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Abstract This paper is a review of research work with cylinders in steady currents. The 
emphasis is mainly on cylinders in water, particularly the research undertaken at BHRA and 
its general application. Comparisons are made with the work of other authors for both water 
and air flow and over 60 references are reviewed. The mechanisms of flow-excited oscillations 
are discussed for isolated vertical and inclined cylinders. The effects of length/diameter ratio, 
cylinder surface roughness and channel blockage are presented. Wake interactions caused by 
cylinder-cylinder and cylinder-splitter arrangements are detailed. The results of tests with pane 
and three-dimensional frames are described and quantified in terms of isolated cylinder data. 

The paper closes with a section describing methods of avoiding oscillations by calculation 
at the design stage or by the use of clamp-on devices for completed structures in water fow. 

1. I N T R O D U C T I O N  

WHEN a fluid flows about a stationary cylinder the flow separates, vortices are shed and 
a periodic wake is formed. The frequency ( f0  of pairs of vortices is a function of velocity 
(V) cylinder diameter (d) and Reynolds number (Re). S, the non-dimensional wake Strouhal 
number is defined as S =fvd/v, and over a wide range of Reynolds numbers I0 ~ < Re< 10 :', 
S -~ 0.2. The general relationship between S and Re is well documented (1), Fig. 1, but 
absolute values of S also depend upon cylinder surface roughness, length/diameter ratio 
and turbulence levels. (See 2.6). 

Each time a vortex is shed from the cylinder, it alters the local pressure distribution, and 
the cylinder experiences a time-varying force at the frequency of vortex shedding. 

If the cylinder is flexible or flexibly mounted, interactions can arise between the vortex 
shedding mechanism and the cylinder deflections. Under certain conditions, sustained 
oscillations can be excited and the cylinder oscillates at a frequency close to, or coincident 
with, its natural frequency. Such oscillations are classed as self-excited, or self-controlled. 

In air flow, chimneys, telegraph wires and pipeline suspension bridges oscillate almost 
invariably in a direction normal to the flow of air. These are the so-called crossflow 
oscillations. There have been rare exceptions when cylinders in air flow have oscillated in 
the direction of flow (i.e. in-line motion) but these have been due to peculiarities of their 
installation (2, 3). In water, marine piles, submarine periscopes and braced members of 
offshore structures can be excited to oscillate in both the in-line and cross-flow directions (4). 
The in-line oscillations can be excited at flow velocities much lower than the critical velocities 
for cross-flow motion. The differences between the onset of cylinder motion in the two 
fluid media is probably due to differences in energy balances within the two systems. 
However, Richardson (5) quotes B6nard as maintaining that the 'spacing and disposition 
of vortices in air flow do not conform to those in water flow'; this has not been substantiated 
generally and must be considered rather unlikely. 
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General relationships between Strouhal number, steady drag coefficient and Reynolds 
number. 

2. GENERAL REVIEW OF RESEARCH 

Background 
Aerodynamicists usually rank experimental data by relating non-dimensional oscillatory 

amplitudes (y/d) to the two non-dimensional groups Reduced Velocity V/nd (n ---- cylinder 
natural frequency) and the Stability Parameter K s = 2meS/pd 2 (me is the equivalent mass/ 
unit length, 8 is the logarithmic decrement and p is the mass density of the fluid). This 
practice will be followed here. 

It will be noted that Reduced Velocity and Strouhal number are related; a Reduced 
Velocity of 5 is the inverse of the Strouhal number S for the condition f ,  - n. For values 
of V/nd less than 5, j% is less than n; conversely for a V/nd value greater than 5,.[~ is greater 
than n. Similarly, K s can be interpreted as an amalgamation of the mass ratio me/pd a and 
the logarithmic decrement &This grouping results from the energybalance at resonance (6). 

The variation of oscillatory amplitudes of cylinders with variation of mass ratio and 
damping has been investigated by several authors (4, 7-9). Generally, it is agreed that 
within limits the amplitudes could be correlated through equality of the product me& 
King (10) demonstrated the close agreement between hydroelastic model results and 
fullscale site tests of marine piles, using the oscillatory amplitudes, V/nd, and K~ as bases 
of comparison. The Reynolds numbers of the two sets of results differed considerably and 
the agreement between the model and fullscale behaviour is explained by reference to the 
comparative uniformity of the apparent Strouhal number of oscillating cylinders (10). 

The absolute values of V/nd for excitation of sustained oscillations are also influenced 
by length/diameter effects (see Section 2.1) and the proximity of sidewalls. 
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2.1 Correlation length, cylinder length and threshohl amplitudes 
There is considerable evidence to show that vortices are shed in cells from stationary 

cylinders; the length of each cell is termed the correlation length. Absolute values vary 
with Reynolds number, turbulence, length/diameter ratio, and surface roughness. Typical 
values are summarised in Table 1 below: 

TABLE 1. CORRELATION LENGTHS AND REYNOLDS NL~MBERS OF SMOOTtt 

CYLINDERS 

Reynolds number Correlation length Source 

40 .--. Re < 150 15d-20d (11) 
150 < Re < l0 s 2d-3d (11) 
1.1 x l0 t < Re < 4.5 x 10 ~ 3d-6d (12) 
> l0 s 0.5d (11) 
2 x l0 s 1.56d (13) 

If the cylinder is long compared with the correlation length, not all vortices cause force~ 
in phase with each other, resulting in a reduction in the net oscillating force. Keefe (14) 
was able to vary the oscillatory forces on a cylinder by attaching concentric discs per- 
pendicular to it. A decrease in disc spacing from 18d to 3d increased the oscillatory forces 
by 35% and it must be concluded that the discs split the cylinder into a series of well 
correlated, contiguous sections. 

The correlation length is increased (15) when the cylinder oscillates with an amplitude 
greater than a certain proportion of the cylinder diameter. This is termed the threshold 
amplitude. The threshold amplitude for cross-flow oscillations is l0 % of a diameter (16). 
King and Every (17) showed that the threshold amplitude of in-line oscillations is between 
1 o/ and 2 o, of a diameter. The maximum amplitudes possible for tile cross-flow and in- /o /o 

line directions are about 2 diameters and 0.2 diameters and the threshold amplitudes are 
similar proportions of the respective maxima. Additionally, the oscillatory force/unit 
length for long cylinders ie less than for short cylinders, when the oscillatory amplitude is 
small. As the amplitude is increased, the oscillatory force/unit length increases more rapidly 
for long cylinders than for short cylinders, until at some amplitude the forces become 
approximately equal (11). The implication is that the cylinder oscillations must re-organise 
the vortex shedding process. In particular, the re-organisation would be most evident 
for long cylinders, where initially there would be many regions of out of phase vortex 
shedding. 

Gowda (8) presented the results of wind tunnel tests with cylinders of varying length, 
with and without end plates. He proposed a value of L/d ~_ 45 for freedom from end 
effects (B6nard (18) suggested L/d ~- 27). Figure 2, taken from Gowda, shows the variation 
of vortex shedding frequency with variation of cylinder length. For cylinders with three- 
dimensional flow effects (end effects) the shedding frequency is consistently lower than for 
the two-dimensional cylinder (with end plates) except for L/d ~ 50; for cylinders ofL/d _~ 15, 
the shedding frequency is 35 % lower than for the infinite cylinder case. 

Gowda also investigated the effects of sizes of end plates on vortex shedding frequency 
showing that for a cylinder o fL /d  = 18, the diameter of the end plates should be at least 
10d to avoid all end effects. 
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FIG. 2(b). The influence of stationary cylinder L/d upon vortex shedding. 

2.2 Lock-in or synchronisation of vortex shedding 
Having introduced the Strouhal number of a stationary cylinder and shown the 

velocity-dependence of the vortex shedding frequency, we can consider the dominant wake 
frequencies of both stationary and Self-excited cylinders. 

Lock-in is the phenomenon whereby the cylinder motion apparently controls the vortex 
shedding frequency. Over a range of velocities the cylinder oscillates at or near its natural 
frequency and the vortex shedding is synchronised with this frequency (19, 20). 

In a series of laboratory tests (4) several interesting aspects of cylinder/wake interaction 
were recorded. Long cylinders were mounted as vertical cantilevers from the bed of a 
water channel; strain gauges glued to their surfaces sensed the cylinders' response to vortex 
shedding. Thermistor probes were placed in the wake to detect dominant frequencies. 

Figure 3(a) shows the dominant wake frequencies for a range of velocities. Initially, as 
the velocity is increased from zero, the cylinder is stationary and the vortex shedding 
frequency detected by the thermister probes follows the S = 0.2 straight line relationship. 
However, as the lower critical velocity is approached, the cylinder begins to oscillate and 
the dominant wake frequency shifts from the S ---- 0.2 line and remains nominally equal to 
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FIG. 3(a). Lock-in or synchronisation of vortex shedding crossflow oscillations. 

the cylinder's natural frequency (indicated by the arrow). Lock-in occurs over a wide range 
of velocities (point A to point B), and the recorded vortex shedding frequency coincides 
approximately with the natural frequency of the cylinder. The cylinder oscillations vary 
from the still-water natural frequency, being slightly lower at the onset of oscillations and 
slightly higher at the upper critical velocity (point B). At a velocity only marginally above 
the upper critical, (C) the cylinder's large amplitude motion ceases and the vortex shedding 
frequency returns to the value predicted by the S = 0.2 straight line for a stationary 
cylinder. The trace of Fig. 3(b) was recorded from the virtually stationary cylinder at the 
velocity corresponding to C. A comparison of the strain gauge outputs from the middle and 
base of the cylinder reveals a lack of similarity between the motion of these sections, 
indicating a variation in phase and frequency of the exciting forces along the cylinder length 
which is apparently consistent with the concept of the vortices shed in cells from pseudo- 
stationary cylinders. 
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Fla. 3(b). Loss of correlation at the end of lock-in (Point C on Fig. 3(a)). 
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Gowda (8) showed that L/d eflects influenced the b'Tml values at which o,,.dluta,n~ -c~:  
initiated. Generally, cylinders of finite length were excited at lower velocitie~ Ih,~ d~oc ,~! 
infinite length. This is rather surprising since Gowda previously showed fiwt 2:,/ ~t>., 
affected the vortex shedding frequency (Sectima 2.l) and it would s e e m  lo~zicai [o CXpCC~ 
that the augmentation of the lower frequent) Strouhal vortex shedding ,ff the ttuc,,.. 
dimensional cylinder would be achieved by increasing the velocities (and rims t[/mt) to 
produce lock-in. 

Figure 4 lists the different types of cross-flow oscillation for a range of damping levels 
(20). In Fig. 4(a) the amplitude remains below the threshold and fails to control the wake 
frequency. The response is small, and forced at the Strouhal vortex shedding frequency. 
In the middle figure the previously described (4) synchronisation occurs over .~ ~;mall velocity 
range although the amplitude is well below the threshold quoted by (I 6). ()r, each side of 
the resonant amplitude response, the cylinder is forced to oscillate at the Strouhal w~rtex 
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shedding frequency. Finally, Fig. 4(c) shows the response of a very lightly damped cylinder; 
the cylinder oscillates at its natural frequency over a comparatively wide velocity range, 
and this may be regarded as a magnification of the middle portion of the amplitude response 
in Fig. 4(b). 

The wake frequency and cylinder motion traces of the first and second instability regions 
in-line are shown in Fig. 5. As for the cross-flow direction, the vortex shedding frequency 

© 6 

eJ 

o '4 

C4 @ 

g 

× 

+- 

o 
> 

] 2  

• i 

A l u r r u n i u m  p~te Z .  I I 
t 

~JL =O.eSM,=O.SOk Lb .~.~'/ ,,d ~' I 

rO~q2~ £ C 

/ 
Base bending m o m e n t  

× / ~  f u n d a m e n l a /  mode 

: [/ " ~ L  l ,/ V i ! 
5 I0 15 LO 25 30 35 

V e l o c i t y ,  m / s  

E 
o 

2 e~ 

Flo. 5. Vortex shedding frequencies; self-excited oscillations of the cylindcr ill the in-line 
direction. 

initially follows the S = 0.2 line and the cylinder remains virtually stationary. At point A 
(V/nd - 1.7) the cylinder begins to oscillate at its natural frequency in the in-line direction 
and this first instability region extends until point B (V/nd ~- 2.3). Between these two 
velocities the dominant wake frequency deviates only marginally from the S = 0.2 line. 
Thus, although the cylinder is oscillating, the wake is similar to that shed from a stationary 
cylinder. The two nearly symmetric vortices are shed simultaneously once each cycle as the 
Cylinder reverses into the flow direction. The symmetric arrangement of vortices is 
theoretically unstable (21) and this is borne out in practice; they coalesce to form a staggered 
alternate street with a frequency predicted from the Strouhal number at the velocity 
considered. The coalescence takes place immediately downstream from the cylinder and 
the early stages can be seen clearly in Fig. 11. This shows the two approximately symmetric 
vortices being shed from the cylinder, and three alternate vortices formed by the coalescence 
of symmetric vortices from previous cycles of motion. 

It has been shown (4) that throughout the first instability region, the ratio of cylinder 
frequency to dominant  wake  frequency (n/f~.) apparently slips into 'convenient' numbers.  
It will be remembered that V/nd can be regarded as a ratio of cylinder frequency to vortex 
shedding frequency; at V/nd = 1.25 (the onset of oscillations) n / f  v ~- 4; at higher velocities 
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the ratios change through 7 : 2, 3 : 1, 7 : 3, 13 : 6, until finally at V/nd 2 , 5  (the end ot 
the instability region), the ratio n/f~ is 2. This could account for the 'steps' in the outline 
shapes of the response curves for the first instability region as shown in Fig. 5. Figure 6 
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F1G. 6. The onset of instability in-line. 

shows the onset of oscillations and the dominant wake frequencies. Note that the onset 
occurs at V/nd ~- 1.25 and this represents n/.L ~-- 4. The frequency of the wake is almost 
unaltered when compared with the stationary cylinder value but there is an increase in the 
magnitude of the wake signal owing to augmentation of the vortex circulation. 

The second instability region in Fig. 5 extends from point C (V/nd ~-- 2.8) to point D 
(V/nd -~ 3.2) and the dominant wake frequencies are comparatively constant throughout 
this region. Moreover, the dominant wake frequency is equal to one half the cylinder 
natural frequency, and the vortices are shed from alternate sides of the cylinder (Fig. 12). 
Force and surface pressure measurements on stationary rigid cylinders (22, 23) have 
indicated a 2 : 1 ratio between the frequencies of forces in the in-line and cross-flow direc- 
tions at a given vortex shedding frequency. Thus, for lock-in to occur on the flexible cylinder 
in the second instability region, the in-line frequencies would be synchronised when 
.f~ : n/2 (Fig. 5). 

2.3 Logarithmic decrement and the initiation of  in-line oscillations in water 
If the free end of a circular cylinder in a depth, h, of still water is displaced and released, 

the cylinder oscillates freely with a gradually decreasing amplitude. The rate of decay of this 
transient, measured in terms of the logarithmic decrement is approximately constant and 
independent of amplitude effects for initial amplitudes of up to 0.5 diameters (24). This 
implies pseudo viscous damping. The logarithmic decrement in air (25) is produced by the 
structural material hysteretic damping and the comparatively insignificant air damping, 
approximating to viscous damping i.e., 8 is constant. In a depth, h, of water, the total loga- 
rithmic decrement 8,comprisesthe structural contribution (8) and theviscous damping of the 
water (Sh). This results in 8, = constant for each water depth, natural frequency and cylinder 
geometry (24), i.e., 8 c = 8 + 8k. The graph of Fig 7 demonstrates this effect, showing the 
way in which 8h increases very rapidly for h/L ~ 0.5. 
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When oscillations are initiated in flowing water, they do not occur instantaneously 
because finite time is necessary for the establishment of the interactions between vortex- 
shedding and the cylinder's flexibility. A typical u.v. trace of the onset of instability (Fig. 6) 
shows that the limiting amplitude is established after approximately 30--40 cycles (26). The 
initial rate at which the instability occurs is equivalent to a negative logarithmic decrement 
(--  6e) and for the trace shown, -- 6e = 6h, where 6h is a function of water depth. At the 
lower water levels the Stability Parameter K~ is larger and these higher values are associated 
with higher rates of instability. In a wind-tunnel (27) it has been demonstrated that a fairly 
heavily damped cylinder could suppress the excitation of small amplitudes whilst large 
amplitude motion was sustained after release from an initial displacement. This would 
represent the limiting condition for the -- 6, = 0 rate of onset of instability. 

The behaviour of a 'stable' cylinder (i.e. Ks -~ 1.2) in flowing water is reported by King 
and Prosser (28). The cylinder was displaced and released, and the resulting logarithmic 
decrement recorded over a range of velocities (Fig. 8). From the initial still water value, 6 t 
reduced with increasing velocity, reaching a minimum at the equivalent of V/nd = 1.2 and 
then increasing abruptly for further increases of velocity. This demonstrates that although 
the hydrodynamic damping was a minimum, the Stability Parameter was large enough to 
suppress sustained excitation. 

2.4 Cross-flow oscillations 
The excitation range of cross-flow oscillations in air (29, 30) extends over 4.75 < V/ 

nd < 8 and maximum amplitudes occur in the range 5.5 < V/nd < 6.5 
In water (4, 31), the excitation range of cross-flow oscillations can be increased to 

4.5 < V/nd < 10 with maximum amplitudes falling within the range of 6.5 < V/nd < 8. 
The differences between the performance in air and water are caused by differences in 

mass ratio and length/diameter ratio, although test facility details (i.e., damping, boundary 
effects and turbulence levels) would also influence the results. 
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The oscillations arise from interactions between the cylinders ~ flexibility and the 
mechanisms in which vortices are shed from alternate sides of the cylinder. Figure 9 shows 
the wake of a cylinder oscillating in the cross-flow direction. The interactions augment 
circulation in each vortex so that large dimples form in the water surface, as seen in the 
photograph. The width of the vortex street is a function of the oscillatory amplitudes 
because a vortex is shed at each crossflow reversal of direction, i.e., each half cycle. Through- 
out the major part of the excitation range, the frequency of vortex shedding is no longer 
a function of velocity but is approximately constant and equal to the cylinder's natural 
frequency (in the case of a cylinder in water, the natural frequency measured instill water). 
This is the synchronisation described in 2.2. The width (a) and longitudinal spacing (b) of 
vortices in a fully developed street shed from a stationary cylinder, are theoretically related 
so as to maintain a constant ratio a/b = 0.28 (21) and this has been confirmed by experiment. 
This apparently also applies to the vortex wakes of oscillating cylinders and the longitudinal 
spacing adjusts to satisfy the a/b = 0.28 condition for each change in oscillatory amplitude 
(and thus a). 

The oscillatory amplitudes are dependent not only upon V/nd but also upon the Stability 
Parameter K, as shown in Fig. 10(a), which was compiled from wind tunnel and water 
channel experimental results and the common curve is of approximately hyperbolic form. 
The largest amplitudes were recorded for the smaller values of Ks and for a sufficiently 
large Ks ( >  18) the cylinder was virtually stationary. The amplitudes plotted on the graph 
are the maximum amplitudes mutually experienced by the cylinder and fluid. For cylinders 
in air flow these are fairly easily defined but for the water channel tests with part-immersed 
cylinders the amplitudes are functions of mode shape. For the fundamental (sway) mode the 
largest amplitudes are recorded at the water surface, while for higher normal modes they 
would be those recorded for the immersed sections. It is not meaningful to quote amplitudes 
of sections of the cylinders not exposed to the fluid forces because the essentially non-linear 
and amplitude-dependent flow excitation phenomena are extant only over the common 
immersed length. 

The form of the Stability Parameter also allows for the part-immersed effects by 
re-defining an equivalent cylinder whose length is equal to the water depth. Consider a 
vertical cylinder of length L, generalised mass/unit length m, at x from the bed level and 
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having a generalised deflection Yx at x. An equivalent cylinder of  length equal to the water 
depth h but possessing the original quantity of  kinetic energy could be defined: 

f~ ½mx(yxw)2dx = ½m,, f l  0"4v)2dx 

where w = natural frequency 

f L mxy  2dx 
Thus the equivalent mass/unit length m~ = " . 

The term m.,. will consist of  the cylinder mass/unit length tn~ (including internal water m,< 
if any) and the added mass m~ associated with the outside diameter of the cylinder (see 
Section 4). This form of  me can be used in K, if the in-phase component of  fluid force is 
inertial and invariant with fluid velocity (i.e., if the added mass is constant and 'frozen' 
to the cylinder). Experimental results have confirmed that within limits added mass is not 
affected by amplitude and frequency (32). Darwin (33) points out that in reality the added 
mass cannot be regarded rigourously as a collar of  fluid surrounding the cylinder as the 
system is a time-varying one, involving changes in the 'drift mass' each half cycle. 

From Fig. 10 we can observe that the maximum cross-flow amplitudes are approximately 
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2 diameters, and unlike mechanical oscillations, the amplitudes do not tend to infinity tot 
zero damping. This amplitude dependence is typical of non-linear self-excited oscillations. 

2.5 In-line oscillations 
Oscillations in the in-line direction are contained within two adjacent but separate 

instability regions (4). The first instability region covers the range 1.25 < l~/nd -< 2.5 and 
excitation in-line thus is initiated at velocities only one quarter of those necessary for cross- 
flow excitation (i.e., V/nd = 1.25 c.f. V/nd ~ 5). Maximum amplitudes coincide with 
V/nd ~_ 2.1. The second instability region is 2.7 < V/nd < 3.8 with maximum amplitudes 
at V/nd ~- 3.2. These values are influenced by the magnitude of Ks, length/diameter ratio 
and other effects. The amplitudes of oscillation in the two instability regions are approxi- 
mately equal. Cross-flow oscillations are characterised by exclusively alternate vortex shed- 
ding, but these two instability regions of in-line motion are associated with both symmetric 
and alternate vortex shedding (4). The first instability region is identified by symmetric 
vortex shedding and the second by alternate vortex shedding (see Figs. 11 and 12). These 
results are applicable to at least the first three normal modes of cantilever oscillations 
in-line. A composite graph of successive instability regions of in-line and cross-flow motion 
may be drawn to a base of flow velocity (Fig. 13). 
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FIG. 13. Composite graph of instability regions in-line and cross-flow. 

Figure 10(b) shows the oscillatory amplitude v K, graph for the first three normal 
modes of in-line motion. It is similar in shape to Fig. 10(a) and reveals that significant 
oscillations in-line will be initiated only if K, < 1.2 Maximum amplitudes in-line are 
approximately 0.2 diameters, or about one-tenth of the corresponding maximum cross- 
flow amplitudes. 

The Stability Parameter K, plotted in the graphs of Fig. 10 were calculated according 
to the descriptions in Sections 2.4 and 4. 

Although the graph of Fig. 10(b) was compiled from laboratory experiments (26) the 
results of a full scale test (34) are also included and these fall on the common curve. Hydro- 
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elastic model testing (10) has previously established the validity of small scale testing of 
oscillating marine structures. 

2.6 Quasi-steady drag forces 
(a) Stationary cylinders (rough and smooth). The general trend of drag coefficient Ca v 

Reynolds numbers for smooth cylinders is given in Fig. 1. Cylinder surface roughness and 
free stream turbulence can both influence the absolute values on this graph. Fage and 
Warsap (35) showed that increasing the surface roughness of the cylinder caused the 
abrupt reduction in Ca in the Critical region to occur at progressively lower Reynolds 
numbers. They also concluded that free stream turbulence could stabilise the cylinder 
boundary layer and delay entry into the Critical region (i.e., the opposite effect to increasing 
roughness). Large surface roughness may cause immediate transition to turbulence in 
the boundary layer (36) and the spectacular decrease in Ca in the Critical region (Fig. 1) 
may be reduced to a decrease of 1.2-0.7 at Reynolds numbers as low as Re = 6 × 104 
compared with Re = 2 × 105 for smooth cylinders. Miller (37) has investigated the effects 
at high Reynolds numbers of roughness on circular members using actual and simulated 
marine growths. For a heavily fouled space frame structure the local drag coefficients 
could be as high as 1.0 representing an increase of between 50 and 70% over that for a 
smooth cylinder. Additionally the loadings could be increased due to increases in the 
member diameter. Szechenyi (38) has described the use of rough small cylinders to simulate 
the boundary layers of some larger cylinders at high Reynolds numbers. 

From Fig. 1, we can see that Ca = f(1/S), and if this functional relationship remained 
unaltered for rough cylinders, then roughening the cylinder should cause a variation in the 
frequency of vortex shedding. However Mujumdar and Douglas (39) have shown that 
roughening cylinders in the Reynolds number range 4 × 10~-1.6 × 104 causes negligible 
variations in shedding frequency even when roughness heights of up to 0.1 ld were used. 

(b) Cylinder oscillating in-line in water. Laboratory tests in a water channel (26) have 
shown that at a given velocity (V), the cylinder was deflected elastically from the datum by 
the dynamic fluid loading equivalent to ½pV2Ca.d per unit of immersed length. If the 
cylinder oscillates in-line, the oscillatory motion is superposed on the quasi-steady deflection 
and the output signals from the strain gauges on the cylinder would register the d.c. shift 
plus the a.c. component. The 'steady' shift of the base strain gauge recorded in the first 
instability region in line (26), when plotted against the square of velocity yielded a mean 
value of Ca = 1.26. As a comparison, results of wind tunnel tests at similar Reynolds 
numbers gave 1.1 < Ca < 1.4. 

Halle and Lawrence (65) have confirmed this superposition of motions for the in-line 
direction but state that the 'steady' drag forces on a cylinder oscillating in the cross-flow 
direction increase considerably owing to the increase in frontal area. 

2.7 Fluctuating lift and drag coefficients 
(a) Stationary cylinders. The fluctuating lift and drag coefficients C' L and C'a are 

related to, and deduced from measurements of the fluctuating forces r i.e. : 
----- ½p V2C.d per unit length 

where .P is the fluctuating force 
C is the fluctuating force coefficient C'L or C'a. 
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The force coefficients are dependent upon Reynolds number, aspect ratio, surface 
roughness, turbulence and boundary effects. Wide variation of forces can be measured on 
apparently identical cylinders ira different test facilities. Additionally, if the force~ are 
measured on very short instrumented lengths of cylinder comparable with, or shorter tham 
the vortex correlation length, the total distributed forces can be overestimated (see Section 
2.1). 

Table 2 lists the fluctuating force coefficients and the corresponding Reynolds numbers, 
There is considerable scatter between the values quoted and the problem for any designer 
would be to decide which C'l. or C',~ to select for a particular application. Probably the 
safest approach is to assume C ' f  ~ 1.2 and C'a -~ 0.2 for all Reynolds numbers, 

TABLE 2. COLLECTED EXPERIMEN'IAL DATA FROM VARIOUS SOURCES ELU(?IUATIN(,  I(tRCF 

COEFFICIENTS AND REYNOLDS NUMBERS 

Jones (64) 0.08 
McGregor  (22) 0.60 
Surry (23) 0.60 
Bishop and Hassan (19) 0.60 
Ruedy  (55) 0.~13 
Woodru f f  and  Kozak  (56) 0.65 
Vickery and Watkins (7) 0,7~ 
King (26) 0,78 
F u n g  (57) 0 2 0  0.30 
Glenny (58) 
Keefe (14) 0.43 
Humphreys (131 0.30 1.35 
Phillips (61) 0,75 
Schwabe (62) 0.45 
Protos  et al. (63) 0,30 

R.M.S.  
fluctuating lift Ratio 

Source Coefficient {5" L C'~./C'd Reynolds  number  range 

10 
2.5 10 

10 

5.7 10 
t0 

10 

0.4 10~ -1.9 10: 
4,3 :: 10 ~ 1.3 t0 ~ 
4.4 > 104 
3.6 103 1,1 lO ~ 
Approx,  10 ~ 
0.2 , l0 t 
10' 
4 . ,  104 
0.2 ;. 10 ~ 
0.2 l0 t 
4 ,  104-10 :' 
3 - 105---5 10' 
20O 
Approx. 70(.I 
4 . 5 "  t() ~ 

(b) Oscillating cylinders. The coefficients are deduced from experimental force measure- 
ments on the oscillating cylinders and compared with results from linear or non-linear 
mathematical models of the fluid/cylinder system. The results derived in this way are 
critically dependent upon the type and complexity of the mathematical analogues. 

Figures 14(a), (b) and (c), are graphs of equivalent fluctuating lift and drag coefficients 
against amplitudes of oscillation for the in-line and cross-flow directions (7, 54, 26). Figure 
14(a) clearly shows that at low amplitudes the lift coefficient increases with increasing 
amplitude. As the amplitude rises above 0.5 diameters (considered as the point at which 
the oscillating cylinder is fully correlated) the lift coefficient begins to decrease (see also (19)) 
and approaches zero as the amplitude exceeds about one diameter. This gives a limiting 
amplitude of vortex-excited oscillation that Blevins and Burton (54) considered independent 
of structural damping although King (26) did not wholly support this view. Nevertheless, 
the existence of the limit implies that the vortex strength may be self-limiting, as suggested 
by nt least one analytical model (54). 

The graphs of drag coefficients for cylinders oscillating in the two instability regions 
in-line are self-explanatory and show C'a increasing linearly with amplitude. Unlike the 
cross-flow results, the amplitudes do not tend to a finite limiting value although in practice 
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the maximum amplitudes recorded are of the order 0.2 diameters (26). As with all calculated 
results, they are of future use only if the original methods of analysis are employed; 
frequently these methods are extremely complex, although the dynamic behaviour can be 
predicted accurately (40), (54). Figure 10 offers the most convenient method of assessing 
the oscillatory stresses; the Stability Parameter, K s must first be calculated and the corres- 
ponding maximum oscillatory amplitude is then read from the appropriate graph. Stress 
levels equivalent to this amplitude are than calculated using standard theory (see example 
in Section 4). 
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2.8 Blockage effects of cylinders 
Probably the most extensive tests on blockage effects of cylinders are those of 

Ramamurthy and Ng (41) who investigated blockage ratios in the range 0.07 < d/B< 0.7 
for Reynolds numbers up to 2.3 x l0 s. Figures 15 and 16, show the way in which blockage 
ratios can influence the steady drag coefficients and also the Strouhal number of vortex 
shedding (41). The values of Ca show sensitivity to Reynolds number only at the higher 
d/B (Fig. 15(a)). When the mean gap velocity is used as the characteristic velocity in defining 
the drag coefficient, the results collapse on to a single line (Fig. 15(b)) which maintains a 
reasonably constant value until the flow around the cylinder attains the critical Reynolds 
number for a given blockage. The curve then drops abruptly as predicted from tests with 
isolated cylinders. The results also imply that the critical Reynolds number is reached much 
earlier for the higher blockage ratios. 

FIG. 15. 
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FIG. 16. Strouhal number versus blockage ratios, calculated using free-stream velocity 
(16(a)) and gap velocity (16(b)). 

Figure 16(a) shows Strouhal number plotted against blockage ratios using the free- 
stream velocities, the cylinder diameter and the experimentally recorded values of vortex 
shedding frequencies to define S. There is a systematic increase in the Strouhal number 
with increased flow constriction although no significant Reynolds number effects were 
apparent. In Fig. 16(b), the Strouhal number is replotted in terms of the mean gap velocity 
against blockage ratio. This shows that for the subcritical region, the Strouhal number is 
constant for all blockage ratios up to d/B = 0.42. Ramamurthy and Ng (41) make the 
comment that caution should be used in physically modelling the flows. Dynamic similarity 
cannot be achieved by the use of a fixed blockage ratio with an adjusted mean gap velocity 
because the accelerations along the forebodies are themselves controlled by the blockage. 

3. WAKE I N T E R F E R E N C E  TESTS 

As a further means of illustrating the mechanisms involved in sustaining the oscillation 
discussed, a splitter plate and a second identical cylinder were placed in sequence in the 
wake of a flexible cylinder. 

The splitter used was a brass sheet 1.5mm thick extending for six diameters in the 
direction of flow. It was set in the wake of a 2.5 mm dia., 1000 mm long P.V.C. cylinder, 
and the gap (Z) between it and the cylinder could be varied d/16 < Z < 6d (42). 

For the cylinder-cylinder tests, the cylinders were clamped to separate bases and 
located relative to each other along a common centre-line with a variable gap G such that 
0.25 < G/d < 6 (47). 

3.1 Cylinder-splitter tests 
The results for the in-line direction are assembled in Fig. 17. The isolated cylinder 

results (i.e., no splitter) show the characteristic two instability regions; the first is identified 
by symmetric vortex shedding and the second by alternate vortex shedding (see Section 2.5). 
The cylinder-splitter results were recorded when the splitter was placed in the wake with a 
gap Z = d/8. Over the range 1.4 < V/nd < 2.3 the two sets of results of cylinder oscillations 
are reasonably similar, both quantitatively and qualitatively. However, for values of 
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Reduced Velocity greater than 2.3, fundamental differences are evident. The splitter 
effectively extends the first instability region, increases the cylinder's amplitudes of oscilla- 
tions and suppresses the establishment of  a second instability region. Not unreasonably 
the splitter assists the formation of symmetric vortices and suppresses the formation of 
alternate vortices (see also (66)). Figure 18 shows the cylinder with a 2d long splitter 
attached, undergoing self-excited oscillations in the in-line direction. The vortices are shed 
symmetrically and maintain an approximately symmetric disposition along the splitter 
before forming an alternate wake downstream. 

The cross-flow mode behaviour of the cylinder-splitter arrangement is extremely 
complex. 

For a gap in the range d/16 < Z < d/8 the cylinder remained stationary throughout 
the excitation range of the isolated cylinder 5 < V/nd < 7. As the velocity was increased 
further, violent self-excited large amplitude oscillations were initiated abruptly at V/nd ~- 9. 
The amplitudes of these oscillations were considerably larger than those of the isolated 
cylinder. When the cylinder was deflected and released, in the range 6 < V/nd < 8.5, the 
logarithmic decrement of this transient motion decreased rapidly and this is similar to the 
effect recorded in the isolated cylinder tests of Fig. 8. 

For increasing spacings in the range d/8 < Z < 2d, the threshold of the violent large 
amplitude oscillations coincided with progressively lower values of V/nd; the violence of 
the onset of instability also decreased and the isolated cylinder situation was approached 
for Z -~ 2d. 

Sallet (66) describes the stabilising effect of a splitter plate fixed to a cylinder and 
explains the way in which the splitter operates in terms of the stability of the laminar 
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symmetric vortices, called FiSppl vortices. He suggests that the length (projection) of the 
splitter plate is a function of the Lid of the cylinder and that for short cylinders (L/d ~- 5) 
splitters 3d long should be sufficient to suppress cylinder cross-flow motion. 

Sallet's tests were conducted with short cylinders and end effects would be unavoidable; 
the extrapolation of these results to longer cylinders is not necessarily valid. 

Roshko (67)has studied the vortex shedding frequencies from a rigid cylinder with a 
splitter either attached or placed at varying distances downstream. A 1.14d long splitter 
placed with a gap of 2.66d caused a reduction in Strouhal number from S ---- 0.21 to 
S ---- 0.12 at Reynolds numbers up to 1.53 × 104. However, for gaps greater than 2.66 d the  
vortex shedding frequency increased abruptly to just below the isolated cylinder value. 
This indicates that for the short splitter plate the isolated cylinder situation was approached 
for Z -~ 2.7d, compared with Z z 2d for the longer (6d) splitter plate (42). 

3.2 Cylinder-cylinder tests 
(a) Rigid cylinders. Experimenters (43, 44, 45) have shown that considerable wake 

interaction is generated between cylinders closely spaced in-line, and for 0 < G/d < 1, 
negative drag forces can be detected at the downstream cylinder. For 1 < G/d < 3 it is 
reported that fluctuating lift and drag forces of the same order as the steady drag forces can 
be created (43). The isolated cylinder situation is approached for 7 < G/d < 15 (44, 46). 

(b) Oscillating cylinders. Due to the complexity of the overall behaviour recorded in 
the cylinder-cylinder tests particularly when they were coupled together elastically, the 
conclusions reached by King and Johns (47) will be reproduced in full. 

"When two identical cylinders are partly or wholly immersed in a flowing fluid and 
spaced at between 0.25 and 6 diameters in the flow direction, complex mutual interactions 
can arise between the flow, the vortex wakes and the deflections of the cylinders. The 
oscillatory response of the cylinders primarily is a function of G/d, V/nd and the stability 
parameter K s (it is also dependent upon Reynolds number; Re must exceed 1200-1500 or 
in-line oscillations will not be induced (10); these are excited by symmetric vortices probably 
created from secondary vortices which do not form below a minimum Re = 1250 (4); for 
oscillations in the cross-flow direction, the Reynolds number must exceed I00). If the 
cylinders are structurally uncoupled the motion of each depends upon their spacing and 
the nature of the wake interactions; in particular, the amplitude of the downstream cylinder 
is strongly influenced by the way in which the vortices are shed from the upstream cylinder. 
If the gap between the uncoupled cylinders is less than 1.75 diameters, symmetric vortices 
are shed from both cylinders in the range 1.25 < l//nd < 2.5 and both cylinders will 
oscillate in the in-line direction provided the stability parameter of each is less than 
K s = 1.2. If G/d > 1.75 and 1.25 < Vr < 2.5, the upstream cylinder may oscillate with 
sustained large amplitudes in the in-line direction whilst the downstream cylinder remains 
stationary, and this observation applies to the second normal mode in addition to the 
fundamental (sway) mode of oscillations in-line if the gap (G) between the cylinders exceeds 
2 diameters. Tentatively this is explained in the text by a consideration of symmetric and 
alternate vortex shedding, both of which can be generated during sustained self-excited 
oscillations in the in-line direction. This reasoning is supported by photographs of the 
vortex shedding processes. When 2.7 < Vr < 3.8, the alternate vortex wake from the 
upstream cylinder generally reinforces that from the downstream cylinder and for all 
spacings 0.5 < G/d < 6 the rear cylinder oscillates with an amplitude greater than that of 
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the leading cylinder. If the upstream cylinder is held stationary, the oscillatory in-line ampli- 
tude of the downstream cylinder is greatly reduced. However, one cylinder is capable of 
driving both flexible cylinders (if they are structurally coupled) provided the sum of their 
stability parameters is less than the critical value Ks~ _~ 1.2. Although there is no previou~ 
research with which to compare these results directly, the ranges of spacings for mutual 
interaction quoted above are of an order similar to those recorded on stationary cylinders. 

Motion in the cross-flow direction is less dependent upon the cylinder spacing for 
0.25 ~ G/d <S 6 and it appears that the alternate vortex shedding from the oscillating 
upstream cylinder generally reinforces that from the downstteam cylinder Coupling the 
cylinders together normally leads to a greater level of excitation in the cross-flow direction. 

The discontinuity in the drag vs spacing curve (in the region 2.5 .:.: G/d : 3) noted by 
some authors, was not observed in the present tests, in either the in-line or cross-flow 
directions. 

An analysis of the overall results, based on Owen's discussion (49) of the flow-induced 
instability of cooling tower arrays failed to establish any well-ordered relationships in the 
data. However, in his paper, Owen considered the amplitudes of the cooling towers to be 
small compared with their diameters, and this assumption alone may exclude the large 
amplitude results recorded here from such analysis. 

Although the range in which interactions were recorded in the present tests (47) were 
within the spacing range for buffetting-type fluctuations, the explanation based on vortex 
wake degeneration is considered more plausible for sustained oscillations." 

3.3 Inclined cylinders, plane and 3-d frames 
Inclining a cylinder at an angle q~ from the vertical relative to the flow direction has 

the dual effect of increasing the cylinder's wetted length (for a fixed depth of water) and 
decreasing the local flow velocity component (Fig. 19). An increase of wetted length results 
in a lowering of natural frequency and an increase of Reduced Velocity, thus making the 
cylinder more liable to excitation. However, this is offset to some extent by the reduction in 
velocity component. In calculating the Reduced Velocity, the velocity component V cos ? 
should be used; the true wetted length is the upper limit for the integration of the mode 
shape for defining K s. The frequency n should be calculated with an allowance for the 
increased wetted length. 

The criteria to be satisfied to achieve stability for angles --45; -.: ? <:: 45' are: 

Vcos ?/nd <. 1.2, K~ " 1.2 in-line; 
V cos ~/nd .: 4.5, K s :> 17 cross-flow (50). 

Plane frames and a three-dimensional structure both fabricated from inclined members 
have been tested (see Figs. 20 and 21 and Refs. 50, 51, 17); in general the amplitudes of 
oscillation could be predicted from the isolated inclined cylinder data. Figure 22 shows the 
response of these frames superposed on the isolated cylinder graphs. 

4. SUPPRESSION OF VIBRATIONS IN STEADY CURRENTS (1-AKEN FROM REF. 52) 

4.1 Design approach 
The two criteria governing the onset of vibrations are the Reduced Velocity Vr and the 

Stability Parameter Ks. Both criteria must be satisfied simultaneously for vibrations to be 
excited. Figure 13 defines the relationship between vibrational amplitudes and Vr; vibrations 
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can be excited in the in-line direction for Vr > 1.2 and in the cross-flow direction for 
Vr > 3.5. Figure 10 shows the variation of vibrational amplitude with K~; the limiting 
amplitudes as Ks tends to zero are about 0.2 diameters in-line and 2 diameters cross-flow. 
Alternatively, motion can be virtually suppressed if Ks exceeds about 1.2 in-line and about 
18 cross-flow. 

In calculating the natural frequency n of a cylinder in water, allowances must be made 
for the external added mass of water and the mass of water inside the cylinder. For a thin- 
walled cylinder, assume that both are equal to the mass of water displaced by the outside 
diameter. 

First, assume that the cylinder is completely immersed i.e., el e = m s + m,, ~- mw and 
calculate n from standard beam theory, for the main modes of practical interest. For a 
completed structure with a cap mass, the sway mode can be calculated as for a cantilever, 
making an allowance for the cap mass supported by each pile. Each frequency in sequence 
should be checked in the appropriate V, criterion to determine whether or not vibrations 
are likely. In calculating the Stability Parameter K s for each mode, assume initially that 

- 0.1 for steel members. As a more accurate check for part-immersed members use 
Figure 23 to calculate me for each mode. 

For the fundamental sway mode: 

m ~ = 4 . 2  Mty+m~y+m,,+m~-- 
L 

and for the clamped-pinned and clamped-clamped modes: 

me - -  y Ins @ ma  @ mw 

7 is the integral ratio appropriate to each h / L  shown in Fig. 23. If the calculated K~ is less 
than 1.2 and Vr > 1.2 or > 3.5, use the graphs of Fig. l0 to determine the equivalent 
vibrational amplitudes likely to be excited. These graphs can be applied to plane frames 
and 3-dimensional structures, although wake interactions and proximity effects can modify 
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both  the amplitudes and the criteria if tile members are closely spaced. If  the amplitudes 
exceed acceptable levels, some redesigning may be necessary. 

The application of the design criteria. To illustrate the use of  the stability criteria, Table 3 
contains details o f  full scale and model structures. 

The model structure was formed f rom a pair of  tripods, used in recent hydroelastic 
model  tests at B H R A  Fluid Engineering on a proposed design of  ship jetty. The jetty design 
incorporated groups of  piles arranged in tripods to form the main structure: each t r ipod 
consisted o f  three raked piles. The model piles were 38 mm dia., with the elasticity and 
mass distribution o f  the prototype represented by suitable choice of  model materials. 

In Table 3 the two stability criteria were satisfied in only three locations and of  these 
only structure ! oscillated appreciably. The K, of  structure 2 implies that  the maximum 
amplitude possible was only 0.02d and this probably accounts for its stable classification. 

FABLE 3, 

BHRA 
Structure I 2 3 Model ~ 6 7 ~ 9 

Steel Steel Octagonal PVC Octagonal Steel Steel Octagonal Steel 
Pile type tube tube steel tube steel tube tube steel tube 

V/nd of 1.86 0.59 1.06 0.97* 0.47 0.83 0.60 0.40 0,77 
piles 1.33"1" 

V/ndsway 4.05 1.64 1.67 1.90 2.8 2.4 0.91 2.5 2.01 
K, of piles 0.27 0.28 0.35 0.31 0.35 0.28 0.27 0.35 0.28 
K, sway 1.61 0.90 1.3 2.97 4.06 2.42 1.93 2.56 1.87 

*Vertical piles. 
#Raked piles, V cos q#nd = 1.19. Note: The full scale results are taken from ref. (68). 
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The K s of the bowstring mode of structure 3 was very low and amplitudes of 0,12d were 
theoretically possible for circular section piles. An allowance was made for the influence 
of the octagonal section of the piles actually used, resulting in V, = 1.06. This is below the 
threshold and is consistent with the reported stability. 

4.2 Use of vortex spoilers 
Helical strakes have been used for many years to suppress the cross-flow oscillations of 

structures (e.g. chimneys) in air. However, piles fitted with strakes create problems in 
handling or driving and the strake has not been generally adopted for use in water, 
although it is believed that the 1st World War submarines were fitted with this device 
to suppress periscope oscillations. 

The most advantageous vortex spoilers in water are perforated shrouds and radial fins. 
The use of perforated shrouds was first suggested in 1956 and tests conducted since then 
have optimised the shroud geometry (53). This should have a diameter 20 ~ greater than 
the pile diameter, an open area ratio of about 36 ~o and extend for 20 ~ of the wetted length. 
In full scale marine tests, a fairly thick growth of crustacea did not reduce the shroud's 
effectiveness (34). 

The radial fin was proposed from tests on full scale vertical piles (34) and the suggested 
size for this projection was 10~ of a diameter extending for 15 ~o of the piles wetted length. 
On the full scale, these fins were mounted on the pile at an angle of 45 ° from the front 
stagnation point. Cable oscillations may be suppressed by the attachment of trailing ribbons 
(16). 

Example in the use of vortex spoilers. Both types of vortex spoiler were evaluated during 
recent hydroelastic model tests at BHRA on the tripods shown in Fig. 21. Each spoiler in 
sequence was clamped to one or more of the tripods' raked piles. 

The results showed that in some orientations of the tripod to the flow, a shroud on 
just one or two legs, completely suppressed the response to excitation of the bowstring 
mode in the in-line direction. In general individual shrouds were less effective when they 
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FIG. 24. The effectiveness of clamp-on spoilers used to suppress vortex excitation. 
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were c lamped to a pile that  was in the wake of  a leading pile, a l though shrouds on all three 

piles always prevented the excitation of  sustained oscillations. 

A single, radial fin c lamped on each pile at 45 ° to the approach  flow was nc~t always 

consistent in suppressing the oscillations. In view of  the change of  flow directions caused by 

the ebb and flood tides past  the tripods, two fins were mounted  on each pile, one at 45: 

and one at 225 ° f rom the f ront  s tagnation point. These always suppressed the oscillations. 

It is considered that  the trai l ing fin was far more  efficient than the leading fin and it would 

seem that  the op t imum working range o f  the fin is probably between these two angles. The 

fin was originally developed from full scale tests with vertical piles and it may be that  

different angles relative to the flow direction are necessary when the piles ate raked. 

Examples of  the effectiveness of  the vortex spoiler on the tripod model  are shown in Fig. 24 
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