


Daniel Brunner, Miguel C. Soriano, and Guy Van der Sande (Eds.)
Photonic Reservoir Computing



Also of Interest
Numerical Analysis. An Introduction
Timo Heister, Leo. G. Rebholz, Fei Xue, 2019
ISBN 978-3-11-057330-5, e-ISBN (PDF) 978-3-11-057332-9,
e-ISBN (EPUB) 978-3-11-057333-6

Optical Measurement Mechanics
Kaifu Wang, 2018
ISBN 978-3-11-057304-6, e-ISBN 978-3-11-057305-3

Plasma and Plasmonics
Kushai Shah, 2018
ISBN 978-3-11-056994-0, e-ISBN: 978-3-11-057003-8

Multiphoton Microscopy and Fluorescence Lifetime Imaging.
Applications in Biology and Medicine
Karsten König, 2017
ISBN 978-3-11-043898-7, e-ISBN 978-3-11-042998-5

Scientific Computing. For Scientists and Engineers
Timo Heister, Leo. G. Rebholz, 2015
ISBN 978-3-11-030823-5, e-ISBN (PDF) 978-3-11-035942-8,
e-ISBN (EPUB) 978-3-11-038680-6



Photonic Reservoir
Computing

|
Optical Recurrent Neural Networks

Edited by
Daniel Brunner, Miguel C. Soriano, and
Guy Van der Sande



Physics and Astronomy Classification Scheme 2010
Primary: 42.79.Ta, 07.05.Mh, 05.45.-a; Secondary: 89.75.-k, 42.30.-d, 89.20.-a

Editors
Dr. Daniel Brunner
Institut FEMTO-ST
15B avenue des Montboucons
25030 Besancon Cedex
France
daniel.brunner@femto-st.fr

Dr. Miguel C. Soriano
IFISC (CSIC-UIB)
Universitat de les Illes Balears
Carr. de Valldemossa
07122 Palma
Spain
miguel@ifisc-uib-csic.es

Prof. Dr. Guy Van der Sande
Vrije Universiteit Brussel
Applied Physics Research Group
Pleinlaan 2 1050 Brussels
Belgium
guy.van.der.sande@vub.be

ISBN 978-3-11-058200-0
e-ISBN (PDF) 978-3-11-058349-6
e-ISBN (EPUB) 978-3-11-058211-6

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2019 Walter de Gruyter GmbH, Berlin/Boston
Cover image: from2015 / iStock / Getty Images
Typesetting: VTeX UAB, Lithuania
Printing and binding: CPI books GmbH, Leck

www.degruyter.com



Preface

This book is devoted to a comprehensive compilation of the first hardware platforms
employed for photonic reservoir computing. Reservoir computing is a machine learn-
ing technique that is susceptible by design to be implemented in hardware. We here
show how it has been successfully ported to a number of photonic platforms, paving
the way to all-optical information processing.We dedicate this book to Jan Van Camp-
enhout, who first launched the idea of photonic reservoir computing in 2008.

The first chapter starts with a historical overview, aswell as a future-mindedmoti-
vation for photonic computing. Starting with the oldest knownmechanical computer,
the reader is guided from the first implementation of optical memory to the contro-
versial topic of all-optical computing logic. This walk through the archives of optical
computing naturally arrives at an abstract comparison between electrons and pho-
tons in terms of their usefulness within the framework of logic computing.While pho-
tonic hardware may have some deficiencies in the perspective of logic computing, it
can support the transition from the Von Neumann architecture toward analogue and
neuro-morphic computing schemes with parallel computations. In this context, this
chapter also includes an introduction to the concept of neural networks. In a series
of small but detailed examples, the reader becomes familiar with the basic concepts
and relevant parameterswhich constitute either a feed-forward or a recurrent artificial
neural network. The end of this chapter firmly grounds the newly introduced concepts
of neural networks and Hopfield networks by discussing their physical counterparts,
implemented using photonic hardware.

Chapter 2 starts by contrasting digital computing with analogue computing
schemes. A very mature industry exists around digital computing, leading to highly
optimized digital computers with wide availability and creating a high entry barrier
for any alternative computing scheme. Physical Reservoir Computing stands out as an
analogue computing system that uses the natural dynamics of a hardware substrate
to perform calculations. This is in stark contrast with most other computing schemes
where a computational model is forced onto a substrate that will support it. Reservoir
computers are often considered a branch of neural networks. However, it is important
to note that they do not necessarily share the same discrete network topology with
localized neurons and interconnections. In the last section, the concept of linear and
nonlinear memory capacity is thoroughly discussed. These figures of merit repre-
sent an important step in the direction of creating generic design methodologies for
physical reservoir computers, characterizing them in a task-independent manner.

Chapter 3 introduces the state of the art in reservoir integration, mostly focus-
ing on the realization of passive architectures. In those systems, the chip provides
the complex projection of the input data, while the nonlinear transformation is typi-
cally created in the optical-electrical signal conversion step via a photo detector. First,
the authors introduce the implementation in networks of discrete mixers connected
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in a swirl topology, followed by concepts based on spatially continuous propagation.
These concepts aremore abstract in termsof theirmappingon the original reservoir ar-
chitecture consisting of discrete nodes. Based on the introduced systems, the authors
demonstrate and discuss a large variety of applications, including high-bandwidth
solutions for challenges in the field of telecommunication as well as applications in
the field of bio-medicine.

Chapter 4 elaborates on the huge potential of large scale photonic reservoirs. The
authors discuss several optical configurations that cangenerate complexnetwork cou-
plings. Taking advantage of their inherent parallelism, these optical networks can eas-
ily be made of thousands of nonlinear nodes. The results in Chapter 4 demonstrate
the first large scale photonic reservoir computer that has learning capabilities, with
up to 2000 network nodes. In addition, the authors sketch the first implementation of
a network of coupled semiconductor lasers. Altogether, this chapter contains a state-
of-the-art overview of the properties of photonic reservoirs with diffractive coupling.

Chapter 5 gives a general introduction of reservoir computing based on delay sys-
tems. Delay-systemRC are among the first successful RC’s hardware implementations,
lending particular importance to this chapter. Multiple chapters to follow within this
book will build upon the foundation laid here, and crucially the authors succeed in
preparing this solid base by complementing the information that is to follow in later
chapters. The authors start out from fundamental delay-system properties and their
relevance to RC computing. From there, they describe the more basic RC-delay im-
plementations and introduce nonlinear system-inspired tools for the analysis of such
RC. Finally, they treat fundamental properties of hardware implementations and their
consequence for computation.

Chapter 6 elaborates on the relevance of Ikeda delay dynamics for the control and
development of photonic reservoir computers. This chapter contains first a historical
overview on Ikeda-like dynamics as a paradigmatic toy example of complexity in op-
tics. It then jumps into a detailed description of several hardware implementations of
this representative system, namely based on the modulation of the optical intensity,
wavelength, or phase. The author focuses on the importance of the different time-
scales involved in Ikeda-like hardware implementations for information processing
using a space-time analogy. Altogether, this chapter is a must read for any reader in-
terested in the physics of complex systems and how they can be operated as photonic
reservoir computers.

Chapter 7 deals with the implementation of photonic RC using semiconductor
lasers as the physical substrate. External optical feedback provides the recurrent loop
in this approach, following the conceptual basis of delay-based RC presented in Chap-
ter 5. As highlighted by the authors, experimental realizations have been often carried
out with single-mode semiconductor lasers. Thus, the authors provide a detailed de-
scription of these experiments together with their corresponding numerical modeling
using the Lang–Kobayashi rate equations. This chapter also covers other substrates
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for photonic RC, such as semiconductor ring lasers, erbium-doped microchip lasers,
and semiconductor optical amplifiers.

Chapter 8 focuses on how to build advanced photonic reservoir computers, using
an optoelectronic system as their workhorse. First, the authors present novel designs
to implement fully analog reservoir computers, including analog input and output
layers, that are able to function without the support of digital components. The au-
thors then move on to lay out several strategies to train photonic reservoir computers
on the fly, such that they can adapt to changing environments. The final section of
the chapter focuses on the challenging task of implementing photonic reservoir com-
puters that can operate autonomously. This becomes possible when the output of the
system is fed back to its own input, serving as a generator of arbitrarily complexwave-
forms. Taken as a whole, this chapter represents the spearhead of the development of
fully functional photonic reservoir computers.
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Daniel Brunner, Piotr Antonik, and Xavier Porte
1 Introduction to novel photonic computing

1.1 Photonics for computing
Rather than a feature of modern times, computing captivated the interest of humans
long before any of the technological revolutions we typically associate to computers.
One of the earliest historic realizations of a computer is the Antikythera-mechanism;
see Figure 1.1(a), a fascinating example indeed. This intricate device was found in
a highly corroded state around a century ago, and was dated back to 200 BC. Due
to its corrosion and complexity, deciphering purpose and functionality posed a su-
perb challenge which still continues today. By now, we know that the Antikythera-
mechanism calculates moon phases and planetary positions within the lunisolar
calendar [1]. Most impressively, the prediction accounts for corrections made neces-
sary by the elliptical orbits of planets and the moon. The algorithm executed by the
Antikythera-hardware appears to be based on a theory about lunar and planetary
motion developed by Hipparchos of Rhodes [1]. The Antikythera-mechanism there-
fore is the physical implementation of a computing algorithm producing nontrivial
and important information on the basis of a simple external input—a date to be set by
turning a handle. Transformation of input information is therefore established by a
mechanical automatism, which can be re-executed.

Manufacturing this mechanical computer with technology available at the time
must have been a formidable challenge. The mechanism consists of at least 37 bronze
gears, and such a multistage system most certainly demands high manufacturing ac-
curacy for a reliable operation. We can therefore assume that its creation required the
investment of substantial resources in terms of expertise and dedication. Due to agri-
cultural and religious reasons, lunar cycles and the positions of planets were infor-
mation of high value during that historic period, apparently justifying the associated
efforts. This illustrates that already two millennia ago humans highly valued the au-
tomatized creation of important information by computers.

Upon close inspection, progress such as the acceleration of computing by a factor
of one billion can be identified during the last two millennia. It was understood that
computers strongly benefit from practical re-programmability, a functionality Conrad
Zuse realized in 1941 with his digital-electronic computer Z3. Interestingly, the Z3 was
already applied to complex technological challenges related tomechanical properties
of airplanewings, an operationwhich demands practical re-programming. Manymore
conceptual and technological developments have finally led us to the extremely pow-
erful computers of today. We however intentionally avoid an exhaustive discussion of
computing’s history. Focusing on our mechanic and electronic computing substrate
examples serves the illustration of a general observation: the physical nature of the
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Figure 1.1: (a) Shows a photo of the Antikythera-mechanism, a historic example of a computer cre-
ated in the second century BC. (b) Shows an optical setup by Farhat et al. [4], creating an optical
content addressable memory.

substrate’s interactions providing the basis for computing an algorithm changed over
time.

One might assume that a transition—or not—between substrates was always
in service of further advancing computational performance. However, performance
is most likely not the only motive. At least equally important is the technological
readiness of a substrate and the presence of a manufacturing platform for its imple-
mentation. The last part of this argument leads directly to economic considerations,
which today are ever present. These certainly should and cannot be ignored; simulta-
neously, they should not shroud our vision in the search of next generation solutions
and substrates. As the transition from mechanics to electronics set the basis for the
current, Turing complete, integrated and powerful computing processors of today,
one is equally obliged to seriously consider the possibilities arising from a transi-
tion from electronic to photonic computing—or from a merger of both. Arguments of
the style it did not work before, lets discard photonics ignore (i) its undeniably exist-
ing fundamental advantages, recent progress in (ii) novel photonic substrates and
(iii) computational schemes. We will show that in particular the advent of artificial
neural networks (ANNs) demands a decisively open-minded approach to the question
of next-generation computing substrate.

For our purpose, substrates might be grouped according to which particle acts as
carrier of information. Limiting our selection to substrates of current technological
relevance, we are left with electrons and photons. Nowadays, everybody is familiar
with some representative of an electronic computer. Optical computers remain more
exotic, yet they are pursued since over five decades [2, 3] due to the potentially high
prospects. Multiple concepts have been demonstrated, e. g., Figure 1.1(b) shows an
optical content addressable memory by Frahat et al. [4] together with Psaltis et al. [5].
Such a system is capable to provide the content of stored memory, even if the original
query is noise-corrupted or inaccurate.
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1.1.1 Benefits of optics for computing

Numerous electronic, electro-optical and all-optical computing concepts have been
demonstrated in proof-of-concept experiments. The result is a wide selection of con-
cepts andhardware substrates,whichbringsus to thequestion about the fundamental
advantages anddisadvantages of particular substrates. In 1990, Lohmannapproached
the problem by askingwhat in principle is required from a substrate for realizing com-
putation, establishing a connection between particular substrates and their suitabil-
ity to implement fundamental computing operations [6]. This approach places our
generic discussion on a solid foundation. On a most basic level, Lohmann identified
logic / interactions and transport / communication as essential ingredients, certainly
a view biased toward computing based on binary logic operations. Paying tribute to
the recent impact of ANNs and simultaneously to our book’s title, we will modify the
first category to nonlinear transformations, which include logical operations. One can
quickly enter the realm of philosophical discussions about what is computing and
what is not. While these discussions can be enlightening, they can also obscure the
practical implications of scientific arguments. An interesting and rigorous contribu-
tion to discussions of this kind can be found inHorsman et al. [7]. Here, wewill restrict
computing to operations which include nonlinearity at some stage; other operations
involved in information processing we will simply refer to as transformations.

Electrons and photons each have unique physical properties, and hence favor the
physical realization of different processes. In 2013, Shamir [8] linked these fundamen-
tal differences to the doom of digital optical computing. However, we would like to
elaborate the subject from a slightly different angle. We will show that novel-material
systemsmight opennewavenues to pursue.Most importantly,we emphasize that neu-
ral networks (NNs) do not rely on digital logic and that fundamental differences to the
architecture of logical computers will demand different properties and scaling from a
substrate.

Due to their fermionic nature and electric charge, electrons strongly interact. Elec-
trons are therefore excellently suited to inducenonlinear responses, and consequently
to perform nonlinear transformations. At the same time, these strong interactions re-
duce the suitability of electrons for analog information transport: originally encoded
information will be tainted by electron-electron interactions, e. g. induction between
adjacent interconnects and with the substrate. Furthermore, the ever-present electro-
magnetic permittivity unavoidably links an electronic communication line to a capac-
itance. Combined with the information carriers’ charge, this limits the modulation
bandwidth of electronic transmission lines. In Table 1.1, electrons therefore are listed
as excellently suited to implement nonlinear transformations, but only as mediocre
for information transmission. This has direct implications for the implementations
of ANNs and their ultra large-scale connectivity. More details on the limits and their
practical implications of modern electronic computation can be found here [9, 10].
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Table 1.1: Suitability of electronic, photonic and exotic/hybrid substrates to physically implement
fundamental operations of computing. Table adapted from [6].

Electrons Photons Exotic/hybrid substrates

Nonlinear transformations ✓✓✓ × ✓✓✓
Information transport ✓✓ ✓✓✓ ✓✓

Figure 1.2: Switching energies of different non-
linear optical effects. The figure was taken from
[13]. Today’s lowest switching energies reach
the atto-Joule regime, making them compatible
with current semiconductor technology [14].

Photons, on the other hand are charge-less bosons. Consequently, they do not inter-
act directly for optical intensities relevant to our discussion. Only a physical substrate
acting asmediator can introduce such action. This implies that the electric field (mag-
netic fields can mostly be ignored) of one photon first needs to modify the mediating
medium’s properties, which in turn modifies the properties of other photons. Unfor-
tunately, interaction coefficients of traditional materials are rather small, and when
compared to electronics the result is a bad rating for nonlinear transformation in Ta-
ble 1.1. On the other hand, signal transmission strongly benefits from the very same as-
pects: as long as physical properties allow the separation of signals, i. e., using photon
polarization or wavelength, a large number of communication channels can be trans-
mitted along a single line without significant interaction. Furthermore, in contrast to
the electronic case, the length of a transmission line does not limit the modulation
bandwidth. Photons are therefore excellently suited for communication, whichwe ex-
perience on a daily basis: modern communication and the Internet largely rely on op-
tical information transport. The rating in Table 1.1 for optical information transport is
therefore excellent.

Motivated by the frustratingly linear behavior of photons, countless strategies
were developed in order to bring nonlinearity to photonics. A highly active field of
research is the use of advanced materials and novel waveguide geometries. Figure 1.2
gives a generic overview of different nonlinear effects, their required switching ener-
gies and their maximummodulation bandwidths. Recently, this diagram was succes-
sively extended to faster and more energy efficient processes. Originally, optical non-
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linearities were mostly realized based on the Pockels and Kerr effect. In waveguides
of 1mm length, modern structures based on these processes require ∼ mW to create
one period of a sin2 nonlinearity all-optically [11, 12]. However, nonlinearity does not
need to be produced all-optically. Exploiting plasmonic effects, switching energies for
an electro-optical modulation are now approaching the atto-Joule regime at poten-
tially THz bandwidths [13]. Such switching energies are even competitive with current
semiconductor technology [14], and with simple incorporation of a photosensitive el-
ement one could create efficient all-optical nonlinearities. This shows the great po-
tential of novel photonic technology to implement the nonlinear transformations for
optical computing.

Judging from the past developments and research in computing, photonics and
electronics will remain locked somewhere between competition and synergy. Optical
computing is a field with a surprisingly long history; the first books were already pub-
lished in the early 1970s [15]. For now, electronics clearly wins the day by providing
cheap high-performance circuitry and decades of exponential scaling in number of
transistors per chip and per dollar. Equally, integrated photonic components for com-
putingwere already considered in the 1990 by Laval et al. [16], yet for now they cannot
match the energy efficiency and area-footprint of electronics. However, this conversa-
tion is strongly biased toward the field a majority identifies (maybe wrongly so) syn-
onymouswith computing: Boolean logic in amostly serial architecture. Already today,
a standard CPU’s performance limit is not imposed by the size or speed of individual
transistors, but by the energy it consumes inside the small volume of its substrate. By
now, a significant fraction of dynamic energy dissipation originates from interconnec-
tions [17, 18], and in that light the advent of neural networks creates a fundamental
shift in demands placed upon a computing core. Providing some numbers: currently
the switching energy of a CMOS transistor gate lies somewhere in the range of 40 aJ–3
fJ; switching an interconnect wire of 10mm length consumes 600 fJ ([19] and refer-
ences therein). Connections in a classical von Neumann computer are mostly short
ranged, yet they already limit scaling of these chips. The impact interconnects exert
upon the energy budget of current architectures will be dwarfed by neural networks
(NN), whose fundamental feature is large scale connectivity. Combined with recent
advances in integrated photonics, exploiting the fundamental advantage of optics
over electronics for signal transmission could prove essential for next generation NN
hardware. These considerations are confirmedby amodification in the electronic-chip
industry’s hardware development. Fueled by the growth of NN applications, Google
even developed its own hardware platform, the Tensor Processing Unit (TPU) [20]. At
its heart lies a systolic-array circuit, which is better suited for calculations of large-
scale vector-matrix products. Yet, the device is not capable of carrying out such op-
erations fully in parallel—something demonstrated in optics since decades [21]. We
therefore conclude that the transformative impact of NN-concepts extends deeply into
fundamental properties of a processor’s architecture, and will therefore drive future
computing hardware development.
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All these—unfortunately quickly—approachingANN-hardware roadblocks should
make us seriously reconsider photonics as an alternative or complimentary technol-
ogy. Photonics offers crucial advantages addressingmany of the discussed key issues.
Today we cannot seriously contemplate mechanical computers. The same might be
true in the future for ANN-processors with their almost countless interconnects. An
open-minded approach still striking a balance between real-world potential as well
as long term possibilities is therefore paramount.

1.1.2 Logical optical computers

Owing the success of computing based on Boolean logic operations, optical logic for
computing received substantial attention from an early stage. Among others, a large
European consortium within the European Joint optical Bistability Project, consisting
of 18 universities, explored the field in detail [22]. Using photonics instead of electron-
ics was mainly motivated by three factors. First, avoid the opto-electronic conversion.
Communication is carried out optically, today even more than at the time of first in-
terest in optical logic. Interfacing with an electronic computer therefore fundamen-
tally requires opto-electronic conversions, and vice versa. Among others, these con-
versions are associated to an increased power-consumption. The second factor is the
potentially high bandwidth of optical processes, readily achieving sub-pico second
switching times. One has to acknowledge that today’s transistors can also reach such
switching speed [14]. Yet, for full systems, one again needs to consider the bandwidth
limitations induced by electronic interconnects, and today this limit lies in the GHz
regime. Finally, already at the field’s foundation, a clear focuswas placed on the paral-
lel and spatially distributed nature of optical signal transmission [23]. Highly parallel
circuitry was therefore an important objective of optical logic computers.

Implementing Boolean logic based on a latching optical bi-stability was already
proposed in 1969 by Szöke et al. [2]. In their publication, they discussed how a sat-
urable cavity can stably be switched between high or low transmission states using
the signal of an external laser source(s). Generally, systems supporting such bistable
switching behavior are based on nonlinearity combined with some feedback or cou-
pling mechanism. Such an interaction term can either be a dedicated feedback chan-
nel, or as is the case for the saturable absorber cavity, the constant and mutual inter-
action between light and material [24]. Firth [24] introduces a generic model for such
bistability in the chapter on Theory of optical Bistability and optical Memory in [25]:

dI
dz
= −α(φ)I (1)

dφ
dt
= I0f (φ) − Γ(φ − φ0) = A(φ) − B(φ). (2)

Here, I is optical intensity,φ (φ0) is thedevice (ambient) temperature,α a temperature-
dependent absorption coefficient, f (φ) is the nonlinear light-matter interaction. This
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Figure 1.3: Schematic illustration of optical bistability. Panel (a) shows the system’s nonlinear (A(φ))
and linear (B(φ)) response to changes in φ in equation (2). Fixed points are located where linear and
nonlinear terms are balanced. Given by the sign of φ̇ in their vicinity, these are stable or unstable
fixed points. A summary of the relevant properties are given in panel (b).

example is based on a nonlinearity induced by temperature changes due to optical
absorption, but this model can simply be extended for, e. g., saturable absorbers. In
Figure 1.3, we schematically illustrate the underlying mechanism. In panel (a), A(φ)
is the nonlinear and B(φ) the system’s linear response, respectively. Panel (b) iden-
tifies the characteristic regions of the system. According to equation (2), if initialized
in region R1 (R3), the gradient dφ/dt is positive and the system is attracted towards
φ1 (φ3). For region R2 (R4), the gradient is negative, again resulting in attraction to-
wards φ1 (φ3). As the gradient at φ1 and φ3 is zero, both values are attracting fixed
points or stable steady states of the system if A(φ) and B(φ) agree with the general
properties highlighted in Figure 1.3(a). For the case of using two external input sig-
nals, this configuration can implement the fundamental logic AND or OR operations.
When realizing an optical OR logic-gate, each external input would have to provide
a power, setting the system into φ > φ2, while in the AND system only the power of
both inputs combined would set the system to that point. For a saturable-cavity sys-
tem, the result is the implementation of two fixed points corresponding to low or high
optical transmission. Such optical bistability was reported based on a Fabry–Perot
cavity filled with sodium vapor [26] or an InSb semiconductor [27]. Smith et al. [23]
provides an overview of the demonstrated systems and possible configurations. Fi-
nally, the cascading of multiple such elements was also realized [28], demonstrating
restoring digital logic.

Today, the prospects, challenges and feasibility of computing with optical logic
are still being discussed intensely and controversially. An illustrating example is a
commentary article by Caulfield et al. [29], followed by a series of comments by Tucker
et al. [30] andMiller et al. [31] on optical transistors. Realizing an optical transistor, the
principle unit for all-optical computing logic, is highly nontrivial and adevice relevant
for real-world applications, Miller highlights multiple criteria which must be fulfilled
[32]. Owing this complexity, only one large-scale andmultistage all-optical logic com-
puter has been reported [33]. The system consists of six cascaded stages, each stage
home to a 32×32 array or bistable optical elements; see Figure 1.4. While it is certainly
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Figure 1.4: Schematic illustration of a 6-stage 32 × 32 array of bi-stable optical elements. Figure
taken from [33].

true that such a system-dimensionality is insufficient for a computer based on logic
operations, 6 layers of 1024 nonlinear nodes are already reaching a sufficient scale for
interesting machine learning applications. Finally, in support of ongoing interest into
optical computing, Miller precisely highlights the arguments of interconnects that we
previously leveraged by pointing out their increased importance for future NN com-
puting substrates.

1.1.3 Optical computing with spatial transformations

Adifferent approach to computing is fundamentally based on the spatial nature of op-
tical imaging.A single optical lens transformsanarbitrarily complex opticalwaveform
simultaneously. All information contained within a lens’s field of view and resolvable
by its impulse response function is therefore transformed fully in parallel, potentially
resulting in a very large space-bandwidth product. Other than with serial optical bi-
nary logic, transformation of spatially distributed optical information therefore lever-
ages fundamental advantages of optics by exploiting its massive spatial parallelism.
Of fundamental importance in schemes following this approach is often the Fourier
transformation property of the simple optical lens [34, 35]. If an object is placed in
front of a lens at focal distance f , hence in its focal plane, then the object’s spatial
Fourier transformation is created at f behind the lens. An important limitation is that
the Fourier transformation of a lens is only exact in amplitude and phase within the
area where the paraxial approximation is satisfied [35].
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Figure 1.5: (a) An optical correlator based on free-space optics. A scene s(x, u) is placed in the focal
plane of Lens 1 and illuminated by a plane wave. The object’s Fourier transformation is then present
in the back-focal plane of the lens. If an object of interest’s complex conjugate Fourier transforma-
tion (R(u, v)) is placed in the same plane, then Lens 2 carries out a convolution between the Fourier
spectrum of s(x, y) and R(u, v). In case that s(x, y) corresponds to the object of interest, then the con-
volution results in a large correlation signal. Panel (b) shows the autocorrelation peak for amplitude
and phase, (c) only for phase matched reference R(u, v). Figure taken from [3].

A popular application of this optical transformation is realizing optical convolution,
which was demonstrated byWeaver and Goodman [36] and later even applied to sup-
port numerical computation by Psaltis et al. [37]. In Figure 1.5, we schematically il-
lustrate how this concept can be extended to realize object recognition via an optical
correlator. The object to be analyzed s(x, y) is placed at position z = 0, correspond-
ing to one focal distance f in front of the first lens, and is coherently illuminated via
a plane wave. At position z = 2f , the resulting Fourier spectrum is multiplied with a
filter or reference R(u, v). Here, R(u, v) is the complex conjugate Fourier spectrum of
the identification target with u and v the spatial frequencies in x and y, respectively.
This arrangement is followed by a second lens placed at z = 3f , which transforms the
multiplication at position z = 2f into a convolution at z = 4f . The resulting corre-
lation between the object and the classification target is then provided at a distance
z = 4f away from the object, hence the setup illustrated in Figure 1.5 is typically re-
ferred to a 4f -correlator. Figure 1.5(b) and (c) show the resulting spatial correlation
for the case reference R(u, v) provides amplitude and phase or only phase informa-
tion, respectively. The optical correlator was applied to relevant tasks such as road-
sign recognition [38]. One severe limitation of this approach is its sensitivity on tam-
pering with the input data. The 4f-optical correlator is only invariant against spatial
translation of the optical input, inwhich case only the position of the correlation peak
would be shifted at position z = 4f . Rotation and stretching, on the other hand, will
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reduce the correlator’s performance. Beyond the discussed system, multiple differ-
ent information processing applications realized by various arrangements of lenses,
filters, etc. are derived and demonstrated by Cutrona et al. [39]. While most of such
spatial-transformation concepts utilize linear operations, they can be extended by in-
corporating nonlinear responses at different stages of the setup [40].

Other more fundamental mathematical operations have been demonstrated via
optical techniques, too. One example is the subtraction of two images based on Stokes
reversibility, which was realized via phase-conjugate Michelson interferometry [41].
Another classical operation is the optical implementation ofmatrix products [21], also
based on a systolic array approach [42]. In the initial development of the field, a nowa-
days surprising bottleneck slowed down progress: the nonavailability of high-quality
and practical input devices [3]. Since information input is typically a two-dimensional
image, this requires readily reconfigurable screens. Only after the first spatial light
modulator (SLM) was demonstrated by Labrunie [43], this hurdle was mostly over-
come.

1.2 Neural networks

Artificial neural networks (ANNs) are composedof nonlinear computational elements,
operating in parallel and arranged in a manner similar to biological neural intercon-
nections [44]. These models have been extensively studied with the aim of achieving
human-like performance in the field of pattern recognition. Nowadays, neural net-
works are mainly considered from two perspectives: cognitive science—an interdis-
ciplinary study of the mind, and connectionism—a theory of information processing
[45]. In the present book, neural networks are considered for designing photonic sys-
tems. Therefore, the questions relating their design and purpose with how the brain
might work are considered out of scope.

The pioneers of the field—McCulloch and Pitts—studied, in the early 1940s, the
potential of the interconnection of a model-neuron [46]. Later in 1949, Donald Hebb
proposed a learning rule for adapting the connections of artificial neurons [47]. The
name“perceptron”was coinedbyRosenblatt in 1958 [48],whodeveloped the theory of
statistical separability. In 1969, Minsky and Papert (1969) provided a rigorous analysis
of the perceptron [49] and temporarily slowed down the development of the field by
demonstrating that perceptrons were incapable of processing the basic exclusive-or
(XOR) circuit. The field was revived byWerbos, who, in 1971, developed the backprop-
agation learning algorithm, published in his doctoral thesis [50, 51].

Neural networks are composed of elementary computation units, i. e., the neu-
rons. A biological neuron is a cell capable of producing a rapid train of electric spikes.
Simulating its complex internal dynamics (using, e. g., the Hodgkin–Huxley model
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Figure 1.6: Scheme of an analog neuron, represented by a nonlinear
function a = f (xi ,wi) of inputs from other neurons xi and weights (or
parameters) wi . Adapted from [57].

[52]) is impractical for real-world applications of ANNs. For this reason, artificial neu-
rons have been introduced, keeping the spiking behavior but greatly simplifying the
internal dynamics (see, e. g., [53–56]). Further simplification of the artificial neuron
model is possible by ignoring individual spikes and introducing an average spiking
rate a. Such neurons are called analog neurons and their behavior is described by

a = f(∑
i
wixi), (3)

where a is the output of the neuron (also referred to as the current state of the neu-
ron, or the activation), xi are the inputs from other neurons in the network, wi are the
weights of these connections, and f is the activation function. A common choice for
the latter is a sigmoid function (i. e., a s-shaped function), such as the tanh function
or the inverse tangent function [44].

In summary, a neuron, schematized in Figure 1.6, is a nonlinear function, param-
eterized by the coefficients wi, often called weights or, stemming from the biological
origins, synaptic weights. One should be careful with the term “connection” and take it
metaphorically. In most hardware applications of artificial neural networks, the neu-
rons are not physical objects. Instead, they could be implemented electronically, for
instance, in silicon, or time-multiplexed in an analog signal. Therefore, connections
betweenneurons rarely have any actual existence, andmerely indicate how individual
neurons, i. e., the hardware blocks that implement them, are connected and interact
with each other.

Neural networks come in two classes: feedforward and recurrent (or feedback)
networks, which are the topics of Section 1.2.2 and Section 1.2.3, respectively. But first,
we introduce their main predecessor—the perceptron.

1.2.1 Perceptron

Figure 1.7 shows a toy example of a binary classification task with two classes sep-
arable by a hyperplane. Included in the figure are two instances of infinitely many
possible hyperplanes, or in this case, straight lines. Classifiers that take a linear com-
bination of the input features and produce a binary output were called perceptrons
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Figure 1.7: A toy example of a linearly separable
classification problem, with two of the infinitely
many possible separation hyperplanes.

[48, 58]. Perceptrons set the foundations for the neural network models of the 1980s
and 1990s [59].

The perceptron learning algorithm is a binary classifier that looks for a separation
hyperplane by minimizing the distance of misclassified points to the decision bound-
ary. The real-value input vector x ∈ ℝn is mapped to a binary value y(x) following:

y(x) = {
1 if w ⋅ x + w0 > 0,
−1 otherwise,

(4)

with

w ⋅ x =
n
∑
i=1

wixi,

where wi, . . . ,w0 are the parameters of the separating hyperplane, also called a deci-
sion boundary. In the context of neural networks, a perceptron is an artificial neuron
with the Heaviside activation function. The present version of the algorithm (equation
(4)) is commonly termed a single-layer perceptron, to distinguish it from a multilayer
perceptron,which corresponds to amore complicatedneural network.As a linear clas-
sifier, the single-layer perceptron is a simple feedforward neural network (that will be
presented in Section 1.2.2).

The search for a decision boundary can be carried out through the stochastic gra-
dient descent algorithm, starting from a random guess [59]. If a response y(x) = 1 is
misclassified, thenw ⋅x+w0 < 0, and vice versa for amisclassified response y(x) = −1.
The error to minimize is defined by

E(wi) = −∑
j∈ℰ

yj(w ⋅ x + w0), (5)

where ℰ is the set of misclassified points. The gradients are given by

𝜕E
𝜕w0
= −∑

i∈ℰ
yi, (6)
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𝜕E
𝜕wi≠0
= −∑

j∈ℰ
yjxi, (7)

and the parameters wi are updated recursively by visiting each misclassified input in
ℰ and applying the gradients as follows:

(

w0
w1
⋅ ⋅ ⋅
wn

)←(

w0
w1
⋅ ⋅ ⋅
wn

) + λ(

yi
yix1
⋅ ⋅ ⋅
yixn

) , (8)

where λ is the learning rate, which in this case can be taken to be 1 without loss of
generality [59].

If the problem is linearly separable, the algorithmconverges to a separatinghyper-
plane in a finite number of steps [59]. Two solutions, obtained from different random
guesses, are shown in Figure 1.7.

The perceptron learning algorithm presents a series of downsides. First, a single-
layer perceptron can only solve a linearly separable problem. If the inputs are not lin-
early separable, the algorithm will not converge and develop cycles. The cycles can
be long and, therefore, hard to detect. The most famous example is the perceptron’s
inability to solve the Boolean XOR problem. Second, for a linearly separable problem,
there aremany solutions, and the result of the algorithm strongly depends on the start-
ing values, that is, the initial randomguess. Finally, the proof of convergence in a finite
number of steps does not guarantee a reasonable convergence time—the smaller the
gap, the longer the time to find it [59].

Perceptrons foundmany applications in speech or image recognition in the 1980s,
but have been superseded by much simpler support vector machines [60–63].

1.2.2 Feedforward neural networks

A feedforward neural network is a function of its inputs, and can be seen as a composi-
tion of the functions of its neurons [57]. Inmost cases, the former function is nonlinear,
as are the individual functions of the neurons. However, in particular cases, a linear
function can be chosen for the neurons, which would result in a linear feedforward
network.

Graph representation of a neural network is an intuitive and effective way of vi-
sualising the structure of the system. In such a graph, the neurons are vertices and
the edges correspond to the connections. The graph of a simple feedforward neural
network is shown in Figure 1.8. By definition, the graph is acyclic, i. e., no path in the
graph forms a closed loop. The neurons that perform the final computations and pro-
duce the outputs of the network are called output neurons. The other neurons, which
perform intermediate computations, are called hidden neurons. The inputs (squares
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Figure 1.8: Graph represen-
tation of a feedforward neu-
ral network with n inputs,
one layer of Nh hidden neu-
rons, and No output neurons.
Adapted from [57].

in Figure 1.8) and input neurons (first layer of circles, connected to the input squares)
are often confounded in the literature. This may seem confusing because, technically,
the inputs are not neurons: they do not perform any computation, but simply deliver
the input variables to the neurons.

A large number of different network topologies can be imagined, under the sole
constraint of an acyclic graph. However, most of neural network applications imple-
ment multilayer networks, as illustrated in Figure 1.8 [57].

A feedforward network with n inputs, Nh hidden neurons and No output neurons
computes No nonlinear functions of its n input variables. These are compositions of
the Nh functions computed by the hidden neurons. Owing to the acyclic graphs, feed-
forward networks are static. That is, if the inputs are constant, so are the outputs. For
this reason, feedforwardneural networks are often termed static networks, as opposed
to recurrent or dynamic networks, which will be described Section 1.2.3. Feedforward
multilayer networks with sigmoid nonlinearities are often termed multilayer percep-
trons, or MLPs.

To illustrate the notions above, consider an example of a feedforward neural net-
work with a single layer of nonlinear hidden neurons (with a sigmoid activation func-
tion) and a single linear output neuron. This example corresponds to a class of feed-
forward neural networks that is particularly important in practice [57].

The output of this network is given by

g(x,w) =
Nh

∑
i=1
[wNh+1,i tanh(

Nk

∑
j=1

wijxj + wi0)] + wNh+1,0

=
Nh

∑
i=1
[wNh+1,i tanh(

Nk

∑
j=0

wijxj)] + wNh+1,0, (9)

where x is the input vector of Nk + 1 input variables, and w is the weights vector of
(Nk+1)Nh+(Nh+1)parameters. As introducedabove, thehiddenneurons arenumbered
from 1 to Nh, and the output neuron is labeled Nh + 1. Conventionally, the weightwij is
assigned to the connection that links the neuron j (or the network input j) to neuron i.
The input x0 is usually set to a constant value x0 = 1 and used as a bias term for all the
neurons in the network, with the corresponding weights wi0.

From equation (9), one notes that the output g(x,w) of the network is a linear
function of the parameters of the last connection layer (from the Nh hidden neurons
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to the output neuron Nh + 1), and a nonlinear function of the parameters of the first
layer of connections (from the Nk + 1 inputs of the network to the Nh hidden neurons).
Therefore, the output of a multilayer perceptron is a nonlinear function of its inputs
and of its parameters.

1.2.3 Recurrent neural networks

Recurrent neural networks represent the most general neural network architecture
[57]. Their connection graph contains at least one path that forms a closed loop, i. e.,
following the connections, one returns back to the starting neuron. Such a path is
called a cycle. Since the output of a neuron cannot be a function of itself, time must
be explicitly taken into account for such architectures. In other words, the output of
a neuron cannot be a function of itself at the same moment of time, but it can be a
function of its past values.

Given the predominance of digital systems for hardware applications of (e. g.,
standard computers or dedicated digital circuits), discrete-time systems are the nat-
ural framework for studying recurrent neural networks. Therefore, recurrent neural
networks are often described by recurrent equations (hence the name), which are
discrete-time equivalents of continuous-time differential equations.

In this discrete-time framework, each connection is assigned two parameters (one
more than for feedforward neural networks): a weight and a delay (possibly equal to
zero). Delays are integer multiples of the elementary time unit. For causality reasons,
the sum of the delays in a cycle in the graph of a causal recurrent neural networkmust
be nonzero.

An example of a recurrent neural network is shown in Figure 1.9. The delays as-
signed to the connections, expressed as integer multiples of a time unit T, are marked
in the diamonds. The network is casual, since the only cycle from neuron 1 back to
itself through neuron 2 features a nonzero sum of delays.

Figure 1.9: Graph representation of a recurrent neural network
with two inputs. Digits in diamonds indicate the delays assigned
to each connection, expressed in terms of the unit time or sam-
pling period T . The network holds one cycle: from 1 to 1 through 2.
Adapted from [57].
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Figure 1.10: The canonical form (right-hand side) of the network shown on Figure 1.9 (left-hand side).
The dotted line highlights the feedforward neural network within the canonical form. Adapted from
[57].

Similar to feedforward networks, we present the general mathematical description of
recurrent neural networks. The general equations of a linear system are

x(n) = Ax(n − 1) + Bu(n − 1), (10a)
g(n) = Cx(n − 1) + Du(n − 1), (10b)

where n ∈ ℤ is the discrete time, expressed in terms of the unit time or sampling period
T, so that t = nT, x(n) is the state vector at time nT, u(n) is the input vector, g(n) is the
output vector, and A,B,C,D are matrices. Similarly, the canonical form of a nonlinear
system is defined as

x(n) = ϕ[x(n − 1),u(n − 1)], (11a)
g(n) = Ψ[x(n − 1),u(n − 1)], (11b)

where ϕ and Ψ are nonlinear vector functions (e. g., neural functions). Nerrand et al.
[64] have demonstrated that any recurrent neural network, however complex, can be
expressed in a canonical form, made of a feedforward neural network, some outputs
of which (termed state outputs) are fed back to the inputs through unit delays [57].

For instance, the neural network in Figure 1.9 can be transformed into the canon-
ical form, shown in Figure 1.10. That network has a single state variable: the output of
neuron 1. In that example, neuron 1 is a hidden neuron, but in general, a state neuron
can also be an output neuron. Further details on recurrent neural networks and their
canonical forms can be found in [57].

1.2.4 Deep neural networks

Until recently, most artificial neural network methods had exploited shallow-
structured architectures, that typically contain a few (one or two, at most) layers
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of nonlinear neurons [65]. Shallow networks have been shown effective in solving
many simple problems. However, their limited modeling and representational power
can cause difficulties when tackling real-world applications involving complex data
such as human speech, language, and natural visual scenes. Biological information
processing mechanisms in the human brain, such as vision and audition, which are
clearly equipped with layered hierarchical structures [66], suggest the need of deep
architectures for building accurate representations from complex and rich data.

Historically, deep learning originated from the field of artificial neural networks.
That is, multilayer perceptrons (or feedforward neural networks, introduced in Sec-
tion 1.2.2) with many layers of hidden neurons are often referred to as deep neural
networks (DNNs). At the moment of writing these lines, no clear boundary between
shallow and deep architectures, in terms of the number of layers, could be found in
the literature.

The back-propagation (BP) algorithm, mentioned in Section 1.2, was used for
learning the optimal parameters of these deep networks. However, BP alone only did
well in practice for networks with a few hidden layers [67, 68]. The main problem was
the high number of local optima in the nonconvex cost function of the deep networks.
The BP algorithm, based on the gradient descent method, starting from some random
initial point, often gets trapped in a poor local optimum. The severity increases signif-
icantly with the depth of the network. This issue is partially responsible for steering
the machine learning research away from deep architectures toward shallow models
with convex loss functions with an easily accessible global optimum.

The above issue was empirically solved when unsupervised learning algorithms
were introduced in [69, 70]. A new class of deep generative models, called deep belief
network (DBN), was introduced. A DBN is a deep neural network with connections
between the layers but not between the units within each layer [69, 71]. It is trained in
two phases. At the first unsupervised phase, it learns to reconstruct its inputs, so that
the layers could act as feature detectors. At the second supervised stage, the system
learns to perform classification.

Initializing the weights of a deep neural network or MLPs with a correspondingly
configuredDBNoften producesmuchbetter results than thatwith the randomweights
[65]. Therefore, deep MLPs can be pretrained with unsupervised DBN and then fine-
tuned by back-propagation. Other training techniques have been developed, but they
lie outside of the general scope of this introduction.

Nowadays, deep learning has various similar definitions. LeCun et al. [72] pro-
posed the following one as the first line of their field-defining paper: “Deep learning
allows computationalmodels that are composed ofmultiple processing layers to learn
representations of data with multiple levels of abstraction.”

That is, the first key aspect of deep learning is that it is based on models con-
sisting of multiple layers of nonlinear information processing. The second key aspect
is that, similarly to the human information processing systems, it develops multiple
representations of the data at different layers of abstraction. Deep learning would not
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meet such ahuge success if it hadnot been assisted by several advances in technology,
such as the drastically increased chip processing abilities (general-purposeGPUs) and
the significantly increased size of data used for training. As pointed out by Geoffrey
Hinton—apioneer in the field of ANNs and coauthor of the first paper on the backprop-
agation algorithm for training MLPs [73]—at his Royal Society talk, the deep learning
was already known back in 1986, but it could not take off at that time for the following
four reasons:
1. Our labeled data sets were thousands of times too small.
2. Our computers were millions of times too slow.
3. We initialized the weights in a stupid way.
4. We used the wrong type of nonlinearity.

To conclude this brief introduction to deep learning, we mention three popular state-
of-the-art deep learning techniques:
Multilayer perceptrons. Deep feedforward neural networks, discussed in Section

1.2.2. At present, the most popular nonlinear activation function is the rectified
linear unit (ReLU), or the half-wave rectifier f (z) = max(z,0) [72].

Convolutional neural networks. Introduced by LeCun et al. [74] for analysis of vi-
sual imagery, these networks preserve the spatial structure of the data. They can
be considered as a variation of multilayer perceptrons and are inspired by biolog-
ical processes, since the connectivity pattern between the neurons resembles the
organisation of the visual cortex [75].

Long short-termmemory networks The LSTMs are recurrent neural networks,
trained using BP and composed of memory blocks that are connected into layers.
Introduced by Jurgen Schmidhuber [76], they can be used to create large (stacked)
recurrent networks. These systems are well suited for classification, processing,
and prediction of time series.

1.2.5 Hopfield networks

In his seminal paper published in 1982 [77], Hopfield asked the question if a com-
putational task can be performed by a large number of simple neurons. A particular
emphasis was placed on the collective nature of the system, and that complex process-
ing functionality can arise as an emergent property of neural systems. Based on what
we today would call an ANN, the system would be delocalized and make use of exten-
sive asynchronous processing. Highlighting these technical aspects suggests Hopfield
was interested in an implementation on dedicated hardware. The specific task to be
solved by such aHopfield Network is content addressable memory. Other than in clas-
sical computers, in Hopfield Networks content addressable memory should be robust
against noise and accessible even if only parts of the information is available. The
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Hopfield Network therefore is to incorporate robust error correction into its architec-
ture.

Aspointedout in [77],multiple physical systems inherently possess such error cor-
rection properties. In terms of physical dynamical systems, a stable content address-
able memory corresponds to a locally stable fixed point. In their vicinity, the system’s
flow field—describing its equations of motion—points toward the locally stable posi-
tions; see Figure 1.3. Assuming dampedmotion and an initialization in such a vicinity,
the systemwill therefore relax toward these fixed points and the correct memory is re-
called. For a system of N neurons and xm = {x1, x2, . . . , xN } as the system’s mth fixed
point, an initial system state of xm


= xm + Δ converges to xm


→ xm if noise or lack of

information Δ is sufficiently small. A specific memory value xm therefore is address-
able by non-ideal initialization vectors.

The possible state of neuron i = {1, 2, . . . ,N} is defined on the bases of rate coding:
xi = 1 (“firing at maximum rate”) or xi = 0 (“not firing”). Hence, state x corresponds to
a binaryword vector. Evolution along time n is governed by the network’s connectivity
matrixW and the neuron nonlinearities f (⋅):

xi(n + 1) = f(∑
j
Wi,jxj(n)) (12)

f (xi) = {
xi → 1 x > D
xi → 0 else,

(13)

whereD is a discriminator value typically set to zero. Hopfield goes on and defines the
coupling matrix based on them = {1, 2, . . . ,M}memory values xm according to

Wi,j =∑
m
(2xmi − 1)(2x

m
j − 1) (14)

Wi,i = 0. (15)

In Figure 1.11(a), the resulting network is schematically illustrated. An injection
vector xm


queries a specific memory stored inW. The query word vector sets the net-

work into its initial state, from which it then evolves only according to internal inter-
actions as described by equation (12):

xm


i (n + 1) = f(∑
m
(2xmi − 1)[∑

j
xm


j (n)(2x
m
j − 1)]) (16)

= f (Hm
i (n)). (17)

Forxm uniformstatistically distributedBooleans, one canmake the followingobserva-
tions regarding the system’s temporal evolution. The term in square-brackets of equa-
tion (16) averages to 0 unless m = m, for which it is N

2 . As a result, the internal state
of neuron i becomes Hm

i (n) ≈ (2x
m
i − 1)N/2, which is positive (negative) for 2xmi = 2
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Figure 1.11: Schematic illustration of a Hopfield network (a). (b) Basin of attraction and Energy asso-
ciated to a state x.

(2xmi = 0), respectively. Due to the transformation by the threshold nonlinearity f (⋅), a
stored state is stable except for noise originating from them ̸= m terms. Moreover, f (⋅)
forces inputs toward one of the saved binary word vectors. Generally, the binary word
vector provided in response to a query converges to the stored xm with the shortest
Hamming distance to initial input xm


[77].

What makes Hopfield networks particularly fascinating systems is their concep-
tual simplicity andadeep connection tophysical systems. This simplicity allowsderiv-
ing general properties which would be difficult to obtain for more ubiquitous neural
networks. For example, one can show [5] that deviations induced by m ̸= m terms
in equation (17) to an input vector result in a signal-to-noise ratio of SNR = [(M −
1)n/2]1/2, where n is the number of correct bits in xm


. One therefore obtains a limit

for how many word vectors M can be stored inW for achieving memory of a specific
storage-finesse. In practice, storage should be limited toM ≤ 0.1N, beyond which the
probability of association to a wrong entry grows significantly.

Finally, one can associate storage matrixW to an energy function, a common ap-
proach for physical systems:

E(x) = − 1
2
∑
j ̸=i
xixj. (18)

As schematically illustrated in Figure 1.11(b), saved word-vectors xm correspond to lo-
calminima in the energy function of equation (18).Whenever the system is initialized,
its state evolves along the negative gradient of equation (18), creating basins of attrac-
tion aroundxm. As long as the query-vector’s distanceΔ to the desiredmemory value is
smaller than the attraction basin’s size, the Hopfield network will provide the correct
response.

Several additional aspects of Hopfield networks favor its potential implementa-
tion in networks consisting of physical connections and neurons. Hopfield investi-
gated the possibility to clip connection matrix W to values Wi,j = sgn(Wi,j), where
sgn is the sign function [77]. For physical systems, such clipping strongly reduces sys-
tem complexity. Network connections would be Boolean and either excitatory or in-
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hibitory. And again, it is possible to analytically derive the impact of such drastic
action: the storage-finesse is reduced through a reduction of the SNR by a factor of
(2/π)1/2. If one therefore wants to operate a simplified hardware Hopfield network,
it is possible to estimate an adequate memory size M based on experience obtained
from full-resolution model systems. Of particular interest for physical networks are
measures identified by Denker et al. [78]. In optics, subtraction of signals, as required
by negative entries in W, can be of formidable complication as it typically requires
phase-stability. However, one can leverage an adaptable threshold in function f (⋅) as
defined in equation (15). This additional degree of freedom enables adding an offset to
W until all its entries are exclusively positive. Motivated by such forgiving criteria, the
Hopfield network was received enthusiastically by the physics and engineering com-
munity, and numerous implementations in physical hardware networks were created.
A selection of the most relevant realizations is given in Section 1.3.1, the state of the
art at the time can be appreciated in a special issue [79].

1.3 Early photonic implementation

It was quickly realized that neural networks feature a fundamentally different archi-
tecture than that of classical von Neumann computing. Updating a neural network’s
state typically involves vector or matrix products, followed by accumulations and
transformations with simple nonlinear local functions creating neuron outputs. The
concept simultaneously profits and facilitates optical realizations. As discussed at
the beginning of this chapter, the principle carrier of optical information, the pho-
ton, possesses a property fundamentally different to its electronic counterpart, the
electron. Photons are bosons, and as such they do not directly interact when occu-
pying the same space. Linear multiplications and accumulations can therefore be
executed in parallel, even for signals partially occupying the same physical space.
Neural networks can maximally capitalize from this advantage. At the same time, the
neural network approach to computation reduces the complexity of local nonlinear
transformations to a minimum. Simple thresholding, saturating or linear-rectifying
functions are highly popular and equally powerful neuron nonlinearities.

Yet, optically creating complex link architectures is not straightforward.And since
photons do not directly interact, it is a continuing struggle to cap the energy consump-
tion for simple optical nonlinear transformations. A careful evaluation of an optical
neural network in terms of its global performance is therefore mandatory. Aspects as
energy efficiency, input-output isolation, cascadability, and scaling properties need to
be considered. The detail in which such considerations need to be taken into account
is excellently illustrated by an article fromCaulfield et al. [29], inwhich they argue that
future supercomputing requires optics. Swift responses by Tucker [30] and Miller [31]
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highlighted multiple points of controversy. Despite this controversy, creating gener-
ally fosters understanding, and prospects of optical neural networks are of such scale
that the struggle towards a competitive, practical, and functioning system should be
considered mandatory.

1.3.1 Optical perceptron

As discussed in Section 1.2.1, in a perceptron the network or input state x is weighted
according to connectionsW, followed by a thresholding nonlinearity:

yi = f(∑
j
Wi,jxj), f (z) = {

1, z > 0
0, else.

(19)

Depending on the dimensionality of output y, connections either correspond to a vec-
tor or a matrix. At the heart of perceptron-learning, we therefore find either vector or
matrix products. Consequence of the parallelism of optics, it was realized that such
operations can strongly benefit from an optical implementation. Identical consider-
ations are at the heart of optical interconnects, where optical signals are routed be-
tween input and output channels in parallel. As routing corresponds to such vector
and matrix products, interconnect-techniques are transferable to an application as
optical perceptron learning, simply by adding nonlinear thresholding by function f (⋅).
Finally, one requires a rulewithwhich entries ofW can be calculated or obtained from
interactive optimization by supervised learning. In general, weights are updated ac-
cording toWi,j(n + 1) = Wi,j(n) + ΔWi,j(n) and ΔWi,j(n) = g(x(n),W(n), y(n)), where g(⋅)
is some function [80].

Research into optical perceptronswas a highly active field in the late 1980s. Multi-
ple approaches to create and optimize connectionsW were investigated. Among oth-
ers, holographic realizations appeared particularly interesting. Psaltis et al. [80] intro-
duced the possibility of creating as well as iteratively optimizingW based on photore-
fractive crystals. As illustrated in Figure 1.12(a), a hologram is created using interfer-
ence between patternW loaded onto a spatial light modulator (SLM) and a reference
wave. Subsequent illumination of the recorded hologram with state x then creates an
optical signal corresponding to the productW ⋅ x at positions determined by the pre-
viously used reference sources. As the adjustment of weights requires that too strong
entries inW must be reduced, Psaltis et al. [80] superimposed the pattern with non-
coherent illumination, causing a reduction of the coupling strength.

Creating andmodifying holographic patterns for multiple sources is not indepen-
dent: actions dedicated to a specific holographic pattern will simultaneously modify
other patterns stored in the same crystal. To avoid this undesired effect, Psaltis et al.
suggested to arrange spatial positions in a fractal configuration [82]. Under these and
other conditions arising from geometric considerations, a holographic medium with
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Figure 1.12: Schematic illustration of an optical perceptron learning. (a) Writing of weightsW1 and
W2 into the holographic medium, associating the current SLM states to class 1 or 2 via illumination
with sources 1 and 2, respectively. (b) Upon reappearance of states 1 (2), the outputs y1 (y2) are gen-
erated. Figure taken from [81].

volume V = 1 cm3 can store approximately 1010 connection parameters at an opti-
cal wavelength of λ = 1 μm [80]. Using an optical setup following these principles,
they experimentally demonstrated perceptron learning, separating binary input pat-
terns via thresholding at the output [80]. Furthermore, Wagner and Psaltis showed
that based on a slightly more advanced optical functionality, NNs consisting of more
than one layer could be trained, including the today heavily exploited scheme of er-
ror back-propagation [80, 83]. Yet, these elaborations remained limited to theoretical
considerations.

Conceptually comparable, Hong et al. [81] implemented a different approach to
create positive and negative modifications to entries in W according to perceptron
learning. Using Stoke’s principle of reversibility, based on a doubleMach–Zehnder in-
terferometer geometry, they created two write beams with a relative phase-shift of π.
As a consequence, the hologram-write patterns fromone or the other beamare equally
out of phase, and hence one can counteract the impact of the other. They experimen-
tally demonstrated the coherent writing and erasure of target patterns, and the di-
chotomization of 12 bit binary patterns via numerical simulations of their holographic
perceptron learning.

McAulay et al. [84] chose a different approach. Instead of a holographic medium,
they used a spatial light repeater to implement perceptron learning. In experiments,
they optically dichotomized 4 Chinese characters. These characters were of signifi-
cantly higher complexity than the previously used binary patterns. Further augment-
ing the computational challenge, they chose highly similar symbols to be separated
into two different classes. Based on these similarities, the authors investigated the sys-
tem performance for exclusively positive or bipolar weights inW. They demonstrated
significantly better separation between the two classes for the bipolar weight system.

In general, it can be said that the early optical perceptron learning experiments
are of considerable elegance in their implementation. Perceptron learning and error
back propagation remain at the heart of todays NNs concepts. Exploiting material or
architecture inherent physical effects for their implementation certainly illustrates the
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large potential of what can be gained with dedicated hardware computing substrates.
Yet, these early concepts also suffer significant drawbacks. It is hard to ignore, e. g., the
inefficiency of such implementations. Holographic coupling is fundamentally limited
by the diffraction efficiency, whichmostly lies below 10% [85]. ForMcAulay et al. [84],
we estimate that less than 1% of the optical input arrives at the output. Furthermore,
all experiments are based on bulk optics, and it is not apparent how the holographic
concept could be transferred into integrated devices.

1.3.2 Optical Hopfield networks

Content addressablememory realizedvia aHopfieldNetwork (see Section 1.2.5) simply
requires iterative update of the RNN according to connection weightsW and a thresh-
olding function; see equations (16) and (17). In complexity, this goes a small step be-
yond the simple perceptron, as the system’s state vector x is not just simply externally
provided input, but takes center stage in the system’s evolution. Yet, in terms of op-
tical architecture concepts, this corresponds to a simple extension of the system by a
feedback path. Figure 1.13 shows two different approaches to close this feedback loop,
[5]. An electrical feedback is created in panel (a), while panel (b) illustrates how such
recurrent neural networks could be realized using optical feedback. Crucially, both
systems remain electro-optical, as they rely on electronic detection and thresholding.
The reasoning behind it is that in a network of N neurons, electronics are restricted to
the system section scaling with O(N), while optics takes care of the crucial part where
scaling is according to O(N2). However, the authors point out that these electronic
components could be replaced by bistable optical amplifiers, requiring multiple pin-
hole and onemicrolens arrays. The resulting systemwould be all-optical and coherent
[5].

Figure 1.13: Schematic illustration of a Hopfield network implemented (a) electro-optically and
(b) all-optically. Figure reproduced from [4].
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In their seminal publication, Farhat et al. [4] implement the electro-optical ver-
sion of Figure 1.13(a) in an experimental setup. As in Section 1.3.1, they addressed
the problem of bipolar entries in the connection matrix W by multiplexing the im-
plementation of the optical weights: one section was dedicated to positive, the other
to negative weights. Their system consisted of a linear array of 32 light emitting diodes
creating state x. Positive and negative values of bipolarmatrixWwere stored in an op-
tical mask each, each followed by a linear array of 32 photo detectors, measuring the
bipolar multiplication’s results. The system’s electronic high-frequency cut-off was at
(30ms)−1, yet the experiment was performed at lower speeds.

Weights ofW were obtained based on the analytical procedure of equations (14)
and (15), [77]. Psaltis et al. stored four memory vectors xm and studied the reliabil-
ity with which the system could address this content using faulty addressing vec-
tors. They showed that the system was robust against errors on up to 12 out of the
32 bits.

In [86], the scheme is extended to a two-dimensional optical implementation of
state vector x. Jang et al. created a 4 × 4 state vector using a liquid crystal spatial light
modulator and holographically implemented the connections according toW. How-
ever, for a setup with a two-dimensional state vector, the connection matrix becomes
a tensor with rank four [87]. The authors solve this problem by creating 4 × 4 separate
sub-hologram with 4 × 4 matrix entries each. In an unfocused setup, bipolar levels
in W are encoded in positive values levering a constant offset and a corresponding
adjustment of threshold-level in equation (13) [78]. The authors saved two 16-valued
word vectors and their content was addressable using vectors with fewer than 3 bit
errors. More detailed considerations regarding the fabrication of the required holo-
graphic element have been treated by Keller et al. [88]. Finally, Yeh et al. [85] followed
a similar approach with a network consisting of 8 × 8 neurons.

Ito et al. [89] extended the general concept and used optical fiber couplers to lit-
erally create an optical network consisting of connection lines. With their approach,
the authors implemented a Hopfield network for a 5 × 5 network state, hence consist-
ing of up to 252 = 625 fiber connections. The state matrix x was encoded in a two-
dimensional laser array (λ = 0.87 μm), detection was realized via a two-dimensional
array of photo diodes. Bipolar weights were again implemented with a paired set of
connections, and the fiber network was optimized with regards to the required con-
nection for the three particular binary word vectors to be saved. Furthermore, they
amended the original concept by an additional bit-significance vector. Experimental
performance was evaluated against the address bit error and compared with numeri-
cal simulations, identifying noise in the coupling ratios as the overall limiting factor.
As the authors used standard macroscopic fibers to implement their system, the re-
sulting experiment was rather bulky. However, one can possibly consider this publi-
cation as the first computer based on optical waveguides, and once implemented in
integrated optics the approach is of great potential.
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1.4 Conclusion

During the past decades, ANNs have established themselves as one of the leading
information processing concepts. Their originally neuro-inspired architecture makes
them fundamentally different from the Turing–von Neumann computing concept.
This architectural difference has a direct and profound impact on the performance
when ANNs are emulated on classical computing infrastructure. Among others, the
main reason is that current computing substrates do not provide the massive par-
allelism required to efficiently compute the state of an ANN. Already in the 1980s,
the potential of optics in addressing this bottleneck was intensively discussed. Early
demonstrations from that time already show the impressive potential of these early
days proof-of-concept experiments. Full-scale technology transfer was then hindered
by a fading interest into ANN; partially by limited performance of the concepts, par-
tially by lack of pressing applications. The recent surge in ANN activity has removed
these two stumbling-blocks, and today photonic ANNs are a highly attractive and
active field of research with enormous potential for next-generation computing sub-
strates. In the remainder of the book, we introduce and photonically implement
Reservoir Computing, an ANN-concept particularly attractive for implementation in
dedicated physical substrates.
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Joni Dambre
2 Information processing and computation
with photonic reservoir systems

2.1 Introduction

2.1.1 The boundaries of digital computing

The recent surge of research into alternatives for conventional (mostly digital) CMOS-
based computing hardware is pushed forward by the limits of scalability. The funda-
mental assumptions, uponwhich the success of digital computing is based aremainly
its robustness, resulting in extremely low error probabilities, and its inherently low
static power consumption, both of which break down for very small devices. The
digital computing paradigm and the associated design methodology rely on (almost)
error-free operation and cannot deal with inaccurate devices.

Already in 1956, Von Neumann discussed how to approximate high-precision dig-
ital computing with unreliable components [1] by introducing redundancy and ma-
jority voting. However, the bounds he derives to prove that with enough redundancy,
error probabilities can be pushed below any desired threshold, are based on the as-
sumption that errors occur independently.When the errors are correlated, as is usually
the case in real life, an ensemble rarely performs worse than the individual models,
but the convergence of the accuracy is no longer guaranteed. In practice, taking an
ensemble of unreliable models is now common practice inmachine learning.

The second most important property to break down is the fact that, using CMOS,
we can build implementations of digital gates that consume very little static power. As
feature dimensions and isolation layer thickness get thinner, MOSFET transistors and
CMOS gates start leaking current in all directions. Whereas the power consumption
of a computer was long considered an unimportant issue, it has now become more
important than the speed of computation. A few powerful GPUs in the room are an
excellent replacement for other heating devices, but our hunger for ever-increasing
and ubiquitous computing does not fade, especially in the presence of the huge leaps
that are being made with AI and deep learning.

Many early attempts of computing with alternative devices stay within the digital
model of computation. Clearly, this has its benefits: if you can build gates and flip-
flops, the whole design methodology can stay in place and the chances of industrial
uptake of your new technology improve dramatically. However, thus far, no mapping
between inherently analog devices and the basic digital building blocks (binary gates,
binary gated memory cells) has been found that can sufficiently outperform transis-
tors on at least one dimension of performance (size, power consumption per operation
or power density, speed)without overly compromising the others and at the same time
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is commercially viable in a mass production setting. Until now, the proposed devices
were either too large, too slow, too power hungry, too inaccurate or too difficult to
produce, or did not offer sufficient benefits to trigger a change of course in an entire
industry built around integrated CMOS circuits.

If we take a step backwards, the digital computing model is maybe no longer the
most efficient. This is especially true for the huge amount of information processing
that handles signals, e. g., image processing and sensor processing,where, essentially
real numbers are translated into real numbers and small errors are usually accept-
able. From an energy perspective, it is no longer the most efficient to represent analog
values as bit sequences and to use analog devices to mimic theoretical mathemati-
cal models known as digital gates and memory cells. The field of research that ad-
dresses ways to optimally exploit relaxed precision requirements using more or less
traditional computing devices is generally called approximate computation [2, 3]. It
mostly proposes incremental changes to traditional design flows at different design
levels (algorithms, compilers, synthesis, and devices). Different authors often target
different performance goals, although the general focus is on power efficiency.

2.1.2 Analogue computing

The alternative to digital computing is to compute directly in the analogue domain.
Unfortunately, for general-purpose (or broad-purpose) analogue computing, useful
combinations of a clear-cut computational model and an automated hardware design
methodology are rare. One approach is to move to neural networks as a computational
model. Their design is based on learning from examples and tuning parameters tomin-
imize a given cost function. They are usually used as machine learning software mod-
els that are run on digital computers to approximate input-output relationships for
which no perfect solution is known or does even exist.

Many variants exist within the broad category of neural networks, and for some,
their implementation can also be realized with analogue building blocks. From the
artificial ones used in machine learning to the biologically plausible ones studied in
computational neuroscience, all are computational models which come with ways to
tune their parameters (weights). Essentially, they are extremely powerful function ap-
proximators. Some types of neural networks can be proven to be universal approxima-
tors [4, 5], which means that they can approximate a very broad class of input-output
relationships with any desired precision if they are allowed to grow large enough. In
practice, they are inherently imperfect, i. e., even the most powerful neural networks
make mistakes. These can be frequent but small, or very infrequent but very large.
Depending on the application, either one can be worse than the other. Since neural
network training and evaluation is usually based on the average quality of the output
across a large number of examples, only detailed analysis of the errorsmade canmake
the distinction.
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In general, it is useful to make a distinction between the computational model
that is used and the physical medium in which this model is implemented [6]. The
mapping between both should result in a set of computational elements or building
blocks that can be realized in the chosen medium (with guarantees on all aspects of
their performance) and amethodology for combining them into a system that realizes
the desired behavior. From this perspective, it is very helpful if the requirements for
these building blocks are not very rigid. It is this rigidity in digital computation that
makes it so difficult to realize digital building blocks from analogue devices. In com-
parison, in neural networks, we need to be able to compute a weighted sum of signals
at the neuron inputs, but the exact behavior of the neurons turns out not to be very
important for their performance. In artificial neural networks, several different func-
tions are already being used, most notably: sigmoidal, exponential, stepwise linear,
and Gaussian. Exactly and efficiently matching those with analogue devices is also
not trivial, and the same is true for the building blocks used in the models from com-
putational neuroscience. However, it turns out that most input-output relationships
that resembles them should give rise to good performance. In fact, this robustness of
the neural network computational model is one of the historical reasons for the emer-
gence of physical reservoir computing and photonic reservoir computing, the topic of
this book, from computational models that are closely related to neural networks.

A crucial aspect for the success of analogue computing is the availability of a de-
sign methodology that can be automated to provide the mapping between a desired
behavior to (a hierarchical composition of) the computational elements of the model
and from those to the physical medium. Clearly, for digital computing, this is in place.
Therefore, in order for any new hardware approach to become competitive, this map-
ping should outperform the existing solutions according to at least one quality mea-
sure (e. g., speed, power consumption, size, accuracy, noise-robustness)without com-
promising too much on the others.

2.2 Reservoir computing

2.2.1 A more relaxed model of computation

In this book, we describe recent work that uses physical reservoir computing [7] to de-
sign photonic computational devices. This is an altogether different approach to com-
putation, inwhich no abstract computationalmodel is enforced onto the implementa-
tion substrate. Instead, the natural dynamics of the substrate are exploited and com-
bined to approximate the desired input-output relationships of a given computational
task.

Instead of in the computational model, the constraints are now in the optimiza-
tion approach, which is based on the principles of reservoir computing. In its broadest
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Figure 2.1: Schematic representation of a
reservoir computing system. The input signal
u(t) is fed into the reservoir and the resulting
reservoir states x(t) are used to learn a linear
readout that is then used to generate the
output signal y(t).

interpretation, reservoir computing consists of two parts: a reservoir and a readout as
depicted in Figure 2.1. The reservoir is a dynamical system that is perturbed (driven)
by the input signal u(t), which affects its current internal state x(t) as well as the fu-
ture evolution of that state. In the readout, the reservoir’s internal state is observed
and a linear combination of the observations is optimized to optimally approximate a
desired output signal. In contrast to the readout, the reservoir itself is not changed in
this stage, although a few global system parameters are usually tuned during design
to make the overall dynamics of the reservoir more suitable for the task.

The reservoir computing approach emerged almost simultaneously from the fields
of neuroscience and artificial neural networks around the end of the previous and the
beginning of this century. The twomost frequently cited foundational works are those
of Herbert Jaeger [8, 9] andWolfgangMaass [10]. Jaeger andMaass used echo state net-
works (ESN) and liquid state machines (LSM), respectively, as their reservoirs. Both are
simulated recurrent neural networks, operating in discrete or discretized time. ESNs
consist of discrete-time analogue sigmoidal or hyperbolic tangent neurons. The net-
work they form is usually fully connected, and the input signals are also connected
to all nodes. The connection weights are randomly initialized. LSMs consist of (sim-
ple models of) biological spiking neurons. In both cases, the network’s internal state
space is finite and consists of all neuronoutputs. Overviews of the progress in reservoir
computing can be found in [11–14].

2.2.2 How to train a reservoir computer

In summary, a reservoir computing system consists of a reservoir, which transforms
the input signal(s) into features that depend on the input history, and a readout layer.
In most work on reservoir computing, this is a simple linear regression layer, which is
trained by minimizing the mean squared error (equation (1))

MSE(y, ŷ) = E[(y − ŷ)2] (1)

between the generated output sequences and the desired output sequences for a set
of examples (where E indicates the expected value).

In order to minimize the MSE, we minimize its approximation based on one or
multiple input sequences of finite length. For this purpose, the reservoir is drivenwith
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the input sequence(s).1 The N observed reservoir state signals are sampled in time
(leading to S samples for each of the signals) and recorded into the S × (N + 1) aug-
mented state matrix X̃, in which the first N columns contain the N state signals, and
the last column is an all-ones column. Using the notation w̃out = (wout,w0), the opti-
mal output weights are then found by the normal form:

w̃out = (X̃
T X̃)−1X̃Ty, (2)

yielding a closed-form expression for the approximated target signal:

ŷ = X̃w̃out = X̃(X̃
T X̃)−1X̃Ty. (3)

Inmachine learning, it is generally advised to use some formof regularization to avoid
overfitting to the training data. The most common approach is to use ridge regression.
This minimizes the augmented cost function:

MSEridge = MSE + λw
T
outwout. (4)

The intuition behind this is the fact that keeping theweights small constrains the com-
plexity of the model. Note that w0 should not be included in the regularisation term
as it is needed to set the average value of the approximated target signal to its correct
value.

When using ridge regression, it is generally advisable to normalize the state sig-
nals before applying linear regression, to avoid the regularization from overly penal-
izing signals with small magnitude. In this case, we use

x[n] = x[n] − avg(x[n])
stdev(x[n])

instead (and similarly construct the corresponding state matrix X). Augmenting the
state matrix with an all-ones column is no longer necessary in that case, since any
linear combination of the recorded state signals will have an average value of 0 and
the optimal value of w0 is simply given by

w0 =
1

nmax

nmax

∑
n=1 y[n].

The optimal readout weightswout are then given by

wout = (X
TX + λI)−1XTy (5)

1 Usually, in order to reduce the impact of the initial state, the first part of each sequence is ignored
for both training and evaluation.
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where I is the identity matrix and XTX is the normalized covariance matrix of the
state signals. The regularization parameter λ is usually small (order 10−5–10−3), but
its optimal value can vary a lot from case to case. Extremely small optimal values of λ
indicate that the combination of task and training data was not prone to overfitting,
whereas large values of λ suggest the opposite. For this reason, λ needs to be tuned
using an appropriate form of validation. Usually, k-fold cross-validation is used. Once
the optimal value of λ is found, all of the training data is used to train the final model
and a sufficiently large and previously unused test data set serves to assess the final
performance of the model.

Alternative training approaches for the data-driven optimization of linear models
exist and can also be used, e. g., recursive least squares (RLS) for the on-line optimiza-
tion in regression tasks or logistic regression2 for classification tasks, but probably
mainly for historical reasons, they are less common in the literature on reservoir com-
puting.

2.2.3 Measures for reservoir performance

Since the readout of a reservoir is traditionally trained to minimize MSE, this is the
naturalmeasure of performance. Note that for classification tasks, better performance
measures exist. These will be discussed at the end of this section.

As a baseline for MSE, consider the poorest possible reservoir: one for which the
observed states do not contain any useful information at all. Instead of a reservoir,
one could even imagine using N independent noise sources that have no relation to
the input signal. If no overfitting occurs, the readout shouldproduce a constant output
equal to ŷ = μy, the expected value of the target signal. In this case, the MSE equals

MSE[y, ŷ] = E[y − μy] = σ
2
y , (6)

i. e., the variance of the target signal. Any reservoir with states that are remotely useful
should lead to a MSE on the training data that is smaller (formal proofs exist but are
omitted here). This bound only applies to the MSEmeasured on the training data, but
the MSE on the test data for a properly trained and regularized model should not be
very different.

One disadvantage to MSE is the fact that it is sensitive to the variance of the target
signal,which iswhyothermeasures thanMSEare oftenused. For example,normalized
mean squared error (NMSE)

NMSE[y, ŷ] = MSE
σ2y

(7)

2 In fact, from the perspective of machine learning, logistic regression is greatly preferable over MSE-
based linear regression for classification tasks.
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has the advantage that it no longer depends on the signal variance andnormalized root
mean squared error (NRMSE = √NMSE) has the additional advantage that its size can
be interpreted as a fraction of the target signal’s standard deviation and that its value
is ∈ [0, 1] when evaluated on the training data. However, one of the most frequently
used measures, especially in statistics, is the coefficient of determination, or R2:

R2[y, ŷ] = 1 − MSE
σ2(y)
. (8)

Like NMSE, R2 is normalized. In addition, given the fact that (on the training data)
MSE ≤ σ2(y), 0 ≤ R2 ≤ 1, where a value of 0 represents the useless reservoirmentioned
above and a value of 1 corresponds to perfectly reproducing the target signal.

Using the orthogonality principle, the MSE of the resulting estimator can also be
written as

MSE(y, ŷ) = σ2(y) − cov(y, ŷ) (9)

and as a consequence, R2 equals:

R2[y, ŷ] = cov(y, ŷ)
σ2(y)
. (10)

Note that, in the context of linear regression (withminimization of theMSE) andwhen
evaluated on the training data, it can be proven that R2 equals the square of the cor-
relation coefficient R which is defined as

R[y, ŷ] = cov[y, ŷ]
σ(y, ŷ)

. (11)

A comprehensive explanation for this can be found in, e. g., [15].
When using a reservoir for classification tasks, it would often be better to use a

linear classification model, such as logistic regression, to train the readout. This is
the case whenever the outputs are thresholded to determine the correct class. Unfor-
tunately, this is rarely done in practice, but after training, it is common to use typical
classification performance errors, such as accuracy (the fraction of samples for which
the predicted class was the correct one),misclassification loss (the fraction of wrongly
classified samples). When addressing bitwise tasks in telecommunication, the reser-
voir outputs are typically sampled once per bit and the bit error rate (BER) is reported.

2.2.4 Echo state networks as a model system

In what follows, we briefly summarize echo state networks (ESN). In the early days
of reservoir computing, these were the most frequently used types of reservoirs. As
researchers have extensively studied them, their properties are well understood. In
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addition, their simplicity makes it easier to understand the interaction between sev-
eral important system parameters that are also relevant for most physical reservoir
implementations. Understanding the interaction between these parameters and the
suitability of a reservoir for a given task is crucial for designing good physical reser-
voirs. For these reasons, ESNs will also be used as a model system further on in this
chapter.

As stated above, ESNs are discrete time analogue recurrent neural networks with
hyperbolic tangentneuronactivation functions.Mathematically, usingbold lowercase
letters for column vectors, bold uppercase letters for matrices and n = 1 . . . nmax to
indicate discrete time, they can be described by the following equations:

a[n] =Wresx[n − 1] +Winu[n − 1] +wbias (12)
x[n] = tanh(a[n]). (13)

Here,a are theneuronactivations, the input signals to theneuronnon-linearities. Note
that some sources use u[n] instead of u[n − 1] to calculate the activations, which re-
sults in shifting the reservoir states, the readout signals and the desired output sig-
nal one step forward in time. In ESNs, this difference can be interpreted as assigning
the discrete unit delays entirely to the interneuron connections (but not to the input
connections) or entirely to the neurons. Neither view maps to the reality of physical
implementations, where all connections and nonlinear elements have their ownphys-
ical delay and their relative sizes depend on the specific implementation. The notation
chosen here seems more natural from that perspective.

The N × k input weights Win feed the inputs to the reservoir nodes, the N × N
reservoir weightsWres provide the internal feedback in the reservoir and the N inter-
nal bias weightswbias set the operating point of the reservoir nodes. ESNs can be fully
or sparsely connected. Early studies indicate that for networks with real-valued sig-
nals, this decision does not impact performance a lot [16]. The input or inputs are also
connected to all neurons or a subset thereof and all neurons also receive a constant
input (a bias). A typical reservoir creation recipe is as follows: the weights for all con-
nections are sampled from some probability distribution (e. g., the standard normal
distribution or a uniform distribution between −1 and 1). In the case of sparse connec-
tivity, a randomly sampled fraction of themare set to zero. After initialization, each set
of weights (the input weights, the bias weights, and the reservoir weights) is rescaled
with its own scaling factor: the input scaling (IS), thebias scaling (BS), and the spectral
radius scaling (SR), all of which impact the overall dynamical regime of the reservoir
and the computations it is suitable for.

The diagonal elements ofWres are usually nonzero. Since they couple each node’s
previous state back to itself, the neurons act as nonlinear low-pass filters. Since these
values affect the overall bandwidth and dynamics of the reservoir, it is often desirable
to control their relative magnitude compared to the other weights explicitly. This led
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to several descriptions of leaky ESNs [17], one of which is

a[n] =Wresx[n − 1] +Winu[n − 1] +wbias (14)

x[n] = tanh((1 − α)a[n − 1] + αa[n]) (15)

where α is the leak rate, 0 ≤ α ≤ 1. It is also possible to randomize the leak rates,
such that they are different for each neuron. Since the self-feedback of each neuron is
now explicitly regulated by the leak rate, the diagonal elements ofWres are often set
to zero. The leak rate α is yet another tuning parameter for the reservoir.

Finally, ESNs can also be used with output feedback. In this case, the output of
the readout projected back into the reservoir nodes, again with random weights and
a tuneable rescaling factor. Since this approach is mostly used for signal generation
tasks, wewill not consider it further here. More information can be found in [8, 18, 19].

For anESN, as formost other incarnations of reservoir computing, the target signal
y[n] is approximated by optimising the N + 1 readout weights {wout,w0} in a linear
combination of the state signals at each time t:

ŷ[n] = wT
outx[n] + w0 (16)

where u[n] is the k-dimensional input vector at time n,N is the number of nodes (neu-
rons) in the network, x[n] is the N-dimensional state vector, and y[n] is the output of
the reservoir system. Note that in early works on reservoir computing, the input u[n]
is also used in the linear combination, yielding additional input weights in equation
(16).

In many ways, echo state networks are very different frommost physical systems.
For one, they operate in discrete time. In addition, they are usually fully connected,
whereas this is not feasible formost physical systems.However,most physical systems
have tuning parameters that have a very similar impact on computing to the scaling
parameters and leak rate in an ESN. In addition, they can often be simplified in such
a way that they resemble an ESN with a very specific connection pattern an setting of
the scaling parameters. The knowledge of how these parameters affect computation in
ESNs has often proved invaluable in tuning physical reservoir parameters. Studying
ESN-like simplified models of a new physical system often helps to gain additional
insights.

2.2.5 General requirements to reservoirs

In Section 2.2.2, we have described how to exploit the natural dynamics of any driven
dynamical system for computation. Obviously, this in itself is not a recipe for success,
since it only works well if there is a good match between the system’s dynamics and
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what we need for a given task. In this section, we briefly review the most important
theoretical concepts that have been developed to reason about the way reservoirs pro-
cess their inputs and which kind of processing is required for a task. The focus here
will be on an intuitive understanding of what these concepts mean. For an in-depth
treatment, we refer to the original papers.

The fading memory property. Both ESNs and LSMs are nonlinear dynamical
systems, which can be tuned to display a variety of dynamical regimes, including os-
cillatory and chaotic ones, by increasing their internal connection strengths. How-
ever, for the purpose of reservoir computing, the connection weights need to be tuned
such that thenetworkdisplays the fadingmemory property. Intuitively, thismeans that
when the network is undriven, any transient dynamics eventually die out and the net-
work evolves toward a unique stable state. Themore slowly the transients die out, the
longer information about past inputs echoes in the internal state. Thismemory about
past states and inputs is largest when the system dynamics are close to a bifurcation
that pushes them away from stability. Such a regime is often termed edge of chaos, but
edge of stability seems more appropriate in this case, as it stresses that the driven sys-
tem should operate at the stable side of the bifurcation. Tuning the system to be closer
to or further away from the edge of stability is one of the ways to tune its memory to
match task requirements.

Fading memory also means that, if you start the same reservoir from any two dif-
ferent initial states and drive both versionswith the same input sequences, their inter-
nal stateswill evolve toward identical trajectories.When operating close to the edge of
stability the effects of the initial state or past inputs remain present in the system for a
long time as (nonlinearly transformed) echos of the past. Fadingmemory also implies
that similar input patterns lead to similar states. In other words: reservoir comput-
ing extracts information from time-varying signals by extracting information that is
spread in time and projecting it onto present time in such a way that a linear function
is able to extract it. This implies that, for most tasks, the reservoir not only needs to
remember the past, but also to nonlinearly transform it on the way.

In machine learning terms, the ESN reservoir acts as a high-dimensional spa-
tiotemporal transformation (a filter bank) of the input signal(s). Obviously, the quality
of the result largely depends on whether or not the internal state variables (the fea-
tures for the linear regression) are suitable for the task. First, they should be tuned
such that the reservoir indeed has the fading memory property. This can be ensured
by analysing the Jacobian of the reservoir and finding the maximal local Lyapunov
exponent (LLE). If this is < 1, the reservoir is at the stable side of the edge of stability.
However, this analysis is rather complex. For tanh-ESNs, an approximation is usually
made by linearizing the ESN at the point where its neurons have maximal gain (equal
to +1), i. e., when their inputs are zero. Ensuring stability in this linearized reservoir
boils down to setting the largest eigenvalue of the reservoir weight matrix Wres (its
spectral radius) to 1. In most ESNs, this will result in stability [7].
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Universal approximation properties. One of the cornerstones of the theory of
(nonrecurrent) neural networks are the early universal approximation theorems, e. g.,
[4, 5], which basically state that a neural networkwith two layers of sigmoidal neurons
(one hidden layer and one output layer) can approximate any desired input-output
relationship with any desired precision if the number of neurons on the hidden layer is
made large enough. This relies onone very important principle: bymaking thenetwork
larger, you will eventually be able to realize all functions that you were not able to
realize with smaller networks.

Although the proofs are less strict, similar theorems exist in reservoir computing,
stating that some types of reservoirswith a linear readout can be universal approxima-
tors for filters with fadingmemory [20]. A first requirement for this is that the reservoir
itself must fulfill the fading memory property. A second requirement is that it has the
separation property, which can be interpreted as the fact that, if the reservoir is made
large enough, any difference in the input sequence must eventually result in linearly
separable differences in the state space.

A reservoir is a universal approximator only if, by making the reservoir larger, a
linear combinationof the observed states can eventually cover all possible input trans-
formations. The state signals of a reservoir are transformations of their common input
history, and because of the recurrent nature of reservoirs, these signals are coupled.
For this reason, the universal approximation property should be treated with some
care. It is not sufficient to have a scalable nonlinear dynamical system in which some
parameters are sampled from some randomdistribution. In fact, it is quite easy to con-
struct a class of reservoirs that does not fulfil the universality. As a simple example,
consider ESNs for which all input bias weights wbias are set to zero. Since the tanh
function is an odd function around its origin (tanh(−x) = − tanh(x)), such a reservoir
cannever output an even function of its inputs (f (−x) = −f (x)), however largewemake
it.

Although they are part of the theoretical foundations of andmotivation for neural
networks in general and reservoir computing in particular, universal approximation
theorems are often not very useful in practice.Merelymaking a reservoir larger is often
not the best way to improve its approximation quality. If this were the case, it should
be possible to approximate any input-output relationship with any desired precision
simply by making the reservoir larger, while using the same approach for constructing
the reservoir. Unfortunately, this is not the case, as in practice, reservoir performance
is known to saturate when increasing reservoir size.

In general, for physical reservoir computing, there is no systematic methodology
to even check whether a given physical system could serve as a universal approxima-
tor and from which distributions its parameters should be sampled to achieve this.
In addition, such theorems state nothing about how fast the approximation quality
converges.
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2.2.6 Physical reservoir computing

Very soon after the almost simultaneous introduction of the principles of reservoir
computing from different research backgrounds, the common basis of these early
works was identified and unified under the term reservoir computing [12, 21]. Also,
researchers quickly started applying the approach to other (mostly non-linear) dy-
namical systems, and in particular to physical systems. In fact, the term reservoir
computing was inspired by one of the first physical realizations [22], in which sound
vibrations were transferred to a basin of water and the ripple patterns were used
for spoken digit classification. The term physical reservoir computing was launched
in [7], where a mechanical (robot) body was used as a reservoir to generate its own
closed loop control. Soon after that, the subfields of photonic reservoir computing
and mechanical reservoir computing (in the context of morphological computing)
were launched. This book is dedicated to the first field. In the second, the focus is
mostly on facilitating robotic control by using its body as a reservoir [23–25], respond-
ing to the motor actuations and the interaction with the outside world. In order to
develop a theoretical foundation in this field, model systems, consisting of masses,
passive springs, and dampers, were also studied [26–28]. Besides mechanical and
photonic systems, physical reservoir computing is now being used with a range of
different physical systems, such as memristive networks [29–34], carbon nanotubes
[35], or molecular computing [36].

In general, the dynamical systems that serve as physical reservoirs operate in con-
tinuous time and are driven by continuous time input signals u(t). They are described
by the temporal evolution of their internal state space x(t), which can be finite- or
infinite-dimensional.

However, for the purpose of reservoir computing, they are driven in discrete time
t = nT, n ∈ ℤ, where T is the sampling period. This means that their externally applied
input signals u(t) are generated from a discrete time sequence of values u[n] which
are presented to the system at a given input rate 1/T. An input signal generator then
transforms this sequence into a continuous time signal using an appropriately chosen
encoding scheme. The simplest scheme is to generate a piecewise constant signal,
changing the input only at discrete moments t = kT.

Physical reservoirs are also observed in discrete time, i. e., their observed state
variables are sampledwith the sampling rate 1/T. In practice, a time shift is sometimes
used between the discrete moments t = kT at which the input signals are applied and
the corresponding moments of observation t = kT + τ. In most physical situations,
the measured signals xi[n] will not be the state values themselves, but signals that
have been transformed by the measurement process. For example, optical signals are
converted to the electrical domain by measuring their intensity.

When studying a physical dynamical system, we often do not have access to the
entire internal state space x(t). This corresponds to experimental situations where
many variables may not be measurable, and is also the case if the dimensionality of
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the state space is infinite. We therefore assume that we can only access the instanta-
neous state of the system through a finite number N of the internal variables: xi(t),
i = 1, . . . ,N . From here onward, the dimension of the reservoir will refer to the num-
ber of observed state space signalsN, independent of the actual dimensionality of the
state space of the physical system.

2.3 Information processing in reservoirs

In this section, we analyze how reservoirs process their input signals and how the
most important high-level reservoir parameters interact to determine the suitability
of a reservoir for a given task. We also discuss a few measures that allow to quantify
this.

2.3.1 Reproduction memory

One crucial property of a reservoir is how long information about past inputs remains
in the system. This is thememory that can be exploited by the readout to approximate
the desired output. One of the very first ways in which thismemorywas analyzed is by
quantifying how well a linear readout can reproduce past inputs. Since these inputs
must be untransformed, this type of memory is also termed linear memory.

A way to quantify this, the linear memory capacity, was first proposed by Herbert
Jaeger in one of his seminal works about echo state networks [37]. His proposed mea-
sure is the squared correlation coefficient between the target signal and its approxi-
mation ŷ as defined in equation (16):

C[X, y] = cov2(ŷ, y)
σ2(ŷ)σ2(y)

. (17)

By definition, its values lie in [0, 1]. In the context of reservoir computing, a value
of 1 implies that the readout can achieve a perfect reproduction of the target signal,
whereas a value of 0 indicates that the state signals carry no information whatsoever
that can be used to approximate the target signal with linear regression.

Using this measure, Jaeger proposed to quantify a reservoir’s memory by assess-
ing its capacity for reconstructing the input signal u−d = u[n−d] of d time steps in the
past, for d = 1 . . . dmax:

CMd[X,u−d] = max(wout)C[ŷ,u−d] (18)

in which the maximum corresponds to the best possible MSE, i. e., the MSE for a the-
oretical readout that is trained on sequences of infinite length. Using these, the total
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linear memory capacity can be defined as

CM[X,u] =
∞
∑
d=1CMd[X,u−d]. (19)

Note that the capacity CMd[u,u−d] for reconstructing a signal from its own past equals
its squared autocorrelation function. However, the original aim of linear memory ca-
pacitywas to characterize the processing that occurs in the dynamical system itself. By
taking the inputs to be sequences of i.i.d. values, anymeasuredmemory will be due to
the dynamical system and not due to the input’s autocorrelation or self-memory. The
distribution p(u) fromwhich the input values are sampled can be chosen according to
what is most relevant for the dynamical system under study, but it is most common to
use the uniform distribution in, e. g., [−1, 1].

It should be noted that in many, if not all, real world situations the inputs are not
i.i.d. In this case, it is useful to quantify how a reservoir processes the actual input sig-
nals. In order to quantify this, one can still calculate linear memory capacities using
equation (18) with the actual input signal, but the upper bound from equation (20) is
no longer guaranteed because the target signals of LMC, u−d, are no longer uncorre-
lated. An alternative would be to decorrelate the target signals in order of increasing
values of d. This can in principle be achieved using a Gramm–Schmidt orthogonaliza-
tion procedure, in which case the bound of equation (20) would again hold. However,
as numerical errors quickly build up in the orthogonalization procedure, this is usu-
ally only feasible up to small maximal values of d.

An additional reason for measuring capacities with i.i.d. input sequences is that
under these conditions the proposition holds that the total linear memory capacity is
bounded by the number of state signals that is used in the readout:

CMlin[X,u] ≤ N . (20)

In principle, this bound can be achieved, e. g., for linear ESNs for which Wres is an
orthogonal matrix [38]. As soon as a reservoir operates in a nonlinear regime, CMlin
quickly deteriorates. The theoretical upper bound for linear memory can be approxi-
mated in nonlinear reservoirs, by operating them in their small-signal regime and as-
suminganunbounded signal-to-noise ratio. For example, in ESN reservoirs this canbe
achieved by setting the input scaling and bias scaling parameters so small that each
tanh neuron’s input is close to zero. However, as soon as some noise is introduced
into the system or the readout, this theoretical linear memory quickly disappears. For
a given value of the total linear memory capacity, different memory profiles can be
achieved by tuning the reservoir’s hyperparameters.
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2.3.2 Nonlinear processing capacity

Clearly, a reservoir’s linearmemorydoesnot tell thewhole story, sincemost signal pro-
cessing or classification tasks require much more than linear memory: they require a
nonlinear transformation of the input history. This is typically what occurs in nonlin-
ear dynamical systems such as ESNs. This is also the basis of nonlinear photonic reser-
voirs such as the original SOA-based integrated photonic reservoirs [39] (simulated
only) or delayed feedback reservoir computing architectures that use a nonlinearity
in the feedback loop (see Chapter 5 for an introduction). However, nonlinear trans-
formations can also be achieved by combining a linear reservoir (providing memory)
with a nonlinear readout. If sufficientmemory canbe provided by the reservoirand if a
nonlinear (instead of a linear) readout is used that is in itself universal formemoryless
computations, then such a reservoir can also be a universal approximator of nonlin-
ear filters with fadingmemory [26]. In this case, sufficient memorymeans that all past
inputs that are necessary for solving the task can be perfectly reconstructed from the
observed reservoir state signals. This approach was discussed in [26] for mechanical
systems. In practice, it turns out that a rather simple but nonlinear readout already
offers a lot of the computations required for many real-world tasks. This principle is
used in, e. g., the integrated passive photonic reservoirs described in [40–42].

Early on, researchers working with ESN-based reservoir computing noticed that
for a fixed reservoir size with a linear readout, there is a trade-off between memory
and nonlinearity. As soon as a reservoir is tuned into a slightly non-linear regime, the
total linear memory capacity quickly drops. In a first attempt to quantify this, [43], the
spectral transformation of reservoirs was used as ameasure of their nonlinearity. This
was measured by driving the reservoirs with a sinusoidal input signal and measuring
the fraction of the energy in the state signals that remained at that frequency.

In [44], an extension of linear memory capacity was proposed which allows to
more accurately quantify the transformations a reservoir performs. Intuitively, the ap-
proach can be explained as follows. In principle, any fading memory filter in discrete
time can be approximated with any desired precision by a polynomial expansion on a
potentially very large but finite number of values in the input history. Thismeans that,
for any given joint probability density of the relevant input values, a Hilbert space
of fading memory functions can be constructed with an orthogonal polynomial basis
(see [44] for rigorous definitions). The construction of such a basis is very similar to
the construction of a polynomial basis for real functions of multiple real variables,
where these variables are the past input values u−d. If we assume, as we did for linear
memory capacity, that the input sequences are generated by an i.i.d. uniform process
with values in [−1, 1], a polynomial basis can be constructed from finite products of
normalized Legendre polynomials for each time step:

yk =∏
i
ℒki (u−i) (21)



48 | J. Dambre

where ℒki (⋅), ki ≥ 0, is the normalized Legendre polynomial of degree ki. The normal-
ized Legendre polynomial of degree 0 is a constant. The normalized Legendre polyno-
mials of degree 1 are the u−d that were used for computing the linear memory capac-
ity. The set k lists the polynomial degrees for each past input, where ki is the degree
corresponding to the input of i time steps in the past. For each basis function, we can
compute its total degree as the sumof the individual degrees for each delay:𝒟k = ∑i ki
and its memory depth as the largest index in k for which ki is nonzero.

Expanding on the theory for linear memory capacity, we can again define the ca-
pacity for approximating these basis functions as the expected value for infinitely long
sequences of the squared correlation coefficient between the target signal and its best
approximation by the reservoir. We can also define the total information processing
capacity as the sum of these capacities across all basis functions and prove that this
sum, too, always lies in [0,N].

In practice, capacities have to be estimatedwith limitedprecision fromfinite input
sequences. In [44], a procedure is described to iterate through them. It uses relevance
thresholds to decide how large a capacity estimate has to be in order to be sufficiently
accurate. Constraining the set of possible basis functions to a finite set can be done
either by setting upper bounds on the total degree andmemory depth, or by assuming
that a physical system’s approximation capacity decreases monotonically for increas-
ing degree and/or memory depth. This was found to be a reasonable assumption for
many physical systems.

2.3.3 Memory, nonlinearity, and noise-sensitivity

As stated in the previous section, the functions used to compute linear memory ca-
pacity form a subset of those used to compute total memory capacity. The fact that the
total capacity of any reservoir system is bounded by the total number of state signals
used in the readout necessarily implies that there must be a trade-off between linear
and nonlinear processing. By adding all capacities with the same memory depth or
the same total degree, we can visualize the capacity profile of a given reservoir, as
shown in Figure 2.2. This accords with our previous observations that an ESN’s capac-
ity for exactly reproducing past inputs rapidly decreases as the neurons are operated
in a more nonlinear regime. In Figure 2.3, this is made evenmore clear by plotting the
fraction of total capacity that is due to linear memory and nonlinear memory, respec-
tively.

Inmost caseswhen a system ismademore nonlinear, a rapidly increasing number
of nonlinear terms emerges in the polynomial approximation of the reservoir states.
In particular, when the spectral radius is high enough for the inputs to reverberate in
the system’s dynamics for a while, each nonlinearity it passes performs a nonlinear
mixture of its inputs, spreading the input information across more and higher degree
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Figure 2.2: Summarized total information processing capacity profiles (for total degrees up to 5) for
different settings of the scaling parameters in echo state networks: (top panels) Impact of the bias
scaling, showing no contributions of even degree capacities for zero bias and increasing nonlinear
contributions for increasing bias; (bottom panels) Impact of the spectral radius, showing increased
linear memory as the spectral radius approaches 1.0 (each bar corresponds to a single ESN with 100
neurons, spectral radius and bias scaling are indicated in each panel’s title; colors group capacities
for basis functions with the same total degree).

Figure 2.3: Linear and non-linear contributions to the total memory capacity: for increasing input
scaling, the reservoir is driven into a more non-linear regime. The total linear memory capacity de-
creases and the contribution of non-linear capacities to the total capacity increases (each plot corre-
sponds to a single ESN with 100 neurons, spectral radius equal to 0.85, bias scaling equal to 0.05).

polynomial basis functions. As a consequence, the capacities that measure these con-
tributions get very small and, therefore, hard to estimate accurately.

The same nonlinearmixing also dramatically reduces a system’s performance un-
der multiple inputs [45], as well as its noise robustness (since each noise source can
be considered as an additional input signal). When multiple inputs are present, one
needs to extend the Hilbert space model to multiple inputs, i. e., consider all func-
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Figure 2.4: Impact of noise in ESNs: for increasing input scaling, the reservoir is driven into a more
non-linear regime and the degradation of total capacity as a function of input noise increases (each
bar corresponds to a single ESN with 100 neurons, spectral radius = 0.7, bias scaling = 0.5; colours
group capacities for basis functions with the same total degree).

tions of the complete (fading memory) input history of all inputs. This includes all
higher degree cross products between delayed values originating from different input
signals, which also emerge naturally from the nonlinear mixing. Figure 2.4 illustrates
this for reservoirs that are driven with a single input, to which an increasing amount
of uniformly distributed noise is added. Because each reservoir is driven with a dif-
ferent input power (input scaling), the signal-to-noise ratio is reported in the plots.
Whereas the total linear capacity is barely affected by increasing noise, the available
nonlinear capacity quickly decreases for more nonlinear reservoir. As more noise gets
mixed non-linearlywith the information signal, less information about this signal and
its history can be extracted by a linear readout.

2.4 Conclusion

The way the input signal(s) of a driven dynamical system perturbs its internal state,
affecting not just the present but also the future of this state, can be considered as
a form of computation. From its origins in neuroscience and engineering, reservoir
computing has evolved into an easy and efficient way to harness this computation,
in order to perform nonlinear filtering of the input signal(s) or to extract information
from them. The larger the number of observed state signals and the more diverse the
ways in which they are affected by current and past inputs, the better a system can be
used for computation.

In order to make a given system adaptable to a range of tasks, it is beneficial if its
dynamical regime can be tuned by a number of global parameters, such as a scaling
of the feedback gains or losses, of the input power and of the overall operating point.
For systems with a fixed number of observed signals, there exists a trade-off between
(linear) memory and nonlinearity. In addition, more nonlinear systems tend to be less
robust to noise.
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3 Integrated on-chip reservoirs

3.1 Introduction

In this chapter, we focus on the use of on-chip photonic reservoir systems using inte-
grated photonics in a Silicon-on-Insulator. We show how passive reservoir computing
chips can be used to avoid the need for any nonlinearity inside the network itself. We
place special emphasis on developing an integrated analog optical readout, and the
repercussions this has on the training algorithm.We focus onhow these reservoirs can
be used to perform a variety of telecom-related tasks (bit level tasks, nonlinear disper-
sion compensation, etc.) at high speeds and low power consumption. In addition, we
present two different alternative topologies which no longer rely on an explicit node
structure inside the reservoir: one is based on a chaotic cavitywhichmixes the signals,
and another is a spatial analog of reservoir computing based on pillar scatterers, that
can be used to speed up classification of biological cells.

3.2 Passive reservoir computing

A recent development in the design of physical RC systems is the realization that for
certain tasks that are not strongly nonlinear, it is possible to achieve state-of-the-art
performance using a completely passive linear network, i. e., one without amplifica-
tion or nonlinear elements. The required nonlinearity is introduced at the readout
point, typically with a photodetector [1]. The work discussed in this chapter is also
based on this architecture. Aside from the integrated implementation introduced in
[1], the passive architecture has been adapted to the single node with delayed feed-
back architecture in form of a coherently driven passive cavity [2].

Apart from simplicity froma fabrication point-of-view, a further advantage of such
a passive architecture is the reduced power consumption, since the computation itself
does not require external energy.

The integrated photonic reservoirs typically studied in the past are limited to pla-
nar architectures in a bid to minimize crossings that manifest as a source of signal
cross-talk and extra losses. This constrains the design space fromwhich reservoir con-
figurations can be chosen. The swirl reservoir architecture, which is also used in this
work, was introduced in [3] as a way to satisfy planarity constraints while allowing for
a reasonable mixing of the input signals. A 16-node photonic swirl reservoir is shown

https://doi.org/10.1515/9783110583496-003
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Figure 3.1: Signal flow in a 16-node swirl reservoir archi-
tecture. The time-dependent output at each numbered
node is linearly combined to result in the answer of the
computation. As for inputs, depending on the application
the input can be inserted in one or more of the numbered
nodes.

in Figure 3.1. One way of looking at this reservoir is that it acts as a giant multipath in-
terferometer, which mixes the input in such a way that it gets converted into a higher
dimensional spacewhere a linear classifierwill be able to separate thedifferent classes
more easily. The input to the integrated photonics reservoir chip could be to a single
input node as is in [1] or to multiple inputs, which has some advantages over the for-
mer strategy, as is discussed extensively in [4].

In discretized time, the reservoir state update equation is given in a general form
by

x⃗[k + 1] = W resx⃗[k] + w⃗in(u⃗[k + 1] + u⃗bias) (1)

where u⃗ is the input to the reservoir and u⃗bias is a fixed scalar bias applied to the inputs
of the reservoir. For an N-node reservoir,W res is an N × N matrix representing the in-
terconnections between reservoir components taking into account splitting ratios and
losses, with phases drawn from a random uniform distribution on [−π,π], U(−π,π).
The vector w⃗in is an N-dimensional column vector whose elements are nonzero for
each active input node. These input weights are similarly chosen from U(−π,π).

The output is given by a simple linear combination of the states:

y⃗[k] = W⃗out ⋅ x⃗[k]. (2)

Ourwork in [1] experimentally verifies that a passive integrated photonic reservoir
can yield error-free performance on the header recognition task for headers up to 3 bit
in length with simulations indicating that it should be possible to go up to 8-bit head-
ers (see Figure 3.2). We additionally demonstrated that the passive integrated photon-
ics reservoir can be used for bit level manipulations on digital optical bit streams that
could be useful for various telecommunication tasks. The paper [1] also containsmore
information about the chip design and fabrication procedure.

While the passive reservoir architecture introduced in this section is amenable to
various tasks as outlined above, it suffers from major drawbacks due to the inherent
limitations of an integrated photonics platform. Particularly, the losses increase with
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Figure 3.2: Performance of a 6 × 6 swirl passive
integrated photonics reservoir on the 3-, 5-, and
8-bit header recognition task [1].

Figure 3.3: Error rate versus total input
power for different injection scenarios.
The minimum measurable error, given the
number of bits used for testing, is 10−3.

the size of the architecture. We have therefore studied techniques and architectures
which seek to improve the performance and energy efficiency of this architecture and
integrated passive reservoirs in general. We have, for example, found that by carefully
selecting the nodes to which the input to the reservoir is provided, we can gain signifi-
cantly in energy efficiency [4]. As Figure 3.3 shows, we need 2 orders ofmagnitude less
input power if we split the total input power and inject it into the central 4 nodes (5, 6,
9, 10) rather than into any single node. This improvement is due to the increased rich-
ness of the reservoir from the variedmixing betweenmultiple copies of the input with
different phases, and the more even power landscape that amounts to more efficient
mixing as the signal powers are similar across different paths in the reservoir.

In a separate approach, we numerically studied the impact of using multimode
rather than single-mode components in the integrated photonics reservoir on its over-
all energy efficiency [5]. The successful application of this approach strongly hinges
on the design of a novel multimode Y-junctionwith carefully tailored adiabaticity that
lowers the losses at combinationpoints in thephotonic network constituting the reser-
voir. As is illustrated in Figure 3.4 for a 36-node reservoir, we can gain up 30% in per-
node power, especially for nodes that are furthest from the input point. This extra
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Figure 3.4: Comparison of single-mode and multimode 36 node reservoir average power per node
for input to node 0.

power boost could be the difference between being below or above the noise floor at a
node.

3.3 Integrated optical readout

3.3.1 Rationale

A drawback of our current experiments is that the linear combination of the reservoir
states is still happening in the electrical domain. Indeed, Vandoorne et al. [1] trans-
ferred the signal at each node from the optical to the electrical domain using a pho-
todetector, and then sent it through an AD converter. Finally, the required linear com-
bination of signals and readout weights was performed using a microprocessor. See
Figure 3.5 for a detailed illustration of the process.

In order to truly reap the benefits of optical computing, signals need to be pro-
cessed at very high data rates in an energy-efficient way. Considering ecological as
well as economical factors, minimizing power consumption is of paramount impor-
tance for future computing technologies. From that perspective, the approachpursued
in Figure 3.5 and [1] for reading out integrated photonic reservoirs is inefficient, since
there is a significant energy and latency cost associated to it. Hence, it is desirable to
perform the summing of signals in the optical domain using optical modulators in-
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Figure 3.5: Reservoir and readout system of
existing RC photonic chip prototypes, with the
nodes of the reservoir being collected in the
readout section, where optical output signals
are converted to electrical signals and then
processed to a final output. “PD”: photodiode,
“ADC”: Analogue-to-Digital converter, “MP”:
Microprocessor. The blue and orange parts rep-
resent respectively the optical and electronic
signals and components.

Figure 3.6: Schematic of a fully optical readout.
Each optical output signal is modulated by an
Optical Modulator (“OM”) implementing the
weights. The optical outputs are then sent to a
photodiode where all signals are summed and
then converted to a final electric output signal.

stead of in the electrical domain. Using such an integrated optical readout, only a sin-
gle photodetector, which receives the coherent weighted sum of all optical signals, is
required. A straightforward low-power optical weighting element can take the form of
a reverse-biased pn-junction. An even better solutionwould be to use nonvolatile opti-
cal weighting elements, such as the ones that are currently being developed by several
groups [6–8]. Figure 3.6 illustrates the concept of a fully optical integrated readout.

3.3.2 Training integrated optical readouts

From a mathematical perspective, an integrated optical readout can be trained in a
similar way to readouts in the electrical domain. Of course, one needs to take into ac-
count that passive photonic reservoirs make use of coherent light for added richness.
This implies that the readout operates on complex-valued signals employing complex-
valuedweights contrary to the approach in [1],whichused real-valuedweights on real-
valued signals. Nevertheless, in principle, integrated optical readouts can be trained
using complex-valued ridge regression [9].

Nevertheless, despite the fact that the ridge regression training algorithm can
be transferred to the complex domain, a number of practical challenges occur when
training integrated optical readouts. Due to the integration of reservoir and readout on
a silicon photonics chip, we lose direct observability of the reservoir states. Observing
all states is mandatory though, in order to use classical linear readout training algo-
rithms such as ridge regression and other least-squares approaches. At first glance,
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a possible solution could be to add a separate high-speed coherent photodetector to
each reservoir node, which is only used during training to observe the states. The
weights would then be calculated in the electrical domain, while the trained reservoir
could still be operated entirely in the optical domain. This is unfortunately challeng-
ing due to the fact that high-speed photodetectors tend to be costly in terms of chip
footprint. Therefore, such an architecture would not scale well when increasing the
number of nodes in the photonic reservoirs to numbers common in classic echo state
networks [10].

A second solution could be to train the weights based on simulations of the be-
havior of a virtual reservoir, using photonic circuit simulation software, which will
obviously have full observability of all the nodes. However, the fabrication tolerances
of these devices are such that the propagationphase of twonominally identicalwaveg-
uides could be completely different. This prohibits the successful transfer of weights
trained using the idealized simulated reservoir to actual hardware.

A possible resolution of this issue is the application of a pretraining-retraining ap-
proach, where a passive photonic reservoir is pretrained in simulation and the trained
weights are transferred to an actual reservoir on chip. Thereafter, the actual training
error isminimized on the reservoir by fine-tuning theweights of a given integrated op-
tical readout using a black-box optimization approach. Unfortunately, previous sim-
ulation studies have shown that such an approach is not feasible, again due to high
fabrication tolerances affecting the propagation phase of planar waveguides [11].

A final possibility, which is the one we actually prefer, is to exploit the weight-
ing mechanism of the optical readout of the reservoir to read out all reservoir states
through the single photodetector available at the end of the summing structure. Read-
ing out the state variable si in response to the training input sequence can be simply
realized by setting the weight of that state variable to 1 and all other weights to 0. By
presenting the whole training input sequence to the reservoir n times, where n is the
number of nodes of the reservoir, the training responses of all nodes can be collected
through the single photodetector. By taking the square root of each measured power
value, we can approximately invert the nonlinearity of the photodetector and obtain
an estimate for the evolution of the light intensity over time at the corresponding reser-
voir node.

However, since passive photonic reservoirs work with coherent light, it is not suf-
ficient to know only the light intensities at the points predefined as reservoir states:
we also need to know the corresponding phase of the light. While the absolute phase
of the optical signal inside the reservoir is lost within the photodetection process, the
relative phases between the optical state signals influence the power at the detector
output. We therefore estimate the phase between two given optical signals within the
integrated reservoir by obtaining the evolution of the sum of their states through time
as we apply the training signal at the reservoir’s input. We now use the phase of one
state signal (node) as a reference. Using the evolution of the power of the complex sum
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Figure 3.7: Illustration of the procedure applied to estimate the time trace of a reservoir state.
Weights highlighted in red are set to 1, all remaining weights are set to 0. Step 1: Invert output signal
to obtain the magnitude (light intensity) of the activated state. Step 2: Estimate the magnitude of the
phase difference for the state in question using the sum of the state and a reference state, as well as
the states signal magnitude obtained in step 1. Step 3: Shift the phase of the reference states read-
out weight by π

2 (not visible in the diagram), then repeat step 2. Compare the result with the result
obtained in step 2 in order to infer the sign of the phase difference between the state in question
and the reference state.

between the reference node’s signal and each other node signal, as well as the previ-
ously determined powers of all individual states, we are able to estimate the relative
phase of each node signalwith respect to the reference node using basic trigonometric
relationships.

The last stage of this calculation consists of an inverse cosine,which is injective, in
the sense that there are always two solutions within the range [−π,π]. To discriminate
between them, we perform a third measurement between the reference node’s signal
and each other node’s signal, now shifting the phase of the reference node’s readout
weight by π

2 and comparing with the phase estimate obtained before. As a result, the
whole process requires that we feed the training sequence through the reservoir 3n− 2
times. See Figure 3.7 for an illustration of the whole process.

Under ideal conditions, this nonlinearity inversion procedure is exact. In order
to confirm that, we conduct the following numerical experiment: We train a passive
4 × 4 photonic swirl reservoir architecture with integrated readout to perform 3-bit
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Figure 3.8: Bit error rate versus the time delay be-
tween nodes (interdelay) in bit periods for a 4 × 4
passive swirl architecture with integrated optical
readout performing 3-bit header recognition (pattern
101). The minimal detectable error rate is 10−3. Re-
sults are averaged over 10 reservoirs with different
phase configurations for every data point.

header recognition on a power-modulated digital signal fed into to the reservoir. The
integrated optical readout is simulated by inner productmultiplication of the complex
reservoir states with a complex weight vector and subsequently taking the square of
the absolute value of the resulting complex output signal vector. The weight vector is
trained on the complex reservoir states using complex-valued ridge regression. Input
is fed to the reservoir via node 2 (as indicated in Figure 3.1).

To determine suitable values of the delay time between reservoir nodes (node in-
terdelay) for the architecture, we train our simulated reservoirs with increasing delay
time using complex-valued ridge regression. Figure 3.8 shows the achieved bit error
rate as a function of increasing interdelay between nodes at a input signal bitrate of
10Gbps. After having set up this baseline, we exchange the true reservoir states in our
setup with the states estimated through the method described above, and find the re-
sulting bit error plot to be identical to the plot in Figure 3.8. A detailed mathematical
description of the approach as well as more extensive experiments using a realistic
detector model can be found in [12].

Finally, note that although the trainingof theweights does take some timeand still
requires the use of an external microprocessor, once the correct weights are identified
and set, the entire system can run at high speed without the need for any operations
being performed by a microcontroller.

3.3.3 Influence of weight resolution

Weights of the linear combination can be implemented using different approaches,
each of which can have a different ability to achieve a fine-grained weight resolu-
tion. Reverse-biased PN-junctions, for example, which can be driven by a digital-to-
analogue converter, typically provide fine resolution. However, when it comes to alter-
native nonvolatile weight elements, we can only obtain an intrinsically lower weight
resolution because of the physics of their operation, although such elements provide
stable tuning with very low power consumption, which is much more energy effi-
cient than reverse-biased PN-junctions. A typical example with such a limitation is
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Figure 3.9: Error rate as a function of interconnection delay for different readout weight resolutions
(red curves). The blue curves are for the case of infinite weight resolution.

the weighing element based on barium titanate (BaTiO3) [6], an integration of a tran-
sition metal oxide material. These elements are typically able to only provide 20 dis-
crete weight levels. Under such circumstances, it is important to investigate how the
reservoir computing performance is influenced by such a limited resolution.

To simulate the impact, 4 differentweight resolutions (3, 4, 5, and 6 bit) are chosen
to study the performance of the reservoir on a 1-bit header recognition task, both for
the amplitude and the phase. In the simulation, we use complex-valued ridge regres-
sion performed on all the states coming from the reservoir together with the desired
output states. In order to achieve simulation results close to realistic situations, differ-
ent regularization parameters are being used, and the one with the lowest error rate is
chosen. To simulate theweight resolution, we simply round eachweight that the ridge
regression produced to the nearest discretized value. For amplitude, the range of the
discrete weights is corresponding to the range of initial infinite resolution weights. As
for the phase, the discretized weighting levels are in the interval of [−π,π].

Simulation results in Figure 3.9 showhow the performance of a system changes as
the weight resolution decreases compared to a system with infinite weight resolution
(blue line). For 6-bits resolution, there is a narrow regime of the interconnection de-
lay where error rates from limited resolution and infinite resolution almost coincide.
Moreover, the error bars corresponding to different random initialized reservoirs also
decrease in that regime, which indicates a robust behavior.
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3.4 Telecom applications

3.4.1 Nonlinear dispersion compensation

Optical technology is at the core of all modern telecommunications for high speed,
long- and short-reach applications. Fiber-based technologies are pervasive in differ-
ent types of networks, from core and metro to data center and local area networks.
Moreover, current industrial efforts are towards moving lightwave technology closer
and closer to the last-mile end-user and in doing so, take advantage of the massive
bandwidth, energy efficiency, and other benefits it provides. These advantages com-
bined with advances in photonics leading to cheaper lasers, modulation technology,
optical domain broadband amplification with Erbium Doped Amplifiers, place this
technology squarely at the backbone of today’s internet information superhighway.
However, the various elements constituting fiber-based lightwave networks also con-
tribute to the degradation of optical signals during the generation, transmission, and
reception phases [13].

Signal impairments are an inevitability for any kind of communications system.
They manifest themselves at the receiver as erroneous detections that need to be ad-
dressed. In optical fiber systems, these imperfections can mainly be traced back to
dispersion, amplified spontaneous emission at amplification points, attenuation and
reflections in fiber links, optical nonlinearities in fibers, timing jitter introduced at O/E
and E/O points.

These issues are exacerbated in modern high-speed systems based on coherent
modulation formats, where the nonlinearity in the fiber poses serious problems re-
lated to error-free propagation. These are typically solved in the electronic domain
using advanced DSP post-processing, but such an approach consumes a lot of power
and chip real estate. Photonic reservoir computing could provide an alternative here,
to undo (part of) these signal impairments already in the optical domain.

To illustrate this, wewill first show simulation results related to Nonreturn to Zero
(NRZ) signals propagating over a realistic optical link, followed by Binary Phase Shift
Keying (BPSK) signals propagating over a link with extreme artificial nonlinearities
and intersymbol interference.

NRZ over an optical link

Simulated telecom data is generated with VPI Transmission Maker v9.2 software, us-
ing the setup as in Figure 3.10. The VPI software incorporates realistic models of the
signal degradation mechanisms encountered in telecom links, caused by the various
optical components and physical phenomena outlined above, and also takes into ac-
count how they evolve over the transmission distances considered (which can be long,
e. g., in metro and long-haul networks). The generated data is then used for training
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Figure 3.10: Schematic representation
of the simulation setup to generate
data for the signal equalization task.
The input pseudo-random bit sequence
(PRBS) signal is modulated onto a laser
signal. This is transmitted over a fiber
link, after which the data is saved to a
file and used as input for the nanopho-
tonic reservoir simulation.

Figure 3.11: Error rates after the fiber link
and after the reservoir for lengths up to
300 km. Error margins are also indicated
for 5 random initialization of the phases in
the reservoir. A Soft Decision Forward Error
Correction limit (SD FEC limit) of 0.2 × 10−2 is
also shown. Error free operation is possible
for all error rate values below this limit.

and testing reservoir designs using in-house circuit simulations andmachine learning
libraries.

Results are shown in Figure 3.11 for a 10Gbps link. The results indicate a BER
improvement to well below the Soft-Decision Forward Error Correction (FEC) limit
of 0.2 × 10−2 for connections containing up to 250 km of fiber. This means that the
chip can be used in conjunction with appropriately chosen error correcting codes to
achieve error-free communication on the link. Such a design would be suitable for
signal equalization in, e. g., metro networks.

BPSK over an artificial channel

In order to show that the techniques described above also work for phase-encoded
symbols, we perform a simulation where we send a BPSK signal (i. e., with symbols
+1 and −1) over an artificial channel with extreme nonlinearity and intersymbol in-
terference. Modulation speed is 10GHz. Idealized square pulses are sent through a
first-order Butterworth filter with a 3-dB cutoff at 25 GHz. Intersymbol interference is
modeled by the following expression:

xn,total = 0.6xn−1 + xn − 0.7xn+1. (3)

This means that almost half of the energy of the bit pulse is spread over adjacent
time slots.
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Figure 3.12: Constellation diagram (arbitrary units) of a BPSK signal at the output of an artificial
channel with strong intersymbol interference and nonlinearity.

For our artificial channel, we consider a strong 9th order nonlinearity. Given an input
x subject to intersymbol interference, we arbitrarily chose to model the output xNL of
the nonlinear channel as

x̃ = x + 0.036x2 − 0.011x3 (4)

xNL = x̃ + 0.5x̃
2 − 0.3x̃3. (5)

Finally, AdditiveWhite Gaussian Noise (AWGN)with signal-to-noise ratio of 20 dB
is added.

The constellation diagram at the output of the link is shown in Figure 3.12. Rather
than having a blue blob at −1 and a red blob at +1, as would be the case for a much
more benign channel, themultiple echoes due to the intersymbol interference and the
distortion due to the nonlinearity are clearly visible.

In order to try and undo the transmission impairments, we send that signal
through a 7 × 7 silicon photonics swirl network, and train the reservoir to recover the
original bitstream, butwith a delay of 1 period. The signal at the output of the reservoir
is sampled in the middle of the period. After a simple threshold detection, a bit error
rate of 4% is obtained. While not zero, this number has to be compared with a 33%
error rate that is obtained using a tapped filter having access the last 3 samples of
the signal (given the size and the losses in the reservoir, this corresponds to a similar
memory for both cases). The reservoir clearly has better performance, moreover in a
way that is amenable to a direct implementation in the optical domain, without the
need for analog-to-digital conversion.

3.4.2 PAM-4 logic

The XOR-task withmemory is, due to its strong nonlinearity, a commonly used bench-
mark task in photonic reservoir computing and in machine learning in general. The
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purpose of this task will be to train the reservoir to correctly compute the XOR of two
symbols appearing at a certain time difference in the datastream. The simplest vari-
ation is to XOR the current bit and the previous bit. For increasing time differences
between the two bits, the task becomes more challenging in terms of memory needed
inside the photonic reservoir. Most often, this task is performed on data encoded with
a binary modulation format, but this can be extended to themuchmore complex case
of computing the XOR on a PAM-4 signal, a 2 bit per symbol amplitude modulation
format.

The PAM-4 signal used in this example is modulated at 10GHz, which translates
to a bitrate of 20GHz. Furthermore, a first-order Butterworth filter is used to gener-
ate realistic input pulses from a square pulse bitstream. It has the same properties as
mentioned in Section 3.4.1. Subsequently, AWGN with signal-to-noise ratio of 30 dB is
added. The signal is then low-pass filtered at 25 GHz before downsampling to have a
smoother signal for classification.

As themultisymbol XOR task withmemory is capable to really challenge the com-
putational capabilities of the photonic reservoir due to its high nonlinearity, it can be
expected that using a high number of nodes will be necessary. This will increase the
complexity of the reservoir, directly increasing its computational power.

This effect is clearly shown in Figure 3.13, showing a decrease in the symbol
error rate (SER) for an increasing number of nodes of the square swirl structure.

Figure 3.13: Evolution of the SER as a function of the photonic swirl reservoir dimension. The inset
shows the truth table for 2-bit XOR with one symbol delay. a, b, and c refer to the histograms in Fig-
ure 3.14.
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Figure 3.14: Histograms illustrating the classification of the symbols for a photonic swirl reservoir for
a given number of nodes, color-labeled with the desired XOR outcome.

As illustrated in Figure 3.14, the 8 × 8 reservoir does not have enough computa-
tional power to correctly compute the XOR task, and has a SER (symbol error rate)
of 30%. Similar behavior is observed for smaller reservoirs. From 10 × 10 nodes on,
all four levels start to be distinguishable with some overlap remaining. Gradually
proceeding to 20 × 20 nodes, the artificial levels in the center that were present for
the 8 × 8 reservoir get pushed away to the correct levels for the symbols 0 and 3. This
400-node reservoir is capable of computing the XOR with delay with a SER of less
than 5%.

3.5 Chaotic cavities

So far, the designused for the reservoir has tried to follow the conventional node struc-
ture of neural networks quite closely. However, the inherent parallel nature of photon-
ics allows for totally new architectures that depart from this architecture. A possible
design consists of a photonic crystal cavitywith a quarter stadium shape [14], depicted
in Figure 3.15. In this design, the quarter stadium shape makes sure that an input sig-
nal gets mixed in a complicated manner [15–17], after which the mixed light leaks out
of the cavity along the connected waveguides.

This new design solves a few issues with the more standard design. It allows for
a much richer interconnection topology, while needing considerably less chip real-
estate. The dimensions are 30 µm × 60 µm for a cavity with optimal bitrate around
50Gbps, while we can in theory go to cavities as small as 7 µm× 7 µm to reach bitrates
up to 1 Tbps. On top of that, this photonic crystal design promises very low loss, com-
bined with excellent performance on several benchmark telecom tasks, such as the
highly nonlinear XOR task and header recognition tasks, while still accepting bitrates
in a wide region of operation.
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Figure 3.15: A photonic crystal
cavity used for reservoir com-
puting. In this case, a single
input signal gets mixed in-
side a photonic crystal cavity.
The mixing of the input field
can clearly be witnessed by
inspecting the field profiles in-
side the cavity. The mixed light
leaks out of the cavity along all
the waveguides. By routing this
leaked out light to a readout,
a reservoir computer can be
formed.

3.5.1 Design

While designing a photonic crystal cavity for reservoir computing, several important
properties have to be taken into account. First of all, the cavity needs to mix the in-
put fields in a complex way. As already mentioned before, this can be accommodated
by choosing a quarter stadium shape, which is known to foster interesting mixing dy-
namics. Second, the cavity needs to possess a fading memory, i. e. the signal should
remain inside the cavity long enough to mix with subsequent input bits, but not too
long such that it obfuscates the patterns emerging. This fadingmemory can obviously
be controlled by controlling theQ-factor of the cavity, i. e. tuning the quality, pitch and
diameter of the holes of the photonic crystal lattice. However, changing the size and
number of connected waveguides will also yield a nontrivial effect.

Most of the results presented in this section follow the discussion of [14], which
uses a 30 µm×60 µmcavity,with 7 connectedwaveguides: 1 input and6outputs routed
to a readout. The dimensions of this cavity were specifically chosen to work for the
aforementionedphotodetectormodelwith cutoff at 25 Gbps. However, since this cutoff
is not steep, the reservoir computer remains working up to 50Gbps and over.

3.5.2 Method

Doing a full reservoir simulation of a photonic crystal cavity is not trivial. First of all,
making statements about error rates down to 10−3 requires to find the response of the
cavity to bit streams with about 105 bits, which would be completely impossible if
we would limit ourselves to pure FDTD (Finite-Difference Time-Domain) simulations.
Instead, the approach visualized in Figure 3.16 is preferred. In this method, the re-
sponse in the form of an electric field and a magnetic field of a single bit is recorded
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Figure 3.16: Block diagram of the simula-
tion for a photonic crystal cavity reservoir
computer. The figure was taken from [14].

from a FDTD simulation. The resulting fields are coherently added together according
to a pseudo random bit stream, after which the resulting raw stream is sent through
the detector model. Note that this is just the “bit-level” equivalent of the impulse re-
sponse method, where the response of an arbitrary system is found by convolving the
function with the response to an ultrashort impulse. Here, we chose to work with the
“bit-level” response instead of the true impulse response because of numerical round-
ing errors.

3.5.3 XOR Task

As a first benchmark task, a PRBS of 105 bits with an input power of 1mW is sent
through one of the photonic crystal waveguides (the top waveguide on the left in
Figure 3.15). The light gets mixed inside the cavity and finally, the responses of the
other six waveguides are computed. On this recorded output, the readout weights are
trained to follow the XOR function between two subsequent bits with an as low as
possible mean squared error. After the ideal weights are found, the BER is calculated
as the difference between the predicted bits and the target bits. Since we use 105 bits
in our simulations, the general guideline is to crop the BER at 10−3, i. e., 2 orders of
magnitude higher than the lowest BER one can find in the simulation [18]. This proce-
dure, shown in Figure 3.17, can be repeated at different bitrates, after which one can
determine the operation range of the cavity.

Interestingly, the reservoir can be made to follow the target function at a wide
range of different bitrates, by just changing the readout weights. As can be seen in Fig-
ure 3.18(a), we get errorless performance between 25Gbps and 67Gbps. What’s more,
even though we are working with photonic crystals, the reservoir operates in a quite
wide wavelength range: 1510 nm–1600nm, with an exception around 1560nm, where
we probably hit a stop band of the waveguide.

3.5.4 Header recognition

For applications in telecom, performing header recognition is often more useful. By
just changing the readout, this photonic crystal cavity can perform this task as well.
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Figure 3.17: (a) Waveforms detected at two of the exit waveguides as the result of a 50Gbps input.
These waveforms get sampled once per bit. (b) After performing a linear combination of the output
waveforms, the prediction follows the desired target function, in this case XOR.

Figure 3.18: (a) There exists a larger span of bitrates the reservoir can work with between 25Gbps
and 67Gbps at 1550 nm. This region of operation is much wider than for the conventional swirl
reservoir. (b) Except for a single outlier at 1560 nm, the cavity operates under a broad band of wave-
lengths at 50Gbps.

Concretely, when searching for headers of length L in a random bit stream of 105 bits,
each bit locationwas labeled according to the header formed by the bit at that location
and the L − 1 previous bits. This procedure is shown in Table 3.1. Linear Discriminant
Analysis (LDA) [19] was then used to find a different weight matrix for each of the dif-
ferent classes.
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Table 3.1: Labeling a random bit stream for different header lengths L. Each position in the bitstream
gets a class label according to the binary representation of the current bits and the L − 1 previous
bits.

L … 1 0 1 1 0 1 1 1 …

2 … 2 1 3 2 1 3 3 …
3 … 5 3 6 5 3 7 …
4 … 11 6 13 11 7 …

Figure 3.19: By sweeping over the bitrate to
find the operation range, we find that the
reservoir can distinguish headers up to a
header length of L = 6 bits, up to 100Gbps.

Figure 3.20:We can visualize the separation of three bit headers
by projecting on the two primary LDA axes. We see nice separation
for all different headers, while similar headers are located closer
together.

As canbe seen in Figure 3.19, also for header recognition tasks, the cavityworkswithin
wide region of operation.We also clearly see that longer headers work better at higher
bitrates. This is unsurprising, as for longer headers, one needs to keep more bits in
memory, therefore, the bitrate needs to be higher to accommodate this.

One advantage of choosing LDA for obtaining theweightmatrices, is that it allows
to make a projection from the 2L-dimensional header-space to a lower dimensional
space, in which we can see the separation of the headers visually, as can be seen in
Figure 3.20.
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Figure 3.21: By reducing the size of the cavity, bitrates of higher than 1 Tbps can in theory be
achieved. This is of course only possible if one drops the original detector model.

3.5.5 Q-factor and time scale of the reservoir

In the above simulations, we have always chosen a 30 µm × 60 µm cavity with 7 con-
nected waveguides. In fact, this choice for the dimensions and the number of waveg-
uideswas rather arbitrary andone could argue that changing thenumber of connected
waveguides and the size of the cavitywill have an important effect on the performance
of the reservoir. For example, changing the size of the cavity alone will have an impor-
tant effect on the Q-factor, and thus on the operating range of the reservoir. In Fig-
ure 3.21, the XOR performance at different bitrates is shown for two smaller cavities,
under the assumption that we have photodetectors that can reach these bitrates. How-
ever, this means that in theory, one can achieve reservoir computing at bitrates higher
that 1 Tbps on a chip footprint smaller than 10−6 cm2!

Another form of optimization is changing the number of exit waveguides, as this
will inevitable also have a profound effect on the Q-factor of the cavity. This form of
optimization is far from trivial, as removing exits will likely also decrease the com-
plexity of the tasks the reservoir can solve. To quantify this effect, we can look at the
performance of the reservoir on the XOR task for a range of number of exits.

When the light source is turned off, the power in the cavity with 7 connected
waveguides decays exponentially with a slope m = −0.070ns−1. This yields for the
Q-factor at λ = 1550 nm:

Q = −2πc
λm
= 16400. (6)

Looking at theQ-factor for several variations of the cavitywith fewer connectedwaveg-
uides, we see, as we would expect, that the Q-factor decays harmonically with the
number of connectedwaveguides (see Figure 3.22). We also clearly see that the thresh-
old for the number of connected waveguides for the XOR task lies at 6 waveguides (1
input and 5 outputs).
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Figure 3.22: The Q-
factor decays harmon-
ically with the number
of connected waveg-
uides. BER and MSE
decrease as well.

3.6 Pillar scatterers for cell identification

3.6.1 Cell sorting with digital holographic microscopy

The sorting of biological cells is of key importance in several biomedical applications,
like diagnostics, therapeutics, and cell biology. However, an accurate classification
and separation of different cell types is usually expensive, time consuming and often
requires alterations of the samples due to the use of labels, e. g., fluorescent tags, that
may hinder subsequent analyses [20]. For these reasons, the development of label-
free, high-speed, automated, and integrated cell sorting solutions is of particular in-
terest. Among several options, the employment of digital holographic microscopy in
microfluidic flow cytometry is a promising candidate. In this technique, the classifi-
cation is carried out through the analysis of the interference pattern (hologram) pro-
jected by the cell when illuminated bymonochromatic light. The hologram is acquired
by an image sensor and contains information on the 3D refractive index structure of
the cells [21]. The large amount of information contained in a cell hologram enables
nontrivial analysis and classifications. On the other hand, the computational cost of
elaborating such a complex source of information by reconstructing the image from
the hologram is a major hindrance to an increase in the cell sorter throughput, e. g.,
by parallelization of the process.

An important reduction in the required computing power can be achieved by by-
passing the reconstruction of the cell image and directly processing the acquired holo-
gramwith amachine learning algorithm that carries out the classification task [21, 22].
However, a further improvement of the classification simplicity and performance is
desired in order to fully exploit the potential of this implementation.
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3.6.2 Dielectric scatterers for an extreme learning machine (ELM)
implementation

The basic conceptual structure of reservoir computing, i. e., an untrained recurrent
nonlinear network that improves the performance of a trainable linear readout, can be
also applied to time-independent signals such as images. In this case, memory in the
nonlinear part is not required and thewhole system is usually called extreme learning
machine (ELM) [23].

Proof-of-concept via FDTD simulations

We provided a proof of concept, based on FDTD simulations, of an integrated photon-
ics application of ELM for fast and label-free classification of biological cells [24]. In
this application, a passive optical stage comprising a collection of silica pillar scatter-
ers embedded in a silicon nitride slab waveguide is used to process the light forward-
scattered by a cell when illuminated via a green monochromatic source (Figure 3.23).
The diffraction pattern projected by the cell and by the dielectric scatterers is acquired
by a 1D image sensorwhose pixel outputs are used as input for a linear classifier (logis-

Figure 3.23: Schematic of the classification process. A monochromatic plane wave impinges on
a Fabry–Pérot optical cavity composed by Bragg reflectors and containing a microfluidic channel
with a cell in water (nH2O ∼ 1.34), which has a low refractive index contrast (ncytoplasm = 1.37,
nnucleus = 1.39); the forward scattered light passes through a collection of silica scatterers
(nSiO2 ∼ 1.461) embedded in silicon nitride (nSi3N4 ∼ 2.027) and organized in layers; the radiation
intensity is then collected by a far-field monitor, which is divided into bins (pixels); each pixel value
is fed into a trained linear classifier (namely logistic regression) that consists of weighted sums (one
per class) of the pixel values. The weights are trained so that the sum exceeds a certain threshold
value only if the corresponding input class is recognized.
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Figure 3.24: Far-field intensity profiles of the light scattered by a cell: (a) without the presence of
scatterers the interference pattern is relatively simple and smooth, most of the intensity is confined
between −6∘ and 6∘; (b) considering 4 layer of scatterers with a slight random displacement (am-
plitude of 25 nm) the far-field intensity is distributed around periodically placed peaks, most of the
field stays between −40∘ and 40∘; (c) considering 4 layers of scatterers with a larger random dis-
placement (amplitude of 150 nm) the far-field intensity is distributed in a complex pattern mostly
between −60∘ and 60∘.

tic regression) implemented in the electric domain. Such a configuration represents an
ELM systemwhere the light scattered by the cell is the input signal while the dielectric
scatterers and the image sensor play the role of a random nonlinear network whose
output nodes are represented by the sensor pixels. Indeed, the image sensor performs
a nonlinear function of the impinging phase-encoded1 signal by giving its intensity
as output. The scatterer configuration determines how the light coming from different
regions of the cell is split and overlapped on the sensor display, changing the acquired
interference pattern. Since the scatterer stage includes a relatively high number of pil-
lars and, therefore, is difficult to completely optimize, only its overall complexity was
tuned to maximize the classification performance. In particular, the transfer function
complexity of the scatterer stage was tuned by changing only one parameter, that is
the amplitude of a slight uniform random displacement applied to the scatterers with
respect to their ordered position along layers. An example of how this parameter can
modify the interference pattern is given in Figure 3.24.

In order to properly train the readout classifier and to test its performance once
trained, a sufficient number (thousands) of diffraction pattern samples had to be com-
puted andprovided to the training algorithm. Randomized cellmodelswere employed
to create reasonable variability in the diffraction pattern acquisition. In [24], two dif-
ferent classification tasks were considered. The first is based on average nucleus size
and aims to distinguish between “normal” cells (small nucleus) and “cancer” cells

1 The cell structure information is mainly encoded in the phase of the scattered light, since cell ab-
sorption is usually negligible.
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Figure 3.25: Examples of cells automatically generated by the employed randomized models.
(a) Comparison between generated examples of “normal” cell and “cancer” cell, with different nu-
cleus size. (b) Comparison between generated examples of “lymphocyte” and “neutrophil,” with
different nucleus shape.

(bigger nucleus, Figure 3.25(a)). The names in quotation marks were chosen because
of the common tendency of cancer cells to show evident irregularities in nucleus size
[25]. The second task is based on nucleus shape (the average nucleus area is kept con-
stant) and aims to distinguish between “lymphocytes” (big quasi-spherical nucleus)
and “neutrophils” (nucleus divided in 3 lobes, Figure 3.25(b)). The names in quota-
tion marks refer to two among the most common white blood cells that are present in
human blood. These two cell models are, physically and biologically speaking, only
rough representations of their real counterparts when flowing in a liquid medium. In-
deed, the employed models are the result of a trade-off between computational cost
and closeness to reality. Such a trade-off is legitimated by the fact that the goal of the
work is not to provide absolute references for real applications but, instead, to inves-
tigate a relative difference between the classification performance with and without
using scatterers. Further details on the employed cell models and machine learning
approach are presented in [24].

Results

Let us consider a green laser source (λ = 532 nm) and let us compare the classification
error on the test sampleswhenno scatterers are present andwhen, instead, 4 scatterer
layers are employed. The resulting error rate values for different numbers of pixels and
for different noise levels (Figure 3.26) show that the use of scatterer layers allows for a
significant error rate reduction (up to ∼ 50% for nucleus size classification and higher
for the nucleus shape classification), provided that a sufficient number of pixels and a
low enough noise level are considered. The increased sensitivity of classification per-
formance toward added noise level when scatterers are used is ascribed to the fact
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Figure 3.26: Comparison between test error rates corresponding to the absence (in red) and the
presence (in blue) of 4 layers of scatterers: (a) “normal” and “cancer” cell classification based on
nucleus size; (b) “lymphocyte” and “neutrophil” cell classification, based on nucleus shape. A green
laser source (λ = 532 nm) is employed. On the left: test error rate as a function of the number of em-
ployed pixels, with 5% added white noise. The darker and the lighter versions of the two line colors
respectively represent the mean value and the confidence interval (of 2 standard deviations) over
the 20 sample sets generated for validation. On the right: test error rate (averaged on the values
obtained considering the numbers of pixels 250, 260, . . . , 300) as a function of the added noise per-
centage. The plots show that the scatterers presence allows for an error rate reduction up to ∼ 50%
(or higher for the classification of nucleus shape), provided that a sufficient number of pixels and a
low enough noise level are considered.

that the scatterers’ presence unfolds the cell diffraction pattern into a higher num-
ber of components (Figure 3.24(c)) that may be important for classification. Thus, it is
probable that someof these components have low intensitywith respect to the average
pattern intensity and are therefore easily overcome by high relative levels of noise.
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3.6.3 Nonlinearity of phase sensitivity

If there seems to be a limit to the improvements obtainable via the use of scatterers
when a green coherent source is used, further simulations considering an UV laser
(λ = 337.1 nm) show that this limit is easily overcome by decreasing the source wave-
length [24]. An explanation of this effect can be provided by the following simplified
argumentation.

Let us neglect for a moment the light deflection due to the cell refractive index
structure and let us consider only the phase shift of the light along all the possible
fixed paths (here labeled with n) through the cell to one pixel on the screen. At the top
of Figure 3.27 a schematic illustration representing 3 of these paths is shown. Let us
state that the light along a path n has unitary initial amplitude and zero initial phase
(the reasoning is independent from the initial conditions) and that it accumulates a
phase shift θn through the cell. Moreover, let us say that its amplitude is reduced by
a factor An and its phase is increased by ϕn along the path to the pixel excluding the

Figure 3.27: Two equivalent schematics of the proposed classifying system. At the top, a physical
schema shows an example of amplitude and phase evolution along 3 optical paths that end up im-
pinging on the same pixel of the image sensor. The acquired light intensity is then weighted and
summed by a linear classifier. At the bottom, a diagram (under the form of a neural network archi-
tecture) represents the corresponding mathematical operations on the light phase accumulated
through the cell refractive index structure (see equation (7)). For simplicity’s sake, the light deflec-
tion due to the cell presence is neglected, and thus the amplitudes An and the factors Anm, Bnm, and
C are considered as constants with respect to the inputs θn.
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path inside the cell. Thus, the complex amplitude of the radiation impinging on the
pixel is∑n Ane

i(θn+ϕn) and the acquired intensity I is proportional to

I ∝

∑
n
Ane

i(θn+ϕn)


2
= C + ∑

m<n
[Anm cos(θn − θm) + Bnm sin(θn − θm)] (7)

where C, Anm, and Bnm (that can also account for the presence of scatterers) are con-
stants with respect to θn but depend onAn andϕn. These dependencies are omitted as
the phase shifts θn are the only actual inputs of our classifying system, neglecting the
light absorption in the cell. Equation (7) shows that the phase shift to intensity trans-
fer function on the pixel can be written as a linear combination of all the possible sine
and cosine functions whose argument is the phase shift difference between two of the
considered optical paths (bottom of Figure 3.27). Note that if the deflection of the light
path due the cell’s presence was also considered, we would have a richer dependence
on θn in the right-hand side of equation (7) (C, Anm, and Bnm will also depend on θn).
Nevertheless, the sines and the cosines in equation (7) would still be present and the
following argument would still be relevant. It is important to note that, in this repre-
sentation, the only role of the scatterer layers is to improve classificationperformances
by providing more suitable weights Anm, Bnm, and C.

Let us now consider, for instance, the difference Δθ between phase shifts corre-
sponding to a path through the nucleus and a neighboring path that instead does not
intersect the nucleus. Let us call this phase shift difference Δθn in the case of a “nor-
mal” cell (smaller nucleus) and Δθc in the case of a “cancer” cell (bigger nucleus).
We can intuitively say that if the readout linear classifier is able, for example, to de-
tect the difference ΔI between the intensity contributions produced by Δθn and Δθc,
respectively, among the other intensity contributions, the system can be successfully
trained in carrying out the classification task. From equation (7) follows that an esti-
mate of this critical intensity difference is given by

ΔI ∝ A[sin(Δθc) − sin(Δθn)] + B[cos(Δθc) − cos(Δθn)]

with Δθc =
2πDc
λ
(nnucleus − ncytoplasm)

and Δθn =
2πDn
λ
(nnucleus − ncytoplasm)

(8)

where A and B are constants, Dc ∼ 2.5 μm and Dn ∼ 1.2 μm are the average diameter
of the “cancer” and the “normal” cell model, respectively, λ is the wavelength of the
considered radiation, nnucleus = 1.39 and ncytoplasm = 1.37 are the refractive index of
the nucleus and of the cytoplasm in the employed cell model. Let us stress that we
expect bad classification performances if the system has a too linear or a too random
response. It can be noted that in equation (7) these two undesired conditions may be
ascribed to θn−θm ≪ π (linear regime) and θn−θm ≫ π (periodic regime), respectively.
When we focus on distinguishing between different nucleus sizes, equation (8) have
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to be considered. In particular, if λ = 0.532 μmwe have Δθc ∼ 0.6 and Δθn ∼ 0.3, which
are quite smaller than π. By looking at the expressions for these two differences, it
can be noticed that they can be increased by lowering the wavelength. This implies
the need to employ an UV laser, which is usually significantly more expensive than
its green counterpart and could damage the illuminated cell. A more feasible solution
consists of increasing the effective optical path length through the cell by inserting it
in an optical cavity. Indeed, a cavity wouldmake the impinging light pass, on average,
more than once through the cell.

3.6.4 Combination of dielectric scatterers and optical cavity

Equation (8) suggests that the classification improvement due to the use of dielectric
scatterers can be enhanced by inserting the cell in a properly designed optical cavity.
Indeed, this allows to increase the nonlinearity of the nucleus signal representation
in the acquired intensity pattern. In practice, in the FDTD simulation design 2 Bragg
reflectors were placed at the 2 external sides of themicrofluidic channel, orthogonally
to the light beam direction, creating a Fabry–Pérot cavity (Figure 3.23). The employed
Bragg reflectors are each composed of 3 layers of SiO2 with a width of (455 ± 10)nm in
a Si3N4 cladding. The error in the layer width was implemented by adding a random
value sampled from an uniform probability distribution between −10 nm and 10nm.
It approximately accounts for fabrication errors. The distance D = 21.02 μm between
the reflectors was chosen so that the portion of light passing through and near the
nucleus of the cell is resonant. This was done by monitoring the light intensity inside
the cavity for different values of D. Note that such a tuning was relatively easy to per-
form because the cell acts as a weak converging lens, providing an additional light
confinement along the microfluidic channel direction.

The reflectivity R of the reflectors is also a crucial parameter, since it controls the
cavity Q-factor and, therefore, controls both the sensitivity of the resonance to intra-
cavity optical path lengths and how long the light stays, on average, inside the cav-
ity. This means that by tuning R a trade-off has to be achieved between how much
the phase shift due to the selected resonant cell part is increased and how much the
corresponding resonance is stable. Indeed, if the cavity Q-factor is too high, the reso-
nance strength might be strongly influenced by uninteresting small details of the cell
structure or by fabrication errors. As previously explained (Subsection 3.6.3), the cav-
ity should be designed so that the average light phase shift differences due to the op-
tical feature of interest corresponding to the considered classes are roughly between
π/2 and 2π. In particular, the reflectors employed in the simulations (composed of 3
layers) have a satisfying reflectivity of∼ 56%,while it turned out that similar reflectors
with 4 and 5 layers have a too high reflectivity, respectively of ∼ 73% and ∼ 85%. Fi-
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Figure 3.28: Comparison between test error rates corresponding to the absence (in red) and the
presence (in blue) of 4 layers of scatterers, employing a green laser source (λ = 532 nm) and the de-
scribed integrated optical cavity. On the left: test error rate as a function of the number of employed
pixels, with 5% added white noise. On the right: test error rate (averaged on the values obtained
considering the numbers of pixels 250, 260, . . . , 300) as a function of the added noise percentage.
These graphs are to be compared with Figure 3.26(a): the employment of an optical cavity signifi-
cantly enhances the classification improvement obtained with the use of scatterers.

nally, the introduction of the optical cavity implied that the simulation time had to be
properly increased to 1.2 ps, while the other simulation and machine learning details
were as previously described.

Results

Figure 3.28 shows the results of nucleus size classification obtained employing a green
laser source (λ = 532 nm) and the described integrated optical cavity. A substantial
improvement is observed with respect to the correspondent case without cavity (Fig-
ure 3.26). In particular, the classification improvement due to the use of scatterers
is increased by factor 5 for sufficiently low but still plausible noise levels (< 10%).
At these noise levels, the results are similar to what was obtained with an UV light
source (see [24]), without the drawback of possible cell damage. For higher noise lev-
els, an increased sensitivity to noise pushes the classification error rate to significantly
higher values. Furthermore, it should be stressed that an additional advantage aris-
ing from the use of an optical cavity is that it can be designed to increase the inten-
sity pattern sensitivity toward specific optical path lengths, making the optical fea-
tures of interest more evident to the readout classifier with respect to other competing
ones.
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3.7 Conclusion

In this chapter, we reviewed integrated photonic reservoir computing chips, with a
special emphasis on passive reservoir structures.We presented simulation results that
show that this paradigmcanbeused successfully toperformavariety of tasks (bit level
tasks, nonlinear dispersion compensation, etc.) at high speeds and low power con-
sumption. In addition, we presented a spatial analog of reservoir computing based on
pillar scatterers and a cavity, that can be used to speed up classification of biological
cells.
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4 Large scale spatiotemporal reservoirs

4.1 Introduction

A core advantage of optical systems is their possibility to process information con-
tained in a 2D-plane in parallel. Numerous schemes take profit from this concept,
among others, the 4f optical-correlator [1] or the parallel implementation of opti-
cal matrix multiplications [2, 3]. Taking the application of an optical matrix prod-
uct further enables the optical realization of a Hopfield network. There, diffraction
implements a predetermined coupling matrix based on the analytical relationship
introduced in Section 1.2.5. Using photorefractive crystals, diffraction combined with
phase-conjugation can even implement deep neural networks with a hardware-based
gradient back-propagation learning routine [4].Most of these concepts rely on volume-
holograms to implement a fully-optimized coupling matrix. This approach creates
exceptional space-bandwidth products, yet also results in limitations such as a detri-
mental cross-talk between weights [5]. Thanks to the RC concept’s relaxed require-
ments on the internal coupling matrix, the impact of these limitations is of reduced
importance. Furthermore, control over all individual entries of the connectivitymatrix
is not required and simpler concepts can be leveraged to implement coupling fully in
parallel. We will create large-scale networks of discrete photonic emitters based on
diffractive coupling [6] and will implement learning in photonic hardware based on
a digital micro-mirror device (DMD) [7]. We, too, illustrate avenues to optically inject
information into such systems [6]. With that, we realize the connections between
the input, hidden and readout layers all-optically based on fundamentally parallel
concepts. We illustrate diffractive coupling in two different systems: one uses the pix-
els of a spatial light modulator (SLM) as nonlinear elements, the other is based on a
commercial array of vertical-cavity surface-emitting lasers (VCSELs).

4.2 Diffractive coupling

From its principles, a reservoir is a spatiotemporal dynamical system comprising a
complex and recurrent network of nonlinear nodes. Spatiotemporal dynamics can be
mapped onto multiple spaces, including additional temporal [8] or spectral [9] co-
ordinates. An implementation of nonlinear networks in physical space has the fun-
damental advantages of efficiently exploiting the parallelism of optical components.
Other than in electronics, where the physical realization of each network connection
requires a dedicated wire, in optics a single element can provide such functional-

https://doi.org/10.1515/9783110583496-004
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Figure 4.1: (a) Imaging two emitters via a 2f -imaging arrangement, including between both lenses
a DOE creating three discrete diffractive orders of identical amplitudes. The focal distance is f , Θim

the angle between the principle rays of neighboring emitters, and Θdiff the angle between diffractive
orders. For the right set of parameters, the distance between diffractive orders in the image plane
equals the distance between neighboring emitters: parray ≈ ddiff. (b) Placing a mirror in the image
plane of the second lens results in (i) double passing through the DOE, and (ii) diffractive orders
located at the positions of neighboring emitters.

ity for the entire network. For the case of coupling an array of discrete optical emit-
ters spaced at period parray, the coupling mechanism has to precisely match the ar-
ray’s period [6]. We assume a 2D array of optical nonlinear elements with positions
given by ri,j = parray ⋅ (i, j), where i, j ∈ {−Ñ , Ñ} assign physical node positions to in-
teger indices. This results in an array consisting of N = (2Ñ)2 nodes. In Figure 4.1(a),
we schematically illustrate the principle of spatial multiplexing discrete positions by
combining imaging and diffraction. The schematic illustration is restricted to the x
and z-dimensions as properties along y are identical to x and can therefore be omitted
for illustration-simplicity. Emitters are located at za, one focal distance f in front of
the first lens or microscope objective (MO), which is followed by the diffractive optical
element (DOE) located at zDOE. Following classical optical design principles, the DOE
should ideally be located at a distance f behind the first and in front of the second lens
[10]. In practice, this is often not feasible, for instance due to geometric restrictions by
mechanical components, but most importantly due to the use of MOs. For the sake of
minimal aberrations, the use of infinity-corrected MO is strongly recommended, even
required. Yet, these typically posses a small, in many cases even negative back-focal
distance. Placing the DOE in the Fourier-plane is therefore impractical or impossible.
Finally, a second lens or MO, located at za + f +D creates an image-plane located at zm.

As illustrated in Figure 4.1(a), the result is the distribution of the original emitter’s
optical field across various diffraction orders at z = zm. For a first simple analysis of the
imaging system, we assume the DOE to be a simple transmission diffraction grating
with a periodic phase-modulation along x and y. Based on the analytical solution for
diffraction by a grating and an optical ray-treatment of an aberration-free lens, we
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obtain

Θim
i = tan

−1( i ⋅ p
array

f
) (1)

Θdiff
i,m = sin

−1(sinΘim
i +m

λ
pDOE
), (2)

which are the two relevant angles describing imaging (Θim
i ) and diffraction (Θdiff

i,m ) in
the system’s collimated space. Parameters are wavelength λ and the period of the
DOE’s phase or amplitude modulation pDOE. The same relationships would be found
in the y-direction using integer j.

In order to understand the optical mechanism underlying coupling by diffractive-
imaging, Figure 4.1(a) shows the process for an emitter located in the center of the
array, i = 0 and x0 = 0, and its nearest neighbor i = 1 located at x1 = parray. For
both emitters, the grating creates a family of diffractive orders in zm and, for coupling
between their optical fields to be established, some of these orders need to overlap in
space. The criteria for coupling between diffractive order m = +1 of emitter i = 0 and
orderm = 0 of emitter i = 1 is then given by

sinΘdiff
0,+1 =

λ
pDOE
, tanΘim

1 =
parray

f
(3)

Θdiff
0,+1 = Θ

im
1 . (4)

Equations (3) and (4), respectively, give the imaging angle for emitter i = 1’s imaging
angle (Θim

1 ) and the +1-diffraction order’s angle for emitter i = 0 (Θdiff
0,+1). The second

lens or MO images both respective wavefronts, and hence, for overlap of their optical
fields at zm, the propagation angle of both fronts needs to be identical, creating the
condition of equation (4). Solving this set of equations is straightforward, and for the
right set of system parameters coupling is created between neighbors of the array.

We typically adjust the experimental parameters, i. e., λ, parray or pDOE such that
coupling is optimized for the central emitter: λ/pDOE = sin(tan−1[parray/f ]). The result-
ing linear superposition of their optical fields is weighted according to the respective
diffractive orders’ intensities. However, it is clear that this alignment criteria is only ex-
actly satisfied for coupling the pair of emitters initially used to solve equation (4). For
pairs of emitters located away from the optimal position, the overlap between neigh-
boring emitters’ optical fields will gradually be reduced due to the different trigono-
metric relationships for imaging and diffraction; see equation (3). As soon as the re-
sulting misalignment between the neighboring optical fields becomes of the order of
the emitter’s physical size, coupling will be seriously hampered. In consequence, the
array size is effectively limited, as will be discussed in Section 4.2.2. Crucially, for the
elements located inside the area for which equation (4)’s condition is fulfilled, cou-
pling is implemented fully in parallel and without any additional energy cost besides
optical attenuations introduced by the individual optical elements such as DOE or
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MOs. In general, the concept does not require both MOs to have identical focal dis-
tances. For that case, f in equations (1), (3), and (4) refers to the first MO’s focal dis-
tance.

If emitters are directly sensitive to optical feedback, i. e., semiconductor lasers
such as VCSELs, locating a mirror at zm = za + 2f + D results in an imaging optical
resonator, a configuration illustrated in Figure 4.1(b). The reflected optical fields will
traverse the DOE a second time, resulting in additional diffraction and distribution
of diffractive orders in array-plane za that creates a larger coupling range than the
one in zm. Furthermore, in reflection the image formed at position za is created by a
4f -configuration. Consequently, diffractive orders will be arranged around their orig-
inal emitter’s position rarrayi,j , creating local coupling including self feedback: emitter
(i, j) will be injected by its own field and emitters located in its neighborhood with
a range defined by the DOE’s particular diffraction pattern. Finally, the second lens
can in principle be removed, creating feedback according to 2f -imaging, and hence
coupling of emitter (i, j) to emitters located in the neighborhood centered at (−i,−j). It
is important to highlight that RC does not imply self-coupling, yet from a nonlinear
dynamical point of view the resulting behavior of the network will most certainly be
different. Finally, WDOE

i,j ̸= WDOE
j,i would allow for a network structure according to a

directed graph. For arrays of electro-optical emitters, a direct coupling approach as
previously discussed for semiconductor lasers will typically not be sufficient; unless
conversion from optical to electrical signal and vice versa is carried out at the site of
the emitters.While such a situation is created by optical light valves [11] and advanced
arrays based on integration of detectors and lasers [12], most arrays of electro-optical
nonlinear elements including electro-optical SLMs will not provide this functionality.
For these systems, the diffracted imagewill need to be recordedwith an electronic spa-
tial sensor—typically a camera, which in turn must be coupled to the electro-optical
emitter array.

4.2.1 Coupling matrix

For the detailed characterization of a network coupling matrix established by diff-
ractive-coupling (WDOE), we first employed the SLM-based setup 1 [7]. Figure 4.2 il-
lustrates such an experimental scheme. The field of an illumination laser (Thorlabs
LP660-SF20, λ = 661.2 nm, Ibias = 89.69mA, T = 23°C) is adjusted to s-polarization via
polarization-controlling paddles and collimated by a lens (L1, Thorlabs AC254-035-
B-ML), creating a plane-wave illumination of the SLM. A second lens (L2, Thorlabs
AC254-200-B-ML) is positioned such that the illumination is focused at the back-focal
plane of the first MO (MO1, Nikon CFI Plan Achro 10X). This microscope objective re-
ceives the s-polarized illumination that is reflected by the polarizing beam splitter
(PBS) cube. Between the PBS and MO1, we locate a half-wave plate (λ/2) which is
aligned such that the illuminated SLM (HamamatsuX13267-01) is operated in intensity
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Figure 4.2: The surface of a SLM is illuminated by
a laser’s plane wave. A λ/2-plate adjusts the SLM
to operate in intensity modulation, and the signal
reflected off the SLM is filtered by a polarization
beam splitter (PBS). In the PBS’s transmission
direction, a diffractive optical element (DOE)
introduces diffractive orders that are imaged onto
a camera after a double pass through a λ/4-plate.

modulation mode. Instead of the standard configuration of a 3-paddel fiber polariza-
tion controllerwe employ 5 paddelswhich significantly increases the extinction ration
at the PBS. After reflection off and potential polarization modification by the SLM,
the p-polarized fraction of light is transmitted through the PBS, where it passes the
DOE (HOLOOR MS-443-650-Y-X) and a quarter-wave plate (λ/4). A second microscope
objective (MO2, Nikon CFI Plan Achro 10X) creates an image-plane, in which we lo-
cated a broadband highly-reflective dielectric mirror. Following reflection, light again
passes the DOE, and due to the double-pass through the λ/4-plate p-polarization is
converted into s-polarization, resulting in near 100% reflection at the PBS. There, the
twice-diffracted optical fields are imaged on a Camera (CAM, Thorlabs DCC1545M) by
yet anothermicroscopeobjective (MO3,NikonCFI PlanFluor 4X). Crucially, in contrast
with the previous section, the location within the emitter array is now only identified
by a single index i, which is straightforward to convert into an 2D index of (i, j) via
concatenation. We opted for this simplification in order to avoid three-dimensional
tensors to describe the coupling between emitters.

In this characterization, after interaction with each of the SLM’s pixels, the
p-polarized fraction of the reflected optical field is imaged onto the camera in a
4f -configuration, including double-diffraction by the DOE. Each SLM pixel is con-
trolled via its gray-scale value (GS), hence the 8-bit SLM’s state vector is xSLM ∈
{0, 1, . . . , 255}, and the resulting optical field aligned in p-polarization for pixel i is
given by

Ei = E
0
i cos(

2π
κSLM
(xSLMi + θ

0
i )), (5)

where E0i is the optical field illuminating pixel i, κSLM = 244.6 ± 1.6 the conversion be-
tween pixel gray scale and polarization angle in radians; gray scale offset θ0i = 11.1±1.1
is a device related constant. Uncertainties given for κSLM and θ0i correspond to the stan-
dard deviations measured across all pixels. After double-passing the DOE, the signal
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registered on the camera is given by

xCi = α


N
∑
j
WDOE

i,j Ej


2

, (6)

where xC ∈ {0, 1, . . . , 255} is the 8-bit camera-state and α = GS
Isat ⋅ ND. The camera’s

saturation intensity is given by Isat, and ND the transmission efficiency through the
full setup, including neutral density filters selected such that the dynamical range of
the camera is best exploited and overexposure is avoided. Most importantly,WDOE is
the network’s couplingmatrix created by theDOE. Camera-statexC is linearly rescaled
in size such that its dimensions match the number of active SLM pixels, resulting in
x̃C. This additional step is required since (i) the optical image is magnified by 2.5 due
to the magnification ratio between MO1 and MO3, and due to (ii), the different pixel
sizes of SLM (12.5 μm) and camera (5.2 μm).

In agreementwith our alignment conditiongivenby equation (4), the illumination
wavelength λwas chosen such that in combinationwith the DOE andMO1 the spacing
between diffractive orders (pdiff) matches the SLM’s pixel-pitch (parray = 12.5 μm). For
obtainingWDOE, x̃C was recorded once for each pixel i ∈ {1, 2, . . . , 2025} being switched
to its maximal p-polarization configuration (xSLMi ∼ 110) while all other pixels set to
minimal p-polarization (xSLMj ̸=i ∼ 50). This procedurewas carried out for all pixels, once
with and oncewithout theDOE, enabling us to first confirm that,without theDOE, pix-
els exclusively experience self-coupling. Moreover, this procedure also allowed for the
normalization ofWDOE. As the DOE with 3 × 3 diffractive orders is operated in double
pass, the final diffraction is a convolution of the diffraction patternwith itself, on aver-
age resulting in a 5×5 coupling pattern. Figure 4.3 shows the experimentally obtained
coupling matrix WDOE for a network of 2025 (45 × 45) nodes. Upon inspection of the
insets, showing a more detailed zoom ofWDOE, one can see strong variations in local
connectivity strengths. This is due to each pixel illuminating a DOE area comparable
to the DOE’s lowest spatial frequency. As this area shifts slightly from pixel to pixel,
the intensity distribution between diffractive orders varies. This inherently creates the
heterogeneous photonic network topology needed for computation according to the
RC concept [13].

In single-pass and for the optical wave traversing the DOE with a diameter signif-
icantly larger than pDOE, the resulting pattern is the 3 × 3 configuration of diffractive
orders. Combined, these diffractive orders account for approximately 70% of the
entire optical intensity, which in addition is very uniformly distributed across the
9-diffractive orders. One could therefore approximate the average coupling for a sin-
gle pass configuration as a 2-dimensional square window function, which is one for
each entry within the 3 × 3 coupling window and zero otherwise. This assumes that
local diffraction pattern fluctuations, consequence of the small beam diameter for in-
dividual pixels, average out across the network, hence resulting in theDOE-diffraction
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Figure 4.3: Diffractive coupling matrixWDOE of a network consisting of 2025 nonlinear photonic
nodes. The contrast in the large panel was artificially enhanced to reveal the coupling structure.
The smaller panels (original contrast) on the right show local coupling strengths, revealing complex
connection weight distributions, while also revealing the local nature of the coupling.

Figure 4.4: (a) Normalized, average coupling strength against coupling distance. The dominating
coupling term corresponds to self-coupling, and coupling takes place within a radius of ≈3. (b) Hori-
zontal and vertical profiles through the center position of data shown in panel (a). Average coupling
is highly symmetric and experiences a linear decay with distance. This topology can be excellently
explained by the convolution of two step functions with a width of 3, creating a triangular distribu-
tion. This is the result of double passing the DOE, and hence convoluting the 3 × 3 coupling matrix
with itself.

pattern obtained for illuminating many DOE-periods pDOE. For the double-pass con-
figuration, such an assumption results in the convolution of this 2D window function
with itself, creating a pyramidal distribution now consisting of 5 × 5 nonzero entries.
In Figure 4.4, we show the globally averaged coupling properties obtained from our
experiment. For that, we took the images x̃C previously recorded for the coupling ma-
trix characterization, and select an area of 9 × 9 entries centered around the activated
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pixel, i. e., hence the position of the zero order. Subarrays for all pixels are summed
andnormalized, and the resulting average network coupling is shown in Figure 4.4(a).
As expected, the coupling strength at the center is strongest, corresponding to the av-
erage zero-order intensity after the DOE-double pass. In Figure 4.4(b) we show the
horizontal (red circles) and vertical (blue stars) profile-cuts through the center of
panel (a) data. The experimentally obtained results excellently match the expected
pyramidal coupling profile with an overall width of 5 at its base. For coupling radii
larger than two the experimentally obtained average coupling is not strictly equal to
zero, which we attribute to the non negligible contribution originating to the DOE’s
higher diffractive orders.

4.2.2 Network size limitations

While already demonstrated to couple several thousand photonic nodes, diffractive
coupling’s validity depends of positions rarrayi,j . From equation (3), it follows that over-
lap between the orders of neighboring emitters is given if

ΦNode
i > Θ

diff
i,±1 − Θ

im
i±1 (7)

ΦNode
i = tan

−1( i ⋅ p
array + a/2
f
) − tan−1( i ⋅ p

array − a/2
f
). (8)

Here, ΦNode
i is the subtended angle covered by the photonic neuron’s optical mode,

which is emitted by an aperture of diameter a. Furthermore, equation (7) is restricted
coupling via the first diffractive orders (Θdiff

i,m , |m| = 1). Combined, equations (1), (2),
and (7) create a condition corresponding to the paraxial approximation, where here
the approximation’s validity is limited to deviations smaller than ΦNode

i .
Due to the importance for the concept’s validity, we characterized the deviation

away from the coupling conditions for a large rangeof emitter positions ri. In the exper-
iment,we implemented the setup schematically illustrated in Figure 4.1(a). To emulate
the emission of a single-mode optical network node, we used emission from the end
of a single-mode optical fiber (Thorlabs TW670R5A2) coupled to the same laser as in
Section 4.2.1 with a wavelength of λ = 661.2 nm. The fiber was shifted along the object
plane via a micrometric xy-stage (Thorlabs ST1XY-S/M), and the image was recorded
on a CMOS-camerawith 2.2 μmpixel size (IDSUSB 3 μEye LE). AMAG = 10microscope
objective (Nikon Plan N, NA = 0.25) was used to collimate the fiber’s emission, which
was imaged onto the camera with a MAG = 4 microscope objective (Nikon N4X-PF,
NA = 0.13). Both microscope objectives were separated by D = 50mm, with the DOE
located approximately mid-way between both. At each position ri, we recorded the
camera’s image, and since in this configuration light passes the DOE only once, we
fitted the resulting diffractive orders via 9 Gaussian profiles.

In Figure 4.5(a), we show the experimentally obtained mismatch (stars) between
the expected and real positions of diffractive order = −1 for 0 < ri < 2mm on a
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Figure 4.5: (a) Mismatch between the first diffractive order and nominal positions of emitter versus
position for the first diffractive order in the horizontal plane. (b) As in (a) but for all orders. The in-
crease in mismatch for distances beyond 1mm is caused by beam-vignetting. For arrays of 4mm2

size, the mismatch remains below 1 μm. (c) For the same area, the imaging system remains diffrac-
tion limited, allowing to couple arrays consisting of 40.000 single mode emitters separated by a
pitch of 10 μm.

double-logarithmic scale. From the data, it is apparent that the mismatch remains be-
low 0.1 μm for positions located within a circle of ri ≲ 1mm. Assuming parray = 10 μm,
a typical value for such discrete photonic emitter arrays [7, 14], diffractive coupling
is therefore possible for more than 30.000 nodes. However, for ri > 1mm one can
identify a strong increase in the coupling mismatch. Comparison with the analytical
results (dashed line) obtained with the help of equations (1) and (2), it is clear that
experimental results and analytical solution strongly diverge.

The underlying reason can be understood on the basis of a numerical simula-
tion. For that, we computed the optical propagation of the collimated beam via the
methodbased on the angular spectrumof planewaves, importantly not employing the
paraxial approximation [10]. Using phase-retrieval, we determined the phase-profile
of the DOE, which was included in the beam-propagation simulation. Finally, we sim-
ulated the microscope objectives based on a numerical method employing the Debye-
approximation [15]. All relevant parameters like NA and MAG of the microscope ob-
jectives as well as the distance between the individual optical elements were taken
from the experiment. Results of the numerical simulation (circles in Figure 4.5(a)) ex-
cellently agreed with the experimental results in both, the confirmation of diffractive
coupling for ri ≲ 1mm and the strong divergence away from the analytical solution
for ri > 1mm. Inspection of the z-positions, critical for the beam propagation, iden-
tified the cause: for ri > 1mm, the entrance pupil of the second microscope objective
results in substantial beam-vignetting. Diffraction on that pupil strongly deviates the
diffractive orders away from their unperturbed positions. We can therefore conclude
that even the already excellent current scalability up to networks hosting more than
30.000nodes is limited by the imaging system, not by the diffractive coupling concept.

Figure 4.5(b) shows the coupling-mismatch of all orders for, both, experimental
and numerical results. First, the obtained mismatch confirms the limit obtained for
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the first order. Second, it reveals that for smaller ri the experiment exhibits a posi-
tion resolution limited to below ∼40nm. This excellent accuracy is consequence of
the camera’s low detection noise allowing for highly accurate fitting. Interestingly,
we find numerical simulations are equally limited in position resolution. The limit of
∼10 nm obtained there is consequence of the fitting algorithms convergence criteria.

Finally, successful coupling does not only require accurate agreement between
the different diffractive order’s positions, but also that diffractive imaging does not
notably deteriorate the quality of the emitted optical mode. In Figure 4.5(c), we there-
fore show the width of the individual diffractive orders in the image plane obtained
from the experiment (stars). The dashed line corresponds to the diffraction limit of
the optical system, demonstrating that our system remains diffraction limited as long
as beam-vignetting can be neglected. Imaging performance slightly better than the
diffraction limit can be attributed to the uncertainty associated to the single-mode
fiber’s NA, which in turn causes uncertainty in calculating the collimated beam’s
width. All together, we can confirm the excellent scalability of diffractive coupling,
allowing the creation of single-mode emitter networks consisting of 10s of thousands
of elements.

4.3 Networks of vertically emitting lasers

In a second experiment, we investigated diffractive-coupling of a small array of semi-
conductor VCSEL lasers. In this early stage experiment [6], we implemented a different
optical setup to create the 4f diffractive coupling. In Figures 4.1 and 4.2, 4f -imaging
is realized via two lenses or MOs, with the DOE and other optical elements included
in the collimated-space between. This approach, inspired by designs from infinity-
corrected microscopy, has the advantage that aberrations are strongly reduced as all
flat optical elements are located in the spacewhere beams are collimated.However, on
the down side, one cannot adjust f , which therefore is not a parameter but a constant
in the alignment condition of equation (3). For our commercial VCSEL array (Prince-
ton Optronics PRI-AA64-PK-SM-W0975), parray = 250 μmand λ ≈ (966±2)nmare fixed,
and so is pDOE of the commercial DOE (HOLOOR 1803). This only leaves focal distance
f as a tunable parameter, and the simplest configuration for such a tunable imaging
setup is based on direct imaging with a single lens. In Figure 4.6(a), we schematically
illustrate the resulting experimental setup. The VCSEL array was placed at distance
f1 > f in front of the only lens inside the resonator (Thorlabs AL1225-B, f = 25mm). Ac-
cording to the imaging properties of a lens, an image is formed at f2 = (f −11 + f

−1)−1 with
amagnificationM = f2/f1. We can therefore tune f1 such that the coupling condition of
equation (3) is fulfilled, and then simply place themirror at f2 behind the lens. Instead
of a simple mirror we used a SLM (Holoeye, LC-R 1080) which facilitated additional
control over the coupling matrix beyond the coupling implemented viaWDOE.
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Figure 4.6: (a) Optical 4f -resonator based on a single lens architecture. The diffraction system’s
imaging angle can be adjusted to the DOE’s diffraction angle by changing distance f2. The scheme
allows for optical injection via an external injection laser and optical feedback is polarization selec-
tive. (b) For fine-adjustment, the DOE is mounted on a micrometer controlled rotation stage, and one
can see how in the middle column diffractive orders from 9 neighboring lasers excellently overlap.
Subtracting images recorded without feedback from the ones with feedback, we can identify the
excellent optical quality of the feedback.

A 50/50 beam splitter (BS) created an input port for an external injection laser and
allowed imaging of the optical feedback (not shown for simplicity). Behind this BS, a
Rochon-prism makes the system’s feedback and its output polarization selective. Fi-
nally, in the output we included a Köhler-integrator, homogenizing the array’s output
within a focal spot of ∼100 μm. This created spacial overlap between different planar-
wave vectors originating from the various VCSELs and, therefore, allowed the detec-
tion of the individual VCSEL’s properties simultaneously. This step is essential, as oth-
erwise we could not have simultaneously determined global network dynamics but
only measure the dynamics of one laser at a time.

Close to the electrically pumped VCSEL’s individual bias current threshold (Ith ∼
0.2mA), we obtained a lasing threshold reduction due to self-coupling of∼25% for the
central 3 × 3 array. Toward elements located further away from the center, this value
decreased significantly, and outside the central 5 × 5 array no such effect could have
been reliably determined. This demonstrates that the size of our diffractive network
is mostly restricted to the central 3 × 3 array. We continued and evaluated diffractive
coupling by including the DOE and examining modifications to the array’s emission
power and by coupling-induced network dynamics. For maximizing interaction be-
tween the VCSELs in our network, we minimized their spectral detuning by biasing
the lasers according to Table 4.1 (Tarray = 40°C, λarray = 966.92 nm). Two lasers were
not pumped: onewas not connected by the array-manufacturer, the other could not be
tuned sufficiently to come into resonance with the other lasers. Without coupling, we
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Table 4.1: Bias current for array emission at 966.92 nm.

2.188 mA 0 mA 0.658 mA
1.77 mA 0 mA 0.908 mA
2.4 mA 1.189 mA 1.411 mA

measureda free-runningarray emissionpower ofP0 = 186 μW,which for self-coupling
increased to PSC = 195 μW, corresponding to PSC = 1.048 ⋅P0. Coupling between lasers
further increased the array emission power to now PFC = 205 μW (PFC = 1.052 ⋅ PSC).
These increases clearly demonstrated that our diffractive-coupling scheme is capa-
ble to couple single mode semiconductor lasers if aberrations are kept in check. In
order to maximize coupling, careful control of the DOE’s rotation angle is essential.
In Figure 4.6(b), we show how sensitive the spatial overlap of the individual laser’s
coupling contributions is in dependence to this alignment parameter. We therefore
mounted the DOE in a micrometer controlled rotation stage (Thorlabs CRM1P/M). For
correct alignment, we can see that the feedback signal is a single Gaussian-like spot
consisting of the individual laser’s superpositions. The alignment between the differ-
ent diffractive orders of neighboring lasers is of such high quality that even the fringes
of the Airy-function agree.

Under the bias condition of Table 4.1, each investigated coupling configuration re-
sulted in less relative coupling-induced power increase than the ∼25% obtained close
to solitary laser threshold. This reduced relative impact is a direct consequence of the
laser network’s dynamical state, which significantly differs between the low and the
high bias currents. All coupled lasers were biased significantly above solitary thresh-
old and, therefore, very likely exhibit chaotic dynamics [16], which consequently limit
the relative power increase.

4.3.1 Network dynamics and optical injection

We continued our analysis by injecting a spectrally aligned external laser into the 7
active VCSELs. By doing so, we demonstrated that diffractive laser networks can be
all-optically coupled to external information, essential functionality for them to serve
as optical NNs. If the injection laser polarization is aligned to the polarization of the
array (s-polarization), wemeasure a power increase of PCL = 1.112 ⋅PFC due to partially-
coherent locking of the array to the external injection laser. When biased according to
Table 4.1, the resulting array’s emission was strictly linear polarized (p-polarization),
which consequently is coupled out of the resonator by the Rochon prism. For success-
ful locking of the array to the injection laser, the array will switch its polarization from
p to the s-polarization of the injection laser. We defined the injection induced switch-
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Figure 4.7: (a) Radio-frequency spectra of the coupled free running, DC-injected, and dynamically
injected array are shown as red, green, and blue data, respectively. Free running dynamics show
clear signatures of the cavity round trip time and of mutual coupling. These dynamics can be effi-
ciently quenched by DC-injection with the external injection laser, whose modulation strongly drives
the network. (b) Linear combinations of driven laser dynamics can be used to approximate various
nonlinear transformations.

ing contrast Δinj as

Δinj =
Ipinj − I

CT
inj

Ip0
, (9)

with Ipinj, I
p
0 , and ICTinj as the array’s p-polarized emission intensity with and without

injection as well as the s-polarized injection laser’s cross-talk, respectively. Obtain-
ing Ipinj = (98.3 ± 3) μW, Ip0 = (294 ± 3) μW and ICTinj = (34 ± 1) μW, the corresponding
injection-laser induced polarization switching contrast is Δinj = 78%, using a moder-
ate injection laser intensity of ∼150 μW per array laser.

Besides modification to the lasers’ output power, delayed optical feedback can
potentially induce complex network dynamics. These we detected via a fast photo-
receiver (FEMTOHSA-X-S-1G4-SI-FS) located in the focal position of the Köhler integra-
tor. In Figure 4.7(a), we show multiple rf-spectra of the network’s intensity dynamics
for multiple coupling configurations. Red data shows the network’s free-running dy-
namics, revealingmultiple broad spectral features around the external cavity’s round
trip frequency (τ−1 = 0.65GHz). In addition, we can identify strong dynamics at half
that frequency, a feature which, for polarization maintaining interaction, is represen-
tative for mutually coupled lasers [17]. Hence, dynamics was mainly dominated by
the external cavity round-trip frequency (τ−1 ≈ 0.65GHz) and its higher harmonics, in
addition to the coupling induced component around (2τ)−1. Both, spectrally narrow
as well as broadband features are present in the rf-spectrum, indicating a combina-
tion of periodic and complex dynamics. According to Table 4.2, bias currents were
widely spread, ranging from 3.3Ith ≤ Ibias ≤ 12Ith, which was needed for maximizing
the array’s spectral homogeneity by exploiting the current dependency of the lasers’
emission wavelength. Yet, such a large bias current spread induced equally heteroge-
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Table 4.2: Diffractive laser network parameters, bias currents as in Table 4.1.

Power w/o coupling 186μW P0
Power self-coupling 195μW PSC = 1.048 ⋅ P0
Power full-coupling 205μW PFC = 1.102 ⋅ P0
Coherent locking PCL = 1.112 ⋅ PFC
DC-locking fraction Δinj = 78%

neous operating conditions for the network’s lasers, suggesting complex and diverse
dynamics.

We then again injected the laser array with the external injection laser, again with
orthogonal polarization alignment. In the resulting rf-spectrum (green data), dynam-
ics are almost fully absent, with only weak dynamical features remaining around τ−1.
We therefore successfully quenched the laser network’s dynamics by stable locking
to the external injection laser. Finally, we investigated the network response to ex-
ternal perturbation. The injection laser was therefore modulated by a Mach–Zehnder
modulator (not shown in Figure 4.6(a)) with a frequency of νinj = τ−1. Dynamics of
the locked network, shown as blue data in Figure 4.7(a), were strongly dominated by
the modulation through the injection laser. Crucially, we found strong nonlinear mix-
ing in our laser network: a equally sharp spectral component at twice the injection
modulation frequency. As such, we have successfully created a spatiotemporal net-
work of semiconductor lasers. Higher orders too possibly exist, however, these are
outside the bandwidth of our fast photo-receiver (1.4GHz). Additionally, we can drive
all network-lasers in parallel at the excellent bandwidth of 0.65GHz, which results in
strong nonlinear mixing of the input information. While still only demonstrated for a
small network, this represents the first step toward a fully parallel andultrahigh speed
network of semiconductor lasers serving as a RC.

4.3.2 Function approximation

The final step toward computing with the laser network is to weight and combine the
laser’s output. For that, we activated all 8 connected lasers of the array’s center, bi-
asing them according to Table 4.3. Optical injection was modulated with a sinusoidal
intensity and at a frequency of νinj = 33MHz, whose period was approximately 20
times the network’s coupling delay τ = 1.3 ns. By choosing such a lowmodulation fre-
quency, the temporal window during which injection power increased linearly, i. e.,
between the sin-wave’s extrema, spans multiple τ. During this part, the injected sig-
nal is approximately a linear ramp, which we used as system input u(t). We recorded
the network’s response individually for each laser, using the fast photo-receiver and a
realtime oscilloscope with a sampling rate of 40GSamples/s and 16GHz analog band-
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Table 4.3: Bias current for dynamical injection locking and off-line function approximation via VCSEL
array.

3.1 mA 0 mA 1.7 mA
2.6 mA 1.24 mA 1.65 mA
3.2 mA 2.0 mA 0.218 mA

width. Thenetwork state is then vectorx(t), which contains eight entries—one for each
active laser.

We definedmultiple target nonlinear transformations f T (u(t)) to be approximated
by the laser network’s output yout(t). Based on the x(t), the system’s output is given
by

yout(t) = Woutx(t), (10)

where Wout are the system’s readout weights, which we calculated via the standard
matrix inversion techniques introduced in Chapter 2. As targets f T (u(t)), we chose cu-
bic, square root, and exponential nonlinearities plus a step function, shown as red,
blue green, and magenta dashed in lines in Figure 4.7(b). In the same figure, we show
the resulting outputs yout(t) in identical color solid lines. The demonstrated system’s
computation power is certainly limited and relies on off-line procedures. Yet, from the
data in Figure 4.7(b) it is apparent that such systems can process data at very high
bandwidths. All transformations are realized by the network within 12 ns, using an in-
jection power of ∼150 μW per network laser. For a fully implemented optical system,
this would correspond to a global clock-rate of 83MHz, which is close to three orders
of magnitude beyond what current implementations can achieve [18]. Also, requiring
150 μW injection power per laser means that over 6000 lasers could be injected with
a 1W single mode injection laser. For such a system, the energy per transformation
would be in the order of microjoules for complex transformations potentially realiz-
able with such large networks.

4.4 Reservoir of Ikeda oscillators
Ikeda delay systems have onmany occasions demonstrated excellent performance for
implementing a photonic RC. The defining feature of nonlinear Ikeda systems is their
sin2 nonlinearity. As in the original publication by Ikeda [19], the nonlinearity is typ-
ically created by interference between multiple waves combined with a process sen-
sitive to |E|2. Here, we follow another approach and implemented the Ikeda nonlin-
earity based on rotation, filtering, and detection of an optical field’s polarization. An
off-the-shelf systemwith polarization control over many spatially distributed discrete
elements is a SLM. We therefore extended the system originally used in Section 4.2.1.
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4.4.1 Experimental setup

The first step toward the physical implementation of a reservoir is realizing a complex
spatiotemporal system. Our main objective was to create a system which (i) can read-
ily be scaled up to large numbers of photonic neurons, (ii) can be practically extended
by optical input and readout, (iii) is based on fully parallel optical concepts, and fi-
nally (iv) is well suited as a proof of concept experiment. Containing over 6000 pixels
serving as nonlinear network nodes within an area of 1mm2, the SLM system, already
utilized for measuring the DOE’s coupling matrix WDOE, is excellently scalable. It is
an off-the-shelf device, and combined with infinity-corrected microscope objectives
the optical setup can readily be extended to realize input and output ports. All optical
processes involved in such a system are therefore carried out in parallel. Finally, the
device can be fully characterized, allowing for the creation of accurate models, and
hence for detailed analysis of fundamental aspects important to a proof of concept,
and equally essential for the field’s future development.

In Figure 4.8(a), we show the relevant connections and their nomenclature in our
reservoir computer, in (b) the complete experimental setup. In our RC system, panel
(a), a single input injects information into the reservoir according to injection weights
W inj. As before, the reservoir is internally connected in a recurrent topology with con-
nection weights according to the connectivity matrix WDOE. Finally, a single compu-
tational result is provided by combining the network’s state according to the weight
matrixWDMD. Following the RC concept, input and recurrent internal weights can be

Figure 4.8: (a) Connections implemented optically and electronically in our photonic reservoirs.
(b) Experimental setup based on the one introduced in Section 4.2, now extended by the readout
weightsWDMD implemented in the digital micro-mirror device (DMD). The experiment is controlled
via a PC, which also implements learning of DMD weights and injects the system with the external
information.
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chosen randomly [13]. While WDOE is not random (see Section 4.2.1), it certainly has
local complexity and is therefore promising to provide the high-dimensional network
required by RC.

4.4.2 A driven network of coupled Ikeda oscillators

The experimental system of Figure 4.8(b) is an amended version of the system in Sec-
tion 4.2.1 and Figure 4.2, making it fit for serving as a reservoir [7]. We included an
additional 50/50 beam splitter (BS) in front of the PBS. In reflection, the BS creates the
input port for the SLM-illuminating laser and readout of the SLM, and hence of the
network state; the readout functionality will be discussed in the following section. All
other optical components part of Figure 4.8(b) are identical to the ones introduced in
Section 4.2.1.

In order to make the transition from the static system in Section 4.2.1, we intro-
duced a temporal context to our experiment and enabled the injection of external in-
formation. Illustrated by the gray box, camera state xC(n) is recorded and SLM state
xSLM(n) is controlled by MATLAB running on an external computer. As can be seen in
Figure 4.8(b), the camera and SLM are connected into a common system, where the
first serves as input for the latter. Camera and SLM state vectors are therefore assigned
anadditional indexn, corresponding to integer timeof the system. For closing the tem-
poral loop required for a reservoir’s recurrent connectivity, we first multiply rescaled
camera state x̃C(n) with feedback gain β and add phase offset matrix θ as well as the
external information u(n + 1), and then send the result to the SLM to create reservoir
state x(n + 1):

xSLM(n + 1) = βx̃C(n) + γWinju(n + 1) + θ (11)

x(n + 1) = f(xSLM(n + 1)). (12)

Here,Winj is the random injectionmatrix consisting of elements between 0 and 1, and
γ is the injection strength. As xSLM(n+1) serves as the argument of the nonlinearity f(⋅)
provided by SLM pixels and PBS, equations (11) and (12) have the same structure as
for the classical RC concept [13]. The only difference is that here the primary network
states are optical fields, while the network is updated according to optical intensities.
One therefore has to consider that the camera state depends on intensity detection
of summed optical fields; see equation (6). Crucially, the only matrix multiplication
off-loaded to the control PC is the injection matrix.

Wedefine the reservoir statex(n+1) as the SLM’s intensity in p-polarization, hence
detected in transmission after the PBS. The reservoir’s dynamical evolution is there-
fore governed by coupled Ikeda maps according to

xi(n + 1) = α
E

0
i

2 cos2[β ⋅ α



N
∑
j
WDOE

i,j Ej(n)


2

+ γW inj
i u(n + 1) + θi], (13)
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Figure 4.9: (a) Bifurcation diagram of node (22, 25) without coupling to the other network nodes (no
DOE). (b) Bifurcation diagram of the same node, now with coupling to other network nodes realized
(with DOE).

where i = 1, . . . ,N are the individual photonic neurons. The overall update rate of
the entire system is ∼5Hz, which is currently limited by the MATLAB script control-
ling the SLM. The SLM itself has a maximum frame rate of 50Hz, which would cor-
respond to the system’s hardware limit. Reservoirs of maximally ∼2500 nodes can be
implemented based on our current experiment. Crucially, this size is not limited by
the diffractive coupling concept, as was explained in Section 4.2.2 of this chapter. It is
rather the imaging setup’s field of view and the size of the illuminating planar wave,
both of which can significantly be extended using more compact mechanical struc-
tures and replacing L2 of Figure 4.2 by a lens with a larger numerical aperture, respec-
tively.

In Figure 4.9, we show two exemplary bifurcation diagrams for reservoir node
(22, 25), recorded within a network of N = 45 × 45 = 2025 nodes. Data of panel (a) was
obtained for our systemwithout the DOE, hence for a lattice of uncoupled Ikedamaps.
In panel (b), we included the DOE in the beam-path, and WDOE apparently induces
strong modifications to node dynamics. Obtaining x(n + 1), however, is not straight-
forward for the coupled network, since the camera only records the system state after
its transformation byWDOE. We therefore carefully characterized the nonlinear func-
tion of every SLM pixel thereby obtaining function f(⋅), which according to equation
(12) we used to translate state xSLM(n) into x(n + 1).

An apparent difference between the dynamical behavior is the extended stable
state which can be found for the system without nearest diffractive coupling. For β >
1.2, the system stabilizes after having exhibited chaotic dynamics for smaller feedback
gains. The reason behind this unexpected fixed point is the saturation of the node’s
nonlinear function. For this node in particular, the argument sent to its update, i. e.,
xSLM1015(n+ 1), exceeds 255 for β > 1.2, and consequently the SLMs introduces an artificial
limit, causing a stabilization of the node’s dynamics at x1015 = f1015(255). Introducing
the DOE creates the mentioned inhomogeneities within the network’s coupling topol-
ogy, causing a few individual nodes to experience significantly larger coupling than
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the majority of the network. As a consequence, the attenuation by the system’s ND
filters had to be increased by 60%, and nodes experience average coupling that only
saturates for higher β. Finally, the amplitude probability distribution across the cou-
pled node’s chaotic state shows an enhanced probability for a few states in the avail-
able 8-bit gray scale range. This we attributed to the experimental noise unavoidable
during our nonlinear function approximation. The result is therefore not a smooth
nonlinear transformation whenwe approximate the SLM’s action. Averagingmultiple
measurements of the nonlinearity reduced the effect without allowing its full suppres-
sion.

4.4.3 Readout weights and photonic learning

The final step to information processing is to adjust the system such that it performs
the desired computation, typically achieved bymodifying connectionweights accord-
ing to some learning routine. Inspired by the RC concept [13], we constrain learning-
inducedweight adjustment to the readout layer. TheBS introduced inFigure4.8(b) cre-
ates the output-port for our photonic reservoir,whichwe choose tobeof 50/50 splitting
ratio to maximize the output power’s signal to noise ratio. We focused on a reservoir
with N = 900 nodes, and since these are spatially distributed we could use a simple
lens (Thorlabs AC254-400-B) to image a version of the reservoir’s state onto a digital
micro-mirror array (DMD,DLi4120XGA, pitch 13.68 μm). Individualmirrors of theDMD
can be flipped between ±12°, and only for −12° the optical signal contributes to the
output at the detector (DET, Thorlabs PM100A, S150C); see Figure 4.8. Our physically
implemented readout weights are therefore strictly Boolean. Taking profit of orthogo-
nal polarization between the field imaged on the camera and the DMD, our system’s
output is

youtk (n + 1) ∝


N
∑
i
WDMD

i,k (E
0
i − Ei(n + 1))



2

. (14)

Here, k is the current learning iteration. In the experiment, weight vector WDMD
i=1,...,N ,k

corresponds to a square matrix of the DMD’s reflectivity toward −12°. An image of the
DMD’s direction-selective reflectivity can be seen in Figure 4.8(b). An imaging magni-
fication of 20 between SLM andDMD, combinedwith the different pitch for SLMpixels
and DMDmirrors, causes a square area of approximately 18 × 18 micro-mirrors to cor-
respond to the area of a single SLM pixel. The DMD was mounted on a rotation stage
(Thorlabs CRM1L/M), allowing the accurate alignment between SLM and DMD axis.
Finally, we carefully determined the location of the SLM network state on the DMD’s
surface, achieving a position-sensitivity of around one DMD micro-mirror using reg-
ular test-patterns loaded onto the SLM. In the following, all arrays of 18 × 18 micro-
mirrors are assigned to their corresponding SLM pixel and are switched uniformly.
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Noteworthy, weights implemented by the DMD are not temporal modulations as
for example required for reservoir implementations in delay systems [20]. Once a cer-
tain configuration ofWDMD has been obtained, its function could be implemented by
passive attenuations in reflection or transmission. Such passiveweights are ultimately
energy efficient and typically do not result in a bandwidth limitation. In this specific
implementation, once trained, mirrors could simply remain in their position, and, if
mechanically clamped, would not further consume energy. Finally, readout equation
(14) is optically performed for all elements in parallel.

Training our RC corresponds to the optimization of WDMD
i=1,...,N ,k such that after k =

1, 2, . . . ,K learning iterations output youtK (n+ 1) approximates the learning target yT (n+
1) [7]. We trained the system to perform a one step ahead prediction of the chaotic
Mackey–Glass sequence [21, 13], and hence yT (n + 1) = u(n + 2). Parameters of the
MG sequence were identical to [22], using an integration step size of 0.1. For the train-
ing, we injected 200 points as training signal u(n+ 1), and from the resulting reservoir
output youtk we removed the first 30 data points due to their transient nature. We fur-
thermore subtracted its mean and normalized by its standard deviation, resulting in
signal ỹoutk (n+1), withwhichwedetermined the normalizedmean square error (NMSE)
εk between ỹoutk (n + 1) and y

T (n + 1).
Modifications to the DMD configuration are simply the inversion of a single set

of micro-mirrors for a particular neuron i, and a modification fromWDMD
k−1 toWDMD

k is
rewarded if it resulted in εk < εk−1. We therefore do not compute a gradient which later
is used to precisely adjustWDMD

k+1 ; our simple scheme modifies the system’s behavior
(output) and evaluates if modifications have been beneficial. We therefore compute
reward r(k) for each learning iteration

r(k) = {
1 if εk < εk−1
0 if εk ≥ εk−1.

(15)

Of further importance is the particular rule according to which our system selects the
entry of WDMD

k to be modified. In the first generation (k = 1), the N readout weights
WDMD

k=1 ∈ ℤ{0, 1} are randomly initialized, the 170 points of ỹout1 are measured and ε1 is
determined. For the next (k = 2, . . . ,K) learning iterations lk, points toward the posi-
tion of the readout weight to be modified according to

Wselect
k = rand(N) ⋅Wbias, (16)

[lk ,W
select,max
k ] = max(Wselect

k ), (17)

WDMD
lk ,k = ¬(W

DMD
lk ,k−1). (18)

Here, rand(N) creates a random vector with N entries equally spaced between 0 and
1, max(⋅) returns position (lk) and value (W select,max

k ) of its argument’s largest entry,
andWbias ∈ [0, 1] is randomly initialized at k = 2 with entries equally spaced between
0 and 1. Symbol ¬(⋅) in equation (18) is the not operator. Entry WDMD

i=lk ,k=k is therefore
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inverted, with the particular entry chosen according to the location of the largest entry
inWselect

k . MatrixWbias has therefore the function of a bias controlling the probability
of an entry to be selected. It is updated according to

Wbias = 1
N
+Wbias, Wbias

lk = 0, (19)

and its entries therefore linearly grow by 1
N each learning iteration, while the last in-

verted readout weight’s location lk is set to zero. Consequently,Wbias biases learning
away from modifying weights whose configuration has recently been optimized. In
simulations, such a biased learning rule showed significantly faster learning conver-
gence, which we attribute to the fact that it explores the relevant dimensions ofWDMD

more efficiently. Finally, before the transition to the next learning step, the configura-
tion ofWDMD is given by

WDMD
lk ,k = r(k)W

DMD
lk ,k − (r(k) − 1)W

DMD
lk ,k−1. (20)

Technically, our exploration strategy resembles a stochastic gradient descent, and
equations (15) and (20) reinforce modifications which were found beneficial.

4.4.4 Curb performance-limitation of unipolar systems

On our way toward performance optimization, we identified a challenge already faced
in the first realization of optical NNs [23]. In general, NN concepts exploit the full range
of real numbers, hence including positive and negative values. In many optical archi-
tectures, internal and readout connection weights are positive; the same is true for
state variable x(n + 1). This significantly restricts the system’s functionality: multipli-
cation with a negative weight does not only allow to subtract responses from different
nonlinear nodes, it also allows to change the symmetry of a node’s nonlinear trans-
formation. First evaluations of the learning procedure and prediction of the MG series
with our system suffered from limited performance since these limitations were not
considered.

We introduced a strategy for compensating the absence of inverting a node’s non-
linear transformation by negative connection weights. Considering for a moment a
system exclusively consisting of nodes with linear rectifier nonlinearities with exclu-
sively positive connection weights. Without negative weights, such a system would
globally not be capable to synthesize a transformation from an input onto output with
a negative slope, hence the space of functions the system is able to approximate is
severely reduced. The same restriction would apply to our reservoir for the case that
all nodes operate along the same part of their nonlinearity.

We therefore harness the nonmonotonous and periodic nature of the SLM’s cos2(⋅)
nonlinearity. A network node’s phase offset θi|i=1,...,N is randomly selected from two
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Figure 4.10: (a) Example of the nonlinear function of the photonic reservoir’s nodes (red stars). Ac-
cording to a probability of μ, nodes of the network are distributed to operate along their nonlinearity
starting from a phase offset close to a local minimum or maximum, blue stars. (b) Random distri-
bution of the phase-offset across the photonic reservoir. (c) Learning curves obtained for different
μ, using γ = 0.25 and β = 0.2. (d) Best performance obtained at each probability μ, illustrating
the strong impact symmetry breaking of the network nodes’ responses has on the system’s perfor-
mance.

different values. Locally scanning both offsets for optimal performance, we obtained
θ0 = 42 =̂0.17π and θ0 + Δθ = 106 =̂0.43π as the two ideal phase offsets. Nodes there-
fore are biased close to local minima (θ0) or maxima (θ0 + Δθ), which realizes the par-
ticular configuration we hypothetically discussed. The consequence are node ensem-
bles which exhibit dynamics operating along their negative, others along their posi-
tive slope. We furthermore analyzed the impact of a biased distribution between both
values across the network by introducing a probability of μ for a node’s offset being
θi = Θ0 + ΔΘ.

In Figure 4.10(a), we show learning curves for different values of μ using β = 0.2
and injection gain γ = 0.25. Probability-ratios where μ = [0.25,0.35,0.45,0.5] are
shown as blue, red, yellow, and purple data, respectively. In Figure 4.10(b), we give
the best performance obtained for each learning curve, revealing a strong impact of
our network symmetry breaking. Best performance is found for μ = 0.45, correspond-
ing to a reservoir with an almost balanced distribution between positive and negative
slopes. We would like to highlight that changing μ from 0.25 to 0.45 reduces the sys-
tem’s prediction error by approximately 50%, standing testimony for the effectiveness
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of our approach. The absence of negative weights inWDMD,WDOE and x can therefore
partially be compensated for by incorporating nonlinear transformations with posi-
tive as well as negative slopes. Since such unipolar NNs are a common challenge in
many hardware based systems, our result is of high significance for neural network
hardware implementations.

4.4.5 System performance

We finally optimized our system’s performance by exploring feedback gain β and in-
put scaling γ. In Figure 4.11(a), we show the error convergence under optimized global
conditions (β = 0.8, μ = 0.4 and μ = 0.45) for a training sample size of 500 steps
(blue stars). The error efficiently reduces and finally stabilizes at ε ≈ 0.013. Consid-
ering learning is limited to Boolean readout weights, this is an excellent result. After
training, the prediction performance is evaluated further on a sequence of 4500 con-
secutive data points which were not part of the training dataset. As indicated by the
red line in the same panel, the testing error matches the training error. We can there-
fore conclude that our photonic RNN successfully generalized the underlying target
system’s properties. The excellent prediction performance can be appreciated in Fig-
ure 4.11(b). Data belonging to the left y-axis (blue line) shows the recorded output
power, while on the right y-axis (red dots) we show the normalized prediction target
signal. A difference between both is hardly visible, and the prediction error ε (yellow
dashed line) is small.

There are multiple features in the system’s performance we would like to discuss.
When repeating learning under identical condition, the system generally converges
after comparable numbers of learning iterations k to closely comparable errors. This

Figure 4.11: (a) Learning performance at optimal parameters (β = 0.8, γ = 0.4, μ = 0.45). (b) The
photonic RNN’s predicted output in μW (blue line) can hardly be differentiated from the prediction
target (red dots). Prediction error ε is given by the yellow dashed data.
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is of particular interest in light of the significant impact the random initial configu-
ration of WDMD

k=1 has upon NMSE at k = 1; see Figure 4.10(c). The initial error before
optimization fluctuates by a factor of two, ranging from 6% to 12%. Importantly, it is
not the optimization starting with the lowest initial error which arrived at the small-
est error after learning. This, too, is a feature we have confirmed along many learning
experiments. We therefore conclude that (i) our particular learning routine efficiently
scans the space of functions available in the photonic reservoir, and (ii) that the final
configuration of𝕎DMD

k=K is not unique. On the contrary, each repetition of the overall
learning routing results in a different𝕎DMD

k=K . The system’s error landscape likely con-
sists of numerous minima with comparable performance. An alternative explanation
is that we are yet far from global optimal performance and deteriorating processes,
such as noise, wash-out the error landscape’s finer features, resulting in a very broad
global optimum. This is supported by our observation that optimal performance is
reached rather quickly, and also that often long time-scale parameter drifts deteri-
orate the system’s performance after the optimum has been reached again; see Fig-
ure 4.10(c). Thesewill result in systematicmodifications to the system’s response, also
discussed in Section 4.4.6. In a system with multiple local minima, these modifica-
tions potentially shift the system across other minima, resulting in a more complex
performance impact. Yet we found that such drift appears to be exclusively resulting
in monotonous performance reduction. Finally, we observed that learning typically
converges after K ∼ N learning iterations. If this could be confirmed it would indi-
cate excellent scaling, yet one would first need to investigate the impact the number
of reservoir nodes N has on the speed of convergence.

Finally, we down-sampled the injected signals by 3 in order to create conditions
identical to [22, 24]. Under such conditions, our error (ε = 0.042) was larger by a factor
of 2.2 relative to a delay RC based on a semiconductor laser [22] and by 6.5 relative to a
Mach–Zehnder modulator based setup [24]. It however is important to interpret these
results in the light of the significantly increased level of hardware implementation
in our current setup. In [22, 24], readout weights were applied digitally in an off-line
procedure using weights with double precision. In [24], a strong impact of digitization
resolution on the computational performance was identified, suggesting that ε can
still be significantly reduced by increasing the resolution ofWDMD.

4.4.6 Noise and drifts

The previous section has illustrated that physically implemented analog NNs bring
a new feature to the table: various types of noise, for example, in the network’s state
variable or through the drift of systemparameters. Ultimately, network state noise and
drift might both be considered perturbations taking place on a different timescale and
according to different spectral density distributions. Drift of experimental parameters
can either follow white noise if due to interactions with a complex environment, or a
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1/f power spectral density distribution if associated to deterioration such as compo-
nent ageing [25].

To explore the influence of noise acting on timescales of (i) the system’s response
time as well as (ii) significantly slower such as drifts in the external environment, we
measured the reservoir’s response every ΔT ∼ 10 minutes. As before, input data were
T = 500 data points of the chaotic MG sequence, resulting in a temporally concate-
nated reservoir state matrix Xt with 900 × 500 entries for a measurement at time t.
From this matrix, the first 10 columns were removed due to their transient nature.
Other parameters were β = 1.0 and a uniform phase offset Θ = 25, and measurements
were made for γ = 1.0 as well as for γ = 0.5. To quantify deviations consequence of
noise and drift, we determine the network’s response consistency [26]. As consistency
C betweenmatricesXt1 andXt2 wedefine the cross correlation at zero lag (CC) between
nodes’ timeseries and average across the entire network (C = CC(Xt1 ,Xt2 )). In order to
capture short and long-term effects, we calculate the consistency between consecutive
(Cs = CC(Xt ,Xt+ΔT )) aswell as between each recording and the first (Cl = CC(Xt=0,Xt));
see Figure 4.12(a). The most apparent feature revealed by the obtained consistencies
is the strong influence of injection strength γ. Both, short and long-term consistency
for γ = 1 (blue data) are very high, in both cases above 0.95. Furthermore, there is a
clear difference between the short-term (blue circles) and long-term consistency (blue
crosses). On average, Cs = 0.993, around which it oscillated with a period close to an
hour.Withinwindows of reduced parameter driftCs typically remains at 0.9935, which
we take as the system’s consistency limit. Long term correlation Cl starts off at a com-
parable level, yet in the course of two hours drops below 0.98 fromwhere it continues
to decrease during the experiment’s duration of approximately 16 hours. Such slow
timescale can be typically associated to slow modifications and drifts in the system’s

Figure 4.12: (a) Short and long term
consistency across the photonic reser-
voir for different injection strength of
the external information. Blue data:
γ = 1, red data: γ = 0.5. Injection
strength has a strong impact on the
system’s consistency, and under good
operation conditions (high consis-
tency) the impact of long-term drift
is clearly visible. (b) Short-term con-
sistency gives a lower limit of the
prediction error, while drift contin-
uously deteriorates the system’s
performance away from this limit.
For bad consistency, the system’s
bad performance appears to be solely
short-term consistency limited.
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environment. We therefore conclude that slow drift has a measurable impact on the
system’s state, in this case significantly exceeding short-term fluctuations.

Reducing the injection strength to half (γ = 0.5, red data) has a surprisingly dra-
matic impact on Cs aswell as Cl, which both drop to approximately 0.85. Crucially, one
cannot identify any additional long-term (red crosses) relative to short-term (red cir-
cles) effects. The system’s consistency is therefore limited by contaminations taking
place on the fast timescale; drift can be neglected. These measurements highlight an
important aspect. Initially, injection strength γ’s main purpose was thought to be so-
liciting ahigh-dimensional response of the systemby inducing excursions through the
reservoir’s high-dimensional phase-space at β = 1. It now is clear that, in addition, γ is
of importance for the system’s stabilization, something already investigated for delay
systems [22]. Importantly, the reduction in consistency from 0.993 to 0.85 (factor 20!)
strongly exceeds the one of injection strength (factor 2), identifying nonlinear effects
as the origin.

Data shown in Figure 4.12(a) identifies the limited stabilizing influence γ has on
the impact of slows drifts. Fast timescale noise results in perturbations of the system’s
trajectory comparable to different initial conditions, which is a consequence of op-
erating the network close to the edge of chaos. Slow-term parameter drift, however,
modifies global properties of the system’s phase space by systematically modifying
the network nodes’ responses. Impact of the first can therefore potentially be reduced
by a stronger external drive: a reduced fraction of the reservoir’s state is susceptible
to the “memory” of previous noise’s history echoing in the reservoir’s state. In gen-
eral, aspects of computing with networks beyond fixed points become relevant [27].
Increasing the injection strength will on the other hand be of little benefit for sup-
pressing global modifications to the neural network’s phase space topology induced
by parameter drifts.

The impact these two effects can exert on the computing-performance of photonic
or even analogue neural networks is shown in Figure 4.12(b). We compute the readout
weights off-line via the common matrix inversion technique, using the first recorded
reservoir response. These weights we keep constant for the consecutive recordings of
the reservoir state and determine the NMSE based on 100 testing samples. The result
therefore shows the impact perturbations on different timescales have upon the sys-
tem’s performance: for a fully consistent system, the NMSE would remain constant.
For the consistent reservoir with γ = 1, we obtain a NMSE = 0.005 directly for the re-
sponse the readout weights were optimized for. Using the reservoir response recorded
17 minutes later already exhibits an increase to NMSE = 0.035, from where prediction
performance continues to deteriorate. The rate of performancedeterioration gradually
slows down until performance more or less saturates at around NMSE ≈ 0.1. During
hardware learning introduced in Section 4.4.3, a constant competition between sys-
tem optimization and continuous deterioration due to drift is therefore taking place,
and the system’s performance is limited as soon as the rate of optimization drops be-
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low the rate of deterioration due to drift. One has to keep inmind that consistency and
prediction errors were obtained for different parameters suboptimal for prediction.

For the less consistent reservoir at γ = 0.5, the overall performance is significantly
worse. When using the same state for which readout weights were specifically com-
puted, the resulting NMSE is comparable to the one obtained for γ = 1. However, the
error instantly jumps to around NMSE ≈ 0.25 as soon as we compute the output based
on the consecutively recorded reservoir states, using the same readout weights. In ad-
dition, there are large performance fluctuations, again confirming our interpretation
that under these conditions significant trial-to-trial variations are the cause behind
the reduced performance. It is therefore not surprising that the long-term drift does
not significantly impact the system’s prediction performance.

4.4.7 Autonomous system: output feedback

In the original publication of RC by Jaeger [13], long term prediction of the chaotic
Mackey–Glass sequence was realized based on an interesting concept: feedback
forcing. A feedback-forced architecture uses its own output as future input; see Fig-
ure 4.13(a). As learning optimizes the system such that its output approximates the
future input value, i. e. yout(n + 1) ≈ u(n + 2), one can substitute the external input
via the system’s own output and leave the system to evolve autonomously. Switching
between the two different inputs is realized by switch S, which during initial training
is in position (s1) such that the reservoir is driven by external data u(n + 1). During
prediction, this switch remains in the same position for an initial transient period,
but after reaching time n = n it is toggled to s2, now connecting the reservoir’s input
to its own output. Operated in such a way the RC becomes an autonomous and hence
self-consistent signal generator with its output-signal specified during training. It is
therefore not only an interesting concept for chaotic signal prediction but for any
type of complex signal generation. In physical hardware reservoirs, this has so far
only been demonstrated using the FPGA [20] controlled delay-system discussed in
Chapter 8.

In Figure 4.13(b), we schematically illustrate the hardware realization of this func-
tionality based on our original photonic RC. Switch S is implemented within the MAT-
LAB control routine, which in the feedback forcing position uses the normalized and
offset removed version of our systems optical output. The system is trained as in Sec-
tion 4.4.3 using 500 steps of the Mackey–Glass sequence. After the prediction error
converged to values obtained before, we set switch S into position s2. Unfortunately,
at the moment of toggling S from s1 to s2, the system enters a second transient and
the autonomously evolving photonic RC’s output and the target instantly diverge. Our
current assumption is that for now the single-step prediction error is still too large,
and when switching the difference between yout(n+ 1) and u(n+ 2) induces a too large
perturbation.
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Figure 4.13: (a) Extension of the RC concept, now including the possibility of the system’s own out-
put to serve as input. Such feedback forcing is realized by toggling switch S after learning. (b) Our
experimental realization based on the identical setup as before.

However, we can focus on the system’s long-term autonomous dynamics and compare
its properties to the ones of the Mackey–Glass sequence. In Figure 4.14(a), we show a
section of the original Mackey–Glass time series and our system’s output yout(n) in
blue and red, respectively. From a visual inspection, we can see that both outputs
share significant similarities. Our autonomous photonic RC is capable to assimilate
the nonregular alternations between large and smaller oscillation amplitudes, plus
the nontrivial local extrema including the additional small amplitude modulations at
those points. In panel (b) of the same figure, we show the autocorrelations of u(n + 1)
and yout(n + 1), which were obtained based on timetraces with 5000 datapoints. The
data demonstrates, first that the period of the nonregular oscillations is well approxi-
mated by our autonomous system, in fact within an error of ∼10%. And second, that
the system stably approximates the target system as the properties of its output do not
change over the time of its free evolution. Finally, in panels (c) and (d) we show the at-
tractors of the original Mackey–Glass signal and of our system’s output, respectively,
both projected onto their first three dimensions. Attractors were obtained based on
the Takens delay-embedding scheme, where we used an embedding delay of τT = −12
[28]. While the difference between attractors of panel (c) and (d) are clear, it is also
evident that our autonomous system starts to approximate important topological fea-
tures of the target attractor. Also, one candirectly see the impact of the prediction error
and potentially of the system’s noise: on small distances neighbouring trajectories of
our system’s output regularly cross. The local structure of the autonomously created
attractor is therefore almost entirely lost.
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Figure 4.14: (a) Long term dynamics of the photonic reservoir created under feedback forcing (red
data), compared to the original Mackey–Glass data. (b) The autocorrelation of both signals shows
strongly similar features. The attractor of the original MG sequence, (d), is roughly approximated by
the autonomously created photonic reservoir’s output, (d).

It is the first time that such a feedback forced photonic RC has been demonstrated
based on a spatiotemporal photonic reservoir and weights not implemented via digi-
tal, serial hardware. The here reported results prove that the system is capable to au-
tonomously approximate complex temporal signals and evolutions. For future work,
multiple improvements to learning should be considered, also carefully investigating
the reason behind the current large transient at the moment that switch S is toggled
to autonomous operation.

4.5 Conclusion

Large-scale spatiotemporal neural networks are possible and can efficiently exploit
the parallelism of optics. After early experiments in classification,we have also shown
that these systems are excellent candidates for processing temporal information, such
as complex and chaotic signal prediction. Diffractive coupling has demonstrated that
it is a powerful tool for the creation of large scale spatio-temporal networks of pho-
tonic elements. Based on numerical simulations and analytical considerations, we
have shown that the concept is scalable to networks consisting of 10s of thousand
photonic elements. Such large scale networks are not only highly attractive for the
implementation of photonic neural networks, but also for the fundamental investiga-
tions of nonlinear network dynamics and other applications such as potentially coher-
ent beam combining. We experimentally showed that we can couple, both, vertically
emitting semiconductor lasers as well as pixels of an electro-optical SLM.With the lat-
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ter, we have created networks of up to 2025 photonic oscillators, where it is important
to highlight that not the diffractive coupling scheme but the imaging setup imposes
the size limitation.

In the network, we realized based on the commercially available VCSEL array, we
have coupled up to 21 lasers [29]. Nonlinear dynamics of the free-running lasers net-
work clearly showed signatures of mutual coupling. Going beyond just coupling, we
simultaneously injected the lasers of our network with an external drive laser. For a
constant injection power, we were able to efficiently quench the network’s complex
dynamics and were able to identify first effects of increased coherence between the
lasers consequence of both, coupling and external injection. Using modulation of the
injection intensity, we strongly modified the dynamics of the network. Through the
presence of the injection modulation frequency’s higher orders, we were able to iden-
tify nonlinear transformation of the input signal via the network lasers. We recorded
such transformations individually, and in an off-line experiment we used these re-
sponses to synthesize various target nonlinearities. These results are important first
steps to the formation of all-optical neural networks based on large arrays of semicon-
ductor lasers [6, 30]. Such systems could easily be operated at bandwidths exceeding
10s of GHz, which would introduce a shift of paradigm in the implementation of arti-
ficial neural networks.

Based on a similar experiment we implemented large scale spatiotemporal net-
works consisting of up to 2025 Ikeda-maps. Realized using a SLM, the experiment
provides access to all system parameters and is therefore excellently suited for proof-
of-concepts. Based on this network, we amended the system with an optical output,
which can spatially address andweigh individual photonic neurons based on a digital
micro-mirror array. This commercially available device realized the reservoir’s optical
readoutweights andwe implemented greedy learning [7]. The system is capable to per-
form one-step prediction of the chaotic Mackey–Glass sequencewith excellent perfor-
mance considering that weights are hardware implemented and restricted to Boolean
entries.

Toward achieving this performance, we devised a novel strategy to partially com-
pensate for the network’s exclusively unipolar connection weights and states. Taking
profit from the SLM’s periodic nonlinearity, we divided the network into nodes op-
erating along a positive and a negative section of the nonlinear function. By doing
so, we efficiently mitigated one of the challenges typically faced in unipolar systems:
the strong reduction of the nonlinear function space’s dimensionality available to the
system. Such strategies are essential for the future success of the field, where in the
hardware implementation of neural networks one undoubtedly will continue to face
challenges resulting from restrictions consequence of an implementation substrate’s
physical properties.

We furthermore took profit from our system’s imperfections, which, however, are
an undeniable feature of real-world hardware network’s noise and drift. These toowill
most likely be permanent companions of neural networks implemented in hardware
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substrates. We provided a first detailed study of their impact upon the network’s con-
sistency, and in turn on consistency’s impact upon the system’s computational perfor-
mance. We found that noise and drift have fundamentally different consequences for
computation in such systems,which highlights the importance of careful future inves-
tigations into such effects. Of interest would also be if certain learning strategies are
advantageous in the light of these degradations unavoidable in physical substrates,
and in fact also always present in the human brain.

Finally, we made first strides toward the creation of an autonomous system. Us-
ing feedback forcing, we connected the photonic reservoir to its own output after it
has been trained for chaotic signal prediction. Following this step, the system au-
tonomously creates a complex time serieswhich bared strong similaritywith the origi-
nal training target. One has tomention that when switching to autonomous operation
we found a strong but short transient of bad performance, the origin of which remains
to be fully identified.

To conclude, we have demonstrated the feasible creation of large scale photonic
networks in various optical substrates. The application to RC demonstrates the enor-
mous potential such systems offer to the field of artificial neural networks. They are
fully parallel and global system’s bandwidth is not or hardly influenced by the system
size. In this aspect, these systems show performance scaling and size superior to oth-
ers reported for different physical network concepts. Complex coupling and readout
weights can be based on passive and constant spatial modulations. These are ulti-
mately energy efficient in their implementation and again do not limit the system’s
bandwidth. As such, large photonic neural networks can efficiently be implemented
and maximally leverage the inherent optical parallelism, and by that its energy effi-
ciency and potential space-bandwidth product.
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5 Time delay systems for reservoir computing

5.1 Introduction

Delay-based reservoir computers are reservoir computing implementations based on
dynamical systemswith delay. The dynamical system is often a single nonlinear node.
As it will be explained later in more detail, delay-based reservoir computers assign
different time-slots of the nonlinear node response to different network nodes, also
known as virtual nodes. This time multiplexing of a single nonlinear node’s response
is equivalent to having a distributed set of virtual nodes along the delayed feedback
loop.

The relevance of delay-based reservoir computers relies on the fact that they sim-
plify greatly hardware implementations. As such, the first photonic reservoir comput-
ers were based on this approach [1–4].

Here, we provide an overview of the theoretical foundations of delay-based reser-
voir computers. In addition, we illustrate the main properties of the system with sev-
eral examples both in numerical simulations and in electronic implementations of the
concept. We also examine the main challenges in physical implementations of delay-
based reservoir computers.

5.2 Standard reservoir computing

Before getting started with delay-based reservoir computing (RC), we revisit the basic
concepts of standard reservoir computing in this section for the sake of completeness.
For a more in-depth description of the concept of reservoir computing, we refer the
reader to Chapters 2 and 3. Reservoir computing is an implementation of a recurrent
neural network with the general idea that the network is split up into several parts.
The recurrent part is difficult to train, therefore, another layer (output layer) is added,
which is nomore than a series of simple linear nodes that interface with the recurrent
part [5]. Traditional reservoir computing implementations are generally composed of
three distinct parts: an input layer, the reservoir, and an output layer, as illustrated in
Figure 5.1.

The input layer feeds the input signals to the reservoir via fixed randomweighted
connections. These weights will scale the input that is given to the nodes, creating
a different input scaling factor for every individual node. The second layer, which is
called reservoir or liquid, usually consists of a large number of randomly intercon-
nected nonlinear nodes, constituting a recurrent network. The nodes are driven by

https://doi.org/10.1515/9783110583496-005
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Figure 5.1: Classical reservoir computing scheme. The input is coupled into the reservoir via a ran-
domly connected input layer to the N nodes in the reservoir. The connections between reservoir
nodes are randomly chosen and kept fixed, that is, the reservoir is left untrained. The reservoir’s
transient dynamical response is read out by an output layer, which are linear weighted sums of the
reservoir node-states. The figure is taken from Appeltant et al. [6].

random linear combinations of input signals. Since every node-state can be seen as
an excursion in another state space direction, the original input signal is thusmapped
onto a high-dimensional state space. The emerging reservoir state is given by the com-
bined states of all the individual nodes. Contrary towhat happens in traditional recur-
rent neural networks, the coupling weights within the reservoir itself are not trained.
They are usually chosen in a random way, globally scaled in order for the network
to operate in a certain dynamical regime. Under the influence of input signals, the
network exhibits transient responses. These transient responses are read out by the
output layer via a linear weighted sum of the individual node-states, with no addi-
tional nonlinear transformation happening in the last layer. The training algorithm,
which has the goal to find optimum output weights, can thus be drastically simplified
to a linear classifier.

The reservoir computing implementation we work with is closely related to echo
state networks [7]. In echo state networks, the node-states at time step k are computed
according to the following equation:

r(k) = F[Wres
res ⋅ r(k − 1) +W

res
in ⋅ u(k)]. (1)

In this equation, r(k) is the vector of new node-states at time step k, u(k) is the in-
put matrix at time step k. The matricesWres

res andW
res
in contain the (generally random)

reservoir and input connection weights. The weight matrices are scaled bymultiplica-
tive factors in order to get good performance. For the nonlinear function F, often a
sigmoidal function, e. g., F(x) = tanh(x) is chosen. In some cases, feedback from the
output to the reservoir nodes is also included.1 That approach will be used in Chap-
ter 8. In a simplified formulation, the output is a weighted linear combination of the

1 When connections from the output layer back to the reservoir are included, equation (1) becomes:
r(k) = F[Wres

res ⋅ r(k − 1) +Wres
in ⋅ u(k) +Wres

out ⋅ ŷout(k − 1)].
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node-states and a constant bias value:

ŷout(k) =W
out
res ⋅ r(k) +W

out
in ⋅ u(k) +W

out
bias. (2)

In reservoir computing, only the matrices in equation (2) are optimized (trained) to
minimize the mean square error between the calculated output values ŷout(k) and the
required output values yout(k).

5.3 Delayed feedback systems
Nonlinear systems with delayed feedback and/or delayed coupling, often simply put
as “delay systems,” are a class of dynamical systems that have attracted considerable
attention, because they arise in a variety of real life situations [8]. They are commonly
found in, e. g., traffic dynamics due to the reaction time of a driver [9], chaos control
[10, 11], or gene regulation networks where delay originates from transcription, trans-
lation, and translocation space [12]. Also in predator-prey models they occur with the
time delay representing a gestation period or reaction time of the predators. Some-
times the delay in the system originates from the fact that the previous number of
predators has an influence on the current rate of change of the predators [13]. In the
brain, delay occurs because of the axonal conduction delay between two neurons [14].
Remote cerebral cortical areas are subject to an entire series of these axonal conduc-
tion delays. The total connection delay between these areas could even be tens of
milliseconds, but still zero time lag synchronization between remote cerebral cortical
areas was observed [15–17]. Delay is found in networks of semiconductor lasers [18]
when the signal travels from one laser to the other. Whether it is through free space or
via, e. g., an optical fiber, the light needs to cover a certain distance and that requires
time. In control systems, the time-delayed feedback originates from the fact that there
is a finite time between the sensing of the information and the subsequent reaction of
the system under the influence of a control signal. Another example taken from daily
life is temperature control of the water coming from a shower. Because of the fact that
the water needs to travel a certain distance along the tube between the heating ele-
ment and the shower head the response to any temperature adjustment of the system
is not immediate from the perspective of the user. This could lead to an unstable be-
havior where the controller increases or decreases the temperature of the water too
much due to apparent nonresponsivity of the system.

It has been shown that delay has an ambivalent impact on the dynamical be-
havior of systems, either stabilizing or destabilizing them [11], with possible emer-
gence of complex dynamics. This has been observed in, e. g., biological systems [19]
or laser networks [20]. Often it is sufficient to tune a single parameter (e. g., the feed-
back strength) to access a variety of behaviors, ranging from stable via periodic and
quasi-periodic oscillations to deterministic chaos [21]. In photonics, a normally stable
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Figure 5.2: Destabilizing effect of delay. Time trace
originating from the system given by equation (3)
(a) τ = 7, (b) τ = 8, (c) τ = 10. Note the different
scaling factors in the vertical axis.

laser source can become chaotic when subjected to feedback even for small feedback
strengths. As an example, we take one of the most simple delay systems, given by the
equation

ẋ(t) = −αx(t − τ), (3)

where we choose α = 0.2 and τ stands for the time delay. In Figure 5.2, we show the
solution of this equation for three different values of τ. When looking at the time trace
in Figure 5.2(a) with τ = 7, some damped oscillations can be observed in the transient
before the system reaches a constant output value. However, when the delay time is
increased to τ = 8, as in Figure 5.2(b), the oscillations are no longer exponentially
damped. They increase in amplitude with time. For an even larger τ, equal to 10, this
behavior is confirmedwith an even stronger growth in amplitude. For this system, the
delay clearly has a destabilizing effect.

From the application point of view, the dynamics of delay systems is gainingmore
and more interest: whereas initially it was considered more as a nuisance, it is now
viewed as a resource that can be beneficially exploited. It found applications in chaos-
communication [22], and also reservoir computing is an example of benefitting from
the delay in the system [6, 1] as presented in this chapter. One of the simplest possible
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delay systems consists of a single nonlinear node whose dynamics is influenced by
its own output a delay time in the past. Such a system is easy to implement since it
comprises only two elements: a nonlinear node and a delay loop.When going tomore
complex situations of several nonlinear nodes being coupled with delay, these sys-
tems have successfully been used to describe the properties of complex networks in
general. They allow a better understanding of, e. g., synchronization and resonance
phenomena [23–25]. Of particular interest for this book is the situation in which only
a few dynamical elements are coupled with delay within a certain configuration, e. g.,
a ring of delay-coupled elements [20].

Mathematically, delay systems are describedbydelaydifferential equations (DDE)
that differ fundamentally from ordinary differential equations (ODE) as the time-
dependent solution of a DDE is not uniquely determined by its initial state at a given
moment. For a DDE, the continuous solution on an interval of one delay time needs
to be provided in order to define the initial conditions correctly. The general form of a
DDE is given by

ẋ(t) = F[x(t), x(t − τ)]

with F any given linear or nonlinear function and with τ being the delay time. Mathe-
matically, a key feature of time-continuous delay systems is that their state space be-
comes infinite dimensional. This is because their state at time t depends on the output
of the nonlinear node during the continuous time interval [t − τ, t[. Another interpre-
tation is that a delayed feedback equation leads to a nonrational transfer function,
resulting in an infinite number of poles. The dynamics of the delay system remains
finite dimensional in practice [26], but exhibits the properties of high dimensionality
and short-term memory. Since two key ingredients for computational processing are
nonlinear transformation and high-dimensional mapping, delay systems are suitable
candidates.

5.4 Delayed feedback systems as reservoirs
The term reservoir originally referred to a large, randomly connected fixed network
of nonlinear nodes or neurons. However, not all reservoirs are neural networks. Ana-
log physical systems such as the nonlinear behavior of ripples on awater surface have
beenused for informationprocessing based on the reservoir computing paradigm [27].
Reservoir computing therefore enables the implementation of neuromorphic comput-
ing avoiding the need of interconnecting large numbers of discrete neurons.

With reservoir computing, there is no need for reconfigurable connection links
within the recurrent network. Such randomandfixed connections radically reduce the
complexity for a hardware implementation. In previous chapters, it has been shown
how recurrent networks for optical reservoir computinghavebeen implemented either
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onaphotonic chipor usingdiffractive optics. Variousphotonic techniques canbeused
to implement optical networks for reservoir computing with a wide range of network
topologies. Reservoir computers based on optical-networks, as covered in previous
chapters, have many hardware nodes and network degrees-of-freedom, even though
they are fixed artificially.

In this section, we will revisit the concept of delay embedded reservoir comput-
ing, using only a single nonlinear node with delayed feedback. Thus, from a network
perspective, there is only one (hardware) node. Hence, the delay-based approach al-
lows for a far simpler system structure, even for very large reservoir sizes. The advan-
tage of delay-based reservoir computing lies in the minimal hardware requirements
as compared to more hardware-intensive systems from previous chapters. In essence,
delay-based reservoirs are fixed intrinsically: they take the form of a time-delayed dy-
namical systemwith a single nonlinear state variable.Nodes of a delay-based reservoir
can be sampled froma spatially continuousmedium (i. e., the delay line). These nodes
are considered virtual as they are not implemented as components or units in hard-
ware. Nevertheless, delay-based RC has shown similar performance as networked RC,
with the advantage that the hardware requirements are minimal as no complex inter-
connection structure needs to be formed. In photonics, it allows even for the use of
hardware that is more traditionally associated with optical communications.

5.4.1 Implementation with a nonlinear node with delayed
feedback

The concept of delay-based reservoir computing, using only a single nonlinear node
with delayed feedback, was introduced in the early 2010s by Appeltant et al. [6] and
Pacquot et al. [28] as ameans ofminimizing the expectedhardware complexity in pho-
tonic systems. The first working prototype was developed in electronics in 2011 by Ap-
peltant et al. [6] and efficient optical systems followed quickly after that [29, 1].

In essence, the idea of delay line reservoir computing constitutes an exchange
between space and time: what has been done spatially with many nodes is now done
in a single node that is multiplexed in time. There is a price to pay for this hardware
simplification: compared to an N-node standard spatially-distributed reservoir, the
dynamical behaviour in the system has to run at an N-times higher speed in order to
have equal input-throughput. Figure 5.3 shows a diagram of a delay-based RC.

Delay-based RC are efficiently implementedwith a single nonlinear node (ormore
general a nonlinear dynamical element)with a feedback loop [6]. As previously stated,
in the delay-based reservoir, there is a single node and a collection of virtual nodes
(also called virtual neurons) in the delay line. The general equation that governs these
delay-systems is

Tẋ(t) = F(x(t), ηx(t − τ) + γJ(t)) (4)
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Figure 5.3: Structure of a delay-based reservoir computer. A one-dimensional input signal (in red)
is first preprocessed using the masking functionm(t). Virtual nodes are defined along the delay
line and form the reservoir (in green). The output layer (in blue) is unaltered from the standard RC
structure.

where T is the response time of the system, τ is the delay time, J(t) is the masked in-
put, γ is the input scaling or input gain, η is the feedback-strength, and F is a nonlin-
ear function. The masked input J(t) is the continuous version of the discrete random
mapping of the original input. To construct this continuous data J(t), the continuous
version of the discrete randommapping of the original input (Wres

in u(k)) ismultiplexed
in time, as it will be described in the next section.

5.4.2 Time-multiplexing in the delayed feedback approach

The nonlinear (NL) node is subjected to the time-continuous input streamu(t) or time-
discrete input u(k) (see Figure 5.4), which can be a time-varying scalar variable or
vector of any dimension d. The feeding to the individual virtual nodes is achieved by
serializing the input using time-multiplexing. In our approach, every time interval of
Tin (the data injection/processing time) represents another discrete time step. For this,
the input stream u(t) or u(k)undergoes a sample and hold operation to define a stream
I(t) which is constant during one Tin, before it is updated. The resulting continuous
function I(t) is related to the discrete input signal u(k) by I(t) = u(k) for Tink ≤ t <
Tin(k+1). This procedure is illustrated in thefirst part of Figure 5.4 for the special case of
Tin = τ; function I(t) is also depicted. Thus, in our approach, the input to the reservoir
is always discretized in time first, no matter whether it stems from a time-continuous
or time-discrete input stream.What is actually injected into thenonlinearnode is time-
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Figure 5.4:Masking procedure. A time-continuous input stream u(t) or time-discrete input u(k) un-
dergoes a sample-and-hold operation, resulting in a stream I(t) that is constant during one interval
Tin before it is updated. In this particular case, Tin = τ. The temporal input sequence, feeding the
input stream to the virtual nodes, is then given by J(t) = M ⋅ I(t). The figure is taken from Appeltant
et al. [6].

continuous again, but from this signal nodistinction canbemadewhether the original
data points were coming from a discrete or a time-continuous signal.

At the input driving stage, one also introduces a specific input connection struc-
ture. In accordance to what happens in traditional neural network reservoirs, every
single virtual node can have its proper input scaling factor. In terms of a “classical’’
reservoir setup, these values correspond to the weights of the connections between
the input layer and the reservoir layer. In equation (1), which we repeat here for con-
venience,

r(k) = F[Wres
res ⋅ r(k − 1) +W

res
in ⋅ u(k)], (5)

these weights were referred to asWres
in , which is a random (N ×d)matrix in the original

concept (we recall that N is the number of virtual nodes and d the dimension of the
input). Every input value sent to the time-slot corresponding to a given virtual node is
first multiplied by the factor related to that node. This is done to increase variability
in the network. However, the delayed feedback system comprises only one physically
present nonlinear node that feeds all the virtual nodes in the delay line. Hence, all
virtual node-states originate from the same nonlinear transformation and there is no
possibility to implement a scaling factor in the virtual node itself. The most conve-
nient option is to imprint coupling weights from the stream I(t) to the virtual nodes
by introducing a function M(t), from now on referred to as the input mask, as fol-
lows: M(t) = W res

in,i for (i − 1)θ < t ≤ iθ and M(t + Tin) = M(t). This mask function is
a piecewise constant function, constant over an interval of θ and periodic, with pe-
riod Tin. Thus, θ = Tin/N and stands for the temporal separation between the virtual
nodes. The values of the mask function during each interval of length θ are chosen
independently at random from some probability distribution. When the input signal
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is one-dimensional, the values to be injected are given by

J(t) = I(t) ⋅M(t). (6)

The function J(t) is the product of the input and the mask function, as represented
in Figure 5.4. When the input consists of d values I j(t), we generate a separate mask
Mj(t) for each input j and subsequently they are all summed together. The value to be
injected is then given by

J(t) =
d
∑
j=1 I j(t) ⋅Mj(t). (7)

Alternative descriptions of the inputmapping procedure in delay-based RC can be
found in [30, 31].

5.4.3 Read-out and training in delay-based RC

The output of the nonlinear node is driven by the changes in the input. To relate the
states in the delay line to reservoir states corresponding with an input step, the signal
needs to be discretized again. The reservoir state comprises the virtual node-states,
i. e., the values at the end of each interval θ in the injection time interval Tin. For the
ith virtual node the kth discrete reservoir state is given by

ri(k) = x(kTin − (N − i)θ). (8)

Note that this definition implies that the virtual node-state ri is always read out at the
end of the interval θ. Although this is the common procedure throughout this chapter,
other choices of sampling position can also yield good results.

Each virtual node ri is a measuring point or tap in the delay line. However, these
taps do not have to be physically realized. Since the x-signal revolves unaltered in the
delay line anyway, a single measuring point suffices. After each Tin-interval, a new
reservoir state (r(k) ∈ ℝ1×N ) for the input u(k) is obtained.

The reservoir states themselves are not the desired outcome of the entire system.
A training algorithm is used to assign an output weight to each virtual node ri, such
that the weighted sum of the states approximates the desired target value as closely
as possible:

ŷout(k) =W
out
res ⋅ r(k)

=
N
∑
i=1Wout

res,i ⋅ ri(k)
=

N
∑
i=1Wout

res,i ⋅ x[kTin − TinN (N − i)],
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with Wout
res,i the weight assigned to the virtual node ri, x the output of the nonlinear

node and ŷout the calculated approximation of the target. The values of theWout
res are

determined by a linear training algorithm. The training of the read-out follows the
standard procedure for reservoir computing [32, 7]. In this manner, we can map every
discrete input step u(k) onto a discrete target value ŷout(k) and this for every k. The
testing is performed using previously unseen input data of the same kind of those
used for training.

Finally, let us note that as shown in Figure 5.3 and equation (4), the masked in-
put J(t) is scaled by an input scaling factor γ and the feedback x(t − τ) by a feedback
strength η. This is to bias the nonlinear node in the optimal dynamical regime. Op-
timal values for the input scaling γ and η depend on the task at hand, as well as the
specific dynamical behavior of the nonlinear node. Finding the optimal point for these
parameters is a nonlinear problem which can be approached by, for example, a gra-
dient descent or by simply scanning the parameter space.

5.4.4 An example: chaotic time series prediction

To compare the approaches of traditional reservoir computing and our delayed feed-
back system,wedemonstrate their function bymeans of a commonly used benchmark
task: chaotic time series prediction.Without going into detail about the exact data pro-
cessing, we illustrate the different steps and compare the performance. The test data
originates from a time series prediction competition, organized as a survey to com-
pare different time series forecasting methods. At that time many new and innovative
methods, such as artificial neural networks, emerged to compete with standard pre-
diction methods. In May 1993 in Santa Fe, NewMexico, the NATO Advanced Research
Workshop on Comparative Time Series Analysis was held to have an overview of ex-
isting methods and their performance [33]. Several time series coming from different
systems were provided as a challenge. Here, we consider the set coming from a NH3
chaotic laser exhibiting dynamics related to Lorenz chaos. A small segment of the in-
put data series is depicted in Figure 5.6, with the laser intensity shown on the y-axis
versus the index of the sampled data point.

The goal is to make a one-step ahead prediction, based on the present value of
the system and this for all values of the time trace. In our training procedure, both for
the case of a reservoir network with many nodes and a delayed feedback system, the
time series is fed to the system as examples. The systems will process the input data
and nonlinearly transform it. In Figure 5.5, a part of the reservoir states are shown
both for a network of randomly connected nodes and for a delayed feedback sys-
tem, where we consider 400 states in both cases. One time series realization con-
sists of 1000 measurement points. Every point that is fed to the reservoir leads to a
change in all 400 node-states of the reservoir, hence 400 series of 1000 points are
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Figure 5.5: Spatiotemporal representation Santa Fe. A zoom is presented of the evolution of the
reservoir states of nodes. Feeding in 1000 input steps leads to the construction of 400 reservoir
states of each 1000 steps. Here, only 50 input steps are shown for 50 nodes. The state values are
shown in color code. (a) Network reservoir approach, (b) delayed feedback reservoir.

recorded as reservoir states. Both systems rely on a different connectivity and config-
uration, but use the same nonlinear function with identical parameters as network
nodes.

Both, in the situation of Figure 5.5(a) and the one of Figure 5.5(b), 400 nodes were
used, but only 50 node-states are plotted. In Figure 5.5(a), the reservoir states of a tra-
ditional network are depicted. The different node-states are plotted along the y-axis
and their evolution in discrete time is given by moving along the x-axis. Figure 5.5(b)
shows the states we can obtain with a delayed feedback setup. The representation
chosen for this figure is equivalent to the spatiotemporal mapping carried out by the
system [34]. Moving along the x-axis gives the evolution in time. Every discrete input
step in Figure 5.5(b) corresponds to a jump in time of τ. The general trend of the reser-
voir states is quite similar for the network and the delayed feedback response. The
fact that they both respond in a similar way to identical inputs already gives a first
indication that both are able to extract information in an comparable way.

Delay-based reservoirs have achieved performances that are comparable to the
state-of-the-art of more traditional reservoir computing approaches for the Santa Fe
chaotic time series prediction [35]. In Figure 5.6, the result of the training procedure on
these reservoir states is depicted. The crosses correspond to the original target and the
black curve is the approximation. Please note that the approximation of the target is
also a discrete time series with the same number of samples as the original target. The
full lines are present only as a guide to the eyes and do notmean that we only sampled
some points of the input or target. For these examples and reservoir parameters, the
error, expressed as anormalizedmean square error, is 0.0651 for thenetwork approach
and0.0225 for the delayed feedback approach. Lower error values are possible for both
the network and the delayed feedback approaches with optimized reservoirs.
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Figure 5.6: Target reconstruction Santa Fe. The crosses represent the sample points of the origi-
nal target series. The full line connects the approximation of the target. (a) The network reservoir.
(b) The delayed feedback system reservoir.

5.5 Interconnection structure of delay-based
reservoir computers

In the delayed feedback system with external input as described in the previous sec-
tion, we can identify four time scales: the separation of the virtual nodes θ, the data
injection time Tin, the delay time τ, and the response timescale T of the nonlinear
node. The data injection time Tin = Nθ is defined by the numbers of virtual nodes N
that are necessary to compute a specific task and the node distance θ. The data injec-
tion time Tin, together with the inherent dynamics of the nonlinear node, controls the
connectivity between the virtual nodes. Setting the values of the different time scales,
a given interconnection structure is created.

Virtual nodes can be connected in two ways, through the feedback loop, and
through the inherent dynamics of the nonlinear node. To create a virtual intercon-
nection between the virtual nodes due to the inherent dynamics of the nonlinear
node, the distance between the virtual nodes θ = Tin/N has to be sufficiently short
to keep the nonlinear node in a transient state. If the temporal distance between the
virtual nodes θ is smaller than the response time of the system, T, the state of a virtual
node becomes dependent on the states of the neighboring virtual nodes [6, 36] (see
Figure 5.7(b)). Typically, a number of θ = 0.2T is quoted [6, 37]. However, there is
no reason to assume this could not be task and system bias dependent. If θ is too
short, the nonlinear node will not be able to follow the changes in the input signal
and the response signal will be too small to measure. If θ is too long, the interconnec-
tion structure between neighboring virtual nodes due to the inherent dynamics of the
nonlinear node is lost (see Figure 5.8(b)).

The virtual nodes can also set up a network structure via the feedback loop [28,
29]. This can be achieved by introducing amismatch between the delay time τ and the
data injection/information processing time Tin = Nθ (τ ̸= Tin) (see Figure 5.11).
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Figure 5.7: Input time trace for small θ and corresponding interaction structure when Tin = τ. (a) In-
put time trace γJ(t) (blue) and oscillator output x(t) (red) of our system when the time scale T of the
nonlinear system is larger than the separation θ of the virtual nodes T ≫ θ and Tin = τ. Here, we
choose T /θ = 5. The values on both the x- and y-axis are dimensionless. The maskM(t) takes two
possible values. (b) In this case the system does not have the time to reach an asymptotic value.
Therefore, the dynamics of the nonlinear node couples neighboring virtual nodes with each other.
The figure is taken from the supplementary material of Appeltant et al. [6].

Figure 5.8: Input time trace for large θ and corresponding interaction graph when Tin = τ. (a) Input
time trace γJ(t) (blue) and oscillator output x(t) (red) of our system when the time scale T of the
nonlinear system is much smaller than the separation θ of the virtual nodes T ≪ θ and Tin = τ. Here,
we choose T /θ = 0.05. The values on both the x- and y-axis are dimensionless. The maskM(t) takes
two possible values. For this choice of parameters, the system rapidly reaches a steady-state. (b) In
this regime, the system behaves like N independent nodes, each of which is coupled only to itself at
the previous time step. The figure is taken from the supplementary material of Appeltant et al. [6].

In contrast to traditional reservoirs, where all interactions between nodes take place
from one discrete time step to another, the interaction between nodes in delay-based
RC occurs through the dynamics of the nonlinear system (usually within the same
discrete step) and through the feedback line (usually from one discrete time step to
another). For this reason, the connections between the virtual nodes do not quite cor-
respond to the interconnection matrix W res

res used for traditional reservoirs in equa-
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tion (1). Although both types of virtual node connections are not exclusive, in the lit-
eraturemost of the research groups have used either delay-based RCwith only the vir-
tual connections created through the inherent system dynamics [6, 37] or connected
by the feedback line [28, 29]. For the case in which Tin = τ, we predict good perfor-
mance when the time scales are related by θ ≲ T ≪ τ. It is also clear that the opera-
tion speed of a delay-based RC, i. e., the data injection time Tin = Nθ, depends on θ, so
delay-based RC with virtual nodes connected only through the feedback line (θ ≫ T)
are slower that a counterpart exploiting the virtual connections through the system
dynamics (θ < T).

5.5.1 Interconnection structure through system dynamics

When θ < T, the state of a given virtual node at time t depends on the states of the
previous virtual nodes due to the noninstantaneous response of the system (T) to the
inputs. The strength of this dependency for low-pass filtered systems is an exponen-
tially decaying function of the separation of the virtual nodes.

For the case of Tin = τ (i. e., the only connection between the virtual nodes are
through the system dynamics) and a time series prediction task (NARMA10), it was
found that θ = 0.2T is the best choice for N = 400 virtual nodes [6]. This ratio leads
to significant coupling between neighboring virtual nodes, as illustrated in Figure 5.7.
In Figure 5.7(a), the node output never leaves the transient regime. Since the state
of one virtual node depends on the state of the previous ones because of the system
dynamics, the equivalent connectivity graph is given by Figure 5.7(b). All nodes are
connected to adjacent nodes, with the connection weights exponentially decreasing
as we move further back in time. They also experience the self-coupling as Tin = τ in
this case.

The relation between the timescales can be used to establish a more formal link
between the traditional formulation of reservoir computing, such as given in Sec-
tion 5.2 and the virtual interconnections created through the system dynamics. In
what follows, we will derive an approximate interconnection matrixWres

res describing
the coupling between virtual nodes processing information from different input time
steps where they are only connected through the system dynamics. For simplicity of
notation, in the following we normalize all times with respect to the intrinsic time
scale of the nonlinear system T, that is we work in units where T = 1. In the following,
we consider nonlinear equations of the form:

ẋ(t) = −x(t) + F[x(t − τ), J(t)] (9)

with F any nonlinear function and J(t) given by equation (6). We recall that J(t) is con-
stant over each segment with duration θ and equals W res

in,iu(k) over the segment con-
taining virtual node i, withW res

in,i the specific input scaling factor of node i. Assuming
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a constant value of F[x(t − τ), J(t)] during the duration θ, solving equation (9) yields

x(t) = x0e
−t + (1 − e−t)F[x(t − τ), J(t)] (10)

where x0 is the initial value at the beginning of each interval θ, i. e., the value for the
previous virtual node. In particular, the values of the virtual nodes are given by equa-
tion (10) with t replaced by θ. Now returning to the discrete time of input signal u(k),
the state of the ith virtual node (i ∈ [1,N]) is reached after a time θ, denoted by ri(k)
(defined in equation (8)). The input to virtual node i at time step k equals W res

in,iu(k).
Equation (10) can be rewritten for each virtual node as

r1(k) = rN (k − 1)e
−θ + (1 − e−θ)F(r1(k − 1),W res

in,1u(k))
. . .

ri(k) = ri−1(k)e−θ + (1 − e−θ)F(ri(k − 1),W res
in,iu(k))

. . .

rN (k) = rN−1(k)e−θ + (1 − e−θ)F(rN (k − 1),W res
in,Nu(k))

(11)

where θ is the separation of the virtual nodes. This equation allows us to recursively
compute each virtual node-state at time step k only as a function of the input at the
same time step k and virtual node-states at time step k − 1:

ri(k) = Ωir1(k − 1) +
i
∑
j=1 ΔijF(rj(k − 1),W res

in,ju(k)) (12)

with

Ωi = e
−iθ , Δij = (1 − e

−θ)e−(i−j)θ , with i ≥ j.

This equation is our analogue of equation (1), representing classical reservoirs,
and it explicitly describes the state coupling between consecutive time steps through
the system dynamics. However, it differs from traditional reservoirs because the non-
linear functions are applied to the states before the summation is taken. Figure 5.9
illustrates this interaction topology by showing interaction strength matrices for two
values of θ. The coefficients Ωi correspond to the values found in the last column,
while the diagonal and off-diagonal elements are given by Δij. In terms of traditional
reservoirs, this can be related toWres

res where Tin = τ.
The strongest assumption in this analytical derivation is the fact that the function

F is treated as a constant value over the interval θ. To verify whether this approxi-
mation is valid we perform a numerical check. While running the reservoir for some
random input samples we perturb one of the virtual nodes with a pulse of amplitude
1 and observe how this perturbation is being passed on to other virtual nodes. In this
numerical experiment, we choose a Mackey–Glass nonlinearity type to fulfill the role
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Figure 5.9: Analytical interaction graphs for large and small θ with Tin = τ. Interaction graphs for dif-
ferent virtual node separation where we plot the coefficients Ωi and Δij of equation (12) as a matrix
using color coding. For large values of θ (left), the diagonal elements are significantly larger than all
others, but when θ decreases (right), the exponential tail of the off-diagonal elements and also the
connection to the last virtual node of the previous input step become dominant. The figure is taken
from the supplementary material of Appeltant et al. [6].

Figure 5.10: Numerical interaction graphs for large and small θ with Tin = τ. Interaction graphs for
different virtual node separation where we plot the coupling strength between the virtual nodes as a
matrix using color coding. For large values of θ (left), the diagonal elements are significantly larger
than all others, but when θ decreases (right), the exponential tail of the off-diagonal elements and
the also the connection to the last virtual node of the previous input step become dominant.

of the function F. Figure 5.10 shows the interaction strength matrices obtained from
numerical simulations. The scaling is expressed in arbitrary units since the obtained
values depend on the strength of the pulse and the exact shape of the nonlinear trans-
fer function.

Qualitatively, a confirmation of the analytical result is found. For large values of
θ (θ = 2), the self-feedback is the strongest coupling contribution for all virtual nodes.
This results in a strongmain diagonal in Figure 5.10(a).When setting θ to a small value
(θ = 0.2), the effect of the inherent system dynamics becomes more important and the
off-diagonal elements are more pronounced. Also the coupling with the last virtual
node (last column) is strongly present.
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5.5.2 Interconnection structure through the feedback line

Choosing θ ≫ T, the state of a given virtual node is practically independent of the
states of the neighboring virtual nodes and the connections between the virtual nodes
due to the nonlinear node dynamics are negligible (see Figure 5.9). The nonlinear node
reaches its steady-state for each virtual node and the reservoir state is only determined
by the instantaneous value of the input J(t) and the delayed reservoir state. The system
given by equation (9) can then be described with a map:

x(t) = F[x(t − τ), J(t)] (13)

with F any nonlinear function and J(t) given by equation (6).
If θ ≫ T and Tin = τ, there is no coupling between virtual nodes and the diversity

of the reservoir states is reduced. The behavior in this case is illustrated in Figure 5.8.
Figure 5.8(a) shows the injected input (blue) and the corresponding output of the non-
linear node that is sent in the delay line (red). The part of the time trace shown here
corresponds to one time-multiplexed input value with a binary mask imprinted on it.
Because every mask value is kept constant long enough for the system to reach the
steady-state, all node-states with equal mask values are identical. Regardless of the
number of virtual nodes that are tapped from the delay line, with this binary mask
only two different reservoir state values can be used for computation. Figure 5.8(b)
illustrates the equivalent traditional network of nodes in terms of connectivity. All
nodes have a self-coupling, induced by the delayed feedback caused by Tin = τ, but
they are not influenced by the states of the other nodes in the network.

Virtual nodes can also be connected using the feedback of the nonlinear node if
one detunes the input sampling period (Tin) to the length of the delay line [28]. This
misalignment can be quantified in terms of the number of virtual nodes by using α =
(τ−Nθ)/θ. The topology of the virtual network structure created by this misalignment
depends on the value of α. The interaction topology encoded when α = 1 (i. e., τ =
Tin + θ) is, for all practical purposes, equivalent to a standard ESN with ring topology
[38] (see Figure 5.11). In the case of 1 ≤ α < N, the virtual nodes, ri(k) can be described
when θ ≫ T by

ri(k) = {
F(ri−α(k − 1) +W res

in,iu(k)) if α < i ≤ N
F(rN+i−α(k − 2) +W res

in,iu(k)) if i ≤ α.

5.6 Weights distribution of the input layer
The input layer defines the connectivity between the external input and the reservoir.
In traditional RC systems, the connections between the input and the different nodes
in the reservoir (Wres

in in equation (1)) have randomly assigned weights. These weights
are typically assigned from a uniform distribution [5].
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Figure 5.11: Schematic representation of the virtual nodes over the delay line (left) and the corre-
sponding interaction graph (right) when τ = Tin + θ (α = 1) and N = 6. Red arrows indicate the
connections at time step (k − 1) and blue arrows the connections at the previous time step (k − 2).
In delay-based RC, there is only one hardware node and the spatial temporal distri-
bution of the input layer in standard RC has to be performed by time-multiplexing.
Thus, as explained in Section 5.4.2, the input mask in delay-based RC is a piecewise
constant function (constant over an interval of θ) that is periodically repeated with
period Tin. The response of the nonlinear system to each piece of the mask function
is assigned to the corresponding virtual node. The values of the input mask during
each interval of length θ are typically chosen independently at random and define the
coupling weights from the input to the reservoir as on the standard RC approach. The
input mask performs the randommapping of the input into the reservoir. In addition,
the input mask has the important role to maximize the diversity in the responses of
the system that can later be used for computation.

In delay-based implementations with τ ̸= Tin and θ ≫ T, the input mask values
(or weights) are often drawn from a uniform distribution in [−1, 1] since this approach
is more closely related with standard RC. Limited research has been done for other
distributions of the input weights in this approach. In contrast, the first delay-based
RC implementations with τ = Tin and θ < T used input weights randomly drawn
from a binary uniform distribution [6]. The binary weights are typically randomly dis-
tributed in time, although a nonrandommask construction procedure based on max-
imum length sequences yields an improvement over random temporal assignments
[39]. Later, it was shown that the choice of two-valued input weights is suboptimal
in the presence of noise [35, 40] since different virtual nodes end up having similar
values that are hard to differentiate in the presence of experimental uncertainties.

For hardware implementations of delay-based RC, it turns out that input weights
drawn from either uniform or six-valued distributions that are randomly distributed in
time for every piece of the mask induce a larger diversity in the system responses. As
a consequence, the use of these distributions of weights yield lower prediction errors
in a chaotic time-series prediction task [35, 40].

Afinal refinement in the choice of inputweightshas recently been reported in [40].
Focusing on a time-series prediction task and taking τ = Tin +θwith θ < T, Nakayama
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et al. [40] have found optimum prediction errors when the mask is an analog irregu-
lar function with the same frequency bandwidth than the nonlinear reservoir system
itself. Amaskwith the required bandwidth can be created following two different pro-
cedures, either using a random distribution with a frequency cut-off (colored noise)
or using a temporal segment of the intrinsic dynamics of the nonlinear node in the
chaotic regime. These results emphasize the importance of the bandwidth of themask
and agree with the findings reported for fully trained hardware systems [41]. In [41], it
was shown that the bandwidth of the input mask adjusts to the analog bandwidth of
the system when the full system (input, reservoir and output layers) is optimized via
back-propagation techniques.

5.7 Computational capacity of delay-based
reservoirs

Dynamical systems X driven by time dependent external signals u(t) can process the
information contained therein [42]. As it is shown in [42], functions of previous inputs
z(u(t − h), . . . , u(t)) can be reconstructed from the state of a dynamical system using a
linear estimator. This estimator is constructed from N internal variables of the system
(see equation (3) in [42]). TheseN variables provide ahigh-dimensional space, referred
to as a reservoir. The capacity C[X, z]measures how successful the dynamical system
X is at computing z (see equations (4)–(5) in [42]).

The total computational capacity of a dynamical system corresponds to the total
number of linearly independent functions of the input the system can compute. If the
system obeys the fading memory condition [43], the total computational capacity is
equal to the number of linearly independent internal variables of the system [42]. In
delay-based RC, the internal variables of the system are the virtual nodes, so the total
computational capacity of delay-based reservoirs is given by the number of linearly
independent virtual nodes. The computational power of delay-based RC is therefore
hidden in the diversity of the reservoir states. Neighboring virtual nodes that are con-
nected through the dynamics of the nonlinear node (θ < T) influence each other and
have a similar state, yielding to a small diversity in the available reservoir states. As
the separation between the nodes increases and Tin > τ, the diversity increases while
the virtual connection between the nodes decreases. This behavior can be observed in
Figure 5.12, which plots the reservoir states of a delay-based RC for two different values
of node separation θ.

The number of linearly independent virtual nodes depends not only on the sepa-
ration between the virtual nodes but also on themisalignment between Tin and τ, i. e.,
α. When α < 0, a number |α| of virtual nodes are not connected through the feedback
line with nodes at a previous time and computational capacity is then reduced. Com-
putational capacity is also reduced if |α| andN are not coprimes. In this case, the feed-
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Figure 5.12: Evolution of the reservoir states for a delay-based RC using color coding. The system is
governed by equation (9) with F = ηFsig, where Fsig is the sigmoid function, N = 100, η = 0.1, T = 1,
and τ = Tin + θ (α = 1). For a small value of θ (a), the state of the virtual nodes are less diverse than
for a large value of θ (b). (a) θ = 0.2T . (b) θ = 4T .
back line results in the N virtual nodes forming gcd(|α|,N) ring subnetworks, where
gcd is the greatest common divisor. Each subnetwork has p = N/ gcd(|α|,N) virtual
nodes. Virtual node-states belonging to different subnetworks have a similar depen-
dence on inputs and reservoir diversity is reduced.When there are p subnetworks and
virtual node connections through dynamics are negligible (θ ≫ T), the total capacity
of a linear delay-based RC ranges between (p + 1) and 2p for 0 < α < N .

In dynamical systems X, when z is a linear function of one of the past inputs,
z(t) = u(t − k), the computational capacity corresponds to the linear memory capac-
ity introduced in [44]. The linear memory capacity is a way of estimating the amount
of fading memory available in RC systems. Delay-based RC has an intrinsic memory
due to its feedback line. This fading memory is essential to perform certain tasks that
depend on the context, e. g., time series prediction. As soon as the task requires more
memory than the one provided by the system, the performance of the reservoir com-
puter degrades significantly.

The maximum total capacity of a dynamical system is N where N is the number
of internal states of the system (the number of virtual nodes in delay-based RC). The
total capacity of linear reservoirs (linear function F in equation (9)) is equal to the
linear memory capacity. Figure 5.13 shows the linear memory capacity of the linear
delay-based RC as the separation between the virtual nodes increases for two different
values of the misalignment between the delay and the input, α = 1 (τ = Tin + θ) and
α = 0 (τ = Tin). In the case of α = 1, the linear memory capacity increases with the
node separation. Here, larger node separation implies weaker connections through
the dynamics and more linearly independence between the virtual nodes. In the limit
case of linear reservoir with an instantaneous response to the input (T = 0), all the
virtual nodes are linearly independent and the total capacity will reach its maximum
value, N . As it was shown in Figure 5.11, this topology is similar to the simple cycle
reservoir topology introduced in [38]. In contrast, the virtual nodes are only connected
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Figure 5.13: Linear computational capacity of a linear
delay-based RC with N = 100 as a function of the sep-
aration between the virtual nodes θ for two different
values of α. The delay-based RC is governed by equation
(9) with a linear function F (y) = ηy, η = 0.9, and T = 1.
The linear computational capacity has been obtained
summing until k = N.

by the system dynamics in the case of α = 0 (see Figures 5.7 and 5.8). As a result,
Figure 5.13 shows that the linear memory capacity decreases beyond θ > T since the
delay-based RC is no longer a connected network.

In contrast to linear systems, which only have linear memory capacity, nonlinear
dynamical systems have both linear and nonlinear memory. They are therefore capa-
ble of nonlinear transformations on the inputs. In this case, however, the total compu-
tational capacity is still limited by the dimension of the reservoir. As a consequence,
there is a trade-off between the linear memory that dynamical systems possess and
their capacity to process the input in a nonlinear way [42]. In this context, a mixture
reservoir made of both linear and nonlinear dynamics has been suggested as a work-
around to alleviate the memory-nonlinearity trade-off [45].

Hardware implementations of delay-based reservoirs reach a compromise be-
tween the computation speed and the available computational capacity when θ < T.
This combination of parameters, however, is suboptimal from the point of view of
computational capacity.

5.8 Hardware implementations of delay-based
reservoirs

Thanks to the versatility of the delay-based RC concept, it can be implemented in very
different hardware platforms. The first working prototype was developed in electron-
ics in 2011 by Appeltant et al. [6] and was quickly followed in 2012 by optoelectronic
implementations [1, 29]. Moving forward from the optoelectronic implementations,
the first all-optical delay-based reservoir computers based on semiconductor optical
amplifiers and semiconductor lasers were implemented [3, 4]. A more extensive list of
recent hardware implementations of delay-based RC can be found in [46].

The main differences between the delay-based RC experiments are in the nonlin-
earity of the reservoir and in the relative timing between the input injection time and



138 | S. Ortín et al.

thedelay time. In the case of the all-optical implementations, there are alsodifferences
in how the input is injected into the system.

Most hardware implementations of delay-based RC focus on the practical demon-
stration of the reservoir layer. The input and output layers are emulated off-line on a
standard computer. There are, however, first works aiming at the complete implemen-
tation of the three layers of RC on analogue hardware. In this way, a proof of concept
for stand-alone delay-based reservoir computers has been demonstrated [47].

Optoelectronic and all-optical systems have been widely employed for delay-
based RC. A number of classification, prediction, and system modeling tasks have
been performed with state-of-the-art results. To name a few, excellent performance
has been obtained for speech recognition [1, 48, 4], chaotic time series prediction
[1, 35, 4], nonlinear channel equalization [29, 47, 3], and radar signal forecasting [47].

The operating speed ofmost optoelectronic delay-based RC implementations is in
theMHz range, although this kind of setup can even operate at GHz speeds [49]. In the
case of all-optical delay-based RC implementations, a photonic reservoir based on a
semiconductor laser with feedback has shown unconventional information process-
ing capabilities at Gbyte/s rates [4], one of the fastest reservoir computer up to date. In
contrast, most of the electronic implementations are in the range of KHz. These elec-
tronic implementations serve as a testbed for the fastest photonic implementations
that will be discussed in the following chapters. In particular, the electronic platform
allows to explore the particularities of computing with an analog nonlinear system.

5.8.1 An example of an electronic implementation of delay-based
reservoir computing

For illustration purposes, in this subsection, we focus on a mixed analog and digi-
tal implementation of the delay-based RC concept with a nonlinear analog electronic
circuit as a main computational unit [6, 37]. This delay-based RC scheme can be con-
ceptually divided in several distinct blocks, which are schematically shown in Fig-
ure 5.14. First, there is an input preprocessing stage where the incoming data are time-
multiplexed. A digital-to-analog (DAC) and an analog-to-digital (ADC) converter with
12 bits resolution interface the digital and the analog part, and vice versa. An analog
Mackey–Glass electronic circuit [37] is chosen as the nonlinearity in this implementa-
tion. A delay element, implemented digitally, provides the required feedback. Finally,
at the output post-processing stage, the system output is given by a linear weighted
sum of the values of the virtual nodes. The weights are obtained with a simple linear
regression during the off-line training procedure.

With the appropriate scaling, the Mackey–Glass system with delay can be mod-
eled, in the presence of a masked input J(t), as follows [37]:

ẋ(t) = −x(t) + η ⋅ [x(t − τ) + γ ⋅ J(t)]
1 + [x(t − τ) + γ ⋅ J(t)]p

, (14)
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Figure 5.14: Schematic view of the RC implementation based on a single Mackey–Glass nonlinear
element with delay. DAC and ADC stand for digital-to-analog conversion and analog-to-digital con-
version, respectively. Figure reprinted with permission from Ref. [37], IEEE.

Figure 5.15: Experimental non-
linear function (red solid line)
compared to a fit using the
Mackey–Glass nonlinearity
(green dashed line). The oper-
ating points marked with dots
of different colors correspond
to the solid lines in Figure 5.16.
Figure reprinted with permission
from Ref. [37], IEEE.

with x denoting the dynamical variable, t a dimensionless time, τ the delay in the
feedback loop and η and γ represent feedback strength and input scaling, respectively.
Note that for the scaled model T = 1. This equation corresponds to equation (9) with
a Mackey–Glass nonlinear function. The exponent p can be used to tune the degree
of the nonlinearity. Figure 5.15 shows the experimental Mackey-Glass function for this
implementation, together with the corresponding numerical fit. In this example, the
Mackey–Glass equation fits the experimental nonlinearity with an exponent p ∼ 6.

We evaluate here the performance of this electronic scheme for the same time-
series prediction task that in Section 5.4.4. This task consists on the one-step ahead
prediction of a benchmark chaotic time series, the Santa Fe laser time series. For this
task, Tin = τ, N = 400 and the input mask has six different amplitude levels ran-
domly distributed in time with zero mean. More details about this delay-based RC can
be found in [37]. The normalized mean squared error (NMSE) of the one-step ahead
prediction over the test set in the experiments (top panels) and the numerical simula-
tions (bottom panels) is shown in Figure 5.16 for different bit resolutions in the ADC.
We observe a clear dependence of the NMSE on the number of bits in the output ADC,
with a wider region of low NMSE for increasing number of outputs bits. NMSE below
0.05 are obtained for γ ∼ 0.3 and a wide range of feedback strengths when the ADC
resolution is larger than 8 bits.
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Figure 5.16: Experimental (top) and numerical (bottom) results for the Santa Fe time series prediction
test. Color-coded NMSE as a function of the parameters of the system η and γ for different number
of bits in the output ADC. The exponent is set to p ∼ 6, N = 400, θ = 0.4T , and Tin = τ. Color lines
correspond to the operating points shown in Figure 5.15. The NMSE values are an average over three
data partitions. Figure reprinted with permission from Ref. [37], IEEE.

This example nicely illustrates that the nonlinear function of the hardware node plays
an important role in the system performance. In delay-based RC, the system output
oscillates around the operating point. The operating point and the maximum ampli-
tude of the oscillation determine the effective nonlinear function of the system, i. e.,
the parts of the nonlinear function that the system really explores. The color lines in
Figure 5.16 show the NMSE values when the delay-based RC is operating around the
correspondingly colored points in Figure 5.15. For example, when the amplitude of the
oscillations is small (low γ) and the operating point is around the inflection point of
the numerical Mackey–Glass function (see black dot in Figure 5.15), the response of
the Mackey–Glass node is almost linear. In contrast, an operating point at the max-
imum of the nonlinear function (see pink dot in Figure 5.15) leads to very nonlinear
responses of the Mackey–Glass node. Figure 5.16 shows that these operating points
lead to large NMSE values, while the lowest NMSE values are obtained when the sys-
tem is operated around the brown dot in Figure 5.15.

The Santa Fe time series prediction task requires a RC systemwith fadingmemory
and nonlinear computational capacity. When the operating point is in a very nonlin-
ear region of theMackey–Glass function (pink line in Figure 5.16), the system does not
reach the memory capacity required by the Santa Fe task and the NMSE increases. In
turn, when the operating point is in a quasi-linear region of the Mackey–Glass func-
tion (black line in Figure 5.16), the system has a large memory but a lower nonlinear
computational capacity, and there is a slight increment of the NMSE. As stated in the
previous section, there is a trade-off between thememory capacity of a RC system and
its computational capacity [42]. In this example, the brown operating point in Fig-
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ure 5.15 leads to the best compromise between the linear memory and the nonlinear
computational capacity.

5.8.2 Challenges in physical implementations of delay-based
reservoir computers

Themain advantages offered by hardware implementations of RC are high processing
speed, parallelism, and lower power consumption compared to digital implementa-
tions. However, physical analog systems are affected by noise. The finite signal-to-
noise ratio (SNR) reduces the computational capacity [42] and degrades the perfor-
mance.

Another limitation in hardware implementations of delay-based RC comes from
the noninstantaneous response of the system to an input signal. When θ is smaller
than the response time of the system, the system’s dynamics couples consecutive vir-
tual nodes. These network connections lead to similar virtual node-states, and the
computational capacity is degraded. In this case, the covariancematrix of the outputs
is ill conditioned with a large ratio between the largest and smallest eigenvalues (con-
dition number). Moreover, this kind of reservoirs are more sensitive to noise [50]. In
summary,when the influence of the inherent dynamics is not negligible, the computa-
tional capacity is degraded and more sensitive to noise. The influence of the system’s
dynamics can be mitigated by increasing the node distance θ. Since the information
processing rate, given by T−1in = (Nθ)−1, is limited by the system response time, it is
desirable from the practical point of view to keep the system as fast as possible. If
one desires a high-speed hardware implementation that still exhibits a good compu-
tational capacity and a certain degree of noise robustness, it is recommended to use
intermediate values of θ but it cannot be arbitrarily small as discussed in Section 5.7.

Role of noise

Several noise sources can be present at the different layers of the RC system. In par-
ticular, noise can appear in the reservoir itself, and/or the input and output layers.
The noise in the acquisition procedure, i. e., output layer, has contributions from de-
tection noise and digitization noise, which is the strongest noise contribution in the
case of mixed analog and digital implementations [35]. Digitization noise originates
from the finite resolution of the analog-to-digital (ADC) and digital-to-analogue (DAC)
converters, which act as an interface between the analog and digital worlds.

Since performance is degraded by noise, one may try to reduce the digitization
noise by oversampling and averaging over the measured response of the system.
Signal-to-noise-ratio can be also increased by averaging over several repetitions of
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the reservoir output. In all of these strategies to reduce the effect of noise, the maxi-
mum information processing rate is reduced.

Interestingly, classification tasks are relatively robust against a finite SNR [51]. For
a spoken digit recognition task, an all-optical hardware system even outperformed
software implementations of RC in terms of speed and accuracy [4]. In contrast, the
performance of time-series prediction tasks significantly degrades when the SNR de-
creases [35]. The difference in sensitivity is due to the different nature of the two tasks.
A classification task only requires awinner-takes-all decision that reliesmainly on the
recognition of the shape of the corresponding digit. This shape is still preserved in the
presence of digitization noise. However, time-series prediction actually requires the
precise approximation of a nonlinear transformation.

The sensitivity of the reservoir state to noise can have a clear impact on the con-
sistency properties of the system. Consistency relates to the reproducibility of sys-
tem responses for multiple similar inputs. Computational performance requires re-
producible results,making consistency an essential condition for reservoir computing
[52]. Different sets of initial conditions due to noise and different noise realizations in
the reservoir may result in different temporal evolutions of the dynamics under the
injection of the same input. As a consequence, the lack of consistency degrades the
performance [40, 52].

In photonic systems based on lasers, spontaneous emission noise is always
present in the reservoir. Numerical simulations of all-optical implementations of
delay-based RC have shown [53, 54] that time-series prediction task performance
degrades for realistic values of the spontaneous emission noise. In all-optical delay-
based RC, the computational performance has also been found to be very sensitive
to feedback phase [55]. In other words, tiny fluctuations in the precise value of the
delay time can have an important impact on the performance. This phase sensitivity
can be avoided by modifying the readout layer, such that the read-out weights are
optimized from a combination of the reservoir’s state and its delayed version [55]. In
summary, noise in the output layer is typically the main limiting factor of computing
performance for photonic systems [35].

In the following, we show some examples of the performance degradation due
the noise, focusing on the cases for which there exist virtual connections through the
system dynamics.

Noise in an electronic implementation
Digitization noise in the output layer has been studied in the electronic implementa-
tion [51] described in Section 5.8.1. We remind the reader that in this particular imple-
mentation θ < T and there is no mismatch (Tin = τ). The performance for the Santa
Fe laser time-series prediction task is evaluated and it is found that performance im-
proves when the bit resolution of the output ADC increases. However, the improve-
ment saturates for resolutions larger than 10 bits (see top panels of Figure 5.16) when
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other sources of noise become dominant. The maximum SNR attained in this elec-
tronic implementation is slightly larger than 60dB.

Noise in an optoelectronic implementation
The optoelectronic implementation consists of a nonlinear oscillator with delayed
feedback [35]. The nonlinear transformation is provided by a Mach–Zehnder modu-
lator (MZM). This system can be modeled, in the presence of a masked input J, as
follows:

ẋ(t) = −x(t) + η ⋅ (sin2[x(t − τ) + γ ⋅ J(t) +Φ] − 0.5), (15)

where time and delay τ are scaled to have T = 1, x is the dynamical variable, η and
γ represent feedback strength and input scaling, respectively, and Φ is the MZM off-
set phase. It is worth noting that the local properties of the nonlinearity around the
operating point can be easily tuned by changing Φ.

We discuss here the implementation in which the number of virtual nodes is N =
400, θ = 0.2T (i. e., virtual connections due to system dynamics are important) and
Tin = τ. The performance for the Santa Fe laser time-series prediction task is evaluated
for two different masks (a binary mask and a multi-level mask) under different digiti-
zation noises. For this system, it has been shown that performance can be improved
with a multivalued mask [35].

The influence of the number of output digitization bits on the performance degra-
dation is shown in Figure 5.17 for the two- and six-valued input masks. The prediction
errors are consistently lower for the six-valued mask compared to the binary mask
over the whole range of digitization bits. Multivalued masks increase the diversity of
the reservoir states, and then noise sensitivity is reduced.When a binarymask is used,
neighboring virtual node-states tend to be similar due to the short distance between
them (θ = 0.2T), and the performance is very sensitive to noise. In the absence of
noise, the two types of masks yield the same error for the Santa Fe time-series predic-
tion task.

Figure 5.17:Minimum NMSE test prediction error
in the Santa Fe laser time-series prediction task
for η = 0.8 and γ = 0.45 as a function of the
number of output digitization bits. The red (black)
line corresponds to a binary (six-valued) mask.
The error bars correspond to ten different random
realizations of the masks. Figure reprinted with
permission from Ref. [35], OSA.
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Figure 5.18: NMSE test prediction error in the
Santa Fe laser time-series prediction task for
η = 0.8 and γ = 0.45 as a function of the off-
set phase ϕ. The red (blue) line corresponds
to a binary mask in the presence (absence) of
10 bits digitization noise. The black line corre-
sponds to a six-valued mask in the presence
of 10 bits digitization noise. In the absence
of noise, a minimum prediction error of about
0.01 is obtained (blue dashed line). Figure
reprinted with permission from Ref. [35], OSA.

Figure 5.18 shows the normalized mean square error (NMSE) for the Santa Fe task as
a function of the offset phase of the nonlinearity Φ when two-valued and six-valued
inputmasks are used. In the presence of digitization noise (10-bit resolution), the pre-
diction error for a six-valued mask (solid black line) is significantly lower than for the
binary mask (solid red line), over the entire parameter range, with a minimum error
of about 0.02. The error is not reduced when increasing further the number of discrete
values in the input mask.

These numerical simulation results are in agreement with experimental results
[35]. The prediction error for the experimental realization of the optoelectronic sys-
tem is shown in Figure 5.19(b) as a function of the offset phase of the nonlinearity Φ
for both the two-valued and the six-valued input masks. The dependence of the error
on the offset phase agrees with the numerical results shown in Figure 5.18. A better
performance is also obtained with the six-valued mask (solid line) than with the bi-
nary mask (dashed line). The minimum prediction error, 0.06 (0.1) for the six-valued
(binary) mask, is slightly higher than the numerical results for 8 bits digitization of
the ADC. A lowest error of 0.02 can be found when the signal is detected with five
times oversampling and subsequent averaging (see Figure 5.19(c)). In this case, the
SNR measured at the output layer is equivalent to a 10 bit dynamic range.

The influence of a finite SNR has also been analyzed in an optoelectronic sys-
tem when the virtual connections through the dynamics are negligible (θ = 4T) and
Tin = τ+θ (α = 1) [30]. We show in Figure 5.20 the memory function obtained from the
experiment and the corresponding numerical simulations. The signal to noise ratio of
a single measurement is ≈ 24 dB. The experimental SNR can be increased to 40 dB by
averaging the detection over ten repetitions of the measurement. An excellent agree-
ment is found between numerics and experiments. Experimental memory functions
with SNR ≈ 40dB and SNR ≈ 24 dB yield a linear memory capacity of 8.5 and 6, re-
spectively. To characterize the linear memory capacity degradation due to noise, we
also show the numerical results for the noise-free system,which yield a linearmemory
capacity around 12. The memory capacity of this optoelectronic system with a SNR of
24 dB is half the one of the noise-free counterpart.
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Figure 5.19: (a) Experimentally recorded nonlinearity (dotted line) and operating point (solid line
with triangles) as a function of the Mach–Zehnder offset phase for η = 0.8 and γ = 0. (b) Test
prediction error (NMSE) for the Santa Fe laser time-series prediction task with 400 virtual nodes for
two-valued (dashed line) and six-valued (solid line) input masks (γ = 0.45). (c) NMSE of the predicted
time-series for an improved detection with 5:1 oversampling and subsequent averaging obtained for
the six-valued mask. Figure reprinted with permission from Ref. [35], OSA.

Figure 5.20: The linear mem-
ory capacity for the numerical
(dashed lines) and experimen-
tal (solid lines) realizations of
an optoelectronic RC. The sys-
tem parameters are: θ = 4T ,
α = 1, N = 246 virtual nodes,
η = 0.9, γ = 0.3, and Φ = 0.4π.
Figure adapted from Ref. [30].

Role of system response time

Delay-based RC consisting of a single nonlinear neuron can be easily implemented in
hardware, potentially allowing for high-speed informationprocessing. Since the infor-
mation processing rate (1/Tin) is inversely proportional to the number of virtual nodes
(N) and the node separation (θ), the input throughput can be increased by reducing
N and θ. However, as shown in previous sections, both the computational capacity
(withN being its maximum) and the noise robustness are reducedwhen the value of θ
approaches that of the system response time (T). For this reason, the system response
time imposes a limit to the maximum information processing rate.

In this context, parallel-based architectures with k nonlinear nodes reduce the in-
formation processing time by a factor of k for the same total number of virtual nodes. It
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hasbeen shown [56, 57] that for the same (T/θ) > 1 andwithoutmismatch,Tin = τ, per-
formance is improved when different activation functions are used for the nonlinear
nodes. In this way, reservoir diversity is increased. However, the hardware implemen-
tation becomesmore involved than the one of a delay-basedRCwith a single nonlinear
node.

Several strategies have been used to increase reservoir diversity of delay-based RC
with a single nonlinear node when (T/θ) > 1 and Tin = τ. First, we have shown in Sec-
tion 5.6 and earlier in this section that the use of multi-valued input masks increases
reservoir diversity and noise robustness.

Another strategy to increase reservoir diversity is to use multiple feedback lines
[36, 58]. When the delay times of extra feedback lines are close to but not exact mul-
tiples of τ, memory capacity increases and performance improves. In the case of only
one extra feedback line with a delay time τ2 = Mθ (M > N), the best performance is
obtained when M and N are coprimes [59]. In this case, the number of virtual nodes
that are mixed together within the history of each virtual node is maximized. Multi-
ple feedback delay lines have been implemented in an optoelectronic system based
on nonlinear wavelength dynamics [48]. In this case, 15 delay lines with delay times
smaller than Tin = τ have been used, giving a good performance for a classification
task.

Finally, we consider an additional strategy still based on the simple architecture
of a single nonlinear node with one feedback delay line. In this strategy, the mis-
match α can be used to increase reservoir diversity when θ < T. The value of α has
to fulfill the requirement of having no common divisors with N . Otherwise, the com-
putational capacity is reduced due to the formation of subnetworks (see Section 5.7).
When 0 < α < N has no common divisors with N, all virtual nodes are connected
through feedback in a ring. The minimum time steps required for a virtual node to
connect through feedback with itself increases with α. Every virtual node connects
with itself after (N +α) time steps. For small values of (θ/T), the states of virtual nodes
that are separated by less than T are correlated. When the mismatch is increased, vir-
tual nodes are connected through feedback to nodes that are not connected through
the inherent system response. Reservoir diversity is then increased and a larger com-
putational capacity is achieved. This is shown in Figure 5.21 for a linear delay-based
RC with 97 virtual nodes. The linear computational capacity of the linear delay-based
RC increases from 23 (α = 0) to 42 (α = 94) when θ = 0.2T. If θ ≫ T, the total linear
computational capacity of the linear delay-based RC is equal to N for 0 < α < N, i. e.,
a mismatch α = 1 is sufficient and has often been used in delay-based RC systems.
Negative values of α have only been used in a system with a microchip laser [60]. In
this case, the computational capacity is reduced (see Section 5.7). In addition, a larger
α = 5 has been used in systems with analogue nonrandom masks [47]. In this case,
a large α is necessary to ensure that connected virtual nodes receive a very different
version of the input signal.
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Figure 5.21: Numerical results for the linear mem-
ory capacity as a function of the misalignment α
for a linear delay-based RC. The system is gov-
erned by equation (9) with a linear function
F (y) = ηy. The parameters are: N = 97 virtual
nodes and η = 0.9.

5.9 Conclusion

Reservoir computing stands out as a simple yet powerful machine learning technique
to process sequential data, in which the context is relevant for the information pro-
cessing. The reservoir is typically nothing else than a randomly connected network
with recurrences where the input information is also randomly mapped to the reser-
voir.

The development of delay-based reservoir computing has contributed to a further
simplification of the RC concept in which the connectivity of the reservoir is no longer
random but it follows a predetermined (e. g., ring) topology. This agrees with the re-
sults presented in [38, 61], in which deterministically connected reservoirs perform as
well as random reservoirs. In delay-based RC, the reservoir connectivity can be modi-
fied by tuning the relative time-scales of the input sampling period, the feedback line
and the system response time.

Most machine learning algorithms are intended to run on software platforms. Al-
though this is also the case for reservoir computing, it turns out that this concept is
particularly well suited for hardware implementations due to the random connectiv-
ities. The hardware implementation of delay-based reservoir computing has minimal
requirements since only a single nonlinear hardware node is needed [6]. The recur-
rence is provided via a simple delay feedback loop, easy to implement in hardware.
The concept of delay-based reservoir computing was initially developed to simplify
hardware implementations, with the focus on photonics, and these conceptual sim-
plifications have already allowed for full hardware implementations [47].

Delay-based RC exploits the time-multiplexing technique for the creation of mul-
tiple virtual nodes. As a result, the information processing rate is reduced. In this con-
text, frequency multiplexing [62] is a promising way to increase the information pro-
cessing speed. A combination of time and frequency multiplexing can also be used to
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reduce the influence of noise by combining several repetitions of the reservoir output
in different frequencies.

The development of delay-based reservoir computing approaches, and reservoir
computing in general, has greatly benefited from the interactions between experts
on machine learning, neuroscience, and dynamical systems theory. We foresee fur-
ther conceptual developments of this brain-inspired computational paradigm from
the joint forces of these different communities. Some of the main challenges remain-
ing ahead are the robustness to noise for the improvement of hardware implementa-
tions, the development of deep architectures keeping a minimalistic approach, and
the combination of analog and digital systems for high-speed, power-efficient com-
putations.
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Laurent Larger
6 Ikeda delay dynamics as Reservoir
processors

6.1 Introduction

Ikeda dynamics originates from an optical setup proposed in the late 1970s by the
Japanese researcher Kensuke Ikeda [1]. It was intended to demonstrate the possibility
to generate complex motion such as chaos, in optical systems. Chaotic behavior was
indeed harnessed experimentally at that time, being effectively observed in several
real world situations in electronics, solidmechanics, fluidmechanics, chemistry, etc.,
however, not yet in optics. The particular mathematical model describing the Ikeda
ring cavity is a delay differential equation involving a sine square nonlinear delayed
feedback term. It is very similar to another well-known delay model popularized a
few years earlier [2], the Mackey–Glass equation describing the dynamics of blood
cells production. The main difference between the two delay models resides in the
shape of the nonlinear function, which is a polynomial fraction exhibiting a single
maximum for the Mackey–Glass model, whereas a sine function exhibits an infinite
number of extrema for the Ikeda model. The Ikeda dynamics, as the slightly earlier
model from Mackey and Glass, became a toy model to investigate the richness of de-
lay systems. Beyond the fundamental interest for the understanding of the particular
dynamical mechanisms involved in the observed complex behavior, several specifi-
cally engineered experiments [3, 4] also triggered some application oriented research.
As an example, chaotic motions developed in photonics, together with their synchro-
nization potential, have been useful in the development of cryptographic applications
for fiber optics telecommunications [5]. Periodic solutions have also triggered intense
research for the design of optoelectronic devices based systems for high spectral pu-
rity microwave oscillations intended for radar applications [6]. More recently, simi-
lar Ikeda-based optoelectronic setups have been used for the first photonic hardware
implementation aimed to demonstrate the capability of complex photonic nonlinear
dynamics to efficiently perform machine-learning-based processing of information,
according to the Reservoir Computing (RC) concepts [7, 8]. The very first successful
hardware implementation of the RC concept was moreover demonstrated one year
earlier, involving an electronic circuit also making use of a delayed feedback architec-
ture mimicking the Mackey–Glass model [9]. This chapter is intended to provide a few
general concepts related to the particular dynamical complexity of delay dynamics,
more specifically the ones based on Ikedamodels. Beyond the description of the basic
physical properties of such delay systems, we will also illustrate how their intrinsic
dynamical features can be interpreted as a way to emulate a virtual neural network,
with which the RC concepts can be efficiently implemented.

https://doi.org/10.1515/9783110583496-006
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6.2 From the Gedanken experiment to the
optoelectronic setup

6.2.1 Ikeda ring cavity, principles of operation

The Ikeda setup is schematically represented in Figure 6.1. It consists of a four mirror
optical ring cavity, comprising also a Kerr nonlinear medium inside. Two partially re-
flecting mirrors are allowing for feeding and extracting light into, and out from, the
cavity. Two additional perfectly reflectingmirrors are closing the cavity feedback path.
Temporally coherent laser light is assumed, such that the feedback light inside the
cavity interferes with the injected light beam. This light interference phenomenon oc-
curs right before entering the Kerr medium. Different interference conditions can be
observed, depending on the phase shift cumulated along the cavity (modulo 2π, since
thousands of light wavelengths are corresponding to the cavity feedback path). In or-
der todetermine this exact interference condition, the optical cavity feedbackpath can
be decomposed into two parts: A fixed part corresponding to the free space propaga-
tion, and a variable path originating from the nonlinear phase shift occurring inside
the Kerr medium. The latter Kerr phase shift however depends linearly on the inten-
sity level of input light beam to the Kerrmedium, i. e., it depends on the intensity level
defined by the previouslymentioned light interference condition. This intensity is low
when the interference is destructive (for a π-phase shift), or high when it is construc-
tive (for a zero-phase shift). At every round trip of the coherent light inside the cavity, a
new update of the interference condition might occur, resulting in a new interference
intensity level whichwill be responsible for a newKerr phase shift, resulting itself in a
modified interference condition after the next round trip of the light inside the cavity,
and so on.

The observed output light beam appears thus as a continuously changed light in-
tensity, clocked by the round trip time of the light inside the cavity. This round trip
time duration is in principle very short, according to the cavity length divided by the
extremely fast speed of light in vacuum, typically resulting in a delay of the order of
a few nanoseconds. This duration can be typically considered as a time delay sepa-
rating two successive “updates” of the interference conditions, as it can be observed
on the light intensity fluctuations at the output of the cavity. An important dynamical
issue to be however considered, is related to the fact this interference condition up-

Figure 6.1: Schematic of the Ikeda ring cavity.
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date, as well as its actual origin related to the previous round trip Kerr phase change,
does not occur instantaneously. Kerr phase change is a light-matter interaction pro-
cess, definitely occurring at very fast time scales (a few femtoseconds), but not at in-
finitely fast ones. It is approximately 3–5 orders of magnitude faster than the round
trip time. Every Kerr phase change, and thus every resulting interference change and
its corresponding light intensity change, occur at finite time scales and in a contin-
uous way, with fastest variation limited by the Kerr medium response time. A self-
consistent dynamical state of the Ikeda setup corresponds then to the concatenation
of all consecutive infinitesimal temporal changes of the optical phase (or intensity),
all over the time interval of a cavity round trip. The resulting dynamics of the phase
change, or of its resulting state of interference at the ring cavity input, is actually a
continuous time dynamics to be observed as a continuous waveform of either light
phase fluctuations, or its consecutive light intensity fluctuations (due to the interfer-
ence phenomenon). A temporal waveform is permanently flowing inside the optical
cavity, one cavity round trip time next to the other. The analysis of the infinite length
dynamical waveform will be later on decomposed into finite sub-waveforms, whose
duration corresponds to the round trip time delay interval, and whose fine temporal
grain fluctuations are ruled – or limited – by the Kerr medium response time.

6.2.2 The all-optical Ikeda setup transposed through an
optoelectronic approach

From an experimental viewpoint, the main drawback of the Ikeda setup consists in
the actually achievable strength for the nonlinear Kerr phase change, i. e., the phase
change span resulting from theminimumandmaximum light intensity levels that can
enter the Kerr medium. Relatively high power lasers are thus generally required to ob-
tain significant phase change in the Kerr medium, i. e., phase shift of the order of π
that is subsequently allowing after the round trips the full scan of constructive and
destructive interference conditions. Under this condition only, one can experimen-
tally obtain significantly nonlinear (and complex) dynamics generated in the Ikeda
cavity, such as chaotic motions. Such π-phase shifts are unfortunately very difficult to
obtain in Kerr media with CW lasers, and most often pulsed lasers are required thus
drastically modifying the intrinsic continuous time feature of the original Ikeda idea.
Interesting phenomena can nevertheless be obtained, however changing the contin-
uous time dynamics into a discrete time one [10].

Alternative experimental approaches have been rapidly proposed in the litera-
ture after Ikeda’s original idea. A rather straightforward alternative to the Kerr phase
change is the linear Pockels effect, with which a much larger phase change can be
obtained (up to several times 2π), with an electrical drive instead of an optical inten-
sity one. This approach is however imposing much slower dynamics, and it is also
requiring much longer time delay when one is expecting to keep the same relative
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ratio between the round trip time (the delay) and the response time for the phase
change. Many different experimental solutions can be adopted for the interference
phenomenon, e. g., a birefringent interferometer configuration consisting of a bire-
fringent Pockels cell placed between two crossed or parallel polarizers, or a Mach–
Zehnder interferometer where one arm involves the electrooptic Pockels effect along a
single polarization axis. One then needs a standard photodiode only, in order to detect
the intensity of the resulted interference phenomenon. In order to ensure enough feed-
back gain, some appropriate electronic amplification have to be involved before feed-
ing back the signal onto the electrodes of the Pockels effect medium. Large time de-
lays can be implemented, either through a long enough optical propagation medium
in the optical path of the delay dynamics (e. g., optical fiber), or through an electronic
delay line placed in the electronic path. Beyond the experimental feasibility, the opto-
electronic approach for the Ikeda setup provides nowadays very elegant experimental
implementations through the use of modern and broadband Telecom integrated op-
tics devices. This allows to speed up the involved characteristic time scales, thanks to
the availability of 10s of picoseconds response time devices. The phase change span,
and thus the nonlinear weight of the dynamical process, is moreover still maintained
to several πs due to very efficient electro-optic modulation devices. Another practi-
cal advantage of the optoelectronic implementation is the availability of various af-
fordable electronic instrumentations (digital oscilloscopes, spectrum analyzers, etc.)
allowing for accurate, fast, and easy analysis of the generated temporal waveforms.
Time resolutions as fast as a few ps are nowadays available, and the instruments are
capable for recording millions of consecutive time delay intervals. Such an efficient
instrumentation environment is unfortunately not yet available for femtosecond phe-
nomena, as it would be needed if ultra-fast Kerrmediawould be involved. Last but not
least, in the framework of an information processing system such as a neuromorphic
analogue processor based on Reservoir Computing concepts, one has the advantage
of an experimental basis that is intrinsically related to an application context derived
from information and communication theory. Indeed, through the important devel-
opment of modern optical telecommunications, photonic systems are benefiting from
many high performance and mature technologies dedicated to information process-
ing, filtering, and transmission.

6.3 Modeling and theory

6.3.1 Mathematical model, time scales, motions

According to simple wave physics ruling the ring cavity, and according to the integra-
tion of the Maxwell–Bloch equations in the nonlinear light-matter interactions in the
Kerr medium, the original Ikeda setup led to the following scalar delay differential
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Figure 6.2: Principle of the optoelectronic version for the
Ikeda ring cavity.

equation, after a few simplifications:

γ−1 dΔφ
dt
(t) = −Δφ(t) + A{1 + B cos[Δφ(t − τD) + φ0]}, (1)

where Δφ is the dynamical variable (phase shift induced by the intensity interference
through the Kerr medium), A = n2kLI0 is the weight (or gain) for the nonlinear de-
layed feedback which is directly related to the Kerr effect efficiency (Kerr coefficient
n2, wavenumber k of the laser light, length L of the Kerr medium), B is representative
of the contrast of the interference depending on the losses in the cavity, φ0 is an off-
set phase related to the static optical path inside the cavity relative to the laser wave-
length, γ is the rate of change for the Kerr effect (the inverse being the related response
time), and τD is the round trip time (or time delay for the dynamics).

The optoelectronic realization of the Ikeda equation, shown in Figure 6.2, follows
a very similar mathematical modeling. A simplified normalized equation is usually
proposed in the following form:

ε dx
ds
(s) = −x(s) + β cos2[x(s − 1) +Φ0]. (2)

The time variable is here normalized to the delay, introducing the small parame-
ter ε = (γτD)−1 which is representing the finest relative temporal fluctuations within a
time delay. The contrast B in equation (1) is usually set to one, since it is rather easy
to arrange balanced arms in an interferometer. The weight A of the nonlinear delayed
feedback appears now as the factor β of a cos2-function. Such a writing for the nonlin-
ear function provides amaximum amplitude normalized to unity, and always positive
x-values. Parameter β is practically ruled by the different gains involved in the opto-
electronic feedback loop: The electrical-to-optical conversion efficiency, correspond-
ing, e. g., to the so-called half-wave voltage Vπ involved in an electrooptically tunable
interferometer (i. e., the voltage necessary to induce a π-phase shift between the in-
terferometer arms); the optical-to-electrical conversion efficiency, typically the sensi-
tivity of a photodiode; the optical intensity level seeding the interferometer; and the
electronic amplification usually needed in the electronic path to properly adjust the
voltage level driving the electrode of the electrooptic effect.

The offset phase Φ0 is a static operating parameter, as φ0, which can be adjusted
independently (through a DC offset voltage applied to a dedicated bias electrode, or
any other static tunable optical path).
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6.3.2 Linear part of the dynamics

The optoelectronic experimental approach for the Ikeda dynamics conceptually en-
riched the analysis of Ikeda systems through a signal processing viewpoint, which is
complementary to the physics modeling issued from the Ikeda ring cavity design. In-
deed, the intrinsic response time of the Kerr effect which is limiting the dynamics, is
conceptually equivalent in the optoelectronic approach to the presence of a first-order
linear low pass Fourier frequency filter in the electronic path, actually limiting in the
same way the bandwidth of the oscillator feedback loop.

The differential equation ruling the nonlinear delayed oscillator, according to this
signal processing approach, originates from the linear filter involved in the feedback
loop. This leads to a dynamical model obtained through a less conventional approach
for physicists, based on theoretical tools brought from signal theory [11]. Equations
(1) and (2) can thus be considered as the consequence of a first order low-pass filter.
This filter is described in the Fourier domain by the filter function H(ω), and in the
time domain by the corresponding inverse Fourier transform. The latter is known as
the impulse response of the filter h(s), i. e., the filter output signal obtained when its
input is set to a Dirac distribution:

H(ω) = 1
1 + iωε
, h(s) = e−s/ε u(s), (3)

where ω is the normalized angular frequency (2πτDf , f being the Fourier frequency),
and u(s) is the Heavyside stepwise function (zero for s < 0 and unity for s ≥ 0). The
Fourier analysis of the delay oscillator made through the filter properties, reveals that
the cut-off angular frequency of the low-pass filter is ε−1 ≫ 1. This suggests that many
delaymodes (integer numbers in the normalized scale inω) can coexist within the os-
cillator bandwidth, and they can thus potentially interact through nonlinear mixing
present in the feedback loop. Complex motion such as chaos, as well as information
mixing, are intrinsically operated by a nonlinear delay dynamics. The temporal de-
scription of the delay dynamics can also be reformulated through the use of the im-
pulse response, resulting in an integral writing of the dynamics through a convolution
product, instead of a differential equation writing:

x(s) =
s

∫
−∞

h(s − ξ ) ⋅ fNL[x(ξ − 1)]. (4)

The latter equation introduces a more general class of delay equations, simply by
extending the linear dynamical process, and keeping the nonlinear delay feedback
term. This allows for a more general configuration, in the sense that h(s) is the im-
pulse response related to a linear Fourier filter of potentially any kind. This flexibility
is important in the sense it introduces delay dynamics with other kinds of Fourier fil-
ters. When dealing with an information processing framework, it is indeed often of
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interest to select some of the available frequencies, and not others. From a more ex-
perimental viewpoint, the optoelectronic setup for the Ikeda dynamics might also in-
volve filtering details that are not of concern in the case of the all-optical Ikeda ring
cavity. This was precisely the case when Ikeda-generated broadband chaos was in-
vestigated in the framework of its application to secure optical communication.While
seeking ultra-fast chaos generation with an optoelectronic chaos, the use of broad-
band RF amplifiers in the electronic path, necessarily involved a DC nonpreserving
device because of the intrinsic low cut-off frequency generally owned by broadband
amplifiers (typically 50 kHz–20GHz instead of DC-20GHz). This forces the feedback
loop to have a bandpass filter feature, which fact led to the discovery of unusual com-
plex and rich dynamics, such as chaotic breathers, low frequency limit cycles, stable
period-1 (single delay) limit cycle [12], and also chimera states ([13], see Section 6.4.2).
Theminimal changes to be adopted in the differential equation in order to take into ac-
count the additional high-pass filtering, compared to the conventional low pass case,
is to introduce:
– Either an integral term δ ∫ss0 x(ξ )dξ in equation (2) (δ ≪ 1 being defined as τD/θ

where θ is the characteristic response time of the high-pass cut-off filter);
– Ormore conventionally, a slow variable δ ⋅y in the same equation, y being defined

through a second differential equation (dy)/(ds) = x.

The nonlinear delayed feedback function fNL[x] can be consideredwith amore generic
form for delay differential equations. It can be of any kind in equation (4), whether the
ones in equation (1) or (2), or also, e. g., the one involved in the Mackey–Glass model,
β ⋅ x/(1 + xn).

6.3.3 Feedback and nonlinearity

Aspresented in theprevious section, thedelay equationsbelonging to the Ikeda family
have well identified and separated linear and nonlinear parts. The linear part consists
in the local time (non-delayed) contribution and can take the form of a linear differen-
tial equation. The nonlinear part is concerned by a delayed term. It is worth mention-
ing that other very popular delay systems show opposite features: in external cavity
laser diodes, the local part is nonlinear (laser rate equations), whereas the delayed
part is usually a small linear superposition of an external electromagnetic feedback
light field [14].

In the presently reported case, nonlinearity occurs in a feedback process. Its role
is to bring through the feedback, a possible destabilization of the linear filter (which
is usually stable, i. e., in equation (1) one has γ > 0). The nonlinearity operates in the
vicinity of a rest state x0 defined by a fixed-point equation, fNL[x0] = x0. It introduces
thus an amplitude-gain coupling, since when x0 is changed by δx, the nonlinearity
modifies δx by a factor f NL[x0] (the derivative of the nonlinear function evaluated at
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x0). Because of the feedback action, its small amplitude sign stronglymatters. Indeed,
the effective stability of the nonlinear feedback system (without considering yet any
delay) is characterizedby anew rate of change γ̃ = γ(1−f NL[x0]) (in the case of equation
(1) or (2)). This is a simple illustration that negative feedback (f NL[x0] < 0) generally
keeps the system stable when having a small enough gain, but it makes it faster (γ̃ >
γ > 0); on the contrary, positive feedback can make it unstable (if f NL[x0] > 1), as it is
also well known from standard proportional control schemes.

The way the rest state x0 can be set, is thus obviously an important issue for the
properties of (delayed) feedback systems. This has a straightforward influence on the
amplitude-gain nonlinear coupling, i. e., on the strength of the slope f NL[x0]. The rest
state (and its small amplitude-gain properties, strength, and sign) is typically fixed
by setting an offset, which is the static phase parameters φ0 or Φ0 in equation (1) or
(2). Another important feature for the nonlinear function, is actually the number of
extrema it exhibits over the range of amplitudes x that is spanned for a particular so-
lution x(t). This is connected to the notion ofmultistability (number of solutions of the
fixed-point equation x0 = f [x0]), and to the strength of the nonlinearmixing occurring
for a particular solution waveform (this strength can also be evaluated through the
degree of the polynomial approximating the nonlinear effect: quadratic when close to
an extremumof the nonlinear function, or cubic elsewhere, or even higher degrees for
very large amplitude solution waveforms).

For the bandpass linear filter case, it is worth noticing that steady state solution
necessarily concerns x0 = 0 = (dy)/(dt). Various amplitude-gain conditions are nev-
ertheless still accessible, through the setting of the offset phase Φ0.

6.3.4 Delay induced complexity: degrees of freedom, initial
conditions, phase space

When the delay in equations (1) or (2) is set to zero (or when the delay can be con-
sidered as negligible compared to the other time scale, e. g., the response time γ−1),
the dynamical complexity is obviously limited to a scalar nonlinear equation, with a
single degree of freedom, eventually with a multistable behavior depending on the
number of solutions for the fixed-point equation x0 = f [x0]. Such a scalar equation
has solutions that can be uniquely determined with the definition of a single initial
condition, xi = x(t = 0), leading to a one-dimensional phase space. Its most complex
asymptotic state is a fixed point, eventually a limit cycle in the case of a bandpass filter
(thus also requiring an additional initial condition value, yi; The phase space is then
2D).

The presence of a delay (one moreover usually considers large delay situations,
where γτD ≫ 1) changes dramatically the situation in terms of degrees of freedom, in
terms of size of the initial conditions, and thus in terms of the actual phase space di-
mension. This statement is valid even for scalar equations. Indeed, with the presence
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of a delay, the initial conditions needed to uniquely determine a solution for the delay
dynamics, and thus the corresponding phase space required to represent any trajec-
tory, become infinite dimensional: The initial conditions consist in the definition of a
functional {xi(t) | t ∈ [−τD,0]}, which consists of an infinite number of consecutive
values xi spanning over a time interval having the length of the delay. The delay is
thus an essential ingredient allowing for the development of high-dimensional mo-
tions. It provides the possibility for obtaining various waveforms which can expand
within a huge phase space, and which are initially determined by functionals that
are allowed to adopt an infinite number of possible shapes. This essential property
matches nicely the concept of high-dimensional neural networks, that is used in brain
inspired computing. A general concept is indeed to expand complex information con-
tent into the evenmore complex phase space of a neural network, so that relevant but
initially hidden features of the information can be properly extracted through this ex-
pansion. The “Read-Out” operation on this neural network expansion, is an operation
to be learned, it often consists in the finding of a specific location in the neural net-
work phase space. This phase space location typically reveals, or isolates, the sought
information features through the motion developped within the neural network. The
network motion itself is triggered after the input information have been properly in-
jected into the network (“Write-In” operation).

Beyond the magic jump into infinity thanks to the delay, one has to cope more
realistically with a few constrains and limitations. The phase space is theoretically in-
finite, however the actual possible trajectories in delay dynamics, do not necessarily
cover the entire available space. One very first obvious constrain lays in the necessar-
ily continuous waveforms that are obtained from a delay differential dynamics (it is
not a discrete time map, in which the dynamical variable can switch discontinuously
from one value to another, through the iteration function). Differently speaking, the
fastest amplitude change is limited by the response time γ−1 of the differential process.
In the Fourier domain, this corresponds to the high cut-off frequency of the low pass
filtering: High frequencies are filtered out, and this forces smooth waveforms only for
the dynamics, with fastest oscillations that are limited to oscillation frequencies of the
order of γ (in rad/s). This has, e. g., direct consequences on the actual (fractal) dimen-
sion exhibited by a chaoticwaveform. Such dimensions are indeed finite, and ruled by
βγτD [15] in Ikeda dynamics, which can be commented as follows: γτD is roughly the
number of fast γ−1-oscillations one can fitwithin a time delay interval; The factor β has
then a kind of dimension-amplification effect, through the nonlinear mixing operated
by the extrema of the unity amplitude cos2-function. This upper bound for a reachable
dimensionality defines a smallest temporal grain which can be effective only, within
a motion developed by the delay dynamics. To further comment the reasons for the
dimensionality limitation, one could also refer to the Shannon sampling theory, qual-
itatively stating that the information content of a delay dynamics motion is limited to
the number of a γ−1 time scale (the equivalent of a sampling period) that one can fit
into a time delay interval. When one wants to properly inject (“Write-In”) information
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to be processed by a delay dynamics, thus expanding this information in the delay
system phase space, there is an optimum way in terms of temporal density of infor-
mation that can match the actually available dimensionality in the delay Reservoir.
A too slow sampling rate cannot benefit from all the actual dimensions of the delay
dynamics; With a too fast injection rate, one would over-estimate the actually avail-
able dimensions, and the corresponding information would be too strongly filtered
out by the delay dynamics. Empirical studies [9] for this “Write-In” sampling period
have found an optimal value around (5γ)−1. One could notice here that this quantity
is related to the width of the impulse response function h(⋅) introduced in equations
(3) and (4).

6.4 Emulating a dynamical network with a delay
system

In the previous section, we have qualitatively introduced the physical and theoreti-
cal representation of delay dynamics, revealing their intrinsic high-dimensional char-
acter. This specific character was connected to other dynamical systems exhibiting
also high-dimensional features, such as a network of neurons. Neural networks have
however a very different architecture, since they form a spatially extended network of
interconnected dynamical nodes, the neurons. Beyond the very qualitative fact that
high-dimensionality is interesting for processing information in a neural network, we
would like to point out in this section a closer analogy between delay dynamics and
a network of coupled dynamical nodes, e. g., neural networks. This will then be used
later tomore clearly explain theway delay dynamics can be used as an experimentally
efficient and tractable Reservoir [16] for processing information, in a way which was
initially introduced under the naming Echo State Networks (ESN) [17] and Liquid State
Machines [18].

6.4.1 Space-Time representation of a delay system

Space-Time representation was proposed for delay dynamics in the early 1990s [19].
It allowed to provide a visual representation of complex motions emerging in delay
dynamics, allowing to reveal hidden global temporal structures attached to determin-
istic origins, the latter being however related to very different time scales (delay, and
characteristic response times). This early work on Space-Time motions for delay dy-
namics was concerned by experimental results obtained from a CO2 laser with a de-
layed intra-cavity lossmodulation (themodel being actually close to the Ikeda dynam-
ics).
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Since delay dynamics are physically temporal motion only, the idea guiding the
principle for their Space-Time representation, is to decompose the time variable s into
a combination of two significantly different time scales: one playing the role of a vir-
tual space variable and another one keeping its temporal meaning. These two very
different (nearly “separated”) time scales need to be chosen such that they properly
reflect the underlying physics of a delay dynamics, which is intrinsically a multiple
time scale dynamics. According to what was introduced in the previous sections on
delay dynamics modeling, a straightforward choice is to highlight:
– The delay time τD as a slow “discrete” time scale (τD is even converted into unity

after normalization, thus pointing onto an integer number counting the succes-
sive iterations after each round trip within the ring or feedback architecture);

– And the response time γ−1 as a fast “continuous” time scale (changed into εwhen
normalized).

The fast time fluctuations are thus considered as filling the virtual “space” consisting
of a timedelay interval. The evolution of the amplitude along this virtual space is ruled
by the iteration from one time delay interval to the next. Mathematically written, the
normalized time variable s reads as follows after being decomposed into the two time
scales:

s(n, σ) = n(1 + ν) + σ with: (5)
n ∈ ℕ, σ ∈ [0; 1 + ν] and ν = O(ε).

One can notice here that there is a small (normalized) time shift ν in the choice
for the virtual space span. This virtual space domain thus does not match exactly
the unity normalized time delay, but it deviates with a small quantity of the order
of ε = (γτD)−1. This deviation finds its origin in the fact that the maximum absolute
time correlation from one round trip to the next does not amount exactly to the time
delay. This small shift can be interpreted as an additional small contribution to the ef-
fective delay, brought by the group delay of the linear filter (thus explaining why this
is a O(ε)-small quantity). The fact that both delay and response time appear together
in the space span, is also an indication that the two time scales indeed have a coupled
influence on the whole behavior generated by the delay dynamics.

The introduction of these new space and time variables for a delay system, results
then in a convenient graphical representation for any solutionwaveform x(s) = x(σ, n),
in a 3D-space (Figure 6.3): A color-encoded amplitude is attributed to the dynamical
variable x, which is considered as depending on both a continuous space variable σ
(horizontally) and a discrete time variable n (vertically). The Space-Time plane should
actually be viewed (it is however less convenient) as a weakly twisted cylinder, due
to physical continuity condition. Indeed, the end of a waveform at x(1 + ν, n) is physi-
cally continuously connected to the beginning of the next delay-waveform starting at
x(0, n + 1).
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Figure 6.3: Complex chaotic pattern for a delay dy-
namics, which is revealing specific structures when
represented in an appropriate Space-Time domain
(σ, n).

The determination of the numerical value for ν is an important issue to be solved,
when nice patterns have to be revealed. Indeed, a small positive or negative deviation
from the correct value of ν, results in a very sensitive left or right tilt along the discrete
time axis n. The ν-mismatch can rapidly cumulate after the successive delay round
trips. The correct value for ν is found to depend also on the type of solution (actually
determined by all amplitude and time parameters, aswell as by the initial conditions),
and not on the temporal parameters of themodel only (ε, δ, . . .). Specific algorithms for
the detection of pattern orientation are typically used in practice, in order to properly
adjust the value of ν.

6.4.2 An illustration: chimera states in delay dynamics

Chimera states are corresponding to particular behaviors occurring in a network of
coupled oscillators, in which the global network motion is self-organized into clus-
ters of oscillators. Each cluster is adopting incongruentmotions, in a stable coexisting
fashion. The oscillators motions between clusters are incongruent, while the motions
within a cluster are congruent over all oscillators of the considered cluster. The origi-
nal discovery by Kuramoto in 2002 [20] was considering a network of identical oscil-
lators, each oscillator being similarly coupled to many of its neighbors, according to
a coupling function depending on the distance between the oscillator and the consid-
ered neighbor oscillator. One typical model constructed to explore “chimera states,”
which was named as such in 2004 [21], consisted in a network of continuously dis-
tributed Kuramoto oscillators:

𝜕ϕ
𝜕t
= ω0 + ∫G(x − ξ ) ⋅ sin[α + ϕ(t, x) − ϕ(t, x − ξ )]dξ , (6)

whereω0 is the natural angular frequency of each oscillator,G(⋅) is a coupling strength
function between oscillators depending on their relative distance, and α is an offset
phase for the nonlinear coupling. The nonlinear coupling is a sine function depend-
ing on the oscillators relative phase. One should notice that chimera states can be ob-
tained only for specific α-values within a small interval, i. e., for a specific operating
point of the nonlinear coupling function.
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Since thewhole network is assumed to be homogeneous by construction, two typ-
ical asymptotic networkmotions are a priori expected, in order to respect the intrinsic
symmetry of the network: Either all oscillators are synchronized and coherent, or all
oscillators behave in a fully incoherent and desynchronized way. The numerical ob-
servation of chimera states was thus corresponding to an unexpected spontaneous
symmetry breaking situation, where different incongruent behaviors are coexisting
and are gathered into clusters. The phenomenon has attracted lots of attention (for
a review see [22]) and continues to do so. The two first experimental observations
have been discovered in 2012 [23, 24] in the field of optics and chemistry, followed
then by several other experimental discoveries. Among these additional experimental
observations of chimera states, an unexpected candidate appeared: delay dynamics,
first implemented electronically [13], and slightly later also implemented in a tunable
laser diode dynamics performing an Ikeda-like bandpass oscillator [25]. The search
for chimera states in delay dynamics was actuallymotivated by the curiosity to under-
stand how effective their Space-Time representation could be, typically in exhibiting
motions that are considered to be specific to spatiotemporal phenomena.

From the more theoretical point of view, manipulating the convolution integral
model of delay dynamics in equation (4), even allowed to derive a closely connected
mathematical writing of delay dynamics, compared to the Kuramoto oscillator net-
work. The idea was to rewrite equation (4) considering the specific properties of a
delay dynamics in the framework of its Space-Time analogy. Doing so, one tried to
highlight the importance of the time delay interval [s− 1; s+ ν] along which the virtual
spatial domain spans, and to consider the discrete time iteration from one round trip
to the next. The following mathematical description of a delay system was obtained,
whose formulation can be compared with a chimera toy model as the one given in
equation (6):

x(n + 1, σ) = I[x(n, σ)] +
σ+ν

∫
σ−1

h(σ + ν − ξ ) ⋅ fNL[x(n, ξ )]dξ , (7)

where I[x(n, σ)] is a complex, but negligible integral term.1

To point out a comparison between the models in equations (6) and (7), one can
simply identify the different terms in both equations. They both describe an update
rule for the evolution of each dynamical system. They both involve integral terms cu-
mulating contributions over their respective spatial domains (i. e. the virtual space
interval [σ − 1; σ + ν] for the delay dynamics). Both integrals exhibit two characteristic

1 The integral term I[x(n, σ)] cumulates over the integration domain ]−∞; n − 1] the bounded fluctu-
ations of fNL[x(s − 1)], weighted by the impulse response h(s); Since h(s) exhibits typically an expo-
nential decay in s/ε, and since s ≫ 1 ≫ ε over the concerned integration domain, the integral term is
a very small quantity.
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factors. The second factor appears as a nonlinear coupling from any oscillators in the
whole space (ξ ∈ [σ − 1; σ + ν] for the delay dynamics), at a fixed time. The first factor
(h(⋅) for the delay dynamics, andG(⋅) for the network of coupled Kuramoto oscillators)
does not depend on time, but on space only; it acts as aweighting factor for the nonlin-
ear coupling. In the delay dynamics case, this weight depends on the virtual distance
σ + ν − ξ between the coupled oscillators. One can notice that since h(⋅) has localized
nonzero amplitude when its argument is close to zero, this reveals that essentially the
virtual oscillator positions ξ close to σ + ν, have a significant contribution to the dy-
namics. The impulse response h(t) appears thus as a distance dependent weighting
function for the coupling between oscillators, by analogy to the function G(x − ξ ) in
equation (6).

In order to observe chimeramotion in delay systems, it was found that two partic-
ular delay dynamics settings are important to pay attention to. First, the linear filter
needs to be bandpass, which was known to stabilize the period-1 limit cycle [26]. This
period-1 waveform is indeed found to be the carrier waveform for chimera states in
delay dynamics. A low pass configuration would not allow for such a stable carrier
pattern, as it was observed in [27], where systematic coarsening of any complex initial
condition functionalwas reported. Beyond this stability argument for the carryingpat-
tern, one could also discuss the effect of a bandpass filter compared to a low pass one,
in terms of the impulse response width. This width is indeed broader for the bandpass
case, which would mean that the coupling function allows more influence from far-
ther dynamical nodes in the network. Chimera states are indeed known to be favored
when the coupling weight is active over longer distances.

Finally, another important feature for the occurrence of chimera in delay dynam-
ics has been noticed, it concerns the shape of the nonlinear coupling function fNL[x].
This shape requires asymmetric maxima and minima, but this condition can not be
fulfilled by the standard cos-function of the original Ikeda equation. For the tunable
laser setup [25], this has motivated the use of an Airy function provided by a Pérot–
Fabry resonator, instead of a two-wave interference device (e. g., birefringent filter).

Under such conditions for an Ikeda-like delay dynamic, it was possible to obtain
both numerically and experimentally nicely controlled chimera patterns, that were
nearlymagically revealed thanks to the adequate Space-Time representation. Chimera
patterns manifest themselves essentially as an alternation of plateaus and chaotic se-
quences. This is clearly seen in the time domain, from which it is however difficult
to extract the sustained repetition of this alternation. Space-Time representations can
then easily reveal the regularity of their support waveformwith (1+ ν)-periodic carrier
(see Figure 6.4 for an example).

Depending on the operating point in (ε, δ)-parameter space, a complex but deter-
ministic organization of these chimera patterns was found, concerning the number of
possible chimera “heads” within the virtual space. In the framework of the reported
analytical analogy with Kuramoto oscillator network, this parameter space is directly
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Figure 6.4: Two emerging chimera states (3-headed and single-headed) from different initial condi-
tions, but same operating parameters, as observed in the Space-Time domain (σ, n).

related to theproperties of the couplingweight (functionh(⋅)) and its span in theneigh-
borhood of each individual dynamical node of the network.

Last but not least, recent results [28] also showed the possibility to obtain two-
dimensional virtual space through the use of a second delay. This second delay was
chosen significantly larger than thefirst one, thus emulating another virtual spatial di-
mension. This additional spatial dimensionwas still able to host coherent recurrences
over both virtual spatial dimensions. Chaotic islands in a quiet sea (2D-plateaus), or
its symmetric version, were successfully obtained.

Finally, an important remark has to be highlighted about the controllability, and
the excellent matching accuracy of the observed chimera states in delay dynamics
experiments when compared to numerical results. The homogeneity of the node dy-
namics and of their coupling over the whole network forms an important assumption
for the interest of chimera states. With inhomogeneities, symmetry breaking would
indeed not be that surprising. Such a theoretical assumption is easy to force in numer-
ics, but it is in general difficult to fulfill in real world experiments. In delay dynamics,
however, the virtual nature of the emulated dynamical nodes makes delay dynamics
highly appropriate to this homogeneity condition. Indeed, the direct consequence of
the virtual nature of the network, is that a single physical node is practically shared
among the whole virtual network. This construction forces any dynamical node, as
well as its coupling environment, to be exactly the same everywhere in the virtual
network.

6.4.3 From autonomous to nonautonomous delay dynamics

Most of the previous sections have presented some basic concepts and properties
about nonlinear delay dynamical systems. They are considered as complex au-
tonomous dynamics capable to give rise to various motions, depending whether on
their intrinsic parameter settings (time and amplitude parameter values), or on the
shape of the functions involved in the feedback loop (nonlinear transformation, or
linear filter). When an application is concerned through the practical use of a delay
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Figure 6.5: A complex dynamical network of coupled nonlinear nodes, autonomous, and non-
autonomous for Reservoir Computing application.

system, the dynamics has to be considered in interaction with the external world,
i. e., the dynamics becomes necessarily nonautonomous (see Figure 6.5). For chaos
encrypted transmission system, the information to be encoded into the chaotic wave-
form can be typically injected directly into the delay dynamics [29, 30], thus strongly
perturbing the chaotic motion itself. This is especially true when the relative ampli-
tude of the information signal is comparable to the stand-alone autonomous chaotic
waveform. For optoelectronic delay oscillators generating a high spectral purity mi-
crowave signal for Radar applications, the external noise perturbing the periodic
oscillation is the small signal to be carefully considered in order to analyze the effec-
tive spectral properties of the oscillator [31]. Finally, the nonautonomous operation of
a delay dynamics for Reservoir Computing processing [9] is even more pronounced,
since the most important motion is the large amplitude transient generated by the
Reservoir dynamics (the nonlinear delay system in our case). This transient is the
dynamical response of the Reservoir to a large amplitude external drive. The driving
signal corresponds to the encoded information to be processed, and it has to be in-
jected onto the various dynamical nodes forming theReservoir (a dynamical network),
as illustrated in the right picture of Figure 6.5. The last section will now enter into the
main objective of this chapter, the use of Ikeda dynamics for Reservoir Computing
applications. The Reservoir operation of a delay dynamics will be particularly em-
phasized through the emulation of such dynamics as a virtual network of dynamical
nodes. Despite being an emulation of a real dynamical network only, it is expected
to be capable for playing the role of the usual neural network that is naturally and
mostly considered in brain inspired computing approaches.

6.5 Ikeda-based photonic Reservoir

Reservoir Computing (initially named as Echo State Network or ESN [32] and Liquid
State Machine or LSM [18]), is originally thought as a modified recurrent neural net-
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work computing concept. It is thus obviously implemented in the framework of a dy-
namical system constructed as a standard network of coupled dynamical nodes, as
usually considered in the neural network computing community. We will briefly re-
call one popular model in Reservoir Computing, the Echo State Network. We will then
propose a transposition of thismodelwithin the framework of the Space-Time analogy
previously introduced for delay dynamics. Finally, a few examples of physical imple-
mentations for photonic Reservoir Computing, inspired by Ikeda dynamics, will be
described.

6.5.1 Standard ESN for Reservoir Computing

In a simplified view, an ESN-based Reservoir Computer can be described as follows.
The input information vector u(n) ∈ ℝQ to be processed, has to be distributed onto
each node of the Reservoir. The Reservoir is a recurrent neural network formed by
nodes, each following the perceptron model. The input information distribution is
performed according to a so-called input connectivity matrix W I ∈ ℝK × ℝQ (this is
sometimes referred to the input layer, or “Write-In” layer). The Reservoir itself is ruled
by a discrete time map dynamics of the network state vector formed by its K node
amplitudes, x(n) ∈ ℝK . The network mapping is performed according to its internal
connectivity matrix WN ∈ ℝK × ℝK , which is ruling the iterative law of each node
receiving signals from both the other nodes (autonomous dynamical contribution),
and the injected inputs (nonautonomous contribution). The output result y(n) ∈ ℝM

to be computed by the Reservoir Computer, is obtained through the “Read-Out,” or
output layer, through a linear combination of the internal Reservoir states. This is per-
formed through the matrixWR ∈ ℝM × ℝK . The latter matrix is actually the one to be
learned during the training stage. This training usually consists of a simple and fast
linear regression method, making use of known pairs of data set {input data, network
response, target output}, in the case of supervised learning. More details are provided
in other chapters of this book, which aremore focusing on the basic concepts of Reser-
voir Computing.

Considering individual signals processed in theESN, themathematical operations
can be written as follows:
– Input amplitude affecting node k in the Reservoir:

uink (n) =
Q
∑
q=1

wI
kq uq(n) (8)

uin is thus a vector with K coordinates, one for each node in the network.
– Reservoir update rule for the ESN:

xk(n) = fNL[
K
∑
j=1

wN
kj xj(n − 1) + ρ ⋅ u

in
k (n)], (9)
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where ρ is a scaling factor weighting the nonlinear contribution of the injected
information into the Reservoir.

– Learned output (linear combination of the ESN internal state):

ym(n) =
K
∑
k=1

wR
mk xk(n). (10)

The learning, as already mentioned, is intended to determine the coefficients of the
Read-Out matrix. In principle, these coefficients apply to both input data and Reser-
voir responses. For sake of simplicity, and according to successful empirical trials, one
can restrict the action of the Read-Out to the Reservoir response only. In the case of
a classification problem, one makes use of a training set of L input vectors {ul(n) |
l ∈ [1, . . . , L], n ∈ [1, . . . ,Nl]} and their corresponding target answers ỹl(n). Each in-
put leads to a Reservoir phase space trajectory {xl(n) | n ∈ [1, . . . ,Nl]}. A concatenated
K×NlmatrixAl formed by theNl horizontally stacked vectors xl(n) (for all n = 1, . . . ,Nl)
is typically constructed for each input information sequence {ul(n)}. It is associated to
a similar M × Nl target matrix B̃l obtained from the concatenation of target vectors
sequence ỹl(n) of the same duration. Each of these matrices are further concatenated
horizontally for all L input vectors of the training set, thus leading to a singleK×(∑Nl)
Reservoir state learning matrix A, and a single M × (∑Nl) target matrix B̃. A correct
Read-Out matrix for the training set is expected to verifyWR ⋅ A = B̃. When inverting
this ill-posed linear problem, one can try a ridge regression with a regression parame-
ter λ, resulting in the following calculation for obtaining an optimal Read-Out matrix:

WR
opt = B̃ A

T (AAT − λI)−1, (11)

where the matrix inversion is calculated numerically, e. g., from a standard Moore–
Penrose algorithm. To test the performance of the learned matrix, one proceeds then
with untrained input data uu(n) as follows:
– Inject thesedata into theReservoir according to the sameencodingas in equations

(8) and (9),
– Record the Reservoir nonlinear transient response xu(n),
– Format the response into a matrix Au,
– Calculate the resulting output Bu usingWR

opt,
– Compare with the right answer B̃u,
– And extract an error measure.

Error rate is obtained from processing and evaluation of several untrained data.

6.5.2 Transposing the ESN model to delay dynamics

The transposition of a Reservoir Computing approach from the ESNmodel to an Ikeda
dynamics one is supported by the previously introduced Space-Time analogy of a de-
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lay dynamics. It will make use of the writing in equation (7) and will extend it to the
case of a nonautonomous operation (external information injected into the dynami-
cal system). The analogy is unfortunately not perfectly matching the ESN framework,
since in delay dynamics, the time n only is discretized. The space σ is unfortunately
continuous in delay systems, whereas it is discrete in the ESN model as indicated by
the spatial position integer k = 1, . . . ,K.

One straightforward solution is then to sample the continuous space of a delay
dynamicswith a sampling period μ. This sampling periodwill correspond to a spacing
between two adjacent nodes, and the quantity μ−1(1 + ν)will correspond to the actual
number of virtual nodes (taking the integer part) in the emulated neural network over
the round trip time interval. In this new framework, the normalized time variable s is
rewritten as depending now on two discrete coordinates, space k and time n:

s(n, σ) = s(n, σk), where σk = (k − 1) ⋅ μ
s(n, k) = n ⋅ (1 + ν) + (k − 1) ⋅ μ, (12)
with: n ∈ ℕ, k = 1, . . . ,K and Kμ = 1 + ν.

The former continuous space dependency for delay dynamics can now be trans-
formed into a discretized version: x(n, σ) = x(n, (k − 1)μ) = xk(n), thus proposing a
one-to-one notation correspondence with the ESN node amplitude in equation (9).

It should however be noticed that this fully discretized vision for a delay dynamics
ismore justified by a notation convenience in order to connect delay dynamics to ESN,
than supported by a rigorous mathematical approach. Indeed, physical delay differ-
ential dynamics stay a continuous time dynamical system, due to its intrinsic differ-
ential nature. The transient waveform it generates from any input, keeps continuous,
and the discretized vision is mostly a representation convenience.

Let us now rewrite the Reservoir Computing processing model in equations (8) to
(10), for the case where delay dynamics is used instead of an ESN.
– Input amplitude affecting node k in the Reservoir:

uin(n, σ) =
K
∑
k=1
[

Q
∑
q=1

wI
kq uq(n)] pμ(σ − σk), (13)

where pμ(⋅) is a temporal window of width μ, starting at zero. This function is well
known in conventional sampling theory, as a zero-order sample and hold process.
Such a formulation allows to translate mathematically the actual piecewise con-
stant input waveform, inwhich each constant amplitude at the virtual space posi-
tion k is addressing node k, according to the same input connectivitymatrixW I as
the one defined for equation (8). One could notice here that addressing temporal
positionwith the desired amplitude is a well-known technique in communication
systems, called Time Division Multiplexing (TDM).
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– Reservoir update rule for the delay dynamics

xk(n) ≃
σk+ν

∫
σk−1

h(σk + ν − ξ ) ⋅ fNL[x(n − 1, ξ ) + ρ ⋅ u
in(n, ξ )]dξ . (14)

This is a formal writing of the delay Reservoir dynamics, obviously derived from
equation (7) for the case of a nonautonomous operation according to RC concepts.
In effective simulations, one practically performs the numerical integration of the
delay differential model, in which the injected information ρ ⋅ uin is added to the
argument of the nonlinear delayed feedback function fNL[⋅].

– Learned output (linear combination of the delay dynamics state vector coordi-
nates, whose discrete values are obtained by sampling the response of the delay
dynamics):

ym(n) =
K
∑
k=1

wR
mk xk(n). (15)

The Read-Out is then exactly the same expression as for the ESN. However, one
has to remember here that the Reservoir response is a continuouswaveform. Thus
the sampling at the output does need necessarily to be synchronized with the one
used at the input for addressing each virtual node through a TDMprinciple. Small
desynchronizations, or time shifts, are constituting a priori degrees of freedom
that one can explore at the Read-Out layer. It was indeed found under some spe-
cific computing tasks (classification for speech recognition) that small sampling
frequency deviations between “Write-In” and “Read-Out” can lead to significantly
improved RC performances [33].

The reported possible analogy between delay dynamics emulating a virtual network,
andanESN,wasdefinitely a very convenientway toharnessReservoir Computingwith
physical implementations. Through this, it was possible to demonstrate that analogue
hardware can efficiently implement the concept of RC. This transposition of ESN to
analogue physical hardware has however up to now well identified limitations. Some
limitations are related to the fully discrete nature of an ESN, whereas delay dynamics
are intrinsically continuous and analogue solutions. There are thus necessarily lots of
horizons and directions for deeper investigating more advanced and better matched
hardware configurations. A lot of processing steps with RC physical hardware, among
which are delay dynamics, are still performed off-line in conventional computers or
on-line in digital boards like FPGA: Information expansion into the network, train-
ing, Read-Out, and so on. Digital approaches are obviously straightforward for var-
ious implementations of these steps. They however suffer, through their necessarily
finite and discretized representation of the information, from an intrinsic simplifica-
tion of the actual complexity developed by natural neural networks like the biological
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brain. The most important challenge in exploring analogue hardware mimicking the
way the brain is processing information, is probably the opportunity to understand
its fundamental mechanisms, and to find a way on how to open the black box of the
fundamental processing and computing mechanisms of biological neural networks.

In the last section, we will present a few experimental implementations of Reser-
voir Computing with photonic Ikeda-like dynamics, more precisely the ones per-
formed at the FEMTO-ST institute. They belong to the very first contributions to the
field of photonic RC, together with other research groups (many of them being co-
authors of this book). They correspond necessarily to partial achievements for the
RC hardware implementation. Lots of progress is still to be done, which makes the
topic highly challenging frommany scientific areas, from physics of complex systems,
nonlinear dynamics, to brain processing concepts, through mathematics [34, 35] and
information theory.

6.5.3 Examples of Ikeda-based photonic RC implementations

Photonic RC is by far not limited to Ikeda models. As already mentioned, the very first
delay-Reservoir [9] was proposed in electronics, building a circuit reproducing the
Mackey–Glass model, which is nevertheless very close to an Ikeda dynamics, since
the nonlinearity only is changed into a single maximum function instead of themulti-
ple extrema provided by a sine two-wave interference function. Photonic Reservoir, to
mention only a few, was also proposed with external cavity laser dynamics [36], net-
work of integrated SOA [37], fiber ring laser with SOA [38], network of photonic crystal
structures [39], network of coupled ring resonators [40], network of integrated coupled
delay lines [41], etc. Ikeda-like dynamics have the great advantage to have a system-
based approach, with an excellent experimental control accuracy and flexibility. They
are usually based on commercially available devices, which one needs to arrange in
the desiredway in order to explore the properties closelymatching a simple dynamical
model.Wewill start by presenting themost popular andbroadly used Ikedadynamics,
the one involving an electrooptically tunable interferometer [3, 4, 6, 42, 43, 44, 45, 46].

6.5.3.1 Intensity

The electrooptic intensity modulation was the first experimental approach used to
demonstrate efficient photonic Reservoir Computing [7, 8]. The ease of handling and
controlling of this setup is mostly explaining why it was adopted and why it led so
rapidly to a successful demonstration. A schematic of the setup, and a picture of its
realization, is represented in Figure 6.6. A 4-kmmonomode Telecom fiber spool (20 μs
delay) was used with a Lithium Niobate (LiNbO3) integrated optic Mach–Zehnder
modulator (rf half-wave voltage Vπ of 4.2 V). The latter was seeded by a standard
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Figure 6.6: Photonic Reservoir computer based on an integrated optics Mach–Zehnder modulator,
and a 4 km fiber delay line along which virtual nodes are distributed.

1.5 μm and 20mW Telecom laser diode. The fiber output was simply detected by a
photodiode, whose electrical signal was then processed with standard home-made
electronics, involving simple but flexible low frequency operational amplifier circuits.
The circuits were aimed to provide the following functions:
– Low-pass filter @ ca. 1MHz;
– Extract the delay-reservoir response signal x(t) for monitoring and recording it in

the large memory of a digital oscilloscope;
– Add the external input information signal to be processed; This signal was gener-

ated by an arbitrary waveform generator (AWG) in which the encoded TDM signal
uin(t) was properly programmed, with the adequate sampling rate for the correct
node spacing of the experiment, and with the appropriate amplitude allowing for
the optimumvoltage span (amounting slightly aboveVπ for this input signal peak-
to-peak amplitude);

– Amplify and drive the 50Ω matched input of the Mach–Zehnder modulator, with
the appropriate voltage span (up to 12 V, for sufficient nonlinear operation along
the sine nonlinear transformation).

The operating point of the Mach–Zehnder (parameter Φ0 in equation (2)) was set
through the control of a DC voltage applied to the separated bias electrode of the
Mach–Zehnder. This was maybe the most critical point to pay attention to, since bias
in LiNbO3 integrated devices can have potentially significant drifts, depending on the
fluctuations of the environmental conditions. When operating with long sequences
of data to be processed, “silences” (typically zero level input information uin(t) at the
end of a sequence) were carefully monitored, in order to ensure that the static level
of the photodiode signal was maintained to a constant value (i. e., proportional to
cos2Φ0) during these quiescent phases over the whole processing time. The best RC
processing for parameter Φ0 was empirically obtained (confirmed by numerics) for a
value resulting in an average operating point of the Mach–Zehnder modulator (i. e.,
the cos2-function) close to an extremum (but not exactly at the extremum). This was
interpreted as the requirement for the nonlinear function to provide a rich equivalent
polynomial behavior, linear, essentially quadratic, and partly cubic depending on the
drive amplitude applied to the Mach–Zehnder.
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The parameter β in equation (2) was controlled through the laser diode operat-
ing optical power, since the normalized gain parameter β is directly proportional to
this optical power. The first instability threshold of the autonomous delay oscillator
(most often the Hopf instability) is known to occur when |β sin(2Φ0)| is close to unity.
Depending on the chosen Φ0 parameter (defining the local profile of the nonlinear
feedback transformation), one typically increases the optical power from zero, up to
the birth of the typical two-delay periodic oscillation (whenoperating along anegative
feedback slope of the nonlinear function). The optimal β value was empirically found
(both numerically and experimentally) to be 0.7 times lower than the Hopf threshold.

According to the time parameters of the setup, we adopted a scaling of the TDM
data injection such that the emulatednetwork hadK = 400 virtual nodes, correspond-
ing to the empirically found optimal value for the data injection sampling, μ ≃ ε/5 (see
equation (12)).

The reference benchmark test explored through the here reported Ikeda-based
Reservoirs, is the speech recognition of a data set extracted from the TI-46 database
(500 spoken digits from zero to nine, uttered 10 times by 5 different female speakers).
For this particular test (notice that other benchmark tests have been successfully ex-
plored, such as time series prediction), theMach–Zehnder Reservoir enabled to obtain
a word error rate (WER) very close to zero, and sometimes reaching zero for the best
processing trials. We used an arbitrary splitting of the 500 spoken digits partition into
20 subsequences of 25 spoken digits. Practically, 475 (19 subsets) were used for train-
ing with equation (11) performed off-line in a computer, and the remaining 25 digits
were used for testing (off-line aswell, using theWR

opt found after training and applying
it to the recorded Reservoir responses of the 25 test digit sequences). We used cross-
validation in the selection of the 19 sequences for training and one for testing, such
that each digit was used once in the testing set.

It is worth mentioning that the practiced speech recognition test was chosen for
comparison issues, and not for state of the art performance motivation. Currently,
available commercial speech recognition softwares are far more advanced and per-
forming much better on much more complex and difficult database. Modern software
systems are however making use of incomparablymore computational power with re-
spect to the very first and very simple photonic Reservoir Computers, and they are also
benefiting from decades of accumulated digital processing research experience on
speech recognition software. It is anyway surprising that so simple systems as delay-
based Reservoirs, compared to the current high abstraction level speech recognition
solutions, are able to obtain very interesting performances.

One should however fairly try to estimate the contribution of the hardware Reser-
voir compared to software processing. A simple way to do this, is to remove the
hardware in our experiment, and to process directly the TDM sequence uin(t). This
sequence is the result of the randomly spanned original information -actually the
cochleagram, or the time-frequency representation, obtained from the original acous-
tic speechwaveform, according to the input connectivitymatrixW I (a sparse and ran-
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domly defined matrix). One could try then to directly apply the Read-Out procedure
onto this temporal input waveform uin, the one actually generated in the experiment
by the AWG. A WER of about 8 to 10% is obtained if we apply the same training and
testing procedure. The contribution of the Reservoir is thus to lower down to zero this
Reservoir-free WER, a result that is however not necessarily straightforward, even for
some purely software techniques.

6.5.3.2 Wavelength

Thewavelength Ikeda dynamics is a representative one, since it is the first having been
developed in our group, leading to one of the first experimental demonstrations of op-
tical chaos communication [47, 5], patented one year earlier. This setup was recently
re-used for the discovery of chimera states in photonic delay dynamics [25]. It is fi-
nally also worth mentioning that the original wavelength-chaos concept was recently
adapted to the visible range, in a scientific work targeted toward a broad audience
dissemination (International Year of Light 2015), demonstrating a “chaotic rainbow”
[48].

The basic physics idea in this setup is tomodulate a twowave interference in a dif-
ferentway than through its optical pathdifference (the case of an electro-optically tun-
able medium inside one interferometer arm). The phase difference involved in such a
two-wave interferometer reads 2πΔ/λ, where Δ is the optical path difference (the quan-
tity usually modulated through a Pockels electrooptic effect), and λ is the wavelength
of the monochromatic coherent light involved in the interference phenomenon. If one
uses a strongly imbalance static interferometer (big Δ), the interference condition can
alsobemodulated througha smallwavelengthmodulation λ = λ0+δλ. The latter is eas-
ily obtained froma tunable semiconductor laser (a double section-gain and phase sec-
tions – distributed Bragg reflector Pérot–Fabry laser diode), even with a 1 nm contin-
uous wavelength tunability around λ0 ≃ 1.55 μm (Δ ≃ 1 cm was used through the two
polarization directions of a calcite birefringent crystal, placed between two crossed
polarizers for generating the interference).

The main advantage of the setup is the extremely high achievable nonlinearity,
since up to 14 extrema can be obtained. Another advantage is the flexibility in chang-
ing the shape of the nonlinear transformation, since any static interferometer with a
sufficiently large optical path difference can be used. For chimera states exploration,
the required asymmetric extrema function was performed by a Pérot–Fabry interfer-
ometer designed with a 5mm glass slab with moderate reflection coatings (70%). The
drawback is related to the low tuning speed of the wavelength (typical maximum
bandwidth up to 20 kHz or 100 kHz). The direct consequence is that significant delays
(compared to the response time of the delay feedback loop oscillation) are difficult to
achieve with optical fibers (100 km would be needed). Electronic delay lines are thus
needed, with time delays of the order of ms. Flexibility for the fine and easy tuning of
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Figure 6.7: Photography of a multiple delay optoelectronic Reservoir Computer, involving a FPGA
board (courtesy of R. Martinenghi).

this digitally controlled delay line, is however an interesting advantage.When using a
Field Programmable Gate Array (FPGA), multiple programmable delays can be imple-
mented relatively easily. The latter possibility was particularly used in [49] to evaluate
the possible improvements to be obtained when involving a random and sparse con-
nectivity matrixWR. Indeed, the first delay-based Reservoir, due to their single delay
architecture, were concerned by very regular internal connectivity matricesWR, since
essentially its diagonalWR is nonzero, and a few lines below it (the number of these
few lines depending on the actual width of the impulse response h(t)).

In [49] (see Figure 6.7 for a setup photography), 15 and 150 parallel delay lines
were implemented through the FPGA, both situations corresponding for WR to 10%
sparsity and full connectivity, respectively. The weights for each delay line were ran-
domly defined, resulting in a randomfilter in the feedback path, instead of the all-pass
filter corresponding to a single delay of unity weight. The full connectivity configura-
tion, as previously found numerically for ESN, did not improve the performance of
the speech recognition task. However, the sparse and random connectivity allowed to
obtain comparable results with less than half the number of nodes, thus indicating
a possible optimization of the network size through this randomly weighted multiple
delay architecture.

6.5.3.3 Phase

The optical phase variable is well known in telecommunication to provide better sig-
nal to noise ratio to transmission systems, especially at very high bit rate. A specific
phase modulation delay dynamics [50] was initially designed to further improve the
speed of optical chaos communication [30]. Phase modulation techniques in opti-
cal communication systems are typically associated at the receiver side to differential
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phase shift keying (DPSK) demodulators, which are consisting typically in an imbal-
ancefiber based interferometer.Whenphasemodulation is performedover time scales
that are shorter than the DPSK time imbalancing δτD, the interference condition can
be dynamically and continuously scanned. The corresponding demodulation trans-
fer function can be strongly nonlinear as soon as the phase modulation spans over
more than a π phase shift. Despite the fact the general recipe for an Ikeda delay dy-
namics is followed, the electrooptic phase delay dynamics requires some changes in
the model equation, essentially due to the DPSK device, now providing a nonlocality
in time for the nonlinear transformation. The significant time imbalancing indeed in-
troduces an additional small, but nonnegligible, time delay, which is about 400ps,
thus comparable or sometimes even greater than the response time of typical optical
telecommunication electronics (from 10ps to a few 100ps). The temporally nonlocal
nonlinear transformation now reads:

fNL[ϕ(t),ϕ(t − δτD)] = β cos
2{Φ0 + [ϕ(t) − ϕ(t − δτD)]/2}. (16)

One could notice here that, even in the nonlinear transformation, the static so-
lutions (ϕ(t) = constant) are necessarily suppressed in the oscillation loop, because
of the phase difference. The nonlinear function itself is thus a Fourier filter, having a
high-pass profile at low frequencies, and a periodic bandpass profile for high frequen-
cies.

As expected, the setup adapted to the Reservoir Computing configuration (see Fig-
ure 6.8, [33]) was able to process information at an unprecedented speed, up to one
million words per second in the case of speech recognition. That processing speed
was moreover not limited by the devices, however by the maximum speed of the ul-
trafast AWG which could not deliver waveforms above 24GS/s. The sampling step μτ
was set to 56 ps, corresponding to 17 GS/s in the AWG. The large delay in the feedback

Figure 6.8: Schematic setup of the electrooptic phase delay dynamics.
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Figure 6.9: Impulse response of the phase delay dynamics, and its many echoes sustained through
the set of sufficiently high value of the feedback gain β. The first large echoes reveal strong non-
linear distortion of the original single pulse seeded by the AWG. The small echoes at the end are
linearly attenuated essentially.

loop was measured to 63.33 ns, a minimum value that was imposed by the different
fiber and rf-cable patchcords needed to connect the different devices, and cumulating
a few meters. This set of temporal parameters was resulting in a total number of 1113
nodes.

The other optimal operating parameter values are: Peak-to-peak input informa-
tion uin, 1.2Vπ; Φ0 ≃ 2π/5, confirming the optimal best average operating nonlinear
transformation close to an extremum of the interference (notice that an active control
of this phase interference condition was used); The feedback gain β ≃ 0.7 has been
set to a value that would correspond to 1.4 in the original Ikeda setup, since in the
phase delay setup, the first Hopf threshold occurs at β = 0.5 instead of 1. Figure 6.9
is an experimental illustration on the effect of β in the feedback, which is equivalent
to the setting of a “feedback memory,” also referred to as Echoes as expressed by the
name ESN. This experimental characterization of the Reservoir displays many echoes
the Reservoir is capable of generating, for the appropriately chosen value of β. When β
is decreased, the echoes are vanishing more rapidly, and the Reservoir does not have
enough memory. When β is increased, too close from the Hopf instability, the echoes
are sustained and the Reservoir exhibits a too long memory: This is also not desirable
for an efficient processing. This optimal tuning for β is what is sometimes referred as
to “the edge of chaos” in the RC literature (actually the edge of the first instability in
our case).

Figure 6.10 is a picture of the whole electrooptic phase setup arranged as a Reser-
voir, and connected to the different instruments needed for both “Write-In” (AWG) and
“Read-Out” (digital oscilloscope).
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Figure 6.10: Rack-mounted electrooptic broadband phase delay Reservoir, and its processing envi-
ronment (AWG, broadband oscilloscope).

6.6 Conclusion

Ikeda delay dynamics represents an important toy model for the physics investiga-
tions of photonic Reservoirs. It has allowed to achieve several key results, consolidat-
ing and supporting the continuation of the photonic hardware investigations aimed at
proposing the future generation of brain-inspired computers. Fundamental concepts
explaining the efficiency of Reservoir Computing are progressing, together with prac-
tical applications that are currently being addressed.

The topic of photonic neuromorphic processors has fundamentally appeared as a
cross-disciplinary research direction, involving of course the original machine learn-
ing and brain cognitive research communities, but also now physics, nonlinear dy-
namics,mathematics, andprobablymore andmore importantly informationand com-
munication theory. The progress in the understanding will continue to involve more
and more signal processing concepts, as we already now know, e. g., from the impor-
tance of filtering and convolution operations in the different steps identified in various
artificial intelligence approaches. Pattern formation will be also of great importance,
maybe to capture how unsupervised learning can produce unexpected Read-Out fil-
ters or matrices, that could emerge from a complex dynamical system seeded by spe-
cific initial information, such as the way one has discovered chimera states.

The living biological brain needs of course to continue to provide insights, but
one needs also to take at the same time the necessary distance to find the best physics
and technology compromise for its hardware implementation solutions, thus keeping
computing efficiency compatible with technological feasibility.
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7 Semiconductor lasers as reservoir
substrates

7.1 Introduction

Semiconductor lasers are themost common type of lasers produced,with awide range
of applications that include optical storage systems, communication systems (ranging
from short-distance data communication systems to long-haul fiber-optic networks),
as pump sources, for material processing, and in many other applications [1]. A re-
cent application, and the topic of this chapter, is the use of semiconductor lasers as
substrates for photonic reservoir computers. Here, we present an overview of recent
publications and discuss the main properties of photonic reservoir computers based
on semiconductor lasers subject to optical feedback. The optical feedback serves as a
way to create the recurrence required for reservoir computing in the context of delay-
based reservoir computers. For more information on the formal definition of delay-
based reservoir computers, we refer the reader to Chapter 5.

7.2 Laser basics and semiconductor types

A laser device comprises the amplifyingmedium,where the stimulated emission takes
place, and a resonant cavity, which provides an adequate feedback mechanism and
serves as a frequency selective element. An example of an amplifying medium is a
semiconductor p–n junction where population inversion is achieved through an ex-
ternally applied current flow. In the simple case of a two-level system, population in-
version is reachedwhen the higher-lying electronic level has a higher population than
the lower-lying level.

The laser cavity provides the selective feedback through multiple transits of the
photons before leaving the cavity, as shown in Figure 7.1. Frequencies for which con-
structive round trip interference occurs are sustained and the others are suppressed.
Two parameters define the temporal characteristics of the laser cavity: the laser cav-
ity round trip time defines the frequencies of operation and the inverse of the photon
lifetime describes the rate at which photons are lost from the cavity.

Even when population inversion is achieved, the net rate of stimulated emission
is not necessarily enough to overcome the losses present in the laser cavity. These
losses mainly are the transmission losses at the laser facets, light scattering and light
absorption. The device only starts lasing when the injection current exceeds a value
called the threshold current at which the gain overcomes all the different losses.

https://doi.org/10.1515/9783110583496-007
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Figure 7.1: (Left) Schematic arrangement of an optical resonator. (Right) Electrons and holes in an
arbitrary distribution between bands.

In semiconductor materials, the charge carriers (electrons) are distributed between
the conduction and the valence band, as shown in Figure 7.1. The energy difference
between both bands is called the band gap. Stimulated emission can occur when the
energy of the incoming light exceeds the energy band gap of the semiconductor ma-
terial. When an electron is excited from the valence band to the conduction band,
it leaves behind what is called a “hole” (the absence of a charge carrier) in the va-
lence band. The annihilation of an electron and a hole leads to spontaneous emis-
sion, or stimulated emission when an extra photon induced the annihilation. By dop-
ing a semiconductor material, one can alter the natural distribution of electrons and
holes. A p-doped semiconductor has an excess of holes and an n-doped semiconduc-
tor an excess of electrons, originating from acceptors and donors respectively. In the
junction of a p-doped and a n-doped semiconductor, stimulated emission dominates
over absorption if there is population inversion. The semiconductor medium is said
to be transparent when the rates of stimulated emission and absorption are equal. An
incoming beam of photons experiences a gain in a p–n junction with population in-
version, meaning that the number of outgoing photons is larger than the number of
incoming photons. For this reason, this region is called the active layer of the laser.

Semiconductors materials have a complex energy band structure. In the context
of semiconductor lasers and other optoelectronic devices, direct bandgap semicon-
ductor materials are preferred since the valence band maximum and the conduction
band minimum both occur at the same wave vector k⃗. A wide range of III–V material
systems is used for the production of semiconductor lasers. Table 7.1 lists a number of
these materials and their output wavelengths [2].

Semiconductor lasers are typically built with standard multi-layer epitaxial
growth techniques and come in several different geometries. The more conventional
lasers are known as Edge Emitting semiconductor diode Lasers (EELs). In EELs, light
travels in the lateral direction inside an active layer where electrons and holes can
recombine. Since these devices provide a high gain per round trip, no special reflect-
ing coatings or structures at the facets of the device are necessary but often used. It is
also important to note that the light field in EELs is linearly polarized along two fixed
directions, namely along the heterojunction plane (TE polarization) or perpendicular
to it (TM polarization), due to the combination of wave guiding and gain. However, in
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Table 7.1:Material systems typically used for the production of semiconductor lasers [2].

Material system Wavelength

AlGaAs / GaAs 680–890nm
InGaAs / GaAs 950–1100nm
InGaAsP / InP 1000–1700nm
AlGaInP / GaAs 600–700nm
ZnCdSSe 450–550nm
AlGaInN 200–640nm
GaInNAs / GaAs 1300–1500nm
GaN / AlGaN 400–550nm

standard EELs the TM mode generally experiences a larger loss at the facets than the
TE mode. Therefore, light emission in EELs is predominantly TE polarized.

Under normal conditions, the laser operates close to the maximum of the mate-
rial gain. A number of modes could experience similar amplification, depending on
the width of the gain profile compared to the frequency spacing of the optical res-
onator modes. When a gain medium amplifies a strong laser beam, the gain is sat-
urated, i. e. reduced to some extent. Occasionally, the saturation can be inhomoge-
neous, i. e., it can be stronger around the wavelength of the laser beam than at other
wavelengths. This illustrates that the gain saturation can force a change of lasing
mode. In general, the laser chooses themode that has the highest instantaneous gain.
Single-longitudinal mode operation can be guaranteed by, e. g., creating a periodic
structure within the laser cavity that increases its frequency selectivity.

7.3 Single-mode semiconductor lasers for reservoir
computing

Semiconductor lasers exhibit nonlinear interactions between the laser field and the
semiconductor medium, resulting in complex behavior when subjected to feedback,
electrical modulation, or optical injection [3]. In this section, we show how to imple-
ment the computational concept of reservoir computing (RC) in photonicswith single-
mode semiconductor lasers subject to optical feedback. The reservoir and information
injection is realized all-optically, allowing for high-speed informationprocessing. This
can be achieved by, e. g., utilizing the analogue transient dynamics generated by the
semiconductor laser coupled to a fibre-optic feedback loop. Following the delay-based
RC concept [4], we use a single semiconductor laser as the nonlinear node in which
nonlinear transient states are generated in the context of previous input responses.
Consequently, the system is capable of processing temporal sequences of information.
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7.3.1 Modeling and numerical results

We start by presenting the rate equations for a single mode semiconductor laser diode
[5]. These rate equations describe the time evolution of the electric field |E(t)| and the
number of charge carriers N(t). The electric field is normalized in such a way that
|E(t)|2 corresponds to the number of photons P(t). The rate equations then read

dE(t)
dt
= (

1 + iα
2
)[GN(N(t) − No) −

1
τp
]E(t) + FE(t), (1)

dN(t)
dt
=
I
e
−
N(t)
τc
− GN(N(t) − No)|E|

2. (2)

Here, α is the linewidth enhancement factor, GN is the differential gain, τp is the pho-
ton lifetime, No is the carrier number at transparency, I is the pump current, e is the
elementary charge, and τc denotes the electron lifetime. Spontaneous emission ef-
fects are included in the model by adding a Langevin noise term FE to the field equa-
tion. This spontaneous emission noise is implemented as a complex Gaussian white
noise term FE = F1 + iF2 in the field equation with zero mean ⟨FE(t)⟩ = 0, where the
real and imaginary parts are independent random processes and the following holds:
⟨Fj(t)Fj(t)⟩ = β/τcN(t)δ(t − t). Here, β is the spontaneous emission factor that de-
scribes the fraction of spontaneously photons emitted into the respective lasingmode.

For information processing in the context of reservoir computing, the external in-
put can be added as an optical injection term and the recurrences are included via
optical feedback. Following these assumptions, equation (1) can be rewritten as

dE(t)
dt
= (

1 + iα
2
)[GN(N(t) − No) −

1
τp
]E(t) + κE(t − τec) + Einj(t)e

iΔωt , (3)

where κ denotes the feedback strength, τec is the delay time, and Δω is the detuning
between the response semiconductor laser and the optical injection. The optical feed-
back is modeled following the Lang–Kobayashi rate equations [6] and the external
signal is injected via Einj(t). For practical reasons and to compare to the experimen-
tal implementation, the external modulation of the injected light is performed via a
Mach–Zehnder electrooptic modulator. The addition of the input signal S(t) is then
modeled via an injected powerPinjmodulatedwith a sine-square around amean value
P̄inj yielding the signal:

Pinj(t) = P̄inj[1/4 + 3/2 sin
2(

π
4
S(t) +Φ0)], (4)

which means the injected power is modulated between ±75% around the average in-
jected power P̄inj. For the optical injection, we consider symmetric modulation with
S(t) normalized between ±1 and Φ0 =

π
4 . The chosen values for the laser parameters

as used during the numerical simulations are shown in Table 7.2 [7].
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Table 7.2: Laser parameter values used in the numerical simulations.

Parameter Value

α 3.0
τp 5ps
β 10−6
κ 10 ns−1
τec 80ns
Δω 0.0
τc 1ns
GN 10−5 ns−1
No 1.8 ∗ 108
Ithr 32.0mA

Figure 7.2: Normalized mean squared error
(NMSE) for the Santa Fe time series prediction
task versus the bias current I for P̄inj = 436 μW
(red squares), and P̄inj = 11 μW (blue dia-
monds), respectively. The feedback rate is set
to κ = 10 ns−1. The other parameters were
chosen as in Table 7.2. Note that the lines only
serve as a guide to the eyes. Figure reprinted
with permission from Ref. [7], IEEE.

For reservoir computing purposes, the external input S(t) is constructed as described
in Chapter 5 with a random input connectivity mask that repeats every τec. In the nu-
merical analysis, the reservoir consists of N = 400 virtual nodes, resulting in a virtual
node spacing of Θ = 200 ps (τec/N).

As an example of theperformanceof a semiconductor laser systemas reservoir,we
tackle a time series prediction task. Here, we evaluate the performance of this scheme
in predicting the respective next point of a chaotic time series. We specifically employ
data from the Santa Fe time series competition, data set A [8]. For the evaluation of
the prediction error, we take 4000 data points of this data set, created by a far-Infrared
laser operating in a chaotic regime [9].Weused 75%of the points for training and 25%
for testing. To characterize the performance of the system for this task,we compute the
normalized mean square error (NMSE) of the prediction, defined as the normalized
difference between the predicted and its target value. We study the dependence of the
NMSEwith the laser bias current for a fixed feedback rate. This prediction task requires
the system to have memory, i. e., optical feedback is crucial for this task.

In Figure 7.2, we show the NMSE as a function of the laser bias current for two
different values of the optical injection power. We first discuss the one corresponding
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to a large average power of the injected light, compared to the power of the laser sub-
ject to feedback, P̄inj = 436 μW. In this case, the NMSE for the Santa Fe time series
prediction task is below 0.2 for a wide range of currents (see squares in Figure 7.2),
with a minimum NMSE at I = 1.25Ith of 0.036. Figure 7.2 also presents the results for
a smaller average power of the optical input injection, P̄inj = 11 μW. In this case, we
find that low prediction errors are restricted to laser bias currents close to the solitary
lasing threshold (see diamonds in Figure 7.2), with a minimum NMSE value of 0.164
at I = Ith. For larger bias currents, the prediction error rises significantly for the case
of low injection power, due to the onset of delayed feedback instabilities. For the case
of a high injection power, however, the prediction error keeps reducing from I = Ith
to I = 1.25Ith and then it rises slowly. In both cases, the prediction errors strongly in-
crease for injection currents below I = Ith. Overall, competitive prediction errors can
be achieved for optimized parameters. It is interesting to note, though, that a larger
average optical injection power allows for a wider range of bias currents providing
good performance.

Remarkably, when decreasing the node distance to a smaller value similar results
are obtained evenwhen this value is far below the relaxation oscillation period [10]. In
Figure 7.3, it is shown that the NMSE does not significantly change with the node dis-
tance when the system operates above the threshold current. This good performance
indicates that the reservoir remains in the transient state for all the values of the node
distance explored in Figure 7.3. This is due to the optical injection of the data signals.
Optical injection is an integral part of the setup and an optical signal with constant
bias power is always present even in the case of no information being injected in the
semiconductor laser (S(t) = 0 in equation (4)). It turns out that an optically injected
laser can react at speeds related to the laser locking phenomenon, which can bemuch
faster than the relaxation oscillations. This feature is related to the phase dynamics.
The node distance θ can therefore be freely chosen between the fastest time scale
(of the optical injection) and the relaxation oscillation period without significantly
degrading the performance when the system operates above the solitary threshold
[10]. These numerical results are obtained for realistic levels of spontaneous emission

Figure 7.3: Normalized mean squared er-
ror (NMSE) for the Santa Fe time series pre-
diction task versus the node distance cur-
rent θ for injection current above thresh-
old (circles; I = 1.1Ith) and below threshold
(squares; I = 0.9Ith). The feedback rate is set
to κ = 10 ns−1 and the number of virtual nodes
is set to N = 200. The other parameters were
chosen as in Table 7.2. Note that the lines only
serve as a guide to the eyes. Figure reprinted
with permission from Ref. [10], OSA.
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noise, while a limited signal to noise ratio in the detection has not been considered.
In practice, the overall contribution of the different noise sources will likely impose a
more restrictive limit on the minimum node distance.

However, below threshold, for I < Ith, the RC performance does depend on the
node distance. In Figure 7.3, NMSE< 0.1 is obtained only for specific θ values. As phase
dynamics exists even below the threshold, good performance can be obtained below
the threshold current provided that the node distance is suitably chosen.

Taking N = 200, this broad range of node distances leads to an overall delay
length between 2 ns and 50ns. It is worth noting that small θ values, and thus small
delay lengths, are useful for compact on-chip implementations. Furthermore, a short
delay also allows to increase the processing speed as the data is fed at the delay period.

7.3.2 First experimental implementation with a single-mode
semiconductor laser

The scheme of the first experimental implementation of semiconductor laser-based
RC is shown in Figure 7.4 [11]. A standard edge emitting laser diode with an emission
wavelength of λ = 1542 nm is employed as the nonlinear node. The stand-alone single-
longitudinal mode laser has a longitudinal mode splitting of ∼ 150GHz, with a side-
mode suppression exceeding 40dB. Using free-space optics, the emission is collected
in a standard single mode fiber. A fiber loop provides delayed optical feedback (delay
τD = 77.6 ns), with the loop comprising an optical circulator, an optical attenuator, a
polarization controller, and two fiber splitters utilized for signal detection and optical
injection. An optical attenuator and a polarization controller facilitate the control of
the optical feedback conditions. In this experiment, the reservoir consists of N = 388
virtual nodes, resulting in a virtual node spacing of Θ = 200ps. This experimental
arrangement follows the delay-based RC protocol introduced in [4] and discussed in
Chapter 5.

For information processing, the modulated light of a tunable laser is injected into
the single-mode semiconductor laser. The external input signal is encoded via injec-
tion intensity modulation using a Mach–Zehnder modulator. While the laser diode
current and the Mach–Zehnder modulator have a modulation bandwidth going up to
or exceeding 10GHz, the information is injected at a rate of 5 GSamples/s. In these
experiments, the arbitrary waveform generator, used for generating the input infor-
mation, is the bandwidth limiting factor [11].

The performance of this experimental RC system, evaluated using the Santa Fe
time series prediction task, is depicted in Figure 7.5 for the case of optical data injec-
tion. Particular to time series prediction tasks is a high sensitivity to noise. Hence an
injectionpower of 7.5 μWis chosen as the constant bias optical power in the absence of
information, allowing for a better signal to noise ratio. In addition to serving as a data
injection source, the external laser therefore additionally acts as an injection locking
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Figure 7.4: Scheme of the all-optical reservoir computer based on a semiconductor laser subject to
delayed optical feedback. The experimental setup comprises the laser diode, a tunable laser source
to optically inject the information, a Mach–Zehnder modulator, an optical attenuator, a circulator,
couplers, and a fast photo diode (PD) for signal detection.

Figure 7.5: Prediction error in the Santa Fe time
series prediction task. The prediction error in-
creases dramatically for Ib > 8.9mA, a regime
in which the steady-state dynamics becomes
unstable. The blue error bar represents the
standard deviation for different training/test-
ing partitions of the data. Figure adapted with
permission from Ref. [7], IEEE.

source, increasing the performance significantly by reducing the noise in the steady-
state dynamics. The NMSE for the prediction task, depending on the bias current, is
shown in Figure 7.5. The best performance is obtained for Ib close to the solitary laser
threshold, with a prediction error of 0.106 (Ib = 7.62mA, feedback attenuation 10 dB)
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at a prediction rate of 1.3 × 107 points per second (dictated by the inverse of the delay
time). The performance significantly degrades for large bias currents (Ib > 8.9mA).

7.3.3 Further experimental implementations with single-mode
semiconductor lasers

After the pioneeringwork of Brunner et al. [11], several experimental implementations
have focused on understanding the fundamental properties of semiconductor laser-
based RC for nonlinear prediction tasks. On the one hand, it has been shown that the
conditions to achieve good prediction performance are linked to the injection locking,
consistency, andmemory properties of the system [12]. On the other hand, Kuriki et al.
[13] illustrated the influence of the input mask on the performance of the system.

A semiconductor laser subject to optical feedback and optical injection exhibits a
wide range of dynamical phenomena [14]. As shown in [12], the ability of the semicon-
ductor laser-based RC system to process information is tightly linked to its underlying
dynamical properties in the absence of external input. In particular, the lowest pre-
diction error for a nonlinear prediction task occur at the injection locking boundary.
Injection locking refers to the state in which the optical frequency of the response
laser locks to the optical frequency of the injection laser, which happens for certain
combinations of optical frequency detuning between the lasers and optical injec-
tion strength [15]. These results can be interpreted as follows: the injection locking
boundary provides an optimum compromise between the diversity of the nonlinear
responses in the system and the reproducibility of these responses for similar input
signals [12]. This reproducibility of the responses can be quantified by the consistency
correlation measure [16]. In Figure 7.6, we show how the best computational perfor-
mance for a prediction task (NMSE) is found for the system parameters that lead to an
optimum compromise between a sufficient memory capacity and a large consistency
correlation.

Figure 7.6: Experimental results for the (a) consistency correlation, (b) memory capacity, and
(c) normalized mean square error (NMSE) for the prediction of a Mackey–Glass chaotic time series
as a function of the feedback attenuation (η) and the frequency detuning for a fixed bias current
Ib = 0.99Ith. Figure adapted with permission from Ref. [12], OSA.
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Semiconductor laser-based RC systems belong to the fastest hardware implemen-
tations of this machine learning concept, operating at multi-GHz speeds. Due to the
intrinsic high bandwidth of the reservoir system, the experimental apparatus used to
drive the system with the external input, the reservoir itself and the detection need to
have at least comparable analog bandwidths. In this context, Kuriki et al. [13] shows
that an input maskmatched in bandwidth to the response laser presents an improved
prediction performance. The bandwidth-adapted mask is superior to binary, multi-
level or uniform randommasks. Together, the results in [12] and [13] highlight the im-
portance of consistency as one of the key properties of nonlinear photonic systems to
process information.

7.4 Other photonic systems as reservoir substrates

7.4.1 Semiconductor ring lasers for reservoir computing

Semiconductor ring lasers (SRLs) are currently the focus of a rapidly thriving research
activity due to their unique feature of directional bistability [17] and the fact that they
do not require cleaved facets or gratings for optical feedback. Hence, SRLs are partic-
ularly suited for a monolithic integration [18]. SRLs have been suggested to fulfill sev-
eral practical applications [19–25]. All optical flip-flops based on a single or two cou-
pled microring lasers have been fabricated. These devices can be switched between
counter-propagating modes by injection of a signal counter-propagating to the lasing
mode [22, 26]. In addition, switching schemes based on injection only on one side of
the SRL have been suggested as well [27, 28]. Monolithic SRLs exhibiting unidirec-
tional operation are also highly desirable in applications because of their wavelength
stability [19, 20, 29, 30, 21]. The bistability of the SRLs opens the possibility of using
them in systems for all-optical switching, gating, wavelength-conversion functions,
and opticalmemories [20, 22, 31–38]. Moreover, SRLs have been recognized to be ideal
optical prototypes of nonlinear Z2-symmetric systems [39] exhibiting, in the solitary
case,multistable [40], andexcitable behavior [41].WhenSRLs areperturbedbyoptical
injection from another laser, the symmetry of their phase space leads to a novel route
to chaos [42]. In the case of SRLs with delayed optical feedback, it has been shown
that their ability to lase simultaneously in two-directional modes facilitates the gen-
eration of chaotic signals with time-delay concealment both in the intensity and the
phase [43], the generation of square wave oscillations [44], or random bits generation
using bitwise Exclusive-OR operations [45].

A general rate-equation approach for SRLs has been suggested by Sorel et al.
in [19]. The model consists of two mean-field equations for the counter-propagating
modes in the SRL, and a third rate equation for the carriers. The model accounts
for self- and cross-gain saturation effects and includes backscattering contributions
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originating at the coupling to an output-waveguide. In the same work, they have ex-
perimentally observed bidirectional and unidirectional regimes of continuous-wave
mode operation. Moreover, a bidirectional regime where the two counter-propagating
modes experience harmonic alternate oscillations has been observed as well. These
different features are adequately described by the rate-equation model for SRLs in
[19]. Although this general rate-equation approach explains certain experimentally
observed features, problems involving e. g. wavelength changes fall outside the scope
of such rate-equation models, and a traveling wave model is more suited to tackle
such questions [46, 47].

We consider a SRL operating in a single-longitudinal, single-transverse mode. In
the limit of small outcoupling from the ring cavity, the total electric field oscillating in
the ring can be written as the sum of two counter-propagating waves, clockwise (CW),
and counter-clockwise (CCW):

E(z, t) = ECW(t) exp[i(ω0t − k0z)] + ECCW(t) exp[i(ω0t + k0z)] + c.c.. (5)

Here, k0 is the longitudinal wavenumber andω0 is the optical frequency of the mode.
In the slowly varying envelope approximation, the amplitudes of the clockwise ECW
and counter-clockwise propagating modes ECCW vary on time scales which are orders
of magnitude slower that ω0. The rate-equation model is formulated mathematically
in terms of two rate equations for the slowly varying amplitudes ECW,CCW and one rate
equation for the carrier number N . The equations read [19]:

Ėcw = κ(1 + iα)[gcwN − 1]Ecw − (k − Δk/2)e
i(ϕk−Δϕk/2)Eccw, (6)

Ėccw = κ(1 + iα)[gccwN − 1]Eccw − (k + Δk/2)e
i(ϕk+Δϕk/2)Ecw, (7)

Ṅ = γ[μ − N − gcwN |Ecw|
2 − gccwN |Eccw|

2] (8)

where dot represents differentiation with respect to time t, gcw = 1 − s|Ecw|2 − c|Eccw|2,
gccw = 1 − s|Eccw|2 − c|Ecw|2, κ is the field decay rate, γ is the carrier decay rate, α is the
linewidth enhancement factor and μ is the renormalized injection current with μ ≈ 0
at transparency and μ ≈ 1 at lasing threshold. The two counter-propagating modes
are considered to saturate both their own and each other gain due to, e. g., spectral
hole burning effects. Self- and cross-saturation effects are added phenomenologically
and are modeled by s and c, respectively. For a realistic device, cross-saturation is
stronger than self-saturation. Reflection of the counter-propagating modes occurs at
the point where light is coupled out of the ring cavity into a coupling waveguide and
can also occur at the end facets of the coupling waveguide. These localized reflections
result in a linear coupling between the two fields characterized by an amplitude k
and a phase shift ϕk . Moreover, due to unavoidable imperfections in the SRL intro-
duced during the fabrication process, the SRL will have a certain asymmetry in the
linear coupling between both counter-propagating modes. This asymmetry is intro-
duced in equations (6)–(8) as Δk and Δϕk, representing the difference in backscat-
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Figure 7.7: Schematic of a SRL
with one feedback loop. In
this example, the CWmode
is subject to cross-feedback
from the CCWmode. Red sym-
bols A, B, C, and D are output
ports, LF: lensed fibers, C: cir-
culator, SOA: semiconductor
optical amplifier.

tering strength and phase, respectively. This asymmetry is necessary to describe phe-
nomena such as excitability in SRLs [41].

SRLs can be used as the nonlinear node in a delay based reservoir computer, just
as standard semiconductor lasers. However, the fact that single-mode SRLs can emit
in two counter-propagating directional modes with nearly the same frequency allows
for a larger flexibility in the reservoir computing set-up. First of all, one has the choice
to send different data signals into the SRL separate to each directional mode, or to
send the same data signal to both. In other words, one can opt to use the highermodal
dimension of the SRL to process two tasks in parallel. If not, and both CWandCCWare
used for the same data signal, one can expect that the number of virtual nodes spread
out over the delay length can now be distributed also over two modes. As a result,
more virtual nodes can be used for the same delay length and reservoir computation
can be sped up by a factor of two. Secondly, the optical delay line can be coupled in
multiple ways to the same SRL device (see Figure 7.7 for a possible configuration). One
can therefore realize either self-feedback in the two-modes (i. e., the CW (CCW) mode
is coupled back in to the CW (CCW)mode after a certain delay) or cross-feedback (i. e.,
the CW (CCW)mode is coupled back in to the CCW (CW)mode after a certain delay). Of
course, it is possible to implement delayed feedback in only one mode. However, this
would defeat the purpose of the dimensional increase offered by the two-directional
modes. Hence, we do not consider this case.

Nguimdo et al. have investigated these scenarios by expanding the SRL rate equa-
tionmodelwith the appropriate Lang–Kobayashi feedback terms and optical injection
[48]. Backscatteringwas left symmetric. The rate equation, e. g., the optical field of the
CWmode then reads:

Ėcw = κ(1 + iα)[gcwN − 1]Ecw − ke
iϕkEccw + ηcwFcw(t) + k1E1(t). (9)

The rate equation for the optical field of the CCWmode can bewritten in an analogous
manner. The feedback terms are Fcw(t) and Fccw(t), which can be explicitly defined
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Table 7.3: SRL parameter values used in the numerical simulations.

Parameter Value

α 3.5
s 0.005
c 0.01
κ 100 ns−1
γ 0.2 ns−1
k 0.44 ns−1
ϕk 1.5
θcw,ccw 0
ηcw,ccw 10 ns−1
k1,2 10 ns−1
N 100
Θ 20ps
Tcw,ccw 2ns

depending on the feedback configuration. For the cross-feedback configuration,

Fcw(t) = Eccw(t − Tccw)e
−iθccw , (10)

Fccw(t) = Ecw(t − Tcw)e
−iθcw , (11)

whereTcw andTccw are delay times and θcw and θccw are the constant feedback phases.
The self-feedback configuration can be defined in a similar way. The last term in equa-
tion (9) is the injected field E1(t), containing the data of the corresponding tasks to
be processed, with k1 being the injection strength. Realistic levels of the spontaneous
emission noise are always taken into account for the numerical simulations. Data sig-
nals are injected through optical injection using a Mach–Zenhder modulator as de-
scribed before in equation (4). The preprocessing of the data signals occurs according
to the masking procedure of delay-based RC described in [4]. The length of one input
sample wasmatched to the delay length. It is worth noting that the preprocessing and
the post-processing of the signals in the two modes are independent. The mask, the
number of virtual nodesN and the node distanceΘ can therefore differ fromonemode
to another if desired. The values of the SRL parameter used in the numerical simula-
tions can be found in Table 7.3. The information processing tasks can be different in
the two modes (e. g., CW for task 1 and CCW for task 2).

Figure 7.8(a) shows the numerically obtainedprediction error for the Santa Fe time
series as a function of the pump current μ for self- and cross-feedback configurations.
The results point out that there is a broad range of the pump current for which SRL-
based RC can successfully predict the next step in the Santa Fe time series. The small-
est prediction error≈ 3% is obtained aroundμ ≈ 1.5 for the self-feedback configuration
while for the cross-feedback configuration, NMSE ≈ 4% is obtained around μ ≈ 1.3.
The optimum performance of the system for Santa Fe time series prediction is similar
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Figure 7.8: Performance of a SRL based reservoir computer on a single task versus the pump cur-
rent μ. The task is (a) Santa Fe time series prediction and (b) nonlinear channel equalization. The
task is processed only in the CWmode. The NMSE and SER values are the average of 10 realizations
with different randomly generated masks. Figure reprinted with permission from Ref. [48], IEEE.

to that in other RC schemes based on semiconductor lasers with optical feedback. It
can be noted here that the error increases very slowly with pump current for, both,
the self- and cross-feedback configuration. This can be attributed to the small node
distance that is considered. In Figure 7.8(b), we show the performance for a nonlin-
ear channel equalization task for different pump currents. Details about the channel
equalization task can be found in [49]. Very good performance is obtained for this task
in both feedback configurations, both below and above the pump current threshold.
In addition, the range of pump currents that yield good performance agrees well with
that found for the Santa Fe time series prediction. In particular, the smallest symbol
error rate (SER) for the nonlinear channel equalization task is < 0.1% and ≈ 0.1% for
self- and cross-feedback configurations, respectively.

Having two directional modes that can be both addressed by on optical data sig-
nal independently, SRLs are promising candidates for parallel processing of two tasks.
For this purpose, we consider in the Santa Fe data set the first 4000 points for task 1
to be processed in the CWmode and the last 4000 points for task 2 to be processed in
the CCW mode. The input data is rescaled so that −π ≤ S1,2(t) ≤ π. Figure 7.9 displays
the performance of the system for a simultaneous prediction of the future sample in
each Santa Fe time series for different values of the pump current considering a SRL
with (a) self-feedback and (b) cross-feedback. For the self-feedback configuration, it
turns out that there is a broad range of pump currents for which the NMSE is smaller
than or equal to 10% for both tasks. This means the system succeeds in simultane-
ously predicting the future sample in each Santa Fe time series in this range of the
pump current. In particular, the prediction errors for the two tasks are very similar
and reach a minimum of ≈ 4% for task 1 and ≈ 6% for task 2 around μ ≈ 1.3 [see
Figure 7.9(a)]. Compared to the performance in Figure 7.8(a), it is clear that a parallel
simultaneous prediction of the next sample in the two chaotic time series does not sig-
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Figure 7.9: Performance of a SRL based reservoir computer on two parallel tasks versus the pump
current μ. The task is the Santa Fe time series prediction performance is expressed as NMSE. NMSE
obtained for task 1 (∙,red) and task 2 (⋆, black) in the case of double self- feedback (a) and double
cross-feedback (b). Figure reprinted with permission from Ref. [48], IEEE.

nificantly degrade the performance in a self-feedback configuration. This shows that,
despite the twomodes being coupled, the interaction effects are not significant. As dis-
played in Figure 7.9(b), the prediction errors for a simultaneous one-step prediction in
the two chaotic time series are worse for the cross-feedback configuration. In addi-
tion, there is only a very narrow range of pump current values for which a NMSE 10%
can be simultaneously obtained for both tasks. The minimum error is ≈ 8% for task
1 and ≈ 10% for task 2 in this case. This is twice as large as the minimum prediction
error found when only one task is processed considering the same configuration [see
Figure 7.8(a)]. We find an increase in the prediction error because the cross-feedback
configuration introduces additional coupling between the two counter-propagating
modes. The amount of information transferred from the CW mode to the CCW mode
and vice versa is therefore larger when compared to the self-feedback configuration,
hampering the computational performance.

7.4.2 Erbium-doped microchip lasers

In [50], it was experimentally and numerically shown that diode-pumped erbium-
doped microchip lasers subject to optical feedback can also be used to implement
RC systems for prediction tasks. Using a Santa Fe time series as a bench-mark, the au-
thors found similar performances as with semiconductor lasers. Besides investigating
RC in a different material type of laser, which requires to be optically pumped instead
of electrically, the authors consider an injection sample separation of the input data
(i. e., the inverse of the processing speeds) close or corresponding to the time delay.
Also, in [50], it was explored whether data can be directly coupled to the feedback
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light beam (i. e., modulating the feedback path) instead of using an additional laser
for optically injecting the electrical data into the reservoir.

7.4.3 Semiconductor optical amplifiers

The first experimental realization of all-optical RC was based on the nonlinear re-
sponse of a semiconductor optical amplifier (SOA) placed in a ring optical cavity [51].
In this case, the external input was injected as a modulated optical field and the out-
put layer was implemented off-line after detection. The reservoir speedwas at the time
limited by the rate of the input signal generator, yielding to an input processing rate
of 7.8 μs/symbol. As a result of a thorough comparison between numerical and exper-
imental results, the authors highlight that the noise present in this analog system de-
grades the performance on tasks such as the memory capacities, the nonlinear chan-
nel equalization, and isolated spoken digit recognition [51]. This observation holds for
most photonic implementations of RC to date.

7.5 Conclusion

The development of high-speed implementations of photonic reservoir computers is
an active field of research that is still in progress. As shown in this chapter, a semi-
conductor laser subject to optical feedback fulfills the requirements for a high-speed
implementation of the reservoir. Current trends for the advancement of photonic reser-
voir computers include the possibility to integrate most of the photonic components
and to develop an all-optical implementation of the full system. Photonic integration
aims at targeting a robust implementation of the reservoir, while full system imple-
mentations must also include the input and output layers. Besides the technological
challenges to implement the full photonic system based on a semiconductor laser, it
is still unclear what is the precise influence of the laser nonlinearity in the compu-
tational performance. In this context, a precise experimental characterization of the
amplitude and phase response of the semiconductor laser may shed some light on the
role of the nonlinearity for the case of the optically driven semiconductor laser.

Recent works suggest certain modifications to the original scheme that could still
improve the performance of laser-based RC. These modifications include the use of
two delay loops [52] in order to extend the fading memory of the system, or the com-
bination of responses for different laser parameters in order to enhance the computa-
tional power of the system. From the application point of view, it is crucial to design
photonic reservoir computers than can be compatible with existing technologies. Al-
together, there remain several challenges ahead, both at the fundamental and tech-
nological level in order to establish photonic reservoir computers as contenders to
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current technologies for real-world applications. In this context, laser-based RC can
potentially have an advantage in terms of power efficiency and of processing speed,
eliminating the electronic bottleneck in photonic applications. In photonics, a poten-
tial application that can benefit from these properties is the recovery of optical com-
munication signals using a driven semiconductor laser and the RC paradigm [53].
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Piotr Antonik, Serge Massar, and François Duport
8 Advanced reservoir computers: analogue
autonomous systems and real time control

8.1 Introduction

Ideally brain-inspired information processing systems should be autonomous devices
that receive an analog input, produce an analog (or, possibly, digital) output, and in
addition should be able to learn by themselves to produce the desired output. Such
devices could then be used as black boxes that could be connected to other devices,
or possibly to themselves. Theywould thus be the elementary brick used to buildmore
and more complex analogue information processing systems.

However, implementing such autonomous black box devices is highly complex.
For this reason, in initial experiments, only a (small) part of the device is implemented
experimentally, and the remaining pieces are implemented digitally. The complex en-
gineering task of building fully autonomous systems is left for later. This step-by-step
approach is very natural in science. The development of experimental reservoir com-
puting illustrates very well this piecewise implementation. A good example of this ap-
proach is one of the pioneering papers [1] which used an experimental optoelectronic
nonlinearity but implemented all the rest of the system digitally.

In the case of reservoir computing, a further important simplification was intro-
duced in [2]: namely the architecture based on a single nonlinear node and a delay
line described in Chapter 5. In addition to its conceptual interest, this architecture
also considerably simplified experimental implementations because it replaces a par-
allel systemby a sequential systemwhich is easier to build and debug. For this reason,
this architecture has become an ideal place to start studying reservoir computing us-
ing novel substrates, with the additional simplification that one can—if necessary in
a first instance—use a digital delay line. Experiments that used this approach include
e. g. the electronic system of [2], the first optoelectronic reservoir computers [3, 4], the
first all optical reservoir computer [5], the first reservoir computer based on a laser
with delayed feedback [6], the first reservoir computer using a nanoscale spintronic
oscillator [7], and the first reservoir computer using a nonlinear mechanical oscilla-
tor [8].

A few experiments did not use the architecture based on delay dynamical sys-
tems, but they also needed to considerably simplify the system; see for instance [1]
mentioned above, and the first on-chip reservoir computer [9] (see Chapter 3), which
had to resort to sequential measurements of the neurons.

All these experiments are importantmilestones in the development of experimen-
tal reservoir computing. But as mentioned above, they only implemented part of a
reservoir computer, and are far from an autonomous system. A few steps have been

https://doi.org/10.1515/9783110583496-008
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taken toward the idea of a fully-analogue reservoir computer. In Section 8.3, we de-
scribe how one can implement a more complete system, that comes close to a fully
autonomous one, in which the input layer, a photonic reservoir computer based on a
delay dynamical system, and an output layer are implemented experimentally. (Note,
however, that the output layer in the experiment we describe is not strictly speaking
fully autonomous, as it produces a continuous signal that needs to be sampled at spe-
cific times to produce the desired output.) These results are based on [10].

The most difficult part of the system [10] seems to be the output layer. Indeed, an
analogue output is a linear combination, with positive and negative weights of the
reservoir states. Such linear combinations are easy to implement digitally. But ana-
logue implementations are difficult, as a small error on the output weights, or any
additional noise that occurs in the output layer, can have a large effect on the output
signal. For this reason, we believe that analogue output layers will be a key difficulty
to overcome in the development of experimental reservoir computers.

In Section 8.4, we consider a photonic reservoir computer with which we can in-
teract in real time. Indeed, in any realworld application, reservoir computerswill have
to interact with their environment in real time. This for instance could be due to the
fact that the task the reservoir computer must accomplish changes, or because the
reservoir dynamics are slowly evolving.We explore these possibilities by coupling the
reservoir computer to a Field-ProgrammableGateArray (FPGA) equippedwith anAna-
logue toDigital Converter (ADC) andaDigital toAnalogueConverter (DAC).However, it
must be acknowledged that in these experimentswe simplified the reservoir computer
by implementing the output layer (which as mentioned is challenging to implement
experimentally) digitally on the FPGA. A natural next step would be to repeat these
experiments using a reservoir with an analogue output layer.

As an application of the above concept, we consider online training, in which the
output weights of the reservoir computer are updated in real time. This allows the
reservoir computer to copewith tasks that changewith time. This experiment is based
on [11]. This method also potentially allows one to train analogue output layers with-
out having to model the output layer in detail, as demonstrated numerically in [12].
It is interesting to compare the results we present here with the more recent work of
[13] in which online training was used on an analogue output layer, but with an up-
date rate for the reservoir (i. e., the rate at which successive inputs are processed) of
approximately 5Hz, compared to above 130 kHz for [11].

Finally,we show (inSection8.5) how real time control of the reservoir computer al-
lows the implementation of output feedback, in which the past output is used to drive
the system. This allows novel functionalities, such as pattern generation and emula-
tion of chaotic systems which are not possible with the simple reservoir architecture.
Output feedback for emulation of chaotic systems was introduced in [14]. Interest in
this question has recently grown again, with several theoretical contributions [15–18].
The experiment we describe here is based on [19].
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The main conclusion of this Chapter, see Section 8.6, is that developing au-
tonomous reservoir computers with real-time control is both essential for applications
and enables new functionalities. It is thus a key challenge in the field.

8.2 A simple optoelectronic reservoir computer
The experiments presented in this chapter are based on the optoelectronic implemen-
tation of reservoir computing first introduced in [3, 4] and illustrated in Figure 8.1; see
also Chapter 6. For completeness,we recall here its operation principles.Wefirst recall
the basic equations describing a reservoir computer [14, 20]. The system is drivenby an
external signal u(n), containsN internal variables xi(n) (i = 0, . . . ,N −1), and produces
an output y(n), where n is discretized time. It is described by the following equations:

si(n) = Miu(n) + bi input layer (1)

xi(n) = f(∑
j
W res

ij xj(n − 1) + si(n)) reservoir layer (2)

y(n) =∑
i
Wixi(n) output layer (3)

where f (⋅) is a nonlinear function,Mi is the input mask (also notedW in
i ), bi the input

bias, W res
ij the reservoir interconnection matrix, Wi the output weights (also noted

Wout
i ). In most implementations, Mi, bi, W res

ij can be chosen at random from some
distribution, except for global scaling which is adjusted for best performance. The
output weightsWi are chosen to optimize performance.

In the case of reservoir computers based on delay dynamical systems, described
in [22] and Chapter 5, equation (2) is replaced by

xi(n) = f (αxi−k(n − 1) + βsi(n)) for i = k, . . . ,N
xi(n) = f (αxN+i−k(n − 2) + βsi(n)) for i = 0, . . . , k − 1

(4)

Figure 8.1: Schematic representa-
tion of the photonic reservoir layer.
It contains a light source (SLD or
DFB laser), a Mach–Zehnder in-
tensity modulator (MZ), a 90/10
beam splitter, an optical attenua-
tor (Att), a fiber spool (Spool), two
photodiodes (Pr and Pf), a resistive
combiner (Comb), and an ampli-
fier (Amp). Optical and electronic
components are shown in grey and
black, respectively. Adapted with
permission from [21].
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where α and β are global scaling parameters of the interconnection and inputmatrices
W res

ij and Mi, respectively, called feedback gain and input gain; k = 0 (synchronized
regime, in which case f must include a low-pass filter, see [2, 3]), or k > 0 (unsynchro-
nized regime).

Figure 8.1 depicts anoptoelectronic setup that implements equation (4). The reser-
voir layer consists of a delay line and a single nonlinear node. Similar systems have
been studied previously in the general context of nonlinear dynamics; see, e. g., [23–
25]. This reservoir layer is essentially identical to the optoelectronic reservoir used in
[3, 4, 26–30].

The delay line consists of a spool of optical fiber (roughly 1.7 km of SMF28e). The
internal variables xi are time-multiplexed along the delay line. They are represented
by the light intensity that travels along the delay line within fixed temporal windows.
At the end of the fiber, the optical feedback signal is converted to a voltage by the feed-
back photodiode Pf. The resulting signal is then amplified to drive a Mach–Zehnder
(MZ) light intensity modulator. The light source can vary between different experi-
ments. We typically use either a DFB laser (Covega -SFL-1550p-NI- with a wavelength
around 1550 nm) or a superluminiscent diode (SLD, Thorlabs SLD1550P-A40), also
emitting at the standard telecommunication wavelength of 1550 nm.

The sine response of this M–Z modulator is used as the nonlinearity of the reser-
voir (nonlinear function f in equation (2) and equation (4)). During the experiments,
the bias point of the M–Z modulator is regularly tuned to ensure a proper sine re-
sponse. In other words, if no signal is applied to the RF port of the M–Z modulator,
its transparency is at 50%. In some works [3], the bias point of the M–Z is considered
as a tuneable parameter which allows one to modify the nonlinear function f . Here,
the bias point, and hence f is kept fixed. At the output of the M–Z modulator, 10% of
the light intensity is picked up by the readout photodiode Pf, the remaining 90% is
attenuated by a tuneable optical attenuator before going into the optical delay line.
This optical attenuator allows adjusting the feedback gain of the cavity (α coefficient
in equation (4)). A typical value for the round-trip time of the cavity is T ≈ 8.4 µs. If we
omit the constant part of the signal (that is in any case filtered out by the amplifier),
the dynamics of the system without input can be approximated by

x(t) = sin(αx(t − T)). (5)

In order to carry out computation, we drive the cavity with a desynchronized sig-
nal as in [4]. To this end, we define the duration θ of each internal variable by the
relation

T = (N + k)θ, (6)

where we recall that T is the round-trip time, and k denotes the degree of desynchro-
nization. We convert the discrete time input u(n) into a continuous signal u(t) by a
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sample and hold procedure for duration T = Nθ. Thus, in continuous time, the input
of the reservoir computer is represented by a step signal given by

u(t) = u(n) for t ∈ ](n − 1)T, nT]. (7)

The value of the internal variable xi(n) is given by the average value of x(t) in the in-
terval t ∈ ](i− 1)θ+ (n− 1)T, iθ+ (n− 1)T]. The input signal si(n) is set to the input u(n)
mulitiplied by the input maskmi, see equation 1, with the bias bi set to 0. In continu-
ous time, the input mask is represented by a periodic functionm(t) of period T.

The continuous-time dynamics of the driven system can thus be described by

x(t) = sin(αx(t − T) + βm(t)u(t)). (8)

Indiscrete time, the variable xi(n) is connected to either xi−k(n−1) if i > k or to xN+i−k(n−
2) if i ≤ k. The corresponding dynamics in discrete time is thus given by equation (4).

8.3 Experimental implementation of analogue input
and output layers

Despite the increasing interest in the reservoir computing paradigm, its potential in
terms of processing easiness and speed has not yet been fully exploited. In particu-
lar, all previous experiments, presented throughout this book, required either digital
preprocessing of the inputs, or digital post-processing of the outputs, or both (i. e., at
least either the input layer or the output layer were digitally implemented). This is in-
deed a major limitation if one intends to use physical reservoir computers as versatile
and efficient stand-alone solutions. Moreover, besides the advantages of speed and
versatility, a fully analogue device would allow for the feedback of the output of the
reservoir into the reservoir itself, enabling new training techniques [31] as well as the
exploitation of reservoir computers for new kinds of tasks, such as pattern generation
[14, 32] (see also Section 8.5).

Here, we report the work of [10]. Note that some steps toward a fully analogue
reservoir had already been taken. A first analogue output layer had been reported in
[26], but with less good performance. And in an unpublished manuscript [30], it was
shown how to implement an analogue input layer. In fact an analogue input layer is
comparatively simpler to implement, as it consists ofmultiplying the input signalwith
randomweights. The exact values of these weights are not very important, as they can
be chosen at random up to some global scaling. Optimization of the input weights has
been considered in [27, 29, 33, 34].

The first report of a reservoir computer with an analogue output layer was given
in [26]. This solution was tested on a single task, and the results obtained were not as
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good as those obtained using a digital output. The difficulty of constructing an ana-
logue output layer is due to the nature of the computation that needs to be carried out.
Indeed the output of the reservoir computer is a linear combination, with positive and
negative weights, of many internal states, which requires a very high computation ac-
curacy. While this accuracy is obtained naturally with a digital computer, it is rather
challenging to reach it with an analogue integrating device.

In this section, we present the first fully analogue reservoir computer, originally
reported in [10]. This implementation takes as input an analogue optical signal, and
produces as output an analogue electrical signal proportional to the output requested
by the task. It thereby proves that the concept of reservoir computing can be entirely
implemented by means of analogue signals handled by analogue components. This
opens up the route to new promising developments based on high-bandwidth stand-
alone reservoirs as well as feedback loop reservoirs.

8.3.1 Experimental setup

The experimental setup is depicted in Figure 8.2. It consists of input, reservoir, and
output layers. The operation principles of the optoelectronic reservoir have been pre-
sented in Section 8.2. The following two sections are devoted to the input and readout
layers.

8.3.1.1 Analogue input layer

In a reservoir computer based on a delay dynamical system with a single nonlinear
node, the input mask mi plays a crucial role as it breaks the symmetry of the sys-
tem, giving each internal variable xi(n) a different dependence on the inputs u(n). For
this reason the optimization of the input mask has been the subject of several studies
[27, 29, 33, 34]. In the present implementation, the input mask m(t) is introduced in-
dependently of the input and is intrinsically continuous, which greatly simplifies its
hardware implementation.

The optical input signal is generated as follows. A superluminescent light emit-
ting diode (SLED Denselight DL-CS5254A) is modulated using a Mach–Zehnder (M–Z)
modulator (PhotlineMXAN-LN-10) to generate an optical signal proportional to the in-
put u(t) of the reservoir computer. However, aM–Zmodulator exhibits a sine response
to the applied voltage. The following paragraph explains how we precompensate the
signals which drive the M–Z modulators inside the optical input layer and inside the
readout layer (see Figure 8.2) so as to obtain a linear response.

Let us consider the light intensity Iin at the input of a M–Z modulator, with the
insertion loss ρ and half wave voltage Vπ . The light intensity Iout at the output of the
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Figure 8.2: Schematic of the experimental reservoir computer with analogue input and output lay-
ers. The optical input produces the signal that must be processed. The input layer multiplies the
input signal by the input mask. The reservoir layer is a delay dynamical system in which a M–Z mod-
ulator acts as nonlinearity. The output layer produces an analogue electric signal proportional to
the desired output. Electric components are in green, optical components in red and purple, with
purple used for polarization maintaining fiber components (used to avoid the use of polarization
controllers) and red for nonpolarization maintaining fiber components. AWG denotes Arbitrary Wave-
form Generator; RF amplifier denotes Radio Frequency amplifier; R, L, C denote resistor, inductor and
capacitor, respectively. Reprinted from [10].

modulator as a function of the driving voltage v(t) is given by

Iout(t) = ρIin
1
2
(1 + sin( π

Vπ
v(t))). (9)

The goal of the precompensation is to obtain at the output of the M–Z modulator a
light intensity proportional to the input light intensity multiplied by the signal f (t).
This is obtained by taking v(t) to be equal to

v(t) = Vπ
2

2
π
arcsin(f (t)), (10)

where we assume that the signal f (t) belongs to the interval [−1, 1]. Therefore, the sig-
nal

g(t) = 2
π
arcsin(f (t)) (11)

should be loaded in the Arbitrary Waveform Generator (AWG) and generated with an
amplitude of Vπ/2.

This precompensated input signal is generated with a sample rate close to
200MS/s and a resolution of 16 bits (NI PXI-5422). The intensity profile of the op-
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tical signal sent to the reservoir computer is thus given by

Iin(t) = I0u(t), (12)

where the input has been scaled to belong to the interval u(t) ∈ [0, 1].
The multiplication by the input mask is achieved with the same sample rate and

resolution (200MS/s and 16 bits) by another AWG (TaborWW2074) that drives an addi-
tional M–Z modulator (Photline MXAN-LN-10). The optical signal after multiplication
by the input mask has intensity

I(t) = m(t)Iin(t)
= m(t)u(t)I0, (13)

where the mask is scaled to belong to the interval m(t) ∈ [0, 1], and for simplicity we
have not written the insertion losses of the M–Z modulator.

A tuneable optical attenuator (Agilent 81571A) is used to adjust the strength of
the input signal (β coefficient in equation (4)). The use of an incoherent light source
(SLED) avoids interference between the signal injected into the cavity and the signal
already present in the cavity (which is coherent since it comes froma laser). Therefore,
at the output of the 50%fiber coupler, the feedback photodiode produces an electrical
signal proportional to αx(t − T) + β(t)u(t) (compare with equation (8)).

Concerning the choice of input mask m(t), we use sinusoidal signals, as in [30].
The simplest mask signal of this type would be a single sine at frequency p/T with p
integer

mp(t) =
1
2
(1 + sin(−π

2
cos(2π p

T
t))). (14)

However, the performances depend strongly on the value of p. For a good choice of p,
the results are close to those we can obtain with a random input mask. However, this
is true only when the output is post-processed digitally. When the results are obtained
with the experimental analogue readout layer they are significantly less good than
those resulting from a randommask.

We found that the performance is significantly improved when we use an input
maskmpq containing two frequencies p/T and q/T

mpq(t) =
1
2
(1 + sin(−π

4
cos(2π p

T
t) − π

4
cos(2π q

T
))). (15)

The phase of the cosines in equation (15) is chosen in order to ensure that the mask
vanishes at times t = nT when the input u(t) has discontinuities. The signal sent into
the cavity is thus a smooth function without any discontinuity and the synchroniza-
tion between the input signal and the mask is drastically simplified.

A trace of themasked input signal is given in Figure 8.3. Note that it was necessary
to scan the values of p and q to get good results.
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Figure 8.3: Signals injected into the reservoir layer. The blue curve is the optical input Iin(t) = I0u(t).
The green curve is a record of the masked input signalmpq(t)Iin(t) with p = 7 and q = 9, as measured
by the photodiode and the digitizer. The vertical axis is scaled so that its maximum range is [0, 1],
i. e., I0 = 1. Reprinted from [10].

8.3.1.2 Analogue output layer—general principle

The readout layer is in charge of producing the output y(n) of the reservoir. It consists
of two parts, the first measures the internal states x(t) of the reservoir. The second
produces the output itself.

As shown in Figure 8.2, 30% of the light intensity sent to the reservoir layer is
detected by the readout photodiode (TTI TIA525). The resulting signal is recorded by
a digitizer (NI PXI-5124) at 200MS/s with a resolution of 12 bits and a bandwidth of
150MHz. This signal is used during the training phase to compute the values of the
internal variables xi(n) and of the readout coefficients Wi (following the method de-
scribed below). The remaining 70% of light intensity is modulated by a dual output
M–Z modulator (Photline MXDO-LN-10 with 10GHz of bandwidth) using a signal pro-
duced by an AWG (Tabor WW2074). The two outputs of this modulator are comple-
mentary and detected by a balanced photodiode (TTI TIA527 with a cut-off frequency
of 125MHz and output impedance 50Ω). The bias point of this modulator is regularly
tuned to have a sine response. In other words, if no signal is applied on the RF port
of the M–Zmodulator, both outputs have a transparency of 50% and the signal at the
output of the balanced photodiode is null. If a positive (negative) voltage drives the
M–Z modulator, the signal at the output of the balance photodiode is positive (neg-
ative). The reason for constructing the readout layer in this way is that the internal
variables are given by the optical intensity inside the reservoir, hence their values are
positive. But for processing informationwith the reservoir computer, positive and neg-
ative readout coefficientsWi are required. Using a dual outputM–Zmodulator coupled
to a balanced photodiode enables us tomodulate the internal variables by coefficients
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that are either positive or negative. The signal from the balanced photodiode is fil-
tered by a low-pass RLC filter whose role is to carry out an analogue summation of the
weighted internal variables. The output of the low-pass filter is then amplified before
being recorded by the second channel of the digitizer (NI PXI-5124). The value of the
resulting signal at every instant t = nT is the output of the reservoir y(n).

8.3.1.3 Analogue output layer—computation of the readout coefficients

The balanced M–Z modulator in the output layer is driven by a signal produced by
an AWG. Using the method described below, one computes a continuous time weight
function w(t). The signal produced by the AWG is precompensated so that the signal
at the output of the balanced photodiode is proportional to w(t)x(t).

In the case of a dual output M–Z modulator, the light intensities Iout1 and Iout2 at
the two outputs of the modulator are similarly given by

Iout1(t) = ρIin
1
2
(1 + sin( π

Vπ
Vπ
2
g(t))) = ρIin

1
2
(1 + f (t)) (16a)

Iout2(t) = ρIin
1
2
(1 − sin( π

Vπ
Vπ
2
g(t))) = ρIin

1
2
(1 − f (t)). (16b)

Hence, when detecting these two outputs with a balanced photodiode, the resulting
signal should be proportional to the light intensity at the input of the modulator mul-
tiplied by the signal f (t).

Figure 8.4 gives the response after the balanced photodiodewith andwithout pre-
compensation when a ramp of 47 weightsWi ranging from −1 to 1 is use for the ana-
logue readout mask.

Denoting by h(t) the impulse response of the RLC filter followed by the amplifier,
the signal yc(t) detected by the second channel of the digitizer can be expressed as

yc(t) = (w(t)x(t)) ∗ h(t)

= ∫w(τ)x(τ)h(t − τ) dτ. (17)

Since we use a real (causal) filter, the integration in equation (17) is done over the
interval τ ∈ ]−∞, t]. The continuous time weight function w(t) is a stepwise function
of period T defined by

w(t) = Wi for nT + (i − 1)θ ≤ t ≤ nT + iθ, (18)

with 1 ≤ i ≤ N and n ∈ ℤ, where we recall that θ is the duration of each internal
variable. The output of the reservoir computer y(n) is a function of discrete time. It is
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Figure 8.4: Precompensation of the dual output M–Z modulator. The signal f (t) used for this test
is a stepwise function of 47 values from −1 to 1 over the period T  (red curve). The green record is
the output of the balanced photodiode when no precompensation is applied on f (t). The blue curve
is normalized output of the balanced photodiode when the precompensation is used. Reprinted
from [10].

equal to the continuous output yc(t) at time nT: y(n) = yc(nT). It can be expressed as

y(n) = yc(nT
)

=
n−1
∑
r=0

N
∑
i=0

Wi

rT+iθ

∫
rT+(i−1)θ

x(τ)h(nT − τ) dτ. (19)

In order to calculate the readout coefficients for the analogue readout layer, new in-
ternal variables xi(n) are defined by

xi(n) =
n−1
∑
r=0

rT+iθ

∫
rT+(i−1)θ

x(τ)h(nT − τ) dτ. (20)

In practice, the impulse response of the readout layer has a finite length. Let l be an
integer such that the impulse response is shorter than lT (i. e., h(t) ≈ 0 for t > lT),
the sum over r in equations (19) and (20) can be limited to values of r from n − 1 − l
to n − 1. Note that since the impulse response lasts longer than T, the current output
y(n) contains contributions from the light intensity x(t) up to l input periods in the
past, which is a small difference with respect to the traditional reservoir computer;
see equation (3). In our experiment, for the channel equalization task we use l = 10,
and for NARMA10 and the radar signal forecasting, l = 15.

At the beginning of the experiment, we record the step response (response to the
Heaviside function) of the analogue readout layer by applying a voltage step on the
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dual output M–Z modulator. The derivative of the recorded signal is the impulse re-
sponse h(t) of the analogue readout layer.

Note that a key point to obtain good results is to optimize the extinction of the sig-
nalwhen a readoutweight equal to zero is applied. Indeed, the balancedM–Zmodula-
tor and the balanced photodiode have some imperfections, namely different insertion
losses and on/off ratios for the two outputs of the modulator, and the difference in
responsivity of each photodiode. For these reasons, a null voltage on the RF port of
the M–Z modulator does not give, at the output of the readout layer, full extinction of
the optical input. This effect, if not taken into account, degrades the performance of
the output layer. To compensate for it, we measure the small offset needed to obtain a
full extinction of the signal at the output of the reservoir layer. This offset is taken into
account when we precompensate the readout mask.

During the training phase, we record the output x(t) of the reservoir using the
readout photodiode (first channel of the digitizer). This record is then combined with
the impulse response h(t) of the analogue readout layer to compute the new internal
variables xi(n) (see equation (20)). From these internal variables,we compute the read-
outweightsWi using Tikhonov (ridge) regularization [35]. The corresponding stepwise
periodic signalw(t) is normalizedwith the highest absolute value ofWi, so as to fit the
maximum modulation capabilities of the analogue readout layer. The corresponding
gain (the highest absolute value ofWi) is applied on the recorded signal after acquisi-
tion of yc(t) and finally an offset correction is applied.

Note that the AWG that produces the output signalw(t)has a finite resolution and,
therefore, exhibits quantification noise which degrades the quality of the output yc(t).
This effect is minimized if the amplitudes of the Wi are all comparable. This can be
enforced by increasing the ridge regularizationparameter. In the present experiments,
we found it useful to take a ridge regularization parameter 10 times larger than when
we use a digital output layer.

The performance of the analogue output layer is obviously dependent on the im-
pulse response h(t), and different tasks work better with different impulse responses.
In practice, we first tested numerically different choices of R, L, and C, and then im-
plemented experimentally those that provide good results. Typical values used are R
in the range 1.6 kΩ–10 kΩ, C in the range 760 pF to 1.2 nF, with L = 1.8mH.

8.3.2 Results

The fully analogue reservoir computerwas tested on three tasks commonly considered
in the reservoir computing community, namely equalization of a nonlinear communi-
cation channel, NARMA10, and the forecast of a radar signal. The results are compared
to [4], inwhich apractically identical optoelectronic reservoir computerwasused, and
in the case of the radar task with the all-optical reservoir [5]. Both [4] and [5] used a
similar number of internal variables, but without analogue input and output layers.
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In all cases, we used N = 47 internal variables and k = 5. The two frequencies
of the input mask p/T and q/T, are 7/T and 9/T. Either numerically before the ex-
periment or during the experiment itself, the feedback gain (α in equation (4)) and
the input gain (β in equation (4)) are scanned in order to find their optimal values.
For each set of parameters, several data sets are used in the experiment in order to
have sufficient statistics. In our experiment, a feedback gain α equal to 1 is obtained
when the optical attenuator inside the loop is set to 9.5 dB. At this attenuation, when
no input signal is applied, small oscillations appear in the cavity. This corresponds
to a maximum optical power received by the feedback photodiode (i. e., at maximum
transparency of the M–Z modulator inside the loop) of 264.4 µW. For comparison, the
optical signal received by the feedback photodiodewhen the input is on, and the opti-
cal attenuator in the input layer is set to 0 dB, is 1.46mW.When the input of the reser-
voir belongs to the interval [0, 1], the input optical attenuation to obtain a β coefficient
of 1 is around 7.4 dB.

It is important to note that we do not carry out any time averaging on the acquired
signal yc(t). For this reason, the output suffers from quantification noise (see discus-
sion below). Moreover, note that because each data set is sent to the experiment twice
(once to measure x(t) and compute w(t), once to measure yc(t)), the stability of the
experiment is more important than in experiments with digital postprocessing. To en-
sure stability, we regularly adjust the working points of all M–Z modulators.

8.3.2.1 Nonlinear channel equalization

The aim of this task is to compensate for the distortion of a wireless communication
link affected by a small nonlinearity and a memory effect. It was used previously in
the reservoir computing literature; see, e. g., [14, 36]. A sequence of symbols d(n),
randomly drawn from the set of values {−3,−1, 1, 3}, passes through a channel model
with intersymbols interference (due to multipath travels and/or band-pass filters at
the channel ends)

q(n) = 0.08d(n + 2) − 0.12d(n + 1) + d(n)
+ 0.18d(n − 1) − 0.1d(n − 2) + 0.091d(n − 3)
− 0.05d(n − 4) + 0.04d(n − 5) + 0.03d(n − 6)
+ 0.01d(n − 7), (21)

followed by a nonlinear transformation

u(n) = q(n) + 0.036q2(n) − 0.011q3(n) + noise. (22)

The signal to noise ratio (SNR) is scanned from 12–32 dB using a step of 4 dB. The in-
put of the reservoir computer is the noisy and distorted sequence u(n), while the target
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Figure 8.5: Results obtained for the equalization of the nonlinear channel for signal to noise ratios
(SNR) ranging from 12 to 32 dB. For each SNR, the symbol error rate (SER) is given with its corre-
sponding error bar over 5 data sets. The blue circles are the results obtained with the full analogue
reservoir, and the red diamonds are the results presented in [4] (similar optoelectronic reservoir
computer, but without the analogue input and output layers). Reprinted from [10].

output is the original sequence of symbols d(n). For each SNR, the quality of the equal-
ization is given by the symbol error rate (SER). We use 5 different data sets. For each
data set, the reservoir is trained over 3000 time steps, and then a second sequence
of 6000 time steps is used to test its performances (evaluate the SER). Results are pre-
sentedwith their corresponding standard deviation in Figure 8.5. A slight degradation
is observed compared to the results obtained in [4]. The presented results are signifi-
cantly better than those presented in [26] (for instance, at SNR of 32 dB, a SER of 10−4

compared to 10−2). This is due in part to the larger number of internal variables that
are used (47 instead of 28), but also to a better characterization of the output layer,
and a better choice of the output filter impulse response.

For this task, the feedback optical attenuator is set to 11.25 dB, the input optical
attenuator is set to 5 dB, and the analogue output layer had parameters R = 1.6 kΩ,
C = 1.2 nF, L = 1.8mH. Figures 8.6, 8.7, and 8.8 show the measured impulse and step
responses of the analogue readout layer, a sample of the readout signal y(t), and a plot
of the readout weightsWi.

8.3.2.2 NARMA10

The aim of this task is to train a reservoir computer to behave like a 10th order Non-
linear Auto Regressive Moving Average system (NARMA10) in which an input u(n),
randomly drawn from a uniform distribution over the interval [0,0.5], is injected. The
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Figure 8.6: Impulse and step responses of the analogue readout layer used for the equalization of a
nonlinear channel. The step response is recorded at the beginning of the experiment. Its derivative
gives the impulse response of the analogue readout layer. The red cross gives the signal value at
T  = 7.598 µs. Reprinted from [10].

Figure 8.7: Signal at the output of the analogue readout layer for the nonlinear channel equalization
task. The time is in number of samples (at 200MS/s). The black curve is the acquired signal yc(t)
with a final gain correction (multiplication by the maximum absolute value of the readout weights
Wi). The stars are the output values yc(nT ) = y(n). The different colours correspond to the different
symbol values. Reprinted from [10].

following equation defines the targeted output:

ŷ(n + 1) = 0.3ŷ(n) + 0.5ŷ(n)(
9
∑
i=0

ŷ(n − i)) + 1.5u(n − 9)u(n) + 0.1. (23)

For this task, the reservoir is trained over a sequence of 1000 time steps and tested
over another sequence of 1000 time steps; this process is repeated 10 times to obtain
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Figure 8.8: Readout coefficients for nonlinear channel equalization. The readout coefficientsWi
are given for the six investigated SNRs: 32 dB SNR is in blue, 28 dB in red, 24 dB in green, 20 dB in
magenta, 16 dB in cyan, and 12 dB in black. The output signal is taken at the end of the 47th internal
variable. Vertical scale is arbitrary. For each investigated SNR, five independent data sets were used.
The readout coefficients were computed independently for each data set. For each SNR, we have
plotted these five sets of readout coefficients. Thus, for each index i we have plotted 30 valuesWi
(5 data sets per SNR and 6 SNRs). One sees from the figure that the valuesWi for a given index i
are all very similar. This is not unexpected since the tasks corresponding to different SNRs are very
similar. Reprinted from [10].

Figure 8.9: Impulse response of the analogue readout layer for NARMA10. The red cross gives the
signal value at T  = 7.598 µs. Reprinted from [10].

the statistics. The performance on this task is measured using the NMSE. This task is
commonly studied in the reservoir computing community; see, e. g., [36, 37].

For this task, the feedback optical attenuator is set to 9.2 dB (i. e., slightly above
the threshold for oscillations), the input optical attenuator is set to 9.5 dB, and the
analogue output layer had parametersR = 10 kΩ, C = 760 pF, L = 1.8mH. The impulse
response of the analogue readout layer is given in Figure 8.9.

The test NMSE for the fully-analogue system is 0.230 ± 0.023. For the sake of com-
parison, note that a reservoir that carries out no computation (i. e., produces a time
independent output y(n) = const) has a NMSE = 1, the system reported in [4] provides
a NMSE of 0.168±0.015, an ideal linear shift register (no nonlinearity in the reservoir)
can reach a NMSE of 0.16, and using a different experimental architecture based on a
coherently driven passive cavity a NMSE as low as 0.107 ± 0.012 was reported in [38].
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Note that the fully-analogue performance is slightly worse than that of the linear shift
register but significantly better than a system that carries out no computation.

8.3.2.3 Radar signal forecasting

This task consists in predicting a radar signal one to ten time steps in the future from
a radar signal backscattered from the ocean surface (data collected by the McMaster
University IPIX radar). The quality of the forecasting is evaluated by computing the
NMSE between the predicted signal and the actual data one to ten time steps in the
future. The experiment uses a single recorded radar signal under low sea state con-
ditions, corresponding to an average wave height of 0.8m (max 1.3m). The recorded
signal has two dimensions, corresponding to the in-phase and in-quadrature outputs
(resp., I and Q) of the radar demodulator. Therefore, for each data set, the in-phase
and in-quadrature signals are successively processed (predicted) by the experiment.
The training and test sequences contain 1000 inputs each. This task has been previ-
ously used to evaluate the performance of reservoir computers, see e. g. [36, 39]. The
results are presented in Figure 8.10.

For this task, the feedback optical attenuator is set to 9.9 dB, the input optical
attenuator varied between 7 and 10 dB, and the analogue output layer had parameters
R = 10 kΩ,C = 810 pF, L = 1.8mH. The impulse response of the analogue readout layer
is given in Figure 8.11.

Figure 8.10: Radar signal forecasting error (NMSE) with respect to the number of time steps of the
prediction (one to ten time steps in the future). The blue circles are the results obtained with the
fully analogue reservoir, the red diamonds are the results published in [5] obtained with an all opti-
cal reservoir computer with similar number of internal variables, but without the analogue input and
output layers. The green squares are the numerical results of [36]. Reprinted from [10].
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Figure 8.11: Impulse response of the analogue readout layer used for the radar signal forecasting.
The red cross gives the signal value at T  = 7.598 µs. Reprinted from [10].

8.3.3 Discussion

The novel feature of the experimental reservoir computer presented here is the simul-
taneous inclusion of analogue input and output layers. The interest of this configu-
ration is that it represents the necessary step toward the development of stand-alone
reservoir computers for future complex and high-bandwidth applications. The only
role of the external computer in our experiment is to compute the output weight func-
tion w(t).

Concerning the analogue input layer, we proposed the use of sinusoidal functions
as input mask, as these will be simple to generate in future hardware implementa-
tions. Upon using the sum of two sines as input mask, we did not observe significant
degradation of performance compared to using the standard random step function.

As for the analogue output layer, whose aim is to produce a linear combination
of the internal states that yields the desired output, the key difficulty is the accuracy
needed in the summation that involves a large number of adjustable factors (the out-
put weights).

The results presented here are obtained without any temporal averaging of the
recorded signal, which makes them sensitive to quantification noise. This is impor-
tant in our case since the total range of the output signal yc(t) is much larger than the
range of the outputs yc(nT) = y(n); see Figure 8.7. In the case of the channel equal-
ization task, which essentially constitutes a classification task, quantification noise
is not such a problem since a signal that is correctly classified will in general con-
tinue to be so if a small amount of noise is added. But in the case of NARMA10 and
the radar task, we measure the performance by how close the output is to the desired
output using the NMSE. Quantification noise then directly affects the performances.
Note that the effects of quantification noise and methods to counteract it have been
studied previously in the context of reservoir computing in [27, 28].

Quantification noise also affects the readout mask w(t). For this reason, the ridge
regularization parameter was optimized in order to minimize the range ofw(t), as dis-
cussed in Section 8.3.1.3.

We note that for different tasks, different output filters were used (values of the
constants R, L, and C). We do not have a complete explanation of why the optimal
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filters are different for each task. In a previous work [26], a simpler RC filter was used.
This filter typically has a long impulse response, but on the other hand the resulting
signal is much smaller, which leads to an increase of the output quantification noise.
In thepresentwork,weused a second-order RLCfilter that also exhibits a long impulse
response, but keeps a larger signal range.

In summary, we presented here the first study of a fully analogue reservoir com-
puter, initially reported in [10]. At stake is the development of future analogue com-
puters dedicated to complex and high-bandwidth signal-processing tasks. Due to the
added complexity of this experiment, some degradation of performance is naturally
observed compared toprevious experiments inwhich the input andoutput layerswere
implemented digitally through digital pre- and post-processing. However, this present
experiment can be considered as a proof of principle that suggests the feasibility of
fully stand-alone reservoir computers. In this sense our work can also be seen as an
important step toward the development of novel applications in which reservoir com-
puters are cascaded or looped on themselves. As emphasized in the above discussion,
many technical problems remain to be solved. For instance, some of the difficulties re-
lated to the use of fast-electronics may be circumvented by an all-optical output layer.

8.4 Online training

The performance of hardware reservoir computers relies on the training algorithm
used to compute the readout weights. Offline learning methods, used up to now in ex-
perimental implementations [1–6, 9, 40, 41] provide good results, but become detri-
mental in real-time applications, as they require large amounts of data to be trans-
ferred from the experiment to the post-processing computer. This operation may take
longer than the time it takes the reservoir to process the input sequence [4, 5, 41].
Moreover, offline training is only suited for time-independent tasks, which is not al-
ways the case in real-life applications. The alternative (and more biologically plau-
sible) approach is to progressively adjust the readout weights using various recur-
sive learning algorithms such as simple gradient descent, recursive least squares or
reward-modulated Hebbian learning [42]. Such procedures can be implemented so as
to require minimal data storage, with the advantage of being able to deal with a vari-
able task: should any parameters of the task be altered during the training phase, the
reservoir computer would still be able to produce good results by properly adjusting
the readout weights.

The use of a fast computingunit, such as a FPGAboard, is inevitable in the context
of online learning, as the system needs to be trained in real time, that is, in parallel
with the optoelectronic experiment. Such a system could, in principle, be applied to
any kind of signal processing tasks, in particular to those that depend on time. A good
example of such a task is the wireless channel equalization.
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Indeedwireless communications is by far the fastest growing segment of the com-
munications industry. The increasing demand for higher bandwidths requires push-
ing the signal amplifiers close to the saturation pointwhich adds significant nonlinear
distortions to the channel. These have to be compensated by an equalizer on the re-
ceiver side [43]. Themain bottleneck lies in the Analogue-to-Digital Converters (ADCs)
that have to follow the high bandwidth of the channel with sufficient resolution to
sample correctly the distorted signal [44]. Current manufacturing techniques allow
producing fast ADCs with low resolution, or slow ones with high resolution, combin-
ing both being very costly. This is where analogue equalizers become interesting, as
they could equalize the signal before the ADC and significantly reduce the required
resolution of the converters, thus potentially cutting costs and power consumption.

The results presented in this section are basedon the experiment published in [11],
in which the online approach was applied to the optoelectronic reservoir computer,
described in Section 8.2, to demonstrate that such an implementation would be well
suited for real-time data processing, and in particular for equalization of time varying
communication channels. Section 8.4.1 presents the online learning algorithm, Sec-
tion 8.4.2 outlines the specific features of the experimental setup, and Section 8.4.3
contains the results of this investigation.

8.4.1 Stochastic gradient descent algorithm

Gradient descent is a simple and popular recursive optimization algorithm. It is by far
the most common method used to optimize neural networks. The idea is to compute
the gradient of the cost function E(wi, xi) in order to follow down the slope until the
minimum is reached.

The gradient descent algorithm exists in three variants, depending on howmuch
data is used to compute the gradient of the cost function at each iteration: stochas-
tic, batch, and mini-batch [45]. Stochastic, or online, gradient descent updates the
weights at each instance of the training set. It is usually fast to compute and can there-
fore be used online. However, applyingmultiple updateswith high variance can cause
heavy fluctuations of the cost function. The batch, or offline gradient descent, com-
putes the average gradient over the entire training set available. This approach per-
forms redundant computations, but avoids the fluctuations of the stochastic version.
The mini-batch gradient descent attempts to combine the best of the stochastic and
batch methods. As the name suggests, the training is performed over smaller sets of
training instances, in order to reduce computational complexity, while maintaining
accurate values of the gradient.

Online training of a hardware reservoir computer requires the use of the stochastic
gradient descent algorithm. By definition, the updates of the parameters to optimize—
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in this context, the readout weights wi—are given by

wi(n + 1) = wi(n) − λ∇wi
E(n,wi, xi), (24)

where n ∈ ℤ is the discrete time and λ is a user-defined coefficient called the learn-
ing rate. It controls the convergence speed of the parameters and allows to prevent
divergence at early stages of the training process. The cost function E(n,wi, xi) for an
experimental reservoir computer on the channel equalization task is given by

E(n,wi, xi) = (d(n) −
N
∑
i=1

wi(n)xi(n))
2

, (25)

where d(n) is the target output at timestep n. Therefore, the gradients with respect to
the readout weights can be obtained as follows:

∇wi
E(n,wi, xi) =

𝜕
𝜕wi
(d(n) −

N
∑
i=1

wi(n)xi(n))
2

= 𝜕
𝜕wi
(d(n)2 − 2d(n)

N
∑
i=1

wi(n)xi(n) + (
N
∑
i=1

wi(n)xi(n))
2

)

= 2xi(n)(
N
∑
i=1

wi(n)xi(n) − d(n))

= 2xi(n)(y(n) − d(n))

where y(n) is the output of the reservoir computer at timestep n. Thus, the update rule
for the readout weights (equation (24)) becomes

wi(n + 1) = wi(n) − λxi(n)(y(n) − d(n)), (26)

where the factor 2 has been absorbed by the learning rate λ for simplicity.
The learning rate parameter plays a great role in the performance of the training

algorithm, affecting both the accuracy of the optimal solution and the time required
to reach it. In the simplest case, the learning rate is set to a constant value. However,
choosing the right value is already a challenge. A learning rate that is too small leads
to slow convergence. If set too high, it could hinder convergence. Furthermore, this ap-
proach yields suboptimal results, in terms of convergence time, for more intricate cost
functions. In fact, vanilla gradient descent has troubles progressing through ravines,
that is, regionswhere the gradient ismuch steeper in one or several directions than the
others [45]. Such scenarios are common around local optima and cause the algorithm
to oscillate across the slopeswith higher gradient and onlymake slowprogress toward
the optimum. Several gradient acceleration techniques have been developed to deal
with this challenge, such as Nesterov momentum, Adadelta, RMSprop, and Nadam,
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Table 8.1: Gradient descent algorithm parameters.

λ0 λmin γ k

0.4 0 0.999 10–50

to name a few. Since their discussion lies beyond the scope of the present chapter, we
refer the reader to a comprehensive overview [45].

For simplicity of implementation on the FPGA chip, a learning rate schedule was
used in the present work. Such a schedule adjusts the learning rate during training
according to a certain fixed law. A popular and quite efficient example of learning
rate schedule is annealing, in which the rate is reduced according to a pre-defined
function. The evolution of the learning rate λ is given by

λ(n + 1) = λmin + γ(λ(n) − λmin), (27)

where γ is the annealing rate and λmin is the minimal learning rate. The annealing
starts at λ(0) = λ0 and the learning rate is decreased every k timesteps.

In practice, for a stationary channel equalization, the training parameters are
summarized in Table 8.1 Setting λmin to zero means that the training process stops
after a certain number of iterations, more precisely, when λ(n) reaches the numeri-
cal precision of the FPGA. For time-dependent tasks, such as drifting and switching
channels (that will be discussed Sections 8.4.3.2 and 8.4.3.3), the training needs to be
continued to optimize the reservoir for the changing task. One then sets λmin > 0, so
that the readout weights can be adjusted as long as necessary.

8.4.2 Experimental setup

The experimental setup, depicted in Figure 8.12, contains three distinctive compo-
nents: the optoelectronic reservoir, the FPGA board, and the computer.

The reservoir part has been discussed in Section 8.2. The input and output read-
out layers are carried out by the FPGA board. The synchronization of the latter with
the reservoir delay loop is crucial for the performance of the experiment. For proper
acquisition of reservoir states, the ADC has to output an integer number of samples
per round-trip time. The daughter card contains a flexible clock tree that can drive the
converters either from the internal clock source, or an external clock signal. The for-
mer being limited to the fixed frequencies of the onboard oscillator, the latter option is
employed here. The clock signal is generated by a Hewlett Packard 8648A signal gen-
erator. With a reservoir of N = 51 neurons (one neuron is added to desynchronize the
inputs from the reservoir, see Section 8.2) and a round-trip time of 7.94 µs, the sam-
pling frequency is set to 128.4635MHz, thus producing 20 samples per reservoir state.
To get rid of the transients, induced mainly by the finite bandwidths of the ADC and
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Figure 8.12: Schematic representation of the experimental setup used for online training. The opto-
electronic reservoir is delimited with dotted lines and has been introduced in Section 8.2. The FPGA
board implements both the input and output layers, generating the input symbols and training the
readout weights. The computer controls the devices and records the results. Reprinted with permis-
sion from [11].

DAC, the 6 first and 6 last samples are discarded, and the neuron value is averaged
over the remaining 8 samples.

The potentials of the electric signals to and from the daughter card need to be ad-
justed in order to achieve themost efficient interface without damaging the hardware.
The DAC output voltage of 2 Vp-p is sufficient for this experiment, as typical voltages of
the input signal range between 100mV and 200mV. The ADC is also limited to 2 Vp-p
input voltage. With settings described in the previous section, the output voltage of
the readout photodiode does not exceed 1Vp-p.

Achieving the best performance from the experimental setup requires optimising
its parameters, which are: the input gain β, the decay rate k, the channel signal-to-
noise ratio and the feedback attenuation, that corresponds to the feedback gain pa-
rameter α in equation (4). The first three parameters are set on the FPGA board, while
the last one is tuned on the optical attenuator. The input gain β is stored as a 18-bit
precision real in [0, 1[ and was scanned in the [0.1,0.3] interval. The decay rate k is
an integer, typically scanned from 10 up to 50 in a few wide steps. The noise ratios
were set to several predefined values, in order to compare our results with previous
reports. The feedback attenuation was scanned finely between 4.5 dB and 6 dB. Lower
values would allow cavity oscillations to disturb the reservoir states, while higher val-
ues would not provide enough feedback to the reservoir.

The experiment is fully automated and controlled by aMatlab script, running on a
computer. It is designed to run the experiment multiple times over a set of predefined
values of parameters of interest and select the combination that yields the best results.
For statistical purposes, each set of parameters is tested several times with different
random input masks.

At launch, connections to the optical attenuator and the FPGA board are estab-
lished, and the parameters on the devices are set to default values. After generating a
set of random input masks, the experiment is run once and the elapsed time is mea-
sured. The duration of one run depends on the lengths of train and test sequences and
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varies from 6 s to 12 s. The script runs through all combinations of scanned parame-
ters. For each combination, the values of the parameters are sent to the devices, and
the experiment is run several times with different input masks and the resulting error
rates are stored in the Matlab workspace. Once all the combinations are tested, the
connections to the devices are closed and all collected data is saved to a file.

8.4.3 Results

Three different problems have been considered in this study. Section 8.4.3.1 proposes a
comparison of online and offline training approaches on the same stationary channel
equalization task, using very similar experimental setups. Sections 8.4.3.2 and 8.4.3.3
introduce the time variable to demonstrate the benefits of online training. A slowly
drifting channel is considered in Section 8.4.3.2, while Section 8.4.3.3 deals with a
switching channel.

8.4.3.1 Equalization of a stationary channel

The channel equalization task is described by equations (21) and (22) in Section 8.3.2.1.
Thenoise term in equation (22) is givenhere by ν(n) = A⋅r(n), whereA is the amplitude,
and r(n) is drawn from a uniform distribution over the interval [−1,+1] (for ease of
implementation on the FPGA chip). Noise amplitude values A are chosen to produce
the same signal-to-noise ratios as in [4, 5], where Gaussian noise was used.

Figure 8.13 presents the performance of the online-trained reservoir computer for
different Signal-to-Noise Ratios (SNRs) of the wireless channel (black curve). For each
SNR, the experiment was repeated 20 times with different random input masks. Av-
erage SERs are plotted on the graph, with error bars corresponding to maximal and
minimal values obtained with particular masks. The RC performance was tested over
one million symbols, and in the case of a noiseless channel the equalizer made zero
error over the whole test sequence with most input masks.

The experimental parameters, such as the input gain β and the feedback atten-
uation α, were optimized independently for each input mask. The equalizer shows
moderate dependence on both parameters, with an optimal input gain located within
0.225 ± 0.025 and an optimal feedback attenuation of 5.1 ± 0.3 dB.

For comparison, results reported in [4], obtained with the same optoelectronic
reservoir, trained offline are plotted in Figure 8.13 with grey dots. For high noise levels
(SNR ≤ 20 dB), the results are similar. For low noise levels (SNR ≥ 24 dB), the per-
formance of the online-trained implementation is significantly better. Note that the
previously reported results are only rough estimations of the equalizer’s performance
as the input sequence was limited by hardware to 6000 symbols [4]. In the present
experiment, the SER is estimated more precisely over one million input symbols.
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Figure 8.13: Experimental results on the stationary channel equalization task (black curve). Symbol
Error Rates (SERs) are plotted against the Symbol-to-Noise Ratio (SNR). The equalizer was tested
with 20 different random input masks over one million input symbols, average values are plotted
on the graph. For the noiseless channel (SNR = ∞), for most choices of input mask, the RC made
no errors over the test sequence. Grey dots show the results of the optoelectronic setup with offline
training [4]. For low noise levels, the online-trained system produces error rates significantly lower
than [4], and for noisy channels the results are similar. Reprinted with permission from [11].

For the lowest noise level (SER = 32 dB), a SER of 1.3 × 10−4 was reported in [4], while
the online-trained reservoir yields an error rate of 5.71 × 10−6. One should remember
that common error detection schemes, used in real-life applications, require the SER
to be lower than 10−3 in order to be efficient. SERs around 10−4 have been reported in
[4, 5, 41] and a passive-cavity-based setup [38] achieved a 1.66 × 10−5 rate (this value
is limited by the use of a 60000-symbol test sequence). However, one should keep
in mind that, had it been possible to test [4] on a longer sequence, it is possible that
comparable SERs would have been obtained. That is, online learning does not much
improve the performance of a reservoir computer on a stationary task, but allows to
test it on a longer test sequence and thus to accurately evaluate the error rate. The true
strength of online learning resides in the adaptability to a changing environment, as
will be shown in the following sections.

8.4.3.2 Equalization of a slowly drifting channel

The model given by equations (21) and (22) describes a stationary communication
scheme, that is, the channel remains the same during the transmission. However, in
wireless communications, the environment has a great impact on the received signal.



230 | P. Antonik et al.

Given its highly variable nature, the properties of the channel may be subject to im-
portant changes in real time.

To investigate such scenarios, consider a more general channel model, given by

q(n) = (0.08 +m)d(n + 2) − (0.12 +m)d(n + 1)
+ d(n) + (0.18 +m)d(n − 1)
− (0.1 +m)d(n − 2) + (0.091 +m)d(n − 3)
− (0.05 +m)d(n − 4) + (0.04 +m)d(n − 5)
+ (0.03 +m)d(n − 6) + (0.01 +m)d(n − 7), (28)

u(n) = p1q(n) + p2q
2(n) + p3q

3(n), (29)

where the parameters pi andm can be either stationary or time-dependent. Their de-
fault values are given bym = 0, p1 = 1, p2 = 0.036, and p3 = −0.011 (see equations (21)
and (22)).

To confront the online-trained reservoir computer with a nonstationary task, we
performed a series of experiments with a “drifting” channel model, where parame-
ters pi ormi were varying in real time during the signal transmission. These variations
occurred at slow rates, much slower than the time required to train the reservoir com-
puter. A simple real-life example of such a situation is a receiver moving away from
the transmitter, causing the channel to drift more or less slowly, depending on the rel-
ative speed of the receiver. We studied two variation patterns: a monotonic increase
(or decrease) and slow oscillations between two fixed values.

Adrifting channel is a good example of a situationwhere training the reservoir on-
line yields better results than offline. Numerical simulations have reported that train-
ing a reservoir computer offline on a nonstationary channel results in an error rate
ten times worse than with online training [46]. The present work demonstrates that
an online-trained experimental reservoir computer performs well even on a drifting
channel if λmin is set to a small nonzero value (see Section 8.4.1).

Figure 8.14(a) shows the experimental results for the case of monotonically de-
creasing p1 from 1 to 0.652. The grey curve presents the resulting SER with λmin = 0,
that is, with training process stopped after 45000 input symbols. The black curve de-
picts the error rate obtained with λmin = 0.01, so that the readout weight can be grad-
ually adjusted as the channel drifts. Note that while in the first experiment the SER
grows up to 0.329, it remains much lower in the second case. The increasing error rate
in the latter case is due to the decrease of p1 resulting in a more complex channel.
This shows that the nonstationary version of the training algorithm allows a drifting
channel to be equalized with a significantly lower error rate.

Figure 8.14(b) depicts error rates obtained with p1 linearly oscillating between 1
and 0.688. With λmin = 0 (grey curve) the error rate is as low as 1 × 10−4 when p1 is
around 1, and grows very high elsewhere.With λmin = 0.01 (black curve), the obtained
SER is always much lower, even at p1 = 0.688, it stays at SER = 5.0 × 10−3.
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Figure 8.14: Symbol error rates (left axis, log scale), averaged over 10000 symbols, produced by the
experimental setup with a drifting channel. Each panel presents data obtained from one experimen-
tal run with a fixed input mask and optimal parameters α, β and k. The grey curves show the results
produced with λmin = 0, while black curves depict those obtained with the nonstationary version
with λmin > 0 (see Section 8.4.1). Dashed lines display the evolution of parameters pi andm (right
axis, linear scale). (a) & (b) Monotonically decreasing and oscillating p1. (c) & (d) Monotonically in-
creasing and oscillating p2. Reprinted with permission from [11].

We obtained similar results with the parameter p2 (shown in Figure 8.14(c)–(d)), as
well as p3 andm (see [11]). Letting the reservoir computer adapt the readoutweights by
setting λmin > 0 produces notably lower error rates for a given channel, while stopping
the training with λmin = 0 results in quickly growing SERs.

8.4.3.3 Equalization of a switching channel

In addition to slowly drifting parameters, the channel properties may be subject to
abrupt variations due to sudden changes of the environment. For better practical
equalization performance, it is crucial to be able to detect significant channel varia-
tions and adjust the RC readout weights in real time. We consider here the case of a
“switching” channel, where the channel model switches instantaneously. The reser-
voir computer has to detect such changes and automatically trigger a new training
phase, so that the readout weights get adapted for the equalization of the new chan-
nel. Specifically, we introduce three channels differing in nonlinearity (corresponding
to 3 values of p1):

u1(n) = 1.00q(n) + 0.036q
2(n) − 0.011q3(n), (30a)
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Figure 8.15: Symbol error rate (left axis, black curve), averaged over 10000 symbols, produced by
the FPGA in case of a switching channel. The value of p1 (right axis, dotted line) is modified every
266000 symbols. The change in channel is followed immediately by a steep increase of the SER.
The λ parameter (right axis, grey curve) is automatically reset to λ0 = 0.4 every time a performance
degradation is detected, and then returns to its minimum value, as the equalizer adjusts to the new
channel, bringing down the SER to its asymptotic value. Reprinted with permission from [11].

u2(n) = 0.80q(n) + 0.036q
2(n) − 0.011q3(n), (30b)

u3(n) = 0.60q(n) + 0.036q
2(n) − 0.011q3(n), (30c)

and switch regularly from one channel to another, keeping equation (21) unchanged.
Figure 8.15 shows the error rate produced by the experiment in case of a switching

noiseless communication channel. The parameters of the channel are programmed to
switch in cycle among equations (30) every 266000 symbols. Every switch is followed
by a steep increase of the SER, as the reservoir computer is no longer optimized for the
channel it is equalizing. The performance degradation is detected by the algorithm,
causing the learning rate λ to be reset to the initial value λ0, and the readout weights
are retrained to new optimal values.

For each value of p1, the reservoir computer is trained over 45000 symbols, then
its performance is evaluated over the remaining 221000 symbols. In case of p1 = 1,
the average SER is 1 × 10−5, which is the expected result. For p1 = 0.8 and p1 = 0.6,
we compute average SERs of 7.1 × 10−4 and 1.3 × 10−2, respectively, which are the best
results achievable with such values of p1 according to the previous experiment (see
Figure 8.14 in Section 8.4.3.2). This shows that after each switch the readout weights
are updated to newoptimal values, producing the best error rate for the given channel.

Note that the current setup is rather slow for practical applications. With a round-
trip time of T = 7.94 µs, its bandwidth is limited to 126 kHz and training the reservoir
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over 45000 samples requires 0.36 s to complete. However, it demonstrates the poten-
tial of such systems in equalization of nonstationary channels. For real-life applica-
tions, such as for instance Wi-Fi 802.11g, a bandwidth of 20MHz would be required.
This could be realized with a 15m fiber loop, thus resulting in a delay of T = 50 ns.
This would also decrease the training time down to 2.2ms and make the equalizer
more suitable for realistic channel drifts. The speed limit of our setup is set by the
bandwidth of the different components, and in particular of the ADC and DAC. For in-
stance with T = 50 ns and keeping N = 50, reservoir states should have a duration of
1 ns, and hence the ADC and DAC should have bandwidths significantly above 1 GHz
(such performance is readily available commercially). As an illustration of how a fast
systemwould operate, we refer to the optical experiment [6] inwhich informationwas
injected into a reservoir at rates beyond 1GHz.

8.5 Output feedback

Forecasting is one of the primary problems in science: how can one predict the future
from the past? Over the past few decades, artificial neural networks have gained a sig-
nificant recognition in the time series forecasting community. Similar to previously
employed statistics-based techniques, they are both data driven and nonlinear. Dif-
ferently, they are more flexible and do not require an explicit model of the underlying
process. A review of artificial neural networks models for time series forecasting can
be found in [47]. Reservoir computing can be readily applied to short-term prediction
tasks, that focus on generating a few future timesteps. As for long-horizon forecast-
ing, that involves predicting the time series for as long as possible, it requires a small
modification of the architecture, namely by feeding the RC output signal back into
the reservoir. This additional feedback significantly enriches the internal dynamics of
the reservoir, enabling it to generate time series autonomously, i. e., without receiving
any input signal. With this modification, reservoir computing can be used for long-
term prediction of chaotic series [14, 48–51]. In fact, to the best of our knowledge, this
approach holds the record for such chaotic time series prediction [14, 51]. A reservoir
computer with output feedback can also achieve the easier task of generating periodic
signals [52–54], and sine waves with a tunable frequency [55–57].

The aim of the project described in this section and published in [19] is to explore
these novel applications experimentally. This requires, in general, a readout layer fast
enough to generate and feed the output signal back in real-time. Several analogue
solutions have been investigated (see Section 8.3) but none are as yet capable of per-
forming sufficientlywell in this application. In fact, successful training of an analogue
readout layer with offline learning methods, used in most experimental RC setups up
to now, requires a very precise model of the readout setup, which is hardly achievable
experimentally. As demonstrated in [10], it is virtually impossible to characterize each
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hardware component of the setup with sufficient level of accuracy. The reason for this
difficulty is that the output is a weighted sum with positive and negative coefficients
of the internal states of the reservoir. Therefore, errors in the coefficients can build up
and become comparable to the value of the desired output. For this reason, we chose
the approach of a real-time digital readout layer implemented on a FPGA chip. The use
of high-speed dedicated electronics makes it possible to compute the output signal in
real time, as has been demonstrated in Section 8.4, and feed it back into the reservoir.
In order to keep the experiment simple, we used as reservoir the optoelectronic delay
system presented in Section 8.2.

We show that an experimental reservoir computer can successfully solve two peri-
odic time series generation tasks: frequency and randompattern generation, that have
been previously investigated numerically [53, 55, 56]. The first task allows to reveal dif-
ferent timescales within the neural network, and the second can be used to quantify
the memory of the reservoir. The photonic computer manages to generate both sine
waves and random patterns with high stability (verified on the timescale of several
days). Furthermore, we apply the RC to emulation of two chaotic attractors: Mackey–
Glass [58] and Lorenz [59] systems. In the literature, the emulation performance on
these tasks is quantified in terms of the prediction horizon, i. e., the duration forwhich
the RC can accurately follow a given trajectory on the chaotic attractor [14]. However,
this method is not applicable in the presence of a relatively high level of experimental
noise, with a Signal-to-Noise Ratio (SNR) of roughly 40 dB, as will be discussed in Sec-
tion 8.5.2.1. This noise was not problematic in previous experiments using the same
optoelectronic reservoir [4, 11], but turns out to be intolerable for a systemwith output
feedback. This raises the question of how to evaluate a system that emulates a known
chaotic time series in the presence of noise. We introduce several new approaches,
such as frequency spectrum comparison and randomness tests, based on well-known
signal analysis techniques. Our results show that, although the RC struggles at follow-
ing the target trajectory on the chaotic attractor, its output accurately reproduces the
core characteristics of the target time series.

This section is structured as follows: Section 8.5.1 outlines the specific features of
the experimental setup, and Section 8.5.2 contains the results of this investigation.

8.5.1 Experimental setup

The introduction of the output feedback requires a minor change of notation, used
in Section 8.2. Since the RC can now receive two different signals as input, we shall
denote I(n) the input signal, which can be either the external input signal I(n) = u(n),
or its own output, delayed by one timestep I(n) = y(n − 1).

The reservoir computer is operated in two stages, depicted in Figure 8.16: a train-
ing phase and an autonomous run. During the training phase, the reservoir computer
is driven by a time-multiplexed teacher signal I(n) = u(n), and the resulting states of
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Figure 8.16: Schematic representation of (a) the training stage and (b) the autonomous run of a
reservoir computer. For simplicity, a small network with N = 6 nodes is depicted. During the training
phase, the reservoir is driven by a teacher input signal u(n), and the readout weights wi are opti-
mized for the output y(n) to match u(n + 1) as accurately as possible. During the autonomous run,
the teacher signal u(n) is switched off and the reservoir is driven by its own output signal y(n). The
readout weights wi are fixed and the performance of the system is measured in terms of how long or
how well it can generate the desired output. Reprinted with permission from [19].

the internal variables xi(n) are recorded. The teacher signal depends on the task under
investigation. The system is trained to predict the next value of the teacher time series
from the current one, i. e., the readout weights wi are optimized so as to get as close
as possible to y(n) = u(n + 1). The error is measured in terms of the mean-square error
(MSE), defined as

MSE = ⟨(y(n) − d(n))2⟩. (31)

Then the reservoir input is switched from the teacher sequence to the reservoir output
signal I(n) = y(n−1), and the system is left runningautonomously. The reservoir output
y(n) is used to evaluate the performance of the experiment.

The experimental setup, schematized in Figure 8.17, consists of two main compo-
nents: the optoelectronic reservoir and the FPGA board. The structure and operation
of the optoelectronic reservoir have been discussed in Section 8.2. In this section, we
will focus on a few particular aspects of this experiment.
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Figure 8.17: Schematic representation of the experimental setup used for output feedback. The op-
toelectronic reservoir has been introduced in Section 8.2. The FPGA board implements the readout
layer and computes the output signal y(n) in real time. It also generates the analogue input signal
I(n) and acquires the reservoir states xi(n). The computer, running Matlab, controls the devices,
performs the offline training and uploads all the data (u(n), wi andMi) on the FPGA. Reprinted with
permission from [19].

With time-multiplexed neurons, themaximal reservoir size is imposed by the ratio be-
tween the delay from the fiber spool (Spool) and the sampling frequency of the ADC.
While increasing the latter involves relatively high costs, one can lengthen the delay
line fairly easily. In this work, we used two spools of single mode fiber with approxi-
mate lengths of 1.6 km and 10 km. The first spool produced a delay of 7.93 µs and could
take inN = 100neuronswhen sampled at 203.7831MHz. The second spoolwas used to
increase the delay up to 49.2 µs and the reservoir size up to N = 600, with a sampling
frequency of 195.4472MHz. In both cases, each state was averaged over 16 samples in
order to decrease the noise and remove the transients induced by the finite bandwidth
of the Digital-to-Analogue converter (DAC).

The experiment is operated as follows. First, the input mask Mi and the teacher
signal u(n) are generated in Matlab and uploaded on the FPGA board. The latter gen-
erates the masked input signal Mi × u(n) and sends it to the reservoir via the DAC.
The resulting reservoir states xi(n) are sampled, averaged, and transferred to the com-
puter in real time by the FPGA. That is, the FPGAdesignusesminimalmemory (a small
buffer for the Ethernet frames), and thus allows to capture the reservoir states without
limitation of the time interval. After acquisition of the desired amount of data (reser-
voir states) in Matlab, the optimal readout weights wi are computed and uploaded on
the FPGA board. Because of the relatively long delay (compared to the microsecond
timescale of the experiment) needed for the offline training, the reservoir needs to be
reinitialized in order to restore the desired dynamics of the internal states prior to run-
ning it autonomously. To this end, we drive the systemwith an initialization sequence
of 128 timesteps (as illustrated in Figure 8.23), before coupling the output signal with
the input and letting the reservoir computer run autonomously. In this stage, the FPGA
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computes the output signal y(n) in real time, then creates a masked versionMi × y(n)
and sends it to the reservoir via the DAC.

As the neurons are processed sequentially, the output signal y(n) can only be com-
puted in time to update the 24th neuron x23(n+ 1). In other words, the first 23 neurons
do not “see” the input signal I(n) because it can not be computed and delivered in
time. Therefore, we set the first 23 elements of the input mask Mi to zero. That way,
all neurons can contribute to solving the task, despite the first 23 lacking the input in-
formation. Note that this reflects an aspect that is inherent to any experimental time-
multiplexed reservoir computer with output feedback. Indeed, the output y(n) has to
be computed after the acquisition of the last neuron xN−1(n) at timestep n, but be-
fore the first neuron x0(n + 1) of the following timestep. However, in time-multiplexed
implementation of reservoir computing, these states are consecutive, and the experi-
ment cannot be paused to let y(n)be computed. Therefore, theremaybe adelay,whose
duration depends on the hardware used, before y(n) is computed and can be fed back
into the reservoir. In the present experiment, this delay is approximately 115 ns, which
corresponds to 23 neuron durations. This delay is mainly due to propagation times be-
tween the intensity modulator (MZ) and the ADC in one hand, and the DAC and the
resistive combiner on the other. The FPGA computation time also plays a role here,
but it does not exceed 20 ns with our design. This delay can have an impact on system
performance [19].

8.5.2 Results

The output feedback allows the computer to generate time series autonomously, i. e.,
without any external input. We tested the capacity of the experiment to produce both
periodic and chaotic signals, with two tasks in each category, that will be presented
in Sections 8.5.2.2–8.5.2.5. The two periodic signal generation tasks were solved using
a small reservoir with N = 100 and a fiber spool of approximately 1.6 km. The chaotic
signal generation tasks, beingmore complex, required a large reservoir ofN = 600 for
sufficiently good results that we fit in a delay line of roughly 10 km. But first, we focus
on the question of the experimental noise.

8.5.2.1 Experimental noise

For most tasks studied here, we found the experimental noise to be the major source
of performance degradation in comparison to previously reported numerical investi-
gations [49]. This disparity stems from an ideal noiseless reservoir considered in [49],
while our experiment is noisy. This noise can come from the active and even passive
components of the setup: the amplifier, which has a relatively high gain and is there-
fore very sensitive to small parasitic signals (e. g., from the power source), theDAC, the
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photodiodes, and the optical attenuator (shot noise). In-depth experimental investiga-
tions have shown that, in fact, each component contributesmore or less equally to the
overall noise level. Thus, it cannot be reduced by replacing a single component. Nei-
ther can it be averaged out, as the output value has to be computed at each timestep.
This noise was found to have a marked impact on the results, as will be shown in the
following sections. To further investigate this issue, we estimated the level of noise
present in the experimental system and incorporated it to the numerical models. In
particular, we developed three models that simulate the experiment to different de-
grees of accuracy.
Idealized model. It incorporates the core theoretical characteristics of our reservoir

computer: the ring-like architecture, the sine nonlinearity, and the linear readout
layer (as described by equations (1), (3), and (4) from (8.2)). All experimental con-
siderations are disregarded.Weuse thismodel to define themaximal performance
achievable in each configuration.

Noiseless experimental model. This model emulates the most influential features
of the experimental setup: the high-pass filter of the amplifier, the finite resolution
of the ADC and DAC, and precise input and feedback gains. This model allows
to cross-check the experimental results and to identify the problematic points.
That is, if the experiment performs much worse than the model, then most likely,
something does not work as it should.

Noisy experimental model. To compare our experimental results with a more real-
istic model, we estimated the level of noise present in the experimental system
(see below), and incorporated this noise into the noisy version of the experimen-
tal model.

Our custom Matlab scripts are based on [4, 49]. This modeling allows us to examine
different levels of noise, and even switch it “off” completely, which is impossible ex-
perimentally.

Figure 8.18 shows numerical and experimental states of a reservoir with N = 100
neurons, as received by the readout photodiode. That is, the curves depict the time-
multiplexed neurons: each point represents a reservoir state x0,...,99(n) at times n = 1
and n = 2. The systemdoes not receive any input signal I(n) = 0. The experimental sig-
nal is plotted with a solid grey line. We use it to compute the experimental noise level
by taking the standard deviation of the signal, which gives 2 × 10−3. We then replicate
this noise level in the noisy experimental model to compare experimental results to
numerical simulations. The dotted black curve in Figure 8.18 shows the response of
the noisy experimental model, with the same amount of Gaussian noise (standard de-
viation of 2.0× 10−3) as in the experiment. The choice of a Gaussian noise distribution
was validated by experimental measurements.
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Figure 8.18: Illustration of the noisiness of the experimental reservoir. Experimental (solid grey line)
and numerical (dotted black line) reservoir states xi(n) are scaled so that in normal experimental
conditions (nonzero input) they would lie in a [−1, 1] interval. Despite the null input signal I(n) = 0,
the actual neurons are nonzero because of noise. Numerical noise was generated with a Gaussian
random distribution with standard deviation of 1 × 10−3 so that to reproduce the noise level of the
experiment. Reprinted with permission from [19].

The experimental noise level can also be characterized by the Signal-to-Noise Ratio
(SNR), defined as [60]

SNR = 10 log10(
RMS2signal
RMS2noise

),

where RMS is the Root Mean Square value, given by

RMS(xi) = √
1
N

N
∑
i=1

x2i .

We measured RMSsignal = 0.2468 and RMSnoise = 0.0023, so the SNR is equal to ap-
proximately 40 dB in this case. Note that this figure is given as an indicator of order of
magnitude only as the RMS of the reservoir states depends on the gain parameters (α
and β in equation (4) from (8.2)) and varies from one experiment to another.

8.5.2.2 Frequency generation

Frequency generation is the simplest time series generation task considered here. The
system is trained to generate a sine wave given by

u(n) = sin(νn), (32)
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where ν is a real-valued relative frequency. The physical frequency f of the sine wave
depends on the experimental roundtrip time T (see Section 8.5.1) as follows:

f = ν
2πT
. (33)

This task allows to measure the bandwidth of the system and investigate different
timescales within the neural network.

We found the frequency generation task to be the only one not affected by noise:
our experimental results matched accurately the numerical predictions reported in
[56]. From this study, we expected a bandwidth of ν ∈ [0.06,π] with a 100-neuron
reservoir. The upper limit is a signal oscillating between −1 and 1 and is given by half
of the sampling rate of the system (theNyquist frequency [61]). The lower limit is due to
the reservoirmemory. In fact, low-frequencyoscillations correspond to longer periods,
and the neural network can no longer “remember” a sufficiently long segment of the
sine wave so as to keep generating a sinusoidal output. These numerical results are
confirmed experimentally here.

We tested our setup on frequencies ν ranging from 0.01 to π. We found that fre-
quencies within the [0.1,π] interval are generate accurately with any random input
mask. Lower frequencies between 0.01 and 0.1, on the other hand, were produced
properly with some random masks, but not all. Since this is where the lower limit
of the bandwidth lies, we investigated the [0.01,0.1] interval more precisely. For each
frequency, we ran the experiment 10 times for 104 timesteps with different random in-
put masks and counted the number of times the reservoir produced a sine wave with
the desired frequency (MSE < 10−3) and amplitude of 1. The results are shown in Fig-
ure 8.19. Frequencies below0.05 are not generated correctlywithmost inputmasks. At
ν = 0.7 the output is correct most of the times, and for ν = 0.08 and above the output
sine wave is correct with any input mask. Thus, we can conclude that the bandwidth
of this experimental RC is ν ∈ [0.08,π]. Considering the round-trip time T = 7.93 µs,
this results in a physical bandwidth of 1.5 − 63 kHz. Note that frequencies within this
interval can be generated with any random input maskMi. Lower frequencies, down
to 0.02, could also be generated after choosing a suitable mask.

Figure 8.20 shows an example of the output signal during the autonomous run.
The system was trained for 1000 timesteps to generate a frequency of ν = 0.1, and
successfully accomplished this task with a MSE of 5.6 × 10−9.

These results were obtained by scanning the input gain β and the feedback gain
α to obtain the best results. It was found that β has little impact on the system perfor-
mance so long as it is chosen in the interval β ∈ [0.02,0.5], while the feedback gain
α, on the contrary, has to lie within a narrow interval of α ∈ [4.25, 5.25]dB (this cor-
responds approximately to α ∈ [0.85,0.95]), otherwise the reservoir yields very poor
results. The DC bias Vϕ of the MZ modulator was set to 0.9V to ensure a symmetric
transfer function (ϕ = 0). These parameters are summarized in Table 8.2.
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Figure 8.19: Verification of the lower limit of the reservoir computer bandwidth on the frequency
generation task. Frequencies above 0.1 (not shown on the plot) are generated very well with any of
the 10 random input mask. Frequencies below 0.05 fail with most input masks. We thus consider
0.08 as the lower limit of the bandwidth, but keep in mind that frequencies as low as 0.02 could also
be generated, but only with a carefully picked input mask. Reprinted with permission from [19].

Figure 8.20: Example
of an autonomous run
output signal for fre-
quency generation task
with ν = 0.1. The exper-
iment continues beyond
the range of the figure.
Reprinted with permis-
sion from [19].

Table 8.2: Optimal experimental parameters for the benchmark tasks.

α (dB) β Vϕ (V)

Frequency generation 4.25–5.25 0.02–0.5 0.9
Pattern generation 4.25–5.25 0.1–1 0.9
Mackey–Glass series prediction 4.25–5.25 0.1–0.3 0.9
Lorenz series prediction 5.1 0.5 0.9
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8.5.2.3 Random pattern generation

A natural step forward from the frequency generation task is random pattern genera-
tion. Instead of a regularly-shaped continuous function, the system is trained to gen-
erate an arbitrarily-shaped discontinuous periodic function. In this context, a pattern
is a sequence of L randomly chosen real numbers (here within the interval [−0.5,0.5])
that is repeated periodically to form an infinite periodic time series [49]. Similar to
the physical frequency in Section 8.5.2.2, the physical period of the pattern is given by
τpattern = L ⋅ T. The aim is to obtain a stable pattern generator, that reproduces pre-
cisely the pattern and does not deviate to another periodic behavior. To evaluate the
performance of the RC, we compute the MSE (see equation (31)) between the reser-
voir output signal and the target pattern signal during both the training phase and
the autonomous run, and arbitrarily set the maximal threshold to 10−3. As will be il-
lustrated in Figure 8.24, the 10−3 level corresponds to the point where the RC strongly
deviates from the target signal. For consistency, we have used this threshold in all our
experiments, for all tasks. If the error does not grow above the threshold during the
autonomous run, the system is considered to accurately generate the target pattern.
We also tested the long-term stability on several patterns by running the system for
several hours.

The random pattern generation task is more complex than frequency generation
and is slightly affected by the experimental noise. The goal of this task is two-fold: “re-
member” a pattern of a given length L and reproduce it for an unlimited duration. We
have shown numerically that a noiseless reservoir with N = 51 neurons is capable of
generating patterns up to 51-element long [49]. This is a logical result, as, intuitively,
each neuron of the system is expected to “memorize” one value of the pattern. Simu-
lations of a noisy reservoir with N = 100 neurons, similar to the experimental setup,
show that the maximum pattern length is reduced down to L = 13. That is, the noise
significantly reduces the effective memory of the system. In fact, the noisy neural net-
workhas to take into account the slight deviations of the output from the target pattern
so as tobe able to follow thepatterndisregarding these imperfections. Figure 8.21 illus-
trates the manifestation of noise. Periodic oscillations of one neuron of the reservoir
are shown, with intended focus on the upper values and an adequate magnification
so as to see the small variations. The plot shows that the neuron oscillates between
similar, but not identical values. This makes the generation task much more complex
and requires more memory, which, in turn, shortens the maximal pattern length.

We obtained similar results in the experiments. Figure 8.22 shows the evolution of
the MSE measured during the first 1000 timesteps of 104-timestep autonomous runs
with different pattern lengths. Plotted curves are averaged over 100 runs of the ex-
periment, with 5 random input masks and 20 random patterns for each length. The
initial minimum (at n = 128) corresponds to the initialization of the reservoir (see
Section 8.5.1), then the output is coupled back and the system runs autonomously.
Patterns with L = 12 or less are generated very well and the error stays low. Patterns
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Figure 8.21: Example of behav-
ior of one neuron in a noisy
experimental reservoir. For clar-
ity, the range of the Y axis is
limited to the area of interest.
Because of noise, despite a
periodic input signal u(n), the
reservoir state takes similar, but
not identical values. Reprinted
with permission from [19].

Figure 8.22: Evolution of MSE(n) during experimental autonomous generation of periodic random
patterns of lengths L = 10, . . . , 16. The autonomous run starts at n = 128, as indicated by the ar-
row. Patterns shorter than 13 are reproduced with low MSE < 10−3. Patterns longer than 14 are not
generated correctly with MSE > 10−3. In the latter case, the reservoir dynamics remains stable and
periodic, but the output only remotely resembles the target pattern (see Figure 8.23 and Figure 8.24
for illustration). Reprinted with permission from [19].

of length 13 show an increase in MSE, but they are still generated reasonably well.
For longer patterns, the system deviates to a different periodic behavior, and the error
grows above 10−3.

Figure 8.23 shows an example of the output signal during the autonomous run.
The system was trained for 1000 timesteps to generate a pattern of length 10. The
reservoir computer successfully learned the desired pattern and the output accurately
matches the target signal. Figure 8.24 illustrates a case with a longer pattern (L = 14),
that could not be learned by the system. As can be seen from the plot, the RC captured
the general shape of the pattern, but cannot accurately generate individual points.
The MSE of this run is 5.2 × 10−3, which is above the acceptable 10−3 threshold.
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Figure 8.23: Example of an out-
put signal for random pattern
generation task, with a pattern
of length 10. The reservoir is
first driven by the desired sig-
nal for 128 timesteps (see Sec-
tion 8.5.1), and then the input is
connected to the output. Note
that in this example the reser-
voir output requires about 50
timesteps to match the driver
signal. The autonomous run con-
tinues beyond the range of the
figure. Reprinted with permis-
sion from [19].

Figure 8.24: Example of an au-
tonomous run output after 1950
timesteps, with a pattern of
length L = 14. The RC outputs a
periodic signal that clearly does
not match the target pattern
(MSE = 5.2 × 10−3). Reprinted
with permission from [19].

Wealso tested the stability of the generator by running it for several hours (roughly 109

timesteps) with random patterns of lengths 10, 11, and 12. The output signal, observed
on a scope, remained stable and accurate through the whole test.

The above results were obtained by scanning the input gain β and the feedback
gain α to obtain the best results. As for frequency generation, it was found that β has
little impact on the system performance so long as it is chosen in the interval β ∈
[0.1, 1], while the feedback gain α, on the contrary, has to lie within a narrow interval
of α ∈ [4.25, 5.25]dB (this corresponds approximately to α ∈ [0.85,0.95]). The DC bias
of the MZ modulator was set to Vϕ = 0.9V to ensure a symmetric transfer function
(ϕ = 0). These parameters are summarized in Table 8.2.

Since the noise plays such an important role, we performed a series of numerical
experimentswith different levels of noise to findout towhat extent it affects the perfor-
mance of the computer (these results have been published in [62]). We used the noisy
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Figure 8.25: Impact of experimental noise on the performance of a reservoir computer with output
feedback. The graph presents numerical results obtained with an accurate model of the experimen-
tal setup. Noise levels are shown as standard deviations of the Gaussian noise used in the simula-
tions. The system was tested on the random pattern generation task and the performance metric
is the maximal length L of a pattern that the reservoir could generate. The theoretical maximum is
L = 100, since we used a reservoir with N = 100 neurons. Noise levels of 10−8 and below are equiv-
alent to an ideal noiseless system. The arrow indicates the experimental results discussed here.
Reprinted with permission from [62].

model of the experiment with Gaussian white noise with zero mean and standard de-
viations ranging from 10−2 to as low as 10−8. These simulations allow to estimate the
expected performance of the experiment for different levels of noise.

Figure 8.25 shows the maximum pattern length L that the reservoir computer is
able to generate for different levels of noise. The maximal length is determined using
the 10−3 autonomous error threshold. That is, if the NMSE does not grow above 10−3

during the autonomous run, the reservoir computer is considered to have successfully
generated the given pattern. For statistical purposes, we used 10 different randompat-
terns for each length L, and only counted the cases where the system have succeeded
in all 10 trials. The results show that the noise level of 10−8 is equivalent to an ideal
noiseless reservoir. As the noise level increases, the memory capacity of the reservoir
deteriorates. At a level of 10−3, the maximum pattern length is decreased down to 10,
which matches the experimental results presented here. For higher noise levels, the
results are, obviously, even worse.

Overall, these results show what level of noise one should aim for in order to
obtain a certain performance from an experimental reservoir computer with output
feedback. Our experiments have confirmed the numerical results for the noise level of
10−3. In principle, one could double the maximal pattern length by carefully rebuild-
ing the same experiment with low-noise components, namely a weaker amplifier and
a low-Vπ intensity modulator, which would lower the noise to 10−4. Switching to a
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passive setup, such as the coherently driven cavity reported in [38], could potentially
lower the noise down to 10−5 or even 10−6, with performance approaching the maxi-
mummemory capacity.

8.5.2.4 Mackey–Glass series prediction

The Mackey–Glass delay differential equation

dx
dt
= β x(t − τ)

1 + xn(t − τ)
− γx, (34)

with τ, γ, β, n > 0 was introduced to illustrate the appearance of complex dynamics in
physiological control systems [58]. To obtain chaotic dynamics, we set the parameters
as in [14]: β = 0.2, γ = 0.1, τ = 17, and n = 10. The equation was solved using the
Runge–Kutta 4 method [63] with a stepsize of 1.0. To avoid repeating computations,
we pre-generated a sequence of 106 samples that we used for all numerical and ex-
perimental investigations. The MSE is used to evaluate both the training phase and
the autonomous run. During the latter, the system does not receive the correct teacher
signal anymore, and thus slowly deviates from the desired trajectory. Therefore, we
compute the number of correct prediction steps, i. e., steps for which the MSE stays
below the 10−3 threshold (see Section 8.5.2.3), and use this figure to evaluate the per-
formance of the system.

Chaotic time series generation tasks were the most affected by the experimental
noise. This is not surprising, since, by definition, chaotic systems are very sensitive to
initial conditions, which are affected by noise. Reservoir computing was first applied
to this class of tasks in [14]. The authors numerically investigated the capacity of the
computer to follow a given trajectory in the phase space of the chaotic attractor. We
also followed this approach at first, but since our experimental system performs as a
“noisy” emulator of the chaotic attractor, its trajectory deviates very quickly from the
target one, especially with a SNR as low as 40 dB (see Section 8.5.2.1). For this reason,
we considered alternative methods to evaluate the performance of the system, as will
be described below.

The system was trained over 1500 input samples and was running autonomously
for 600 timesteps. In particular, we prepared 2100 steps of theMackey–Glass series for
each run of the experiment and used the first 1500 as a teacher signal u(n) to train the
system and the last 600 both as an initialization sequence (see Section 8.5.1) and as a
target signal d(n) to compute the MSE of the output signal y(n). These 2100 samples
were taken from several starting points t (see equation (34)) in order to test the reser-
voir computer ondifferent instances of theMackey–Glass series.We scanned the input
gain and the feedback attenuation (β and α in equation (4) from Section 8.2) to find
optimal dynamics of the optoelectronic reservoir for this task. We used β ∈ [0.1,0.3]
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Figure 8.26: Example of reser-
voir computer output signal y(n)
(dotted black line) during au-
tonomous run on the Mackey–
Glass task. The system was
driven by the target signal (solid
grey line) for 128 timesteps and
then left running autonomously,
with y(n) coupled to the input
I(n) (see Section 8.5.1). The MSE
threshold was set to 10−3. The
photonic reservoir computer
with N = 600 was able to gen-
erate up to 435 correct values.
Reprinted with permission from
[19].

Figure 8.27: Evolution of
MSE during experimental au-
tonomous generation of the
Mackey–Glass chaotic time
series (same run as in Fig-
ure 8.26). The error curve, av-
eraged over 200 timesteps, and
crosses the 10−3 threshold ap-
proximately between n = 500
and n = 600. Reprinted with
permission from [19].

and tuned the optical attenuator in the range [4.25, 5.25]dB, which corresponds ap-
proximately to α ∈ [0.85,0.95], with slightly different values for different instances of
the Mackey–Glass series. The DC bias of the MZ modulator was set to Vϕ = 0.9V to
ensure a symmetric transfer function (ϕ = 0). These parameters are summarized in
Table 8.2.

Figure 8.26 shows an example of the reservoir output y(n) (dotted black line) dur-
ing the autonomous run. The target Mackey–Glass series is shown in grey. The MSE
threshold was set to 10−3 and the reservoir computer predicted 435 correct values in
this example. Figure 8.27 displays the evolution of the MSE recorded during the same
autonomous run. The plotted error curve was averaged over 200-timestep intervals.
It exceeds the 10−3 threshold within n ∈ [500, 600] and reaches a constant value of
approximately 1.1 × 10−1 after 2500 timesteps. At this point, the generated time series
is completely off the target (see Figure 8.28 for illustration).
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Figure 8.28: Output of the ex-
perimental reservoir computer
(dotted black line) at the end
of a long run of 104 timesteps.
Although the system does not
follow the starting trajectory
(solid grey line), its output still
resembles visually the target
time series. Reprinted with per-
mission from [19].

The noise inside the optoelectronic reservoir, discussed in Section 8.5.2.1, makes the
outcome of an experiment inconsistent. That is, repeating the experiment with same
parameters may result in significantly different prediction lengths. In fact, the impact
of noise varies from one trial to another. In some cases it does not disturb the system
much. But in most cases it induces a significant error on the output value y(n), so that
the neural network deviates from the target trajectory. To estimate the variability of the
results,weperformed 50 consecutive autonomous runswith the same readoutweights
and the same optimal experimental parameters. The system produced several very
good predictions (of order of 400), but most of the outcomeswere rather poor, with an
average prediction length of 63.7 and a standard deviation of 65.2.We obtained similar
behavior with the noisy experimental model, using the same level of noise as in the
experiments. This suggests that the reservoir computer emulates a “noisy” Mackey–
Glass system and, therefore, using it to follow a given trajectory does not make much
sensewith such ahighnoise level. Nevertheless, the noise does not prevent the system
from emulating the Mackey–Glass system—even if the output quickly deviates from
the target, it still resembles the original time series. Therefore, we tried a few distinct
methods of comparing the output of the system with the target time series.

We performed a new set of experiments, where, after a training phase of 1500
timesteps, the system was running autonomously for 104 timesteps in order to collect
enough points for data analysis. We then proceededwith a simple visual inspection of
the generated time series, to check whether it still looks similar to the Mackey–Glass
time series, anddoesnot settle down to simple periodic oscillations. Figure 8.28 shows
the output of the experimental reservoir computer at the end of the 104-timestep au-
tonomous run. It shows that the reservoir output is still similar to the target time series,
that is, irregular and consisting of the same kind of uneven oscillations.

A more thorough way of comparing two time series that “look similar” is to com-
pare their frequency spectra. Figure 8.29 shows the Fast Fourier Transforms of the
original Mackey–Glass series (solid grey line) and the output of the experiment af-
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Figure 8.29: Comparison of
Fast Fourier Transforms of the
original Mackey–Glass se-
ries (solid grey line) and the
time series generated by the
photonic reservoir computer
(dashed black line). The plot is
limited to low frequencies as the
power at higher frequencies is
almost null. Dominant frequen-
cies correspond to multiples
of 1/τ ≈ 0.06. The experiment
reproduces the target spectrum
notably well. Reprinted with
permission from [19].

ter a long run (dotted black line). Remarkably, the reservoir computer reproduces very
accurately the spectrumof the chaotic time series, with itsmain frequency and several
secondary frequencies.

Finally, we estimated the Lyapunov exponent of the generated time series, us-
ing the method described in the Supplementary Material of [14]. We obtained 0.01 for
our experimental implementation. For the Mackey–Glass system considered here, the
value commonly found in the literature is 0.006. The slightly higher value of the Lya-
punov exponent may simply reflect the presence of noise in the emulator.

8.5.2.5 Lorenz series prediction

The Lorenz equations, a system of three ordinary differential equations

dx
dt
= σ(y − x), (35a)

dy
dt
= −xz + rx − y, (35b)

dz
dt
= xy − bz, (35c)

with σ, r, b > 0, was introduced as a simple model for atmospheric convection [59].
The system exhibits chaotic behavior for σ = 10, b = 8/3, and r = 28 [64] that we used
in this study. These parameters yield a chaotic attractor with the highest Lyapunov
exponent of λ = 0.906 [14]. The system was solved using Matlab’s ode45 solver and a
stepsize of 0.02, as in [14]. We used all computed points, meaning that one timestep
of the reservoir computer corresponds to a step of 0.02 in the Lorenz time scale. To
avoid unnecessary computations and save time, we pregenerated a sequence of 105

samples that we used for all numerical and experimental investigations. Following
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[14], we used the x-coordinate trajectory for training and testing, that we scaled by a
factor of 0.01.

This task was investigated in a similar way to the Mackey–Glass. The reservoir
computer was trained over 3000 input samples and ran autonomously for 1000
timesteps. The 4000 samples were taken after discarding the initial transients of
1000 timesteps, as in [14]. For optimal performance of the optoelectronic reservoir, we
set the input gain to β = 0.5 and the feedback attenuation to α = 5.1 dB. The DC bias
of the MZ modulator was set to Vϕ = 0.9V to ensure a symmetric transfer function
(ϕ = 0). These parameters are summarized in Table 8.2.

Figure 8.30 shows an example of the reservoir output y(n) (dotted black line) dur-
ing the autonomous run. The target Lorenz series is shown in grey. With the MSE
threshold set to 10−3, the system predicted 122 correct steps, including two transitions
between the wings of the attractor. As in the Mackey–Glass study, we performed 50
autonomous runs with identical parameters and readout weights and obtained an av-
erage prediction horizon of 46.0 timesteps with a standard deviation of 19.5. Taking
into account the higher degree of chaos of the Lorenz attractor, and given the same
problems related to noise, it is hard to expect a better performance of the reservoir
computer at following the target trajectory. Figure 8.31 depicts the evolution of the
MSE during the autonomous run. The error curve was averaged over 100-timestep in-
tervals. The initial dip corresponds to the teacher-forcing of the reservoir computer
with the target signal for 128 timesteps, as discussed in Section 8.5.1. The error exceeds

Figure 8.30: Example of reservoir computer output signal y(n) (dotted black line) during au-
tonomous runs on the Lorenz task. The system was driven by the target signal (solid grey line) for
128 timesteps before running autonomously (see Section 8.5.1). The MSE threshold was set to 10−3.
The photonic system with N = 600 generated 122 correct values in this example, and predicted
two switches of the trajectory from one lobe of the attractor to the other. Reprinted with permission
from [19].
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Figure 8.31: Evolution of MSE
during experimental au-
tonomous generation of the
Lorenz chaotic time series
(same run as in Figure 8.30).
The error curve, averaged over
100 timesteps, crosses the
10−3 threshold near n = 250.
The initial dip corresponds to
the warm-up of the reservoir
(see Section 8.5.1). Reprinted
with permission from [19].

Figure 8.32: Output of the ex-
periment (dotted black line) at
the end of a long run of 95000
timesteps on the Lorenz task.
Although the system does not
follow the starting trajectory
(solid grey line), it does a fairly
good job at emulating the dy-
namics of the Lorenz system.
Reprinted with permission
from [19].

the 10−3 threshold around the n = 250 mark and reaches a constant value of approxi-
mately 1.5 × 10−2 after less than 1000 timesteps. At this point, the reservoir computer
has lost the target trajectory, but keeps on generating a time series with properties
similar to the Lorenz series (see Figure 8.32 for illustration).

Similar to the Mackey–Glass task, we performed a visual inspection of the gener-
ated Lorenz series after a long run, and compared the frequency spectra. Figure 8.32
shows the output of the experiment near the end of a 95000 autonomous run. Al-
though the system is quite far from the target trajectory (plotted in grey) at this point,
it is apparent that it has captured the dynamics of the Lorenz system very well. Fig-
ure 8.33 displays the Fast Fourier Transforms of the generated time series (dotted black
line) and the computed Lorenz series (solid grey line). Unlike the Mackey–Glass sys-
tem, these frequency spectra donot have anydominant frequencies. That is, the power
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Figure 8.33: Comparison of Fast Fourier Transforms of the Lorenz series (solid grey line) and the time
series generated by the photonic reservoir computer (dotted black line) during 95000 timesteps.
Both spectra are normalized so as to have equal total power. The curves are smoothened by av-
eraging over 50 samples and the plot is limited to lower frequencies (the higher ones being close
to zero). Despite some mismatch, the shape of the dotted curve is roughly similar to the grey line.
Reprinted with permission from [19].

distribution does not contain any strong peaks, that could have beenused as reference
points for comparison. Therefore, comparing the two spectra is muchmore subjective
in this case. Although the curves do not match, one can still see a certain similarity
between them.

In addition to those visual comparisons, we performed a specific randomness test
of the generated series. We exploited an interesting property of the Lorenz dynam-
ics. Since it basically switches between two regions (the wings of the butterfly-like
Lorenz attractor), with random transitions from one to the other, one can assign bi-
nary “0” and “1” to these regions and thus transform the Lorenz series into a sequence
of random bits. We used this technique to check the randomness of the generated
series. To this end, we both solved the Lorenz equation and ran the experiment for
95000 timesteps, and converted the resulting time series into two sequences of ap-
proximately 2400 bits. The twowere then analyzedwith the ENT program [65]—awell-
known software for testing random number sequences—with the results shown in Ta-
ble 8.3. Their interpretation requires a few explanations.
– The first test computes the entropy per byte (8 bits). Since the entropy can be seen

as a measure of disorder or randomness, a totally random sequence should have
8 bits of entropy per byte. Both sequences are close to the maximum value, with
the Lorenz series being slightly more random.
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Table 8.3: Results returned by the ENT program for the bit sequences generated by the experiment
(RC) and the integrated Lorenz system. The Lorenz sequence shows better figures, but the RC output
is not far behind. All these figures are poor compared to common random series, but this is due to
the very short sequences used here (roughly 300 bytes).

RC Lorenz

Entropy (byte) 6.6 7.1
Compression (%) 17 10
Mean (byte) 134.3 125.8
π 2.88 3.00
Correlation −0.08 −0.02

– The compression, i. e., how efficiently a sequence of bytes could be reduced in
size by a compression algorithm, such as, e. g., the Lempel–Ziv–Renau algorithm,
used by the Zip program, is a commonly used indirect method of estimating the
randomness of bytes in a file. These algorithms basically look for large repeat-
ing blocks, that should not appear in a totally random sequence. Again, both se-
quences could only be slightly compressed.

– The mean value is the arithmetic mean of the data bytes. A random sequence
should be evenly distributed around the mean value of 127.5. The Lorenz series
is very close to this value, and the RC sequence is fairly close.

– The Monte Carlo method of computing the value of π randomly places points in-
side a square and computes the ratio of points located inside an inscribed circle,
that is proportional to π. This complex test requires a long sequence of bytes to
yield accurate results.We note that, nevertheless, both sequences produce a plau-
sible estimation of π.

– Finally, the serial correlation, i. e., the degree of similarity between the sequence
and a delayed copy of itself, in a totally random sequence is zero. Both series
present a very low correlation, yet again the Lorenz series demonstrating a bet-
ter score.

These results do not strictly prove that the generated sequence is random. One obvi-
ously has to use amuch longer sequence of bits for that task, and should also consider
more sophisticated and complete tests, such as Diehard [66] or NIST Statistical Test
Suite [67]. The purpose of these tests was to show that the output of the RC generator
does not consist of trivial oscillations, that only remotely resemble the Lorenz system.
The figures in Table 8.3 show that the randomness of the RC output is similar to the
Lorenz system, which gives reasons to believe in the similarity between the properties
of the two time series. This, in turn, indicates that our photonic reservoir computerwas
capable of learning to effectively emulate the dynamics of the Lorenz chaotic system.
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8.6 Conclusion

Most experimental works on reservoir computing so far have focused on demonstrat-
ing thebasic concept.However, aswehavediscussed in this chapter, it is possible to go
beyond this and startmaking a full information processing system.Wehave discussed
three such advances. First, we showed that it is possible to build analogue input and
output layers, with the aim of making the reservoir computer an autonomous system.
Second, we discussed the possibility of modifying the output layer in real time, which
allows the reservoir computer to cope with drifts in the experimental parameters and
with taskswhich change in time. Third,wepresented a reservoir computerwith output
feedback which allowed it to solve new tasks such as generation of periodic patterns
and emulation of chaotic systems.

One important direction which we did not have the time to discuss here concerns
the optimization of the internal parameters of the reservoir. Indeed, in the traditional
reservoir computing architecture the internal parameters are not modified: they are
(often) simply chosen at random, except, possibly, for a few meta parameters. But it
is known that if more parameters are optimized, the reservoir performance can sig-
nificantly improve. This has been shown in [29, 68]. Remarkably, in certain cases the
algorithm used to train the internal parameters can be implemented physically on the
reservoir that is being optimized. This was demonstrated in a simple case in [69], and
thenonamore complex optoelectronic system in [34]where the same level of improve-
ment as in [29, 68] was reached.

An exciting challenge for the future would be to combine the different advances
discussed in this chapter. For instance, can one build a reservoir computer with ana-
logue input and output layers which also allows for real time optimization of the out-
put layer and/or output feedback? To this end, it would be useful to develop robust
and easy to implement analogue input and output layers, which could then be used as
plug-and-play building blocks in these complex systems. Another exciting challenge
would be to demonstrate a reservoir computer that processes, in real time, real-world
analogue data, such as the output signal of a telecommunication line, and produces
a high-quality output ready for further use. Hopefully, in such a demonstration one
would also exhibit a gain in energy consumption and/or footprint compared to tradi-
tional digital systems that solve the same task. Such a demonstration would pave the
way toward concrete applications of reservoir computers.

Thinking of reservoir computers from a systems point of view raises many new
questions and challenges. Whether or not significant progress can be made in this di-
rection will determine if reservoir computing stays a laboratory curiosity or can move
into the real world. The present chapter illustrates some of the first steps made in this
direction.
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Outlook

After the first demonstrations of reservoir computing (RC) in nonlinear physical
substrates, the field has grown at an astonishing rate. From a distance, one could
consider that demonstrating the feasibility of neural network computing with high-
performance photonic components is the greatest achievement of photonic RC. Using
mostly off-the-shelf devices as nonlinear neurons, recent results unlocked the po-
tential of optical communication and integration technology for the next generation
neural network processors. This development has pushed processing speeds that
were previously out of reach and, furthermore, the field is identifying unique applica-
tions at an increasing pace. The interest into optical computing and photonic neural
networks has been reinvigorated, notably due to the work reported in the preceding
chapters.

The current success of photonic RC, as well as the considerable general inter-
est, certainly benefited from breakthroughs achieved in neural network computing.
This creates an excellent situation, almost unique in the history of optical comput-
ing. Breakthroughs are achieved in parallel in almost all relevant aspects: computing
concepts, hardware substrates, and commercial applications. The result is a surge of
novel ideas spanning various disciplines. Along the recent years, a relatively skeptical
view on optical computing has been transformed into a rather euphoric search for the
future computing substrate. As discussed in earlier sections of the book, it remains es-
sential that criteria like energy-efficiency, practicality and scalability in all aspects are
continuously considered. Otherwise, the development in this exciting new fieldmight
be cut-short by too short-term focused strategies. Yet, future prospects are outstanding
due to the recent advances,which indicate strategies to overcomebottlenecks encoun-
tered in the past.

Using photonics, a better power efficiency at very high bandwidths thanwith elec-
tronic substrates can in principle be achieved. Now that several technologies for cre-
ating photonic and other types of physical reservoirs are starting to mature, the next
step is to leverage their potential for appropriate industrial applications. However, it
is equally clear that computations which can be performed based on a single reservoir
are limited. In addition, most work on reservoir computing addresses tasks with a sin-
gle input signal. This is a side effect of the upper bound on total computing capacity:
if information needs to be extracted from multiple input channels, the system’s ca-
pacity for remembering past inputs is reduced. Overcoming these limitations will at
least require larger systems, also consisting of multiple reservoir layers. Although first
steps have been taken, an efficient implementation and training strategy for creating
such cascaded reservoir layers, especially if combined with multiple input channels,
is still lacking. Overcoming this architectural bottleneck will be one of the focus of
future efforts.

https://doi.org/10.1515/9783110583496-009
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With respect to integrated photonic reservoir chips, one of the next challenges
is moving from lab-based prototypes and toy benchmarks to fully integrated systems
that can be deployed for industrially relevant applications. In this context, full-scale
benchmarking and comparison with more traditional approaches will need to be
carried out in terms of speed, power consumption, latency, and footprint. We see
photonic reservoir computing making the most impact in applications where input
information already is encoded in the optical domain. This demands extremely high
information throughput, beyond anything which is easily achievable with current
electronic-based infrastructure.

As it is often the case in the development of a novel technological platform, a
detailed analysis with respect to all relevant processes is required. This is particu-
larly true for the implementation of complex neural networks, which can be consid-
ered as ambiguous-by-design. Understanding the propagation and scaling of noise in
hardware neural networks will be one of the crucial future endeavors. For this, the
large scale spatiotemporal neural networks based on diffractive coupling are excep-
tionally well suited. Achievable network sizes easily reach the dimensions required
by standard neural network applications, and the modular architecture enables de-
tailed characterization of all components involved. Essential for this platform’s future
development is the demonstration of diffractive networks based on all-optical non-
linear substrates. First steps have been made with small networks of semiconductor
lasers, but optical quality of the available laser-arrays needs to be considerably im-
proved before large systems become realistic. Those, however, will then immediately
unlock large-scale photonic neural networks operating at the rate of multiple GHz.
Combining all-optical nonlinear substrates and the excellent scalability of the diffrac-
tive coupling concept, one can start considering extremely large and multilayer pho-
tonic neural networks.

In turn, the consideration of delay-based RC represents a further simplification
of the hardware complexity for photonic RC. Following this approach, only a single
nonlinear physical node and a delay feedback line are needed for the correspond-
ing hardware implementations. Unsurprisingly, the first demonstrators of photonic
RC were based on the delay-based approach. Furthermore, delay RC can profit of a
delay-system generic property: unless intentionally broken, the implemented net-
works posses perfect symmetry. This creates exceptional conditions for investigating
aspects of nonlinear dynamic systems and their impact on computational perfor-
mance. As the field is advancing, it is likely that hybrid approaches combining some
sort of time, frequency and spatial multiplexing will become commonplace. It is clear
that there will be no one size fits all photonic RC system and it is encouraging to see
that the different approaches presented in the previous chapters nicely complement
each other.

Photonic delay dynamics have demonstrated their capability to process informa-
tion according to RC concepts; moreover, with very attractive performances in terms
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of computational power, speed, and energy efficiency. Among the various research di-
rections one could propose the following issues, spanning from fundamental to very
applied perspectives. Much work is still to be performed in order to better understand
computing mechanisms that can be obtained from nonlinear delayed feedback sys-
tems. Concerning the learning and the read-out layer, important breakthroughsmight
consist in a proper translation into a temporal signal processing scheme and address
the problem on stabilizing delayed feedback patterns. Instead of employing digital
computer-aided readout techniques, an in-line learning mechanism is still needed.
Here, chimera states might have a role to play. Finally, a dynamical, iterative signal
processing approach could lead to the emergence of the same read-out pattern as the
one algorithmically obtained.

Most of the experimental systems developed so far for the investigation of delay-
based RC, have essentially assumed a delay feedback architecture comprising a single
nonlinear node with a single delay feedback loop. It is then easy to imagine slightly
more complex delay architectures, exploring for example cascaded as well as paral-
lel delay-based RC. Such advanced systems offer the possibility to combine multiple
different filtering functions, and a more powerful RC-architecture can therefore be ex-
pected. Finally, since delay-based reservoirs are time-domainprocessors, it is obvious,
and already has been revealed by several experiments, that timing issues are of key
technical challenge. Correct timing and synchronized signal are very important as-
pects when optimizing performance of a delay RC. The underlying reasons are not yet
fully understood, and delay-based RC could significantly progress if signal synchro-
nization could be more clearly connected to fundamental reservoir concepts.

A semiconductor laser subject to optical feedback fulfills the requirements for a
high-speed implementation of the reservoir in an elegant way. This single component
creates a single-device, fast, and energy efficient all-optical nonlinearity. At the mo-
ment, it still remains unclear what the precise influence of the laser nonlinearity is in
the computational performance. In this context, a precise experimental characteriza-
tion of the amplitude and phase response of the semiconductor laser may shed some
light on the role of the nonlinearity for the case of the optically driven semiconduc-
tor laser. Current trends for the advancement of photonic RC include the possibility to
integrate most of the photonic components and to develop an all-optical implemen-
tation of the full system. Recent works suggest certain modifications to the original
scheme that could still improve the performance of laser-based RC. These modifica-
tions include the use of two delay loops in order to extend the fading memory of the
system, or the combination of responses for different laser parameters in order to en-
hance the computational power of the system.

Full delay-system RC implementations must also include the input and output
layers, which for now remains a challenge due to the intricate time-multiplexing tech-
niques needed. Most photonic RC experiments so far have focused on demonstrating
the basic concept. Often only the reservoir was experimentally implemented as an
analog system, and the rest was based on digital hardware. However, it is possible to
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go beyond such systems, and preliminary progress in this direction has been reported
here. Indeed, a physical reservoir computer with analog input and output layers has
been demonstrated. This includes the optimization of the output layer in real time,
allowing the reservoir computer to cope with drifts in either experimental parameters
as well as to address tasks which change in time. In addition, several works report
how performance can be improved by optimization of the internal reservoir parame-
ters. Finally, output feedback allows reservoir computers to solve new tasks such as
generation of periodic patterns and emulation of chaotic systems.

Still, building a reservoir computer with analogue input and output layers which
allow for real time optimization of the output layer remains one of themost important
objectives ahead. This would be facilitated by the development of robust and easy to
implement analogue input and output layers, preferably creating plug-and-play like
building blocks for these complex systems.

A key challenge is to fully exploit the full potential of optics. Future reservoirs
should leverage the coherence of light and optical parallelism, profit from the poten-
tially veryhigh speeds of optics, and toprocess optical inputs to create optical outputs.
Progress along these lines has been realized, butmuch remains to be done. Ultimately,
one would like to demonstrate a reservoir computer that processes, in real time, real-
world data, such as the output signal of a telecommunication line, and produces a
high-quality output ready for further use.
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