may or may not be free of external distortional elastic 
energy. 

On the one hand, if the xepi = 0 and xepi = 1 clusters were each free 
to change their average lattice parameters (i.e., free to change xSub), then 
the type 0 and type 4 tetrahedra would be free from external distortional 
elastic energy. Hence, the decomposition of regions having mainly type 2 
and 3 tetrahedra into macroscopic clusters having mainly type 0 and type 
4 tetrahedra decreases the overall strain energy and will tend to occur. 

Note, though, that the number of ways different tetrahedra can be com
bined to form a macroscopically uniform alloy at xep[ = 0.6 is larger than 
the number of ways they can be combined to form alloys at xepi = 0 and 
xepi = 1. Since at high enough temperatures, entropic contributions to the 
molar Gibbs free energies ultimately dominate, there will then be a critical 
temperature above which mixing will be favored over decomposition. 

On the other hand, if the xepi = 0 and xepi = 1 clusters were not free to 

http://Ino.25Gao.75As
http://Ino.25Gao.75As
http://Ino.25Gao.75As
http://offIno.25Gao.75As
http://I1io.25Gao.75As
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Figure 4.13: 100, 600, or 1100 K molar Gibbs free energies of Ini_xGaxAs at 
composition xepi grown coherently on substrates having the lattice parameters of 
bulk Ini_xGaxAs at composition xsub- The filled circles represent Ini_xGaxAs 
grown on substrates with compositions xsub — 0 ,1 /2 ,1 . The open circles rep
resent Ini_xGaxAs grown on "lattice-matched" substrates with compositions 
xs u b = xepi , or, alternatively, to incoherent growth. 

change their average lattice parameters (i.e., not free to change xSub)7 then 
the type 0 and type 4 te t rahedra would not be free from external distortional 
elastic energy. If tha t energy is higher than the internal distortional elastic 
energy of the original type 2 and 3 te trahedra, then the decomposition 
is suppressed. Instead, the film will decompose into macroscopic ordered 
clusters, in some of which x e p i 0.5 and in others xepi — 

0.75. 
These 

clusters are composed preferentially of type 2 and 3 tetrahedra, respectively, 
which fit together in such a way as to minimize their internal distortional 
elastic energy. 

Note, though, tha t just as before, the number of ways different tetrahe
dra can be combined to form a macroscopically uniform alloy at xepi =0.6 
is larger than the number of ways they can be combined to form ordered 
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alloys at xepi = 0 . 5 and xepi = 0.75. Since at high enough temperatures , 
entropic contributions to the molar Gibbs free energies ultimately domi
nate, there will then be a critical tempera ture above which mixing will be 
favored over ordering. 

4.4.4 Short-Range Ordering 
In Subsection 4.4.2, we estimated the probabilities of the various elemen
tary te t rahedra from which an InGaAs alloy may be constructed. From 
Figure 4.12, it can be seen tha t as the tempera ture is lowered, the tetrahe
dra probabilities become less random and more peaked at the film composi
tions that match those of the te t rahedra themselves. This is a consequence 
of the fact tha t the te t rahedra energies are not the same, but are minimum 
for film compositions tha t match those of the te t rahedra themselves. 

In this subsection, we discuss in more detail this deviation from ran
domness. Now, first suppose the te t rahedra were distr ibuted randomly, 
according to Equation 4.89. Then, from the constitutive pair and triangle 
relations listed in Table 4.4 on page 111, the "unlike" pair probability would 
be 

V\ = wi + 2w2 + w3 

= x(l - xf + 2x 2 ( l - x)2 + x3(l - x) 

= x ( l - x ) , (4.93) 

as expected. Since the clusters are not distributed randomly, we expect 
deviations from this purely random mixed pair probability.28 

To quantify these deviations from randomness, we define a short-range 
order parameter associated with pairs of unlike (next-nearest-neighbor) 
group III atoms, analogous to tha t of Equation 4.46, 

a SRO Ξ W1+2w2+W3-x(l-x) 

νοψά + 2wgrd + w%Td -x(l-x)' l ' ; 

where the w°rd are the completely ordered cluster probabilities given by 
Equation 4.90. crSRO is unity if every In a tom is surrounded by as many 
Ga atoms as possible, zero if every In a tom is surrounded by a random 
number of Ga atoms, and negative if every In a tom is surrounded by as 
many In atoms as possible. 

2 8 M.T. Czyzyk, M. Podgorny, A. Balzarotti, P. Letardi, N. Motta, A. Kisiel and M. 
Kimnal-Starnawska, "Thermodynamic properties of ternary semiconducting alloys," Z. 
Phys. B62 , 153 (1986). 
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100 K 6 0 0 K 1100 K 

Figure 4.14: 100, 600, or 1100 K short-range order parameters in Ini_xGaxAs 
at composition xepi grown coherently on substrates having the lattice parameters 
of bulk Ini_xGaxAs at composition xsub. The filled circles represent Ini_xGaxAs 
grown on substrates with compositions xsub = 0 ,1 /2 ,1 . The open circles rep
resent Ini_xGaxAs grown on "lattice-matched" substrates with compositions 
x s u b = xepi, or, alternatively, to incoherent growth. 

This short-range order parameter is plotted in Figure 4.14 for the three 
temperatures 100, 600, and 1100 K. Note tha t even at the highest tempera
ture, there is a preference toward bonding between unlike group III atoms, 
although the preference becomes more pronounced at the lower tempera
tures. Note also tha t the short-range ordering becomes somewhat less pro
nounced (cusped downward) at compositions corresponding to the various 
elementary tetrahedra. This is so even though the unlike pair probability 
itself decreases smoothly on both sides of xepi = 1/2. 

The reason is tha t exactly at those stoichiometric compositions, it is 
more difficult to suppress the occupation of composition-straddling tetra
hedra. For example, at xepi = 1/2, the film will be dominated by type 2 
tetrahedra, but some type 1 and 3 te trahedra, differing in composition from 
xepi by only 1/4, will also be present. At xepi = 5 /8, the film will be dom
inated by a mix of type 2 and 3 tetrahedra. The type 1 and 4 tetrahedra, 
however, differ in composition from xep\ by 3 /8 . Since the elastic distortion 
energies of the te t rahedra vary with the square of the composition mis
match, the type 1 and 4 te t rahedra will be suppressed more effectively for 
#epi = 5/8 than the type 1 and 3 te t rahedra were for xepi = 1/2. 

Finally, we are in a position to understand the microscopic origins of 
clustering and ordering. In epitaxial films at all temperatures , different 
te t rahedra have different energies. Usually, te t rahedra tha t are most nearly 
volume-matched to the average unit cell volume have the lowest energies, 
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and hence are most favored. Therefore, films of intermediate composition 
will be preferentially composed of te t rahedra of intermediate composition, 
and will be short-range ordered in the sense of having an excess of pairs 
between unlike next-nearest neighbors. 

At high temperatures , a homogeneous film of intermediate composition 
will always be favored over macroscopic clusters at endpoint compositions, 
because of the increased entropy associated with an increased number of 
ways of combining te t rahedra of different compositions. Moreover, because 
of the relatively wide distribution of te t rahedra of different compositions, 
the te t rahedra will tend to be arranged randomly with respect to one an
other. 

At low temperatures , homogeneous films are no longer favored. As 
the occupation probabilities become more and more concentrated among 
those te t rahedra whose compositions straddle the composition of the film, 
it becomes possible for the te t rahedra to order in such a way tha t their 
internal distortions are minimized. Then, films will have a tendency to form 
macroscopic, ordered clusters composed nearly exclusively of te t rahedra of 
a certain kind, arranged in a certain way. In coherent films, these ordered 
clusters are the stable state of the system, because te t rahedra in disordered 
clusters at intermediate compositions have too much internal distortional 
energy, and te t rahedra in clusters at endpoint compositions have too much 
external distortional energy. In incoherent films, however, the te t rahedra in 
clusters at the endpoint compositions have no external distortional energy, 
and hence will ultimately form at the expense of bo th a homogeneous film 
or a film composed of ordered clusters. 

4.5 Semi-empirical Models 
In Sections 4.1-4.4, we have been concerned with developing a microscopic 
description of the thermodyamics of coherent and incoherent pseudobinary 
III-V alloys. There is of course no subst i tute for the physical insight tha t 
such a microscopic description gives. However, many of the overall results of 
such a description, such as the molar Gibbs free energy, can be understood 
using simpler, macroscopic, semi-empirical models. Such models have the 
advantage, as discussed in Chapter 3, of being described by analytic equa
tions tha t can be more easily used to calculate phase diagrams and other 
thermodynamic quantities of interest. In this section, we develop such a 
semi-empirical model. 

We will begin, in Subsection 4.5.1, by describing semi-empirical, physi
cally motivated expressions for the molar Gibbs free energies of disordered 
and ordered pseudobinary alloys. Then, in Subsection 4.5.2, we use these 
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molar Gibbs free energies to calculate equilibrium alloy phase diagrams. 

4.5.1 Free Energies 
Let us start, in this subsection, by describing and justifying a semi-empirical 
expression for the molar Gibbs free energy of an epitaxial pseudobinary alloy 
grown coherently on a thick substrate. The three main components of the 
molar Gibbs free energy that we need to account for are (1) the enthalpy of 
mixing, due to the internal distortional energies of the various tetrahedra, 
(2) the entropy of mixing, and (3) the coherency energy, due to the external 
distortional energies of the various tetrahedra. 

We describe the internal distortions, as discussed in Section 4.1, by an 
enthalpy of mixing of the regular solution form 

hint = Ωχβρΐ(ΐ _ Xepi), (4.95) 
where the interaction parameter, Ω, is identified with that calculated in 
Equation 4.13. The description could easily be improved further through 
the use of a sub-regular solution form, in order to account for composition-
dependent elastic constants. The description could also easily be improved 
by allowing the mixing enthalpy to depend on temperature through a 
composition- and temperature-dependent heat capacity. 

We describe the entropy of mixing by the ideal solution form: 

s = -k [xepi ln(xepi) + (1 - ^epi) ln(l - xepi)]. (4.96) 

Finally, we describe the external distortions, following the treatment of 
Section 4.2, with a coherency energy of the form29 

^ext = Ce^2(xepi - Xsub)2al /4, (4.97) 

where 

Ceff = (1 — X e p i ) I CGaAs,ll + CQaAs,12 ^ 2— 
GaAs,ll / 

+ #epi ClnAs,l l + ClnAs,12 ~ — (4.98) 
V ^InAs, l l / 

is an effective elastic coefficient that varies linearly between that of GaAs 
and that of InAs30 and 

η = 2 Q l n A s ' °~ Q G a A s ' ° (4.99) 
^InAs,o i ÖGaAs,o 

2 9 J .W. Cahn, "On spinodal decomposition," Ada Metall 9, 795 (1961). 
3 0 F.C. Lärche, W.C. Johnson, C.S. Chiang, and G. Martin, "Influence of substrate-

induced misfit stresses on the miscibility gap in epitaxial layers: application to III-V 
alloys," J. Appl. Phys. 64, 5251 (1988). 
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is the coefficient of linear expansion per unit composition change. 
We note in passing tha t this elastic energy term, present only for coher

ent epitaxy, can be an important determinant of the overall driving force 
for epitaxy. Coherent alloys whose lattice parameters differ from tha t of 
the substrate will have higher molar Gibbs free energies than those tha t 
are lattice matched. Condensation of lattice-matched alloys will therefore 
be favored over condensation of lattice-mismatched alloys, as has been ob
served for both liquid phase epi taxy3 1 as well as MBE. 3 2 

We emphasize here tha t Equation 4.97 only applies under special cir
cumstances. In particular, it only applies to the geometry we are consid
ering — namely, a thin epitaxial film whose parallel lattice parameter is 
constrained to be tha t of its infinitely thick substrate but whose perpendic
ular lattice parameter is free to adjust — if all phases present have some 
physical dimension tha t is large compared to the film thickness. More gen
eral t reatments of coherent phase equilibria are complicated immensely by 
the possibility tha t the elastic coherency energies depend on the details of 
the phase morphology, which in tu rn depend on the relative amounts of the 
different phases present.3 3 

Finally, the total molar Gibbs free energy of the disordered alloy is 

9 l^epi? -^subj ~ 'Mntl^epij -*■ ^v^epij ~r "-extV^epn *^subJ? ^4.1UUJ 

and depends on the compositions of both the epitaxial film and the sub
strate. As can be seen from the top panels of Figure 4.15, the semi-empirical 
expression of Equation 4.100 reproduces surprisingly well the molar Gibbs 
free energies deduced from the CVM calculation shown in Figure 4.13. 

Now, as discussed in Section 4.4, ordered and disordered phases should 
really be treated on a single footing. Doing so requires, however, a mi
croscopic t reatment tha t is difficult to incorporate into a semi-empirical 
model. Instead, we treat ordered alloys as if they were distinct "compound" 
phases which exist only within a narrow range of special compositions, as 
illustrated in the bo t tom panels of Figure 4.15. In other words, we write 

3 1 G.B. Stringfellow, "The importance of lattice mismatch in the growth of GalnP 
epitaxial crystals," J. Appl. Phys. 43 , 3455 (1972); and R.E. Nahory, M.A. Pollack, 
E.D. Beebe, J.C. DeWinter, and M. Ilegems, "The liquid phase epitaxy of AlGaAsSb 
and the importance of strain effects near the miscibility gap," J. Electrochem. Soc. 125, 
1053 (1978). 

3 2 M. Allovon, J. Primot, Y. Gao, and M. Quillec, "Auto lattice matching effect for 
AlInAs grown by MBE at high substrate temperature," J. Electron. Mater. 18, 505 
(1989). 

3 3 J.W. Cahn and F.C. Lärche, "A simple model for coherent equilibrium," Ada Metall. 
11, 1915 (1984); W.C. Johnson and C.S. Chiang, "Phase equilibrium and stability of 
elastically stressed heteroepitaxial thin films," J. Appl. Phys. 64, 1155 (1988). 
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100 K 600 K 1100 K 

Figure 4.15: Semi-empirical molar Gibbs free energies of disordered (top) and 
ordered (bottom) Ini_xGaxAs at composition xepi grown coherently on substrates 
having the lattice parameters of bulk Ini_xGaxAs at composition xsub· 

their free energies as 

ha + A(xep[ - 1/4)2 + hext(xepi,Xauh) 

a + ^H^epi — 1 / ^ / "I" ^ext l^eph #sub) 

). (4.101) 

The first terms in these equations are the enthalpies of the ordered com
pounds, which for InGaAs we identify with those listed in Table 4.7. The 
second terms are phenomenological terms reflecting expected sharp depen
dences of the ordering enthalpies on composition near the special composi
tions, with A a large constant. The third terms are the energies given by 
Equation 4.97. 

4.5.2 Phase Diagrams 
In Subsection 4.5.1, we described a semi-empirical expression for the molar 
Gibbs free energy of a pseudobinary alloy. In this subsection, we use these 
free energies and the common tangent prescription described in Chapter 3 
to calculate two-dimensional xepi-T cuts through the full three-dimensional 

9 V^epn ? ^ s u b / 

9 V^epn *^subj 

9 V*^epn «^subj 
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Figure 4.16: xev\-T phase diagrams for Ini_xGaxAs during (right) coherent 
epitaxy on a substrate of composition xsub and during (left) incoherent epitaxy. 
Above and below each phase diagram are also shown the molar Gibbs free energies 
of the various phases at 600 K and 100 K, their common tangents, and the critical 
compositions (open circles) determined by those common tangents. 

^epi-^sub-^ phase diagram, as illustrated in Figure 4.16, or calculate the 
full Xepi-#sub-^ phase diagram itself, as illustrated in Figure 4.17. 

In both cases the common tangents may be drawn in two ways. On the 
one hand, if we constrain the epitaxial film to be coherent, them xsuh must 
be preserved, and so, as illustrated in the right halves of Figures 4.16 and 
4.17, we must take horizontal tangents at constant #Sub· On the other hand, 
if we do not constrain the epitaxial film to be coherent, then xs ub is free 
to accommodate xe ph a n d so, as illustrated in the left half of Figures 4.16 
and 4.17, we must take diagonal tangents for which xs ub = xepi-
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Incoherent P h a s e Equi l ibr ia 

Consider first the incoherent case for which x s ub = #epi- Then, Equa
tion 4.100 reduces to 

<7diS ' inC(*epi) = fcint(Sepi) " T s ( x e p i ) , (4 .102) 

since hext vanishes for xepi = xSub-
At high temperatures , the mixing entropy term in Equation 4.102 causes 

the molar Gibbs free energy of the disordered phase to be concave up, and 
to lie below the molar Gibbs free energies of all of the ordered phases. A 
disordered InGaAs alloy cannot, for any composition, lower its molar Gibbs 
free energy either by phase-separating into disordered InAs and GaAs rich 
clusters or into ordered stoichiometric phases. 

At low temperatures , the mixing entropy term becomes small, and is 
no longer sufficient to bring the molar Gibbs free energy of the disordered 
phase below those of the ordered phases. Therefore, a uniform disordered 
alloy can decrease its molar Gibbs free energy by phase-separating into 
either a combination of two ordered phases or a combination of an ordered 
phase and an InAs or GaAs rich disordered phase. 

In addition, however, the (positive) mixing enthalpy term in Equa
tion 4.102 causes the molar Gibbs free energy of the disordered phase to now 
be concave enough down tha t it becomes, near its endpoint compositions, 
lower than those of all of the ordered phases. Therefore, the ordered phases 
are themselves unstable with respect to phase separation into pure InAs 
and GaAs disordered phases. A miscibility gap opens up tha t destabilizes 
the ordering. 

Coherent P h a s e Equi l ibria 

Consider now the coherent case for which x s ub = constant. Then, the 
molar Gibbs free energy does not simplify to Equation 4.102, and the full 
Equation 4.100 must be used. 

In this case, at high temperatures , both the mixing entropy term and 
the elastic energy term cause the molar Gibbs free energy of the disordered 
phase to be concave up. Because of the contribution from both terms, the 
molar Gibbs free energy remains concave up to lower temperatures , and of 
course the miscibility gap shifts to lower temperatures . 

At low temperatures , the mixing entropy term becomes small, and again 
is no longer sufficient to bring the molar Gibbs free energy of the disordered 
phase below those of the ordered phases. Therefore, a uniform disordered 
alloy can again decrease its molar Gibbs free energy by phase-separating 
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Figure 4.17: Pseudobinary xepi-xSub-T phase diagrams of Ini_a;GaxAs. In the 
usual, "incoherent" diagram on the left, variations in xepi are accompanied by 
identical variations in the effective composition of the substrate, xsub- In the 
"coherent" diagram on the right, variations in xepi occur at constant a?sub· 

into either a combination of two ordered phases or a combination of an 
ordered phase and an In As or GaAs rich disordered phase. 

In this case, however, the (positive) mixing enthalpy term is countered 
by the elastic energy term, and the molar Gibbs free energy of the disordered 
phase remains concave up. Therefore, the ordered phases remain lower in 
energy than the disordered phase, even near its endpoint compositions. The 
ordered phases are therefore stable with respect to phase separation into 
(nearly) pure In As and (nearly) pure GaAs disordered phases. Coherency 
suppresses the miscibility gap. Then, if ordered phases are present, as in this 
example, coherency stabilizes them. 3 4 If, however, ordered phases are not 
present, then a uniform disordered alloy will persist to lower temperatures 
(perhaps even to 0 K) than in the incoherent case.35 

Suggested Reading 
1. W.A. Harrison, Electronic Structure and the Properties of Solids (W.H. 

Freeman, San Francisco, 1980). 

2. E. A. Guggenheim, Thermodynamics (North-Holland, Amsterdam, 1959) 
3 4C.P. Flynn, "Strain-assisted epitaxial growth of new ordered compounds," Phys. 

Rev. Lett. 57, 599 (1986). 
3 5 G.B. Stringfellow, "Spinodal decomposition and clustering in III /V alloys," J. Elec

tron. Mater. 11 , 903 (1982); and M. Quillec, C. Daguet, J.L. Benchimol, and H. Launois, 
"InGaAsP alloy stabilization by the InP substrate inside an unstable region in liquid 
phase epitaxy," Appl. Phys. Lett. 40, 325 (1982). 
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Figure 4.18: Intermediate stage of building of a 2D lattice of face-centered tri
angles. 

3. T. Hill, Introduction to Statistical Thermodynamics (Addison Wesley, 
Reading, MA, 1960). 

4. G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and 
Practice (Academic Press, Boston, 1989). 

5. A. Zunger and D.M. Wood, "Structural phenomena in coherent epi
taxial solids," J. Cryst Growth 98 , 1 (1989). 

Exercises 
1. Calculate the distortion energies of the cluster shown in Figure 4.1 

for (a) As atoms forced onto VCA and CRA positions and (b) for an 
As atom at its actual equilibrium position. 

2. From Figure 4.13, it can be seen tha t there is a greater tendency 
toward phase decomposition for strained but coherent epitaxy of In-
GaAs on a GaAs substrate than on an InAs substrate. Why? 

3. W h a t is the limiting value of the order parameter in the pair approx
imation of the CVM [Equation 4.46] when 2ui ^> u0 + u2, i.e., when 
AA and BB pairs are greatly preferred over AB pairs? 

4. Derive Equation 4.48 for the temperature dependence of the order 
parameter in the pair approximation of the CVM. 

5. Calculate the entropy of the two-dimensional face-centered triangular 
lattice shown in Figure 4.18 in the point, pair, and triangle CVM 
approximations. 

6. Construct a ball-and-stick 3D zincblende lattice and identify the te-
trahedra, triangles, and pairs associated with adding point a in Fig
ure 4.8. 
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7. Derive Equation 4.83. 

8. Draw envelopes of minimum molar Gibbs free energies for the various 
2D cuts shown at the bottom of Figure 4.13, and identify the com
position ranges within which various phases or phase mixtures are 
stable. 

9. Construct phase decomposition scenarios for which coherency energies 
either depend on, or are independent of, the amounts of the different 
phases present. 

10. Starting from Equation 4.100, derive expressions for the chemical po
tentials of InAs and GaAs in coherent and incoherent epitaxial In-
GaAs. 

11. Using Equations 3.59 and 4.100, derive an expression for how much 
the vapor pressure of Ga over coherent Ini-^Ga^As lattice-matched 
to InP differs from that over incoherent Ini_xGaxAs. 



Chapter 5 

Coherency and 
Semi-coherency 

In Chapter 4, we described how the thermodynamics of epitaxial alloy films 
depend on whether those films are coherent or not with their underlying 
substrate. Films that are coherent often tend to form ordered compounds 
at certain stoichiometric compositions, while films that are not often tend 
to separate into their pure-component "endpoint" phases. Coherency with 
an underlying substrate is thus a crucial determinant of the compositional 
integrity of alloy films. 

Coherency is also a crucial determinant of other properties of alloy films. 
Consider, e.g., an epitaxial layer whose bulk lattice parameter differs from 
that of its substrate. On the one hand, if the layer is coherent with its 
substrate, it will be mechanically strained, and its electronic and opto
electronic properties will be modified through strain-induced changes in 
electronic band structure.1 On the other hand, if the layer is not coherent 
with its substrate, then structural defects must be present, some of which 
degrade significantly the performance of semiconductor devices. 

In this chapter, we discuss the conditions under which coherency be
tween film and substrate can be maintained. In particular, we will focus 
on the transition from coherency to "semi-coherency." A coherent interface 
is one that is crystallographically perfect, and that separates epitaxial and 
substrate atoms in perfect "registry" with each other. If the bulk lattice 
parameters of the epitaxial layer and the substrate differ, then the epi
taxial layer accommodates by developing in-plane strain. A semi-coherent 

1G.C. Osbourn, "Strained-layer superlattices from lattice mismatched materials," J. 
Appl. Phys. 53 , 1586 (1982). 
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interface, in contrast, is one for which the registry between epitaxial and 
substrate atoms is punctuated by occasional localized regions of disregistry, 
i.e., by dislocations. These localized regions of disregistry compensate for 
lattice parameter misfit between the epitaxial layer and the substrate, al
lowing the in-plane strain of the epitaxial layer to relax. 

We begin, in Section 5.1, by discussing the energies associated with 
those two kinds of interfaces. The energy associated with a coherent inter
face is due solely to "coherency strain" in the epitaxial film, and increases 
linearly with film thickness. The energy associated with a semi-coherent in
terface is due part ly to coherency strain and part ly to "misfit" dislocations 
at the interface. Much of the energy of the misfit dislocations is due to 
the disregistered atoms at the dislocation core, and is independent of film 
thickness. Therefore, thin coherent films will tend to have lower energies 
than thin semi-coherent films, but thick coherent films will tend to have 
higher energies than thick semi-coherent films.2 

As a consequence, in the early stages of film growth, an epitaxial film will 
usually be coherent with its substrate. Only when the film becomes thick 
enough will it tend to become semi-coherent with the substrate, and even 
then, it may not actually become semi-coherent. To become semi-coherent, 
misfit dislocations must be created at the film/substrate interface, but tha t 
creation may be impeded by kinetic barriers. Therefore, in Section 5.2 we 
discuss the forces, or "excess stresses," acting to create misfit dislocations, 
and in Section 5.3 we describe how an understanding of those forces can 
be used to develop semi-empirical macroscopic descriptions of the overall 
kinetics of strain relaxation. 

Note tha t this chapter deals only with the most common form of het-
eroepitaxy, in which the film has the same crystal s tructure as the substrate. 
Then, provided the lattice parameters of the film and substrate are not too 
mismatched, epitaxy will occur, and the orientation of the film will mimic 
tha t of the substrate. From a practical point of view, we need only be con
cerned with predicting the conditions under which the film will be coherent 
or semi-coherent. This chapter also deals only with the simplest form of 
heteroepitaxy, in which the film grows as layers, rather than as islands (see, 
e.g., Exercise 2 and Chapter 6). 

We emphasize, though, tha t a deposited film need not have the same 
crystal s tructure as the substrate . 3 In such cases, it is not always easy to 
predict (1) whether epitaxy will even occur at all and (2) even if it does, 
what the orientation relationship will be between the film and the substrate. 

2 F.C. Frank and J.H. van der Merwe, "One-dimensional dislocations. II. Misfitting 
monolayers and oriented overgrowth," Proc. R. Soc. London A198 , 216 (1949). 

3 E . Grünbaum, "List of epitaxial systems," in Epitaxial Growth, J.W. Matthews, Ed. 
(Academic Press, New York, 1975), pp. 611-673. 
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These two questions are among the most basic in the science of epitaxy, and 
have been studied for nearly a century, beginning with the work of Barker4 

and Royer.5 However, they are also exceedingly difficult questions tha t are 
far from being fully answered. 

From a purely crystallographic point of view, one anticipates tha t those 
orientation relationships will be favored for which the three dimensional 
film and substrate lattices coincide most closely at the two-dimensional 
interface.6 For example, such purely crystallographic considerations are 
evidently responsible7 for what are known as the Nishiyama-Wasser man 8 

and Kurdjumov-Sachs9 orientation relationships between fee and bec crys
tals found both in solid-phase precipitation reactions1 0 as well as in vapor-
phase epitaxy.11 

However, it will not always be sufficient to consider the crystallography 
of the known equilibrium bulk phases. Occasionally, it will be possible to 
epitaxially stabilize crystal phases which are not normally stable in bulk 
form.12 Elemental tin, e.g., adopts a metastable diamond structure when 
deposited epitaxially on the (001) surfaces of InSb and CdTe. 1 3 

Moreover, the epitaxial film may also be chemically different from the 
substrate, and so the orientation relationship will depend not just on crys
tallography, but on bond chemistry as well. For these reasons, an under-

4T.V. Barker, "Contributions of the theory of isomorphism based on experiments on 
the regular growths of crystals of one substance on those of another," J. Chem. Soc. 
Trans. 89, 1120 (1906). 

5 L. Royer, "Recherches experimentales sur l'epitaxie ou orientation mutuelle de 
cristaux d'especes differentes," Bull. Soc. Franc. Mineral 5 1 , 7 (1928). 

6 R.W. Ballufn, A. Brokman, and A.H. King, "CSL/DSC lattice model for general 
crystal-crystal boundaries and their line defects," Ada. metall. 30, 1453 (1982); and A. 
Zur and T.C. McGill, "Lattice match: an application to heteroepitaxy," J. Appl. Phys. 
55, 378 (1984). 

7R. Ramirez, A. Rahman, and I.K. Schuller, "Epitaxy and superlattice growth," Phys. 
Rev. B30, 6208 (1984). 

8 Z. Nishiyama, "X-ray investigation of the mechanism of the transformation from 
face-centred cubic lattice to body-centred cubic," Sei. Rep. Tohoku Univ. 23, 638 (1934); 
and G. Wasserman, Arch. Eisenhuettenwes. 126, 647 (1933). 

9 G. Kurdjumov and G. Sachs, "Über den Mechanismus der Stahlhärtung," Z. Phys. 
64, 325 (1930). 

1 0U. Dahmen, "Orientation relationships in precipitation systems," Ada Metall. 30, 
63 (1982). 

11L.A. Bruce and H. Jaeger, "Geometric factors in f.c.c. and b.c.c. metal-on-metal 
epitaxy III. The alignments of (111) f.c.c.-(HO) b.c.c. epitaxed metal pairs," Phil. Mag. 
A38, 223 (1978). 

1 2R. Bruinsma and A. Zangwill, "Structural transitions in epitaxial overlayers," J. 
Physique 47, 2055 (1986). 

1 3R.F.C. Farrow, D.S. Robertson, G.M. Williams, A.G. Cullis, G.R. Jones, I.M. Young, 
and P.N.J. Dennis, "The growth of metastable, heteroepitaxial films of α-Sn by metal 
beam epitaxy," J. Cryst. Growth 54, 507 (1981). 
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standing of orientation relationships in epitaxy is an enormously compli
cated ongoing area of research tha t will not be t reated here. 

5.1 Energetics of Misfit Accommodation 
Let us begin, in this section, by discussing the energetics of epitaxial films 
attached through coherent or semi-coherent interfaces to substrates with 
different lattice parameters . We discuss first, in Subsection 5.1.1, the co
herency strains and energies associated with the epitaxial films. Then, we 
discuss, in Subsection 5.1.2, the strain fields and energies associated with 
misfit dislocations at the interfaces between the epitaxial films and their 
substrates, with particular emphasis on face-centered cubic (fee) and dia
mond lattices. Finally, we discuss, in Subsection 5.1.3, the dependence of 
both kinds of energies on misfit dislocation density. Minimizing the sum of 
the two energies with respect to misfit dislocation density determines how 
the overall misfit is parti t ioned, in equilibrium, between coherency strain 
and misfit dislocation density. We will find tha t for thin, low misfit films, 
energy is minimized when the misfit dislocation density is zero. For thick, 
high misfit films, however, energy is minimized when the misfit dislocation 
density is nonzero.1 4 

5.1.1 Coherency Strain 
Let us start , in this subsection, by discussing the strain energy associated 
with epitaxial films tha t are coherent with their substrates. In particular, 
consider the simplest strained heterostructure: a single, thin, planar layer 
of one material and a thick substrate of a different material. As illustrated 
in Figure 5.1, in the absence of a connection between the two materials, 
each is unstrained and will adopt its own bulk lattice parameter — either 
öepi,o or flsub- Note tha t we neglect changes in the lattice parameter of a 
free-standing film due to surface stresses, changes tha t may be important 
for very thin films.15 

Suppose we exert a compressive in-plane force on the epitaxial layer 
and an equal but opposing tensile in-plane force on the substrate. Then, 
the in-plane lattice parameter of the epitaxial film will shrink and tha t of 
the substrate will grow. If the bulk lattice parameter of the epitaxial layer 
were larger than tha t of the substrate, as is the case in Figure 5.1, then the 

14 J.H. van der Merwe, "Crystal interfaces. Part II. Finite overgrowths," ./. Appl. Phys. 
34, 123 (1963). 

1 5R.C. Cammarata and K. Sieradzki, "Surface stress effects on the critical film thick
ness for epitaxy," Appl. Phys. Lett. 55, 1197 (1989). 
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Figure 5.1: Hypothetical simple cubic epitaxial layer and substrate with bulk 
lattice parameters 5.0 and 5.5 Ä, respectively. The epitaxial layer is imagined 
to be disconnected from the substrate, and so is free to adopt its bulk lattice 
parameter. As a consequence, it is both unstrained and unstressed. 

two in-plane lattice parameters can eventually be made to match, and the 
epitaxial layer can be joined coherently to the substrate. 

Note tha t if the substrate is much thicker than the epitaxial layer, then 
it will experience a much lower average in-plane stress than will the epi
taxial layer, and its lattice parameter will change much less. Therefore, 
we make the usual approximation tha t all of the lattice parameter misfit 
is accommodated by strain in the epitaxial layer, rather than in the sub
strate. In the general case, though, parti t ioning of lattice parameter misfits 
between film and substrate, and even between layers within a multilayered 
film, must be taken into account.1 6 

Note also tha t the Hooke's law energies associated with straining the 
epitaxial layer and substrate are each proportional to thickness and to the 
square of the change in lattice parameter . Since the changes in lattice 
parameter are proportional to applied stress, which is inversely proportional 
to thickness, the Hooke's law energies are themselves inversely proportional 
to thickness. Therefore, we can also make the approximation tha t all of the 
strain energy associated with coherently joining the epitaxial layer to the 
substrate is in the epitaxial layer, rather than in the substrate. In other 
words, just as we saw in Section 4.1.2, most of the energy associated with 

1 6Z.C. Feng and H.D. Liu, "Generalized formula for curvature radius and layer stresses 
caused by thermal strain in semiconductor multilayer structures," J. AppL Phys. 54, 83 
(1983). 
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coupled spring systems is stored in the weaker and more deformed spring. 
To calculate the actual strain energy in a fully coherent epitaxial layer, 

we follow the discussion in Section 4.2, in which a generalized Hooke's law 
was written in terms of the elastic coefficients C^. That law is also com
monly written, for cubic materials, in terms of Poisson's ratio, v (defined 
as the negative of the ratio between lateral and longitudinal strains under 
uniaxial longitudinal stress), and the shear modulus, μ (defined as the ratio 
between applied shear stress and shear strain under pure shear): 

(z)=M^(z~izMz)- (51) 
The relationships between the Cij, v, and μ are 

Cl1 = 2"(r^) 
C12 = 2 μ ( ϊ - ί ^ ) . (5.2) 

The shear modulus itself is related to the modulus of elasticity, E, by 
2μ = Ε/(1 + ν). 

For concreteness, let us assume, as is common, that the epitaxial film 
and its substrate are not only cubic, but are oriented along one of the (100) 
cubic symmetry directions.17 Then, the in-plane strains are symmetric and 
can be taken to be along the x and y axes. If we denote in-plane quantities 
as "parallel," and out-of-plane quantities as "perpendicular," then we can 
write 

( Z ) = 2μ(1 + ι/) ( -2u 1 ) ( σ[ ) ' ( 5 · 3 ) 

which is just the inverse of Equation 4.20. 
Equation 5.3 contains two known and two unknown quantities. The 

first known quantity is the parallel strain, ey, which is determined by the 
lattice mismatch. The second known quantity is the perpendicular stress, 
σ±, which, since the epitaxial layer is free to expand vertically, vanishes. 
Therefore, Equation 5.3 determines the two unknown quantities — the 
parallel stress, ay, and perpendicular strain, ej_ — in terms of ey only: 

σιι = 2 ^ ( i ^ ) e n (5·4) 
17Otherwise, more general expressions are required. See, e.g., J.P. Hirth, "On dislo

cation injection into coherently strained multilayer structures," S. Afr. J. Phys. 9, 72 
(1986). 
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Figure 5.2: Hypothetical simple cubic epitaxial layer and substrate with bulk 
lattice parameters 5.5 and 5.0 Ä, respectively. The epitaxial layer is still imagined 
disconnected from the substrate, but has been strained in a direction parallel to 
the interface so that its parallel lattice parameter matches that of the substrate. 
As a consequence, it develops both a parallel (in-plane) stress and a perpendicular 
(out-of-plane) strain. 

e_L = 
-2v 

l - i / 
(5.5) 

As illustrated in Figure 5.2, if the epitaxial layer is strained in a direction 
parallel to the interface so tha t its parallel lattice parameter matches tha t 
of the substrate, then it must develop a parallel stress. It also develops a 
perpendicular strain, in the same direction as tha t which would preserve 
unit-cell volume. In fact, if ej_ were exactly — 2e||, or if 2z//(l — v) were 
exactly 2, then unit-cell volume would be exactly preserved. Poisson's ratio, 
however, lies in the range 0.25-0.35 for most materials, so tha t 2 i / / ( l - v) 
is actually approximately 1, and unit-cell volume is only approximately 
conserved. 

The "coherency" energy associated with strain in the epitaxial layer can 
now be calculated, per unit area, to be 

Ucoh = -h (2(7||€|| + σ Χ 6 ι ) = 2μ ί —— j ftejj, (5.6) 

where h is the thickness of the film. 
In an epitaxial film composed of multilayers each with a different lattice 

parameter, the multilayer coherency energy will just be a sum of (or integral 
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Figure 5.3: Pure edge (left) and pure screw (right) dislocations lying in an 
interface separating an epitaxial film from its substrate. 

over) expressions such as Equation 5.6 for each layer: 

Ucoh = 2μ l γ— j Σ hiel\\ > (5·7) 

where hi and e^y are the thicknesses and parallel strains of the zth layer. 

5.1.2 Misfit Dislocations 
In Subsection 5.1.1, we discussed the strain energy associated with epitaxial 
films tha t are coherent with their substrates. In this subsection, we discuss 
the energy associated with epitaxial films tha t are semi-coherent with their 
substrates. In particular, consider a single-layer heterostructure in which 
the perfect coherent registry between the epitaxial film and substrate is 
broken by a localized region of "disregistry." In the simplest case, as il
lustrated in the left half of Figure 5.3, the disregistry might consist of a 
half plane missing from the epitaxial film. Physically, we might imagine 
tha t the half plane had been "squeezed" upward out of the epitaxial film 
by a compressive coherency stress, thereby relieving some (or all) of tha t 
coherency stress. 

Geometrically, the disregistry can be thought of as formed by making 
what is known as a "Volterra" cut in the epitaxial film perpendicular to 
the interface, removing a plane of atoms, and then rejoining the remaining 
crystal by inwardly collapsing atoms in the adjacent planes. The disregistry 
can then be seen to be equivalent to a negative edge dislocation along the 
line labeled Tin the left half of Figure 5.3, with Burgers vector along the line 
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labeled b. In a sense, such interface dislocations act to relieve the coherency 
strain in the epitaxial layer by concentrating the lattice misfit into localized 
regions of disregistry confined mainly to the interface. 

Note that pure edge dislocations such as this, whose Burgers vectors 
are both perpendicular to the dislocation line and in the plane of the in
terface, are the most efficient means for relieving coherency strain. Screw 
dislocations such as that illustrated in the right half of Figure 5.3, whose 
Burgers vectors are parallel to the dislocation line, do not relieve coherency 
strain. Likewise, edge dislocations whose Burgers vectors are perpendicular 
both to the dislocation line and to the plane of the interface, do not relieve 
coherency strain. Therefore, in the general case of "mixed" dislocations, 
having both edge and screw character, only that component of the Burg
ers vector that is both "edgelike" and in the plane of the interface acts 
to relieve coherency strain. In particular, if, as illustrated in Figure 5.23 
on page 195, λ is the angle between (a) the Burgers vector and (b) the 
direction that is both normal to the dislocation line and that lies within 
the plane of the interface, then only the component, 

6edg?|| ΞΞ 6cosA, (5.8) 

acts to relieve lattice misfit. 
Also note that dislocations with partial or full edge character move 

most easily by gliding within the plane containing both the dislocation line 
and its Burgers vector. The pure edge dislocation illustrated in Figure 5.3, 
e.g., will move most easily within the interface between the epilayer and the 
substrate. Therefore, such a dislocation, if created at the free surface, would 
be unable to glide to the interface between the epilayer and the substrate. 
Instead, it would be constrained to glide parallel to that interface. 

To be practically effective at relieving misfit strain, then, dislocations 
must usually have some component of their Burgers vector out of the inter
face. Otherwise, they must move by "climbing" out of the plane containing 
both the dislocation line and its Burgers vector. Such motion requires the 
creation or annihilation of vacancies at the dislocation core, and hence a 
diffusive flux of vacancies either away from or toward the dislocation core. 
For example, to move the edge dislocation illustrated in the left half of Fig
ure 5.3 down from the interface by one lattice spacing, a row of vacancies 
must be removed from the dislocation core. Such vacancy removal ulti
mately requires diffusion away from the core, which usually only becomes 
significant at fairly high temperatures.18 

1 8E.A. Fitzgerald, P.D. Kirchner, R.E. Proano, G.D. Pettit, J.M. Woodall and D.G. 
Ast, "Totally relaxed Ge x S i i_ x layers with low threading dislocation densities grown on 
Si substrates," Appl. Phys. Lett. 59, 811 (1991). 
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While acting to relieve misfit strain, interface dislocations also cost en
ergy, due to the disruption in bonding associated with the disregistered 
atoms at their core and to the long-range elastic stress and strain fields 
away from their core. For pure edge and screw dislocations, the energies 
per unit length associated with the elastic stresses and strains in a cylin
drical ring surrounding a long straight dislocation core can be shown, in a 
continuum model, to be approximately 

üb2 

u* = i^(Ä)ln(ß/ro) 

User = ^HR/ro), (5.9) 

where r0 and R are the inner and outer radii of the cylinder. The ener
gies associated with the disregistered core atoms, however, are difficult to 
determine. Instead, it is common to adjust the inner "cutoff" radius r0 so 
tha t the core energies are included in Equations 5.9. In practice, a value of 
r0 = 6/4 for covalent semiconductors is often used. 

For dislocations having mixed character, the energy is the sum of Equa
tions 5.9, with the edge and screw components of the Burgers vectors used 
accordingly. If, as illustrated in Figure 5.23 on page 195, β is the angle be
tween the Burgers vector and the dislocation line, then the edge component 
is bsinß and the screw component is bcosß. Therefore, 

Udis = ^ ( f ^ W / ? ) l n ( 4 ß / 6 ) 

ub2 [l - vcos2 β\ Λ , „.,, 
= 17 ( i - y JhW*)· (5·10) 

Note tha t , because of the long-range nature of the elastic stresses and 
strains, the dislocation energy diverges logarithmically with the radius of 
the outer radius of the cylinder. Therefore, a dislocation embedded in an 
infinite crystal has infinite energy. In fact, the long-range elastic stresses 
and strains are always disrupted (and bounded) either by free surfaces or 
by the stress and strain fields of neighboring dislocations. 

For example, if a free surface at z = 0 is placed a distance h away 
from a dislocation at z = h, the normal and shear stress components acting 
on the surface must vanish, because the surface is free to expand outward 
or contract inward. The effect of the surface can be accounted for ap
proximately by placing an "imaginary" dislocation of the opposite sign at 
z = — /i, thereby largely cancelling the long-range stress field at distances 
much greater than h from the dislocation core. The energy associated with 
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Figure 5.4: Dislocation lines lying along [110] (left) and [110] (right) directions. 
The edges of the tetrahedra inscribed within each unit cube represent the possible 
directions of the Burgers vectors for each of those dislocations. 

a dislocation a distance h from a free surface is therefore approximately 

'l-£\ \n(4h/b). (5.11) 

Note tha t the energy is proportional to 62, because the strains around 
the dislocations are proportional to 6, and the energy is proportional to 
the square of the strains. Therefore, dislocations with shorter Burgers 
vectors will be more common than those with longer Burgers vectors. For 
this reason, the most common Burgers vectors in fcc-based diamond and 
zincblende lattices are of the | (110) type, since these are the shortest lattice 
vectors in these crystals.1 9 Since there are six possible (110) directions, 
there are six possible directions for the Burgers vectors. These six directions 
are the edges of the te t rahedra shown in Figure 5.4.20 

Consider, for example, misfit dislocations lying along either [110] or [110] 
directions, as shown in the left and right halves, respectively, of Figure 5.4. 
For (001) oriented fcc-lattice-based epitaxial films, these two dislocation 
line directions are the most common, as they lie both in the (001) interface 
plane as well as in one of the close-packed { i l l } slip planes within which 
dislocations move most readily. Dislocations having these line directions 

19 Dissociation into "partial dislocations" having shorter Burgers vectors separated by 
stacking faults is also possible. 

2 0 N. Thompson, "Dislocation nodes in face-centred cubic lattices," Proc. Phys. Soc. 
B66, 481 (1955). 

«-£ 
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Figure 5.5: Left: [Ϊ01] threading screw dislocation segments and [110] 60° misfit 
dislocation segment with Burgers vector along [Ϊ01] direction. Right: crossed 
grid of two arrays of misfit dislocations along the [Ϊ10] and [110] directions. 

can be one of three types, depending on the directions of their Burgers 
vectors. If the Burgers vector of the ΐ = [110] dislocation illustrated in the 
left half of Figure 5.4 lies along the line A-B, parallel to ί, then it is screw 
in character. If its Burgers vector lies along the line C-D, perpendicular 
to /, then it is edge in character. If its Burgers vector lies along any of the 
four other lines, Ä - C , A-D, B-C or B-D, at 60° to Γ, then it is a "mixed" 
60° dislocation. Likewise, the / = [110] dislocation illustrated in the right 
half of Figure 5.4 will either be screw, edge, or 60° mixed, depending on 
the direction of its Burgers vector. 

An example of a commonly observed dislocation configuration is illus
t ra ted in the left half of Figure 5.5. An ϊ = [Ϊ01] screw dislocation with 
b = [ Ϊ0 ΐ ] /2 is shown threading up diagonally from the substrate into the epi-
layer. Just at the epilayer/substrate interface, the dislocation has bent over 
to form a misfit dislocation segment with Ϊ = [110]. Since Burgers vectors 
must be preserved along the length of any particular dislocation, the misfit 
dislocation segment is a 60° dislocation with cos/3 = l-b = cos60° = 1/2. A 
plan-view transmission electron micrograph of a crossed grid of such misfit 
dislocations is shown in Figure 5.6. 



5.1. Energetics of Misfit Accommodation 163 

Figure 5.6: Bright-field plan-view transmission electron micrograph of the 
interface between a 200-nm Sio.gGeo.i layer grown on a Si (001) substrate.0 The 
misfit dislocations are arranged in a crossed grid running along the (110) direc
tions within the (001) interface. 

aY. Fukuda, Y. Kohama, M. Seki, and Y. Ohmachi, "Misfit dislocation structures at 
MBE-grown Sii_xGex/Si interfaces, Jpn. J. Appl. Phys. 27, 1593 (1988). 

5.1.3 Equilibrium Strains and Dislocation Densities 
In Subsection 5.1.1 we discussed the strain energy cost associated with 
a perfectly coherent interface, and in Subsection 5.1.2 we discussed the 
dislocation energy cost associated with a semi-coherent interface. In this 
subsection, we ask which of the two interfaces costs the least energy, and 
hence will be thermodynamically preferred. To answer this question, let 
us calculate how the two kinds of energies depend on misfit dislocation 
density. For concreteness, we assume tha t the semi-coherent interface is 
composed, as illustrated in the right half of Figure 5.5, of a crossed-grid of 
two identical arrays of dislocations, each having a linear density of pmd· 

For a fully coherent interface, for which pmd = 0, there is only the 
coherency strain energy, which we have already calculated to be 2μ[(1 + 
v)/(\ — v)\hf2, where / is the lattice parameter misfit between the epitaxial 
layer and the substrate. For a semi-coherent interface, for which pmd > 0, 
the misfit will be partially taken up by localized regions of disregistry, 
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thereby decreasing the coherency strain energy, but increasing the misfit 
dislocation energy. 

To see how the coherency strain energy will decrease with misfit dis
location density, we note tha t in one dimension, the misfit taken up by 
dislocations, /dis , is the lattice displacement parallel to the interface per 
dislocation, 6edg,||> divided by the spacing between dislocations, l / p m d · In 
other words, 

/dis = Pmd&edg,||· (5.12) 

Therefore, the dislocation density tha t would relieve all the misfit in one di
mension would be pmd = //6edg,| | · K? o n average, the strain in the epitaxial 
film decreases linearly with the dislocation density, then 

e|| ~ / — /dis = / — Pmd&edg,||· (5.13) 

The dependence of the coherency strain energy on misfit dislocation density 
can then be writ ten as 

ucoh = 2μ ( — — j ft(/-pmd&edg,||) · ( 5 · 1 4 ) 

As indicated by the dashed lines in the left and right halves of Figure 5.7, 
the coherency strain energy depends parabolically on dislocation density, 
and vanishes when pmd = //6edg,| |-

At the same time, the energy associated with the dislocations them
selves will increase as the misfit dislocation density increases. For most 
applications, it is sufficient to approximate the energy associated with each 
of the two dislocation arrays to be the dislocation density times the energy 
of an isolated dislocation, or 

p62 / l - i / c o s 2 / ? \ , / 4 / Λ 
-dis « P m d — (̂  χ _ ν ) In ^ T j . (5.15) 

This linear dependence of the dislocation array energy on dislocation den
sity is shown as the dotted lines in the left and right halves of Figure 5.7. 

For more precise calculations, however, we note tha t interactions be
tween dislocation should be taken into account. The reason is tha t when 
the dislocation spacing is less than the film thickness, the stress fields of 
individual dislocations are not fully screened from each other by the free 
surface, and mediate an "interaction" between them. 2 1 

2 1 See, e.g., J.P. Hirth and X. Feng, "Critical layer thickness for misfit dislocation 
stability in multilayer structures," J. Appl Phys. 67, 3343 (1990); and J.R. Willis, S.C. 
Jain, and R. Bullough, "The energy of an array of dislocations: implications for strain 
relaxation in semiconductor heterostructures," Philos. Mag. A62 , 115 (1990). 



5.1. Energetics of Misfit Accommodation 165 

f 0.010 h 90 Ä 

0.020 h 

0.015 

=1 
.0.010 l· 

0.005 h 

0.000 

\ 2ud i 8 / (^b) 

V 
\ \^coh/(Mh) 

_L L 

f 0.010 h 130 Ä 
\ \ i i y 

μ_ \ \ / 

\Wt/(Mb) / 
\\ / 

r \ yf 
\ 
\ 
\ Ζν*,/(μ*>) 

\ 
v 

\ 
I 1 ^ 1 . -

1 
_ 

-

" 

/ 
/ / 

y 
1 

0.000 0.005 0.010 0.015 0.000 0.005 0.010 0.015 
Pmd D edge .par Pmd " edge .par 

Figure 5.7: Areal energy densities, normalized by the product of the shear mod
ulus and the Burgers vector, as a function of the misfit taken up by dislocations, 
Pmd&edg,||· The dotted lines represent the energies of two dislocation arrays; the 
dashed lines represent the coherency strain energies; the full lines represent the 
sum. The film on the left is thin enough that it is stable when it is coherent with 
the substrate; the film on the right is thicker and is stable when it is semi-coherent 
with the substrate. 

The total areal energy density is the sum of the areal energy densities 
associated with the coherency strain and both of the dislocation arrays, or 

^tot = ^coh + 2?/dis 

ßb2 

+ Pmd 2π 
i / c o s 2 / A (Ah 
r^r- ln T (5.16) 

This dependence of utot on pmd displays two distinct kinds of behavior, 
as illustrated in Figure 5.7. For thin, low-misfit films, the total energy is 
minimum at pmd = 0. Misfit dislocations cost more energy than is regained 
by release of coherency strain. For thick, high-misfit films, however, the 
total energy is minimum at pmd > 0. The introduction of some misfit 
dislocations costs less energy than is regained by release of coherency strain. 

Mathematically, these two kinds of behaviors arise according to whether 
the energy associated with either of the dislocation arrays, utot/2, increases 
or decreases for an incremental increase in pmd from pmd = 0. In other 
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words, according to whether 

dutot] ί1 + Λ uu , , /i&2 fl-vcos2ß\ 
— = -2μ - ^edg,||/ + — : ln(4ft/6) 

(5.17) 
is greater than or less than zero. On the one hand, if it is greater than zero, 
then the change in energy upon introducing the first few misfit dislocations 
is positive. Misfit dislocations will not tend to form, and the fully strained, 
coherent epilayer will be thermodynamically stable. On the other hand, if 
it is less than zero, then the change in energy upon introducing the first 
few misfit dislocations is negative. Misfit dislocations will tend to form, 
and the strain in the epilayer will tend to "relax." 

The critical misfit for a given thickness and the critical thickness for a 
given misfit, beyond which misfit dislocations will tend to form, are deter
mined by the condition (l/2)[dutot/dpmd]Pmd=o = 0, or 

b /1-i/cos2 β\ , , , /fX 
/c = — ; r In (4h/b) 
J 8TT/ICOSA V 1 + ^ / 

6 (\ — i/cos2 3\ , , , , , , 
*° = ^f^x{-^T^£)ln{4hJb) ( 5 · 1 8 ) 

where we have used Equation 5.8, 6edg,|| = ^cosA. These expressions repro
duce exactly those derived originally by Matthews and Blakeslee22 and more 
recently by Ball and van der Merwe.23 They are illustrated in Figure 5.8 
for λ = β = 60°, which is often the case for fcc-lattice-based diamond 
and zincblende crystals. Films having thickness/misfit combinations below 
the curves are stable against the introduction of misfit dislocations; films 
having thickness/misfit combinations above the curves are not. 

Also shown in Figure 5.8 are experimental data points corresponding 
to Ini-xGa^As films grown on GaAs substrates and Sii-^Ge^ films grown 
on Si substrates. As can be seen, the boundary separating the coherent 
from the semi-coherent films is given very closely by Equation 5.18. That 
equation is also believed to describe the thermodynamic boundary dividing 
coherent from semi-coherent epitaxy of metal films.24 

Above the critical layer thickness, the energy decreases at first upon the 
introduction of the first few misfit dislocations, but eventually increases 

2 2 J .W. Matthews and A.E. Blakeslee, "Defects in epitaxial multilayers I. Misfit dislo
cations," J. Cryst. Growth 27, 118 (1974). 

2 3C.A.B. Ball and J.H. van der Merwe, "The growth of dislocation-free layers," in 
Dislocations in Solids, F.R.N. Nabarro, Ed. (North-Holland, Amsterdam, 1983), Chap. 
27. 

2 4 Y. Kuk, L.C. Feldman, and P.J. Silvermann, "Transition from the pseudomorphic 
state to the nonregistered state in epitaxial growth of Au on Pd (111)," Phys. Rev. Lett. 
50, 511 (1983). 



5.1. Energetics of Misßt Accommodation 167 

104U 

<** 10 3 U 

10« L 

i 11 ι\ιi 1—i i 11iii| 1—i i 11■ ■ 11 1—i i I urn 

S e m i - c o h e r e n t 

Coherent 

1 0 * 1 i I m i l 1—i i l i n i l i i i I m i l i ■ tN 'ml 

10" 10" 10" IQ"1 

400 

g30° 
J200 

100 

n 

Γ~ι—r-fi—1—1—1—1—1—1—1—1—n~~r—pi 1 

Y Semi-coherent 

! Coherent N. 

_ l 1 1—1—1—1—1—1—1—1 1 1 1 1 . L . - l 

—r-: 

-
" 
-
: 
-
-
-
-

_ l 
0.000 0.005 0.010 

f 
0.015 

F i g u r e 5.8: Logari thmic (left) and linear (right) plots of critical layer 
thicknesses for a given misfit (or, alternatively, critical layer misfits for a given 
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subs t ra tes and then annealed. T h e filled d a t a points correspond to s t ruc tures 
t h a t mainta ined coherency; the open d a t a points correspond to s t ruc tures t h a t 
became semi-coherent. 

a P .S . Peercy, B.W. Dodson, J.Y. Tsao, E.D. Jones, D.R. Myers, T.E. Zipperian, L.R. 
Dawson, R.M. Biefeld, J.F. Klem and C.R. Hills, "Stability of strained quantum-well 
field effect transistors," IEEE Electron Dev. Lett 9, 621 (1988). 

6D.C. Houghton, C.J. Gibbings, C G . Tuppen, M.H. Lyons, and M.A.G. Halliwell, 
"Equilibrium critical thickness for S i i _ x G e x strained layers on (100) Si," Appl. Phys. 
Lett. 56, 460 (1990). 

again. The dislocation density that minimizes utot can be found by solving 
for that /omd for which the derivative 

dut 

2<9pmd 
= ~2μ \T~i/) ^edg'" ^ ~ Pmd6edS'll) 

ßb2 fl — ucos2ß\ / 4 / ι Ν 

4 π \ - v 
In 

(5.19) 

vanishes. In other words, the equilibrium dislocation density is given by 

/ 
Pmd,e bcosX 
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Figure 5.9: Equilibrium misfit strain (/dis) taken up by dislocations as a function 
of thickness at constant misfit (left) or as a function of misfit at constant thickness 
(right). Below either the critical thickness (hc) or critical misfit (/c) the strain 
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/ 
b cos λ 

hc (5.20) 

This equation determines pmcj self-consistently in terms of pmd itself, and 
can be solved iteratively; a reasonable initial guess is pmd = / / ( 2 6 c o s A ) . 
Once determined, the equilibrium pmd then determines tha t portion of the 
total misfit, /dis , tha t is taken up by dislocations through Equation 5.12. 

For a given misfit, /dis is zero for thicknesses less than the critical layer 
thickness, but increases sharply for thicknesses greater than the critical 
layer thickness. This dependence is shown in the left half of Figure 5.9. 
Note tha t even for h > hc, the equilibrium dislocation density is less than 
tha t which would eliminate all coherency strain. In other words, even 
above the critical layer thickness the coherency strain in the epilayer is 
only partially, and not fully, relaxed. 

Likewise, for a given thickness, pmd is zero for misfits less than the 
critical layer misfit, but increases logarithmically for misfits greater than 
the critical layer misfit. This dependence is shown in the right half of 
Figure 5.9. Again, even for / > / c , the equilibrium dislocation density is 
always less than tha t which would eliminate all coherency strain. 
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5.2 Forces on Dislocations 
In Section 5.1, we found that the transition between coherency and semi-
coherency corresponded to the thicknesses and misfits at which introduction 
of the first few misfit dislocations became energetically favorable. Ulti
mately, though, the transition between coherency and semi-coherency also 
requires the motion of dislocations to (or near to) the epilayer/substrate 
interface. There must then be forces acting on the dislocations to cause 
them to move. In this section, we describe the forces acting on dislocations 
in strained heterostructures. We will find that the thermodynamic transi
tion between coherency and semi-coherency also corresponds exactly to the 
thicknesses and misfits at which the forces acting to elongate existing mis
fit dislocations are positive or negative. We will also find that the average 
force acting to elongate existing misfit dislocations, the "excess stress" of 
the structure, is a natural measure of the driving force for strain relaxation 
by misfit dislocation creation. 

We will begin, in Subsection 5.2.1, by describing excess stress in a simple 
structure: a single strained surface layer grown on a very thick substrate. 
Then, in Subsection 5.2.2, we describe excess stress in a more complicated 
structure: a single strained layer buried within a very thick substrate. Fi
nally, in Subsection 5.2.3, we generalize the concept of excess stress to even 
very complicated heterostructures, for which the excess stress depends on 
depth within the structure. 

5.2.1 Strained Surface Layers 
We start, in this subsection, by describing excess stress in a simple struc
ture: a single strained surface layer grown on a very thick substrate. Con
sider a dislocation "threading" upward through the epilayer/substrate inter
face and into the epilayer itself, as illustrated in the left half of Figure 5.10. 
If the dislocation bends over, then new length of misfit dislocation will be 
created at the epilayer/substrate interface. If, in steady state, the shape 
of the threading segment as it moves from A-C to B-D does not change, 
then the net change in energy is due solely to the new misfit segment C-D, 
which we may imagine has moved downward from AB. 

The energy gained by moving unit length of that segment a distance 
h downward (or, equivalently, by bending the threading dislocation unit 
length to the right) is hz dotted into what is known as the Peach-Koehler 
force, dF = (b · ö) x /, which describes the force acting on unit length of 
dislocation in an external stress field. In particular, the bending force due 
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Figure 5.10: Strain relaxation by single (left) and double (right) kinking of a 
threading dislocation to form misfit dislocations. 

to the coherency stress in the film is 

Fcoh = hz-{(b-&) x / } , 

where 

( ac o h 0 0 

0 acoh 0 
0 0 0 

is the stress tensor in the epilayer film, and, using Equation 5.4, 
0"coh = σ\\ = Ζμ I — — | en 

(5.21) 

(5.22) 

(5.23) 

is the in-plane stress acting in the epilayer. 
For the 60° misfit dislocation segment illustrated in Figure 5.5, whose 

Burgers vector is b = [Ϊ01]6/\/2 and whose line direction within the inter
face is / = [110]/\/2, the force is 

I ° 
F c o h = [ 0 0 h } . I 0 

\ - ^ C o h / 2 

with a magnitude of 
Fcoh = bacohh/2. 

Since for this geometry 

fredg,|| = ^cosA = b cos 60° = 6/2, 

the coherency force can also be writ ten as 

coh — °edg, | | 0 " C o h ^ , 

(5.24) 

(5.25) 

(5.26) 

(5.27) 
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which can be shown to be generally true for arbitrary geometries (see Ex
ercise 4 at the end of this chapter) . 

Opposing this force is a line tension associated with the energy required 
to create the new misfit dislocation segment C-D. From Equation 5.11, this 
force, or the energy per unit length, is 

π ub2 /l-i/cos2/?\ , , /1X , 
d i s = 4 7 ( l - i / ) l n ( 4 f t / f c ) ' ^ 5 · 2 8 ) 

where we have assumed noninteracting dislocations. If we recast this equa
tion into the form Fdis = &edg,locus'1» then we can write 

uh (\ — z/cos2 3\ , , , /1X 
^dis = — ^ r In (4hb. 5.29 

4π/ι cos λ \ 1 - v ) 
which is an effective stress, σ<ϋδ, associated with the dislocation line tension 
tha t opposes the coherency stress, acoh-

The net, or "excess" stress driving the bending of threading dislocations 
to form single-kink misfit segments is therefore 

c v 
aexc — acoh — 0"dis 

2μ(--^) ( / -pmd6edg, | | ) 

ub (\ — i/cos2 / ? \ , , , /1X 
^ ' M * ln(4/i/6). (5.30) 4π/ι cos λ 

When σ | ^ > 0, threading dislocations will tend to bend over to form strain-
relaxing misfit segments. When σ | ^ < 0, threading dislocations tha t have 
bent over to form strain-relaxing misfit segments will tend to straighten. 
When σ | ^ = 0, threading dislocations will have neither tendency.2 5 

Note tha t this excess stress reproduces exactly the variation of energy 
with dislocation density found in Equation 5.19, assuming noninteracting 
dislocations. Therefore, the condition [o'^]Pmd=o = 0 is equivalent to the 
condition {l/2)[dutot/dpm<i]pmd=o = 0 for the thickness/misfit boundary 
between coherent and semi-coherent films, and the condition σ ^ = 0 is 
equivalent to the condition (l/2)dutot/dpm^ = 0 for the equilibrium mis
fit dislocation density beyond the critical layer thickness. Physically, the 
force required to form new misfit dislocations by bending of existing thread
ing dislocations is equivalent to tha t required to increase the density of a 
dislocation array by "squeezing" laterally on the dislocation array. 

2 5L.B. Freund, "The driving force for glide of a threading dislocation in a strained 
epitaxial layer on a substrate," J. Mech. Phys. Solids 38, 657 (1990). 
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Figure 5.11: Contours of constant single-kink (left) and double-kink (right) ex
cess stresses on a thickness/equivalent-strain diagram. 

As we will discuss later, it is often possible, for kinetic reasons, to grow 
coherent epilayers to thicknesses well beyond those for which they should 
become semi-coherent. In these cases, the excess stress evaluated at pm(\ = 0 
is a useful measure for the degree of metastabili ty of the structure. The 
critical thickness/misfit relationship for a given degree of metastability, or 
a given value of σ | ^ , is then found, from Equation 5.30, to be 

. . / S K i x 1ί1~Λσβχο b / l - * / c o s 2 / A , _ / 1 Λ 
/ c faf i : , h) = -[ - ^ + — ; r In Uh b). 
JcK e x c ' ; 2 \ l + vJ μ 87r/icosA V 1 + ^ J 

(5.31) 
These metastable critical thicknesses and misfits are illustrated in the 

left half of Figure 5.11 for various values of crf^/μ. For thin ( « 150 Ä) 
"quanturn-well" type structures, which are capped immediately by un
strained material, it is often possible to grow coherent metastable struc
tures up to values of c^/μ = 0.04. For thicker structures, the maximum 
σ^/μ values decrease considerably. In the limit of very thick structures, 
grown for very long times, the maximum ο~^/μ values are zero, and the 
equilibrium critical layer thickness boundary holds. 

5.2.2 Strained Buried Layers 
In Subsection 5.2.1, we described excess stress in a simple structure con
sisting of a strained surface layer. In this subsection, we describe excess 
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stress in a more complicated structure consisting of a strained buried layer. 
Consider a dislocation threading upward through this buried strained layer, 
as illustrated in the right half of Figure 5.10. The buried strained layer has 
thickness /istr? a n d is capped by an unstrained layer of thickness hcap. For 
this structure, it is possible for the dislocation to bend twice, thereby reliev
ing strain only within the buried layer.26 We can apply all the arguments of 
the previous subsection to calculate the net bending force, except tha t the 
line tension force must now be taken twice. The excess stress driving misfit 
dislocation formation by this macroscopic "double-kinking" of a threading 
dislocation is therefore 

~ D K _ 
aexc — σοο1ι — 0 d i s , l — Odis,2 

= 2μ ( T 3 W ^ " pmd6edS'll) 

4 7 ^ cos λ V I - « / / 

μΒ ^ - ^ ° δ 2 ^ 1 η ( 4 β 2 / 6 ) , (5.32) 
4π^2 cos λ 

/ l - * / c o s 2 / A 

where pmd is now the density of dislocations at each interface surrounding 
the buried strained layer. 

Note tha t the stresses associated with the dislocation line tensions are 
different for the two dislocations, because they may have different cutoff 
"screening" distances for their elastic energies. The cutoff distance for the 
dislocation farthest from the free surface will be approximately the distance 
to the dislocation closest to the free surface, or h. However, the cutoff 
distance for the dislocation closest to the free surface will be the smaller 
of the distances to the free surface, hcap, or to the adjacent dislocation, or 
approximately hefF = hstrhcap/(hstr + hcap). Therefore, 

T D K 

σβχο 2μ\^—^ ( / - P m A d g , | | ) 

ßb / l — vcos2ß\. / 4 / i s t r 
In 47r/istr cos λ \ l — i/ / \ b 

( ^ > ( ^ ) <5·33» 47T/ieff COS λ 

In the limit hcap —► 0 (or, to avoid singularities, hcap —+ 6/4), the 

2 6 W.D. Nix, D.B. Noble, and J.F. Turlo, "Mechanisms and kinetics of misfit dislocation 
formation in heteroepitaxial thin films," Mat. Res. Soc. Symp. Proc. 188, 315 (1990). 
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double-kink excess stress becomes 

<£c = 2μ0^)(/-ρ,ηΑ^,ιι) 
μ6 ^ Ι - , ^ / 4 ^ ( 5 3 4 ) 

4nhstT cos λ \ l — i/ 

and is equivalent to the single-kink excess stress. Effectively, there is no 
cap, and the energy of the dislocation elongating along the surface is zero. 

In the opposite limit / i c a p —> oo, the double-kink excess stress becomes 

T D K 

aexc 
= 2 ^ \ J ~ ) ( / - P m d & e d g , | | ) 

μΒ fl-vcoB*ß\lRf4hn 

27r/lst r COS λ 

In this limit, the critical thickness/misfit relationship for a given degree of 
metastability, or a given value of σ ^ , can be calculated to be 

u<U) = Uizl)^+ ±__i^s^A ΗΨ)-2 \ \ + v) μ 47r/icosA \ 1 + v 
(5.36) 

These metastable critical layer thicknesses are illustrated in the right 
half of Figure 5.11. The equilibrium critical layer thickness boundary is 
determined by σ ^ = 0, and is seen to be shifted to the right from the 
single-kink curves. Because the line tension enters in twice, for strained 
layers having the same thickness and misfit, this double-kink mechanism 
for strain relaxation is usually less likely than the single-kink mechanism 
discussed earlier. 

5.2.3 Generalized Excess Stress 
In Subsections 5.2.1 and 5.2.2, we described the excess stresses associated 
with two strained layer structures, one in which the layer is at the surface, 
another in which the layer is buried. In this subsection, we describe excess 
stress in general structures composed of multilayers of different misfits and 
thicknesses. Such structures are susceptible to either single-kink or double-
kink relaxation at different depths within the structure. In other words, 
dislocations may bend anywhere within a given structure. Then, it is useful 
to generalize the driving force for tha t bending to include a dependence on 
depth. 2 7 

2 7J .Y. Tsao and B.W. Dodson, "Excess stress and the stability of strained heterostruc-
tures," Appl. Phys. Lett. 53, 848 (1988). 
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In doing so, we note tha t for many applications it is only necessary to 
calculate the excess stress in unrelaxed, fully coherent structures. There
fore, we restrict ourselves to the simplest case of unrelaxed (pmd = 0) 
structures. Structures tha t are partially relaxed (pmd φ 0) are consider
ably more difficult to t reat . 

If we make the approximation tha t the elastic moduli of the different 
layers are equal, then for single-kink relaxation, the depth-dependent excess 
stress can be writ ten as 

SK/ x o ί λ ± Λ SK/ x /i6 {ΐ-1/0Ο82β\Λ (Az\ 

where z is the depth from the free surface, and 

i z A·?1 

4«(z) = / Φ') V ' <5 ·38) 
Jo z 

the equivalent strain, is the average parallel strain associated with the struc
ture from the surface to tha t depth. 

Physically, the coherency stress acting to bend a dislocation at a depth 
z is an integral of the strains over the length of the dislocation above tha t 
depth. The dislocation line tension stress acting to straighten a dislocation 
at a depth z is the energy associated with creating a dislocation at tha t 
depth. If (7^(z) < 0 at a particular depth z, misfit dislocation formation 
at tha t depth leads to an increase in energy. If σ ^ ( ζ ) > 0 at a particular 
depth z, misfit dislocation formation at tha t depth leads to a decrease in 
energy. 

Note tha t even if crf.£(z) > 0 at a particular depth, a threading dis
location will not necessarily bend there. Kinetic limitations may prevent 
such bending, and there may be other depths in the structure at which the 
excess stress is even higher, and which will be even more favored for misfit 
dislocation creation. 

To illustrate this concept of a depth-dependent excess stress, in Fig
ures 5.12 and 5.13 we show σ | ^ ( ζ ) for two double quantum-well heterostruc-
tures. In the unstrained caps, crf^(z) increases gradually from the surface, 
as the line tension stress associated with misfit dislocation creation de
creases. In the strained layers themselves, crf^(z) increases more quickly, 
as the coherency stresses increase. In the unstrained buffers beneath the 
strained layers crf^(z) decreases, as the coherency stress associated with 
the strained layer is "diluted," so tha t the average coherency stress above 
a depth z decreases. 

In these examples, the single-kink excess stress is maximum at the rear 
of the deepest buried strained layers. The rear of tha t strained layer is 
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Figure 5.12: Strains, equivalent strains, and excess stresses in a double buried 
quantum-well heterostructure. Both the single- and double-kink excess stresses 
maximize at a depth of 800 Ä, but only the single-kink excess stress exceeds 
zero, and even then just barely. Therefore, this structure is stable with respect 
to double-kink strain relaxation, but slightly unstable with respect to single-kink 
strain relaxation. 

therefore the weakest point in the structure, where misfit dislocations are 
most likely to form. It is important to emphasize, though, tha t the rear of 
the shallowest buried strained layer is also a weak point, at which misfit 
dislocations may form. 

The double-kink excess stress can be generalized in a similar way: 

« S M = 2e £;)«'>- μ& l - i / cos2 β 
In 

4/Λ 
2ΈΗ COS λ V \ — v 

(5.39) 
where z is the depth of the lower kink from the free surface, h is the thickness 
of material between the kinks, and 

/

z + h if 
(5.40) 

is the equivalent strain associated with the material between the kinks. 
Note tha t the double-kink excess stress depends not just on depth, but 

on the thickness of material between the kinks. It will be maximum when 
it is matched to the thicknesses of the buried strained layers. For example, 
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Figure 5.13: Strains, equivalent strains, and excess stresses in a double buried 
quantum well heterostructure. Both the single- and double-kink excess stresses 
maximize at a depth of 800 Ä, but only the single-kink excess stress exceeds zero. 
Therefore, this structure is stable with respect to double-kink strain relaxation, 
but unstable with respect to single-kink strain relaxation. 

Figures 5.12 and 5.13 show the depth-dependent double-kink excess stress 
for the double buried quantum-well heterostructures evaluated at h equal 
to the actual thicknesses, / i s t r , of the buried quantum wells. The excess 
stresses can be seen to be small everywhere except in the quantum wells 
themselves. 

Also note tha t even at their maxima, at the rear of the buried strained 
layers, the double-kink excess stresses are less than the single-kink excess 
stresses. These particular buried structures will therefore be more likely to 
relax by generation of single-kink rather than double-kink misfit disloca
tions. 

If we require a structure to be absolutely stable, both with respect to 
single-kink and double-kink relaxation, then we require σ^(ζ) < 0 and 
σ βχ?( ζ ) < 0 f ° r a n l z- For the single buried strained layer structure shown 
in Figure 5.14, whose weakest point is at a depth z = / i c a p + hstT, where 
/ i c a p is the thickness of the unstrained capping layer, we must then satisfy 
both 

rSK 
J equ < 87T/lSK COS A 

1 - v cos2 β 
In {¥) (5.41) 

http://Si.7eGe.85
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Figure 5.14: Stability curves for structure consisting of a strained layer of thick
ness hstr and misfit / s t r , buried underneath a capping layer of thickness hcap and 
misfit /cap. 

f D K < / e q u " 4nh%*cosX 
( i ^ W i S ) . «,42) 
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(5.43) 

(5.44) 

are the single- and double-kink equivalent strains and thicknesses. Note 
tha t we have made the approximation h^ = /istr^cap/(^str + ^caP) = ^str 
for the double-kink equivalent thicknesses. 

Substi tuting Equations 5.43 into Equation 5.41, we find tha t for a given 
thickness cap, hcap, and a given thickness buried strained layer, / i s t r , the 
critical strained layer misfit below which the structure will be stable with 
respect to single-kink relaxation is 

/s t r — ^cap + ™str 1 — v cos2 ß 
In str 

hstT Sn(hcap + hBtr) cos λ V 1 + v 
(5.45) 

The resulting critical layer misfits for a given thickness (or, equivalently, 
the critical layer thicknesses for a given misfit) are shown as the dashed 
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curves in Figure 5.14 for various capping layer thicknesses. Buried strained 
layer thickness and misfit combinations tha t lie to the left of the curves are 
stable with respect to single-kink relaxation. 

If the cap thickness is zero, then the critical thickness curve (leftmost 
solid curve) for simple surface strained layers is obtained. As the cap be
comes thicker, the critical thickness curves shift to the right, as the un
strained cap "dilutes" the strain of the buried layer and stabilizes it. Ulti
mately, for infinitely thick caps, the structure becomes more unstable with 
respect to double-kink relaxation than to single-kink relaxation. In this 
limit, the critical strained layer misfit below which the structure will be 
stable is found by substi tuting Equations 5.44 into Equation 5.42, or 

u-t—iL^L)^«*). (5.46) 
47r/istr cos A \ l + v ) \ b ) 

The resulting critical layer misfit for a given thickness (or, equivalently, 
the critical layer thickness for a given misfit) is shown as the rightmost 
solid curve in Figure 5.14. Buried strained layer thickness and misfit com
binations tha t lie to the right of the curve are not stable with respect to 
double-kink relaxation. 

To the left of the leftmost solid curve, then, structures are absolutely 
stable with respect to both single- and double-kink relaxation, regardless 
of cap thickness. Within the window between the solid curves, structures 
are absolutely stable with respect to double-kink relaxation, but require 
stabilization with respect to single-kink relaxation by a finite-thickness cap 
layer. To the right of the rightmost solid curve, structures are not stable 
with respect to double-kink relaxation, even if they have been stabilized 
against single-kink relaxation by an infinitely thick cap layer. 

5.3 Relaxation of Strain 
In Sections 5.1 and 5.2, we described the thermodynamics of the creation of 
misfit dislocations. In particular, we described the driving force, or "excess 
stress," acting to bend vertical dislocation segments into misfit dislocations 
lying in the interface between the strained layer and the substrate. Ba
sically, the sign of a e x c determines whether or not misfit dislocations will 
have a tendency to form, while the magnitude of a e x c determines the driv
ing force for them to form. Even if a e x c > 0, however, misfit dislocations 
will not form instantly during growth.2 8 Instead, they will form at a finite 

2 8 A.T. Fiory, J.C. Bean, R. Hull, and S. Nakahara, "Thermal relaxation of metastable 
strained-layer Ge x Si i_ x /S i epitaxy," Phys. Rev. B31 , 4063 (1984); and E. Kasper, 
"Growth and properties of Si/SiGe superlattices," Surface Sei. 174, 630 (1986). 
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rate determined, to first order, by the magnitude of aexc. 
In this section, we discuss the kinetics of the creation of misfit disloca

tions. We begin, in Subsection 5.3.1, with a brief introduction to the dy
namics of dislocations in bulk materials, as summarized in what are known 
as deformation-mechanism maps. Then, in Subsection 5.3.2, we describe 
a simple qualitative model for the dynamics of dislocations in epitaxial 
thin films, and use it to simulate, in an approximate way, the evolution of 
strain and misfit dislocation density during actual growth and processing 
of strained heterostructures. Finally, in Subsection 5.3.3, we discuss the 
construction of stability diagrams, which describe the stress-temperature-
time regimes within which strained heterostructures will be metastable to 
various amounts of relaxation. 

5.3.1 Deformation Mechanism Maps 
Let us begin, in this subsection, with a brief introduction to the dynamics of 
dislocations in bulk materials. At the outset, we note that the mechanisms 
underlying the introduction, motion, and multiplication of dislocations in 
bulk materials are exceedingly complex. The mechanisms are many, and 
each may be important only under certain conditions. To illustrate this, 
let us first consider some of the ways in which bulk materials deform plasti
cally under the application of externally imposed stresses. The classic way 
of representing the plastic deformation of bulk materials is through the use 
of deformation-mechanism maps.29 These maps are stress-temperature di
agrams on which are indicated regimes within which various mechanisms 
for plastic deformation are dominant. 

Consider, for example, the deformation-mechanism maps illustrated in 
Figures 5.15 and 5.16 for Si and Ge, respectively. At relatively low tem
peratures and high stresses, deformation is dominated by "low-temperature 
plasticity,1' in which dislocations move mainly by conservative motion, or 
glide, within the plane containing both the dislocation line and its Burgers 
vector. At relatively high temperatures and moderate stresses, deformation 
is dominated by "power-law creep," in which dislocations are increasingly 
able to move by the nonconservative motion, or climb, of dislocations out 
of the plane containing both the dislocation line and its Burgers vector. 
At the lowest stresses, deformation of polycrystalline materials is domi
nated by "diffusional flow," in which, even in the absence of dislocations, 
grain boundaries move and change shape via diffusion of matter through 
the grains or along the grain boundaries themselves. 

2 9H.J . Frost and M.F. Ashby, Deformation-Mechanism Maps (Pergamon, Oxford, 
1982). 
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Figure 5.15: Stress-temperature deformation mechanism map for silicon of 
grain size 100 μπι.α Iso-strain rate contours are drawn from 1/s to 10 _ 1 0 /s . 

aReprinted from H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps (Perga-
mon, Oxford, 1982), p. 71. 
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Figure 5.16: Stress-temperature deformation mechanism map for germanium of 
grain size 100 μτη.α Iso-strain rate contours are drawn from 1/s to 10 _ 1 0 / s . 

"Reprinted from H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps (Perga-
mon, Oxford, 1982), p. 73. 
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Superimposed on these diagrams are iso-strain rate contours, which in
dicate the temperature-dependent stresses required to cause a given strain 
rate. Generally, lower stresses are required to cause a given strain rate at 
higher temperatures , due to increased dislocation mobilities. This increased 
dislocation mobility may occur for a number of reasons. For example, the 
nucleation rate of microscopic double kinks, by which dislocations glide 
laterally on an atomic scale, may increase. The rate at which dislocations 
pass through obstacles may increase. The rate at which vacancies diffuse 
to and from dislocations may also increase, thereby increasing the rate at 
which dislocations climb. 

We emphasize tha t deformation-mechanism maps represent an enor
mous simplification of a number of complex mechanisms, and can only be 
a rough guide to deformation behavior. In particular, their construction 
requires the assumption of a particular microstructure, e.g., dislocation 
density and, in polycrystalline materials, grain size. As materials deform, 
however, their microstructure will change; if the change is severe, the cor
responding change in the deformation-mechanism map may also be quite 
severe. In other words, a complete picture of plastic deformation must 
include the t ime evolution of dislocation densities and other aspects of mi
crostructure, and how tha t evolving microstructure in turn influences the 
further evolution of dislocation densities. 

5.3.2 A Simple Phenomenological Model 
In Subsection 5.3.1, we discussed briefly plastic deformation in bulk ma
terials. The geometry of thin film single-crystal heterostructures is much 
simpler than tha t of a bulk polycrystalline material, and so in principle 
should be correspondingly easier to t reat . However, this has not yet proven 
so. A general t reatment of the plastic deformation of thin film strained het
erostructures must itself include a number of complex microscopic mecha
nisms. In this subsection, we briefly discuss these microscopic mechanisms, 
and then discuss a simple phenomenological model based on these mecha
nisms. 

Consider the microscopic mechanisms illustrated in Figure 5.17. First, 
because the initial threading dislocation densities in electronic-grade semi
conductor substrates are exceedingly low and cannot by themselves account 
for the amounts of strain relaxation commonly observed, nucleation of new 
dislocation loops must be included.30 These loops are most likely "half-

3 0P.M.J. Maree, J.C. Barbour, J .F. van der Veen, K.L. Kavanagh, C.W.T. Bulle-
Lieuwma, and M.P.A. Viegers, "Generation of misfit dislocations in semiconductors," 
J. Appl. Phys. 62, 4413 (1987); and R. People and J.C. Bean, "Calculation of critical 
layer thickness versus lattice mismatch for Ge x Si i_ x /S i strained-layer heterostructures," 
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Figure 5.17: Schematic illustrations of possible microscopic deformation mecha
nisms operative during strain relaxation. 

loops" nucleated at the free surface, perhaps catalyzed by defects or other 
stress concentrators.3 1 In compound semiconductors, the situation is even 
more complicated, due to possible dependences of the nucleation rate on 
surface conditions and chemistry. 

Second, the outward "bowing" motion of these dislocation half-loops to 
form misfit dislocation segments at the epilayer/substrate interface must be 
included.32 This motion will be dominated by glide at low temperatures , 
but will increasingly have a climb component at higher temperatures . It 
may also be mediated by nucleation of microscopic single kinks at the free 
surface in very thin films, or by nucleation of microscopic double kinks in 
thicker films.33 

Third, the slowing and occasional pinning of these dislocation half-
loops as they move and encounter other dislocation segments must be 
included.34 Such pinning has been observed during in situ transmission 

Appl. Phys. Lett. 47, 322 (1985) and 49, 229 (1986). 
3 1 B.W. Dodson, "Nature of misfit dislocation sources in strained-layer semiconduc

tor structures," Appl. Phys. Lett. 53, 394 (1988); C.J. Gibbings, C.G. Tuppen, and 
M. Hockly, "Dislocation nucleation and propagation in Sio.95Geo.05 layers on silicon," 
Appl. Phys. Lett. 54, 148 (1989); and D.J. Eaglesham, E.P. Kvam, D.M. Mäher, C.J. 
Humphreys, and J.C. Bean, "Dislocation nucleation near the critical thickness in GeSi/Si 
strained layers" Phil. Mag. A59, 1059 (1989). 

3 2 J .W. Matthews, S. Mader, and T.B. Light, "Accommodation of misfit across the 
interface between crystals of semiconducting elements or compounds," J. Appl. Phys. 
4 1 , 3800 (1970). 

3 3R. Hull, J.C. Bean, D. Bahnck, L.J. Peticolas, Jr., K.T. Short, and F.C. Unter-
wald, "Interpretation of dislocation propagation velocities in strained GexSii_x/Si(100) 
heterostructures by the diffusive kink pair model," J. Appl. Phys, to be published. 

3 4 L.B. Freund, "A criterion for arrest of a threading dislocation in a strained epitaxial 
layer due to an interface misfit dislocation in its path" J. Appl. Phys. 68, 2073 (1990). 

http://Sio.95Geo.05
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electron microscopy,35 and is likely to be extremely important in the later 
stages of strain relaxation,3 6 when both crossed grids of dislocations have 
become quite dense. 

Fourth, the unpinning and possible multiplication3 7 of dislocation half-
loops as they "bow through" obstacles such as other dislocations must be 
included. These processes have not been directly observed, but may be 
important in the later stages of strain relaxation. 

Finally, the way in which all of these microscopic processes depend on 
depth within the structure must be included. Treating depth-dependent 
strain relaxation would represent a nontrivial extension of existing theories, 
but would be particularly important for compositional graded strained het-
erostructures, or for strained heterostructures composed of multiple layers, 
each having its own misfit. 

As a consequence, all current models t reat only some of these processes, 
and even then only in simplified ways. For concreteness, let us consider 
here one model,3 8 based on the phenomenology of deformation in bulk 
diamond-structure materials.3 9 The model is not the most complete,4 0 but 
is simple and predicts at least qualitatively much of what is known about 
strain relaxation. 

The model assumes tha t dislocations multiply at a rate proportional to 
(a) the velocity at which they move, (b) the number of dislocations present, 
and (c) the excess stress. If the number of dislocations is itself proportional 
to the amount of strain relaxation, 7, and if the dislocation glide and climb 
velocities are bo th thermally activated and proportional to the excess stress, 
then we can write 

g = ^φ) (rge-Q«/*r + Tce-^kT) (7 + 7o), (5.47) 
3 5 R. Hull and J.C. Bean, "Variation in misfit dislocation behavior as a function of 

strain in the GeSi/Si system" Appl. Phys. Lett. 54, 925 (1989). 
3 6B.W. Dodson, "Work hardening and strain relaxation in strained-layer buffers," 

Appl. Phys. Let. 53 , 37 (1988). 
3 7 W. Hagen and H. Strunk, "A new type of source generating misfit dislocations," 

Appl. Phys. 17, 85 (1978). 
3 8B.W. Dodson and J.Y. Tsao, "Relaxation of strained-layer semiconductor structures 

via plastic flow," Appl. Phys. Lett. 51 , 1325-1327 (1987); B.W. Dodson and J.Y. Tsao, 
"Erratum: Relaxation of strained-layer semiconductor structures via plastic flow," Appl. 
Phys. Lett. 52, 852 (1988); and R. People, "Comment on 'Relaxation of strained-layer 
semiconductor structures via plastic flow'," Appl. Phys. Lett. 53 , 1127 (1988). 

3 9 H. Alexander and P. Haasen, "Dislocations and plastic flow in the diamond struc
ture," in Solid State Physics Vol. 22, F. Seitz and D. Turnbull, Eds. (Academic Press, 
New York, 1968), pp. 27-158. 

40See, e.g., D.C. Houghton, "Strain relaxation kinetics in S i i _ x Ge x /S i heterostruc
tures," J. Appl. Phys. 70, 2136 (1991), and Exercise 6 at the end of this chapter. 
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οΠη(7 + 7ο) σ ^ ( 7 ) ( r g e - ^ / f c T + r c e " ^ / f c T ) . (5.48) 
dt μ2 

In these equations, Tg and Tc are glide and climb rate prefactors, Qg and 
Qc are glide and climb activation energies, and η0 represents a constant 
"source" term. 

Note that the form of Equation 5.48 is general, but the actual values of 
the kinetic parameters depend on the orientation of the slip planes with re
spect to the epilayer/substrate interface, and on the direction of slip within 
those planes. More general treatments can be formulated by replacing the 
excess in-plane stress with the excess stress resolved on the slip plane and 
acting in the direction of slip within that plane.41 For (001) oriented films 
in the Sii-^Ge^ system, approximate fits to relaxation data give42 rate pref
actors of Tg = 2 x 1010 s _ 1 and r c = 3 x 1021 s_ 1 , a stress-dependent glide 
activation energy of Qg = Qg)0[l — &exc(l)/°O], where Qz,0 = 16kTm and 
σ0 « Ο.ΐμ, a stress-independent climb activation energy of Qc = 30kTm, 
and a "source" term of magnitude 7 o « 10 - 4 . Here, Tm is the melting 
temperature of the Sii_xGex alloy. 

Note that the excess stress in Equation 5.48 depends nonlinearly on 
the actual equivalent strain, eequ which in turn depends on the degree of 
relaxation, 7 : 

e e qu = / e q u ~ 7 · ( 5 . 4 9 ) 

Therefore, Equation 5.48 is a highly nonlinear differential equation whose 
full solution requires numerical techniques. However, for practical de
vice heterostructures which are adversely affected by dislocations, small 
amounts of relaxation (7 < 10- 3) are often of greatest interest. Since these 
relaxations are less than the unrelaxed equivalent strains in typical struc
tures, the excess stresss may be considered independent of the amount of re
laxation. Then, it is straightforward to integrate Equation 5.48 numerically 
to deduce the time-dependent strain relaxation, 7, and by differentiation 
to deduce the time-dependent strain relaxation rate, 7. 

5.3.3 Time, Temperature and Excess Stress 
In Subsection 5.3.2, we described a simple phenomenological model for the 
relaxation of excess stress and strain. In this subsection, we illustrate the 

4 1 L.B. Freund, "The driving force for glide of a threading dislocation in a strained 
epitaxial layer on a substrate," J. Mech. Phys. Solids 38, 657 (1990). 

4 2R. Hull, J.C. Bean, D.J. Werder, and R.E. Leibenguth, "In situ observations of 
misfit dislocation propagation in GexSii_x /Si(100) heterostructures," Appl. Phys. Lett. 
52, 1605 (1988); and B.W. Dodson and J.Y. Tsao, "Non-Newtonian strain relaxation in 
highly strained SiGe heterostructures," Appl. Phys. Lett. 53, 2498 (1988). 
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time evolution of excess stress and s train 4 3 in the two simple structures 
shown in Figures 5.12 and 5.13. We imagine tha t , as the two structures are 
grown, they are subjected to the hypothetical (but realistic) temperature 
cycles shown in Figures 5.18 and 5.19. In each case, growth of a 600-Ä Si 
buffer layer at 750°C commences at t = 0. Toward the end of growth of 
this buffer, the temperature is ramped down to 550°C for growth of the two 
100-Ä-thick buried S i i -^Ge^ strained layers. During growth of the strained 
layers, the single-kink excess stresses (evaluated at the rear of the deepest 
strained layer) increase, but during growth of the unstrained spacer and 
capping layers they decrease. At the end of growth, the temperature is 
ramped down to room temperature (25°C). Finally, we have included the 
possibility of a 45-s, 900°C post-growth rapid thermal anneal for dopant 
activation or oxide growth. 

For the weakly strained structure in Figure 5.18, the final s tructure has 
a single-kink excess stress tha t is barely positive, and so is fairly resistant 
to strain relief by plastic flow. Even the 45-s rapid thermal anneal at 900° C 
causes a strain relaxation less than 10 _ T . Note tha t this amount of relax
ation may be considered nearly unobservable, even by dislocation counting, 
since it corresponds to on the order of one dislocation per centimeter. Note 
also tha t just after growth of the final strained layer the structure passes 
through an intermediate structure for which the single-kink excess stress is 
greatest. However, because the growth temperature is low, negligible strain 
relaxation occurs. 

For the moderately strained structure shown in Figure 5.19, the final 
structure has a single-kink excess stress tha t is larger, and hence is less re
sistant to strain relief by plastic flow. Indeed, during the 45-s rapid thermal 
anneal at 900°C, strain relaxation is significant. Again, note tha t just after 
growth of the final strained layer the structure passes through an interme
diate structure for which the single-kink excess stress is greatest. However, 
because the growth temperature is low, negligible strain relaxation occurs. 

5.3.4 Stability Diagrams 
From the discussions in Subsections 5.3.1-5.3.3, it is clear tha t the major 
determinant of the stability of coherent strained heterostructures is its ex
cess stress, convolved with the t ime-temperature cycle tha t it experiences 
during growth and processing. If the excess stress everywhere in the struc
ture is at all times less than zero, then the coherent structure is absolutely 
stable. If, during some time interval, the excess stress anywhere in the 

4 3J .Y. Tsao and B.W. Dodson, "Time, temperature and excess stress: relaxation in 
strained heterostructures," Surf. Sei. 228, 260 (1990). 
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Figure 5.18: Thickness, excess stress (evaluated at the rear of the deepest 
strained layer), temperature, strain rate, and strain relaxation in a slightly 
metastable double buried quantum-well heterostructure. 

s tructure rises above zero, then some strain relaxation will occur. However, 
the amount of strain relaxation may be small if the tempera ture during 
tha t t ime interval is low, or if the durat ion of the t ime interval is short. In 
other words, it is the time at temperature while the excess stress is highest 
tha t determines whether significant strain relaxation will occur. 

For a given time duration, then, the two parameters tha t most directly 
determine the amount of strain relaxation tha t will occur are the excess 
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Figure 5.19: Thickness, excess stress (evaluated at the rear of the deep
est strained layer), temperature, strain rate, and strain relaxation in a highly 
metastable double buried quantum-well heterostructure. 

stress and temperature . 4 4 In this subsection, we describe the use of excess 
stress versus temperature stability diagrams for depicting various regimes 
of strain relaxation. To illustrate, we show, in Figure 5.20, contours of 
constant strain relaxation plotted on a s t ress- temperature diagram. The 
contours were calculated according to the simple phenomenological model 
described earlier by Equation 5.48, and so should only be taken as qual-

4 4J .Y. Tsao, B.W. Dodson, S.T. Picraux, and D.M. Cornelison, "Critical stresses for 
S i i_ x Ge x strained-layer plasticity," Phys. Rev. Lett. 59, 2455 (1987). 
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Figure 5.20: Stress-temperature stability diagrams for strained Sii_xGex het-
erostructures, assuming times-at-stress of 10 s (left) and 10 min (right). Struc
tures lying below the solid lines are absolutely stable. Structures lying below the 
dashed lines will have relaxed by less than « 10 - 7 . Structures lying below the 
dot-dashed lines will have relaxed by less than « 10 - 3 . 

itative guides. Nevertheless, they illustrate how such kinetic models can 
be used to construct these "stability" diagrams. Such diagrams are prac
tical guides to the degree of relaxation tha t can be expected for a given 
structure. 

The diagram on the left in Figure 5.20 was calculated assuming a "time-
at-stress" of 10 s. Such a diagram would be appropriate for the growth of 
a buried strained quantum well, in which the excess stress of the structure 
reaches its maximum just after the buried strained layer has been grown, 
but diminishes quickly thereafter upon initiation of growth of the unstrained 
capping layer. 

The diagram on the right in Figure 5.20 was calculated assuming a time-
at-stress of 10 min. Such a diagram would be appropriate for the growth 
of a thick surface strained layer, in which the excess stress of the structure 
reaches its maximum gradually during growth, and persists during the cool-
down after growth has terminated. 

In both diagrams, structures lying below the solid lines, whose excess 
stresses are less than zero, are absolutely stable. Structures lying below 
the dashed lines will have relaxed by less than « 1 0 - 7 . This amount of 
strain relaxation is essentially negligible, because it corresponds to on the 
order of one misfit dislocation per centimeter. Structures lying below the 



Exercises 191 

dot-dashed lines will have relaxed by less than « 10~3. This amount of 
strain relaxation is not negligible, because it corresponds to on the order of 
one misfit dislocation per micrometer. 

Note that the definition of the stress-temperature boundary at which 
strain relaxation just becomes observable depends on the sensitivity of the 
technique used to measure the relaxation.45 On the one hand, if the mea
surement technique is sensitive to isolated dislocations in a large field of 
view, as x-ray topography or etch-pit delineation might be, then at high 
temperatures the critical stresses approach zero. On the other hand, if the 
measurement technique is less sensitive (e.g., x-ray diffraction or ion-beam 
channeling), then the critical stresses may differ significantly from zero, and 
various degrees of metastability will be observed. 

Suggested Reading 
1. D. Hull and D.J. Bacon, Introduction to Dislocations, 3rd Ed., Inter

national Series on Materials Science and Technology, Vol. 37 (Perga-
mon Press, Oxford, 1984). 

2. J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd Ed. (John Wiley 
and Sons, New York, 1982). 

3. T.P. Pearsall, Volume Ed., Strained-Lay er Superlattices: Materials 
Science and Technology, Semiconductors and Semimetals Vol. 33, 
R.K. Willardson and A.C. Beer, Series Eds. (Academic Press, Boston, 
1991). 

4. H.J. Frost and M.F. Ashby, Deformation-Mechanism Maps (Perga-
mon, Oxford, 1982). 

Exercises 
1. An alternative route to misfit accommodation involves tilting of the 

epitaxial layer with respect to the substrate.46 The interface con-
4 5 LJ. Fritz, "Role of experimental resolution in measurements of critical layer thickness 

for strained-layer epitaxy," Appl. Phys. Lett. 5 1 , 1080 (1987). 
46See, e.g., H. Brooks, "Theory of internal boundaries," in Metal Interfaces (American 

Society of Metals, 1952), pp. 20-64; W.A. Jesser, "On the extension of Frank's formula to 
crystals with different lattice parameters," Phys. Stat. Sol. A20 , 63 (1973); G.H. Olsen 
and R.T. Smith, "Misorientation and tetragonal distortion in heteroepitaxial vapor-
grown III-V structures," Phys. Stat. Sol. A31 , 739 (1975); R. Du and C.P. Flynn, 
"Asymmetric coherent tilt boundaries formed by molecular beam epitaxy," J. Phys. 
C2, 1335 (1990); and J.E. Ayers, S.K. Ghandhi, and L.J. Schowalter, "Crystallographic 
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Figure 5.21: Untilted (left) and tilted (right) epitaxy. 

tains, instead of "misfit" dislocations with Burgers vectors parallel to 
the interface, "tilting" dislocations with Burgers vectors perpendicu
lar to the interface, and forms what is known as an asymmetric tilt 
boundary.4 7 Consider the one-dimensional boundary shown in Fig
ure 5.21, containing a linear array of such tilting dislocations. Show 
tha t the parallel strain in the epitaxial layer decreases with tilt angle, 
Θ, according to 

1 - / / 
6 = 1 L 5.50 

COS0 
where / is the misfit between the epitaxial layer and the substrate. 
Then show tha t the dislocation density increases with tilt angle ac
cording to 

P«0/*>edg,-L> (5.51) 
where 6edg,j_ is the magnitude of the edge component of the Burgers 
vector perpendicular to the interface. 

Finally, calculate and compare the dislocation density dependence of 
the coherency strain and dislocation array energies, and deduce the 
"critical layer thickness" associated with strain relaxation by tilting 
dislocations. Is the critical layer thickness greater than or less than 
tha t associated with strain relaxation by misfit dislocations? Does 
the total energy increase or decrease at first for small tilts? All other 
things equal, which is more likely — strain relaxation by tilting or 
misfit dislocations? 

2. A second alternative route to misfit accommodation is through the 
introduction of islanding or surface roughness.4 8 Consider the two 

tilting of heteroepitaxial layers," submitted to J. Cryst. Growth. 
4 7 S . Amelinckx and W. Dekeyser, "The structure and properties of grain boundaries," 

in Solid State Physics, Vol. 8, F. Seitz and D. Turnbull, Eds. (Academic Press, New 
York, 1959), pp. 325-499. 

4 8D.J. Eaglesham and M. Cerullo, "Dislocation-free Stranski-Krastanow growth of Ge 



Exercises 193 

Figure 5.22: Uncorrugated (left) and corrugated (right) epitaxial strained layers. 

structures in Figure 5.22, the left composed of a planar strained layer 
of thickness h, the right composed of a strained layer which has de
veloped a one-dimensional sinusoidal corrugation ^4sin(27nr/A). 

Suppose, due to lateral relaxation, tha t the strain in the corrugated 
(dotted) part of the strained layer is reduced to zero.49 Wha t is the 
total coherency energy, uc oh, associated with the entire strained layer? 
Suppose tha t the surface energy per unit area of the strained layer is 7. 
Wha t is the surface energy, usurf, due to the corrugation? How does 
the total energy, ^Coh+^surf ? depend on A and λ? For what values of λ 
does it decrease with increasing A, and hence for what wavelengths is 
the surface unstable to roughening.5 0 Are corrugations more or less 
likely in high or low surface energy systems? How might a surface 
tha t lowers the surface energy make corrugations less likely?51 

3. Even in relaxed films there may be a thermodynamic driving force for 
surface roughening. Qualitatively, how does the equilibrium energy 

on Si (100)," Phys. Rev. Lett. 64, 1943 (1990); S. Guha, A. Madhukar, and K.C. Ra-
jkumar, "Onset of incoherency and defect introduction in the initial stages of molecular 
beam epitaxical growth of highly strained I n i _ x G a x A s on GaAs (100)," Appl. Phys. 
Lett. 57, 2110 (1990); and K. Sakamoto, T. Sakamoto, S. Nagao, G. Hashiguchi, K. 
Kuniyoshi, and Y. Bando, "Reflection high-energy electron diffraction intensity oscilla
tions during Ge x S i i_ x MBE growth on Si (001) substrates," Jpn. J. Appl. Phys. 26, 
666 (1987). 

4 9This is a very crude assumption; for better assumptions see, e.g., S. Luryi and 
E. Suhir, "New approach to the high quality epitaxial growth of lattice-mismatched 
materials," Appl. Phys. Lett. 49, 140 (1986). 

5 0D.J . Srolovitz, "On the stability of surfaces of stressed solids," Ada Metall. 37, 621 
(1989); and C.W. Snyder, B.G. Orr, D. Kessler, and L.M. Sander, "Effect of strain on 
surface morphology in highly strained InGaAs films," Phys. Rev. Lett. 66, 3032 (1991). 

5 1 M. Coppel, M.C. Reuter, E. Kaxiras, and R.M. Tromp, "Surfactants in epitaxial 
growth," Phys. Rev. Lett. 63 , 632 (1989). 
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per unit volume, utot/h, of a misfitting layer depend on the height 
of the film, both below and above the critical layer thickness? Just 
at the critical layer thickness, can the film reduce its energy by de
composing into some regions infinitesimally thicker, and other regions 
infinitesimally thinner? 

4. Consider a misfit dislocation lying along the y-axis, as illustrated in 
Figure 5.23. Its Burgers vector 6 can be defined either by the pair 
of angles λ and 6, or by the pair of angles a and β. Show tha t the 
Burgers vector of the dislocation is 

cos A \ / sin a sin β 
6 = 6 | s inAcoso ] = & ( cos/3 | , (5.52) 

sin A sin δ ) \ cos a sin β 

and tha t the Peach-Koehler coherency force acting to create unit 
length of the dislocation is 

^coh = hz · (6 · B) x / 

— fo'coh h cos A = 6<rcoh h sin a sin β 

= &βαε,||σ<:οΐΑ (5.53) 

For a β = 60° dislocation with, as illustrated in Figures 5.4 and 5.5, 
ΐ = [110] and 6 = [Ϊ0Ϊ] /2, what are the angles a , A, 7, and 6Ί 

Consider the double quantum well s tructure shown in Figures 5.24, 
in which two strained quantum wells of thicknesses hstr and strains 
/ s t r are spaced apart by an unstrained layer of thickness /ispa? a n d 
capped by an unstrained layer of thickness /icap- Given hstr and / s t r , 
what must / i c a p be in order for the structure to be stable with re
spect to misfit dislocation formation at a depth z = z\l Wha t must 
^spa be in order for the structure to be stable with respect to misfit 
dislocation formation at a depth z = 22? Derive expressions for the 
time-evolution of the single-kink excess stresses at Z\ and Z2 during 
growth of the structure. 
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6. Suppose one considers two types of dislocations, misfit dislocations ly
ing in the epilayer/substrate interface, with density pmd, and disloca
tion segments threading upward to the epilayer surface, with density 
ntd- The units of pmd and ntd are c m - 1 and c m - 2 , respectively. Sup
pose tha t misfit dislocations are created exclusively by lateral bending 
of threading segments at velocity v; tha t threading segments are cre
ated exclusively by half-loop nucleation at the free surface at a rate 

Figure 5.23: Angles commonly used to define misfit dislocations and their Burg
ers vectors. For convenience, the dislocation line, /, is taken to be oriented along 
the y-axis. Left: λ is the angle between (a) the Burgers vector and (b) the di
rection that is both normal to the dislocation line and within the plane of the 
interface; 6 is the angle between (a) the dislocation line and (b) the projection of 
the Burgers vector onto the plane containing the dislocation that is perpendicular 
to the plane of the interface. Right: β is the angle between (a) the Burgers vector 
and (b) the dislocation line; a is the angle between (a) the slip plane containing 
both b and / and (b) the perpendicular to the plane of the interface; and 7 is the 
angle between (a) the slip plane containing both b and / and (b) the plane of the 
interface. 
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F igure 5.24: A generic s t ra ined double quant um-well heterostructure. 

j ; t ha t threading segments are pinned with probability η by inter
actions with misfit dislocations; and tha t multiplication of threading 
segments by interactions with misfit dislocations is negligible. Show 
tha t 

Pmd = 

ntd = 
vntd 

j - vvntdpmd (5.54) 

are a set of coupled first-order differential equations for the t ime evo
lution of the two kinds of dislocation densities.52 

7. Suppose again tha t the nucleation rate of dislocation half-loops is j 
52R. Hull, J.C. Bean, and C. Buescher, "A phenomenological description of strain 

relaxation in GexSii_x /Si(100) heterostructures," J. Appl. Phys. 66, 5837 (1989). 



Exercises 197 

and that the velocity at which they propagate to form misfit disloca
tions is v. Suppose the maximum dislocation propagation length is 
/, due to pinning by lithographically fabricated boundaries.53 Show 
that the misfit dislocation creation rate in the low velocity limit is 
p ^ d = vjt. What is the misfit dislocation creation rate in the high 
velocity limit? Does this rate increase or decrease with a decrease in 
the spatial scale of the lithographic patterning? 

5 3E.A. Fitzgerald, G.P. Watson, R.E. Proano, D.G. Ast, P.D. Kirchner, G.D. Pettit, 
and J.M. Woodall, "Nucleation mechanisms and the elimination of misfit dislocations at 
mismatched interfaces by reduction in growth area," J. Appl. Phys. 65 , 2220 (1989). 



Part III 

Surface Morphology and 
Composit ion 

In Part I, we described phase transformations from vapors to bulk crys
tals, and in Part II, we described phase transformations from vapors to 
thin epitaxial films. In both parts, we were primarily interested in the 
properties of starting and ending states, so as to understand the thermody-
namic competition between different possible transformations. Ultimately, 
though, all these transformations are mediated by kinetic processes, many 
of which occur on the surface. Therefore, the paths along which various 
transformations occur can depend crucially on the properties of the surface. 

In this part, we discuss the equilibrium and nonequilibrium properties of 
surfaces. Two of the properties most important to MBE are the morphology 
and composition of surfaces. In principle, these two aspects of surfaces may 
be coupled in a complex, interdependent way. In this book, however, we 
neglect these interdependencies. We start, in Chapter 6, by treating surface 
morphology assuming that surface composition is unimportant. Then, in 
Chapter 7, we treat surface composition assuming that surface morphology 
is unimportant. 



Chapter 6 

Surface Morphology 

We start , in this chapter, by treat ing surface morphology. At the outset, 
it is important to distinguish between two aspects of surface morphology: 
structure, the crystallography of defect-free surfaces, and micro structure, 
the distribution of point and line defects tha t interrupt tha t perfect crystal
lography. In this chapter we will be mainly concerned with microstructure 
and, to a much lesser extent, s tructure. 

It is also important to distinguish between two kinds of surfaces: high-
symmetry singular surfaces, at whose orientations surface free energies are 
cusped and have discontinuous first derivatives; and vicinal surfaces miscut 
slightly from singular orientations, composed of singular terraces separated 
by steps. In this chapter we will be concerned with both of these kinds of 
surfaces. 

We first ask, in Section 6.1: what are the statistics of defects on singular 
and vicinal surfaces in equilibrium with their vapor, i.e., in the absence of 
net growth? We will find, not surprisingly, tha t those statistics depend both 
on temperature as well as on the average orientation of the surface. More
over, those statistics are themselves a major determinant of the orientation 
dependences of surface free energies. 

We then ask, in Section 6.2: given full knowledge of surface free energies, 
what is the equilibrium morphology of crystals, surfaces, and thin films? On 
the one hand, in one-material systems, e.g., "homoepitaxial" films of one 
material on substrates of the same material, morphology is determined by 
the orientation dependence of the surface free energy. On the other hand, 
in two-material systems, e.g., for "heteroepitaxial" films of one material 
on substrates of a different material, morphology is also determined by 
interface and volume free energies. 

We finally ask, in Section 6.3: what is the defect microstructure of 

201 



202 Chapter 6. Surface Morphology 

Terrace 

Step 

Kink 
Adatom 

Step 

Kink 

Adatom 
Cluster 

Advacancy 
Cluster 

Advacancy 

Figure 6.1: Terraces, ledges, kinks, adatoms, adatom clusters, advacancies, and 
advacancy clusters on a Kossel crystal. 

surfaces not in equilibrium with their vapor, i.e., in the presence of net 
growth? We will find tha t growth is essentially a competition between 
surface defects of various kinds for adatoms arriving from the vapor. This 
competition results in a rich and often oscillatory t ime evolution to the 
overall microstructure of the surface. 

6.1 Statistics of Adatoms, Kinks, and Steps 

Let us start , in this section, by discussing defects on surfaces. Consider 
the idealized (001) surface of a cubic elemental crystal. For simplicity, 
we suppose it to be "unreconstructed," in tha t bonds dangling into free 
space do not rehybridize into pairs or higher order a tom arrangements. 
The important microstructural features of the idealized surface of such a 
"Kossel" crystal1 are illustrated in Figure 6.1. 

At low to medium temperatures , the dominant microstructural features 
are terraces, steps and kinks. The terraces can be considered planar defects 
in a bulk three-dimensional crystal. Separating terraces of different heights 
are ledges, or steps, which are line defects on a two-dimensional surface. 
Finally, along these steps there may also be kinks, which are point defects 
on one-dimensional steps. 

XW. Kossel, Nachr. Ges. Wiss. Gottingen, p. 135 (1927); I.N. Stranski, Z. Phys. 
Chem. 136, 259 (1928). 
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At higher temperatures , or away from equilibrium, microstructural fea
tures such as adatoms and ad vacancies, either isolated or clustered into two-
dimensional islands, become important . We will begin, in Subsection 6.1.1, 
by treating adatoms on singular surfaces. Then, in Subsection 6.1.2, we 
treat kinks in isolated steps. Finally, in Subsection 6.1.3, we treat interact
ing steps on vicinal surfaces. 

6.1.1 Adatoms on Singular Surfaces 
Let us start , in this subsection, by considering adatoms, which we imagine 
adding one by one to a flat, singular surface. There are two extreme ways 
in which the adatoms can be distributed on this surface. First, they can 
cluster together predominantly into a half sheet, as illustrated at the bot tom 
of Figure 6.2, so as to maximize the number of lateral in-plane bonds and 
hence minimize energy. Second, they can distribute randomly, as illustrated 
at the top of Figure 6.2, so as to maximize configurational entropy. 

To describe qualitatively the competition between these two kinds of 
distributions,2 consider the number of bonds formed as a new adatom ar
rives on the surface. The new adatom has four dangling lateral bonds and 
one dangling vertical bond, but has also "annihilated" the dangling vertical 
bond of the a tom underneath it. Therefore, the adatom has associated with 
it four "missing" bonds. If each bond has an energy w, then the adatom 
has associated with it an energy 4w. 

Note, though, tha t as the adatom coverage, Θ, on the surface builds 
up, adatoms will occasionally find themselves next to other adatoms. If 
the adatoms are distributed randomly, then the sites adjacent to a given 
adatom have a probability Θ of being occupied. Since there are four such 
sites, the energy associated with tha t adatom decreases by 4w6. The energy 
per adatom is therefore Aw — Ανοθ, or Aw{\ — Θ). Altogether, the energy per 
surface site is the adatom coverage times the energy per adatom, or 

U a d a t = 4 t i ; 0 ( l - 0 ) . (6.1) 

This energy is exactly tha t (see Table 3.1 on page 50) associated with a 
two-component strictly regular solution in which the two components are 
considered to be adatoms and "missing" adatoms. Viewed in this way, the 

2See, e.g., K.A. Jackson, "Theory of crystal growth," in Treatise on Solid State Chem
istry, Vol. 5, N.B. Hannay, Ed. (Plenum Press, New York, 1975), pp. 233-282; and 
D.E. Temkin, "O molekulyarnoi sherokhovatosti granitsy kristall-rasplav (On molecular 
roughness of the crystal-melt interface)," in Mekhanizm i kinetika kristallizatsii (Mech
anism and Kinetics of Crystallization), N.N. Sirota, Ed. (Nauka i Tekhnika, Minsk, 
1964), p. 86. 
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Figure 6.2: x-T phase diagrams for surface roughening. Above and below each 
phase diagram are also shown the normalized molar free energies of the adlayer 
phases at kT/w — 2.5 and kT/w = 1.5, their common tangents, and the critical 
compositions (open circles) determined by those common tangents. 

ideal configurational entropy of mixing per surface site is, by analogy to 
Equation 3.24, 

^adat 
k = 01n0 + ( l - 6 > ) l n ( l - 6 > ) . (6.2) 

The free energy per surface site, normalized to the bond strength, is then 

/adat ^adat — -* s adat 
W 

kT 
4(9(1 - Θ) + — [Θ In Θ + (1 - θ) 1η(1 - Θ)]. (6.3) 

This normalized free energy is shown in Figure 6.2 for two different nor
malized temperatures . 
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At low temperatures , the bond energy contribution dominates, and the 
free energy curve is basically concave down. Hence, an adlayer having an 
average coverage of 1/2 can minimize its free energy by "phase-separating" 
into regions having near-zero coverage and other regions having near-unity 
coverage. Note tha t , just as in the discussion of Section 3.1, the Θ = 0 and 
Θ = 1 intercepts of the tangents to the free energy curve are the chemical 
potentials of the missing adatoms and adatoms, respectively. Therefore, 
the two phases can only be in equilibrium on the surface if the chemical 
potentials of their two components are equal. In other words, again follow
ing the discussion of Section 3.1, the "compositions" of the two phases are 
determined by the familiar common tangent construction. Physically, the 
adlayer minimizes its free energy if most of the adatoms condense into a 
smooth sheet having a large number of lateral in-plane bonds, with a few 
stray adatoms to increase configurational entropy. 

At high temperatures , the entropy contribution dominates, and the free 
energy is everywhere concave up. Then, adlayers of any composition are 
stable against phase separation into clusters of adatoms and clusters of 
missing adatoms. The adatoms are distributed randomly and the surface 
appears microscopically "rough." 

The critical temperature separating smooth, phase-separated adlayers 
from microscopically rough adlayers is the so-called roughening tempera
ture. It is essentially the critical temperature above which the miscibility 
gap in this two-component solution vanishes. Since the miscibility gap van
ishes when the free energy curve at Θ = 0.5 just becomes concave up, the 
critical temperature is tha t temperature at which [d2f/d62]0=0.5 = 0, or 
2T,adat = 2w/k. Note tha t the enthalpy of sublimation for this Kossel crys
tal is the bond energy (w) times the number of bonds per a tom (6), divided 
by the number of atoms per bond (2). Therefore, A/i sub = 3w, and we have 

2 
^r,adat ~ - A / l s u b . (6.4) 

We emphasize tha t this equation can only give a crude indication of 
the actual roughening temperature of real crystal surfaces. Its derivation 
neglected, among other things, multilayer roughness, next-nearest-neighbor 
and longer-range adatom-adatom interactions, and possible dependences 
of adatom energies on cluster sizes due to surface reconstruction effects, 
all of which will tend to decrease Tr^at. Nevertheless, the main idea is 
tha t a critical temperature exists above which the equilibrium surface is 
rough. In some cases, though, this temperature may be above the melting 
temperature of the crystal, and hence will be unobservable. 
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Figure 6.3: A step wandering on the surface of a Kossel crystal due to randomly 
distributed kinks. 

6.1.2 Kinks in Isolated Steps 
In Subsection 6.1.1, we considered adatom "excitations" on a singular sur
face. In practice, real surfaces nearly always contain steps. If the steps are 
far enough apar t not to interact, then their energetics are determined by 
kink "excitations" along their length. In this subsection, we consider such 
kink excitations in isolated steps. 

Consider the isolated step shown in Figure 6.3. Along this step there 
may be positive or negative kinks tha t cause the step to wander randomly.3 

On the one hand, this kink-induced step wandering is favorable, in tha t it 
increases the entropy of the step. On the other hand, the kinks themselves 
are unfavorable, because they cost energy. Indeed, for a simple Kossel crys
tal, the energy of a single-kink can be calculated, as shown in Fig. 6.4, 
to be €kink — w / 2 , where w is the bond strength. For real crystals, how
ever, the energy of a single kink may be considerably different, due to the 
reconstructed bonds on the surface. 

To quantify the statistics of kinks in steps, let us suppose, for simplicity, 
tha t kinks tha t move steps laterally one lattice unit are much more numer
ous than those which move steps laterally more than one lattice unit . Note, 
though, tha t this approximation breaks down when kink energies are low 
relative to kT (see e.g., Figure 6.5). 

If we nevertheless make this approximation, then we are interested in 
the probabilities, p+, p _ and p 0 , tha t an arbitrarily chosen position along 
a step contains either plus or minus single kinks, or no kink, respectively.4 

Since we have excluded all other possibilities, these must sum to unity: 

p + + p _ + P o = 0. (6.5) 

3 J . Frenkel, "On the surface motion of particles in crystals and the natural roughness 
of crystalline faces," J. Phys. U.S.S.R. 9, 392 (1945). 

4W.K. Burton, N. Cabrera, and F.C. Frank, "The growth of crystals and the equi
librium structure of their surfaces," Philos. Trans. R. Soc. London Ser. A 243, 299 
(1951). 
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a 

Figure 6.4: In moving an atom from position a to position b, two net bonds are 
broken, but four kinks are formed. If the bond energy is w, then the energy per 
kink is €kink = 2w/4 = w/2. 

If we also allow for the step to make a nonzero average angle, φ, with 
the underlying lattice, then the difference between the plus and minus kink 
probabilities is determined by 

P+ -P- = t an φ = ρ ^ . (6.6) 

In a sense, pext defines an "extrinsic" kink probability imposed by the mis-
cut of the step. Then, pmt = 2p_ may be thought of as an "intrinsic" kink 
probability. Their sum, p i n t -f Pext = P+ + P - , is the total kink probability. 
If we also assume tha t the kinks do not interact with each other, then the 
additional energy of the step due to kinks, per lattice unit along the step, 
is the total kink probability, times the kink energy, ekink· Hence, the total 
energy of the step is 

^step = ^kink (P+ +P-) + e s t e p , (6.7) 

where estep is the energy per lattice unit of a straight step without kinks. 
Since we have assumed the kinks to be independent of each other, the 

configurational entropy associated with the kinks is determined by the num
ber of ways they may be distinguishably distributed along the length of the 
step. Following a simple extension of Equation 3.24 to a three-component 
alloy, the ideal entropy of mixing is 

^step = p+ lnp+ + p _ l n p _ + p0 \np0 (6.8) 

Altogether, the step free energy is / s t e p = ustep — Tsstep, which we can 
rewrite in terms of the extrinsic and intrinsic kink probabilities as 

/step = ^step + ekink (P+ + P- ) 

+ kT[{pext + p i n t / 2 ) ln(pext + Pint/2) + (Pint/2) ln(p i n t /2 ) 

+ (1 - Pext - Pint) l n ( l - Pext ~ Pint)]· (6.9) 
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Figure 6.5: Scanning tunneling micrograph of a Si surface misoriented 
0.5° from (001) toward [110]. The surface height decreases from upper left to 
lower right.0 On this surface, alternate single-height steps are referred to as 
type SA and SB, and are smooth and rough, respectively, reflecting the relative 
energies of kink formation. 

aB.S. Swartzentruber, Steps on Si(001): Energetics and Statistical Mechanics (Ph.D 
Thesis, U. Wisconsin-Madison, 1992). 

For a given extrinsic kink probability, the equilibrium intrinsic kink prob
ability is tha t which minimizes /step>, or 

^ £ = e k i n k + *T[ ( l /2 ) ln(pe x t + ρ·ιη1/2) + (1/2) ln(p i n t /2 ) 

- ( l / 2 ) l n ( l - p e x t - P i n t ) ] 
= 0. (6.10) 
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Rewriting this in terms of the positive, negative, and missing kink proba
bilities then gives 

p + p _ = p2
0e-2ekink/kT. (6.11) 

Note tha t this equation reproduces exactly the "quasi-chemical" expression 
of Equation 4.44. The reason is tha t equilibrium between kinks on a step 
can be thought of as a balance between forward and backward chemical 
reactions, with positive and negative kinks annihilating to form missing 
kinks, and missing kinks thermally unbinding to form positive and negative 
kinks. 

Equations 6.5, 6.6, and 6.11 are sufficient to determine the three equi
librium kink probabilities, and give, after some algebra, 

Po 
1 - y / l - (1 - 4e~2^ink/fcT)(1 _ t a n 2 φ} 

I _ 4e-ek i nk/fcT 

^eqU = taD> + / 2 e _ 2 e k i n k / f c T + 1 t a n2 φ 

u _ _tan0 / /fcT 1 2 pequ = Z + ^ p 2 e - 2 e k i n k / f c T + _ t a n 2 ^ (g J 2 ) 

For the special case of perfectly cut step for which t an φ = 0, the energy, 
entropy, and free energy of an isolated step simplify to 

^step == ^step T" ^kinkP— 

_fstep = 2p_lnp_ + (l-2p_)ln(l-2p_) 
k 

/step — ^step — J- 5s tep· (O.loJ 

These energies, entropies, and free energies, normalized to the energy of 
a straight step, are plotted in Figure 6.6 as a function of p- = p+. For 
concreteness, we have assumed tha t kinks add an additional energy equal 
to the energy of the step itself, e^ink — ^step = w/s, a s they would in 
a Kossel crystal. At all nonzero temperatures , the free energy initially 
decreases with increasing p _ , due to entropy, and then increases, due to 
energy. The kink probabilities at which the free energies minimize are 
given by Equations 6.12, which, in the limit tan</> = 0, simplify to 

^equ 
Po = 1 + 2e~ekink/fcT 

e q u = equ = _ ; ^ ^ 
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0.0 0.2 
step 

Figure 6.6: Dependences of the energy, entropy, and free energy of a step on 
the probability of intrinsic kinks. The step is assumed to have no extrinsic kinks, 
and a kink is assumed to add an additional energy equal to half the energy of a 
straight step. The energies and free energies are normalized to the energy of a 
straight step. As the temperature increases, the intrinsic kink probability that 
minimizes the free energy of the step increases, and the minimum free energy 
decreases. 

At a critical temperature , Tr?step, the step free energy vanishes at its 
minimum. Above this temperature , steps will form spontaneously on the 
surface, and the surface is said to be above its roughening temperature . 5 

For a Kossel crystal, this critical temperature is Tr?step 
Note tha t this temperature is considerably below tha t given in the pre

vious subsection by Equation 6.4. Physically, the reason is tha t , per lattice 
5 An alternative way of calculating the roughening temperature is to calculate the 

temperature at which the free energies of closed step loops vanishes; see, e.g., A. Zangwill, 
Physics at Surfaces (Cambridge University Press, Cambridge, 1988), pp. 16-17. 
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site, step excitations on terraces are energetically less costly than adatom 
and missing adatom excitations. Note also tha t even this temperature is 
only a crude indication of the actual roughening temperature of real crys
tal surfaces. Its derivation neglected, among other things, the possibility 
tha t kinks may move steps laterally more than one lattice unit, and the 
solid-on-solid constraint tha t prevents steps from crossing each other. 

More advanced t reatments take both of these effects into account, and 
are based on an analogy between noncrossing wandering steps on a surface 
and ID spinless fermion gases,6 where the Pauli principle automatically 
prohibits crossing.7 These t reatments also borrow heavily from studies 
of domain walls in 2D commensurate adsorbate phases,8 which are also 
analogous to ID spinless fermion gases.9 The result is tha t step free energies 
approach zero at T r?step according to 1 0 

/ s t e p - e - M ^ , (6.15) 

and represent a second-order phase transition from smooth to rough. 

6.1.3 Steps on Vicinal Surfaces 
In Subsection 6.1.2, we calculated the free energy of an isolated step wan
dering on a surface. The free energy was decreased below tha t of a perfectly 
straight step due to the configurational entropy associated with the mixing 
of positive, negative, and missing kinks. In the absence of step-step inter
actions, the free energy of a surface depends only on the free energy of the 
terraces plus those of the steps. For a surface miscut by an angle Θ away 
from the orientation of a singular surface, and hence having a step density 
per lattice site of s = t an Θ, the free energy, per lattice site, would then be 

/surf = / terr + /step t a n 0 , (6 .16) 

where / t e r r is the free energy of the singular, unstepped surface, and /step 
is given by Equation 6.13. 

In this subsection, we consider the possibility tha t the steps interact, 
and tha t those interactions give rise to nonlinear dependences of the surface 

6 C . Jayaprakash, C. Rottman and W.F. Saam, "Simple model for crystal shapes: 
step-step interactions and facet edges," Phys. Rev. B30 , 6549 (1984). 

7P.G. de Gennes, "Soluble model for fibrous structures with steric constraints," J. 
Chem. Phys. 48, 2257 (1968). 

8 J .M. Kosterlitz and D.J. Thouless, "Ordering, metastability and phase transitions 
in two-dimensional systems," J. Phys. C6 , 1181 (1973). 

9H.J. Schulz, B.I. Halperin, and C.L. Henley, "Dislocation interaction in an adsorbate 
solid near the commensurate-incommensurate transition," Phys. Rev. B26, 3797 (1982). 

1 0H.J. Schulz, "Equilibrium shape of crystals," J. Physique 46, 257 (1985). 
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jr^><^^^^ 

Figure 6.7: Five wandering steps of average spacing /. Two of the steps intersect, 
by chance, three times. 

free energy on t a n # . Consider the array of steps illustrated in Figure 6.7. 
On average, they are parallel to each other, but as they wander they oc-
cassionally touch. If we do not allow "overhangs" on the surface, then, 
as mentioned above, the steps are not free to cross each other. Each step 
is confined by the random wanderings of its immediate neighbors, and its 
entropy is reduced.1 1 

To quantify this entropy reduction, consider again the step intersections 
shown in Figure 6.7. On the one hand, if the steps were truly independent, 
then each step intersection point would have two equally likely interpreta
tions: either the steps actually cross, or they bounce back from each other. 
On the other hand, if the steps cannot cross, then each step intersection 
can have only the second interpretation. Each step intersection, therefore, 
has associated with it an entropy decrease of A: In 2. 

How often, on average, do the steps intersect? Let b2 = p + a 2 + p _ a 2 

be the mean square lateral displacement of the step per lattice unit. Then, 
after n lattice units, the step will have wandered laterally on the average 
y/nb lattice units. Therefore, we expect a collision whenever y/nb exceeds 
the mean spacing between steps, /, or every n = Ϊ2 jb2 lattice units . 1 2 

Altogether, the entropy decrease, per lattice unit, is roughly (1 /n) In 2 = 
(62 / / 2 ) In 2. More precise calculations, taking into account the simultaneous 

1 1E.E. Gruber and W.W. Mullins, "On the theory of anisotropy of crystal surface 
tension," J. Phys. Chem. Solids 28, 875 (1967); and G.H. Gilmer and J.D. Weeks, 
"Statistical properties of steps on crystal surfaces," J. Chem. Phys. 68, 950 (1978). 

1 2M.E. Fisher and D.S. Fisher, "Wall wandering and the dimensionality dependence 
of the commensurate-incommensurate transition," Phys. Rev. B25 , 3192 (1982). 
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wandering of all the steps, give an entropy decrease of 

Z^tep _ ±b*j2_ _ T?_\?_ 2 

13 

* "6 P -η^Άΐίφ- ( 6 · 1 ? ) 

The surface free energy is therefore 

7Γ2 b2 

/surf = /terr + /step tan φ + kT— — tan3 φ, (6.18) 

and contains a cubic dependence on step density. 
Suppose, now, that in addition to a short-range repulsion preventing 

step-step crossings, there is also longer range repulsion.14 Such a repulsion 
might be generated, e.g., by strain fields in the substrate surrounding each 
step.15 For simplicity, suppose the repulsion takes the quadratic form 

A^step = A + ■ (l + x)2 (l-x) 
f(l + x2/l2), (6.19) 

where x = ±Z are, as illustrated in Figure 6.8, the positions of rigid steps 
surrounding (and confining) a center, wandering step. 

In the presence of this repulsion, the potential energy of the step de
creases the less it wanders away from x = 0. However, the entropy of the 
step also decreases, by As s t e p ~ (π2/12)(62/χ2). The actual wandering will 
be determined by a balance between the two, or 

d(Austep - TAsg tep ) _ d 
dx dx 

2A ( x2\ lrT1*2b2 

= 0. (6.20) 

Solving Equation 6.20 then gives the equilibrium alley width within which 
the step will wander: 

J f7T2kTb2Y/4, . N 
d=(ü—) <· (6-21) 

1 3 C. Jayaprakash, C. Rottman, and W.F. Saam, "Simple model for crystal shapes: 
step-step interactions and facet edges," Phys. Rev. B30 , 6549 (1984); and V.V. 
Voronkov, "Free energy of a stepped surface," in Growth of Crystals, Vol. 15, E.I. Gi-
vargizov and S.A. Grinberg, Eds. (Consultants Bureau, New York, 1988). 

1 4Our treatment follows closely that of N.C. Bartelt, T.L. Einstein, and E.D. Williams, 
"The influence of step-step interactions on step wandering," Surf. Sei. Lett. 240, L591 
(1990). 

1 5J .M. Blakely and R.L. Schwoebel, "Capillarity and step interactions on solid sur
faces," Surf. Sei. 26, 321 (1971); V.l. Marchenko and A. Ya. Parshin, "Elastic properties 
of crystal surfaces," Sov. Phys. JETP 52, 129 (1980); F.K. Men, W.E. Packard, and M.B. 
Webb, "Si (100) surface under an externally applied stress," Phys. Rev. Lett. 6 1 , 2469 
(1988); and O.L. Alerhand, A.N. Berker, J.D. Joannopoulos, D. Vanderbilt, R.J. Hamers, 
and J.E. Demuth, "Finite-temperature phase diagram of vicinal Si(100) surfaces," Phys. 
Rev. Lett. 64, 2406 (1990). 
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-l/a -d/a 

Figure 6.8: Changes in energy, entropy, and free energy as the width of the 
alley (x/a, in units of lattice constants) within which a step is allowed to wander 
increases. Both the energy and entropy increase as the width of the alley increases 
and approaches the mean step spacing (l/a, in units of lattice constants). The 
equilibrium alley width (d/a, in units of lattice constants) is that which minimizes 
the free energy. As the ratio between the temperature and the strength of the 
interaction between steps (kT/A) increases, both the equilibrium alley width and 
the free energy at that equilibrium alley width increase. 
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As illustrated in Figure 6.8, this balance will depend on temperature, 
though only weakly, because of the 1/4 power. 

Altogether, the change in free energy, per step, due to step-step inter
actions, is 

A^=P"(1 + V-e3-J- (6·22) 

As expected, the free energy change increases with the step-step interaction 
strength, A. It also increases with the root-mean-square kink amplitude, 6, 
since the larger 6 is, the more "difficult" it is to confine the step. 

Finally, we can write the surface free energy, per lattice site, as 

/surf = / terr + (/step + A / s t e p ) t a n 0 

2A I n2kTb2 \ 
= /terr + /step tan Θ + — I 1 + γ ^ 1 tan3 Θ. (6.23) 

Note that the first nonlinear term is cubic, rather than quadratic, in step 
density. This has consequences, as will be seen in the next section, on the 
shape of the equilibrium crystal near the tan 0 = 0 orientation. 

6.2 Equilibrium Morphology 
In Section 6.1, we discussed the statistics of adatoms, kinks, and steps. 
These statistics are the primary determinants of the orientation depen
dence of the free energies of vicinal surfaces. In this section, we suppose 
that we have been given complete knowledge of surface free energies, and 
ask: how do those free energies determine equilibrium morphologies? For 
macroscopic crystals of constant volume, we will find, in Subsection 6.2.1, 
that the equilibrium shape is determined by the orientation dependence of 
the surface free energy through what is known as the Wulff construction. 
For "planar" surfaces of constant average orientation, we will find, in Sub
section 6.2.2, that the equilibrium morphology can be deduced from the 
orientation dependence of the surface free energy using a common tangent 
construction. Some average orientations will be stable, while others will 
tend to break up into combinations of other orientations. Finally, for thin 
heteroepitaxial films of one material on substrates of another material, we 
will find, in Subsection 6.2.3, that equilibrium morphologies are determined 
not only by surface free energies, but by interface and volume free energies 
as well. 



216 Chapter 6. Surface Morphology 

6.2.1 Shapes of Crystals: Wulff's Theorem 
We start, in this subsection, by considering a macroscopic crystal of a sin
gle material whose overall volume is specified. What shape will this crystal 
have in equilibrium? We discuss, in turn, three related constructions for 
equilibrium crystal shapes. The most basic is known as Wulffs construc
tion; from Wulffs construction may be derived what is known as Herring's 
construction; and from Herring's construction in turn may be derived what 
is known as Andreev's construction. 

Wulffs Construction 

Intuitively, we expect the equilibrium shape of a crystal of constant volume 
to be such that those surfaces whose orientations have less energy will have 
greater area, while those whose orientations have greater energy will have 
lesser area. 

For example, consider the rectangular prism illustrated in Figure 6.9, 
bounded by rectangular faces of specific surface free energies *yx, *yy, and 
yz. If the distances of each face from the crystal center are hx, hy, and 
/i2, then the face areas are hyhz, hxhz, and hxht, and the total surface free 
energy is 

E = 2-yxhyhz + 2-yyhxhz + 2jzhxhy. (6.24) 
If we require the volume, V = 8hxhyhz, to be constant, then we can write 

E = l r + l ; + 2 W v (6·25) 

To find the distances hx and hy that minimize the energy, we set dE/dhx = 
dE/dhy = 0, giving 

lxhyhz = jyhxhz = yzhxhy = (ΐχΊνΊζ)1/3ν2/3 = constant. (6.26) 

In other words, the free energies of all the faces of the equilibrium crystal 
are equal. 

Note also that the areas of the faces are inversely proportional to their 
distances from the center of the crystal [e.g., hxhy = V/(8hz)]. Therefore, 
those distances are in turn proportional to the specific surface free energies: 

— = — = — = (ΊχΊυΊζ\ ' /g 2j\ 
hx hy hz \ V ) 

In other words, faces of high specific surface free energy lie farther from 
the center of the crystal than those of low specific surface free energy, and 
therefore have lower relative surface areas.16 

1 6 P . Curie, "Sur la formation des cristaux et sur les constantes capillaires de leurs 
differentes faces," Bull. Soc. Min. de France 8, 145 (1885). 
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Figure 6.9: Curie's construction for a rectangular prism of fixed volume but 
minimum surface energy. 

The generalization of this argument to all convex bodies is known as the 
Wulff construction1 7: the crystal shape tha t minimizes total surface free 
energy at constant volume is given by the inner envelope of "Wulff" planes 
perpendicular to and passing through the radius vectors of the orientation-
dependent molar surface free energy η(θ, φ). This construction is illustrated 
in two dimensions in Figure 6.10, for a hypothetical 7(0). As can be seen, 
this construction places low molar surface free energy orientations nearer to 
the center of the crystal, thereby increasing their relative surface areas, and 
places higher molar surface free energy orientations farther from the center 
of the crystal, thereby decreasing their relative surface areas. Indeed, as 
we shall see, orientations with very high molar surface free energies may 
by this construction be placed so far from the center of the crystal tha t 
their surface areas vanish entirely, and are no longer represented on the 
equilibrium crystal shape. 

Herring's C o n s t r u c t i o n 

An equivalent construction, which may be called Herring's construction,1 8 

is illustrated in Figure 6.11. One draws spheres passing through the origin 
and tangent to the 7(0, φ) plot. The interior envelope of the points on the 
spheres diametral to the origin is the equilibrium crystal shape. 

To see why, consider the three points labeled O, P , and A on the cir
cumference of the two-dimensional projection of one such sphere. Point O 

1 7G. Wulff, Z. Kristallogr. Mineral. 34, 449 (1901); H. Hilton, Mathematical Crystal
lography (Oxford University Press, 1903). 

1 8 C . Herring, "Some theorems on the free energies of crystal surfaces," Phys. Rev. 82, 
87 (1951). 
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Figure 6.10: Wulffs construction for a two-dimensional crystal of fixed volume 
but minimum surface energy. 

is the origin both of the 7(0, φ) plot as well as of the equilibrium crystal. 
Point A is the point on the 7(0, φ) plot tha t the sphere passes tangentially 
through. Point P is the point on the sphere diametral to the origin. 

Because OP is a diameter of the sphere, it follows from elementary 
geometry tha t the angle LOAP is a right angle, and tha t A P is a Wulff 
"plane" perpendicular to the 7(0, φ) plot at A. Consequently, P is a possible 
point bounding the equilibrium crystal. To see whether it is an actual such 
point, we consider two possibilities. 

On the one hand, suppose, as illustrated in the left panel of Figure 6.11, 
tha t the η(θ,φ) plot passes within the tangent sphere at some other point 
B lying between the origin and another point C on the tangent sphere. 
Since, again from elementary geometry, LOCP must be a right angle, the 
plane through C at right angles to OC must pass through P. Hence, the 
plane through B at a right angle to OB must intersect the line segment OP 
"interior" to the point P , precluding point P from bounding the equilibrium 
crystal. 

On the other hand, suppose, as illustrated in the right panel of Fig
ure 6.11, tha t the 7(0, φ) plot nowhere passes within the tangent sphere. 
Then, for every point E on the 7(0, φ) plot, there must exist some point 
D on the tangent sphere lying between E and the origin. Since, again, 
LODP must be a right angle, the plane through D at right angles to OD 
must pass through P. Hence, the plane through E at a right angle to OE 
must intersect the line through OP "exterior" to the point P , and cannot 
preclude point P from bounding the equilibrium crystal. 
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7(tf) 

E A 

Figure 6.11: Herring's construction for deducing whether orientation A is repre
sented on the equilibrium crystal shape at P. For the 7(0) plot shown on the left, 
orientation A is not represented, because the 7(0) plot at another orientation B 
lies within the tangent circle. For the 7(0) plot shown on the right, orientation 
A is represented, because at every other orientation (e.g., E) the 7(0) plot lies 
outside the tangent circle. 

Altogether, the equilibrium crystal shape is the locus of diametral points 
P on all tangent spheres not intersected by other portions of the 7(0, φ) 
plot. Alternatively, one may find first the locus of diametral points P on all 
tangent spheres without regard to intersections with the 7(0, φ) plot, and 
then take the interior envelope of those points. 

A n d r e e v ' s C o n s t r u c t i o n 

In a sense, Herring's construction maps points like A in energy-orientation 
(0, 0 ,7 ) space onto points like P in real (#, 2/, z) space. In other words, it 
tells us where in real space a surface of a particular orientation will appear. 
To quantify this mapping, consider the circle shown in Figure 6.12 tangent 
to and passing through the 7(0) plot at point A. We would like to deduce 
the (x, z) coordinates of the point P diametral to point O in terms of 7(0) 
and Ύ'(Θ) at point A. 

First, let us deduce the x coordinates of point P. Denote the lengths 
of the line segments AJ and AP by Ζχ and /2, respectively. Then, the 
x-coordinate of the point P is 

x = (/x -f Z2)cos0. (6.28) 
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Figure 6.12: Andreev's construction for deducing the mapping between point A 
in energy-orientation space onto point P on the equilibrium crystal in real space. 

Now we note tha t l\ is 7 t a n 0 , and if we let ß be the angle ΔΑΚΟ, where 
the line through AK is tangent to 7(0) at A, then I2 is 7 tan( /3 + 0) = 
7(tan/3 + t a n 0 ) / ( l — t a n ß t a n 0 ) . Hence, 

x = 7 cos 0 ( t an 0 + 
tan β + t an 0 

1 — tan ß t an 0 

Finally, since tan/3 is the slope of the 7(0) plot, we can rewrite it as 

0 (7 cos 0) <9(7cos0)/<90 — 7 sin 0 + 7 ' cos Θ 
tan/3 = 

«9(7 sin 0) $ (7 sin θ) /8Θ 7 cos 0 + 7 ' sin 0 

(6.29) 

(6.30) 

Inserting this expression for tan/3 into Equation 6.29 then gives, after some 
algebra, 

/ Λ d ( 7 / c o s # ) 
x = 7 / c o s 0 + 7 t a n 0 c o s 0 = - ^ τ ^ . (6.31) 

a ( t a n 0 ) 
Second, let us deduce the z-coordinate of point P. By inspection of 

Figure 6.12, the ^-coordinate is the difference between the lengths of the 
line segments OJ and LJ. Since OJ is 7 / c o s 0 and LJ is x t a n 0 , we then 
have 

7 x t an 0 7 — t a n 0 
0 ( 7 / cos 0) 

(6.32) 
cos 0 ~ cos 0 " # ( t an 0) 

Equations 6.31 and 6.32 are explicit algebraic expressions for the Herring 
construction. Note tha t bo th are expressed in terms of / = 7 / c o s 0 and 



6.2. Equilibrium Morphology 221 

s = tan Θ. The first is the surface free energy per unit area projected onto 
a reference surface of orientation 9 = 0 and the second is the slope of the 
misorientation from Θ = 0. In terms of / and s, Equations 6.31 and 6.32 
can then be rewritten more conveniently as 

df 
X = Ts 

z = / - β | £ · (6-33) 

As illustrated in Figures 6.13 and 6.14, the x-coordinate of the surface of 
the equilibrium crystal having orientation Θ = t a n - 1 s is the slope df/ds, 
and the z-coordinate is the intercept of the tangent to f(s) with the s = 0 
axis. This simple and elegant mapping, originally derived by Andreev,1 9 

may be called Andreev's construction. 
Note tha t this mapping of f(s) onto z(x) is essentially a Legendre trans

formation analogous to those tha t map energies onto free energies.20 For 
example, recall from Chapter 1 tha t temperature-dependent Helmholtz free 
energies can be writ ten as F(T) = U — S(dU/dS), where T = dU/dS. 
Hence, the equilibrium crystal shape may be regarded as a kind of free en
ergy in which the "extensive" quantity, s, has been replaced by a conjugate 
"intensive" quantity, df/ds. 

Note also tha t for vicinal surfaces characterized by a terrace and step 
structure, s can be regarded as a step density, and df/ds can be regarded 
as a kind of chemical potential for steps. Viewed in this way, crystals evolve 
toward their equilibrium shape because their surfaces represent "open" sys
tems with respect to interchange of "steps." 

To illustrate the use of this powerful and convenient mapping, consider 
the f(s) and corresponding z(x) plots shown in Figures 6.13 and 6.14. In 
Figure 6.13, f(s) near 5 = 0 has been assumed to take the cubic form 
derived in Section 6.1.3, 

f(s) = a + bs + ds3. (6.34) 

Then, the shape of the equilibrium crystal is given by 

ßf _ „ o , „ 3 _ „ njiX~b 
3/2 

z(x) = f - s^f =a- 2ds6 =a-2d[ ^—^ ) , (6.35) 
ds \ 3d ) 

where we have used the mapping x = df/ds = b + 3ds2. Hence, the 
rounded region of the equilibrium crystal joins the 5 = 0 facet at x = 

19 A.F. Andreev, "Faceting phase transitions of crystals," Sov. Phys. JETP 53, 1063 
(1982). 

2 0 C . Rottman and M. Wortis, "Statistical mechanics of equilibrium crystal shapes: 
interfacial phase diagrams and phase transitions," Phys. Rep. 103, 59 (1984). 
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Figure 6.13: Andreev's construction near an orientation around which the pro
jected surface free energy per unit area (left) is concave up in tan0, and for 
which the tan Θ = 0 facet joins the rest of the crystal (right) with a continuous 
first derivative. 

b with a "critical exponent" of 3/2. Because the misorientation of the 
rounded region goes to zero continuously as the facet is approached [zf(x) 
is continuous but z"(x) is not], the junction can be thought of as a second-
order phase transit ion.2 1 

In Figure 6.14, f(s) has been assumed to be concave down except for 
cusps at s = 0 and s = ± 1 . Then, the z(x) mapping becomes "reentrant," 
and the 5 = 0 and 5 = 1 facets join directly. Because the orientation of the 
crystal changes discontinuously \z'(x) is discontinuous], the junction can be 
thought of as a first-order phase transition. 

6.2.2 Shapes of Surfaces: Facetting 
In Subsection 6.2.1, we discussed various constructions and mappings for 
deducing the equilibrium shapes of crystals subject to the constraint of 
constant volume. Often, however, a different constraint is imposed, tha t of 
constant average surface orientation. In this subsection, we ask: under what 
conditions will such a surface be stable, and under what other conditions 
will it tend to "facet" into combinations of other orientations? An example 
of such facetting is shown in Figure 6.15. 

To answer this question it will be convenient to use the quantities in
troduced in Subsection 6.2.1. These are the surface free energies per unit 

2 1 V.L. Pokrovsky and A.L. Talapov, "Ground state, spectrum, and phase diagram of 
two-dimensional incommensurate crystals," Phys. Rev. Lett. 42, 65 (1979). 
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Figure 6.14: Andreev's construction for a crystal with tan0 = 0 and tan0 = ± 1 
facets, and between which the projected surface free energy per unit area (left) 
is concave down in tan0. Then, the tan0 = 0 and tan0 == ±1 facets join (right) 
with discontinuous first derivatives. 

area projected onto a reference surface of orientation 0 = 0, / = 7 / cos 0; 
and the slope of the misorientation from 0 = 0 , 5 = tan 0. In terms of these 
quantities, we will discuss, in turn , the following questions. First, under 
what conditions will a surface be stable against facetting? Second, if a sur
face is unstable against facetting, what will the misorientations of the new 
facetted surfaces be? Third, what is the analogous stability criterion in the 
more conventional 7(0) representation? Fourth and finally, how can these 
ideas be used to generate phase diagrams on which coexistence of surfaces 
of differing orientations may be represented? 

A Stabi l i ty Cr i ter ion 

Let us begin by deriving a criterion for the stability of a surface against 
facetting. Consider the surface depicted by the dot ted lines in Figure 6.16, 
oriented at some angle 0 with respect to the reference surface depicted 
by the dashed lines. Suppose tha t surface breaks up into the hill and 
valley structure depicted by the solid lines. If the two new orientations 
make angles θχ and 02 with respect to the reference surface, and have areas 
projected onto the reference surface of x\ and x2, then their projected 
vertical heights are hi = xx t a n 0 i and h2 = x2 t a n 0 2 , respectively. 

Under what conditions will the original surface be stable against for
mation of this hill and valley structure? Since the projected free energy of 
the original surface is f(ß){x\ + ι 2 ) , and tha t of the two new surfaces is 
f(9i)xi + f(92)x2, the criterion is tha t there not exist straddling orienta-
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Figure 6.15: Scanning tunneling micrograph of a Si surface cut 6° from 
(111) along an azimuth rotated about 10° away from the high symmetry [112] 
direction. The scan area is approximately 200 x 300 A. The surface has phase 
separated into two facets of different orientations, one containing 7 x 7 recon
structed terraces separted by straight [112] steps and one rotated azimuthally by 
approximately 40° from the [112] direction.0 

a J . Wei, X-S Wang, N.C. Bartelt, E.D. Williams, and R.T. Tung, "The precipitation 
of kinks on stepped S i ( l l l ) surfaces," J. Chem. Phys. 94, 8384 (1991). 

tions θχ and θ2 such tha t 

/(*) > /(öi)—5—+/(02)—5—. (6·36) 
Xl + X2 Xl + X2 

Note tha t from the relations x\ = / i i / t a n # i , x2 = h2/ta,n62, and 
X\-\- x2 — (h\ + h2)/ ί&ηθ, the fractions of the reference surface tha t have 
the two orientations can be deduced, after some algebra, to be 

x2 tan Θ — t an θ\ 
X\ H- x2 t an θ2 — t an θχ 

χι t an Θ — t an θι , Λ„. 
= 1 - 1 — 5 ΠΓ7Γ· ( 6 · 3 7 ) Χι + x2 t an θ2 — t an θι 

These equations are equivalent to a lever rule tha t determines, given an 
average orientation 0, the amounts of two other orientations required for a 
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^ ι 

Figure 6.16: Geometry of a surface of average orientation Θ that has facetted 
into two surfaces of orientations θ\ and Θ2 relative to a reference surface. The 
projected horizontal widths and vertical heights of the two surfaces are 2xi, 2^2, 
2h\, and 2/i2, respectively. 

continuous joining of surfaces. Altogether, the stability criterion is then 

/ ( t an (0 ) < 

Λ v / t a n ö — tan 0i \ „, Λ x / t a n # — tan# i \ 
/ ( t a n Ö l ) i 1 - tonft-tonoj + / ( ^ 2 ) ( t o n f t - t o n g j ' 

(6.38) 

where we consider / to be a function of tan Θ ra ther than Θ. In other words, 
a surface of orientation Θ is stable if on an / vs. t a n # plot, / ( t a n # ) is less 
than all lever-rule-weighted sums of / ( t a n # i ) and / ( t a n ^ ) · 

T h e C o m m o n Tangent Cr i ter ion 

Now tha t we have derived a criterion for stability of a surface against 
facetting, let us ask the opposite question. Suppose tha t the original sur
face is unstable with respect to breakup? Wha t will be the two straddling 
orientations, which can be considered two "phases," tha t will coexist sta
bly in its stead? To answer this question, we imagine making two distinct 
concerted variations in the geometries of the two surfaces, and require the 
total free energy change to vanish. 

First, we imagine varying the projected vertical height of surface 1 by 
dhi, while at the same time varying the projected vertical height of surface 2 
by ά\ι<ι — —dhi, so tha t the two surfaces continue to join perfectly. If each 
surface is thought of loosely as made up of steps and "missing steps," then 



226 Chapter 6. Surface Morphology 

this variation can be thought of as moving steps from surface 2 to surface 1, 
and at the same time moving missing steps from surface 1 to surface 2. 

Since x\ and x2 are unchanged during this variation, the free energy 
changes associated with surfaces 1 and 2 are 

d(fixi) a / i ö/i 
oh\ a (x i t an^ i ) a t an# i 

and 
_ d{f2X2) = χ^ df2 = df2 

dh2 ö(x2tan^2) 9 tan #2' 
where f\ and f2 are the surface free energies per unit area projected onto 
the reference surface. If the sum of these changes is to vanish, then we must 
have 

d h = d h . (6.41) 
0 tan 0i <9tan02 

In other words, the slopes of the / ( tan0) plot at the two orientations θχ 
and θ2 must be equal. 

Second, we imagine varying the projected area of surface 1 by dx\, while 
at the same time varying the projected area of surface 2 by dx2 = —dx\, 
again so that the two surfaces continue to join perfectly. If each surface 
is thought of loosely as composed of steps and "missing steps," then this 
variation can be thought of as moving missing steps from surface 1 to 
surface 2. 

Since h\ and h2 are unchanged during this variation, the free energy 
changes associated with surfaces 1 and 2 are 

ö( / i* i ) , ^ ( hx \ dfi 
— h + dx\ \tan9\ ) d(h\/tan6i) 

= fx - t an f l i 1 d^1 ) J1 1\dtane1J 
d(f2x2) = _h _ (_h_\ dh 

dx2 \ tan 02/ 9(/i2/tan02) 

If the sum of these changes is to vanish, then we must have 

Λ -tanÖ1 (sSbr) =h ~tan*2 {ä£k) ■ ( 6 · 4 3 ) 

In other words, the tan# = 0 intercepts of the tangents to the / ( tan#) plot 
at the two orientations Q\ and θ2 must be equal. 
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Altogether, Equations 6.41 and 6.43 combined tell us tha t both the 
slopes and intercepts of the two tangents must be equal, and so the tan
gents themselves must coincide. Therefore, the condition for coexistence 
of two surfaces of different orientation is tha t their / ( t a n 0 ) plots share a 
common tangent.22 Another way of viewing the origin of this construction 
is to think of the steps as particles. Then, equilibrium between surfaces 
of different orientation is analogous to equilibrium with respect to inter
change of particles, hence equality of chemical potentials.2 3 In a sense, 
s = t a n 0 is an extensive, rather than an intensive, variable, and can vary 
inhomogeneously within an equilibrium system.2 4 

Herring's Cr i ter ion 

The common tangent criterion for orient at ional stability just derived is 
a powerful and useful one. It implies tha t conditions for stability and 
coexistence of surface orientations are formally equivalent to the conditions 
for stability and coexistence of binary alloy phases. Hence, the arguments 
and insights derived from Chapter 3 apply directly. 

For example, if the / ( t a n 0 ) plot is concave up as in the top of Fig
ure 6.17, then all orientations are stable. If it is concave down, as in the 
bot tom of Figure 6.17, then only the t a n 0 = 0 and t a n 0 = ± 1 facets 
are stable; all other orientations decompose into a phase mixture of those 
facets, in proportions given by the lever rule. 

This common tangent criterion in the / ( t a n 0 ) representation can also 
be understood using the more conventional 7(0) representation. To see 
how, note tha t the critical shape for the / ( t a n 0 ) plot dividing these two 
extremes of behavior is a straight line: 

/ ( t a n 0) = A + B t an 0. (6.44) 

Note tha t on a 7(0) plot, such straight lines become circles passing through 
the origin, 

7(0) = (cos 0 ) / ( t a n 0) = A cos 0 + B sin 0, (6.45) 

with origin at (A/2,B/2) and radius {A/2)2 + (B/2)2. Hence, / ( t a n 0 ) 
plots tha t are concave up correspond to 7(0) plots tha t "bulge" out between 
facets less than would a sphere passing through the origin, as in the top 
of Figure 6.17, and / ( t a n 0 ) plots tha t are concave down correspond to 

22 A.A. Chernov, "The spiral growth of crystals," Sov. Phys.-Usp. 4, 116 (1961); and 
N. Cabrera, "The equilibrium of crystal surfaces," Surf. Sei. 2, 320 (1964). 

2 3 P . Nozieres, "Surface melting and crystal shape," J. Phys. 50, 2541 (1989). 
2 4N.C. Bartelt, T.L. Einstein, and C. Rottman, "First-order transitions between sur

face phases with different step structures," Phys. Rev. Lett. 66, 961 (1991). 
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Figure 6.17: Common tangent criteria for orientational stability. The / ( t an0) = 
7 / cos Θ plot at top is concave up between tan Θ = 0 and tan Θ = ± 1 , hence surfaces 
whose orientations lie between those angles are stable against facetting into an 
inhomogeneous mix of Θ = 0 and θ = ±π/4 surfaces. The / ( t an Θ) — 7 / cos Θ plot 
at bottom is concave down between tan# = 0 and tan# = ± 1 , hence surfaces 
whose orientations lie between those angles are unstable against facetting into an 
inhomogeneous mix of Θ = 0 and θ = ± π / 4 surfaces. The / ( tan Θ) = 7 / cos Θ plot 
in the middle are straight lines between tan# = 0 and tanö = ± 1 , hence surfaces 
whose orientations lie between those angles are critically stable against facetting 
into an inhomogeneous mix of Θ = 0 and θ = ± π / 4 surfaces. 



6.2. Equilibrium Morphology 229 

7(0) plots tha t bulge out between facets more than would a sphere passing 
through the origin, as in the bo t tom of Figure 6.17.25 

Now, tangent spheres at orientations tha t bulge less than spherically 
must lie inside the η(θ) plot, and hence lie on the equilibrium crystal shape, 
while tangent spheres at orientations tha t bulge more than spherically must 
lie outside the 7(0) plot, and hence be absent from the equilibrium crystal 
shape. As a consequence, we also have Herring's criterion, originally proved 
in a different maner: those orientations are stable tha t are represented on 
the equilibrium crystal shape, and those orientations are unstable tha t are 
not represented on the equilibrium crystal shape. 

T e m p e r a t u r e - D e p e n d e n t P h a s e Equi l ibr ia 

Let us now illustrate the stability criterion and common tangent construc
tions just derived with a concrete example. Consider the cubic 2D crystal 
shown in Figure 6.18, whose lowest free energy surfaces are (11) and (01) 
facets. At low temperatures , we expect the 7(0) plot to be deeply cusped 
at those orientations, leading to an equilibrium crystal bounded solely by 
these facets. As temperature increases, the η(θ) plot becomes less and less 
cusped. In this case, the (01) facets are shown to roughen first, leading to 
an equilibrium crystal bounded by continuously curved surfaces joined to 
(11) facets. Then, the (11) facets roughen, leading to an equilibrium crystal 
bounded everywhere by continuously curved surfaces. 

Another way of looking at the temperature evolution of this system is 
to plot, as illustrated in Figure 6.19, / vs t a n 0 and z = f — s(df/ds) 
vs x = df/ds diagrams. At low temperatures , the / ( t a n # ) plot is deeply 
cusped at t a n # = 0 and t a n # = ± 1 . Application of the common tangent 
construction then leads to the orientational gap shown in the bot tom left of 
Figure 6.19, and to the first-order facet-facet joining shown in the bo t tom 
right of Figure 6.19. At higher temperatures , the η(θ) plot becomes less 
and less cusped. As this happens, the orientational gap vanishes, and all 
orientations become stable. At the same time, the first-order facet-facet 
joining evolves to a second-order joining, and ultimately disappears entirely. 

Finally, it is often convenient to plot these orientational gaps (in tan Θ) 
and facet-facet phase transition positions (in x = df/ds) as temperature-
dependent phase diagrams. The resulting T ( t a n Θ) phase diagram is shown 

2 57(0) plots composed of exactly spherical bulges between facets, as in the middle 
of Figure 6.17, are also known as "raspberry" figures; see F.C. Frank, "The geometri
cal thermodynamics of surfaces," in W.D. Robertson and N.A. Gjostein, Eds., Metal 
Surfaces: Structure, Energetics and Kinetics, Proceedings of a joint seminar of the 
American Society for Metals and the Metallurgical Society of AIME, October 27-28, 
1962 (American Society for Metals, Metals Park, Ohio, 1963), Chap. 1. 
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Figure 6.18: Equilibrium shapes for a hypothetical 2D crystal with both (11) 
and (01) facets. As temperature increases (counterclockwise from lower left), the 
7(0) plot becomes less and less cusped, and the equilibrium shape becomes less 
and less faceted. 

in the middle left of Figure 6.19. It maps out the critical values of t a n # 
for which surfaces of a specified average orientation will decompose into 
mixtures of orientations. At temperatures below 380 K, only (11) and (01) 
facets are stable; all other orientations decompose into lever-rule mixtures 
of those orientations. At temperatures above 380 K, orientations near (01) 
become stable; all other orientations now decompose into lever-rule mix
tures of (11) facets and nonsingular orientations near (01). Wi th increasing 
temperature above 380 K, orientations farther and farther from (01) become 
stable, until at 900 K, even orientations near (11) are stable. Above 900 K, 
surfaces of any average orientation will be stable against decomposition into 
inhomogeneous mixtures of surfaces of differing orientations. 
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Figure 6.19: Orientational phase diagrams for the hypothetical 2D crystal illus
trated in Figure 6.18. The left middle diagram shows the mixtures of orientations 
that a surface of a specifice average orientation will decompose into. The right 
middle diagram shows the horizontal positions at which different facets join on 
the equilibrium crystal; solid and dotted lines indicate first- and second-order 
phase transitions, respectively. Above and below the diagrams are examples of 
the 7 / cos Θ vs tan<9 and z = / - s(df/ds) vs x = df/ds plots from which these 
diagrams were derived. 
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The corresponding T(x) phase diagram is shown in the middle right of 
Figure 6.19. It maps out the critical horizontal positions at which different 
facets join on the equilibrium crystal. At temperatures below 380 K, (11) 
facets join (01) facets in first-order phase transitions. At temperatures 
above 380 K, orientations near (01) begin to appear. As a consequence, 
(11) facets join continuously curved orientations near (01) in first-order 
phase transitions, while the continuously curved orientations near (01) join 
(01) facets in second-order phase transitions. Wi th increasing temperature 
above 380 K, these alternative orientations near (01) become increasingly 
stable, until at 500 K the (01) facets "roughen" and disappear entirely. 

Above 500 K, (01) facets are absent from the equilibrium crystal, but 
(11) facets are present, and continue to join continuously curved orienta
tions near (01) in first-order phase transitions. Wi th increasing temperature 
above 500 K, though, these continuously curved orientations approach more 
and more closely (11) orientations, until at 900 K the (11) facets begin to 
join these continuously curved orientations in second-order phase transi
tions. Finally, at 1000 K, the (11) facet itself "roughens" and disappears 
entirely. 

6.2.3 Shapes of Thin Films: Growth Modes 
Thus far, in Subsections 6.2.1 and 6.2.2, we have been concerned with 
single-material systems, e.g., homoepitaxial films of one material on sub
strates of the same material. Then, the surface free energy and, in par
ticular, its orientation dependence, plays the most important role in de
termining the equilibrium morphology. However, for two-material systems, 
e.g., heteroepitaxial films of one material on substrates of another material, 
interface and volume free energies also play important roles.26 

In this subsection, we discuss how these energies determine the equi
librium morphology, or "growth mode," of the film. We discuss two ap
proaches in turn. The first approach considers the shape of the thickness-
dependent total free energy. The second approach considers the contact 
angles tha t the film islands make with the substrate, as determined by the 
surface and interface energies. 

Free Energ ie s 

Consider the thickness-dependent total free energy curves shown in Fig
ure 6.20. Note tha t these are the total free energies of the system relative 

2 6E.G. Bauer, "Phänomenologische theorie der kristallabscheidung an Oberflächen. I 
& II," Z. Kristallogr. 110, 372, 395 (1958), NASA Technical Translations T T F - l l , 
888 and 889 (NASA, Washington, D.C., August, 1968). 
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Figure 6.20: Thickness dependences of total free energies for the three classical 
heteroepitaxial growth modes. 

to tha t of the bare substrate, and include both volume and surface con
tributions. We assume tha t there is a nonzero driving force for epitaxy, 
and so in each panel the overall t rend is for the free energy to decrease 
with increasing thickness of the heteroepitaxial layer. We also assume tha t 
fully completed layers, with fully laterally coordinated atoms, have slightly 
lower energies than partially completed layers, and so in each panel the free 
energies are shown corrugated slightly with a monolayer periodicity. 

There are three cases of interest.2 7 In the top panel of Figure 6.20, the 
sum of the free energies associated with the free surface of the epitaxial 
film, 7e/v> a n d with the interface between the substrate and the epitaxial 
film, 7 s / e , is less than or equal to tha t associated with the original substrate 
surface, 7S/V: 

7 e / v + 7 s / e < 7 s / v (6 .46) 

Then, the overall free energy decreases faster over the first layer (or two), 
before settling down to a steady state slope for thicker films. The overall 
shape of the thickness-dependent free energy is then concave up. Therefore, 

2 7M.H. Grabow and G.H. Gilmer, "Thin film growth modes, wetting and cluster nu-
cleation," Surf. Sei. 194, 333 (1988). 
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for every integral-monolayer thickness, the system is thermodynamically 
stable against breakup into inhomogeneous regions, some thicker and some 
thinner. This leads to what is known as the ideal Frank-van-der-Mer we 
layer-by-layer growth mode.28 

In the bottom panel, the sum of 7e/v and 7s/e is greater than 7S/V-

7e/v + 7 s / e > 7s /v · (6-47) 

Then, the overall free energy increases at first as the first layer (or two) 
is deposited, before turning around and decreasing for thicker films. The 
overall shape of the thickness-dependent free energy is then concave down. 
Systems of uniform thickness are therefore thermodynamically unstable 
against breakup into inhomogeneous regions, some very thick and some 
completely uncovered. This leads to what is known as the Volmer-Weber 
island growth mode.29 It is often observed in "dirty" systems in which im
purities lower the free energy of the starting surface, but are buried shortly 
after heteroepitaxy begins.30 

In the middle panel, the sum of 7e/v and 7s/e is, just as in the top panel, 
less than 7S/V: 

7 e / v + 7 s / e > 7 s / v (6.48) 

Therefore, the surface free energy decreases faster as the first layer (or two) 
is deposited. However, because of some constraint that the substrate im
poses on the epilayer, the energy decreases less steeply as subsequent layers 
are deposited. Only for very thick films, when the epilayer decouples from 
the substrate, does the energy decrease as steeply as expected for a given 
driving force for homoepitaxy. The overall shape of the thickness-dependent 
free energy is therefore initially concave up, but then subsequently concave 
down. Films thicker than a few layers are therefore unstable to breakup 
into inhomogeneous regions, some very thick and some having only one (or 
two) layers. This leads to what is known as the Stranski-Krastanov layer 
plus island growth mode.31 

2 8 F .C. Frank and J.H. van der Merwe, "One-dimensional dislocations. I. Static the
ory," Proc. R. Soc. London A198 , 205 (1949); F.C. Frank and J.H. van der Merwe, "One-
dimensional dislocations. II. Misfitting monolayers and oriented overgrowth," Proc. R. 
Soc. London A198, 216 (1949); F.C. Frank and J.H. van der Merwe, "One-dimensional 
dislocations. III. Influence of the second harmonic term in the potential representation, 
on the properties of the model," Proc. R. Soc. London A200, 125 (1950); and F.C. 
Frank and J.H. van der Merwe, "One-dimensional dislocations. IV. Dynamics," Proc. 
R. Soc. London A201 , 261 (1950). 

2 9 M. Volmer and A. Weber, "Keimbildung in übersättigten gebilden," Z. Phys. Chem. 
119, 277 (1926). 

3 0B.A. Joyce, "The growth and structure of semiconducting thin films," Rep. Prog. 
Phys. 37, 363 (1974). 

311.N. Stranski and L. Krastanow, "Zur theorie der orientierten ausscheidung von 
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Figure 6.21: Surface tension forces acting on a heteroepitaxial nucleus on a 
substrate. 

In practice, the growth mode tha t often applies to strained-layer het
eroepit axy is the Stranski-Krastanov growth mode. Films thinner than the 
critical thickness for strain relaxation are strained, and their free energies 
do not decrease with increasing thickness as steeply as the free energies of 
unstrained films. Films above the critical layer thickness, however, relax, 
and their free energies decrease at a rate approaching tha t for unstrained 
homoepitaxy. 

C o n t a c t A n g l e s 

Another way of looking at these three classic growth modes is to consider 
the contact angle of a spherical heteroepitaxial cap on the surface.32 If, as 
shown in Figure 6.21, the free energies of each interface are considered vec
tor forces lying within their respective interfaces, then lateral force balance 
requires tha t 

7 s / v = 7 s / e + 7 e / v COS ß. ( 6 . 4 9 ) 

The contact angle will therefore be given by 

Ω 7 s / v ~~ 7 s / e (a c r A 

cosp = —- —. (6.50) 
7e/v 

If (7s/v — 7s/e)/7e/v > 1> then there is no contact angle satisfying 
Equation 6.50, the cap is unstable, the heteroepitaxial layer wets the sub
strate, and Frank-van-der-Merwe layer-by-layer growth occurs. If (7S/V ~~ 
7s/e)/7e/v < 1 then there is a finite contact angle satisfying Equation 6.50, 
caps having tha t contact angle are stable, the heteroepitaxial layer does 
not wet the substrate, and Volmer-Weber island growth occurs. 

ionenkristallen aufeinander," Ber. Akademie der Wissenschaften und der Literatur, 
Mainz. Mathematisch-Naturwissenschaftliche Klasse, 146, 797 (1939). 

3 2R. Kern, G. Le Lay and J.J. Metois, "Basic mechanisms in the early stages of 
epitaxy," in Current Topics in Materials Science, Vol. 3, E. Kaldis, Ed. (North-Holland, 
Amsterdam, 1979). 
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If (7s/v — 7s/e)/7e/v depends on thickness, then it is possible for the first 
few layers to wet the substrate, for subsequent layers to island, and for the 
growth mode to be Stanski-Krastanov layer-plus-island. For example, for 
an island on a bare substrate, (7S/V

 — 7s/e)/7e/v m aY D e greater than unity, 
so that a wetting epilayer forms. Then, for an island on a wetting epilayer, 
\7w/v 7w/e )/7e/v, where 7 w / v is the surface free energy of the wetting 
layer and 7w / e is the interface free energy between the wetting layer and 
the epilayer, may be less than unity, so that islands form on the wetting 
epilayer. 

This can come about in strained heteroepitaxy if the strain and dislo
cation energies of the epitaxial film are thought of as an effective interface 
free energy that is included as part of 7w/e- Then, for very thin (mono-
layer) films, 7S/v may be so large that (7S/V — 7s/e)/7e/v ls greater than 
unity and the first epilayer wets the substrate. For very thick, unstrained 
films, the free energy of the interface between the first wetting epilayer 
and subsequent epilayers (7w/e) would normally vanish, and the surface 
free energies of the wetting epilayer (7W/V) and subsequent epilayers (7e/v) 
would be equal. Hence (7w/v — 7w/e)/7e/v -* 1> a n d islands would be unsta
ble. For intermediate thickness strained films, however, with a finite 7w /e , 
(7w/v — 7w/e)/7e/v < 1> a n d islands will be stable. 

6.3 Nonequilibrium Morphology 
In Section 6.2, we discussed equilibrium shapes of crystals and crystal sur
faces in the absence of growth. In this section, we discuss nonequilibrium 
shapes in the presence of growth. We restrict our attention to homoepitaxy 
on simple starting surfaces at or near singular orientations, and composed of 
noninteracting arrays of steps. We do not treat the interesting but exceed
ingly complex cases of epitaxy on starting surfaces well away from singular 
orientations or of growth on inhomogeneous, "patterned" starting surfaces 
composed of multiple orientations.33 We also do not treat the important 
but complex case of heteroepitaxy, in which surface morphology is often 
tightly coupled to the transition between coherency and semicoherency (see, 
e.g., Exercise 2 in Chapter 5), and in which Stranski-Krastonov layer-plus-
island and Volmer-Weber island growth modes are often observed. Finally, 
we also neglect effects due to surface reconstructions in covalently bonded 

3 3 W.W. Mullins, "Flattening of a nearly plane solid surface due to capillarity," J. 
Appl. Phys. 30, 77 (1959); W.T. Tsang and A.Y. Cho, "Growth of GaAs-Gai_ x Al x As 
over preferentially etched channels by molecular beam epitaxy: a technique for two-
dimensional thin-film definition," Appl. Phys. Lett. 30, 293 (1977); and E. Kapon, M.C. 
Tamargo, and D.M. Hwang, "Molecular beam epitaxy of GaAs/AlGaAs superlattice 
heterostructures on nonplanar substrates," Appl. Phys. Lett. 50, 347 (1987). 
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semiconductors,3 4 or due to the interplay between morphology and compo
sition tha t can occur on the surfaces of binary alloys.35 

In modeling nonequilibrium surface morphology, it is useful to distin
guish between two approaches. In the first approach, surface morphology 
is modeled directly. At one extreme, molecular dynamics simulations track 
the exact positions {r"i,r"2,...} of all a toms as they move in response to 
forces between them.3 6 At the other extreme, continuum models track the 
height h of a coarse-grained surface position (x,y). The time evolution of 
/i(x, y) is determined by various driving (e.g., growth with stochastic noise) 
and relaxation (e.g., diffusional) terms. 3 7 In between these two extremes, 
Monte Carlo simulations track the column heights n of discrete surface 
lattice sites (i, j). The time evolution of the n(i,j) is determined by the 
probabilities of surmounting assumed energy barriers separating various 
configurations.38 

In the second approach, surface morphology is not modeled directly. 
Instead, the surface is decomposed into defects of various kinds, such as 
steps, 2D islands, and adatoms. The t ime evolution of surface morphology 
is then determined by the dynamics of the motion and interactions of these 
defects. 

In this section, we will take the second approach. Its disadvantage is 

34See, e.g., S.A. Barnett and A. Rockett, "Monte Carlo simulations of Si(OOl) growth 
and reconstruction during molecular beam epitaxy," Surf. Sei. 198, 133 (1988); and H.-
J. Gossman and L.C. Feldman, "Initial stages of silicon molecular-beam epitaxy: effects 
of surface reconstruction," Phys. Rev. B32 , 6 (1985). 

3 5A. Madhukar and S.V. Ghaisas, "The nature of molecular beam epitaxial growth 
examined via computer simulations," CRC Critical Reviews in Solid State and Materials 
Sciences 14, 1 (1988). 

3 6 M. Schneider, A. Rahman, and I.K. Schuller, "Role of relaxation in epitaxial growth: 
a molecular-dynamics study," Phys. Rev. Lett. 55, 604 (1985); E.T. Gawlinski and J.D. 
Gunton, "Molecular-dynamics simulation of molecular-beam epitaxial growth of the sil
icon (100) surface," Phys. Rev. B36, 4774 (1987); S. Das Sarma, S.M. Paik, K.E. Khor, 
and A. Kobayashi, "Atomistic numerical simulation of epitaxial crystal growth," J. Vac. 
Sei. Technol. B 5 , 1179 (1987); and D. Srivastava and B.J. Garrison, "Growth mech
anisms of Si and Ge epitaxial films on the dimer reconstructed Si (100) surface via 
molecular dynamics," J. Vac. Sei. Technol. A 8 , 3506 (1990). 

3 7 M. Kardar, G. Parisi, and Y-C Zhang, "Dynamic scaling of growing interfaces," 
Phys. Rev. Lett. 56, 889 (1986); D.E. Wolf, "Kinetic roughening of vicinal surfaces," 
Phys. Rev. Lett. 67, 1783 (1991); Z.-W. Lai and S. Das Sarma, "Kinetic growth with sur
face relaxation: continuum versus atomistic models," Phys. Rev. Lett. 66, 2348 (1991). 

3 8 F .F . Abraham and G.H. White, "Computer simulation of vapor deposition on two-
dimensional lattices," J. Appl. Phys. 4 1 , 1841 (1970); G.H. Gilmer and P. Bennema, 
"Simulation of crystal growth with surface diffusion," J. Appl. Phys. 43 , 1347 (1972); S. 
Clarke and D.D. Vvedensky, "Origin of reflection high-energy electron-diffraction inten
sity oscillations during molecular-beam epitaxy: a computational modeling approach," 
Phys. Rev. Lett. 58, 2235 (1987); and P.A. Maksym, "Fast Monte Carlo simulation of 
MBE growth," Semicond. Sei. Technol. 3, 594 (1988). 
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that it requires a priori knowledge of the important defect types and the 
ways in which they interact, knowledge that is currently far from com
plete. Its advantage, though, is that it simplifies and brings deeper phys
ical understanding to a rich statistical behavior. The evolution of surface 
morphology is complex and highly nonlinear, often even oscillatory upon 
initiation of growth. Indeed, such oscillations, illustrated in Figure 3.14 
have been observed by reflection high-energy electron diffraction (RHEED) 
and other in situ measurements in a variety of materials, including III-V,39 

IV-IV,40 II-VI41 and I-VII42 compounds, as well as metals43 and high-
Tc superconductors.44 Similar oscillations have also been observed during 

3 9 J . J . Harris, B.A. Joyce, and P.J. Dobson, "Oscillations in the surface structure of 
Sn-doped GaAs during growth by MBE," Surf. Sei. 103, L90 (1981); C.E.C. Wood, 
"RED intensity oscillations during MBE of GaAs," Surf. Sei. 108, L441 (1981); J.N. 
Eckstein, C. Webb, S.-L. Weng, and K.A. Bertness, "Photoemission oscillations during 
epitaxial growth," Appl. Phys. Lett. 51, 1833 (1987); L.P. Erickson, M.D. Longerbone, 
R.C. Youngman, and B.E. Dies, "The observation of oscillations in secondary electron 
emission during the growth of GaAs by MBE," J. Crystal Growth 81, 55 (1987); J.P. 
Harbison, D.E. Aspnes, A.A. Studna, L.T. Florez, and M.K. Kelly, "Oscillations in the 
optical response of (001) GaAs and AlGaAs surfaces during crystal growth by molecular 
beam epitaxy," Appl. Phys. Lett. 52, 2046 (1988); and J.Y. Tsao, T.M. Brennan, and 
B.E. Hammons, "Oscillatory AS4 surface reaction rates during molecular beam epitaxy 
of AlAs, GaAs and InAs," J. Crystal Growth 111, 125 (1991). 

4 0 T . Sakamoto, N.J. Kawai, T. Nakagawa, K. Ohta, and T. Kojima, "Intensity oscilla
tions of reflection high-energy electron diffraction during silicon molecular beam epitaxial 
growth," Appl. Phys. Lett. 47, 617 (1985). 

4 1 L. A. Kolodziejski, R.L. Gunshor, N. Otsuka, B.P. Gu, Y. Hefetz, and A.V. Nurmikko, 
"Use of RHEED oscillations for the growth of 2D magnetic semiconductor superlattices 
(MnSe/ZnSe)," J. Cryst. Growth 81, 491 (1987). 

4 2 H. Dabringhaus and H.J. Meyer, "Untersuchung der kondensation und Verdampfung 
von alkalihalogenid-kristallen mit molekularst rahlmethoden. II. Relaxationseffekte auf 
der (lOO)-oberfläche von KC1," J. Cryst. Growth 16, 31 (1972); and H.J. Meyer and H. 
Dabringhaus, "Molecular processes of condensation and evaporation of alkali halides," in 
Current Topics in Materials Science Vol. 1, E. Kaldis, Ed. (North-Holland, Amsterdam, 
1978), Chap. 2. 

4 3 Y. Namba, R.W. Vook, and S.S. Chao, "Thickness periodicity in the Auger line 
shape from epitaxial (111) Cu films," Surf. Sei. 109, 320 (1981); T. Kaneko, M. Imafuku, 
C. Kokubu, R. Yamamoto, and M. Doyama, "The first observation of RHEED intensity 
oscillation during the growth of Cu/Mo multi-layered films," J. Phys. Soc. Jpn. 55, 2903 
(1986); S.T. Purcell, B. Heinrich, and A.S. Arrott, "Intensity oscillations for electron 
beams reflected during epitaxial growth of metals," Phys. Rev. B35 , 6458 (1987); C. 
Koziol, G. Lilienkamp, and E. Bauer, "Intensity oscillations in reflection high-energy 
electron diffraction during molecular beam epitaxy of Ni on W (110)," Appl. Phys. Lett. 
51, 901 (1987); and D.A. Steigerwald and W.F. Egelhoff, Jr., "Observation of intensity 
oscillations in RHEED during the epitaxial growth of Cu and fee Fe on Cu (100)," Surf. 
Sei. 192, L887 (1987). 

4 4 T . Terashima, Y. Bando, K. Iijima, K. Yamamoto, K. Hirata, K. Hayashi, K. Kami-
gaki, and H. Terauchi, "Reflection high-energy electron diffraction oscillations during 
epitaxial growth of high-temperature superconducting oxides," Phys. Rev. Lett. 65 , 2684 
(1990). 
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Peclet number 
L2j/D < 1 
L2j/D » 1 
L2j/D > 1 
L2j/D » 1 

Growth Regime 
"Diffusional" Step Flow 
"Convective" Step Flow 
2D Nucleation and Growth 
Statistical Growth 

Table 6.1: Magnitudes of Peclet numbers and the corresponding type of growth. 

other kinds of crystal growth, such as electrocrystallization45 and gas source 
or chemical beam epitaxy.4 6 

To organize our t reatment , we consider in the following Subsections the 
four regimes of behavior on vicinal (stepped) surfaces indicated in Table 6.1. 
These regimes are distinguished by the ratio between the velocity at which 
the steps move as they consume adatoms and the velocity at which adatoms 
diffuse to the steps. If j is the deposition rate in monolayers per second, 
and if L is the average spacing between the steps, then the velocity at 
which the steps move is roughly fstep = jL. If D is the adatom diffusivity, 
then the velocity of adatom diffusion to the steps is roughly t> adat ~ D/L. 
The ratio between the velocities is therefore L2j/D. This ratio is a kind of 
Peclet number, in tha t it is a dimensionless measure of the relative impor
tance of convective over diffusional mass flow. Low Peclet numbers imply 
high temperatures and a dominance of diffusional mass flow; high Peclet 
numbers imply low temperatures and a dominance of convective mass flow. 
Another way of understanding the Peclet number is to note tha t it is also 
the ratio between the diffusion t ime across the terraces, L2/D, and the 
adatom arrival time, TML = 1/j· Low ratios imply either low growth rates 
or high adatom diffusivities; high ratios imply either high growth rates or 
low adatom diffusivities. 

6.3.1 Fast Adatoms and "Diffusive" Step Flow 
In this subsection, we discuss how surface morphology evolves if Peclet 
numbers are much less than unity, so tha t adatom diffusion to nearby steps 
is fast relative both to step flow and to the rate at which adatoms arrive 
from the vapor. Then, ada tom coverages will be low, adatom-adatom inter
actions can be neglected, and growth will proceed exclusively by the flow 

4 5 V. Bostanov, R. Roussinova, and E. Budevski, "Multinuclear growth of dislocation-
free planes in electrocrystallization," J. Electrochem. Soc. 119, 1346 (1972). 

4 6 W.T . Tsang, T.H. Chiu, J.E. Cunningham, and A. Robertson, "Observations on 
intensity oscillations in reflection high-energy electron diffraction during chemical beam 
epitaxy," Appl. Phys. Lett. 50, 1376 (1987). 
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—I ί ϊ , Ln+1 V i 

Figure 6.22: An array of steps at horizontal positions {xn} separated by terraces 
of widths {Ln}. 

of steps across the surface. In other words, adatoms are fast, and it is their 
diffusion tha t mediates step flow. 

To understand how the morphology of a surface evolves in this step 
flow regime, consider the array of steps illustrated in Figure 6.22. Suppose 
adatoms on terrace n have probability p + of at taching at the "up" step n 
on the left, and probability p~ — 1 — p+ of at taching at the "down" step 
n + l o n the right. If Ln is the width of terrace n in monolayers, then jLn 

adatoms land on tha t terrace each second, of which p + a t tach at step n 
and p~ a t tach at step n + 1. Terrace n makes an "up" contribution to the 
velocity of step n of jLnp+ and a "down" contribution to the velocity of 
step n + 1 of jLnp~. Alternatively, the velocity of step n can be viewed as 
containing an "up" contribution from terrace n of j L n p + , and a "down" 
contribution from step n — 1 of jLn-\p~. In other words, 

Xn — Vn \p++p ) \P++P ) 
Since the width of the n t h terrace is Ln = xn+χ — x n , we can also write 

Xn = jfan+l ~ Xn) ( ^ T ~ Γ ) + J(Xn ~ # n - l ) ( ~ j — ~ ) > ( 6 · 5 2 ) 

which is a set of difference equations for the t ime evolution of the positions 
of the steps in the array. 

If the incorporation probabilities are rewritten as 

+ ( P + + P " ) , ( p + -p~) 
p = h 2 2 

( p + + p ~ ) (p+-p~) (6.53) 
2 2 

then Equation 6.52 can be recast, after some algebra, into the form 

./ΐη+1-Χη_Λ . /p+ ~P~\ (Xn+l - Xn Xn-Xn-l\ 
X n = J { 2 )+Λ^Τ^){—2 2— )■ 

(6.54) 



6.3. Nonequilibrium Morphology 241 

The first term on the right-hand side of Equation 6.54 is a simple differ
ence between step positions, while the second term is a difference between 
differences. Hence, the continuum equivalent of Equation 6.54 is 

UX I Ό — Ό \ d X 
iM=jaa+j{^TF)^ ( 6 · 5 5 ) 

which is a single differential equation for the evolution of the step positions. 
An identical equation may be derived for the evolution of the terrace widths 
by inserting Equation 6.51 into Ln = xn+i — xn: 

*-«>-J£ ♦>(££)£. <"·> 
The first derivative terms in both of these equations give rise to wave 

behavior such that, for a fixed horizontal coordinate x, the step index n 
decreases as time increases. In particular, as steps move to the right during 
growth, the indices of the steps seen by a stationary observer decrease as 
dn/dt = —j. 

The second derivative terms in both of these equations are dispersion 
terms that tend to either damp or amplify fluctuations. Suppose, e.g., a 
surface at time t = 0 is composed of terraces having average widths of 
Lavg, but with an additional small sinusoidal variation of amplitude AL 
over step index changes of n\, i.e., L(n) = Lavg + ALs'm(n/n\). Then, its 
time evolution can be shown (see Exercise 8) to be given by 

L{n,t) = Lavg + ΔΖ,δίη2π ( VL±J1 ) e~t/TD, (6.57) 

where the rate at which the sinusoidal variation decays is47 

— =j(—) ( P + - P " ) · (6·58) 
TD \nxj v J 

The decay rate depends inversely on the square of the wavelength of the 
perturbation. As a consequence, growth will tend to smoothen short-
wavelength perturbations sooner than long-wavelength ones, and very long-
wavelength perturbations will tend to smoothen exceedingly slowly.48 

4 7R.L. Schwoebel, "Step motion on crystal surfaces. II," J. Appl. Phys. 40, 614 
(1969); and T. Fukui, H. Saito, and Y. Tokura, "Superlattice structure observation 
for (AlAs)1/2(GaAs)1/2 grown on (001) vicinal GaAs substrates," Japan. J. Appl. Phys. 
27, L1320 (1988). 

4 8H.-J. Gossman, F.W. Sinden, and L.C. Feldman, "Evolution of terrace size distribu
tions during thin-film growth by step-mediated epitaxy," J. Appl. Phys. 67, 745 (1990). 
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Note tha t it is the anisotropy between the up and down step incorpo
ration probabilities tha t determines whether the per turbat ion will grow or 
shrink. If p + > p~, then the perturbat ion decays; if p+ < p~, then the 
perturbat ion grows. This can be understood by inspection of Figure 6.22. 
If Ln is at some instant wider than its neighbors, then if adatoms on tha t 
terrace preferentially at tach at the "up" step, Ln will decrease and the per
turbat ion will decay, while if they preferentially a t tach at the "down" step, 
Ln will increase and the per turbat ion will grow. 

Note tha t although Equation 6.56 describes a wave moving backward in 
step index with increasing time, the horizontal position x « Layg(n + jt) of 
a given step index itself moves forward with t ime as steps flow to the right. 
Hence, Equation 6.57 can be rewritten approximately as 

L(x, t) = L a v g + AL sin 2π f ——— ] e~t,TD. (6.59) 
\Lavgn\J 

In real space, terrace width perturbat ions propagate nearly vertically, even 
though the steps themselves propagate horizontally to the right. This be
havior is illustrated in Figure 6.23, which shows the evolution of an array 
of steps having an initial Gaussian per turbat ion centered at xn = 80. 

Finally, we note tha t , in deriving Equation 6.56, adatoms were assumed 
to at tach only at adjacent steps. If, instead, adatoms cross adjacent steps 
and ultimately a t tach at more distant steps, then higher order derivatives 
appear in Equations 6.55 and 6.56 tha t can cause perturbat ions to propa
gate to the right.4 9 

6.3.2 Slow Adatoms and "Convective" Step Flow 
In Subsection 6.3.1, we discussed how surface morphology evolves if Peclet 
numbers are much less than unity, so tha t adatom diffusion to nearby steps 
is fast. In this subsection, we discuss how surface morphology evolves if 
Peclet numbers are on the order of unity, so tha t ada tom diffusion to nearby 
steps is comparable to the step flow velocity. Then, as we shall see, adatom 
annihilation occurs not only by adatom diffusion to steps, but by step flow 
over adatoms. As a consequence, there can arise an oscillatory interplay be
tween accumulation of adatoms between the steps, and sweeping of adatoms 
by step flow. 

To quantify this, consider the equi-spaced array of steps illustrated in 
Figure 6.24, with a space and time-dependent ada tom coverage 6(x,t). On 
the terrace bounded by steps at XL a n d XR, the coverage increases with time 

49S.A. Chalmers, J.Y. Tsao, and A.C. Gossard, "Lateral motion of terrace width 
distributions during step-flow growth," Appl. Phys. Lett. 6 1 , 645 (1992). 
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Figure 6.23: Snapshots in time of the terrace widths, Ln(t), heights, hn(t) and 
lateral positions, xn( t ) , of an array of steps after successive monolayers have been 
deposited. The terraces are on average five lattice parameters wide, but with an 
initial Gaussian bunching centered at xn « 80. Bottom: The heights hn of the 
steps are constant, but their lateral positions xn increase with time as the steps 
flow to the right. Top: Even though the steps flow to the right, the perturbation 
in the terrace widths propagates vertically up. For clarity, the terrace widths Ln 

are shown offset by successive monolayers t/rMh-

due to deposition at a rate j , and the spatial distribution of the coverage 
broadens in t ime due to diffusion at a ra te Dd26/dx2. If evaporation back 
into the vapor is negligible, then the coverage evolves according to 5 0 

0{x,t)=j + D 
82θ 
Ar5" (6.60) 

At the left step edge, the rate at which adatoms at tach will be pro
portional to the adatom coverage, k^t6{x^,t)^ where k£tt is a kinetic rate 
constant for successful adatom at tachment at. an up step. If adatoms can 
also detach from steps, then there will be a competing rate, fc~Jet, w n e r e 

^det ls a kinetic rate constant for successful adatom detachment from an 
up step. 

The difference between these two rates must be exactly balanced by the 
diffusive flow of adatoms into the step, D[d6/dx]XL. Hence, we have at the 
left step 

Γ ββ" 

kttte(xL,t)-k+it=Di 
dx 

(6.61) 

5 0W.K. Burton, N. Cabrera, and F.C. Frank, "The growth of crystals and the equilib
rium structure of their surfaces," Philos. Trans. R. Soc. London Ser. A243 , 299 (1951). 
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Figure 6.24: Steady-state adatom coverages on an equi-spaced array of "fast" 
steps. 

Using similar reasoning, we also have at the right step 

'θθ] 
^tAxR,t)-k-et = -D 

dx 
(6.62) 

where k~tt and k^et are kinetic rate constants for successful ada tom attach
ment and detachment from the down step. These two boundary conditions 
determine, along with Equation 6.60, the t ime evolution of the adatom 
coverage.51 

Note, however, tha t these boundary conditions are complicated by the 
fact tha t , as adatoms at tach at the steps, the steps themselves move, so tha t 
the positions in space at which the boundary conditions must be applied 
also move. Since the velocities at which the steps move is determined by 
the sum of the a t tachment rates of adatoms coming from the left and the 
right of each step, we have 

«(*) = [*£t*(*L, t) - k+j + [k:ite(xR, t) - fcd-j 

= D 
\3θλ 
dx 

XL· 
- D 

ΪΘΘ1 
dx 

(6.63) 

To remove this complication, it is convenient to transform into a coor
dinate system, x' = x + J vdt, tha t itself moves with the steps. Then, the 
boundary conditions given by Equations 6.61 and 6.62 may be applied at 
fixed xf

L and x'R, but the differential Equation 6.60 becomes 

(6.64) 

The equation now contains both a "diffusive" term, Dd26/dx'2, as well as 
a "convective" term, υθθ/θχ', due to the motion of the s tep.5 2 

5 1R. Ghez and S.S. Iyer, "The kinetics of fast steps on crystal surfaces and its appli
cation to the molecular beam epitaxy of silicon," IBM J. Res. Develop. 32, 804 (1988). 

5 2 K. Voigtlander, H. Risken, and E. Kasper, "Modified growth theory for high su-
persaturation," Appl. Phys. A39 , 31 (1986); and V. Fuenzalida and I. Eisele, "High 
supersaturation layer-by-layer growth: application to Si MBE," J. Crystal Growth 74, 
597 (1986). 
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For simplicity, let us now assume tha t adatom detachment from steps 
is negligible, so tha t fc~j~t = k^et = 0. Let us also assume tha t the local 
at tachment rates are extremely fast, so tha t k^tt —> oo and k~tt —► oo. 
Then, the boundary conditions given by Equations 6.61 and 6.62 simplify 
to 

e(x'L) = θ{χ'κ) = 0, (6.65) 

and the step velocity becomes 

<*) = AlZi\ ~D\^\ ■ (6·66) 
'θθ' 
βχ' 

-D 'θθ' 
βχ' 

Equations 6.64, 6.65 and 6.66 together form a simplified set of equations 
for the t ime evolution of the adatom coverage in a reference frame moving 
at velocity v(t). 

The behavior of this set of equations is illustrated in Figure 6.25, which 
shows numerical simulations of the adatom coverage and step velocity at 
various times after the onset of growth. It can be seen tha t the step velocity 
oscillates in time during growth. The reason is tha t the adatom coverage 
initially builds up preferentially in the middle of the terrace, so the step 
moves slowly. As the step approaches the high-coverage region of the ter
race, it accelerates and consumes the adatoms. Then, after most of the 
adatoms have been consumed, the step slows and the cycle continues.5 3 

Also shown in Figure 6.25 is the t ime evolution of a simple measure of the 
smoothness of the terrace, / = (1 — 20 a v g ) 2 , where 0a v g = f*,K θ(χ'', t)dx'/L. 
This quanti ty is tha t which would be measured in a kinematic surface 
diffraction experiment under conditions for which diffraction from the un
covered terrace (1 — 0avg) is out of phase with tha t from the adatoms (#a v g ) : 

/ = [ ( ! - 0avg) - (0avg)]2 = (1 - 20 a v g ) 2 . (6.67) 

The terrace smoothness also oscillates in t ime during growth, as the steps 
alternately accelerate and decelerate through high and low adatom coverage 
regions. 

Ultimately, the oscillations damp out, and the adatom coverage ap
proaches a steady-state distribution given by 

1 — e~x' LJ/D χι 
0(x',t - oo) = l_e_L,j,D - j . (6.68) 

This distribution is illustrated in the left half of Figure 6.26 for various 
values of the Peclet number, L2j/D. 

5 3G.S. Petrich, P.R. Pukite, A.M. Wowchak, G.J. Whaley, P.I. Cohen, and A.S. Arrott, 
"On the origin of RHEED intensity oscillations," J. Cryst. Growth 95, 23 (1989). 
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Figure 6.25: Non-steady-state adatom coverage (left), step velocity (middle), 
and terrace smoothness (right) during oscillatory flow of an equi-spaced array 
of "fast" steps. The adatom coverages are shown as snapshots taken every 0.25 
monolayer. 

For Peclet numbers less than unity, the step velocity is low relative 
to the adatom diffusive velocity. The adatom distribution becomes nearly 
symmetric, and approaches 

0 ( z ' , f - * oo) = 1 -
(2x' - L) 

ΊΧ 
2 1 

SD' 
(6.69) 

However, as the Peclet number increases beyond unity, the step velocity 
increases relative to the adatom diffusive velocity. The adatom distribution 
becomes more and more skewed, due to "pile-up" in front of the moving 
step. 

The steady-state average adatom coverage on each terrace is 

"avg(^ CO) 
J x' 

θ(χ') 
άχ' 

l+(e-L2^D-l)D/(L29) x 

1 _ e-L2)lD 2 
1 \ 1 + e-L^'D D 
2) i-e-L^j/D jL2- (6.70) 
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Figure 6.26: Left: Steady-state adatom coverages on an array of "fast" steps for 
various values of L 2 j / D , the Peclet number. Right: Dependence of steady-state 
average terrace smoothness on the Peclet number. 

The steady-state kinematic surface diffraction intensity corresponding to 
this average coverage is shown in the right half of Figure 6.26 as a function of 
the Peclet number. As can be seen, it decreases quickly as the step velocity 
increases relative to the adatom diffusivity, and hence as the average adatom 
coverage builds up on each terrace.5 4 

6.3.3 2D Cluster Nucleation, Growth and Coalescence 

In Subsection 6.3.2, we discussed how surface morphology evolves if Peclet 
numbers are on the order of unity, so tha t adatom diffusion to nearby steps 
is comparable to the step flow velocity. In this subsection, we discuss how 
surface morphology evolves if Peclet numbers are greater than unity, so 
tha t adatom diffusion to nearby steps is slow relative both to step flow 
and to the rate at which adatoms arrive from the vapor. Then, adatoms 
accumulate and interact on the terraces between the steps, and ultimately 
form 2D clusters. 

If the clusters are transient, in tha t they break apart faster than they 
grow, then their main consequence will be to impede adatom diffusion. 
Adatoms diffusing toward steps will occasionally meet and merge with a 

5 4 J .H. Neave, P.J. Dobson, B.A. Joyce, and J. Zhang, "Reflection high-energy electron 
diffraction oscillations from vicinal surface - a new approach to surface diffusion measure
ments," Appl. Phys. Lett. 47, 100 (1985); and T. Nishinaga and K-I Cho, "Theoretical 
study of mode transition between 2d-nucleation and step flow in MBE growth of GaAs," 
Japan. J. Appl. Phys. 27, L12 (1988). 
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cluster or another adatom. Assuming the cluster itself is relatively im
mobile, the adatom will be unable to continue its journey until it breaks 
free from the cluster. Then, the effective adatom diffusivity decreases with 
increasing adatom coverage,55 so tha t step flow becomes less and less "dif
fusive" and more and more "convective." 

If the clusters are permanent , in tha t they form stable growing nuclei, 
then the kinetics of growth are altered drastically. In a sense, the clusters 
take on a life of their own. Their boundaries represent "extrinsic" steps tha t 
compete for adatoms with the intrinsic steps always present on a vicinal 
surface. As a consequence, the clusters grow and ultimately coalesce, often 
in a complex, oscillatory way. 

To understand why, consider epitaxy on a singular surface, or on a 
vicinal surface whose terraces are very wide compared to the spacing of 
the clusters. Enumerate the layers by n = 0 , 1 , 2 , . . . , where n = 0 is the 
initially completely occupied substrate surface layer, n = 1 is the first, 
initially completely unoccupied epilayer, and so on. Associate with each 
of these layers three coverages: a n , the total coverage of mobile adatoms 
created by impingement from the vapor; ηη, the total coverage of nuclei 
centers created by interaction between mobile adatoms; and θη, the total 
coverage of immobile atoms permanently incorporated into clusters. These 
coverages are represented in Figure 6.27 by the open circles, filled squares, 
and open squares, respectively. 

M o b i l e A d a t o m s 

For simplicity, assume tha t mobile adatoms are created exclusively by im
pingement from the vapor (rather than by detachment from clusters). Then, 
the rate at which the mobile adatom coverage in layer n increases is equal 
to the flux times the exposed coverage of layer n — 1, or (0 n _ i — 0n) / rML· 

Once mobile adatoms in layer n are created, they may diffuse to and 
at tach at the edges of both layer n — 1 and layer n clusters. The rates at 
which they do so will be proportional to the product of the mobile adatom 
coverage ( α η ) , the coverage of layer n — 1 and layer n nuclei centers (ηη-ι 
and 77n), and the capture numbers, or efficiencies, associated with those 
nuclei. These capture numbers are essentially the geometric cross sections 
tha t the clusters present to diffusing adatoms, and have been the subject of 
considerable study.5 6 Here, we take them to be constant. The rate at which 

5 5A.K. Myers-Beaghton and D.D. Vvedensky, "Nonlinear equation for diffusion and 
adatom interactions during epitaxial growth on vicinal surfaces," Phys. Rev. B42 , 5544 
(1990). 

5 6 G. Zinsmeister, "Theory of thin film condensation. Part D: Influence of a variable 
collision factor," Thin Solid Films 7, 51 (1971); J.A. Venables, "Rate equation ap-
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Figure 6.27: Adatom arrival, diffusion and attachment at step edges, accom
panied by cluster nucleation, growth, and coalescence. The open circles on the 
surface represent mobile adatoms; the filled squares represent nuclei centers; and 
the open squares represent immobile atoms permanently incorporated into clus
ters. 

adatoms in level n are captured by clusters in level n — 1 is then fc~ttanr/n_i, 
where k~tt is the kinetic rate constant for at tachment at "down" steps; and 
the rate at which they are captured by clusters in level n is 1ϊ£ηαηηη, where 
k£tt is the kinetic rate constant for a t tachment at "up" steps. 

At the same time, mobile adatoms in layer n may also hop over steps 
into layers n — 1 and n + 1, while mobile adatoms in layers n — 1 and 
n + 1 may hop over steps into layer n. Here, we assume these adatom 
exchange rates to be proportional to the mobile adatom coverage in the 
layer the adatoms are jumping from and the exposed coverage of the layer 
the adatoms are jumping to. Hence, the exchange rate out of layer n is 
ktxchan(Qn ~ 0 n +i ) + k~xchan(6n-2 - 0 n _ i ) , and the exchange rate into 
layer n is / c^ c h a n _i ( (9 n _i - 0n) + A:^ x c ha n + i (0 n_i - 0 n ) , where k+xch and 
k~xch are the rates of hopping over "up" and "down" steps, respectively. 

Altogether, the coverage of mobile adatoms evolves in t ime approxi
mately as 

"n — l ~ "n (i — i i + \ 
<*n = OLn (fcattT7n-i + ^Jtt^nj 

TML 
~ * W h a n ( 0 n - 0 n + i ) - k~xchan(0n-2 ~ # n - i ) 
+ ktxchan-l{en-\ ~ 0n) + /Q c h O! n +i(0 n _i - 0 n ) . (6.71) 

It increases due to deposition and to exchange from adjacent layers, but 
decreases due to incorporation into growing clusters and to exchange into 
adjacent layers. 

proaches to thin film nucleation kinetics," Phil. Mag. 27, 697 (1973); B. Lewis and G.J. 
Rees, "Adatom migration, capture and decay among competing nuclei on a substrate," 
Phil. Mag. 29, 1253 (1974); and R. Kariotis and M.G. Lagally, "Rate equation modeling 
of epitaxial growth," Surf. Sei. 216, 557 (1989). 



250 Chapter 6. Surface Morphology 

I m m o b i l e A d a t o m s 

As mobile adatoms at tach at steps, the coverage of immobile atoms per
manently incorporated into clusters must increase correspondingly. Since, 
as illustrated in Figure 6.27, the coverage of immobile atoms in layer n 
depends on the a t tachment of mobile adatoms in layers n and n + 1, we 
can write 

On = ktttanln + ^ « η + Ι ^ η · (6.72) 

As in Equation 6.71, k*tt and k~tt are kinetic rate constants for at tachment 
of mobile adatoms at up and down steps, respectively. 

Note tha t in this simple t reatment we neglected possible anisotropies 
in the shapes of the clusters. Such anisotropies can arise from anisotropic 
at tachment or diffusion rates, and have been observed during growth of 
semiconductors having strong and anisotropic surface reconstructions.5 7 

N u c l e i C e n t e r s 

Finally, the coverage of nuclei centers itself increases, as mobile adatoms 
collide to form 2D clusters, and then decreases as the clusters grow, impinge 
on each other, and ultimately coalesce. In general, nucleation is a complex 
process by which a distribution of clusters of various sizes evolves in t ime in 
response to kinetic ada tom at tachment and detachment rates and to highly 
nonlinear size and shape dependencies to cluster energetics.58 Nucleation 
may also be "heterogeneous," in the sense of being catalyzed by defects on 
the surface.59 In this simple t reatment , we assume tha t two adatoms are 
sufficient to form a stable cluster, and tha t the nucleation rate is propor
tional to the collision rate between adatoms, fcnuc<*n· 

Coalescence of clusters is also a complex process tha t depends on the 
distribution of clusters in both size and space. At one extreme, if the nuclei 
centers are distributed randomly in space, then their initial coalescence rate 
can be shown to be proportional to both the coverage of cluster centers 

5 7 R.J . Hamers, "Nucleation and growth of epitaxial layers on Si(001) and S i ( l l l ) sur
faces by scanning tunneling microscopy," Ultramicroscopy 3 1 , 10 (1989); J.Y. Tsao, E. 
Chason, U. Koehler, and R. Harness, "Dimer strings, anistropic growth, and persistent 
layer-by-layer epitaxy," Phys. Rev. B40 , 11951 (1989); and Y.-W. Mo, B.S. Swartzen-
truber, R. Kariotis, M.B. Webb, and M.G. Lagally, "Growth and equilibrium structures 
in the epitaxy of Si on Si (001)," Phys. Rev. Lett. 63 , 2393 (1989). 

58See, e.g., D. Walton, "Nucleation of vapor deposits," J. Chem. Phys. 37, 2182 (1962); 
K.F. Kelton, A.L. Greer, and C.V. Thompson, "Transient nucleation in condensed sys
tems," J. Chem. Phys. 79, 6261 (1983). 

5 9 Anti-phase boundaries between equivalent reconstruction domains on the surface 
are an example. See, e.g., R.J. Hamers, "Nucleation and growth of epitaxial silicon on 
Si(001) and S i ( l l l ) surfaces studied by scanning tunneling microscopy," Ultramicroscopy 
3 1 , 10 (1989). 
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and the rate of change of the coverage of immobile adatoms incorporated 
into the clusters, or 2ηηθη.60 At the other extreme, if their centers are 
distributed equally in space, then the initial coalescence rate will be zero, 
increasing sharply when the clusters just begin to impinge on each other.6 1 

Here, we assume a coalescence rate between these two extremes: τ)ηθη/{1 — 
θη). This form of the coalescence rate guarantees tha t the coverage of nuclei 
centers decreases smoothly to zero as the coverage of immobile adatoms 
incorporated into the clusters approaches unity, or tha t ηη —> 0 as θη —> 1. 

Altogether, the coverage of nuclei centers evolves in time approximately 
as 

Vn = Lc«n ~ ( 1 \ J On- (6.73) 

Note tha t in deriving Equation 6.73, we have neglected, for simplicity, 
elimination of nuclei centers in the absence of growth. More comprehensive 
t reatments must allow for such effects, which are due to surface tension. 
Small clusters, because of their large perimeter length to cluster area ratio, 
are thermodynamically less stable than, and will ultimately "ripen" into, 
increasingly larger clusters.62 

N u m e r i c a l So lu t ions 

Equations 6.71, 6.72 and 6.73 form a set of coupled rate equations, three 
for each layer, describing the evolution of the coverages of mobile adatoms, 
immobile adatoms, and nuclei centers. They may be solved analytically 
in some simple limiting cases,63 but in general require numerical integra-

6 0 R. Vincent, "A theoretical analysis and computer simulation of the growth of epi
taxial films," Proc. Roy. Soc. Lond. A321 , 53 (1971); and M.J. Stowell, "Thin film 
nucleation kinetics," Phil Mag. 26, 361 (1972). 

6 1 J.A. Venables, "Rate equation approaches to thin film nucleation kinetics," Phil. 
Mag. 27, 697 (1973). 

62See, e.g., I.M. Lifschitz and V.V. Slyozov, "The kinetics of precipitation from super
saturated solid solutions," J. Phys. Chem. Solids 19, 35 (1961); C. Wagner, "Theorie 
der alterung von niederschlagen durch umlösen," Z. Electrochem. 65, 581 (1961); P.W. 
Voorhees and M.E. Glicksman, "Solution to the multi-particle diffusion problem with 
applications to Ostwald ripening - I. Theory," Ada Met. 32, 2001 (1984); C.V. Thomp
son, "Coarsening of particles on a planar substrate: interface energy anisotropy and 
application to grain growth in thin films," Acta Met. 36, 2929 (1988); and H.A. At-
water and C M . Yang, "Island growth and coarsening in thin films - conservative and 
nonconservative systems," J. Appl. Phys. 67, 6202 (1990). 

63See, e.g., A.N. Kolmogoroff, Bull. Acad. Sei. URSS (Cl. Sei. Math. Nat.) 3, 355 
(1937); M. Avrami, "Kinetics of phase change I. General theory," J. Chem. Phys. 7, 
1103 (1939); M. Avrami, "Kinetics of phase change II. Transformation-time relations for 
random distribution of nuclei," J. Chem. Phys. 8, 212 (1940); M. Avrami, "Kinetics of 
phase change III. Granulation, phase change and microstructure," J. Chem. Phys. 9, 
177 (1941); W.B. Hillig, "A derivation of classical two-dimensional nucleation kinetics 
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Figure 6.28: Time evolution, from top to bottom, of mobile adatom coverages 
(a n ) , nuclei center coverages (r/n), immobile adatom coverages coverages (0n), 
and overall surface smoothness. The kinetic parameters were all taken to be 
20/TML except /c~tt, which was slightly higher (30 /TML) in the left panels, and 
slightly lower (15 /TML) in the right panels. 

tion. Two examples of t ime evolutions deduced by numerical integration 
are shown in Figure 6.28. 

As growth commences, at £/TML — 0? the mobile ada tom coverage in 
layer 1 increases from zero at a rate 1 /TML· At a critical coverage, clusters 
in layer 1 begin to nucleate and grow, and as they do so, the mobile adatom 
coverage in layer 1 begins to decrease while the immobile a tom coverage 
in layer 1 begins to increase. Finally, the clusters begin to coalesce, the 

and the associated crystal growth laws," Acta Met. 14, 1868 (1966); and D. Kaschiev, 
"Growth kinetics of dislocation-free interfaces and growth mode of thin films," J. Crystal 
Growth 40, 29 (1977). 
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nuclei center coverage decreases, and the rate at which mobile adatoms 
incorporate into permanent clusters also decreases. 

In the meantime, as clusters in layer 1 form, mobile adatoms begin to 
be created in layer 2. In this way, successive layers are born by a burst of 
nucleation and growth of clusters, only to die by being covered by a burst 
of nucleation and growth of higher level clusters.64 If these bursts are well 
separated in time, then growth is smooth, and successive layers are born 
only after previous layers have died. If the bursts overlap in time, then 
growth is rough, and successive layers are born even before previous layers 
have died. 

Also shown is the time evolution of a generalization of Equation 6.67 
for the smoothness of the surface, 

/= |£ ( -1 )" + 1 [K+Ö„) -K + 1 +Ö„ + 1 ) ]1 . (6.74) 

Just as tha t defined by Equation 6.67, this quanti ty is tha t which would 
be measured in a kinematic surface diffraction experiment under conditions 
for which diffraction from adjacent exposed surface layers is out of phase. 

In both cases shown in Figure 6.28, the smoothness of the surface oscil
lates in time with a monolayer periodicity. The strength of the oscillations 
is, however, very sensitive to the values of the kinetic parameters. For ex
ample, they are stronger when adatom at tachment is faster at down steps 
than at up steps (left side of Figure 6.28), rather than vice-versa (right side 
of Figure 6.28). The reason is tha t if adatoms preferentially at tach at down 
steps, then the mobile adatom coverage in higher layers will be lower, and 
cluster nucleation in these higher layers will tend to be suppressed until the 
lower layers are fully complete. 

Note tha t the oscillations predicted by Equations 6.71, 6.72 and 6.73, 
even when weak, are relatively persistent. In practice, faster decays are 
nearly always observed, and are thought to be due to effects such as a 
small amount of step flow (see Figure 6.25) or slight nonuniformities in 
growth fluxes arriving at the surface (see Exercise 10). 

As a final comment, note tha t this t reatment neglected evaporation 
of mobile adatoms back into the vapor. At the low to medium tempera
tures typical of most MBE growth, this assumption is reasonable. At high 
temperatures, however, evaporation can become significant. Then, the os-

6 4 S . Stoyanov, "Layer growth of epitaxial films and superlattices," Surf. Sei. 199, 
226 (1988); and P.I. Cohen, G.S. Petrich, P.R. Pukite, G.J. Whaley, and A.S. Arrott, 
"Birth-death models of epitaxy I. Diffraction oscillations from low index surfaces," Surf. 
Sei. 216, 222 (1989). 
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dilations in surface smoothness and in mobile adatom coverages can also 
manifest themselves as oscillations in the growth rate itself.65 

6.3.4 Statistical Roughening 
In Subsection 6.3.3, we discussed how surface morphology evolves if Peclet 
numbers are greater than unity, so that adatom diffusion to nearby steps 
is slow relative to the step flow velocity. In this subsection, we discuss 
how surface morphology evolves if Peclet numbers are much greater than 
unity, so that the rate at which adatoms diffuse, even to adjacent lattice 
sites, becomes slower than the rate at which they arrive from the vapor. 
In other words, suppose adatoms "stick" wherever they happen to land. 
If they arrive randomly, then they will be uncorrelated in space, and it 
is sufficient to know the probability p that any particular column on the 
surface will have a height n. If they arrive randomly in time according to 
Poisson statistics, then this probability will be 

n! 
In this equation, 6tot is the total coverage of deposited atoms, so that 
X ^ 0 P ( n ) = * anc^ Σ^=ο η Ρ( η ) = ^tot· As illustrated in the left half of 
Figure 6.29, the column height probabilities are roughly centered at n = 
6tot, but become more and more dispersed as 0tot increases. Ultimately, for 
large #tot, the asymmetric Poissonian distribution approaches a symmetric 
Gaussian distribution.66 

If we again generalize Equation 6.67 to calculate the smoothness of the 
surface, then we can write 

1 = X>i)>(n) 
-l 2 ^ 

Σ (~fltot)* -40 t o (6.76) 

As illustrated in the right half of Figure 6.29, the surface smoothness de
creases exponentially with increasing total coverage, at a rate four times 
faster than the simple deposition rate. 

Suggested Reading 
1. A.A. Chernov, Modern Crystallography III. Crystal Growth (Springer-

Verlag, Berlin, 1984). 
6 5G.H. Gilmer, "Transients in the rate of crystal growth," J. Cryst. Growth 49, 465 

(1980). 
6 6 E. Chason and J.Y. Tsao, "Adatoms, strings and epitaxy on singular surfaces," Surf. 

Sei. 234, 361 (1990). 
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Exercises 
1. Derive Equation 6.12, the equilibrium probabilities of plus, minus and 

missing kinks. 

2. Show that angles such as LOAP in Figure 6.11, with origin on the 
circumference of a circle and with legs passing through the ends of a 
diameter of the circle, are right angles. 

3. Consider the facetted 2D crystal illustrated in Figure 6.30 bounded 
by four faces of surface energy η0 oriented perpendicular to rays along 
Θ = 0, π/2,7Γ, 3π/2, and four faces of surface energy 71, oriented per
pendicular to rays along θ = π/4,3π/4, 5π/4, 7π/4. Show that the 
pyramids that make up this polyhedra obey the "common vertex" 
relations 

K = b0l2 + bxl\/2 
hx = b0/V2-rb1/2. (6.77) 

Using these relations, show that the pyramidal heights of the polyhe
dron with minimum surface energy, E = 4(7060 + 7161), at constant 
area, A = 4(/i060/2-h/ii&i/2), are proportional to the surface energies 
of the bases, j0/h0 = 7 i / ^ i , in agreement with the Wulff construc
tion. 

4. Derive Equations 6.31 for the relationship between the fractional sur
face areas, x\/{x\ + X2) and #2/(^1 + #2), ano^ ^ n e tangents of the 
orientation angles of those surfaces, tan#i and tariff. 

5. Suppose f(s) in Equation 6.34 were quadratic rather than cubic. 
What would be the shape of the equilibrium crystal near the s = 0 
facet? 

6. What is the functional form of / ( s ) , where / = 7/cosö and s = 
tan Θ, for an orientation-independent molar surface free energy 7(0) = 
constant? Is it concave up or down? 

7. Is there an equilbrium island size for Volmer-Weber island growth, or 
will larger islands continuously grow in time at the expense of smaller 
islands? 
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Figure 6.30: Decomposition of a facetted 2D crystal into pyramids. 

8. Show tha t l/το in Equation 6.57 is given by Equation 6.58. 

9. Consider a surface whose layer coverages obey a power law, θη = 
[#tot/(l + #tot)]n· Show tha t the total coverage of deposited atoms is 
0tot = Σ ^ ι 0η· Justify the equation 

l 2 

1 = Σ(-Ι)η(θη-1-Θη) 
.71 = 0 

(6.78) 

for the kinematic surface diffraction intensity in an out-of-phase con
dition, and use it to calculate the smoothness of this surface. Does it 
decrease more or less quickly with 6tot than if the layer distribution 
were distributed according to Poissonian statistics? Wha t if the layer 
coverages were distributed according to Gaussian statistics? 

10. Suppose adatoms arrive at a surface with a nonuniformity of 10%. 
How might this cause an "artificial" decay in the amplitude of ob
served growth oscillations and what would be the decay rate? 



Chapter 7 

Surface Composit ion 

In Chapter 6, we discussed the equilibrium and nonequilibrium morphology 
of a surface assuming tha t the composition of the surface was unimportant . 
In this chapter, we discuss the equilibrium and nonequilibrium composition 
of a surface assuming tha t the morphology of the surface is unimportant . 
In both of these chapters, therefore, we neglect possible interdependencies 
between morphology and composition, interdependencies tha t are clearly 
present but thus far poorly understood. For example, we do not discuss, 
except casually, the various reconstructions of the surfaces of I I I /V semi
conductors, and how they might depend on the ratio between the column 
III and column V atom coverages on the surface.1 Instead, we discuss those 
interesting and important aspects of surface composition tha t are to first 
order independent of surface morphology. 

We begin, in Section 7.1, by describing a thermodynamic framework 
1A.Y. Cho, "GaAs epitaxy by a molecular beam method: observations of surface 

structure on the (001) face," J. Appl. Phys. 42, 2074 (1971); J.R. Arthur, "Surface 
stoichiometry and structure of GaAs," Surf. Sei. 43 , 449 (1974); M.D. Pashley, K.W. 
Haberern, W. Friday, J.M. Woodall, and P.D. Kirchner, "Structure of GaAs (001) (2x4)-
c(2x8) determined by scanning tunneling microscopy," Phys. Rev. Lett. 60, 2176, (1988); 
D.K. Biegelsen, R.D. Bringans, J.E. Northrup, and L.-E. Swartz, "Surface reconstruc
tions of GaAs (100) observed by scanning tunneling microscopy," Phys. Rev. B41 , 5701 
(1990); C. Deparis and J. Massies, "Surface stoichiometry variation associated with 
GaAs (001) reconstruction transitions," J. Cryst. Growth 108, 157 (1991); R. Ludeke, 
R.M. King, and E.H.C. Parker, "MBE surface and interface studies," in E.H.C. Parker, 
ed., The Technology and Physics of Molecular Beam Epitaxy (Plenum Press, New York, 
1985), pp. 555-628; H.H. Farrell and C.J. Palmstr0m, "Reflection high energy electron 
diffraction characteristic absences in GaAs (100) (2x4)-As: a tool for determining sur
face stoichiometry," J. Vac. Sei. Technol. B8, 903 (1990); and J.Y. Tsao, T.M. Brennan, 
J.F. Klem, and B.E. Hammons, "Surface-stoichiometry dependence of As2 desorption 
and As4 'reflection' from GaAs (001)," J. Vac. Sei. Techn. A7 , 2138 (1989). 

259 



260 Chapter 7. Surface Composition 

for understanding surface alloys. For simplicity, we develop the framework 
within the approximation tha t the surface is exactly one monolayer thick. 
As a consequence, the framework, like those of other monolayer models, 
cannot be used to understand phenomena tha t depend on surface effects 
greater than one monolayer deep.2 Nevertheless, the framework is intuitive, 
leads to a deep physical understanding of the relationship between bulk and 
surface alloy phases, and can be easily used in semi-empirical modeling. 

Then, in Section 7.2, we apply the framework to equilibria and nonequi
hbria between vapor and monolayer adsorbate phases, t reat ing the adsor-
bate phase as a surface alloy of adsorbates and "missing" adsorbates. In 
doing so, we will derive familiar equilibrium constructs, such as adsorption 
isotherms and adsorption isobars, as well as discuss less familiar nonequi-
librium phenomena, such as transient and coverage-dependent adsorption 
and desorption. 

Finally, in Section 7.3, we will apply the framework to the technologi
cally important phenomena of segregation and t rapping of dopants or other 
impurities at surfaces during MBE. This phenomenon is especially complex, 
in tha t it involves equilibria and nonequilibria between vapor, surface, and 
bulk crystalline phases. 

7.1 Monolayer Thermodynamics 
In this section, we discuss the equilibrium thermodynamics of the surface of 
a bulk alloy. We begin, in Subsection 7.1.1, by establishing a nomenclature 
consistent with tha t introduced in Chapter 3. We then ask, in the first 
half of Subsection 7.1.2: given a composition of the bulk alloy, what is 
the composition of the surface alloy tha t is in equilibrium with tha t bulk 
alloy? In general, the surface and bulk compositions will not be the same in 
equilibrium, in tha t one component of the alloy will tend to segregate to the 
surface, displacing the other component back into the bulk. We finally ask, 
in the second half of Subsection 7.1.2: given the compositions of the surface 
and bulk alloys, what is the free energy required to create new surface at 
tha t composition? This free energy is the surface work (also often called 
the surface tension), and is minimum if the surface composition is such tha t 
the surface alloy phase is in equilibrium with the bulk alloy phase. 

2See, e.g., J.K. Strohl and T.S. King, "A multicomponent, multilayer model of surface 
segregation in alloy catalysts," J. Catal. 118, 53 (1989). 
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7.1.1 Surface Free Energies and Chemical Potentials 
Let us begin, in this subsection, by establishing our nomenclature. Con
sider a binary crystalline alloy phase, /?, containing Na moles (or atoms) of 
component a and N\y moles (or atoms) of component b. As in Chapter 3, 
we write the molar Gibbs free energy of this bulk phase as 

* s KTK· (7'1) 

where G$ is the total Gibbs free energy. Again, as in Chapter 3, the 
chemical potentials of the two components a and b in β are the intercepts 
with the x = 0 and x = 1 axes of the tangents to g@: 

ß ß ßd9ß 

where x@ = N^/(Na + Νγ,) is the composition of ß. 
Consider second a surface of the bulk crystal, σ, characterized by N° 

exposed atoms of component a and Νζ exposed atoms of component b. 
Associate with the exposed atoms on this surface a Gibbs free energy equal 
to the difference between the total Gibbs free energy and the Gibbs free 
energy of the nonsurface atoms still in the bulk crystal: 

G"{N:, Νζ) = Gtot(NZ, Νζ, Ng, Νξ) - Gß(N^, Νξ). (7.3) 

In general, Ωσ depends not only on Νζ and iV£, but on N& and Νζ as 
well. Here, we neglect this dependence, and note that such a dependence is 
nontrivial to include in a way that self-consistently treats bonding within 
the surface layer and bonding between the surface layer and the bulk layers 
below.3 

Let us therefore consider this surface to be a 2D monolayer phase having 
its own thermodynamic properties apart from those of the bulk. In this 
way, we can adopt the nomenclature and definitions developed originally 
for bulk phases. For example, by analogy to Equation 7.1, the molar Gibbs 
free energy of the exposed surface atoms can be defined as 

9 = N? + Nr' ( Λ> 
3 J .W. Belton and M.G. Evans, "Studies in the molecular forces involved in surface 

formation. II. The surface free energies of simple liquid mixtures," Trans. Faraday Soc. 
4 1 , 1 (1945); A. Schuchowitzky, Ada Physicochim. URSS 19 (2-3), 176 (1944); R. 
Defay and I. Prigogine, "Surface tension of regular solutions," Trans. Faraday Soc. 46, 
199 (1950); and S. Ono and S. Kondo, Handb. Physik 10, 134 (1960). 
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and, by analogy to Equations 7.2, the chemical potentials of a and b in σ 
are the intercepts with the x = 0 and x = 1 axes of the tangents to ga\ 

μΐ = g° + (l-x°)^. (7.5) 

where χσ = Νζ/(Ν° + Νζ) is the composition of σ. 
Furthermore, the composition dependence of the molar Gibbs free en

ergy of surface phases may be semi-empirically modeled in the same way 
that the molar Gibbs free energy of bulk phases is often modeled, as ideal 
solutions, or as one of a heirarchy of regular solutions (see Table 3.1). Ex
amples of such composition-dependent surface and bulk molar Gibbs free 
energies for the Ag-Au system are shown in Figure 7.1. In this system, the 
molar Gibbs free energies are thought to be characterized by the sub-regular 
forms 

fl<Ag1_,/,Aux/s> = ( 1 _ xß)g(AS) + xßg(Ku) _ S m . x . d e a l T + Ω 0 ( 1 _ χβ)χβ 

fl>A*i — A u " < = (1 - Χ σ ) ί7 > Α 8 ( + * V A U ( - Smix,idea.T + Ω σ ( 1 - x")x°, 

(7.6) 

and are linear interpolations between the molar Gibbs free energies of the 
pure-component phases, plus entropic and enthalpic "mixing" terms. 

Note that in writing these equations, we have extended the notation of 
Section 2.4 so that interface phases are represented by mismatched pairs 
of brackets, braces, and parentheses to denote the bulk phases the inter
face is sandwiched between. In this notation, the two phases of interest, 
the crystalline bulk and surface phases, are denoted ( A g ^ ^ A u ^ ) and 
)Ag1_I«rAu^(, and their compositions are denoted x@ and χσ. 

For the crystalline solid, g^Ag^ and g(Au) are the known molar Gibbs 
free energies of the pure-component phases Ag and Au,4 and 

n<Agl_x/JAux/J> =A + Bxß + CT (7.7) 

is a known composition and temperature-dependent interaction parameter.5 

4 The molar Gibbs free energies of the pure crystals were calculated accord
ing to the prescription described in Chapter 2, using the heat capacity expression 
cp = (c0 + c i T ) T 2 / ( T 2 + θ2^). The heat capacity parameters for (Ag) were cQ = 
0.253 meV/(atomK), c\ = 0.0553 μ β ν ^ ί ο π ι / ^ ο ι τ ι Κ 2 ) , θ τ = 55.4 K; the parame
ters for (Au) were c0 = 0.248 meV/(atomK), c\ = 0.563 μ ε ν ^ ΐ ο π ι / ^ ΐ ο π ι Κ 2 ) and 
θ τ = 43.5 K. 

5Following J.L. White, R.L. Orr, and R. Hultgren, "The thermodynamic properties 
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Figure 7.1: Left: Molar Gibbs free energies of the crystalline bulk and surface 
phases of the Ag-Au system at 700 K. Right: Chemical potentials of Ag and Au 
in these phases. As in Figure 3.1, the intercepts of the tangents to the molar 
Gibbs free energies with the x — 0 and x = 1 axes are the chemical potentials. 
As the tangents sweep around the arc of the molar Gibbs free energy curves, 
the intercepts of those tangents trace out the chemical potentials at the various 
compositions. 

For the crystalline surface at the endpoint compositions, the molar 
Gibbs free energies are those for pure crystalline (Ag) and (Au), but offset 
upward by their known surface tensions. In other words, 

JAg( = 0<Ag> _|_ 7<Ag)Ag( 

JAu( _ = 9 (Au) + 7 <Au)Au( (7.8) 

where the experimentally measured values6 for 7 ^ ) and 7^A u), the work 
per unit area required to form new surfaces of pure crystalline Ag and Au, 
have been normalized by the number of atoms per unit area on close-packed 
(111) planes. 

For the crystalline surface away from the endpoint compositions, the 
molar Gibbs free energy has been found to be consistent with a sub-regular 
solution behavior tha t mimics tha t of the crystalline bulk phase.7 In other 

of silver-gold alloys," Acta Metall. 5, 747 (1957) and H. Okamoto and T.B. Massalski, in 
Phase Diagrams of Binary Gold Alloys, H. Okamoto and T.B. Massalski, Eds. (ASM In
ternational, Metals Park, Ohio, 1987), pp. 4-12, the sub-regular solution parameters were 
taken to be A = -0 .210 eV/atom, B = 0.0347eV/atom and C = 0.0000596 eV/(atomK). 

6We use the values 7<As>As( = 0.50 eV/atom and 7<Au)Au( = 0 6 3 e v / a t o m [H. 
Jones, "The surface energy of solid metals," Met. Sei. J. 5, 15 (1971)]. 

7J .Y. Tsao, "Graphical representation of Ag-Au surface segregation," Surf. Sei. 262, 
382 (1992). 
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words, 
Ωσ = Ω^. (7.9) 

As drawn in the left panel of Figure 7.1, the shape of the molar Gibbs free 
energy of the surface alloy is the same as that of the bulk alloy, but is offset 
upward by amounts that vary linearly from 7^Ag)As( Qn one end to 7<Au>Au( 
on the other end. 

7.1.2 Atom Transfers between Surface and Bulk 
Having defined, in Subsection 7.1.1, the thermodynamic functions for the 
crystalline bulk and surface phases, let us consider, in this subsection, trans
ferring atoms between the two phases. Such transfers can take place in two 
ways, and are discussed separately in the following two subsubsections. 

Parallel Tangents and Equilibrium Segregation 

In the first way of transferring atoms between the two phases, the overall 
number of surface sites is preserved. Then, if we move, e.g., a Au atom from 
the bulk to the surface, we must at the same time move a Ag atom from 
the surface to the bulk: atom transfers between bulk and surface must be 
atom exchanges. Hence, they are accompanied by free energy changes equal 
to the difference between (a) the "excess" chemical potentials required to 
move a Au atom from the bulk to the surface, or 

,,exc _ jAg^^Au^l (Α&1_χβΑχιχβ) 
^Au = MAu " ^ A U ' \(ΛΌ) 

and (b) the "excess" chemical potentials required to move a Ag atom from 
the bulk to the surface, or 

,,exc _ )Α&1_χσΑηχσ( (Α&1_χβΑηχβ) 
^Ag = ^Ag ~ ^Ag · I ' · 1 1 ; 

In other words, they are accompanied by a free energy change of 

„exc ,,exc _ / >ASi-x-A"*- ( , (A&i-Xß Au
xß >\ 

MAu _ ^Ag = ^ A u ~ ^Au J 

f )Agl_xaAux*( (Agl_xßAuxß)\ 
~ \ßAg ^Ag ) ' \ ί Λ Ζ ) 

This free energy change can be rewritten as 

„exc „exc _ / )*&i-x*Au*<* ( > Α β ΐ - ^ Aux<x (\ 
Â Au ~ PAg — ^ A u ^Ag J 

{ (Agl_xßAuxß) (Agl_xßAuxß)\ 
- ^MAU ~ ^Ag J ' \*'LO) 
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Figure 7.2: Surface and bulk phase equilibria in the Ag-Au system at 700 K. 
Left: The two tangents to the molar Gibbs free energies have different slopes and 
there is a driving force for Ag or Au atoms to segregate to the surface. Center: 
the two tangents are parallel and the surface is in equilibrium with the bulk. 

and can be seen to be the difference between the slope of the tangent to 
μ)Α&1_χσΑηχσ( a t χσ a n d t h e s k ) p e o f t h e t a n g e n t t o μ < Α 8 ι _ ^ Α α ^ > ^ χβ 

When μ ^ — μ^ is positive, as in the left panel of Figure 7.2, Au surface 
atoms will tend to exchange with Ag bulk atoms, and the surface will 
become enriched in Ag. When it is negative, then Ag surface atoms will 
tend to exchange with Au bulk atoms. When it is zero, as in the right 
panel of Figure 7.2, then the surface is in equilibrium with the bulk. In 
other words, the crystal and surface phases are in equilibrium with each 
other when the tangents to their molar Gibbs free energies have the same 
slopes, or, equivalently, when the tangents are parallel.8 

Now, according to this parallel tangent criterion, to find the composition 
of a surface in equilibrium with a bulk crystal of a particular composition, 
we must solve Θ9^Α^-*σΑχι*σ(/Θχσ = dg{Agi-*ßAu*ß)/dxß by varying χσ 

for fixed χΡ. Equivalently, and sometimes more conveniently, one can (see 
8 M. Hillert, "The role of interfaces in phase transformations," in The Mechanism of 

Phase Transformations in Crystalline Solids, Monograph and Report Series No. 33 (The 
Institute of Metals, London, 1969), pp. 231-247; and M. Guttmann, "Grain boundary 
segregation, two dimensional compound formation, and precipitation," Met. Trans. 8A, 
1383 (1977). 
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Exercise 1) minimize the function 

\ A A / da{Agi-*ßAu*ß) 

η{χσ,Χβ) = 0>A8i—Aux.( _ χσ^_ ? ( 7 > 1 4 ) 

by varying χσ for fixed x^. Both numerical prescriptions are general, and 
can be used even if the molar Gibbs free energies of the surface and bulk 
are represented by very complicated semi-empirical forms. 

For example, consider the relationship between the equilibrium surface 
and bulk compositions of strictly regular bulk and surface phases β and 
σ. In the limit of small x@ and χσ, this relationship can be shown (see 
Exercise 4) to be given by 

^equ 
— = e-[7<b>b(-7<a>a(+nff-n'J]/fcT / J ^ N 

where 7 ^ a ( and 7<b>b< are the surface tensions of the pure a and pure b 
phases. The quanti ty Kequ, the ratio between the equilibrium bulk and 
surface compositions, can be thought of as an equilibrium "partition" co
efficient, in tha t it describes the physical parti t ioning of a dilute impurity 
between two adjacent phases. 

More generally, Equation 7.14 must be solved numerically. For the A g -
Au system, the resulting dependence of the surface composition on bulk 
composition is shown as the segregation isotherm in Figure 7.3. Note tha t 
at all compositions, the surface tends to be enriched in Ag relative to the 
bulk. The reason is tha t , even though ^)A gi-^< r Α υ*σ( n a s the same shape 
as g(AZi-*eAu*e\ its offset relative to 0<A«i-«0Au«<3> increases linearly with 
composition because pure Au has a higher surface tension than does pure 
Ag. As a consequence, at the same composition, the slope of the tangent to 
flf>Ag1_x<rAux<T( w i u b e g r e a t e r than the slope of the tangent to g^A^-^An^\ 
and is compensated for by a decrease in the composition of ^ A ß i - ^ A U i < 7 ( . 

Surface Work 

In the second way of transferring atoms between the crystalline bulk and 
surface phases, the overall number of surface sites is not preserved. Instead, 
as Ag or Au are transferred from the bulk to the surface, new surface sites 
are created to accommodate them. The work per a tom required to create 
new surface of composition χσ from bulk crystal of composition x^ is now 
the sum of the changes in the chemical potentials of the two components, 
weighted by their mole fractions on the surface: 

7 <Ag1_x/JAu^>Ag1_x.Auxa( Ξ ^ _ χ " ) μ « £ + xVA
x

u
c . (7.16) 
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F i g u r e 7 .3 : Surface segregation isotherm for the A g - A u system at 700 K, 
deduced from the parallel tangent construct ion i l lustrated in Figure 7.2. Mea
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a G .C. Nelson, "Determination of the surface versus bulk composition of silver-gold 
alloys by low energy ion scattering spectroscopy," Surf. Sei. 59, 310 (1976). 

bS.H. Overbury and G.A. Somorjai, "The surface composition of the silver-gold sys
tem by Auger electron spectroscopy," Surf. Sei. 55, 209 (1976). 

CM.J. Kelley, D.G. Swartzfager, and V.S. Sundaram, "Surface segregation in the Ag-
Au and P t -Cu systems," J. Vac. Sei. Technol. 16, 664 (1979). 

K. Meinel, M. Klaua, and H. Bethge, "Segregation and sputter effects on perfectly 
smooth (111) and (100) surfaces of Au-Ag alloys studied by AES," Phys. Stat. Sol. 
A106, 133 (1988). 

This equation defines the surface work, 7<ASi-*£Au*£>ASi-*-Au*<T(, in terms 
of the surface and bulk compositions and chemical potentials. 

Let us now expand μ ^ and μ™£ using Equations 7.10 and 7.11, and 
apply the identities 

fl<Ag1.,,A„./>> = {ί_χβ)μ(Α,1_χ,Αηχβ)+χβ^1_χ0Α^) 

g)ASl_x„Aux<,( = ( 1 _ χσ)μ)Α^_χ,Αηχ,( + ^ j A g , . , . A u . . ^ ^ ^ 

which can be derived from Equations 7.2 and 7.5. Then, the surface work 
can be writ ten as 

7 
(Ag1_x/3Aux /g)Ag1_x (TAux <T( _ 

(** ~ *ß)(μϊϊ <Ag 1 _ x ^Au x / 3 ) (Α&1_χβΑ\ιχβ) -»iT-*ßAun- σ-18) 
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If we define the "excess" molar Gibbs free energy to be gexc = ^ A S i - ^ A u ^ ( -
^ ( A g j . ^ A u ^ t h e n w e a l g o h a v e 

Oexc = ΛΑ&ι-χβΑχιχβ)Α&ι-χσΑχιχσ( 

+ {x° - xß) ( ^ - ' ^ - „<£-.<·*».'>) . (7.19) 

This last expression for the relationship between the excess molar Gibbs 
free energy and the surface work can be understood graphically by inspec
tion of Figure 7.2. If the surface and bulk compositions are the same, as 
in the left panel, then χσ = x? and gexc = 7 < A 8 i - . / » A v ) A 8 i - . ' A u « ' ( itself. 
Otherwise, as in the right panel, we must add a correction term equal to 
the slope of the tangent to </ g i - *^ u*0' times the difference between the 
surface and bulk compositions. The surface work can thus be seen to be 
the vertical distance between the tangent to the molar Gibbs free energy 
of the surface at composition χ σ , evaluated at χ σ , and the tangent to the 
molar Gibbs free energy of the bulk at composition x@, also evaluated at 
χσ'. Importantly, this graphical interpretation of the surface work holds 
whether or not the tangents are parallel, hence whether or not the surface 
and bulk are in equilibrium with each other. 

To make contact with s tandard t reatments of surface thermodynamics, 
note tha t Equation 7.19 can be rewritten in yet another equivalent form: 

„exc _ (Ag1_i/3Aui/3)Ag1_I,AuIa( exe <A8i-*0 Au
xß > , exc. <Α8ι-*0 A V ) 

if " I ' xAgPAg ' xAuA^Au 
(7.20) 

This equation reproduces the well-established relation9 (at constant tem
perature) between the excess molar Gibbs free energy of the surface, the 
surface work, and the excess Ag and Au at the surface, and 

exc — σ _ ~.β 
xAu — x x ' 

Finally, let us return to Equation 7.16, to understand more clearly the 
difference between the work required to transfer atoms to the surface in 
the two different ways. In the first way, we form new surface area at fixed 
composition. The work required is then ^ ^ i - x ^ v ) ^ - ^ ^ ! . i n the 
second way, we change the composition of the surface at fixed surface area. 
The work required is then &γΙΑ*ι-*βΑ"*β)Α*ι-*~Α"*σ(/8χσ = μ%£ - μ^ 
(see Exercise 3). In equilibrium, tha t work must be zero, as in the discussion 
following Equations 7.12 and 7.13. 

9A.W. Adamson, Physical Chemistry of Surfaces, 4th Ed. (John Wiley and Sons, 
New York, 1982). 
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7.2 Adsorption and Desorption 
In Section 7.1, we outlined a simple semi-empirical framework for under
standing surface thermodynamics. The framework hinged on approximat
ing the outermost exposed atomic monolayer as a phase whose composition 
and thermodynamic properties are distinct from those of the bulk. In fact, 
this approximation is most inaccurate for the surfaces of condensed alloy 
phases, whose composition and thermodynamic properties vary gradually 
over more than one atomic layer into the bulk. 

In this section, we apply the framework to monolayer adsorbate phases 
on one-component bulk solids. We assume, as is often the case, tha t the 
adsorbate component does not indiffuse into the bulk and hence remains on 
the surface. Then, the composition of the system does change abruptly be
tween the outermost surface monolayer and the bulk, and our approximate 
t reatment is much more realistic. We will begin, in Subsection 7.2.1, by 
deriving two important equilibrium constructs: adsorption isotherms and 
adsorption isobars. Then, in Subsection 7.2.2, we discuss nonequilibrium 
adsorption and desorption. 

7.2.1 Adsorption Isotherms and Isobars 
Let us start , in this subsection, by deriving the equilibrium adsorbate cov
erages associated with an ambient vapor at a particular pressure and tem
perature. Consider a low-vapor-pressure bulk crystal composed of a single 
component, "m," bathed in a vapor composed of a single component, "a." 
As indicated in the left panel of Figure 7.4, the molar Gibbs free energy of 
the crystal is denoted < / m \ and the molar Gibbs free energy of the vapor 
is denoted g^\ 

In the absence of atoms of component a on the surface, the molar Gibbs 
free energy of the surface, g^m(, is just offset upward from g^ by the 
surface tension, 7^m)m(. In the presence of a full monolayer of atoms of 
component a on the surface, the molar Gibbs free energy of the surface is 
denoted g*^. 

At intermediate compositions, as discussed in the previous section, the 
molar Gibbs free energy is a linearly weighted interpolation between <^m( 
and (^a(, plus entropy and enthalpy of mixing terms. For example, a strictly 
regular solution would be writ ten 

5 > m i - i a i ( = (1 - % > m ( + 0<?)a( + fcT[01n0 + (1 - θ) 1η(1 - Θ)] 
+ Ω 0 ( 1 - 0 ) , (7.21) 

where Θ is the "composition" of the surface phase. In a sense, the surface 
phase can be considered a mixture of surface sites covered by adatoms and 
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a a a a a a m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m 

Figure 7.4: Vapor and surface adsorbate phase equilibria. Left: The two tangents 
to the molar Gibbs free energies are parallel, hence there is no driving force for 
the coverage of a atoms on the surface to change. Right: Schematic of adsorption 
and desorption of a atoms from the vapor onto a surface and from the surface 
back into the vapor. 

surface sites not covered by adatoms, so tha t Θ is also the average adatom 
coverage on the surface. 

To find, given these molar Gibbs free energies, the equilibrium adatom 
coverage, we can apply the same arguments we applied in Section 7.1. 
Suppose, as illustrated in the left half of Figure 7.4, the surface coverage is 
θ0, so tha t the chemical potential of atoms a is the intercept of the tangent 
to # ) m i - ö a * ( (0 o ) with the Θ = 1 axis, 

μ; ) m i θΆθ( _ > 1 θ&θ( + (1-θ) 
5 > i - « a 9 ( 

ΘΘ " 
(7.22) 

and the chemical potential of atoms m is the intercept with the Θ = 0 axis, 

ßq)m1_eae( 
)mi_0a0( _ ) m i 

^m — if 
eae{ _ Q_ 

de 
(7.23) 

If we adsorb an a tom a from the vapor, then the free energy of the system 
increases by μ» 1 _ e a ^ — g^ due to the movement of a tom a from the vapor 
to the surface phase, but it decreases by g^ — μ^~θΆθ because the m 
atom tha t was covered has moved from the surface phase into the bulk. 
The equilibrium condition is therefore 

μ 
)mi_öaö( ■ μ ; >m, >Wa)-s<m\ (7.24) 
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which is equivalent to the parallel tangent construction derived in Sec
tion 7.1. 

Now, recall from Equation 2.47 that the molar Gibbs free energy of an 
elemental vapor is 

S(a)(p,T) = g^\Po,T)+ kTIn (ξλ , (7.25) 

where p0 is a reference pressure. Hence, as the pressure of (a) increases, the 
molar Gibbs free energy of (a) also increases. As a consequence, the slope 
of g^ — g^m( increases, causing the parallel tangent to pivot around the 
g)mi_öaö( c u r v e^ a n d ultimately causing the equilibrium coverage 0equ itself 
to increase. For a strictly regular adsorbate phase, this parallel tangent 
condition is expressed by combining Equations 7.21, 7.22, 7.23, 7.24 and 
7.25, giving 

flequ cn(l-e^u)/kT __ P_eAgdes/kT^ (J.2$) 

A "equ Po 

where Agdes = (g{a)(Po,T) - #>a<) - (#<m> - g^) is the "activation" free 
energy of desorption at the reference pressure p0. This equation defines the 
coverage of the surface phase in equilibrium with a vapor at pressure p and 
temperature T, and can be used to construct both adsorption isotherms 
(the pressure dependence of the coverage at constant temperature) and 
adsorption isobars (the temperature dependence of the coverage at constant 
pressure). 

For example, if Ω = 0, so that the solution is ideal, then 

P 
^ u = p + p o e-AWfcT ' 

which reproduces what is known as Langmuir's isotherm. The adatom 
coverage increases linearly at first with increasing pressure, then saturates 
beyond a critical temperature-dependent pressure, p0e~Agdes^kT. 

If Ω φ 0, then the solution is nonideal. On the one hand, if Ω > 0, 
then adatoms and "missing" adatoms repel each other, which is equiva
lent physically to adatoms attracting each other. The adatom coverage 
increases more rapidly at first with increasing pressure, before again sat
urating beyond a critical temperature-dependent pressure. On the other 
hand, if Ω < 0, then adatoms and "missing" adatoms attract each other, 
which is equivalent physically to adatoms repelling each other. The adatom 
coverage increases less rapidly at first with increasing pressure, before again 
saturating beyond a critical temperature-dependent pressure. 

(7.27) 
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7.2.2 Sticking Coefficients and Desorption 
In Subsection 7.2.1, we discussed the composition, or coverage, of an adsor-
bate surface phase in equilibrium with its vapor. Physically, tha t equilib
rium can also be viewed as the balancing of a dynamic competition between 
adsorption of atoms or molecules from the vapor and desorption of atoms 
or molecules back into the vapor. As a consequence, if we know the ad
sorption rate, then, at equilibrium, we know the desorption rate as well. 
In this subsection, we derive expressions for this desorption rate, as well 
as for the rates at which coverages, per turbed away from their equilibrium 
values, will re turn to those equilibrium values. 

From the kinetic theory of gases, the rate at which atoms or molecules 
in a vapor impinge upon a surface, per lattice site, is ρλ2/ V^nmkT', where 
p and T are the pressure and temperature of the vapor, m is the atomic or 
molecular mass, and λ2 is the area per lattice site of the surface. If s(6,T) 
is the coverage and temperature dependent fraction of impinging atoms or 
molecules tha t "stick" to the surface, then the adsorption rate will be 

Jdes - vsr ( 7 · 2 8 ) 

At equilibrium, atoms or molecules must, by detailed balance, desorb 
exactly as fast as they adsorb. Since, at equilibrium, the coverage of a 
strictly regular solution surface phase is related to the pressure by Equa
tion 7.26, the equilibrium desorption rate can also be expressed in terms of 
coverage as 

= ρλ*8(θ,Τ) = Ρο\*8{θ,Τ) ί Θ \ n ( 1 _ , ) / f c r W f c r ( 29) 
J V2nmkT V2nmkT \ l - Θ J V * J 

If we now assume tha t desorption depends directly on coverage, and only 
indirectly on the equilibrium pressure required to achieve tha t coverage, 
then Equation 7.29 holds even away from equilibrium. Hence, the net 
adsorption rate for a regular solution surface phase is 

Θ = in 

— Jads Jdes 

\28(Θ,Τ) 
V2wmkT »-«•(rb)«""- e)/kTe-Agd„/kT , (7.30) 

which is a first-order differential equation for the t ime evolution of the 
coverage. 
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Often, the sticking coefficient decreases linearly with coverage as s(6, T) 
s 0 ( l - Θ). Then, 

Θ = j n e t = *0>? [p(l -Θ)- poeeW-°VkTe-*°*«'kT] . (7.31) 

The net adsorption rate can be seen to be the difference between the rate 
at which atoms or molecules stick on uncovered portions of the substrate, 
and the rate at which atoms or molecules desorb from the covered portions 
of the substrate. 

If the surface phase is an ideal solution, then Ω = 0, and Equation 7.31 
simplifies to 

0 = jnet = 
s0X2 

y/2nmkT 
p - 0 ( p + P o ) e - A 9 d ~ / f c r ] . (7.32) 

A surface having initially a coverage of 0ini approaches exponentially the 
equilibrium coverage given by Equation 7.27 with a time constant r given 
by 

1 _ So\2(p + Poe-^^kT) _ s0X2
Poe-^^kT 

\f2-KmkT V2wmkT(l - 0 e q u ) ' 

In other words, 
0 — #equ + (#ini — #equ)e -t/r (7.34) 

Note tha t for small deviations from the equilibrium coverage at pressure 
Pequ, the rate at which the surface will re turn to its equilibrium coverage is 

ά(ΑΘ) 
= jnet(0equ + Δ 0 ) = jnet(0equ) + Δ 0 dt 

Since inet(^equ) = 0 at equilibrium, 

1. d(Afl) 
r ~ ~ A0dt 

Ojn 
3Θ 

Jnet 
θθ 

(7.35) 

(7.36) 
equ 

is the "small signal" approach rate back toward the equilibrium coverage. 
For an ideal solution surface phase, Equations 7.32 and 7.36 give 

1. _ So\2{p + p0e-^*lkT) _ s0X2p0e-A^/kT 

T V27rmkf V2nmkT(l - 6equy 
(7.37) 

which reproduces Equation 7.33. For a strictly regular solution surface 
phase, Equations 7.31 and 7.36 give 

1. = s0X2 ( 1 _ 2ft(9equ 

r ~ y/2nmkT \0equ kT 
equ \ e-Agdes/kT (7.38) 

file:///f2-KmkT


274 Chapter 7. Surface Composition 

Κ Γ ' Γ -

Figure 7.5: Coverage dependences of the small-signal vapor-adsorbate 
equilibration rate for CO on C u ( l l l ) . The open and filled circles are data 
measured0 at the various indicated temperatures. The solid lines are the pre
dictions of Equation 7.39, with a desorption molar Gibbs free energy of Agdes = 
(0.67 eV) — (37.8/cT), a mixing enthalpy of Qh = 0.107 eV, and a mixing entropy 
of ns = 20.7k. 

a B . J . Hinch and L.H. Dubois, "First-order corrections in modulated molecular beam 
desorption experiments," Chem. Phys. Lett. 171 , 131 (1990). 

where 0e q u is given by Equation 7.26. For a regular solution with both an 
enthalpy and entropy of mixing, Ω = Ώ,^ — ΤΩ 8 , and 

1 S0\2 

r y/2nmkT \0« 
2fth0, equ 

kT + 
2Ωβ0* -Agdes/kT (7.39) 

Examples of such coverage and temperature-dependent small-signal equi
libration rates are illustrated in Figure 7.5 for CO on C u ( l l l ) . In this case 
there are both positive enthalpies and entropies of mixing. A positive en
thalpy of mixing implies a repulsion between adatoms and missing adatoms, 
or, equivalently, an at t ract ion between adatoms. Hence, the enthalpic bar
rier to desorption increases with increasing coverage. A positive entropy of 
mixing, however, implies an entropic barrier to desorption tha t decreases 
with increasing coverage. The two effects "compensate" each other to some 
extent, although, as illustrated in Figure 7.5, the balance tilts toward in
creasing the desorption rate with increasing coverage. 
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7.3 Surface Segregation and Trapping 
In Section 7.1 we discussed the preferential segregation of one compo
nent from the bulk to the surface. In equilibrium, such segregation oc
curs when there are differences either between the surface tensions of the 
pure-component endpoint materials or between the free energies of mixing 
in the surface and bulk phases. Away from equilibrium, such segregation 
may or may not be significant, and will depend on the relative kinetics of 
crystal growth and interdiffusion between the surface and bulk phases. In 
this section, we discuss these dependences. 

We will begin, in Subsection 7.3.1, by discussing the important simple 
case of segregation of a dilute solute under steady-state growth conditions.10 

This discussion will lead to an expression for the nonequilibrium parti t i t ion 
coefficient, κ;, governing the ratio between the solute concentrations in the 
bulk and surface phases. 

Then, in Subsection 7.3.2, we will make the assumption tha t , under 
non-steady-state conditions, this nonequilibrium parti t ion coefficient still 
applies locally to the ratio between solute concentrations in the bulk phase 
just adjacent to the surface phase and in the surface phase itself. In this 
way, the nonequilibrium parti t ion coefficient can be used to define a bound
ary condition connecting the non-steady-state evolution of solute concen
trations in the bulk and surface phases. 

7.3.1 Steady-State Compositional Partitioning 
In this subsection, we consider steady-state segregation of a dilute solute b 
in a host solvent a. As illustrated in Figure 7.6, there are three phases 
to consider: the vapor, (a i_ x vb x v) , at composition x v , the bulk solid, 
(&\-xßhxß), at composition x@, and the surface monolayer dividing the 
two, )&ι-χ°\)χσ(, at composition χσ. 

Between these three phases there are two basic kinetic processes tha t 
compete with each other.1 1 First, vapor condenses, forming simultaneously 
a new surface layer (layer 1 in the right side of Figure 7.6), and transforming 
the previous surface layer into a new bulk solid layer (layer 2 in the right side 
of Figure 7.6). If condensation is "partitionless," in tha t the composition of 
the new surface layer mimics the composition of the vapor, then the system 

10We do not treat the more complicated case of a nondilute solute; see, e.g., J.M. 
Moison, C. Guille, F. Houzay, F. Barthe, and M. Van Rompay, "Surface segregation of 
third-column atoms in group III-V arsenide compounds: ternary alloys and heterostruc-
tures," Phys. Rev. B40, 6149 (1989). 

n J . J . Harris, D.E. Ashenford, C.T. Foxon, P.J. Dobson, and B.A. Joyce, "Kinetic 
limitations to surface segregation during MBE growth of III-V compounds: Sn in GaAs," 
Appl. Phys. A33 , 87 (1984). 
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Figure 7.6: Left: Schematic molar Gibbs free energies of crystal (&i-xßbxß), 
vapor (ai-xvbxv) and surface )ai_x<Tbx<r( phases. Right: Schematic of two com
peting kinetic processes: partitionless growth followed by solute partitioning via 
diffusion. 

moves from point A to point B in the left side of Figure 7.6. At the same 
time, the previous surface layer, possibly enriched in solute, is transformed 
into a new bulk layer. Therefore, the system also moves from point C to 
point D in the left side of Figure 7.6. 

Second, if the previous surface layer (layer 2 in the right side of Fig
ure 7.6) were enriched in solute, then as it becomes a new bulk layer, it will 
also be enriched in solute. As a consequence, solute will tend to diffuse out 
into the new surface layer (layer 1 in the right side of Figure 7.6), moving 
the system from point D to point E and from B to C on the left side of 
Figure 7.6. In other words, partitionless condensation from vapor to sur
face to bulk solid is followed by partit ioning by interdiffusion between the 
surface and the bulk solid. Note tha t , from start to finish, the system has 
moved downward from point A to point E in the left side of Figure 7.6, so 
tha t there is a net driving force for condensation. 

Two extremes of behavior may be imagined, depending on the ratio 
between the rate of growth, j (in ML/s ) , and the rate of interdiffusion be
tween bulk and surface layers, Di/a2. As in Section 6.3, this ratio, a2j/Di, 
is a kind of Peclet number in tha t it is a dimensionless measure of the 
relative importance of convective over diffusional mass flow. Also as in Sec
tion 6.3, another way of understanding this Peclet number is to note tha t it 
is also the ratio between the t ime required for diffusion between the surface 
layer and its adjacent bulk layer, a2/Di, and the monolayer growth t ime, 

1 
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On the one hand, if a2j/Di <C 1, then interlayer diffusion is fast relative 
to growth. The surface layer will be in compositional equilibrium with its 
adjacent bulk layer, and the ratio between their compositions will be given 
by the equilibrium partition coefficient Kequ. This extreme of behavior is 
therefore characterized by equilibrium solute segregation. On the other 
hand, if a2j/Di ^> 1, then interlayer diffusion is slow relative to growth. 
The surface layer and its adjacent bulk layer will not have time during a 
monolayer growth cycle to reach composition equilibrium, and the ratio be
tween their compositions, /c, will approach unity. This extreme of behavior 
is therefore characterized by nonequilibrium solute trapping. 

Periodic and Aperiodic Step-Wise Growth 

To quantify the dependence of κ on the Peclet number, consider a sim
ple model in which growth proceeds by the passage of steps on a vicinal 
surface.12 Suppose the composition of the surface layer just ahead of a 
moving step is χσ. At time t = 0, just after the step has passed, that 
surface layer has become a bulk layer. If the new bulk layer has preserved 
its composition, then 

n=0=x°. (7.40) 
During the subsequent time interval TML = 1/j until yet another step 
passes, solute atoms in the bulk layer will diffuse to the surface layer, at a 
rate proportional to the deviation of the composition of the bulk layer from 
its equilibrium value, κβ(ιχιχσ. In other words, 

^ = ^ V - Kequa-). (7.41) 

From Equations 7.40 and 7.41, the solute concentration in the bulk 
decays exponentially with time according to 

χβ = Kequxa + (χσ - Kequxa)e-Da^a2. (7 .42) 

Suppose now that once this bulk layer has been covered by yet another sur
face layer, further interdiffusion becomes negligible. There are two extreme 
possibilities for the ways in which the next layer may arrive. 

On the one hand, if the steps on the surface are equispaced, then they 
pass over the surface periodically, at time intervals separated by TML = 1/j· 

1 2M.J. Aziz, "Model for solute redistribution during rapid solidification," J. Appl. 
Phys. 53, 1158 (1982). 
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Figure 7.7: Dependence of nonequilibrium partition coefficients on the Peclet 
number, a2j/Di, for periodic and aperiodic step flow. The equilibrium partition 
coefficient in both cases was taken to be 10~ . 

Then, the steady-state composition of the bulk layer will be tha t which it 
has reached at t ime TML = 1/j , or 

^equ*^ i v*£ ^ e q u ^ ) ^ (7.43) 

In other words, when segregation occurs by interdiffusion of solute punctu
ated by the periodic passage of steps, then the steady-state ratio between 
bulk and surface compositions is 

v per — — ^ e q u "I v-*- ^ e q u j ^ 
-Di/(a2j) (7.44) 

As illustrated in Figure 7.7, κ is Kequ for a2j/Di much less than unity, but 
increases to unity as a2j/Di approaches and exceeds unity. 

On the other hand, if the steps on the surface are distributed randomly, 
then they pass over the surface aperiodically . 1 3 If this aperiodic passage 
obeys a Poisson arrival distribution, then the probability tha t a step will 
pass in an interval dt after t ime t will be e~t^TMLdt/ruL — ge~gtdt. Hence, 
the average composition of the bulk layer will be its composition after t ime 
£, weighted by this probability, or 

— / ^equ«£ 
JO L 

+ (*σ 
v equ χ

σ)β -Di/(a2j) je ~jtdt 

13L.M. Goldman and M.J. Aziz, "Aperiodic stepwise growth model for the velocity 
and orientation dependence of solute trapping," J. Mater. Res. 2, 524 (1987). 



7.3. Surface Segregation and Trapping 279 

J_ 
'j + Di/a?' 

^equ^ ~\~ \X — f^equx ) A , ρ> / Λ 2 ' \ * ^ ^ / 

In other words, when segregation occurs by interdiffusion of solute punctu
ated by the aperiod passage of steps, then the steady-state ratio between 
bulk and surface composition is 

χΡ_ _ Kequ + ja2/Di 
χσ l+ja2/Di 

(7.46) 

Again, as illustrated in Figure 7.7, κ is Kequ for a2j/Di much less than 
unity, but increases to unity as a2j/Di approaches and exceeds unity. The 
increase is not as steep, however, as it is for Kper. 

A Segregat ing D o p a n t : S b o n Si (001) 

To illustrate this behavior, consider the well-established14 segregation of Sb 
impurities during MBE of Si on Si (001). Figure 7.8 shows measurements 
of the part i t ion coefficient κ at various growth rates and temperatures . As 
temperature increases the part i t ion coefficient initially decreases as Sb in
terdiffuses more and more quickly to the surface. At high temperatures , Sb 
diffusion is so fast tha t equilibrium is reached, and the parti t ion coefficient 
approaches the equilibrium parti t ion coefficient ttequ- Finally, as tempera
ture continues to increase, the surface and bulk phase compositions tend to 
equalize, and K,equ itself approaches unity (see Equation 7.15). Therefore, 
as temperature continues to increase, ultimately κ begins to increase again, 
due to an increase in Kequ. 

Also shown in Figure 7.8 are the predictions of Equation 7.44 for segre
gation mediated by periodic step flow. As can be seen, the predictions agree 
reasonably well with the data , although there is some disagreement at the 
lower growth temperatures for the higher growth rates. The disagreement 
may be due to the onset of a 2D nucleation and growth mode, hence the 
onset of segregation mediated by aperiodic step flow. 

7.3.2 Non-Steady-State Compositional Partitioning 
In Subsection 7.3.1, we derived expressions for the nonequilibrium parti t ion 
coefficient, κ,. There, we assumed a steady-state solute concentration in the 
surface layer. In other words, we assumed tha t surface solute depletion due 
to incorporation into the bulk was just compensated for by adsorption from 
the vapor. 

1 4 J .C. Bean, "Arbitrary doping profiles produced by Sb-doped Si MBE," Appl. Phys. 
Lett. 33 , 654 (1978). 
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Figure 7.8: Temperature dependence of nonequilibrium partition coefficients 
for Sb during MBE of Si on Si (001). The data points0 and predictions of 
Equation 7.44 are for growth rates of 3.0 Ä/s (open circles and solid line), 
1.0 Ä/s (open triangles and dashed line), and 0.3 Ä/s (filled circles and dot
ted line). The diffusivity was assumed to be Arrhenian, and given by Di/α2 = 
2X1011 exp( — l.QleV/kT), while the equilibrium partition coefficient was assumed 
to be ftequ = exp( — 1.23eVy/cT), consistent with the form given by Equation 7.15. 

aH. Jorke, "Surface segregation of Sb on Si (100) during molecular beam epitaxy 
growth," Surf. Sei. 193, 569 (1988). 

In this subsection, we relax this assumption, and allow the solute con
centration in the surface layer to evolve. To do so, recall tha t the nonequi
librium part i t ion coefficient, «, is the ratio between solute concentrations in 
a bulk layer just adjacent to the surface layer and in the surface layer itself. 
It can therefore be thought of as the fraction of solute in the surface layer 
tha t becomes "trapped" in the adjacent bulk layer during each monolayer 
growth cycle. If the overall growth velocity is t>, then the rate of decrease 
of solute in the surface layer due to t rapping will be vκχσ ja, where a is a 
monolayer step height. 

At the same time, solute may also adsorb from the vapor onto the 
surface, or desorb back into the vapor from the surface. If νΆ(\8 = j^"tea 1S 

the adsorption "velocity" and vdes = j^ltex<Ta is the desorption "velocity" 
of solute, then the overall rate of change of solute concentration in the 
surface layer will be 1 5 

a 
(vdes + VK)X° 

(7.47) 

15C.E.C. Wood and B.A. Joyce, "Tin-doping effects in GaAs films grown by molecular 
beam epitaxy," J. Appl. Phys. 49, 4854 (1978). 
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This equation describes the time evolution of the solute concentration in 
the surface layer during growth. It increases due to adsorption from the 
vapor, and decreases due to a combination of desorption back into the vapor 
and trapping in the bulk. 

Note, though, that even after the solute has become trapped in the bulk, 
it may still diffuse, albeit at rates determined by the bulk diffusivities, which 
may be much slower than the diffusivity for exchange between the surface 
layer and its adjacent bulk layer. Therefore, the bulk solute concentration 
will evolve, after trapping, according to 

dxP „ d2x? Irj λ 

-ÖT = D ^ ( 7 · 4 8 ) 

where z is a distance scale perpendicular to the surface in a stationary 
reference frame.16 

The boundary condition on this diffusion equation is the solute concen
tration most recently trapped in the bulk layer just adjacent to the surface, 
or 

[Αζ=ζΛι) = ™σ· (7.4») 
In this equation, ζσ{ί) = ζσ^0 — J0 vdt is the position of the interface between 
the surface layer and its adjacent bulk layer. Equations 7.47, 7.48 and 
7.49 together completely describe the time evolution of the overall bulk 
solute concentration due to nonequilibrium segregation followed by bulk 
diffusion. They are complicated, however, by the boundary condition in 
Equation 7.49, which must be applied at a moving surface. It is convenient, 
therefore, to transform into a reference frame, z' = z + / vdt', that moves 
with the surface.17 In this reference frame, Equation 7.48 becomes 

-θΓ = 0"Ί^-υ^ ( 7 · 5 0 ) 

and Equation 7.49 becomes 

[ζβ],,=0 = κχσ- (7·51) 

To illustrate the use of these equations, Figure 7.9 shows time evolu
tions of the spatial distributions of solute during growth of a structure 

16 We neglect electrostatic effects near the surface, which may cause solute "drift" to
ward or away from the surface. See, e.g., E.F. Schubert,, J.M. Kuo, R.F. Kopf, A.S. 
Jordan, H.S. Luftman, and L.C. Hopkins,, "Fermi-level-pinning-induced impurity redis
tribution in semiconductors during epitaxial growth," Phys. Rev. B42 , 1364 (1990). 

17S.A. Barnett and J.E. Greene, "Si molecular beam epitaxy: a model for tempera
ture dependent incorporation probabilities and depth distributions of dopants exhibiting 
strong surface segregation," Surf. Set. 151, 67 (1985). 
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Figure 7.9: Four series of snapshots in time of solute composition profiles during 
MBE. All four series correspond to a square doping pulse indicated by the dashed 
lines, but differ according to whether fdes is much less than or greater than v and 
whether κ is much less than unity or equal to unity. 

having a square pulse of solute. In the absence of bulk diffusion, there 
are four extremes of behavior, depending on (1) the relative rate between 
the growth velocity and the effective desorption velocity and (2) whether 
the nonequilibrium part i t ion coefficient is near-unity or very different from 
unity. 

Consider first the cases where the effective desorption velocity is much 
lower than the growth velocity. Then, a negligible fraction of the solute 
atoms tha t land on the surface leave, and virtually all ultimately incorpo-
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rate into the growing crystal. On the one hand, if the parti t ion coefficient 
is unity, as in panel (c), then all the solute atoms in the surface layer are 
incorporated into the bulk as growth proceeds. The depth profile of the 
final solute concentration mimics within one to two monolayers the square 
pulsed arrival rate of solute. On the other hand, if the parti t ion coefficient 
is much less than unity, as in panel (a), then only a fraction of the solute 
atoms in the surface layer is incorporated into the bulk as growth proceeds. 
The depth profile of the final solute concentration now tails off gradually, 
as solute "rides" and gradually accumulates on the growing surface, and 
continues to be incorporated into the crystal even after the square pulse of 
solute has ended. 

Consider second the cases where the effective desorption velocity is much 
higher than the growth velocity. Then, many of the solute atoms tha t land 
on the surface leave, and only a fraction ultimately incorporates into the 
growing crystal. Tha t fraction is K,v/(v^es + κ,ν) « Kv/v^es, and increases 
linearly with the part i t ion coefficient. The depth profile of the final solute 
concentration again mimics the square pulsed arrival rate of solute, because 
any solute in the surface layer tha t does not incorporate in the bulk desorbs 
from, rather than "rides" on, the surface.18 Note tha t as growth proceeds, 
there is a competition between desorption and trapping of solute. On the 
one hand, if the part i t ion coefficient is much less than unity, as in panel 
(b), then most of the solute atoms in the surface layer eventually desorb, 
and the absolute concentration of solute in the bulk is low. On the other 
hand, if the parti t ion coefficient is unity, as in panel (d), then more of the 
solute atoms in the surface layer incorporate into the bulk, and the absolute 
concentration of solute in the bulk is higher. 

Of the four extremes of behavior just discussed, only one results in 
a solute composition profile tha t is broadened beyond the square solute 
arrival pulse. Unfortunately, tha t extreme is a commonly observed one, in 
which appreciable solute segregates to and rides on the surface, rather than 
either incorporating or desorbing. It may be circumvented to some extent 
by reduced growth temperature , which reduces solute diffusion from the 
bulk to the surface.19 

18S.S. Iyer, R.A. Metzger, and F.G. Allen, "Sharp profiles with high and low doping 
levels in silicon grown by molecular beam epitaxy," J. Appl. Phys. 52, 5608 (1981). 

1 9H.J. Gossman, E.F. Schubert, D.J. Eaglesham, and M. Cerullo, "Low-temperature 
Si molecular beam epitaxy: Solution to the doping problem," Appl. Phys. Lett. 57, 2440 
(1990). 
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Exercises 
1. Verify tha t minimizing Equation 7.14 is equivalent to the parallel 

tangent construction. 

2. Show tha t , for a given bulk composition, the surface work given by 
Equations 7.16 and 7.18 is minimum when the surface composition is 
such tha t the surface and bulk phases are in equilibrium with each 
other, i.e., when the parallel tangent construction is satisfied. 

3. Show, beginning with Equation 7.16, tha t 

Note tha t both μ ^ and μ^ depend on χσ'. 

4. Derive Equation 7.15, the equilibrium part i t ion coefficient between 
bulk and surface phases for strictly regular bulk and surface phases. 

5. Derive Equation 7.26 for the dependence of the equilibrium coverage 
of a strictly regular adsorbate phase on pressure. 

6. For a given Peclet number, the nonequilibrium part i t ion coefficient, /c, 
is higher for aperiodic than for periodic passage of steps. Physically, 
why is this so? 

7. In principle, solute segregation and t rapping may occur at a number 
of stages in the growth cycle. Solute may ride ahead of the edges of 
steps sweeping laterally over terraces by horizontal diffusion follow
ing kink flow; they may also ride on the surface by vertical diffusion 
following step flow. Suppose the horizontal and vertical interdiffu-
sivities at the step edges and at the surface are Dhor a n d D\eri a n d 
tha t the average terrace width is L /α , in units of lattice spacings. 
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Assuming periodic partitionless kink flow followed by horizontal dif
fusive segregation, what is the nonequihbrium partition coefficient 
«step associated with segregation ahead of the moving step? Then, 
assuming periodic, non-part it ionless step flow followed by vertical 
diffusive segregation, what is the nonequihbrium partition coefficient 
«terr associated with segregation on top of the growing terraces? 
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