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We review recent applications of quantum control on molecular switches by optical means. We discuss diverse
examples, as detection and automatic switching between nucleotide base-pairs and their undesired mutants,
controlled operation of multi-configurational molecular devices for quantum information storage, and switching
between the two enantiomeric forms of a chiral molecule. The variety of examples discussed demonstrates the
wide range of applicability and the power of optical quantum control techniques in the fast emerging field of
molecular devices.
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1. Introduction

The fast expanding field of molecular devices investi-
gates compounds with physical and chemical properties
of particular interest for the development of analogues
of macroscopic devices on the molecular scale. Such
properties include the facilitation of electric charge
transport, optical response in a controllable fashion,
and possible switching between several molecular con-
figurations, just to name a few. The molecular com-
pounds with such properties have numerous potential
applications in different areas, as diverse as molecular
electronics [1–3], molecular machines and motors
[4–12], nano-medical technology [13–15], and quantum
information storage [16–18] and processing [19].

The research area of quantum control (QC) is
investigating ways to induce the complete transfer of
population from an arbitrary initial state to a desired
‘target’ state by optical means. It consists of various
fields, such as coherent control (CC) [20], optimal
control [21–26], adiabatic passage (AP) [27,28], and in
particular the stimulated Raman adiabatic passage
(STIRAP) [29–31], as well as other techniques expand-
ing on elements of these approaches [32].

The integration of the QC methodology into the
development of molecular devices is one of the most
promising venues in contemporary interdisciplinary
science. The possibility of active control on such
devices opens new ways, beyond the mere synthesizing

of compounds with useful properties. Moreover, due to

the extreme advance of laser technology, the QC
methods provide perhaps the most powerful means for
manipulation on molecular scale, since parameters as
frequency, phase, intensity, polarization, and duration

of a laser pulse are highly tunable.
In this article, we review recent applications of the

QC methodology on control of molecular devices,
which are analogues of macroscopic switches, i.e. they
exhibit two or more operational modes, directly

related to different stable molecular configurations.
The examples presented belong to different areas of
nano-technology, as well as they involve different

techniques for implementing switching on molecular
scale by optical means.

This review is organized as follows: in Section 2 we
present optical switching between natural and mutant
nucleotide base-pairs on the well studied nucleic acid

base-pair model – the 2-pyridone and 2-hydroxypir-
idine hydrogen-bonded dimer [33]. This example could
have significant applications in nano-medicine.
The switching between the two nucleotidic forms is

based on a phase-sensitive three-laser pulse sequence,
which is able to ‘distinguish’ between the natural and
mutant configuration of the nucleotide base-pair,
although these two compounds possess identical

spectroscopic properties. In Section 3, an analytical
solution to the problem of determining the proper laser
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parameters for switching the population between

several energetically degenerate equilibrium configura-

tions of a molecular compound is presented [34].

The method is exemplified on the Jahn–Teller Al3O

molecule, which has three equivalent minimum con-

figurations. Such systems have potential application as

quantum information storage devices. The last exam-

ple of optical control of molecular switching is

discussed in Section 4, where the controlled intercon-

version between the two forms of a chiral molecule, the

enantiomers, by simple laser pulses, exemplified on the

transiently chiral H2S2 molecule, is presented [35].

Switching between the two transient enantiomers of

H2S2 is induced by a resonant two-photon process.

Lastly, we summarize in Section 5.

2. Switching nucleotide base pairs

Hydrogen bonding between nucleotide pairs is

a major factor in the observed stability and fidelity of

replication of DNA [36]. It has been recognized for

quite some time that double proton transfer (DPT)

between hydrogen-bonded di-nucleotides can trans-

form one di-nucleotide pair to another, leading to loss

of recognition of the correct base pair in DNA

and RNA. For example, proton transfer in the

Guanine–Cytosine (G�C) pair is considered a crucial

part of the radiation-induced damage to DNA [37,38].
The mechanism of the tautomerization of hydro-

gen-bonded base-pairs, induced by DPT from one

stable configuration A to another (almost energetically

equivalent) stable configuration B, in either

a sequential or concerted fashion, has been discussed

in the literature [39–51]. Control over the DPT process

is a major objective, as well as techniques that would

enable the detection and repair of an undesired

tautomerization once it has occurred [13].
We now demonstrate by computational means that

phase-coherent laser techniques enable one to both

distinguish between base-pairs residing in two energe-

tically equivalent A and B minima, as well as induce

and control the inter-conversion of the system between

these two configurations.

2.1. The di-nucleotide pair model system

As a vehicle for this demonstration we choose the well

studied [44–50] nucleic acid base-pair model – the

2-pyridone (2PY) and 2-hydroxypiridine (2HP) dimer

(shown in the upper part of Figure 1) embedded in
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Figure 1. Top: the di-nucleotide dimer; the double proton (cyan) transfer takes place between the two nitrogen atoms (green) and
the two oxygen atoms (red). Bottom: the two-dimensional potential energy surface used in this work. The s curvilinear coordinate
describes the in-plane double proton transfer motion and the � curvilinear coordinate corresponds to the instantaneous out-of-
plane normal mode of the two protons along the s coordinate. (The color version of this figure is included in the online version of
the journal.)
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a ‘pocket’ of a nucleic acid. We keep the dimer
at a separation similar to that found in nucleic acids,
where the base-pair members are unable to approach
each other too closely due to their attachments to the
nucleotide backbone [51]. In this way we slow down
the natural rate of DPT tunneling in isolated dimers, in
keeping with environments typical of base-pairs
embedded in nucleic acids.

The concerted motion of the two protons during
the 2PY�2HP tautomerization process may be
described as a motion along a linear reaction path
[52] connecting the two equilibrium configurations A
and B. This path is given as,

RiðsÞ ¼
1

2
RA

i þ RB
i

� �
þ s RB

i � RA
i

� �
, ð1Þ

where Rk
i denotes the three-dimensional Cartesian

coordinate vector of the ith atom in the molecular
center-of-mass frame for the (k¼A,B) equilibrium
structures. The parameter �0.825� s� 0.825 describes
the position of the system along the linear reaction
path, with the A tautomer corresponding to s¼�0.5,
the B tautomer to s¼ 0.5, and the ‘transition state’
corresponding to s¼ 0. This type of path is particularly
suitable for studying the transfer of light particles
between two heavier moieties [52], which are thus
naturally kept practically immobile.

The potential energy and the molecular structures
are obtained in an ab initio way using the hybrid
B3LYP density functional (DFT) method and the
valence triple-zeta 6-311þþG(d, p) basis set of the
Gaussian electronic structure calculation package [53].
The two equilibrium configurations of the dimer are
planar in the (x, y) plane at this level of ab initio theory
and consequently the linear reaction path from A to B
is planar as well.

In addition to the in-plane motion we also consider
the out-of-plane vibration of the two protons as the
system propagates along the reaction path.
The instantaneous out-of-plane normal mode along
the linear reaction path is chosen in such a way that it
overlaps maximally with the �28� 932 cm�1 normal
mode of the equilibrium configuration A or B. This
out-of-plane motion is parametrized by a variable
�1� �� 1. Our working space is thus confined to the
{(s, �)2 [�0.825, 0.825]� [�1, 1]} two-dimensional part
of the dimer configuration space. This is the minimal
space needed to properly describe the dynamics of our
control scheme using the energetically lowest states of
the dimer.

Our calculations yield a linear reaction path
potential-energy barrier height of �8550 cm�1. Our
two-dimensional configuration space model predicts
tunneling times from A to B of �0.15ms. Although this
is still much shorter than the estimated tunneling times

in nucleic acids [54], it is by far longer than the

tunneling times in the isolated unconstrained dimers
where the monomers are allowed to get much closer to

one another [49,50]. As shown in the following, this
tunneling time is sufficiently long to allow us to
consider the localized states at the A or B minima as

‘legitimate’ initial or final states.
Our calculated potential energy and electric dipole

surfaces in the {s, �} space are shown in Figure 1 (lower
panel) and Figure 2. The fact that there exist

degenerate A and B tautomers makes the separate
addressing of these tautomers by optical means
difficult. We have overcome this difficulty using

a two step approach: in the first step we affect the
discrimination between the tautomers. In the second
step we use the discrimination afforded by the first step

to control the interconversion between the tautomers.
The discrimination step [55–58] makes use of the
different symmetries of the x, y and z components

of the dipole moment to manipulate molecules in
configuration A and B differently. As can be seen in
Figure 2, the x component of the electric dipole is

symmetric with respect to � inversion and antisym-
metric with respect to s inversion; the z component
behaves in the opposite manner; and the y component

(not shown) is symmetric with respect to inversion of �
or s.

2.2. Detection and automatic repair

The cyclic laser coupling scheme, which is at the heart

of the first ‘discrimination’ step, is depicted in the
upper part of Figure 3. As shown in the figure, the laser
fields inter-couple three vibrational states of the A

tautomer, as well as inter-couple separately three
vibrational states of the B tautomer. As discussed
below, we can, by controlling one overall phase of

the laser fields [55–58], excite only the j1iB ground
state to a higher jiiB vibrational state of the B
tautomer, while leaving all the A-tautomer states

untouched.
Following this selective excitation, it is now

possible to transfer in the second ‘interconversion’
step the j1iA (ground state of the A tautomer)

population, if such exists, to a j jiB 6¼ jiiB B-tautomer
excited state. In this way, any population residing
initially in j1iA, is automatically converted to the B

tautomer. Thus, we are able both to detect the
existence of a mutation and to repair it automatically.

Moreover, if it is the A tautomer that we desire, we
can, by tuning the overall laser phase, interchange the

process, with the excitation of the B states switched
over to the excitation of the A states and the transfer
occurring from B to A.

688 I. Thanopulos et al.
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2.3. The dynamics of detection

We now present a numerical demonstration of the
detection scheme. As our localized vibrational states
we use the three lowest, {j1ik, j2ik, j3ik}, k¼A,B
tautomeric states. The two-dimensional {s, �} config-
uration space wave functions, corresponding to these
six localized states, are shown in the middle and
bottom panels of Figure 3. Each of the above localized
states is a superposition of an ji0i and an ji00i
vibrational eigenstate,

ji ik ¼
1

21=2

�
ji 0i � ji 00i

�
, k ¼ A,B, ð2Þ

where ji0i denotes the s-symmetric ith vibrational
eigenstate, and ji00i – the s-antisymmetric ith eigenstate.
Since the dimer in our study is assumed to represent
a base-pair confined to a ‘pocket’ of a nucleic acid, we

are justified in neglecting the rotational motion of the

dimer.
According to our calculations,1 with q1¼ s and

q2¼ �, the tunneling splittings between the ji0i and ji00i

eigenstates for the first three doublets (i¼ 1, 2, 3) are

10�4, 3� 10�4 and 10�3 cm�1, respectively. These

numbers imply that the interconversion times between

the jiiA and jiiB (i¼ 1, 2, 3) localized states are roughly

150, 50 and 15 ns, respectively. The laser pulses for our

two-step control scheme, ‘discriminator’ and ‘con-

verter’ in tandem, are of total duration �300 ps, which

is much shorter than the tunneling interconversion

times, thus justifying the assumption that the localized

states are well defined physical entities.
The ‘discrimination’ step depends on the Rabi

frequencies associated with each pulse,

Oij ¼ �i, j � EðtÞ ¼ Omax
ij f li, jðtÞ, (we use �h¼ 1 throughout

0.
5

0.
5

0.
5

0.
2

5
0.

2
5

0.25
0

0
0

0
.25

0.25

0.
25

0.5

0.
5

0.5

0.
5

0.
5

0.
5

0.
5

0.5

s

 ζ  

−0.825 0.4 0 0.4 0.825

0.5

0.5
0.

25

0.25

0.
25 0.25

0.
05

0.05

0.
05

0.05

0.05
0.

05

0.05 0.05

0000

0.05

0.05

0.
05

0.05

0.05

0.
05

0.
05

0.05

0.25

0.
25

0.25

0.
25

0.5

0.5

 ζ

1

−0.5

0.5

1

1

−0.5

0.5

1

Figure 2. The two-dimensional surface for the x component (upper panel) and z (lower panel) component of the electric dipole
2D configuration space of the di-nucleotide dimer. (The color version of this figure is included in the online version of the
journal.)
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this article, except where otherwise stated), where ki,j is
the electric dipole moment for the i j transition and
E(t) is the electric field of the laser pulse. The time
dependence of �ij is given by the pulse shape function
f lijðtÞ, shown in the upper panel of Figure 4 for the
polarizations used.

The primary factor that allows us to distinguish
between the case where the population resides initially
in tautomer A and the case where it resides initially in
tautomer B is the phase of the product of the three
(complex) Rabi frequencies Ok

23O
k
13O

k
12 (k¼A,B).

As shown elsewhere [55–58], by merely changing this
phase by � we determine whether it is the A or the B
tautomeric states that are to be affected by the lasers.
Here, a �-phase dependence originates in the different
symmetry properties of the electric dipole component
of the dimer, shown in Figure 2. Due to these different
directional properties of the dipole moments, choosing
the polarization of the pulse coupling the j1ik and j3ik
(k¼A,B) states to lie along the x-direction, and that of
the two other pulses to lie along the z-direction, results

in OA
1,2 ¼ OB

1,2, OA
2,3 ¼ OB

2,3 and OA
1,3 ¼ �O

B
1,3. Hence,

there exists a � phase difference in the product of the
Rabi frequencies as seen by the A tautomer relative to
that seen by the B tautomer. The discrimination
process described above is therefore possible.

Our numerical simulation, with electric dipole
matrix elements for the relevant i j transitions
being� 0.01 Debye, and the chosen pulse intensities
yielding Omax

ij � 1 ps�1, are plotted in Figure 4. As
demonstrated in the upper panel, in order to attain
complete population transfer by adiabatic passage, we
apply the pulses in a ‘counter-intuitive’ order [29–31].
By the term ‘counter-intuitive’ we mean that the
Oz

2,3ðtÞ ‘dump’ pulse is applied before the Ox
1,3ðtÞ

and Oz
1,2ðtÞ ‘pump’ pulses. In addition, the Oz

1,2ðtÞ
pulse has to last longer than the Ox

1,3ðtÞ pulse, and
its late part be chirped [55–58] according to
expf�itOmax

12 exp½�ðt� 6 �Þ2=�2�g.
As shown in the lower panels of Figure 4 by

employing the above pulse ordering we can indeed
discriminate between the tautomers: at the end of the

Figure 3. The detection scheme. Top panel: the coupling scheme for the discriminator. Middle panels: the jjiB, (j¼ 1, 2, 3)
localized states (left to right). Bottom panels: the jjiA, ( j¼ 1, 2, 3) localized states (left to right). (The color version of this figure is
included in the online version of the journal.)
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process the A tautomer is seen to remain in the initially

populated (ground) state, while the B tautomer is

transferred from its ground state to the j2Bi state.

Emptying the ground j1Bi state population, as we have

done in the discrimination step, enables us now, in

a second step, to exclusively transfer the population

from the j1Ai state to the j3iB state.

2.4. Automatic repair dynamics

The goal of the repair scheme is that the initial
population of the j1Ai ground level is transferred to the
j3iB level. The population at the end of the two steps is
thus divided between the j2iB and j3iB states, thus
converting all the population from the undesired
tautomer A to the desired tautomer B.

−3 −1 1 3 5 7

t / τ

−1

−0.5

0

0.5

1

f13
x

(t) 

f12
z

(t) 

f23
z

(t) 

 −0.8 0.8
 s 

 −0.6

0.6
t=3 τ t=7 τ

 ζ  

 −0.6

0.6

 ζ  

 −0.8 0.8
 s 

Figure 4. The detection scheme dynamics. Upper panel: the pulse shape functions flijðtÞ for the laser fields coupling resonantly the
localized jiik and the jjik k¼A,B states. The polarization is denoted as l (l¼ x, z). Middle panels: the initial (t¼�3�) and final
(t¼ 7�) wave functions in configuration B. Bottom panels: the same for the A configuration. (The color version of this figure is
included in the online version of the journal.)
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This is achieved via a transient excitation to two

higher lying eigenstates (shown in Figure 5) that are

spaced �1.1 cm�1 apart, denoted, j40i, which is sym-

metric, and j400i, which is antisymmetric, with respect to

the s reaction coordinate. The electric dipole matrix

elements connecting the localized states to these eigen-

states have been calculated by us to be �0.005 Debye.
The time dependence of the pulses, hence the Rabi

frequencies, is given for the ‘converter’ step as, O1k40 ¼

Omax
1k40

exp½�ðt� 11�Þ2=�2�, O3k40 ¼ Omax
3k40

exp½�ðt� 9�Þ2=
�2�, jO1k40 j ¼ jO1k400 j and jO3k40 j ¼ jO3k400 j, (k¼A,B). All

the pulses are polarized along the x direction, and

Omax
i40 � 100 ps�1 (i¼ 1, 3).
In Figure 6 we show the time evolution of the

total wave function j ðs, �, tÞi ¼ c40 ðtÞj4
0i þ c400 ðtÞj4

00iþP
k¼A,Bðc1kðtÞj1ik þ c3kðtÞj3ikÞ during the ‘converter’

step, integrated over the � coordinate

 ðs, tÞ ¼

ð
j ðs, �, tÞj2 d�: ð3Þ

The population transfer from state j1Ai to state j3Bi
is achieved by choosing the pulses in such a way
that either O1k40=O1k400 ¼ �1 or O3k40=O3k400 ¼ �1
(k¼A,B) [55–58]. We note that, as in other adiabatic
passage schemes [29–31], the j40i and j400i states,
though being an indispensable part of the ‘converter’
scheme, are never populated during the entire process
[55–58].

We find that after the ‘discriminator’ and ‘con-
verter’ steps, all the population in tautomer A has been
converted to tautomer B. As mentioned above, by
simply changing the phase of one of the Rabi
frequencies involved, we could equally well have
ended up with only the A tautomer being populated.
In fact, our method is capable of purifying a mixture in
which there is an initial population in both tautomers.
In a complementary way, our approach can be
also used on the single-molecule level to identify, for
a given dimer, if the ground state configuration is that
of A or B.

Figure 5. The repair scheme. Upper panels: the eigenfunction of level j40i (left) and level j4
0 0

i (right). Bottom panel: the level
scheme considered and the corresponding couplings. (The color version of this figure is included in the online version of the
journal.)
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3. Switching in multi-configurational molecular

compounds

The CC techniques use multiply interfering quantum

pathways [20], to selectively transfer population to

desired target states. In a complementary way, AP

methods [27–31] enable the complete population

transfer between quantum states. Recently both

techniques have been merged [32], to achieve both

selectivity and completeness.
The extension of the three-state STIRAP [29–31] to

act on wave packets composed of many non-degen-

erate states is a crucial first step toward developing

universal quantum control techniques. Therefore, the

‘non-degenerate quantum control’ problem, i.e. how

to achieve a complete population transfer between an

arbitrary initial j�ii¼
P

k ci,k exp(�i!kt)jki and

a target jCfi ¼
P

k0 cf,k0 expð�i!k0tÞ jk
0i wave packet,

formed of non-degenerate quantum states, has been

addressed [59] firstly. This transfer is realized by

a multi-path two-photon process, proceeding via

a single intermediate eigenstate, to which all the

non-degenerate states are resonantly coupled by the

laser fields.
The way leading to a complete control of quantum

systems has been further paved by addressing the

‘degenerate quantum control’ (DQC) problem [34],

i.e. how to transfer population between arbitrary

wave packets, j�ii� exp(�i!it)
P

k ci,kjki and

jCfi � expð�i!ftÞ
P0

k cf,k0 jk
0i, composed of nearly-

degenerate energy eigenstates, for which the nearest-

neighbor separations are much smaller than the

bandwidth of the laser pulses used. We can separately

address many nearly-degenerate levels, jki and jk0i, by

coupling them differently to many non-degenerate

eigenstates, j ji and j j0i, that form intermediate states

of the applied two-photon processes. By being able to

control arbitrary wave packets, we significantly extend

previous studies addressing the preparation of selected

degenerate superposition states [60–62], as well as

open new possibilities for control of multi-configura-

tional molecular compounds to be used as nano-scale

devices.

3.1. Analytical solution of the DQC problem

We solve the DQC problem in two-steps, illustrated in

Figure 7. In step 1 (left panel), we use a pair of laser

pulses to adiabatically transfer the population of the

initial wave packet j�ii(j1iloc), composed of the nearly-

degenerate energy eigenstates jki (k¼ nþ 1, . . . , 2n), to

a single (‘parking’) state j0i, using the non-degenerate

auxiliary states jji (j¼ 1, . . . , n) as intermediates.

The ‘dump’ (D) pulse, linking the j ji states and the

j0i state, characterized by Rabi frequencies �1, . . . , n;0,

is followed by a ‘pump’ (P) pulse, linking the jki

states with all the jji states, characterized by

�nþ1, . . . , 2n;1, . . . , n. In step 2 (right panel), the popula-

tion in the ‘parking’ state j0i is transferred, by time-

reversing the dump and pump pulses of step 1 and

using different Rabi frequencies, to the target wave

packet j�fi(j2i
0
loc), composed of (the same or

a different) set of nearly-degenerate eigenstates jk0i.
We now describe the pulses used in DQC. In the

first step the total electric field is

EðtÞ ¼ Re
Xn
j¼1

�
E0, jðtÞ expð�i!0, jtÞ þ Ej,iðtÞ expð�i!j,itÞ

�
,

ð4Þ

while in the second step i! f, and the roles of the

dump (D) and pump (P) pulses are reversed.

The (dump) E0, jðtÞ ¼ �̂0, j E0, jðtÞ and (pump)

Ej,iðtÞ ¼ �̂j,i Ej,iðtÞ field components are characterized

by the polarization directions �̂j,i and the (slowly

Figure 6. The time evolution of the wave function  (s, t)¼
Ð
j (s, �, t)j2 d� during the ‘converter’ scheme. (The color version of

this figure is included in the online version of the journal.)
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varying) amplitudes E0,j(t) and Ej,i(t). The central
frequencies of the field components are chosen to be
in near resonance with the system’s transition frequen-
cies, !0,j¼!0�!j and !j,i¼!j�!i. The complex Rabi
frequencies expressed in atomic units are
�j,i(t)	kj,i�Ej,i(t), where kj,i are the transition-dipole
matrix elements. They have common time envelopes,
�j,i(t)¼Oj,i, fD(P)(t), with fD preceding fP in both
steps.

The system’s wave function can be expanded in
each step as, jCi ¼

P2n
i¼0 ciðtÞexpð�i!itÞjii, where the

column vector c(t)¼ (c0, c1, . . . , cn, cnþ1, . . . , c2n)
T,

where the superscript T designates the matrix trans-
pose, of coefficients is obtained by solving the matrix
Schrödinger equation, _cðtÞ ¼ �iHðtÞ � cðtÞ. Here, H(t)
denotes the effective Hamiltonian in the rotating wave
approximation (RWA) [63],

HðtÞ ¼

0 :0 0

:y0 0 HF

0 H
y

F 0

0
B@

1
CA, HF ¼

:1

. . .

:n

0
B@

1
CA, ð5Þ

and

:0 ¼ ðO0,1, . . . ,O0,nÞ,

:j ¼ ðOj,nþ1, . . . ,Oj,2nÞ, j ¼ 1, . . . , n, ð6Þ

with y denoting the adjoint operation. The :0�n

vectors of Rabi frequencies are different in the two
steps, because they control the population transfer
between different wave packets.

The two DQC steps can re/address arbitrary wave
packets only if the Rabi vectors {:1, . . . ,:n}, which
couple the (k¼ nþ 1, . . . , 2n) nearly-degenerate levels
to the (j¼ 1, . . . , n) non-degenerate levels, are linearly
independent. In this case, D	det(HF) 6¼ 0 and the
Hamiltonian H(t) has just one zero eigenvalue, with the
corresponding (‘null’ or ‘dark’) eigenvector being given
as (1, 0, x), where 0 denotes an n-dimensional zero

vector and x is an n-dimensional vector given as
x ¼ �H�1F :y0. Direct operation of H(t) on (1, 0,x)
confirms that this is the null state.

If the :0 vector of Equation (6) is proportional to
the kth column of the HF matrix, i.e. O
0,i / Oi,k

(i¼ 1, . . . , n), the (1, 0, x) vector correlates at the end of
step 1 (start of step 2) with the j0i state and at the start
of step 1 (end of step 2) with the jnþ ki nearly-
degenerate state. The linearity of the above equations
guarantees that with the choice O
0,i /

Pn
k¼1 a



k Oi,k the

null state is correlated at the start of step 1 (end of step
2) with the

Pn
k¼1 ak jnþ ki superposition state. Thus,

complete control over the population transfer between
arbitrary wave packets, composed of nearly-degenerate
states, can be achieved.

We note that the second step of DQC can be
executed effectively only if all the nearly-degenerate
final jki states are initially empty. If these states are
populated at the start, jCfi ¼

P2n
k¼nþ1 c

f
k jki (all

cfk 6¼ 0), the vector amplitude c(f) can not be orthogonal
to all the n linearly independent vectors :l, which
make up the dump pulse, and they are thus depopu-
lated from the start.

3.2. The Al3O molecule

We can apply DQC on molecular systems with several
quasi-stable (symmetry-related) configurations of
equal energies. For example, chiral molecules possess
two such configurations [55–58], while more config-
urations can be found in Jahn–Teller molecules [65]. As
a particular example, we consider the Al3O molecule,
which has three local energy minima [66,67]. As shown
in Figure 8, they are characterized by C2v planar
T-shaped geometries, separated by three planar saddle
points with C2v Y-shaped configurations [66,67]. In
order to achieve the desired transfer (pseudo-rotation)
between the three T-configurations, we hinder the

Figure 7. The DQC scheme. (Left panel) Step 1: population in a space-localized wave packet j1iloc, composed of n nearly-
degenerate eigenstates is transferred to a single state j0i, by a two-photon adiabatic passage via n non-degenerate intermediate
states. (Right panel) Step 2: population transfer by a time reversed process with different Rabi frequencies from j0i to the target
wave packet j2i0loc, composed also of a set of nearly-degenerate eigenstates. (The color version of this figure is included in the
online version of the journal.)
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overall rotation by (loosely) binding the molecule to

a larger system, such as a solid surface or the inside of

a large (inert) molecular ‘pocket’ [68,69]. By doing so,

we also orient the Al3O molecule in such a way that the

out-of-plane motion of the O atom relative to the Al3
triangle coincides with the z-direction.

The three quasi-stable T-configurations result in

a set of triplet in-plane vibrational states. For energies

well below the isomerization barrier, the eigenstates in

each triplet are nearly-degenerate and thus can be

superimposed into three states that coincide with the

three T-configurations, in the considered timescale of

the experiment. At the same time, eigenstates in triplets

of higher energies are no longer nearly-degenerate.

Thus, in principle, the states needed in DQC are readily

available, but we still need to pick those that assure the

linearly independent coupling. A direct option is to use

additional states related with the out-of-plane vibra-
tional mode, coupled by the z-polarized light, as

described below.
We obtain, using ab initio methods, the potential

surface of a two-dimensional (2D) subspace of the full

(6D) configurational space of Al3O, as shown in

Figure 9(a). In the same figure, we also present the

two-dimensional surface for x (b), y (c) and z (d )

components of the electric dipole. The 2D potential

energy and electric dipole surfaces are obtained at the

PUMP2 level of theory using the 6-31G* basis set [53].

However, the minimum and saddle point molecular

structures are optimized at the PUMP2(full) level of

theory [53] with the same basis set as before. The 2D
subspace includes as one coordinate, denoted by s, the
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Figure 9. The potential and electric dipole surfaces of our model. Upper panels: the two-dimensional potential energy surface (a)
and the surface for the x component of the electric dipole (b). Lower panels: the two-dimensional surfaces for the z (c) and y (d)
components of the electric dipole. (The color version of this figure is included in the online version of the journal.)

Figure 8. The three Jahn–Teller minimum configurations
of the Al3O molecule with XY3 symmetry are shown, as well
as the three intermediate saddle point structures. In the
center, we present schematically the potential along the
coordinates for the molecular isomerization (s direction) and
the motion of the X unit out of the Y3 plane (z direction).
(The color version of this figure is included in the online
version of the journal.)
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motion along the minimum energy path for isomeriza-
tion, and as the other coordinate, the out-of-plane
bending mode motion of Al3O along the z axis.
The height of the isomerization barrier thus obtained,
�320 cm�1, is in good agreement with previous
calculations [66,67]. Since the energy of the equilateral
D3h-symmetric Al3O structure is very high,
�9200 cm�1 [66,67], the inclusion of only the ground
electronic surface should be sufficient for evaluation of
the lower-energy end of the vibrational spectrum. We
thus also neglect here geometrical phase effects [70].

The vibrational levels for both the isomerization
(s) and the out-of-plane (z) modes appear in triplets,
according to our calculations,1 with q1¼ s and q2¼ z.

Each triplet can be characterized by the {vs, vz}
numbers of nodes in each of the three wells and the
particular mode. Each triplet contains two degenerate
and one separated eigenstates, where the level order
alternates from triplet to triplet, with the lowest
eigenstate being non-degenerate. In the lowest triplet
{0, 0}, the level separation, �E� 2� 10�5 cm�1,
determines the tunneling time, �i¼ 1/�E� 1.6 ms,
between the three configurations of the molecule.
These three eigenstates jki (i¼ 1, 2, 3) are shown in
Figure 10(a). We superimpose them to form the initial
and final broken-symmetry wave packets, j�ii¼

P
k

ci,k jki (i¼ 1, 2, 3), that are localized in the three
Jahn–Teller wells, as displayed in (b). The three

Figure 10. (a) The three lowest energy eigenstates of the system in the s and z molecular coordinates. (b) Superpositions of these
eigenstates form localized states about each Jahn–Teller well. (c), (d) The used intermediate and parking states of DQC,
respectively. (e) Time-dependent DQC dynamics of the transfer between the first and second wells. (The color version of this
figure is included in the online version of the journal.)

696 I. Thanopulos et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
E
A
L
-
L
i
n
k
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
1
:
4
4
 
2
4
 
A
p
r
i
l
 
2
0
0
9



non-degenerate delocalized states in the {4, 0}, {6, 0}
and {4, 1} triplets are chosen as the j ji intermediate
states, shown in (c). Finally, the non-degenerate state
in the {6, 1} triplet, presented in (d ), is used as the
‘parking’ state j0i.

3.3. The dynamics of the DQC

The light pulses which couple the states must be quite
different. Thus, the three non-degenerate intermediate
states {4, 0}, {6, 0} and {4, 1} are coupled to the nearly-
degenerate localized states j�ii by pulses polarized in
the x, y and z directions, respectively, while they are
coupled to the parking j0i state by pulses polarized in
the z, z and y(x) directions, respectively. In this way we
are able, despite the high symmetry of the Al3O
molecule, to tune the field amplitude to achieve the
required linear independence of the :1, :2, and :3

Rabi vectors, in the DQC steps.
The Rabi frequency amplitudes for both DQC steps

are Oj,kðtÞ ¼ Omax
j,k fexp½�ðtþ �Þ

2=�2� þ exp½�ðt� �Þ2=
�2�g and Ok,0ðtÞ ¼ Omax

k,0 fexp½�ðtþ 3�Þ2=�2� þ exp½�ðt�
3�Þ2=�2�g, with Omax

j,k ¼ Omax
k,0 ¼ 0:2 cm�1 and �¼ 5 ns.

The dipole elements are of the order 10�3–10�1 Debye.
The duration of laser pulses is roughly 8�� �i, so that
the j�ii states remain localized in their corresponding
potential wells for sufficiently long time to be used as the
initial states of the DQC scheme.

We display the time evolution of the system, during
the two steps of the DQC transfer, in Figure 10(e).
The z-integrated probability density

Ð
dzjhs,zj�(t)ij2 is

presented as a function of s and t. We start with the
j�1i localized-state being populated. At the end of step
1, its population is ‘parked’ to the excited delocalized
j0i state, using as intermediate the j ji¼ j1i� j3i states,
that remain unpopulated throughout the process.
During a reasonably short parking, the bulk of the
probability density is concentrated near the three
saddle points, with almost no probability density
residing in the three wells regions. Then, at the end
of the second step, the parked population is transferred
to the localized j�2i state. We assume that the
relaxation time related with the parking state is long
enough, so that little population would be lost in a real
experiment.

The presented control of the Jahn–Teller isomer-
ization in the Al3O molecule clearly demonstrates the
power of the DQC solution. We can control stable
isomers in the same way, if the intermediate states
belong to an excited electronic surface. In problems
with more nearly-degenerate states to be controlled, we
might include other physical degrees of freedom, to
assure their linearly independent coupling. Besides its
fundamental importance in understanding the

degenerate quantum control, the presented approach
could be applied in numerous practical systems.

4. Switching of molecular chirality

Molecular chirality is of fundamental importance in
nature [71,72]. Therefore, methods for controlling
molecular handedness have drawn much attention in
chemistry and biology. Since the advances in laser
technology numerable studies on control of molecular
chirality by optical means have appeared. Earlier
suggestions of such methods centered on the use of
circularly polarized light [73,74] utilizing the very weak
magnetic–dipole interaction between a chiral molecule
and an electromagnetic field. However, in recent
works, the methods are focused on the far stronger
electric dipole interaction [56,57,75–82].

Here, we discuss a simple method for complete
enantiomeric conversion of chiral molecules using an
analytically solvable model of a �-type three-level
system at exact two-photon resonance [35,83].
The model is also applicable when the intermediate
state is off single-resonant. As in the previous examples
discussed, the spontaneous emission is neglected in this
model, because the lifetimes of the involved levels are
supposed to be much longer than the interaction time
with the light pulse. The general scenario is demon-
strated on the (transiently) chiral H2S2 molecule, which
is shown in the upper part of Figure 11.

We also note that the most challenging case of
enantiomeric purification of racemic mixtures, i.e.
mixtures of left-handed (L) and right-handed (D)
enantiomers of a chiral molecule, can be achieved
with more advanced methods [56,57], implementing the
‘discriminator’ and ‘converter’ steps, discussed in
Section 2, or alternatively, using the ‘laser distillation’
method [75–77].

4.1. The H2S2 molecule

The H2S2 molecule is depicted in Figure 11 (upper
panel), with the z axis of the molecule-fixed frame
oriented parallel to the principal axis corresponding to
the smallest moment of inertia, and the y axis of the
molecule-fixed frame oriented along the S–S bond of
the molecule.

H2S2 has six vibrational degrees of freedom, from
which the large amplitude torsional motion about the
S–S bond is relevant to stereomutation. In particular,
there are two torsional barriers, a cis and a trans
barrier, roughly 2700 cm�1 and 1900 cm�1 in height,
respectively [57,84,85]. A one-dimensional cut of the
ground electronic potential energy surface along the
stereomutation path over the trans barrier is shown in
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the lower part of Figure 11. The experimental tunnel-
ing splitting [84] of the lowest torsional level is
very small, � 2� 10�6 cm�1, corresponding to an
enantiomeric lifetime of �16 ms. Thus, although H2S2
is not a chiral molecule in the conventional sense,
a molecular configuration described by superposition
of the lowest torsional states, localized in one mini-
mum of the double well potential, stay chiral suffi-
ciently long in order to be detectable. H2S2 has C2

symmetry at its equilibrium structure, but due to
tunneling through the two barriers, the symmetry
group Gy4 is used for energy level classification [86–89].
H2S2 is an almost prolate symmetric top [85].

Since stereomutation of H2S2 occurs through the
internal rotation, the relevant configuration subspace
is defined by the minimum energy path of the torsion
about the S–S bond, described by the dihedral angle �
between the two SSH planes (upper panel
of Figure 11). The cis and trans conformers of H2S2
correspond to �¼ 0 and �¼ 180, respectively.

The torsional eigenstates are obtained using the

minimum energy path of [57], which is obtained by

ab initio methods at the coupled-cluster level of theory

including single and double excitations and

a perturbational correction due to connected triple

excitations, CCSD(T) [53]. The basis set employed is

the correlated-consistent polarized cc-pVTZ [53].

4.2. Dynamics of the degenerate K system

We denote jLi, jDi the lower degenerate states and jei

the upper state of the �-type three-level system

interacting with a (nearly) resonant laser field.

The corresponding Hamiltonian within the RWA

[63], reads

H ¼ Djeihej þ
1

2
OðtÞjLihej þ OðtÞjDihej þH.c.½ �: ð7Þ

  

 

 

 

  

 

 S

S

H

1
Y/100pm

X/100pm 0.75

0

−1

Figure 11. Upper panel: the orientation of the H2S2 molecule in the molecule-fixed frame. Lower panel: the double well potential
energy along the torsional motion of the H atoms about the S–S bond, used to describe the stereomutation path of the H2S2. (The
color version of this figure is included in the online version of the journal.)

698 I. Thanopulos et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
E
A
L
-
L
i
n
k
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
1
:
4
4
 
2
4
 
A
p
r
i
l
 
2
0
0
9



Here, �(t)	 k�E(t) is the Rabi frequency, with k being

the matrix element vector for the jLi (jDi)$jei

transition and E(t)¼Re{f(t)E0 exp(�i�t)} denoting

the electric field, with amplitude E0 and pulse shape

function f(t). Furthermore, �	!e�!L�!¼!e�

!D�! stands for the detuning from resonance for

the transition jLi(jDi)$jei, where !j is the energy of

the j ji level and ! is the angular frequency of the laser

field.
We now define two new basis states

jC i 	
1

21=2
jLi þ jDið Þ, jNC i 	

1

21=2
�jLi þ jDið Þ:

ð8Þ

The state jNCi is decoupled from the driving pulse,

since HjNCi¼ 0. The Hamiltonian of Equation (7) is

now transformed into

H ¼ �jeihej þ
1

21=2
�OðtÞ jCihej þ jeihCjð Þ, ð9Þ

where �OðtÞ ¼ OðtÞ=2. The Hamiltonian of Equation (9)

describes the interaction of the two-level system

composed of the jCi and jei levels with a pulsed laser

field [63].
The time evolution under the Hamiltonian of

Equation (9) can be obtained by the transition matrix

method [63,64]. The general transition matrix can be

parameterized in the basis {jNCi, jCi, jei} as

Uðtf, tiÞ ¼

1 0 0

0 	 �



0 
 	


2
64

3
75, ð10Þ

with j	j2þ j
j2¼ 1 [63,64].
Here, we are interested when the system is in state

jLi or jDi at ti, and at the end of the pulse, at tf, the

state jei is not populated. Hence, the parameters of the

transfer matrix U(tf, ti) must fulfill

	 ¼ expð�i�Þ 6¼ 0, 
 ¼ 0: ð11Þ

We thus obtain

j fi ¼ hNCj iijNCi þ expð�i�ÞhCj iijCi, ð12Þ

as the final state of the process, where � denotes the

acquired phase due to the pulse. Assuming that the

system is initially in state jLi, we have

j fi ¼ exp �i
�

2

� 	
cos

�

2
jLi � i sin

�

2
jDi


 �
: ð13Þ

It then follows for the final populations of levels jLi

and jDi

PLðtfÞ ¼ cos2
�

2

� 	
, PDðtfÞ ¼ sin2

�

2

� 	
: ð14Þ

Therefore, if the system is initially in the state jLi,

complete enantiomeric conversion occurs when

�¼ (1þ 2k)� (k being an integer or zero), correspond-

ing to 	¼�1 in Equation (11).
Under pulsed excitation, the parameters of the

transition matrix read

	 ¼ cos
1

21=2

ðtf
ti

�OðtÞdt

 �

, 
 ¼ �i sin
1

21=2

ðtf
ti

�OðtÞdt

 �

:

ð15Þ

The simplest case is the rectangular pulse, for which
�OðtÞ ¼ O0 if 0� t�T, and zero otherwise. The elements

of the transition matrix of Equation (10) are given as

	 ¼ A expð�iDT=2Þ, 
 ¼ �iB expð�iDT=2Þ, ð16Þ

with A 	 cosðeOT=2Þ þ ið�=eOÞ sinðeOT=2Þ, B 	 ð21=2O0=eOÞ sinðeOT=2Þ, and eO 	 ð2O02þ D2Þ
1=2. It follows, that

for effective pulse area

eOT ¼ 2pm, with m ¼ 1, 2, . . . , ð17Þ

the transition amplitudes become

	 ¼ exp �i
DeOþ 1

� 	
mp


 �
, 
 ¼ 0, ð18Þ

thus, fulfilling the conditions of Equation (11). In this

case, the angle � reads

� ¼
DeOþ 1

� 	
mp: ð19Þ

4.3. Degenerate K model of H2S2 and complete

enantiomeric conversion

We now apply the method discussed in Section 4.2 on

H2S2. We consider chiral rovibrational ground states

jLi ¼
1

21=2
ðj01iþ j04iÞD

0,þ
0,0 , jDi ¼

1

21=2
ðj01i� j04iÞD

0,þ
0,0 :

ð20Þ

Here, D
J,p
�,M are the rotational matrices [90], where J is

the total angular momentum, M is its projection on the

laboratory Z axis (we use capital letters to denote the

laboratory-fixed axes) and � is its projection on the

molecule-fixed z axis, p¼�1, t� ¼ 2�1=2 for �4 0 and

t�¼ 1/2 for �¼ 0. Since H2S2 is essentially a prolate

symmetric top, the D
J,p
�,M functions approximate well

the rotational eigenfunctions of H2S2 (at least for the

low J values considered here [35,65]). The torsional

eigenstates are characterized in a normal-mode-like

manner as jv�i, which denotes a vibrational quantum

number v, and a symmetry quantum number

�¼ 1, . . . , 4 for each v [35].
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The jLi$ jDi interconversion time accompanying
the corresponding tunneling splitting occurs within
16 ms, according to our calculations [35]. Thus, pulses
of nanosecond duration are short enough for the jLi
and jDi states to be considered chiral. We use the state
j44iD

1,þ
0,0 as intermediate state jei. The closest states to

jei, for which electric dipole transitions from jLi and
jDi are allowed, are energetically higher by
�E� 4.72 cm�1. In the discussion below we always
consider field detuning � and pulse width values that
are much smaller than �E, so that the state jei can be
considered isolated.

Transitions between states of H2S2 with ��¼ 0 are
induced by the z component of the electric dipole
moment, which is antisymmetric with respect to the
torsional angle � [35]. The x and y component of the
electric dipole moment vanish along the stereomuta-
tion path. We obtain the transition dipole moments
hLj�zjei¼ hDj�zjei� 3� 10�4 Debye using the one-
dimensional cut along the minimum energy path of the
electric dipole surface of [57], which is obtained by ab
initio methods at the coupled-cluster level of theory
including only double excitations, CCD [53], with the
cc-pVTZ [53] basis set. We note that the jLi(jDi)$jei
transitions are induced only by irradiation along the Z
axis in the laboratory frame [65] with hkj�Zjei �
0.5hkj�zjei, for k¼L,D, since hkj�xjei¼ hkj�yjei¼ 0.
Thus, no pre-orientation of the molecules is necessary
for our scheme to work.

We first consider the case of resonant pulsed fields.
For a rectangular pulse with �OðtÞ ¼ O0, 0� t�T, we
obtain that complete jLi! jDi conversion is achieved
for duration T¼�m21/2/�0, m¼ 1,2,. . . according to
Equation (17). A typical time evolution of the
populations in the three states of the system for
complete enantiomeric conversion is shown in the left
panel of Figure 12. In the right panel of Figure 12, we
show T as a function of the pulse intensity I for

m¼ 1, . . . , 5. In the case of a resonant Gaussian pulse
�OðtÞ ¼ O0 expð�t

2=�2Þ, using
Ð1
�1

�OðtÞdt ¼ O0�p1=2 and

Equation (15), we obtain that complete enantiomeric

conversion jLi! jDi is achieved for �¼ (2�)1/2m/�0,

m¼ 1,2, . . ..
We now focus on the case of a non-resonant

rectangular pulse. With Equation (17) andeO ¼ ð2O02 þ D2Þ
1=2, we obtain that complete conversion

jLi! jDi is achieved for pulse duration

T ¼ m
2p
O0

x

ð2x2 þ 1Þ1=2
ð21Þ

with x¼�0/�. In the left panel of Figure 13 the

duration T of the pulse as a function of the detuning �

for complete conversion jLi! jDi is given according

to Equation (21) for m¼ 1 and �0 values of 0.005,

0.0075, 0.01 and 0.0125 cm�1, corresponding to pulse

intensity I of 2.5, 5.625, 10 and 15.625GWcm�2,

respectively. The duration T for m¼ 2, 3, . . . values is

easily obtained from Figure 13 due to the linear scale

relation between T and m as implied by Equation (21).

We note that complete enantiomeric conversion at

non-zero detuning � with this method is possible, as

shown in the left panel of Figure 13. In the right panel

of the same figure, the efficiency of the enantiomeric

conversion, given by j	j2 from Equation (16), is shown

for the rectangular pulse, as a function of the pulse

area �0T and the scaled detuning �T. When

ðD= ~Oþ 1Þm¼ odd integer, complete enantiomeric con-

version is achieved.

5. Summary

We have presented recent applications of optical

control techniques on molecular switching. We

have discussed examples related to quantum infor-

mation storage, biochemistry, and nano-medicine.
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Figure 12. Left panel: time evolution of the populations in states jLi (solid curve), jDi (dashed curve) and jei (dot-dashed curve).
The evolution is for rectangular pulse with �0 ¼ 0.0125 cm�1, �¼ 3, m¼ 2 and the rest of the parameters are chosen to fulfill
Equations (17) and (19). Right panel: pulse duration for complete enantiomeric conversion as function of the intensity I for
a resonant rectangular pulse. (The color version of this figure is included in the online version of the journal.)
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In particular, we have introduced optical methods for

controlled population transfer between energetically

degenerate states of multi-configurational molecular

compounds, as well as controlled interconversion

of molecular chirality and the detection and

automatic repair of nucleotide base-pair mutations.

The variety of the applications discussed demonstrates

the power and wide applicability of optical control

techniques, and the central role such methods can

play in the design and development of molecular

devices.
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Note

1. The vibrational eigenstates in a two-dimensional con-
figuration space are obtained in the Discrete Variable
Representation (DVR) [91–94] by solving the corre-
sponding Schrödinger equation with a Hamiltonian
for the generalized coordinates [65] q1 and q2 (with
@qi	 i�h@/@qi)

H ¼
1

2

X
q1,q2

@
q1Gq1q2 ðq1, q2Þ@q2 þ uðq1, q2Þ þ Vðq1, q2Þ: ð22Þ

Here, V is the potential energy of the electronic state
considered and u is the ‘pseudopotential’ [65]

uðq1,q2Þ ¼
1

8

X
q1,q2

@

@q1
Gq1q2

@ ln jgj

@q2

� �
þ
1

4

@ ln jgj

@q1
Gq1q2

@ ln jgj

@q2
,

where g is the covariant and G is the contravariant metric
tensor, respectively, given by

gq1q2 ¼ ma
@xa
@q1
�
@xa
@q2

, Gq1q2 ¼ m�1a

@q1
@xa
�
@q2
@xa

, ð23Þ

and jgj is the determinant of g. In the above equations,
where summation over dummy indices is implicitly
understood, ma is the mass of the ath atom in the
molecular system, e	 (	¼ x, y, z) are the unit vectors in
the center-of-mass molecule-fixed frame and xa denotes
the Cartesian coordinate vector of the ath atom in this
frame.
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[54] Löwdin, P.-O. Rev. Mod. Phys. 1963, 35, 724–732.
[55] Král, P.; Shapiro, M. Phys. Rev. Lett. 2001, 87, 183002-

1–4.
[56] Král, P.; Thanopulos, I.; Shapiro, M.; Cohen, D. Phys.

Rev. Lett. 2003, 90, 033001-1–4.
[57] Thanopulos, I.; Král, P.; Shapiro, M. J. Chem. Phys.

2003, 119, 5105–5116.
[58] Gerbasi, D.; Brumer, P.; Thanopulos, I.; Král, P.;

Shapiro, M. J. Chem. Phys. 2004, 120, 11557–11563.

[59] Král, P.; Amitay, Z.; Shapiro, M. Phys. Rev. Lett. 2002,
89, 063002-1–4.

[60] Unanyan, R.; Fleischhauer, M.; Shore, B.W.;

Bergmann, K. Opt. Commun. 1998, 155, 144–154.
[61] Unanyan, R.G.; Shore, B.W.; Bergmann, K. Phys. Rev.

A 2001, 63, 043401-1–5.
[62] Karpati, A.; Kis, Z. J. Phys. B 2003, 36, 905–919.

[63] Shore, B.W. The Theory of Coherent Atomic Excitation;
Wiley: New York, 1990; Vols. 1–2.

[64] Kis, Z.; Paspalakis, E. Phys. Rev. B 2004, 69, 024510-

1–6; Paspalakis, E.; Kis, Z.; Voutsinas, E.; Terzis, A.F.
Phys. Rev. B 2004, 69, 155316-1–5; Kis, Z.; Paspalakis,
E. J. Appl. Phys. 2004, 96, 3435–3439.

[65] Bunker, P.R.; Jensen, P. Molecular Symmetry and
Spectroscopy, 2nd ed.; NRC Research Press: Ottawa,
1998.

[66] Boldyrev, A.I.; Schleyer, P.; von, R. J. Am. Chem. Soc.
1991, 113, 9045–9054.

[67] Ghanty, T.K.; Davidson, E.R. J. Phys. Chem. A 1999,

103, 2867–2872.

[68] Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer,
F.; Jordan, M.R.; Craft, J.; Hadju, E.; Bible, R.;
Olmstead, M.M.; Maitra, K.; Fisher, A.J.; Balch, A.L.;

Dorn, H.C. Nature 1999, 401, 55–57.
[69] Alvarez, L.; Pichler, T.; Georgi, P.; Schwieger, T.;

Peisert, H.; Dunsch, L.; Hu, Z.; Knupfer, M.; Fink, J.;

Bressler, P.; Mast, M.; Golden, M.S. Phys. Rev. B 2002,

66, 035107-1–7.
[70] Kendrick, B. Phys. Rev. Lett. 1997, 79, 2431–2434.

[71] Jacques, J.; Collet, A.; Wilen, S.H. Enantiomers,
Racemates and Resolutions; Wiley-Interscience:
New York, 1981.

[72] Quack, M. Angew. Chem. Int. Ed. Eng. 1989, 28,

571–586.
[73] Shao, J.; Hänggi, P. J. Chem. Phys. 1997, 107, 9935–9941.

[74] Salam, A.; Meath, W. J. Chem. Phys. 1998, 228, 115–129.
[75] Shapiro, M.; Frishman, E.; Brumer, P. Phys. Rev. Lett.

2000, 84, 1669–1672.
[76] Gerbasi, D.; Shapiro, M.; Brumer, P. J. Chem. Phys.

2001, 115, 5349–5352.
[77] Frishman, E.; Shapiro, M.; Gerbasi, D.; Brumer, P.

J. Chem. Phys. 2003, 119, 7237–7246.
[78] Fujimura, Y.; Gonzalez, L.; Hoki, K.; Kroener, D.;

Manz, J.; Ohtsuki, Y. Angew. Chem. Int. Ed. 2000, 39,

4586–4588.
[79] Hoki, K.; Kroener, D.; Manz, J. J. Chem. Phys. 2001,

267, 59–79.

[80] Hoki, K.; Gonzalez, L.; Fujimura, Y. J. Chem. Phys.
2002, 116, 8799–8802.

[81] Gonzalez, L.; Kroener, D.; Sola, I.R. J. Chem. Phys.
2001, 115, 2519–2529.

[82] Hoki, K.; Gonzalez, L.; Fujimura, Y. J. Chem. Phys.
2002, 116, 2433–2438.

[83] Vitanov, N.V. J. Phys. B 1998, 31, 709–725.

[84] Gottselig, M.; Luckhaus, D.; Quack, M.; Stohner, J.;
Willeke, M. Helv. Chim. Acta. 2000, 84, 1846–1861.

[85] Senent, M.L.; Smeyers, Y.G.; Domininguez-Gómez, R.;

Arroyo, A.; Fernández-Herrera, S. J. Mol. Spectrosc.
2000, 203, 209–215.

[86] Urban, S.; Herbst, E.; Mittler, P.; Winnewisser, G.;

Yamada, K.M.Y.; Winnewisser, M. J. Mol. Spectrosc.
1989, 137, 327–353.

[87] Herbst, E.; Winnewisser, G. Chem. Phys. Lett. 1989,

155, 572–575.

[88] Herbst, E.; Winnewisser, G.; Yamada, K.M.T.;
Defrees, D.J.; McLean, A.D. J. Chem. Phys. 1989, 91,
5905–5909.

[89] Winnewisser, G.; Winnewisser, M.; Gordy, W. J. Chem.
Phys. 1968, 49, 3465–3478.

[90] Edmonds, A.R. Angular Momentum in Quantum

Mechanics, 2nd ed.; Princeton University Press:
Princeton, 1960.

[91] Kanfer, S.; Shapiro, M. J. Phys. Chem. 1984, 88,

3964–3968.
[92] Light, J.C.; Carrington, Jr T., Adv. Chem. Phys. 2000,

114, 263–310.
[93] Colbert, D.T.; Miller, W.H. J. Chem. Phys. 1992, 96,

1982–1991.
[94] Luckhaus, D. J. Chem. Phys. 2000, 113, 1329–1347.

Journal of Modern Optics 703

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
E
A
L
-
L
i
n
k
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
1
:
4
4
 
2
4
 
A
p
r
i
l
 
2
0
0
9


