
Seismology in the Cloud: A New Streaming
Workflow
Jonathan MacCarthy*1, Omar Marcillo1, and Chad Trabant2

Abstract

Cite this article as MacCarthy, J.,
O. Marcillo, and C. Trabant (2020).
Seismology in the Cloud: A New
Streaming Workflow, Seismol. Res. Lett.
XX, 1–9, doi: 10.1785/0220190357.

Data-intensive research in seismology is experiencing a recent boom, driven in part by
large volumes of available data and advances in the growing field of data science.
However, there are significant barriers to processing large data volumes, such as long
retrieval times from data repositories, complex data management, and limited com-
putational resources. New tools and platforms have reduced the barriers to entry for
scientific cluster computing, including the maturation of the commercial cloud as an
accessible instrument for research. In this work, we build a customized research cluster
in the cloud to test a new workflow for large-scale seismic analysis, in which data are
processed as a stream (retrieved on-the-fly and acted upon without storing), with data
from the Incorporated Research Institutions for Seismology Data Management Center.
We use this workflow to deploy a spectral peak detection algorithm over 5.6 TB of
compressed continuous seismic data from 2074 stations of the USArray Transportable
Array EarthScope network. Using a 50-node cluster in the cloud, we completed the
noise survey in 80 hr, with an average data throughput of 1.7 GB per minute. By varying
cluster sizes, we find the scaling of our analysis to be sublinear, due to a combination
of algorithmic limitations and data center response times. The cloud-based streaming
workflow represents an order-of-magnitude increase in acquisition and processing
speed compared to a traditional download-store-process workflow, and offers the ad-
ditional benefits of employing a flexible, accessible, and widely used computing archi-
tecture. It is limited, however, due to its reliance on Internet transfer speeds and data
center service capacity, and may not work well for repeated analyses or those for which
even higher data throughputs are needed. These research applications will require a
new class of cloud-native approaches in which both data and analysis are in the cloud.

Introduction
Research in seismology that requires tools and resources
beyond those most commonly used due to large data volumes
(“data-intensive” research) is experiencing renewed attention
in the last decade, driven in part by advances in the new field
of data science (e.g., Kong et al., 2018; Bergen et al., 2019) and
by exponentially growing repositories of geophysical data at
community data centers such as the Incorporated Research
Institutions for Seismology (IRIS) Data Management Center
(DMC) and the Observatories and Research Facilities for
European Seismology (ORFEUS). Geographically large seismic
deployments such as the USArray Transportable Array (TA)
and AlpArray (Hetényi et al., 2018), new dense deployments
(“large-N”) such as the Community Wavefields Demonstra-
tion Experiment (Sweet et al., 2018), and high-sample-rate
distributed acoustic sensing (DAS, Lindsey et al., 2017) are
capable of producing orders of magnitude more data per year
than traditional broadband passive deployments. At the same
time, established and emerging data-hungry analyses such as

ambient noise tomography, waveform similarity detection, and
neural networks and deep learning (Perol et al., 2018; Ross
et al., 2018) are poised to provide denser geographic and tem-
poral insights than has previously been possible.

The efficacy of these emerging techniques relies on the abil-
ity to access and process large volumes of data easily, yet doing
so is becoming increasingly cumbersome under the conven-
tional download-store-process workflow. A research effort will
commonly start with prototyping an analysis using data from a
limited time span and/or geographic region (prototype scale).
As an algorithm is tested and validated, it may then be de-
ployed over longer time periods or larger regions (experiment
scale). If successful, a logical next step for many analyses is to
expand the scale even further to find new times or regions for
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which the analysis is still successful as well as those for which it
fails (survey scale), yet this step remains difficult to do.

At the experiment scale, research is traditionally performed
through a combination of protracted data retrieval, local man-
agement, and parallel or high-performance computing (HPC),
and each step comes with a growing cost in a large-data regime.
To illustrate “retrieval cost,” we measure and estimate retrieval
times for datasets of various sizes from the IRIS DMC
(Fig. 1). We used ObsPy’s International Federation of Digital
Seismograph Networks Web Services (FDSN-WS) “mass_
downloader” on a traditional four-core workstation to down-
load one year of continuous three-component (3C) broadband
data from a TA station and a temporary deployment station
(Seismic Investigation of Edge-Driven Convection Associated
with the Rio Grande Rift, network code XR 2008-2010), as
well as 1 week of 3C nodal seismometer data from the IRIS
Community Wavefields Demonstration Experiment. We used
the profiled download times and data volumes to estimate
retrieval times for all data from the respective networks, using
data volumes obtained from the IRIS DMC “availability”
webservice. For example, one year of 3C 40 samples per second
miniSEED data took over 10 min to download at the observed
rate of 6:5 MB=s. This is acceptable for most “prototype scale”

and “experiment scale” re-
search problems, but becomes
prohibitive for “survey scale”
analysis. We estimate that all
3C broadband seismic data
from the TA would take nearly
a month to download, and
“US Regional” data (from IRIS
DMC Data Statistics, see Data
and Resources) would take a
year, assuming uninterrupted
acquisition. This retrieval cost
inhibits “survey scale” research
and will continue to grow as
high sample-rate instruments,
such as nodal seismometers, and
large research datasets become
more common (Incorporated
Research Institutions for
Seismology, 2019).

After large volumes of data
are downloaded, the researcher
then assumes the role of the
data center, and is responsible
for storing, indexing, and
querying the data in their own
duplicate repository. This is
commonly done using simple
file naming conventions, a
database management system,

or a combination of new tools such as Apache Accumulo
and Hadoop Distributed File System (Magana-Zook et al.,
2016; Junek et al., 2017). Mitigating common problems such
as data gaps, metadata management, and infrastructure main-
tenance can cause these systems to become complex, requiring
skills orthogonal to research. Finally, calculations larger than
can be in a reasonable time on a large workstation, or comput-
ing server have traditionally required access to HPC or other
institutional clusters, and familiarity with their tools, such as
message passing interface (Chen et al., 2016) or Hadoop and
Spark (Addair et al., 2014; Magana-Zook et al., 2016). This fur-
ther limits such research to groups that have access to these
systems and skills.

In this article, we describe a new workflow for large-scale
seismic analysis that seeks to minimize the challenges outlined
previously. We created a scientific computing cluster using
Amazon Web Services (AWS) Elastic Compute Cloud (EC2)
instead of using local computing servers or HPC, which accel-
erates both data access and processing. We use standardized
web services (FDSN-WS), programmatic data access interfaces
over HTTPS, to stream data directly from the IRIS DMC to our
cluster in the cloud for on-the-fly processing without storing it
first, avoiding data management challenges. Finally, we employ

Figure 1. Data volumes and retrieval times from the Incorporated Research Institutions for
Seismology (IRIS) Data Management Center (DMC) over several scales. Data for filled symbols were
downloaded with ObsPy’s FDSN Web Services “mass_downloader” using three concurrent threads,
profiled, and used to estimate retrieval times for unfilled symbols. The Community Wavefields
Demonstration Experiment (CWE) is 5 weeks of 361 three-component (3C) nodal stations sampled at
250 samples per second, the Transportable Arrary (TA) is 2099 3C broadband (BB) stations sampled
at 40 samples per second, XR08 is 2–3 yr of 71 3C BB stations sampled at 40 samples per second,
and “US Regional” data volume is estimated from IRIS DMC Data Statistics webpage.
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new interactive parallel computation tools in Python to deploy
a “survey scale” calculation using familiar desktop-scale re-
search tools in the scientific Python ecosystem, reducing the
learning curve for large-scale research. We demonstrate the
workflow with a continent-scale survey of harmonic noise
in continuous seismic data from the USArray TA (Marcillo
and Carmichael, 2018; MacCarthy et al., 2019; Marcillo and
MacCarthy, 2020), and assess its scaling properties.

A Custom Research Cluster in the Cloud
Our cloud-based analysis comprises several layers: computing
infrastructure, cluster management software, and domain-
specific research software (Fig. 2). Commercial cloud providers
such as Google Cloud Platform, AWS, or Microsoft Azure
offer affordable (many price-points) and flexible (different
hardware specifications) computing clusters through web-
based or command-line interfaces. These have historically been
used by companies to respond to diverse and time-varying
business workloads, but the tools developed to make clusters
accessible for commerce have also made them accessible for
research. We chose AWS EC2 for its maturity and community
knowledge online (see Data and Resources). The cluster con-
sisted of 50 t2.large (2 CPU, 8 GB RAM) Debian Linux
instances in the “us-west-2” region (Oregon), selected for its
geographic proximity to the primary IRIS DMC in Seattle,
Washington.

Cluster management software is needed to control the life-
cycle and customization of a cluster. We use the Kubernetes
orchestration system to provide and manage our EC2 node
instances, due to its active community and support across

multiple cloud providers, and the Helm cluster application
manager to install our domain-specific research software.
To parallelize our Python analysis code, we extend an existing
Helm application that uses the distributed computation
library, Dask (Dask Development Team, 2016). The applica-
tion installs onto nodes in the cluster: Python, NumPy for
array calculations (Oliphant, 2006), Pandas for tabular data
manipulation (McKinney, 2011), a Dask distributed task
scheduler and multiple Dask workers, and Jupyter for interac-
tive analysis. To this stack we added ObsPy (Krischer et al.,
2015), the de facto seismic analysis toolbox for Python, and
our own detection application. With these tools, a 50-node
custom “do-it-yourself” research cluster was provisioned and
configured for distributed seismic analysis in less than an hour.

One benefit of using cloud infrastructure is that it can be
customized for the needs of the application. Our streaming
workflow acquired data on-demand from the IRIS DMC,
which required many small compute nodes with public IP
addresses. Each worker requests a span of continuous data,
performs a simple calculation, passes its results to the next
available worker as directed by the Dask scheduler, and releases
its memory without storing the waveforms (on-the-fly calcu-
lation). The DMC limits users by rate and concurrent count of
connections per IP address. Each EC2 node is assigned its own
public IP address, which makes the cluster appear to the DMC
as a tightly coordinated swarm of users (Fig. 3). Ideally, as long
as no single node exceeds the rate limits, the calculation can
scale almost linearly with the number of nodes, until the hard
limit of 100 IP addresses in the cluster routing table in AWS
is reached or the DMC becomes saturated with requests.
Subverting a data center’s connection rate control mechanisms
should only be done in coordination with the data center.
Cluster configurations to maximize data throughput while

Figure 2. The technical architecture used in our cloud-based
streaming workflow. We used Amazon EC2 to build the cluster,
Kubernetes for cluster management, Helm for software instal-
lation, Dask for distributed parallelism in Python, and ObsPy for
data acquisition and processing.

Figure 3. Traditional download-store-compute workflows (left)
are limited by single-user data acquisition speed. A cloud-based
streaming workflow (right) accelerates acquisition and compu-
tation time using many compute nodes acting as a swarm of
users, each with their own IP address and coordinated workload.
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minimizing impact on DMC operations are being explored,
but are outside of the scope of this article.

We choose the Python programming language to imple-
ment our application, as it is familiar to researchers, quick to
learn, and contains a growing number of scientific libraries.
ObsPy provided useful data structures and access to data
at the DMC via a FDSN-WS client. The Dask distributed
library provides a simple specification to describe, submit,
and execute a computational graph on a distributed system
(Rocklin, 2015; Dask Development Team, 2016). Figure 4
depicts a computational graph for a detection algorithm
over two days of continuous single-channel seismic data.
Tasks (Python functions and their associated inputs) at
the base of the graph request different spans of data, which
are passed to detection tasks, whose results are ultimately
combined and returned to the researcher. Tasks in the graph
are executed in dependency order, but tasks that load data
and those that do calculations are executed concurrently,
which distributes data requests throughout the lifespan of
the calculation and reduces the request load on the DMC
at any single time.

Application:
Continent-Scale
Feature Extraction
and Detection
Using Continuous
Seismic Data
We test our cloud-based infra-
structure with a continental-
scale detection of harmonic
tonal noise (TN), a signature
of persistent mechanical
energy sources (Marcillo and
Carmichael, 2018). TN is a
spectral feature characterized
by discrete narrowband peaks
and sequences of overtones.
The TN detector consists of
overlapping windowed Fourier
transforms and detection of
spectral peak sequences
between ∼0:5 and ∼20 Hz.
This is an example of an algo-
rithm that was prototyped on a
limited dataset (Marcillo et al.,
2015), expanded to a larger
“experiment scale” application
(Marcillo and Carmichael,
2018), and is now being used
in a “survey scale” investigation
(MacCarthy et al., 2019;
Marcillo and MacCarthy, 2020).
Further, our TN application is

just one example of a broad class of continuous-data feature
extraction and detection applications, and our results may have
broad applicability to other applications in this class.

Using our streaming workflow, we ran our TN detector over
continuous seismic data for all BHZ channels of the _US-TA
(USArray TA) virtual network available at the IRIS DMC,
which consists of 2074 stations in 14 networks (see Data
and Resources). Data were requested in three-hour increments
and merged into six-hour moving windows with 50% overlap
for detection. Over 4000 channel-years of data were retrieved
(but not stored) in more than 12.7 million waveform requests.
The total volume of seismic data analyzed was 5.6 TB, with an
average data throughput of 1:7 GB=min to the cluster during
active processing. The streaming TN survey was completed in
3 days and 8 hours, during 8–11 February 2019. Figure 5
depicts the time progression of the survey, performed station-
by-station from west to east. Stations in Alaska and the west
coast were completed on the first day, including the deep
archives (ten or more years of station data) of the CI network
in southern California. The western United States was com-
pleted on the second day, the midwestern United States on

load

detect

collect

return

l

Return results to user

Collect detections via 
tree-reduction

Merge waveforms, do
spectral feature detection
Retrieve waveform from
IRIS DMC

 Task Data

Figure 4. A computational graph representing a moving-window seismic detection application on
two days of continuous data from a single channel. Circles represent tasks (Python functions),
rectangles represent data consumed or produced by tasks, and arrows represent dependencies and
the flow of the calculation. In our application, “load” tasks (bottom) request three hours of
continuous data from the DMC, and are consumed two at a time by “detect” tasks. Results are
collected in a binary tree reduction for efficiency, and returned to the user.
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the third, and the eastern United States and backfill (due to
request errors) in the last eight hours. Mean station processing
rate was approximately 15–20 s per station-year. The costs to
AWS were ∼$120 per day, almost entirely due to EC2 usage,
resulting in a total cost of just over $400. The results of the
survey are described in a companion article (Marcillo and
MacCarthy, 2020).

Scalability of Streaming Analysis
The TN survey described previously was performed with the
coordination of the IRIS DMC, so that the scalability and
impact of streaming analyses on DMC operations could be
assessed. These depend on many factors, including the size of
the cluster and the performance of the algorithm, the distrib-
uted task scheduler, the data center, and the cloud provider.
Although many of these factors are beyond our ability to quan-
tify, we did examine how data throughput and data center con-
nection rate vary with cluster size by performing time-limited
TN detection runs (two hours each) using clusters of between 1
and 100 nodes, and analyzing server logs from the IRIS DMC
covering this activity.

A striking increase in FDSN-WS connection rate at the
DMC is associated with the onset of the 8–11 February TN
survey (Fig. 6a). The mean connection rate originating from
a 50-node cluster during the time-limited run is more than half
of the entire normal community rate of ∼4900 connections per
minute during the period of the survey (Fig. 6b). As cluster size
is increased from 1 to 100 nodes, connection rates from the

cloud to the DMC further ap-
proach and sometimes exceed
this background rate. The total
amount of data processed for
the two-hour runs on 1, 10, 20,
50, and 100-node clusters was
12, 102, 178, 195, and 207 GB,
respectively. Because of the fac-
tors mentioned previously and
discussed subsequently, data
throughput was highly variable
(Fig. 6c), and these values
should be considered only
approximately representative
of cluster performance for
other streaming applications
of this class.

Both connection rate and
data throughput rate scale sub-
linearly with cluster size, and
vary more in the 50- and
100-node clusters than in the
smaller ones. We attribute both
to a combination of sublinear
algorithm scaling, larger

FDSN-WS response times for the two larger clusters, and var-
iations in cloud provider performance. Stations were processed
in series, and final execution of the computational graph for
each station required the results of all three-hour segments.
Delays in processing individual windows delayed completion
of the entire graph. Although most FDSN-WS response times
were much less than 10 s, some for the 50- and 100-node clus-
ters were larger than 60 s, causing both the connection rate and
data throughput to vary significantly. It is not clear whether the
large AWS clusters directly impacted DMC response times or if
they simply experienced a greater variety of response times
through brute force sampling. It is clear, however, that our
streaming analysis scales less than linearly with cluster size.

It is also clear that great care should be exercised to coor-
dinate with the DMC or other data providers to undertake such
a streaming analysis, so that operations are not negatively
impacted and resources remain accessible to other users. As
cloud computing becomes increasingly easier for researchers
to leverage and the definition of “user” changes (i.e., a single
IP address vs. a swarm of IP addresses), traditional methods to
limit data center resource usage by a single “user” are less effec-
tive. Furthermore, the resource usage varies significantly by the
style of the access (usually dictated by the study itself) and is
difficult to generalize into guidelines. For example, large num-
bers of requests for small time windows of data encounter dif-
ferent limiting factors than fewer requests for larger selections
of data. Finally, it is likely that cloud provider service speed
varies over time, sometimes known as the “noisy neighbor”

Figure 5. Map of stations processed in the industrial noise survey. Symbol colors correspond to the
time a station was completed (processing west-to-east) and shapes to the number of station-years
of data held at the IRIS DMC for that station. Inset map shows the region of Alaska.
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problem, as EC2 instances are virtual computers running on
shared hardware. This makes predicting performance chal-
lenging, so the scalability behavior described here should,
again, be considered approximate. Although this work would
benefit from additional tuning to improve throughput and
reduce potential data center impact, the objective of the analy-
sis was not to optimize this particular calculation, but instead
to test the streaming workflow as simply as possible. For exam-
ple, the three-hour request length we employed was chosen to
simplify the following calculation, and may not have been the
optimal length for a given data center to fulfill.

Discussion and Conclusions
The cloud-based streaming workflow demonstrated here offers
two essential benefits over a traditional download-store-
process workflow: scalability and flexibility. Using a cluster
in the cloud and existing open-source software, we were able
to acquire and process 5.6 TB of compressed seismic data, over
12.7 million continuous three-hour waveform segments, in
80 hr. This represents an order-of-magnitude increase in
acquisition and processing speed compared to a traditional

workflow. Further, the cloud infrastructure employed in our
application was provisioned and instantiated by a single
researcher using only a commercial cloud account without
the need for access to traditional clusters or HPC systems.
The ability to execute independently empowers researchers
to rapidly iterate on a great variety (e.g., signal detection, ambi-
ent noise correlation, waveform feature extraction, or machine
learning model training) and scale of analyses (e.g., local sparse
to global dense datasets). Although there is a learning curve for
working in the cloud, as with HPC, the consistent user expe-
rience, broad and loquacious user community, and autonomy

(a)

(b) (c)

Figure 6. (a) Mean FDSN WebServices connections per minute
received at all primary and auxiliary IRIS DMC servers during 5–12
February, 2019 (UTC), showing connections originating from the
50-node Amazon Web Services (AWS) cluster used in Figure 5
(orange) and those from normal community usage (gray).
(b) Connection rate distributions for AWS clusters of varying
sizes. Mean connection rate for normal DMC usage is calculated
from (a). (c) Data ingestion rate from IRIS DMC to AWS for
various cluster sizes.
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to experiment are a potent combination to make researchers
quickly productive. Unrestricted by the administrative and
security requirements that govern HPC systems nor the tedium
of data storage, streaming continent-scale applications like
ours can be executed in days instead of months. Finally, cloud
infrastructures are flexible enough to adapt to the evolving
needs of many research applications (e.g., processing speed,
memory requirements, graphical processing unit vs. central
processing unit architecture).

The streaming workflow is best suited for exploratory
analyses on ephemeral computing resources. For repeated
computations or for algorithms that require frequent data
re-access, streaming directly from data centers becomes less
favorable due to its reliance on data transfer over the Internet
compared to the speed of fully in-cloud data storage. To illus-
trate, we compare the throughput achieved by our streaming
calculation with a similar calculation performed using data
stored in Amazon’s Simple Storage Service (S3) and a cluster
of the same size. The mean streaming throughput of our
100-node cluster was approximately 2 GB per minute, while
that achieved using data stored in S3 was 43 GB per minute.
At the streaming rate, the 5.6 TB of data in our application
would be processed in approximately two days, while it would
take just two hours at the in-cloud rate. Even more compelling
is the fact that in-cloud processing is not limited by the number
of nodes with public IP addresses, so processing could be fur-
ther accelerated simply by adding more nodes. In-cloud stor-
age will have a dramatic impact on the time it takes to access
large data sets, such as the PoroTomo DAS dataset (∼45 TB;
Wang et al., 2018), or the Caltech/U.S. Geological Survey
Southern California Seismic Network (SCSN) continuous
waveform archive, recently deployed to AWS (∼100 TB;
Hauksson et al., 2020). Instead of weeks or months to retrieve
at over-the-Internet speeds, these datasets could be retrieved in
18 and 38 hr, respectively, at in-cloud speeds like the one we
achieved.

Another benefit of in-cloud storage is that data and analyses
can be easily shared, for example, by setting the appropriate
permissions in the storage service. With open permissions,
Amazon S3 data can be accessed or downloaded by anyone,
using a web browser or one of many programmatic interfaces.
For large datasets, this can dramatically increase data usage
and access speed, particularly for other in-cloud users. Further,
on a common computing platform, actual calculations can be
shared in the form of code repositories and Docker containers,
for example, enabling new collaborative workflows based not
just on shared data, but also on shared computing environ-
ments. Although costs may be incurred for data that are
accessed or downloaded from outside of a cloud provider’s
platform, these costs can be managed, in the case of data in
S3, by assigning it “Requester Pays” permissions. This type of
access requires an AWS account that will be charged for any
costs incurred. A full exploration of storage and access options

for in-cloud data is outside of the scope of the work presented
here, but is an area of ongoing investigation and is the subject
of future work.

In addition to retrieval speed considerations, data center
capacity is finite and commonly designed to support present-
day usage patterns. Although spare capacity usually exists,
widespread adoption of the streaming workflow presented here
represents a pattern of significant increase in data access and
would likely have negative impact on data center performance.
This could not only reduce both streaming and traditional
retrieval speeds, but also place a large operational burden on
data centers to adjust to new access patterns. It is, therefore,
strongly recommended to coordinate with data centers before
executing a streaming calculation. To increase capacity and
allow these in-cloud data access rates, the IRIS DMC is evalu-
ating and working toward providing its data repositories and
associated services within or near cloud or HPC systems. Also,
the Southern California Earthquake Data Center has recently
deployed its continuous waveform archive to AWS S3 storage,
enabling in-cloud retrieval speeds and new access patterns like
those described here (Hauksson et al., 2020).

The cost of data storage and computation is important
when considering working in the cloud. Each cloud service
provider has a different fee structure and cost estimation tools
(see Data and Resources). Using our streaming application,
we describe our costs and illustrate a trade-off between storage
and computation costs, with the caveat that each application
will vary in its needs. No data were stored in our application,
so cluster run time was the dominant cost. Our three-day cal-
culation using 50 nodes cost over $400, and this cost would be
incurred for each such streaming calculation. Depending on
the data volume and number of repeated analyses, however,
storing data in the cloud may offset this cost, through much
shorter computation time. Presently, storing 5.6 TB in S3 costs
only $130 per month, and the corresponding two-hour 100-
node calculation using these data costs only $20 each time.
With some information about these cost regimes, a detection
survey like ours may be something that researchers may con-
sider budgeting and planning for in their future proposals.

In addition to speed, data center service capacity and costs,
there are a number of other practical challenges for cloud-
based analyses. Most research software is not written for dis-
tributed systems, and most researchers are not familiar with
the tools of working in the cloud. Error handling, monitoring,
and security are more difficult on a distributed system com-
pared to a desktop or large server. Finally, standard seismic
formats, such as miniSEED, SAC, SEG-Y, or PH5 may not
be optimal for access on distributed systems, where the balance
between compression, file size, and network communication is
different compared to local or HPC systems.

Although these challenges are daunting, working in the
cloud also comes with a large base of community knowledge
to overcome them, analogous to the advantages associated with
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adopting a Portable Operating System Interface (POSIX) com-
pliant operating system. This knowledge has been assembled
by a wide and diverse community, including practitioners of
both research and business. For example, the Dask paralleliza-
tion library and the cluster management software Kubernetes
and Helm were originally developed by corporations and data
scientists: Anaconda Inc., Google, and Deis, respectively.
Similarly, advances in cloud security and monitoring are con-
stantly being made in the business community. New cloud-
friendly compression algorithms such as Zstandard, first devel-
oped by Facebook, and storage formats such as Zarr, originally
developed by Alistair Miles at Oxford University and the
Centre for Genomics and Global Health, offer the opportunity
for cloud-performant data access beyond traditional bespoke
seismic formats (see Data and Resources). An example of how
these disparate areas of expertise can add value to each other
to address problems of scale in the earth science community
is in the Pangeo project (Robinson et al., 2019). We view the
streaming workflow presented here as a bridge between tradi-
tional research approaches and those that fully adopt such
cloud-native technologies. Though moving to the cloud re-
quires a time investment, the benefits of working with a large
and diverse community on common computing platforms may
represent as great an opportunity for accelerating modern
large-scale seismological research as the establishment of com-
munity instrument pools and data repositories. We see the
adoption of the cloud as a viable and exciting option for data-
intensive research in seismology.

Data and Resources
Waveform data used in this study were acquired from the
Incorporated Research Institutions for Seismology (IRIS) Data
Management Center (DMC). Networks providing data were AK
(Alaska Earthquake Center, Univ. of Alaska Fairbanks, 1987), AT
(NOAA National Oceanic and Atmospheric Administration (USA),
1967), AV (Alaska Volcano Observatory/USGS, 1988), AZ (Vernon
and UC San Diego, 1982), BK (Northern California Earthquake Data
Center, 2014), CI (California Institute of Technology and United
States Geological Survey Pasadena, 1926), CN (Geological Survey
of Canada, 1989), II (Scripps Institution of Oceanography, 1986),
IU (Albuquerque Seismological Laboratory (ASL)/USGS, 1988), LD
(The Lamont–Doherty Cooperative Seismographic Network), NN
(University of Nevada, Reno, 1971), TA (IRIS Transportable Array,
2003), US (Albuquerque Seismological Laboratory (ASL)/USGS,
1990), and UU (University of Utah, 1962). Analysis was performed
using Python 3.7, NumPy, SciPy, Pandas, ObsPy, and Dask. Plots were
made using Matplotlib (Hunter, 2007) and Basemap. Amazon EC2
documentation can be found at https://docs.aws.amazon.com/ec2/
index.html (last accessed October 2019). IRIS DMC Data Statistics
retrieved from http://ds.iris.edu/data/distribution/ (last accessed
February 2019). Cloud cost calculators can be found at https://
calculator.s3.amazonaws.com/index.html (Amazon Web Services),
https://azure.microsoft.com/en-us/pricing/calculator/ (Microsoft
Azure), https://cloud.google.com/products/calculator/ (Google
Cloud Platform), all last accessed October 2019. Announcement of

Zstandard can be found at https://engineering.fb.com/core-data/
smaller-and-faster-data-compression-with-zstandard, and documen-
tation for Zarr at https://zarr.readthedocs.io/en/stable/ (both last
accessed October 2019).
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